MATHEMATICAL LOGIC FOR COMPUTER SCIENTISTS

by

MICHAEL LEVIN

The work resulting in this publication was done at M.I.T's Project MAC and at the Stanford Artificial Intelligence Laboratory, and was supported in part by IBM

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC
Cambridge, Massachusetts, 02139

Abstract

This book is an introductory course in mathematical logic covering basic topics in quantification theory and recursive function theory, and is intended for the reader who is interested in artificial intelligence, computer linguistics, and other related areas. The text is theoretical, but organized with implementation in mind. Toward the end there are a few experimental subjects aiming toward systems that can examine their own behavior, and toward the semantics of programming languages. The arithmetization of metamathematics is carried out in LISP rather than in the natural numbers, following an axiomatic treatment of LISP.

ACKNOWLEDGEMENTS

To Ed Fredkin, who is not a mathematician, for having the confidence that I could write this book.

To my students at MIT, for their help and interest in this work.
To Delphine Radcliffe, for her expert typing, composing and spelling, and her patience and hard work while preparlng two drafts.

PRELIMINARY EDITION

The author will be pleased to read any comments, criticisms, suggestions or errata that you may have. Address correspondence in care of Project MAC, 545 Main Street, Cambridge, Mass. 02139.
[Dhar Lho said], "Logic is the most important science of all learning. If one knows logic, all other studies become secondary. Therefore, I shall first discuss logic with you. Generally speaking, logic is the study of judgement and definitions, of which the most important subjects are the studies of direct experience, of inference and deduction, of 'mufficient reasoning' and 'false reasoning', of 'non-decisive proofs', and of the patterns for constructing propositions. Now, tell me about all these things!"
[Milarepa replied . . .]. "What I understand is that all manifestations [consist in] Mind, and Mind is the Hluminating-Voidness without any shadow or impediment. Of this truth I have a decisive understanding; therefore not a single trace of inference or deduction can be found in my mind. If you want me to give some examples of 'false-reasoning', your own knowledge is a good one because it is against the Dharma; and since this 'false reasoning' only enhances your cravings and makes them 'sufficient', it is a good example of 'sufficient reasoning'. Your hypocritical and pretentious priestly manner contains the elements of both 'false' and 'sufficient' reasoning, which in turn stand as a good example of 'non-decisive proof'."
-The Hundred Thousand Songs of Milarepa-

PREFACE

I would like to discuss first the contents of this book, and then the attitudes behind it.

The first two chapters are about LISP. In Chapter One, s-expressions are introduced as a data space, and the basic functions of s-expressions are presented. In Chapter Two, recursive procedures are explained, and the recursive functions of s-expressions are defined as those for which such procedures can be written. There is a discussion of why these appear to include all effectively computable functione (Turing's and Church's theses).

Chapters Three and Four are about propositional logic. Chapter Three introduces the notion of a deduction from given premises leading to a conclusion, and establishes the fact that deductions are mechanical procedures that can be checked for correctness by a computer arogram. Chapter Four considers theories in propasitional logic and models for propositional logic, and contains consistency and completeness theorems. All of this is a dress rehearsal for first order logic. Where the same themes wal be repeated in a richer setting.

Chapter Five is a brief interruption of the development of deductive systems to discuss the concepts "recursive" and "recursively enumerable", and to demonstrate the existence of undecidable questions such as Turing's halting problem.

The central portion of the book is about first order quantification theory, specifically first order languages with function and predicate names. Chapter Six introduces first order languages, firsterdermodels, and the semantic notion of satisfiability. Chapter Seven definen deduction, proves it to be semantically consistent, and presents a number of standard prooftheoretic results, including the deduction theorem, replacement of equivalents, change of bound variables and the choice rule. Chapter Eight contains the
completeness theorem for first order logic in several different forms, together with related results such as compactness and the Skolem-LBwenheim theorem. Chapter Nine is a bundle of loose ends, which includes the extension of first order theories by means of conservative definitions, decidability, and comparisons with other deductive systems, namely Robinson's resolution, and Gentzen-type systems.

The next topic is the theory of arithmetic, which is the arithmetic of the s-expressions. The arithmetic of the natural numbers is treated as a special case of this. The theory is presented informally in Chapter Ten, and as a formal first order theory in Chapter Eleven. In both cases, there is an emphasis on the strong analogy between Peano's postulates for the natural numbers, and the corresponding postulates for s-expressions.

Chapter Twelve is concerned with the representation of recursive functions in the first order theory, which is then used to prove the incompleteness of arithmetic in three different ways: The first way is by constructing the LISP analogue of Gbdel's undecidable sentence. The machinery to do this comes naturally, because it is none other than an updated version of the proof-checker discussed in Chapter Three. Representing formulas and deductions by s-expressions is not nearly so strange or impractical as representing them by Gbdel numbers. The second method of proving the incompleteness of arithmetic is by representing computation (as distinct from deduction) in the deductive system, and mapping the halting problem into first order arithmetic. The third method uses an "information theoretic complexity" approach due to Chaitin. The argument advanced here is that these incompleteness results are not irrelevant theoretical considerations, but rather that they illustrate the richness of arithmetic, and introduce new (meta) ways of reasoning.

This idea is followed up in Chapter Thirteen, which presents a formal axiomatic "metamathematics" which can be used to reason about formal arithmetic, and to produce proofs of the existence of proofs which are generally much shorter than the original proofs. There is a hierarchy of metamathematical levels, in that one can prove that there is a proof that there is a proof of some formula. This technique also enables one to prove the validity of theorem schemas and derived rules of inference.

Chapter Fourteen is about the recursion theorem, and its usefulness for representing partial recursive functions in first order arithmetic. This chapter is useful as background for studying current research in the semantics of programming languages.

Chapter Fifteen contains some concluding remarks about second order arithmetic and axiomatic set theory.

* $\div *$

Once upon a time, it was believed that the problem of getting a machine to behave intelligently would be solved by starting with a amall kernel of intelligence capable of learning, reasoning, and organizing itself as it grew. There were several variants of this idea, and some of them assigned an important role to a "proof procedure" that could create demonstrations of logical propositions.

This approach is now considered naive and simplistic. As researcher's have immersed themselves in the task of simulating detalled aspects of human speech and perception, there has been a srowing appreciation of the complexity and subtlety of these acts, and the large amount of detaifed knowledge that seems to underlie the phenomenon of intelligence. Artificial intelligence research is now detailed and nitty-gritty rather than vague and general. How do light and shadow allow us to find the edges of a block? How daes the preformed concept of a block allow us to infer one from some edges? How do we determine the antecedent of a personal pronoun?

Artificial intelligence is also becoming a more structured discipline, not as a universal mathematical theory, but as an epistemological and psychological theory. One of the main developments of the last few years is the recognition of knowledge as being procedural nather than merely factual. Knowledge is not a body of facts but, rather, what one does with one's facts and situations. Such a study cannot help but run into the problem of intentionality. It is no accident that phenomenology, gestalt psychology, and the developmental epistemology of Piaget are now seen by many workers as relevant to artificial intelligence research.

The logistic approach to artificial intelligence is severely and, in my opinion, correctly criticized in Marvin Minaky's currently unpublished "Frames" paper. Almost all of the criticisms are related to the fact that
logical deduction isolates the factual information or axioms from the methods of reasoning or rules of inference. (i) This separation forces one to represent knowledge about the world as a large body of independent statements. Without a structure governing their relations, there is no way of selecting the relevant facts from among all the possible ones, and so attempts at deduction run into a combinatory explosiveness. (ii) Many "facts" are true only when used in a reasonable way. Minsky uses the example of "nearness" which is transitive in the sense that if A is near B, and B is near C, then A is near C. 'This bit of reasoning works as long as it is not carried too far. In principle, one can always make a more precise formulation of any axiom by adding more parameters. But this seems to be unrealistic and, in any case, people do not make use of deduction beyond the point of common sense. (iii) Deduction is monotonic in the sense that adding new axioms allows one to make new inferences, but does not prevent one from making any of the old ones. If a general rule turns out to have exceptions not foreseen at the time it was postulated, there is little one can do except change the original rule, and recheck everything one has done so far for correctness. The rules of logic do not permit one to make restrictions concerning the inappropriateness of certain deductions. (iv) Consistency and completeness do not appear to be desirable properties of a practical system of reasoning because there is no way to organize a body of real knowledge that is either consistent or complete. lior cxample, human reasoning appears to make use of some of the principles of set theory, but has no specific safeguard that prevents the paradoxes of naive set theory. : If someone is informed of Russell's paradox, he may either develop a critique of it or simply ignore it and go about his business. But in no case will the existence of the paradox interfere with his reasoning about ordinary situations. ${ }^{1}$

$$
\psi \quad * \quad *
$$

[^0]The question, then, is why study mathematical logic at all and, in particular, why should there be a book organized as if the most important task to be done is to create an automated proof-checker capable of axiomatizing systems of knowledge of almost any kind? (A proof-checker, as distinct from a proof-procedure, doesn't have the smarts to create a proof. It merely forces the intelligent human or other proof-generator to be completely precise, and perhaps it fills in the gaps in the proofs if they are not too difficult.) I think that the answer to this question is not that such a project ought to be undertaken, but that the presumption involved is contained within logic itself, and goes back at least as far as Descartes, if not Aristotle.

The logistic method is an attempt to grab a hold on the world by reducing it to premises, inferences and conclusions. This is not always a healthy way of relating to the world. I think that part of Dhar Lho's error was in not seeing this. Formal logic is the necessary consequence of informal logic, and automated logic is the necessary consequence of formal logic. The nature of the fruit is in the seed, and the mature fruit tells us something about the seed, as well as vice versa.

Formal mathematical logic can be viewed as a structure, interesting in itself. But there is always a motive for one's choice of structures to develop. In the case of first order logical theories, this motive is the notion that, at least in principle, entire areas of mathematics can be formalized axiomatically in first order logic, and their theorems proven within it. Carrying this one step further, there is the ambition to axiomatize "real" situations in the same way.

It is for this reason that the later chapters of this book are aimed in the direction of a large and unsolved problem which the professional logicians have not been overly interested in solving. How can a deductive system incorporate within itself those metamathematical processes which are
has discouraged logicians from expecting to be able to prove the consistency of ZF. But Yessenin-Volpin writes that ZF is "not so expressive as is commonly believed". His consistency proof (which is too new and unusual for there to be any adequate professional evaluation at this time) uses techniques that are startling to mathematicians, but possibly relevant to Minsky's discussion, which he calls "tactics of attention", and which relate the deductive process to questions of modality and intention.
necessary to the work of a real mathematician, and do so in such a manner that new mathematical tools are proven to be valid before they are used? If mathematical logic does not investigate this problem soon, it will have failed to mature its most important concept, which is the applicability of the axiomatic method.

In stressing this point, I am guilty of some confusions and inaccuracies which will be evident to any trained mathematical logician. Questions of foundations have been obscured by using axioms and definitions that are too strong. The distinction between finitary and set theoretic reasoning, and the historic context that makes this distinction important have not been made clear enough. My decision to allow definitions into theories has converted them into temporal or developmental entities, which is not as neat as the standard treatment of theories, although it is more practical and realistic. Some of the proofs of theorems are a bit sketchy and occasionally non-existent. This is especially true if the theorem asserts that there is an effective procedure that does such and such. The book is written for people with computational experience to whom such things are self-evident. On the whole, I think that this book is a useful introduction to logic from one point of view. The student who then wishes to continue his study of mathematical logic will have little difficulty in making the transition to the more standard presentation.

* * *

In some sense, then, this book is not about what its contents appear to be. The reader will have to form his own opinion concerning the relevance of logic to artificial intelligence or any other endeavor. If he is interested, this book will lead him through a maze of particulars and details, and will suggest some ways in which to organize this experience. Because logic is so abstract, it generally turns out that anything which is a real problem in logic will present itself elsewhere in some other form. You will have to ask yourself what is the relation between quantification, and space and time, or what is the relation between the deduction theorem, and modalities of speech such as the subjunctive, or whatever else it is that you notice while studying logic. Good luck!

It is assumed that the reader has a background and interest in computer programming, and that he has mathematical aptitude. The text assumes no specific mathematical knowledge other than those fundamental concepts basic to all of theoretical mathematics, but some mathematical sophistication is expected.

LISP is used extensively, and it will help to have programmed in LISP. But this is not essential because LISP is developed in the first two chapters. There is some reference to common programming ideas such as ALGOL, call by value and name, procedures, etc.

The mathematical prerequisites can all be found in [Halmos]. ${ }^{1}$ They include:

Sets, subsets, membership, union, intersection, complement, power set.
Function, domain, range, argument, value.
Cardinality, finite, infinite, countable, uncountable, diagonalization.
Equality, equivalence relation, partition, coset.
Mathematical induction.
Partial ordering, linear ordering, upper and lower bound, greatest upper bound, and greatest lower bound.
Some familiarity with symbolic 集te will be useful, but not essential. References to other mathematical subjects such as analysis, topology or ordinal numbers are mainly used as illustrations that may be skipped over.

[^1]
CONTENTS

Page
CHAPTER ONE SYMBOLIC EXPRESSIONS
§1.1 S-expressions 1
§1.2 Basic Functions of S-expressions 6
CHAPTER TWO RECURSIVE DEFINITIONS
§2.1 Functions 13
§2.2 Recursive Definition 14
§2.3 Partial Recursive Functions 23
§2.4 A Universal LISP Function 24
CHAPTER THREE PROPOSITIONAL LOGIC - I
§3.1 Propositional Formulas 32
§3.2 Interpretation 34
§3.3 Deduction 37
§3.4 Proof-Checking 39
CHAPTER FOUR PROPOSITIONAL LOGIC - II
§4.1 Proof Theory 42
84.2 Model Theory 46
§4.3 Consistency and Completeness 50
CHAPTER FIVE RECURSIVE FUNCTONE AND SETS
§5.1 Recapitulation 52
85.2 Turing's Halting Theorem 53
§5.3 Recursive and Recursively Enumerable Sets 55
CHAPTER SIX FIRST ORDER LOGIC - INTRODUCTION
§6.1 Languages, Formulas and Sentences 58
§6.2 First Order Models 61
86.3 Theories 65
CHAPTER SEVEN FIRST ORDER LOGIC - DEDUCTION
§7.1 Substitution 69
§7.2 The Rules of Deduction 72
§7.3 The Consistency Theorem 75
§7.4 Existence of Deductions, Replacement 77
§7.5 The Deduction Theorem 82
§7.6 The Choice Rule 85
CHAPTER EIGHT FIRST ORDER LOGIC - COMPLETENESS
§8.1 Completeness 89
§8.2 Equality 93
§8.3 The Skolem-Lठwenheim Theorem 95
CHAPTER NINE FIRST ORDER LOGIC - ADDITIONAI.TOPICS
§9.1 Definitions 98
§9.2 Herbrand's Theorem 103
§9.3 Substitution and Unification 106
§9.4 Resolution 110
§9.5 Gentzen-Type Systems 115
§9.6 Decidability 116
CHAPTER TEN INFORMAL ARITHMETIC
§10.1 The Postulates of Arithmetic 118
§10.2 Primitive Recursion 120
§10.3 Other Arithmetics 122
CHAPTER ELEVEN FORMAL ARITHMETIC
§11.1 Multi-Typed Logic 125
§11.2 Axioms for the Theory of Arithmetic 127
§11.3 Development of the Theory 133
CHAPTER TWELVE RECURSION AND DEDUCTION
§12.1 Expressibility and Representability 137
§12.2 Primitive Recursion 139
§12.3 The Incompleteness of Arithmetic 140
§12.4 Representability of Recursive Functions 147
CHAPTER THIRTEEN METAMATHEMATICS
§13.1 Truth and Tarski's Theorem 149
§13.2 Metamathematical Deduction 152
§13.3 The Hierarchy of Truth 155
CHAPTER FOURTEEN THE RECURSION THEOREM
§14.1 The Nature of the Problem 156
§14.2 The Recursion Theorem 159
§14.3 Application of the Recursion Theorem 164
CHAPTER FIFTEEN SECOND ORDER ARITHMETIC AND SET THEORY
§15.1 Second Order Arithmetic 170
§15.2 Axiomatic Set Theory 173

This empty page was substituted for a blank page in the original document.

CHAPTER ONE

SYMBOLIC EXPRESSIONS

Preview of Chapters One and Two
Chapter One introduces the basic data of LISP which are called s-expressions, and a set of basic functions of s-expressions from which one may construct many other LISP functions. Chapter Two introduces a simple language, recursive in nature, in which one can describe precisely how to compute a complicated function from the basic functions. It is important to learn this material thoroughly before proceeding further in this book because LISP will be used in relation to all the subsequent topics of discussion, and because, as we shall see later, LISP itself is the subject of a theory which is as elegant and simple in its postulates as is number theory.

Pedagogically, it makes sense to have some practical experience with a subject before attempting a theory about it. For example, numbers and the use of numbers are taught in elementary school, while number theory is typically a college level subject. Therefore, it is important to make use of these two chapters and their exercises to acquire some basic skill with s-expressions.

If you are already a LISP programmer, just skim through the two chapters and note that some of the definitions used here differ from the programming system you are used to, and that many parts of the language have been omitted.
§1.1 S-expressions
The basic units from which s-expressions are built are called atoms.

We shall define atoms, and then show how to build larger s-expressions from these. Atoms are of two kinds: names and numbers.

A name is any sequence of one or more capital letters and digits which begins with a capital letter.

A positive number is any sequence of one or more digits that does not begin with 0 .

Zero (0) is also a number.

The positive numbers together with 0 are called natural numbers. While we could define many other knts of numberg, in this book we shall always mean natural number wion we ay munber unless we specify otherwise. Therefore:

A number is a positive number or zero.

There are many types of entities which can be and are considered a toms in various Lisp systems. Once mgin we shall restrictourselves to the minimal structure required by the subfect mater of thef book. Therefore:

An atom is either a name or a number.

Examples of atoms:

A	ABC3
REDBOX	SAM
6	AQ34500J7
0	CAMBRIDGE

We now proceed to s-expressions which are the matn subject of this chapter. An s-expression is a tree-like structure created entirely from atoms placed in particular arrangerrent. Parentheses, dots, and the
spaces used to separate one atom from another are used to specify this arrangement.

An s-expression is either an atom or else it is a structure having the form (α, β) where both α and β are s-expressions.

This is an example of an inductive definition. From it, we can infer that A is an s-expression because A is an atom. Similarly, B is an s-expression. Therefore (A.B) is an s-expression. Applying the definition again, since (A . B) and C are s-expressions, ((A . B) . C) is also an s-expression.

Examples of s-expressions:

A
(A . XYZ)
(A. (XYZ . A))
((A1 . A2) . (B1 . B2))

XYZ
((A. XYZ) . A)
(A1 . (A2 . (A3 . NIL)))
((A. A). (A . A))

Since we shall frequently make use of this kind of definition, it merits some discussion. It is a common practice among mathematicians to limit such a definition by' adding: "... and nothing else is an s-expression". We shall always assume this to be the case.

It is possible to conclude from the definition that all s-expressions have the same number of left and right parentheses. This is because (a) all atoms have the same number of left and right parentheses, namely none, and (b) any other s-expression has the form (α, β) where α and β are s-expressions. If this proposition is true for α and β, then it is certainly true for (α, β) which adds one more parenthesis of each type. It is also evident that each left parenthesis is paired with a unique right parenthesis, namely the first right parenthesis encountered by making a left to right scan starting at the given left parenthesis such that all the intervening parentheses are paired.

Notice that both (A . (B . C)) and ((A.B) . C) are s-expressions, and that they are considered to be different s-expressions. The mathematical principle which asserts that algebraically $X+(Y+Z)$ is the same as $(X+Y)+Z$ is called associativity. The composition of s-expressions is not associative.

One more comment, this time on the use of Greek letters. A Greek letter is never part of any s-expression, or for that matter any other type of entity constructed anywhere in this book. It is purely an explanatory device, as in the previous definition where we say "let α and β be any s-expressions".

Problem Set 1

1. Which of the following are a -expreasians?
a. ABC
b. 35 A
c. (A, B)
d. (A . B))
e. (A.B. C)
f. ((A.B). C)
2. How many different s-expressions are there that use the atom " A " exactly n times and contain no other atoms? (Call this function (n). Don't try to find an algebraic formule for $\pi(n)$ which mey not exist, but learn how to compute $\pi(n)$ when you know the values of for all numbers less than n.)

The examples of s-expressions which have just been given are all written in what we call dot notation. There is another "shorthand" notation for writing s-expressions called list notation. it is more convenient and is more generally used. However, we are not introducing any new s-expressions. Every s-expression can be writteñ using only dot notation, but many s-expressions are much easier to wite in list notation. Some s-expressions cannot be written in IIst notation.

Although list notation is most commonly used, dot notation is considered more besic. Theoretical properties of s-expressions are resolved by referring to dot notation.

In the list notation, a special status is given the atom NIL as the terminator of lists. A list is an expression having the form ($\alpha_{1} \alpha_{2} \ldots \alpha_{n}$) where each α_{i} is an s-expression. In other words, a list is just several s-expressions enclosed between a set of parentheses, with spaces between them. This list is the same s-expression as $\left(\alpha_{1} \cdot\left(\alpha_{2}, \ldots,\left(\alpha_{n} \cdot N I L\right)\right.\right.$. . .) .

Some examples of lists (left column) and the equivalent in dot notation (right column):
()
(A)
(ABC)
((A))
((A B) (XYZ) (U V))
((A) ((A)))

NIL
(A. NIL)
(A. (B. (C. NIL)))
((A. NIL) . NIL)
((A . (B . NIL)) • ((XYZ . NIL)
. ((U. (V.NIL)). NIL)))
((A . NIL) • (((A . NIL) . NIL)
. NIL))

Some s-expressions cannot be represented without dots, for example (A . B). Mixed notation may also be encountered such as ((A . B) (C . D)). In this case, there is a list at the top level, and dots at a lower level. This is the same s-expression as ((A.B). ((C. D). NIL)). In general, we avoid creating s-expressions that require dots, but it is well to keep in mind that the dot notation is the simplest way of explaining the underlying theory of s-expressions.

Problem Set 2

1. Write each of these s-expressions using only dot notation.
a. A
b. (A B)
c. (1 (2) ((3)))
d. ()
e. $(A(B((C))))$
f. ((A) 2)
2. Write each of these s-expressions without dots if possible.
a. ((A . NIL) . ((B . NIL) . NIL))
b. ((A . NIL) . (B . NIL))
c. (A. (B. (C.NIL)))
d. (NIL . NIL)
e. ((APPLE . (PIE . NIL)) . ((CHEESE . NIL) . NIL))
f. ((X . NIL) . ((NIL . Y) . NIL))

§1.2 Basic Functions of S-expressions

We are now going to consider a small number of very basic operations that one can perform on s-expressions. These operations are the foundation: of all subsequent processing of s-expressions in much the same way that counting up and down is the foundation for all of arithmetic. As you probably know, counting is even more basic than adding and multiplying when we analyse operations from the mechanical viewpoint.

Because we are using a mathematical approach, we describe these operations as being functions. The first function to be diacuesed in called cons.

The function cons is used to constract bigeter s-expressions out of smaller ones. It takes two s-expressions and puts a lef parenthesis before the first one, a LISP dot between them, and a might parentwesis after the second one. For example, cons of A and B in (A, B). Also, cons of (A . B) and (X . Y) is ((A . B) . (X . Y)).

We need a reasonable way of writing these assertions other than in English. So we use a notation that looks like this:

$$
\begin{aligned}
& \operatorname{cons}[A, B]=(A, B) \\
& \operatorname{cons}[(A, B),(X, Y)]=((A, B)(X, Y))
\end{aligned}
$$

We have said that cons is a function. In the first line above, A and B are arguments of the function cons, and (A. B) is the value of cons associated with these two arguments. It is a common mathematical and acientific notation to write a function followed by a list of its arguments enclosed within parentheses. The arguments, if there are more than one, are separated from each other by commas. This is exactly what we have done here except that we use square brackets instead of parentheses. The reason for this is that when the arguments are s-expressions, this could get confusing since parentheses occur as parts of s-expressions.

Getting back to cons for the moment. Since every s-expression is built from atoms, every s-expression can be put together from atoms using cons. Consider the case of (A. (B . C)). We have cons $[B, C]=(B . C)$, and cons $[A,(B, C)]=(A .(B, C))$. Putting these together, we have cons[A, cons $[B, C]]=(A .(B, C))$. This is an extension of our notation, and is
called composition.
Let us look at some examples of cons:

1. cons $[B I L L, J O E]=(B I L L, J O E)$
2. $\operatorname{cons}[A,(B, C)]=(A,(B, C))$
3. $\operatorname{cons}[A, \operatorname{cons}[B, C]]=(A .(B . C))$
4. cons $[A, N I L]=(A)$
5. cons $[A,(B C)]=(A B C)$
6. $\operatorname{cons}[A, \operatorname{cons}[B,(C)]]=(A .(B)(C . N I L)))=(A B C)$
7. cons $[A, \operatorname{cons}[B, \operatorname{cons}[C,()]]]=(A B C)$
8. cons $[(A),(A)]=((A) A)$

Problem Set 3

1. What is the value of each of the following?
a. cons $[B, B]$
b. cons $(1, B),(A . C)]$
c. cons[(A B), (A C)]
d. cons[Q, (R S)]
e. cons[(A B C), (D E F)]
f. cons [cons[cons[A, NIL], NHL ${ }^{\text {NIL }}$]
2. What is a commutative operator? Is adaition of numbers commutative? Is cons commutative?
3. Describe a necessary and sufficient condition for the value of cons to be expressible without dots.

Next, we consider the pair of functions car and cdr which are used to take apart s-expressions. Car and cdr are unary functions; unlike cons which is a binary function, each takes only a single argument.

$$
\begin{aligned}
& \operatorname{car}[(\mathrm{A}, \mathrm{~B})]=\mathrm{A} \\
& \operatorname{cdr}[(\mathrm{~A}, \mathrm{~B})]=\mathrm{B}
\end{aligned}
$$

Car and cdr are not defined as having values when their arguments are atomic. For example, car[A] has no meaning. Any s-expression which is not an atom we call a composite s-expreszion. If a composite s-expression is written in dot notation, there is always one main dot. This is the dot which is contained only within the outermost set of parentheses. Then car of
the s-expression is the expression between this dot and the leftmost parenthesis of the whole s-expression, and cdr is the expression between this dot and the rightmost parenthesis.

$$
(\underbrace{(A \cdot(B \cdot C))}_{\text {car }} \cdot \underbrace{(D \cdot D)}_{c a r})
$$

Examples:

```
car[(A B )] = A
cdr[(A B)] = (B)
cdr[(B)] = ()
cdr[()] is undefined
car[(((A)))(B))]=((A))
car[cdr[(A B)]]=B
cdr[cdr[(A B)]] = O = NIL
car[((A))] = (A)
car[car[((A))]]=A
car[cons[A,B]]=A
cons[\operatorname{car[(A)], cdr[(B C D)]]=(A C D)}
```

Many people have objected to the names car and cdr, proposing some alternative such as "first" and "rest" which deacribe the effect of car and cdr on lists. Yet these names have remained aromnd because they compose into sequences of cars and cdrs and remain at least slightly pronounceable. For example, caddr (pronounced CAH-duh-der) means "car of cdr of cdr". So caddr [(A B C)] is the same as car[cdr[cdr[(ABC)]]] which is C. Notice that it is the rightmost a or d in the word which gets performed first, just as it is the rightmost function when we write out the longer form.

Examples:
$\operatorname{car}[(A B C)]=A$
caddr[(A B C)] $=C$ cdar[(A B C)] is undefined
$\operatorname{cadr}[(A B C)]=B$
cdddr[(A B C)] = ()
cadadr[((A B) (C D) (E F))] =D

Problem Set 4

What is the value of each of the following?

1. $\operatorname{car}[(A$. $B)]$
2. $\operatorname{cdr}[(A . B)]$
3. $\operatorname{car}[(A B)]$
4. $\operatorname{cdr}[(A B)]$
5. $\operatorname{car}[\operatorname{cdr}[(A B)]]$
6. $\operatorname{cadr}[(\mathrm{A} B)]$
7. $\operatorname{cdar}[(\mathrm{A} B)]$
8. cdar $\left.\left[\left({ }^{(1)} \mathrm{B}\right)\right)\right]$
9. $\operatorname{cdar}[((A) B)]$
10. caazr $\{(((\mid A)))\}$
11. cons[car[((A))]. $\operatorname{cadr}[(A((B)(C))))]]$

Mixed Fxpressions

We have been discussing LISP expressions such as "consfx, y|". へrithmetic expressions such an ${ }^{+3} x+y^{2}$ arefamitar to you and need no special explanation. Since numbers are considered atoms and can appear within s-expressions, it is perfectly meandigful to mix LISP and arithmedic.

Example:
$\operatorname{car}[(234)]+\operatorname{cadr}\left[\left(\begin{array}{ll}5 & 7\end{array}\right)\right]=2+7=9$

Not all such expressions will be meaningful. $3+\operatorname{car}[(4 \mathrm{~A} 10)]=7$, but $3+$ cadr[(4 A 10才] is undefined. ("A ${ }^{\text {H }}$ is a name, and addftion is not defined on names. Certainly we would not want to say chtegorfenlyy that $3+A$ is meaningless. The question of whether A can becantidered to be a variable or whether it means only itself is one of interpretation. The question can only be considered in context, and we cannot discuss it tadequately here.)

Within LISP, the notions of truth and fistity can be represented by the a toms T and F respectively. A fanction whode value $1 s$ always T or F is called a predicate. There is a basic predicatecalled atom which tells us whether its argument is an atom, that is, it has the value iffis argument is an atom, and Fif its argument is a composfte efexptesstion.

Examples:

$$
\begin{aligned}
& \operatorname{atom}[A]=T \\
& \operatorname{atom}[()]=T \\
& \operatorname{atom}[(A B C)]=F \\
& \operatorname{atom}[\operatorname{cdr}[(A B C)]]=F
\end{aligned}
$$

Equality itself is considered to be a basic predicate of s-expressions. Suppose we give the notion of equality the name equal. Equal is defined as a binary predicate which has the value T if both its arguments are the same, but has the value F if its arguments are different s-expressions.

Examples:

$$
\begin{aligned}
& \text { equal }[A, A]=T \\
& \text { equal }[\mathrm{NIL},()]=T \\
& \text { equal }[A,(A)]=F \\
& \text { equal }[\operatorname{car}[(234)]+2,4]=T
\end{aligned}
$$

In practice, we shall seldom use the function name equal, but instead use the equal sign to mean the same thing- Inetead of writing equal[A, A] we shall write $A=A$, or when neceseary [A.=A]. When a function symbol (usually a special symbol rather than a name epelled with letters) is used between two arguments rather than precedtug both of them, this is called infix notation. We use it frequently and in fairly obyioun ways, but since problems of syntax are not an important part of this book, there will be no formal theory about parsing such grammars. In conclusion, the preceding examples will normally appear as $[A=A]=T,[A=(A)]=F$, etc.

Cons, car, cdr, atom and equal are the five bagic functions for the manipulation of s-expressions.

Suppose we wish to form a list from three constituents. We can describe this construction by writing cons[α, cons $[\beta$, cons [γ, NIL]]] where α, β, andr γ are the three s-expressions to be listed. This is too long to write, so we introduce the shorter notation using the function list which can have any number of arguments including none. The preceding example can be replaced by $\mathrm{Hist}[\alpha, \beta, \gamma]$.

Examples:

$$
\begin{array}{ll}
\operatorname{list}[\Lambda, B, C]=(A B C) & \text { list }[]=N I L=() \\
\operatorname{list}[(A B),(C D)]=((A B)(C D)) & \operatorname{list}[l+\operatorname{st~}[A]]=(1 \\
\operatorname{cons}[A, \operatorname{list}[B, C, D]]=(A B C D) & 11
\end{array}
$$

Another convenience is the predicate null which has a single argument and is true only if that argument is NIL.

Examples:

$$
\begin{aligned}
& \operatorname{null}[()]=\mathrm{T} \\
& \operatorname{null}[\operatorname{cdr}[(\mathrm{~A})]]=\mathrm{T}
\end{aligned}
$$

$$
\operatorname{null}[A]=F
$$

$$
\operatorname{null}[(\mathrm{NIL})]=F
$$

Atoms can be sorted out into two types, names and numbers, and to do this we introduce two predicates, name and num.

Examples:

```
name[ABC]= T name[(A)] = F
name[5] = F num[5] = T
num[cadr[(A 2 (5))]=T num[(3)] = F
num[A]=F num[3+\operatorname{car}[(5)]]=T
```

There is another function which we shall consider to be basic without any justification at present. Consider the set of all names (not numbers). There are infinitely many of them, but they can be placed in a definite order in an infinite list, that is, they can be enumerated. We list shorter names before longer ones, arranging the finitely many names of any particular length in alphabetical order, putting 0 thru 9 at the end of the alphabet.

The function enum is only defined when its argument is a number. The value is always a name, and if we form the list enum[0], enum[1], enum [2]. . . we get exactly the enumeration discussed above.

Problem Set 5

$$
\text { 1. } \operatorname{list}\left[A, 2+\operatorname{car}\left[\left(\begin{array}{ll}
3 & 4
\end{array}\right)\right], B\right] \quad \text { 2. } \operatorname{list}[2+2,2+2=4,2+2=5)
$$

3. atom[list [$\mathrm{A}, \mathrm{A}=\mathrm{B}]]$
4. name[enum $[2+2]]$
5. cons[name[A], num[A]]
6. list[(A B), list[(C D), (E F)]]
7. enum $[2+2]$
8. enum $[A]$
9. $(\mathrm{A} \cdot \mathrm{B})=(\mathrm{B} \cdot \mathrm{A})$
10. cadadr[((A B) ((C D) (E)))]

CHAPTER TWO

RECURSIVE DEFINITIONS

Preview of Chapter Two
The chapter begins with some comments on functions, and the terminology concerning them, from the viewponte of native set theory. After this, a very simple language is defined which, fegetheretthe the basic functions discussed in Chapten One, whandow ut to defne every function of s-expressions that is in any reasonable sense calculable.

Having now completed Chaptex One, itcexs If you had learned arithmetic but not algebra. We can hanite $2+2=4$, but not $x+y=z$. What we need amoag other things are variables, and a wrayto tete them so that we can describe general instead of particular computhtions.

§2.1 Functions

The concept of a "function" in set theory is synonymous with "mapping" or "correspondence". Suppose we have two gets, A and B, and for every object in A, there is an object (or element) of $\frac{B}{}$ associated with it. Then this correspondence is called a function, and A is the domain of the function, and B is the range of the function. Athough every element of A has a corresponding element in B, it is not the case that every element in B must correspond to an element in A. A given element of B may correspond to more than one element of A, or to none at all.

From the point of view of set theory, the function itself is viewed as a set. If f is a function from A to B (we write this as $f: A \rightarrow B$) then fitself is a set of ordered pairs $\langle a, b\rangle$ such that $a \in A(a$ is a member of $A)$ and $b \in B$, and
such that for every a $\in A$ there is exactly one such ordered pair which is a member of f .

Some functions have more than one argamerit. If f is a function of n arguments, then f has n domains, A_{1} thra A_{n}, and one range, B, and we may specify this information by writing $f A_{1} \times \ldots \times A_{n} \rightarrow B$. The function f is then a set of $n+1$-tuples $\left\langle n_{1}, \ldots, a_{n}, b\right\rangle$ where cach $a_{i} \in A_{i}$, and $b \in B$, and such that for every combination of one in from eath A_{i}, there is exactly one such $n+1$-tuple in f. For example, cons: $S \times S \rightarrow S$ is the infinite set of triples $\{(A, A,(A, A)\rangle \ldots\}$ containing every powshble pair of s-expressions together with their cons.

As was mentionte in Chmper Onve, members of the domain(s) of a

 predicate.
 function is a furnction that may not wow whe ther ill it argaments. Sometimes we are a bit theppy and cue the werde "humown" when we mwan "partial

 total predicates.

All of this may seefn extremely obvious, Dut it is importent to stress that when we talk of a tanction we are mot refervtat to a procedure or a subroutine. The distinction is important, and is foughy analogous to the difference between a loat of bread and recipe for batmp toaf of bread. Recipes, like procedures, cen be published thooks and Soumelts. No one has ever published a loaf of bread. Similarly, the function cons can be discussed, and sübroutines written to compute it, bat the functon itself is an infinite set and is therefore concectal object onty, mever pented object. It is also important not to confuse the mame of a turction with the function itself.

32. 2 Recurbive Definition

Recursive Definition: A definition of a function permitting values of the fanction to be computed systematically in a tinfe number of steps; esp: a mathematical definition in which the first case
is given and the nth case is defined in terms of one or more previous cases and esp. the immediately preceding one.

Webster's Third New International Dictionary

It would be hard to improve on this definition. We shall start this discussion by illustrating that many ordinary functions of arithmetic may be defined recursively starting only with the functions successor and predecessor as given. The meaning of the notation being used will be explained in English. After this, we shall define more formally the language we have been using.

The successor of a number is one more than that number. For example, the successor of 5 is 6 . Our notation for the successor of n is n^{\prime}. So $5^{\prime}=6$, and $5^{\prime \prime}-7$.

The predecessor of a number is the next smallest number. The predceessor of zero is not defined. Our notation for the predecessor of n is n^{-}. So $7^{-}=6$, and $7^{--}=5$, and 1^{--}is undefined.

Starting with only these two functions, and equality, we proceed to define addition and multiplication:
(1) $m+n+\left[n=0 \rightarrow m, T \rightarrow m^{\prime}+n^{-}\right]$
(2) $m \times n+\left[n=0 \rightarrow 0, T \rightarrow m+m \times n^{-}\right]$

Translated into English, the first definition reads: "The sum of m and n is m if n is 0 ; otherwise it is the same as the sum of the successor of m and the predecessor of n." This fits the dictionary definition perfectly. We say that we are recursing downward on n. When we count n down to 0 , then the process is over and we have an answer. For example, $5+3=5^{\prime}+3^{-}=$ $6+2=6^{\prime}+2^{-}=7+1=7^{\prime}+1^{-}=8+0=8$. The recursive definition is applied over and over again until the second argument (called n in this definition) is 0 . As long as n is greater than 0 , the second part of the definition applies and the computation proceeds. When $n=0$, then the first part of the definition applies and the computation is over. It never becomes necessary to take the predecessor of 0 , and therefore an undefined condition will never arise.

We call line (1) a recursive definition. It provides an explicit method of computing the function " + " given the successor and predecessor functions.

This particular recursive definition gives a value which is a number every time it is applied to a pair of arguments which are numbers. But not all recursive definitions are this way. A recursive definition may not compute a value for a variety of reasons. The fact that (a) this particular recursive definition computes a total function, and (b) this total fanction is the familiar function " + " are particulars which are obvious in this case, but in general the correspondence between the function computed by a recursive definition and a function understood or specified in some other way must not be assumed without good and sufficient reason.

Line (2) is a recursive definition for multiplication. It can be translated into English as "The product of mand n is 0 if n is 0 ; otherwise it is the sum of m and the product of m and the predecessor of n." This definition invokes the previous definition of addition. So the recursive definition of multiplication is really both lines.

It will be our general habit when making recursive definitions to build up more complicated functions trom simpler ones. From the definition of multiplication we aee that $5 \times 3=5+5 \times 2=543+3 \times 1=5+5+5+5 \times 0=5+5+$ $5+0=15$.

Recursive definition is also used to eppedfy the oomputathon of predi-
 can be defined by:

$$
\left.m^{>}+n+T n=0 \rightarrow F, n=0 \nmid r_{1}+n^{-}>n^{-}\right]
$$

which expresses the English definition: "If m is zero, then m is not greater than n; if m is not zero and n is zero then m is greater then n; and if neither is zero then m belng greater than n depends on m being, greater than n^{-}." When m and n are numbers, the value of " $>$ " will always be either T or F. The predicate ">" can now be used to define the function max[m, $n]$, whose value is the larger of its two arguments.

$$
\max [m, n]+[m>n+m, T \leftrightarrow n]
$$

Recursive deffition is used to define functions of s-expressions other than numbers in a similar way. An important LISP function is subst $[x, y, z]$, whose value is the s-expression resulting from substituting the s-expression x for all occurrences of the atom y in the s-expression z. For example, the
result of substituting (R S) for all occurrences of B in (A B (C B)) is (A (R S) (C (R S))), i.e., subst[(RS), B,(AB(CB))]=(A(RS)(C(RS))). Subst is defined recursively by:
$\operatorname{subst}[x, y, z]+[a t o n[z] \rightarrow[y=z \rightarrow x, T \rightarrow \operatorname{c}], T \rightarrow \operatorname{cons}[$ qubst $[x, y$, car[z]], subst[x,y, cdr[z]]]]
which translates: "If z is an atom, then if y is the game as z the value is x, otherwise the value is z; but if z is not an atom then the value is obtained by first computing subst of x and y and car of z, and subst of x and y and cdr of z, and then taking the cons of these two s-expressions."

This example is more complex than the preceding ones in two ways. It contains a choice nested within a choice in that if z is an atom, then there is still another decision to be made. Also, the recursion generates a treestructure of subproblems rather than a linear sequence as in the preceding numcical examples. The recursion on the argument z may require computing subst of cart 2] and cur[2], which may in turn require computing subst with the third argument being car[car[z], car[car[z]], carfedr[z]], and cdr[cdr[z]]. The larger the s-expression z, the larger the tree of subproblems will grow.

We have been making use of the lanruage of recursive definitions in an informal way; we now proceed to deftne the famivge móte formally. First we give a concise grammar, and then define the semantics of the language as a set of instructions for computirg eomplex finctions from given basic functions.

