
MATHEMATICAL LOGIC FOR COMPUTER SCIENTISTS

by

MICHAEL LEVIN

The work resulting in this publication
was done at M.I.T's Project MAC and at the Stanford
Artificial Intelligence Laboratory, and was supported

in part by IBM

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Cambridge, Massachusetts, 02139

-

ABSTRACT

This book is an introductory course in mathematical logic covering

basic topics in quantification theory and recursive function theory. and is

intended for the reader who is interested in artificial intelligence. computer

linguistics. and other related areas. The text is theoretical. but organized

with implementation in mind. Toward the end there are a few experimental

subjects aiming toward systems that can examine their own behavior. and

toward the semantics of programming languages. The arithmetization of

metamathematics is carried out in LISP rather than in the natural numbers.

following an axiomatic treatment of LISP.

ACKNOWLEDGEMENTS

To Ed Fredkin. who is not a mathematician. for having the confid~nce
that I could write this book.

To my students at MIT. for their help and· interest in this work.

T6 Delphine Radcliffe. for her expe~t typing.· c6rnp0sing and spelling.

and her patience and hard work while preparfng hf-o dr~s.

PRELIMINARY EDITION

The author will be pleased to read any comments.. criticisms.

suggestions or errata that you may have. Address correspondence in care

of Project MAC. 545 Main Street, Cambridge, Mass. 02139.

[Dhar Lho said]. "Logic is the most important science of all learning.

If one knows logic, all other studies become secondary. Therefore, I shall

first discuss logic with you. Generally speaking. logic is the study of judge

ment and definitions, of which the mollit im~ subjects are the studies of

direct experience, of interenc:e and d.e<IJ.ictio~ of '•Ucfficient reasoning' and

•false reasoning'. of 'non-decisive proofs' .. and of the .~terns fei>r construct

ing propositions. Now,, tell me llbout all tbeser~~!"

[Milarepa replied ••• 1 "What I under.•taod :is. th~t au maniif.e$tations

[consist in} Mind. and Mind is the filtlD1ina~g~Voi4rul!ss Without any shadow

or impediment. Of this truth I have a decisive understanding; therefore not

a single trace of inference or deduction can be found in my mind. If you

want me to give some examples of 'false-reasoning', your own knowledge is

a good one because it is against the Dharma: and since this 1false reasoning'

only enhances your cravings and makes them •sufficient•. it is a good example

of 'sufficient reasoning'. Your hypocritical and pretentious priestly manner

contains the elements of both •false' and 'sufficient' reasoning, which in turn

stand as a good example of 'non-decisive proof•."

-The Hundred Thousand Songs of Milarepa-

PREFACE

I would like to discuss first the contents of ,this' book, and then the

atUtudes behind it.

The first two chapters are about LISP. • In Chapter One. a-expres

sions are introduced as a data space. and _the basic functions of s-expressions

are, .presented. In Chapter Two. recur4ive. ~-edures are explained. and

the recursive functionJi pf s-expressions are1l~echa8: those for which aUC?h

procedures can be writt.en. Tl\ere is a diseu~aion o1-.why these a.ppcar to

include all effeetiv.ely comp11table functton11:~{-1'uriR11s anc:LChurch's theses).

Chap~ers Three &AtJ. Four are ab()ut ~tiebal· J.octe. Chapter

Three introduces the notion. ()f St:dedu~Uon ~ia pftn i}>J'etni1U!!8 ·leading to a

conclusion, and estabUshea, tQe fact tha.t d~ttODS are -.ehanical procedures

th~t can be checked for oorre4rtn.-Jt by\• 4).08)ptat_., ~am.. :,Chapter Four

consid~rs theories in pr:opoaitional logic antl;eodel11:tb&tipl'GpO&itional logic,

a.nd contains coqaistency 8illQ .completeneu, ~••••. ,,- • Allt;id this is a dress

rehearsal for !trst orderlotlc, \\'here tM same. theme• 1181,berepeated in a

richer setting.

Chapter Five is a brief interruption of .. u.e, c:levelop,m«it Of deductive ·

systems to discuss the concepts "recuraive11 and •!recursively enumerable",,

ancl .to deznonstrate the existence of undecidable quelltioas~suctras· Turing's

haltin,g pr~.

The central portion of Uie book is about, first order·: quantification

theory, specifically first order languages with function and p:r:edioate names.

C~!l?ter Six introdµc:es first order lanpaees. firat;Gl"Abt~:.tno.dela.. and .the

semantic notion of. satisfit\.bilUy. Chapter Seven cieftaea:,deduotien. proves it

to be semantically coQsistent., and presents a number of. st~ard proof~

theoretic resulis, including the deduction, theorem, nplacement of equivalents.,

change of bound variables and the choice ruJ,e~ Chapteto.; B1lht contains the

completeness theorem for first order logic in several different forms.

together with related results such as compactness and the Skolem-LBwenheim

theorem. Chapter Nine is a bundle of loose ends. which includes the

extension of first order theories by means of conservative definitions, decida

bility, and comparisons with other deductive systems, namely Robinson's

resolution, and Gentzen-type systems.

The next topic is the theory of arithmetic, which is the arithmetic of

the s-expressions. The arithmetic of the natural numbers is treated as a

special case of this. The theory is presented informally in Chapter Ten, and

as a formal first order theory in Chapter Eleven. In both cases, there is an

emphasis on the strong analogy between Peano' s postulates for the natural

numbers, and the corresponding postulates for a-expressions.

Chapter Twelve is concerned With the representation of recursive

functions in the first order theory, which is then used to prove the incom

pleteness of arithmetic in three different ways: The first way is by construc

ting the LISP analogue of G8del' s undecidable sentence. The machinery to do

this comes naturally, because it is none other than an updated version of the

proof-checker discussed in Chapter Three. Representing formulas and

deductions by a-expressions is not nearly so strange or impractical as repre

senting them by G8del numbers. The second method of proving the incom

pleteness of arithmetic is by representing computation (as distinct from

deduction) in the deductive system, and mapping the halting problem into first

orde1· arithmetic. The third method uses an "information theoretic com

plexity" approach due to Chaitin. The argument advanced here is that these

incompleteness results are not irrelevant theoretical considerations, but

rather that they illustrate the richness of arithmetic, and introduce new (meta)

ways of reasoning.

This idea is followed up in Chapter Thirteen, which presents a formal

axiomatic "metamathematics" which cari be used to reason about formal

arithmetic, and to produce proofs of the existence of proofs which are

generally much shorter than the original proofs. There is a hierarchy of

metamathematical levels, in that one can prove that there is a pr.oof that there

is a proof of some formula. This technique also enables one to prove the

validity of theorem schemas and derived rules of inference.

Chapter Fourteen is about the recursion theorem, and its usefulness

for representing partial recursive functions in first order arithmetic. This

chapter is useful as background for studying current research in thf' s~man

ti.l~S of programming languages.

Chapter Fifteen contains some conciudirlg' rema~ks about second order

arithmt.~tic and axiomatic set theory. < .

* *
Once upon a time. it was believed that the problem .. of getting a machine

to behave intelligently would be solved by starting with a..•maU kernel of

intelligence capable ()f learning. reasoning. and or~inf :itself as it grew.

Th er<!' were several variants of this ,idea. and. some t:Jf th.em assigned an

important role to a "proof procedure" tb~ could create cjemonstrations of

logical propositions.

This approach is now considered naive and simplistic. As researchers

have immersed themselves in the task of simulating detatletl aspects of human

speech anp perception. there-has been a6f>WilJl•&ppl!eoiati.Qn of the complex

ity and s\lbtlety of these acts, and the lar1e amount::Olf·detat)ed knowledge that

seems to under.lie the ph:enomenon .of intellilfence., ArtWoial intelligence

research is now detailed and nitty•gJ"itty :.rather· than iVatgue and· general. How

do light an~ sh~w allow us to find the edps of a block?; How does the pre

formed concept of a block allow. us to infer one :from.Isome edges? How do ·

we determine the antecedent of a personal pronoun?

Artificial intelligence is also beceming,,a more structured discipline,

· not as a universal mathematical theory. but as an·-epistemC>logical and

psycholog•cal theory. One of the main~siev•lopmeflt».ottb.e.last few years is

the recognition of knowledge as being procedural .·rather thaa merely factual.

Knowledge is not a body of facts but. rather, wM:toneAiees with one's facts

and situa.tions. Such a study cannot help but run into tl!le pOOblem of intention

ality. It is no accident that phenomenology, gestalt psychology, and the

developmental epistemology of Piaget are now seen by many workers as

relevant to artificial intelligence research.

The logistic approach to artificial int4!lligence is severely and, in my

opinion, correctly criticized .in Marvin Mineky1• ~- :Curr-~tly unpublished

"Frames" paper. Almost all of the criticism.s are rei~tt;td tp the fact that

logical deduction isolates the factual information or axioms from the methods

of reasoning or rules of inference. (i) This separation forces one to repre

sent knowledge about the world as a large body of independent statements.

Without a structure governing their relations. there is no way of selecting the

relevant facts from among all the possible ones. and so attempts at deduction.

run into a combinatory explosiveness. (ii) Many "facts" are true only when

used in a reasonable way. Minsky uses the ex~mple of "nearness" which is

1 ransitive in: the sense that if A is near B. and B is near c. then A is near C.

Ttiis bit of r~asoning works as long as it is not carried too far. In principle,

one can al ways make a more precise formulation of any axiom by adding more

parameters. But this seems to be unrealistic and. in any case. people do

not make use of deduction beyond the point of common sense. (iii) Deduction

is monotonic in the sense that adding new axioms allows one to make new

inferences, but does not prevent one from making any of the old ones. If a

general rule turns out to have exceptions not foreseen at the time it was

postulated, there is little one can do except change the original rule, and

recheck everything one has done so far for correctness. The rules of logic

do not permit one to make restrictions concerning the· inappropriateness of

certain deductions. (iv) Consistency and completeness do not appear to be

desirable properties of a practical system of reasoning because there is no

way to organize a body of real knowledge that is either consistent or complete.

l•'or 1•xnmplc, human reasoning appears to make use of some of the principles

of s<'I. theory, hut has no specific safeguard that prevents the paradoxes of

naive set theory. If someone is informed of Russell's paradox. he may eitt1cc·

develop a critique of it or simply ignore it and go about his business. But in

no case will the existence of the paradox interfere with his reasoning about

ordinary situations. 1

* * *
1 Min-sky writes "I regard the recent demonstration of the consistency of
modern net theory, thus, as indicating that set theory is probably inadequate
for om· purposes--not as reassurance that set theory is safe to use!"
Minsky is referring to the work of Yessenin-Volpin, who curiously enough is
saying much the same thing. Following a famous result of G8del. the con
sistency of ZF (axiomatic set theory) cannot follow from any argument that
can he formalized within ZF itself. Since ZF is intended to incorporate all
thC' set theoretic principles that mathematicians need to do their work, this

The question, then, is why study mathematical logic at all and, in

particular, why should there be a book organized as if the most important

task to be done is to create an automated proof-checker capable of axiomatiz

ing systems of knowledge of almost any kind? (A proof-checker, as distinct

from a proof-procedure, doesn't have the smarts to create a proof. It

merely forces the intelligent human or other proof-generator to be completely

precise, and perhaps it fills in the gaps in the proofs if they are not too

difficult.) I think that the answer to this question is not that such a project

ought to be undertaken, but that the presumption involved is contained within

logic itself, and goes back at least as far as Descartes, if not Aristotle.

The logistic method is an attempt to grab a hold on the world by

reducing it to premises, inferences and conclusions. This is not always a

healthy way of relating to the world. I think that part of Dhar Lho's error

was in not seeing this. Formal logic is the necessary consequence of informal

logic, and automated logic is the necessary consequence of formal logic. The

nature of the fruit is in the seed, and the mature fruit tells us something about

the seed, as well as vice versa.

Formal mathematical logic can be viewed as a structure, interesting

in itself. But there is always a motive for one's choice of structures to

develop. In the case of first order logical theories, this motive is the notion

that, at least in principle, entire areas of mathematics can be formalized

axiomatically in first order logic, and their theorei:ns proven within it.

Carrying this one step further, there is the ambition to axiomatize "real"

situations in the same way.

It is for this reason that the later chapters of this book are aimed in

the direction of a large and unsolved problem which the professional logicians

have not been overly interested in solving. How can a deductive system

incorporate within itself those metamathematical processes which are

has discouraged logicians from expecting to be able to prove the consistency
of ZF. But Yessenin-Volpin writes that ZF is "not so expressive as is
commonly believed". His consistency proof (which is too new and unusual
for there to be any adequate professional evaluation at this time) uses tech
niques that are startling to mathematicians, but possibly relevant to Minsky's
discussion, which he calls "tactics of attention", and which relate the deduc
tive process to questions of modality and intention.

necessary to the work of a real mathematician, and do so in such a manner

that new mathematical tools are proven to be valid before they are used? If

mathematical logic does not investigate this problem soon, it will have failed

to mature its most important concept, Which is the applicability of the axio

matic method.

In stressing this point, I am guilty of some confusions and inaccurac

ies which will be evident to any trained mathematical logician. Questions of .

foundations have been obscured by using axioms and definitions that are too

strong. The distinction between finitary and set theoretic reasoning, and the

historic context that makes this di'stinction important have not been made

clear enough. My decision to allow definitions into theories has converted

them into temporal or develop:rnental entities, which is not as neat as the

standard treatment of theories, although it is more practical and realistic.

Some of the proofs of theorems are a bit sketchy and occasionally non-existent.

This is especially true if the theorem asserts that there is an effective pro

cedure that does such and such. The book is wrttten for people With compu

tational experience to whom such things are self-evident. On the whole, I

think that this book is a useful introduction to logic from one point of view.

The student who then wishes to continue his study of mathematical logic will

have little difficulty in making the transition to the more standard presentation.

* * *
Jn some sense, then, this book is not about what its contents appear to

be. The reader will have to form his own opinion concerning the relevance

of logic to artificial intelligence or any other endeavor. If he is interested,

this book will lead him through a maze of particulars and details, and will

suggest some ways in which to organize this experience. Because logic is so

abstract, it generally turns out that anything which is a real problem in logic

will present itself elsewhere in some other form. You Will have to ask your

self what is the relation between quantification, and space and tim:e. or what

is the relation between the deduction theorem. and m.odalities o'f' speech such

as the subjunctive. or whatever else it is that you notice while studying logic.

Good luck!

PREREQUISITES

It is assumed th~t the reader bas a ~ackground and interest in

computer programming, and that he has mathematical aptitude. The text

assumes no specific math•~atical knOWl~e,;.o,4il'l~F than those f~damental

concepts basic to all of theoretical mathematics, but some mathematical

sophistication is expected.

LISP is used extensively, and it will help to have· programmed in LISP.

But this is not essential because LISP is develaped in the first two chapters~
There is some reference to common, programming ideas such as ALGOL,

call by value and name, procedures, etc.

The mathematical prerequisites can all be.tound in {Halmos J. 1 They

include:

Sets, subsets, membership, union, intersection, complement,

power set.

Function, domain, range, argument. value.

Cardinality, finite, infinite, countable, Uh~otmtable, · diagonalization.

Equality, equivalenct;; relation.. paHitferi,' uoset.

Mathematical induction. ·

Partial ordering, linear ordering, upper and lower bound, .greatest

upper bound, and greatest loW:t!r' bc>und. . .

Some familiarity with.symbolic IOjtbl>Wilt~ u.seful, but not essential.

Ref er enc es to other mathematical subjects such a~ .~1Ull,Y4l.~.. t<>p<>logy or
~ . c' ' -· .. ·; ': •

ordinal numbers are mainly used· as illustrat:todll'tliat 'maJ be skipped over.

1 When a reference is made, in :Square. braeketa;''.fhfftotapiet•~tation can be
found in the bibliography, listed alphab~j ~au~-is~~e.

l '- .•

CONTENTS

CHAPTER ONE SYMBOLIC EXPRESSJmfS

§ 1. 1 S-expresaions . . • . . • • • • •
§ 1. 2 Basic Functions of S·expressions • • •

CHAPTER TWO RECURSIVE P&FINITIONS

§2.1 Functions . . • • • • • • .
§2.2 Recursive Definition . . • • •
§2. 3 i Partial Recursive Functions • • • •
§2.4 A Universal. LISP Function • • .. • • •

CHAPTER THREE PROPOSITIONAL LOGIC - I

§ 3. 1 Propositional Formulas • • •· • • • •
§ 3. 2 Interpretation • • • •
§3.3 Deduction • • • • • • • •
§3.4 Proof-Checking .. • • • • • • •

CHAPTER FOUR PROPOSrrlONAL LOCHC • ll

§4. 1 Proof Theory • • • •
§4. 2 Model Theory • • . . • • • • • •
§4. 3 Consistency and C<>mp.leten•sa ' .. • • • • •

CHAPTER FIVE RECURSIVE FIJHCTIQll&, AND SETS

§ 5. 1 Recapitulation • • . • • •
§5. 2 Turtnc•s Haltina Theorem • • • • • •
§5.3 Recursive and Rec.ursively Enumerable Seta • •

CHAPTER SIX FIRST ORDER LOGIC - INTRODUCTION

§6.1
§6. 2
§6.3

Languages. Formulas and Sent.ences
First Order Models •
Theories • •

• • •
•

CHAPTER SEVEN FIRST ORDElt LOGIC - DEDUCTION

§7.1 Substitution . . . •
§7.2 The Rules of Deduction • •
§7.3 The Consistency Theor.em • •· • •
§7.4 E:&istence of. Deductians. Replacement • • •
§7.5 The Deduction' Theorem • • • • • • •
§7.6 The Choice Rule

•

•

•

•

CHAPTER EIGHT FIRST ORDER LOGIC - COMPLETENESS

§ 8. 1 Completeness • • •
§a. 2 Equality • . . • • • • •
§a. 3 The Skolem-L8wenheim Theorem

•

•

Page

1
6

13
14
23
24

32
34
37
39

42
46
50

52
53
55

58
61
65

69
72
75
77

'82
85

89
93
95

CHAPTER NINE FIRST ORDER LOGIC - ADDITION AT,
TOPICS

§ 9. 1
§9. 2
§9. 3
§ 9. 4
§9. 5
§9. 6

Definitions . • •
Herbrand' s Theorem • •
Substitution and Unification
Resolution • • •
Gentzen-Type Systems
Decidability •

CHAPTER TEN INFORMAL ARITHMETIC

§ 1 O. 1 The Postulates of Arithmetic
§ 1 O. 2 Primitive Recursion
§ 10. 3 Other Arithmetics

CHAPTER ELEVEN FORMAL ARITHMETIC

~ 11. 1 Multi-Typed Logic • • • • •
§ 11. 2 Axioms for the Theory of Arithmetic
§ 11. 3 Development of the Theory • • •

CHAPTER TWELVE RECURSION AND DEDUCTION

§ 12. 1 Expressibility and Representability •
§ 12. 2 Primitive Recursion • • • •
§ 12. 3 The Incompleteness of Arithmetic • •
§ 12. 4 Representability of Recursive Functions

CHAPTER THIRTEEN MET AMA THEMATICS

§ 13. 1 Truth and Tarski' s Theorem •
§ 13. 2 Metamathematical Deduction •
§ 13. 3 The Hierarchy of Truth

•

CHAPTER FOURTEEN THE RECURSION THEOREM

§ 14. 1 The Nature of the Problem
§ 14. 2 The Recursion Theorem • • • •
§ 14. 3 Application of the Recursion Theorem •

CHAPTER FIFTEEN SECOND ORDER ARITHMETIC
AND SET THEORY

§ 15. 1 Second Order Arithmetic
§ 15. 2 Axiomatic Set Theory •

BIBLIOGRAPHY

.•

•

•

Page

98
103
106
110
115
116

118
120
122

125
127
133

137
139
140
147

149
.152
155

156
159
164

170
173

This empty page was substih1ted for a
blank page in the original document.

~

CHAPTER ONE

SYMBOLIC EXPRESSIONS

Preview of Chapters One and Two

Chapter One introduces the basic data of LISP which are calied

s-expressi?~s, and a set of ba~ic func1ion~ 1gf ~r~~r~-~~io~~ fro19 which one

may conslruct·many other LISP,J~11ctions. ,, $j.~t#?t~~;;t;~o. t~f.Pc.tuces a ,simple

language, recursive in_ n'1ture~ .· i!! whi~~ one Jr~~; d.f:!~Hl;iJ:]1~ pi;ec.\~ell ~9W to
compute a complicated function-from the basic functions. It i:s,t~!l1P,9rtant. tp
learn this material thoroughly before proceeding further in this book because

LISP will be used in relation to an the su}?~~~~~~~ ~Pl?~~!i' ,of d~~c~~sion, and
because, as we shall see later, LISP itself I~ th~· subJe~t of a tlieo~y which is

as elegant and sinrnle in its postul~i.es ~~- ~f1."P"\W~~~n1e~~,f P

. Pedagogically, it m11kes sense to h,a,ve ~C>,!Th~,pi;,acUc8tl ex,p~rience with
. - . . , -.. ' ~. ~ . ' ' -· . . - . . ' --·· -

a subject before atteJllpting a theorya~ut Jt~ .-1:':~~"~'~{1D1~\~ _,Qµ1:11bt:!r~ and
the us~· of nu~bers are taught in elementary school~ ··~bile ~umber theory is

typically a college level subject. Therefore, it is important to make use of

these two chapters and their exercises to a.cq1,.1ire s<>m~ .basic s~ill with . . ;_(: ... ,. ;• ... ;· . . '· .

s-expressions.

If you are already a LISP programzn~~" J~t skim through the two

chapters and note that some of the definitions used here differ from the pro

gramming system you are used to, and that many part~.of the language have

been omitted.

§1.1 S-expressions

The b~sic µnits from which s-e~r~lijlion_s a.re bpJJt ~re ~alled atoms.

-1-

We shall define atoms, and then show h01V to build larger s-expressions from

these. Atoms are of two kinds: na·mes and nUftibers.

A name is any sequence q(,Ql:le o,r.~oi-ie,capital letters and digits which
; - " '.

begins with a capital lettet-.

A positive numb~r is atty sequence of one or more digits that does not

begin with O.

Zero (O) is also a number.
; . ~ ,

The positive numb~t's t~·t- ·~· 0 arecci.llea ~tu'.ral 'ntimbers:· ·.

wiine we coutd~ dettne'IDany'~tii~ ktii&{di'&•.·"fii'~il.rr,~1F~er~ila11
always m'ean natura1 n~~~~· ~-,~-· ~~Y-~:~~~~~{~i!)_.l~ltY otfler~ :·
wise. ·. The'refoi-e: - · · · · · .' ·' ·. ·. ·' <H.1 '· .inr.._ .. ···· ' '· d1 ·' · ·· ·

, •• ': • i : ;: ,- t J • ~ • •

A number UJ a 'pmtitivc! ndmbef' or' ~i~~o.' ''. ; ' 1. '

i ~-:· : ; : : ·~- 1 ; i , --.- c. -t :-·· .L ·f 1 : · .. ' ."

There are man:y t~j bt"•ntltfes 0ffl~ 6ih · .. ~ 'ahtf ire 'c~naidei-ed' '
atoms in various t:tw;~fat'eiiis. · · /~c~ ~.i'-.;e ;i•ll~ti tr~lIA'~~our~e1ves to

the minim~l sfru~··requi~ed by'Uit!'ai&jeb1'tiiahit:1b~'.iife~l ,,· 1'1i~re-
fore:

,! '.·· ··- '.JJJ':-~1:f.~;:!_t.(f,-;~}! ,,_,~··(~ -;:<

. An ato~ is ef,thet' a name or a nUriiber~

A

R~D!JOX

6

0

~' ' .

Al3C3
: ~ ;-~ L :')•_..-

$AM

AQ34SOOJ7

c~~~~~

v..re now proceed to s-elq)ression* wi<~1{ar~ tli~ iri-tt& &Utiject or this

chapter. An s-expression is a tree-like structure created entirely from
'

atoms placed in a particular arrangem~t. :Parentheses. dots, and the

-2-

spaces used to separate one atom from another are used to specify this

arrangement.

An s-expression is either an atom or else it is a structure having the

form (o: • /3) where both o: and {J are s-expressions.

This is an example of an inductive definition. From it, we can infer

that A is ans-expression because A is an atom. Similarly, Bis an s-expres

sion. Therefore (A • B) is an s-expression. Applying the definition again,

since (A • B) and C are s-expressions, ((A • B) • C) is also an s-expression.

Examples of s-expressions:

A

(A • XYZ)

(A • (XYZ. A))

((Al • A2) • (Bl • B2))

XYZ

((A • XYZ) • A)

(Al • (A2 • (A3 • NIL)))

((A • A) • (A • A))

Since we shall frequently make use of this kind of definition, it merits

some discussion. It is a common practice among mathematicians to limit

such a definition by' adding: " ••• and nothing else is an s-expression". We

shall always assume this to be the case.

It is possible to conclude from the definition that all s-expressions

have the same number of left and right parentheses. This is because (a) all

atoms have the same number of left and right parentheses, riamely none, and

(b) any other s-expression has the form (o: • /3) where o: and fJ are s-expres

sions. If this proposition is true for o: and {J, then it is certainly true for

(o: • /3) which adds one more parenthesis of each type. It is also evident that

each left parenthesis is paired with a unique right parenthesis, namely the

first right parenthesis encountered by making a left to right scan starting at

the given left parenthesis such that all the intervening parentheses are paired.

Notice that both (A • (B • C)) and ((A • B) • C) are s-expressions, and

that they are considered to be different s-expressions. The mathematical

principle which asserts that algebraically X+ (Y + Z) is the same as. (X+ Y)+ Z

is called associativity. The composition of s-expressions is not associative.

-3-

-- - -- ------- ·-- - . :,,;~

One more comment:, this time on the us~ 9f Greek lette.rs. A Greek

letter is n~ver part of any s-eJCp_res~ion, o:r fq,r,~h-~t",m~t~,r ailf,o#J.er type of
,:· • , , , · ; · - · , , ,,_ .c~' j, ..Ji J-..- . ,I , • -

entity constructed anywhere in this book.. It is purely an explanatory device,.

as in the previous definition 'Yhere w~ ~~1· "~et.·~:~!\~ J!
1
J1,e aqf;, 8:~expressions".

Pro bl em Set 1

a. ABC b. 35A

c. (A • B) ;:d. (A • B))

e. (A • B. C) f. ((A • B) • C)

2. How many different s..ie1tpressions are there t~at·use th.e atom "A"

exactly n times and contain no other atoms? (Calltthis f~cti<?n. ~(n). Don't
' - . ';_ ; ' •,; i' t1 \ .f 8: i' : ,··,_ ..

try to find an algebraic fonn111a fbr •(n) whidl(may not 'eXist; but learn how

to compute l'(n) when you know the values of •tor all nu~pe~s less th~ n.)
, •, l , "' , • I ~' l t ";_ ";:(:, ;. ~ j , ! •! ' : : w •

1

' ' ;

The examples of s-expressions· wbi~ ilav~ just been gtv~n a~e.all
•• - . ' - ·~ ' - • .:·~ ' ' ' . ~ ~ • ~: 1 .: i, ~: . , ' : .'. ;, ~ ; : ' ! ; \ - ';: ~ . .

written in \Vhat we call c:tot notation. There is another "shorthand" notatipn
,.:. .. ;r~:.} ':!f; ;..u ;.,)! ~ :-~J ::1r;··,:. ·.',,. ":-,~ :, .:. ~; ;

for writing a-expressions called list notation. lt is more convenient ~nd is

more generally used •. lltn\i~.V.iP.' ~e-Ei\!e'~fi~tfu~~cing ~~·~ew s-e~res::-.
• :

0
•• :-~' -,.,,·. :--.-,,,' ,'ftl-:; t'!!I: t._, ~·.r.:·.,,.:oL,~:·": ·.· ' - ' ·.

sions •. Every s-expre&sion can be wrltten uai~ Oiity dot.notatio~ t:>ut,many
: . '· , ... • .. ~,~it. _:~:·:.ti ~i· .. _.:,! }(J ·;:,·:~,.~;-~)~;rfj .,.-, . .- ... ~ r. '.'' ·,; : ,.,._

s•expressions are much easier to \ttite i~ list. ~tion. SOme s-.e~res;~_io.ns
cannot be wrftt·en in· tlst notfition~

Although list notation' is n1bst commonly used •. dot not.ation is
' ._"!/• - • -; . ., ~:'.· ·;,-,.;~·~ ~ .. _•'J;_;: t'~"· (:5 :. ·. .

considered more bU1tc. Theol"f!tlcaI p!"operttes bl a-expressions are
. . f -~ t ; ~· . ·:. "<; ; ' • • : ' .. < •

reRolved by r"ferrfrig to 'ciot' ndttltion: · · · · ·

In the list not•tion. a specii'atstatus is given" th~' atom NIL as the

tet'mirtator of liSts. A li .. t" ts ah ~~~~sai~ '114.:V#I t~+ t~,~~;·~~J. ~.· • ~. an)

where each a. is ari s-expressfon~ ; -'In" tither 'wor~s~ ~ "1ist'is" just several
1 ' ' ' ' : ... , :i ' J : < .:<'· •• ,;. , • ' . ,•

s-expressions enclosed between a'.set olparenetes.ts;· With''sPa.Ces between
them. This list is the same s~·expressi~fi ~~'(d ~'t .• · (·a

2
· • -~· •. : ~ (an • ~IL)

...)).

-4-

~~-- --------- - ------ ----- --

Some examples of lists (left column) and the equivalent in dot notation

(right column):

()

(A)

(ABC)

((A))

((AB) (XYZ) (U V))

((A) ((A)))

NIL

(A. NIL)

(A • (B • (C • NIL)))

((A • NIL) • NIL)

((A • (B • NIL)) • ((XY Z • NIL)
• ((U • (V • NIL)) • NIL)))

((A • NIL) • (((A • NIL) • NIL)
• NIL))

Some s-expressions cannot be represented without dots, for example

(A . B). Mixed notation may also .be encountered such as ((A. B) (C . D)).

In this case. there is a. list at the top level, and dots at a lower level. This

is the same a-expression as ((A • B) . ((C • 0) • NibH. ln general. we

avoid creating s-e"pi-essions that require dots, but it is .well to keep in mind

that the dot notation is the simplest way of eJCplaining t~e Wlderlying theory of

s-expressions.

Problem Set 2

1. Write each of these a-expressions_ using only qot notat1on.

a. A

c. (1 (2) ((3)))

e. (A (B ((C))))

b. (AB)

d. ()

f •. ((A) 2)

2. Write each of these a-expressions without dots if possible.

a. ((A • NIL) • ((B • NIL) • NIL))

b. ((A • NIL) • (B • NIL))

c. (A • (B • (C • NIL)))

d. (NIL • NIL)

e. ((APPLE • (PIE • NIL)) • ((CHEESE • NIL) • NIL))

f. ((X • NIL) • ((NIL • Y) • NIL))

-5-

§ 1. 2 Basic Functions of S-expres,sions

We are now going to cOftsider a small number of very basic operations

that one can perform on s-expressiona. These operations ~&the foundation•

of all subsequent processint of s ... egpressiona in much the same r\V&y that

counting up and down is the foundation for all of aritbmeUc.. As you probably

know. counting is even more basic than add.iq and multiplying when we

analyse operations from the mechanical viewpoint.

Because we are using a mathematical approach. we describe these

operations as being functions. The first funetion io-'be·d~, iB called

cons.

The function cons is used to oonatreet blgp1ni~e1Cp2ressions out of

small er ones. It takes two s -expression• and ~-· a left 'f>tlrenthesia, before

the first 'One, a LI$P dot between them, ,.,.. a .._., ,.MllUrell'i• after the

second one. For eampte. ooaa,of A aod B t•«A'., &>~ Also. cons of
(A • B) and (X • Y) is ((A • B) • (X. Y)).

We need a reasonable way of writing these assertions other than in

English. So we use a notation that looks like this:

cons[A, B] = (A • ,JU,
cons((A • 6), (X. Y)] ::: ((A • B) (X. Y))

We have said that cons is a function. In the ftt!st line above, A and B

are arguments of the function cons, and (A • B) ··.la.• th•' Value of cons associated

with these two arguments. It. is a C0~9fl ~~tb~~~~c.,,l.~<l,EJcien~~i,c: nota

tion to write a function followed by a list of its arpmenta enclosed Within

parentheses. The arguments, if there are more than ~e. are separated

from each other by commas. This is ·e~a:~tly wtaf we. have done here except

that we use square brackets instead ofpa'.r~tbelles. The reason for this is

that when the arguments are a-expressions, tbis colild~ girt confusing since
' -. . --~- ,.

parentheses occur as parts of s-expres'siotis.

Getting back to cons for the moment. Since every s-expression is

built from atoms, every a-expression can be put together from atoms using

cons. Consider the case of (A • (B • C)). We have cons[B, CJ= (B • C), and

cons[A, (B • C))= (A . (B • C)). Putting these together, we have cons[A,

cons[B. CJ]= (A • (B . C)). This is an extension of our notation, and is,

-6-

called composition.

Let us look at some examples of cons:

1. cons [BILL~ JOE J = (BILL • Jdl!a
2. coris{A,(B. C))::: (A. (B. C))

3. cons{A, cons{B, CJ] = (A • (B • C))

4. cons [A, NIL] = (A)

5. cons[A, (B C)] = (AB C)

6. cons [A, cons[B, (C)]] = (A • (B • (C • NIL))) = (A B C)

7. cons [A, cons [B, cons (C,. 0 HJ i:;, (A B C)

8. cons[(A), (A)]= ((A) A)

Problem Set 3

1. What is the value of each of the ioll()~ng?

a. cons [B, B)

c. cons [(A B), (A C))

e. cons[(A B C), (DE F)]

b. cdnsflA • B), (A • C) J

d. contt{Q, fR S)J

f. cons[cons(cons[A, NIL),
NI"' L NIL)

2. What is a commutative operator? Is addition of numbers commuta

tive? Is cons commutative?

3. Describe a necessary and· sufficient condition for the value of cons

to be expressible without dots.

Next, we consider the pair of functions car and~· Which are used to

take apart s-expressions. Car and cdr are unar;tlunctions; ·unlike cons·

which is a·binary function, each takes orily a sfnglerarg\Jment.

carf(A. B)] =A

cdr[(A,. B)] = B

Car and cdr are not defined as ha:viQI· values wh~ their argu,~nts are

atomic. For example, car{A] has no meaning. Any a-expression which is

not an atom we call a composite s-expres.aton. If a composite s-expression

is written in dot notation. there is always one main dqt~ This is the dot
' which is contained only within the outermost set of p8tr~ntheses. Then car of

-7-

the s-expression is the expression between this dot 871'<!,Ulit lC!(tmost paren

thesis of the whole s-expression, and c,~r il!J the elq>retsie~ between this dot
' [' ' '

and the rightmost parenthesis.

Examples:

car[(A B)] = A

cdr[(A B)] = (B)

cdr[(B)] = ()
cdr [()} is undefined

car{(((A)) (B))] = ((A))

car(cdr[(A B)]] = B

cdr(cdr[(A B)]] = () = NIL

car(((A))) = (A)

car(c.f.~[((A))Jl = A

car[cons[A, BJ] = A

cons{car[(A)), cdr({B. C D)Jl = (A C D)

Many people have objected to the names car and cdr, proposing some

alternative such as "first" and "rest" which d~e~ribe Jh:e eff4!ct of .car and cdr

on lists. Yet these names have re~ined ~r.o,und becaQ.s~ tfle1 compose into

sequences of cars andcdrs and rem-in at .• le~t sliJhHr,proqolUlceable. For
example, caddr (pronounced CAH-duh-der) means "car of cdr of cdr". So

caddr[(A BC)] is the same as car(cdr(cdr((A B C)]]J which is C. Notice that

it is the rightmost a or din the word which gets performed first, just as it is

the rightmost function when we write out the lonter form.

Examples:

car[(A BC)]= A

caddr[(A B C)) = C

cdar[fA B C)] is undefined

-8-

cadr((A S C)] = B
cdddr((A B C)] = ()
cadadr[((A B) (C D) (E F))J = D

Problem Set 4

What is the value of each of the following?

1. car[(A • B)]

3. car((A B)]

5. car[cdr((A B)JJ

7. cdar[(A B)l

9. cdarf((A) B)]

11. cons [~ar-(((A)~1.
cadr((A (((B) (C))))]]

Mixed F;xpr~ssions

2-. cdr{(A • B) J
4. cdrf(A B)]

6. cadr[(A tJ)f
8. cdar((fA "Sf)')

1 o. daaarf(Ct{A:>JUJ ·

We have been ditJCUSsing J..:.ISP 'expr~bns; such as 11corisfx. y)11
•.

I\ rithmetic cxpresFriOAH s~b aH',.i3x+ yZ..ti 'arre•l'il1YffKM- 'td· yt.uiaM need ho

special explanation. Since numbers are considered atoms and can app .. ar

within s-expressions. it is perfectly m'1anlblf'ul to mix LISP and a rithnwl ic •

. Example:

carf(2 8 4)-}1+cadr[(5 7 9)) = Z'+? ·:is,9:.,'

Not all such expressions will be meaningful. 3+car((4 A 10)) = 7. but

3 + cadr((4 A l0Jl'itr undefined·; ("At'. is a •••; ;amt ... cfttiori' f&· not' defined on

names~ Certainly we:··W'outd not ·Want;;to sa¥~~ty Ulat,:2H· A is mean;..
ingless. The qu.stion Of Whether A c'aJYbe·tC!8ftllieletled te 8" a·variabie or
whether it rneans!bnly 'iftelf i& one of·interptietMioii~ i 'l'IUt 41Jestian can only

be considered in context. and we ea~ dli•cuss it ahqua.t'et',T a.re.)

Witliiri LISP.· the nottons'bf'truth ·an6'*1sfftJ~&h W.tripresentWby .tbe

atoms T and F refi'pecttvely. ··: A,funetion Wtitite,vfdi*ls::atways· T dr Fis

called a' predi-cate. There is a bas1:c predteate)eal~'tttnn' 1'ht1ch tells us
whether its argument is art atom, that' is, 'it hall '~1va1tiftJF'if'l.•fS' argument ·1~·

an atom. andF!lfits acrgallfel'it hi;a·eomP9tte~ei~~. - •,

-H-

E~amples:

atom[A} = T

atom(O} = T

atom[(A B C~} = F

atom[cdr[(A B C))} = F

atom(l9V4] = T

atom[A~<; 1 "' T
atom(~ar((A .B C))] = T

ato1&{•.~l~ B JI = F'

Equality itself is considered to be a basic predicate of a-expressions.

Suppose we, give the notion of equality the name equal. Equ•l ii defined as a
binary predicate which has the value r if both iU. arpm~qts are the .same,

_., . ''.;

Examples:

equal[A, A] = T

equal [NIL, ()] = T

equal[A, (A)] = F

equal(car((2 3 4))+ 2, 4) = T

equal((A B C), (A B C)] = T

equalf(A B), (A • (B • NIL))) = T

~(A • ·UL. C)).
((A • B) • C)] = F

In practice. we shall seldQm use th• flmcttoA JM.JOie equal. but instead

use the equa.1 sign te mean tbe.SNnetn~ .. ~·.of·,writuw·..-alfA, Al.
we shall write A = A., ~ when a.,._e ... •~ (A.= A}. Whe.n ca ~iorurymbol
(usually a !-f~ial ~ymbol rather tb~n a naau.• apfilecl, w,iith l4ttte.,a) ls iU&ed

hct W<'<m two argument.a rather than pre~ ~of t...,Rh Ahia is caU~d

infix tlota\ion. We W:Je it frequentlY anci in;ff.lrl.¥:~lOW\ w~ys. but sjncc

problems of syntax are not an impQrtant PM"tA~ thi.a ~. tAlere w:Ul be no

formal theory about parstnc such ar."'1Jlm&ri&* ln,o~.l.,..io~. Ule.pi-eceding

~xamples will no~lly appear as (A= A].= T, (.A= (A)l = F •: e~c •.

Cons, car. cdr, •iom and equal ai-e tb:e f#.;Y:•Pa&l.C fWlCtiena for the

malJipulation of s-expressions.

Suppose we wish to form a list from three constituents. We can des

cribe this construction by writing cons[CI, cona~. cons()', NIL])] where a. /J,
and+)' are the three s-expressions to be listed. This is too long to write, so

we introduce the shorter notation using ~e function !!!! which can have any

number of arguments including none. The preceding example can be replaced

by tistra. /J, l'].

-10-

Examples:

list[A. B. C] == (A B C)

list[(A B). (C Q)Ji=•'(iAB) (C D))

cons (A. list[:S. C. . .t>f} =-~A B C D)

list(} = ~IL = ()

list(lfS1if~Jl• :f{A))
' , '. f";'~'- ••. " " '

Another convenienee is· the predtcate~avU wti.tch.hael a:~·singte argument -
and is true only if that argument is NIL.

null[()] = T

null[cdr((A)]] = T

Examples:

null[A] = F

nullf(NIL)] = F

Atoms can be sorted out into two types. names and numbers. and to

do this we introduce two predicates. name and!!!:!.!!!.•

Examples:

name[ABC) = T

name[5J = F

num[cadr[(A 2 (5))] = T

num[A] = F

name[(A)] = F

num(5J = T

num[(3)) = F

num[3+ car[(5))] = T

There is another function which we shall consider to be basic without

any justification at present. Consider the set of all nam.es (not numbers).

There are infinitely many of them, but they can be placed in a definite order

in an infinite list. that is. they can be enumerated. We list shorter names

before longer ones, arranging the finitely many names of any particular

length in alphabetical order. putting 0 thru 9 at the end of the alphabet.

The function enum is only defined when its argument is a number.

The value is always a name. and if we form the list enurn[O], enum[l].

enum[2] ••• we get exactly the enumeration discussed above.

Problem Set 5

1. list[A. 2 + carf(3 4)), BJ 2. list[2+2,2+.2=4.2+2=5)

-ll-

') ". atom[list[A, A= B]] 4. enum[2 + 2]

5. name[enum[2 + 2]] 6. enum[A]

7. cons [name[A]. num[A]) 8. (A . B) = (B • A)

9. list[(A B), list[(C D), (E F)]] 10. cadadr[((A B) ((C D) (E)))]

-12-

Preview of Ch~pter 'fwp
' - .' ,. . . ·-~ t

CHA.l?T~,.T,M), ·

R~CURSIVE OEPl?it:ftt>NS

The chapter begins with some comments on functions,, and the termi

nolQgy coMerrdrtg them., from1t1M ~lft-,ilatv•{·§M 'th~y~ After this.

a very si.mple ~is,detined,whiOW,'· ~-i~lfte~:basic functions

d~s~.us~ in Ctuipten~Qne-_, rWilli u8: to ~J~if-~ --~tibn" of' s- expres

sions that is in any reasonable sense calculable.

Having now,compi~-7~#0fte/·tf"iff::laj'1i' you had learned arith

ll)~~C? but not ~lgebra~ :iweeaa'.~e'8'+~21=T';~titit~ i+:y~·hz. What we

need. ;linQQ ,()tber rtAil&gs .. u.. ,ftlioiabteis-~ ;aj(di&*tf"tO~~fu·,so that.,. we· cfan

1.~' l ~~f,
,,_,. -~

§2. 1 Functions

The con~pt of a "functio~" in set theory i~ SY:qonXJnqus w~th ,-,Jl1~ppi~"
'~. ·. .. ' - ~ , ·,. t ·,. -.• ' ~ .;{j,. ::;. -..,.~:,/ -~·.{(}_<!.? ';·; :'.";. .. ,· £i ~,{'t ;--. :: "• - <

or ''correspondt!nce'J. Suppose we have two sets. A and B,,. ~nd for ev~ry
.,. . ~-'', .. \. ;i~~:,.,..,--'..l{1f'.{~t- iJ,_;- .:"~;·:~~. f,lJt!: ,.· '~ .

object in A. there is an: ob1ect for.element)of~ t~·-~Jttt~ ~th Jt •. r~~n
-, -, :/ ":: ·.- __ .- -.: :,~1·r -~ -- t. '::---~, :J--':1-·t h ~",q-~ ~~ -:.·"~"' ::t..~ ~o- .. F:.-t:.1 1 -

:UHs. corres~onde~ce is. c~~~·~.~ a. fun:!'43~! -:~~~d·~~lfd~~.~~;n <>.!. thf:?fun_<;~ion •.
and·B is ·the ra?~ ,of th.e: r~~~~":, . ~-~~~,fh~r~fY ~~~~t. of.~ ha~ a
corresponding elernent in B. it is not the case th•t 'v~r7 eleme11t in B mU;s.t

o~ ->· '. > ~-. ~ ti r< ~Iv~: ~sf"(-~) '(.. j ~··~1'< ~ •_'',• ' ' >

correspond to art e1Elti,erit in. A. A gt~en ele~;Dfof j tP;lli corresP<>n~ t9 , ·
, . : . ,-._ i1-- .· <~- . · ."J·;:.;~· ;:'._;./JtlC r--... ,~Ji(ifJ ~,,~~~ ",_;:.--~~{·· .- . - ·

rnore than.one element of A. or to non~ at a:,1. , ·. ~. . . .
.,,_ /•:.-·· ,)o;--.f:"! :"?: :: - t .• ·1·;;:, .,,._,., . '·-·

From the point of view of set'fheor·y; the fUnCtion itself is viewed as a

set. If f is a f1.mction from A to B (we write this aa (:A B) the.n f itself ts a

set of ordered pairs (a. b) such that a EA (a is a ffi~\iifi~f'ri1i:'Af and b E H, and

such that for every a I: A there is exactly one such ordel'ed pair which is a

member off.

Some f.u~s .ha vie ·~• -tlllrn •~ aqrQ¥nerft. Jf f is a function of n

arguments, then ;f has n 'domaiftS.. A.1
1tttw f\.n' and one l"ange, B, and we may

specify this inforwtatibn by wf'~til'lt .t:A.1 .l(. • • x Ah·:t 13.. The function f is then

a set of n+ 1-tuPl'U <•r• ·'fi·,1'·~ ~~•i .t AJ:, al'ld b t: B, and such that

for every combination ot ·cme ai f'ttnn .-h A., th'N"e is exactly one such
' l

n + 1-tuple inf. For example, oons-:.S x S· .. Sis the inf-inUe set of trlples

l (A·. A, (A • A)) .••• J cottU:ihint -~ f'bMltble pair Gf'·'tt ... expressions together

with their cons.

As was nmftt~ a··~ :O... «W~• ;Of ·ae ·domtlin(s) of a

f-wnction are oa:H-ell.t,tltH~ ._._..._,...,.,,..~«re oaltled-value-s.

Th-e S'et { t'-. Pl ,ifi ·call.M;!• A ·~ '~ ita ·t i~ -o&Ued a

pr'~~~7.!te.

Any ~si!\ ·i>f 'll ~ 'i1!1 ;o._•~IB!19l !Mar~ hat ta, a ,pa:rtial

function ts a run~ ~it ·tnaY ""'"-1 i\a •tiPtftl'flnls. ~·
times we are a ·a'\·._, 1afl-i·~ ._ __..._,....._.t:t -.en"'*;~ ·upa:rtiat

fun'~tton''. ~ .·-. .-e .• --.. ,.,_...,.._,ioctaJlM'*fiWft•bf;a 'function.
we are H~d to•(! M ttWa ~ .• !!11...,._ ..,. ._ • .., 'Otli!!!!!¥1 '&Rd

tota1 ~p_ry!dJ~.8:,-e,fi·•
AU 1)f ;thi• rn•y ~ -e~ty ·t'Jb~«&4._ ;biat .:ft ,ia t~po~11t 'te stress

'tha't whf'n \ill'e ta.lit <it a fmr{!Uott we •ir~ «<Jt 'N~~ to a ,,-..~e e~:r a sub ..

routihe. 'The di~hu::l'totl ts tMlJOflta-nt~ a-ni ie ~Y a'tial~us to the differ

ence bet wee:n .a lt>at .()f b~a an4 a 1"-e'c'~ ~~ • l~ tjf br.e.-e. :Recipes,
lfk~ 'pM)cedur-:e~ ... ft ~Usltl!t 'ftl ,_. II~ ~-- . ~ ee. 'has e.v-er

publiehed a loaf of bread. Sunltatiy. 'the fuhbti~ ~ iean ~ di.scussed. and

st1broutines writ~n tt!> c1<JtnJNte it. bot th• functt• t't_jeU' i$}l'tl Mlt.inite set and

is therefore l ~~~ ·dlajeeft ·~ ~ fl ~ <.,-SeCt:• It is also im;por

tal't't 1tbt to cOAfuste ~h·~ ~lft~ 'de.._ ~ft 'With t1'1~ ~ton i'ts•elf.