Grammar:

1. An identifier is a sequence of one or more lower case letters and digits. It must begin with a letter. (This is the same as the definition of a name except that names have upper case letters. Identiliers and named are in one-to-one correspondence by merely changing the cuse of the letters.)
2. A variable is an identifter.
3. An object is an s-expression.
4. A function name is an identifier. (See exception below.)
5. A form can be any of the following:
a. a variable
b. en object
c. $\varphi\left[c_{1}, \ldots,{ }_{n}\right]$ where φ is a fumetion name; and each
ϵ_{i} is a form. (See exception below.)
d. a conditional form (see 7)
6. A propositional form is a form. (The distinction is semantic and will be made in the following discussion.)
7. A conditione form is $\left.\mathrm{m}_{1} \rightarrow c_{1} \cdots \cdots \boldsymbol{n}_{n}+n\right\}$ where $n \geq 1$, and each of the π_{i} ts a propositional form, art ench of the c_{i} is a form.
8. A recursive definition is $\left.1 I_{1}, \ldots, \xi_{n}\right]+6$, where 6 is a function name, each of the s_{i} is s variable, and is a form containing no variables other than the s_{i}.
Exception: Rules 4 and 5 above permit forms such as cons[car[x], cdr[y]] but not forms such at $3 \times m+n$. It is conventent to have functions specified by conventional symbols such as " + ". " x " and " \downarrow " as well as by identifiers, and it is also convenient and conventional to use certain of these symbols as infixes $(m+n)$, prefixes ($-m$)
and suffixes (m^{\prime}). Because we are not concerned with writing compilers we shall gloss over the syntactic problems of such notation in the following way: every function and predicate which is specified by a conventional symbol has an identifier type name also. As long as the parsing of any form that we write is clear to the reader, we can pretend in certain theoretical situations that the only official notation is that of identifier names followed by arguments in brackets, i.e., $\varphi[.$.]. For example, " $3 \times x-y>z$ " is simply a convenient notation so that we do not have to write out "greater [difference[times[3, x], y], z]".

Semantics:

1. A recursive definition has meaning because it is an explicit algorithm for computing a partial recursive function. To the left of the left arrow in the recursive definition is the name given to the partial function being defined, and a list of variables. The list of variables apectfies the number of arguments the function has, and assigns these variables as the temporary names of the arguments while the camputation is in progress. This temporary identification of arguments with variables is called a binding of the variables. The value of the function is obtained by evaluating the form to the right of the left arnow, using the rules given below, with this binding of the variables in effect.
2. The value of an object is itself.
3. The value of a variable is obtained from the binding as specified in rule 1.
4. The value of a form of the type $\varphi\left[\epsilon_{1}, \ldots, \epsilon_{n}\right]$ is computed by first evaluating each of the forms ϵ_{i} using these rules, and using the resulting sequence of values as arguments for the function φ. If φ is one of the basic functions or predicates, its value is obtained immediately. However, if φ is itself specified by a recursive definition, then the current computation must be set aside, and the compatation to obtain
the value of φ for these arguments must be performed. When this is completed, the current computation is then resumed, and neither the btndinge of the variables, nor any other partial results in procedes will have been changed from what they were before invoking the definition of φ. This process can occur nested to a considerable depth, with many levels of computation interrapted and incomplete. When the definition of φ is invoked from within the definition of φ, this process is called recursion. The example of subst is a good caee to study.
5. A propositional form is a form whose upected value is T or F. Typically, it is either one of the oblecte T or F, or it is a form $\phi\left[c_{1}, \ldots, c_{n}\right]$ where is a predicate. It may also be a conditional form.
6. The value of a condtional form $\left.\boldsymbol{m}_{1} \rightarrow 1, \ldots . \bar{n}_{n}+\mathrm{C}_{\mathrm{n}}\right]$ is obtained by evalusting the properimontin formo from left to right until one ts tound whose wilie is T. Then, no more i_{i} are evalututed, but the corropperding i_{i} is evaluated, and its vaiue is the valuted the conditionsl form. An important property of a conditional ferm ts that nothing gets evaisated beyond what in nocestary to select and evaluate the proper f For exmmple, if m_{1} valuates to F, then ${ }_{1}$ is not evaluated but passed over, and w_{2} gets evaluated. If the value of π_{2} is T, then ξ_{2} is evaruted to provide the value of the conditional form, and ewtrythtny to the right of 4 is ignored.

There are a variety of reawons why the peotwe of ewhating a recursive function maty not produce at ye:

1. A variable on the right side of detimtion does not occur on the left side.
2. A function referred to in the definition has not been defined.
3. A function is given an incorrect number of arguments.
4. In the process of evaluating a conditional form, one of the π_{i}
evaluates to something that is neither T nor F.
5. In the process of evaluating a conditional form, all the π_{i} evaluate to F and the end of the form is reached.
6. A function called in the computation is given an argument for which no value is defined, such as car applied to an atom, or addition applied to non-numbers.
7. The computation continues forever without encountering any of the errors mentioned above, but without ever terminating.

Reasons 1 thru 6 above are simply programming errors that can be avoided by correct procedure. Reason 7 is a fundamental property of computation having important logical consequences. There is no possibility of eliminating it from any programming language powerful enough to do general purpose computation.

.Problem Set 6

In each of these problems you may assume any of the definitions made thus far, including all the problems preceding the one you are working on. Sometimes it is necessary to define a helping function first before defining the function you want.

1. Are the functions "-" and " \div " defined here total or partial?

$$
\begin{aligned}
& m-n \leftarrow\left[n=0 \rightarrow m, T \rightarrow m^{-}-n^{-}\right] \\
& m \div n \leftarrow[n>m \rightarrow 0, T \rightarrow 1+[m-n] \div n]
\end{aligned}
$$

2. Define $\operatorname{expt}[m, n]$ or m^{n}. (Let $\operatorname{expt}[0,0]=1$.)
3. Define remainder $[\mathrm{m}, \mathrm{n}]$.
4. Define $m \mid n$, which means m goes into n an integer number of times. (It is a predicate.)
5. Define prime[n], a predicate which is true if n is a prime number. (The first prime number is 2.)
6. Define gcd $[m, n]$ (greatest common divisor), and lcm[m, $n]$ (least common multiple).
7. Define nthprime[m], which gives the nth prime. Use the convention that nthprime[0] $=1$ and nthprime[1] $=2$.
8. Define the predecessor function using only successor and equality,
thereby demonstrating that all the functions in this problem set require only successor and equality as their besis.

Let us adopt the coding convention that a finite set of s-expressions will be represented in LISP by a lift of these s-expressions. For instance, the set \{A B C\} can be represented by the list (A B C) or by the list (B C A) or by any other permutation of the members. The list must have no repetitions. We can then define LISP functions that perform basic set-theoretic operations. For example, the relation of menibership is represented by the LISP predicate member; deftred by
member $[x, y]+[$ mallfy $]+F, x=\operatorname{car}[y] * T, T \rightarrow$ member[x, cdr[y]]]
The operation of taking the unicn of two sets is represented by the function union:

Problem Set 7

1. Define the function inter:ection [x, y).
2. Define the predicate seguiv(x, y) which means "equivalent" in the sense of representing the same met. Two liete representing sets are sequiv if they differ only in the order of their clements, e. 8 ., sequivi(A $B C$, (ACB)] = T.
3. Define the function reverse, whose value is the same list as its argument, but in reverse order, e.g., reversef(A B) (C D)]= ((C D) (A B)).
4. Deffne the function lenth, which comprtes the leagth of the list x. length[NIL] $=0$.
 occurring in x. counting each atom at many times as it occurw, e.g., size[(A (A))] = 4 .
5. Define the function vocab, where vocab $[x]$ is the set of atoms occurring in the s-txpression m. Voctu(f) (LC)Cl| = (A B C NIL), or any list which is sequiv to this.

The basic functions for computing with s-expressions (including numbers) are: car, cdr, cons, equal, atom, num, name, enum and successor.

We have seen that predecessor can be defined from successor. Name can also be defined from atom and num if we are sure that there will never be any other type of atom. We prefer to leave this unspecified.

The function enum is peculiar. Without enum, we would not be able to define those functions which depend on the spelling of names, but would be limited to functions that only take note of two names as being the same or different. But using enum, we can define concat, which concatenates two atoms (e.g., concat[A, X3] = AX3), and explode, which lists the letters and digits in a name, e.g., explode[AX3] = (A X 3). These two functions, in turn, form the basis for any other manipulation of the characters that make up names.

The basic functions of s-expressions together with the language of recursive definition lead to the concept of a partial recursive function.

Lemma 2.1
Consider a finite sequence of recursive definitions:

$$
\begin{aligned}
& \varphi_{1}\left[\xi_{1}, \ldots, s_{m_{1}}\right]+\epsilon_{1} \\
& \varphi_{n}\left[\xi_{1}, \ldots, s_{m_{n}}\right]+\epsilon_{n}
\end{aligned}
$$

where each φ_{i} is a distinct function name, and each ϵ_{i} contains only the names of basic functions and names from the sequence $\varphi_{1}, \ldots, \varphi_{n}$; then associated with each φ_{i} there is a procedure for computing a function of m_{i} arguments. This procedure, when performed with any given sequence of $m_{i} s$-expressions as arguments, either produces a value, encounters an undefined situation, or fails to terminate. Thus, each function-name φ_{i} is associated with an m_{i}-ary (partial) function, namely that function defined for exactly those arguments for which the computation terminates with a value (the value of the function).

The entire preceding section is sufficient proof that such a well-defined
computational procedure exists.

Definition 2.2

A partial recursive function (of 8 -exprestions) is any function for which at least one computational procedure es detined above exists.

It is well to keep in mind the distinction between a function, a function-name, and a procedure. ft is the process of writing down recursive definitions that associates names and procedures with functions. A function is independent of any procedure uted to specify it. However, the concept of recursiveness is absolute; a minction is elther recursive or it is not recursive. It is recursive if there is at lenst one way to compute it (and it is easy to see that there are then many ways to compute it), and it is not recursive if there is no way to compate it. Whea anction is bpecified in some way that does not imply a computational procectare, this does not tell us whether or not it is recursive.

§2.4 A Universal LISP Function

It is natural to want a theory of recureive tanctions. We may ask questions such as: How large is be claes of recurniwe functions? Are there functions that mre well dethed but not recurbtwe? If we add new computational techatquew or more banc hametions, are we tale to compute more functions? The idet of an interpreter or univereal function is central to such a theory.

The importance of lemma 2.1 is that the procedure for computing partial functions is effective. This means that we can program a general purpose computer so that when we give it sequence of recurtive definitions, and a set of arguments for one of the nmetions, the computer then computes the galue of the function applied to theee argunente if the value exists, and if the computer has enough mtorage and time. Such a program is called a LISP interpreter, and has been written for many computers. What is of great significance for the theory of recursive functions, is that such an interpreter can be written in LISP itself.

We define a universal LISP function called apply. Apply[fa, args] has
two arguments. The first argument is a sequence of recursive definitions as in the statement of lemma 2.1. Since an argument for apply must be an s-expression, we must code such a sequence of recursive definitions into a single s-expression. The first function defined in the sequence will be the one we wish to compute, and the other definitions necessary to it may follow in any order. The second argument for apply is a list of the arguments for this function.

We first define a translation whereby a sequence of recursive definitions, as in the schema of Lemma 2.1. becomes a single s-expression, the argument fa of apply. We shall call this translation process "*", so that, for example, if \in is a form in the language of recursive functions, then $\epsilon *$ is its translation into an s-expression.

Rules for translating recursive definitions into s-expressions:

1. If ϵ is a variable, then $\epsilon *$ is the atom obtained by making all of its letters upper case.
2. If \subset is a number, then ϵ is just ϵ.
3. If \in is T, F, or NIL, then $\epsilon *$ is just ϵ.
4. If \in is any other object (s-expression), then $\boldsymbol{*}^{*}$ is (QUOTE ϵ).
5. If φ is a function-name, then φ^{*} is the atom obtained by making all its letters upper case.
6. If ϵ is a form of the type $\varphi\left[\epsilon_{1}, \ldots, \epsilon_{n}\right]$, then $\epsilon *$ is ($\varphi *$ ** $\ldots \epsilon_{n} *$). (Forms using infix, prefix, or suffix operators are translated as if they were in standard form. There are names for each such operator. Also, some functions have an indefinite number of arguments. They are LIST, PLUS, and TIMES.)
7. If ϵ is a conditional form $\left[\pi_{1} * \rightarrow \epsilon_{1}, \ldots, \pi_{n} \rightarrow c_{n}\right]$, then $\epsilon *$ is (COND $\left(\pi_{1}^{*} \epsilon_{1}^{*}\right) \ldots\left(\pi_{n}^{*} \epsilon_{n}^{*}\right)$).
8. A recursive definition $\varphi\left[\xi_{1}, \ldots, \xi_{n}\right]$ cis translated as ($\varphi^{*}\left(5_{1} * \ldots 5_{n}{ }^{*}\right)$ ¢*).
9. The argument "fa" of apply is a list of translated recursive definitions as described in step s, with the fanction to be applied coming first on the list, and all functions that it uses, except for basic functions, appearing in any order on the list.

The translation process＂${ }^{\prime \prime}$＂the LISP equivalent of a technique known to logicians as＂Cbdel nomberime＂which we shall discuss later．
 use in any practical sence，wheret the we of s－expressions to define recursive functions is standard proctice for LISP programmers．

Wresunptes of trowetwhons

Rule	E	5＊
1.	x	X
	a3	A3
2．	25	4
3.	F	E
4.	A	（QUOTEA）
	（A B）	（9xotrsuth
	（3）	cratrytelt
5.	car	Can
6.	$\operatorname{car}[\mathrm{x}]$	（cARX x \％
	consla，exr｜A｜	
6 a	$m+n \times p+q$	
7.		
8.		 （mitralacex i）（PIBB （Dryemumbersent
9.		$i(2 y) \mid=(\mathrm{A}(\mathrm{Cl})$
	The partial recurtwe 3nete	n oppla titedetined vila a mumber of
auxi	y furctions．	

```
apply[fa, args] + app[caar[fa], args,fa]
app[fn, args,fa]}\downarrow
    fn = CAR }->\mathrm{ caar[args],
    fn=CDR }->\mathrm{ cdar[args],
    fn = CONS }->\mathrm{ cons[car[args], cadr[args]],
    fn=LIST }->\mathrm{ args,
    fn=ATOM -> atom[car[args]],
    fn=NUM }->\mathrm{ num[car[args]],
    fn = NAME }->\mathrm{ name[car[args]],
    fn = NULL + null[car[args]],
    fn = ENUM }->\mathrm{ enum[car[args]],
    fn=SUCCESSOR -> car[args]',
    fn = PLUS }->\mathrm{ applus[args],
    fn = TIMES }->\mathrm{ aptimes[args],
    fn=NOT }->\mathrm{ [car[args] = T T F, car[args]=F F T],
    T}->\mathrm{ apd[assoc[fn,fa], args,fa] ]
eval[e,a,fa] t[
    num[e] }->e
    e=T}->e
    e=F}->\textrm{e}
    e=NIL }->e
    name[e] -> cadr[assoc[e, a]],
    car[e]= QUOTE }->\mathrm{ cadr[e],
    car[e]= COND -> evcon[cdr[e], a,fa],
    car[e] = AND -> evand[cdr[e], a,fa],
    car[e]=OR -> evor[cdr[c],a,fa],
    T}->\operatorname{app[car[e], evlis[cdr[e],a,fa],fa] ]
apd[fd, args,fa]}\Leftarrow eval[caddr[fd], pair[cadr[fd], args],fa
applus[a] [null[a] }->0,T->car[a]+ applus[cdr[a]]
aptimes[a]}\leftarrow[null[a]->1,T->car[a] x aptimes[cdr[a]]
assoc[e,a]& [e= caar[a] }->\operatorname{car[a],T}->\operatorname{assoc}[e,cdr[a]]
pair[x, y] [null[x] -> [null[y] -> NIL],T }->\mathrm{ cons[list[car[x], car[y]],
    pair[cdr[x], cdr[y]]]]
evlis[e, a, fa ] [ [null[e] }->\mathrm{ NIL, T }->\mathrm{ cons[eval[car[e],a,fa],
    evlis[cdr[e],a,fa]]]
evcon[e, a,fa] [eval[caar[e], a,fa] > eval[cadar[e], a,fa],
    T}->\mathrm{ evcon[cdr[e],a,fa]]
evand[e, a, fa ] }\leftarrow[null[e] ->T, eval[car[e],a,fa] ->
    evand[cdr[e],a,fa],T->F]
evor[e,a,fa]}\leftarrow[null[e]->F, eval[car[e],a,fa] TT,T T evor[cdr[e],a,fa]
```

The reader who finds this piece of coding dense may either puzzle through it himself, study one of the texts on LISP programming, or simply take it on faith that it does what we claim it doem. The readar familiar with one or more LISP dialects should note that this finterpreter differs considerably from the apply operator of any compater implementation. Its arguments are different, it does not handie LAXPDA or hametional arguments, it does not evaluate free variables, it treats $\mathrm{T}_{\mathrm{y}} \mathrm{H}, \mathrm{mL}$ mat conditionals in a non-standard fashion and it has no PROG feature.

Although we must normally defme any tanction with a fixed number of arguments, this interpreter provides three epectific exceptions: PLUS, TIMES and LIST.

It also provides for three logical operators: $O R$, AND and NOT. NOT is a function defined only on the domain Fin $_{\text {. Its behavior is completely }}$ explained by noting that not $[T]=F$ and not $[F]=T$. The pretix symbol for "not" is " \neg ". AND and OR are shiphty more contplek. They are variants of the conditional form. Mathematteany, "A" and "w" IMhech stand for "and" and "or", respectively) are functions on the dinnatim hettig two arguments. They are completely specified by the finlowing trames

$\underline{~}$	$\underline{1}$	$\underline{\chi A 5}$	WYy
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	F

If these were evaluated in LISP in the same manmer as other functions, then a form such as " $c_{1} \vee c_{2}$ " would require first eviledting c_{1} and c_{2} with the expectation of getting T or T en ench case and then uting the above table to get the value of the form. What we actually do is qutte different: First c_{1} is evaluated. If this is T, then we conclade that $c_{1} V_{C_{2}}$ is T and do not evaluate ϵ_{2} at all. But if ϵ_{1} is F, then we have to evaluate ϵ_{2}. We treat " \wedge " similarly; if ϵ_{1} is F, we conclude that $\epsilon_{1} \wedge \epsilon_{2}$ is F and do not evaluate ϵ_{2}.

The form " $\epsilon_{1} \vee \varepsilon_{2}$ " is completely equivalent to the conditional form $\left[\epsilon_{1} \rightarrow T, T \rightarrow \varepsilon_{2}\right]$, and the form " $c_{1} \wedge \varepsilon_{2}$ "is completely equivalent to the
conditional form $\left[\epsilon_{1} \rightarrow \boldsymbol{C}_{2}, T \rightarrow F\right]$.
This makes possible such definitions as the following alternative definition of member, which would not work if these functions were evaluated in the standard way. (Why?)

$$
\text { member }[x, y]+\rightarrow \text { null }[y] \wedge[x=\operatorname{car}[y] \vee \text { member }[x ; \text { cdr }[y]]]
$$

The interpreter we have defined conveniently provides for AND and OR to have an indefinite number of arguments. The form " $\varepsilon_{1} \wedge \ldots \wedge \varepsilon_{n}$ " is translated into (AND \&* ... $\mathrm{c}_{\mathrm{n}}^{*}$), and simnarly for "V"' with OR. AND evaluates its arguments from the left to right untl it either finds a false one, whereupon it concludes F without further evaluation, or else if they are all true, then the value is T. (AND), that is, AND of no arguments, will be T because none of its arguments are false. OR evaluates its arguments from left to right until one of them is true, whereupon it comeludes \mathbf{T} without further evaluation, or else if they all evaluate false, then the value is F. The value of (OR) is F because it does not have at least one true argument.

Theorem 2.3 (Interpreter Theorem)

Let $\delta_{1}, \ldots, \delta_{n}$ be a self-contained sequence of recursive definitions (in the sense of Lemma 2.1), let φ be the name of the function defined by ${ }^{\delta_{p}}$ and let $\alpha_{1}, \ldots, \alpha_{m}$ be any sequence of s-expressions where m is the number of arguments for $\varphi_{1} \cdot$ Then either

$$
\left.\varphi_{1}\left[\alpha_{1}, \ldots, \alpha_{m}\right]=\text { apply[list }\left[\delta_{1} *, \ldots \delta_{n} *\right] \operatorname{Hst}\left[\alpha_{1}, \ldots . \alpha_{m}\right]\right]
$$

or else both sides of this equation are undefined (i. $e_{\text {e }}$ both computations produce the same value, or both fall to produce values).

The starting point for all theoretical study of computation is the fact that any one formulation of a sufficiently general class of effectively computable functions always turns out to be equivalent to all other such formulations. Historically, A. M. Turing defined a class of conceptualized machines of very simple design having an infinitely long tapeon which to read and write. Any function that can be computed on such a Turing machine is called computable. Turing then gave very convincing arguments to show that the most elaborate computers that he could think of could hot compute anything that
these very simple machines could not compute, given enough time. Turing also showed that there is a universal Turing machine that could interpret any other Turing machine, given deacription of the other machine.

It is possible to write a recursive function that simulates a universal Turing machine. It is also possible to design a Turing machine that simulates the interpreter "apply". This not very murprising fact is the basis for a proof that the partial recursive functions are the same as the partial computable functions on a Turing machine.

Turing's Thesis

Any function which can be effectively computed can be computed by a Turing machine.

From this we may conclude that any function of s-expressions that is effectively computable is recursive. This in the conteree of lomma 2.1, and is known as "Church's thesis".

Problem 8
Write an interpreter that evaluates arithmette forma oxity, it will be called areval, and has two argunents. The firgt argumemt is a form to be evaluated, for example, (PLUS 3 (TIMPSS XY). The socond argument is an "a-list" which defines the values of the vartablee occurring wianin the first argument, for example, ($(\mathbb{X} 2)(Y 7))$. So areval((PLUS 3 (TIMES $X Y)$), $((X 2)(Y 7) \%]=3+2 \times 7=17$. It does not handle conditional forms or function definitions.

Further Reading

For the reader wishing to learn LISP as a programming language, there are two books: [McCarthy et al. I and CWetreman]. Addtional information on particular LISP fmplementations is usually wveliable at each installation. There is also a set of graded LISP problems with anewers [Hart and Levin], which is useful as a teach-yourself aid.

There is an excellent discussion of the validity of Turing's Thesis in [Kleene, §70]. In [Davis], Turing machines are used as the starting point for the development of recursive function theory.

CHAPTER THREE

PROPOSITIONAL LOGIC I

Preview of Chapters Three and Four

This chapter begins our study of logic as a tool for making formal deductions. Propositional logic is the logic dealing with the compounding of sentences or propositions using connectives such as "and", "or", "not", and "implies". It is not an adequate logical languace for making inferences because it deals with entire clauses and does not consider their internal structure. We study propositional logic because it is the ground floor of the two-story edifice of first order logic, which is our main subject. The terminology and organization of our study of propositional logic will carry over directly to first order logic.

Chapter Three introduces the language of propositional logic, the technique of making logical propositions, and the feasibility of mechanically checking deductions to determine if they are correct. Chapter Four presents the mathematical theory of propositional logic.

§3.1 Propositional Formulas

Making use of a fairly loose analogy, we can say that propositional variables correspond to simple declarative English sentences, and that propositional formulas correspond to compound sentences.

A It will not rain tomorrow.
B We shall go to the beach.
$A \supset B$ If it does not rain tomorrow, we shall go to the beach.
A and B are propositional variables, " $\mathrm{J}^{\prime \prime}$ means "implies", and A $\supset \mathrm{B}$
is a propositional formula.
We shall make the assumption that unlike English sentences, propositional variables can always be interpreted as being either true or false assertions. There is no middle ground such as "too ambiguous" or "doesn't make sense". Propositional logic is also cruder than English in that the truth of a compound proposition depends only on the truth of its components, and the way they are connected by logical operators, and not on the way that they might meaningfully be related. For example, the English sentence "If two plus two is five then the world will end next Monday." can be considered as nonsense. Suppose we let A mean "Two plus two is five," and B mean "rhe world will end next Monday." If A and Barebothfalse, then $A-B$ is considered true. This is part of the definition of " J ", which simply requires that if A is true then B must be true. Since A ircnat true, B doesn't have to be true for $A>B$ to be true. The saying "Lf wishes were deeds, then beggars would be kings, " captures the essence af this type of thinking.

Definition 3. 1

A propositional variable is a name. (It beging with a capital letter.)
A propositional formula is:

```
(i) a propositional variable or (ii) \(\neg(\alpha)\)
or (iii) (\alpha)\vee (\beta)
or (iv) (\alpha)^(\beta)
or (v) (\alpha)}\supset(\beta
or (vi) (\alpha) #(\beta)
```

where α and β are themselves propositional formulas.
The names of the propositional connectives are:

\neg	not
\vee	or
\wedge	and
\supset	implies
\equiv	equivalent

It follows from this definition that propositional formulas can be constructed of arbitrary size and depth of parenthesization. Sometimes we do not write all of the parentheses because they are not needed.

Examples:

A
$A \vee(B \wedge C)$
$(A \wedge B) \equiv(B \wedge A)$

$$
A \supset B
$$

$$
\neg(A \supset(B \supset C))
$$

(A1 $\wedge(A 2 \wedge A 3))$

§3.2 Interpretation

The following truth twile is cewiganed to interpret propositional formulas for truth or falsity. To interpret lotmala we muat first decide on a truth value (T or F) for each propositional variable. This cannot be inferred from the truth tables and for the moment at least must be conaidered as given. Having done this, we can then assign a truth value to each sub-formula starting with the innermost ones and ending whth the entire given formula.

Truth Values of the Propositional Connectives:

A	B	$\mathrm{A} \wedge \mathrm{B}$	AVB	$\rightarrow \mathrm{A}$	$\mathrm{A} \supset \mathrm{B}$	A ${ }^{\text {E }} \mathrm{B}$
\bar{T}	T	T	T	F	T	T
T	F	F	T	F	F	F
F	T	F	T	T	T	F
F	F	F	F	T	T	T

Example:

Evaluate $(A \wedge B) \equiv(B \vee C)$ when A is T and B and C are F.
From the table, we see that if A is T and B is F, then
$A \wedge B$ is F. If B is F and C is F, then $B \vee C$ is F. So the formula becomes $F=F$, which according to the table is T.

Problem Set 9

Evaluate each formula, using the following table of values for variables.

A1:	T	B1:	F
A2:	T	B2:	T
A3:	F	B3:	F

1. $\mathrm{A} 3 \supset \mathrm{~B} 3$	2. $\mathrm{A} 3 \supset \mathrm{~A} 2$
3. $\mathrm{A} 1 \vee \mathrm{~B} 1$	4. $\mathrm{A} 2 \wedge \mathrm{~B} 1$
5. $\neg \mathrm{A} 3$	6. $\neg \neg \neg \mathrm{B} 3$
7. $\neg(\mathrm{A} 3 \vee \mathrm{~B} 2)$	8. $\neg(\mathrm{B} 1 \supset \mathrm{~B} 1)$

To process propositional formulas in LISP we shall have to translate them into s-expressions. The s-expression form should come as no surprise: propositional variables undergo no change, and the other forms translate into (NOT α), (OR $\alpha \beta$), (AND $\alpha \beta$), (IMPLIES $\alpha \beta$), and (EQUIV $\alpha \beta$). Thus $(A \wedge B) \equiv(B \vee C)$ translates into (EQUIV (AND A B) (OR BC)).

Problem Set 10

1. Write a LISP predicate wff[x] which is T if \mathbf{x} is a well-formed formula of the propositional logic and F otherwise; wfi itself should never be undefined.
2. An interpretation for the propositional variablea of a formula is a list (in any order) pairing each name with T or F. For example, ($(A T$) (B F) (C F)) is the interpretation used in the example preceding problem set 9. Write a LISP predicate propeval[e, a] where e is, a propaational formula and a is an interpretation for it. Propeval should interpret the formula as T or F.

If a propositional formula has exactly n different variables in it, then there are 2^{n} different interpretations for the formula. This is the number of different ways to assign T or F to n things.

Definition 3.2

If every interpretation of a formula is T, then the formula is called a tautology.

If at least one interpretation of a formula is T, then the formula is called satisfiable.

If no interpretation of a formula is T, then the formula is called inconsistent.

Corollary 3.3

Every tautology is satisfiable, but not vice versa. If α is a tautology, then $\neg \alpha$ is inconsistent. If is inoommistent, then $\neg \alpha$ is a tautology. If α is satisfiable and is not a tautology, then fe ialso, satigiable and is not a tautology.

Problem Set 11

1. Which of the followint wre tatolewhesp whil of the rest are satisfiable or inconsistent?

$$
\begin{array}{ll}
\text { a. } A \vee \neg A & \text { b. } A \wedge \neg B \\
\text { c. } A \supset B & \text {, } A \supset(A \vee B) \\
\text { e. } A \supset \neg A & \text { (}(\neg A \vee \neg B) \supset \neg(A \wedge B) \\
\text { g. }(A \wedge B) \equiv(A \vee B) & \text { h. } \neg(A \supset B) \wedge B
\end{array}
$$

2. Write a LISP function ver $|x|$ such that if x is a formula of the propositional culculus, then vars $[x]$ is the Ef of in the propositional variables that occur in x.
3. Write a LISP function tabelx] such that if x is a set of propositional vifiables as is genernted above, then the value of tabsfx] is a list of all 2^{n} interpretations for these variables. For example, consider the formula (IMPLIES (ANDAC) ONBCH. Then varit or his formula (A B C) or
 $(((\mathrm{AT})(\mathrm{BT})(\mathrm{CT}))((\mathrm{AT})(\mathrm{BT})(\mathrm{CF}))(\mathrm{AT})(\mathrm{BF})(\mathrm{CT}))((\mathrm{AT})(\mathrm{BF})(\mathrm{CF}))$ ((AF) (BT) (CT)) ((AF) (BT) (CF)) ((AF) (BF) (CT)) ((AF) (BF)(CF)).
4. Write a LISP predicate tatut x] that is T If x is a tautology, and F otherwise.
5. Write a LISP predicate sat[x] which is T if x is satisfiable, and F otherwise.

Two propositional formulas α and β are said to be equivalent formulas if $\alpha \equiv \beta$ is a tautology. The following tatle of equivalences contains many
well-known properties of propositional formulas. They are given in the form of schemas where the Greek letters are used to represent any formulas. So $\alpha \wedge \beta$ being equivalent to $\beta \wedge \alpha$ means more then $A \wedge B$ beipg equivalent to $B \wedge A$. It means, for example, that $(A \supset B) \wedge C$ is equivplent to $C \wedge(A \subset B)$.

Equivalences of Propositional Formulas:

From equivalences 1, 2, and 10 , We see the fastification for regarding "or" as having an Indernite manber of afgements in 4ny ofdorw without
 So we can write $A \vee B V C$ without shownt whthe waytugebcfates, and in
 have an indefinite number of arguments. It is consistent with this practice to assume that $(O R)=F$ and that $(A N D)=T$.

Problem 12

Rewrite wff, propevel, taut and sat to handle AND and OR with an indefinite number of arguments.

§3.3 Deduction

If we are given "It will not rain tomorrow," and "If it does not rain
tomorrow we shall go to the beach, " then we may draw the conclusion "Tomorrow we shall go to the beach." This is called a deduction.

A
$\mathrm{A} \triangle \mathrm{B}$
B
Ultimately, we want to be mile to maike ufe of deductions of consider able length, and to arrive at conclusions that are not immediately obvious from the given statements. The rules for making deductions in propositional logic are extremely simple. A deduction oangists of a saquence of numbered lines. Each line is a praponitional formula, and the lastone is the desired conclusion. There must be a neason or funtifipetion for writing each line, and there are only three kinds of justificwtien, A line is juatified (a) because it is given, (b) because it is an axiom, or (c) begause it follaws from previous lines by using a mule of inference.

As axioms for propostional legic. we fhall allow any formula that is a tautology.

The only rule of inferense for propoeithomel logic is modus-ponens. This rule states that 位 thers is a fine th the daductips which it the formula α, and if there is another line in the theduction Whifh istive formanim $P \beta$, then we

 appear before the other in the deductive, but the oonequent murs follow the antecedents.

The following deduction shows that if we mopurne the tormatae mumbered 1 thru 6 below, the formula namberwa 21 can be deduced.

1. $\mathrm{A} \supset \mathrm{B}$	given
2. $\mathrm{B} \supset \mathrm{C}$	iven
3. $\mathrm{C} \supset \mathrm{D}$	tiven
4. $\mathrm{A} \vee \mathrm{E}$	given
5. $\mathrm{D} \supset \mathrm{G}$	given
6. $\mathrm{E} \supset \mathrm{G}$	Given
7. $(\mathrm{A} \supset \mathrm{B}) \supset((\mathrm{B} \supset \mathrm{C}) \supset(\mathrm{A} \supset \mathrm{C})$	tautology
8. $(\mathrm{B} \supset \mathrm{C}) \supset(\mathrm{A} \supset \mathrm{C})$	Mp 1,7

9. 10.	$\begin{aligned} & A \supset C \\ & (A \supset C) \supset((C \supset D) \supset(A \supset D)) \end{aligned}$	$\text { Mp 2, } 8$ tautology
11.	$(\mathrm{C} \supset \mathrm{D}) \supset(\mathrm{A} \supset \mathrm{D})$	Mp 9,10
12.	$\mathrm{A} \supset \mathrm{D}$	Mp 3, 11
13.	$(A \vee E) \supset((A \supset D) \supset(D \vee E))$	tautology
14.	$(A \supset D) \supset(D \vee E)$	Mp 4, 13
15.	D $\vee \mathrm{E}$	Mp 12,14
16.	$(\mathrm{D} \vee \mathrm{E}) \supset((\mathrm{D} \supset \mathrm{G}) \supset(\mathrm{G} \vee \mathrm{E}))$	tautology
17.	$(\mathrm{D} \supset \mathrm{G}) \supset(\mathrm{G} \vee \mathrm{E})$	Mp 15, 16
18.	$G \vee E$	Mp 5, 17
19.	$(\mathrm{G} \vee \mathrm{E}) \supset((\mathrm{E} \supset \mathrm{G}) \supset \mathrm{G})$	tautology
20.	$(\mathrm{E} \supset \mathrm{G}) \supset \mathrm{G}$	Mp 18, 19
21.	G	Mp 6, 20

\$3.4 Proof-Checking

We are now in a position to attempt a miniature proof-checker for propositional logic. It is a predicate of three arguments, proofchk[g, c, d], where g is a list of given formulas, c is a conclusion, and tis a deduction. If all the arguments have the correct format, and d is a valid deduction proving c starting with g, then the value of proofchk is T. Otherwise it is F.

We have already specified an s-expression language for propositional formulas allowing AND and OR to have an indefinite number of arguments. The format of the arguments of proofchk is as follows:
g: A list of propositional formulas.
c: A single propositional formula.
d: A list of steps. Each step is a list of three items. The first item is a number. The steps are numbered consecutively, $1,2,3 \ldots$ The second items is a formula. The third item is the justification for the formula. It can be (i) GIVEN, (ii) TAUT, or (iii) (MP m n), where m and n are numbers of previous lines.

Using the previous example, $g=((I M P L I E S A B)$ (IMPLIES B C) (IMPLIES C D) (OR A E) (IMPLIES D G) (EMPLIES E G)), $\mathbf{c}=\mathbf{G}$ and $\mathbf{d}=$ ((1 (IMPLIES A B) GIVEN) (2 (IMPLIES B C) GIVEN) ... (20 (IMPLIES (IMPLIES E G) G) (MP 18 I9)) (21 G (MP 6 20))).

For a deduction to be valid, it must have the correct syntax and in addition:

1. If the justification for a step is TAUT, then the body of the step must be a tautology.
2. If the justification for a step is GIVEN, then the body of the step must be a member of the list g .
3. If the justiftication for a step is (MP m n), then letting the body of the step be β, and letting the body of step m be α, the body of step n must be (IMPLIES $\alpha \beta$). Furthermore bothr mal n muet be lebs than the number of the step being justified.
4. The brody af the last step must be c, the conclusion.

A recurnive dofintion of prootitule followns

$\mathrm{g} 1[\mathrm{x}]+$ - Tatomix] A nullfetrfx]
$s 2[x]$ - Tatom[x] A sifectifil

wfsteplis $[x] *[n u l l[x] \rightarrow T, \operatorname{atom}[x]+F, T+$ wfstepicar[x]]^ wfsteplis[cdr[x]l]

wfustfx]-x=GVEXV $x=T A U T \vee 183(x] \wedge \operatorname{carlx}]=\mathrm{MP} A$ num [cadr $[x \mid] \wedge$ numpeadrif(x]]
steporder $[x] *[81[x]+T, T \rightarrow e n t[x]+1=$ candr $[x] \wedge$ steporder[cdr$[x]]]$
 proofchk1 [g, d, cdr[all]
stepchk[g, $d, s]+[$ caddrif $]=$ TAUT \rightarrow taut $[$ cadr $[s] /$ caddr $[s]=$ GIVEN \rightarrow member[cadr[s] g], $T \rightarrow$ mpchk[d, s, caddr [s]]]
$\operatorname{mpchk}\left[d, s_{,} j\right]^{+} \operatorname{caar}[d] \leq \operatorname{cadr}[j] \wedge$ cadr$[j]<\operatorname{car}[s] \wedge \operatorname{caar}[d] \leq \operatorname{caddr}[j] \wedge$ caddr[j] < car[s]^ cadr[fetch[caddr[j], d]] = list[IMPLIES, cadr[fetch[cadr[j], d]\} cadr[s]]
last $[x] \leftarrow[s 1[x] \rightarrow \operatorname{car}[x], T \rightarrow$ last $[\operatorname{cdr}[x]]]$
f(otch $|n, x|+\mid$ null $[x \mid \rightarrow$ NIL, $n=\operatorname{caar}[x] \rightarrow \operatorname{car} \mid x], T \rightarrow \operatorname{fetch}[n, \operatorname{cdr}[x| |]$

If you have access to an interacting LISP system, program a more practical proofchecker in which you can specify the given and the desired conclusion, and then enter lines of proof. The program should give diagnostics when it does not accept lines offered to $i t$, and let you try again.

There is a difficulty with this method of proof that prevents us from making deductions in a reasonable length of time in certain cases where we would expect to be able to do sos Suppose als formula containing 40 different propositional variables, It should be eagy to show that $\alpha \vee \neg \alpha$ is a tautology. But if we set taut to check whether this is a tautology, then it will try to form a list of 2^{40} interpretations and will fail on any existent computer.

One way around this difficulty is to make use of the tdee of substitution instances. If α is any formula then replagingsemesef its propositional
 formula. If a particular propositional variable in to be pepliteced, then all occurrences of it must be replaced, and munt bearoplacedshy the same
 $(C \vee D) \wedge((B \equiv D) \supset(C \vee D))$.

A substitution instance of a tautoloff iandwray a tautology. So we can add to our deductive sybtem for the propentitionaldogizecre more:rule of inference: .

Substitution rule:
A line in a deduction is justified if it is a substitution instance of a previous line, and that previous line is a tautology.

Problem 14
Modify proofchk to allow for substitution instances of tautologies. The justification for such a line will have the form (INST p), where n refers to a previous line, whose justification is TAUT.

CWAPTRXHOUS

PROPOSITYONAL LOGIC II

Preview of Chapter Four

This ehapter develope a theory of yripetitibial logic. The conceptual framework, and even mong of the to the theory of frate owdier loyle.

The theory natarally dividue tively inte twerapoctis. The firgt of
 deductions, vtewed as formal objects to be mampalied, withent any concern

 its intended mownig. The moot mportent theereme for oar purpose are those that relate prool theory to modid theory.

84.1 Proof Theory

 logic to those formulas that contain only a particular get of propomitional variables.

Defnition 4. 1
A vocabulaty ts any non-empty set of propoettional variables.
A languege (of propositioual logic) is the set of all formulas containing only variables from a particular vocaloulary.

A vocabulary may be finite or infinite. Every vocabulary defines a unique language. All languages are infinite sets even when based on a finite vocabulary. If the formula α is a member of the language $L_{\text {. }}$ then the formula $\neg \alpha$ is also a member of L and vice versa. If the formulas α and β are both members of L, then $\alpha \wedge \beta, \alpha \vee \beta$, etc. are also members of L. Conversely, if a compound formula is a member of L, then its constituents are members of L.

When using logic as a deductive tool, we frequently select some set of formulas belonging to a language as the axiomatization of our subject matter. Such a set of axioms can be called a theory. We then want to discuss those formulas that can be deduced within the theory. These are sometimes called theorems. This motivates the following definitions:

Definition 4.2

If L is a language, then a theory is any subset of L. If T is a theory of L, and α is any formula of L, then the notation "Tr α " means that there exists a deduction (as specified in Chapter Three) such that every given formula of the deduction is in T, and the conclusion is α. We can read this as " α is deducible from T ". The set of all α in L such that $T+\alpha$ is the set of theorems of T for which we write $\mathrm{Th}(\mathrm{T})$.

Definition 4.3

The theory of T is said to be inconsistent if there is some formula α such that $T \vdash \alpha$, and $T \vdash \neg \alpha$. Otherwise T is consistent.

Corollary 4. 4

If $T \subset L$ is the empty theory, then $T h(T)$ includes all tautologies of L. If $T \subset L$ is inconsistent, then $T h(T)=L$. If T and R are theories of L, then $(T h(T) \cup T h(R) f \subset T h(T \cup R)$.

Definition 4.5
A theory $T \subset L$ is complete (in L) if for every formula $\alpha \in L$ either either $\operatorname{Tr} \alpha$, or $\operatorname{T} \vdash \neg \alpha$.

It is important to observe that the completeness of a theory is relative to the language of which it is a part. The theory is complete if all the formulas of L are provable or refutable from T, and none of them are left undecided. But the same theory may be incomplete with respect to a larger language.

Definition 4.6
If $T \subset L$ is a theory, and $\alpha \in L$, then if menther $T r \alpha$, nor $T r-\alpha$, then α is said to be independent of T.

We have seen that formulas may be divided into three classes, tautologies, inconsistent formulas, and those that are satisfiable but not tautologies. Given any consistent theory T in the langage L, the formulas of L can then be divided into three disjoint classes relative to T : (i) those that are deducible from T, which includes the tautologies, as a subset, (ii) those whose negations are deducible from T, which we can call the formulas refutable from T and which includes all the inconsistent formulas as a subset, and (ini) those that are independent of T. If T is a complete theory, this last class is empty.

T is incomplete

It complete

1. Which of the following theories are inconsistent? Which are complete within the smallest language containing them?
a. A
$\neg A \vee \neg B$
$\neg B \supset C$
${ }^{7} \mathrm{C}$
c. $\quad A \vee B$
$\neg B$
b. $A \vee B$
d. A
$\neg \mathrm{B}$
C
2. Prove that if T is any consistent theory in L, there is a theory T^{\prime} in L . which is complete and consistent, and such that $\mathrm{T} \subset \mathrm{T}^{\prime}$.
3. Show that every complete theory has a canonical form.

The main theorem of this section is known as the deduction theorem (for propositional logic). It is the formalization of the intuitive proof technique whereby when we want to prove a result having the form "A implies B ", we assume A and then derive B.

Both the statement of the theorem, and the method of proof are typical of proof theory. The statement of the theorem is simply that if a certain deduction exists (and a deduction is itself a formal object as defined in Chapter Three), then a certain other deduction must also exist. The proof of the theorem makes no appeal to the meaning of propositional logic, but merely describes how to obtain the second deduction if the first one is given. This is known as a constructive proof.

Theorem 4.7 (Deduction Theorem)

If $\mathrm{T} \cup\{\alpha\}+\beta$, then $\mathrm{T} \vdash \boldsymbol{\alpha} \supset \beta$.
Proof: The assumption of this theorem is that there is a deduction of the formula β in which only the formulas of T and the formula α are justified as given. Let this deduction be the sequence of formulas $\beta_{1}, \ldots, \beta_{n}$ where $\beta_{n}=\beta$. We shall use the method of mathematical induction to show that for each i, where $1 \leq i \leq n$, it is the case that $\operatorname{Tr} \alpha \mathcal{} \quad \beta_{i}$. This is sufficient to prove the theorem, because $\operatorname{Tr} \alpha-\beta_{\mathrm{n}}$ is the desired result.

By the induction principle, it is sufficient to show that if Tr $\alpha \supset \beta_{j}$ for $1 \leq j<i$, then Tr $\alpha \supset \beta_{i}$. There are four cases to consider: (i) if $\boldsymbol{\beta}_{i}$ is a tautology, then $\alpha \omega \beta_{i}$ is also a tatology, and so Th $\alpha \boldsymbol{D}_{i}$. (ii) If β_{i} follows from β_{j} and β_{k} by modus-poners in the iviven proof, where β_{k} is $\beta_{j} \supset \beta_{i}$, and $j<i$, and $k<i$, then by the induction apownption Tra $\supset \beta_{j}$ and Tr $\alpha \supset\left(\beta_{j} \supset \beta_{i}\right)$. Then since $\left(\alpha \supset \beta_{j}\right) \supset\left\langle\alpha \supset\left(\beta_{j} \supset \beta_{1}\right) D \boldsymbol{m}^{\prime} \supset \beta_{1}\right.$ is a tautology, by two applica-
 first proof, and $\beta_{i} \in T$, then $T H \beta_{i}$ and since $\beta_{i} \supset\left(\alpha \supset \beta_{i}\right)$ is a tautology, by
 proof, and β_{i} is α, Then $T+\rho_{1}$ becuate thit tormina $(\alpha \supset \alpha)$ is a tautology.

A constructive proof usually tells us more than is required for the theorem. This proof, for examplt, whe wet tre deduction Tha $D \beta$ is

 proof is an existreptan proot.

Problem 16

 out this deduction in rall:

1.	A	given
2.	$A>B$	given
3.		Mp 1, 2
4.	为	given
5.	c	Mps, 3

The deduction theorem tells us that T $\mathrm{A} \triangle \mathrm{C}$. Ob*an this deduction by following the construction given in the proot of the deduction tweorem. is there a shorter deduction for $\mathrm{r}+\mathrm{A} \triangle \mathrm{C}$?
\$4.2 Model Theory
While proof theory is concerned with the properties of deductions, model theory is concerned with the meaning of the formulas. A formula is a logical compound of propositions, each of which is regarded as true or false
in some context. The purpose of a model is to supply that context; therefore:

Definition 4.8

A model in a language L is a function from the vocabulary of L into π.
If the vocabulary of L is finite with n members, then there are 2^{n} different models for L. If the vocabulary of L is infinite, then there are infinitely many models for L, in fact, uncountably many.

If M is a model in the language L, and $\alpha \in L$, then M assigns a truth value to each variable occurring in α. Then, using the truth tables for the propositional connectives, or else using some procedure such as propeval of Chapter Three, a truth value can be assigned to α.

Definition 4.9

If α evaluates to the value T using the model M then we say that M satisfies α, and we use the notation " $M \neq \alpha$ " to express this concept.

Corollary 4. 10

If M is a model in L, and $\alpha \in L$, then either $M \neq \alpha$, or $M \vDash \neg \alpha$. If for every M in $L, M \neq \alpha$, then α is a tautology. If there is at least one model M such that $M \neq \alpha$, then α is satisfiable. If there is no such M, then α is inconsistent.

Definition 4. 11

If $T \subset L$ is a theory, and M is a model in L, and if $M \neq \alpha$ for every $\alpha \in T$, then we say that M is a model for T, or M satisfies T, and we write $\mathrm{M} \neq \mathrm{T}$ 。

So far, we have used the symbol " k " to relate models to formulas or theories. We can also use " k " to express the idea that in any context where the theory T is satisfied, the formula α is also satisfied.

Definition 4.12

If $T \subset L$, and $\alpha \in L$, and if every model in L that satisfies T also
satisfies α, then we say that T semantically implies or semantically entails α, and we write $T \neq \alpha$.

It is important to realize that $T \neq \alpha$, or T semantically implies α, is not the same thing as saying $T \vdash \alpha$, or α is deductible from T, at least not until we have proven this to be the case.

The main result of this section is the compactness theorem, a rather surprising result when first seen. Suppose some infinite theory is not satisfiable by any model. One might think that this is a property of the theory as a whole. But the compactness theorem states that the unsatisfiability can always be localized to some finite portion of the theory.

An unsatisfiable theory is one that has no model. An inconsistent theory is one for which there is a formula α such that both α and $\neg \alpha$ can be deduced from the theory. The former concept is model theoretic, while the latter is proof theoretic. If a theory is inconsistent, then it is obvious that some finite sub-theory is also inconsistent because the deduction of the inconsistency had to come from finitely many given formulas. But we have not yet proved that unsatisfiable and inconsistent are equivalent concepts. The compactness theorem is a result preliminary to proving this.

Theorem 4.13 (Compactness Theorem)

If a theory is unsatisfiable, then it has a finite sub-theory which is unsatisfiable.

Proof: If the theory T is finite, then the theorem is trivial because the subtheory T^{\prime} is taken to be T. The theorem did not promise that T^{\prime} was a proper subset. If the vocabulary of T is finite, then there are 2^{n} models where n is the number of propositional variables in T. None of these models satisfies T, and therefore each one falsifies some formula of T. This set of formulas is not satisfiable, and is the required T^{\prime}.

Suppose the vocabulary of T is infinite. Let the propositional variables of T be enumerated in some order as the sequence a_{1}, a_{2}, \ldots We shall call a function from some initial segment of this sequence into π a "partial model". A partial model assigns truth values to a_{1} thru a_{n} for some $\mathrm{n} \geq 0$. We can picture all partial models as nodes on an infinite tree. The
first node is the empty partial model. The next level containing two nodes assigns T and F to a_{1}, and the third level containing four nodes assigns T and F to a_{1} and a_{2} in 4 different ways, etc.

A partial model assigns truth values only to those formulas of T whose propositional variables are among those that the particular partial model interprets. If a partial model interprets at least one formula of T as false, it will be called a "terminal". We now "prune" the tree by cutting off all nodes that are descendents of terminals. If the pruned tree has finitely many nodes, then for each terminal we select a formula which is falsified by that terminal. The set of these formulas is the required finite ' Γ^{\prime}, because if M is any model, then some initial sequence of M is the same as some terminal. So there is a formula in T^{\prime} which is not satisfied by M. Therefore T^{\prime} is an unsatisfiable theory.

Now suppose that the pruned tree after eliminating descendents of terminals is still infinite. Then there must be some infinite descending path passing through infinitely many nodes. This is because if the tree is infinite, then either the left or right half of it is infinite. Then either the left or right half of this half is infinite, etc. But such a path constitutes a model. Furthermore, this model does not falsify any formulas since none of the nodes
it passes through is a terminal. So this model must satisfy the theory T contrary to assumption. Therefore the pruned tree cannot be infinite.

§4.3 Consistency and Completeness

We now use model theory to critique the consistency and completeness of deduction. We want to show (i) that deduction only allows us to obtain conclusions that are semantically justified, and (ii) that all such conclusions can be obtained by deduction.

Theorem 4. 14 (Consistency Tweorem)

If $T \subset L, \alpha \in L$ and $T+\alpha$, then $T \neq \alpha$.
Proof: Let $\alpha_{1}, \ldots, \alpha_{n}=\alpha$ be a deduction of arom T. By the induction principle, if we can show that $T \neq \alpha_{j}$ for $j<i$ implies $T \not \alpha_{i}$, then we can conclude that $T \neq \alpha_{i}$ for each i, and, in particular, THa. There are three cases: (i) If α_{i} is a tautology, then $T \neq \alpha_{i}$ becense all models of L satisfy α_{i}. (ii) If α_{i} is given, then $\alpha_{i} \in T$ and so $T \neq \alpha_{i}$ (iii) If α_{i} fllows from α_{j} and α_{k} by modus-ponens, where α_{z} is $\alpha_{j} \supset \alpha_{j}$, then by the imhotion hypothesia, $T \neq \alpha_{j}$ and $T \not F \alpha_{j} \supset \alpha_{i}$, so if $M \neq T$, then M 的 and $M \neq \alpha_{j} \supset \alpha_{i}$ From the truth table

Lemma 4.15
If $T \neq \alpha$, then there is a finite subset T^{\prime} of T such that $\mathrm{T}^{\prime} \neq \alpha$.
Proof: $T \cup\{\neg a\}$ is ansatisfinble theory, since every model that satisfies T also satisfies α, and therefore does not satisfy $\neg \alpha$. According to the compactness theorem, there is a finite subset of $T \cup\{\rightarrow \alpha\}$ which is also unsatisfiable. We can always include α in this set, so it can be written $T^{\prime} \cup\{\neg \alpha\}$ where $T^{\prime} \subset T$ is finite. If $M \neq T^{\prime}$. then M cannot satisfy $\neg \alpha$, and so $\mathrm{M} \neq \alpha$. Therefore $\mathrm{T}^{\prime} \neq \alpha$.

I'heorem 4.16 (Completeness Theorem)

If $\mathrm{T} \subset \mathrm{L}, \alpha \in \mathrm{L}$, and $\mathrm{T} \neq \alpha$, then $\mathrm{T}+\alpha$.
Proof: By lemma 4.15 there is a finite $\mathrm{T}^{\prime} \subset \mathrm{T}$ such that $\mathrm{T}^{\prime} \neq \alpha$. Let $\mathrm{T}^{\prime}=$
$\left\{\beta_{1}, \ldots, \beta_{2}\right\}$. Then $\beta_{1} \supset\left(\beta_{2} \supset \ldots\left(\beta_{\mathrm{n}} \supset \alpha\right) \ldots\right)$ is a tautology, and there is a deduction starting from this tautology, introducing each β_{i} as given, and then detaching it from the tautology using modus-ponens, such that the conclusion of this deduction is α.

Corollary 4.17
If there is at least one formula that cannot be deduced from the theory T, then T is satisfiable.

Problem 17
Prove corollary 4.17.

CHAPTER FIVE

RECURSIVE FUNCTIONS AND SETS

Preview of Chapter Five

This chapter continues from where we left off in Chapter Two. There we formalized the notion of a recursive function, and showed that there was a universal recursive function apply. In this chapter, we continue the discussion of recursive function theory by demonstrating that there are perfectly well defined functions that are not recursive. It is surprisingly easy to get such a result once we have ampereal function. The theory goes a bit further by showing that there are fanctions that are in some sense not even halfony recursive.
85.1 Recapitulation
'To summarize the results of Chapter Two briefly, the following schema represents a sequence of n recursive definitions:

$$
\begin{aligned}
& \varphi_{1}\left[s_{1}, \ldots . s_{m_{1}}\right]+c_{1} \\
& \varphi_{n}\left[s_{1} \ldots . s_{m_{n}}\right]+c_{n}
\end{aligned}
$$

Such a sequence defines n partial recursive functions, gives them the names φ_{1} thru φ_{n}, and specifies procedures for computing these functions which terminate with a value whenever the partial function has a value, and are otherwise undefined or fail to terminate. The recursive function specified by the procedure may not be the one we expect, but it must exist because the
behavior of the procedure is taken as its definition.
There is furthermore a well-defined effective method of coding a sequence of recursive definitions into a single s-expression, and there is a partial recursive function called apply such that if β is the coded s-expression just mentioned, and φ_{1} has exactly k arguments (that is, $m_{1}=k$), and α_{1} thru α_{k} are any s-expressions, then:

$$
\varphi_{1}\left[\alpha_{1}, \ldots, \alpha_{k}\right] \cong \operatorname{apply}\left[\beta, \operatorname{list}\left[\alpha_{1}, \ldots, \alpha_{k}\right]\right]
$$

where the symbol " $¥$ " here means "strong equality" in the sense that either both sides have the same value, or both sides are undefined. (We can also compute any other of the φ_{i} merely by putting its definition first when coding β.

§5.2 Turing's Halting Theorem

A. M. Turing first proved this halting theorem uning his conceptualized computers now known as Turing Machines. He ohowed that there is no computer that can always predict whether or not nother computer will halt or continue to run indefinitely, after studving the structure and initial state of that other computer. It is assumed here that allicomputers have access to an unlimited supply of initially blank auxiliary storage. Of course a computer can predict that another computer will halt by eimulating its behavior until a halt is encountered. But there is no way to do this without danger that the computer doing the simulation will itself not halt in some oases. A proof along these lines can be found in [Davis].

We define the total binary predicate halt $\{x, y]$ as follows: If apply[$x, y]$ is defined, then halt $[x, y]$ is T; otherwise helt $[x, y]$ is F, The predicafe halt is certainly meaningful and well defined. But we have not specified any effective means to compute it.

Theorem 5. 1 (First Halting Theorem)

The predicate halt is not recursive.
Proof: Suppose, to the contrary, that halt is recursive. Then there is a
sequence of recursive definitions, the firat of which computes halt, and the rest of which are auxiliary functions for halt. Then we can define the recursive function drag as follow:

$$
\operatorname{diag}[x] \odot[\text { halt }[x, \text { list }[x]] \rightarrow \text { list }[\text { apply }[x, \text { list }[x]]], T \rightarrow \text { NIL }]
$$

The function diag is recursive because it has been effectively defined from apply and halt both of which are, or are preaumed to be, recursive. Furthermore, diag is a total function because halt is total, and while apply is not total, it only gets to see those arguments certified by halt as producing a value for apply. Because diace is recursive, its definition can be coded into an s-expression which we shan call dact. This is a list of the translation of the recursive definition of diag written above, followed by the definitions for halt ane its aremitury funetiants mad apply and ite auriliary functions. Now censider the value of ditcidity'l The value must exist because diag is total. Therefore, by the tutoryeter theorem, applyldiag*, list[diag*] must be defined and heve the meve viwe, mad hence baltfdiag*, list[diag*] is T. But them frem the reearatve fotimiton for dict, we have:

This is a contradiction because it awserts that bome exprestion is equal to list of itself. This is like having a mumber n euth that $n=m$. Since we have arrived at a contrudiction unint correet peanonturb we mupt conclude that our original premite that haft te recureive to not true.

This proof is confusing at first sight. If you atudy it carefully, you will see that it is really no wifferent in its batic technique from Cantor's diagonalization proof that the real numbere zre net countable. That is why we have called the self-applicative function "dag". Most undecidability and incompleteness proofs involve some sort of dagonalization technique.

Definition 5.2
A set of s-expressions is recursive if there is a total unary recursive predicate which is T for members of the set, and F otherwise.

Since the numbers are a subset of the s-expressions, this definition extends to numbers. For a set of numbers to be recursive, it is sufficient to have a predicate which is defined only for numbers, and is T for members of the set and F for numbers that are not members of the set. This is because the set of all numbers is recursive using the basic predicate num.

If a set is recursive, then there is an effective test for membership in the set which terminates either way. We have just proven that the set of all s-expressions x such that apply[car[x], cadr[x]] is defined is not a recursive set.

There is a weaker condition than recursiveness called recursive enumerability. It applies to sets where there is a membership procedure that always terminates when the answer is yes, but may not terminate when the answer is no.

Definition 5.3

A set of s-expressions is recursively enumerable (abbreviated to r.e.) if it is the set of values for some total unary recursive function defined on the domain of numbers.

This definition creates the picture of a machine that runs continuously, and from time to time prints out some s-expression. Every s-expression that is a member of the set will be printed eventually, and only members of the set will be printed. There may be repetitions. But we cannot always conclude that some s-expression is not a member of the set, because we may not have waited long enough. This is a good intuitive view of recursive enumerability.

Definition 5.4

A predicate is recursively enymerahle if the set of arguments for which it is T is r . e.

There are many alternative definitions for r.e. set, some of which are given in the followinf corollary.

Corollary 5.5
(a) A set is r.e. if and only if it it the range (at of values) of some total recursive function.
(b) A set is F.e. If and onfy if to the thence of same partial recursive function,
(c) A set is r, e. if and only if it in the deman of definition for some partial recursive function $\mathrm{i}_{\mathrm{i}} \mathrm{e}_{\mathrm{a}}$, the et ef s-mperetmiong on which the partial function is defined).
(d) If a set is r.e. and its complement is also r, e., them both are recursive. (This means complement with reapeot to the set of all s-expressions. but it is also true if we thin a complomant with reapect to the set of numbers; or any other recuraive set.)

Problem Set 18

1. Prove all the parts of corollary 5.5.
2. Show thit halt is a r.e. predroate.
3. Using theerem 5.1, and eorollary 6. 8, putit (d), epectfy some set which is not r.e.

The last reault of the chapter is a stronger halting thearem in which we demonstrate the existenee of a perdicele that is mot ovenr. e_{0}. We define the total unary predicate tat[x] to be T if and only if x is a sequence of recursive definitions which is syntactically well formed, and furthermore specifies the computation of a total unary function of the s-expressions. ' $\operatorname{Cot}[\mathrm{x}]$ is F if x is not a well-formed sequence of definitions, or if it defines a non-unary function, or if it defines a noa-total function. Tot itself is never
undefined.

Theorem 5.6 (Second Halting Theorem)
The predicate tot is not r.e.
Proof: Assume to the contrary that tot is r.e. Then the set of arguments x such that $\operatorname{tot}[\mathrm{x}]$ is T is a $\mathrm{r} . \mathrm{e}$. set, and there is some total recursive numeric function totenum which enumerates this set. Now consider the function diag2 defined by:

$$
\operatorname{diag} 2[x] \leftarrow[\text { num }[x] \rightarrow \text { list[apply[totenum }[x], 1 \sin [x]], T \rightarrow \text { NIL }]
$$

Given our premises, diag2 is evidently a total unary recursive function. Letting its definition sequence be the s-expression diag2*, we have tot[diag2*] = T. Therefore, there is some number kench that totenum $[k]=$ diag2*. Then diag2 [k] = list[apply[diag2*, list[k]] = list[diaer [k]]. This is a contradiction, so the initial assumption that tot is r.e. must be false.

Once again, the distinction between a rope and a snake had proved too subtle for Western logic.
-The Adamantine Sherlock Holmes-

CHAPTER SIX

FIRST ORDER LOGIC - INTRODUGTION

Preview of Chapters Six, Seven and Et Hh

Chapter dte introduces the lingater, theories and models of first order logic. It contains some butic defintuont, dide an intuitive exploration of the subject to develop skill in handing formulat and their mearings. No deep theorems are proven.

Chapter Seven defines and develops the theory of deductions. With the exception of the consistency theorem, all of Chapter Seven is prooftheoretic and constructive in nuture. It contains all the basic results on provability that we shall need for the rest of the book. Chapter Seven is long and contains many difficult exercises. This seems necessary in order to develop some practical sense about deduction, which theoretical study alone is not likely to do.

Chapter Eight starts with the completeness theorem which is the central topic for the classical study of Itrst order logic. The completeness theorem is then extended to logic with equality, and some consequences of the completeness theorem having philosophical implication are discussed.

§8. 1 Languaqes, Formulas and Sentences

First order logic is much more subtle than propositional logic. In a certain theoretical sense, it is sufficient to represent any completely formalized process of deduction. Let us consider a very trivial deduction: Bowser is a dog. All dogs are mammals. All mammals are vertebrates. Therefore, there is at least one vertebrate. . Fach of these sentences is simple
rather than compound. If we call them A, B, C and D, respectively, there is no way to deduce D from A, B and C using propositional logic. The internal relations that make this an evident deduction are simply not available. These statements can be formalized in first order logic as follows:

A: dog[BOWSER]
B: $\quad \forall x(\operatorname{dog}[x] \supset \operatorname{mammal}[x])$
C: $\quad \forall x(m a m m a 1[x] \supset$ vertebrate[$[x])$
D: Ix(vertebrate[x])

When we define deduction in first order logic, it will be seen that there is a deduction of D given A, B and C.

In this example, there is a variable, x, an object, BOWSER, and three predicate names. A slightly more complicated example, containing a function name in addition to a predicate name is: The number three is not even. If a number is not even, then it is odd. If a number is odd, then its square is odd. Therefore there is some number the square of whose square is odd.

```
ᄀeven[3]
\(\forall n(\neg e v e n[n] \supset\) odd[n])
Un(odd[n] \(\supset\) odd[square[n]])
In(odd[square[square[n]]])
```

This is also a valid conclusion in first order logic.

Definition 6.1

A function name is an identifier.
A predicate name is an identifier.
A vocabulary for first order logic is a non-empty set of predicate names, and a (possibly empty) set of function names, together with a number (≥ 0) for each name called the degree of that name.

The purpose of the degree is to specify the number of arguments a predicate or function has.

A term is:
(i) a variable
or (ii) $\left.\varphi \Gamma_{1} \ldots \ldots T_{n}\right]$
where φ is a function name of degree n, and each of the τ_{i} is a term. (Note that this definition allows terms of arbitrary depth. Also, if the degree of φ is 0 , then $\varphi[]$ is a term. A 0 -ary term in called a constant.)

An atomic formula is $\psi\left[r_{1}, \ldots, T_{m}\right]$, where ϕ is a predicate name of degree m, and each T_{i} is a term. (Note that predicate names occur only outside function names, and that predicate names cannot be nested within each other. Also, if the degree of ψ is 0 , then $\psi 1$ is an atomic formula.)

A formula is:
(i) an atomic formula
or (ii) $\neg(\alpha)$
or (iii) ($\alpha) \vee(\beta)$
or (iv) ($\alpha) \wedge(\beta)$
or $\quad(v)(\alpha) \supset(\beta)$
or $\quad(v i)(\alpha)=(\beta)$
or (vil) $V \mathrm{~S}(\alpha)$
or (viii) $\mathbb{I} \xi(\alpha)$
where α and β are formulas, and ξ is a variable. The symbols V and t are called the univerbal guantifier and the existential quantifier, respectively, and can be read as "for a11" and "there exists".

Informally, we shall relax this grammar in several ways. We may drop some of the parentheses when this does not result in ambiguity for the reader. We do not specify associative grouping for "V" and " A ", since this makes no difference. We assume that " J " asmociates rrom the right, so that $p[x] \supset q[x] \supset r[x]$ means $p[x] \supset(q[x] \supset r[x])$. We the terms contmining infixes, prefixes and suffixes in the same manner as in Chapter Two. Finally, we use objects as terms, which saves ut the trouble of representing each object by a constant.

Throughout this book we thall use the convention that when a quantifier and its quantified variable are followed immediately by a left parenthesis, then the scope of the quantifier extends exactly as far as the matching right
parenthesis. For example, $\exists x(p[x]) \supset q[x]$ means $(\exists x(p[x])) \supset q[x]$, and not $\mathrm{T}_{\mathrm{x}}((\mathrm{p}[\mathrm{x}]) \supset \mathrm{q}[\mathrm{x}])$.

Examples of Formulas:
a. $\forall x(p[x] \supset q[x])$
b. $\neg \operatorname{An}\left(n^{\prime}=0\right)$
c. $(n+m) \times p=n \times p+m \times p$
d. $\quad \mathbf{x}(\mathrm{p}[\mathrm{x}]) \supset \forall \mathrm{x}(\mathrm{p}[\mathrm{x}] \supset \mathrm{p}[\mathrm{f}[\mathrm{x}]]) \supset$ Ix(plf[fx]]])
e. $(\neg \mathrm{p}[] \vee \neg \mathrm{q}[]) \equiv \neg(\mathrm{p}[] \wedge \mathrm{q}[])$
f. $p[x] \vee p[g[x]] \vee p[g[g[x]]]$

Definition 6.3
The set of all formulas using a given vocabulary is called a language.

Definition 6.4
In a formula having the form $\forall \xi(\alpha)$ or $\Xi \xi(\alpha)$. every occurrence of the variable ξ is a bound occurrence of 5 . It is bound by the initial quantifier of the formula unless it is bound by some quantifier in α. An occurrence of a variable that is not bound is free.

It is only meaningful to talk abnut a particular occurrence of a variable being bound or free with respect to a particular formula. For example, within the formula $G x(p[x])$, the variable x is bound with respect to the whole formula, but free with respect to the subformula $\mathrm{p}[\mathrm{x}]$. In the formula $p[x] \supset \forall x[q[x]]$, the first occurrence of x is free, and the second and third occurrences are bound. In the formula $\forall y(p 1[x, y] \vee \pi x(p 2[x, y])$), the only free variable (with respect to the entire formula) is the first occurrence of x.

Definition 6.5

If a formula has no free variables (with respect to itself), then it is called a sentence. A universal closure of a formpla α is a sentence $\forall \xi_{1} \ldots \forall \xi_{n}(\alpha)$ where the ξ_{i} are all the distinct free variables of α in any order. §6.2 First Order Models

Definition 6. 6

Let L be a first order language. Then a model in Lis a package
containing the following:
(i) A non-empty set D called the domain of the model.
(ii) For each function name φ of degree n, a function $\tilde{\varphi}: D^{n} \rightarrow D$. (iii) For each predicate name ψ of degree m, a predicate $\tilde{\psi}: D^{m} \rightarrow$.

When we speak of finite, infinite, countable or uncountable models, we are referring to the cardinality of their domains. It is important that the domain be non-empty, and that the functions and predicates that interpret the function and predicate names should be total.

The significance of models is that they specify semantics for formulas. Consider a language L, a formula $\alpha \in L$, and a model M in L. Temporarily, we need another entity called an interpretation. An interpretation I for the formula α, and the model M is a total function from the set of variables occurring in α into the domain of M, Given M, I and α, we can define a valuation for every eub-component of α. The velutution of a term will be a member of D (the domain of M), and the valuation of a formula will be a truth value (member of T), defined as follows:
(i) If 5 is a term which is a variable, then $V(M, I, S)=I(\xi)$. That is, the valuation of 8 it the value in D. Ampigned to it by the interpretation L.
(ii) If T is a term heving the form $\varphi r_{1} \ldots \ldots T_{n} h$ then $V(M, L, T)=\tilde{\varphi}\left(V\left(M, I_{1} r_{1}\right) \ldots, V\left(M, L_{,} T_{n}\right) \lambda_{1}\right.$, That is, the valuation of t is found by first obtaining valuations for the f_{i}, which will be members of $D_{\text {, and then using }} \tilde{\varphi}_{\text {. }}$ which is the function modeling the function name φ, to obtain a value in D from these arguments.
(ii1) If β is an atomic formula $\notin 1, \ldots,{ }_{m}$, then $V(M, I, P)=\zeta\left(V\left(M, L, T_{1}\right), \ldots, V\left(M, L_{1} T_{m}\right)\right)$. This is a truth value.
(iv) The valuation of a formula having the form $\neg(\beta)$, ($\beta) \vee(\gamma),(\beta) \wedge(\gamma),(\beta) \rightharpoonup(\gamma)$, or $(\beta) \equiv(\gamma)$ is obtained from $V(M, I, \beta)$ and $V(M, I, \gamma)$ using the truth tables for the propositional connectives.
(v) The valuation $V(M, I, V \xi(\beta))$ is T if $V(M, J, \beta)$ is T for
every J which is an interpretation identical to I except possibly for the value it assigns to the variable $\bar{\xi}$. Otherwise, the valuation of $\forall \boldsymbol{\xi}(\beta)$ is F .
(vi) The valuation $V(M, I, G \xi(\beta))$ is T if $V(M, J, \beta)$ is T for at least one J which is identical to I except possibly for the value it assigns to the variable 5. Otherwise, the valuation of $\mathbb{} \xi(\beta)$ is F.

Proceeding from smaller to larger components in this manner, we see that a valuation $V(M, I, \alpha)$ is eventually defined. It is evident that the choice of the interpretation I is important only for the free variables in α, and that if α has no free variables, the valuation is independent of I. So if α is a sentence, we simply write $\mathrm{V}(\mathrm{M}, \alpha)$.

Definition 6.7

If M is a model in L, and α is a sentence in L, then if $V(M, \alpha)=T$, we say that M satisfies α, and write $M \neq \alpha$.

If α is a sentence in L, and all models in L satisfy α, then α is valid. If at least one model satisfies α, then α is satisfiable. If no models satisfy α, then α is invalid.

The negation of a valid sentence is invalid and vice versa. We could draw the same sort of chart for valid, satisfiable-but-not-valid, and invalid sentences of first order logic, as we draw in Chapter Four for tautologies, satisfiable-but-not-tautological formulas, and inconsistent formulas of propositional logic. In fact, tautologies are a subset of valid formulas, if we define a first order formula that is valid from its propositional structure alone to be a tautology. Similarly, propositionally inconsistent formulas of first order logic are a subset of the invalid formulas.

So far, we have discussed only sentences. What about other formulas? It turns out that there are two ways of regarding a formula with free variables. One way is to see the formula as belonging to some context which supplies interpretations or restricts the meaning of the free variables. For example, in the pair of formulas:

$$
\begin{aligned}
& 2 x+2 y=1 \\
& x^{2}+y^{2}=1
\end{aligned}
$$

one probably wants to solve for all interpretations that satisfy both formulas. In the domain of real numbers, there are two of them. The other context for a formula having free variabtes to thegrd the tormula as meaning the same thing as its universal ctosure. 3 ver empmple:

$$
\sin ^{2} x+\cos ^{2} x=1
$$

 $\cos ^{2} x=1$).

Definition 6.8

 invalid, respectively.

Two formalas 4 and are equatent, it e 争 is valld.

Problem Set 19

 invalid, or satioftable bent wit widid.
a. $p[x] \vee \neg p[x]$

c. $x(p / x]) \wedge \rightarrow \pi(p \| x)$

e. $x+y=y+x$
f. $N(\neg p(x])=-2 x(p[x])$
 domain of real numbers anserts that I is contimueply function. Write a formula that asserts that is anfirmaly contmons function. Does one of these conditions imply the other lorically?
3. Show that tach pair of formulas in equivalent:
a. $V E(\alpha \wedge \beta)$
$\forall E(\alpha) \wedge \vee \xi(\beta)$
b. $\quad \pi 5(\alpha \vee \beta)$

c. $\forall \xi(\alpha \vee \beta) \quad \forall \xi(\alpha) \vee \beta \quad$ where β has no free 5

d. $\exists \xi(\alpha \supset \beta)$	$\alpha \supset \exists \xi(\beta)$	where α has no free ξ
e. $\forall \xi(\alpha \supset \beta)$	$\exists \xi(\alpha) \supset \beta$	where β has no free ξ
f. $\neg \sharp \xi(\alpha)$	$\forall \xi(\neg \alpha)$	

86.3 Theories

Definition 6. 9
A theory in a language L is a subset of L.
If $T_{1} \subset T_{2}$, then we say that T_{2} is an extension of T_{1}, and T_{1} is a contraction of T_{2}. If $L_{1} \subset L_{2}$, then we say that L_{2} is an extension of L_{1}, and L_{1} is a contraction of L_{2}.

If $M \neq \alpha$ for all $\alpha \in T$, then $M \neq T$.
If $T \subset L$, and if $M \neq T$ implies $M \vdash \alpha$ for all models M in L, then $M \neq \alpha$.
A theory is satisfiable if it has a model.

Definition 6.10

Two models M_{1} and M_{2} in the language L are said to be first order equivalent if $M_{1} \vDash \alpha$ if and only if $M_{2} \vDash \alpha$ for every α in L. We write $M_{1} \sim M_{2}$ to denote first order equivalence.

Let M_{1} be a model in the language L_{1}, and let L_{2} be an extension of L_{1}. If M_{2} is a model in L_{2} which has the same domain as M_{1} and the same interpretations for all the function and predicate names of L_{1}, then M_{2} is an expansion of M_{1}, and M_{1} is a contraction of M_{2}. (The word "extension" applied to models has a different meaning from "expansion" and is not used in this book.)

Problem Set 20

1. Prove that if $T \subset L$ is a theory such that if α is any formula of L, then either $\mathrm{T} \neq \alpha$, or $\mathrm{T} \vDash \neg \boldsymbol{\alpha}$, then all models for T in L are first order equivalent.
2. Prove that if $T_{2} \subset L_{2}$ is an extension of $T_{1} \subset L_{1}$, and M_{2} is a model in L_{2} such that $M_{2} \not \vDash T_{2}$, then there is a model M_{1} in L_{1} such that $M_{1} \neq T_{1}$, and M_{1} is a contraction of M_{2}.

As an example of a theory, consider the theory of partial ordering, which belongs to the language having only the binary predicate "<" meaning less than. The theory is:

$$
\begin{aligned}
& \neg x<x \\
& x<y \supset y<z \supset x<z
\end{aligned}
$$

This theory can belong to any lengraye contaiment the predicate " $<$ ". Any model that satisfies this theory must be martial ordering in the usual sense because these are the axioms for partial ordering.

Suppose we extend this treory by ading to at the formula $\mathrm{Ty}_{\mathrm{y}} \mathrm{y}(\mathrm{x}<\mathrm{y})$. This says that given any object, there is amether object greater than it. Then there must be another ofject greater than that, and so forth. By applying the second axiom, which is a transititue law, we see that any object on this chain is < any object occurring further along the chain. The first axiom says that no object is < itself. So we can conclume that this theory having
 example, by the real murnbers, or the naturel manbers, or the transtinite ordinal numbers, by letting < have its cinstommry meantiog in each case.

Another example of a theory is the theory of groaps ander addition, formalized in a language with the binary prealonte ${ }^{n}=^{\prime \prime}$. the banary function " + ", the unary function "-", and the constant 0.

$$
\begin{aligned}
& x=x \\
& x=y \supset y=x \\
& x=y \supset y=z \supset x=z \\
& x=y \supset u=v \supset x+w=y+w \\
& x=y \supset-x=-y
\end{aligned}
$$

$$
\begin{aligned}
& x+(y+z)=(x+y)+z \\
& x+0=x \\
& x+(-x)=0
\end{aligned}
$$

Any model that satisfies this theory is a group. There are, of course, many different groups, and in wome modete the plus bign murt be interpreted by an operation usually called malltpitication, and " 40 must be interpreted by " 1 " or " e ". The axioms in the left column are the axdorns for equality in the language $\{=,+,-, 0\}$. They are necessary to assure that we will be able to prove those things that we need to prove about equality.

Let L be any language containing the binary predicate " $=$ ". We call such a language a language with equality. Mostamgnages that we study will be languages with equality. The theory E_{L} or the theory of equality for the language L is the following set of axioms:
(i) $x=x$
(ii) $x=y \supset y=x$
(iii) $x=y \supset y=z \supset x=z$
(iv) For each n-ary function name φ in L, the axiom

$$
x_{1}=y_{1} \supset \ldots \supset x_{n}=y_{n} \supset \varphi\left[x_{1}, \ldots, x_{n}\right]=\varphi\left[y_{1}, \ldots, y_{n}\right]
$$

(v) For each m-ary predicate name ψ in L, the axiom

$$
x_{1}=y_{1} \supset \ldots \supset x_{m}=y_{m} \supset \psi\left[x_{1}, \ldots, x_{m}\right] \supset \psi\left[y_{1}, \ldots, y_{m}\right]
$$

The number of such axioms depends on the size of the language L, and might be infinite. The first three axioms are the theory of equivalence relations. The rest of them are necessary, as we shall prove later, to assure that we have axiomatized equality as well as is possible in first order logic.

Problem Set 21

1. What is the theory of linear orderings?
2. What is the theory of semi-groups? Of abelian groups?
3. Which of the following theories are satisfiable? Find a model for each satisfiable theory. Which theories have finite models?
a. $\neg x<x$

$$
\begin{aligned}
& x<y \supset y<z \supset x<z \\
& x<y \supset \exists w(x<w \wedge \forall z(\neg x<z \vee \neg z<w))
\end{aligned}
$$

b. The formulas of (a) and $\mathrm{G} y(x<y)$.
c. The formulas of (a) and

$$
\Xi w \mathbb{x}(w<x \wedge \forall y(y<x \sqsupset \exists z(y<z \wedge z<x))) .
$$

d. The formulas of (a) and
$\exists x(w<x \wedge \forall y(y<x \supset \exists z(y<z \wedge z<x)))$.
e. The formulas of (d) and $\operatorname{Tx\forall y}(\neg \mathrm{x}<\mathrm{y})$.

CHAPTER SEVEN

FIRST ORDER LOGIC - DEDUCTION

Preview of Chapter Seven

We develop the mechanism for making formal deductions in first order logic. As with propositional logic, a deduction is a step-by-step process for obtaining a conclusion from given premises. It can be inspected for correctness by a proof-checker. Most of the theorems in this chapter are concerned with the existence of demonstrations, and have the practical effect of saving us time. They will also have theoretical applications in Chapter Eight. The mechanism of substitution, a necessary prerequisite, is discussed first.

§7.1 Substitution

In this book, we make a sharp distinction between the words "substitution" and "replacement" which is very useful, but hae not won general acceptance at the present time. Our notation for substitution follows [Robinson]. We shall discuss replacement later in this chapter.

The LISP function subst (see $\$ 2.2$) is a good example of a substitution operator. Subst[x, y, z] substitutes x for all accurrences of y in z. Sometimes, we wish to perform several substitutions simultaneously on the same object. For example, we may substitute Q for A, and R for B in the s-expression (A B C), in which case we get (QRG). We can define a LISP function sublis that does this. The first argument is a list of pairs, and the second argument is the object of the substitution. The effect of each pair is to cause the first member of it to be substituted for all oocurrences of the
second member of it. So sublis[((Q A) (R B)), (ABC)]=(QRC).

$$
\begin{aligned}
& \text { sublis }[x, s]+[\operatorname{atom}[s] \rightarrow \operatorname{subl}[x, s] T \rightarrow \operatorname{cons}[\text { sublis }[x, \operatorname{car}[s]], \\
& \text { sublis }[x, \operatorname{cdr}[x]]]] \\
& \text { subl }[x, s]+[\text { null }[x] \rightarrow s, \text { cadar }\{x]=s \rightarrow \operatorname{caar}[s], T+\operatorname{subl}[\operatorname{cdr}[x], s]]
\end{aligned}
$$

Sublis performs what is known as a simuitaneous substitution. It does not substitute on that which it has already substituted. For example, sublis[($A B$) ($B A)$), (AXBY)]=(BXAY). The alternative to simultaneous substitution is sequential substitution. In this cas e_{p} it-males a considerable difference what is done first. Thus subst $[A, B$, subpt $[B, A,(A X B Y)]]=$ (A X A Y), but subst[B, A, subet $A, B,(A X B Y)]=(B X B Y)$.

For first order logic we shall need to substitute terms for variables occurring in formulas or terms. Furthermgre, we only substitute for free occurrences of variables. An example of a mubatiturion is to subatitute the term gly] for all free occurrences of the verinble x in the formula $p[x]$?
 tion occurs frequently, we need a preciee way of writing it, ea, that long explanations are not necessary. If α is any formula, T is a term, and ξ is a variable, then by $\alpha(T / 5)$ we mean the formula obtained by substituting T for all free occurrences of $\bar{\xi}$ in α. We also allow α to be a term, in which case all occurrences of 5 in arefree. We can atide apetify a imuttaneous substitution, where each patr soparated by a " f " derves the stime purpose as the pairs in SUBLIS. These are called subtuthtiof condonehts. For example,
 $\mathrm{q}\{\mathrm{h}\{\mathrm{x}, \mathrm{y}\}]$.