§2.2 Recu rsiw Oefiniti'Ott - c· ·aw & ®* er .. *' t ,,,. · at t,

1\-ecurstve Deftnttton: :A definition of a function
permitting vatun 6f the f11~tion 't<> be computed
systeYnatiC.lly itt a tide ttu~:r ·et steps: esp:
·a tntlthematical d'eftnitk:>n ;in wht·ch the first case

fs given and the nth case is defined in terms of
one or more previous cases and esp. the
immediately preceding one.

Webster's Third New
International Dictionary

It would be hard to improve on this definition. We shall start this

discussion by illustrating that many ordinary functions of arithmetic may be

defined recursively starting only with the functions successor and prPdecessor

as given. The meaning of the notation being used will be explained in English.

After this, we shall r.lefine more formally the language we have been using.

The successor of a number is one more than that number. For

Pxampl<', thP successor of 5 is 6. • I
Our notation for the successor of n 1 s n .

, I 1 I

So !l -- 6, and !) ,... 7.

The µredeccssor of a number is the next i-;malleHt numlwr·. Tiu• prt>d

<'cessor of zero is not defined. Our notation for the predecessor of n iH n .

So 7 = 6, and 7 ~ 5, and 1 is undefined.

Starting with only these two functions, and equality, we proceed to

define addition and multiplication:

I -
(1) m + n t- [n = 0 -+ :T., T -+ m + n]

(2) m xnt- [n=O -+O,T -+m+m xn-)

Translated into English, the first definition reads: "The sum of m and

n is m if n is O; otherwise it is the same as the sum of the successor of m

and the predecessor of n." This fits the dictionary definition perfectly. We

say that we are recursing downward on n. When we count n down to 0, then
I -

the process is over and we have an answer. For example. 5+ 3 = 5 + 3 =
I - I -

6 + 2 = 6 + 2 = 7 + 1 = 7 + 1 = 8 + 0 = 8. The recursive definition is applied over

and over again until the second argument (called n in this definition) is O. As

long as n is greater than 0, the second part of the definition applies and the

computation proceeds. When n "' 0, then the first part of the definition applies

and the computation is over. It never becomes necessary to take the pred

ecessor of 0, and therefore an undefined condition will never arise.

V/e call line (1) a recursive definition. It provides an explicit method

of computing the function "+" given the successor and predecessor functions.

-15-

This particular rect1rsive definition gives a value which is a number every

time it is applied to a pair of arguments which are numbers. But not an
recursive definttions are ihis way.. A recunstve def~nition may not compute

a value for a vat'iety of reasons. Thi! tact that (a) this ~~rticular recursive

definition computes a total funcUoa, and (bl this total tunctio~ is the familiar
).' ' -

function '1+n are particulars whi-c'h are obvious in this ease, but in general

the correspondence between the function co:mJ>uted by7'~re~ursive definition

and a function understood or specified in s~e other way. must not be
' ' ~ ' "

assumed without aood and sufficient reason.

Line f2) is a recursive definition ·for tmllUplication. It can be trans.

lated into English as "The product of m and n is !> it n is C): otherWise it is

the sum of m and the product of m ~d the ~ea~ of n .. " This definition
' .• - . : • ' .; .- : ~ ·•-, ·'. ~ ; ; ; l ,·' ~ l ; :: ~ ._ " .

invokes the pi"evioos definition of. addi~OL So .th~ .r~cursive definition ()f ,
<.' ·,,), "

multiplication is really both linu.
·- . ~- . .\ ~ ·~ '.. '

It wiU be our gener&l babtt wbft ntttkilW r~u.rfi~e df~itiOns tQ build
up more complicated :functions tz.am atmpll!l" one..'., F~Oin ae detinition.or

multiplication we aee that S x 3 -:t 5+ S i~·'lt I+ I+~ '11~ 1S+5+ $+ 5 x 0 = 5 + 5+

5+0=15.

Recursive defi.nitio~ is ~1~ ~.tq1~~f7i• ;~talion of predi

cates. The numerical rel•~·"'i• ~,,~~'·'-'·•·~of attch~ It

can he defined by:

"' .. :{

which expres.ses the English definittoru '.'If in'it!I ~'ft~o. tllen m i.s not greater

than n; if m ta not; z•ro and n is zero them.'•' F'eat~i-'.~ n; and 1f.netth.er
. . .- ·_. - _ ·., , _ ~-:···:, . .. · ~ , .. ,. t~ ~ P<• :: :t :,< t,., "' 1 ~ ~ -~ P .,; ~ -

is zero then nf bebJg greater than n ·deJ)ends on ':!! ~e~~gr•ter than n .• "

\:\<'hen m and n are numbers. the value ofn>ft wlll
1

al~ys pe. ettl)er T .Ol" F.

Tfte predicate 0~' can i'iow be uffd ·~·-•nne b, IUaction ·In~~ n]. w.ttolJe
' . . , ' . . ·. :·'I ,. ;

value is the larger of its two arpmenta.
. . .

maxfm. n) ... (m > n ~ m.-. T ... nJ

Ht•cursive deftnjUon. is used ltn:telf'ine·ftiitctton11f of $-expressions other

than numbers in a similar way. An important LISP function is subst(x, Y• z},

whose value is the s-expression resultttta from substituting the s-expression

x for all occurrences of the atom y in the a-expression z. For example, the

-18-
,,

result of substituting (R S) for all occurrences of B in (A B (C B)) iH

(A (R S) (C (R S))), i.e., subst[(R S), B, (AB (C B))J = CA :(R S) (C (R S))).

Subst is defined recursively by:

subst[x.l.'.rl! n.~f i!; :';;1~ iHr:r .. iJl. T .. ,~(Mbst(x. y •.
·' . .::~:-~. ~·.~;· ' ~ ~·,,.

which translates: "If~ is an atom. tll~)/ ,)I l~ t41t sa~ ~· • the value is x, , .. ·.. '

otherwise the value is z1 but if z is not an atom then the value is obtained by

first computing subst of x •nd y and car of z, and subst _of x and y and cdr of

z, and then taking the cons of these tw;o· •:~'"Mpressions."
This example is more complex than the precedtn.a ,()nes iQ two ways.

It contains a choice nested Within a choic~ Irft~af if ~~.:~n ~m~ then there

is sti 11 another decision to be made. ' · Aiio:d the' rb~~rsiori >g~n;e~ates a tree

structurc of subprobterns 'ratfher tha~ a'iliie~r· ~e'~-~b~i·~~ in 'tile preceding

numciica1 examples. n1e recursi~ri on tli6:~~~menli~·)rii~). require com-

. puting subst or'carfz rand ~(sJ. Whrch 'in&:~ ;in t~rh'f~~ir'e corttputing sub:;t
. ··.~·;·;:·1z·,~'~r :.:--~:~ .. -~ 1~ ~'.:l~rft.<;r·~, .. _--i :r. · ·.

with the third argument bettig car[car(z)]~ cClrfcar(zJL e.,-fc~fzlJ, and

cdr(cdr[z)]. The larger the s-exprl!s1EJton i;F1tiie;li~geb ;tfdia'. 1tre~ of .sub-
"\ ··1-~ ~-. ,.. .. ~~ ~ ·n<.·~·r ';·· j ·, ·

problems will ;row. ·

1ubst[(R S)fl, (A B (C B))]•(A (l S), ~,5(1tr~)))

subst[(R S),B,AJ-A

subst[(R S).B,C)-C
,·'

subst [(R S) ,B ,BJ •(R S) .

-1'1·

We have been making use of the Iagcuace of recursive definitions in an

informal way~ ...- 'ntlW procdd'toJ~·fl,MI t•~'Rl,~~f.torM.atfy. First
. > : : _ : : _ ·, . ,. .. i "·-: \.1 L' ~:« \. 1 ~, · '

we give a concise pammar. and ·t11ea . ..,_. ·•• •emandes of the language as
a set of instructiofta for eomp'litblf 'GOMpteif l'd1U:tlO* tr~tn given b-aslc

functions.

1. An identifier is a sequ,enc~ of on• of. rn<>l'.'eJower case letters

and ditits. It mwit. beafn wt~ • le:tt•r. {'l'bts is the same
. -- - - - ' ; -~ .. ,' ' .. -' -. '. -

2.

3.
4.
5.

as the definition of a name exc9t th~t .~~ .n..~e upper
~ - ' ; ,._ - . ' ' • ' ' - -~· J ' ·•

case lftt•ra. I~•• ._. ~.,•f"1in ooe,,.tO.'.'."'one

correspondence b7 merely ~,Ute ~a of,'Ute·,letters.)
- , ; ..•... ,. -

A variable is an t~lfter.

An obJ!!t ltt an s-~•t<>n. .
•, ~ . - . '

A tunctten name ts lift. td8ntlfl·•.
,,..

'-"

c&ee e:i:ceptiosi'betow.)
A fOrm can be any of the follo't'liQf:

a. a variable

b. snob~
c. 'Pl'r .•• , (nf where" i•_ ~ .baaetlon name. and each

fi is a foroi. (~e exception below ..)
d. a conditional term (see~,.,. .. -· . ' ..

6. A l?fOi,9!fUapal'form i8 a form. c,n~·"~~~ijl~~~ !~.semantic
•• , , • ' ' "·· • ' • ~ '~ ~ .' ' ' ·' ~ ~. ' ' ' • o<

and will be,ma&.in.tl'UL!Oll0Win1 dtscuasion.)

7. A condltt!'!S form i• · rs
1

~· c~ •• ~- ~· • r
0
~t~~re n :it 1. and

each of die "1 t~ a propositional form, antt ~~-.di-~ \ is
a form. ··

8. A re~uraiv4' rde:f~·i•4'jl1, •••• ~nl ... (, where:• ia a
function n11me, each of_. 11 ia··1·~1~. and fl• a form
cont~~J,ling no va:ri~bles,,~er th•n ~e l 1•. ·

Exception: Rules 4 and S above permit forms such as cons(car(x].

cdr[y)} but not torms such•• 3· >hn+n. u·t$ cOti~tmteut to have
functions specified by conventional symbols such as"+", "x" and"+"

as well as by identifiers. and it is also convenient and conventional

to use certain of these symbols as infixes (m+ n), prefixes (-m)
I

..;.18-

and suffixes (m
1
). Because we are not concerned with writing

compilers we shall gloss over the syntactic problems of such

notation in the follqwing ~C\Y: every fµ~ti~ ~l\d p.r~~cate

which is specified l;>y a ~on~enti0naL§Ymbol ha-: an id~tifier
' . .-. ', . - .~ -, . ~ ·' ~ ,,..

type name also. As long as the parsi~I:' of 8.!lY ,,!or,ql '.t.P~t we

write is clear. to the ~eader. we can p~~tenc:Li.1\-;Gert•in th,eoret-. ·-· ,. . . '· ~- ~ , ~ '

ical situations .that tpe only official n9t.~t~on i~_.ij'lat.Qf identifier
,. • '"! . < : •• • 0 •

names followed by arguments in bra,c~et.~ •. i._eu <PL. ...]. For
;). • - • : ' . J ' .• ./ •

example. ".3 xx - y > z" is simply a cpnve"i~Q:t,,Dote.~i~n .90 that

we do not have to write out "greater I4iff e,ffJl~![~~mes [3,.,x). y]. z]".

Semantics:

1. . A recursive definition has meaning because it is an eXplicit

algorithm for computing a partial t'.ec\4M'Ye:fUhcti0n; To

the left of the left arrow in th·e recursi~ ·definition is the

name given to the partial functton beiogdetined,· ·and a list

of variables. The list QI v:at"iatllea:apectftes ·the -number

of arguments the function has, .• and auips theae variables

a$ the temp()l'ary names: ('f the &J.!'tlUIDents :while:t)le1compu

ta.tion is in prearees.: This temporary:,identificatton of

a!"gument$ Witn. variables is callecta Madig:dt"ttie:vari

ables. The: value of the function ia .ntatned:.by evaluating

the form to the right of the. left arni>w, ;lJtifllr the rules

given below. with this binding of the variaql:es, in effect.

2. The .. value o,.f an object is i1self. ·

3. The value of a variable is obtained froqi0 the binding as

specified in rule 1.

4. The value of a form of the type cp('t ,.fnJ is computed by

first evaluating each of the forms (i using these rules, and

usiµg the resultiftl sequence of·v.alues as :'arguments for the

function cp. If cp is one of the ibafRc funottons M predicates,

its value is obtained immediately.· 'HolN'l>'er, iftp·iS itself

specified by a recursive definition. then the current com

putation must be set aside, and the cdmpute.tiort ·to obtain

-19-

\

the value or </J for these arguments must be performed.

When this is completed, the cut-rent computation" is then

resumed, at1d neither the btndlll .. or tfte va:tiables, nor
any other partial retultlt ln"j>roc•~i'''Wiilt'.have b.een changed
from wti.'t they wer• before involthlg ffle' d~finition of'().

This proeeas can· t:>CCUto neated t<): a' dO~sid~rable depth,

with l1'1iLfty le-vets or ~omputat!On interru;ted and incom
plete. When the detlttttion '()r,, is i~-volted· from within the

definition of'(), this proceaa is called recursion. The

example of subst is a good ca•e to study.

5. A propositional fol!m. '8 a fo:rm wboae ~ted value is T

or .F. T:ypioally, it is either qlUi;af·tllN objecsta T Or F, or

it is a form 4'~1 , •••• 'itl 'tfh•e·lJ:t• a p~ate. It may
also be a conditional form.

6. The.value of a ~1 fonn tr1 ... -ft• ••• ·"n ..,\1 is
obtained by evab1atinf·ttl•·.propai1h&oMI t~-.1 ·ri-om left

to right-until one-ta found Wbo••-.alue<W,T~ · ·Then. no

more 'i •re evatu&tM, but 'the: cott•......-lbl · \ te ffatu
ated •. and tw Tel• t• tile valu•OI -111'8PcaMltiMal fohtl.
An important· prioperty·ot a. eondltftmal 'forrn.i it& that ll6thtng

gets evalaated ;b~d wbat.· ta .•,,..'fd •'61.ct: •ad e•al

uate the pr.oper •r· f'or example,· tt •f evatutf.tea tG F. then
(1 is ~ot evaluated but paaaed o.•1 and .-2 jiets ttaluated.

If the value of "2 is T, ttb• ·f2 l• ed 'to prtWide the
value of the conditional form, and ev•r7t11tn1 io the rtfht
of '2 i• ipored.

There are a v•rtety of raa.oaa why tbe cplllCN•• ()f ..-ltlatblg a recur
sive function may not1 p:ro.dua6 a Wllue:

side.
1. A variable on the rllht •ide of a defiatttoA does not -occur on the left

2. A function referred to in tbe delinitton has not been defined-.

3. A function is given an incorrect number of arguments.

4. In the process of evaluating a conditional form. one of the ff.
1

evaluates to something that is neither T nor F.

5. In the process of evaluating a conditional form, all the 1Ti evaluate

to F and the end of the form is reached.

6. A function called in the computat~on ,is given an lilrgument for

which no value is defined, such as car applied to an atom, or addition applied

to non-numbers.

7. The computation continues forever without encountering any of the

errors mentioned above, but without ever terminating.

Reasons 1 thru 6 above are simply progr~mming er~rs that can be

avoided by correct procedure. Rel::!.son 7 is a funda,m~ahproperty of com·

putation having important logical consequences. Thtre is no possibility of

eliminating it from any programming language powerful enough to do general

purpose computation •

. Problem Set .6

In each of these problems you may assume any of the definitions made

thus far, including au the problems ·preeedfttg, the one you are working on.

Sometimes it is necessary to define a helpiil'g rurietion first before defining

the function you want.

1. Are the functions "-" and "+" defined here total or partial?

m - n .,. [n = 0 ,. m, T ... m- -n -1
m + n [n > m ... O~ T ... 1 + [m :- n] + n]

2. Define expt[m, n) or mn. (Let expt[O, 0,) = 1.)

3. Define remainder[m, n].

4. Define m In. which means m go~s into n an -integer number of times.

(It is a predicate.)

5. Define·prime[n], a predicate which is true if n is a prime number.

(The first prime number is 2.)

6. Define gcd[m, n) (greatest common divisor), and lcm[m, n] (least

common multiple).

7. Define nthprime[m], which gives the nth prime. Use the conven

tion that nthprime[O] = 1 and nthprime{l) = 2.

8. Define the predecessor function using only successor and ~quality,

-21-

thereby demonstrating that an the functions in thts problem set require only

successor and eqUality as their' ba•i·•·

Let us adopt the coding eonvention that a fiJ'\ite set of a-expressions

will be repre·sented tit LISP 'by a lf!ft di t'tHlM·· S""txpres&ions. For instance.

the set {A B C} can be :represented "1 OW li8t ~A B Cl ot" by the list (B C A)

or by any other pennutati6n of are mellllter•~· Tiit! 1191 muet have no repeti

tions. ·We can then. Clktfine Lf.S:P func:tidaa tl'lat pert'Orm: basic set-theoretic

operations. For example. the ft'.laitlaft al nutt1•..-al1tp is represented by the

LISP predicate member, deftaed ·try

memberix. yJ ... ~l:t(y) .. F, :a:= car17J.., T,. T -. member[x. cdr(y]))

The operatioo of takirta the Uftic,ft ot two Mt8 is represented by the

function union:·

Problem S~ 7

1. Deline· the f\lftction ~!Jed~ 1 }.
2. · Deftne Ole prdieai. ~~X-11 wldeb· mnne "equiftlent" in the

sense of repr••Emtiai the &am• m. Two u-. npreeetinf sets_ are sequiv

if they differ only in hr o1'de1- of tbet:t t4etnMt9; e~ S·" .e.t•f(A B C),

(A C B)) = T.

:~. Def me t1l4' function !"*"'1"1e, Whoa·• va1Ue is tbe same list as its

argurtient. but in rfJverse order, e.g •• reven•f((.A 8) (C O)JJ• tlC D) (A B)).

4. Deftfte the futtctton l!!!d!~ wtrlch co~t.a·tfie lea,th of the list x.
length(NIL} = O. .

5. o.ttn• th• tun~ttcwt t'!*.! wit.re atMfS}lll· the number of atoms
occurring in x,. cOtJfttinf each atom •• many tbft" as it occun. e. g. ,
size[(A (A)) l = 4.,

6. Define the function voea'b, wfuirre vocabfs) is the set of atoms

occurring in the &•ftl>l'••iott x. · VH*ftA Ot C) C!)J =CA SC NtL), or any
list which is sequiv to this.

-22-

§ 2. 3 Partial Recursive Functions

The basic functions for computing with s-expressions (including num

bers) are: car, cdr, cons, equal, atom, num, name, enum and successor.

We have seen that predecessor can be defined from successor. Name

can also be defined from atom and num if we are sure that there will never be

any other type of atom. We prefer to leave this unspecified.

The function enum is peculiar. Without en.um, we would not be able

to define those functions which depend on the spelling of names, but would be

limited to functions that only take note of two names as being the same or

different. But using enum, we can define concat, which concatenates two

atoms (e.g., concat[A, X3] = AX3), ~nd explode, which lists the letters and

digits in a name, e.g., explode[AX3] = (A X 3). These two functions, in

turn, form the basis for any other manipulation of the characters that make

up names.

The basic functions of s-expressions together with the language of

recursive definition lead to the concept of a partial recursive function.

Lemma 2.1

Consider a finite sequence of !'ecursive definitions:

<Pi [~1' • • ·' ~m1 J +- (1

cpn[~l' • • ·' ~m J +- (n
n

where each cp. is a distinct function name, and each (. contains only the
1 1

names of basic functions and names from the sequence rp1, ••• ,cpn: then

associated with each cp. there is a procedure for computing a function of m.
1 . 1

arguments. This procedure, when performed with any given sequence of

m. s-expressions as arguments, either produces a value, encounters an
1

undefined situation, or fails to terminate. Thus, each function-name cp. is
1

associated with an m. -ary (partial) function, namely that function defined for
1

exactly those arguments for which the computation terminates with a value

(the value of the function).

The entire preceding section is sufficient proof that such a well-defined

-23-

-~-~ -- -~-~----

computational prot:edure ext.sts.

Deflnition 2. 2

A e!lrtiai recursive function (of a-exprehions) is ~y f~nction for

which at least o~e coftlPutational proced'1n &ll·deltn~ above exists.

It is well to keep in mind the dlstinctioa between a function. a

function-name. and a .procedure.· R ta the p~ocea.e. of "1rtjting down recursive

definitions that ueociates name• and proc~ With rw:ictions. A function

i.s independent cf any proced\lre 118ed to ttpeelfy it. Ho~'ffr, the -concept of

recursiveness i• absolute; a taaouoa la eli:l:rer ...avsive or it is not recur

sive. It is recuntve tf there la at l-et'!llt one "9.Y to ~~ut~ it (and it is

easy to see that there are then many ways to t:4M11pute tt),,, and it is not
recursive if there ta 1'10 way to compiate It. -.. a hnctton ta specified in
some way that don not imply a com.patau.al,.. this doea not tell -us wheth•r or not it ia recuraive.

i 2. ·4 A Uni vernl LISP FwlcUon

It is natural to W1lftt a theory ot recunt.e hncttoas. W.. may ask

questions ·hCt\ aai How lllf'P l• .,. claH ,of reo.-.t,.. futlcttoaa' A.re

there function• that are well but aot ~*'"' .U W9 aild aew ~om·
putational tecbntquea oi- mGre bNto ,..._. ve we. a\'l• to cOmpUt~ m~r~
functions? Tlte lclM of an lAterpreter or uat~ ,,~on 1• ceai~al to
such a theory.

The importance of lemma 2.1 ta that~ procedure for computing

partial functlou ta etrecttve. Thia mean• that we can ~ a 1eneral

purpose compoter ao that When '" st-.e tt a aequ-.c• of AC?\lr,l'ft dftfinitiona,
and a set of arpmeta for on ol 1be tuncu:Ona. th• computer 1hen computes

the ,alue of the l\lnction applied to UI••• arculD:.n.t. U tile .. lue easts. and if

the computer ha• enough storaae and time. Such a proaram la called a

LISP interpreter. and has been written tor rn4'n.y computers- What is of
- . ~ ·'

great significance for the theory of rec:ur.sive functions, is that such an

interpreter can be written in LISP itself.

We define a universal LISP function called apply. Apply[fa, args) has

two arguments. The first argument is a sequence of recursive definitions

as in the statement of lemma 2. 1. Since an argument for apply must be an

s-expression, we must code such a sequenpe}:lf',rec~r$~}"~ 4efinitipns into a

single a-expression. . The first fun~tion d.,tp:ted in ~e ~.eq)l~nce will beJhe

one we wish to compute, and the other definit,j.ons neceSAJ~ry to it mar, follow

in any order. The second argument for apply is a list '"of the arguments for

this function.

We first define a translation whereby a sequence of recursive

definitions, as in the schema of Lemrn~ 2. l, beCOJ!lleS a single a-expression,

the argument fa of apply. We shall call this translation process "*", so

that, for example, if (is a form in the language of recursive funcUons, then

t* is its translation into an s-expression.

Rules for translating recursive definitions into s-expressions:

1. If (is a variable, then '* is the atom obtained by making all

of its letters upper· ~ase.

2.

3.

4.
5.

6.

7.

a.

9.

If f is a number, then '* is just '.
If' is T, F, or NIL,, then'* is just (.

If (is any other object fs-expression),, then C* is (QUOTE ().

If 'P is a function-name, then 'fJ* is the atom obtained by

rriaking all its letters upper case,
~ :

If~ is a form of the typ·e 'P((1, •••• 'n J. th~n •*. is W>* '* . . . (n *).
(Forms using infix, prefix,, or sutli~ op~rA-~~' .a,re translated

' 0 • • ~ ;,_ • ' ;:. •• •

as if they were· in stanciard form. There are names for each

such operator. Also, some functions .have> an indefinite

num~er of argu,ments. They a'.J.e LIST, ~LtfS,,' and TIMES.) . .

If f is a condUtonal form (w1 * .. 'i • .•• ··"n .. 'n]' then €* is

(COND (1'1 * t:1 *) . • • (ft'n * 'zi * }). .
A recursive definition 'P(~ 1 •••• ,, ~nl f.. (is 'tr&.~ated as

('fJ* <l1 * · · · ~n *) '*). .· . ·. ·· . ·.
The argument "fa" of apply is a list of transiafed recursive

definitions as dttscrfbeq•in step &; with: 1he ftuictton to be

applied coming first on the list,, and au functionlfitllat it

uses,, except for basic functions,, appearing in any order

on the list.

-25-

" .'~c-• ".:j.:j: _"''" ----4,:;···'1(4,"",~~'\"

The trabtiatton proceae "•"ts 'the L'lSP e.qutvalent of a technique

known to logi'Cfanl!J ,as tlOtklel tmmber11W1 'wblcta we •hilll discuss later.

HoweVft', ·a&del_ '19 ·• "9at•..al oeMsttp\ ·wtdcb ls imp0sstble to
use in any practfca1 sw~. ~• . ._. •• Of •;..~X.,ressions to define

recursive .functien ia standard~ for LISP p">vainmers •.

Rule

1.

3.

4.

5.,.

6.

6a

7 ..

8 ..

x
a3

25
F

A

{:A B~

(3)

car

car:[x]

consi,~n

m+,n _•)(.p+q

{x •i:: :ct <1t a., x 1c l .. t. T _.. .t.M
(<X··1')~--f*·11 .

-(* -
x
A3

u
;p

('QU(li'~ Al
i~~'~'~

-~-~-' QAa.
;

.J

Definition of apply:

apply[fa, args] ... app[caar[fa], args, fa]

app[fn, args, fa] ... [
fn = CAR -+ caar [args],
fn = CDR -+ cdar[args],
fn =CONS-+ cons[car[args], cadr[argsJJ,
fn =LIST -+ args,
fn =ATOM -+ atom[car[args]],
fn = NUM -+ num[car[args]],
fn =NAME -+ name[car[args]J,
fn =NULL -+ null[car[args]],
fn = ENUM ... enum[car[argsJ),
fn =SUCCESSOR -+ car[args]',
fn =PLUS-+ applus[args],
fn =TIMES-+ aptimes[args],
fn=NOT-+ [car[args] = T-+ F,car[args} = F -+T],
T ... apd[assoc[fn, fa], args, fa]]

eval[e, a, fa] ... [
num[e]-+ e,
e = T -+ e,
e = F -+ e,
e =NIL-+ e,
name[e]-+ cadr[assoc[e, a]),
car[e] =QUOTE -+ cadr[e],
car[eJ = COND-+ evcon[cdr[e], a, fa],
car[e] =AND-+ evand[cdr[e], a, fa],
car[e) =OR -+ evor[cdr[::], a, fa],
T-+ app[car[e], evlis[cdr[e], a, fa], fa}

apd[fd, args, fa] ... eval[caddr[fd], pair[cadr[fd], args], fa]

applus[a] ... [null[a]-+ 0, T -+ car[a]+ applus[cdr[a)]}

aptimes[a] ... [null[a]-+ 1, T ... car[a] x aptimes[cdr[a]]]

assoc[e, a] ... [e = caar[a] -+ car[a], T -+ assoc[e, cdr[a)J]

pair[x, y] t- [null[x]-+ [null[y]-+ NIL], T-+ cons[list[car[x], car[y]J,
pair[cdr[x], cdr[y]]J]

evlis[e, a, fa] ... [null[e] ... NIL, T -+ cons[eval[car[e], a, fa],
evlis[cdr[e], a, fa]]]

evcon[e, a, fa] t- [eval[caar[e], a, fa] ... eval[cadar[e], a, fa],
T ... evcon[cdr[e], a, fa]]

evand[e, a, fa] t- [null[e]-+ T, eval[car[e], a, fa}-+
evand[cdr[e], a, fa}, T-+ F]

evor[e, a, fa] t- [null[e]-+ F, eval[car[e}, a, fa)-+ T, T-+ evor[cdr[e), a, fa]]

-27-

The reader who finds this piece of coding dttnse inay either puzzle

through it himself, study one of the texts oo i:JISP·progntmming, or simply
r· , ,

take it on faith that it does wa.t we c:l.U. it doelJ.., 'I'M react.r familiar with ' ' ·:· . ~ ' . ' . . '· ' , . '

one or more LISP dialects should note· that tbi1' iittetpreter differs consider

ably from the apply operator of any e~p.-~ ~~~~tio~ Its arguments

are dHf erent, it does not handle LAllBDA ~ ~nai ·~gur.qents. it does not

evaluate free variables, it treats :f'~ F~ • -..;.jClllllilt'.tn a non-standard

fashion and it has no PROG feature.

Although we must normally ~~ion, With a fixed number of

arguments, this tnterpretet" pl"Mtda thr• ~d exceptions: PLUS,

TIMES and LIST.

It also proYldes for three lopcal operators: OR, AND. and NOT.

NOT is a function defined only on: the domain S. Its beh.llvipr ~s completely

explained by nottn1 that not(TJ= F and notf:F}= T. 'l'h•prdix •ymbol for "not"

is 11 -,t•. AND and OR are slipoy Jf&Ol'4t' ~-- ... ·fbie:r are variants of the
- '» .., .. :" J '.

conditional form. M•them-~1• "An -u~ C~ 8'....a for "and'' and

"ortf,, respectivel7) are fQnc~ ea._ ---9ti*~ ~~ ·arauments.

They are completely apecif\ed• ~ ~ fDll~;.~.'* ,I.--'·.. ,

x :. ;a A 1 ~ -
T T T T
T F F T
F T F T

F F F F

If these were evaluated i~ l..ISP ill the. aaitl•,,r,.•e other functions. then

a form such as "'i v '2 t• would require Brat ·eftl~tng .-
1
·and '2 with the

expectation of getUns T or P ,jn, M6 c_. ap4 ~ .~ f:tie·&boft table to

get the value of the form. What.we •ctuallY·~ lS,~• diff.-ent: Ftrst t 1 . .

is evaluated. If tbia is T.. then we conchlde that c
1

v ~ is T and do not

evaluate ~ at all. But if f 1 is F~ tben we have to evaluate '2· We treat

""'' similarly; if f 1 is F, we conclude tnt £1 I\~ is F and do not evaluate ~·

The form '' ~ v ~" is completely equivalent to the conditional form

[(1 .. T. T .. ~]. and the form "'I A ~ n is completely equivalent to the

-2.8-

conditional form [(
1

... (
2

• T ... F].

This makes possible such definitions as the following alternative

definition of member. which wou~d not ~grJsj.f,th,~~,~~ons were eval~•d

in the standard way. . (Why?) .

memh~{~. y]+- -.,null(y] " [x = carfylV membV[.w,· cdr(yJ]J

The interpreter we have defined conVe1Heiit1y_ provides for Jl,ND an~
OR to have an indefinite number· of ·arguments. The form 11 ~ A •••. A 'n" is

translated into (AND~·• ••• < *». and simtlarly for''1V" with OR. AND
n ,

evaluates its arguments from the left to :Hgtn't.intll It efther finds a false one.

whereupon it concludes F Without further eV~l'Uatlon~ . 6r else if they ar~ all

true. then the value is T. (AND). that is. AND of no argwnents. will be T .

because none of its arguments are false. OR evaluates its a~fuents f~om
left to rtght until one of th~~ is trlJ.e,, :whereupaa·it •emautuctes T without

further evaluation. or else if they all evaluate false. then the value' is F.

The value of (OR) is F because it does not have at least one true argum~nt.

Theorem 2. 3. (~ter,preter Th-.,r.~l

Let 61 ••••• 6n be a self-contained seqt)ence of refursive definitions

(in the sense of Lemma 2. 1),, let rp be the name of the function defined .by 61" .

and let a 1,, •••• am be any sequence of a-expressions wtiere mis the number

of arguments ~(,lr 'R 1• · . Then either

c,o1 (a1 ••••• am) = appty(Ustf6i *• ••• 6~~ L_":st(cr 1" ••• ~~Pl]]
, . - -' . ' ' ~ ,._. . .

or else both sides of this equation are ~def~~~-H•:e~t,:~;~~tations
produce the same value,, or bOth fail to p1·cu;l~P1!. v~•s).!'

. _, . . ' ' ~

The starting point for all theoretical study of computation is tlie fa~t .

that any one formulation of a sufficiently general clas.s of effectively comput

able functions al ways turns out to be equivalent to all otbeT su~ ;fqrnN~aU~»Ut.
~"""""' - .

Historically,, A. M. Turing defined a class of conceptualized ma~ine~ of

very simple design ha'ring aHi -t.nnntt:eiy ioi\i tapeABJi-1ifi{cll''to ;e~d' ~~d ~ite •
.. -- ··i -.'· ··~\!\~Fi ~· " f ·: - •• - ,

Any function thait··dan be·edm.puted dn'such a Tur i maChU.e is called com-

putable. Tuttng then pve very coriViric1fitt~jlliiltriiti. to'·ahcr~ th~t the most
. ' -: ~ ,,·~. ·--t>-·~--. ~~: +·">- "} ~- ··-.·.! '. ·-, . '. -

elaborate computers that he eou'ld thiDk of ·c::otitct' liot' comPµte anything that
. .) , ·: - • . i, :' :~• ~~ l - - . - '

-29-

these very simple machines could not compute. lfven enough time. Turing

also showed that there is a universal Turing machine that could interpret any

other Turing machine. t11ven a deacripaioa of tit• odtt!r macbt·ne.
It is possible to write a recursive ftuu:tioil that simulates a universal

Turing machine. !t is also possible to .deatp a ~l"inC machine that simu ...

lates the interpreter "apply". Tbi• not very aqarprisiJW fact ie the basis for

a proof that the partial recutSive function9 u.e ihtt same as the partial com

putable functions on a Turing machine.

Turing's Thesis

Any function which caa ee, dectivel;r· c~d can be computed by a
Turing machine.

From this we may conclude that uy function ot •·expressions that is

.effectively computable is recursive. ThWttl'tllfj ecat'~.Of l~ma 2.1.

and is known as ttChurch•s thesis".

Problem 8

Write an interpreter that evaluates uiltllb~ ·tornis dray,, It -.Ill be

called areval. and ks two ar..-enb. ~.~-.,~r~elllt is a form to be

evaluated. for nample,. C:PLUS 3 CTlllU X Y)). Tke s,~ ~~~ent is an

"a-list" whfcb deftnelr the vatun olttut vartai.. ocewF!n, ~ th.e first.
argument. for example., ((X2) (Y'7J>. 'go are~t((PLtiS: 3 (TlMl!S X Y)).,

((X 2) (Y 7)}} = 3 + 2 x 7 = 17. It don not l'iaa4le conditioaal tonna Ol" function
,'· '. - ~

definitions.

Further Readi5

For the reader wt.sh~& to>. learn LISP:~ a .p,l"!framtlliq lantu•ae.
there are two books: (McCarth,. et al. J aff4 ~-~ ... ,~).. Ad4tttonal inforlfl.'8-

tion on particular LfsP fmptementattpn~ 1-.. u~ •~llabl,e at eech. installa•
' , - - . . ' ·;-

tion •. There is also a set of gractec,t: LISP..pr~l.eJD• .. With amf.\t'erS (Hart and

Levin]. which is useful as a teach•yc>ur•e'lf aid.

-ao-

There is an excellent discussion of the validity of Turing's Thesis in

[Kleene, § 70]. In [Davis]. Turing machines are used as the starting point

for the development of recursive function theory.

-31-

CHAPTER THBEE

PROPOSITIONAL LOGIC I

Preview of Chapters Tbree aad Four

This chapter begins our study of lOfic as a tool for making formal

deductions. Propositional lotic is the lotic dealing with the compounding of

sentences or propositions using connectives such u "and". "or", "not", and

"implies". It is not an adequate lofical l~ for maktag inferences

because it deals with entire clauses and does not consider their internal

structure. We study propositional l<>«f.c becaue tt ts the ground floor of the

two-story ediftce of fl,rst order lolfc, Which ts our main subject. The ter

minology and orp.nization of our study of propoattional logic will carry over

directly to first order logic.

Chapter Three introduces the language of propositional logic, the

technique of making logical propositions, and the feasibility of mechanically

checking deductions to determine if they are correct. Chapter Four presents

the mathematical theory of propositional logic.

§ 3. 1 Proe!?sitional Formulas

Making uae of a fairly looee anal017, we can say that propositional

variables correspond to simple declarative Enflish sentences, and that

propositional formulas correapond to compound sentences.

A It Will not rain tomorrow.

B We shall go to the beach.

A :J B If it does not rain tomorrow. we shall go to the beach.

A and B are propositional variables, ":::i' means 11 implies", and A :::::> B

-32-

is a propositional formula.

We shall make the assumption that unlike English sentences, proposi

tional variables can alway:9 bE! interp~e~ed as ~~t~J ~~t~~~i>:~~e or false

assertions. There is no middle ground su«;:H'.a,s :·;~?Oi~~b.i~q~~"i,<,>r "doesn't

make sense". Proposi~ional l~gic i~. ~lso c,~d0~,f ~~}}}~~1,}~l~~p i1(l ~~t. th~
truth of a compound proposition depends only on the truth of.its components,

and the way they are connected by logical op,~rators. and not on the way that
• ~:: < ' ' ~ -<)

they might meaningfully be related. For example, the English sentence

"If two plus two is five thett the world will end next Monday." can be con

sidered as nonsi!nse. SUppose we let A mean "Two \;tits t\to' is five," and B

mean "The world .Will end next Monday." If A ·and B 1a:re1!>otlffalse, then

A :::J B is considered true. This is part of the definition of "=>'', which simply

requires that if A is true then B must be true. Since A i.:IChi:it. true. 'B

do.~sn't have to be true fo:r.A,? BJo be-,~~; 1:~1:4i~ !.~Ji; wjshes were

deeds, then beggars wo1dd be kiQ.gs." ~~,.,~. •48'J1Ce C\f thj,$ t-y;pe of

tlµnking.

. : ., ;
Definition 3. 1

A propositional formula is:
. . "•';i: 'J

.,~ .. ' . . " .

(i) a pro1>9siti~nal :~ariable
:•" i• t--i .

or (ii) -.(a) · ··

or (iii) (a) v (fJ)

or (iv) (a) I\ (/J)

or (v) (a) :::> (/J)

or (vi) (a) • (fJ)

where a and fJ are themselves propositi~l. .tormulas.

The names of the propositio~al cplll)~C~i~J\11 ar:~:
. ~ ~ '• ' ' { .~

.., not .:,

v or

I\ and
::::> implies

== equivalent

-33-

'.

It follows from this defini.tion that propositional formulas can be con

structed of arbitrary, size and chtpth of parentheaintion. Sometimes we do

not write all of the parentheses becau~ they ~re not needed.

A

AV (BI\ C}

(A I\ B) = (B A A)

§ 3. 2 Interpretation

Examp1es:

A:;:) B

.-.(A.;::)(~. ::i C))

(.Al A (A2 /\ A3)) . .

The foHOWiftC tNtlt table is deafped to interpret propositional formulas

for truth Ot' falsity;. To interpret a 'fo'rimrclla ,,.. muat first decide on a truth'

value (T or F) for each propoSitional varia.ble. This cAnnOt be inferred from

the truth tables and for the moment at least muat be coaaidered as given.

Having done this, we can. then aaatsn a tJ"ll'Ua valae to each sub-formula
starting with the Hmermost ones and eM&nt Wfdt ;ike '.eidi:re ._._ formula.

A B A I\ B AVB -,A A ::l B J\ IE B -T T T T F T T

T F F T F F F

I<' T F T T T F

F F F F T T T

Example:

Evaluate (A /\ B) a CB V C) When A is T and B and C are F.

From the table, we see that if A ls T and B is F. then

A A Bis F. If B is F and C is F, then B V C is F. So the

formula becomes F s F. Which according to the table is T.

Problem Set 9

Evaluate each formula. using the following table of values for variables.

-34-

. ..:::~·:.:-

Al: T Bl: F

A2: T B2: T

A3: F B3·: F

1. A3 ::> B3 2. A3 :J A2

3. Al V Bl 4. A2A Bl

5. -iA3 6. -i-i-iB3

7. -i(A3 V B2) 8. ~('B'f ::> Bl)

To process prop0sitiona1 formulas m·LtSl? we 8~~11 have to tran~iate
them into s-expressions. The a-expression form should come as no surprise:

propositional variables undergo no change, and the other forms translate into

(NOT a), (OR a ~). (AND a -). (IMPLIES a ~). and (EQUIV a {J)'. Thus ,

(A AB)= (BY C).transl._ into {ilQUlV'(ANOA.ft)·(Ole BC));··

Problem Set 10

1. Write a LISP predicate wff(x] which is T if x ts a well-formed

formula of the.pJ:"OpOSitional logic and F otherwise: wft'it8elr should never be
undefined. - ,.

· 2. An inl:erpret.ation to~ tlie pro,PQait~op&hJ~-·~~~l••Pf a formula is a

list (in any order) pairing ea.c;h nai:p,_e with T QJi.}t\ .. °£P'i e~~Pltt •. HA T) (li F)

(C,F)) is th~ inte~pret~tion used fn the ~xa~pl~ ~recedmg, ~roble~ aet 9 •.

Write a LISP predicate propeval[~, a], wh~l,')e. ,, ~·,.:~W~-1Poal·'.~oDmula and

a i's· an .inte:r~~etatio~ fo~ it·. Propeval $P®\d i~rpr•~,~e.f~&;nula as Tor F.

f.;

If a propositiona~, formula has .. e¥ac;ti,. n ~·re~ v:a~~bles in it, ;tb~n .
n. ·. . .

there are 2· different interpret•tiC>~B;;for ijle twil'la~· . ™~J$,.the:oumber, Qt"
", ~ c --. ·_, • • ·- ••••

different ways io"assign T or F ton things.
' ' '

Definition 3: 2

If every mterpretation of a formula is T, then the formula is called a

tautolOfQ'•

If at least one interpretation of a formula is T, then the formula is

called satisfiable.

-35-

If no interpretation of a formula ls T, then the formula is called

inconsistent.

Corollary 3. 3

Every tautoloi)' is satisfiable. but not vice .v;-.rsa., If a is a tautology.
'·,'

then •a is inconsistent. If a i• .~ thena is a tautology. If Of

is satisfiable and is tl?t a tau~. tll_, ..,.,.~&:'~~~~~~~~~ ~nd i$.· not a
tautology.

Problem Set 11

1. Which of the fiollowtftl &N ta1*iWIM•.t· ·' Wffkfh Of-Ole rest are
satisfiable or incor.u1i•tent?

a. A \I -iA

c .. A ;>B

b. A/\ -,B

¢,:· .J\ =>lA: v BJ'
e. A 4 -,A ·-- ·. · r. ~.k v-.B, '.':) ""t(A " :!3) .

g. (A /\ B> • (A V B) h.. -,(A :J B) f\ B

2. Write a LtsP·r.i~ttt.Mt •t.fxf •~'tllat if~ :is a .fortnQ\a·~ the

prOp()Sitional caleutfJ8~ ~ vars(x)l8 ... iiifi;f ~·fbi:·p~~lU~al 'f'ariables,
.. - ·~ : ; ~ , ~ , 4 ~ :""'~ ;_ -·-~ -- , ~ c·: ·: s-~ ~-·.:.~ -:.: :? ."! ,.- . - ~ .. T <

that occur in x.
:l. Write- a LISP funetton tablatx') 11·u~fi that ll xis: a ~et of propositi~n~l

variahJeH H~ i~ fener'llttrtfa"°ve• tkalftid\J•t•"\)r tab&fXris·a list'~f &l) 2n'

inkrpretations for these variables. Jt'or example. consider the formaj.a
(IMPLI·ES.(AND A<!) fOfFSt.!#~) · 'l'mm~-'~ tol-Ml'.ila''ii{tA.yii.:,C) 'or
some permutatioft t!ith-eot, and'tatt• or <A'.lt'Cl:if~i~r1inut~h~n of '

<«A T> <B T) <c T» ((A T> <a. T> <c Fn «A:ifrr m ,., 'ce.1it)1:e<A.k'.;-r>' <s "'> <c F»
((A F) (B T) (C T)) ((A F) (B T) (C F)) ((A F) (B F·) (C T)) ((A :F) (B F) (C F))).