In addition to not subutituting for bounid oceurrences of a variable, there is another restriction in fret order logec. Conkider the result of

 $\alpha(\tau / 5)$ be proper, it is neeessary that wherever there fs afree occurrence of 5 in α, it is not within the scope of any quantifier that binds a variable that occurs in τ. When $\alpha(\tau / 5)$ is proper, we also say " r is free for ξ in α ".

Examples:

1. If we substitute y for x in $\forall x G y(r[x, y])$, this is a proper substitution because no substituting occurs. There is no free x in the formula, and it is permissible for bound occurrences of x to be within the scope of a quantifier on y .
2. If we substitute y for x in $p[x, y] \supset G x a y(q[x, y])$, the result is $p[y, y] \supset \mathbb{G} G y(q[x, y])$. This is a proper substitution because wherever x is free, it is not within the scope of a quantifier binding y, although a bound occurrence of x is within the scope of a quantifier on y.

Substitution plays an important part in the rules of deduction of first order logic, but in each case improper substitution is not allowed. We shall adopt the convention that substitution on formulas of first order logic is undefined if it is improper. In each case where a rule using substitution is given, the rule does not apply when the substitution is improper because no result is defined.

Formulas of first order logic are translated into LISP as follows. The idea should be obvious by now.
(i) If τ is a term, then τ^{*} is obtained by using the same rules as for forms in the language of recursive definitions, For example, $g[x, A]$ where A is an object, is translated into ($\mathbf{G} \mathbf{X}$ (QUOTE A)).
(ii) Atomic formulas are translated similarly.
(iii) Composite formulas are trandiated into (NOT α^{*}), (OR $\alpha_{1} * \ldots \alpha_{n} *$), (AND $\alpha_{1} * \ldots \alpha_{n}^{*}$), (EQUIV $\left.\alpha_{1} * \alpha_{2}^{*}\right)$, (EXISTS 5* $\alpha *$), and (FORALL $\xi^{*} \alpha^{*}$), where the a's are formulas, and ξ is a variable.

Problem Set 22 --

1. Write a LISP function sub which is the equivalent of sublis for first order logic. If α is a formula, the T_{i} terms, and the ξ_{i} variables, then sub[list[list $\left[r_{1}, \xi_{1}\right], \ldots, \operatorname{list}\left[\tau_{n}, \xi_{n}\right.$]h $\left.\alpha\right]$ is the formula $\alpha\left(\tau_{1} / \xi_{1}, \ldots, r_{n} / \xi_{n}\right)$ if the substitution is proper, and NIL otherwise.
2. Write a LISP predicate inst of three arguments such that inst $[\alpha, 5, \beta]$ is true if α is a formula, 5 is a variable, and there exists a term τ such that the substitution $\alpha(r / \xi)$ is proper, and the result is β.
§7.2 The Rules of Deduction
Definition 7.1
A deduction is a numbered sequence of formulas each having a valid justification. There are five types of justification:
(i) Given
(ii) $\mathrm{Mp}_{\mathrm{i}}^{\mathrm{i}} \mathrm{j}$

For this to be a valid justification of line n, it is necessary

- that $i<n, j<n$, and if line (i) is the formula α, and line (n) is the formula β, then line (j) must be the formula $\alpha \supset \beta$.
(iii) Taut

If a formula of propositional logic is a tautology, then the result of substituting formulam, of first order logic for all its propositional variables is a tautology of first order logic. All occurrences of a particular propacitional variable must be replaced by the same formula.
(iv) Q1 and Q2

Q1 and Q2 are axiom schemas for first order logic. Each schema represents an infinite set of formulas which are called the instances of the schema. If a formula is an instance of Q1, then Q1 is a valid justification for it, and similarly with Q2. The schemas are:

$$
\begin{array}{ll}
\text { Q1: } & \forall \xi(\alpha) \supset \alpha(\tau / \xi) \\
\text { Q1: }^{2} & \alpha(\tau / \xi) \supset \Sigma \xi(\alpha)
\end{array}
$$

where α is any formula, 5 is any variable, and T is any term, and $\alpha(T / \xi)$ is a proper substitution.
(v) Q3 i, and Q4 i

Q3 and Q4 are rules of inference for first order logic. The distinction between a rule of inference and an axiom schema
is that a rule of inference depends on previous lines of the deduction. Modus-ponens is also a rule of inference. "Q3 i " is a valid justification for line n if $i<n$, and there is an instance of the schema Q3 in which line (i) appears above the horizontal line, and line (a) appears below it. The case of $\mathbf{Q 4}$ is similar.

$$
\begin{aligned}
& \text { Q3: } \frac{\alpha \supset \beta}{\alpha \supset \forall \xi(\beta)} \\
& \text { Q4: } \frac{\beta \supset \alpha}{\square 5(\beta) \supset \alpha}
\end{aligned}
$$

where β is any formula, 5 is any variable, and α is any formula which does not contain 5 free.

If ' J is any theory, and there is a deduction in which only formulas that are in ' T are justified as given, and if the conclusion of the deduction is the formula α, then we say that there is a deduction of α from T, and we write Tr α. If there is a deduction of α in which no formula is justified as given, then we say that α is a theorem of logic, and we write α.

The following sequence of seven steps is an example of a deduction in first order logic:

1. $\forall y(p[x, y]) \supset p[x, y]$

Q1
2. $\mathrm{p}[\mathrm{x}, \mathrm{y}] \supset \mathrm{G} \mathrm{x}(\mathrm{p}[\mathrm{x}, \mathrm{y}])$ Q2
3. $(\forall y(p[x, y]) \supset p[x, y]) \supset(p[x, y] \supset \pi x(p[x, y])) \supset$
($\forall y(p[x, y]) \supset \mathbb{G}(p[x, y]))$
4. $(p[x, y] \supset \mathbb{Z}(p[x, y])) \supset(V y(p[x, y]) \supset \Xi x(p[x, y]))$ Taut
5. $\forall y(p[x, y]) \supset \Xi x(p[x, y])$
6. $\mathrm{Ix}_{\mathrm{H}} \mathrm{y}(\mathrm{p}[\mathrm{x}, \mathrm{y}]) \supset$ G $\mathrm{x}(\mathrm{p}[\mathrm{x}, \mathrm{y}])$

Mp 2,4
7. $\exists_{x} \forall y(p[x, y]) \supset V_{y} \underline{x}(p[x, y])$

Q4 5
Q3 6

Since this deduction has no given formulas, we may write \vdash Bx $y(p[x, y]) \supset V y \mathcal{A} x(p[x, y])$.

The next example is a somewhat lengthy proof taken from the theory of formal arithmetic. It illustrates a great many points that will be made in the next few chapters, and you may wish to refer back to it. For the present, it
is simply an example of a formal deduction. We prove the sentence $0^{\prime}+0^{\prime}=0^{\prime \prime}$ from four axioms which are the first four lines of the demonstration. As an aid to comprehending the organization of the deduction, important subgoals are marked with an asterisk (*).

1. $\forall x \forall y \forall z(x=y \supset y=z \supset x=z)$
2. $\forall x \forall y\left(x=y \supset x^{\prime}=y^{\prime}\right)$
3. $\forall m(m+0=m)$
4. $\forall m \forall n\left(m+n^{\prime}=(m+n)^{\prime}\right)$
5. $\forall m \forall n\left(m+n^{\prime}=(m+n)^{\prime}\right) \supset \forall_{n}\left(0^{\prime}+n^{\prime}=\left(0^{\prime}+n\right)^{\prime}\right)$
6. $\forall n\left(0^{\prime}+n^{\prime}=\left(0^{\prime}+\hat{n}\right)^{\prime}\right)$
7. $\ln \left(0^{\prime}+\mathrm{n}^{\prime}=\left(0^{\prime}+\mathrm{n}\right)^{\prime}\right) \supset 0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime}$
(*)
8. $0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime}$
9. $\forall m(m+0=m) \supset 0^{\prime}+0=0^{\prime}$
(*) 10. $0^{\prime}+0=0^{\prime}$
10. $\forall x \forall y\left(x=y \supset x^{\prime}=y^{\prime}\right) \supset \forall y\left(0^{\prime}+0=y \supset\left(0^{\prime}+0\right)^{\prime}=y^{\prime}\right)$
11. $\forall y\left(0^{\prime}+0=y \supset\left(0^{\prime}+0\right)^{\prime}=y^{\prime}\right)$
12. $\forall y\left(0^{\prime}+0=y \supset\left(0^{\prime}+0\right)^{\prime}=y^{\prime}\right) \supset 0^{\prime}+0=0^{\prime} \supset$

$$
\left(0^{\prime}+0\right)^{\prime}=0
$$

14. $0^{\prime}+0=0^{\prime} \supset\left(0^{\prime}+0\right)^{\prime}=0^{\prime \prime}$
(*) 15. $\left(0^{\prime}+0\right)^{\prime}=0^{\prime \prime}$
15. $\forall x \forall y \forall z(x=y \supset y=z \supset x=z) \supset \forall y \forall z\left(0^{\prime}+0^{\prime}=y \supset\right.$

$$
\left.y=z 0^{\prime}+0^{\prime}=z\right)
$$

17. $\forall y \forall z\left(0^{\prime}+0^{\prime}=y \supset y=z \supset 0^{\prime}+0^{\prime}=z\right)$
18. $\forall y \forall z\left(0^{\prime}+0^{\prime}=y \supset y=z \supset 0^{\prime}+0^{\prime}=z\right), \supset$

$$
\forall z\left(0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime} \supset\left(0^{\prime}+0\right)^{\prime}=z \supset 0^{\prime}+0^{\prime}=z\right)
$$

19. $\forall z\left(0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime} \supset\left(0^{\prime}+0\right)^{\prime}=z \supset 0^{\prime}+0^{\prime}=z\right)$
20. $\forall z\left(0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime} \supset\left(0^{\prime}+0\right)^{\prime}=z \supset 0^{\prime}+0^{\prime}=z\right) \geq$

$$
-\left(0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime} \supset\left(0^{\prime}+0\right)^{\prime}=0^{\prime \prime} \supset 0^{\prime}+0^{\prime}=0^{\prime \prime}\right)
$$

21. $0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime} \supset\left(0^{\prime}+0\right)^{\prime}=0^{\prime \prime} \supset 0^{\prime}+0^{\prime}=0^{\prime \prime}$
22. $\left(0^{\prime}+0\right)^{\prime}=0^{\prime \prime} \supset 0^{\prime}+0^{\prime}=0^{\prime \prime}$
23. $0^{\prime}+0^{\prime}=0^{\prime \prime}$

Given

Given

Given

Given

Q1
Mp 4, 5
Q1
Mp 6, 7
Q1
Mp 3, 9
Q1
Mp 2, 11

Q1
$\operatorname{Mp} 12,13$
$\operatorname{Mp} 10,14$

Q1

Mp 1, 16
Q1

Mp 17, 18
Q1
$\operatorname{Mp} 19,20$
Mp 8, 21
$\operatorname{Mp} 15,22$

We may safely conclude from this example that deduction is an extremely tedious process full of needless repetition of similar patterns, and that something must be done to speed it up. We shall consider this subject later.

Problem Set 23

1. Show (by writing a deduction) that each of the following formulas is a theorem of logic:
a. $\forall x(p[x] \equiv q[x]) \supset(\forall x(p[x]) \equiv \forall x(q[x]))$
b. $\forall x(p[x]=q[x]) \geq(\operatorname{Gx}(p[x]) \equiv \operatorname{Fx}(q[x]))$
c. $\forall x \neg p[x] \equiv \neg \mathbb{Z} x(p[x])$
d. $\forall x(p[x] \wedge q[x]) \equiv(\forall x(p[x]) \wedge \forall x(q[x]))$
e. $\operatorname{Fx}(\mathrm{p}[\mathrm{x}] \vee \mathrm{q}[\mathrm{x}])=(\mathrm{F}(\mathrm{p}[\mathrm{x}]) \vee \mathrm{Gr}(\mathrm{q}[\mathrm{x}]))$
f. $\operatorname{Gx}(\mathrm{p}[\mathrm{x}] \wedge \mathrm{q}[\mathrm{x}]) \supset(\operatorname{Fx}(\mathrm{p}[\mathrm{x}]) \wedge \operatorname{Gx}(\mathrm{q}[\mathrm{x}]))$
g. $\forall x(p[x]) \supset \pi x(p[x])$
2. Which of the following formulas are instances of Q1 or Q2, and which are neither? Why?
a. $\forall x(p[x]) \supset p[x]$
b. $\forall x(p[x, y])>p[y, y]$
c. $\forall x=y(p[x, y]) \geq \mathbb{Z} y(p[g[y], y])$
d. $p[g[y], y] \supset \operatorname{Gx}(p[x, y])$
3. Define the unary LISP predicates axq1 and axq 2 which are true if their arguments are instances of Q1 of Q2 respectively.
4. Define the binary LISP predicates riq3 and riq4 which are true if the second argument is derived from the first argument by rules of inference Q3 or Q4 respectively.
5. Modify proofchk so that it is a proofchecker for first order logic. The only modifications to the format of a deduction are (i) TAUT must handle substitution instances efficiently, and there is then no longer a need for INST as a justification, (ii) the justifications Q1 and Q2 must be added, and (iii) the justifications (Q3 i) and (Q4 i) must be added.

§7.3 The Consistency Theorem

The statement of the consistency theorem for first order logic is the same as the consistency theorem for propositional tope(thearem 4.14), but the meaning behind it is considerably more aubtre.

Theorem 7.3 (Consistency Theorem)

If $T \subset L, \alpha \in L$ and $T r \alpha$, then $T \neq \alpha$.
Proof: The proof is by induction and follows the same lines as the proof of theorem 4.14. The induction hypothesis is that if $T \neq \alpha_{j}$ for $j<i$, then $T \neq \alpha_{j}$ where the deduction is the sequence $\alpha_{1}, \ldots, \alpha_{n}$. There are seven cases to consider, and the first three are the same as in the previous proof.
(iv) If α_{i} is an instance of $Q 1$, then it has the form $\forall \xi(\beta) \supset \beta(\tau / \xi)$. Let M be any model, and I any interpretation for the variables in this formula. If $V(M, I, \forall \xi(\beta))$ is false, then $M, I \neq \alpha_{i}$. If $V(M, I, V S(\beta))$ is true, then $V(M, J, \beta)$ is true for any J differing from I at most at the variable 5 . In particular, there is that J that assigns to ξ the value which is $V(M, I, T)$. Therefore $\mathrm{V}(\mathrm{M}, \mathrm{I}, \beta(\tau / \xi)$) is true because no variable in T is bound by quantifiers in β, and so $M, I \neq \alpha_{i}$ in this case also. What we have shown, then, is that every instance of Q 1 is valid.
(v) If α_{i} is an instance of Q2, this also is valid, and the proof is left to the reader.
(vi) If α_{i} is derived from α_{j} by the rule Q3, then since $j<i$, the induction hypothesis is that $T \neq \alpha_{j}$. Let α_{j} be the formula $\beta \subset \gamma$, where β has no free ξ. Then α_{i} is the formula $\beta \supset \forall \xi(\gamma)$. Let M be any model that satisfies T. Then $M, I \neq \beta \supset \gamma$ for all interpretations I. Choose one such I. If M, I does not satisfy β, then $M, I \neq \alpha_{i}$. If $M, I \neq \beta_{p}$, then $M, I \neq \gamma$ also. But then M, J also satisfies β where J is any interpretation differing from I at most on 5 , because β has no free 5 . So M, J also satisfies γ for all such J, and therefore $M, I \neq V \xi(\gamma)$. So $M, I \neq \alpha_{i}$ in either case, and the conclusion is that $T \neq \alpha_{i}$.
(vii) If α_{i} is derived from α_{j} by the rule $Q 4$, then since $j<i$, the induction hypothesis is that $T \neq \alpha_{j}$. Let α_{j} be the formula $\beta \supset \gamma$ where γ has no free 5. Then α_{i} is the formula $\boldsymbol{Z}(\beta) \mathcal{J} \gamma$. Let M be any model that satisfies T. Then $M, I \notin \beta \supset \boldsymbol{\gamma}$ for all interpretations I. Choose one such I. If $M, I \neq \gamma$, then $M, I \neq \alpha_{i}$. If M,I does not satisfy γ, then M, I does not satisfy β. Let J be any interpretation differing from I at most on 5 . M, J does not satisfy $\boldsymbol{\gamma}$ because $\boldsymbol{\gamma}$ has no free 5 . So M, J does not satisfy β, and since this is true for all such J, M, I does not satisfy $I \xi(\beta)$. So $M, I \neq \alpha_{i}$ in either case,
and the conclusion is that $T \neq \alpha_{i}$.

Corollary 7.4

If $+\alpha$, then α is a valid formula.

Corollary 7.5

If the theory T is satisfiable (has a model), then it is consistent.
87.4 Existence of Deductions, Replacement

Since deduction is a very tedious process, we would like to speed it up by introducing additional axioms and rules of inference. But, in fact, no matter how many additional rules we introduce, there will always be more that we would like to have. If we were to introduce a great many rules right from the start, then the proof of the consistency theorem would be very long because we would have to consider each rule separately and show that it is a valid form of reasoning. Now that we have proved the consistency theorem, we can deal with new axioms, and new rules of inference in a different way. What we can hope to show for each one is that it is eliminable in the sense that if we have a deduction using such an axiom or rule, then there is an effective way of obtaining a deduction that does not use it, but which proves the same conclusion from the same premises.

As a very brief example of this, consider the rule:

$$
\text { R1: } \frac{\alpha \supset \beta, \beta \supset \gamma}{\alpha \supset \gamma}
$$

This is a derivative of the rule of modus-ponens which stated in this style is:

$$
\frac{\alpha, \alpha \supset \beta}{\beta}
$$

Now suppose we have a deduction that uses the rule R1:

1. $\alpha \supset \beta$

Given
2. $\beta \supset \gamma$
3. $\alpha \supset \gamma$

Given
R1

We know that this proof can be expanded to:

1. $\alpha \supset \beta$
2. $\beta \supset \gamma$
3. $(\alpha \supset \beta) \supset(\beta \supset \gamma) \supset(\alpha \supset \gamma)$
4. $(\beta \supset \gamma) \supset(\alpha \supset \gamma)$
5. $\alpha \supset \gamma$

Given
Given
Taut
Mp 1, 3
Mp 2,4

This can be done in every situation in which R1 is used, so we can say that R1 is constructively eliminable. The consistency theorem then guarantees the correctness of the rule as a method of reasoning. This not only shows that it is correct reasoning, it shows that the introduction of the rule does not alter any of the properties of first order logic that we may prove in the future, because the rule itself is not essential to any deduction in which it is used.

Problem Set 24

1. Show that the following are constructively eliminable rules of inference:

$$
\begin{array}{ll}
\text { QX1: } \begin{array}{ll}
\frac{\forall \xi(\alpha)}{\alpha(T / 5)} & \text { QX2: } \frac{7 \pi \xi(\alpha)}{7 \alpha(T / 5)} \\
\text { QX3: } & \frac{\alpha}{\sqrt{5}(\alpha)} \\
& \text { QX4: } \frac{7 \alpha}{7 \pi \leq(\alpha)} \\
& \text { QX5: } \frac{\alpha(\tau / 5)}{\pi \leq(\alpha)}
\end{array} .
\end{array}
$$

2. Rules Q3 and Q4 are necessarily stated as rules of inference, and cannot be treated as axioms. Show that the following schemas are not valid by describing counter-model for an instance of each schema.
a. $(\alpha \supset \beta) \supset(\alpha \supset \forall \xi(\beta))$ where α has no free ξ.
b. $(\beta \supset \alpha) \supset($ 马 $5(\beta) \supset \alpha)$ where α has no free 5 .

The formulas α and $\alpha(\zeta / \xi)$ are said to be similar if the variable ζ does not occur free in α, and if ζ is free for ξ in α. When this is true, it will also
be the case that ξ does not occur free in $\alpha(\xi / \xi)$, and ξ is free for ζ in $\alpha(\zeta / \xi)$, and $\alpha(\zeta / \xi)(\xi / \zeta)$ is the formula α.

Theorem 7.6 (Change of bound variables)
If α and $\alpha(\zeta / \xi)$ are similar, then $+\forall \xi(\alpha) \equiv \mathrm{V} \zeta(\alpha(\zeta / \xi))$, and $+I \xi(\alpha) \equiv$ at($\alpha(\zeta / 5))$.
Proof:

1. $\forall \xi(\alpha) \supset \alpha(\zeta / \xi)$

Q1; Why is this substitution proper?
2. $\forall \xi(\alpha) \supset v \zeta(\alpha \zeta / \xi))$

Q3 1: Can $\forall 5(\alpha)$ have free 5 ?
3. $v \zeta(\alpha(\zeta / \zeta)) \supset \alpha$

Q1
4. $v \zeta(\alpha(\zeta / 5)) \supset \vee \zeta(\alpha)$

Q3 3
5. $\quad \forall \xi(\alpha) \equiv \vee \zeta(\alpha(\zeta / \xi))$

Prop 2, 4
The $\mathbb{\square}$ case is symmetrical in form.

You will notice that as we acquire more techniques, deductions will become more and more condensed. At this point, there is no longer any reason to write out in full any sequence of steps that depends merely on propositional logic. We fust write "Prop" and list the antecedents.

The distinction between replacement and substitution is that (i) replacement refers to replacing of an entire structure of some sort by another, whereas in substitution we always substitute in place of something atomic such as an atom or a variable, and (if' if is not necessary to replace all occurrences of a given structure, but only as many as we wish. The semantic justification for replacement ts that something may be replaced by something else that is in some sense its equal or equivalent. The semantic justification for substitution, on the other hand, is that we are obtaining a particular instance of a general statement.

An example of replacement is to take the formula $0^{\circ}+0^{\prime}=\left(0^{\circ}+0\right)^{\prime}$ and to replace the underined term with the term b^{\prime}. Our justification for doing this is that we have already concluded that these two terms are equal, i. e., $0^{\prime}+0=0^{\prime}$. The result of the replacement is $0^{\prime}+0^{\prime \prime}=\left(0^{\prime \prime}\right)^{\prime \prime}$ or dropping parentheses, $0^{\prime}+0^{\prime}=0^{\prime \prime}$. Another example is to replace the first occurrence of $2+2$ in $(2+2)+2=(2+2)+2$ with 4 because we already have $2+2=4$. This
gives $4+2=(2+2)+2$. This is valid, even though we have not replaced all occurrences of $2+2$.

Now consider the substitution of 2 for x and 3 for y in $x+y=y+x$. This gives us $2+3=3+2$, which is an instance of the general rule. $2+3=$ $y+x$ has no useful meaning because partial substitution does not accomplish the purpose of substitution. Notice, also, that it is not meaningful to substitute for a constant.

It is important that entities that get replaced are proper sub-expressions in whatever context they appear, and not accidental pseudo-expressions caused by juxtaposition. For instance, if we start with the equation $2+3 \times 4=$ 14, and then replace " $2+3$ " with " 5 ", we get $5 \times 4=14$, which is incorrect. " $2+3$ " is not a sub-expression of " $2+3 \times 4^{\text {" }}$ because the conventional association is " $2+(3 \times 4)$ ".

Theorem 7.7 (Replacement of Equivalent Formulas)

Let α and β be two formulas such that Tra $\boldsymbol{\beta}$. Let γ be any formula, and δ be a formula that is obtained by replacing some (but not necessarily all) occurrences of α in γ by β. Then Try $=8$.
Proof: We begin the proof by identifying certain sub-formulas of γ and δ as "corresponding components". If an α occurring in γ is replaced by a β in δ, then the α and the β are corresponding components. Any sub-formula of γ which contains no occurrences of α that get replaced, and is not contained in a larger such formula is also a corresponding component to the sub-formula of δ which is identical to it both in content and in poaition. The formulas γ and δ are thus built up identically, starting with corresponding components using the propositional connectives and guantifierg. Also, corrosponding components are either identical, or elae one is α and the other is β. In either case they can be proven equivalent from T. We proceed by induction on the number of propositional connectives and the quantifiars to show that this equivalence extends up to the formulas γ and δ : (i) If γ_{1} is $\neg \gamma_{2}$, and δ_{1} is $\neg \delta_{2}$, and $\operatorname{Tr} \gamma_{2} \equiv \delta_{2}$, then $\operatorname{Tr} \gamma_{1} \equiv \delta_{1}$ because $\left(\gamma_{1}=\delta_{1}\right) \supset\left(\neg \gamma_{1}=\neg \delta_{1}\right)$ is a tautology. (ii-vi) The cases for the other proponitional connectives and the universal quantifier are left to the reader. (vid) If γ_{1} is $\mathbb{T} S\left(\gamma_{2}\right)$, and σ_{1} is $\exists \xi\left(\delta_{2}\right)$, and $\operatorname{Tr} \gamma_{2} \equiv \delta_{2}$, then $\operatorname{Tr} \gamma_{1} \equiv \delta_{1}$ because $V \xi\left(\gamma_{2} \equiv \delta_{2}\right)$ follows by rule QX3,
and because $\operatorname{r\forall \xi }\left(\gamma_{2} \equiv \delta_{2}\right) \supset\left(\pi \xi\left(\gamma_{2}\right) \equiv \operatorname{Ig}\left(\delta_{2}\right)\right)$. (See problem set 23, No.lb.)

Theorem 7.8 (Replacement of Equal Terms)

Let T be a theory with equality (i.e., $E_{L} \subset T$). Let τ_{1} and T_{2} be terms such that $T H \tau_{1}=\tau_{2}$, let α be any formula, and let β be a formula resulting from replacing some occurrences of τ_{1} in α by τ_{2}. Then Tr $\alpha \equiv \beta$. Proof: By induction on the depth of the terms in α. Let the corresponding components be terms, either T_{1} and the T_{2} that repleces it, or identical terms that are in indentical positions in α and β, and are the largest possible such terms. If σ and θ are corresponding terms, then they can be proven equal from T. Larger terms are built from these by function composition. Let $\varphi\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ and $\varphi\left[\theta_{1} \ldots, \theta_{n}\right]$ be in corresponding positions, and by the induction hypothesis $\operatorname{Tr} \sigma_{i}=\theta_{i}$. Then these terms can be proven to be equal because there is an axiom in E_{L} which is $x_{1}=y_{1} \supset \ldots \supset x_{n}=y_{n} \supset$ $\varphi\left[x_{1}, \ldots, x_{n}\right]=\varphi\left[y_{1}, \ldots, y_{n}\right]$. Similarly, once ali terme in corresponding positions are equal, the atomic formulas can be proven equivalent from the reflexive axiom of equality ($x=y \supset y=x$) and the double application of the axiom E_{L} which is $x_{1}=y_{1} \supset \ldots \supset x_{m}=y_{m} \supset \psi_{[}\left[x_{1}, \ldots, x_{m}\right] \supset \psi\left[y_{1}, \ldots, y_{m}\right]$. Once corresponding atomic formulas are proven equivalent, the induction proceeds as in theorem 7.7.

We introduce one more derived rule of inference obtajned from Q3 and Q1:

$$
\text { Inst: } \frac{\alpha}{\alpha\left(\tau_{1} / \xi_{1}, \ldots, T_{n} / \xi_{n}\right)}
$$

where the \mathcal{S}_{i} are distinct variables, and the substitution is proper.
A shorter demonstration for $0^{\prime}+0^{\prime}=0^{\prime \prime}$ can now begiven:

$$
\begin{array}{ll}
\text { 1. } \mathrm{m}+0=\mathrm{m} & \text { Given } \\
\text { 2. } \overline{\mathrm{m}}+\mathrm{n}^{\prime}=(\mathrm{m}+\mathrm{n})^{\prime} & \text { Given } \\
\text { 3. } 0^{\prime}+0=0^{\prime} & \text { Inst } 1 \\
\text { 4. } 0^{\prime}+0^{\prime}=\left(0^{\prime}+0\right)^{\prime} & \text { Inst 2 } \\
\text { 5. } 0^{\prime}+0^{\prime}=0^{\prime \prime} & \text { Replacement 4, } 3
\end{array}
$$

The deduction theorem for first order logic is rather subtle, and takes some effort to understand, but a correct perception of it will yield a lot of insight into the nature of rules Q1 thru Q4. The most naive statement of the theorem is actually false. It is not the case that if $T \cup\{\alpha\} r \beta$, then $\operatorname{Tr} \alpha \supset \beta$ for any formulas α and β. If this were true, then since $p[x]+\forall x(p[x])$ by $Q X 3$, it would follow that $r_{p}[x] \supset V x(p[x])$, and then by another application of $Q X 3, \forall \forall x(p[x] \supset \forall x(p[x]))$. But this sentence is not valid; it is not satisfied by the model on the domain $\{0,1\}$ where $p[0]$ is true, and $p[1]$ is false.

We have chosen to interpret a formula standing as a line in a deduction as being equivalent to its universal closure. In fact, the rules QX1 and QX3 allow universal quantifiers to be added or stripped from the beginning of a formula at will as long as they take the whole formula as their scope.

The trouble seems to be that when such an open formula is incorporated into the left side of an implication, it is negated because $\alpha \supset \beta$ is the same as $\neg \alpha \vee \beta$. But its implicit universal quantifier gets left outside the negation and causes the error.

Theorem 7.9 (First Deduction Theorem)
If $\mathrm{T} \cup\{\alpha\} \vdash \beta$, and α is a sentence, then $\mathrm{T} \vdash \alpha \supset \beta$.
Proof: By induction on the demonstration $\beta_{1}, \ldots, \beta_{n}=\beta$. (Please review theorem 4.7.)
(i) If β_{i} is a tautology, then so is $\alpha \supset \beta_{i}$.
(ii) If β_{i} is in T, then $\alpha \supset \beta_{i}$ is derivable from β_{i} b
(iii) If β_{i} is α, then $\alpha \supset \alpha$ is a tautology.
(iv) If β_{i} follows from two antecedents by modus-ponens, then by the induction hypothesis $\alpha \supset \beta_{j}$ and $\alpha \supset\left(\beta_{j} \supset \beta_{i}\right)$ are provable from T. Then $\alpha \supset \beta_{i}$ is provable from these by propositional logic.
(v) If β_{i} is an instance of $Q 1$ or $Q 2$ then $\alpha \supset \beta_{i}$ is derivable from β_{i}.
(vi) If β_{i} follows from β_{j} by an application of $Q 3$, then β_{j} is $\gamma \supset \delta$, and β_{i} is $\gamma \supset \forall \xi(\delta)$ where γ is a formula that has no free 5 . By the induction hypothesis, $\operatorname{Tr} \alpha \supset \beta_{\mathrm{j}}$ or $\operatorname{Tr} \alpha \supset(\gamma \supset 8)$. From this we derive $(\alpha \wedge \gamma) \supset 8$, and then apply $Q 3$ to get $(\alpha \wedge \gamma) \supset \forall \xi(\delta)$ which is valid because α is a sentence,
and so has no free 5. From this we can get $\alpha \supset(\gamma \supset \forall \xi(\delta))$.
(vii) If β_{i} follows from β_{j} by $Q 4$, then β_{j} is $\gamma \supset \delta$, and β_{i} is $3 \xi(\gamma) \supset \delta$ where δ has no free 5. By the induction hypothesis, $T \vdash \alpha \supset(\gamma \supset 8)$, from which we deduce $\gamma \supset(\alpha \supset \delta)$. Since α has no free 5 , we can apply $Q 4$ to this, getting $\mathbb{H} \xi(\gamma) \supset(\alpha \supset 8)$ and then rearrange to get $\alpha \supset(\square \xi(\gamma) \supset \delta)$.

A formula is said to depend on a preceding formula in a deduction if there is a chain of antecedents working back to the preceding formula. If the conclusion of a deduction does not depend on one of the given formulas, then we could omit that formula and all its dependents without sacrificing the conclusion.

A variable is varied in a deduction any time Q3 or Q4 is used with that variable being the ξ mentioned in the deduction rule.

The fact that of the original rules of inference only Q3 and Q4 can vary a variable is quite significant. Suppose that the formula $p[x]$ is given in a deduction. Without using Q3 or Q4 it is quite Impossible to derive from it $\mathrm{p}[5]$ or $\forall x(\mathrm{p}[\mathrm{x}]$) or $\mathrm{p}[\mathrm{y}]$. Only these two rules have the power to interpret a free variable universally.

We stated earlier that the intended interpretation of the fact that β is deducible from α is that the universal closure of α semantically implies the universal closure of β. Let us consider a different interpretation. What if the interpretation of the deduction $\alpha+\beta$ was that for any M and I if $M, I \neq \alpha$ then M, I $\vDash \beta$? A study of the deduction rules and axioms of logic shows that all of propositional logic, including modus-ponens as well as Q1 and Q2, preserves this interpretation. But Q3 and Q4 do not.

So if $p[x] r q[x]$, then we can certainly conclude that $\forall x(p[x]) \supset \forall x(q[x])$ using the standard interpretation of closure. If, in addition, the variable x is not varied in any formula that depends on $p[x]$, then x has remained constant, so we can conclude using the deduction theorem that $\mathrm{p}[\mathrm{x}] \supset \mathrm{q}[\mathrm{x}]$.

Theorem 7. 10 (Final Deduction Theorem)

If $T \cup\{\alpha\} \vdash \beta$, and no variable occurring free in α is varied in any formula depending on α, then $T \vdash \alpha \supset \beta$.
Proof: We shall reconsider case (vi) of the proof of theorem 7.9, and let the
reader do the same for case (vii). $\quad \beta_{j}$ is $\gamma \supset \delta$, where γ has no free 5 , and β_{i} is $\gamma \supset \mathfrak{G}(8)$ and is derived by Q3. If α does not contain free ξ, then the construction described in the previous proof still works. On the other hand, if β_{j} is not dependent on α, then $T \vdash \beta_{j}$, and so $T r \beta_{i}$. Then by propositional logic, $\operatorname{Tr} \alpha \supset \beta_{i}$.

The deduction theorem makes many deductions shorter to write and easier to organize conceptually. As a brief example, we demonstrate $0+m=m$. The third line is what is known as an induction axiom, and is part of the theory that this proof is taken from.

1. $\mathrm{m}+0=0$

Given

2. $m+n^{\prime}=(m+n)^{\prime}$

Given
3. $(0+0=0) \supset V_{m}\left(0+m=m \supset 0+m^{\prime}=m^{\prime}\right) \supset$ $\mathrm{Vm}(0+\mathrm{m}=\mathrm{m})$

Given

4. $0+0=0$

Inst 1
5. $\forall m\left(0+m=m \supset 0+m^{\prime}=m^{\prime}\right) \supset V_{m}(0+m=m)$

Mp 4, 3
(6)
6. $0+m=m$
7. $0+\mathrm{m}^{\prime}=(0+\mathrm{m})^{\prime}$

Assume
8. $0+m^{\prime}=m^{\prime}$
9. $0+m=m \supset 0+m^{\prime}+m^{\prime}$

Inst 2
(6)

Replacement 7, 6
10. $\forall m\left(0+m=m \supset 0+m^{\prime}=m^{\prime}\right)$

Discharge 8,6
11. $\forall \mathrm{m}(\mathrm{O}+\mathrm{m}=\mathrm{m})$

QX3 9
Mp 10, 5
12. $0+m=m$

QX1
The rules for incorporating the use of the deduction theorem into formal deductions are:
(i) There is a column for noting dependencies (we looate it to the left of the line numbert:
(ii) When a line is justified by "Assume". its own line number goes in the dependency column. Several such lines may appear in a deduction.
(iii) When a line has one or more antecedents under some rule of deduction, the dependencies of the antecedents are inherited. This means that a line that is dependent on several assumed lines will have the line numbers of all these assumed lines in its dependency column. (If a line is dependent on an assumed line through several different paths, the line number
of the assumed line still appears only once in the dependency column of the dependent line.)
(iv) A variable in a dependent line may not be varied if it appears free in any of the assumed lines that the dependent line depends on. This must be explicitly checked out when using Q3, Q4, or any rule of inference derived from Q3 or Q4.
(v) A dependency is removed by the process of discharge in which the assumed line is introduced as the premise of a "د". The dependencies may be removed in any order. (Refer to the transition from lines 8 to 9 in the preceding example.)
(vi) Only an independent line (having nothing in its dependencies column) is a valid conclusion of a deduction.

\$7.6 The Choice Rule

When reasoning informally, we sometimes prove that there exists an x having a certain property, and then say, "Let k be such an x." If the constant k has not been used before in this chain of reasoning, its interpretation has not yet been restricted in any way, so no problem is created by doing this. The choice of the name k is avbitrary; so if we succeed in proving some result that does not involve k, then whould be able to prove the same result without mentioning k. It is important to realize that inventing the name k does not introduce a new object into the model of one's subject matter. It is only a new name that is beitif created, and it could turn out that the new name really describes an object alineady familiar under a different name.

In first order logic, a constant is a function of no arguments. Properly, it should have a set of brackets following it. So $k[]$ is a constant. But often we omit the brackets for convenience. (In s-expression notation, which is more strict, a constant is enclosed by parentheses. For example, k [] translates into (K). This will always serve to distinguish a constant from a variable which would not have the parentheses, or an object which would be translated as (QUOTE *).)

Rule C

Within a deduction, if we have obtained a line which is the formula $\mathbb{T} \xi(\alpha)$, then we may derive from this the line $\alpha(\varphi[] / \xi)$ where φ is a new 0 -ary function name. The justification for the derived line is "Rule $C j$ ", where j is the line number of the first formula, If α has free variables other than 5 , then it is necessary not to vary any of these in any formula that contains the constant $\varphi[]$.

The conclusion of the proof must be a formula that does not have any of the new constants φ [].

A deduction may have any number of both assumed lines and applications of Rule C.

Example:

(1)	1. $\forall x \mathbb{C L} y(p[x, y] \wedge q[x, y])$	Assume
(1)	2. $\mathbb{H}(\mathrm{p}(\mathrm{x}, \mathrm{y}] \wedge \mathrm{q}[\mathrm{x}, \mathrm{y}])$	QX1 1
(1)	3. $\mathrm{p}[\mathrm{x}, \mathrm{k}] \wedge \mathrm{q}[\mathrm{x}, \mathrm{k}]$	Rule C 2
(1)	4. $\mathrm{p}[\mathrm{x}, \mathrm{k}]$	Prop 3
(1)	5. $\left.\mathrm{T}_{\mathrm{y}} \mathbf{(p} \mathrm{p}[\mathrm{x}, \mathrm{y}]\right)$	QX5
(1)	6. $\mathrm{XX}^{\mathbb{M}} \mathrm{y}(\mathrm{p}[x, y])$	QX3
(1)	7. $\forall x \mathbb{M}(\mathrm{q}[\mathrm{x}, \mathrm{y}])$	Similarly
(1) 8	8. $\forall x \ y(p[x, y]) \wedge \forall x 凹 y(q[x, y])$	Prop 6, 7
	9. $\forall x G y(p[x, y] \wedge q[x, y]) \doteq\left(\forall x y^{Z} y(p[x, y]) \wedge\right.$ $\forall x x^{[y(q[x, y]))}$	Discharge 8, 1

Notice that the application of QX3 in line 6 varies x which occurs free in line 3. This is valid because line 5 does not have the constant k. If
 the result is not valid.

The validity of Rule C depends on the fact that any conclusion not containing the new constant names can also be derived from a demonstration not using Rule C, as the following theorem shows.

If Tra using several applications of Rule C, and α does not contain any occurrences of the constants introduced by Rule C, then Tra without using Rule C.

Proof: We shall prove the theorem for the case that only one application of Rule C is made in the deduction, and let the reader extend the proof.

Let line (i) be obtained from line (j) in the deduction by Rule C , where line (j) is $\Xi 5(\beta)$, and line (i) is $\beta(\varphi[] / \xi)$, and φ is a new constant. To show that $\operatorname{Tr} \alpha$ without the use of Rule C, we shall show that this is true for each line in the deduction which is dependent on line (i), does not contain the constant φ, and is the first line in its dependency path going back to line (i) not to contain φ. Let these lines be the formulas γ_{1} thru γ_{n}. If Tr γ without Rule C for each such γ, the conclusion follows.

It is obvious that $T \cup\{\beta(\varphi[] / \xi)\}_{r} \gamma$ without use of Rule C. We can apply the deduction theorem here because we have explicitly stated that no variable occurring free in $\beta(\varphi[] / \xi)$ may be varied in any line containing occurrences of φ. Therefore, $T+\beta(\varphi[] / \xi) \cdot \nu$. Now take any such deduction, and replace every occurrence of φ [] in it with a variable ζ not occurring in either T or this deduction. The deduction is still valid, and its conclusion is $\beta(\zeta / \xi) \supset \gamma$. $B y$ Q4 we get $\mathbb{T} \zeta(\beta(\zeta / \zeta)) \supset \gamma$. But $\operatorname{G} \xi(\beta)$ is already provable in T, and so by some changing of variables and modus-ponens, we get Try.

Note: We did not consider the possibility that γ depends on $\beta(\varphi[] / \xi)$ by two different paths, and that it has two immediate antecedents, and is the first formula in one path not to contain φ, but the other path has been free of φ for some time and may have varied some of the variables of $\beta(\varphi[] / 5)$. But the only rule of inference to have two antecedents is modus-ponens and if the conclusion of modus-ponens has no φ, then either both or neither of the antecedents have φ, and so the situation does not arise.

Theorem 7. 12 (Constant Extensions)

If $T \subset L$ is a consistent theory, α is a formula in L containing only ξ free, and φ is a 0 -ary function name not in the vocabulary of L, then $T \cup\{G(\alpha) \supset \alpha(\varphi[] / \xi)\}$ is a consistent theory, and if $\beta \in \mathrm{L}$ is provable in this theory, then β is also provable in T.