4. Write a LISP predicate taut(xJ that ts T If x ia ll tautology~ attd F

otherwise. ' { -.~ .. : ~ ' <

5. Write a LISP predicate aat(x) Which is T if xis satisfiable. a.net·<!".
otherwise.

Two propositional formulas a and ~ are said to be equivalent formulas

if Q ""' {3 is a tautology. The followtng·tlft,1e of equivalences contains many

-3f-

~~~..__--------~--- -----------~·---· ---------------



well-known properties of propositional formulas. They are given in the form 

of schemas where the Greek letters· are used to represent any formulas. So 

a" fJ bei~~_equivale?lt to /J" !l: m~al\,;p;lOl"~k~~P. ~ .. A~ ~f!iM.~W.vaJ.,~t.~ .. 
B " A. It ~~~~"· for e~ple, that (4 =>1 ~):,.~ ~ .. ;~s .•~Wlft'Ji:~S? t; .('i <4~,? ~h 

Equivalences of Propositional Formulas: 

1. a v /J 
2. Q v (/J v ')') 

3. ·a ", -~-

4. a 'A ·f/I I\ )') 
5. ..,..,4 
6. .;;((I \I /J) 
'1. -,{ tJt f\;j) 

8. a;V - A y) 

9. er " fll· v Y) 
10. a V·a 
11. a "a 
12. 'tr :>·· fJ . .. 
13. a ii fJ 

•. 

/J v a commutativity of "or" 

(a v /J) v.,.. associativity of "or" 

·· /J" &': · ' "~ombiiitilttvitf iif'"a~d" 
c ct " ~ " .,.. · \ · ·) ils~c>'(;iilli~tY cit•· and'' · 

. a . ' . elttr1itiltfC>l1 ~t dOubl~ ri~gation 
-u:r ".,~- ', · . ·''~ oeMStr~in~~'t.!1..:~~:· · · 
-iQ v:.,p •· .... ,,\, • ''~iWcii\int$ flt~~ 
(ti v=-r" (a v ,,, . . ai•~r\\Yai'i~i?ia~,.r 
<ct " _,, v <~'Ry, 1 !1.U~tiai1i~ l~ \v 

· · a ~· · "· •tdi~ii~y · 
a · · lt~lin~:t~ 

. · ""iti V ·'/J ·· · · · -~ifittl:)ii ~-!!~Ues" 

(ct:;, /I) A (8 =>ct) elimination of ''equ1V1" 

·Prom equivalences 1., 2, and to. ·we iJJCi diif~ti~C>b Tc>r reprdfug 
' .. orlif: •asi·ha'Y'tngi e lndefffttte mnnb~:'6t:··tfjinr6i~t.D r-w~~;. tfft&iiit'. t :. ' > r•" 

repettttdns. ·. ~· ~Vftl~es~'3f '1t. •wt 1; ltJie -Ailiiitldfds')tor~ ";«~a .. ·. 
So we·>C&ri<WMte ;AV s·tJreiWitllOtW Shb'*ffliA•! .. iY.~aefaifis., 'anCi'in 
s •eMJ>i-esaibn ·Iaflltlilfe we can; Wrl~ <OR '·A'1f~.:, ~Je~nitttmi :Nkrf and o:rt fo' · ·· 

have an indefinite number of arguments. It is consistent with thUf ~ra'.Citice to 
auume th-alt· (Ql\} = P arlfl that tA:NDJ'=' T~·,,· ,:. ···~ ·. d-,~~, 1~· 1 i ;r(\ · 

Problem 12 

Rewrite wff. propevat~ taut and sat to handle AND ancf OR with an 

indefinite number of ar,.mtei\ts. 

§ 3. 3 Deduction 

. If we are given "It wilt not rain tomorrow," and "If if does not rain 
i\\. ~~ ;-11 ,-·~ 

-37-



.. 
'~ ,,,"t.~-:~11:-i_.'~<O"~,.;,t''<-i'":..~'"f' ,' :r 

tomorrow we shall go to the ·beach. " 'then we may d~a w ·the conclusion 

"Tomorrow we shall 'ID to the berlch. tt This ls~cit.1te8 a de'ducHon. 

A 

A=>B 

B 
l 

Ultimate~ •. ~e ·\A.flt to be .Jd:ile -to ·~·"'e of deductions ·Of consider-

able length. and to .arr.ive at com:~t-. ~,&.11, not i~~tel-y C>Qvious 

from the given statements. 1 Th:e rules for m~ deductions;Jn propositional 

logic are extremely ·t?::irmue .. i A ;.dedac~ ~~ts .of a ·s~uet1,4e of m.imbered 

lines. Each line ~s ~.prqpoMtional fo~~ ·i'4 the last~ne"i~ the ~esired 

conclusion. 'T~e,~~8#:-tM!.&~:t),J"~tfft~on··~ ~tina,eacn line, 

and there are only~e-~ta· of,~ +~ Une~~ifi-ed<a) because 

it is given. (b) beoaus" ii is an axtem11 ar {.c') ~ause .it ·foll(hW$ f:J"om \pre\tious 
. ' . :· ' 

lines by using ll r\il-e ·of i~f~anoe • . , , - .' , ... '' 

As :axiQDlB ··~.1P~QP08itional .~ !'• ~ .atiow .any ;for.mula that is 

a tautology. .: 

The only ·nt1e Of iiDereaDe ;for -~••1 -.ic is medus ... e!'!erµ;. 

This rulie st~·~~ . .,...• .a~ ... f·~~~.J~,~~-;~mula ex. 
and .ff there ·~ a~ lille ]Q;~, ~'-· t.i•r~i«-~fl.. :ttffln we 
may dec;luce ·fhe ~Jt. We"~* ·~i"4~~~-.,Sf!99*Pf! of.-
inferenc."r• an<t.;J '~;£9!!!E!f4~,·-~. '"~ ~11_.,Y 
appear before the otb'F in.~~. ''-*·!1!la,~h~s.t,-~1the 
anteceden~s .• ( 

The ·folloWing deductmn saews .:that it IW9 :~OM·~ ~ed 

1. A=>B .fiven 
2.. B=>C 

~ -,;. ·~Y-·. •''"" 

3. c.::>D 
~· 4. AVE ~ven 

5. O::>G g'iven 

6. E ::> G •iv:en 
7. (A::> B) ::> ((B => C) =>(A ::>C)) •auto logy 
a. (B ::> C) ::> (A ::> C) Mp 1. 7 

' 



.,~. '·~--·.,I -~ 

9. A=>C Mp 2, 8 

10. (A ::::> C) :::> ((C ::::> D) ::::> (A::::> D)) tautology 

11. ( C ::::> D) ::::> (A ::::> D) Mp 9, 10 

12. A::::> D Mp 3, 11 

13. (AV E) ::::>((A::::> D) ::::> (D V E)) tautology 

14. (A ::::> D) :::> ( D v E) M:p 4. 13 

15. DVE Mp 12, 14 

16. (D v E) ::::> ((D ::::> G) ::::> (G v E)) tautology 

17. (D ::::> G) ::::> (G v E) Mp 15, 16 

18. GVE Mp 5, 17 

19. (G V E) ::::> ((E ::::> G) ::::> G) iautology 
20. (E => G) ::::> G Mp 18, 19 

21. G Mp 6, 20 

§ 3. 4 Proof-Checking 

We are now in a position to attempt a miniature proof--eheoker for 

propositional logic. It is a predicate of thr-ee- -.,umentat proofchk[g, c, d), 

where g is a list of given for:IJlUlas, c is a CQpclusion. ;and ·c:tia'a deduction. 

If all the arguments have the c9rrect format, and ,d ,is a valid deduction 

proving c sta;r,ting with I• th.en the valtte<of' p&-oot'<!hk ·is 'I\, : Otherwtse it is F • 

. We have already f1Pecified an s-e.resston language: for -propositional 

formulas allowing AND and OR to have an imdettaite riumber of arguments. 

The format of the arguments of proofchk is·~·· follows: 

" g: A list of propositional formulas. 

c: A single propo8itiohal formula. · 

d: A list of steps. Each step Ui ~ !ist of three it~ms. The 

first item is a number. ',I'he ~teps .ar~ nµ.inhe~ed ~on

secutively, 1, 2, 3 • • • The s~ond iteitis f.1va ·formula. 

The third item is the justification for the l'ermula. ·It can 

be (i) GIVEN. 00 TAUT~ or (ift) (MP :m nl, lthere 'm and 

n are numbers of previous lines. 

-39-



Using the previous example. g· = (.(IMPLI£8 A B) (IMPLIES B C) 

(IMPLIES C D) (OR A Et (IMPLIES D G> UMPLIES E G)). c::: G and d: 

( (1 (IMPLIES A B) GWEII) (2 (IMPLIES ll· C~'GIVENl ~ .. ~ (20 (I'MPLIES 

(IMPLIES E G) G) (MP 18 11')} {2:1 G {MP 8 20))) .. 

For a deduction to be· valid. it must have- the correct syntax and in 
. '. . . 

addition: 

1. If th~ justifteatton for a •tep i.s TAUT. then the body of the step 

must be a tautology. 

2. If the justiltcation fbr a step is GJV:SN. then the b.ody of the step 

must be a member of the· Uf!FC a. 
3. U the justiftcati6rl tor a siep is (MP m n). then letting the body of 

the step be fJ. and letting the body of step m be u. the body of step n must be 

UMPLIES a jJ). :Furthe:nnereo both m anrl n ._. b• l._, than the number of 

the step bein1 j1u1titied. 

4. The balljy of tile 1a8* sUp· mat,,.,. ._.,._,cenclusion. 
A :recuniw *'8nttiaa *' ~ ~-· · . 
proofchtif". e._., .. wfftlalaJ. AA wfffc Wnfcl' A .w1•~·.' lafClJ 'A .:O,null{dl I\ 

-~~~-·-.,...,...,.9*1.fl,.'il-CIJ 

wtfU&(xJ..- --l•J "'T,....,1r-t•:,P;T1•tM1f_.f*J11\~xJJJ 
sllx} ... ~}Alma~JJ 

s2fxJ .. -ratomfxJ It. •lfellll"f•JJ · . 
s3[xJ ... ..,.at.omfx} A s2fcdrfxll 

f'. 

wfsteplis(x} .._ [null(xJ ... T, atom[Jf:.l .. : F. T ... wf"t;t~(c,ar{xlJ A 
wfsteplis[cdr(xJH ·· · · 

wfstep(tJ+< dfxl" J\umfcar(*Jf/\'wfflttadrlxJJA wtjWR(caddr(x}l 
wfjuatfxJ .. x ~ GIVEN v x = TAUT v 1•3f-1 A car(xj' =5MP A 

num[eadr.IJtJJ" numfcadllllt;fxJJJ, . .. · · · 
steporder(Jr} • l•l '-J .. T. T •caal$t}+ 1.a caadrfxl A at9'°1'der(cdr(xJJ) 

proofcbklla..4 qJ • ;lnulllttl ~ T. T "t'~1*ff. d; euf~JJ A 
proofchkl fg. d. c4rfctJU 

stepchk(g. ct. s) .. [caddr(a} =TAUT ... ta\1t(cadr(s}). caddr(s) =GIVEN .. 
member(cadr(sl, 1J. T .. mpchkfd. s, caddr[s lJJ 

mpchkfd, s. jJ ... eaa~·d) s cadrfj} I\ cadrfj} < carfs} /\ caarfdj :s: eaddrfj l" 
caddr(j} < car(s.) A cad:rffetchfcaddr[j}. dJJ = UstPMPLIES. 
cadrffetchfcadrfj}, d}), cadr[s J) 

lastfx] .. [sl [xj .... car(x}. T ... last(cdr(xl)] 

f<>tchfn,, x) ... fnullfx I ... NIL. n = caarfx) .. carfxJ, T .. fetch(n, cdr[x 111 

-40-



Problem 13 

If you have access to an interacting LISP system. program a more 

practical proofchecker in which you can specify the given and the desired con

clusion. and then enter lines of proof. The program should give diagnostics 

when it does not accept lines offered to it. and let you try again. 

There is a difficulty with this method of proof that prevents us from 

making deductions in a reasonable length of time in certain cases where we 

would expect to be able to do s~ · i(SU~ G' la) a formula. containing 40 

differe·nt propositional vari,bl~~-'· It,~~~:\>1;ft~~o show that a v -,a is a 
tautology. But if we set taut to check whether this is a tautology. then it 

will try to form a list of 2 40 interpretations and will fail on any existent 

computer. 

One way around this difficulty is to make use of'. ... ~- of substitution 

instancef! •... µ'..a ts any fQr.m~r~ell';T-,eplM.ial1l.S81fD*'30611ta,,.,..ttional 
,. . ~ '. . ,. " - . ' ' " 

va;~abl~.~ .-~~ltfQr,mul~~ .. ~~~ ~-~s~ '411lthecodfjnal · 
formula. If a particular pr0positional variable -~1be.~1'apU11ced. then all' 

occurr.e11c~s of it muat,b,~"~~-~ a~.f.11\UM•.\.M!lr.,iaeettshy,U.A.me· 

formula. ,Fo~. ·~~'•:J:.~4~tioaiaa~,of,J\~~~~.:•·•cqut:d1be . 
CC v D)" ((13 •_p) :;> <p Y,J?)>,. .,, ·· · J· -~ ·"j ;. 

, . . «- ' • •• 

A. suJ;>~Utv.tJqn. i.Qst~ of a ia\lt'llQflf;.4-t~JW·.-tita\ltOlotfY. So we 
• -· ·' '' ' ••• •• ; •• - 0 

inference: <; 

l '' 

Substitution rt.lie: 
A line in a deduction is justified if it is a s~~tion· 

instance of a previous ~~e~ ~(j ~at;P~.~1'1<?'\~ ~i:ft~}·•-:a , . 
tautology. 

Problem 14 

Modify proofchk to allow for substitution instances of tautolQl,i~s. 

The justification for su~h•a' l~~~-·~ll. h~::Ve tfl;J~~W,if~~'.l~)!. '9h~re p .refers 
to a previous line. whose justifi,~~~icm,is T~W:!:,Ui<:cnGc, ;,i ·•: 

-41-



CIUrl-:ftKJ& .... 

PR~AL LOGIClI 

Pr~view ot 9'.?:-R!Sf ~-
Thi& ~ 1•~•• ,.,._,..,« P'l'~l ~c. 'the concep

tual franawortt. adilli ev• ~·.r . .w~ ~~y·over dfreC:tly to 

the theory ~ ..... ordttr lotfc., · '" · 

The. taeary -••U. ~ tt..U i1ie~1MpMs~ TM tirst of 
these, ealtedret!!f .. l!'YJ· .. et:H•· tulflfr ... jftifb&~'·fortttblas~ and 

, e { ;f . . ,' ~' ·, • t l .{ . . ~ ' ~ ' . • 

deductions., vtewed u fOnaa1 objiMta- t. be •••t111iaiiliMI,. iftill r.l!fan, concern· 
fo¥ wnatthey,_,.,,..,.tt~··•iJ,._.W.lllt~;) ~:•ii«Rl1••·o1me 
theory is mode 11iu•~..._.,,..,..,_..u,1o· ..... 1fW"~_,. ~apect to 

• , F rt - "VII~' 

its intend~<f meanmtw 1'lM JllOttt itnpol1Mt ........... tor our purpO.e are 
those that r-elate proof tft4IO!"J' to mod411 th-__,.~ 

·'." }' !/ ~ ~ "f :: .. ' "' 

§ 4. l l'ro9f Theosz 

At any fi'dn ·ttm~. it 14 u•dtf fOH!nit the ducwtsfaft O~)~~itional 
logic to thoise· tormv:h~s. that eofttaiit onl.jr. a ~ar set ot propoatttonal 
variables. 

Oe&ition· 4.- i 

A voc~la~z 'is any; ti®-~~ ~ ·~ ~~~~M?n~l. ,y-ari~b~·es. . 
A lanp!I! fot propositW!rili -~,-Iii fie: Ht tH all formulas containing 

only variables from a particular vcscabuiary. 



A vocabulary may be finite or .infinite. Every vocabulary defines a 

unique language. All languages are infinite sets even when based on· a. finite 

vocabulary. If the formula a is a member of the laruiq~.ge ~. then the 

formula -, a is also a member of L and vice versa. If the formulas a and A 
• : ~ , •• > i - • 

are both members of L, then a /\. fJ, a v /J, etc. a:re also .:r;nembers of L. .. . . . : . ; 

Conversely, if a compound formula is a mem):)er of L •.. then its constituents 

are members of L. 

When using logic as a deductive tool, we frequently select some set 

of formulas belonging to a language as the axiomatization of our subject 

matter. Such a set of axioms can be called a theory. We then want to dis

cuss those formulas that can be dedllced Within the theory. These are some

times called theorems. This motivates the followit\g. deRnitions: 

Definition 4. 2 

If L is a language. the? a tqeorz.is a!ly subset of_L. If. T is a ,theory 

of L, and a is any formul~ of L, then th.e .n~a.~~on "'F .. !ii" lllf!'anS that tliere 

exists a deduction (as specified in Chapter Thre~) such,Jhat every given 

formula of the deduction is in T, and the conclusion is a. We can read this 

as "a is deducible from T". The set of all ex in L auc.Jl ~at Tt-a.is the 

set of theorems of T for which we write Th(T). 

Definition 4. 3 

The th.eory of T is said to be inconsistent if there is some formula a 
such that Tt-a, and Tt--,a. Otherwise T is consistent. 

Corollary 4. 4 

If T c L is the empty theory, then Th(T) include,$ all tautologies of L. 

If Tc L is inconsistent, then Th(T) = L. If.T and R are theol?ies of L, then 

(Th(T) U Th(R)} c Th(T U R). 

Definition 4. 5 

A theory Tc Lis complete (in L) if for every formula a E L either 

either Tl-a, or Tt--,a. 

-43-



It is important to observe that the completeness of a theory is 

re la ti ve to the language of which it is a part. The theory is complete if all 

the formulas of I... are provable or refutable from T. and none of them are left 

undecided. But the same theory may be incofriplete with ;espect to a larger 

language. 

Definition 4. 6 

If T c L is a theory .. and a E L. ~·if llei~er Tl-a# nor Tt--,oi. then 

a is said to be inc;teeepct~t. of T. 

We have s.een that formulas may be divided into three classes. 

tautologies. inconsistent formula•, and those that. are satisfiable but not 
; . , ' ; j : I ; ~·; >•' i, ~ ,,., \ • - • • 

tautologies. Given any con&istent thetJryT' m ~e lan(aage L. the formulas 

of L can then be divided into 6ree disjoint'~Ja .... ~ re~E·i~ to T: (i_} those 
. - : , ·- ' '· . ; : , .• · .: 1 f .. ~ ·' ·. ~'. ;' ·; .\ r ;. ·~; - . . • : - , :_ 

that are deducible from T. wfdch include& th•~"· as a subset. 
' . : -. ; : \ ~ ~-·.:. . i . . -_ - } j »-'... . . 

(ii) those whose ne1attons are deduclble from r. Wb.if!h_ w:~ can, call the 

formulas: refutable tf.o!n T and Which includes all th~ i~!Ustent formulas 
, ; i ', ~. :;, .' ; ~-. - . '_:;' - . , .;: : ~ . : ' . ' ' . ~ .; . 

as a subset,. and (ifi) thoae that are Independent of T. If T ·111 ·a Complete 

theory. this last class is empty. 

tautologies 

satisftala:N 
but not 

tautologtea 

inconsi•tent 
formulas T i• incomplete 

rehtatJle 
from T 

T h complete 



Pro bl em Set 15 

1. Which of the following theories are inconsistent? Which are com

plete within the smallest language containing them? 

c. Av B 
1B 

b. A v B 

d. A 

c 
, I 

2. Prove that if T is any consistent theory in L, there is a theory T 
I 

in L which is complete and consistent, an~ such that T CT. 

:l. Show that every complete theory bas a canonical form. 

The main theorem of this section is known as thl' deduction theorem 

(for propositional logic). It is the formali'zation of the Intuitive proof tech

nique whereby when we want to prove a result having the form "A implies B", 

we assume A and then derive B. 

Both the statement of the theorem, and the method of proof are typical 

of proof theory. The statement of the theorem is simply that if a certain 

deduction exists (and a deduction is itself a formal object as defined in 

Chapter Three), then a certain-0ther deduction must also exist. The proof 

of the theorem makes no appeal to the meaning of propositional logic, but 

merely describes how to obtain the second deduction if the first one is given. 

This is known as a constructive proof. 

Theorem 4. 7 (Deduction Theorem) 

If T U [oi J t-J3, then Tl-Q :::J ~. 

Proof: The assumption of this theorem is that there is a deduction of the 

formula {3 in which only the formulas of T arid the formula a are justified as 

given. Let this deduction be the sequence of formulas ~l' ••• , {Jn where 

{3 = {3. 
n 

We shall use the method of mathematical induction to show that for 

each i, where 1 !;; i :os: n, it is the case that T .. Q ::i {3.. This is sufficient to 
, 1. 

prove the theorem, because T .. a =.i fi'
0 

is the-desired result. 

--45-



By the inductk>n princi:'J)le., ilis :su:fftei.nt'to show that if T~a ::>./Jj for 

1 s j < i. then T~tr ::> ~-· There aire ~'!'-cases to cpnsider: (1) if /Ji is a 
l . . 

tautology, then~.;::;).-· is also a tautology .• ancl ·9b 'Tt-:_ a :;,./J.. (ii) If /J1 follows 
l ' l 

from ~ j and lt:k by modus-p<>ne11ts in -. wtven f>'l'oof. w~ere /Jk is /J j :::> /J1• and 
j < i, and k < i, then by the ind\ICtiotll :a~ 'ft--a ::> .~. and T .. G! :::> (/J. :::> /11). 

. J J 
Then since (a =>~j> •::> ~·« :::> <Jj ::;,-.l~ :.::> .•• 3•t• ta :a ""1tol.egy, by two applica-

tions of modua~rrens we;~•:> .• ,. ftll' tt.J1 l• just'i'fied as gi\ten in the 

first proof, and {J1 E T, then T .. Jt• and .-.~·-Jli ·:><er :J,li') is a tautology. by 

modus-ponens we pt T't-'C!k ::::> -r ft~ ff lrt U ~ • .a pven in the fi.rst 

Proof, and 'fJ. ts 'ii., ·Then T1-e ~ •· ~tis ..... i(;cr :::> .Q~ i'a a ·tautology. 1 ~ . . 

A constrocU.ive ;prool' utt'1laUf ~ltJ us -~ ~ :t.s requk-ed fo·r th~ 

theorem.. This t>l"OOf, fbr -e~...-... ·.n.. -~ M ~lk>ft ,....« => .tJ. 1is 

computable from Ure derhldti4M t :ij ta).,_. ....,....,.., ... •:e ~-&echtct:R>h 
is a·t most thrt!e tiwAM as 1-. u a......_ ..,....,...... • -~tructtn 
proof is :an ~'ld.•~ fit:ffQ.f. 

Problem i:s 

Let ·1" lte tile etieory ta. ~ a. 11 ::> d11 · · '1'hwa ·T ·u '{;~.!1-'C. ·*ltd ·•e 'flri~ 
out this ~- iA ftaU~ 

1 

l.. A 
·2.. A;:, B 
3 •. B 

..t. B~C 

5. c 

PV«t ..... 
Mp 1.2 

tt.wa 
Mp 4,• 

The deduction ·theo:rem t.Ulil ua • ._t 1'1"A ::> C. Obtatn tl\is drecht~tion by 

following the C'Oft9Ui.1¢:tl'Oft ...... m 1M ~ ~- ... ~tioll '*9t>re'ltl. ts 
ther-e a shortW ~-lot- Tt-A .:) C' 

§ 4. 2 Model Theory 

While proof tmi!ory is ~ With tile propertt·es «:>f de·dtictit>ns. 

model theory is concerned With the tn~lng of the formulas. A formula is a 

logical compound of prGposttions, ea.di ot Which is regarded as true or false 



in some context. The purpose of a model is to supply that context; therefore: 

Definition 4. 8 

A model in a language L is a function from the vocabulary of L into "· 

If the vocabulary of L is finite with n members, then there are 2n 

different models for L. If the vocabulary of L is infinite. then there are 

infinitely many models for L. in fact, uncountably many. 

If M is a model in the language L, and Q E L, then M assigns a truth 

value to each variable occuTring in Q. Then, using the truth tables for the 

propositional connectives, or else using some procedure such as propeval of 

Chapter Three, a truth value can be assigned to Q. 

Definition 4. 9 

If Q evaluates to the value Tusing the model M then we say that M 

satisfies Q, and we use the notation "M ~Q" to express this concept. 

Corollary 4. 10 

If Mis a model in L, and Q E L, then either M ~Q, or M ~-iQ. If for 

every M in L, M ~Q, then Q is a tautology. If there is at least one model M 

such that M ~Q, then Q is satisfiable. If there is no such M, then Q is 

inconsistent. 

Definition 4. 11 

If Tc Lis a theory, and Mis a model in L, and if M ~Q for every 

O! E T, then we say that Mis a model for T, or M satisfies T, and we write 

M~T. 

So far, we have used the symbol 11 ~ 11 to relate models to formulas or 

theories. We can also use 11 ~ 11 to express the idea that in any context where 

the theory T is satisfied, the formula Q is also satisfied. 

Definition 4. 12 

If T c L, and O! E L. and if every model in L that satisfies T also 

-47-

·~ ·----



satisfies Q, then we say that T semantically implies or semantically entails 

Q, and we write T ~ex. 

It is important to realize that T !=er. or T semantically implies a, is 

not the same thing as saying Th;~. or ex is cleductible from T, at least not 

until we have proven this to h:e ·the case. 

The main result of this s.e~tion is the compactne.ss theorem, a rather 

surprising result when first seen. Suppose s0.me infinite theory is not satis

fiable by any model. One might think that this is a property of the theory as 

a whole. But the compactness 'theorem st~t:es that the unsatisfiability can 

al ways be localized to some finite portion of the theory. 

An unsatisfiable theory is on.e that has no model. An inconsistent 

theory is one for which .there is a formW-a ,/1. #iu.cb t}l41t J>otJ:l .a an~ -icx can be 
deduced from the theory. The fpr,me:r c.oµc~t ie model theoretic. while the 

latter is proof thee>r,etic. If a th:eory is :inconsistent. then it is obvious that 

some finite sub-th~ry is also irlcQn~js:tent bec.aua.e the c;leducti,Qn o.f the 

inconsistency had to come from finitely many giv.e.n formulas. But we have 

not yet proved that \¥1.S.atisfia,ble an.d inca.nsist.$lt are equivalent co11cepts. 

The compactness theorem is ~ re!l!lul1 pr.el~ry to provinc this .• 

Theorem 4. 13 (Compactness Theorem) 

If a theory is unsatisfiable. then it has a finite sub-theory which is 

unsatisfiable. 

Proof: If the theory '.I' is Jini~. th;en tbe tbee;riem is tririal because the sub-
' I theory T is taken to be T. T.he theorem did not promise that T was a 

proper subset. If the vocabulary of T is finite. then there are 2n models 

where n is the number of proposjtional variables in T. None of these models 

satisfies T, and ·therefore ucb one falsifies some formula of T. This set 
I 

of formulas is not satisfiable. and is the required T . 

Suppose the vocabulary of T is infinite. Let the propositional 

variables of T be enumerated in some order as the sequence a
1
• a

2
,... We 

shall call a function from some initial segment of this sequence into fr a 

"partial model". A partial model assigns truth values to a 1 thru an for some 

n 2: O. We can picture all partial models as nodes on an infinite tree. The 

-48-



first node is the empty partial model. The next level containing two nodes 

assigns T and F to a 1• and the third level containing four nodes assigns T 

and F to a 1 and a2 in 4 different ways. etc. 

F,F 

' ' 

A partial model assigns truth ·;:ilues only to those formulas of T 

whose propositfonal variables are among a.bee that t~ particular partial 

model interprets. If a partial model interprets at least one formula of T as 

false. it will be called a "terminal". \\Te now 0 pr-unej' the tree by cuttfog 

off all nodes that are descendents of terminals. If the pruned tree has 

finitely many nodes. then for each terminal we select a formula which is 

falsified by that terminal. The s~t of these Jol\"mulas i1r the required finite 
I 

T , because if M is any model, then some ,initial sequence of M is the same 

as some terminal. So there is a formula in T
1 

which is.not satisfied by M. 
I . 

Therefore T is an unsatisfiable theory. 

Now suppose that the pruned tree after elimtnflti~ descendents of 

terminals is still infinite. Then there must be $~me infinite desc.ending path 

passing through infinitely many nodes.. This is becaus~ if the tree is infinite. 

then either the left or right half of it is infinite. Then either the left or right 

half of this half is infinite, etc. But such a Rath constitut~s a ~'°del. ... 
Furthermore, this model does not falsify any formulas since none of the nodes 

-49-



it passes through is a terminal. So this model muat sattsfy the theory T · 

contrary to assumption. Thereiore the pnmed tree cannot be infinite. 

§ 4. :~ Consistency and Completeness 

We now ·use .model theory to critique the consist-ency and completeness 

of deduction. We w.ant to show (i) that deduction ·only allows us to obtain con

clusions that are semantically justified. and <iH that all ,such conclusions can 

be obtained by deduction. 

Theorem 4. 14 {Conatsbency ~~} 

If T c L., a E L and T+-a,. ·ttten .Tta. 
Proof: Let a 1, .• ,. , ~n = a be a de6aet .. fJJ e fr.om T. Sy·~ induction 

principle, if we .can show that Ttaj .for j-< i i~M T tai .. then :we can con

clude that T ~-i fM' each i. ·and. iin part.icuat", ·Ti:«. The.re are three cases: 

(i) If Q. ie a taut~' .. then TL~ becwe all .. ~ of L satis~ a.. (ii) 1f 1 ,..,."""'!!!i.J" lf"'l .. i1 1 

G'i is given, ttren e 1 t T and so T~i~. li4U if a 1 foUows<~Q.111 •;and ak by 

modus-,ponens~ where•-.:t.e1;;,a. 'taenb!f .. ~~iA. T~crj 
and T t.aj ~ tl!f' so if MtT,. t)i;ea Mf•j .ancl ¥,j:ej~ •r ; Fro'Rl 1lM ~table 
o:f "::it'. it is &een that M ~ .,. aad so T Le ... ~ . r t . 

Lem,ma 4.15 

If T .pa. then ther·e is :a finite -subeet T
1 
of T 9UC:b that T

1 
~a. 

Proof.: T v {-,9] is :an unsatidabl-e 'theory .. since -every ·medeJ. that satisfies 

T also satisfies ·er_, and therefore does not satisfy -.e. According to the 

compactness theorem. there is a finite 'subset of T U {-ia J which is also 

unsatisfiable. We can always include -ia m this set. so it can be written 

T
1 

U f-,o:} where T~ c:: T is fiaite. ff MlfT: then M cannot satisfy -ia; and so 

M ta. Therefure 'T"J=cr. 

Theorem 4. 16 :(Complet'eness Theorem) 

If T c L. Q € L, and Tta, then Tt-a. 

Proof: Hy lemma 4. 15 there is a finite T
1 

c T such that T
1 ra. I 

Let T = 

-50-



[/3
1

, ... , ,8
2

}. Then 1\ :::i (/3
2 

:::i ••• (,Bn :::i a) ... ) is a tautology, and there is a 

deduction starting from this tautology, introducing each f3. as given, and then 
1 

detaching it from the tautology using modus-ponens, such that the conclusion 

of this deduction is a. 

Corollary 4. 17 

If there is at least one formula that cannot be deduced from the theory 

T, then T is satisfiable. 

Problem 17 

Prove corollary 4. 1 7. 

-51-



..._.....,,, -~·~- -·:- -
·, ,;_;,_-._ J 

CHAPTER PIVE 

RECURSIV~ FUNCTIONS AND SETS 

PreView of. Chapter Five 

This chapter continues from Where we left off in Chapter Two. 

There we formaliaed the notion of a i-ecu.ratve function. and showed that 

there was a universal recuratve tunctlGn ""11· In thi& chapter, we continue 

the discussion of recursive function theory by c.tenaon.trattna that there are 
perfectly well clefllled functiOM that are not recnaratve. It ia surprisingly 
easy to get suoh a l'Hu.lt once we haft a unt.veraal fuirctton. Tb• theory 
goes a bit further by ShoWiftl that there are facttona tkat are bl some sense 

not even halfway recursive. 

§ 5., 1. I~ccapttulation 

'l'o summarize the reHuJts of Chapter Two briefly. the following 

schema represaent• a sequence of ft recur•tve deftllttton•: 

Such a sequence defines n partial recuraive functions. gives them the names 

'P 1 tp!'u 'P n' and specifies procedures tor computing these· functions Which 

terminate with a value Whene"r the partial function has a value, and are 

otherwise undefined or fail to terminate. The recursive f\µlction specified 

by the procedure may not be the one we expect. but it must exist because the 



behavior of the procedure is taken as its definition. 

There is furthermore a well-defined effective method of coding a 

sequence of recursive definitions into a single. ~-e¥;p~ssjon. and there is a 
- " \ - . ' '. : ' . " ~ ' , 

partial recursive function caUed apply such U'.¥li if/I i$ t~. coded s-e:x;presston 
• . . ' -- ,_ .t , .t \.. . . \ 

just mentioned. and <,0
1 

has ·exactly k argumeJlt~ (th~t ~~· ,111
1 

= k). apd Q 
1 

thru 

ak are any s-expressions. then: 

·where the symbol "~" here· means "strong e.quaI-ttr.". in ~e sen.se that either 
• ' ~ > ,, ;,.; - ,• ' '. 'i'' ; 

both sides have the same valu~. or b.oth sid~$ ... ~re ~~~r~t~~!d. . (We .can also 

compute any other of the t,01 merely by putt~n.1 tts .def~fJU~pn first when coding 

f3. ) 

§ 5. 2 Turins's Haltffig Th~grem 

A. M. Turing f~r~t proved this halti'1t·~:m u'.6\ine his c.~ceptual
ized computers n()W knoW'll as Tur:ing .MachiaeJ.. He ~•d that .there ie no 

computer that can always pl'."ediQt whet.her or,·-not~anotber ~~~r.·wtll halt or 

continue to run indefinitely. 4fter stuc:.1.ng·th;e,,•nu#uJrfl,.4 initial: state of 

that.other computer. Ii i$.~ssumed·here that~AlhCOIDfBlte~ hi-ve access to an 

unlimited supply of initially blank auxiliary storage. Of course a computer 

can predict that another coQip~er .Will halt .i>,: aflpuliatiit1·, iis be~vior until a 

halt is encountered. But there is no way to do this without danger that the 

computer doing the silnulation will ttself.no:t. hai.t.~ia aotne, o.-s .. · A.proof 

along these lines oan be cfoUlld in {Dtlvis ] •. 

We define the total binary predif!:Me kal\lx. y) ae follow•: If applyfx, y) 

is defined. then halt[x, y]is T; · otbet>wise 0 nlt(lf. y-~:ts.F:L Ji'b~ Pfledicate-··halt 

is certainly meaningful and well defined. But we have not specified any 

effective means to compute it. 

Theorem 5. 1 (First Halting Theor.em) 

The predicate halt is nt>t recursive • 
. . 

Proof: Suppose, to the contrary. that halt is recursive. Then there is a 

-53-



sequence or recursive. definitions. the first of Which computes halt, and the 

rest or which are auxiliary flinctionS tor hdt. Then we can define the 

recursive function cllag' as 'tolloWB! 

diag[x} .. (halt(x. lfst[x}l -t listtapply[x,. Iist(xl}). T ... NIL] 

The function diag .!s recursive because it has been effectively defined from 

apply and halt both of which are. or are preambecf to. be. recursive. 

Furthermore, diag is a total fllftction beeme hlitt'is total, and while apply 

is not total, it only pt8 to •ee tfM)ae -~~ certm.94 by halt as producing 

a value for apply. Because dlaa la recuratve, it• definition can be coded 

into an s-expression which .... shall can .... .. This is a list of the trans

lation of the recur1tive definition of c11a.- Witten ... , fOik>wed by the 

definitions for halt anct its:...,.._,, .,_1••-. ,...__.,.,.,. Mlli it• auxiliary 

functions. Now~tlle¥alaeot'4.alf4lll ... ). · ,,,...,...,_wtmat 

because diag is-.... Therefan. IJJttae-.....,...... theorem. applyfdiag'll, 

list[dia·g* n mu• b• deftnft .... --....... ·~ .... l:Wn4e haltldi•I*' 
Ust(diag* J} is 'l'. Btd . ._ hWn ee ......... tllG Rllin fol"· ctt.,-. •e havet 

This is a contra.dietJon.beeauM tt aaaens.tllat·9011Mf·8•.....-iOll is equal to 

·list of itself. This is l,ike havtna a nudltNtt' n 8Udt &lat n = w. Since we have 

arrived at a co~ora ...-iftl' _...,_,~. •·muat conchlde that 

our original ~mlae that halt ffl tt.ec1111"BtYfl •not true. · 

This proof is confusing at first sight. If 1<JU &tudy it carefully. you 

will see that it is really no different in fta baaic ~from Cantor's 

dtagonalization proof that the real numbeN &1'8' !UM CJOWltabl•. That is why 

we have called the s-etf-applt.ca-ttve fun~~ 0~¥'. .Mast ul\Gecidability and 

incompleteness proof.a involve 800le 901'1 of cttaaonaUzation technique. 

-54-



§ 5. 3 Recursive and Recursively Enumerable Sets 

Definition 5. 2 

A set of s-expressions is recursive if there is a total unary recursive 

predicate which is T for members of the set, and F otherwise. 

Since the numbers are a subset of the s-expressions, this definition 

extends to numbers. For a set of numbers to be recursive, it is sufficient 

to have a predicate which is defined only for numbers, and is T for members 

of the set and F for numbers that are not members of the set. This is 

because the set of all numbers is recursive using the basic predicate num. 

If a set is recursive, then there is an effective test for membership 

in the set which terminates either way. We have just proven that the set of 

all s-expressions x such that apply[car[x], cadr[x]] is defined is not a 

recursive set. 

There is a weaker condition than recursiveness called recursive 

enumerability. It applies to sets wr.ere there is a membership procedure 

that always terminates when the answer is yes, but may not terminate when 

the answer is no. 

Definition 5. 3 

A~ of s-expressions is recursively enumerable (abbreviated to r. e.) 

if it is the set of values for some total unary recursive function defined on the 

domain of numbers. 

This definition creates the picture of a machine that runs continuously, 

and from time to time prints out some s-expression. Every s-expression 

that is a member of the set will be printed eventually, and only members of 

the set will be printed. There may be repetitions. But we cannot always 

conclude that some s-expression is not a member of the set, because we may 

not have waited long enough. This is a good intuitive view of recursive 

enumerability. 

-55-



Definition 5. 4 

A predic!Jt.ts :r5Y?•\ve}I,fH1i!f~,,lf tb~ ~et of.argum'9rits {or 

which it is T is r. e. 

There are m~ •l~~ti,~ clefinlUoaJ for tJ. r. e. s•t., sor,n~ of whi.cQ 

are given in t.b• fQ;l,» ..... ~. 

Corollary 5. 5 
: J, 

(a) A set Is r. e. if aed Qftly tf it i• U.• r-.. (Mt·ot,valuea) of some 

total rec;:ursive- f~tlon., 
(b) A a~ ta P,e. tt ...... , tf tt I# ...... Of·I01l'18 partial 

recursive functiOl'l. 

(c) A set ii r, e. if and OQly if it. i• ta•,41••~·ol definition for somo 

partial reeur•tv:e ~on U-. e ... ._ ..i et•••••..._ .•. ; Whtc:b ._._ pal"Ual 
function i$ c:leftn~). 

(d) lf a sett• r. e. a.nd its e~pl•••t 1• a.i..o r. e •• th• both •re 
r~ut-siv~. (Tbit1l .eua complteleet Wittl r ...... • to tb• ••t of a.ll •~e¥prea .. 
$i~s. bttt it is •l•o true lf we· ta.II• _. eompl..-t 1"tb nttpltet tQ; ~ "* of 

numbers• or ~"Y g.thilt.-. n<:ll:ra.ilf« aet.) 

Probl~m Set 11 

1. Prove all the parts of corollary 5. 5. 

2. · Sbow that ll-'t .. a ~. •• ,.-~. :: 
3. Usifl6 t .. .-tm'i 5. 1. a• corollary B.· ~ ,....e· ~)~ capeetf1 some eet 

which is not :r. e. 

The lasi F"1.tlt <ff t~ ehaf)ter ia 1; ·~ b~ 'UMc»'em tn which 
"ft'· demonstrate ~ •••tene4t ~ a ~e tMt ta 'lildt 4"'eftil",. e.. . We deftne 

the total unary p:r~dicate totflt} to be T tf qd only tf x ts a sequence of 

recursive definitions which is ayntaetieAUy well formed. and ~rthermo:re 

specif.ies the comwtation of a total unary function of the a-express.ions. 

'fot[x) is F if xis not a. well-formed sequence of definitions, or if it defines 

a non-unary function, or if it defines a noa .. total function. Tot itself is never 



undefined. 

Theorem 5. 6 (Second H~ltiryc. Theorem) 

The predicate tot is not r. e. 

Proof: Assume to the contrary that tot is r. e. Then the set of arguments x 

such that tot[x] is T is a r. e. set. and there is some total recursive numeric 

function totenum which enumerates this set. Now consider the function diag2 

defined by: 

diag2 [x] +- (num(x) .,. Uatfapply[totenunt(x).~Ust[xJlJ. 1' -t NIL] 

Given our premises. diag2 is evidently a total unary recursive function. 

Letting its definition sequence be the s-expression diag2•. we have 

tot[diag2*) = T. Therefore. there i•,s0m•~.n\db.ttk~;tbattotenum[k) = 
diag2*. Then ~iai(l(k} = llst(~pply[4l~,~1 l~Af~JU.::: ~~[Jt}j. - This is 

' ·' . ' . ~,, 

a contradiction. so the i~~tial assµmptiqn ll;lat. tQ,t .i~. ?):. e. ,~ust :be false • 
. _i . .· ·. • ..• 

-57-



Once again. the distinction bet\fMKi a rope and- a- snake had proved too 

subtle for Western logic. 

-Tt\e A4aJP-antine Sher;tock Holmes• 

CHAPTER SIX 

FIRST ORDER, .LOOIC ·"" 'lN1'ROUUOTION 

Pr~tje-wy _of C~a1Mtrf ;S!;~ ~•~!!lJH'!i:!fflM 

Chaptel' .fJlk' tMt-ociu«ff Uhf butfd*t••~. tJHkt~ies '-an'Cf models of first . 

order logic. It c0tttains Bome blda detftitton, ~~•Ii lnlUltlve exploration 

of the subject to dev•lop akill ta han4Una formuUaa Alld their ttiftllings. No 

deep theorems artt proven. 
Chapter S.ven defines and develops the theory at deductions. With 

the exception ot the contd1t.ncy theorem. allot Chapt•tr· S.vtm. ii proof

theoretic and constructive in nature. tt contains all th• baste :resuJ.ta on 
provability that we shall need tor the re-st ol the book. Chapt&r Se-ven is 

long and contatns tna.ny dittloutt eae:rcisea. Thts seems necessary in order 

to develop some practical sense a~t dedu~tion, wtdoh theoretical study 
alone is not likely to do. 

Chapter Eilht starts With the completeness theorem which is the 

central topic for the c1as11ica1 study ot ftrst order loftc. The completeness 
theorem is then extended to logic with equality, and some t?on1tequences of the 

completeness theorem haviJta' philo•ophiCal impUcatton are discussed. 

§.6 .. 1 Languaces, t;'ormulas ~nd Sel'.'tt~Htees 

First order logic is much more subtle than propositional logic. In a 

certain theoretical sense, it is sutficiient to represent any completely formal

ized process of deduction. Let us consider a very trivial deduction: Bowser 

is a dog. All dogs are mammals. All mammals are vertebrates. There

fore, there is at least one vertebrate~ ~ ·:Rach of these sentences is simple 

-58-



------ ~~------~-- ---
•: '. --;;<~.:~,':-,-,; . .;-J<.~-.,~ .• ·'., 

rather than compound. If we call them A. B, C and D, respectively, there 

is no way to deduce D from A, B and C using propo:::itional logic. The 

internal relations that make this an evident deduction are simpJy not available. 

These statements can be formalized in first order logic as follows: 
' 

A: dog[BOWSER] 

B: Yx(dog[x) ::::> mammal[x)) 

C: Yx(mammal[x) :::::> vertebrate[x)) 

D: :!Ix(vertebrate{xJ) 

When we define deduction in first order lQgic. it will be seen that there is a 

deduction of D given A, B and C. 

In this example, there is a variable, x, an object, BOWSER, and 

three predicate names. A slightly more complicated e~aµlple, containing a 

function name in addition to a predicate name is: The number three is not 

even. If a number is not even, then it is odd. If a number is· odd. then its 

square is odd. Therefore there is some number the squ~e of whose square 

is odd. 

-ieven{3J 

Yn(-,even[n) ::> odd[nJ) 

\fn(odd[nJ :::::> odd[square[n)J) 

!n(odd[square[square{ri]]J) 

This is also a valid conclusion in first order logic. 

Definition 6. 1 

A function name is an identifier. 

A predic~te name is an identifier. 

A vocabulary for first .order logic is a non .. empty set of predicate 
. (. 

names, and a (possibly empty) set of fW1ction names. together with a number 

(2: O) for each name called the degree of that name. 

The purpose of the degree is to specify the number of arguments a 

predicate or function has. 

-59-

---------- --------------- -----------



A term is~ 
(i) a variable 

or (ii)f'fTf• •••• Tn) 

where f/J is a function name of deeree n. and each of the r1 is a term. (Note 

that this definition allows terms of arbitrary .~~.. Also. if the degree of 

'fJ is O. then 'P() is a term. A O•&ry term la caUed-&·eonstant.) 

An atomic formula ts '*'i• ...• Tm). wh*e f is a predicate name of 

degree m. and each t 1 is a term. (Note that predicate names occur only 

oUtside function names, and that pr9dicate nanuts cannot be nested within 

each other. . Also, if the defree of ; ·ts o, tlltin •n ~I -~ .itomic formula. ) 

A formula la: 

Ci) an atomic formula 
or (ii) -i(a) 

or (iii) Or) v (JJ) 
or Uv) (ct)" (') 

or ( v) (•) ::> ({J) 

or (vi) (a) • (-) 

or (vii) Yg(a) 

or (viii) I"~) 

where a and /J are formulas. and ~ is a vari,•ble. The symbols V and g are 

called the untve~ea1. <J!!!!!ifier and the exiatentlal !J!!!tifier, reapectively. 

and can be read u "for all" and· "there eldsta". 

Informally. we shall relax this arammar in several waya. We may 

drop some of the parentheseca when thia does not result in ambl.ptty for the 

reader. We do not specify associative frOUptng for :n.vt• and"""• aince this 

makes no difference. We aseume that "::I' asaoctat• ft.em-th• fitht, so that 

p[x] => q[x] :::> r(xJ means p(x} :J (qfx) => r(xJ). We nae teiJm.J~tng infixes. 

prefixes and sufftxea in the aame manner as in Chaisfer 'two~ ' Finally. we 

use objects as terms, which save• u• Ute trouble Ot rwpresenting each object 

by ~ constant. 

Throughout this book we •ball use the convention that when a quanti

fier and its quantified variable are followed immediately by a left parenthesis. 

then the scope of the quantifier extends exactly as far as the matching right 

-60-



parenthesis. For example, ax(p[xJ) ::>. q[x) means (ix(p[x))) ::> q[x], and not 

:3:x((p[x]) ::> q [x ]). 

Examples of Formulas: 

a. Yx(p[x) ::> q[x]) b. -,in( n' · = O) 

c. (n + m) x p = n x p + m x p d. ix(pfx)) ::>'fx(p[x] ::> p[f[x)J) :::> 
~~JJff{f(•1JJ) 

e. (1p[) V -,q[J) 5 1(p() A q()) f. p[x] v p[g[xJ) v p(g[g[x)]] 

Definition 6. 3 

The set of all formulas using a givenvocabulary is called a lani,Uage. 

Definition 6. 4 

In a formula having the form Y~(C:X) QT i~~). ever7 oqcurt>enc.e of the 

variable ~is a bQund occ.'1rrenqe ·or~.. It i,$.b~dJ~y ~~ J.pl;U'-1 quanµfier of 
' ' - - ' - . ~ ' . ' .. ~- ·•. ~ : ., . - . ' - '. ; .. 

the formula unless it is bound by some qua~Uter.tp «.•'. .6n .acc:urr.enc:;~ .of a 
' ~ • - ' _, " ,· ~"\ .j , • • ' ~ ' < ' • ,. 

variable that is not bound is free. 
> • ..,..,......._ 

It is only meaningful to talk a\'lnuta ~J"tj9ula:r 9ccurrence of a variable 

being bound or free with respect to a particular formula. For example, 

within the furmul-il ix(p[x}). the variable x ts· b6ilnd' wi\h respect to the whole 

formula, but free with rel)pect to the subforrhUi• p[xj~ ·~'the formula 

p[x) ::> Yx[q[x)], the first occurrence of xis' fr•e;''B:lid·~:e'·aebond and third 

occurrences are bound. In the formula Yy(~t[x, 'yJ V !~(p2 (x, yJ)), the only 

free variable (wfth·respect to the entire fortmifa}, is th~'fl'.r•t 'occurrence of x. 

Definition 6. 5 

If a formula has no free variables ("1th re'~~ct to .. itfl\~lf), then it is 

called a sentence. A untv~rsal clqsurft 9.f a fornµU~~ Cti$_ a:;s•ntence 

vg1 .•. vgn(a) where the ~i a~e. all th~ distinct tr,~ !&f$•l>lea .of a in any order. 

§ 6. 2 First Order Models 

Definition 6. 6 

Let L be a first order language. Then• model in L ts a package 

-61-



containing the following: 

(i) A non-empty set D called the domain of the model. 
. . - n 

(ii) For each function name 'I> of deptte ~ a tunction tp:D .. D. 
(iii) For each predicate nam~ ; of de,ree m, a predicate i': Dm .... •. 

When we speak of finite, infinite, countable or uncountable models. we 

are referring to the cardinality of their domains. It is important that the 

domain be non .. empty, and that the tunctiOJJS apd predtc;,,tes that interp.-et the 

function and predicate names should be total. 
. . . ( 

The significance ot model1 i• that they epecUy semantics for formulas. 

Consider a IanfUaae L. a formula Cl E L, and a model M in L. Temporarily. 
we need another entity called *A ·irlte!Jt:e&a~on.· dih.tnterpretation I f~r the 

. . . . ~ ',. " '. . .· 

formula a. and the !bodel Ml~ a total tuftetfon.trom the set ol·V.rtab1es 

occurring in a into th'e domabi- Of M~ · Oi'vfi M~., i: and ·•• we can define a 
valuation tor every aub .. componeat of er. Th6~1 0l.a tenn will be a 

member ot D (the dotn&in ot M), and the valuation of a formula will be a truth 
\l"alue (member of•>~ defined aa tollowa: ' : · ·. '5 

• . 

( i) If ~ 1• a Je.rm wtitch la • n.rl-.blt .. , ~o, V(.J4,. 1. -~ ~ l( u. 
; . . ' - . : ' - -- - - ~ -. •. ~ : 

(UJ 

(iii) 

(iv) 

That is. the va1...-itfi* .of I •• th.e '~-~ .. J)·••!lilfted to 
it b.1, the int~rpr~U<m L : 
If,. ta a term hfl'dq the. fQnJ\ •lri• .... fnJ. then -v<M, 1..1'> • rp<v<M.J. "r>·~ # .,., vt:u;. l.t"tiu .. t. '.fhat ~·· the. 
valuation or,. 19 found by first obtaintn1 valuations for -the f 1• which will be rnembera of O, and then using .,, 

which ts the function modelina tbe function name fl'. to 

obtain a vala• in D.t'rom th•ae ·ai!IUmenta. 
rt /J ts an atonitc tomu1ia ftf.·, •. , ,.., ~'_:·~-~then 