1. Prove theorem 7.12. (Hint: You will need as a lemma f. ${ }^{\xi} \xi(\alpha)$ $\beta) \supset(\alpha \supset \Im 5(\beta))$ when α has no free 5. The method of proof is similar to the proof of theorem 7.11.)
2. Why isn't theorem 7.12 valid if $\pi \xi(\alpha)$ is not a sentence?
3. Theorems 7.7 and 7.8 state that:

$$
\begin{aligned}
\text { (i) } \alpha & =\beta+\gamma \equiv \delta \\
\text { and (ii) } T_{1} & =T_{2} \nmid \alpha \equiv \beta
\end{aligned}
$$

where (i) δ derives from γ by replacing some occurrences of α with β, and (ii) β derives from α by replacing some occurrences of τ_{1} with τ_{2}. If these theorems are applied to dependent lines in a proof making use of the deduction theorem, then it is important to know which variables are varied in the deductions symbolized by " r " in lines (i) and (il) above. This is so that no conditions of the deduction theorem are violated. Precisely which variables are varied in these deductions? Why is line 8 of the deduction following theorem 7.10 valid?

CHAPTER EIGHT

FIRST ORDER LOGIC - COMPLETENESS

88.1 Completeness

The completeness theorem is simple to state, but lengthy to prove. We want to show that if $T \neq \alpha$, then Tra. It turns out that if, we can show that every consistent theory has a model, then completeness theorem follows almost immediately. So given a consistent theorem T, we want to obtain a model for it. Since we have to do this in the abstract, i. e., for any theorg, the only stuff we have available for the purpose of building a model is the vocabulary of the theory itself. To further cemplfetternatters, there is no unique or canonical model for most theories, for the choice must be somewhat arbitrary. The program is roughly as follows:
(i) We show that more constants can be added to the language of the theory so that there is a name for every object that the theory asserts must exist.
(ii) We next extend the theory arbitrarily untilit is complete.
(iii) We then show that there is a set of termen the entarged language that serves as the domain for a model in a fairly natural way. This model, with the extra names thrown away, is a model for the original theory.

The completeness theorem was first proved by Gbdel. The present proof is derived by method first used by fenkin.

Lemma 8. 1 (Linderibaum's Lemma)
Every consistent theory has a consistent complete extension.
Proof: Given $T \subset L$, a consistent theory. Let $\alpha_{1}, \alpha_{2}, f$, be all the gientences
of L. Let T_{0} be T, and T_{i+1} be $T_{i} \cup\left\{\alpha_{i+1}\right\}$ if α_{i} is independent of T_{i}; otherwise let T_{i+1} be the same as T_{i}. Let T^{*} be the union of all the T_{i}. We show that each T_{i} is consistent by induction on $i . \quad T_{0}$ is consistent because it is T. Assume that T_{i} is consistent. If T_{i+1} is the same as T_{i}, then it is consistent. If it is not the same, then T_{i+1} is $T_{i} \cup\left\{\alpha_{i+1}\right\}$, where α_{i+1} is independent of T_{i}. If T_{i+1} were inconsistent, then anything could be deduced from $i t$, and in particular $T_{i+1}{ }^{\vdash} \sim \alpha_{i+1}$, so by the deduction theorem, $T_{i} \vdash \alpha_{i+1} \supset \neg \alpha_{i+1}$ or $T_{i} \vdash \neg \alpha_{i+1}$ which contradicts the fact that α_{i+1} is independent of T_{i}. So all the T are consistent, and therefore $T *$ is consistent because any contradiction in T^{*} would also be contained in some sufficiently large T_{i}. To show That T^{*} is complete, let β be any formula in L. Then its universal closure is one of the α_{i}. If α_{i} is independent of T_{i-1}, then $\alpha_{i} \in T_{i}$ so in any case, α_{i} is provable or refutable in T_{i} and hence in T^{*}, and so is β.

Definition 8.2
A ground term is a term with no variables in it. A ground formula is a formula with no variables in it. (A ground formula is always a sentence, but not all sentences are ground formulas.)

Definition 8.3

A theory $T \subset L$ is a Henkin theory if there is at least one ground term in L, and if whenever $G \xi(\alpha)$ is a sentence that is provable from T, then there is a ground term T in L such that $T r \alpha(T / \xi)$.

Lemma 8. 4
If $T \subset L$ is a consistent theory, then there is an extension $T *$ of T in an enlarged language L^{*} which is a consistent complete Henkin theory. Proof: Let T_{0} be T, and L_{0} be L. Let $k_{i, j}$ for $i \geq 1$ and $j \geq 1$ be a set of constants not in L. Given the language L_{i}, we define the language L_{i+1} by adding the constants $\mathbf{k}_{i+1,1}, \mathbf{k}_{i+1,2}, \ldots$ to it. Given the theory $T_{i} \subset L_{i}$, we define the theory $T_{i+1} \subset L_{i+1}$ by enumerating all the sentences of L_{i} having only the variable x free (let this enumeration be $\alpha_{i, 1}, \alpha_{i, 2} \ldots$) and adding to T_{i} all the sentences of the form $\exists_{x}\left(\alpha_{i, j}\right) \supset \alpha_{i, j}\left(k_{i+1, j} / x\right)$ for $j=1,2,3 \ldots$

Let L^{*} be the union of the L_{i}, and T_{∞} be the union of the $T_{i} \quad T_{\infty}$ is consistent because it is derived from T by adding a great many new formulas, each one of which is a consistent extension by theorem 7.12. Let $T *$ be a consistent complete extension of T_{∞} by lemma 8.1. To show that $\mathrm{T} \%$ is a Henkin theory, let $\mathbb{H} \xi(\beta)$ be any sentence of L^{*}. Let L_{j} be the least language of which it is a member. Let $\overline{W x}(\gamma)$ be an equivalent formula by change of bound variables. Then γ is $\alpha_{i, j}$ for some j, and $\mathbb{T x}(\gamma) \supset \boldsymbol{\gamma}\left(k_{i+1, j} / \boldsymbol{x}\right)$ is a member of $\mathrm{T}_{\mathrm{i}+1}$, and therefore $\mathrm{T} *$. So if $\operatorname{Ig}(\beta)$ is provable in T^{*}, then so is $\beta\left(k_{i+1, j} / \xi\right)$ via several operations on bound variables.

Lemma 8. 5
A consistent, complete Henkin theory has a model.
Proof: Given the theory $T \subset L$, let D be the set of ground terms in L, but underlined. (If $g[h[]]$ is a ground term in L, then $g\left[h[] \in D_{0}\right) D$ is nonempty because a Henkin theory al ways has at least one ground term. Let φ be an n-ary function name in L. We define the function $\tilde{\varphi}$ to interpret φ as follows. If $\tau 1, \ldots, \tau_{n}$ are objects of D, then $\tilde{\varphi}\left(\tau_{1}, \ldots, \tau_{n}\right)$ is the object $\varphi[\tau 1, \ldots, \tau n]$. Let ψ be an m-ary predicate name in $L ;$ then we define $\widetilde{\psi}(\tau)$, $\ldots, \tau \mathrm{m})$ to be true if and only if $T \nmid \psi\left(\tau_{1}, \ldots, \tau_{m}\right]_{\text {. This defines a model in }}$ L. Call it M.

To show that $M \neq T$, we shall prove that if α is any sentence in L, then T $+\alpha$ if and only if $M \neq \alpha$. The proof is by induction on the total number of logical connectives and quantifiers in α. Induction basis; If there are no quantifiers or logical connectives in α, then α must be a ground atomic formula. Then $T \vdash \alpha$ if and only if $M \neq \alpha$ from the definition of function and predicate interpretations in M. Induction step: (i) If α is $\neg \beta$, then if Tr α, then β is not provable in T because T is consistent, and hence not satisfied by M by the induction hypothesis. So $M \neq \alpha$. If $M \neq \alpha$, then M does not satisfy β, and β cannot be proven from T. Since T is complete, T. α. (ii) The rest of the logical connectives are left as an exercise. (iii) If α is the sentence $\exists \xi(\beta)$, then if $T \vdash \alpha$, there is a ground term T such that $T r \beta(T / \xi)$ because T is a Henkin theory. The sentence $\beta(F / \xi)$ has one less quantifier than α, and so by the induction hypothesis $M \mid \beta(T / \xi)$. Therefore, $M \neq \mathbb{I}(\beta)$. Now suppose that $M \neq G \xi(\beta)$. Then $M, I \neq \beta$ for some I interpreting ξ as an object in the
domain D of M. But this object I is an underlined ground term, and given the special way M was defined, $M \notin \beta(\tau / \xi)$. By the induction hypothesis, $T+\beta(\tau / \xi)$, and so $\operatorname{Tr} \xi(\beta)$. (iv) The V case is left as an exercise.

Theorem 8. 6

Every consistent theory has a model.
Proof: It has a consistent, complete Henkin extension in an enlarged language by lemma 8.4. By lemma 8.5, this theory has a model. Then removing the interpretations for the new constants from this model gives a model for the original theory. (See'problem set 20, No.2.)

Theorem 8.7 (Gbdel's Completeness Theorem)
If $T \neq \alpha^{*}$, then $T+\alpha$.
Proof: (If α is not a sentence, consider its closure.) If $T \neq \alpha$, then $T \cup\{\neg \alpha\}$ has no model. Therefore it is inconsistent by theorem 8.8. So anything can be proven from it. In particular, $T \cup\{\neg a\} r a$, and so by the deduction theorem $\operatorname{Tr} \neg \alpha \supset \alpha$, or $\operatorname{Tr} \boldsymbol{\alpha}$.

Theorem 8. 8 (Compactness Theorem)
If T is not satisfiable, then there is a finite subset of T that is not satisfiable.
Proof: By theorem 8. 6, if T is not satisfiable, then it is inconsistent. The demonstration of inconsistency must come from finitely many formulas of T. This finite inconsistent sub-theory has no model by corollary 7.5.

Theorem 8.9 (Skolem-LBwenheim Theorem)

If a theory had a model, it has a countable model.
Proof: If the theory has a model, then it is consistent by corollary 7. 5. If it is consistent, then it has a madel (theorem 8.0) which is countable by the method of proof of lemma 8.5.

The reason for producing these results in such rapid succession is to
demonstrate how many of the significant properties of first order logic follow from one central argument.

The completeness theorem has several useful interpretations. One of these is that first order deduction is strong enough to derive any conclusion which is valid. When we put completeness and consistency together, we have Tト α if and only if $T \neq \alpha$. Therefore, the limitations of first order logic are linguistic. If a certain formula α cannot be derived from the theory T, it is because there are models for T in which α is false. If T is supposed to describe some model M in which α is true, then it evidently is not a complete description of M.

The completeness theorem allows us to assert many facts about provability without producing constructive proofs. Instead, we argue the case that something semantically follows from some theory, and then assert its provability from that theory by using the completencss theorem.

On another level, the completeness theorem in the form of theorem 8.6 provides a criterion for the "existence" of mathematical entities. If we invent some set of postulates, when is there mathematical entity to which they apply? If the postulates can be formalized as a first order theory, then it is sufficient that they be consistent in order for there to be model for them. Lemmas 8.4 and 8.5 show that consistent language, suitably extended, provides its own model or subject matter.

88.2 Equality

We return now to the problem of equality. In 86.3, a set of axioms E_{L} for the equality predicate was proposed. In 87.3 . it was proven that E_{L} is sufficient to prove the equivalence of formarus containing equal terms. In this section, we consider the model theoretic aspect of equality. From now on, we shall assume that any theory in a language containing the predicate "=" is an equality theory (has E_{L} as a subset) unless we state otherwise.

In 86.3, we-discussed a theory that had only infinite models. Is there a theory that has only finite models? Conefder the theory:

```
\(\mathrm{E}_{\mathrm{L}}\)
ヨxay \(((x \neq y) \wedge \operatorname{vz}(x=z \vee y=z))\)
```

Intuitively, this theory seems to say that there are exactly two different things that exist. It is satisfied by a model containing 0 and 1 , with $0 \neq 1$. But it is also satisfied by the model whose domain is the integers if we interpret " $=$ " to mean "congruent mod 2 ". There is nothing in the theory that prevents such an interpretation, although this is not the standard interpretation of " $=$ ".
Furthermore, there are no axioms that can be added to the theory that would eliminate such interpretations.

Definition 8.10
If L is a language with equality, then a normal model in L is a model in which the interpretation of " $=$ " is that any member of the domain of the model is " $=$ " to itself and not " $=$ " to any other object in the domain.

Clearly, any normal model for the two object theory must have cardinality 2. So there is an advantage to considering only normal models, since these are the ones we want anyway. The validity of this approach is confirmed by the following theorem.

Theorem 8. 11
If T is a theory with equality, and M is any model for T , then there is a normal model M^{*} which is first order equivalent to M .
Proof: In the model M, there is an interpretation for the predicate name " $=$ " which we shall denote by the symbol "~". Since "~":satisfies the first three axioms of E_{L}, it is an equivalence relation on the domain D of M, and partitions D into co-sets. If $d \in D$, then we denote the co-set of all elements of D which are " \sim " to d as [d]. The set of all such co-sets will be called $D *$ and is the domain of the normal model $M *$ that we seek,: We define function interpretations in M^{*} by the following equation, where $\tilde{\varphi}$ is the interpretation of φ in M, and $\boldsymbol{\psi}$ is the new interpretation being defined on $D *$.

$$
\widetilde{\varphi}\left(\left[d_{1}\right], \ldots,\left[d_{n}\right]\right) \text { is }\left[\widetilde{\varphi}\left(d_{1}, \ldots, d_{n}\right)\right]
$$

That this is a consistent definition independent of the particular elements chosen to represent the co-sets follows from the fact that in the model M, the interpretation $\tilde{\varphi}$ of φ, and the interpretation "~" of " $=$." must satisfy axiom schema (iv) of E_{L} and therefore if $d_{i} \sim e_{i}$ for $1 \leq i \leq n$, then $\tilde{\varphi}\left(d_{1}, \ldots, d_{n}\right) \sim$
$\tilde{\varphi}\left(e_{i}, \ldots, e_{n}\right)$ and so $\left[\tilde{\varphi}\left(d_{1}, \ldots, d_{n}\right)\right]$ is the same co-set as $\left.\tilde{\varphi}\left(e_{1}, \ldots, e_{n}\right)\right]$. The interpretation $\%$ of a predicate name ψ, is derived from the interpretation I similarly, and the consistency of this definition follows from axiom schema (v) of E_{L}.

To show that $M \sim M^{*}$, let α be any formula of L, and I an interpretation of the variables of α into D. Define the interpretation $I *$ by $I *(5)=$ [I(弓)]. Then show by induction on the logical connectives and quantifiers of α that if β is a subformula of α, then $M, I \neq \beta$ if and only if $M_{*}, I^{*} \mid \beta$,

From now on, when we speak of a model in a language with equality, we shall mean a normal model unless we explicitly state otherwise.

Problem Set 26
(All languages and theories have equality, and $\frac{1 l}{}$ models are normal.)

1. Specify a theory having infinite models, and finite models of cardinality $3 \times n$ for every $n \geq 1$, and having no finite models whose cardinality is not a multiple of three.
2. Specify a theory having models of cardinality p for every prime number p, and no other finite models.
3. Prove that if a theory has arbitrarily lafge finite models, that it must have infinite models. (Zint: Use the compactness theorem.)
4. Prove that if consfatent theory is complete, all models for it either have the same finite cardinality, or else they are all infinite.

88.3 The Steolem-Lidwenheim Theorem

This theorem was known early in this century hefore the completeness theorem was proven. It then had to have a proof that did not depend on deduction at all, but was entirely model-theoretic in nature, although the term "model" was not used until somewhat later.

If we consider a logic with equality, then the Skolem-LBwegheim theorem states that every satisfiable thegry has a finite Ar countable (normal) model. This is rather puzzling beçauge we can formalise the theary of real numbers in first order logic. This theory at first affht ame to require a model containing at least all the real numbere. When we atudy the exioms,
we find that they require the existence of all real roots of polynomials, and all real numbers defined by limits or integrals such as π or e or logarithms or Bessel functions. The theory even asserts topological closure properties such as that every non-empty set of real numbers bounded above must have a least upper bound. How then can this theory have a countable model?

This is known as Skolem's paradox, and the problem seems to lie either in our naive assumption of the absolute notion of "uncountable", or in the limitations of symbolic language to discuss what really exists. (You can take your choice.) The fact is that if we take a "description" to be a piece of writing of finite length composed of discreet symbols from a finite alphabet, then the set of all potential descriptions is countable. So regardless of what we consider to be acceptable or well-defined descriptions, we can only describe countably many real numbers. We then find that every number that we describe and look for really is in such a countable model, including, for example, the values of definite integrals which we know exist but cannot even compute.

If we believe that there really are "many" more real numbers than rational numbers or integers (and most mathematicians since Cantor act as if they believe this) then we must accept the situation that "most" real numbers are inaccessible to description in any manner. However, Skolem suggested that perhaps the notion of uncountable is relative to one's language, and that there are uncountably many real numbers in real number theory because there is no one-to-one correspondence posaible between the real numbers and the natural numbers within the theory. But viewed from outside the theory, such a correspondence is possible as his countable model shows. Viewed this way, "uncountable" refers to our inability to "count" or specify an enumeration, rather than to the large size of a set.

This situation is further dramatized by the fact that it is possible to axiomatize set theory in first order logic. The Von Neumann-Bernays-Gbdel (NBG) set theory has a finite number of axioms (see [Mendelson, Chapter 4]) and purports to be about sets of arbitrarily high cardinality and "classes" which are even bigger than sets, such as "the class of all sets". If NBG is consistent, then it has a countable model. ${ }^{1}$ If it is not consistent, then

[^2]methods of reasoning used as a matter of course by mathematicians in all different fields are called into question.

Philosophically, one may believe that all the entities of mathematics are given a priori, but that our language has difficulty dealing with them, or, if like the intuitionists one restricts one's belief to those things that could at least potentially be written, then one may take all the higher infinities to be mere semantic constructs. There is current research [Yessenin-Volpin] which attempts to prove that axiomatic set theory is consistent from an "ultra-intuitionist" viewpoint that believes in nothing it cannot see. It is too early at this time to evaluate this work.

CHAPTER NINE

FIRST ORDER LOGIC - ADDITIONAL TOPICS

Preview of Chapter Nine

This chapter is a collection of several topics not all of which are sequentially related. The only one of these that is a necessary prerequisite for subsequent parts of this book is 89.1 which is the study of formal definitions.

The system we have been studying so far is known as Hilbert-type deduction. It is characterized by straight line proofs. Within the past decade, research in automated theorem proving has been dominated by a radically different approach known as resolution. 89.2 thru $\mathbf{8 9} 4$ are about resolution and its prerequisite topics. $\$ 9.5$ is about still another form of deduction known as a Gentzen-type system.

In 89.6, we return to the Hilbert-type system which we shall use for the rest of this book, and discuss the question of decidability of theories.

§9.1 Definitions

When a formal theory is presented as a set of axioms T in a language L, it is usually necessary to make definitions as we proceed to develop the theory, for if we have to describe advanced concepts in primitive terms, the length of the formulas we must use to do this becomes exploaively long. We shall have some examples to illustrate this later.

The main questions that we want to consider in this section are: How do we make definitions that do not add anything to the basic assumptions of the theory? How do we know that the theory is still consistent after we add
definitions to it? If the theory was değigned to fit some model, how do we know that the definitions don't alter this?

Definition 9.1

Let $T \subset L$ be a theory, and $T_{1} \subset L_{1}$ be an extension to T. We say that T_{1} is a conservative extension of T if whenever $T_{1}+\alpha$ and $\alpha \in L$, then $T r \alpha$.

A theory is consistent if and only if every conservative extension of it is consistent.

The easiest sort of definition that we can make is to replace some commonly occurring term by a new function name, or some commonly occurring formula by a new predicate name.

Rule X (Explicit Definitions):

An explicit definition is a line in a proof having the form:

$$
\begin{aligned}
& \varphi\left[\xi_{1}, \ldots, \xi_{n}\right]=\tau \\
& \text { or } \quad \psi\left[\xi_{1}, \ldots, s_{m}\right] \equiv \propto
\end{aligned}
$$

where φ is a new function name and r is a term having no variables other than the ξ_{i}, or ϕ is a new predicate name and α is a formula having no free variables other than the $\boldsymbol{\xi}_{\mathbf{i}}$.

The restriction on the free variables occurring in r or α is necessary to avoid definitions that are ambiguous and have contradictory instantiations. For example, if we define $f[x]=x+y$, then two instances of this are $f[0]=0+0$, and $f[0]=0+1$, from which we can deduce $0=1$. Or if we define $p[x] \equiv$ $\left(x^{>} y\right)$, then we have $p[2] \equiv(2>1) \equiv(2>3)$ or $T \equiv F$.

Theorem 9.2

If $T_{1} \subset L_{1}$ is an extension of $T \subset L$ by Rule $X_{\text {, }}$ then it is a conservative extension. Furthermore, if M is any model in L that satisties T, then there is a unique expansion of M in L_{1} that satisfies T_{1}. Proof: Let M be a model in L that satisfies T. If φ is a new function name
in L_{1} introduced by Rule X, then we define $\tilde{\varphi}\left(d_{1}, \ldots, d_{n}\right)$ for any elements d_{i} in the domain of M by letting this value be $V(M, I, T)$ where τ is the defining term in Rule X, and I is an interpretation of the variables S_{i} into the d_{i} respectively. Any other way of defining $\tilde{\varphi}$ would not satiefy the defining equation, and so the expansion of M is unique. If the extension is by way of a predicate name ϕ, then we define $\widetilde{\psi}\left(d_{1}, \ldots, d_{m}\right.$ to be true if and only if $M, I \neq \alpha$, where I interprets the ξ_{i} which are the only free variables in α into the d_{i} respectively, and this expansion is also unique.

Suppose $T_{1} \not \vDash \alpha$ and $\alpha \in L$. Let M be any model for T. M has an expansion that satisfies T_{1} and therefore satisfies α. Since $\alpha \in L$, the contraction of M_{1} to M also satisfies α. Since this is true for all M that satisfy T, we have $T \neq \alpha$, and by completeness, $T \beta$. So T_{1} is a conservative extension of T.

The uniqueness quantifier ${ }_{1} \xi$ means: "There exists exactly one ξ such that" It is not a new logical concept, but merely an abbreviation. The formula $\exists_{1} \xi(\alpha)$ is an abbreviation for $\bar{G}(\alpha \wedge \zeta \mathcal{F}(\alpha(\zeta / \xi) \supset \zeta=\xi)$) where ζ is a variable not occurring in α. This notation is used only in languages with equality.

If the formula $\exists_{1} \xi(\alpha)$ has only the variables ζ_{1} thru ζ_{n} free, and the (normal) model M satisfies it, then for every choice of d_{1} thru d_{n} in the domain of M, there must be exactly one d_{n+1} such that if I interprets $\zeta_{1}, \ldots, \zeta_{n}, 5$ into d_{1} thru d_{n+1} respectively, then M. It α. This defines a n-ary function on the domain of M.

Rule F (Function Definitions):

In a deduction in a theory with equality, if line (j) is $\exists_{1} \xi(\alpha)$ and has only ζ_{1} thru C_{n} free, then we may derive as line (i) $\left.\alpha\left(\varphi / \zeta_{1}, \ldots, \zeta_{n}\right] / \xi\right)$ where φ is an arary function name. and the justification for line (i) is "Rule $F^{j} j_{\sim}$ where $j<i$.

Theorem 9.1
If $\mathrm{T} \subset \mathrm{L}, \mathrm{Tr}{ }_{1} \xi(\alpha), \alpha$ has only the variables 5 and the ζ_{i} free, φ is a new name, and T_{1} is $T \cup\left\{\alpha\left(\varphi\left[\zeta_{1}, \ldots, \zeta_{n}\right] / \xi\right)\right\}$, then T_{1} is a conservative
extension of T, and if M is any model that satisfies T, then there is a unique expansion of M that satisfies T_{1}.

The usefulness of definitions comes from the uniqueness of their model expansions, which is a much stronger condition than that the definitions are conservative extensions. It not only guarantees consistency, but means that the theory being developed is still applicable to the original model.

A strong proof-theoretic property of definitions is that they are eliminable. This means that every formula in the extension can be effectively mapped onto a formula of the original language in a manner that preserves provability. So anything that can be said in the extended language can be said in the original language, although it may be of prohibitive length and therefore not a practical thing to do. Proving the effective elimination of Rule X definitions is easy. Proving the effective elimination of Rule F definitions using proof-theoretic techniques is quite complicated combinatorially. It is' done in [Kleene 874].

The following examples show how rapidly the process of definition can proceed. The theory N is the classical theory of natural numbers whose axioms we do not specify here. The theory is stated in the language $\{=, 0, \prime,+, x\}$.

$$
\begin{aligned}
& \text { 1. }(m<n) \equiv G p\left(m+p^{\prime}=n\right) \\
& \text { 2. }(m \geq n) \equiv \neg(m<n) \\
& \text { 3. prime[m] } \overline{\bar{I}} \rightarrow \mathbb{A} \mathbb{A} q\left(0^{\prime}<p \wedge p<m \wedge\right. \\
& p \times q=m) \wedge 0<m \\
& \text { 4. } \quad \exists_{1} p\left((n=0 \supset p=0) \wedge\left(0<n \supset m^{\prime}\right)\right. \\
& \text { 5. }(\mathrm{n}=0 \supset \mathrm{~m} \div \mathrm{n}=0) \wedge(0<\mathrm{n} \supset \\
& \left(n \times(m, \div n)<m^{\prime} \wedge n \times\right. \\
& \left.(m \div n)^{\prime} \geq m^{\prime}\right) \\
& \text { Rule X } \\
& \text { Rule } X \\
& \text { (This is now } \\
& \text { provable.) } \\
& \text { Rule F } 4
\end{aligned}
$$

This definition of division is peculiar. The reason is that Rule F only allows us to define total functions. In order to make division total, we have to arbitrarily define division by 0 , it doesp't matter how. The second part of line 5 is the useful part, and it cannot be used to prove any properties of division by 0 .

This brings up an interesting point, which is that the models of first
order logic always have total functions. This does not mean that we cannot model a subject that has partial functions. It does mean that if we provide axioms that do not completely specify a function, then we may expect the theory to be incomplete, and to be satisfied by all models that complete the partial functions in all possible ways.

To put this differently, suppose we had introduced as an axiom of N the formula $0<n \supset\left(n \times(m \div n)<m^{\prime} \wedge n \times(m \div n)^{\prime} \geq m^{\prime}\right)$. This defines division except by 0 . It allows us to prove all the ordinary results about division that we would like to prove, but formulas such as $m \div 0=0$ or $m \div 0=1$ will be independent of this theory. We may choose to use this approach because it is distasteful to make arbitrary choices that are not necessary.

We now introduce additional definition schemas to define functions and predicates by cases, and to define partial functions and predicates. It is important to know whether a given function or predicate has been introduced as total or partial. The rules X and F already specified, and the rule K that we give next define total functions. the rules $P K$ and $P F$ define partial functions.

Rule K (Definition by Cases):

The definition schemas:

$$
\begin{aligned}
& \gamma_{1} \supset \psi\left[\xi_{1}, \ldots, \xi_{m}\right] \equiv \alpha_{1} \\
& \ldots \\
& \gamma_{k} \supset \psi\left[\xi_{1}, \ldots, s_{m}\right]=\alpha_{k}
\end{aligned}
$$

and

$$
\begin{aligned}
& \gamma_{1} \supset \varphi\left[\xi_{1}, \ldots, \xi_{n}\right]=\tau_{1} \\
& \ldots \\
& \gamma_{k} \supset \varphi\left[\xi_{1}, \ldots, \xi_{n}\right]=\tau_{k}
\end{aligned}
$$

are justified when (i) ψ or φ is a new name, (ii) the τ_{i} have no variables other than the ξ_{i}, and the α_{i} and γ_{i} have no free variables other than the ξ_{i}, (iii) $\operatorname{Tr} \neg\left(\boldsymbol{\gamma}_{i} \wedge \gamma_{j}\right)$ for $\mathrm{i}<\mathrm{j} \leq \mathrm{k}$, and (iv) $\operatorname{Tr}\left(\gamma_{1} \vee \ldots \vee \gamma_{k}\right)$. If all previously defined function and predicate names used in such a definition are total, then the new function or predicate name is total.

Rule PK (Partial Definition by Cases):
Same as Rule K except that condition (iv) is not required.

Rule PF (Partial Function Definition):
If $\operatorname{Tr} \gamma \supset \mathcal{J}_{1} \xi(\alpha)$ where the only free variables in this formula are ζ_{1} thru ζ_{n}, and φ is a new function name, then:

$$
\gamma \supset \alpha\left(\varphi\left[\zeta_{1}, \ldots, \zeta_{n}\right] / \zeta\right)
$$

is justified, and defines a partial function.

Problem Set 27

1. Prove theorem 9.3.
2. Prove that all total definition schemas imply unique model extensions, and that all partial definition schemas imply the existence of model extensions, and that all these extensions are conservative.
3. Critique the following proposal for an "ambiguous function"
definition schema: If $\operatorname{Tr} \boldsymbol{y} 5(\alpha)$, and the only free variables in this formula are ζ_{1} thru ζ_{n}, and φ is a new function name, then define φ by $\left.\alpha\left(\phi / \zeta_{1}, \ldots, \zeta_{n}\right] / \xi\right)$.

§9.2 Herbrand's Theorem

Definition 9.4
A sentence is called a prenex normal form sentence if it is $Q_{1} \xi_{1} \ldots Q_{n} \xi_{n}(\alpha)$ where each Q_{i} is either \forall or \square, the ξ_{i} are distinct variables, and α has no quantifiers.

Theorem 9.5

Every sentence is equivalent to a sentence in prenex normal form having the same function and predicate names.

If T is a theory, then $\operatorname{Th}(T)=\operatorname{Th}\left(T_{1}\right)$ where T_{1} is a set of prenex normal forms equivalent to the closures of the formulas in T.
Proof Sketch: To put a sentence in prenex normal form (i) eliminate "玉", by $(\alpha=\beta) \rightarrow(\alpha \supset \beta) \wedge(\beta \supset \alpha)$, (ii) eliminate " $\boldsymbol{D}^{\prime \prime}$ by $(\alpha \supset \beta) \rightarrow(\neg \alpha \vee \beta)$, (iii) change
variables so that every quantifier has a distinct variable, (iv) move the quantifiers outward using transformations such as $\neg \forall \xi(\alpha) \rightarrow \square \xi(\neg \alpha)$ and $\alpha \vee \forall \xi(\beta) \rightarrow \forall \xi(\alpha \vee \beta)$. These are all equivalences. (Note that in the last formula, α has no free 5 . Why?)

Herbrand was trying to solve the fundamental problem of first order logic, which is to determine when a formula α is a member of $\mathrm{Th}(\mathrm{T})$, by purely proof-theoretic techniques. As part of this program, he showed how a theory could be expanded into a form in which there were no quantifiers.

Given the theory T, we have the equivalent theory T_{1} in prenex normal form. Let $Q_{1} \xi_{1} \ldots Q_{n} \xi_{n}(\alpha)$ be a sentence of this theory. If Q_{1} is universal, then it can be dropped by rule QX3. If it is existential, then we can drop the quantifier and make the substitutions $\operatorname{lol}^{\left[1 / \xi_{1}\right.}$ in the manner of problem set 27, number 3. In either case, we have gotten rid of the first quantifier. This process can be repeated for each quantifier in turn, merely dropping the universal quantifiers, and substituting ambiguous function names for the existentially quantified variables. If $\boldsymbol{S}_{\mathbf{i}}$ is existentially quantified, then it will be replaced by $\varphi_{i^{\prime}}\left[5_{i_{1}} \ldots, \xi_{i_{k}}\right]$ where $Q_{i_{1}} \ldots Q_{i_{k}}$ are the universal quantifiers to the left of Q_{i} in the original formula. For example:
$\forall x G y \vee z G w(p[x, f[y ; w], z, g[y ; z]])$
becomes

$$
\mathrm{p}[\mathrm{x}, \mathrm{f}[\mathrm{~h} 1[\mathrm{x}], \mathrm{h} 2[\mathrm{x}, \mathrm{z}]], \mathrm{z}, \mathrm{~g}[\mathrm{~h} 1[\mathrm{x}], \mathrm{z}]]
$$

where h1 and h2 are new function names. They are called Herbrand function names.

This process can be done for an entire theory T_{1} in prenex normal form producing the open theory T_{2}. From the previous discussion it should be clear that $T_{1} \cup T_{2}$ is a conservative extension of T_{1}, and that if M is a model for T_{1}, then there is an expansion of M that satisfies T_{2}. This expansion is not necessarily unique. Conversely, any model for T_{2} can be contracted to a model for T_{1}; therefore T_{1} is satisfiable if and only if T_{2} is satisfiable.

Let L_{2} be the language of T_{2}. It is the language of T (and T_{1}) together with all the Herbrand function names. Let H be the set of all
ground terms in L_{2}. We add one constant to L_{2} if necessary to make sure that H is not empty.

Let T_{3} be the set of all ground instances of T_{2} (If α is an open formula in T_{2} having distinct variables ξ_{1} thru ξ_{n}, and h_{1} thru h_{n} are in H, then $\alpha\left(h_{1} / \xi_{1}, \ldots, h_{n} / \xi_{n}\right)$ is a ground instance of $\left.\alpha.\right)$ If T_{2} is satisfiable, then obviously T_{3} is satisfiable. The converse is also true, but needs a proof, which we supply presently.

When we look at the formulas of T_{3}, we see that not only are there no quantifiers, but there are no variables either. A formula in T_{3} is simply a logical compounding of ground atomic formulas. " If we view each distinct ground atomic formula as a distinct propositional variable, then we can regard T_{3} as a theory of propositional logic. If T_{3} is satisfiable as a first order theory, then it is also satisfiable as a propositional theory by allowing a first order model to supply truth values for each ground atomic formula.

Conversely, if T_{3} is satisfiable as a propositional theory, then it is satisfiable as a first order theory. To show this, let M be a propositional model for T_{3}. We define the model M^{\prime} on the domain H of ground terms by defining function interpretations in the same manner as in lemma 8.5, i. e., $\tilde{\varphi}\left(h_{1}, \ldots . h_{n}\right)$ is the term $\varphi\left[h_{1}, \ldots, h_{n}\right]$. We define $\tilde{\psi}\left(h_{1}, \ldots, h_{m}\right)$ to be true if and only if $M \neq \phi\left[h_{1}, \ldots, h_{m}\right]$. This defines M^{\prime}, and $M^{\prime} \mid T$ because it produces the same valuations on ground atomic formalas as does M.
M^{\prime} also satisfies T_{2} because if $\alpha \in T_{2}$, then α is an open formula, and if I is any interpretation of the variables of α into H, then $M, I \neq \alpha$, because the corresponding ground instance in T_{3} is also satisfied by M^{\prime}. (This sort of argument can only be used when we already know that the language has a ground term to express every object in the domain of the model. The situation is similar in some ways to lemma 8.5.) This proves that T_{2} is satisfiable if and only if T_{3} is satisfiable.

Theorem 9.6 (Herbrand's Theorem)
Suppose that T is an inconsistent theory. This fact can be demonstrated in the following way. Let T_{1} be the prenex normal form for T. Let T_{2} be the open theory obtained from T_{1} by dropping quantifiers and introducing Herbrand function names. Let T_{3} be the set of all ground instances
of T_{2} (making sure that H is not empty). Then there is some finite set of formulas in T_{3} whose conjunction is propositionally inconsistent.
Proof: If T is inconsistent, then it is unsatisfiable by the consistency theorem. If T is unsatisfiable, then T_{1}, T_{2} and T_{3} are unsatisfiable as noted in the preceding discussion. Then T_{3} is propositionally unsatisfiable. By the compactness theorem for propositional logic, some finite part of T_{3} is unsatisfiable, and by the completeness theorem for propositional logic, the conjunction of this finite set of formulas is inconsistent propositionally.

This proof would not have been satisfactory to Herbrand. The statement of the theorem makes no reference to models, and can be proven using only finitary proof-theoretic methods. Such a proof is given in [Herbrand, p. 168]. The proof is complicated and has error which has been corrected by subsequent logicians. (Herbrand's paper was presented as a thesis at the Sorbonne in 1930 . In 1931 Herbrand was killed in an alpine climbing accident when a piton came out. He was 23 years old.)

If we can demonstrate inconsistency, then we can also demonstrate provability because $T \cup\{\neg \alpha\}$ is inconsistent if and only if $T \vdash \alpha$. The insight of Herbrand's theorem is that in all cases only a finite amount of model construction effort is necessary to show that no model can be built for a theory. This suggests an entirely new approach to creating demonstrations than the Hilbert-type system, and Herbrand's theorem is the "completeness" theorem for this new type of demonstration. This idea will be expanded in §9. 4.

§9.3 Substitution and Unification

The theory of substitution and unification is part of the theory of resolution developed by [Robinson]. It is interesting enough in its own right to be presented as a separate topic. It is perhaps part of the answer to the question: What is the equivalent in the theory of symbolic processing to the number theoretician's interest in factoring, least common multiples and so forth?

Before we can perform the operation of substitution, we need something on which to do the substituting. We could develop the theory of substitution on s-expression but, instead, we shall do it the way Robinson does it
so that nothing needs to be altered for 89.4.

Definition 9.7

A literal is either an atomic formula or else it is a negated atomic formula (i.e., an atomic formula preceded by "ー"). A clause is a finite set of literals. Literals and clauses that do not have variables are called ground literals and ground clauses.

The interpretation of a clause that we shall use in $\$ 9.4$ is the disjunction or "or" of its literals. The idea of a set of literals rather than a sequence is that a set does not specify an order for its components, nor is it meaningful for an element of a set to be a member several times over. This is a useful condensation of the associative, commutative and idempotent properties of " v ". A clause can be represented by the usual finite set notation which is a list of elements enclosed by braces and separated by commas.

Examples of Literals:

$$
\begin{array}{ll}
\mathrm{p}[\mathrm{x}, \mathrm{y}] & \neg \mathrm{q}[\mathrm{x}, \mathrm{f}[\mathrm{y}, \mathrm{~g}[\mathrm{x} ; \mathrm{y}]]] \\
\neg \mathrm{p}[\mathrm{k}[], j[]] & \mathrm{r}[\mathrm{x},(\mathrm{ABC})]
\end{array}
$$

Examples of Clauses:

$$
\begin{array}{ll}
\{\neg p[x, y], & r[x, \text { (A B C) }], \\
\{x+y=3, & 1+2 \neq 3\}
\end{array}
$$

Definition 9.8

A substitution component is an expression of the form " τ / ξ " where τ is a term and $\boldsymbol{\xi}$ is a variable, and $\tau \neq \xi$. Its meaning is "substitute τ for all occurrences of 5. ".- A substitution is a finite set of substitution components such that each ξ_{i} is distinct. Its meaning is "substitute each τ_{i} for all occurrences of its ${ }_{\mathbf{i}}{ }^{\prime}$ " \quad This is a simultaneous substitution.

If C is a clause, and θ is a substitution, then $C \theta$ is the clause resulting from performing θ on C. For example, if C is $\{p[x, y]$, $\neg[f[y]]\}$, and θ is $\{g[z] / x, f[x] / y\}$, then $C \theta$ is $\{p[g[z], f[x]], \neg q[f[f[x]]\}$. The notation $C \theta \lambda$ means
the clause resulting from first performing θ on C, and then performing λ on the result of this. This is a "postfix" operator style of notation which has the advantage that the operations get performed from left to right.

Definition 9.9
If θ is the substitution $\left\{\tau_{1} / \xi_{1}, \ldots, \tau_{n} / \xi_{n}\right\}$ and λ is the substitution $\left\{\sigma_{1} / \zeta_{1}, \ldots, \sigma_{\mathrm{m}} / \zeta_{\mathrm{m}}\right\}$, then the composition of θ and λ, written $\theta \lambda$, is the substitution defined as follows: Let λ^{\prime} be the set of all components of λ except those for which ζ_{i} is one of the 5 's. Let θ^{\prime} be the set of all components of the form $\tau_{i} \lambda / \xi_{i}$ where τ_{i} / ξ_{i} is in θ, and $\tau_{i} \lambda$ is the result of performing λ on τ_{i}, except those cases where $\tau_{i} \lambda$ is ξ_{i} in which case $\tau_{i} \lambda / \xi_{i}$ is not a substitution component. Then $\theta \lambda$ is defined to be the union of the sets θ^{\prime} and λ^{\prime}.

This definition of composition of substitutions is not commutative because it is intended to produce the substitution which is "first do θ, then do $\lambda^{\prime \prime}$. If the T^{\prime} 's replace all occurrences of the $\xi ' s$ and then λ is performed, they will get changed into $\tau \lambda$'s. The σ_{i} / ζ_{i} components can act on the original text only when ζ_{i} is not one of the 5 's. However, even if they get thrown out they still have an effect in defining the $\tau_{i} \lambda / \xi$ eomponents. For example, the composition of $\{f[x] / x\}$ with itself is $\{f[f[x]] / x\}$.

Corollary 9. 10

For any clause C, and any substitutions θ and $\lambda,(C \theta) \lambda=C(\theta \lambda)$.
For any substitutions θ, λ and $\mu,(\theta \lambda) \mu=\theta(\lambda \mu)$. (Substitution is associative.)

The set of all substitutions form a semi-group, with the empty substitution as identity.