vtM,l.,J •'ftv'<M.tr1 >~' •• ~~1~~~~))~· This is a 
truth value. 

The valuation of a formula havtng the form -i(/J), 

(-) v ()'), (~) A ()'). (~) :> ()'). or (-) • ()'J is obtained 

from VfM. I.A) aa.4 V(M,.I, )') u£ng .the· trlttk: tables for 

the propositional connectives. 
(v) The valuation V(M. I .. Yt(j)) is T if V(M, J, /J) is T for 

-e2 .. 



every J which is an interpretation identical to I except 

possibly for the value it assigns to the variable ~. 

Otherwise, the valuation of V~(~) is F. 

(vi) The valuation V(M, I, :3'.~(tf)) is T if V(M, J, ~) is T for 

at least one J which is identical to I except possibly 

for the value it assigns to the variable ~. Otherwise, 

the valuation of :lI t;(~) is F. 

Proceeding from smaller to larger components in this manner, we 

see that a valuation V(M, I, er) is eventually defined. It is evident that the 

choice of the interpretation I is important only for the free variables in er, 

and that if er has no free variables, the valuation is independent of I. So if 

a. is a sentence, we simply write V(M, a). 

Definition 6. 7 

If M is a model in L, and a is a sentence in L, then if V(M, a) = T, 

we say that M satisfies a, and write M ~a. 

If er is a sentence in L, and all models in L satisfy er, then er is valid. 

If at least one model satisfies er, then er is satisfiable. If no models satisfy 

er, then er is invalid. 

The negation of a valid sentence is invalid and vice versa. We could 

draw the same sort of chart for valid, satisfiable-but-not-valid, and invalid 

sentences of first order logic, as we draw in Chapter Four for tautologies, 

satisfiable-but-not-tautological formulas, and inconsistent formulas of 

propositional logic. In fact, tautologies are a subset of valid formulas.. if 

we define a first order formula that is valid from its propositional structure 

alone to be a tautology. Similarly, propositionally inconsistent formulas of 

first order logic are a subset of the invalid formulas. 

So far, we have discussed only sentences. What about other 

formulas? It turns out that there are two ways of regarding a formula with 

free variables. One way is to see the formula as belonging to some context 

which supplies interpretations or restricts the meaning of the free variables. 

For example, in the pair of formulas: 

-63-



2x+.2y == 1 

·2 2 ·1 x +y ::t 

one probably wants to sol\te for ·&11 mt.-pr.etatton:s 'that satisfy both formulas. 

· In the domain of real inumb«-6. na.e :~ t1fo of tb'etn.. 'The other context '.for 

a formula having free V'8.ri&'bhs '8 .·to ~!'4 'the fon:n11la ·•S -inellllinl the same 

thing as Us mnvernl :c~ Pet- 11un -~-

Definition ·s. 8 

For any torm.ia *·• Mte aaw .... _._... a .. cloaure ol ·4K. A 

formula is va.Jj:4.. ·tf!l•f.esAS• ·-.1t19M,'1f•·~Wt• -ts ~l4. .. 81ltldable or 
i'nvalid. respecti~ .. 

Two fonnalas• ._. ...... !l!t .. JIM. tr• •Jia·mta. 

P:robletn Sel 19 

1. Ctaa•V.1 •di ·tJf 1bte ·~ :flMtnulaa:aa ·~ a8wr wtid. 
invalid. ·or~ 08t"111it· ......_ 

a. pf lt) V ...,ptx'] b-. ac,t~lt =>~x.J) 
c. 'tl.(pI:t:J) l\ ..,,tX{J)tt}) 

e. :x+y%y+x 
a. ~~YD·~~lx.:v» 
f. t'Jc(.:..pfa'J) • ~t;x(plx]) 

2. Tne $etJtenCe fXYC'l*Y{l'llt:·y] < 6.::> Jl'<at-f{~)l< :d ~er.preted on the 

domain of real :mttllMn a.Q-el'ta 1h.:t. l hi .,a··~ ~ Write a 
, '• ' ' ' ' ·. ' •, ' ":'" ·~ . . ' , ' ' ' ' . ~ ' . 

formula that as•~ that fill a -~onnJiY ·~ ~c~... Do·es one Gt 

these conditiona ~ly thi!,.e:tJ'lft ~~·' 
3. Show that eaeb pair ·O:f 'f~fJ ;ia tqaW&l.,at: 

a. Y~(a /\ /I) 
b. i~h:r v /l) 
c. Yf;(cr V ~) 

f C{a) A vi<-·> 
:g'<•> v J:C~) 
Y~(GI) V - where I' has no free ~ 



d. :it;(a :)fj) 

e. V l!(a :) fj) 

f. --,:il!(a) 

§ 6. 3 Theories 

Definition 6. 9 

a :;) :is(fJ) 

:a~(Q) :;) fJ 

Vs(1a) 

where a has no free i; 

where fJ has no free s 

A theory in a language L is a subset of L. 

If T 1 c T 2• then we say that T 2 is an extension of T 1• and T 
1 

is a 

contraction of T 2• If L 1 c L2• then we say that L
2 

is an extension of L 1• 

and L 1 is a contraction of L2 • 

If M ~a for all a E T. then M ~T. 
If Tc L, and if M ~T implies Mra for all models M in L. then M ~a. 
A theory is satisfiable if it has a model. 

Definition 6. 10 

Two models M 1 and M2 in the language L are said to be first order 

equivalent if M 1 ~a if and only if M 2 ~a for every a in L. We write M 1 ....., M 2 
to denote first order equivalence. 

Let M1 be a model in the language L
1

• and let L2 be an extension of 

L 1• If M2 is a model in L 2 which has the same domain as M1 and the same 

interpretations for all the function and predicate names of L 1• then M2 is an 

expansion of M1, and M1 is a contraction of M
2

• (The word "extension" 

applied to models has a different meaning from "expansion" and is not used 

in this book. ) 

Problem Set 20 

1. Prove that if T c L is a theory such that if a is any formula of L, 

then either T ~a. or T ~-,a, then all models for T in L are first order 

equivalent. 

2. Prove that if T2 c L
2 

is an extension of T 
1 

c L 1• and M2 is a model 

in L2 such that M
2 
~T2 , then there is a model M 1 in L 1 such that M 1 ~T 1 , and 

M 1 is a contraction of M2• 

-65-

-~-----------------~ 



As an example of a theory. cons:ider the theory of partial ordering. 

which belongs to the language h•vitre onty the binary predicate "<" meanin·g 

less than. The theory is: 

1x< x 

x< y :::>y< .z => x < ,z 

This theory can ;belong ·to _,. ~ ·~ the ;pretlicate ·11<".. Any 

model that satisfie!I this theory must be ·ll pal'tial ~rdertag in 'the usual sense 

be.cause these ar.e tile :axioms !mo a partial ·Gr.derinilf. 
Suppe>s·e we ,extend - '~:by :adllq&.,*8 it ·-th-e_ formula ~y(x '< y). 

This says that given am,y ·objec.t. tber,e ifl ........ -~ C"'•ter than it. Then 

ther·e must be anothm- Vbjeet 'll""'9lm' ..... ~·.;and ··!Ut .~rth. By applying 

the second aximn, which is a 1raneit!..e law,., we ••'that ,any object on this 

chain is < any object occurring further aloag the ·chain. The fttst axiODl 

says :that no ·object is < itself. 'So we am .~ Olat t1d'S theory h·avtng 

thl"ee for:n:mlU ha• milY i.Jtff,,.. a,lda.. · n '* aM:itifted rather :easily. for 

example, 'by the real am.nb.eh; ,_. 'il!he :J:l&tlil"al tml6'81 a, ·o~ ·fhe 'transfinite 

·oz-dinaJ. num'be.r.•. '~ l-etti:IW ·< ••e 1ts ~ ...... ·m .each case. 

Am>tber exatnpt:e >'rJl 'a 9'80Q Ja tire~~ ...... madel" :addition. 
\ . ·' ' .. -, . : •J ~ t /"', j.-- ~ ,... • : 

formalized in a~ ·Wftti Ale JRm;ry ~ '1'f='•1., tlM ·wa-,. .ftmction 

"+u .• the unary tunctkra '"-'". :and dlle '~t t.. 

x=x 

x=y=>y=x 

x~y=>y= z=>x=-z 

x = y => u = v :::> x+11 = y+ v 

x = y.::> -x: = -y 

x+{y+-z} = ·(x+y:)+.: 

x+() = x 

I+(-x) = 0 

Any moael that aa:ti:sfies ·ttns theory is .a :f?'Gup. There are. of -00urse, 

maJlN different.~$.. and :in eeme ~ !llte aa1ue ·aip muat be interpreted, 

by"an operation uslil9lly called mul~ian. and·~ m~stf~·illt491'pr.-ted·by 

"1 11 or "e". T'he axioms in the left ootum:n ar.e the axkmaa for, ~:lty .J.n the 

lanfUage ( =. +. - • 0 J • T:hey are necessa.ry to usure that we Will be able to 

pl'ove thos.e things that we need to ,proye about equality. 



Definition 6. 11 

Let L be any language containing the binary predicate "=". We call 

such a language a la!1.l,Uale with equality.·, Mmls'td.aacu.,.. th$'t we study will 

be languages with equality.,- T:he theor7"Et,x0l" ~UU~O!::Y>of,equality for the 

language L is the following set of axioms: 
-.< ': • ·-~ ;-~ ;;· 

(1.) X=X 

(ii) x = y :::> y = x 

(iii) x: = y :::> y = z :::> x = z 

(iv) For each n-ary function name <P in L, the axiom 

xl = Y 1 :::> • • • :::> xn = Y n :::> q>(xl • • • • ' xn) = 'PIY 1' • • • • Y n 1 

(v) For each m-ary predicate name "1 in L, the axiom 

xl = Y 1 :::> • • • :::> xm = Y m :::> ;(xl' • • • • xm 1 :::> f [y 1' • • • • Y ml 

The number of such axioms depends on the size of the language L, and 

might be infinite. The first three axioms are the theory of equivalence 

relations. The rest of them are necessary, as we •hall prove later, to 

assure that we have axiomatized equality as well as ts possible in first order 

logic. 

Problem Set 21 

1. What is the theory of linear orderings? 

2. What is the theory of semi·groups? Of abeltan arc>ups? 

3. Which of the following theories are satisfiable? Find a model for 

each satisfiable theory. Which theories have finite models? 

a. 1X < X 

x<y=>y<z=>x<z 

x < y :::> :iw(x < w A Yz(•x < z v -iz < w)) 

b. The formulas of (a) and iy(x < y). 

c. The formulas of (a) and 

:!Iwix(w < x A Yy(y < x .:::) gz(y < z /\ z < x))). 

-67· 



d. The formulas of (a) and 

:B:x(w < x /\ Vy(y < x :::> 3z(y < z /\ z < x))). 

e. The formulas of (d) and 3xVy(1x < y). 

-6B-



CHAPTER SEVEN 

FIRST ORDER LOGIC - DEDUCTION 

Preview of Chapter, Seven 

We develop the mechanism for making fo,rmal, d~u,c1io~s in f'irst 
order logic. As with propositional logic, a deduction is. a step.'..,'by-step 

process for obtaining a conclusion from given premises. It can be inspected 

for correctness by a proof-checker. Most of th,e th~retn~ in this chapter 
~ . . . . . ' . . 

are concerned With the existence of 'aemOnStrattons, and ha ye the practical 

effect of saVing us time. They will also have- ~~~ettcai, a.;.,lt~atl~ns 'in 

Chapter Eight. ,, The mechanism of substit~tion, a;>n~c~esa~;y. prerequisite, 
·,, ... , ' 

is discussed'first. 

§ 7. 1 Substitution 

In this book, we make a sharp distinction bet\'ft!,•~ ,the words 
"substitution" and "replacement" which is very u&«tfl.Jl. but .ba4 Qot won 

general acc~ptance at :the presen~ tim~.. P¥!' JlO~~:fQr·, substitution 

follows [Robinson]. We shall discuss replal;ement lat•• ;!p this chapter. 

The LISP function subst (see §2. 2) is a good example of a substitution 

operator. Subst(x,y, z) substitutes x for all <>CC1tn-~e<Of ,y_.in z. ·Some

times, we wish to perform several substitutiollS shmalt4aeously on the same 

object. For, example. we may sub.stitute,Q for 4, •nd & fo~'1'\'in the 
s-expressio11 (AB C), in which case we get (Q.R G). We.can define a LISP 

function sublis that does this. The firs.t-arcum~nt ,~ • ltlltiol.pairs, and the 

second argument is the object of the ~ubMitution.· ·The·· effect ·of each pa-ir ts 

to cause tne first member of it to be substit\lted for ail oacurrenq~~ .of the 

-69-



second member of it. So sublis(((Q A) (R B)). (A B C)] = (Q R C). 

sublis [X. s) ... (ato:m[s J -+ subl(x. a}. T -+ cona[aublia{x. car (s )]. 
sublis[x, cdr[xJJJ) 

subl[x. s) +-(null[x) .. s. eadarfXJk.' s -t'caarfs), T-+ subl[cdr[x]. s)] 

Sublis performs what Is known as. a -~~taneous 'substitution. It does 

not substitute on that which it has already substituted. For example, 

sublis[((A B) CB A)), (A X B Y)] = (B X A Y). The alternative to simultaneous 

substitution is sequential substitution. In this casell'.,l.~~~M~:~~rable 
,.. ~ •• ,~·- ' ., ;:> -· ' 

difference what is don~ first., . Tbu~.~~,f~,.~~r~i~~,~·J~ X ~. Y)JJ = 
(AX A Y), but sUbs:ttB;A~:Sut.9tfA.S,.<~.,?C1 !1;!)rR~~c~~;f;~tY>.. . 

For first order lope we ~l~ ~ ">..~~~~·~~for .~riabl~. 
;, .• ,; ._-, ,;- ~ l ·.~•\· ,_-t \~·._;_;, .. i.~:. ,,.R.:..::) __ , ~ .,·• 

occurring in formula~ or t~r~~ ~/Jb~i-~•~rL~~~~~ ~or free. 

occurrenc~s ~f variables. An ~~,~~f1~ ~~~;~• ~,.~~t,Uu~~-~ 
term g[y) for all ~,·~~?~~~~.~~~:~.~~'..x in,~'~,Q~~~plxl.~ 
Sx(q[xJ). · The reimlt .. 1~ ~.f«(YJJ~.~~~J~: tc~~'~'~':i"~ ~rat~~\'of ~stitu,
tion occurs frequently. we need a preciae way of writinl tt. ~1ffl•tJQBI 
explanations are not necesa&rJ'. If • ia any fonaW.a, ,. i• a term. and ' is a 

variable. then.by cr(T /U we mean_. formula obtai».ed by ~'1AWMfll-'T for all 
free occurrences ot ~ in er. We also allow a to be a term.· ·m 'Wlildi case alt° 

~rrences of·~ m·a· .:re free. ...,,. •eqiahkj 8)»ic!Ujl a' 'tini~ta~s substiW.
tion. wh9'Pe each~patr\separited.by af'.,/0 'Ur~t-.'il'M~,~·· 'J,ti~e;·~ th~ 

·pairs in SUBLIS. n..tae-·UDH ~-·~id.ti.;·' Pi;r ezalnpie, 
if a is the formula Pl•JAqf11 lMPA;ifftlflf~-~'jffyf tta•fohn\iia pfg(y]} I\ 
qfftfx.y}}. . ,;l .. '.· •;~ •• ·' . ,, 

ln addition to not '8\JbMitatiftt for boUria.l~ .. nces' 6r a vari•t>ie, 

there is another relltrtc.tt~·tn ftttM 011-tl!W lOflC. ~~r tile res~fof · 
substitutU. dYJ<for all 1ne.oc01lt:Mllltt••w1.-~d i;fkfli lj'ftifyf~·rt~J}. Th~· 
reRllt is pfgfyJJ A.Ry(qfy} :ipt~.1 ;:•w ~~·~ ttnp~per 8u1>11tiiUtion · · 
be.cause the varia.ble y in •I:ftll•r ~~·:~ qti~W ttf!Uu~d~~~~ ' · .· 
inatanee · (fr&m' thee left) ·where ft· ilt.' ~!;' !ftt• ~~1tflat? ttie liititistltutfon 

a{T/U be prOJ>!!; .u,ia neeea&a'Py tf1at:WttePf!Werl~i~1~ri':'tF•·ol;ct1i:r~he of 

~ in Q. it is not Within the scope of any qaanttfter that binds a variable that 

occurs in T. When a(T/U is proper, )V- also say "T is free for C in Q 11 • 

-'10-



Examples: 

1. If we substitute y for x in Vxay(r[x, y)), this is a proper substitution 
- , , r 

because no substituting occurs. There is no fr·ee x ;in the formula, and it is 

permissible for bound' occurrences of x to be within the scope of a quantifier 

on y. 

2. If we substitute y for x in p[x. y] :::> axiy(q[x. y)), the result is 

p[y, y) :::> axay(q[x. yJ). This is a proper substituttol'l'because wherever xis 

free, it is not within the scope of a quantifier binding y, although a bound 

occurrence of x is within the scope of a quantifier on y. 

Substitution plays an important part in the rules ot deduction of first 

order logic, but in each cas~ improper substitution is not. allowed. We shall 

adopt the convention that substitution on formulas of first .order logic is 

undefined if it is improper. In each c~se wher1:?,a r\lle '~•iq substitution is 

given, the rule ~oe,s not apR!y when the substitution {fil improper because no 

result is defined. 

Formulas of first order logic are translated into LISP as follows. 

The idea should be obvious by now. 

(i) If T is a term, then 1'* is obtained'by using the same 

rules as for forms in the language ot· r~cttlisive 
definitions. For example, g(x, A:). 'Where A is an 

object, is translated into {G X (Q8'0TE A)). 

(ii) Atomic formulas are translated similaHy. 

(iii) Composite formulas •re traulated into (NOT a•>. 
(OR a1* ••• an*), (AND a1*'· .-~ ern•). (EQUIV 

Problem Set 22 

a 1 * a 2 * ), (EXISTS· ~* a•),_ and .fFORALL ~* a*), 
where the a•s are formulas .. '· and c· iEJ a variable. 

1. Write a LISP function sub which is the equivalent of sublis for first 

order logic. If a is a formula,, the Ti terms •. a1:uttbe 11 variables, then 

sub[list[list[T1, ~l ) •..• , list[Tn' tnJ}.aJ is the f-o:rmula O(T 1 /Cl' ••.• T
0

/ ~n) if 

the substitution is proper, and NIL otherwise. 

-'11-



2. Write a LISP p,redicate inst of three a.J;"guments sucn that 

inst fa, ~. /J] is true, if a is a formula, ~ Vi. a variable, ,and there exiats a term 

T such that the substitution atr/C) is proper, and the result is /J. 

§ 7. 2 The Rules of DeducUoJ'l 

Definition 7. 1 

A deduction is a numbered sequence of formulas each having a valid 

justification. There. are five types of justifiCf..tiP"1: 

(i) Given 

(ii) Mp i. j 

For this to be· a valid justification of line ri, it is necessary 

• that i < n. j < n., and if line (t) ta t.be· formula a. and line 

(n) is the formula /J., then line (j) must be the formula a :::1 {J. 

(iii) Taut 

If a formula of propositional torte is a· tautology., 'then the 

result of subsUtutin1 form~1of~t or.4er lo1tc for all 

its pr()positio~al ya.i-ia.ble-. is a .~Wloa of first order logic. 

All occur.rences of a particul•J" pr~tUQQ41 variable must 

be replaced.by the ••me,fo~ 

(iv) Ql and Q2 

Ql ·and Q2 a~e a!!Pm sp!lpmfl•. fOI' fif'11t -0.-der logic. Each 

schema represents an iafinite.·set of formulas which are 
,;.<. • l. . ' 

called the !Mt;a9ces of the &JC~lt.!. II a formula is an 

instance of Ql. then Ql .is.• .v.JJ~ )llJtUic:;a~lcN) for it., and 

similarly with Q2. The schemas are: 

Qt: Y~(a) ::> a(T/ ~) 

~ a(T/-U ::;> .'iltocJ 

where a is any· formula:. . I ts·· any vartable. and ., is any term. 
and a(T/~) is a proper subitttutton.· 

(v) Q3 i 11 and Q4 i 

Q3 and Q4 are rules of inference for first order logic. The 

distinction between a rule of inference and an axiom schema 

-72-



is that a rule of inference depends on previous lines of the 

deduction. Modus-ponens is also a rule of inference. 

"Q3 i" is a valid justifi~tion for linen if i < n. and there 

is an instance of the schema Q3 in wlrich li.Ae (i) appears 

above the horizontal Un•. and line (n) appears below it. 

The case of Q4 is similar. 

Q3: er => P 
er => V~(~) 

Q4: 

where ~ is any formula. ~ is any variable. and er is any 

formula which does not contain ~ free. 

lf T is an.Y theory. and there is" a deduction in w,hich onl.Y formulas that 

are in T arc justified as given. and if the conclusion of, the ~duction is the 

formula a. than we say that there is a deduc~59(,q ~rOl'n T. ,and we write 

Tl-a. If there is a deduction of a in which no formula is justified as given. 

then we say that a is a theorem of logic. and we,WX,-ite ~o. 

The following sequence of seven steps is' an exaxµple of a deduction in 

first order logic: , 

1. Yy(p(x, y]) => p[x. y] Ql 

2. p[x. y] => ix(p[x,,yJ) Q2 

3. (Yy(p[x. yJ) => p[x, yJ) => (p[x. j:1 => :lx(p(x. y))l => 
(Yy(p[x, y]) => ix(p[x. y} ) '. · Taut 

4. (p[x, y] => ix(p[x, y])) => (Yy(p[x, y)) => i:x(p[x, y])) Mp 1, 3 

5. Yy(p[x, y]) => ix(p(x, y]) Mp 2. 4 

6"' ixVy(p(x, y]) => ix(p[x, yJ) Q4 5 

7. ixYy(p[x, yJ) ::> Yy'ix(p(x, yJ) Q3 6 

Since this deduction has no given formulas, . we may write 

1-:gxYy(p[x, y]) => Yyix(p[x, y]). 

The next example is a somewhat lengthy proof taken from the theory of 

formal arithmetic~ It illustrates a great m,-.ny~points th4lt will be made in the - ~ ~ . .. . 

next few chapters, and you may wish to refer back t~ it. Fo.r, the present. it 

-73-

• 



I I II 
is simply an example of a formal deduction. We prove the sentence 0 + O = O 

from four axioms which are the first four lines of the demonstration. As an 

aid to comprehending the organization of the dedudtlon. important subgoals 

are marked with an asterisk (*). 

1. VxYyYz(x = y ::> y = z ::> x = z) Given 
I I 

Given 2. VxYy( x = y ::::> x = y ) 

3. Vm(m+O =m) Given 

4. 
I I 

YmVn(m+n =(m+n)) Given 

5. 
I I I I I I 

Ym\nCm+ n = (m+n)) :::> Vn(O +n = (O +n)) Ql 
6. Yn(o' + n' = (01 + h)1

) Mp 4. 5 

7. 'tn(0
1 
+ n' =co'+ n)') :::> o' + o' =co' +0)1 Qt 

C*) a. o'+o'=co'+o>' Mp 6. 7 

9. I I 
VtnCm+o = m) => o +o = o Ql 

(*) 1 o. 0
1
+0=0

1 
Mp 3. 9 

11. YxYy(x = y ::> x' = y') => Yy(O' + 0 = y ::> CO'+ O)''= y') Qt 
12. I I I '> YyC 0 + 0 = y => ( 0 + 0) = y Mp 2.11 
13. V'y(0

1 
+ 0 = y ::> (01 + O)' = y') :::> o' + 0 = o' :::> 

co'+o>'=o' Qt 
14. o'+o =O'=> co'+o>'= o'' Mp 12. 13 

(*) 15. (0
1 
+ 0)

1 
= 0 11 

Mp 10. 14 
16. I I YxYyYz(x = y :::J y =, z ~ x = z) ::> YyYz(O of! 0 = y :::> 

y = z :::> 0 + 0 = z) Qt 
17. 

I I I I 
VyYz(O + 0 = y ::::> y = z ::::> 0 + 0 = z) Mp 1. 16 

18. 
I I I I YyYz(O + O· = y ::> y = z ::::> 0 + 0 = z) ::::> 

I I I I I I I I 

Ql Yz( 0 + 0 = ( 0 + 0) ::> ( 0 + 0) = z :::> Q + 0 = z) 

19. Yz<o' + o' = <o' + o>' ::::> <o' + o>' = z => o' + o' = z) · Mp t7. 18 
20. I I I I I I I I 

Yz(O + 0 = (O + 0) ::> (0 + O) = z :::> 0 + 0 = z) :::> 
.{o' + o' = <o' + o>' => <o' + o>'= o" => o' + o' = o''> Ql 

21. o' + o' = <o' + o>' => <o'+ o>' = o" => o' + o' = o" Mp 19. 20 
22. <o' + o>' = o" => o' + o' = o" Mp 8. 21 
23. o'+o'=o" Mp 15. 22 

We may safely conclude from this example that deduction is an 

extremely tedious process full of needless repetition of similar patterns. and 

that something must be done to speed it up. We shall consider this subject 
later. 

-74-



/ 

Problem Set 23 

1. Show (by wr~ting a deduction) that each 'Of the following for!11ulas is 

a theorem of logic: 

a. Yx(p[xJ = q[xJ) :::> (Yx(p[x]) = Yx(qfxJ)J 

b. Y~(p[x} E q[JC)) :::> (ilap(x]) • is.(q,fxJ}), 

c. Yx-,,p[x) a -iix(p{x)) 

d. Yx(p[x) " q[x]) • (Yx(p[x]) /\ YK(q(x))) 

e. 3x(p{x] V q[xj) i( (:ibl(p{x]) .v iJJ(q{xJ))· 

f. 3x(p(x] I\ q[x)} :::> (ix(p(x]) A 31c(q(x])) 

g. Yx(p[x)) :::> !x(p[x)) 

2. Which of the following formulas are instanQ:ea of Ql or Q2. and 

which are neither? Why? · 

a. Yx(p[x)) => p[x} 

b. Yx(p(x.y)) ::> p[y. yJ 
' c. Yxiy(p(x. y)) 3·:iy(pfg[y). yJ) 

d. p[g[y). y) :::> ix(p[x. yJ) 

3. Define the unary LISP predicates axql and axq2 which are true if 

their arguments are instances of Ql 01· Q2 respectiv~ly. 
r - .. ~ - -, , ·"' '.: 'l''; ' -~- ~ ,. ,_ • _:. ~" , 

4. Define the binary LISP predicales riq3 and riq4 which are true if 
, -~: ·.. · ·· :·· n · ·::~ i , . , · • 

the second argument is derived from the firlt arp~ent by. rules of ipferen<;:e 
Q3 or Q4 respectively. ·.;. . . · . 

5. Modfty proofchk so that it is a proo,checkt!.r tor first order logic. 
\ t ' -~c. : ' ,. . 4 ·" 

The only modifications to the format of a dedUcti~n are OJ TAUT must handle 
_.,,, ... -,< •• ' • • l ~ 

substitution instances efficiently. and ther' i~ ~ql~.n ~ i®«4tr a nEted fof J,NST 
as a justification. (ii) the justifications Qi and '<~2 must J>,·added. and (iii) the 

.} .<'.,· '· • : t 

justifications (Q3 i) and (Q4 u m"ust be added. 

§ 7. 3 The Consistency '.fheorem 

The_ statement of the consiste~y ·th~•~ _,t'or.Jlr&t o~4er lope is the 

same as the cc;>nsi~tency t~eor~m for,_;MQpQ&i~ai lalll~t.Atheol!'em 4.14). but 

the meaning behind .it is considera.t>Jy mor.e su~Ue'-. 

-75-



Theorem 7. ~ (Consistency Theorem) 

If Tc L, a E L and Tt-a, t_hen T ~a. 

Proof: The proof is by induction and follow~ the same lines as the proof of 

theorem 4. 14. The induction hypothesis is that If T ~a ; for j < i, then T ~a . 
. J J 

where the deduction is the sequenae a 
1

, ~ •• , Qn. · 'I!here are seven cases to 

consider, and the first three are the same is in the previous proof. 

(iv) If a. is an instance of Qt, then it has the form Y~(/J) ::> /J(T/~). 
1 ·~ .. 

Let M be any model. and I any interpretation for the vartables in this formula. 

If V(M. I,;V~(~)) is false, ~en M, I ~ai. If V(M, I, 'fl~(/J)) is true, then V(M, J, fJ) 
is true for any J differing from I at most at the variable ~. ln particular. 

there is that J that assigns to ~the value which is Y(M, I, 1"). · Therefore 

V(M, I, /J(T/~)) is true because no variable in.,. is b9und by quantifiers in /J, and . . ' 

so M, I ~a. in this case also. What we hav1t·tlb•wn• then. ·is that every 
1 

instance of Qt is valid. 

(v) If a. is an instance of Q2, t~is also is .valid., and the proof is left 
1 ;-c, ' . 

to the reader. 

(vi) If ai is derived from aj by the rule Q3_, then ~inc_e j < i, the 

induction hypothesis is that T ~a .. : Let a. be the foJ"mula fJ c )', where fJ has 
. . _., ' ' ' J .·: .J ·-; . ' ." . ' ' . ' 

no. ·free t;. Then a. is the formula fJ ::> YC()'). Let M be any model that 
1 

satisfies T. Then M, I ~/J ::> )' for all interpretatioJ:LS I. Chops.e one such I. 

If M, I does not satisfy /J, then M, I ~a1 • If,~~ I I=~,·· th~n M, I~,, also. But 

then M, J also satisfies fl where J is any interpre~at.ion differinf from I at 
~ • - , o,,...! : .. ', ~ ' -

most on ~. because /J has nq tree I. So M, J a18() s,a~sfies "Y for all, such J, 

and therefore M, I ~Y,()'). So M. I ~.ai in eithe~ ca•"~: ap.d1 t}\e .. conclusi~n is 
that T fa.. . 

1 

(vii) If a. !s derived from a . by the rule Q4, then since j < i., the 
~ J . . . . 

induction hypothesis is that T ~a.. Let a. be th• formula -, ::> )' where )' has 

no free ~. Th~«. is the ronn!ia·al(JJ ~..,,. t..«'·M be·ariy model that 
1 

satisfies T. Then M .. I ~/J ::> y for all trlterpreta.ttons I. : ·Choose one such I. 

If M, I f'Y, then M, I fa.. If Mil'fdoes not sat1sty)'9·-then M, I does not satisfy 
1 

{J. Let J be any interpretation differing from I at most on ~. M., J does not 

satisfy Y because y has no free ~. So M, J does not satisfy-,. and since this • 

is true for all such J,. M, I does not satisfy ~l(JI). So M. I fQ. in either case, 
1 

-78-



and the conclusion is that T ~a .• 
l 

Corollary 7. 4 

If 1-a, then a is a valid formula. 

Corollary 7. 5 

If the theory T is sati.sfiable (has a mo<tel), t.hen it is consistent. 

§ 7. 4 Existence of Deductions, Replacement 

Since deduction is a very tedious process. we would like to speed it 

up by introducing additional axioms and rules of inferen~e. But, in fact, no 

matter how many additional· rules we introduce, there will always be more 

that we would like to have. If we were to b\troduce a great many rules right 

from the start, then the proof of the consistency theorem· would be very long 

because we would have to consider each rule s~parately and sh~w that it is a 

valid form of reasoning. Now that we have proved the consistency theorem, 

we can deal with new axioms, and new rules of inference in a different way. 

What we can hope to show for each one is that it is eliminable in the sense 

that if we have a deduc~ioP ~si,ng such an axiom or t'ule• then there is an 

effective way of obtaining a deduction that does not use it, but which proves 

the same conclusion froin the same premises. 

As a very brief example of this. consider the rule: 

Rl: 
a :::> {J, {J ::> ,., 
a => ,., 

This is a derivative of the rule of modus-ponens which stated in this style is: 

Now suppose we have a deduction that uses the rule Rt: 

1. a =>{J 

2. {J ::> ,., 

3. a => y 

-77-

Given 

Given 

Rl 



We know that this proof can be expanded to: 

1. a ::> /J Given 

2. /J :::> 'Y Given 

3. (a :::> /J) ::> (/J :::> y) ::> (a ::> y) Taut 

4. (/J => y) => <a ::> y) Mp 1, 3 

5. a :::> 'Y Mp 2, 4 

This can be done in every situation in which Rl is used, so we can say that 

Rl is constructively eliminable. The cons~steqcy theorem then guarantees 

the correctness of the rule as a method of re~onln1. This not only shows 

that it is correct reasoning, it sb9~s that the introdll.ction .of .the rule does not 

alter any of the properties of first order los,ic,that we may prove in the 

future, becam~e the rule itself is not essential to any deduciion in which it is 

used. 

Problem Set 24 

1. Sho.w that the following are constructively eliminable rules of 

inference: 

QXl: Y~(a) QX2: 
-iSl(a) 

a(T/C) -,a(r/C> 

QX3: a QX4: 
-,a. 

f((a) -,!C(a) 

QX5: Cl{T/C) 
!C(a) 

2. Rules Q~_ and Q4 are necessarily stated as rules of inference, and 

cannot be treated as axioms. Show that the foJJ.owiq,:Sche~ are not valid 

by describing counter-.model for- an instance of each schema. 

a. (a ::> fj) ::> (a :::> Y~(~)) where a has no free ~. 

b. (/J ::>a)::> (~~(/J) :::>a) where a has no free ~. 

The formulas a and a <CI~) are said to be. similar if the variable C does 

not occur free in a, and if' is free for C in a. When this is true, it will also 

-78-



be the case that ~ does not occur free in a(C I~). and ~ is free for C in a<C I~). 
and a(C/f;)(~/C) is the formula a. 

Theorem 7. 6 (Change of bound variables) 

If a and a(C I~) are similar, then .. YC(a) • vc<'a<C /l)). and t-if;(Q) c 

3((a<C I~». 
Proof: 

1. V~(a):) a<C/~) 

2. Y~(a):) V((Q((/~)) 

3. VC(a(C /~)):)a 
4. VC(a(( I~)) :i>'YC(a) 

s. Yf;(a) = Y((a((/~P 

Ql; Why is this substitution proper? 

Q3 l; Can Y~(a) have free(? 

Qr 
Q3 3 

Prop 2, 4 

The 3 case· is symmetrical in form. . 

You will .-iotice that as we acquire more techniques, deductions will 

become more and more condensed. At this ~pi9t. ~.~re ~~}lQ,)~nger any 
reason to write out in full any sequence of steps" tnat depends. merely on 

propositional logic. We· jutilt Write "Proi'" andlbt tht{ani~credents·. 
' ' 

The distinction between replacement and substitution is that 

( i) replacetrtent refers' to replacing of ati entire ~~rtactU~ ~tsome sort by 

another-; whereas in subStitution we al ways substitut~: tri p'iibe ·of sc>mething 

atomic such as an atom or a 'Vatiabl~. a'n11tftff~lal 'n(~f ri~h'e~aary to replace 

all occurrences of a given structure, but onlf as many lll we Wish; . The 

sem4ltttic justification for reptacement·rs thili:•l>metblhc ~ay be replaced by 

something els-e that is in sattut serrs·e its equal or equivale~f.-',. The semantic 
• • < , ': '~; -<' '.· .;j ... "'f ' , . i . . . -~ 

justification for substitution, on tti! other hand; t'a· that '1re' •re obtaining a 
particular instance of a general statement. 

An example·Ot replacemerrt iS to take-·the forrttbia o'+ 01
=.(0,+0)

1 
and to 

replace the underlined terrii with the term' f>!. Our' jusdfi'cation ''for' doing this 

is that we have already cOricludect· ihat these two tef~· ·~~'eqfi~1. t. e •• 

o' + 0 = o'. The result of the replaceri'ietat ·18:0' + 0)1 =1co')"6f dr~ppfug paren

theses, o' + o' = o". ' Another example is t~ replace thEr1firsc occurrence of 

2+2 in (2+2}+2 =·f2+2)+2 With 4·because wE!'ait~ac:fy'ii~~e ~+2'= 4. This 

-79• 



gives 4+2 = (2+2)+2. This is valid., even though we have not replaced all 

occurrences of 2 + 2. 

Now consider the substitution of 2 for x and 3 for yin x+ y = y+ x. 
This gives us 2 + 3 = ·3 + 2, which is an instance of the general rule. 2 + 3 = 
y + x has no useful meaning because partial substitution does not accomplish 

the purpose of substitution. Notice.. also. that it is· not'.~~antncful to 

substitute for a constant. 

It is important that entities that_ Jet replaced are proper sub-expres

s ions in whatever context they appear. a,nd not acd<ie,n~l pseuck>-expressions 

caused by juxtaposition. For instance, if we start-. W'!~ the equation 2 + 3 x 4 = 

14, and then replace "2 + 3ii with "5". we get 5 x 4 a 14., which is inc:orrect. 
11 2 + 311 is not a sub-expression of "2 + 3 JC 4" becltuae the conventional associ

ation is "2 + ( 3 x 4)" • 
• 

Theorem 7. 7 (Replacement of EgU!valent Formulas) 
• ' • ": ' c . ~ .; - ' - ' • ; ... 

Let a and /J be two formulae ap.chtbat.'1'~41 •-~·- . Let Y be any formula., 
and 6 be a formula that is obtained by replacinf some (but not necessarily all) 

occurrences of a in y by {J. . Tnen Tt-y • 6. 

Proof: We begjn the proof by idenUfying certf,in a,ll.b .. formula ... of. y and 6 as 
; ·, ' ' , ~ ., , 

"correspondi~g component~"· If an a ;pccurrtnc.ill )'is replaced by~ /J in.6, 

then the a and the.~ are co~respondipc CO!t\JPO~·,, ~y sub-formula of)' 

which contains no occurren:ces of C¥ that get r,..iacac:L ,,a.qc:J:1a not contained in 

a larger such formula ts, also a .correepo~.~~ tQ the •uh-formula 

of 6 which is identical to it both in content ~-IQ ~t;to.n. T~ forr,nul•s )' 

and 6 are thus built up id•ptic~lly. sta~ ~ cprreapo~ coqiponenta 

using the propositional connectives and :\l\UP-~j~•l',f., .Also •. CO.lfa:f•MJldin.I 

components -are eUher identic;il, or el~e one~' a aqq;Jtut, other i• •· In 

either case they can be proveJ! equival~ni fro• T., ,We.pl'op~ U' induction 

on the number of propositio .. l connect~V,:-4:&, -cf.;.tP,e ~~-to •N>w tbat 

this equivalence ext~nds up to tbe ~O!,"~ul•• ,)' P.lld 6: . (i). If Yi i• -,y2, and 61 
is -,62, and Ti-y2 • 62-!. then Tt-y1 ~- 61 beca\Jf(e()'

1 
•:6

1
) :::> (:-::i)'

1 
.•.. ...,~\>is a 

tautology. (ii-vi) The c~ses for, the other p~ait,JoMl'.~o~ttv:a,. and ~he 

universal quantifier are left to the reader. (vtt) If)' 
1 

is il(y
2

). and 6
1 

is 

3f;(62), and Tt-y2 • 62, then Tt-y1 • 61 i,e,cause Y~(y2 •~)follows by rule QX3, 

-80-



Theorem 7. 8 (Replacement of Equal Terms) 

· Let T be a theory with equality (i.e •• EL c:: T). Let T1 and T2 be 

terms such that T..,.1 = 1'2• let a be any forntula~ 'and let ~ be a formula 

resulting from replacing some: occurreneea of''Tt in a by T2• Then T..,~ ii {J. 

Proof: By indu.ction on the depth of the terms in·.CI ~· . Let the corresponding 

components t>e-,terms, either T1 and the 1'2 that replaces it.; or tdentical terms 

that are in indentical positions in a and /t, and a-re. tae lar,eat possible such 

terms.. If a and 9 are corresponding terms., then they can be proven equal 

from T. Lar,ger terms are built from th es• ·i.\ functien .composition. Let 

'P-Pi, .••• an] and <P[t1 ••••• tAl be in co_rrespondiq:poeitiona. and by the 

induction hYPotbests Tt-ai = 8i. Then these terms can be proven to be.equal 

because there i• an axiom in· EL whiclt. f8. x1·= y1 ;::> •• • .=> xn = Yri. => 

<P[x1 ••••• xn) = ~{y1 , •••• y11J. Similarly., once~ term• in. corresponding 

positions are equal, ijie atomic Jormul• casa: b• :Pro-.en,equivalent from the 

reflexive axiow of equaltty (x = y :::> y = x) and tbit double -a:ppltcation of the 

axiOlll EL which is xl = y 1 ::::> • • • ;::> xm. = y m ~. t\(.x'l '' ...... xrn I :::> 'IY1 • ...• y m ]. 
Once corresponding atomic formulas are proven equivalent. the induction 

proceeds as in theorem 7. 7. 

We introduce one more derived rule of infer~nQe ob~jned from Q3 and 
'. ~ :< 

Ql: 

Inst: a 

where the ~. are distinct variables, and tae aubstHutton is proper. 
1 I I ./I , 

A shorter demonstration for 0 + 0 = ·o oan now be>1tven: 

1. m+ 0 = m Given 

2. m+n 
I = (m + n) 

I 

Given 

3. 
I I 

0 + 0 = 0 Inst 1 

4. o' + o' = <o'·+ o>' Inst 2 

o' + o' = o'' 
........ ,. ;;. ·; 

5. Replacement 4, 3 



§ 7. 5 The Deduction Theorem 

The deduction theorem for first order logic is rather subtle, and 

takes some effort to understan~ but.a correct.perception of it Will yield a 

lot of insight. into the nature of rules, Q1 thru Q4. 'l'he,most ·natve ~statement 
of the theorem is actually false. It is not the ~ae that .if .T U .£0} t-~, then 

Tl-a=> {j for any formulas er .and /J. If thts.wer.e tl"u.e. then since p(x)..,Yx(p(XJ) 

by QX3,. it would follow that t-p[x) :> Yx(p(aJ), and then bY' another application 

of QX3,. 1-Yx(p[x) ::> Vx(p[x])). But this sentence is not valid; it is not satis

fied by the model on the domain {8, l} where pfO) is true, and p[l J is false. 

We have chosen to _interpret a ·formula standing as a' line in a deduction 

as being equivalent to its universal closure~ In fact,' ·the rulea QXl and QX3 

allow universal quantifiers to be added or striRJM'd frctm the-befilming of a 

formula at will as long as they take the Whole formula as thetr scope • 
• 

The trouble seeme to be that when suoh a1r'open formula is incorpo-

rated into the left side of an implication. it is nepted because•.::> fJ is the 

same as -,er v /J. But its implicit universal quantifier gets left outside the 

negation and causes the error. 

Theorem 7. 9 (First Deduction Theorem) 

If T U fer J t-IJ. and er is a sentence, then Tl-er :::.> /J. 

Proof: By induction on the demonstrat.ion .~t• ••• , fin = fJ. (Please review 
theorem 4. 7. ) 

(i) If /Ji is a tautology, then soi• Q :::.> /3
1
• 

(ii) If ~i is in T, then a:::.> •i is derivat>Le·from fJ1• 

(iii) If /3. is er,. then er =>er is a tautoloty. 
1 ' 

(iv) If /ji follows from two antecedents by modu•~J>Ollens, then by the 

induction hypothesis er :::.> fJj &?J.d er :::.> (fJj ::> ~i) are provable from T. Then 

er .:>/Ji is provable from these by propositional lop~. 

(v) If ~i is an instance of Ql or Q2 then a ;;> IJ.
1 

is derivable from ~i. 

(vi) If /Ji follows from /J j by an application of Q3, then fJ j is y :::.> 6, and 

/Ji is Y :::.> V ~( 6) where ')' is a formula that has no free ~. By the induction 

hypothesis, Tl-er :::.> /J. or Tt-er :::.> (y ::> 6 ). From this we derive (er /\ y) :::.> 6, 
J 

and then apply Q3 to get (er /\ ')') :::.> Y~(6) which is valid because a is a sentence. 

-82-



and so has no free ~. From this we can get a=>(,,::::> V~(6)). 

(vii) If {il. follows from {il. by Q4. then {il. is ,, ::::> 6. and /J. is 3 ~(,,) ::::> 6 
1 J J 1 

where 6 has no free ~. By the inductio11 hypqthesis., Tt-a ::::> (,, ::::> 6 ), from 
' ! . ' 

which we deduce,,::::> (a::::> 6). Since a has no free '· we can ~pply Q4 to this, 
getting i~(,,) ::::>(a::::> 6) and then rear_range to iet ~ => (i~(,,)_ ::::> 6). 

A formula is said to de;eend on a preceding formula in a. deduction if 

there is a chain of antecedents working back to the preceding formula. If the 

conclusion of a deduction does not depend on one of t}\e given formulas. then 

we could omit that formula and ~11 its depe~d~nt.s wtthout sacrificing the 

conclusiC\n. 

A variable is varied in a deductiop any time Q3 or Q4 is used with that 
- < 

variable being the ~ mentioned in the deduction rule. 

The fact that of the original rules of inference only Q3 and Q4 can vary 

a variable is quite significant. Suppose .that the formula p[x) is given in a 

deduction. Without using Q3 or Q4 it is quite f,tnP~,$ible .to derive from it 

p[5 J or Yx(p(x)) or p[yJ. Only these two rules have the power to interpret a 

free variable universally. 

We stated earlier that the intended interpretation of the fact that /3 is 

deducible from a is that the universal closure of a se:mantically implies the 
·' 

universal closure of~. Let us consider a different interpretation. What if 

the interpretation of the deduction a t-{J was that for any M and I if M, I ~a then 

M. I ~{il? A study of the deduction rules an~ axiQJnS ~ lq~tc sl}Q:.Vs; that all of 

propositional logic, including modus-ponens as well a~ Ql and Q2 .... preserves 
.. ' ' . 

this interpretation. But Q3 and Q4 do not. 

So if p(x] rq[x]. then we can certainly conclude that Yx(p(xJ) ::> Yx(q[xJ) 

using the standard tnter"firetation of ciosure: : · tr,·· in addition, the variable x 

is not varied in any formula that depends on p[x]. then x 'has remained 

constant. so we ca:n conclude Using-the deduction theorem thaf p(xJ ::::> q(x). 

Theorem 7 .10 (Final Deduction Theorem) 

If T U {~} t-{J, and no variable occurrin1 free in a is varied in any 

formula depending on a, then Tt-a => {J. 

Proof: We shall reconsider case (vi) of the propf of theorem 7. 9., and let the , -

-83-

• 



reader do the same for case (vii). ,, . is ')' :::::> 6. where Y has no free ~. and 
J 

{J. is ,, ::> ~ ~( 6) and is derived by Q3. If a does not contain free ~. t~.en the 
1 

construction described in the previous proof still works. On the other hand. 

if ~j is not dependent on a. then T .. 1'j' ands~ Tt-1'1• , Then by propositional 

logic. Tt-a ::> /J .• 
1 

The deduction theorem makes many deductions shorter to write and 

easier to organize conceptually. As a brief example., we demonstrate 

O + m = m. The third line is what is known as an induction axiom. and is 

part of the theory that this proof is taken from. - . 

1. m+O=O Given 

2. 
I I 

m+n=(m+n) Given 
I I 

3. ( o +,o = o) :::::> Ym < o + rn = m => o + m = m ) ::::> 
Ym(O+m = m) Given 

4. O+O = 0 Inst 1 . 
I I 

5. Vm(O + m = m => 0 + m = in)=> Ym(O+ m = m) Mp 4,3 

(6) .· . 6. O+m = m Aaaume 

7. O+m 
I 

= (O+m) 
I Inst 2 

(6) 8. O+m 
I I Repiacement 7, 6 =m 

I I 
Discharge 8, 6 9. O+m = m ::::> O+m +m 

I I. 
' • .J .- ,,., 

10. Vm(O+m::: m :::::> O+m = m) QX3 9 

11. YmtO+m = m) Mp 10. 5 

12. O+m = m QX1 

The rules for iru;:orporatin& the uae of .tile :~duction thEM>rem into 

formal deductions are: 

(i) There is a column for noting dep~iU·(-'wr• \oc&te.tt to the.left 

of the line number~. 

(ii) When a line is justified by .";ASflU~", iUl ewn line number &oes 1in 

the dependency column. Several such lines may appear in_ a deduction. 

(iii) When a line has one or more antececi:lita under some rule of 

deduction, the dependencies of the antecedents ar
1.it frih~rited. · -. This means 

that a line that ts dependent on several aasumttd Hne~ lri.11 have the line 

numbers of all these assumed lines in its dependency column. (U a line is 

dependent on an assumed line throuah several different paths, the line number 

-84-



of the assumed line still appears only once in the dependency column of the 

dependent line. ) 

(iv) A variable in a dependent line may not be varied if it appears free 

in any of the assumed lines that the dependent line depends on. This must be 

explicitly checked out when ustng Ql, 'Q4, or any·!"ftle'bf inference derived 

from Q3 or Q4. ·· ' 

(v) A dependency is removed by the process of discharge in which the 

assumed line is introduced as the premise of a ,IJ:>''. The ·dependencies may 

be removed in any order. (Refer to the transition from lines 8 to 9 in the 

preceding example. ) 

(vi) Only an independent line (having nothing in it.a dependencies column) 

is a valid conclusion of a deduction. 

~ 7. 6 The Choice Rule 

When reasoning informally, we sometimes prove that there exists an 

x having a cenain property, and then say, "Let k be such an x. ;, If the 

constant k has not been used before ir\"thtar chain of reasoning. its interpre

tation has not yet been restricted in any way • .-o n(>.pP~lem is created by 

doing this. The choice of the name k is a1r~.· so if we succeed in 

proving some result that does not involve k. theft, 1lite should; be able to prove 

the same result Without mentioning k. It is important te Pealize tha't 

inventing the name k does not introduce a new object· l:ntO tile model of one• s 

subject matter. It is only a new name that is beiq c~t11d, and it could turn 

out that the new name really describes an object al~ady familiar under a 

different name. 

In first order logic. a cona~ant is a "unction of no arguments. 

Properly, it should have a set of brackets folloWirtg 'it. Sok[) is a constant. 

But often we omit the brackets for convenience. (In a-expression notation, 

which is more striCt. a constant is enclos4'd; by1 pai-entheses. For example, . - . ' ' . •,' ·. "' ' .,., . ' . ' ' 

k [ J translates mto (K). This ·wu1 always serve to distlriiuish a constant from 

a variable which would not ha_ve the parentheses. ~r ~ii object which would be 

translated as (QUOTE *).) 

-85-



Rule C 

Within a deduction, if we have obtained a line which is 

the formula :ai:(a), then we may derive from this the line 

a(<,o[]/~) where <Pis a n:ew O•ary function name. The justi

fication for the derived line is "Rule C j", where j is the 

line number of the first formula. If a has free variables 

other than ~ , then it is necessary not to vary any of these 

in any formula the t contains the constant 'P( ). 

The conclusion of the proof muat:be a formula that does 

not have any of the new constants <P[]. 

A deduction may have any number of both assumed lines 

and applications of Rule C. 

Exlll!lple: 

(1) 1. Yxiy(p.(x, y}" q{x, y}) Assume 

(1) 2. iy(p(x, y] " q(x. y]) QXt 1 

(1) 3. p[x, k) /\ q(z, k] Rule C 2 

(l) 4. p(x, k) Prop 3 

(1) 5. iy(p[x, y)) QX5 

(1) 6. Yxiy(p{x, yJ) QX3 

(1) 7. Yxiy(q(x, yJ) Similarly 
(1) 8. Yx:iy(p[x, y]) " Yxiy(q[x, y]) Prop 6, 7 

9. Yxiy(p{x, y)" q{x, y]) :l (Ydy(pfx, y]) /\ 
Yd~q(X. y ])) Oischar1e 8, 1 

Notice that the application of QX3 in line 6 varies x which occurs free 

in line 3. This is-valid because line 5 does not h•ve the consUlnt k. If 
".~y !' ' ', ' 

steps 5 and 6 are done in reverse order, i.e •• Yx(p(~ k}) and then iylx(p[x, y j), 

the result is not valid. 

The validity of Rule C depends on the fact that any conclusion not con