Examples of composition of substitutions:
$\{x / y\}\{x / y, y / x\}=\{y / x\}$
$\{x / y, y / x\}\{x / y\}=\{x / y\}$
$\{g[x, y] / x, h[y, z] / y\}\{f 1[y] / x, f 2[z] / y, f 3[x] / z\}=\{g[f 1[y], f 2[z]] / x$, $\mathrm{h}[\mathrm{f} 2[\mathrm{z}], \mathrm{f} 3[\mathrm{x}] \mathrm{J} / \mathrm{y}, \mathrm{f} 3[\mathrm{x}] / \mathrm{z}\}$
$\left\{n^{2}+2 / m ; 3 \times m / n\right\}\left\{n^{2}-3 / m\right\}=\left\{n^{2}+2 / m, 3 \times\left(n^{2}-3\right) / n\right\}$

A finite set of literals is called a singleton if it has exactly one element. If C is a finite set of literals, and $C \theta$ is a singleton, then θ is said to be a unifier of $C . \quad \theta$ is a most general unifier of C if it is a unifier of C. and if for every λ which is a unifier of $C, \lambda=\theta_{\mu}$ for some μ.

Not every set can be unified. A necessary but not sufficient condition for a set to be unifiable is that either all literals begin with " 7 " or else none of them do, and that they all have the same predicate name. At the opposite extreme, if a set is already a singleton, then every substitution is a unifier of it, and the empty substitution is its most general unifier.

Examples:

$\{p[3], p[5]\}$ cannot be unified.
$\{p[3], p[x]\}$ has most general unifier $\{3 / x\}$. $\{p[x], p[f[y]]\}$ has most general unifier $\{f[y] / x\}$.
$\{p[x], p[f[x]]\}$ cannot be unified.
$\{q[f[y], x], q[x, f[z]\}$ has most şeneral unifier $\{f(y] / x, y / z\}$ or $\{f[z] / x, z / y\}$.

The unification algorithm is an effective process for finding the most general uniffer of a set of literals if it exists. The algorithm as given does not work for clauses containing infix or postfix operators or other relaxations of grammar, and we do not attempt to change this.

Let C be a finite set of literals. The disagreement set D of C is the set of all well-formed terms or formulas that beginat the ffirst symbol position at which not all of the literals of C agree. We can think of a cursor moving character by character from left to right on the literals in C and stopping as soon as there is any discrepancy between any two literals. We then copy the smallēt well-formed term or formula that starts at each cursor position, and this is the disagreement set. For example, the disagreement set of $\{p[x, h[x, y], y], p[x, g[y], y] p[x, x, b]\} f(h[x, y], g[y], a\}$. If C has at least two literals, then the disagreement set of C has at least two elements. The disagreement set is obviously computable.

The unification alogrithm is stated as a program, with program variables C, D, θ, ξ and r. C is initialized to the set to be unified, and σ is initialized to the empty substitution.

Loop: C : $C=C$ (Performing θ on C is specified here.)
If C is a singleton then terminate with most general unifier θ;
$D:=$ disagreement set of C arranged in a sequence with variables ahead of other elements;
$\xi:=$ first element of D;
$\tau:=$ second element of D;
If ξ is not a variable then fail;
If τ contains occurrences of 5 then fail;
$\theta:=\theta\{\tau / \xi\}$; (Composition of substitutions is specified here.)
Go to loop;

Theorem 9.12 (Unification Theorem)

If C is a finite set of literals, then if it has a unifier, it has a most general unifier, and the unification algorithm will compute one. Otherwise, the algorithm will terminate with a fail. The algorithm always terminates. (Proof in [Robinson].)

Problem 27
The LISP function sublis[x, y] performs a substitution on the s-expression y when x is a list of pairs, each of which is a substitution component. (See 88.1.) Let us call x a substitution if it is a list of pairs, and the cadr's of the pairs are all different atoms, and ear and cadr of each pair are distinct. Define a LISP function compose $[x, y]$ such that if x and y are substitutions, then compose $[x, y]$ is a substitution, and if z is any s-expression, then sublis[y, sublis $[x, z]]=$ sublis[compose $[x, y], z]$.

§9.4 Resolution

We continue from the concluding remark of 89.2. Starting with a theory T that we wish to demonstrate inconsistent, we generate T_{1} in prenex normal form, and T_{2} which is an open theory. The next transformation in
this process of preparation is to put the formulas of T_{2} into what is known as conjunctive normal form.

Definition 9.13
If L_{1} thru L_{n} are literals, then $L_{1} \vee \ldots \vee L_{n}$ is called a disjunct. If D_{1} thru D_{m} are disjuncts, then $D_{1} \wedge \ldots \wedge D_{m}$ is called a conjunctive normal form.

It follows from DeMorgan's Laws, and the distributive laws for logical connectives that every open formula is equivalent to a conjunctive normal form. Having put a formula in conjunctive normal form, we can then turn each disjunct into a clause simply by eliminating any redundancies and making a set of the literals. Now if we have a theory in such form, each formula is a conjunction of clauses. Since a theory is semantically the conjunction of its formulas, we can further collapse the whole structure and regard the theory as simply a (possibly infinite) set of clauses in conjunction. The boundaries of formulas are no longer important. If T_{2} is an open theory, we call the equivalent set of clauses T_{3}.

If T_{3} is unsatisfiable, then there is some finite set of ground instances of T_{3} which is inconsistent. Call this T_{4}. Ground resolution is an essentially propositional rule of inference on ground clauses that is used to demonstrate the inconsistency of T_{4}.

Definition 9. 14 (Ground Resolution)

If α is an atomic formula, then α and $\neg \alpha$ are called complementary literals. A ground resolvent of a pair of clauses having complementary literals is the clause consisting of all the other literals of both clauses, as is indicated by the following schema, where α and $\neg \alpha$ are complementary, and the β_{i} and γ_{i} are any literals and $i \geq 0$, and $j \geq 0$.

$$
\begin{aligned}
& \left\{\alpha, \beta_{1}, \ldots, \beta_{n}\right\} \\
& \frac{\left\{\neg \alpha, \gamma_{1}, \ldots, \gamma_{m}\right\}}{\left\{\beta_{1}, \ldots, \beta_{n^{\prime}} \gamma_{1}, \ldots, \gamma_{m}\right\}}
\end{aligned}
$$

This rule is not only propositionally valid, but is complete in the
following sense: The empty clause has the value "false" in all interpretations. Robinson denotes the empty clause by the symbol \square. If a set of ground clauses is inconsistent, then it is possible to deduce by a finite number of applications of ground resolution, and no other rules of inference or axioms.

So far, there is no great efficiency in this schema. It is not any faster than earlier decision procedures such as [Davis and Putnam]. The major advantage of resolution compared to ground resolution is that it is not necessary to generate the theory T_{4} at all. Resolution is a combination of ground resolution and instantiation. But instead of generating ground clauses, it does no more instantiation than is necessary. In resolution all substitutions are as general as possible.

Resolution is defined as a deduction rule that has two clauses (not generally ground clauses) as its antecedents, and another clause as its consequent. A pair of clauses may have no resolvents, or one resolvent, or more than one resolvent. The completeness theorem for resolution is that if T_{3} is unsatisfiable, then there is some finite sequence of resolutions on T_{3} that generates \square. The completeness theorem follows from Herbrand's Theorem and is in Robinson's paper.

Definition 9.15
Let C and D be two clauses. Let C^{\prime} be obtained from C by substituting the variahles $x 1, x 2 \ldots$ for the variables occurring in C, and D^{\prime} be obtained similarly from D using the variables $y 1$, y^{2}... This is to guarantee that C^{\prime} and D^{\prime} have distinct variables without their being substantially different from C and D.

Suppose that there are sets L, M and N such that: (i) $L \subset C^{\prime}$, (ii) $M \subset D^{\prime}$, (iii) L-and M are non-empty, (iv) N is the set of all atomic formulas that are either in L or M, or whose complements are in L or M, (v) N is unifiable, and θ is a most general unifier of N, and (vi) L θ and $M \theta$ are complementary singletons. Then $\left(C^{\prime}-L\right) \theta \cup\left(D^{\prime}-M\right) \theta$ is a resolvent of C and D.

As an example of resolution, we prove the validity of the sentence $\forall x(p[x] \equiv q[x]) \supset(G x(p[x]) \equiv G x(q[x]))$. (See problem set 21, No.16.) First,
the entire sentence is negated, to obtain the one sentence theory T, then it is put in prenex normal form, T_{1}, and the quantifiers are dropped introducing the constants k_{1} and k_{2} in T_{2}. Then it is put in conjunctive normal form, giving the theory T_{3} which is the first six lines of the proof presented below. This is not at all obvious, and it will probably take some effort to obtain this result, and also to verify that T_{3} really is the denial of the original formula. It is worthwhile doing this. Note that it is essential to the meaning of line 6 that it have two distinct variables.

Since each line in the demonstration is a clause, we do not bother with the braces. The renaming of variables is also relaxed in a manner that does not affect the demonstration. Lines 3 and 5 are superfluous.

1. $\neg p[x]$	$q[x]$	
2. $\neg q[x]$	$p[x]$	
3. $p\left[k_{1}\right]$	$\neg p[x]$	
4. $p\left[k_{1}\right]$	$q\left[k_{2}\right]$	
5. $\neg q[x]$	$q\left[k_{2}\right]$	
6. $\neg p[x]$	$\neg q[y]$	
7. $q\left[k_{1}\right]$	$q\left[k_{2}\right]$	Res 1,4
8. $\neg p[x]$	$q\left[k_{1}\right]$	Res 6,7
9. $\neg p[x]$	Res 6,8	
10. $\neg q[x]$	Ree 2,8	
11. $q\left[k_{2}\right]$	Res 7,10	Res 10,11

Lest we give the impression that resolution is obscure, we offer a proof of $0^{\prime}+0^{\prime}=0^{\prime \prime}$ from the same assumptions as the long demonstration in §7.2. In doing the preparatory work for this problem, we come across an interesting property of resolution. Suppose we wish to prove α from a set of formulas β_{1} thru β_{n} which can be axioms, definitions, or previously proven theorems. We do this by demonstrating the inconsistency of $\neg\left(\beta_{1} \supset \ldots \supset\right.$ $\beta_{n} \supset \alpha$). In conjunctive normal form, this becomes $\beta_{p} \wedge \ldots \wedge \beta_{n} \wedge \neg \alpha_{0}$ This means that the premises of the demonstration do not have to be negated, and that each one can be prepared independently. Only α needs to be negated. In the following demonstration, lines 1 thru 4 are given, and line 5
is the negation of what we are trying to prove.

1. $x \neq y \quad y \neq z \quad x=z$
2. $x \neq y \quad x^{\prime}=y^{\prime}$
3. $m+0=m$
4. $m+n^{\prime}=(m+n)^{\prime}$
5. $0^{\prime}+0^{\prime} \neq 0^{\prime \prime}$
6. $(m+0)^{\prime}=m^{\prime} \quad$ Res 2,3
7. $(m+n)^{\prime} \neq z \quad m+n^{\prime}=z$
8. $m+0^{\prime}=m^{\prime}$

Res 1, 4
Res 6, 7
9.

Res 5, 8
It is very characteristic of resolution that although we can prove $m+0^{\prime}=0^{\prime}$ directly with no negations of desired results, we cannot prove $0^{\prime}+0^{\prime}=0^{\prime \prime}$ this way. The reason for this is that the latter is an instance of the former, and resolution always keeps things in their most general form. The preceding demonstration is about as efficient as one could hope for. Each line represents a bit of reasoning leading directly to the desired result.

Since the invention of resolution, a great deal of effort has gone into making it even more efficient. Resolution fits in well with many different heuristic devices used by artificial intelligence programs. It has been shown that resolution is complete under severe restrictions as to the order in which different clauses get introduced. The effect of such restrictions is to cut through the combinatorial explosiveness of having to resolve all clauses in all possible ways. When there is a model of the subject matter available, it becomes possible to use it to drive the resolution into fruitful lines of attack. There is now an entire book about resolution and the many techniques that have been invented to increase its efficiency. [Chang and Lee]

In comparing a Hilbert-type proof system with resolution, let us start with some of the differences. A Hilbert system is a linear method of deduction following precise rules and therefore subject to mechanical verification which we call proofchecking. It has more symbols than are actually needed, and at every point offers many different options. There are always different ways of expressing the same thing. Most of the design effort, including the various kinds of definitions, has gone into making it possible for a person who is inventing a proof to formalize it in a manner which approxi-
mates his own use of language.
Resolution, on the other hand, has been designed for the purpose of mechanical theorem proving. Rather than allowing for flexibility in expres sion, just, the opposite tactic is used. The input data is reduced to a canonical form as soon as possible, even at the cost of making it humanly unintelligible. The combinatorial complexity is reduced by having a single rule of inference, by keeping all assertions in their most general form, and by heuristics, all of which provide restrictions rather than introduce additional options. The result is the most powerful in-depth mechanical theorem prover available today.

We might ask what use is it? Even if further improvements resulted in a speed-up by a factor of 10^{10}, this would not be enough to give a theorem prover the appearance of "intelligence". The idea of a theorem prover as a sort of universal intelligence has been largely abandoned by people working in artificial intelligence. The usefulness of a theorem prover seems to be in filling in the,gaps left by some more intuitive process, whether that process is human or machine.

§9.5 Gentzen-Type Sybtems

Gentzen developed a system of deduction quite different in appearance from Hilbert-type systems, for the purpose of studying the properties of deductions. An exposition of Gentzen's system can be found in [Kleene §77]. We do not describe the system here, but simply comment that rather than being linear like a Hilbert deduction, a deduction in Oentien's system has the shape of a tree with the resultant theorem at the base of the tree, and a branching structure going up from this. The tip of every branch is a certain type of trivial tautology.

An interesting aspect of a Gentzen-type system, which has a certain appeal for artificial intelligence programming, is that it is highly suitable for working backwards from the goal to the given data, creating a structure of subgoals on the way. A list of subgoals may be confuestive or disjunctive, that is, either it is necessary to solve all of them, or only one of them. This sort of alternating tree is similar to a move tree in a two-person game such as chess. A Gentzen-type system would have been at least as suitable as a

Hilbert-type system for the purposes of this book, and probably more so for anyone building a real proofchecker. We have used a Hilbert-type system only because it is more familiar and easier to explain initially.

Extensive research has been done on modified Gentzen-type systems. [Yonezawa] has designed a theorem prover containing many fewer and simpler rules than Gentzen originally had. He also has restrictions on generating substitution instances that make for efficiency. Yonezawa proves that this restricted system is nevertheless complete. When one looks at this program, one gets the feeling of seeing the basic principle of resolution (substitutions kept most general) in a different form. This suggests an interesting field of study which might be called comparative proof theory.
§9.6 Decidability
A theory T is called effective if T is a recursively enumerable set. If T is an effective theory, then $T h(T)$ is a recursively enumerable set since it is theoretically possible to enumerate all deductions in T.

The theory T is called decidable if $\mathrm{Th}(\mathrm{T})$ is a recursive set. This does not follow in any way from T being a recursive or even a finite set.

Theorem 9.16

If $T \subset L$ is decidable and $\alpha \in L$, then $T \cup\{\alpha\}$ is decidable. Proof: If $T+\alpha$, then $\operatorname{Th}(T \cup\{\alpha\})=\operatorname{Th}(T)$. If $\operatorname{Tr} \neg \alpha$, then $T \cup\{\alpha\}$ is inconsistent, and $\operatorname{Th}(T \cup\{\alpha\})=L$. The interesting case is where α is independent of T. We can assume that α is a sentence. Then by the deduction theorem $T \cup\{\alpha\} \vdash \beta$ if and only if $\operatorname{Tr} \alpha \supset \beta$, and this is decidable because T is decidable.

Corollary 9.17

Every consistent decidable theory can be extended to a complete consistent decidable theory.

First order logic is called decidable if the set of all valid sentences is a recursive set.

If there is at least one undecidable theory having a finite axiomatization, then first order logic is undecidable. (In Chapter Twelve we provide such a theory.)

Problem Set 29

1. Prove corollary 9.17. (See lemma 8.1.)
2. Prove corollary 9.18.

CHAPTER TEN

INFORMAL ARITHMETIC

Preview of Chapter Ten

The study of the natural numbers is known as number theory. When we say "arithmetic", we mean the more generalized study of s-expressions including natural numbers, or possibly the study of discrete data structures in general, which we comment on briefly. The study is "informal" in the sense of being a mathematical discussion in English as distinct from a formal theory expressed in first order logic (which we study beginning in Chapter Eleven).

810.1 The Postulates of Arithmetic

Peano's postulates for the natural numbers are:

1. Zero is a number.
2. The successor of a number is a number.
3. Zero is not the succestor of any number.
4. No two numbers have the same successor.
5. Any property which is true for zero, and is such that if it is true for some number it is also true for the successor of that number, is true for all numbers.

These axioms are stated informally, and do not come with any instructions on how to reason logically from them. The notion of equality and its properties, as well as the notion of a function, and the fact that successor is a function, are also not explicitly given. In trying to reason
from such a set of axioms, it is not quite clear which assumptions that we bring to the problem are logical, set-theoretic, arithmetic, etc. That is why formal systems were developed.

The last postulate is known as the induction principle, and has always been the most controversial of them. We have already used induction in many of the proofs of theorems in this book. The notion of "property" in the induction postulate is a bit vague. In formal number theory, property is taken to mean "predicate".

The LISP postulates are a complete analogue to Peano's postulates. They even correspond in number. They are:

1. Atoms are s-expressions.
2. Cons of any two s-expressions is an s-expression.
3. Cons of two s-expressions is never an atom.
4. If α differs from β, or if γ differs from 6 , then cons of α and γ differs from cons of β and δ.
5. Any property which is true for all atoms, and is such that if it is true for α and β it is also true for cons of α and β, is true for all s-expressions.

The induction principle can be used informally on s-expressions to discuss properties of tree-type structures. For example, consider the LISP function reverse defined by:

```
reverse \([x, y]+[\) atom \([x] \rightarrow x, T \rightarrow\) cons[reverse \([c d r[x]]\),
    reverse[car[x]]]]
```

This recursive definition can be stated in English without reference to car and cdr as follows:
(i) Reverse of an atom is itself.
(ii) Reverse of the cons of two s-expressions is reverse of the second consed with reverse of the first.

From (i) it follows that reverse of reverse of an atom is itself. Now suppose that reverse of reverse of α is itself, and the same for β. Then by (ii) reverse of reverse of cons α and β is reverse of (reverse of β consed with reverse of α) which is reverse of cons of β and α. Applying (ii) again we get
that this is reverse of α consed with reverse of β which is α consed with β. This supplies the induction atep, and fram the induction principie we conclude that reverse of reverse of any s-expremesion is itself.

There are only two differenoes between the LISP postulates and Peano's postulates. One is that cons is bimary, while successor is unary. The other is that there are many atoms but only one zero. So in addition to the LISP postulate we need some wiom postalutes;

1. Every atom is either a name or a number but not both.
2. The names are in one-to-one correependence with the numbers.

Another way of putting (2) is to say that the names can be effectively enumerated.

Neither predecessor, nor car and car are mentioned in these postulates. The reagon for this is to avoid the fict that these are partial functions. However, there is no problem Introducing then as elther partially defined functions, or functions completed In an arbitrary way.

The functions plus and times are not mentioned in the theory either. If one tries to define these in the language wiredg fiven by Peano's postulates, one finds that there is no way to do thie that dote not add something more to the theory. In fact, when we formalize this theory. It turns out that there is no way to make these definitions the they are contervative.

There is no reasonable LISP analogue for plus and times. Therefore, starting from this point, the two theories diverge.

§10.2 Primitive Recursion

The reason why the defixitions of plas and times are not conservative is because they are recurwive. Remreive tuntivions do not always terminate, and, as we have seen in Chapter Five, there is no general way to decide which ones do and which ones do not. We hove not gansidered so far what happens when a recursive definition is added to a firgt arder theory. This topic is important, but needs a full and detajed treatment which we provide in Chapter Fourteen. For the moment, let us note that it is "safe" to add a recursive definition to a theory if we know that it defines a total function, but
that such definitions are not necessarily conservative. (Note that none of the definition schemas of $\$ 9.1$ allow any recursion at all.)

Because the problem of deciding which procedures compute total recursive functions is not generally deoidable, it is useful to define a subset of the recursive procedures which are easily recognizedby their restricted syntax, always define total recursive functions, and define a wide variety of important and useful functions. The set of primitive-recursive procedures meets these criteria, and any function that can be computed by a primitive recursive procedure is called a primitive recursive function. They are discussed informally here, and formally in Chapter Twelve.

The basic idea of primitive recursion is to recur in a manner which counts down, and terminates at zero. In an explicit definition of $f(n)$, f would not appear in the definition because this is "circular" or recursive. In a primitive recursive definition, $f(n)$ is defined in terms of $f(n)$, and $f(0)$ is defined explicitly. If if has more than one argument, then it is necessary to count down on only one argument. For example:
(i) The sum of m and 0 is m.
(ii) The sum of m and the successor of n is the successor of the sum of m and n.

Here the primitive recurston is on the second argument or n. If n is 0 , the definition is explicit and does not refer to the sum of anything. Otherwise, the sum of some number and the successor of n is defined in terms of the sum of that number and n.

The fact that primitive recursive definition always defines a total function is derived from the fact that counting dawnward always arrives at zero after finitely many operations.

The definitions of plus and times given in $\mathbf{8 2 . 2}$ are examples of primitive recursive definition. After these, we ean make the definitions

$$
\begin{aligned}
& m^{n}+\left[n=0 \rightarrow 1, T \rightarrow m \times m^{n^{-}}\right] \\
& \text {hyperexpt }[m, n]+\left[n=0 \rightarrow 1, T \rightarrow m^{\text {hyperexpt }[m, n]}\right]
\end{aligned}
$$

Hyperexpt[5, 3], for example, is 5^{5}.
An example of an arithmetic function that is not primitive recursive is Ackerman's function. It grows faster than any primitive recursive function.

Ackerman's function is a function of three arguments, p, mand n. If p is 0 , then it adds m and n; if p is 1 , then it multiplies them; if p is 2 , then it computes m^{n}; if p is 3 , then it hyperexponentiates, etc.

$$
\begin{gathered}
\operatorname{ack}[p, m, n]+[p=0 \rightarrow m+n, n=0 \rightarrow[p=1 \rightarrow 0, T \rightarrow 1], \\
T \rightarrow \operatorname{ack[p}, m, \operatorname{ack}\left[p ; m, n^{-}\right][]
\end{gathered}
$$

Ackerman's function belongs to the class of double recursive functions. There is a transcendental hierarchy of recursion schemas of which primitive and double recursions are merely the first two steps.

The concept of primitive recursion can be applied to definitions of s-expressions as well as mumbers. The idea here is to count downward by taking car and cdr. In a primitive recursive definition on s-expressions, the function must be defined explicitly for atomic arguments, and otherwise defined in terms of the function applied to car and/or cdr of its argument. A function of more than one argument must follow this scheme for one only argument.

The function subst is a typical example of primitive recursion. Almost every LISP function we have defined so far except for apply and its subsidiaries is also primitive recarsive. Exem proofeneck and propeval are primitive recursive, although it may talke some remarampacg of the definitions to realize this.
810.3 Other Arithmetics

We use the term "arithmetic" to mean a formal mathematical system consisting of expreasions that can be written in some finite alphabet, and subject to a grammatical description. This is sumewhat related to what a programmer would call a "data type". S-expressions, integers, arrays, and even floating point numbers can be conaidered arithmetics, but real numbers, or set theory cannot, because the theory is not about entities each of which has a standard description in some notation. Arithmetics always have countable domains.

The following question are important ten examination of any arithmetic:

1. Is there a syntactic description of the domain of objects?
2. Is there a set of basic functions and predicates such that all
computable functions and predicates on the domain are recursive in terms of the basic ones?
3. Is there an induction principle which applies to the domain?
4. Is there a primitive recursion schema on the domain?
5. Is there an axiomatization of the domain?

As an example, we examine the integers uning this syllabus. We assume that the natural numbers have already been examined.

1. An integer is either a natural number, or a natural number other than zero preceded by a minus sign.
2. All computable functions can be defined using the language of recursive functions starting only from successor, predecessor and equality. (Equality may be considered as given prior to any particular arithmetic because it is a "logical" notion.) The predecessor is essential here, and cannot be defined from successor as it can be for the natural numbers. At this point, you might try to define addition, subtraction, multiplication, the ordering relations, the predicate positive[n], and the absolute value of n.
3. There are several useful induction principles, all of which are equivalent. (i) If a property is true of 0 and inherited under successor and predecessor, then it is true for all integers. (ii) If a property is true for 0 , and inherited under successor and negation, then it is true for all integers. Any combination of a basis step and an induction step that covers all integers is a valid induction principle.
4. The most obvious primitive recursion schema is to define a function explicitly for zero, and then to define it for positive cases in terms of the function of the predecessor of the argument, and for negative cases in terms of the function of the successor of the argument. This means counting up or down, but always toward zero.
5. The equivalent of Peano's postulates seems to be: (i) Zero is an integer. (ii) The successor and predecessor of an integer are integers. (iii) The successor of the predecessor of an integer and the predecessor of the successor of an integer are both equal to that integer. (iv) Zero is not positive. (v) The successor of zero is positive. (vi) The successor of a positive number is positive. (vii) An induction principle such as 3(i) above. Without (iv) thru (vi), we could be describing a finite set of objects
arranged in a circular chain. But these axioms specify that 0 is not positive, while $0^{\prime}, 0^{\prime \prime}$, etc., are. So 0 cannot belong to this sequence.
[McCarthy] considers methods of defining arithmetics from given base sets using as basic operatione "disjoint tinion" and "cross product" on sets. He shows how the defining equation for an arithmetic answer questions 1 and 2 of our syllabus. This method could exelly be extended to provide answers for the rest of the questions also.

One's not half of two, it's two are halves of one:
e. e. cummings

CHAPTER ELEVEN

FORMAL ARITHMETIC

Preview of Chapter Eleven

The arithmetic of numbers and s-expressions discuseed in Chapter Ten is formalized into a system which consists of a theory, plus a set of rules for extending the theory by means of definitions and primftive recursive schemas. A sample of the development of the theory then follows.

§11.1 Multi-Type Logic

The use of types in first order logic ie a convenient qubreviation, and not a new theoretical concept. Formal arithmetic is, theory about sexpressions, and about numbers which are a specigl the of s-oxpregeion. We adopt the convention that variables begiminct with the letters m, $\mathrm{m}_{\mathrm{p}} \mathrm{p}$ and q are to range over numbers, while variables beginning with the letters r thru z are to range over s-expressions. We haye apready been using these conventions throughout this book. Variahles, bpginping with the letters a thru k are reserved for fature use.

When writing formal schemas, we shall det the Greek letters $\xi(x i)$ and $\zeta(z e t a)$ stand for s-expression variables, and Metat and H(nu) etand for numeric variables.

A formula having the from $\forall \eta(\alpha)$ is ant abbreviatjon for $\forall \delta$ (num[$\xi] D$ $\alpha(\xi / \eta)$), and a formula having the from Th(a)isenp nobseviation for $\boldsymbol{\pi} 5$ (num $[$ 5] $\wedge \alpha(\xi / \eta)$), where ξ is a new variable. Anopon formpla havigg numeric variables is equivalent to its closure. Eversthing wonecd to know about the use of typed variables follows from these facte; If mesimply keep in mind
the intended interpretation, we shall not go wrong.
Having assigned types to variables, it then becomes reasonable to assign types to function names, predicate names, and terms in some cases. If a function has n arguments, then it has argument types and a value type. If a predicate has m arguments, then it has m argument types. (Its value type is "truth value" or π_{0})

For the purpose of first order theory of arithmetic, we consider the following functions and predicates to be basic, and assign types to them as follows:

equal:	$S \times S \rightarrow \pi$	succesmor:	$N \rightarrow N$
atom:	$S \rightarrow \pi$	coms:	$S \times S \rightarrow S$
name:	$S \rightarrow \pi$	enum:	$N+S$
num:	$S \rightarrow \pi$		

We have now created a very precise situation in which each of these is a total function or predicate on its intended domain. This will be qufte useful in presenting the theory that followes.

We now proceed to estign typers to termm. If a term has a type according to theae rules, it whll be ealled well-typedterm. But not all terms will be well typed, and we do not intend to exciude terme that are not well typed from consideration. The thpe of a viriable the been given. Variables that do not begth with the letter m, n, p, q or p thru z are not
 other object is s-expression. $\left.\| \varphi r_{1}, \ldots, r_{n}\right]$ is a term such that for each i, if the i-th argument type of φ is numeric, then \boldsymbol{T}_{i} in numeric, and if the i-th argument type of φ is s-expression, then the type of T_{i} felther s-expression or numeric, then the entire term is well typed, and its type is the value type of φ. Otherwise, the term is not well typed. Wedan nteo define atomic formulas to be well typed in the same munner:

If we were working with more than theee two types, the same principle would apply. Some typer are sub-types of otarers the sense that all numbers are s-expressions. That bemg the case, the i-th argument term of such a term should be either the i-th argument type of the main function of the term, or a sub-type of that type.

These conventions allow us to say that a term such as length $[x]+1$ is a numeric term because length is numeric valued. A term such as car[x]+ cadr[x] is not well typed, but it might still be meaningful, depending on whether or not x is a list of numbers.

The conventions on typed variables affect the idea of substitution. Q1 and Q2 need to be modified. The following rules are valid for substitution on a numeric variable:

Q1a: $\quad \forall \eta(\alpha) \supset \operatorname{num}[\tau] \supset \alpha(\tau / \eta)$
Q1b: $\quad \forall \eta(\alpha) \supset \alpha(\tau / \eta)$ where τ is numeric
Q2a: $\quad \alpha(\tau / \eta) \supset$ num $[\tau] \supset \square \eta(\alpha)$
Q2b: $\quad \alpha(\tau / \eta) \supset \exists \eta(\alpha)$ where τ is numeric

Examples:
Q1a: $\quad \forall n\left(n^{\prime}>0\right) \supset \operatorname{num}[\operatorname{car}[x]] \supset \operatorname{car}[x]^{\prime}>0$
Q1b: $\quad \forall n\left(n^{\prime}>0\right) \supset 3^{\prime}>0$

The definition schemas $X, F, K, P F$ and $P K$ of 89.1 get modified appropriately. We shall examine the situation for Rule F; the rest are similar.

Suppose that we have deduced the formula $\pi_{1} \eta(\alpha)$. There are two abbreviations in use here, and just as a reminder, we write this formula in its expanded form.

$$
\xi \xi(\operatorname{num}[\xi] \wedge \alpha(\xi / \eta) \wedge \forall \zeta((\operatorname{num}[\zeta] \wedge \alpha(\zeta / \eta)) \supset \xi=\zeta))
$$

Let the formula α have only η, ξ_{1} thru ξ_{n} and ν_{1} thru ν_{m} free. Let φ be a new name. Then we can write $\alpha\left(\varphi\left[5_{1}, \ldots, \xi_{n}, \nu_{1}, \ldots, \nu_{m}\right] / \eta\right)$. The function φ will have a numeric value type because η is a numeric variable, and will have n s-expression arguments followed by m numeric arguments. There is, of course, no reason to list them in this order, but whatever order is used in the term $\varphi[. .$.$] will determine the argument type description of \varphi$ once and for all.

§11.2 Axioms for the Theory of Arithmetic

The axioms are listed in groups with some discussion when necessary.

$$
\text { Group A: The theory of equality, } E_{L}
$$

This group includes the three equivalence axioms for " $=$ ", and an axiom for every function and predicate name that will ever be introduced into the theory. (See definition 6.11.)

Group B: Peano Arithmetic

These axioms correspond to Peano's postulates 2 thru 5. For postulate 1 , see the computation schemax. Greup G.

Schema C: Primitive Fecursion on the Nataral Numbers

$$
\left.\begin{array}{l}
\varphi\left[\xi_{1} \ldots \ldots \xi_{n}, \theta\right)=\tau_{1} \\
\varphi\left(\xi_{1} \ldots \ldots=\xi_{r}, \eta\right)=\tau_{2}
\end{array}\right\}
$$

where (i) φ is a new name, (ii) τ_{1} has no occurrences of φ, and no variables other than the S_{i} (iii) every occurrenee of φ in τ_{2} is of the form $\varphi[\ldots, n)$ and τ_{2} has no variables other than the ξ_{i} and η, and (iv) τ_{1} and τ_{2} are well typed. Some of the ξ_{i} may be of numeric type, and the argument 7 dow not have to be placed last.

The function φ defined in this schema widl be of numeric value type if both τ_{1} and τ_{2} are of mumeric type, and will have s-expression value type if one or both of the τ_{i} are s-expresetion typed. The argument types of φ come from the types of the ξ_{i}, and the type of η which is numeric.

The primitive recursion schemas for " $\boldsymbol{q}^{\prime \prime}$ and "x" are part of the basic theory. They are:

$$
\left.\begin{array}{l}
m+0=m \\
m+n^{\prime}=(m+n)^{\prime}
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
m \times 0=0 \\
m \times n^{\prime}=m+(m \times n)
\end{array}\right\}
$$

Group D: S-Expression Arithmetic

D1: ᄀatom[cons[$x, y]$]
D2: $\quad \operatorname{cons}[w, x]=\operatorname{cons}[y, z] \supset(w=y \wedge x=z)$
D3: $\forall \xi($ atom $[\xi] \supset \alpha) \supset \forall \xi \forall \zeta(\alpha \supset \alpha(\zeta / \xi) \supset$ $\alpha($ cons $[\xi, \zeta] / \zeta)) \supset \forall 5(\alpha)$

Schema E: Primitive Recursion on the S-Expressions

$$
\left.\begin{array}{l}
\operatorname{atom}[\zeta] \supset \varphi\left[\xi_{1}, \ldots, \xi_{n}, \zeta\right]=\tau_{1} \\
\varphi\left[\xi_{1}, \ldots, \xi_{n}, \operatorname{cons}\left[\zeta_{1}, \zeta_{2}\right]\right]=\tau_{2}
\end{array}\right\}
$$

where (i) φ is a new name, (ii) τ_{1} has no occurrences of φ, and no variables other than the ζ_{i} and ζ, (iii) every occurrence of φ in τ_{2} is either $\varphi\left[\ldots, \zeta_{1}\right]$ or $\varphi\left[\ldots, \zeta_{2}\right]$ and τ_{2} has no variables other than the ξ_{i}, ζ_{1} and ζ_{2}, and (iv) τ_{1} and τ_{2} are well typed.

The comment about the type description of φ made for Schema C holds for Schema E, except that the recursion variable here is always of s-expression type.

> | | Group F: Atoms |
| :--- | :--- |
| F1 | name $[x] \supset \operatorname{atom}[x]$ |
| F2 | num $[x] \supset \operatorname{atom}[x]$ |
| F3 | atom $[x] \supset($ name $[x]=\neg \operatorname{num}[x])$ |
| F4 | name $[\operatorname{enum}[n]]$ |
| F5 | name $[x] \supset \lim _{1} n(\operatorname{enum}[n]=x)$ |

Group G: Computation Schema

All true ground literals formed from the basic functions listed in §11.1, and the functions predecessor, plus, times, car, cdr, and their compositions.

This schema is for the purpose of saving us time, and to enable us to make free use of numbers and s-expressions. Without this schema, the theory would be about the numerals $0,0^{\prime}, 0^{\prime \prime}$, etc., but not about $1,2,3$, etc. All such literals can be evaluated rapidly by a computer program.

Examples:

```
2+2=4
2+2\not=5
\negatom[(A B C)]
cons[A, (B C)] = (A B C)
num[cadr[(2 3)]]
~num[A]
```


Group H: Embedding

If the theory of s-expressions is embedded in a larger theory in which there are things that are not s-expressions, then we need a predicate sexpria] having universal scope and true for s-expressions only. (The variable " a " is not of s-expression type.) We need to add sexpr to the computation schema, and we need two other axioms, namely: sexpr[cons[$x, y]]$, where x and y are s-expression variables, and atom[a] $>\operatorname{sexpr}[a]$. This situation presents itself when we consider a second order theory in which there are sets of s-expressions.

In addition to these axioms, we need definition schemas. In 89.1 , we defined schemas $X, F, K, P F$ and PK. Schema X is really a special case of schema K in which $k=1$, and γ_{1} is T (true). These form a part of the theory of arithmetic, with suitable allowances being made for types.

Definitions made with quantifiers do not, in general, define functions that are computable. To define functions by explicit schemas that always result in computable functions, we must introduce as special cases of F, K, PF and PK the rules CF, CK, CPF and CPK. These have the same schemas as $F, K, P F$ and PK, except that no quantifiers are permitted in any of the formulas of these "computable" sohemas. For example, CF is the rule that permits $\alpha\left(\varphi\left[\xi_{1}, \ldots, \xi_{n}\right] / \zeta\right)$ after having deduced $\exists_{1} \zeta(\alpha)$ where α has no quantifiers.

We can now say something about each function and predicate name
defined in the theory of arithmetic by examining its history of antecedent definitions. When we do this, we find that some functions have been totally defined, while others have been partially defined. Some are computable from the definitions, and some are not. These two combine in all four ways. For example, a function may be only partially defined, but the definition gives an effective method for deciding whether it is defined and computing it for those cases in which it is defined.

We have defined eight definition schemas, not counting schema X which is a special case of schema K. The way in which these schemas preserve computability and totality is summarized as follows:

| Schema: | F | K PF PK CF CK CPF CPK |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Preserves totality: | yes yes no no yes yes no no | |
| Preserves computability: no no no no yes yes yes yes | | |

Definition 11.1

A basic function (for the first order theory of arithmetic, not for computability) is equal($=$), successor('), cons, atom, num, name or enum.

A primitive recursive function is a fumetion that may have the primitive recursion schemas, and CK in its history of definition, but no other definition schemas.

A total function has only the primitive recursion schemas, and the definition schemas F and K in its history. (CF and OK are eppecial cases of these.)

A computable pantial function has only the primitive recursion schemas, and CPF and CPK in its history. (CF and CK ane special cases of these.) The special quality of these functions is that it is possible to compute the domains of definition, and to compute the values for specific arguments within these domains.

A total computable function has only the primitive recursion schemas, CF and CK in its history of definition.

It is evident that the primitive recursive functions are total computable functions by this classification schema.

The language used in definition 11.1 is a bit sloppy. When we used the word "function", what we really meant was "function name or predicate name". What we have just done is to introduce a classification schema for the names introduced into the theory of arithmetic by the various definitional schemas. The fact that a given name is classified as "computable" does indeed mean that it corresponds to a computable function, but a function name not classified as "computable" may also correspond to a computable function, although the method used to define it does not of itself provide a computational procedure.

A name classified as "computable" but not "total" has the peculiarity that there is an effective means of deciding whether or not it is defined for a given set of arguments, and then there is an effective means of computing the value when it is defined. This is more than can be said for partial recursive functions in general. This special cateogry ia useful for predecessor, subtraction, division, car and cdr, functions defined oniy on liets, functions defined only on lists of numbers. etc.

We now have a developing system with many built-in conveniences for making definitions. We have been calling th a "theory", but it is not strictly speaking a theory, but rather a theory, and a set of rules for creating extensions. Once a certain extension is created, it restricts the use of a certain name which then camnot be used to create some other extension.

The system we have just described has a model which is the domain of s-expressions, with the bastc functions having their standard interpretation. Each extension has a corresponding enlargement of the model. If the extension is total, then a uniquely defined fariction or predicate is added to the model. If the definition is not total, then there may not be a unique enlargement of the model, but there will be at least one enlargement.

As was already mentioned, the total definition schemas are conservative, and in fact eliminable, but the primitive recursion schemas are not so. This raises the question as to whether there is some language with a finite vocabulary that is adequate to describe the theory. If we restrict ourselves to the numeric part of the theory, then Gbdel answered this question by showing that the only instances of the primitive recursion schema needed are those for " + " and " x ", and that once these formulas have been given, all
other primitive recursive functions can be defined using only rules F and K. So formal number theory is presented in the language $\{=, 0,1, x, x\}$. The proof of this fact involves coding finite sequences of numbers into single numbers, and then showing that there is a function definable from + and x that can extract the $i-t h$ component of such a sequence.

§11.3 Development of the Theory

The purpose of this section is to provide some concrete examples of the system specified in 811.2 . The first part is about number theory, and the second part is about s-expression theory.

In the development that follows, many shortcuts will be used to make the formal deductions less tedious. We shall assume various properties of propositional logic, quantifiers, variables, and equality, including symmetry, transitivity and replacement. However, every detail involving the properties of arithmetic will be written out in full, i. e., all references to the axiom system we have just presented will be completely explfit. The distinction between properties of logic and equality on the one hand, and properties of arithmetic on the other can be made very precise.

We start out by repeating the following definitions:
$\left.\begin{array}{ll}\text { D1: } \quad+: N \times N \rightarrow N \quad & m+0=m \\ & m+n^{\prime}=(m+n)^{\prime}\end{array}\right\} \quad$ Schema C

Th1: $\quad 0+m=m$
The proof from almost identical axioma has already been given.
Th2: $\quad m^{\prime}+n=(m+n)^{\prime}$

1. $m^{\prime}+0=m^{\prime}$

Instance of D1
2. $m+0=m$

D1
3. $m^{\prime}+0=(m+0)^{\prime}$

Replacement 1,2
(4) 4. $m^{\prime}+n=(m+n)^{\prime}$

Assume
5. $m^{\prime}+n^{\prime}=\left(m^{\prime}+n\right)^{\prime}$

Instance of D1
(4)
6. $m^{\prime}+n^{\prime}=(m+n)^{\prime \prime}$

Replacement 4, 5
(4) 7. $m^{\prime}+n^{\prime}=\left(m+n^{\prime}\right)^{\prime}$

9. $\left(m^{\prime}+0=m^{\prime}\right) \supset \forall n\left(m^{\prime}+n=(m+n)^{\prime} \supset\right.$ $m+n=(m+n))\rangle$
$\forall n\left(m^{\prime}+n=(m+n)^{\prime}\right)$
10. $m^{\prime}+n=(m+n)^{\prime}$

Replacement 6, D1
Discharge 4,7

Instance of B4
From 1,8,9

Problem 30

1. Th3: $\mathrm{m}+\mathrm{n}=\mathrm{n}+\mathrm{m}$
2. Th4: $0 \times \mathrm{m}=\mathrm{m}$
3. Demonstrate $m \neq 0 \supset \exists_{1} n\left(n^{\prime}=m\right)$. Then predecessor can be defined by $\mathrm{m} \neq 0 \supset \mathrm{~m}^{-1}=\mathrm{m}$.