taining the new constant names can also be derived from a demonstration not 

using Rule C, as the following theorem shows. 

-88-

• 



Theorem 7. 11 (Elimination of Rule C) 

If Tl-Q using several applications of Rule C, and a does not contain 

any occurrences of the constants introduced by Rule C, then Tt-a without using 
Rule C. · · 

Proof: We shall prove the theorem for the case that only one application of 

Rule C is made in the deduction, and let the reader eXtend the proof. 

Let line (i) be obtained from line (j) in the deduction by Rule C, 

where line (j) is :i~(Jf), and line (i) is /J(tp[)/ ~). and q:J .is a new constant. To 

show that Tl-a without the use of Rule C, we shall show that this is true for 

each line in the deduction which is dependent on line (i). does not contain 

the constant "'· and is the first line in its depehdehcy path going back to line 

(i) not to contain q:J. Let these lines ~e.the for~ulas ,l't thru "n· If Tl-')' , 

without Rule C for each such ')'., the conclusion follows. 

It is obvious that T U {,1(tp[)/ ~>J .. y :wJµl~\lt U8f;? of Rule C. We can apply 

the deduction theorem here becaus.e we hav,e explic;J.tly _sta.ted,that. no variable 

occurring free in Jf(tp[)/~) may be varied in any line containing occurrences of 

<{J. Therefore. Tt-~('P!J/U·=> )I. Now take any such de<Nction. and replace 

every occurrence of <P[J in~ with .a variable C not oc~rrin1 in either T- or this 

deduction. The deduction is still valid. and its conclusion is.~(( I U ::::> ')'. By 

Q4 we get :iC(/J(C/i:)) => y. But :3'.~(JI) is already provable in T. and so by some 

changing of variables and modus-ponens, we get Tl-y. 

Note: We did not consider the possibility that y depends on Jl('P[]/i:) by 

two different paths, and that it has two immediate antecedents.. and is the first 

formula in one path not to contain tp, but the other path has been free of <P for 

some time and may have varied some of the variables of Jl(tp[J/U. But the 

only rule of inference to have two antecedents is modus-ponens and if the 

conclusion of modus-ponens has no 'P .. then either both or neither of the ante

cedents have 'i() .. and so the situation does not arise. 

Theorem 7. 12 (Constant Extensions) 

If Tc L is a consistent theory .. a is a formula in L containing only ~ 

free, and 'P is a 0-ary function name not in the vocabulary of L .. then 

T J (:3'.~(a) :::> a(<,0[]/~)} is a consistent theory .. and if IS E L ts provable in this 

theory, then JI is also provable in T. 

-87-



Problem Set 25 

1. Prove theorem 7. 12. (Hint: You will need as a lemma .. ~~(a ::> 

~)::>(a ::>a~(-)) when a has no free ~. The method q! proof is similar to the 

proof of theorem 7. 11. ) 

2. Why isn't theorem 7. 12 valid if l~(a) is not a sentence? 

3. Theorems 7. 7 and 7. 8 state that: 

(i} a • ~..-y • 6 

and (ii) T1 = 1'2 1-a • ~ 

where Ci) 6 derives from )' by replacing some occurrences of a with.~. and 

(ii}~ derives from a by replacinf some oecurre~es of Tl with T2• If these 

theorems are appUed· to depend~ lines in a proof making use of the deduction 

theorem. then it ts· imp0rtant to know Which vartables are varied in the 

deductions symbolized by" .. " in lines (i) and UU abdve. This is so that no 

conditions of the deduction 'theorem a~e violated. Prel:iSely which variables 

are varied in thelle deductions? Why ts llnt{3' .of ai·e deduction· following 

theorem 7. 10 valid? 

-88-



CHAPTER EIGHT 
.- . ;:,, 

FIRST ORDER L<DGIC - COMPLETErtESS 
. 'l 

. § 8. l C9121pl!teness 
'.. • . . • • . • · .. • ·<; • '; ., \?' • 

The completeness theorem is simele to state. but l~J;Ylthy to pr..ov,e. 
"- . . "• • :._ ¥:" -}<'..1 ~f · .-_:•;:,-. ·"' ~·r ·~ "· • ~- J J. ; 

We want to show that tr:T~tr.' 2 then Tt-<r. It turns out ·!11~.t!if.~~ c~n sho~ tt~at 
c • • 1' ,f : • • , •• :.._;: ; • ' , i ~ t:.' • .\ " . ,,. ~-·..,, ,. . . 

·every coqsistent theory has a m~del. then, ,.~,1c:;~fflJ?~~-4fn~~-'- -itl~wem. fpllows 
almost immedijltely. So given a consistent theorem T. we. want to obtain a 

model for it. Since we have to do this in the abstract. i.e •• fqr ~ny,tl\~¥•-
, . . ~ ·"" .: . ./.. ' " 

the only stuff we have available for the purpose of building a model is-the. 

vocabulary 0;f *e theo;ty itself. T<> furtt\e:r' corhtJlkftelmftt&~11.~· tftere is no 

unique or CB.,nOflfCai• m()del. for mG&t tfk?orieB~ is&;tbe taftiiC'e' MUSt be Somewhat 
arbitrary. The program is rougl\lyas feU(hrs:L · ·· Y · '" · 

( i) We show that more constants can be added to the language of the 

theory so that there is a name for every object that the theory us .. tfi: must' 
exist. 

(ii) We next exte~d the th~ory ~bi~41"ij.y unU\;lt 'i• 40mplete •. 

(iii) We then show. that th~~e i' a,~~rfM°mJJ.;UtU.. enlt~pLlanFage 
that serves as the domain for a model in a fairly natural way. This model. 

with the extra names thrown away. is a model for the oriefnal the~y• 

The completeness theorem was first proved l?y ~d~l.! T~e present 
proof is derived by-a rriethodfirst tis~it by'ltt~*tg:, ·.r' ~:~'·' · ' 

""' ':4 ~·ii ; ' 

Lemma 8. t {Lindenbaumts Lemm•>· 

Every <?<?Dsistent ,tJl~Y h•s -IL c:cn~s!~t~nt. ~OJPPJ!i• ellteftaton. 
' . . . . . l,'". ,. ; 

Proof: Gi~en T c: L. ~ consistent the<:>r,. J.,et ~, cr2, ~-: • be .alli' ttae1 nntences 

-89-



of L. Let T 0 be T, and T.+1 be T. U {a.+1} if a. is independent of T.; 
1 1 1 1 . 1 

otherwise let T ·+l be the same as T .• Let T* be the union of all the T .• We 
1 1 1 

show that each Ti is consistent by induction on i. T 0 is consistent because 

it is T. Assume that Ti is consistent. If Ti+l is the same as Ti' then it is 

consistent. If it is not the same, then Ti+l is T 1, U {~i+l J.. where a i+l is 
independent of Ti. If Ti+ 1 were inconsistent. then anything could be 

deduced from it. and in particular T i+l .. ...,ai+l' so by the deduction theorem, 

Tit-a. 1 :::::>-,a. 1 or T ... ..,a. 1 which contradicts the fact that a ·+l is independ-
1+ 1+ 1 l+ 1 

ent of T.. So all the T are consistent. and therefore T* is oonaiStent because 1 • . 

any contradiction in T* would also be contained in,s()me sufficiently large T .• 
. . ' " . 1 

To show That T* is complete. let~ be any fc;>rmuJa in L. Then its universal 

closure is one of the ai. If ai is indepe11dent of Ti .. t.• then a 1 E Tr so in any 

case. a 1 is ·provable or refutable in T 
1 

and henc:e in T*. and so is ~. .. . 

Definition 8. 2 

A ground term is a term with no variablea in it. A cl'ound formula 

is a formula with no. variables in it. (A around fe?tmUla is alway& a sentence. 

but not an sentences are ground formulas.) 

Definition 8. 3 

A theory Tc Lis a Henkin theory if there is at least one gro\lnd term 

in L. and if whenever !~a) is a sentence· that is provable from T, then there 
' . 

is a ground term 1' in L such that Tt-a(T/ U •. 

Lemma 8. 4 

If Tc Lis a consistent theory., .then there is an extension T* of Tin 
an enlarged language L* which is a consistent complete Henkin theory. 

Proof: Let T 0 be T. and L0 be L. Let ki, j for i .~ 1 and j :a: 1 be a set of 

constants not in L. Given the language Lr we define the language Li+l by 

adding the constants ki+l. 1• ki+l, 2 •••• to it. Given the theory Tic Lr 

we define the theory Ti+l c Li+l by enumerating all the sentences of Li having 

only the variable x free (let this enumeration be a
1
• 

1
• ai. 2 ••• ) and adding to 

T. all the sentences of the form :B:x(a. j) ::>a .. (k. 
1 

./x) for j = 1. 2. 3 ••• 
1 i. i. J l+ • J 

-90-



Let L* be the union of the L., and T. be the union of the T .• T. is 
1 1 

consistent because it is derived from T by adding a great many new formulas, 

each one of which is a consistent extension by th~rem 7. 12. Let Ti< be a 

consistent co~plete ext,ension of T 
00 

by le~ma 8 •. ~. .To show that T~' is, a 

Henkin theory, let 3:~(,9) be any sentence .of L*. Let ~1 .be ihe le,lJ.st language 

of which it is a member. Let 3x(')') be an equivalent formula by change of 

bound variables. Then )' is a i, j for some j, and :ix(')') ::> )'(ki+ l, i Ix) is a 

member of Ti+l' and therefore T*. So if 3:l(~) is provable in T*, then so is 

t9Ck.+l ./~) via several operations on bound variables.:r< 
l • J 

Lemma 8.5 

A consistent, complete Henkin theory has a model. 

Proof: Given the theory Tc L, let D be the set of ground terms in L, but 

underlined. (If g[h[)] is a ground term in 1:-• ttlt;' &,l!!JU ~ .O.) D is non

empty because !1 Henkin theory al ways has afleast orie 1round term. Let 'if' 
,'t. ..... . 

be an n-ary function name in L. We define the function 'I' to interpret tp as 

follows. If Tl, .••• Tn are objects of D,. tben~('T,l_.. e:,. ,·Tn) is the object 
...._. - - -

'P(Tl, ••• , Tn]. Let IP be an m-ary predicate name in Lr then we define~(rl, 
•••• !!E,) to be true .if and only if Tt-1'1{1 1, ••• ,Tm)• !Jlhi~ defines a model in 

L. Call it M. 

To show that M ~T, we shall prove that if a is any sentence in L, then 

Tl-a if and only if M ~a. The proof is by inchletio.n·oa, the-total n~ber of 

logical connectives and quantifiers in a. Indu~tion t)asis; lf t}lere are no 
I • 

quantifiers or logical connectives in a, then a must be a ground ato!Ilic 

formula. Then Tt-a if and only if M ~a from the d~ijnition of function and 
• • J. }_ • ,. 

predicate interpretations in M. Induction "step: {i) U a is -ii~ then if Tt-cx., 
-i' •' 

then {j is not provable in T because T is con~ist~nt,. •nd )J.,en~e not ,$atisfied by 

M by the induction hypofhesis. So M ~a. If Mla. then' M doe.s not satisfy 

/3, and fj cannot be p.roven from T. Since T is co,np!ct•. ;f)•·a~ (ii) The rest 

of the logical connectives are left as an exercise. UH> It a is the sentence 

:iS:(/3). then if T .. a. there is a ground term -t' such'tliat .T ... #{'r/U because T is 

a Henkin theory. The sentence j3('r/f.) has one lese,quanflfter than a, and so 

by the indU,ction hypothesis M1~p(r/f.h Therefore. <M~I(,). Now suppose 

that M ~:i~(fj). Then M. I~~ for some I interpretint I as ·an object in the 

-91-



domain D of M. But this object T is an underlined ground term. and given 

the special way M was defined. Ml~t/U. By the induc~iori hyP<>thesis, 

Tt-~(T'/ !;), and so Tt-!i(~). (iv) The Y case is left as· a~ exercise. 

Theorem 8. 6 

Every consistent theory has a model. 

Proof: It has a consistent. complete Henkin extension in an enlarged language 

by lemma 8. 4. By lemma 8. 5, this theory has a model. Then removing 

the interpretations for the new c::on~tants .frozn Ui~s mqfl•l gi:v.'s a model for 

the original theory. (See·problem set 20. No. 2.) 

T!leorem 8. 7 (G8del's COmpleteness Theorem) 

If T ~a': then T ... a:. 

Proof: (If .a:· is not a sentence, coll8ider its closure.)• If T ~a:, then T U {-ia} 

has no model:. Thel"efore it ta inconsitnent by theorem 8. 6. So anything can 

be proven from it. In particular, TU {""°'o}t-a. afttt·so by the deduction 
theorem T.,.-ia: ::> er. or Tt-a. 

Theorem 8. a (Compactness Theorem) 

' 
If T is riot satisfiable, then there is a finite subset of T that is not 

~' 1 .. 

satisfiable. 

Proof: By thedl"em a. ts, if T is not satisfiable. tQen it is inconststent. The 

demonstration ·of inconst.rtenc! must co~e 'from finit~l:r ~a,~y forinµlas of T. 

This finite inconsistent sub-theory has no model by corollary 7. 5. 

Theorem 8. 9 (Skolim-L8wenheim Theorem) 

If a theory ha• a mocl~l, it has :• coun.table ~odel. 

Proof: If the theQry has a model. then it is etmsist-f-'by ·corollary 7. 5. If 

it is consistent. then.it ha& a.modttl (theorem &:e> Whtc11;is countabfe by the 
' ' . method of proof ofJemma .8. 5• 

The reason for producing these results in such rapid succession is to 

-92-



demonstrat.e how many of the significant properties of first order logic follow 

from one central argument. 

The completeness theorem has several useful interpretations. One 

of these is that first order deduction is strong enou1h ~o d~rive any conclusi<>n 

which is valM. When we put completeness and c~nsisten~y tc;>gether, we have 

T~a if and only if T ~a. Therefore, the li~itations Qf ,first order logic are 

linguistic. If a certain formula. a c~nnot'be _derive~ frQm the theory T, it is 

because there are rbodels for T in whiCh. ~,is false."' "rfT is •11pposed t~ ,. 

describe some model M in which a is true,· then it evidently _is not a complete 

description of M. 
' The completeness theorem allows us to assert many facts about 

provability without producing constructive proofs. Instead. we argue the 

case that something semant~cally follows from some theory, and then assert 

its provability from that theory by using the completenbss theorem. 

On another level. the completeness theorem fn the form of theorem 

a. 6 provides a.criterion for the 0 existence"f ot·ft\ath-inattcal entities. If we 

invent some Ht of postulates.- when is. tJtere ..a mathematical entity to which 

they apply? If th~ postulates can b~ fonnaliaed as a ftrat order th_eory, then 

it is sufficient that they be consistent in order for there to bi! a model for 

them. Lemmas 8. 4 and 8. 5 show that consistent lanauage. suitably extended, 

provides its own model or subject matter. 

~ 8. 2 Equality 

We return now to the problem of equality. In §a. ·a. a set of axioms 

EL for the equality predicate was proposed. In t"l.'3,, it was prtwen that EL 

is sufficient to prove the equinlence of fo!!rrntlWs e<>Matning equal terms. In 

this section. we consider th• modeJ. theoretlc &*Peet of equality;. From now 

on, we shall assume that any theory.in ·a laaipa,-·co~atntng the p!'edicate "=" 
is an equ~lity theoey (has ·~ as a suba-et»unl•u we atate otherWise. 

In §6. 3. we<ti.scwrada theory th4t··ta•d bnlf innftite models. Is 

there a theory that has only.ftnite models? ;. COnaHW"the theory: 

EL 

ixiyUx ~ y) /\ J&<x = z ·" y = z)) 

-93-

• 



Intuitively. this theory seems to say that there are exactly two different things 

that exist. It ls satisfied by a model contaii:iing O" and 1. with 0 #, 1. But it 

is also satisfied by the model whose domain is the integers if we interpret"=" 

to mean "congruent mod 2". There is nothing in t4e t~eory that prevents such 

an interpretation, although this is not the standard, interpretation of "=". 
. . 

Furthermore, there are no axioms that can be added to the theory that would 

eliminate such interpretations. 

Definition 8. 10 

If Lis a language with equality, then a normal model in Lis a model 

in which the interpretation of "=" is that any member of the domain of the 

model is "=" to itself and not"=" to any other object in the domain. 

Clearlx. any nor-mal model for the two object theory must have 

cardinality 2. So there is an advantage to coaaidering only normal models, 

since these are the Gnes we want anyway. The val~ of this approach is 

confirmed by the following theorem. 

Theorem 8. 11 

If T is a theory with equality, and M is any model for T, then there is 

a normal model M* which is first order equivalent to M. 

Proof: In the model M. there is an interpretation for the predieate name "=" 

which we shall denote by the symbol "-". Since 11
-

11 '.S&ti•fiea the first three 

a:ictoms of EL. it is an equivalence relation on the,domain D of M, and 

partitions D into co-sets. If d E D. then we denote the co-set of all elements 

of D which are "-" to d as (d). The set of all sucb co-sets Will be called D* 

and is the domain of the normal m.odel M* that we seek. , ' .w.. deft.ne function 

interpretations in M* by the followtnc equation, wmmei ts tile interpretation 

of rp in M, and~ is .the new interpretation .being defined on D+. 

;([d1 ), •••• [dn)) is [~(d1 , •••• dn)] 

That this is a consistent definition independent of the particular elements 

chosen to represent the co-sets follows from the fact that in the model M, the 

interpretation ;p of 'IJ, and the interpretation "-" of"=." must satisfy axiom 

schema (iv) of EL and therefore if di - ei for 1 s;; i s n, then ~(d1 •••• , dn) .... 

-94-



iP<e .•..• , e ) and so ~(d1 , ••• , d ) ] is the same co-set as fP(e
1

, ••• , e ) ]. 
i n n n 

The interpretation i of a predicate name ;, is derived from the interpretation 

'J) similarly, ~nd the consistency of this _ae~iJljtiQB .to~qwa from axjom sohema 
(v) of EL. ' . : .,, . 

To show that M ...,, M*, let a be apy .fo~m,ula of L, ~nd I .a..nJnterpreta

tion of the variab1 e~ of a into D. D_~fine ~e ~tefJ>~•t~tiop -I* by I*H) = 
[I(~)]. Then show by induction o~,the 1ogi,c•l c~eqttves: an(.i quantifiers of 

a that if {J is ~- subform~la 9f a, then M, t~.-U ~tld ?PlJ if M*, I* ~I. 

From now on, when we speak of,,_ Rl-94-°" ~ aJanlWijle with. equality, 
.. , , . I , ~ - , ,, . , - _<,. -•- ~ - • • 

we shall mean a normal ~odel_ unless we txplic~1W 1'i.te p~r.lfi4:1e. 
. ~ . -

Problem Set 26 

(All la.quages ~'4- .theoriei\ At.ve •'ltlality., and ·•u models are normal. ) 

L •. Specify a th4H>ry havtttg infinite 'ril6cfela, and ftnite models -9f car~in-
' . . .,• '-' .. " ' . ' ; . '. " . ; - " 

ality 3 >tn for every n ~ 1, and ha\;itig 'n() finite' models Whose cardinality i~, not 
. 'iq :; . . .. 

a mu1 tiple .of three. , ·· -

2. Specify a theory having models of cardinality p for every prime 

number p, and no other rhitte models. 

3_, Pr<>Ye tllat if .. ttteory has arbitt'aY11y iara~- ttriite models, that it 

must have infinite m~la. ~!tint: Use tli~ -~1npactneaa th~r~m. ) . 
' . "' f..' - 4 t .,;. '.... ..... . ·, . - . ~ .; : ~ "' 

4. Prove that if:a COIUl{atent-tiiEk>ry iS complete.' all models for it 

either have the same ·finite ditrdfnality, o:r •111~;Uii!;· -~~ ~ri''infinite •. 

§a. 3 The Skolem-~ini Theorem· 

This theorem wa,~. kDoWn e~r1j in: tb~-~·~1 q~r.e ~e, coJllpU,teneas 

theorem was pr0ven. n· ~911'._ had to h•Yct-~2 P~·~!~4'not dopenq on 

deduction' at all, buf was enti~ely m~el-tl)fqr .. tp,~ IJ·-~~ .. althoup the 
term "model" was-not used until some~1Jat1r •. ,·, 

- • • •• -l - ; ... 1 ~~ ' .: . - i 

If we consider a ~c:>ltc .with e~~~ur,l>*''ll.-·~· ~~~"!Ll"~peim 
theorem states_ th~t . every. ~~tisft:~ble. th~1-,ft~ -~ ~t. af' c~•l• ~normal) 
model. This ~s ra~e~ 1 ~~·u.~i:b•~•"•_. ~~. c;81\JCJ~l#-th•~rxot ree.1 
numbers in first order lope. , ~his theQry a~_ fy;·~~t4t.U to ~equire a: 

model containing at l~ast all the real Qq~ber•~ ~· •• •Pifiy,~e -..iQm8f 

-95-



we find that they require the existence of an· real roots of polynomials. and 

all real numbers defined by limits or integrals such as tr or .e or logarithms 

or Bessel functions. ·'The theory even asserts topological closure properties 

such as that every non-empty set of real nilmbers bounded above must have a 

least upper bound. How then can this theory have a countable model? 

This is known as Skoletri's paradox. and the.problem seems to lie 

either in our naive assumption of the absolute notion of "uncountable", or in 

the limitations of symbolic language to discuss what really exists. (You can 

take your choice.) The fact is that if we takeHa "description" to be a piece 

of writing of finite length composed of discreet symbols from a finite alphabet, 

then the set of all potential descriptions is countable. So regardless of what 

we consider to be acceptable or well-defined descriptions, we can only des

cribe countably many real numbers. We ~e.n tind.taat ev.ery number that we 

describe and' look for really is in such a countable mo4el. including. for 

example, the values of definite integrals which we know exist but cannot even 

compute. 

If we believe that there really are "many" more real numbers than 

rational numbers or integers (and moat mathe~oians .~ Cantor act as 

if they believe this) then we must ~ccept the &~ation.that "most" real 

numbers are inaccessible to description in any manner• However. Skol em 

suggested that perhaps the notion of uncount.ble is rttlative to one's language, 

and that there are uncountably many real numbers in real number theory 

because there is no one-to-one correE1pondence po~ible between the real 

numbers and the natural numbers within the theory. But viewed from outside 

the theory, such a correspondence is possible as his countable model shows. 

Viewed this way, "uncountable" refers to our inability to "count" or specify 

an enumeration, rather than to the large size of a set. 

This situation is further dramatized by the fact that it is pos~ible to 

axiomatize set theory in first order loifo. The Von Neumann-Bernays-G8del 

(NBG) set theory has a finite number of axioms (see [Mendelson. Chapt~r 4J) 

and purports to be about sets of arbitrarily high cardinality and "classes" 
•" . . 

which are even bigger than sets, such as "the class of all sets". If NBG is 

consistent, then it has a countable model. 1 If it is "not consistent, then 

1 That is, if one is willing to accept the fairly conservative portion of classical 
mathematical reasoning used in the proofs of 8. 1 thru 8. 5. 

-96-

.. 



methods of reasoning used as a matter of course by mathematicians in all 

different fields are called into question. 

Philosophically, one may believe that all the entities of mathematics 

are given a priori, but that our language has difficulty dealin1 with them. or. 

if like the intuitionists one restricts one's belief to those thin1s that could at 

least potentially be written, then one may take all the higher infinities to be 

mere semantic constructs. There is current research (Yessenin-Volpin] 

which attempts to prove that axiomatic set theory is consistent from an 

"ultra-intuitionist" viewpoint that believes in nothing it cannot see. It is too 

early at this time to evaluate this work • 

• 

..97 .. 



CHAPTER NINE 

FIRST ORDER LOGIC - ADDITIONAL TOPICS 

Preview of Chapter Nine 

This chapter is a collection of several topics not all of which are 

sequentially related. The only one of these that is a necessary prerequisite 

for subsequent parts of this book is §9. 1 which is tbe study of formal 

definitions. 

The system we have been studying so far is known as Hilbert-type 

deduction. It is characterized by straight line proofs. Within the past 

decade, research in automated theorem proving has been dominated by a 

radically different approach known as resolution. 09. 2 thru §9. 4 are about 

resolution and its prerequisite topics. § 9. 5 is about still another form of 

deduction known as a Gentzen-type system. 

In §9. 6, we return to the Hilbert-type system which we shall use for 

the rest of this book, and discuss the question of decidability of theories. 

§ 9. 1 Definitions 

When a formal theory is .presented as a .set of axioms T in a language 

L, it is usually necessary to make definitions as we proceed to develop the 

theory, for if we have to describe advanced concepts in primitive terms, the 

length of the formulas we must use to do this becomes explosively long. We 

shall have some examples to illustrate this later. 

The main questions that we want to consider in this section are: How 

do we make definitions that do not add anything to the basic assumptions of the 

theory? How do we know that the theory is still consistent after we add 

-98-



definitions to it? If the theory was desiped to fit some model. how do we 

know that the definitions don't alter this? 

Definition 9. 1 

Let T c L be a theory. and T 1 c: L 1 h;e, an ~xtension to T. We say that 

T 1 is a conse.rva.tt'{e ef!e!!sion o.f T if wh ... ever T1 t-P' and er E L. then Tt-a. 

' 
A theory is consistent if and only if ~V~Y. .conserv~tiy:e extension of it 

is consistent. 

The easiest sort of definition that we 9a,n m~ i• to replace some 
. ' . ~ : ' - . . . ' ·.· .. . 

commonly p,ccurring term by a new function nani~. or ~qme commonly 
I ' - I 

occurring formula by a new predicate nam~. , 

Rule X (E"J>licit ~finitions): 

An.explicit definition is a line in a proof having the form: 

fP(~t• • • • • ~n) = T 

or fl[~ 1 •••••. ~m.J.• a 

where fP is a new function name and ·fta a term havin1 no 

variables other than the~ .• or; is an•# pr~cate name and 
l 

a is a formula having no free variables other than the~ .• 
' . l 

· The restriction on the free variable• occurr1n1 in T or er is necessary 

to avoid deftntttOn• that are ambifllous anC!have cOhttadictory instantiations. 

For example. tf we define f[x) = x+ y, then 'two iilatabc-$ ot this ~re f[O J = o + o, 
and f[O] = O+ 1. from which we can deduce <f·= 1. Or fr we define:p[x)' = 
(x > y). then we have p[2] • (2 > 1) • (2 > 3) or T • F. 

Theorem 9. 2 

If T 1 c: L 1 ts an extension of T c: L bt Rule X.1 then tt· is a conservative 

extension. Furthermore. it M is any niodet in li that sattaties T. then there 

is a unique expansioh of M in L
1 

that satisfies T'
1

• ,, · · ' 

Proof: Let M be a model in L that satisfies T. If fP is a new function name. 

-99-



in L
1 

introduced by Rule X, then we define ~(d1 , ••• , dn) for any elements di 

in the domain of M by letting this value be V(M, I, 1") where 1' is the defining 

term in Rule X. and I is an frtterp.-~atiotl _(>tthe variables ~i .~~o the di 

respectively. Any other way or defining <P would nat:~atiafy:.i){e defining 

equation, and so the expansion of M is unique. If the extension is by way of 
. : ...... ' "' . .-·, :_, : . ' -·-' 

a predicate name;. then we define 4"(d
1
,; ~ •• dm') ro·be true if arid only if 

M, I ~a. where I interprets the ~. which are the only free vartatiles in a into 
1 , . 

the d. respectively, 'and this expansion i~ .~Ieo iln.iqite. ·· ' 
1 

Suppose T 1 ~a and (r E L •. Lel'M be any model for T. M has an 

expansion that satisfies T 
1 

and therefor·~ sattsties" a. Since a' E I... the con

traction of M
1 

to M also satisfies a. Since, ~s is true for all M that sati~fy 

T, we have T ~a. and by completeness, ~a~ · SO 'I\ is a conservative 

extension of T; 
' 

The uniqueness quantifier :a: 1~ means: "There exists exactly one ~ 

such that .••• " It is not a new lopcal' coneept, b~t merely an abbreviation. 

The formula :!l1 ~(a) is an abbr~viat~on for ~~(~;f\Y'(~~J~> ~ C =.~»~"where C 
is a variable not occurri.z.1g in .. er. Thjs., nota.$iPD is ,.~efl. only: in ~ages with 
equality. 

If the formula :B:l ~(a) has only the variables cl thru en free. and the 

(normal.~ model M sati~fi~e.s it, ~!',nfo:r .~rer!.,ch~t: _of d1 thrµ,d11,~ the 

domain of M, there mu~t be exac;ily one Qn•t·~'1U9~,~~~ ;/,I i.W•T:Rl"ets 

' 1 ••••• Cn' ~ into d1 th:tJ dn+l reel?~,~tive,Ix.· ip,~ 1 ttf1 ;~~~,.. Tilis .. defines a 
n-ary function on the qom~in of M. 

Rule F (Function Definitions): 

In a deduction in a theory with equality. if line (j) is 

3: 1 ~(a) anq has on1-y ~l th.,r.,v ~n f~ee. ~9P: . .,,.~. :ma1 ciprive as. 
line (i) a,(fPtCH •••• CnJ/~> . .n.~re fP, i1t~n;ary}1,")p;tj.p,n name. 

and the justification for UM, (i) is "Rul-. f J:\ \\ju~,;-~ j ~ i •. 

Theorem 9. 1 

If Tc L, Tt-3: 1 ~(a), a has only. the variables ~ and the Ci free, '/) is a 

new name, and T 1 is TU (a('/)(( 1 ••••• Cnl/~)J, then T
1 

is a conservative 

-100-



extension of T, and if M is any model that satisfies T, then there is a unique 

expansion of M that satisfies T 1. 

The usefulness of definitions comes ,from the uniqueness of their 
'1 ,, . '. ' ' 

model expansions. which is a much stronae,r co~iti91'.l tt);an that the definitions 
. .. ' . '' . 

are conservative extensions. It Q()t qnly gu;lrantees G~n~.i$1~~ncy •. but means 

that the theory being developed is still appli,~abl•;:to t?e .~ri~nal model. 

A strong proof-t!Jeoretic property of ~efiµi~jo~~ is that. they are 
. 4 Ji. ' . ·" - ·i- . 

eliminable. This means that every form~la in the extension can be effect-
• ,o< -~ ' ··- , • 

ively mapped onto _a formula of the ~filj~al)aoguag~ in·~ ipann~r that 

preserves provability. So anything that can be saici ip the ~xtended language 
' ' 

can be said in the original lani'J~ie• alt~ou~ it may ~-~ o~ p~qh,ibitiv~. lepgth 

and therefore not a pra.c~tcal thing to do.;,. Proving. th~. eff~ctjve. ~li,mination 

of Rule X definitions is easy. Proving ~e eff~cUve elimil\&tion o,f Rule F 
' • . , . ~ e,. , • ' , 

definitions using proof-theoretic t~chniques is quite compli~ated combina-
~ ! ' ~ ·~ 

torially. It ts• done in. [Klee.ne § 7 4). 
The. following e~mples show how rapi~}y tl'\e process of definition can 

proceed. The theory tj,is the classical theory of n~tural. nwnp~rs whose 
• ' ~· : • • ' "" ' ~ • • 1. ; • • •. '· • • ¥ 

axioms we do not specify here. The theory is stated in the language 

(=,0, ',+,>c.}. 

I 

Rule X 1. (m < n) • ip(m+p = n) 

2. (m ;i: n) a -i(m < n) Rule x 
I 

3. prime[m] • -iipiq(,0 < p I\ p < :rn ~ 
p x q = m) " O < m Rule X 

4. a1p((n = 0 :::> p 7 0)" (0,< n 7 (This is now 
(n x p < m /\ n x p :0t m ))) provable.) 

5. (n = 0 :::> m + n = 0) " (O < n :::> 
I 

(n x (m + n) < m " n x 
I I 

Rule F 4 (m + n) ;i: m)) 

This. definition of division ts peculi,a~. - The reason is that Rule F 

only allo.ws us to define total fWl;cUons. In Q~dCtr to ~~4' ,~;vis~_qn ,total, we 

have to arbi.tradly define division by o. ~t doe-p~t ni•~•r :how, Tqe second 
,, . .. ._ ;. ~ .. ~ ... ,. ' \ " . 

part of line 5 is the useful p-.rt. and it cannot Ptt ~•ed to .prove ~y properties 

of division by O. 
This, brings up e1.n intere~ting point •. which is that the mp,Jels of first 

-101-



order logic always have total functions. This does not mean that we cannot 

model a subject that has partial functions. It does mean that if we provide 

axioms that do not completely specify a function. then we may expect the 

theory to be incomplete, and to be satisfi~tl by all models that complete the 

partial functions in all possible ways. 

· To put this differently, suppose we had introduced as an axiom of N 

the formula 0 < n :::> (n x (m + n) < rh' /\ n x (m + n)
1 ~ m'). This defines divis

ion except by 0. It allows us to prove all the ordirtai-y results about division 

that we would like to prove, but formulas such as m + 0 = 0 or m + 0 = 1 will 

be independent of this theory. We may choose to use this approach because 

it is distasteful.to make ~rbitrary choices that' are not;' necessary. 
. -

We now introduce additional definition schemas to 'define functions and 

predicates by cases, and to define partial furictic:ms' and pr.edfcates. It is 
' important to know whether a given function or predicate' has been introduced 

as total or partial. The rules X and F aiready specified, and the· rule K 

that we give next define total functions. the rules PK and PF "define partial 

functions. 

Rule K (Definition by Cases): 

The definition schemas: 

and 

yk :::> cp[~l' • • • • ~ri l = 1lc 
are justified when (i) ¥>or cp is a new name, (ii) the 'r. have no 

1 
variables other than the ~i' and the a. and y. have no free 

1 1 
variables other than the ~i. (iii) T .. -,()'. /\ :,.. .) for i < j ~ k, and 

1 J 
(iv) Tt-(y1 v ••• v ')lk). If all previously defined function and 

predicate names used in such a def'tnrtfon are total, then the 

new function or predicate name is total. 

-102-



Rule PK (Partial Definition by Cases): 

Same as Rule K except that condition (iv) is not required. 

Rule PF (Partial Function Definition): 

If Tt-y .::> :a 1 ~( o:) where the only freer variabl ~s in this 

formula are C 1 thru C ~ and cp is a new function name, then: n . 

is justified, and defines a partial function .. 

Pro bl cm Set 2.7 

1. Prove theorem 9; 3. 

2. Prove that all total definition schemas imply unique model cxten

:-;ions. and that all partial definition schemas imply the existence of moclcl 

extensions, and that all these extensions are conservative. 

3. Critique the folloWing proposal for an ,.ambiguous function" 

definition schema: If T~:!l~f·a), and the only free variables ih this formula are 'i thru en. and"° is a new function n;:irne. ttien d~fine<P by ai(~[C 1 ••••• CnJ/~>. 

§9. 2 Herbrand•s Theorem 

Definition 9. 4 

A sentence is called a prenex normal form sentence if it is 

Q 1 g1 ..• Qngn(o:) where each Q1 is either Y or:!, the ~i are distinct variables, 

and o: has no quantifiers. 

Theorem 9. 5 

Every sentence is equivalent to a sentence in ,prenex normal form 

having the same function and predicate names. 

If T is a" theory, then Th(T) = Th(T 
1

) where T 
1 

is a set of prenex 

normal forms equivalent to the closures of the formul~s i~ T. 

Proof Sketch: To put a senten~e in prenex nor.mal for~ (i) ~'ijminate "•" by 

(o: ""/3) -. (o: =>~)I\ C~ :>a), (ii) eliminate"::>'' by (a=>~) ... (~Cl v {J). (iii) change 

-103-

.. 



variables so that every qµantifie:r has a distinct variable, (iv) move the 

quantifiers outward using transformations such as -,V~(Q) .. l~(-,a) and 

a v V~<P> ~ V~(a v /J). These are all equivalences. (Note that in the last 

formula, a has no ·free ~. Why?) 

Herbrand was trying to solve the fundamental problem of first order 

logic, which is to determine when a formula a is a member of Th(T), by 

purefy proof-theoretic techniques. As part of this program, he showed how 

a theory could be expanded into a form in which there were no quantifiers. 

Given the theory T. we have the equival~nt theory T 1 in prenex 

normal form. Let Q
1 
~ 1 ••• ~~lll(a) be a sent.Ce of this theory •. If Q 1 is 

universal, then it can be dropped by ,rqle. Q~. If it is. extstEmt.ial. then we 

can drop the quantifier and make the substitutiqn~U/ 'i -in the nianner of 

problem set 27, nu~ber 3. In either c~se •. w-e.h&.v:e aotten rid of the first 

quantifier. This process can be repeated for •~h quantifier in turn. merely 

dropping the un.iversal quantifiers. and su~titu.tinc;~rnblguous function names 

for the existentially quantified variables. If C. is existentially quantified, 
1 

then it will be replaced by tp. [~ .••••• C. ] wher~·.-Q.r; ••• Qt are the universal 
1 11 lk ·~1 . It . 

quantifiers to the left of Qi in the original formula. For example: 

Yx3:yYziw(p(x, f(y;:WJ.·•··ifY• z]J) 

becomes 

p(x. f[hl[x)., h2[x, z)]. z. g[hl[x). z J) 

where hl and h2 are new function names. They are called Herbrand function 

names. 

This process can be done for an entire theory T 
1 

in prenex normal 

form producing the open the.ory T 2• From .the previous diScussion it should 

be clear that T 1 U T 2 is a conservati~e ext~nsi~n of T 
1

, alld that lf M is a 

model for T 1• then there is· an expansion of M that satisfi~s T 
2

• This 

expansion is not necessarily unique. Conversel~. any model,,for. T 
2 

can be 

contracted to a model for T 1; therefore T 
1 
·is satisftable if and only if T 

2 
is 

satisfiable. 

Let L2 be the language of T 2 • It is the language of T (and T 
1

) 

together with all the Herbrand function names. Let H be the set of all 

-104-



ground terms in L2• We add one constant to L2 if necessary to make sure 

that H is not empty. 

Let T 3 be the set of all ground instances of T 2• . (If a is an open 
. :··I , 

formula in T 2 having distinct variables ~l thru ~n• and h1 th_ru hn are in H. 

then a(h 1 /~ 1 •••• , hn/~n) is a ground instance o_f a.) If .T2 is satisfiable. 

then obvious.ly T 3 is satisfiable. The converse is also true. but needs a 

proof, which we supply presently. 

When we look at the formulas of T 3• we see that not only are there no 

quantifiers, but there are no variables either. A 'formula in T 3 is simply a 

logical ·compounding of ground atomic formulas. If we view each distinct 

ground atomic formula as a distinct propositional. v~riable. then we can 

regard T 3 as a theory of propositional logic. If T 
3 

is satisfiable as a first 

order theory. then it is a'is~ satisfiable a:s a propasltional th.eory by allowing 

a first order model to supply truth values for each ground atomic formula. 

Conversely. if T 3 is satisfiable as a propositi~nal theory. then it is 

satisfiable as a first order theory. To sbow this. let M be a propositional . . 

model for T 3• We define the model M
1 

on the domain Hof ground terms by 

defining function interpretations in the same inanner as in lemma 8. 5. 
,... ' """' i.e •• <P(h 1 •••• , h ) is the term <.o{h

1 
••••• h ). We define ~Ch 1 ••••• h ) to be 

n n . . ., m 
true if and only if M ~f'1(h 1 ••••• hm }. This· defines M

1
• and M ~T because it 

produces the same valuations on ground atomic formulas as does M. 

M
1 

also satisfies T 2 because if a E T
2

• then a is an open ·formula. 

and if I is any interpretation of the variables of 0: into H. then M. I ~a. 
because the corresponding ground instance in'T 3 iS;;also satisfied by M

1
• 

(This sort of argument can only be used when we already know that the 

language has a ground term to express every object in the domain of the 

model. The situation is similar in some ways to lemma 8. 5. ) This proves 

that T 2 is satisfiable if and only if T 3 is satisfiable. 

Theorem 9. 6 (Herbr.and•s Theorem) 

Suppose that Tis an inconsistent theory. This fact can be demon

stra~d in the following way. Let T 
1 

be the prenex normal form for T. Let 

T 2 be the open theory obtained from T 1 by dropping quantifiers and intro

ducing Herbrand !Unction names. Let T 3 be the set of all ground instances 

-105-



of T 2 (making sure that His not empty). Then there is .some finite set of 

formulas in T 
3 

whose conjunction is propositionally inconsistent. 

Proof: If T is inconsistent, then it is un,Siltisfiaple by the consistency theorem. 

If T is unsatisfiable, then T 1, T 2 and T 3 are unsatisfiable as noted in the 

preceding discussion. Then T 
3 

is propositionally unsatisfiable. By the 

compactness theorem for propositional logic. some finite part of T 3 is 

unsatisfiable, and by the completeness theorem for prqpositional logic, the 

conjunction of this finite set of formulas is inconsistent prop9sitionally. 

This proof would not have been satisf~ctory· to Herbrand. The state

ment of the theorem makes no reference to .moc;iels. and can be proven using 

only finitary proof-theoretic methods. Such a<pr90f is given in (Herbrand, 

p. 168 ]. The proof is complicated and has error which has been correeted by ,. 
subsequent logicians. (Herbrand's paper w~s presented as a thesis at the 

Sorbonne in 1930. In 193J Herbrand wa~ killed in an ;µpine climbing 

accident when a piton came out. He was 23 ye•rs old.) 

If we can demonstrate inconsistency, then we can also demonstrate 

provability because T U (1a] is inconsi&tent if and only if.T.t-<r. The insight 

of Herbrand 1 s theorem is that in all cases only a finite. amount of model con

struction effort is necessary to show that no model can be. built for a theory. 

This suggests an entirely new approach to creating q~monstrations than the 
. . 

Hilbert-type system, and Herbrand's theorem is the "completeness" theorem 

for this new type of demonstration. This Jde.a will be expanded in.~9. 4. 

§ 9. 3 Substitution and Unification 

The theory of substitution and unification is part of the theory of 

resolution developed by (Robinson). It is interesting enouil'h in its own right 

to be presented as a· separate topic. It is perhaps part of -the answer to the 

question: What is the equival~nt in the theory of s~bolic processing to the 

number theoretician's interest in factoring. least COJnm,on '1\Ultiples and so 

forth? 

Before we can perform the operation of substitution, we need some

thing on which to do the substituting. We could develop the theory of substi

tution on s-expression but. instead, we shall do it the way Robinson does it 

-106-

• 



so that nothing needs to be altered for § 9. 4. 

Definition 9. 7 

A lite.ral is either an atomic formula qr else it ,is a negated atomic 

formula (i.e •• an atomic formula preceded by "-i" ). A clause is a finite set 

of literals. Literals and clauses that do not have variables are called 

ground literals and ground clauses. 

The interpretation of a clause that we shall us~ in § 9. 4 is the dis

junction or "or" of its literals. The idea of a set of literals rather than a 
~ ... 

sequence is that a set does not specify an orde~ to:r its cqqiponents, nor is it 

meaningful for an element of a set to be a rnem'b~r" se~.eral times pver. 

This is a useful condensatt~n of the associative, cQmtt.iutative and idempotent 
~,, . . ' 

properties of "v". A clause can be repr_esented by the \Up~al finite set 

notation which is a list of elements enclosed by braces and separated by 

commas. 

Definition 9. 8 

Examples of Liter.ala: 

p[x. yJ 
-,p[k[ }. j[ JJ 

-,q[x. t[y,, g(X:1 yJJ) 

r[x, (ABC)} 

Examples of Clauses: 

(-,p[x. y], r[x. (A B C)J, •q[x, f[y, g{x, y]]J} 

(x+y=3, 1+2;1!3} 

A substitution component is an expression of the form "T/ ~" where T 

is a term and ~ is a variable, and T ;J. ~. Its meaning is "substitute T for all 

occurrences of ~.".-A substitution is a finite set of st¥>:stitution components 

such that each ~i is distinct. Its meaning is "substitute each Ti for all 

occurrences of its ~ .• " This is a simultaneous substitution. 
1 

If C is a clause, and 8 is a substitution. then Ct is the clause resulting 

from performing 9 on C. For example, if C is {p[x, y). -iq(f[yJ)J. and 9 is 

(g[z)/x. f[xJ/yJ. then C9 is (p[g[z], f[x)J.1q(f(f(x])J}. The notation C9..\ means 

-107-

• 



the clause resulting from first performing 9 on C, and then performing A on 

the result of this. This is a "postfix" operator style of notation which has 

the advantage that the operations get performed from left to right. 

Definition 9. 9 

If 9 is the substitution {T1 /t1, •••• T1/~n} '°nd A is the substitution 

{a1 /C 1 ..... am /CmL then the comi;osition of 8 and A, written IA, is the sub

stitution defined as follows: Let A be the set of all c,omponel)tS of A. except 

those for which Ci is one of the ~'s. Let 9
1 

be .the set of all components of 

the form T.'A./~. where T./I!.. is in e. and T.A is the result of performing A on T., 
1 1 1 1 '~ 1 ·. .' 1 

except those cases where 'T.A is '·in which case T.'A/t.1 is no~ a substitution 
1 . 1 . 1 ., I 

component. Then 9~ is defined to be the union of the sets 9 and A.. 

This d~finition of composition of substitutions is not commutative 

because it is intended to produce the· subsfttutian which is "first do e. then do 

X". If the T" s replace all occurrences of the ~' s and then A. is performed. 

they will get changed into T4 1s. The a/Ci components c•n act on the original 

text only when C. is not one of the ~·s. However. even if they get thrown out 
1 

they still have an effect in defini111 the T1'A/~ ~ponents. For example, the 

composition of {f[x]/x} with itself is {f[f[x]J/xl. 

Corollary ~l. 10 

For any clause C, and any substitutions 8 and A, ( C9)A = C(8A.). 

For any substitutions 8, A and"'' (94)1' = 8(~). (Substitution is 
associative.) 

The set of-all substitutions form a semi-group, with the empty substi

tution as identity. 

Examples of composition of substitutions: 
{x/y} {x/y. y/x} = {y/x} 

{x/y, y/x} {x/y} = {x/y} 

{g[x, y]/x, h[y, z ]/y} {fl [y]/x, f2 fz ]/y, f3[x}/ z} = (g[fl [y], f2 [z ]]/x, 