From here, one may proceed to prove the commutivity of multiplication, the associativity of addition and multiplication, the distributive laws, and then move into the area of primes and factoring.

Because this is a first order theory, one cannot talk about sets of numbers, but only individual numbers. For example, one cannot state directly, let alone prove, that every number can be factored uniquely except for the order of the factors, into prime factors. However, one can state this indirectly because the set of factors of any number is always a finite set. It is possible to state, and to prove, that for every number there is a list of primes, unique except for order, whose product is that number.

Every non-empty set of numbers has a least member, but this cannot even be stated indirectly so as to apply to all infinite sets of numbers. A related concept is to say that any predicate satisfied by at least one number has a least number that satisfies it. If ψ is any numeric predicate, then we can prove as a theorem $\mathbb{G}(\psi[n]) \supset \operatorname{Gn}(\psi[n] \wedge \forall m(\psi[m] \supset m \geq n))$. However, the statement "This theorem schema is true for any ψ," lies outside the scope of first order logic because it informally quantifies on a predicate, whereas first order logic quantifies on variables only.

Second order logic quantifies over first order predicates. However, there is no effective method of deduction for second order logic which is semantically complete in the sense that if $T \neq \alpha$, then $T \vdash \alpha$. An alternative to
second order logic is to stay with first order logic, and to develop a second order theory whose intended model has a domain of two types, numbers and sets of numbers. (We do this in Chapter Fifteen, only for s-expressions and sets of s-expressions.) But there is no escaping the essential incompleteness, which in the latter case presents itself as an incomplete theory rather than as an incomplete logic. Still, second order number theory is more powerful than first order number theory. In fact, second, third and even fourth order theories are in constant use by mathematicians, and their formalization is a necessity that must be faced. For example, one may speak of real numbers, functions of real numbers, and families of functions of real numbers, the latter being a third order concept. Such investigations lead us to the study of axiomatic set theory.

In the development of first order s-expression theory, we find it convenient to introduce the infix " $*$ " to represent cons. We shall have it associate from right to left, so that $A * B * N I L=A *(B * N I L)=(A B)$. The function append which is familiar to LISP programs will be represented by a colon(:). Its primitive recursive definition is:
D5: (:): $\left.S \times S \rightarrow S \quad \begin{array}{l}\text { atom }[x] \supset x: z=z \\ \left(x^{*} y\right): z=x^{*}(y: z)\end{array}\right\}$

Schema E

Th6: atom $[\mathrm{x}] \supset \mathrm{x}:[\mathrm{y}: \mathrm{z}]=[\mathrm{x}: \mathrm{y}]: \mathrm{z}$
(1) 1. atom $[\mathrm{x}]$
2. atom $[x] \supset x:[y: z]=y: z$
(1) 3. $x:[y: z]=y: z$
(1) 4. $x: y=y$
(1)
5. $x:[y: z]=[x: y]: z$
6. atom $[x] \supset x:[y: z]=[x: y]: z$

Assume
Instance of D5
Modus ponens 1,3
Modus ponens 1, D5
Replacement 4, 3
Discharge 1,5

Problem 31

1. Th7: $x:[y: z]=[x: y]: z$. Hint: It is important to choose the correct induction instance. If we induct on x, then Th6 is the basis step. Show that if $u:[y: z]=[u: y]: z$ and $v:[y: z]=[v: y]: z$, then $\left[u^{*} v\right]:[y: z]=\left[\left[u^{*} v\right]: y\right]: z$.
2. Define the partial computable functions car and cdr.

The theory of s-expressions has no standard curriculum, unlike number theory. At this point, one might formalize notions of permutation, combination, rotation, etc., or one might define sublis, and develop formally the theory of substitution presented in §9.3.

CHAPTER TWELVE

RECURSION AND DEDUCTION

Preview of Chapter Twelve

Starting with this chapter, we unite two subjects which have been developed more or less independently until now. In Chapters Two and Five we developed the language of recursive functions, which is a language for describing formal computations on s-expressions. The notion of recursion is shown to be absolute, and completely independent of this method of defining it, because, by Turing's and Church's theses, it is identified with effectively computable.

In Chapters Six thru Eleven, we have developed the subject of first order logic as a language for making assertions, and proving consequences of these assertions, and then particularized this to the theory of s-expressions. The only relations between deduction and recursion that we have established so far are that deduction is subject to mechanical verification, i. e., "proofcheck" is recursive, and that certain types of definition within first order arithmetic provide recursive descriptions.

There are two important questions about the relation between deduction and recursion that we consider in the rest of the book. The first is the problem of representing, and discussing recursive functions or effective procedures within first order logic. The second is the problem of reducing deduction to computation in routine cases. In this chapter, we begin with the first of these questions by "representing" reeursive functions in arithmetic.
§12.1 Expressibility and Representability
In this chapter, let us consider the theory of arithmetic as consisting
only of those function and predicate names that we classified as "total" in Chapter Eleven. These are the names that necessarily lead to unique model extensions because of their definitional history. Since the standard model for formulas in this language is unique, we can speak of a formula as being either "true" or "false" according to whether or not this model satisfies it. There is no middle ground. (we are not clatiming that there is an effective procedure for deciding which formulas are true and false, only that each one must be either true or false.)

Definition 12.1
If \mathcal{F} is a predicate in the sense of being a mapping from S^{m} into π_{0} then it is an arithmetic predicate if there is an $\mathrm{m}-\mathrm{ary}$ predicate name ϕ that can be defined in the theory of arithmettc such that for any s-expressions σ thru $\sigma_{m}, \tilde{(}\left(\sigma_{1}, \ldots . \sigma_{m}\right)$ is true if and only if $\varphi \rho_{1}, \ldots, \sigma_{m}$ Is true.

For any formula α, we write At α to mean that there is a deduction of α from the theory of arithmetic. A is understood to mean the theory consisting of all the axioms ant axiom shemas discaured in Chipter Eieven, and the definitions and primitive recursion echembe mecestary to define all the function and predicate names in α. This is not the most satiafactory notation, because it does not fully specify A. But lit will not lead us into error if we are aware of this.

Definition 12.2

The predicate $\tilde{\psi}$ is expressible if it is pagaible to define a predicate name ψ in arithmetic such that for any s-expression σ_{1} thru σ_{m} if $\tilde{\psi}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ is true than $\left.A r \phi \sigma_{1}, \ldots . \sigma_{m}\right]$ and if $\tilde{\psi}\left(\sigma_{1}, \ldots . \sigma_{m}\right)$ is false, then $A+\neg \psi\left[\sigma_{1}, \ldots, \sigma_{m}\right]$.

The $n-a r y$ function $\tilde{\varphi}$ is repnesentable if it is possible to define a function name φ in arithmetic such that for any s-expressions σ_{1} thru σ_{n+1}, if $\tilde{\varphi}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sigma_{n+1}$, then Atø[$\left.\sigma_{1} \ldots \ldots \sigma_{n}\right]=\sigma_{n+1} \sigma_{1}$

The notions of arithmetic, expressible and representable, may also be relativized to functions and predicates having numeric arguments or values.

Corollary 12.3

All expressible predicates are arithmetic.
All expressible predicates and representable functions are recursive.

The effectiveness of the theory A, and the fact that the theorems of an effective theory are recursively enumerable are a sufficient proof of effectiveness. Keep in mind that for a procedure to define a total function is not the same thing as our being able to prove that it defines a total function.

§12.2 Primitive Recursion

Corresponding to the definition of primitive recursive functions in the system A, there is a subset of the language of recursive function definitions that leads to primitive recursion. We list the corresponding schemas side by side:

Schema C:

$$
\left.\begin{array}{l}
\varphi\left[\xi_{1}, \ldots, \xi_{n^{\prime}}, 0\right]=\tau_{1} \\
\varphi\left[\xi_{1}, \ldots, \xi_{n^{*}} \eta^{\prime}\right]=\tau_{2}
\end{array}\right\} \quad \varphi\left[\xi_{1}, \ldots, \xi_{n^{\prime}} \eta\right]^{+}\left[\eta=0 \rightarrow \tau_{1}, T \rightarrow \tau_{2}\left(\eta^{-} / n\right)\right]
$$

Schema E:

$$
\left.\begin{array}{l}
\operatorname{atom}[\zeta] \supset \varphi\left[\xi_{1}, \ldots, \xi_{,} \zeta\right]=\tau_{1} \\
\varphi\left[\xi_{1}, \ldots, \xi_{n}, \zeta_{1} * \xi_{2}\right]=\tau_{2}
\end{array}\right\} \begin{array}{r}
\varphi\left[\zeta_{1}, \ldots, \xi_{n}, \zeta\right]+\left[\operatorname{atom}[\zeta] \rightarrow \tau_{1}\right. \\
\left.T \rightarrow \tau_{2}\left(\operatorname{car}[\zeta] / \zeta_{1}, \operatorname{cdr}[\zeta] / \zeta_{2}\right)\right]
\end{array}
$$

Rule CK:

$$
\left.\begin{array}{l}
\gamma_{1} \supset \psi\left[\xi_{1}, \ldots, \xi_{m}\right] \equiv \alpha_{1} \\
\ldots \\
\gamma_{k} \supset \psi\left[\xi_{1}, \ldots, \xi_{m}\right] \equiv \alpha_{k}
\end{array}\right\} \quad \psi\left[\xi_{1}, \ldots, s_{m}\right]+\left[\gamma_{1} \rightarrow \alpha_{1}, \ldots, \gamma_{k} \rightarrow \alpha_{k}\right]
$$

and

$$
\left.\begin{array}{l}
\gamma_{1} \supset \varphi\left[s_{1}, \ldots, s_{n}\right]=\tau_{1} \\
\ldots \\
\gamma_{k} \supset \varphi\left[s_{1}, \ldots, s_{n}\right]=\tau_{k}
\end{array}\right\}
$$

$$
\varphi\left[\xi_{1}, \ldots, \xi_{n}\right]+\left[\gamma_{1} \rightarrow \tau_{1}, \ldots, \gamma_{k} \rightarrow \tau_{k}\right]
$$

The restrictions for Schemas C and E, and Bule CK are given in $\oint 11.2$ and $\delta 9.1$, respectively. In particular, there are no quantifiers anywhere in these schemas, and it must be provable that exaetiy one of the γ_{i} must hold. The definitions in the right column define the subciass of the recursive functions that are the primitive recurnive functions.

Theorem 12.4
All primitive recursive predicates are expressible, and all primitive recursive functions are representable. Proof: By nested induction. The outer intuotion is on the length of the definition history. The basis of the inductionte that the bagic functions are representable. This follows from the computation schema, Group G. The induction step is to show that for each schema, if all the preceding definitions are representable, then it is representable also.

For Rule CK, the fact that any ground instenice of the schema can be proven or refuted follows from the induction hypopetis, and the replecement of equal terms and formulas, since there are no varlables or quantifiers to deal with. For the schemas C and E, there ia also an inner inchetion needed. The preceding method will work only for tre cape that $\eta=0$ in Schema C, or atom[[] in the case of Schema E. But thit is the basis for an induction on the natural numbers or the s-expressions whereby ifc $[\ldots, \ldots]$ can be represented, then $\varphi\left[\ldots, \eta^{\prime}\right]$ can be represented, or if $\varphi\left[\ldots, \zeta_{1}\right]$ and $\varphi\left[\ldots, \zeta_{2}\right]$ can be represented, then $\varphi\left[\ldots, \zeta_{1} * \zeta_{2}\right.$] can be represented.
§12.3 The Incompleteness of Arithmetic
We are now able to demonstrate that the theory of arithmetic is incomplete. This is not in itself surprising, because we have not investigated the axioms presented in $\$ 11.2$ very seriously, and there is no reason to believe that they are sufficient to prove everything that we would like to be able to prove about arithmetic. However, the heompleteness theorems will apply to any attempt to strengthen these axioms also. We prove incompleteness in three different ways.

There is a primitive recursive predicate aproof $[x, y]$ which is true if and only if x is the s-expression translation of a formula α in the system A, and y is the s-expression translation of a deduction that proves α in A.

We do not offer a formal proof of lemma 12.6 which would have to begin by writing out such a proofchecker. By now, you should be aware that if the amount of "work" that is involved in evaluating a recursive function is bounded exponentially by the size of its argument, then it will be primitive recursive.

In order to be able to assert meaningfully that Ar α, we must make sure that the names used in α have the meaning that we intend. We shall say that a sequence of lines as in a deduction determines α if every name appearing in α except for the basic names is totally defined in this sequence. Suppose λ is the s-expression translation of a sequence that determines α. Then if there is some s-expression μ such that aproof $\left[\lambda: \mu, \alpha^{*}\right]$ is true, then we can reasonably assert that α has been proven. (The symbol ":" means append, and μ is the continuation of a deduction that begins with λ. $\alpha *$ is the s-expression translation of α.)

The predicate aproof, or something similar to it, is what GBdel called "the arithmetization of metamathematics", meaning that we can interpret an arithmetic fact, namely that the predicate aproof is true for certain arguments, as an assertion about the provability of some formula.

The key to GBdel's incompleteness theorem is that the arithmetization of metamathematics allows us to create a sentence which asserts "I am not provable in arithmetic." If this formula is provable in arithmetic, then it is not true, and so arithmetic is capable of proving things that are false. If the formula is refutable in arithmetic, then if arithmetic is true, it is provable, and so again we have deduced something false. So if arithmetic is true in the sense that the standard model satisfies it, then it is incomplete, and this sentence is true but neither provable nor refutable.

Theorem 12.7 (GBdel's Incompleteness Theorem)
The system A is incomplete, in the sense that there is a formula β
such that neither $A \vdash \beta$, nor $A \vdash \neg \beta$.
Proof: The primitive recursive function subquote is defined as follows:

> subquote $[x, y, z] \leftarrow[$ atom $[z] \rightarrow[y=z \rightarrow$ list [QUOTE, $x], T \rightarrow z]$, car $[z]=$ QUOTE $\rightarrow z, T \rightarrow$ subquote $[x, y$, car $[z] \beta$ subquote $[x, y, \operatorname{cdr}[z]]]$

Let λ be an s-expression translation af a determining sequence for aproof, append(:), and subquate. Consider the formulas

$$
\alpha: \quad \neg \mathbb{T} x(\operatorname{aproof}[\lambda: x, \text { subquote }[y, Y, y]])
$$

Its translation is the s-expression:

α^{*} : (NOT (EXISTS X (APROOF (APELED (QUOTE λ) X) (SUBQUOTE Y (QUOTE Y) YH))

α^{*} is a genuine s-expression, and the only thing that prevents our writing it out in full is that we have not written a program for aproof, and then converted it into a sequence of primitive recuralve definttons in A. This would make the s-expression λ perhaps two or three written pages in length.

Now consider the formulac
$\beta: \neg \mathcal{F}\left(\right.$ aproof $\left[\lambda ; x\right.$, subquote $\left.\left[\alpha^{*}, X, \alpha^{*}\right]\right)$
Its translation is the s-expression:

β^{*} : (NOT (EXISTS X (APROOF (APPEND (QUOTE λ) X) (SUBQUOTE (QUOTE α^{*}) (QUOTE Y) (QUOTE α^{*}))))

β is a sentence containing the ground term subquote[$\left.\alpha_{*}^{*}, \mathrm{Y}, \alpha^{*}\right]$. This term can be evaluated using the definition of subquote, and the value turns out to be the s-expression $\beta \%$. Since subquote is primitive recursive, it is representable, and therefore Arsubquote $\left.a^{*}, \lambda, a^{*}\right]=\beta^{*}$. Then by replacement of equal terms, we have:

$$
\text { (*) } \quad A \vdash \beta \equiv \neg \mathbb{G} x\left(\operatorname{aproof}\left[\lambda: x, \beta^{*}\right]\right)
$$

Now suppose that β as determined by λ were provable in A. Then we could write out such a deduction, and code this deduction into an s-expression beginning with λ. Call the tail of this deduction μ. Then since it is a valid
deduction, aproof $\left[\lambda: \mu, \beta^{*}\right]$ would be true. Since aproof is primitive recursive and therefore expressible, this formula would also be provable, and from it and the formula (*) we could deduce $\neg \beta$. Therefore arithmetic would be inconsistent.

Suppose on the other hand that $\neg \beta$ could be proven in A. Then we could prove $\exists_{x}($ aproof $[\lambda: x, \beta *]$ from this and $(*)$. Assuming that the standard model satisfies arithmetic, there must be some s-expression μ such that aproof $\left[\lambda: \mu, \beta^{*}\right]$ is true. Translating $\lambda: \mu$ back gives us a deduction of β, so once again A would be inconsistent.

Assuming that A is a consistent system, and that the standard model for the s-expressions satisfies A, then we must conclude that β is neither provable nor refutable from A.

This proof mirrors accurately the construction used by Gbdel in his proof which was for the theory of natural numbers in the language $\{=, 0,1,+, x\}$. However, his reasoning about this construction was quite different because he did not assume that arithmetic was necessarily consistent, and since he was restricting himself to finitary mathematics, the concept of a standard model could not be used. What he proved was that either arithmetic is incomplete or else it is either inconsistent or at least ω-inconsistent, which means that there is some formula α such that $\operatorname{Argx}(\alpha)$, yet $A \vdash \neg \alpha(0 / x), \neg \alpha\left(0^{\prime} / x\right)$, $\neg \alpha\left(0^{\prime \prime} / \mathrm{x}\right)$, etc.

At first, one might think that this incompleteness theorem indicates that the theory A is too weak and should have some stronger axioms. For example, we might add β as an additional axiom, since it is true but unprovable from A. It turns out, however, that the incompleteness of arithmetic has nothing to do with this particular choice of a set of axioms. Any true, effective extension of A will also be incomplete.

To show this, let B be any true, effective extension of A. The effectiveness of B means that its axioms must at least be recursively enumerable. From this, it follows that there is a primitive recursive predicate bproof[x, y] which is true if and only if x is a proof of y in the theory B. Bproof is expressible (in A) because it is primitive recursive. It is expressible in B because B is a consistent extension of A, and so the incompleteness proof can be repeated in B, generating a formula undecidable in B.

It is not even necessary to arithmetize deduction in order to show that arithmetic is incomplete. It is sufficient to arithmetize computation. Starting from the definition of apply, we define the function applyk[x,y,p] which has the property that if apply $[x, y]=z$, then there is a number p_{0} such that if $p \geq p_{0}$, then applyk $[x, y, p]=$ list[$\left.z\right]$, but if $p<p_{0}$, then applyk[$\left.x, y, p\right]=$ NIL. If apply[x, y] is undefined, then for all $p, a p p l y k[x, y, p]=$ NIL. One way to define applyk is to add an extra argument to every subsidiary function of apply. Each time a function is called, this argument gets decremented. If it ever gets down to zero, then the computation is interrupted, and the value is NIL. It is also necessary to modify every function so that all explicitly undefined conditions get checked out, and so that a value of NIL gets referred to the top level of the computation promptiy.

Lemma 12.8
Applyk is a primitive recursive function.

Alternate Proof that Arithmetic is Incomplete: If arithmetic were complete, then every arithmetic predicate would be expressible, and hence recursive. We know that the predicates halt and total, defined in Chapter. Five, are not recursive. They are, hoveyer apithmetic hecmuet they can be defined by:

```
halt[x,y] \equivGzZp(applyk{x,y,p)= list(z})
```



```
Rule X
Rule X
```

Therefore arithmetic is incomplete.

Problem Set 32

1. Let A be the theory of arithmetic including the definitions of applyk and halt. Show that there is a finite set of axinma $T_{\text {in }} A$ such that if T_{1} and τ_{2} are ground terms containing no constants other than 0 , and no functions other than successor, enum and cons, then if halt $\left[T_{1}, T_{2}\right]$ is true, then Trhalt $\left[\tau_{1}, \tau_{2}\right]$.
2. Show that first order logic is undecidable. (See corollary 9.18.)

There are still further ways of demonstrating that arithmetic is incomplete, and each one illuminates a different aspect of the problem. Gठdel's proof and the proof of Tarski's theorem in Chapter Thirteen are related to Epimenides' paradox. Epimenides was a Cretan philosopher of the fifth century B. C. who pondered the truth of the assertion: "This very sentence that I am now speaking is a lie." Epimenides was dimly remembered by the Apostle Paul who wrote the famous slander: "One of their very number, a prophet of their own said, 'Cretans are always liars, hurtful beasts, idle and lazy gluttons.' " (Epistle to Titus, I, 12)

Another approach to incompleteness has been developed by [Chaitin] starting from what is known as Berry's paradox, which goes something like this: "Consider the smallest number that takes at least one hundred words to describe." If we ignore for the moment the problem of what is a valid "description" of a number, it is evident that some very large numbers can be described in very few words; for example "one billion hyperexponentiated one billion times". Among all the possible descriptions for any number, there must be one or more having the least number of words. So associated with each number is a number which is the word count of its shortest description(s). The smallest number for which this count is at least one hundred is the number that is referred to in the quoted sentence above. Yet that sentence which has less than a hundred words "describes" the number in question. This is the paradox.

Chaitin replaces the ambiguous concept of "shortest description length in English" with the precise notion of "information theoretic complexity". The information theoretic complexity of an expression is the shortest instruction that can be given to a computer that will cause the computer to print out the expression in question. Obviously, the number one billion hyperexponentiated to the one billion is not very complex because a program to generate it is quite trivial. Information theoretic complexity does not consider the amount of time taken by the computer, or the amount of intermediate storage required, unlike the "complexity" of current complexity theory research. One may argue that the definition of information theoretic complexity is arbitrary because it depends on the choice of computer. This is true, but since any universal computer can simulate any other one, the
difference in complexity as measured by one computer and another cannot differ by more than a fixed constant, and this can be kept manageably small if the computers in question are of fairly simple description themseives.

Let us fix the definition of complexity more precisely. The function size[x], the number of characters required to print the s-expression x, is a recursive function. We now define the complexity of an s-expression x as being the least size of any s-expression y such that apply[y, NIL] $=x$. The complexity of the s-expression which is a list of the first billion prime numbers is evidently quite moderate, because we can easily write a program to generate it, and cast this program in the form of a recursive function of no arguments. The complexity of a list of one billion random numbers would be large, however, somewhat the same order as the size of the list itself. The complexity of any s-expression cannot be more than slightly larger than its own size, because x can be generated by the function (FN () (QUOTE x)).

The function complexity[x] can be defined in arithmetic using Rule F because the following formula is provable.

We are now in a position to formalize Berry's paradox. Let $g[n]$ be a recursive function that enumerates all theorems of arithmetic with applyk, size and complexity defined. G is not all that complex in itself. It must contain the deduction rules for first order logic, the axioms of arithmetic, the definition of applyk, and some enumeration machinery. Consider the first formula in the enumeration $g[0], g[1] \ldots$ that is of the form complexity $[\alpha]>1,000,000,000$ for some s-expression α. If arithmetic is true, α cannot be generated by any program of moderate length, yet we have just described such a method which consists in enumerating the function g until we come to such a formula. This process can easily be formalized into a function of no arguments. The only way out of the contradiction is to assume that no formula of the form complexity $[\alpha]>1,000,000,000$ will ever be generated in the sequence $g[0], g[1], \ldots$ But this sequence contains all the provable formulas of arithmetic, and so the conclusion is that only finitely many formulas of the form complexity[[]$^{>} n$ are provable, and that n is not
much larger than the complexity of the enumeration process. This is a startlingly different way for arithmetic to be incomplete.

Chaitin's article is highly readable, and celates information theoretic complexity to the notion of "random sequencellas wellys computability and incompleteness.

It is sometimes claimed that the various incompleteness and undecidability result are not useful to the computer programmer concerned with artificial intelligence or mechanionl infereace, because all these theorems are based on weird techniquof that beader on paradox and always involve self-application or diagonglization. One never wants to do those particular things, anyway, in any practipal situation, in would argue that, on the contrary, self-application is precisely what one wants to do, because a system of deduction that can examine its own behavior is that much more powerful. Chapter Thirteen is an examination of this very question. By proving incompleteness in three different ways, I hope I have made the point that incompleteness is a result of the richness of logic, rather than indicating its impoverishment.

§12.4 Representability of Recursive Functions

Let φ be an n-ary total recursive function. Let φ^{*} be the s-expression translation of a sequence of recursive definitions that computes φ. The following formula contains exactly the variables x_{1} thru x_{n} and y free:

$$
\begin{aligned}
& \text { Gp(Gz(applyk\{p*, list[} \left.\left.\left[x_{1}, \ldots, x_{n}\right], p\right]=y^{*} z\right) \wedge \\
& \left.\forall m\left(m<p \supset \operatorname{atom}\left[\operatorname{applyk}\left[\rho^{*}, \operatorname{list}\left[x_{1}, \ldots, x_{n}\right], p\right]\right]\right)\right) \vee \\
& \\
& \forall m\left(\operatorname{atom}\left[\operatorname{applyk}\left[\rho^{*}, \operatorname{list}\left[x_{1}, \ldots, x_{n}\right], m\right] \wedge_{y} y=\text { NIL }\right)\right.
\end{aligned}
$$

Calling this formula α for the moment, it is possible to prove $\exists_{1} y(\alpha)$ within arithmetic. In fact, such a proof is completely independent of the definition of applyk and the s-expression $\varphi *$, and depends only on the principle of any non-empty set of numbers having a least member. Either there is a least p such that applyk[p*, list $\left.\left[x_{1}, \ldots, x_{n}\right], p\right]$ is non-atomic, in which case y is car of that value, or else the second part of the disjunct holds and y is NIL. Therefore, we can define the function φ by Rule F, getting $\alpha\left(\varphi\left[x_{1}, \ldots, x_{n}\right] / y\right)$. This happens to be true for any s-expression φ^{*}. If φ^{*} defines only a partial
function computationally, then the function φ defined in first order arithmetic is completed by having the value NLL wherever the compatation doed not produce a value. If φ^{*} is not a procedure at all, φ will still be eqponstantly NIL function. But φ will not mecessardy be compatable.

While there is no process that always tells us whether φ^{*} computes a total function, in each case where it doet, will be representable in arithmetic, for if σ_{1} thru σ_{n} are any s-atprestens, then for some number p and
 $m<p$, Arapplyk $\left\{p^{*}, \operatorname{list}\left\{\sigma_{1}, \ldots, \sigma_{\mathrm{n}} l_{\mathrm{n}} \mathrm{m}\right\}=\right.$ NIL. Therefore:

Theorem 12.9
All total recursive functions are representable.

CHAPTER THIRTEEN

METAMATHEMATICS

Preview of Chapter Thirteen

Given a formal system of deduction, a metamathematical statement is an assertion about the system, very often about the system as a whole. For example: (i) Arithmetic is consistent. (ii) Arithmetic is incomplete. (iii) The formula β cannot be deduced within the system. (iv) The formula γ cannot be deduced within the system except by a deduction whose length is astronomically long. (v) The name LENGTH defines a function having an s-expression argument and a numerical value. (vi) Every formula of the type $\forall \xi(\alpha) \supset \square \xi(\alpha)$ is provable. (vii) Replacement of equal terms is a derived rule of inference.

Metamathematical reasoning is the method by which we arrive at statements such as these. It is impossible in any practical sense to do without metamathematical reasoning, and in fact we have used it throughout the book. If we want a practical system of logical inference, it will be necessary to formalize at least part of metamathematical reasoning, and that is the purpose of this chapter. Much of it has to do with formalizing the semantic notion of "truth", just as in Chapter Twelve we formalized the syntactic property of "provability".

§13.1 Truth and Tarski's Theorem

We first define truth as a semantic or model theoretic concept, and then later in the chapter we shall make use of some axioms concerning truth. It is important to proceed in this order because it is only by having a clear
model-theoretic concept that we shall know that our axioms are reasonable. If α is a formula of arithmetic, all of whose function and predicate names are defined and total, then we shall define truth[$\alpha *]$ to be true if and only if α is true. Defining neg[x] to be list[HOT, $x]$, either truth[$\alpha *$] or $\operatorname{truth}[n e g[\alpha *]]$, but not both, must hold for any totally defined arithmetic formula α, because either $S \neq \alpha$ or S F α, where S is the standard model of the s-expressions.

We now make the important point that the predicate "truth" is not an arithmetic predicate. It lies outside of the system A, and if the formula α contains "truth" then α is not an arithmetic formula, and the above discussion does not apply to α at all. If "truth" were an arithmetic predicate, then it would be possible to establish Epimenides' paradox within arithmetic. This is known as Tarski's theorem.

Theorem 13.1 (Tarski's Theorem)

Arithmetic truth is not arithmetic.
Proof: Suppose to the contrary that it were possible to define truth[x] within arithmetic such that if α is any arithmetic formula, then $S \neq \alpha$ if and only if $S \neq \operatorname{truth}\left[\alpha^{*}\right]$, Let β be the formula tr ath|subquotely, $\left.\left.Y, y\right]\right]$. Let γ be the formula \neg truth[subquote $\left[\beta *, Y, \beta^{*}\right]$. Then $\gamma \nsim \operatorname{truth}\left[\gamma^{*}\right]$, so $S \neq \gamma$ if and only if $S \neq \neg \operatorname{truth}\left[\gamma^{*}\right]$ if and only if $S f+r a t h\left[n e g t \gamma^{*}\right.$] if and only if $S F \neg \gamma$.

Because $S \nmid \alpha$ if and only if S Ftruth[$\alpha *]$ ls true only for arithmetic formulas, it becomes necessary to express the predicate " α * is arithmetic" itself within arithmetic. If we did not have definitions, the problem would be easy. An arithmetic formula would be one whose function and predicate names are only the basic ones. But since we do allow definitions, the problem is administratively more complicated, although not conceptually so.

An administrative fanction is function that makes certain system information available within the syatem. Theste functions are not charged with the semantics of "truth", and so we may consider them to be ordinary arithmetic functions. They tell us what has been written down in the system so far. The only administrative function that we need now is defn[x]. If x is a name that has been defined by any of the definition rules or primitive
recursion schemas, then defn[x] is a list of the name of the rule, and the lines of the definition itself. For example, defn[PLUS] might be ((SCHEMA C) (EQUAL (PLUS M 0) M) (EQUAL (PLUS M (ADD1 N)) (ADD1 (PLUS M N)))). It is evident that starting with a certain amount of initial knowledge, and the information obtained from defn, the history of any function name can be investigated, and various determinations made, such as that it is total, primitive recursive, etc. In particular, if the history of definition does not include TRUTH, then it is arithmetic. From this, we can define the predicate arith[x] which is true if and only if x is α^{*} for some well-formed arithmetic formula α. Arith itself is total, arithmetic, and computable.

We now postulate the following formal metamathematical axioms which are justified because they are true, that is, they are satisfied by the model which is the standard model for the s-expressions enlarged (non-conservatively) by interpreting the predicate truth[x] to be true if x is α^{*} where α is a true arithmetic formula, and false if x is α^{*} and α is a false arithmetic formula, and leaving truth[$x]$ unspecified for all other x. Notice that none of these axioms make any assertion about truth[x] unless arith[x] is true.

M1: Semantic Completeness and Consistency of Arithmetic $\operatorname{arith}[\mathrm{x}] \supset(\operatorname{truth}[\mathrm{x}] \stackrel{\mathrm{F}}{\mathrm{F}} \operatorname{truth}[\operatorname{neg}[\mathrm{x}]$) $)$

M2: Validity of the Axioms of Logic

$\operatorname{arith}[x] \supset \operatorname{taut}[x] \supset \operatorname{truth}[x]$
$\operatorname{arith}[x] \supset q 1[x] \supset \operatorname{truth}[x]$
$\operatorname{arith}[\mathrm{x}] \supset \mathrm{q} 2[\mathrm{x}] \supset \operatorname{truth}[\mathrm{x}]$

M3: Validity of the Rules of Inference of Logic
$\operatorname{arith}[y] \supset \operatorname{mp}[x, y, z] \supset \operatorname{truth}[x] \supset \operatorname{truth}[y] \supset \operatorname{truth}[z]$
$\operatorname{arith}[x] \supset q 3[x, y] \supset \operatorname{truth}[x] \supset \operatorname{truth}[y]$
$\operatorname{arith}[x] \supset q 4[x, y] \supset \operatorname{truth}[x] \supset \operatorname{truth}[y]$
M4: Truth of the Axioms of Arithmetic
$\operatorname{arith}[\mathrm{x}] \supset \operatorname{ax}[\mathrm{x}] \supset \operatorname{truth}[\mathrm{x}]$
where ax[x] is true if x is α^{*} for some formula α which is an axiom or instance of an axiom schema in Group A, B, D, F or G.
$\operatorname{arith}[x] \supset$ ninduct $[x] \supset \operatorname{truth}[x]$
arith $[x] \supset$ sinduct $f x \geqslant$ truth $[x]$
where those predreatet assert that x is an instance of B 4 or D 3 , retpectively.

M5: Truth of Formulas Introduced as Definitions
$\operatorname{arith}[x] \geq \operatorname{I} y($ member $[x$, cdr[defn $[y]]]) \geq \operatorname{truth}[x]$ If x is α^{*} for a formula α introduced by some definition or primitive recursion schema, then it is a member of defn of the name that was defined. (Car of this list is the name of the schema.)

M6: Truth of the Predicate Truth

$$
\operatorname{arith}\left[\alpha^{*}\right] \supset\left(\alpha^{*} \equiv \text { truth }\left[\alpha^{*}\right]\right)
$$

This is an axipsa schema whioh cannot be represented in the prosent oymtern on olmgle axiom.

Schema M6 is at the very center of the notion of formal metamathematics. It is bidirectional, Firat it allows thitif we cen assert some formula α then we can assert that α is true. In the other direction, it allows us to pass from the assertion that α berue to extself.

§13.2 Metamathematical Deduction

Let us modify the primitive recursive function aproof $[x, y]$ slightly by requiring that any definitions occurring in x be consistent with the system A. We can now do this by using defn. This allows us to diapense with the nuisance of the determining sequence λ used in Chapter Twelve. It is now possible to prove by induction on the length of the deduction y :

$$
\text { (**) } \quad \operatorname{arith}[x] \supset \pi y(\text { aproo }[y, x]) \supset \operatorname{truth}[x]
$$

The formula β of theorem 12.7 cannot be deduced within the system A, but at the time that we proved this, we argued metamathematically that β was true. We can formalize this argument as follows:
(1) 1. $\neg \beta$
2. $\quad \beta \equiv \neg \mathbb{T}\left(\right.$ aproof $\left.\left[x, \beta^{*}\right]\right)$

Assume

This is provable in A.

This shows that formal metamathematics allows us to prove some formulas of A that are not provable in A, However, it does not allow us to complete A. Halt and total are still not recursive, since the notion of recursiveness is absolute and therefore not dependent on one's choice of an axiom system. No formula of the sort complexity[$\alpha]>1,000,000,000$ can be proven in formal metamathematics, or in any truthful system whose axioms can be enumerated by a function of feasible complexity.

The following extreme case shows that there are formulas having proofs of unfeasible length in arithmetic that have feasible proofs in metamathematics. Consider the formulas:

$$
\begin{aligned}
& \left.\alpha: \quad \neg \mathbb{G}\left(\operatorname{size}[x]<10^{10} \wedge \text { aproof[} x \text {, subquote }[y, Y, y]\right]\right) \\
& \beta: \quad \neg \mathbb{G}\left(\operatorname{size}[x]<10^{10} \wedge \text { aproof }\left[x, \text { subquote }\left[\alpha^{*}, Y, \alpha^{*}\right]\right]\right)
\end{aligned}
$$

β asserts that there is no proof of β (in arithmetic) of feasible length. If there were, arithmetic would be untrue, and so we may assume that there is no such proof: β is therefore true. Unlike the formula β of theorem 12.7, however, this one is provable in A. Let $\sigma_{1}, \ldots, \sigma_{n}$ be an enumeration of the finitely many s-expressions whose size is less than 10^{10}. For each i, Ar ᄀaproof $\left[\sigma_{i}, \beta^{*}\right]$. From all of these results, and the assertion that this list is complete, it is possible to prove β because the existential quantifier is bounded. Of course such a proof is much larger than 10^{10} in size.

The metamathematical proof of β is so similar to the preceding proof that we do not even need to write it down.

Theorem schemas are metamathematical assertions that occur very commonly. We do not want to have to write out a deduction for each instance of a schema that occurs frequently. Consider the least number schema which is:

$$
\exists \eta(\alpha) \supset \Xi \eta(\alpha \wedge \forall \nu(\alpha(\nu / \eta) \supset \nu \geq \eta))
$$

This is true for any well－formed formula α ，any numeric variable η ，and any numeric variable v which is free for η in α ．The assertion that all instances of this schema are provable is not even metamathematical．It is：．

$$
\begin{aligned}
& \text { Эy』z马w(wff[y]^ numvar[z]^ numvar[w]^ } \operatorname{Anull[sub[list[w,z],y]]\wedge ~}
\end{aligned}
$$

$$
\begin{aligned}
& \text { list[FORALL, w, list[MPMLES, sublizet [w, z] y] list[GTQ, w, }
\end{aligned}
$$

where sub is defined in problem set 22，No．1．Let us abbreviate this to $\ln [x] \supset G y(a p r o o f[y, x])$ ，where $\ln p$ stands for least number principle．This formula is provable by formalizing a deduction schema for this theorem schema．It is tedious work，and one first has to deal with some properties of substitutivity．But having done this，we can then deduce from（＊＊）the formula：

$$
\operatorname{arith}[x] \supset \ln p[x] \supset \operatorname{truth}[x]
$$

The advantage of having this formula is that given any arithmetic formula α such that $\operatorname{lnp}[\alpha *]$ is provable，we can derive α itself from M6．Lnp is a simple primitive recursive formula that merdly tests its argament to see if it has a certain format．Lnp is called a theorem schema．In general，a theorem schema is any unary predtcate ϕ such that：

$$
\operatorname{arith}[x] \supset \phi[x] \supset \operatorname{truth}[x]
$$

has been proven，and an inference schema is any $n+1$－ary predicate ψ such that：

$$
\begin{aligned}
& \operatorname{arith}\left[x_{1}\right] \supset \ldots \supset \operatorname{arith}\left[x_{n+1}\right] \supset \operatorname{truth}\left[x_{1}\right] \supset \ldots \perp \operatorname{truth}\left[x_{n}\right] \supset \\
& \quad \psi\left[x_{1}, \ldots, x_{n+1}\right] \supset \operatorname{truth}\left[x_{n+1}\right]
\end{aligned}
$$

has been proven．
Metamathematics allows us to demonstrate that a prechicate defined in arithmetic is a theorem schema or inference schama．This solvee half of the problem of reducing deduction to computation in routine cases ${ }_{4}$ The other half of the problem is to prove that the predicate defined in the logical theory is the same as the predicate computed by some procedure in a programming language．When this has been established，we can then compile
the procedure, knowing that it is a valid addition to our collection of proof techniques. Theoretical results relevant to this problem are presented in Chapter Fourteen.

Problem Set 33

1. Show that $\alpha \bar{\equiv} \operatorname{truth}[\alpha *]$ where α is any formula is an inconsistent schema.
2. Using (**) and M1 thru M6, prove an airthmetic formula asserting that arithmetic is consistent.
3. Why is M4 necessary to the proof of (**) even though each ground instance of M4 can be deduced from M6?

§13.3 The Hierarchy of Truth

The notion of truth in the system we have just described can be formalized by means of a predicate truth $1[x]$ which $i e_{\text {optside that system. }}$ This leads to a hierarchy of truth functions, each of which can reason metamathematically on the systems below it. It is possible to define a predicate truth[x, r] where r is a rank number, and to axiomatize truth so that at each rank the truth of formulas of lesser rank can be discussed. An arithmetic formula is of rank 0 , and any formula in which all occurrences of truth are of the form truth[..., n] where n is a number is of rank $n+1$. If a formula contains truth $[x, y]$, where y is anything other than a number, then the formula is outside the rank system, and cannot be discussed on any level. is natural at this point to extend this idea even further by letting the second argument of truth be any ordinal number. This creates a whole new situation. It is not clear how much of this hierarchy is actually useful, but it would seem that having at least several levels of it are.

CHAPTER FOURTEXEN

THE RECURSION THBOREM

Preview of Chapter Fourteen

The purpose of this chapter is to relate functions described by procedures, which are, in general, partial recurstwe functions, with descriptions of functions in firet order writhmettc. We neted to to this in order to prove theorems about procethres, and in order to tand procetures for computing functions that have been cutined logtoxty. Ore example of the latter is the problem of compating a function which she bean proven to be a theorem schema or inference sehemsey the metwdeds edthined in Chapter Thirteen.

The recursion trieorem ls a baste resunt in recufsive tanction theory. Its relevance to these problems hatis been reactuated by reseurchers in the semantics of progranming languades, complex oudyect which we do not even approach except for the very trivial "languite of tecursive tunctions" as specified in Chapter Two. Research in this hren, ranging from abstract topology to detailed emantic eeseriptions of hacox 00 , is being done by [Scott]. [Strachey] and others in the Oxford Prosthminitg Research Group, and [Milner], [Newry], [Igorashi] and others at the Stanford Artificial Intelligence Laboratory.

§14.1 The Nature of the Problem

In Chapter Twelve we describe a correspondence between procedures and formulas of first order arithmetic for the special case of primitive recursive functions. It is easy to generalize this syntactic correspondence, but not immediately useful because of problems of consistency.