h[f2[z). f3[x])/y, f3[x]/zJ 

{n
2

+2/m,· 3 x m/n} (n2 - 3/m} = {n2 +2/m, 3 x (n2 - 3)/nl 

-108-



Definition 9. 11 

A finite set of literals is called a singleton if it has exactly one 

element. If c is a finite set of literal.s., and.q iii .a. s~l4ton. then e is said 

to be a unifier of c. e is a most jene~al µr)ifi,r of c if it i~ a_unifier ~f c. 
and if for every A which is a unifier of C, A .. = -.for some1i1. 

Not every set can be unified. A neces,sary. but not sufficient condition 

for a set to be unifiable is that either all lit~rals begi13; w;i~ "-," or else none 

of them do, and that they all have the same precU~ate naqie. At the opposite 

extreme, if a set is already a singleton, then every subs.tltution is a unifier 

of it. and the empty substitution is its most gene~~.LUl'\ifi.er_. 

Examples: 

(p[3 ), p[5 J) cannot be unified. 

{p[3 J. p(xJJ baa. most general unifier {.3/x). 

{p[x], p[/[y)]} has most general unifier (f(y)/x}. 

{p[x], p(f(x]]} cannot be unified. 

(q[f[y], x), q[x. f[z]]} has most rreneral·unifier t(f(y)/x, y/zl or 
(f[z ]/x. z /y}. · · · ·· 

The ·unification algorithm is ari :effectl\";e prQcess for· finding the most 

general unifter Of a sef'Ot-lfterals if it exists.' ;·The--a'tgoftthin as given <k>es 

not work for clauses containing infix or postfix operators or other relaxations 

of grammar, and we do not attempt to change this. 

Let C be a finite set of literals. The disa1reement set D of C is the 

set of all well-for~edw~s or formulas that,.,.....M·:the,"ft!-81 symbol 

position at which not all«>f the literals of C.ap•••· We can•thilik of a cursor 

moving character by; <Ulaf!acter from left to··rilht on aw the Uterats~in C and · 

stopping as .soq~.as,there is any discrepaD07•.iween any two li~rals. We 

then copy the smallest, wfi).\O'fol'rned term or for-mu-la -'&lat start& at each 

cursor position. ~nd this is the disagreement set. ;;pGJ':.-mpt-e,,1fle disagree

ment set of (p[x. h[x .. y]. y) .. p(x. alYJ. yL p(•~!_,ti,)lfa {Ja(x,.y), g(y). al. If 'Chas 

at least two literals, then the disagreement set of C has at least two elements. 

The disagreement set is obviously computable. 

-109-



The unification alogrithm is stated as a program. with program 

variables C, D, 8, ~ and T. C is initialized to the set to be unified, and a is 

initialized to the empty substitUtion. 

Loop: C: = C9: (Performing 9 on C is specified here.) 

If C is a singleton then terminate with most general unifier 8: 

D· = disagreement set of C arranged in a sequence with variables 

ahead of other elements: 

~: = first element of D: · 

T: = second element of D: 

If ~ is not a variable then fail; 

If T contains occurrences of ~ then fail; 

9:= 9{1'/~}; (Composition of substitutions is specified here.) .. 
Go to loop; 

Theorem 9.12 (Unification Theorem) 

If C is a finite set of literals, then if it has a unifier, it has a most 

general unifier, and th.a unification algP~ithrn will compute one. Otherwise, 

the algorithm will terminate with a fail. The algorit,hm always terminates .. 

(Proof in [Robinson].) 

Problem 27 

The LISP function sublis[x, y] performs a substitution on the 

s-expression y when x is a list of pairs, each of Which is a substitution com

ponent. (See §8.1.) Let us callx a substitution itit·is a list of pairs, and 

the cadr' s of the pairs are all diff•rent atoms, and ear and cadr of each pair 

are distinct. Deline a LISP function compose(x, y) such that if x and y are 

substitutions, then compose[x, y) is a sub$titution, and if z is any a-expression, 

then sublis[y, sublis(x, z n = sublis(compc)se(x.,y), z). 

§ 9. 4 Resolution 

We continue from the concluding remark of §9. 2. Starting with a 

theory T that we wish to demonstrate in.consistent, we generate T 
1 

in prenex 

normal form, and T 2 which is an open theory. The next transformation in 

-no-



this process of preparation is to put the formulas of T 
2 

into what is known as 

conjunctive normal form. 

Definition . 9. 13 

If L 1 thru Ln are lit~rals, then L 1 v ••• v Ln is called a disjunct. 

If D1 thru Om are disjuncts, then o1 A ••• A Om is called a conjunctive 

normal form. 

It follo.ws from DeMorgan's Laws. and the distr.ibutive laws for 

logical connectives that every open formula is equivalent to a conjunctive 

normal form. Having put a formula in conjun<:tive normal form, we can then 

turn each disjunct into a clause simply by eliminating any redundancies and 

making a set of the literals. Now if we have a theory in such form, each 

formula is a conjunction of"clauses. Since a theory is semantically the 

conjunction of its formulas, we can further collapse the whole structure and 

regard the theory as simply a (possibly infinite) set of clauses in conjunction. 

The boundarie~· of formulas are no longer important. If T2 is an open theory, 

we call the equivalent set of clauses T 3• 

If T 3 is. unsatisfiable. then there is some .finite set of ground 

instances of T 3 which is inconsistent. Call this r 4• Ground resolution is 

an essentially propositional rule of inference on ground clauaes that is used 

to demonstrate the inconsistency of T 4• 

Definition 9. 14 (Ground Resolution) 

If a is an atomic formula. then a and -ia are called complementary 

literals. A sround resolvent of a pair of clauses havin1 complementary. 

literals is the clause consisting of all the other lite.nal~ ()f bQth clauses, as is. 

indicated by the following schema, where Q and -ia ar~ complementary, and 

the fJ. and')'. are any literals and i ;;;: o. and j .Oi: O. 
1 1 

{a, /Jl .. ··•/Jn} 

(-ia. '>'1• •• •''>'ml 

(ft 1 • • • • • /Jn• ')' 1 • • • • ' '>' m} 

This rule is not only propositionally valid, but is complete in the 

-111-



following sense: The empty clause has the value "false" in all interpretations. 

Robinson denotes the empty clause by the symbol D. If a set of ground 

clauses is inconsistent, then it is possible to deduce 0 by a finite number of 

applications of ground resolution, and no other rules of inference or axioms. 

So far, there is no great efficiency in this schema. It is not any 

faster than earlier decision procedures such as [Davis and Putnam]. The 

major advantage of resolution compared to ground resolution is that it is not 

necessary to generate the theory T 4 at all. Resolution is a combination of 

ground resolution and instantiation. But instead of generating ground 

clauses, it does no more instantiation than is necessary. ·In resolution all . 
substitutions are as general as possible. 

Resolution is defined as a deduction rule that has two clauses (not 

generally ground clauses) as its antecedents, and another clause as its 
' consequent. A pair of clauses may have no resolvents, or one resolvent, or 

more than one resolvent. The completeness theorem for resolution is that if 

T 3 is unsatisfiable, then there is some finite sequence of resolutions on T 3 
that generates D. The completeness theorem follows from Herbrand1 s 

Theorem and is in Robinson's paper. 

Definition 9. 15 

I 
Let C and D be two clauses. Let C be obtained from C by substitu-

ting the variahles xl, x2 ••• for the variables occurring in C, and o' be 

obtained similarly from Dusing the variables yl, y% • • • This is to guaran

tee that c' and o' have distinct variables Without th·eir being substantially 

different from C and D. 
I 

Suppose that there are sets L, M and N such that: (i) L c C. 
I 

(ii) Mc D. (iii) L-and M are non-empty, (iv) N is the set of all atomic 

formulas that are either in L or M, or whose complements are in L or M, 

(v) N is unifiable, and 8 is a most general unifier of N, and (vi) L8 and M8 

are complementary singletons. Then (C' -L)8 U (D' - M)fJ is a resolvent of 

C and D. 

As an example of resolution, we prove the validity of the sentence 

Yx(p(x] = q[xj);:;:) (ix(p[x)) = ix(q[x))). (See problem set 21, No. 16.) First, 

-u2 .. 



the entire sentence is negated, to obtain the one sentence theory T, then it is 

put in prenex normal form, T 1, and the quantifiers are dropped introducing 

the constants k 1 and k2 in T 2 • Then it is put in conjunctive normal form, 

giving the theory T 3 which is the first six lines of the proof presented below. 

This is not at all obvious, and it will probably take some effort to obtain this 

result, and also to verify that T 3 really is the denial of the original formula. 

It is worthwhile doing this. Note that it is essential to the meaning of line 6 

that it have two distinct variables. 

Since each line in the demonstration is a claW1e. we do not bother 

with the braces. The renaming of variables is also ,~elaxed in a manner that 

does not affect the demonstration. Lines 3 and 5 are superfluous. 

1. •p(x] q[x] 

2. •q(x] pfx] 
3. p(kl J -,p(x) 

4. p{kl 1 q°'2J 

~- 1q[x) q[~) 

6. -,p{x] -iq(y] 

7. q[kl 1 q(~) Res l. 4 
a. -ip(x] q(kl 1 Res 6,7 

9. ..,p[x) Rea 8,8 

10. -iq(x) Rea 2, 9 

11. q(~] Res 7, 10 

12. 0 l\ea 10, 11 

Lest we give the impression that resol\lti9D is obscure, we off er a 
I I I I -.. _, · L 1 , - ~~ • · • ' · ' 

proof of 0 + O = 0 from the same asswnptios;w as the loq demonatration in 
~ .< j ,·, ' ~ .-· • ·! • , ;-, - ; • . - •• 

§ 7. 2. In doing the preparatory work for this prc;>~le~. we co~e acre>ss an 
- -- "-· .·) .~_ _, :,rt , •-~ · "·' 

interesting property of resolution. Suppose we. wish _to pr9ve a from a set 
".;..; _,· :· ~ • • . ; '<:· 

of formulas IJ1 thru /Jn which can_ be axioms,i. ~'-fi:n.itiol\s,t. q~ p~eviously proven 

theorems. We dolhis by demonstrating _the i~con~~~.•n,cY, of. -.~~l ::> ••• ::> 

fjn ::>a). In conjunctive normal form,.~. b'co~t!•.~!ll "., •• ~ "-~n" -,a. 
This means that the premises of tqe dem9nstraUo~ do, 11~t]l;t.ve,t9 be neia:ated, 

. : " ' <'. ' • • ,' ' : " ' 

and that each one can be preP.8-red independe~~Jy. ~~.Y.--~ 11),,d~. tq, be 

negated. In the follo~1 de~~nstration, lin'9.•.,1 thry 4,are 'iven, and line 5 

-ll3-



is the negation of what we are trying to prove. 

1. x~y y~z x = z 

x ~ y 
I I 

2. x = y 

3. m+O = m 

4. 
I I 

m+n = (m+n) 

5. o' + o'' o" 
6. 

I 
(m+O) =m 

I 
Res 2. 3 

(m+n)' ~ z 
I 

Res 1. 4 7. m+n = z 
I I 

Res 6. 7 8. m+O =m 

9. 0 Res s. 8 

It is very characteristic of resolution that although· we can prove 

m + o' = o' directly with no negations of desired results. we cannot prove 

o'+ o' = o" thi; way. The reason for this is that the latter is an instance of 

the former. and resolution al ways keeps things in their most general form. 

The preceding demonstration is about as efficient ·as one could hope for. 

Each line represents a bit of reasoning leading directly to the desired result. 

Since the invention of resolution. a great deal of effort has gone into 

making it even more efficient. Resolution fits in well with many different 

heuristic devices used by artificial intelligence programs. It has been 

shown that resolution is complete under severe restrictions as to the order 

in which different clauses get introduced. The effect of such restrictions is 

to cut through the combinatorial explosiveness of having to resolve all 

clauses in all possible ways. When there ia a model of the subject matter 

available. it becomes possible to use it to drive the resolution into fruitful 

lines of attack. There is now an entire book about" resolution and the many 

techniques that hay_e been invented to increase its efficiency. [Chang and Lee) 

In comparing a Hilbert-type proof system with resolution. let us start 

with some of the differences. A Hilbert system is a linear method of 

deduction following precise rules and therefore subject to mechanical verifi

cation which we call proof checking. It has more symbols than are actually 

needed. and at every point offers many. different options. There are al ways 

different ways of expressing the same thing. Most of the design effort. 

including the various kinds of definitions. has gone into making it possible for 

a person who is inventing a proof to formalize it in a manner which approxi-

-114-



mates his own use of language. 

Resolution, on the other hand, has been designed for the purpose of 

mechanical theorem proving. Rather than al~o~nJ for flexibility in expres-
'-~·· 

sion. just;..t~e_ opposite tactic is used. The fn:p~~ data_ i~ reduced to a · 
canonical form as soon as possible, even at the co~t o,f m~klng it humanly 

unintelligible. The combinatorial complexity is r'e~uc::ed .by having a single . . . 

rule of inference, by keeping all assertions in th~ir ~ost 1eneral form, and 

by heuristics, all of which provide restric;tions rathe~ t~n. introduce 
' ~ " - . . } .,, 

additional options. The result is the most pow~r~ul in-.d~pth m~chanical 
theorem prover available today. 

We might ask what use is it? Even if furtner.impro,vements resl,llted 

in a speed-up by a factor of 10
10

, this would not be !!!)OU~ .~~-.five a theorem 
J • ;; ~ ~- • 1 ~ , · .... .,,. ' 

prover the appearance of "intelligence". The i<le• of a theor,em prover as a 
. . , ' ' - ' . .- . . ~ ' .- . . . ., ( .: 

sort of universal intelligence has been largely abandoned by people working 

in artificial intelligence. The usefulness of a theorem prover seems to be 
> ~ ' L . 

in filling in 'the.gaps left by some more intuitive process, W'hetber that· 

process is human or machine-. 

§ 9. 5 Gentzen-Type Syatems 

Gentzen developed a system of d~C1:iOn quite different in appearance 
. '. l; .;. : - . - -· '> 'i • 

from Hilbert-type systems, for the purpose of studying the properties of 

deductions. An exposition of Gentzen•s system can be found inJ~~ene §77). 

We do not describe the system here, but simply comment th•t ratber than 

being linear like a Hilbert deduction. a deduction br Gentien'a system has the 
shape of a· tree With the resultant theoreni; at th# base Ot1Ui1t tfee, and a 

branching structure -going up from this. · The tip of ·every branch is a certain 

type of trivial tautoloi'Y. 

An interesting aspect of·a Gentzen•type syitem. whtch has a certain 

appeal for artificial intelligence programming, ts that it ts highly suitable for 

working backwards -from the goal to the given data, creattna a structure of 

subgoals on the way. A list of subgoa\s.aaybe o~or disjunctive, 

that is. either it is necessary to solve all of them, .OI' .only OU of th~m. This 

sort of alternating tree is similar to a move tree in a two-person game such 

as ches.s. A Gentzen-type system would nave been at .lea&t as suitable as a 

-ll5-

---~------· -----



Hilbert-type system for the purposes of this book. and probably more so for 

anyone building a real proofchecker. We have used a Hilbert-type system 

only because it is more familiar and easier to explain initially. 

Extensive research has been done on modified Gentzen-type systems. 

[Yonezawa] has designed a theorem prover containing many fewer and 

simpler rules than Gentzen originally had. He also has restrictions on 

generating substitution instances that make for efficiency. Yonezawa proves 

that this restricted system is nevertheless complete. When one looks at this 

program, one gets the feeling of seeing the basic principle of resolution 

(substitutions kept most general) in a different form.. This suggests an 

interesting field of study which might be called comparative proof theory. 

§ 9. 6 Decidability .. 
A theory T is called effective if T is a recursively enumerable set. 

If T is an effective theory, then Th(T) is a recursively enumerable set since 

it is theoretically possible to enumerate all deductiena in T. 

The theory T is called decidable if Th(T) is a recursive set. This 

does not follow in any way from T being a recursive or even a finite set. 

Theorem 9. 16 

If TC: L is decidable and a E L. then T U {a} is decidable. 

Proof: If T .. a, then Th(T U {a}) = Th(T). If T.,.....,a, then TU {a} is incon

sistent, and Th( T U {a}) = L. The interesting ca.e is ·where ex is independent 

of T. We can assume that a is a sentence. Then by the deduction theorem 

T U (a) t-/J if and only if T .. a :::> /J, and this is decidable because T is decidable. 

Corollary 9. 17 

Every consistent decidable theory can be extended to a complete 

consistent decidable theory. 

First order logic is called decidable if the set of''all valid sentences 
is a recursive set. 

-us-



Corollary 9. 18 

If there is at least one undecidable theory having a finite axiomatiza

tion, then first order logic is undecidable. (In Chapter Twelve we provide 

such a theory. ) 

Problem Set 29 

1. Prove corollary 9. 1 7. (See lemma 8. 1. ) 

2. Prove corollary 9. 18. 

-117-



Preview of Chapter Ten 

CHAPTER TEN 

INFORMAL ARITHMETIC 

The study of the natural numbers is known as number theory. When 

we say "arithmetic", we mean the more generalized study or a-expressions 

including natural numbers, or possibly the study of discrete data structures 

in general. which we comment on briefly. The study is "informal" in the 

sense of being a mathematical discussion in Enptsh as distinct from a formal 

theory expressed in first order log:lc (which we study beginnin1 in Chapter 

Eleven). 

§ 10. 1 The Postulates of Arithmetic . . 

Peano's postulates for the natural numbers are: 

1. Zero is a number. 

2. The successor of a number is a number. 

3. Zero is not the successor of any number. 

4. No two numbers have the same successor. 

5. Any property which ts true for zero,, and is such that if it is true 

for some number it is also true for the successor of that 

number. is true for all numbers. 

These axioms are stated informally. and do not come with any 

instructions on how to reason logically from them. The notion of equality 

and its properties, as well as the notion of a function, and the fact that 

successor is a function, are also not explicitly given. In trying to reason 

-ua ... 



from such a set of axioms, it is not quite clear which assumptions that we 

bring to the problem are logical, set-theoretic, arithmetic, etc. That is 

why formal systems were developed. 

The last postulate is known as the induction principle, and has al ways 

been the most controversial of them. We hav~ already used induction in 

many of the proofs of theorems in this book. The notion of "property" in the 

induction postulate is a bit vague. In formal number theory, property is 

taken to mean "predicate". 

The LISP postulates are a complete analogue to Pe~no•s postulates. 

They even correspond in number. They are: 

1. Atoms are s-expressions. 

2. Cons of any two s-expressions is ans-expression. 

3. Cons of two s-expressions is never an atom. 

4. If ex differs from {J, or if y differs from 6, then cons of 

ex and 'Y differs from cons of J and 6. 

5. Any property which is true for, all atoms. and .is such that 

. if it is true for ex and /3 it ts alsp true for cons of a and 

/3. is true for all s - expressions. 

The induction principle can be used informally on s-expressions. to 

discuss properties of tree-type structures. For example,, consider the 

LISP function reverse defined by: 

reverse[x, y] ... [atom{x} ... x, T ... cons[reverse(cdr[x}}, 
reverse[car[x]]]J 

This recursive definition can be stated in English without reference to car and 

cdr as follows: 

(i) Reverse of an atom is itself. 

(ii) Reverse of the cons of two s-expressions is reverse of the 

second consed with reverse of the nrst. 

From (i) it follows that reverse of reverse of an 8.tom is itself. Now suppose 

that reverse of reverse of a is itself. and the same, for /J. Then by (ii) 

reverse of reverse of cons a and /3 is reverse Cit (r~verse of fJ consed with 

reverse of a) which is reverse of cons of fJ and a. Applying (ii) again we get 

-119-



that this is reverse of a consed With re:v-erse of /J which is a consed with {'. 

This supplies the induction ~ep-', and ,f~ tbe:tnduation principle we conclude 

that reverse of rtwer-.e « any .... .,.rea9.lml.,i•itself~ 

There a~eonly two-,dlffereco.ts.. between·the LISP postulates and 

Peano's postulates. One is·tbat cons ·tab~ •. While succusor is unary. 

The other is that there are many atoms but only one'~. So in addition to 

the LISP postulatee ,,.,._Med· same. atom; <poat11latea1 

1. Every atom is either a name or a number but not both. 

2. The names are in one-to-one eoPl'ffp,Oftdene8' with 'the 

number,s. 

Another way of putting (2') ls to say that the natttes can be effectively enumer-
-- ' { 

ated. 

Nefthe:r predeces!lOr, n6r car and cdi- are 'ftientioried in these postu

lates. The reason 'fo:r thfs' ta ti>"avatcf 'trie 'Jict·;tffit 'tjl~ are partial functions. 

However. there is no prbblt!m' tnti-01.hiet~· tJl~·i~~ jitfi~f pllrtially defined 

functions. or functions compfttted In ltn; •rbi~ai!f way.1 

The functions plus and times are not mentioned in the theory either. 

If one trfes to de1lntfthe•'tll:thii1iwp.:itit~jf>ji~'{by tfeariols postulates. 

one finds that·there fkbtltray ~<> cftf'ilifiiMt'"'a~t~ ~d~' s<ml~lng more to 
~ .. ··* i~·:»,!~·1·-;-}'> ,:1"'.;:: ~".J:··· '.: ' 

the theory. In tact, when we fo:rmali,&e this' theory. it turns out ihat there is 

no way to make these·<Mfinitteas,•,thllt tnet·•.-. 1 cofftlerYaU~e. 

There is no reasonable LISP analoaue'tdr~ip(\j~ an~f itmes. Therefore. 

starting from this ·J>Ot.t.. tae·t•Q,f.lleories :dlve!!p.· ,, 

§ 10. 2 Primitive Recursion 

The reason ~the defim_. of'plus'•~mes are not conservative 

is because they art! re~br••:' ;8~widldlnt.,...do:M>1 always terminate. 

and, as we have set!n in ~aJ>t.e:t five. ~·~ tf;)~'A«;Dt\t.a,l Jil~'1Y 1to decide 
~ ' ' ' ' > • • - • .. 

wh~h ones do and ~ich on~~,do. ~. w-.,,~Yf ~t8~4e~ed,$o far. Wkat 

happens when. a recursive ~~(lniti()t'l t.s a~!'\lfl ~;··'~1'f~,°t'£fle,~ tbeQry.. This 

topic is impo.rtant~. but needs a "uU ~ ~~~~ H·,·~~O'le~t Which we provide 

· in Chapter Fourteen. For the moment, let us note that it is "safe" to add a 

recursive definition to a theory if we know that it defines a total function, but 

-120-



• 

that such definitions are not necessarily conservative. (Note that none of 

the definition schemas of § 9. 1 allow any recursion at all.) 

Beca:use the problem of deciding W.hi~h pr~ciures compute total 

recursive functions is not geperally ,deci~e. it,i,B ·u•.~f\U to: define a subset 

of the recursive procedures .which are e~lY: recognized~y their restricted 

syntax, al ways define total recursive functi'on~~ and gefine, a w!de variety of 

important and useful functions:. . The. set. ~f:prf:m.Uive'""r•~~rsi~e procedures 

meets these criteria, and a?y functi~n that c~n b~ .. ~r?W.P:'1t~c1 by a. primitive 
recursive procedure is callecl a primiti,ve recursive .fql}<:~ion. They are dis~ 
cussed informally here, and formal!'~ i~ Gh~~t·e;'' T~·~i~~i·~"' . 

. . . .:, : ... ·v ._.;· ,. . .. :. , .. 

The basic idea of primitf~e recursfon ·is to recur Jn a manner which 

counts down, and terminat~~·:at ~e.ro •.. In·~~ ~Ji~~8fr,~~fµtl#on of f(n), f 
would not appear in the d~finftion because this is "circular" or recursive. 

. . • _,. ·.: ~ ·_. ,:·1 .. ·.~ -.,...~,,,"'\:·-::t~i"r:::," :-... ;;i · .--

In a primitive recursive definition, f(n) is d.~f.iJ:led .i~ te~~~ off(n), and f(Q) i.~ 

defined explicitly.;· 'u f has'·~ore ·tha'n o~r::~r~~~~~· th~f!"t~ i,s, necessary to. 
count down on only one argu'ment. For example: . 

(i) The sum of m and 0 is m. 

(ii) The sum of.~ and. ttie succe.eEH~r ol n ,is, i~ ~uc~e11sor.of the 

sum of m andn. ; .. 

Here the primitive recursion is<c;n the f!econd·a'rgurnent 1or n. If n is 0, the 

definition is explicit ·and does not.f'efeit'tb the stun!ot·attjthtng. Otherwise, 

the sum of some number and the successor ·Of n is defined in terms of the sum 

of that number and n. 

The fact that primitive recursive definition alwaya defines a total 

fun~tion is derived froµi the fact tha.t co~nt~,~rd-,4l1Wt;ys arrives at 

zero after finitely many operations. 

The definition~ o~ plus and tiJM?S give" Jn b..;2 ·•~e examples of 

primitive recursive definition. After these11 /w9 'C~ m•ke the .definitions 

m n .. [n -= O -+ 1, T ... m x m n J · " 

hyperexpt[m, nJ t- [ri = o;-+ 1:: T ... mhyPttf'e]tptf~, n - 11 
5 

llyperexpt[5, 3], for example. is s5 • 

An example of an,ari'thmetio function that {snot' primitive recursive 

is Ackerman's function. It grows faster than any primitive recursive function. 

-121-



Ackerman's function is a f'unction of three· arguments, p, m and n. If p is o. 
then it adds m and n; if p i.s t, then it multiplies them; if p is 2,. then it 

computes mn; if p ts'. 3·, then- it hypereJtponentiates, etc. 

ack[p,m,n] ... [p = O•m+n .. n = 0 .. [p = 1 .. 0,T .. 1), 
T + ackfp-. m,.aettfp •. m, n.- )Jl 

Ackerman's function belongs to thee class of double recursive functions. 

There is a transcendental hierarchy of' recursion schemas of which primitive 
' ' . .., . . 

and double recursions are merely the £irst two. steps .. 

The concept of primitive recursion can be: applied to definitions of 

s-express.ions as. well as m.tmhrs.. The idlta. ~e, is to count downward by 

taking car and cdr. Ih a. p.ri:miti'Ye: recur.si._ defiattio~ on,s-expressions, 

the function must be defined explicitly for atomic ar~. and otherwise 
. ' :.-.:. ' 

defined in terms of the function applied to cap and/or· cdr ef itS argument. 
. ' ' 

A function of more than one a.rpm.ant. must follow· th.ta scheme· for one only 

argume.nt. 

The function subst is a typi~al: exa,mpl-& of' primitlve recursion. 

Almost every LISP function we h:a~ defined, so. far ~ept for apply and its 

subsidiaries is also primitt'We- ireeua:vie., s.e. Jl'f'.CJaiebmlt ·and propeval are 

primitive re.curstvt,. ai'til .... it.~ ._. . .._, J!'.emtt~ df"ll· at'lltl.e ·definitions 

to realize this. 

§ 10,. 3 Other Ari#lmetics 

We use the term "arithmetic' .. to, mean a formal mathem:ati<:al system 

consisting of expreaeiona that can h written, it mft'lAt flafte, al:phaaet.. and 

subject to a g:rram:matieal deacrip$m., Thia ia seime~ related to what a 

programmer would· can a '·"'data type'... s:..:e-Xpren:~; inte1ers.. arrays. 

and·. even floating paint numbers ~be eo11~• ariUmunr,tc&:, but real 

numbers. or set thepry cannat.. ~-~-theory is not ljlboµt entities each 

of which has a standard desc.r:q,tiGA in some notation·. Arithmetics al ways 

have countable domains. 

The folk>w:in& questiOll a~e; :impmrtam. t11.t •1 examina.tionof any 

arithmetic: 

1. Is there a syntactic description of the domain of objects? 

2. Is there a set of basic func.tiOR8 and predicates such that all 



computable functions and predicates on the domain are recursive in terms of 

the basic ones? 

3. Is there an induction principle which applies to the domain? 

4. Is there ~ primitive recursion scheoiavon the domain? 

5. Is there an aXioil)atization of:~,Qoma,Ut? 

As an example. we examine the intq~s, -~jng, this syllabus. We 

assume that the natural num.ber$'he.ve a~e~ been ~mined. 
1 . An int~ger is either a ~tu~l numbei;-•. or ~ natural number, other 

than zero preceded by a minus sign. 

2. All computable functions can be defined using the language of 

recursive functions starting only from successor. predecessor and equality. 

(Equality may be considered as given prior to any particular arithmetic 

because it is a "logical" notion.) The predecessor is essential here, and 

t·annot he defined from successor as it can be for the natural numbers. At 

thi:.; point, you might try to define addition, subtraction. multiplication, t.he 

ordering relations, the predicate positive[nJ. and the absolute value of- n. 

3. There are several useful induction principles. all of which are 

equivalent. (i) If a property is true of 0 and inherited under successor and 

predecessor. then it is true for au integers. (ii) If a property is true for o. 
and inherited under successor and negation, then it is true for all integers. 

Any combination of a basis step and an induction step that covers all integers 
\, 

is a valid induction principle. 

4. The most obvious primitive recursion schema is to define a 

function explicitly for zero, and then to define it for positive cases in terms 

of the function of the predecessor of the argument, and for negative cases in 

terms of the function of the successor of the argument. This means counting 

up or down, but al ways toward zero. 

5. The equivalent of Peano' s postulates seems to be: (i) Zero is an 

integer. (ii) The successor and predecessor of an integer are integers. 

(iii) The successor of the predecessor of an integer and the predecessor of 

the successor of an integer are both equal to that integer. (iv) Zero is not 

positive. (v) The successor of zero is positive. (vi) The successor of a 

positive number is positive. (vii) An induction principle such as 3(i) above. 

Without (iv) thru (vi). we could be describing a finite set of objects 

-123-



arranged in a circular chain. :Sut these axiom,,s specify that 0 is not positive. 
I II 

while o. O • etc.. are. So 0 cannot belong to this :sequence. 

[McCarthy} considers methOd• of deftnlllg arithmetics from given 

base sets using as basic operation& "disjotnt uniort0
' and 0 cross product'' on 

sets. He shows how the definhlf equation for an arithmetic answer questions 

1 and 2 of our syllabus. This m4J'thotf could easily be ~xtem:ted to provide 

answers for the rest of the questions also. 

.. 

-124-



One's not half of two. it's two are halves of one: 

CHAPTER ELE'VEN 

FORMAL ARITHMETIC 

Preview of Chapter Eleven 

e. e. cummings 

The arithmetic of numbel-s and s-expressi0n8 discussed in Chapter 

Ten is formalized into a system 1'1\ich conaists of a lhfeory~ 1PJ.its a set of 

rules for extending the theory by m.eans of deftnitiorii ind pr&nftive recursive 

schemas. A sample of the development of the thebl'y~hen Mt&ws. 

The use of types in first order lcllic ~ ~ ~y-.&,•atc:.MbJ'~~tion~. ~nd .. 
not a new theoT~i~l COl)cept., F~marl atji1p~9 ,ii:J,~z#J.89,r,y aboµt s..,.expres

sions. aud a.qoµt n~l'tl wlticb a.re. a smc;i~ tMH C?f ~~•9"•~· .W,e · 

adopt the convention that v&Tiabl~.s.~i1'A\na:,~:·*• \.-~pa n;.,J n. p ~nd q 

are to range ~ver nw:;nbers,. ,while variabh•Ar'>egiooinfi ~~,~· l!t!Wrll. r.,~ru, 
z are to rang~,pver s-UJ>:rea.,ions. .we.~1J..~<&!~i~·~&e co,p

ventioas .Uiroughout this l>Qp". V~~~~~1,wtth fib~i l~r~ a .ip·rv,.k. 

are reserved fQr future ue.e. . ... ; ; . 

WheQ writing for~Lscbe~s. we,shaJ,1;;1~41---,~•• l.~rs ~(cx:i) ~nd 
C<zeta) stand tor, s-e~ression., v~iables. ·~---~-+ad~u!. IJ,talild foi: 

numeric·variaoles. . ~ . 

A formul" having the fTom Yfl(a) is, ~."'9~e~ioJ14or~,~",num[~,] ::> 

a(~/17)). and a formula having th~,f~orn i'f(•~•~• M>'-'~ fQr !,~(nw.n! . 

~] Aa(~/77)), where tis a IMt'W va.11~blt. J\3~-lor~a,Jaujpt qumeric 

variables is ~uiv-1ent.w i~,c~µre. Ev~YM\latr~4"$,~_hnow,~9qut ~.4! 

use of typed v~iables follows f!'9m'~~,J~; Jf,JoMfA~l'.*k'ep.\n mind· 

-125-



the intended interpretation. we shall not go wrong. 

Having assigned types to variables. it then becomes reasonable to 

assign types to function names, predicate names, and terms in some cases. . '· 

If a function has n arguments. th:en it U,a. a u~ent types and a value type. 

If a predicate has m arguments. then it has m a~ruinent types. (Its value 

type is "truth value" or "·) 

For the purpose of first order theory of arithmetic. we consider the 

following functions and predicates to be basic, and assign types to them as 

follows: 

equal: s X, s .... &\lCC...W: N -+N 

atom: s .. 'If ~= s x s -+s 
name: s .. tr ..-: N-tS 

num: s .. " 

We have now created a very precise situation in which each of these is 

a total function or predicate on it• intended~. ;ihta:,,tll·be quite use

ful in presenting the theory that· tolloW~ 

We now proc~ to aw~ t,pea to tertrul. ·If ·a t~nn has a type 

according ta these rules. it wm· be ~anM a #eli.o..tjpe« ·~. But 1lOt all 

terms will be well typed, and ._we de not iMd W1 eZdud4t terms that are not 
well typed from cONlideration. ft4t.lfpe· Of a ,.,..tta•iw 1'in been given. 

Variables that de not beiln with tlte'tetter m·•;•-.'tp;'q or- r·t&rU z are not . . 

typed for the present.;·~ The:tYP:e Of-*'1'~1ia ~t~. andihe type of any 

other object is s-expression. lf fPtr1 ••••• T l is a tertn'iuch that fol" each i. n 
if the i-th argumeDt'tJpe offP i8'a9MtH•ic,, a..: tal'~te. anu if·the i-th 

. 1 
argument type of JP 19 s-e~e•eion. then the typ&ot'f1 Ml either a..'.eir:pression 

or numeric. then the entire term is well typed. and its type iS' the value type 

0f qJ. Otherwise. the t&nrt ta: mt well ~. '> WtPdU alirO>mdin& atomic 
formulas to. be wen .. ,., •• hi ...... rnenner, . '..) 

If we were woiirin« With more tbllalttien tw< types. the same principle 

would apply. Some types a11e 81.lt);..:t)\pes of'otlief!B'"ilt tie sense 1hat all 

numbers are s.iexpFenions. TMt betnf tlifi~e~ th& i...:th a·rcument term of 

such a term should be either the i-th argument type of the main function of the 

term. or a sub-type of that type. 

-121-

·- ' 



These conventions allow us to say that a term such as length[x)+ 1 is 

a numeric term because length is numeric valued. A term such as car[x]+ 

cadr[x) is not well typed. but it might still be meaningful. depending on 

whether or not xis a list of numbers. 

The conventions on typed variables affect the idea of substitution. Ql 

and Q2 need to be modified. The following ti.Iles; at-e valid for substitution on 

a,numeric variable: 

Qla: 

Qlb: 

Q2a: 

Q2b: 

Qla: 

Qlb: 

lf 17( o:) ::> num [T) :::> O:(T/f1) 

Vf1(cx) :::> a.(T/T/) where Tis nwneric 

O:(T/f1) :::> num[T) :::> :ilf1JO:) 

a.(T/f1) ::> X17(<~) wher~ 1 i~ numeric 

Examples: 
I I 

Yn(n > 0) :::> num[car[x)J ::> car{x) > 0 
I I . 

Y n{n > 0) :::> 3 > 0 

The defini.tion schemas X, F. K. PF and PK of f 9. 1 get modified 

appropriately. We shall enmine the sitqation for ~}Ile F; the- rest are 

similar. 

Suppose that we have deduced the formula :ll
1
11Ca). There are two 

abbreviations in use here. and just as a reminder. we write this formula in 

its expanded fqrm. 

i~(num[~J" a(~/f1) /\ Y(((num{CJA 0t(C/11H => C =CH 

Let the formula a have only 11. ~ 1 ,thru ~n• and v 1 thru 11"1 fr~e. Let tp be a 

new name. Then we can write o:(tp[~ 1 •••• , ~n• "i- ~ .. ~ "mMf1)._ The function 

tp will have a numeric value type because f1 is a numeric vari~ble~ and will 

havens-expression arguments followed by m numeric arguments. There is. 

of course. no reason to list them in this order, but whatever order is used in 
' ' . - } . ~: ' 

the term tp[ ••• ) will determine the argument type description of tp once and 

for all. 

§ 11. 2 Axioms for the Theory of Arithmetic 

The axioms are listed in groups with some discussion when necessary. 

-127-



Group A: The theory of 8911&lity. EL. 

This group includes the three equival,enee axtoms for "=". and an 

axiom for every function and predicate name that will ever be introduced into 

the theory. (See definition 6. 11. ) 

Bl 

B2 

B3 

B4 

Group B: Peano· Artthmeti~ 
,. 

num[n l 
n' ~·· 0 

I I 
m=n=>m=n 

ta(0/'1/f J J?J(.a :::> a('17
1 
/¢)' => Y11( a) 

These axioms correspond to Peano's postulates 2 thru 5. For postu

late 1. see the computation s'Ch'ema_. OlrGJUp G .• 

Schema C: Primiti•• Jh!c'a;l"'lfion~ ml'~ 1'~ Numbers 

"'~'1'' ..... ~ ~., &J = "1 ·}; 

tp;j.~ 1\N' or •• ~ ~w ,,, ~ "1 .·• • 

whe:re (i} '(> is a new name.1.. Hi~ T
1 

ha'S rm c>e;currenc·e5 of tp. and 

no variables other: tkan the- tp (iii~ e'\?e'l!'y &l"~wrr·~~ of 'fJ in T2 
is of the form tp{ • •••. 1J}~. and "z bas n&· var:fiabt~s otfi:er than the 

~i and rr. and (iv) T1 and T2 are· well typed •. Some of the ~i 

may be of. 11umierfo type:., arntt&e argument 11 dO& not have to 

be placed· last. 

The filnctiott t:p: d·efined m ttR• schema wm be of numeric v;llue type if 

both r 1 and r
2 

a.re of l'nlm:erie- type,, and. Will' have· s, .... eJtpression value type if 

one or both of the 'f.. are a-expression typed. The argument types of tp come 
l 

from the types of the 11 .• and tbe· eyp.e of 1'I which is num~ric. 
l . ' 

The primitive· rf!Cursion ~for· u+u awd "•x-t•· ar-e part of th'e basic 

theary. They are: 
m+O = m J 
m+n

1
=(m+n)

1 
· 

-128-



and 

---;.; -

mXO=O J 
m x n' = m + ( m x n) 

Group D: S-Expression Arithmetic 

Dl: 1atom[cons[x, y)) 

02: cons[w, xJ = cons(y, z] .::> (w = y /\ x = z). 

03: V~(atom[sJ =>a):::> V~YC(a ::> aCC/~) .::> 
a(cons[~.CJ/~)) ::>V~(a) 

Schema E: Primitive Recursion on the S.-Expr·essions 

atom[C] ::> <,0[~ 1 ••.• , ~n' CJ = r 1 } 

<,0[~ 1 •••• , t;n' cons[C 1.(2 ]J = T2 

where ( i) <,O is a new name, (ii) T 
1 
h~s no. occurrenc.es of q>, and 

no variables other than the ~i and C. (iii) every occu.rrence of 

<,O in r2 is either <,0[ ••• , C 1 ) or <,0[ ••• , C
2 

], and T2 has no. variables 

other than the ~i' Cl and C2, and (iv) Tl ~nd T2 are well typed. 

The comment about the type description. of 'I' made for Schema C holds 

for Schema E, except that the recursion variabl~:here is .always of. a-expres

sion type. 

Group F: Atoms 

Fl name(x) ::> atom[x) 

F2 num[x] ::::> atom[x] 

F3 atom{x] ::> (name(xl_s -,num[x)) 

F4 name[enum[nJ) 

F5 name[x] :::> :3:
1
n(enum(n}:: x) 

Grou12 G: Computation Schema 

All true ground literals formed from tbe basic functions listed 

in §11.1, and the functions pre.deces&or1 plus, times, car, cdr, 

and their compositions. 

-129-



This schema is for the purpose of saving us time, and to enable us to 

make free use of numbers and s•expressions. Without this schema, the 
I II 

theory would be about the numerals 0, 0, 0 , etc., bµt not about 1, 2, 3, etc. 

AU such literal~ can be evaluated rapidly by a. computer program. 

2 + 2 = 4 

2 + 2 ~ 5 

1atom((A B C)) 

Examples: 

cons{A, (B C)] = (AB C) 

num(cadr{(2 3))) 

-.num(A] 

Gro'S? ff! Embedding 

If the theory of s-expressions is embedded in a larger theory 

in which there are things that are noi s -expressions, then we 

need a predicate sexprta] having univernl scope and true for 

s .. exp:resslons only. (The variable ''a"' is not of a-expression 

type. ) We need to add sexpr to the comp'Ci.tation schema, and 

we need two other axioms, namely: sexpr{cons{x. y]J, Where x 

and y are $-expression variables, and atom'(a) 6 sex:Prfa). 

This situation pr~sents its~lf when we conaider a second order 

theory in which there are sets of s-expresstons. 

In addition to these axioms, we need definition schemas. In i9. 1, we 

defined schemas X, F. K, PF and PK. Schema X is really a special case of 

schema K in which k = 1, and y 
1 

is T (true). These fi>:tm a part of the 

theory of arithmetic,. with suitable allowances being made for types. 

Definitions made with quantifiers do not~ if'l general. define functions 

that are computable. To detiae t.ncttoris by -eatpttcit schemas that al ways 

result in computable functions. we must introduce as special cases of F. K,. 

PF and PK the rules CF., CK. CPF and CPK. 'l'beEte have the same schemas 

as F. K, PF and PK, except tha.t no quantifiers are permitted in any of the 

formulas of these "computable11 soh~as. Por example, CF is the rule that 

permits Ot('P[~ 1 ••••• ~nl/t) after having deduced irC~•) wh'ere ~ has no 
quantifiers. 

We can now say something about each function and predicate name 

-130-



defined in the theory of arithmetic by examining its history of antecedent 

definitions. When we do this, we find that some functions have been totally 

defined, while others have been partially $ie.f\ned. SQ,me.,a~e computable 
. ' ' . . ~:: "- '" " . ' ' 

from the definitions,, a11d some are not. Th~~ t~n. c~bine Ui a~l four ways. 

For example, a function may be only parti•lly.defwed,, b~ tP:e d,~finition 

gives an ~ff ective method for deciding whe1ber it it? d~fin~~. ~d computing .it 

for those cases in which it is defined. . .. 

We have defined eight definition scrhemas,, not cqµn~ing schem~ X 
- '· .. · ,., . 

which is a special case of schema K. T.he way in wbicn jbese s~Jiemas 
·. ' . '· ' . . ~ . . . . 

preserve computp.bility and totality is su~roar.i~~d as Je>Uow~: . 

Schema: F K PF PK CF CK CPF CPK 

Preserves totality: yes yes po nQ 
···: t. 

yes yes no no 

Preserves computability: no no .~o no yes Yf;:S yes yes 
'- -:· 

Definition 11. 1 

A basic function ((or the first Ql'der ·theory of arithmetic• not for com-
, I 

putability) is equal(=)., successor(), cons., atom.,dmm. name• br .enlim. 

A primitive rec~eive function is a ~ti;on th1tt may.have the primi

tive recursion s:chemas. and CK in its hi&tOl'y. ·Of definition. : bat no bther 

definition schemas. · .. 

l\ total function has only the primitive recu.rsion schemas, and the 

definition· schemas F and K in its history. 'CF and ,OK are special .cases of 

these.) 

A computable partilll function has .only-tile primiti\'e recursion 

schemas, and CPF and CPK in its }Ustory., : fCF;and CK ian::Special cases of 

these.). The special quality of these functions,iJI .. that~it<illJpc)ssible to compute 

the dom~ins of definition. and to .compute the values:for,&peoific arguments 

within these domains. 

A total compllt~ble function has only jbe primitive recurs.ion schemas., 

CF and CK in its history of definition. 

It is evident that the primitive reeursive functions are-total computable 

functions by this classification schema. 

-131-



The language used in definition 11. 1 is a bit sloppy. When we used 

the word "function". w'hat we r·ea.lly meant vta.s ''function name or predicate 

name". What we have just done is to introduce a c1assttication schema for 

the names introduced into the theory of arithmetic by the various definitional 

schemas. The fact that a given name is classified as "computable" does 

indeed mean that it corresponds to a computable function. but a function name 

not classified as "computable" may also correspond to a computable function. 

although the method used to define it does not of itself provide a computational 

procedure. 

A name classified as 0 computable" but not "total" has the peculiarity 

that there is, an effective means of deciding whether or not it is defined for a 

given set of arguments. arid then there is an effective means of computing the 

value when it is defined. This is more than can be said fo.r partial recursive 

functions in general. This spec;:ial cateogry is ueful for predecessor. sub

traction, division, car and edr,,. functions defined only on·li•ts. functions 

defined only on li&ts of numbers, etc:. 

We now ha"Ye a developing, system wttb. rnany built•in conllreniences for 

making definitions. We bve been cantnc it a "tlaecn-y'',, but· it ts not strictly 

speaking a theory,, bot rather a tll.eory,. and a set o.f rules for creating 

extensions. Once a certain extension i& CJ"t!&ted. it restrict& the use of a 

certain name which then ~ be uari to crate some other extension. 

The system we have just described bas a model which is the domain 

of s-expressions. with the baste functions havtng their st&fldard interpretation. 

Each extension has a correspondinf enlarpmet'lt of th·e model.. If the 

extension is total.: then a uniquely deftned ftmlction or pt"edicat.e is added to 

the model. If the definition is not total, then there may not be a unique 

enlargement of the model. but there will be at least one enlargement. 

As was already mentioned, the· total detitdtiori schemas are conserva

tive. and in fact eliminable. but the primitive recursi<;>n sch-emas are not so. 

This raises the question as to whether there is some language with a finite 

vocabulary that is adequate to describe the theory. If we restrict ourselves 

to the numeric part of the theory. then G8del answered this question by 

showing that the only instances of the primitive recursion schema needed are 

those for "+" and "x", and that once these formulas have been given. all 

-132-



other primitive recursive functions can be defined using only rules F and K. 

So formal number theory i,s presented in the lanpa1e {=, O, ', +, x}. The 

proof of this fact involves codin1 finite sequences ot nurlibeni intO single 

numbers, and then showing that there is .a_ fl:ln~tlon -~ftn~ble from + and x that 

can extract the i-th component of such a s~•Qe. 

§ 11. 3 Oevelopi;nent of the Theory 

The purpose of this section is to provide some concrete examples of 

the system specified in § 11. 2. The first part ts about number theorr.. ~nd 

the second part is about a-expression theory. 

In the development that follows, many shorteuts Will be used to make 

the formal deductions less tedious. We shall assume various properties of 

propositional lofic, quantifiers, variabfea, and equili'ij~~;lncluding symmetry. 

transitivity and replacement. However, every detail. involVil'll the propertit?i-: 

of arithmetic will be written out in full, i. e., all references to the axiom 

system we have just preeented will' be completely expUctt. The distinction 

between properties ot·logie'·&nd equality mrthtt0.e·fituld,·'·1tnd properties of 

arithmetic on the other can be made wry predtri •. 

01: 

02: 

We start out by l"epeattn1 the followft\W de~tfonl!J-: · 

+: N x N .. N 

X: N x N .. N 

·m+O=m 1· 
m + n' = (m + n( · 

mxo=o } 
m x n' = m + (m_ x n) .: 

Schepia C 

Thl: O + m = m 

Th2: 

The prqo:f' from almost WenUcal axt<md has all'..., been given. 
I I 

m + n = (m + n) 

1. 
I 

m + 0 = m 
, 

2. m+ 0 = m 

3. 
I · I 

m + 0 = (m + 0) 

( 4) 4. 
I I 

m + n = (m + n) 

5. 
I I I I 

m + n = (m + n) 

( 4) 6. 
I I . II 

m + n = (m + n) 

-133-

Instance of Dl 

01 

,Repl&!!ement 1, 2 

As,µ111e 
Instance Qf 01 . . . ·~ .. . 

Rep~.a~em~~t 4, 5 



( 4) 7. 
I I l I 

m + n = (m + n) Replacements. Dl 
I I 

8. m + n ~ ( m / + n) :::::> , / 
m + n = (m + n) Discharge 4. 7 

I I I I 

9. (m + O 
1
= m) :::> Yn(m ,+,n = (m+n) :::::> 

m + p = (m + n) ) ? 
Instance of B4 Yn(m + n = (m + n)) 

I I 
From 1, 8.-9 10. m + n = (m + n) 

Problem 30 

1. Th3: m + n = n + m 

2. Th4: 0 x m = m 
. I 

3. Demonstrate m ~ O :::::> a
1 

n(n = m). Then predecessor can be 

defined by m ~ 0 :::> m _, = m. 

From here, one may proceed to prove the commutivity of multiplica

tion. the associativity of addition and multiplication. the distributive laws, 

and then move into the area of primes and factoring. 

Because this is a first order theory, one cannot talk about sets of 

numbers, but only individual numbers. For example, one cannot state 

directly, let alone prove, that every number can be factored uniquely except 

for the order of the factors, into prime factors. However, one can state 

this indirectly because the set of factors of any number is al ways a finite set. 

It is possible to state, and to prove, that for every number there is a list of 

primes, unique except for order, whose product is that number. 

Every non-empty set of numbers has a least member. but this cannot 

even be stated indirectly so as to apply to all infinite sets of numbers. A 

related concept is to say that any predicate satisfied by at least one number 

has a least number that satisfies it. If IP is any numeric predicate, then we 

cun prove as a theorem :iln(!P[nJ) :::::> :iln(IP[nJ /\ Ym(~[m] :::::> m C? n)). However, the 

statement "This theorem schema is true for any IP.'' lies outside the scope of 

first order logic because it informally quantifies on a predicate, whereas first 

order logic quantifies on variables only. 

Second order logic quantifies over first order predicates. However, 

there is no effective method of deduction for second order logic which is 

semantically complete in the sense that if T ~a. then Tl-a. An alternative to 

-134-



'· 

second order logic is to stay with first order logic. and to develop a second 

order theory whose intended model has a domain of two types. numbers and 

sets of numbers. (We do this in Chapter Fifteen, only for s-expressions 

and sets of s-expressions.) But there is no escaping the essential incom

pleteness. which in the latter case presents itself as an incomplete theory 

rather than as an incomplete logic. Still, second order number theory is 

more powerful than first order number theory. In fact, second. third and 

even fourth order theories are in constant use by mathematicians, and their 

formalization is a necessity that must be faced. For example, one may 

speak of real numbers. functions of real numbers, and families of functions 

of real numbers, the latter being a third order concept. Such investigations 

lead us to the study of axiomatic set theory. 

In the development of first order s-expression theory, we find it con

venient to introduce the infix "':'" to represent cons. We shall have it associ-· 

ate from right to left, so that A>:<B':CNIL = A>:<(B>:<NIL) = (A B). The function 

append which is familiar to LISP programs will be represented by a colon(:). 

Its primitive recursive definition is: 

D5: 

Th6: 

(:): sxs-+s atom[x] :::::> x:z = z} 

(x*y):z = x*(y:z) 

a tom [ x] :::::> x: [y: z] = [x:y]:z 

(1) 1. atom[x] 
') atom[x] :::::> x:[y:z] = y:z ..... 

(1) 3. x: [y: z] = y: z 

(1) 4. x:y = y 

(1) 5. x: [y: z] = [x:y]: z 

6. atom[x] :::::> x: [y:z] = [x:y]:z 

Problem 31 

Schema E 

Assume 

Instance of D5 

Modus ponens 1, 3 

Modus ponens 1, 05 

Replacement 4, 3 

Discharge l, 5 

1. Th7: x: [y:z] = [x:y]:z. Hint: It is important to choose the correct 

induction instance. If we induct on x, then Th6 is the basis step. Show that 

if u:[y:z] = [u:y]:z and v:[y:z] = [v:y]:z. then [u':<v]:[y:z] = [[u':'v]:y]:z. 

2. Define the partial computable functions car and cdr. 

-135-



The theory of s-expressions has no standard curriculum. unlike 

number theory. At this point, one might formalize notions of permutation. 

combination, rotation. etc .• or one might define sublis, and develop formally 

the theory of substitution presented in § 9. 3. 

-136-



' 
CHAPTER TWELVE 

RECURSION AND· Q&DUCTION 

Preview of Chapter Twelve 

Starting with this chapter, we unlt~,two s1.1bj~~ts which have _been 

developed more or less ind_ep~11dentlyqiiW np:w. ~Q Ch':J>,t~r~ Two fin<;i Five 
' ' • I .... ~ • ' ' . ., -- ,., , " J ii;. .,. ;·' : • - , • 

we developed the langu~Et ~f recursiv~ ~~ansl! -~~l~J.~- a_ l~~~e for 

describing formal computation~ on. s-;expr.~s~ioruh 'J'be notion ot recursion 
. ' ' . '. -. ·' : ; , ' " . :. ' \ _, ' ~ ~ . , ~-, . 

is shown to be absolute, and completely independent of this method of defining 
I 

it, because, by Turing's and _Church's theses. Jt is is:IFntif~ed .With effecfively 
- ' . ' - ·- . . ~ ~, , . 

<;omputable. <: 

In Cbapters Six thru Eleven. we have ;de\'~lQ}l~ ~tb-~ ~~j~ct of first 

order logic a~ a langu11ge for, mak~' as~e~i~~PJI• ~~":~9,vf.~ co_n,,e~µences of 

these assertions. and then partiql;llarized t!)if; .tQ ,~e. pi,<>rtY :<>f :6-~~ressions. 
The only relations betw~en ~duction and re~rsJ..011 ~~t -.;.e lulV,e estal;>lished 

r .. , . • ~: -, · ~. · o "--~· • , , ;. _ . · • 

so far are that deduction is subject to mechanicill ,veri~tc;"tion., i.e., 

"proofcheck" is recursive, and that certain types of definition within first 

order arithmetic provide recursive descriptions. 

There are two important questions about the relation between deduction 

and recursion that· we cohs1der in the reltt of\hts bOok. The ti:rst 'is the 

problem of representing. and discussing reci.trslve rulicti6rts or effecti've pro

cedures within first order logic~· The se<:ond'i's'tne p~~blem of reducing 
'. 

deduction to computation in routine cases. In this chapter, we begin with the 

first of these questions:by "represe&ting"Peeursiv~' tunctions in arithmetic. 

§ 12. 1 Expressibility and Representability 

In this chapter, let us consider the theory of arithmetic as consisting 
;:·,• 

-137- . ' 



-,. .. ,,,,,..' 

only of those function and predicate names that we classified as "total" in 

Chapter Eleven. These are the names that necessarily lead ·to unique model 

extensions because of their -definitional history. Since the standard model 

for formulas in :this language is unique, we c~ speak of a formula as being 

either "true" or "false" accordi-~g -t~ .wheth~1 ~r not this model satisfies it. 

There is no middle ground.. ·(We are not '-tiUt~ that there is an effective 

procedure for deciding which fonnulas are true and false. only that each one 

must be either true or false. ) 

Definition 12. 1 

If ii is a predicate in the &We ol beiftC a mapping from gm into "· 

then it is an arttht'rtetic predicate ttthere is ~ri'¥ii~~-.p~edicate name" that 

can be defifted in the -th~ry df arrihmirftc 's~ ~~~°,~~-n~ a-expr'essia,ns al 
thru am' ~<a1 •••• ,Ou/ is tru~ U anc& cn;i~Y ~ ~p.t1'~·. ~·~-~-~Jya"true. . ' · 

. ' . . \. . .. ' 

For any forlnula a, we write A .. a to ·mean thattliere is a· deduction of 

a from the theory of arithmetic. A ifl understood to mean the theory co~sis• 
ting of all the ·-a:xtom~ utt·~ •a.nlaa·:iil~~.a; ~·· 6ii:Pi~t': ~~. and 

~. ' "'1 . -._, • , ' - __ ,, - ·- ' ' 0 .1' ~; .... • ': 1 ,,: t ~;\ ;.· j. . : ·;:. ; ._' ~ ... .'. ·• ·., 

the definitions and J)'rtmitr'Ve t'ec..-.1cm .cJlemu' neceu•ry to define an the 

function and pr4!dtctde MmeaY lil 'tJ! ' ·Tti1~·111 :~l'iti~'iDO.t satiilr~~tOry 
notation. because it dOeli not Mty 'ap~y ;.k~ <·L' "iufti"'.Jiri ri&t le~ us 'into 

error if we are aware of'thte. 
~ ~ . 

Definition 12. 2 

The pr~~te i.. i.$ exp.£!!fiJ!!e. if it i~ ~~~~le. w", de!iAe - pre4icate . 
name ,Pin arithmetic 13uch Ulat. for any a-~~t~'Men,P.tr~ru<\n• if· 

'ii<a1, ••• ,am) _is true tl;l~n.i\1-fp1 ,, •• •• a._i, a~d,.i[;,f(qt~• . .,~ •• ,!lnJ is false. then 

~r;,P[al' .... "m ). ' - , -The n-ary funct:i,on <P is .r~er.e~~1'.fit9\,e1 .~~t- ~ 1ws.sil>l~ t,o.det'ine a 
function name 'fJ in arithmetic such that for any s-expressions a

1 
thru a 

1
• if ,.., n+ 

'{J(a1, •••• a ) =a +l' then Atiip(a1, ... •.al 0;,tf.;;...:·9'•'.·1 ,;, n n n . H'l"t-· · 

The notions of arithmetic, expressible and representable, may also 

be relativized to functions and predicates having numeric arguments or values. 

-138-



Corollary 12. 3 

All expressible predicates are arithmetic. 

All expressible predicates and rep·reSentable functions are recu rsivc. 

The effectiveness of the theory A. and the ·fact that the theorems of an 

effective theory :are recursively enumerable ·are a·'sufflcimit pl"o<>f of dfr.ct

iveness. Keep in mind that.for a procedure to deftn-e a total function is not 

the same thing as our being able to prove that it defines a total function. 

§ 12. 2 Primitive Recursion 

Corresponding to the definition of primitive recursive functions in the · 

system A. there is a subset of the language of recu:rswe function definitions 

that leads to primitive recursion. We;list.the·corresponding schemas side 

by side: 

·Schema C: 

Schema E:· 

atom[C J ::::> <P. (~ 1, •• ;., ~. C} = T J 
<Pf~1··-'··~n.C1*~2J=1'2 J 

'P[~ 1 ••••• ~n• ~ }+- (atom[C 1 ~ T1• 

T ~ Ta(<;~f[Cl/C1,.~dr[C J/'2 >I 

Rule CK: 

and 

-l.39-



The restrictions for Schemas C a.n4 E.,,•ad Bule CK are given in 

§ 11. 2 and § 9. 1. respectively. In particular. there are no quantifiers any

w'here in. these .a~as. and it :m.11at IM·JV$vable~that: exaetly Ode of the )'i 

must hold. ~··. defjnitjpns .in the r.taht. ~'define tke subclass of the 

recursive functions that are tbe p~,z.:ee••b• functions.: 

Theorem 12. 4 

AU primitive recursive predicates are expresaible, and all primitive 

recursive functions are reJ>l"'eSentable. 

Proof: }3y nested 4nttuctton. The •er induotiaa I• on the length of the 

definition history. ·The baaia. of the indl'letioaraa:~:1h• b&etc functions are 

representable. This follows from the computation schema. Group G. The 

induction step is to show that for each s~~a. if all the pre.ceding definitions 

are representable. then it is representable also. ·" 

For R1,1J,e CK. the (act th8:t •~1 .. Vo"Dd ina~e of the: schema can be 
(" ' ' '! - > • 

proven or refuted follows from the ibduction h~-itJ~ ·:~the replacement 

of equal terms and formulas, since there are no variables or quantifiers to 

deal with. For the schemas C and~:E,, ·. ~t1a.e ia also an inner induction needed. 

The preceding method will work ontr ~r ~ ~ ,~t 'P ,=
1 
~ ~. Scheina c. or 

atom rt J in the case of' Sel\~a E.. &tit thit is the basis for an induc~ion on 
the naturai num~s or •t11e s--expreasions ~ereby ttliif •• ). ·.,~r can be ~epre-, 
sented. then f,D( •••• 11 J can be repres~ed •.. ~r if 9)( •••• C 1 J and <P( •••• C2 J can 

be represented. then <A •••• C1 •c2 J eb·b~:'•preeented. 
,· 
Ji 

§ 1?. 3 The Incompleten:ess of Arithmetic 
4 f ,. I ,-

We are now able to demonstrate that tJte thegl.'y of arithnl•~ie is 
" '·,, ) . , ' ' . 

incomplete. This is not in itself aurprisin&. ~ecaua~ 1re have not investi-

gated the axioms presented in § 11. 2 ~~ seriously. and there is no reason to 

beli~ve that they are sufficient to prove everyta~ that we would like to be 
. ( <· .. · . '. 

able to prove about arithmetic. However. the ~ompteteness: theorems will 
. ·, :' ~ .' ' . .., '. . . ~ 

apply· to any attempt tO 'strericttien 'these aXiom~lso. We prove incomplete-

ness in three different ways. " 

-140-



Lemma 12. 6 

There is a primitive recursive predicate aprooff x. y] which is true if 

and only if x is the s-expression translation of a formula a in the system A. 

and y is the s-expression translation of a deduction that proves a in A. 

We do not offer a formal proof of lemma 12. 6 which would have to 

begin by writing out such a proofchecker. By now, you should be aware that 

if the amount of "work" that is involved in evaluating a recursive function is 

bounded exponentially by the size of its argument. then it will be primitive 

recursive. 

In order to be able to assert meaningfully that Ara. we must make 

sure that the names used in a have the meaning that we intend. We shall sa)' 

that a sequence of lines as in a deduction determines a if every name 

appearing in a except for the basic names is totally defined in this sequence. 

Suppose A is the s-expression translation of a sequence that determines CJ.. 

Then if there is some s-expression µ. such that aproof[X:µ., a>:'] is true. then 

we can reasonably assert that a has been proven. (The symbol ":" means 

append, andµ. is the continuation of a deduction that begins with X. a':' is the 

s-expression translation of a.) 

The predicate aproof. or something similar to it. is what G8del called 

"the arithmetization of metamathematics", meaning that we can interpret an 

arithmetic fact, namely that the predicate aproof is true for certain arguments. 

as an assertion about the provability of some formula. 

The key to G8del's incompleteness theorem is that the arithmetization 

of metamathematics allows us to create a sentence which asserts "I am not 

provable in arithmetic." If this formula is provable in arithmetic. then it is 

not true, and so arithmetic is capable of proving things that are false. If the 

formula is refutable in arithmetic. then if arithmetic is true, it is provable, 

and so again we have deduced something false. So if arithmetic is true in the 

sense that the standard model satisfies it, then it is incomplete, and this 

sentence is true but neither provable nor refutable. 

Theorem 12. 7 (G8del 1s Incompleteness Theorem) 

The system A is incomplete, in the sense that there is a formula f3 

-141-



,,-:.,·_.;. .}\., 

such that neither A~/J. nor AP--./j. 

Proof: The primitive recursiv.e function Sll.b4u~ ~·-defined as follows: 

subquote[x. y, z] ... [atom(z]-+ [y = z .. Ust[9{JOTJ;!, ~], T ... z)l' car[zJ = 
QUOTE ... z. T ... subquotef». y.carf~·J)*'sttbquotefx. y. cdr[zJJ] 

Let .\. be an s-expression tra)lS.latiQD Qf. a ~~g:.itequeaee for aproof. 

append(:), and subqµ<>.t'e.. CO;r.uaid.er 1lbe ~JJilQla:. 

a: -i:ix(aproof[A:x, sub.quote[y. Y, y}]) 

Its translation is the s-e'Xpl'ession: 

a* is a genuine s-expressieft •. · and the· dtlly ·t'l'dng;ttlat prevents our writing it 

out in full is that we. bave no• W'it.tett • prO«rilb 1bf a-proof:. and then converted 

it into a sequence of pl"imitiW ~eeurstve delinftt<JttS:1tii A. , .. Th~ would make 
•'\, ~ •. . ,. .. , ·, ,,. ~ '..' : . . ., . 

the s-expression A perhaps two or three writtetl'pa'ge:S' m lenifh. 
Now consider· tke ~-

Its translation is the s-express:ion: 

{J>'.~: tNOT ·(EXISTS x fAP'.ROOP' fAPPEND (Qt:TOTE A) Xl. 
(SUBQUOT'~· (.QUOT;,;1 ;~·*), 'QU@TE Yl '{QOOfPE' er*)) Hl 

/l is a sentence eontaining the ground term subquQtefa* ,.,Y .... a*].. This term 

can be evaluated'. using the deimiticm. of suhquote, a~<f. tjle value.tunl$.out to be 
I r. • ' . • - . 

the s-expression {li'f:.. Since subquote.is primitiv• recµrsJ.ve.., it ls pepre.sent

ablc, and therefore A~s~ote£ .. * ... "-. •*l = ~-.··Thell. b~ repJa~em.ent of. 
:!':; ; '::· .f.· ' 

equal terms, we have: 

Now suppose that fl as determined by ~ were. provable in A. Then we 

could write out such a deduction. and c9c:le this deduction into an s-expression 

beginning with A. Call the tail of this deduction I'· Then since it is a valid 

-142-

.. "> 



deduction, aproof[X:µ, f1*] would be true. Since aproof is primitive recursive 

and therefore expressible, this formula would also be provable, and from it 

and the formula (*) we could deduce --,{J. Therefore arithmetic would be 

inconsistent. 

Suppose on the other hand that --,fj could be proven in A. Then we 

could prove ~x(aproof[A:x, f1*] from this and (* ). Assuming that the standard 

model satisfies arithmetic, there must be some s-expression µ. such that 

aproof[X:µ, /J*) is true. Translating A:/J back gives us a deduction of {3, so 

once again A would be inconsistent. 

Assuming that A is a consistent system, and that the standard model 

for the s-expressions satisfies A, then we must conclude that /3 is neither 

provable nor refutable from A. 

This proof mirrors accurately the construction used by GBdel in his 

proof which was for the theory of natural numbers in the language ( =, 0, ', +, x}. 

However, his reasoning about this construction was quite different because h<> 

did not assume that arithmetic was necessarily consistent, and since he was 

restricting himself to finitary mathematics, the concept of a standard model 

could not be used. What he proved was that either arithmetic is incomplete 

or else it is either inconsistent or at least w-inconsistent, which means that 
I 

there is some formula a such that A~:[x(a), yet A~1a(O/x), --,a(O /x), 
II 

--,a(O /x), etc. 

At first, one might think that this incompleteness theorem indicates 

that the theory A is too weak and should have some stronger axioms. For 

example, we might add fJ as an additional axiom, since it is true but 

unprovable from A. It turns out, however, that the incompleteness of 

arithmetic has nothing to do with this particular choice of a set of axioms. 

Any true, effective extension of A will also be incomplete. 

To show this, let B be any true, effective extension of A. The 

effectiveness of B means that its axioms must at least be recursively enumer

able. F.rom this, it follows that there is a primitive recursive predicate 

bproof[x, y] which is true if and only if xis a proof of yin the theory B. 

Bproof is expressible (in A) because it is primitive recursive. It is expres

sible in B because B is a consistent extension of A, and so the incompleteness 

proof can be repeated in B, generating a formula undecidable in B. 

-143-



---'!'-.· --------:-

It is not even necessary to arithmetiZeJdeduction in order to show that 

arithmetic is incomplete. It is sufficient to arithmetize computation. 

Starting from the definition of apply. we define the function applyk(x. y. p,J 
Which has the property that if ap~ly{x. y] = z.' 'then th·er,e i~ a number Po such 

that if p ~ p0• then applYJt[x,y.p) = listfz). but if p_< Po~ then apply~(x.y,p] = 

NIL. If applyfx. y] is undefme~ th'n for 'all ~ applyk[x. y, pl = NIL. One 
way to define applyk is to add an extra arpmenf\o-~very sub;idiary function 

of apply. Each time a funcUon is called, this arpment gets decremented. 

If it ever gets down to zero, then th'e comptztati0n i~ Interrupted. o'. a~d. the value 

is NIL. It is also necessary to modify every f~U~n so that all explf citly 

undefined conditions get checked out, and so that a value of NIL get&· ref erred 
to the top level of the ~ promptly.. . ' ... . 

~ ; 

Lemma 12. 8 

Applyk is a primitive ~curstye ~tu::t~on. 

Alternate Proof that Arit~~tic ia ~Cqp:1.pl-~ 1f a.r~ta.metic were 

complete. then ever,y.a~~eti~ pr~~ ~~iR' PF~,.aad.hemce 

recursive. We know that the predicates halt and total. def~-ia Chapter..' 

Five. are not recursive.. They·~·· ;~lf'!~~ ~i#fipPl1tiQ, .\l.,~e they can 

be defined by: 

halt{x,yJ = !zip(·applykf!XiY•P} ,:1: Ustf•J) · 

total(x] iii Vyizip(applykl~ liat1~:t.-p-J. z,tiftftjf) 

Therefore arithmetic is incomplete. 

Problem Set 32 

. Ru.1-e x 
RUl~-X 

1. Let A be the theo.ry of ,ari~IJnJ.•M~ ~ ~~-; defipitipns Qf awlyk 

and halt. Show that there is a f~it• ~&:t <?:!;,~~· T. ~A s\lQJl tllat it r1.and 
'T 2 are ground terms containing ~ co~nstant• :i~ i "1~ "O~ &Jl4 no functions 

other than successor. enum and C!)n~,,.th~~::U';~(T1 ,,rz1 ft5 tpUt, then 
T""halt[r

1 
• T

2 
]. . . 

2. Show that first order logic is undectdable. (See corollary 9.18.) 

-144-



There are still further ways of demonstrating that arithmetic is 

incomplete, and each one illuminates a different aspect of the problem. 

GC>del' s proof and the proof of Tarski' s theorem in Chapter Thirteen are 

related to Epimenides' paradox. Epimenides was a Cretan philosopher of 

the fifth century B. C. who pondered the truth of the assertion: "This very 

sentence that I am now speaking is a lie." Epimenides was dimly 

remembered by the Apostle Paul who wrote the famous slander: "One of 

their very number, a prophet of their own said, •Cretans are always liars, 

hurtful beasts, idle and lazy gluttons.' " (Epistle to Titus, I, 12) 

Another approach to incompleteness has been developed by [Chaitin] 

starting from what is known as Berry• s paradox, which goes something like 

this: "Consider the smallest number that takes at least one hundred words 

to describe." If we ignore for the moment the problem of what is a valid 

"description" of a number, it is evident that some very large numbers can be 

described in very few words: for example "one billion hyperexponentiated 

one billion times". Among all the possible descriptions for any number. 

there must be one or more having the least number of words. So associated 

with each number is a number which is the word count of its shortest 

description(s). The smallest number for which this count is at least one 

hundred is the number that is referred to in the quoted sentence above. Yet 

that sentence which has less than a hundred words "describes" the number in 

question. This is the paradox. 

Chaitin replaces the ambiguous concept of "shortest description length 

in English" with the precise notion of "information theoretic complexity". 

The information theoretic complexity of an expression is the shortest 

instruction that can be given to a computer that will cause the computer to 

print out the expression in question. Obviously, the number one billion 

hyperexponentiated to the one billion is not very complex because a program 

to generate it is quite trivial. Information theoretic complexity does not 

consider the amount of time taken by the computer, or the amount of inter

mediate storage required, unlike the "complexity" of current complexity 

theory research. One may argue that the definition of information theoretic 

complexity is arbitrary because it depends on the choice of computer. This 

is true, but since any universal computer can simulate any other one, the 

-145-



difference in compleXity as measured by one computer and another cannot 

differ by more than a fixed constant, and this can be kept manageably small 

if the computers in question are of fairly simple description themseives. - -

Let us fi;x the definition of compleXity bore pr~d.sely. The function 
1 ~ ,.. •• ... 

sizefx]. ·the number of characters required t?'print the s.:.expression·x, is a 

recursive function. We now define the complexity of an s~expression x as 

being the least size of any g ... eX<pression y such th&t appiy{y, NrL) = x. The 

complexity of the s .. expression which is a list of the 'tirst. billion prime 

numbers is evidently quite moderate. · becau~e we ca~ easily write a program 

to generate it. and cast this program in the form of a recursive. function of no 

arguments. The complexity of a list of on~ bil~ion rlindom numbers would be 

large. however. somewhat the same order as the size of the list itself. The 
. - :i <.> ;: : f' ·~ .. , ' .--_, ' ,' ~1 . : 

complexity or any s-expression cannot be more than slightly larger than its 

own size. because x can be generated by th~· f~ctl~n '(FN () (QUOTE x)). 

The function complexity[x) can.~ dinn9d in .arlthmetfc u~ing Rule F 
~ ' . ' . 

because the following formula is provable. 

We are now in a position to formalize Berry•~ paradox. L~t g[n) be 
. ;.- ' . 

a recursive function that enumerates ali theor~ms of.,arithmetic with applyk,, 

size and complexity defined. · G is not all that complex in itself. It must 

contain the deduction rules for first order logic. th~ caXIoms of arithmetic. 

the definition of applyk. and some enumeration mac~the~y. . Conside~ the 

first formula in the enumeration g[O). g[l) ·• ~ ~ that is of U,.e f~rm 
complexity[a J > 1,, 000, ooo. 000 for some s-e~re~sion ~- . If arithmetic is 

true. a cannot be generated by any program of moderate length. yet we have 
. . . - . . 

just described such a method which consists in enumerating the function g 

until we come to such a formula. This ·process can easily be for~alized into 

a function of no arguments. The only way out of the· contradiction is to assume 

that no formula of the form complexity(a) > 1. 000,, 000, 000 will ever be 

generated in the sequence g{O ], g(l], • • • But this sequence contains all the 

provable formulas of arithmetic, and so the conclusion is that only finitely 

many formulas of the form complexity{a) > n are provable. and that n is not 

-146-



much larger than the complexity of the enumeration process. This is a 

startlingly different way for arithmetic to be incomplete. 

Cha~Un' s articl~ is htlhly; re~alN.-e,,-1 ancl-rela.tes. informe.tion theoretic 

complexity to the DQ-tipn of "random s-equem:e'!_,J&S well;illi51ccmtputability:and

in~mp,l~M~. 

It is. sometim'JS' (?laimied tba\ the varieus ~iacoxnp1'ten~ss and· 

undeci~!)~~ty_r~~ta,ar•, not :IJ&ef\ll tQ tbfttCGlftPV\ef«:IN'OI~_.. ccklcerned 

With a,rt~id,al ~ll.i-1~•- or ro,echaQtq~l:infe•ac•• .cbec:auee-rall these ' 

the.ore~ ~+e. be,.s~d "°q,,_~~· te~~~~~·~ o~_·p~F.Uo~ andral. ways 
- . -~ ; 

inyo1ve self-&.ppµcatio,n.or:d~agon@i.~1'tj.eg.,i- '~~-V'~r .-an.V....te do· thos-e 

particular ih.ings,, anyw._y:.;tn a~:rprac!lAA,~ s.iW.,tio,~.i', .. ;t ~d_:a<?W1Jethat, an 

the contrary,, self-application is precisely what one wants to do,, because a 

system of deduction that can examine its own behavior is that much more 

powerful. Chapter Thirteen is an examination of, this very qq~~tio.n.. By 
', ... ·' .' ~~,:,..~ J ·:~~:.::; .F~~}~.J-~''°.~.>L'L ~~"': !''-_ i{··: _-,~ _:L_: : _: :. ~ 

proving incompleteness in three different ways,, I hope I have made the point 

that incompleteness is a result of the richness of logic. rather than indicating 

its impoverishment. 

§ 12. 4 Representability of Recursive Functions 

Let 'fJ be an n-ary total recursive function. Let 'f'* be the s-expres

sion transiation of a sequence of recursive definitions that computes '{J. The 

following formula contains exactly the variables x
1 

thru xn and y free: 

:a:p(:a:z(applyk[tp*,, list[x
1

,, ••• ,, xn). p] = Y*z) A 

Ym(m < p ::> atom[ applyk['P*, list(x1, •••• xn ]. p ]]) ) v 

Ym(atom[applyk[tp*,, list[x1, ••• ,, xn], m)] A y = NIL) 

Calling this formula a for the moment. it is possible to prove 3 1 y(a) 

within arithmetic. In fact,, such a proof is completely independent of the 

definition of applyk and the a-expression 'f'*,, and depends only on the principle 

of any non-empty set of numbers having a least member. Either there is a 

least p such that applyk['P*,, list[x1,, •.• ,, xn ],, p] is non-atomic,, in which case y 

is car of that value,, or else the second part of the disjunct holds and y is NIL. 

Therefore. we can define the function '{J by Rule F. getting Q(tp[x1,, .•• , xn ]/y). 

This happens to be true for any s-e:xpression tp*. If fP* .defines only a partial 

-147-



function computationally, then the fuoctio1H.O" defined in first order arithmetic 

is completed by· having: the vaiue NIL __.evttt" the; cottlSJutation doee not 
produce a value. ·If <(J*· is not. a proc~l'.'.t a.t all. tp will still ·be a•~antly 

NIL function. But f#> .·wtll not necessarily ~be. ~table:.· 
While there is nO ~ocen that at:ways !-ell'• ttB "vb~er'fP* computes a 

total function, fn each. case where it cteea:; •WU} bEt t"f!:pt-e~ble bt· arith-' 

metic, for if a1 tbraati are' any· S!'"~e•ae.a;,· th* fctr'' sorne num.ber p and 

some s-expressionan+l' A~ly:kftl*•lti1t .. f,. .~·;·,.ct~), Pi(~'list{c7f1+ 1 ], anti for 

m < p, At-applyk{tp*,list[0'1, ....... G'111'.mJ<= Nit:.:. 'l'h.e~e: 

Theorem 12. 9· 

All total recursive functions af.tt. ~e~e~ble~ 

-148-



CHAPTER THIRTEEN 

METAMATHEMATICS 

Preview of Chapter Thirteen 

Given a formal system of deduction, a metamathematical statement is 

an assertion about the system, very often about the system as a whole. For 

example: (i) Arithmetic is consistent. (ii) Arithmetic is incomplete. 

(iii) The formula fJ cannot be deduced within the system. (iv) The formula y 

cannot be deduced within the system except by a deduction whose length is 

astronomically long. (v) The name LENGTH defines a function having an 

s-expression argument and a numerical value. (vi) Every formula of the 

type Vs(a) ::::> :a:i;(a) is provable. (vii) Replacement of equal terms is a 

derived rule of inference. 

Metamathematical reasoning is the method by which we arrive at 

statements such as these. It is impossible in any practical sense to do 

without metamathematical reasoning, and in fact we have used it throughout 

the book. If we want a practical system of logical inference, it will be 

necessary to formalize at least part of metamathematical reasoning, and that 

is the purpose of this chapter. Much of it has to do with formalizing the 

semantic notion of "truth", just as in Chapter Twelve we formalized the 

syntactic property of "provability". 

§ 13. 1 Truth and Tarski's Theorem 

We first define truth as a semantic or model theoretic concept, and 

then later in the chapter we shall make use of some axioms concerning truth. 

It is important to proceed in this order because it is only by having a clear 

-149-



model-theoretic concept that we shall know that our axioms are reasonabl~. 

If a is a formula of arithmetic, all of whose function and predicate 

names are defined and total, 'then we shall define truth{a*) to be true if and 

only if a is true. Defining nec('Jt)·to ·beUatfNOT. x], either truth[O!*] or 

truth[neg{a* J]. but not both, must hold for any_ totally defined arithmetic 

formula a. because either s:~a ors~~«. whel-e sis the standard model of 

the s-expressions. 

We now make the important point that the predicate "truth" is not an 

arithmetic predicate. It lies outside of the sys~-~ ami 0if the formula a 

contains "truth" then a is not an aritbmetic f~a. and the above discussion 
•• ,._ - • ' _.'). -·.,_· •• - ' •• '-· < • ' • • 

does not apply to a at au. If 11tr,uth" were ,an ~t~c. ,p,redieate. then it 
; . . '. ' :· ' '~ ~ .· -- . . . ' 

would be possible to establ.ish Eptmenid;e~.· pa~adox Within, ,¥ithm;E!tiC. This 

is known as Tarski 1 s theorem. 

Theorem 13. 1 (TarSki's _Th~.r~m) 

Arithmetic truth is.not arithmetic. 

Proof: Suppose to the contrary Uta't it wel"e ponitile 'to define truth[x} within 

arithmetic such ·that if a is any arithmetic fonmlk. lhen··sto: if and only· if 

s hruth[a*-]. Let - be the tormuia'-ft~dl{s~cl,te:{y;v~'Yn~{ }Jet,, he the 

formula 1truth(subQ'1otef~.Y. _.,. Jl. Then "Y • ~'{'>4]. so s~,, if and only 
if S ~-itruth['Y*] it and .only tf ·Si:trutnffte~Jltf'and only if' sl;.,y. 

Because S ~a if and only if S ~truthfa*] is true only for arithmetic 

formulas. it becomes neeessar'y to :expnss the :predi't:ate "'a* is arithmetic" 

itself within arlthnietic. If'we dtd not lia~e d'e1'iiittori~. the 'problem would be 

easy. An arithmetic formula would be one ~e··runction and predicate · 

names are only the basic ones. But since we do allow definitions. the prob

lem is administratively more COmpliCate(l. ~"not conceptually ·SO. 

An administrative faeetiall ta• ·lunctien;!Nl.tnmakes certain ·s~stem 

information a'1lilabie within the system., T~ functions are 11ot charged 

with tbe semantics of 'tt.ru:th". -·and .s.o we may. ;consider tlreirloto be< oz-;dinary 

arithmetic functions. They tell us what has been written down in the system 

so far. The only administrative func_tton that we need n-w is defn[x]. If x 

is a name that has been defined by any of the definition rules or primitive 

-150-



recursion schemas. then defn[x] is a list of the name of the rule. and the 

lines of the definition itself. For example. defn[PLUS] might be 

((SCHEMA C) (EQUAL (PLUS M 0) M) (EQUAL (PLUS M (ADDl N)) (ADDl 

(PLUS MN)))). It is evident that starting with a certain amount of initial 

knowledge. and the information obtained from defn. the history of any function 

name can be investigated, and various determinations made. such as that it is 

total. primitive recursive. etc. In particular. if the history of definition 

does not include TRUTH. then it is arithmetic. From this. we can define thf' 

predicate arith[x] which is true if and only if x is a* for some well-formed 

arithmetic formula a. Arith itself is total, arithmetic. and computable. 

We now postulate the following formal metamathematical axioms which 

are justified because they are true. that is. they are satisfied by the model 

which is the standard model for the s-expressions enlarged (non-conservatively) 

by interpreting the predicate truth[x] to be true if x is a·~ where a is a true 

arithmetic formula. and false if x is °'* and Q is a false arithmetic formula. 

and leaving truth[x] unspecified for all other x. Notice that none of these 

axioms make any assertion about truth[x] unless arith[x] is true. 

Ml: Semantic Completeness and Consistency of Arithmetic 

arith[x] ::::::> (truth[x] :z 1truth[neg[xJJ) 

M2: Validity of the Axioms of Logic 

arith[x] ::::::> taut[x] ::::::> truth[x] 

arith[x] ::::::> ql [x] ::::::> truth[x] 

arith[x] ::::::> q2 [x] ::::::> truth[x] 

M3: Validity of the Rules of Inference of Logic 

arith[y] ::::::> mp[x. y. z] ::> truth[x) ::::::> truth[y] ::::::> truth[z] 

arith[x] ::::::> q3[x. y] ::::::> truth[x] ::::::> truth[y] 

arith[x] ::::::> q4[x. y] ::::::> truth[x] ~ truth[y] 

M4: Truth of the Axioms of Arithmetic 

arith[x] ::::::> ax[x] ::::::> truth[x] 

where ax[x] is true if xis a:* for some formula a 
which is an axiom or instance of a~ axiom schema 

in Group A. B. D. F or G. 

-151-



M5: 

arith[x] => ninductfxf,~ trUth(x) 

arithfx) .::> stndU~f'X)O trvth[xl 
where .thOee pt'Nteatee· uawt~ x·1ts an instance 

· or B4 or 'D3, · re•cttvely~ '1 · · 

Truth of Formulas IntrOduced as Definitions · 
' . . ·. . • • ; .• ~ .i. .·: . . ~' i:: ; ' . . : . 

arith[x] ::> !y(memberfx. cdr(defn(y)]J) ·:J truth[x] 

If x is ~* for 'a for~ul~ ~ in~dUced by some 

definition or prt~lti~ r.ecuT~lQ~ s,ch·~~a, then it 
is a me~ber of defn ~f' tile' ~~e th~t' ~as . def~ned. 
(Car of this Ust is ih~ name dlib~' ~che~a.) 

. i .. ' '; ' "f • , 

M6: Truth of ~ Predlca• 'truth 
aitith{«* J ::> 4'K· • t.nl1bft»,.J> 

This is an a~ .e,chellla· wbi~~ e~t: o&represeJ'lted 

ia the pr__.,.,..._ ... ;~,••lk~· 

Schema M6 iB' at the yery center of the nattdn1bf 'fdrWtal metamathe-
, 

ma tics. It is bidirectional~ · ·Ftfft 'H:•llo'1M' tiiitt1tt w•;.dtin a'ssert some 

formula a then we can assert that a is true. In the other direction. it allows 

us to pass from the assertion that eri*·trbe to·eitsetf ... 

§ 13. 2 Metamathematical Deduction 

Let us modify the primitive recursive tunciion aproof(x, y] slightly by 

requiring that any definitions qccurring in x be COl)Sis,tent ~th the system A. 
< "r :{; . " _·· " . . . • , -, , • , . "· · ;. ,,~ ! t r- .' ' .'' /' ~ r • 

We can now do this by using defn.. This 'anon 'u8' to di~nse with the 
. ; . . - : ·. \ ·' ,~~~ .· ., . -. / . >~ ~ 1',,.. '. ' - "'" : .. ; .:~ ; : i_ J, 

nuisance of the determining seque~e ~.used in' Oiapter, Twelve. It is now 

possible to prove by induction on ihe len~ of tn~, ~~¢·~i01,t' y: 
_, 1 ; -~-- ; "./;). r· ~. ~ r ;· -

(**) arith(x] :J iy(aproof[y,. x}) :::> truth[x] 
' . " f '.· " '! ~ ,, .. ' ' 

The formula /3 of theorem 12. 'I eannpt·b~,,.,~ced.:wtt!}in the system A. 

but at the time that w• prQyed ~•:·. we ~r:sued Dltt&~tmatically that fJ was 

true. We can formaUJ• Uda. ~.-em ,~.foJlQ.W~ .. 

(1) 1. •/J Asaum.e 

2. {J = -,~x(aproof[x,. ft*-}) This is provable in A. 

-152-



3. arith[fJ*] Also provable in A. 

(1) 4. :B:x(aproof[x, /3*]) Prop 1, 2 

(1) 5. truth[fJ*] .IJ)stance of**, 3 and 4. 

(1) 6. fJ M' ~. 
7. -.{j;;) /3 Dis~harge 6, 1 

' ',•c' / 8. fJ Prop 7 

This shows that formal metamathemat~ all~~ us to prove some 

formulas of A that are not provable i1;1 A~ . flowever1 it. does not allow us to 

complete A. Halt and total are still no,t r,.ecursive,. sin~e. the notion of 
' •' • - • ., ', c 

recursiveness is absolute and therefore not dependent on one's choice of an 

axiom system. No formula of the sort c~mpl~xity(Ck J> 1, 000~ 000~ 000 can b(' 
\ . ' ' 

proven in formal metamathematics, or i~ any.truthful'system whos~ axioms 

can be enumerated by a function of feasible· c~mplextty. . 

The following extreme case showa t~at th~;~'ia~e for.inulas having 

proofs of unfeasible length in arithmetic thaf have feasible proofs in meta

mathematics. Consider the formulas: 

a: -.:B:x(size[xJ < 1010 " aproof[x, subquote(y, Y, y])) 

/3: -.:B:x(stze[x] < 1016 A aproof[x, subqudtefa*, Y, a*]]) 

fJ asserts that there is no proof of fJ (in a~it4me.tic) of f,eQible length. If 

there were, arithmetip would be untrue, . ~:tld $0 .we may aSS\olDle that there is 

no such proof. fJ is ther~fore true. Unlike, theJorm,ula /J. of th~em 12. 7, 

however, this one is provabl_e in A. Let a1, ••• ,an be an enumeration of the 

finitely many s-expressions whose size iS less than 1010• For each i, 

At--,aproof(a1, /J* J. From all of these results, and the ael!tertton that this list 

is complete. it is possible to prove fJ because the existential quantifier is 

bounded. Of course such a proof is IPUCh larif!W :'Ulan 1.010 iJl si~e. 
The metamathematical proof of fJ is so similar to the preceding proof 

that we do not even need to write it down. 
Theorem schemas are metamathematical assertions that occur very 

commonly. We do not want to have to wrffe out a dedudtioti tor each instance 

of a schema that occurs frequently. CotuHder ·the least ,number schema which 

is: 

:il71( Q ) ;;) :!hJ( Q /\ VII( a (fl /fl) :::> V 2 71)) 

' 
.. t 

-153-



' .. • 

This is true for any well-formed formula ·a. any numeric variable rt. and any 

numeric variable 11 which i• free for 11 in .a. The assertion that ·au instances 

of this schema are provable is not even metamathema1ical. It is: . 

iyiziw(wff[y} /\ numvar[z] /\ numvar(w]" -inull(sub[list[w. z]. y]] " 

x = list(IMPLIES~HstfEX!ST. z. yJ. list['B~STS. :z. ust(AND. y. 

ust[FORALLi w. Ust(IMPLIBS. 1~tMt[w• ·z L yJ. ltst(OTQ. w. 
2: ]JJ}))) :::> iu(aproolfu. xJ) 

where sub is defined in problem set 22. No.1. Let us abbreviate this to 

lnp[x) => iy(aproof[y. x)). where lnp st~ds for_ h~ast number principle. This 

formula is provable by formalizing a de.ction sch~ma fpr tpis theorem 
• • . • • • '. . ~· . • ' ' ' > ~- ,: • : ,. . ". ·- ~· 

schema. It is tedious work. and one ftrst has to d ... l With ~ome properties 

of substitutivity. B'1t havin~ done thla. w~ can th•J1 de~c;• from(**) the 
formula: 

arith(x] :::> lnp(x) :::> truth[x] 

The advantage of having this formul~ is U..t ctven a~y ~rithmetic formula a 

such that lnp(a* J is· provable. ~e can derive a ttaeif" from M6. Lnp is a 

simple primitive recursive formula'that ift~~lt tilHS Ha 'a'priteat to see it 

it has a certain format. Lnp ts caned a thedr• fll~bema~ · ·lh 1enera1.. a 
theorem schema is any unary predicate f t&Uch;tbtat:'· -

arith(iJ:> f{¥) :> trut.h[xL 

has been proven. and an inference, soheQla i• 'antv n+l-ary predicate #> such 
that: 

arith{x1 ) :> ••• ::i arith{xn+l ):> truth[x1 ]:> ••• :> trUth(xn) :> 

l/>[x1 ...... xn+l] .:> truth(x_..1 J 

h.as been proven. 

Metamathematics aUows \18 to de~onati-•~, t.hat a predicate defined in 

ari"1metic is a theorem scn.r.a,,or i.Qf~renc•;iae.ftema,. . 'Fbis sol"- half of 
' ,_., 

the problem of reducing deduction to computation in routine case~ The 

other half of the prob~ UI to pro~,ibat • pr~te defined in the logical 
theory is the same as the predicate computed by some procedure in a 

programming language. When this has been established. we can t\en compile 

-154-



- --~.-----~------- -----... -
'--:··,,:··:,. :; 

the procedure. knowing that it is a valid addition to our collection of proof 

techniques. Theoretical results relevant to this problem are presented in. 

Chapter Fourteen. 

Problem Set 33 

1. Show that a = truth[C¥*) where a is any formula is an inconsistent 