Consider a recursive definition having the general form:

$$
\varphi\left[\xi_{1}, \ldots, \xi_{n}\right]+\epsilon
$$

It can be converted into a set of formulas of first order arithmetic by replacing the " - " with $"="$, and then applying the distributive rule of conditional forms, and the conversion of conditional forms into logical formulas, described below, until there are no more conditional forms. Since every part of the language of recursive functions except for the conditional is part of the language of logic, the result must be a set of formulas of logic.

Distributive Rule for Conditional Forms

Transform $\varphi\left[\ldots\left[\pi_{1} \rightarrow \epsilon_{1}, \ldots, \pi_{n} \rightarrow \epsilon_{n}\right] \ldots\right]$ into $\left[\pi_{1} \rightarrow\right.$ $\left.\varphi\left[\ldots, \epsilon_{1}, \ldots\right], \ldots, \pi_{n} \rightarrow \varphi\left[\ldots, \epsilon_{n}, \ldots\right]\right]$ where φ is any function or predicate name, including " $=$ ".

Conversion of Conditionals into Logical Formulas
When the conditional form $\left[\pi_{1} \rightarrow c_{1}, \ldots . \pi_{n} \rightarrow c_{n}\right]$ is not a sub-form (i.e., when it is on the outside), transform it into the sequence of formulas:

$$
\begin{aligned}
& \pi_{1} \supset \epsilon_{1} \\
& \neg \pi_{1} \supset \pi_{2} \supset \epsilon_{2} \\
& \ldots \overbrace{1} \supset \ldots \supset \neg \pi_{n-1} \supset \pi_{n} \supset \epsilon_{n} \\
& \neg \pi_{1}
\end{aligned}
$$

When the conditional form is on the outside of everything except for logical connectives, transform it into the conjunction of the formulas of this schema.

Example

subst $[x, y, z]+[\operatorname{atom}[z] \rightarrow[y=z \rightarrow x, T \rightarrow z], T \rightarrow \operatorname{subst}[x, y$, car[z]]*subst[$x, y, \operatorname{cdr}[z]]]$
becomes
$\operatorname{atom}[z] \supset((y=z \supset \operatorname{subst}[x, y, z]=x) \wedge(y \neq z \supset \operatorname{subst}[x, y, z]=z))$ Tatom [z] $\supset \operatorname{subst}[x, y, z]=\operatorname{subst}[x, y$, car $[z]$ F subet $[x, y$, cdr $[z]]$

Unfortunately, there is no justification for changing "w" into "=". A procedure cannot be inconsistent: it can at worst not produce a value, or produce a value not anticipated. The assertion that the left half is equal to the right half may be logically inconsistent. There are three situations that may arise from a recursive definition; it may over-define, under-define, or exactly define a function.

Case I: If a recursive defintion defmes a total function, then the transformation into logic produces a set of formulas that represents the function. Subst is an example of this. The function subst computed by the recursive definition the same as the function represented by the two formulas.

Case II: The recursive defintion is under-defined. In this case, the function computed by the recursive deflation is partial, and there are more than one completions of the function that are model enlargements satisfying the formulas. Consider:

$$
\begin{aligned}
& \mathrm{f}[\mathrm{n}]+\mathrm{f}[\mathrm{n}+1] \\
& \mathrm{f}[\mathrm{n}, \mathrm{~m}]+[\mathrm{m}, \mathrm{n}]
\end{aligned}
$$

Both of these definitions compute totany undefined functions. The first is satisfied by any constant function; the second is satisfied by any commutative function (on the natural numbers).

Case III: The recursive definition is over-defined. In this case, the function computed by the recursive delinition is partial, and there are no completions of it that satisfy the formulas. There are no model enlargements, and the system is inconsistent. An example is the definition:

$$
\mathrm{f}[\mathrm{n}]+\mathrm{f}[\mathrm{n}]+1
$$

As a procedure, it does not conyerge. As an assertion, $f[n]=f[n]+1$ is inconsistent.

Combinations of Cases 1 and $I I$ also occur.
The last example is extreme, but there is no general method for deciding which recursive definttons are over-determinea. Nor can we regard them as undesirable. The definition of apply given in $\$ 2.4$ is overdefined, and there is no way to avoid this.

In §12.4, we proved that all total recursive functions are represent-
able, although we cannot always decide what is a total recursive function. Suppose we call a partial function $\tilde{\varphi}$ partially representable if it is possible to define a function name φ in arithmetic such that if $\tilde{\varphi}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is defined and has the value σ_{n+1}, then $\operatorname{Ar} \varphi\left[\sigma_{1}, \ldots, \sigma_{n}\right]=\sigma_{n+1}$.

Theorem 14.1
All partial recursive functions are partially representable.
Proof: This is implicit in the proof of theorem 12.9. The representing function described in that proof has the value NIL for those arguments for which the partial recursive function is undefined, but it may not be possible to compute this NIL.

This method of representation is indirect, depending on the definition of an interpreter function applyk which itself is fairly complicated. The recursion theorem which follows is relevant to obtaining a direct transformation of a recursive definition into arithmetic without the danger of inconsistency, and in a manner that allows us to prove logical assertions about the procedure itself.

Problem 34

Show that apply is over-determined.

§14.2 The Recursion Theorem

The notation that we use here folows [Scott] in his work on lattice theory and programming languages, although we do not actually define a lattice.

We introduce an object " \perp " called "bottom" or "undefined". Letting S be the set of s-expressions, S_{1} is the set $S \cup\{\perp\}$. The symbol "巨" meaning "is less than or equally defined than" is a binary operator on S_{1} defined by: $\perp \subseteq \perp, \perp \subseteq \alpha$, and α 드 α where α is any s-expression. "드" is a partial ordering.

The notion of equality on the domain S_{1} will be represented by the symbol "ِ". The symbol " =" will mean computational equality. "ミ1" is not
a computable predicate. The two equalities can be compared in the following table, where α and β are distinct a-exprenwions:

c	\underline{d}	$c=d$	$c \cong d$
α	α	T	T
α	β	F	F
α	1	1	F
\perp	α	1	F
\perp	1	1	T

The predicates atom, name and num, and the functions cons are extended to the domain S_{1} in the same mamer ws " $x^{* N}$, by defining the value to be 1 if any argument is 1 . The functions ermm, exceessor, predecessor, car and cdr are also extended to S_{1} by detintag the vilue to be 1 if the argument is \perp or if the value is not dentred, $e . g$., enant $[A]=1$, and car $[A]=1$.

A function φ is called monotenic if $\operatorname{a}_{i} b_{i}$ for $1 \leqslant 1 \leqslant n$ implies that $\varphi\left(a_{1}, \ldots, a_{n}\right) \subseteq \varphi\left(b_{1}, \ldots, b_{n}\right)$, for all a_{i} and b_{i} in S_{1}. The basic fanctions mentioned in the preceding paragraph are all monotonic.

The ordering " \leq " extends to functions by defining φ_{1} ㄷ φ_{2} if for all a_{1} thru a_{n} in $S_{1}, \varphi_{1}\left(a_{1}, \ldots, a_{n}\right) E \varphi_{2}\left(a_{1} \ldots \ldots n_{n}\right)$

Let $\left\{a_{i}\right\}$ be an infinite sequence of elements of S_{1}. It is a monotonic sequence if $a_{i} \subseteq a_{j}$ for $i \leq j$. A sequence of Amptions fod (adl having the same number of arguments) is a monotonic gequence if $\varphi_{i} t_{j} \varphi_{j}$ for $i \leq j$. An upper bound for a sequence is an object such that any member of the sequence is "ㄷ" to it. A least upper bound for a sequence is an upper bound that is "ㄷ" to any other upper bound.

Corollary 14.2

Every monotonic sequence has a least upper bound. If each function in the monotonic sequence $\left\{\varphi_{i}\right\}$ is itself a monotonic function, then the lub of the sequence is also a monotanic function.

A functional is a function that takes functions as arguments, i. e., it has one or more domains that are themselves function spaces. The notation for functionals is a bit cumbersome. When we write $\phi\left[S_{1}^{n} \rightarrow S_{1}\right], S_{1}^{n} \rightarrow S_{1}$, we
mean that Φ is a functional whose first argument is an n-ary function on S_{1}, whose 2 nd thru $n+1$-th arguments are members of S_{1}, and whose value is in S_{1}. More complex possibilities exist, but this particular type of functional will be the only kind that we need to discuss here. Functionals can be monotonic in the same way functions are, since all their argument and value domains are partially ordered.

If Φ is a monotonic functional of the type mentioned above, and $\left\{\varphi_{i}\right\}$ is a monotonic sequence of n-ary functions, and a_{1} thru a_{n} are a fixed set of elements of S_{1}, then $\left\{\Phi\left(\varphi_{i}, a_{1}, \ldots, a_{n}\right)\right\}$ is a monotonic sequence in S_{1}, and therefore has a least upper bound. The functional Φ is said to be continuous if it is monotonic, and if for every monotonic sequence $\left\{\varphi_{i}\right\}$, and every choice of a_{i} in S_{1} :

$$
\operatorname{lub}\left\{\Phi\left(\varphi_{i}, a_{1}, \ldots, a_{n}\right)\right\} \cong \Phi\left(\operatorname{lub}\left\{\varphi_{i}\right\}, a_{1}, \ldots, a_{n}\right)
$$

A fixpoint for the functional Φ is a function φ such that for every choice of a_{1} thyru a_{n} in $S_{1}, \Phi\left(\varphi, a_{1}, \ldots, a_{n}\right) \cong \varphi\left(a_{1}, \ldots, a_{n}\right)$. A least fixpoint for Φ is a fixpoint which is "트" to any other fixpoint.

Theorem 14.3(Fixpoint Theorem)

If Φ is a continuous functional having one n-ary functional argument, and n ordinary arguments, then it has a least fixpoint which is monotonic. Proof: Define φ_{0} by letting $\varphi_{0}\left(a_{1}, \ldots, a_{n}\right) \cong \perp$ for all a_{i}. Define φ_{n+1} by letting $\varphi_{n+1}\left(a_{1}, \ldots, a_{n}\right) \cong \Phi\left(\varphi_{n}, a_{1}, \ldots, a_{n}\right)$. We can show by induction that the sequence $\left\{\varphi_{i}\right\}$ is monotonic because $\varphi_{0} \subseteq \varphi_{1}$, and if $\varphi_{n} \subseteq \varphi_{n+1}$, then $\varphi_{n+1}\left(a_{1}, \ldots, a_{n}\right) \cong \Phi\left(\varphi_{n}, a_{1}, \ldots, a_{n}\right) \cong \Phi\left(\varphi_{n+1}, a_{1}, \ldots, a_{n}\right) \triangleq \varphi_{n+2}\left(a_{1}, \ldots, a_{n}\right)$, so $\varphi_{n+1} \subseteq \varphi_{n+2}$. Let φ be the lub of the sequence $\left\{\varphi_{i}\right\}$. Because Φ is continuous, $\Phi\left(\varphi, a_{1}, \ldots, a_{n}\right) \cong \operatorname{lub}\left\{\Phi\left(\varphi_{i}, a_{1}, \ldots, a_{n}\right)\right\} \cong \operatorname{lub}\left\{\varphi_{i}\left(a_{1}, \ldots, a_{n}\right)\right\} \cong$ $\varphi\left(a_{1}, \ldots, a_{n}\right)$. So φ is a fixpoint for Φ. Now let ψ be any other fixpoint of Φ. $\varphi_{0} \subseteq \psi$, and if $\varphi_{n} \subseteq \psi$, then $\varphi_{n+1}\left(a_{1}, \ldots, a_{n}\right) \cong \Phi\left(\varphi_{n}, a_{1}, \ldots, a_{n}\right) \subseteq \Phi\left(\psi, a_{1}, \ldots\right.$, $\left.a_{n}\right) \cong \psi\left(a_{1}, \ldots, a_{n}\right)$, or φ_{n+1} ㄷ ψ. By induction, $\varphi_{i} 巨 \psi$ for all i, and so ψ is an upper bound for $\left\{\varphi_{i}\right\}$. Since φ is the lub of $\left\{\varphi_{i}\right\}, \varphi$ 다, and so φ is the least fixpoint of Φ. φ is a monotonic function because if $a_{i} ㄷ ㅡ ㅁ$, then $\varphi\left(a_{1}, \ldots\right.$, $\left.a_{n}\right) \cong \Phi\left(\varphi, a_{1}, \ldots, a_{n}\right) \subseteq \Phi\left(\varphi, b_{1}, \ldots, b_{n}\right) \cong \varphi\left(b_{1}, \ldots b_{n}\right)$.

This proof of the fixpoint theorem has been an exercise in abstract algebra; it uses no properties of S_{1} other than that S_{1} is a partially ordered set having a least element, and such that every monotonic sequence has a lub. But the notions of monotonic and continuous are surprisingly useful in the theory of computation. We have already noted that the basic functions of computation are monotonic. In fact, any partial recursive function is monotonic because that simply means that supplying more information about the arguments of the function does not decrease the possibility that the function has a value.

Let φ be a partial recursive function on S. We extend it to be a total function on S_{1} by letting the value be \perp wherever the value was previously undefined. φ may also have \perp as an argument, in which case the value will be \perp unless the argument is not needed in the computational process, and a value is obtained without it. By Church's thesis, there is an effective procedure that computes the value of φ whenever it is an s-expression, but may never terminate if the value is $1 . \operatorname{Let} \varphi_{i}$ be the function such that $\varphi_{i}\left(a_{1}, \ldots, a_{n}\right)$ is defined by doing i amount of work on the computation of $\varphi\left(a_{1}, \ldots, a_{n}\right)$, and returning the value if one is obtained, and being undefined ; otherwise. The sequence $\left\{\varphi_{i}\right\}$ is not uniquely determined unless we fix a particular procedure for computing φ, and specify an exact definition of work. But by merely postulating that every computation requires some finite amount of work, we see that every such sequence has φ as its lub.

Let $\Phi\left(\varphi, a_{1}, \ldots, a_{n}\right)$ be a functional. We would like to call Φ partial recursive if there is an effective procedure for computing it. But this requires that we specify how this procedure is to be given functions as arguments. If φ is a partial recursive function, then the problem is simplified. We simply give to the procedure Φ a procedure that computes φ, and require that the value be independent of which procedure for φ is used. But we do not wish to restrict the argument φ of Φ to partial recursive functions only. So we invent the notion of an oracle which is like a black box, or an on-line intervention in a computational process.

The purpose of an oracle is to simulate the effect of a partial recursive function even when it is not. A black box that gives the value of $\varphi\left(a_{1}, \ldots, a_{n}\right)$ when it is defined, and replies " \perp " when it is not defined does too
much, because when a recursive process does not terminate we are not generally told that; we simply wait for ever. On the other hand, a black box which gives the value of $\varphi\left(a_{1}, \ldots, a_{n}\right)$ when it is defined, and hangs up forever if it is not defined, is insufficient, because we can run any process for a certain amount of time to see if it produces a value within that time. A workable idea is to make use of the notion of a function as a limit. So, given the function φ, let $\left\{\varphi_{i}\right\}$ be any sequence of functions whose lub is φ. Then an oracle for φ is a black box that when interrogated about $\varphi_{i}\left(a_{1}, \ldots, a_{n}\right)$ for particular i, either produces a value or replies " \perp ".

We now define a partial recursive functional $\Phi\left(\varphi, a_{1}, \ldots, a_{n}\right)$ as a functional for which there is an effective procedure which computes its value when given the arguments a_{i}, and an oracle for φ. If the value of Φ is $" \perp$ ". then the procedure is permitted not to terminate. Implicit in the idea that Φ is a function of φ, and not of the particular oracle chosen to represent φ, is the requirement that the value of the computation is independent of the choice of oracle for φ.

Lemma 14.4

All partial recursive functionals are continuous.
Proof: The symbol " \perp " never enters into an effective procedure. It is used in discussions about effective procedures to mean that information is not available. A procedure can never contain "if $x=1$, then ...". This is sufficient to make all effective procedures monotonic. ${ }^{1}$ Now let a ${ }_{1}$ thru a_{n} be a particular choice of objects in S_{1}, and let $\left\{\varphi_{i}\right\}$ be any monotonic sequence. In the following discussion $\Phi\left(\varphi, a_{1}, \ldots, a_{n}\right)$ is abbreviated to $\Phi(\varphi)$.

Let φ be the lub of the sequence $\left\{\varphi_{i}\right\}$. If $\Phi(\varphi) \geq 1$, then $\Phi\left(\varphi_{i}\right) \cong \perp$ for each i, since Φ is monotonic. So $\operatorname{lub}\left\{\Phi\left(\varphi_{i}\right)\right\} \cong \Phi(\varphi)$. If $\Phi(\varphi) \cong \alpha$ where α is an s-expression, then since this computation is independent of the oracle used

[^3]for φ, we can let the oracle be based on the sequence $\left\{\rho_{i}\right\}$. Because α was computed by an effective procedure, it can only have interrogated the oracle a finite number of times. Let φ_{k} be the highest function in the sequence $\left\{\varphi_{i}\right\}$ that was used. Consider the computation of $\left\langle\psi_{2}\right.$) where φ_{h} is represented by an oracle using the sequence beginning with φ_{1} thru φ_{1}, and then being φ_{1} from there on. This computation must proceed exactly like the previous one, because no function with an index greater than k will ever be interrogated. So $\Phi(\varphi) \geqslant \Phi\left(\varphi_{k}\right) E \operatorname{lub}\left(\varphi\left(\varphi_{i}\right)\right\}=(\varphi)$ and so $1 s$ cominuous.

Theorem 14. 5 (Kleene's Recursion Theorem)
Every partial recursive functional hat along fiepoint which is a partial recursive function.
Proof: By lemma 14.4, if $\boldsymbol{\phi}$ is partial recursive, it is continuous. By theorem 14.3, it then has a least fixpoint φ. To show that φ is partial recursive, consider the sequence $\left\{\varphi_{i}\right\}$ in the proof of theorem 14.3 of which φ is the lub. φ_{0} is partial recursive because it is represented by the process that never produces a value. Suppose φ_{n} is partial recursive. Then φ_{n+1} is
 effective procedures for φ_{n} and $\boldsymbol{q}_{\text {. By }}$ Intaction, atre ϕ_{i} ure partial recursive, and so φ is partial recureive bectate ft is computed by the procedure that tries all the φ_{i}.

§14.3 Application of the Recursion Theorem
 Consider a recursive definition:

$$
\varphi\left[\xi_{1}, \ldots \xi_{\mathrm{n}}\right]+
$$

where ϵ has no free variables other than the ξ_{i}, and every function and predicate name in 8 , except for φ, fs alredry defned and partial recursive. Then \in is a partial recursive functional becsuse it apecifies a computation depending on the functional argurfent $\varphi_{\text {, and the }}$-expression arguments 5_{1} thru 5_{n}. Furthermore, if "+" is replaced by liz". then we meve the fixpoint equation for this functional.

Unfortunately, the situation gets a bit messy here because there are various semantics that one can propose for the language of recursive

* definitions. The choice of semantics will determine what functional
$\rightarrow \Phi\left(\varphi, \xi_{1}, \ldots, \xi_{n}\right)$ is specified by the form c. We shall briefly consider two of them here: Φ_{L} is the functional specified by the LISP semantics described in Chapter Two. Φ_{C} is the functional specified by the complete semantics, that is, the semantics that computes as much as is posaible from the information available in ©. The two semantics never produce conflicting values, but Φ_{C} may produce a value where $\boldsymbol{\Phi}_{L}$ fails to do so, that is, $\boldsymbol{\Phi}_{L}{\underline{E} \boldsymbol{\Phi}_{C^{*}} \text {., There are }}$ two significant differences between the two:

I: LISP evaluation uses call by value. This sometimes gets hung up because all arguments for a function must be pre-evaluated, even if they are not needed for its computation. For example, the definition:

$$
\mathrm{f}[\mathrm{~m}, \mathrm{n}] \not[\mathrm{m}=0 \rightarrow 1, \mathrm{~T} \rightarrow \mathrm{f}[\mathrm{~m}-1, \mathrm{f}[\mathrm{~m}, \mathrm{n}]]]
$$

computes in LISP a function that is 1 if m is 0 , and is otherwise undefined. But the complete semantics uses call by name, which does not attempt to evaluate the inner $f[m, n]$, and so does not get into an endless cycle. It computes the function which is 1 for all numeric arguments. This problem is discussed thoroughly in [Vuillemin].

II: LISP semantics specifies a left-to-right order of evaluation for conditionals and logical operators. For example, the definition:

$$
f[n] \not[f[n]=0 \rightarrow 1, T \rightarrow 1]
$$

computes the totally undefined function in LISP, but the constant function $f[n]=1$ in the complete semantics.

In LISP, the form $\epsilon_{1} \vee \epsilon_{2}$ is evaluated by first evaluating ϵ_{1}. If ϵ_{1} has no value, then the expression is undefined. In the complete semantics, the expression is true if either branch is true. This point can be stated by means of the three valued truth tables for the operation " v ", keeping in mind that the interpretation of " \perp " is "information not available", or "value unknown". (See tables at top of next page.)

Both of these tables are monotonic, a necessity for them to be computable. We might call the firat one "weak", and the second "strong" or "symmetric". We have chosen the word "complete" because of the property of semantic completeness which is the same as in logic. (From B we can deduce $A \vee B$ without having to prove that A is true or false.) The strong

truth tables are discussed in [Kleene, 864] in comection with partial recursive functions. His term for "monotonic" is "reguler".

Let us examine some recursive functional asd their fixpoints taken from [Manna and Vuillemin]. Consider the functional:

$$
\oplus(\varphi, a, b) \text { is }[a=b+b+1, T \rightarrow \rho(s, \phi f a-1, b+1]]
$$

A fixpoint for Φ is a function φ such that $\varphi(a, b)=(\varphi, a, b)$ for every choice of a and b in S_{1}. " + " and " - " are functions that are undefined for non-numerical
 such that for the equation to be true, both sides must be the same number, or both must be undefined. Notice, also, that " $x^{\prime \prime}$ uned in the conditional expression is undefined if either argument is undetined. We now specify three functions, each of which is a fixpoint of 5 :

$$
\begin{aligned}
& \varphi_{1}: 2+1 \\
& \varphi_{2}: \quad \text { if } a \geq b \text { then } a+1 \text { else } b-1 \\
& \varphi_{3}: \quad \text { if } a \geq b \text { and } a-b \text { is even, then } a+1 \\
& \text { else not defined }
\end{aligned}
$$

A certain amount of investigation will convince one that each of these is a fixpoint. It can also be shown that $\varphi_{3} \varphi_{1}$ and $\varphi_{3} \varphi_{2} . \varphi_{3}$ is in fact the least fixpoint of $\boldsymbol{\Phi}$.

We now extend the theory A of Chapter Eleven to be a theory A_{1} about the model S_{1} which is the s-expressions with the added object " \perp ", and the definitions of the basic functions extended appropriately. However, we shall not use " \perp ", " $\Sigma^{\prime \prime}$ or "یn" anywhere in the language of the theory, because they are not computable.

The variables beginning with r thru z range over s-expressions, while variables beginning with a, b and c range over S_{1}. The axioms of group H are now needed because we admit to the possibility of thelr being something that is not an s-expression. In this theory, hist $[x] \neq x$ is a theorem, but list[a] $\neq a$ is not, because of the counter-example cons[1, NIL] $\geqslant 1$.

Specifically, we have axiomatized the theory of s-expressions so as to admit the possibility that there might be things that are not s-expressions. But we have not axiomatized S_{1} particularly; we simply note that S_{1} is one model that satisfies the theory A_{1}.

Consider the recursive definition $f[a]+f[a]+1$. Its least fixpoint is the totally undefined function. Since this is a "total" function on the domain S_{1}, the equation $f[a]=f[a]+1$ is satisfiable in S_{1}, and no inconsistency results from it. The instantiation $f[3]=f[3]+1$ is satisfied because $\perp \cong \perp+1$, and " $=$ " approximates " $=1$ " to the extent that it is computable. . One cannot derive $0=1$ from this formula, because if westart from the theorem $m=m+1 \supset 0=1$ (which is provable), we find that replacing m with $f[3]$ is not a valid substitution because $f[3]$ is not a numeric typed term.

Partial Recursion Schema

If φ is a new name, then the transformation of the recursive definition $\varphi\left[x_{1}, \ldots, x_{n}\right] \leftarrow \subset$ into a set of formulas of A_{1} may be used as a definition for φ.

Not only is this rule consistent, but it makes all partial recursive functions partially representable, and all total recursive functions represent able in a direct manner. We present the following theorem without proof because there is too much detail that we have nat completed; it is not difficult conceptually.

Theorem 14.6 (Partial Repregentation)
Let the function name φ be defined in A_{1} by the partial recursion
schema, where all the other function and predicate names in the schema are already defined and (partially) representable. Then $\tilde{\varphi}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sigma_{n+1}$, where $\tilde{\varphi}$ is the least fixpoint of \boldsymbol{C} in the complete semantics, if and only if $A_{1} \operatorname{r\varphi }\left[\sigma_{1}, \ldots, \sigma_{n}\right]=\sigma_{n+1}$.

This theorem is the justification for the "completeness" of this particular choice of semantics.

If a function φ has been defined by the partial recursion schema, we may be able to demonstrate that it is a total recursive function by proving the formula $\operatorname{Gy}\left(\varphi\left[x_{1}, \ldots, x_{n}\right]=y\right)$. This also allows us to assert that the function φ is a well-typed s-expression valued function. Other totality and type information may be developed similarly. One may be able to prove $\exists_{n}(\varphi[x, m]=n)$, which types φ as a total numeric-valued function having an s-expression argument and a numeric argument. If one can prove $\psi[x] \supset \exists y(\varphi[x]=y)$, then one has shown that φ is defined at least for those values where $\psi[x]$ is true.

It is not possible to prove the totality of all total recursive functions in this manner, since this would make "total" recursively enumerable. But it is possible in many cases. In particular, it is always possible to prove that primitive recursive definitions define total recursive functions. (The argument is by induction.)

One word of caution on this schema. The model S_{1} introduces " \downarrow " into the domain, but not into the logic itself. The model is still a model of standard two-valued first order logic. So while the recursion schema permits replacement of " + " with " $=$ ", it would be inconsistent to replace " 6 " with " $=$ ". $\mathrm{p}[\mathrm{x}] \equiv \neg \mathrm{p}[\mathrm{x}]$ is inconsistent in the present system, although one could develop a three-valued logic.

The recursion theorem can be stated in a multi-dimensional form which is that given the set of equations:

$$
\begin{aligned}
& \Phi_{1}\left(\varphi_{1}, \ldots, \varphi_{k}, \xi_{1}, \ldots, \xi_{n_{1}}\right) \approx \varphi_{1}\left(\xi_{1}, \ldots, \xi_{n_{1}}\right) \\
& \ldots \\
& \Phi_{k}\left(\varphi_{1}, \ldots, \varphi_{k}, \xi_{1}, \ldots, \xi_{n_{k}}\right) \approx \varphi_{k}\left(\xi_{1}, \ldots, \xi_{n_{k}}\right)
\end{aligned}
$$

where the Φ_{i} are partial recursive, there is a set of least fixpoints $\tilde{\varphi}_{1}$ thru $\tilde{\boldsymbol{\varphi}}_{k}$
which are partial recursive. This conveniently corresponds to the programmer's habit of defining recursive functions in interdependent batches. The partial recursion schema may be extended to permit this.

Problem Set 35

1. Investigate the work of Vuillemin, and the Oxford Group, to see how the recursion theorem is used in the study of the semantics of programming languages. How do they deal with the problem of the computed function of LISP and ALGOL being less than the semantically complete fixpoint?
2. Extend the syntax of first order logic to allow conditionals used either as logical connectives, or choice functions within terms, so that conditionals can be nested inside each other. Add transformation rules that are consistent, and make this logic complete semantically. Theorem 14.6 is now trivial to prove.

CHAPTER FIFTEEN

SECOND ORDER ARITHMETIC AND SET THEORY

§15.1 Second Order Arithmetic

Starting with the system A presented in Chapter Twelve, we can develop a second order theory of s-expressions. The model for this theory has as its domain the set $S \cup\left\{S^{2}\right\}$, i. e., there will be both s-expressions and sets of s-expressions in the domain. Set variables will begin with a capital R, S or T, and be followed by at least one lower case letter.

The basic predicate of set theory is membership. In second order arithmetic, things that are members are s-expressions, and things that have members are sets. So:

$$
a \in b \supset(\operatorname{sexpr}[a] \wedge \operatorname{set}[b])
$$

The principle of extensionality is that two sets are equal if they have the same members:

$$
\text { EXT: } \quad \forall x(x \in S a \bar{x} \in S b) \supset S a=S b
$$

The principle of comprehension is that there is a set to correspond to every property definable in the theory, or:

$$
\text { COMP: } \quad \operatorname{GSa\forall x}(x \in S a \equiv \alpha)
$$

where α is any formula not having the variable Sa free.
From the extensionality axiom, one can prove that the existential quantifier in the comprehension axiom schema is unique, i. e., $\mathbb{J}_{1} \operatorname{SaKx}(x \in S a \equiv$ $\alpha)$.

The induction axiom schemas of first order arithmetic cen be replaced by single formulas in second order arithmetic:

NIND: $\quad 0 \in S a \supset \forall n\left(n \in S a \supset n^{\prime} \in S a\right) \supset \forall n(n \in S a)$
SIND: $\forall x($ atom $[x] \supset x \in S a) \supset \forall x \forall y(x \in S a \supset y \in S a \supset x * y \in S a) \supset$ $\forall x(x \in S a)$

Together with the axioms of A, these are the axioms for second order arithmetic, A^{2}.

We can define certain classes of sets, and even given them special variable types that are sub-types of the type "set". The most obvious one is the set of numbers. We define the type "nset" by:

$$
n s e t[S a] \equiv \forall x(x \in S a \supset n \varphi m[x])
$$

Variables of type "nset" will start with a capital N_{h} such as Na , Nb, etc.
The least number principle can be stated as a single axiom:

$$
I_{n}(n \in N a) \supset \Xi_{1} n(n \in N a \wedge \forall m(m \in N a \supset n \leqslant m))
$$

First order functions and predicates can be represented as individual sets in second order arithmetic. If \ddagger is an m-ary predicate on the s-expressions, then it is represented by the set containing only lists of length m, and such that list $\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ is a member of the ted and only if $\tilde{T}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is true. If $\tilde{\varphi}$ is an n-ary function on s-expressions, then it is represented by a set containing only lists whose length is $n+1$, and such that list $\left[\sigma_{n+1}, \sigma_{1}, \ldots\right.$, σ_{n}] is a member of the set if and only if $\phi\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sigma_{n+1} \quad$ Putting the value firat is a matter of conveniense. It is eapy tomelce definitions such as:

Parfun3[Sa] $\left(V_{x}(x \in S a \supset s 4[x]) \wedge V_{x} \nmid y(x \in S a \supset y \in S a \supset c d r[x]=\right.$ cdr[y] $\mathrm{Zx}=\mathrm{y})$)
Totfun3[Sa] ㅍ (Parfun3[Sa]^ $\forall x(s 3[x] \supset \square y(y * x \in S a))$
Parfun and Totfun are seeend order prediestes. Obviousty, one can continue to make specific definitions of functions and predicates having such and such numeric or symbolic arguments and values.

There are second order functions or functionals which process first order functions and might be called combinators of first order functions. These are abstract, rather than procedural operations and do not correspond to recursive processes necessarily. For example, given the unary partial functions $\tilde{\varphi}_{1}$, and $\tilde{\varphi}_{2}$, there is the partial function $\tilde{\varphi}_{2}\left(\tilde{\varphi}_{1}(s)\right)$. The second order function Compose(Sa, Sb) has this composition function as its value. It is trivial to prove:
$\operatorname{Parfun1}[\mathrm{Sa}] \supset \operatorname{Parfun} 1[\mathrm{Sb}] \supset \mathbb{G}_{1} \mathrm{Sc}($ parfun1[Sc] $\wedge \forall x \forall y($ list $[\mathrm{x}, \mathrm{y}] \in \mathrm{Sc} \equiv$

$$
\llbracket z(\operatorname{list}[z, y] \in S a \wedge \text { list }[x, z] \in S b)))
$$

Using Rule PF, we define this unique Sc to be Compose[Sa, Sb].
Corresponding to any procedure for computing a first order partial recursive function, is the set which is the function it computes. We can call this the extension of the procedure. Trivially:

Using Rule F, we define this unique Sa to be Extension[x].
It is possible to define an ordinary first order recursive function pcompose such that if x and y are s-expression translations of procedures for unary partial recursive functions, pcompose[x, y] will be a procedure for computing the composition of the two functions. Then for any such x and y the following identity holds:

Extension[pcompose[x, y]] = Compose[Extension[x], Extension[y]]
It is even possible to define an abstract Apply by:

$$
\exists_{1} y\left(y^{*} x \in S a\right) \supset \text { Apply }[S a, x]^{*} x \in S a
$$

Rule PF
This second order function applies any function (represented by a set) to its list of arguments, and produces a value (abstractly). The evaluation of a partial recursive function by an interpreter coincides with a special case of this in the sense that:

$$
\text { In(applyk }[x, y, n]=\operatorname{list}[z]) \supset \text { Apply }[\text { Extension }[x], y]=z
$$

The purpose of this discussion has been to show that a much larger number of situations can be discussed very precisely in second order arithmetic than in first order. This is done at the expense of making the discussion abstract, in that the entities being discussed are no longer constructable. It seems as though any mathematical discussion cannot realisticslly be kept at the first order level. When we want to go beyond the second level, we can either explicitly formulate third order and fourth order arithmetic, etc., or we can go into axiomatic set theory.

Problem Set 35

1. Show that there are formulas of first order logic that are not prov-
able in first order logic, but are provable in second order logic.
2. Prove that second order logic is incomplete.
3. Define the functions Union, Intersection end Complement (with respect to the set of s-expressions). Onion, for example, is a function of two argements which ape sets, and the valueis thets whith is their unfon.
4. What is an impredicative defnifin? trow does the axiom schema COMP avoid impredicative defintions?

§15.2 Axipmatic Set THoery

There are basically two styles of axiomatic set theory. ZermeloFraenkel (ZF) set theory is a theory about sets only, while von Neumann-Bernays-GBdel (NBG) set theory is a theory about sets and classes, which are universal objects that are too big to be called sets. $2 F$ has axiom schemas giving rise to infinitely many individual axioms, while NBG is finitely axiomatized. For the reader wishing an introduction to set theory, [Shoenfield, Chapter 9] discusses ZF, and [Mendelson, Chapter 4] discusses NBG. Set theory is discussed informally, that is, without reference to an axiomatization in first order logic, in [Halmos].

Two of the important concepts developed in set theory are cardinality, and ordinality. We are using the concept of cardinality when we investigate second order arithmetic and mention higher arithmetic. One of the principles of set theory is that, given any set, there is the set of all subsets of that set (known as the power set) which is of higher cardinality than the original set. So when set theory axioms are added to arithmetic, we automatically get sets of s-expressions, sets of sets of s-expressions, etc. Axiomatic set theory, as it is commonly presented, is abstract in that the only basis for constructing sets is the empty set. But it is easy to merge the axioms of set theory with an existing theory such as first order arithmetic.

The other major concept of set theory is ordinality. We have hardly mentioned ordinal numbers in this book, yet the theory of ordinals enriches the study of recursive functions, and axiom systems at almost every level. There is a whole hierarchy of ordinal numbers even when we restrict ourselves to countable ordinals - those having the lowest infinite cardinality. The smallest transfinite ordinal is called ω. There is the sequence $\omega, \omega+1$,
$\omega+2, \ldots$ and an ordinal $\omega \times 2$ that is greater than any of theme. There is the sequence $\omega \times 2, \omega \times 2+1, \ldots$ and the ondinat $\omega \times 3$ which in greator than these. The ordinal ω^{2} is greater than any ordimal in the anquence $4 \omega \times 2$. $\omega \times 3$, etc. All of these and many napre are still countable.

Ordinals are the natural mathematical atructare for represeating the idea of trsncendence. For example, GBdel's theorem allows us to find a formula independent of a certain axiom system. This oten be repeated ad infinitum, but even after adding infinitely many axioms, we can still find an independent formula, and after adding seqpences of sequences of new axioms, we still find that we can obtain an independent formula, The unsuccessful effort to finally complete the axiom syetem leads naturally to Kleene's concept of a constructive ordinal.

BIBLIOGRAPHY

Chaitin, Gregory, "Information Theoretic Complexity", IEEE Transactions on Information Theory, January 1974, pp. 10-15.

Chang, C. L. and Lee, R. C. . Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.

Davis, Martin, Computability and Unsolvability, MoGraw-Hill, 1958.
Davis, Martin and Putnam, Hilary, "A Compating Procedure for Quantification Theory", Journal of the ACM, Mareh 19s0, pp. 201-215.

Halmos, Paul R., Naive Set Theory, Van Nostrand, 1980.
Hart, Timothy and Levin, Michael, "LISP - 240 Exercises and Solutions" in The Programming Lantade LISP, Its Opetithin and Applications, ed. Edmund Berkeley and D. G. Bobrow, Mit Press, IVE4.
 Logic of Typed Theories", Stamfoxd Artificisul Intalligence Projeet, Memo AIM-168, May 1972.

Jack, Alex, 221A Biaker Street, The Adamantime Bteslopk Holmes,
 price $\$ 2.95$.

Kleene, Stephen Cole, Introduction to Metamathematics, Van Nostrand, 1952.
Manna, Zohar and Vuillemin, Jean, "Fixpoint Approach to the Theory of Computation', Communications of the ACM, July 1972, pp. 528-536.

Margaris, Angelo, First Order Mathematical Loxic, Blaisdell, 1967.
McCarthy, John, "A Basis for a Mathematical Theory of Computation", in Computer Programs and Formal Systems, ed. Braffort and Hirschberg. North Holland, 1967.

McCarthy, John et al., LISP 1.5 Programmer's Manual, MIT Press, 1965.
Mendelson, Elliott, Introduction to Mathematical Lopic, Van Nostrand, 1964.
Milarepa, The One Hundred Thousand Songs of Milarepa, trans. Garma C. C. Chang, Farper Colophon, 1970.

Milner, Robin, "Logic for Computable Functions (LCF), Description of a Machine Implementation", Stanford Artificial Intelligence Project, Memo AIM-169, May 1972.

Milner, Robin, "Models of LCF", Stanford Artificial Intelligence Project, Memo AIM-186, January 1973.
"There is a great wind coming whose electrical storm shall be felt for the duration of the centary," Samdup mused ratsing hit dark eyebrows and staring out meditatively at the ominous sky.
"Humanity shall become possessed by its technology, " Martha agreed, handing Mycroft the gramophone recordings of the German Embassy, the keys to the one hundred horsepower Benz, and the telephone number of the real Von Herling who remained in his hotel roam tied up with his telephone cord.
"Good grief," she continued, as her voice changed from a Suffolk to a New Jersey accent, "even the opera itself will vanish and people shall listen to recorded music at home." Smiling at Sherlock, she took off her old lady's grey wit and her beautiful long red hair streamed down her shoulders. "We are our own machines, and all of the powers of the universe are within us."
-The Adamantine Sherlock Holmes-

Nagel, Ernest and Newman, James R., GBdel's Proof, New York University Press, 1958.

Newry, Malcolm, "Axioms and Theorems for Integers, Lists, and Finite Sets in LCF", Stanford Artificial Intelligence Project, Memo AIM-184, January 1973.

Robinson, John A., "A Machine-Oriented Logic Based on the Resolution Principle". Journal of the ACM, January 1965, pp. 23-41.

Scott, Dana, "The Lattice of Flow Diagrams", Tech. Memo No. PRG-3, Programming Research Group, Oxford University Computing Laboratory, 45 Banbury Rd., Oxford, England.

Shoenfield, Joseph R., Mathematical Logic, Addison-Wesley, 1967.
Strachey, Christopher, "Varieties of Programming Languages", Programming Research Group, Oxford, Technical Memo PRG-10. (See [Scott].)

Vuillemin, Jean, "Correct and Optimal Implementations of Recursion in a Simple Programming Language". Rapport de Recherche No. 24 , Institut de Recherche d'Informatique et d'Automatique, July. 1973.

Weissman, Clark, LISP 1.5 Primer, Dickenson, 1967.
Yessenin-Volpin, Alexander I., "The Main Problem in the Foundation of Mathematics", Boston Colloquium for the Philosophy of Science, March 1974.

Yonezawa, Akinori, "On a Proof Procedure of the First Order Predicate Calculus". Master's Thesis, Tokyo University, 1972.

[^0]: 1Minsky writes "I regard the recent demonstration of the consistency of modern set theory, thus, as indicating that set theory is probably inadequate for our purposes-not as reassurance that set theory is safe to use!" Minsky is referring to the work of Yessenin-Volpin, who curiously enough is saying much the same thing. Following a famous result of Gbdel, the consistency of ZF (axiomatic set theory) cannot follow from any argument that can be formalized within ZF itself. Since ZF is intended to incorporate all the set theoretic principles that mathematicians need to do their work, this

[^1]: ${ }^{1}$ When a reference is made in square brackets, the complete citation can be found in the bibliography, listed alphabeticalty by tuthoelgname.

[^2]: ${ }^{1}$ That is, if one is willing to accept the fairly conservative portion of classical mathematical reasoning used in the proofs of 8.1 thru 8.5.

[^3]: ${ }^{1}$ One way to be sure that the procedure does not act on the information "this argument is undefined" is to replace each individual argument with an oracle for a constant function $\psi[\}$ based on a sequence $\left\{\psi_{i}\right\}$. This sequence either produces the argument for some i, or it never does, and the argument is " 1 ". In other words, the procedure has to work to obtain each argument, and it can never know if or when it will get the argument until it gets it.