schema. 

2. Using(**) and Ml th.ru M6. prove an airthmetic formula asserting 

that arithmetic is consistent. 

3. Why is M4 necessary to the proof of(**) even though each ground 

instance of M4 can be deduced from M6? 

§ 13. 3 The Hierarchy of Truth 

The notion of truth in the system we have ~st deacrtbe:d can be 

formalized by means of a predicate truthl[xl:whlch j,e, oplfict. th~t system. 

This leads to a hierarchy of trllt,h functio~, •ch.of •i:A- ~an reason meta

mathematically on the systems.below it •.. lt .i.il PQ&S~t,>l;e, to tlefine a predicate 

truth[x. r) where r is a rank number,_ andjQ ~~.ti;e ~~·so that at each 

rank the truth of formulas ot lesser rank.can b«t cliecu~~ •. An arithmetic 

formula is of' rank 0, and any fQl"mula in .which a1Looqli}rt"ence$ of truth are ' 

of the form truth[ •••• nlwhere n is a nu~:r ~ Qf -ir~n~l. If a formula 

contains truth[x, y]. where y is anythlna other .tban-.a ,fl.v.spbe1, then the 

formula is outside ~e rank system. and ~ be d!$P\18"4 ~ any level. It 

is natural at this point to extend t,bia idea ev~ furth4~. by letUng the second 

argument of truth be any ordinal number. Thts. crea~ a 'Whole new situation. 

It is not clear how much .of this hierarchy is actually, u•ef\tl, but. it would seem 

that having at least several levels of it are. 

-155-



-OHA?rBR POUR!.NCEN 

THE RECURSION THEOREM 

Preview of Chapter Fourteen 

The purpose Of thiS diaptet- is to reiate foactit>M desel"ibed by 

procedures. which :an. in· general. partial ~~~s. with descrip

tions of functions m fir-.tt ~ '~. ·W\r!tWd to "db: 'thts in ·order to' 

prove theorems aboutpN.f~e...,•11. ··.-ndtn·~tO'ftrii·p~~ for com· 
puting functions that ila'Ve ·'been dllft1*i;~j.; one· ·eumj>J.e of: \lie latter 
is the problem of c~tnf ·• fbnetien'wtadi W;·~'~V'i!it 10 l:Je· a ·theorem 
schema or infef'.eDCe ._. • .._ .• ._, h;al1llrll*·~ ~-~y. 'Tllitteen.··· 

The recursion ttNo~ .i-a i. ._. ~ft .i\i -~hive fanction theory. 

Its relevance to then-~Nbtenhft 'bMll ~'t .. \;y fl&sdretu~rs·tn the 

semantics of pn>gN11mlkla'l&ftlGalP*,. •"·CoJajA•~·.~ct'i#htdlt Vie dO'not even 

approaeta except 161" tlrevt!Py tfl.ViU~'t ...... Of1'idar!iiW~ttcms" as 

specified in ·Chapter Tn. ~t-cb lb tiir ~ ·. ~ :tmrri abstrac·t 
topok)gy to detail.ed eeniantie4eeerlptl«M'14 Of'MliO~;··•ts ~done by 
[ScottL [StracheyJ and others in the"Orcfdrd ~mftiitti·flea•rch <troup. 
and {Milner]. INewry) .. [Igorashi] and others at the Stanford Artifl~ial Intelli

gence Laboratory. 

§ 14. 1 The Nature of the Problem 

In Chapter Twelve we describe a· correspondence between procedures 

and formulas of first order arithmetic for the special case of primitive 

recursive functions. It is easy to reneralize this syntactic correspondence, 

but not immediately useful because of prDblems of consistency~ 

-156-



Consider a recursive definition having the general form: 

<P[~l' • • • • ~nJ .. f 

It can be converted into a set of formulas of first order arithmetic by replac

ing the " .. " with "=". and then applying the distrlbuti~e rul~ of conditional 

forms. and the conversion of conditional forms into fogical formulas, des

cribed below. until there are no mor~ conditfonal fortns. '. Since every part 

of the language of recursive functions exce~i for the conditional is part of the 

language of logic. the result must be a set of formulas'. of logic. 

Distributive Rule for CondiUoriat· Forms· 

Transform fP[ ••• , [1'1 -+ £1,.. ·;. "n ... ~~.· •.. ~into (7r1 ... 
<,o[ .•.• (1 •••• ], ... ,rr .. <,o[ •..• f, ••• ]] where<,o is any function 

n n 
or predicate name, including "=". 

Conversion of Conditionals into Logical Formµlas 

When the conditional form [1'1 .. 't• ... , •n .. 'bl:is hot a 

sub-form (i.e •• when it is on the outslde), transform it into 

the sequence of formulas: 

"1 ::> '1 
_,,, 1 ::> "2 :::> ~ 

... 

..,,,1 ::> • • • .:::> ..,,, 1. :::> ,, :;) ( 
n-: n. n 

When the conditional form is on}he out~i,de of. everything . . 
except for logical connectives, tra~.~form ~:t.)n,t,<>,.tb.e coojµnc-

, ' ., .· ·. . ., . ' 

tion of the formulas of this schema. 

Example 

substfx, y. z) .. [atom(zJ-+ [y = z -+ x,·T .. z]. T ... subst(x, y, 
car[z J]*subst[x. y, cdr[z )J) 

becomes 

atom[z l :::> ((y = z ::> subst(x. y, z) = x) /\ {y ~ s ::> sub$t(x, y. z) = z)) 

-,·atom[z} :::> subst[x,, y, z)= subst[x, y, carfzt1'1JUba$; Y• cdr{~}) 

-157-



Unfortunately, there is no justification for changing 11+-" into 11 =11
• 'A 

procedure cannot be inconsistent; it can at .~r~t ant.produce a value. or 

produce a value not anticipated. The a·ne~<Jn .t)):at tile l:~~ half is equal to 

the right half may be logically inconsistent. There are thre~ situations that 

may arise from a re.cursive deftmtton: it mq ~~define, under-aeftne, . or 

exactly define a function. 

Case I: If a recul"sive ·definttion °deftnet1 a ·total function, then the 

transformation into logic .produces a set of 'fOlltnu.las. ~t ·.represents the 

function. Subst is an ·exampl-e of this. The function subst computed by the 

recursive definition ·ts the Ame• the furictidn·repr.8,ented·by the two 
.. . ~· , 

formulas. 

Case II: The recursive definition ts under-defin·ed. In this case, the 

function computed by the recursive ·det'.inttion ts partial., •and ;there are more 

than one compl·etlons of the function thaf ai-e model erilar.gements satisfying 

the formulas. Consider: 

rfn) +-1.fn + 1] 

:f(n. m J +- f[m, n] 

Both of these definitions compute totally_ ·--~d ~tions,. The first is 

satisfied by any constant function; 1tre ~nd' is satldied by any commutative 

function (on the natural numbers) .. 

Case Ili: The recursive deft:nition is over-defined. ln this case. the 

function computed by 'the t-ec:urSi-.e definition is ,arli~i.. and there a~e no 

co.mpletions of it thal sati&fy the tormulas.. !rhei•e are no' model enlarge

ments, and the system is incottsistent.. An e~p!~'is ·t'h,e deftnttion: 

ffn] .. t[n] + 1 

As a procedure, it does not c.onvet"~.. As. an ass~, ,f{n] = f(n) + 1 is 

inconsistent. 

Combinations of Cases I and Ht .atso occur. 

The last example is extreme, '.but there ts no general method tor 

deciding which recurs:iv.e ,deflntttons are ~-determtnW. Nor can we 

regard them as undesirable. The definition of apply given in §2. 4 is over

defined, and there is no way to avoid this. 

In § 12. 4, we proved that all tdta1 l'ecursive functions are represent-

-158-



able. although we cannot always decide what is a total recursive function. 

Suppose we call a partial function~ partially representable if it is possible 

to define a function name tp in a:riUimetic su~ t,ha!t if ~1 •.•••• ari) is defined 

and has the value an+ 1• then At-cp[a1 • •••• an] = an+i • 

Theorem 14. 1 

All partial recursive functions are partially representable. 

Proof: This is implicit in the proof of theorem 12. 9. The representing 

function described in that proof has the value NIL for those arguments for 

which the partial recursive function is undefined. but it may not be possible 

to compute this NIL. 

This method of representation is il).direct, dep~din1 on the definition 

of an interpreter function applyk which itself is fairly qemplicated. The 

recursion theorem .which follow$ is relevant .to 9btatniDg a direct transforma

tion of a recursive definition into arithau~t;.~.:wi~\lt thA:danger of inconsis-· 

tency. and in a manner that allows us to pJ"().V# lotic~J ass~rij.ons about the 

procedure itself. 

Problem 34 

Show that apply is over-determined. 

§ 14. 2 The Recursion Theorem 

The notation that we use here folows [Scott] in his work on lattice 

theory and programming languages. althouiti we do m:>t actualiy define a. 

lattice. 

We introduce an object "J." called "bottom" or "undefined''. Letting 

S be the set of s-expressions. s
1 

is the set ·s U (J.J. The symbol "~" 

meaning "is less than or equally defined than" is a binary operator on S1 
defined by! J. E J. • .i. !: a. and a: a where ·tr is any s•ex:presaion. ":" is a 

partial ordering. 

The notion of equality on the domain s
1 

will be represented by the 

symbol "~". The symbol "=" will mean computational equality. "~" is not 

-159-



a computab1e predicare. Th-e twe -equtUUes can be compared in the ronoviin·g 

table. where ex and - are distinct .a-expres•i1'8: 

c d c=d ci!:!d -
ex Cl! T T 

a '-- - ,F F 

.a J.. J. F 

J. Cl! J. F 

J. J. J. T 

The predicates atom. name and num.. and the functions cons are 

extended to the dc.tmain sl in ;tile 'Mine ltt~ .. nw:ti~ by ttelbiing the value 

to be J. if any argmnent iS J.. The ft:nlctiolia ~ ncc.enor •. pred~ces'sor. 
ear .and. cdr are also ~ded to s

1 
by ~'"*tw·to be J.. if the argtf:.. 

ment is J. or if tbe w.lue ta·nttt-dellMil, re~1~-~- *'**fA.f • i~· &nd"car{AJ = J.. 

A functien flt is canet· ~c ft •1c'b'1 fo'I' ·t s i' 1« ri · ilnpUes tha.t 

q>(a1 ••••• an)E tp(b1 ••..• bn)" for all a1 and bi ta s1• Tbe ba-atc Nnctions 
mentioned in the preceding para,rapb are all monotonic. 

The ordering ":" extends to function• b7 deftninc •i •'P2 if<tor :an a 1 
thru an in s1 • .p1(a1 •••• , an)StP2<a1 ... ·~•ti)J 

Let {ai} be an infinite sequence of elements of s1• It is a monotonic 

sequence if ai E aj for i " j. A sequence of ,.,...~'. -~ :(~ ha~ :the 

same number of argum~ts) is .a ~~~,~~~e lf.,,t:~.~j fo~ i s; j. An 
upper bound for a sequence .is an .. object such ~at 4lll1 l'n!ft!!>e.:r.of th~ ~equen~c 

. ' . _, • 'l : ;;<".' -:~·" ~ •. , ~--;,:-~ ',-:_; ,._}~1,'._,_;,~ ,,.-. •.·I , • 

is "E 11 to it. A lust upper bound for a s~ce ill an upper bound that is 

"E':" to any other upper bound. 

Corollary 14. 2 

Every monotonic.sequpce ltil• a ;Least tlJIP•r bQund. lt.eac:h function 

in the monotonic sequence {fp1} is itself a monotonie function., ·,fibeft·the lub of 

the sequence is also a mon~ic· f~tioal. 

A functional is a function that takes functions as arguments, i.e •• it 

has one or more domains that are themselves function spaces. The notation 

for functionals is a bit cumbersome. - When we write .. [S~ ... s1 ], S~ ... s1• we 

-160-



mean that• is a functional whose first argument is an n-ary function on s
1

, 

whose 2nd thru n+l-th arguments are members of s
1

, and whose value is in 

s
1

• More complex possibilities exist, but this particular type of functional 

will be the only kind that we need to discuss here. Functionals can be 

monotonic in the same way functions are, since all their argument and value 

domains are partially ordered. 

If~ is a monotonic functional of the type mentioned above, and (<,0.J is 
1 

a monotonic sequence of n-ary functions, and a
1 

thru an are a fixed set of 

elements of s
1

, then (~<Pi' a
1 
•••• , an)} is a monotonic sequence in s1• and 

therefore has a least upper bound. The functional •is said to be continuous 

if it is monotonic, and if for every monotonic sequence (<,0.J. and every choice 
1 

lub(•<<Pi' a 1, ••• , an)} :!! •Oub(<,Oi}, a 1 •••• , an) 

A fixpoint for the functional • is a function <P such that for every choice 

of a 1 o/u an in s1, •<<P. a 1, ••• , an)~ <,0(a1, ••• , an). A least fixpoint for• is 

a fixpoint which is 11 ~ 11 to any other fixpoint. 

Theorem 14. 3 ( Fixpoint Theorem) 

If• is a continuous functional having one n-ary functional argument, 

and n ordinary arguments, then it has a least fixpoint which is monotonic. 

Proof: Define <Po by letting <,00(a1, ••• , an) ~ J. for all ai° Define "°n+ 1 by 

letting <P +l<a
1

, ••• , a ) ~ •<<P , a
1

, ••• , a ). We can show by induction that n n n n · 
the sequence (<,0i} is monotonic because <PoE<P1, and if <,OnS<Pn+l' then 

"°n+l (al,···• an)~ •<<Pn• al,···• an)!:~(<Pn+l' al,···' an)== "°n+2(al, ···•an), 
so <P 

1 
c:.<,O 

2
• Let <,O be the lub of the sequence (<,0.}. Because~ is contin-

n+ - n+ i 

uous, ~(<,O, a 1 ..... , an) 2!!! lub{•<<Pi' a 1, ••• , an)} e! lub(<,Oi(a1, ••• , an)} e! 

<,O(a
1

, ••• , an). So <,O is a fixpoint for ~. Now let., be any other fixpoint of•. 

<,00 !;.ip, andif<,O 51/J, then<,0 +l(a1, ••• ,a >== 4>(<,0 ,a1, ••• ,a >=•<at>.a1, .•• , -- n n n n n 
a ) :!! l/J(a1, ••• , a ) .. or <,O +l c: ,P. By induction, <,0. S ,P for all i, and so ljJ is an n · n n - i 

upper bound for (<,0.}. Since<,0 is the lub of {<,0.J, <,0El/J, and so<,O is the least 
1 1 

fixpoint of•. <,O is a monotonic function because if a.Eb., then <,O(a1, ••.• 
1 1 

a ) ~ ~(<,O, a
1

, ••• , a )S~(<,O, b
1

, ••. , b ) 2!!! <,O(b
1
,, •. b ). n n n n 

-161-



This proof of the fixpoint theorem has been an exercise in abstract 

algebra; it uses no properties of s1 other than that s1 is a partially ordered 

set having a least element, and such that every monotonic sequence has a 

lub. But the notions of monotonic and continuous are surprisingly useful in 

the theory of computation. We have already noted ~hat the basic functions of 

computation are monotonic. In fact, any partial recursive function is mono

tonic because that simply means that supplying more information about the 

arguments of the function does not decrease the possibility that the function 

has a value. 

Let cp be a partial recursive function on S. We extend it to be a total 

function on s
1 

by letting the value be J. wherever the value was previously 

undefined. cp may also have .J. as an argument, in which case the value will 

be J.. unless the argument is not needed in the computational process, and a 

value is obtained without it. By Church's thesis, there is an effective 

procedure that computes the value of cp whenever it is an s-expression, but 

may never terminate if the value is J.. Let '{J. be the function such that 
1 

cpi(a1 •..• , an) is defined by doing i amount of work on the computation of 

cp(a
1

, ••• , a ), and returning the value if one is obtained, and being undefined n . 
otherwise. The sequence (cp.} is not uniquely determined unless we fix a 

1 

particular procedure for computing cp, and specify an exact definition of work. 

But by merely postulating that every computation requires some finite amount 

of work, we see that every such sequence has cp as its lub. 

Let ~(cp, a 1, ... , an) be a functional. We would like to call ~·partial 

recursive if there is an effective proQedure for computing it. But this 

requires that we specify how this procedure is to be given functions as argu

ments. If cp is a partial recursive function, then the problem is simplified. 

We simply give to the procedure C» a procedure that computes cp, and require 

that the value be independent of which procedure for cp is used. But we do 

not wish to restrict the argument cp of~ to partial recursive functions only. 

So we invent the notion of an oracle which is like a black box, or an on-line 

intervention in a computational process. 

The purpose of an oracle is to simulate the effect of a partial 

recursive function even when it is not. A black box that gives the value of 

1jO(a1 •... , an) when it is defined, and replies 11 .J..
11 when it is not defined does too 

-162-



much. because when a recursive process does not terminate we are not 

gene:any told that; we simply wait for ever. On the other hand. a black box 

which gives the value of cp( a 1 •.•.• an) when it is defined. and hangs up forever 

if it is not defined. is insufficient. because. we can run any process for a 
' ' ...,_..,.,.... < 

certain amount of time to see if it produces a value within that time. A 

workable idea is to make use of the notion of a function as a limit. 

the function cp. let (<.0.J be· any sequence of functions wh~se lub is cp. 
1 .· . . 

So, given 

Then an 

or~cle for cp is a black box that when in~errogated ~bout <pi(a1 •...• an) for 

particular i. either produces a value or replies ".J.. 
11

• 

,,. We now define a parti,al recursive funcU~'1il •<cp,a1, .•• , an) as a 

functional for which there is an effective procedure which. computes its value 

when given the arguments a., and an oracle for'{). If the value of• is 11
.J.. 

11
, 

1 . 

'
7 then the procedure is permitted not to terminate. Implicit in the idea that 

.1' 

,..._.., 

•is a function of 'P• and not of the particular oracle chosen to represent <p, is 

the requirement that the value of the computation is independent of the choice 

of oracle for cp. 

Lemma 14. 4 

AU partial recursive functionals are continuous. 

Pr.oof:. The symbol 11
.l.

11 never enters into an effective proc~dure. It is used 

in discussions about effective procedures to .mean that information is not 

available. A procedure can never contain "if x = l., then ••• ". This is 

sufficient to make all effective procedures monotonic. 1 Now let a 1 thru an 

be a particular choice of objects in s1• and let (cpi} be any monotonic sequence. 

In the following discussion •<<P. a 1, •••• an) is abbreviated to •.{(iO). 

Let <p be the lub of the sequence ('{).}. If •<<P> ~ .1.. then •<cp.) ~ .L for 
l ' 1 

each l, since «-is monotonic. So lub(•(cp.)} ~ •<<P>. If •<<P> =:: a where a is 
1 

an s-expression, then since this computation i's independent of the oracle used 

1one way to be sure that the procedure does not act :on the information "this 
argument is undefined" is to replace each ind.· ividual argument with an oracle 
for a constant'function ¥>U·bas-ed on a sequence £•iJ. · This s<equence either 
produces the argument fQr some i. or it ne-v~r does. and th~ a~gument is 
".L ''. In other words. the procedure has to work to obtain each argument. 
and it can never know if or when it will get the argurnerit until it gets it. 

-163-



for '(J, we can let the oracle be based o'n tlle sequence {fp.} •. Because c:i was 
. · . .. . . . 'n·;,, ::; ~·:·1-.,, ,, . l'. •: -~. . .. : .. 

computed by an effective procedtire, it ·can oDJ.y have ~nterrQga~e_d the oracle 

a finite nutnb~r of time~. Let .,k ~ t~.~- hi~8.t'.:~~<!t1:~n in .tile .~~.Qu!?,Ce ,C,i} 

that was used., Con~ider t~e c.o~pUtati,On of ~~::v~:~~e:?~!i~ rel>7:;~~ented by 

an oracle using the sequ'enc·~, ~~giam~• ,~th ~1 :~·t;u;~iW /ln~. :tt:1.~ .. b~i~ "'•·;. .. 
from there on. This ·compu_tation must proceed ea:~~Y' like .~e i>revi_ous t>ne • 

. ,,r .·: '. ~ ;·) "'-~~ ,/."'·'~ _;_, <'.·t .. ,~:.,;J..}r_;-) . ·•;:-· ,;~ -· , 

because no function with an index greater than k will ever ~e interr<>gp.ted. 

so •<'fJ> ~ •<fPkr• tub'f••i>J•...,> ~:~c,c:+ft,.~oat"~~~ . - · · _ . 

Theorem 14. 5 (Kleene' s Recursion Theorem) 

Every partial r~cµ~~ive, f~l ,.aft &!l._. fiq)ojsJt which is~ a 

partial recu~sive function. 
Proof: By lemma 14. 4, if• is partial recursive, it is continuous. By 

theorem 14. 3, it then has a least fixpoint '(>. To show that fJ ia partial 

recursive. consider the sequence {fp1} In the proof of tbeorem 14. 3._0~ lllhioh<P 

is the lub. rp0 is partial r~c~~siv~_,b•cf*~~~ .i.t,,~~t ~'~~~e~ ))~ 1~e i~rocess 
that never produces a vaiue. Suppose •n is p&ruat recUl",s~ve. Th~ "°u+l is 

partial recursift ~use ~n+t(•t • '. -~., t'1/V'-~;>a.1~' ~.~.rt~). 
1&ftd 'th~re 'ar•e · 

effective pr~re• fCJr:4" ·and'•. ··By ~1~···atr~ .,i'Fare pa'rtial1 

• ·-

n . . 
recursive, and sofP is partial reeuretv'i'~ieii lf·t•'~Wij;Uted by the 

procedure that tries all the cp1• 

§ 14. 3 Application of the Reeu .. sion Theorern 
. -.. . ,.,}:.;-,; , , .. ,," 

Consider a recursive d9finltfon: -. 
; -.,./ ·. . . . . 

'Pl~1-·."' •• 'riJ.... f, 

where (has no free variabl~s _other than !ha tt" .. .atld every function . .and 

predicate name in c. except for tp., 19 Mt~.·~!ft~ ~ p~al. r~l)r,-siv~. 
• · ' - · • : -. • :· :. , • .: , · '. ·t: ~ · J:,. 1 r.t :.r -~ <~ .: --:-.- f ; ~ ".' . ,. : ··' i : · , • 

Then fis a pai:-tial recu-rsive ~im~t~lJ>,~~i,.iJ,~J6@~ Jl co~ion 

depending on, tile function,: al arcu~-·~.· .~,~~:··~~~.e\1,,~.:t-~~ents't!Y' 
. • ff ,, ~ ,,, . ' . _., t ' It i ' - . ' 

thru ~n· Furtbermor~,., 11; ,,+- ts.-.-.-,_._.. QY n .. • tA1J1ti _.,#ve th• fixpoint 
equation for this functional. 

Unfortunately. the situation gets a bit messy here because there are 
' various semantics that one can propose for the lanauage of recursive 

-164-



i : 

"' definitions. The choice of semantics will determine what functional 

'"- •<<P. ~ 1 •..•• ~n) is specified by the form (. We shall briefly consider two of 

them here: •L is the functional specified by the LISP semantics described in 

" Chapter Two. •c is the functional specified by the complete semantics. that 

is. the semanti~s that computes as much as is ~e fropi- the information 
/f~· 

available in (. The two semantics never produca conflicting values. but •c 
may produce a value where •L fails to do so. .that ia.. •r,.,5,•c· .. There are 

two significant differ enc es between the two: 

I: LISP evaluation uses call by value. This sometimes gets hung up 

because all arpments for a function must be pre~evaluated. even if they are 

not needed for its computation. For example. the definition: 

f[m., n] ... : [m = 0 -+ 1. T -+ f[m - i. f[m~ n]J] 

computes in LISP a function that is 1 if m is o. and ifil otherwise undefined. 
' . ,; . , 

But the complete semantics uses call by name. which does not attempt to 

evaluate the inner f[m. n). and so does not get into an endless cycle. It 

computes the function which is 1 for all numer•c argurnen~s. This problem 
is discussed. thor~ughly in [Vuillemin]. . " · . . . . , 

· II: LISP semantics s_,ecifies a l~f~•to ... r!ght order 9.f evaluation for 

conditionals ~nd logical ope~at~rs. 
,... ~ - T " C 

For ~example. the definition: 
. . ;,, ·.- .·.- . 

f(n] +- [f[n] = 0 -+ 1. T -+ 1] 

computes the totally undefined ftinction in LISP. but the cpnstant function 
f[n] = 1 in the complete ,·s~mantics. . · ' ' . ·· · ' .. 

In LISP. the form (l V (2 is eval.uate<:f: ~y fir_st _eval.~,ating 'i. If ; 

~· has no valu·e. then the expression is undefine~: ~~ t~.e ·i~?~~~etE[, sem~ntic~. 
the expression is true if elth.er branch is t'rue. This poinf can be stated by 

.. means of the three ~lued truth tables for. the ope:ratton -;,~·.~. keeping in mind 
' • -;. c • ,_.,, ~ -~- ' -. • ' ' • : • •• ( ' 

.. that the interpretation of "J. ti is "information not av~ilaple"" or "value 

1,mknown". (See tables at top of next page.) 
) 

Both of these tables are monotonic. a necessity for them to be com-

putable. We might call the first one "we~'!• 4~ tt\~·4econd "strong" or 

"symmetric". We have chosen the wo:r;-d "c9~plete", t?~caus,e of the property 
- - w • -,, • • "' J ·i ~ t ... ~-< . - •. • ~·; . • 

of semantic completeness which is the same as in logic. (From B we can 

deduce A V B without ~aving to prove thai'A~-fs t~~ or false. ) The strong 

-165• 



ript ar.-nt rttlat •ra-•t 
T ; .L ''T r .L 

.... T T T T .. ' T T T 
c 

I. I 
00 

F T p ~ r T F J. ... 
QI • .... .., 

IM ""' cu 
J. J. ... • .a. T .I. J;. .-4 .... - -

.LISP """ Callpl•te "V." 

truth tables are discuased in (Kleene, t64] in co•u:tion wt.th partial recur8ive 
functions. His term for "monotonic_" i8 "r~~': : ,_ . · 

Let us examine some recursive fwttOUla aaMi their fixpoiDta taken 
. .: .. ",.),.~- ' <.~/) . " 

from [Manna and Vui.Uemin}. C<>aaider the fwtional: 

•((p,a, b) is [a= b .. b + 1. T .. ~.t.a-t.b+J:Jll 

A fixpoint for • is a function rp such that 'P<a. b) • ... a, b) for flVery choice of 

a and b in S • "+" and 11 
-" are tUnctiona that ~e ~ for ~-numerical 1 . . . .., .. " ' 

,Ji 

#' 

arguments. or if the result of aubtracUon is ........ . The natcare of "!II'' is 

such that for the equation to be t~e. both ai~ -~~{~~tu aame number, or "' 

both must be undefined. Notice, also, that°"•" ~ in tile con4ftt.-I . 
• • ·, ~:!> : - . ', :' • - < ,'.: ~ ; ,r:.~ ·;·:;,'' _".i. ; . : ' .. ,: ._., , 

expression is undefined if either arpment ~~ un~ •. \fe D01' ~ify 
three functions, each of which is a fixpoint of•: 

rp
1

: a+l 

rp2: if a'= b then a+ 1 •llle'b - 1 

rp3: if a 2 b and a - b is even. then a+ 1 

else not defined: 

A certain amount of investigation will convince one that each of these is a fix--· point. It can also be shown that rp3 <Pi and .,3 .,
2

• .,3 i• in fact the leaat 

fixpoint of •. 

-186-



We now extend the theory A of Chapter Eleven to be a theory A1 about 

the model s
1 

which is the a-expressions with the added object "J.", and the 

definitions of the basic functions extended· appropriately. However, we shall 

not use "J.", ".C" or "~' anywhere in the 1-.npage of the theory, because they 

are not computable. 

The variables beginning with r thru z range over s-express-ions, while 

variables t;>eginning with a,. b and c range over s
1

• Tb• axioms of group H 

are now needed because we admit to the possibility of ·thelr''being something 

that i~~ an s-expression. In tnis theory,. liat{xJ ~· ·x·i• a theorem, but 

list[a] ;' a is not,. because of the counter-example cons(J.,. NIL]:!! J.. 

Specifically,. we have axtomattzed the theory: 0,f a-expressions so as to 

admit the posstbility thet there might be thing•· tnat are not s-.expressions. 

But we have not axiomatized. S,, particularly;··· we simpl~ nO'te that s1 is one 

model that satisfies the theory A1• 

Consider the recursiv:e d.tinition f(a} .. f(aJ + 1. Its least fixpoint is 

the totally undefined function. Since this- is a "totaltt. function on the dornain 

sl, the equation f[a) = f[a) + 1 is satisfiable in sl. and no-inconsistency 

results from it. The instan,tiatton f[3 J = f{3) + 1 is· satisfied because 

J. :!! J. + 1, and "=" approximates "_.' to tU elltent tbat:it,ia· computable •.. One 

cannot derive 0 = l from this formula,. becaase if we~atart from the theorem 

m = m + 1 ::> 0 = 1 ( wllich is pr.ovable), . we -fiftd 1Nlt replacm1 in With f [3 l is 

not a valid substitution because f[3) is not a numeric typed' term. 

Partial Recursion Schema 

If cp is a new name, then the transfQI"mat~~n of. the recursive 

definition cp(x1, ••• , xnl .. c into a set of formulas of A1 may be 

used as a definition for '(). 

Not only is this rule consistent, but it makes all partial recursive 

functions partially representable, and all total recul"Si-ve·tunctions represent

able in a direct manner. We present the folloWing theorem Without proof 

because there is too much detail that we have nQt compl.~teci: it is not difficult 

conceptually. 

Theorem 14. 6 (Partial Reer•f•ntation) 

Let the function name cp be defined in A1 by the partial rec~sion 

-167-



schema, where all the other function and predicate names in the schema are 

already defined and (partially) representable. Then ~<a1 , •••• an) = an+i • 

where ~ is the least fixpoint of f in the complete semantics, if and only if 

Al ~(al,··· ,an] = an+1 • 
This theorem is the justification for the "completeness" of this 

particular choice of semantics. 

If a function <p has been defined by the partial recursion schema. we 

may be able to demonstrate that it is a total recursive function by proving the 

formula :a:y(cp[xl" ••• , xn J = y). This also allows us to assert that the function 

cp is a well-typed s-expression valued function. Other totality and type 

information may be developed similarly. One may be able to prove 

:3: (cp(x, mJ = n), which types cp as a total numeric-valued function having an 
n 

s-expr:ssion argument and a numeric argument. If one can prove 

fJ'.J[x] :::i :3:y(<,0[x) = y), then one has shown that <p is defined at least for those 

values where ~[x) is true. 

It is not possible to prove the totality of all total recursive functions 

in this manner, since this would make "total" recursively enumerable. But 

it is possible in many cases. In particular, it is always possible to prove 

that primitive recursive definitions define total recursive functions. (The 

argument is by induction. ) 

One word of caution on this schema. 

into the domain, but not into the logic itself. 

The model sl introduces II l. II 

The model is still a model of 

standard two-valued first order logic. So while the recursion schema permits 

replacement of "t-" with "=", it would be inconsistent to replace " ... " with "•". 

p[x] = •p[x] is inconsistent in the present system, although one could develop 

a three-valued logic. 

The recursion theorem can be stated in a multi-dimensional form 

which is that given the set of equations: 

Wk(cpl, • • • ,cpk, sl' •• ·' snk) e!cpk(~1' ••• ' snk) 

where the Wi are partial recursive, there is a set of least fixJ>oints ~ thru ~ 

-168-



which are partial recursive. This conveniently corresponds to the program

mer's habit of defining recursive functions in interdependent batches. The 

partial recursion schema may be extended to permit this. 

Problem Set 35 

1. Investigate the work of Vuillemin. and the Oxford Group. to see 

how the recursion theorem is used in the study of the semantics of program

ming languages. How do they deal with the problem of the computed function 

of LISP and ALGOL being less than the s~xn.antically _ ~opiplete fixpoint? 

2. Extend the syntax of first order logic to allow conditionals used 

either as logical connectives, or choice functions within terms, so that con

ditionals can be nested inside each other. Add transformation rules that are 

consistent. and make this logic complete sem~~ly. Theorem 14. 6 is 

now trivial to prove. 

-169-



CHAPTER FIFTEEN 

SECOND ORDER ARITHMETIC AND SET THEORY 

§ 15. 1 Second Order Arithmetic 

Starting with the system A presented in Chapter Twelve, we can 

develop a second order theory of s-expressions. The model for this theory 

has as its domain the set S U (s2}. i.e., there will be both s-ex:pressions and 

sets of s-expressions in the domain. Set variables will begin with a capital 

R, S or T, and be followed by at least one lower case letter. 

The basic predicate of set theory is membership. In second order 

arithmetic, things that are members are s-expressions, an.d things that have 

members are sets. So: 

a E b ::> (sexpr[a)" set[b]) 

The principle of extensionality is that two sets are equal if they have 

the same members: 

EXT: Yx(x E Sa -= x E Sb)::> Sa = Sb 

The principle of comprehension is that there is a set to correspond to 

every property definable in the theory, or: 

COMP: !SaVx(x E Sas a) 

where a is any formula not having the variable Sa fre~. 

From the extensionality axiom, one can prove that the existential 

quantifier in the comprehension axiom schema is unique, i.e., !
1 

SaYx(x E Sa= 

Q ). 

The induction axiom schemas of first order arithmetic can be replaced 

by single formulas in second order arithmetic: 

-170-



NINO: 
I 

0 E Sa :::> Yn(n E Sa :::> n E Sa) :::> Yn(n E Sa) 

SINO: Yx(atom[x) :::> x E Sa) :::> YxYy(x E Sa :::> y E Sa :::> x*y E Sa) :::> 
Yx(x E Sa) . 

Together with the axioms of A, these ar~ the axiom& fGt'· second order arith

metic, A2• 

We can define certain classe~ of 'ets, and even _given them special 

variable types that are sub-types of the ~ype ''.flet". The mpst obvio"s. one is 
• I ' { ~·· • 0 •' 

the set of numbers. We define the type "nse~';'.,.b~; 

n~et[SaJ .., Y~x_E .$a:::> ~[•J>. 

Variables of type "nset". will start with. a c•R~'~l N, .. ,s~c.h as Na, Nb, etc. 

~he least number Rr.incipJ~ can_ ~· _ii.ta~~<J. f~ ,~ single atjom: 
' , '~ ' ', . l, - . • .-. -~ ,. - . . 

!n(n E Na) :::> i
1 

n(n E Na A ·Ym(m E ·Na,.::> n ~- m)) 

First order ftinctions and predtcat"es·~an be represetlted as individual 

sets in second ()rder arithmetic. "ff f;ts·ih mklatty predicate on the s-expres

sions. then it is represented by the set containing orttylists~ otlength ~. and· 

such that ).~s~[a1.,. ~ • .,G'nl •:• Q!le~r'.1Qf,Ule ~ ,il.aad.;ODJ.y .. if·i<ai ••• ~•an) is -true. If cp is an n-ary fuqc~ion on s-eXJ?re!El.i~~· ~,~J.ti:t is rep.~esented by a 
set containing only lists Wh~se le~gth is ~i:·"a~d suc~·that list(an+l'a1, •••• 

an] is a member of the set if and.oril;t if 4'(tri'1 ~' • .,an) =;o-:i+i·· '.Putting the 
value ~!,"at is.~ ~er QI. ~nV---6tJ•• . .It •.. _,., .,,111.._ definitions such· as: 

Parfun3(Sa) • (Yx(x E Sa=> a-+fxJ) i\ fkYy(x E $a::> y E' Sa:::> cdr[x) = 
cdl,':{n~·X -.:.y)). n:. 

Totfun3(Sa} • (Parfun3[Sa) /\ Yx(s3[x] :::> iy(Y*x E Sa)~). 

Parfun and ToUun are ~ ord•r prec:U-..tell. ;e~tyit one can continue 

to make specific definitions of functi()nS ~~ P.r'.ed\C11.t~ b,!l yU,i,g ~µph. ~d such 
~ . - \ " ' . - '· - -. ,. ! " ' . . ,. . ' -' •• - • ', .. . ' ' 

numeric or symboli~. argu~eri~s and valv~e .• 
~ ' . - - - .. " . -·· -. ' • ' .... /l •' ,.~ '~ 

There are sepond or~er functioQ.• o~ fqq<;t,ional$ wb.icg pro~ess .first 

order_fu~~tions ~d ~~t.b~·o~~led CQ~~~tii:f:· .. ~ffjJ;st p~der func~ions. 
Thes.e are ab~tra,ct~ rather. ~an proce~r~t 9p,'r't~~s. '. ~n~ .c:io not correspq~ 

to recursive processe!S nece,ssarUy. Fqr.,.fxa~J~, IJYfU'l. th~. unary .paz:-tiaJ. . 
• j - • ' - ,,,.,.,_ .- ~-l : - . .; ,, ' j 1. .. .l. ~· .- •.• - ·' - ' • ' • - c -

functions ~1 ., and rpi! ~~re ls: t,h~ .ptt.rtial -~~Yi!~)) .. , : µie .~~~onp. , 
order function Compose( Sa. Sb) has this. pompoaitio,o.l11;nqtt~>n. ~s lt$ val.1,1,e. It 

) ' ' ~l; • • ' )· '.t ~ ' • : _.; J' ·."- .: ', • ' ·~· ~ I , · ,' 1 · • 

is trivial to prove: 

-171-



.. 
Parfunl[Sa]:;:) Parfunl[S~]:;:) :B:

1
Sc(parfunl[Sc] /\ VxYy(list[x.yJE Sc• 

:a:z(list[z. y] E Sa /\ list[x. z] E Sb))) 

Using Rule PF, we define this unique Sc to be Compose[Sa. Sb]. 

Corresponding to any procedure for computing a first order partial 

recursive function. is the set which is the function it computes. We can call 

this the extension of the procedure. Trivially: 

:3: 1 SaYy(y E Sa = :ffz:a:rin(applyk[x, z, n] = list[w) /\ y = w*z)) 

Using Rule F, we define this unique Sa to be Extension[x). 

It is possible to define an ordinary first order recursive function 

pcompose such that if x and y. are a-expression translations of procedures for 

unary partial recursive functions, pcompose[x, y] will be a procedure for 

computing the composition of the two functions. Then for any such x and y 

the following identity holds: 

Extension[pcompose[x, y]J = Compose[Extension[x). Extenston(y)] 

It is even possible to define an abstract Apply by: 

:3: 1 y(y*x E Sa):;:) Apply[Sa. x]*x E Sa Rule PF 

This second order function applies any function (represented by a set) to its 

list of arguments, and produces a value (abstractly). The evaluation of a 

partial recursive function by an interpreter coincides with a special case of 

this in the sense that: 

3n(applyk[x, y, n] = list{z J) => Apply[Extension[x), y) = z 

The purpose of this discussion has been to show that a much larger 

number of situations can be discussed very precisely. in second order arith ... 

metic than in first order. This is done at the expense of making the dis

..:ussion abstract, in that the entities being discussed are no lon,er construct ... 

able. It seems as though any mathematical discussion cannot realistically 

be kept at the first order level. When we want to go beyond the second level, 

we can either explicitly formulate third order and fourth order arithmetic, 

etc., or we can go into axiomatic set theory. 

Problem Set 35 

1. Show that there are formulas of first order logic that are not prov ... 

-172-



able in first order logic, but are provable in second order. logic. 

2. Prove that second order logic is .incomplete. 

3. Defthe the funett<ms Union, IM~~t0n(tn\t"Cothph!ment (with '· 

-reSp-eet to the ·set ·'of s •ft:prnstons~. · · \@nion, ~r·'-~le~ >t~' a· fUri~trt>'il Cit~ 

two •rg'fnRents wtitdh a,.e eete;, ·and' tM''val'W!l.llut:~~-··'iS thf?ir r.rntan: 
4. What is· ati··tmpredioattve deftfttutiif? !:·~~stM! axiotrl sclienta 

00.MP a~d tmpr~tcatlW,cleftwltiona-? ~· " .·H«' .. ;:· 

§ 15. 2 · AJripdlattc :Set <'11\oery · · · · 

There.are· ba~ic{aily t\Vo styles ~f iX{c;;~~tlc ~et theoi-y. Zermelo
Fraenkel < ZF) set theory 1s· a the0ry.ab<>ut j'f:ts ~y.· ·~He ycin Nelirii~~~--·~. 
Bernays;.QHcJef(~iJt})'' ~~'theory· i~' a:~ff:~~:f'~~ j~fi ~rid cla~ss~s, ~hteh ' 

, ·.'. ·: ' .~., f,., h•:··-.:,i·: .. 7;-t, "''~,,,.~-~f}.''f!'Jt1"'.'"1 \.,'-;.<;_,,~('( t~'· :·'··;f .. ·.~~-~. ,-_ :- ,' 

ate uriive·rsa1 objeets that~ are too big to'6e0 cillth:f 8ets. ·zv has axiom 

schemas giving rise to infinitely milHf r8dfViadit'f'a1*t~ins, ·~whtie NBG is finitely 

axiomatized. For the reader wishing an introduction to set theory. 

[Shoenfield, Chapter 9] discusses ZF, and [Mendelson. Chapter 4) discusses 

NBG. Set theory is discussed informally, that is, without reference to an 

axiomatization in first order logic, in [Halmo.a]. 

Two of the important concepts developed in set theory are cardinality, 

and ordinality. We are using the concept of cardinality when we investigate 

second order arithmetic and mention hiper artthmetic. One of the principles 

of set theory is that, given any set, there is the set of an subsets of that set 

(known as the power set) which is of higher cardinality than the original set. 

So when set theory axioms are added to arithmetic, we automatically get sets 

of s-expressions, sets of sets of s-expreasions, etc. Axtomatic set theory, 

as it is commonly presented, is abstract in that the only basis for construct

ing sets is the empty set. But it is easy to mer•e the axtoms of set theory 

with an existing theory such as first order arithmetic. 

The other major concept of set theory ia ordinaUty. We have hardly 

mentioned ordinal numbers in this book, yet the theory of ordinals enriches 

the study of recursive functions, and axiom systems at almost every level. 

There is a whole hierarchy of ordinal' numbers even when we restrict 

ourselves to countable ordinals - those having the lowest infinite cardinality. 

The smallest transfinite ordinal is called"°· There is the sequence W. w + 1, 

-173-



w + 2, .•• , and an e>r~l ~.J' 2 that is ,IF.~t;er ~ ~Y of tbeM. There is 

U~e ~equ•nce 4\1 x 2, ~,~ Z + ,1, .,.,., and ,U.~:~X 3 wta4cih,la tr"• U.•n 

these. The or~ rJ- ls..,,..~, ~'''-•Y or~ J;lt ttb•, .... oerte• ,"\, • ¥:,·2, 
w x 3, etc. AU of ~s~ a.pd in-.ny ~e a..re .. etW·-QO\Ql~k. 

Ordinals are the natural matheanaU.-l: ~lier i-epr.eeenttnc the 

idea of tr-:::•n:~.::endenee. For example, G8del'a theorem allows us to find a 

formula independent of a certain axiom system.··· ·.:~_'Ot.n;a napeated 

ad infinitum. but even after addint inftniteJy m,~ny ~~~. 'Ire.can atill. find 

an independ.ent formula. ~d after,~~!D•.~;CJ1~~e~ ,9!,'.~~-· of n•\Y 
< I ·• ,· ,0 ·- - .- ' -~ \ ' •< I - •• •' .' ,· • ' • ,_ ,. f 

axioms, we stµl find that \Y~ .can,. ob~2Wt. an ~~~~t. ~~~,~ .. The 

unsuccessful effort to ftnalJ~ ;<;9~pi,ete ~· ~,:•r,,~l~W' na~ally tP, 

Kleene•s concept of a constru~~ve ord"'8-14!, · 
·' ' , 

/ 

-174-



- --~-- '~ --

BIBLIOGRAPHY 

Chai tin, Gregory, "Information Theoretic Complexity".. IEEE Transactions 
on Information Theory, January 1974,. pp. 10-15. · 

Chang, c. L. and Lee, R. c. • S~mbolic LoC!c .and Mechanical Theorem 
Proving, Academic Pre·ss, t<1:J.. _ , 

Davis .. Martin, Conmut~biJity an9 Uns·olvaqW,!f. Mo.Graw-Hill. 19&8 .. 

Davis. Martin and Putnam, Hilary, "A• O>mputtna Pr'ocedure for Quantifica
tion Theory". Journal of, tl:le ACM,. M&Jt• 1980,. pp.; -a&l-li15. 

Halmos, Paul R •• Naive Set Tlleory,. •an· Noaf:rawd11 f9&ft.. 

Hart, Timothy and Levin.. Michael. "LISP - 24Q brcis-es .~d: SoluUons" in 
The P~rammftl• L~.,_ LISP Ii:W !?J!i .... :ti4 ~taa. 

' ed. Ediilund '.Ber&leya1ia1J:. O •. lfoirow:m.P M=.U.llRt:* 

Igorashi!. Sbige.·· FU.-, "A4all99tb. -.·i;;;~·f'b·· ........ ··~ .... · Urli'W.·etw0r. · · .. deF 
Logic of Typed ~riean. · . . · ·I'd·~ lJB.UlfenO• Prajeet, 
Memo AIM-Uf8, May 19'72 .. 

Jack, Alex, 22lAJJmE~~'.9!0~·~~-The Kant1iali ess. I appa.. ..,.. . -w.. · .• 
price $2 .. 9&. · · · · · · 

Kleene .. Stephen Cole, Intro"duetton: to Metamathematics-.., Van Nostrand. 1952. 

Manna, Zohar and Vuillemin, Jean, "Fi.x.point Approach to the Theory of 
' Computation" .. Communtcat'iona of the ACM. Ju-iy 19'12:, pp. 5-28-538. 

Margaris, Angelo, First .Order Mathematical Logje,. Bl&i$dell •. 1967. 

McCarthy .. John, "A Basis for a M:athem.atieal Theory of CGmputatton"~ in 
ComLuter Programs and Formal Systems, ed.. Braffort and: Hirschberg. 
Nort Holland, l§~"f. · 

McCarthy,,, John et al ... LIS·P 1..5 Pt"<;tg!:ammer'·s· Manual, MIT Pr"ess, 1965. 

Mendelson, Elliott, Introducti0n to Mathematical ItoE:c,. Van Nostrand, 1964. 

Milarepa.. The One Hundred Thousand So!I! of MUar!Pa, trans. 
Garma c. c. Chang,. Ra.rper Col~ 1 lfo. 

Milner. Robin, "Logic for Computable Functions (LCF). Description of a 
Machine Implementation". Stanford Artificial Intelligence Project, Memo 
AIM-169, May 1972. 

Milner .. Robin, '.'Models of LCF", Stanford Artificial Intelligence Project, 
Memo AIM-186, January 1973. 



"There is a great wind coming whose electrical storm shall be felt 

for the duration of the century. " Samdup mwied·ratab:li:hta dark eyebrows 

and staring ou~ meditatively at the ominous sky. 

"Humanity 'shall become possessed by its technology. " Martha agreed, 

handing Mycroft the gr-.mophone recordings of the Ger~n ~:rp.bassy, the 

keys to the one hundred horsepower Benz., and the telep}ion~ n~mber of the 

reai Von Reiling who reinained ln hia hot~:,J'.PCllll: tied \.U>~~l)l his tEtlephone 
cord. 

"GOod grief., " she continued., as her -voice 41:Jlan1e4 from a Suffolk to· 

a New Jersey accent. "e.en tlle opera itself Will n,.~tah'''nd'~eople shall 

listen to recorded music at home. " Smiling at Sherlock. she took off her 

old lady's grey ~.-ait4bet beauti~ long red.hair .stt~d down ~er 
' ' . . ~ ' . .... 

shoulders. "We are our own machines. and all of the powers of the universe 

are within us. " 

-The Adamantine Sherlock Holmes-



Nagel, Ernest and Newman, James R., G8del's Proof, New York University 
Press, 1958. 

Newry, Malcolm, "Axioms and Theorems for Integers, Lists, and Finite 
Sets in LCF", Stanford Artificial Intelligence Project, Memo AIM-18 4, 
January 1973. 

Robinson, John A., "A Machine-Oriented Logic Based on the Resolution 
Principle", Journal of the ACM, January 1965, pp. 23-41. 

Scott, Dana, "The Lattice of Flow Diagrams", Tech. Memo No. PRG-3, 
Programming Research Group, Oxford University Computing Laboratory, 
45 Banbury Rd. , Oxford, England. 

Shoenfield, Joseph R., Mathematical Logic, Addison- Wesley, 1967. 

Strachey, Christopher, "Varieties of Programming Languages", Program
ming Research Group, Oxford, Technical Memo PRG-10. (See [Scott].) 

Vuillemin, Jean, "Correct and Optimal Implementations of Recursion in a 
Simple Programming Language", Rapport de Recherche No. 24, Institut 
de Recherche d'Informatique et d1Automatique, July, 1973. 

Weissman, Clark, LISP 1. 5 Primer, Dickenson, 1967. 

Yessenin-Volpin, Alexander I., "The Main Problem in the Foundation of 
Mathematics", Boston Colloquium for the Philosophy of Science, 
March 1974. 

Yonezawa, Akinort, "On a Proof Procedure of the First Order Predicate 
Calculus", Master's Thesis, Tokyo University, 1972.· 


