

This blank page was inserted to presenie pagination.

r•;o .. ~ . .aw;;1.p;;_t.w.Akt ma;1t41441£ EJ4-00MAM&iiii4it£@;&Jt P ..• 0-._ .. U.J}_._A.JE .. ·_·:~·;_,;z_)Q! .. "''·"'·Jfi,J4)t4i_ .. 1 .,$il1. '.¥&.Jll
1

,·•;'·• '. " ... '""'• , , • • • c.o ' • "' CP·•'. ,,, • '••'"· :· '······: '•'·"'." ,.;];,;,j'!""~~~-"'""" '"".'."''""""'=""C'•~~''fc;>c:~··' C'. . • .,
. '<

~(~1

AR UPUDeftaL ABUD.IS CJJ' • 1•:-llJ UH• IA1"1918
I.~.-.-P:,jff t11l1111trG1

·I

·~ . _:l,-.;

":j 7 .; 0
•• t".°·~· , 'l ".' ~ a '(FA'Z~ g.,-,:_,i: ~ilq t '°''

., ~ .
. •. in~~· ~]p·~~1f ~=- .r.:"1t~J:~M J-£ ~1!.":;q::,..~~ "':··~ ·l ::Jq;:t~>:J ::_ ~),j- _.: _; :.R~t t.:1.tLJ

.:·: 7)"::: ~:- ';- ;J;,: i ~--'~-~:-;:, 2

".""',. '.ti;

' : ~ ·~ ;

---••rJS DBUW.·• ··•flllllB ~ . - - ~ .. --- ~ .. - -"

2

AN EXPERIMENTAL ANALYSIS OF PROGRAM l.EFBUNCE PAT'.l'ERNS
IH THE MULTICS VIR'l'UAL MBMOB.Y

by

Submitted to the ~m9":~t qf, ~l.,c;t_Jical Engineering
on .January 31, t974.in liartia1 nitfillment of the
requirements for the Degree of Master of Science.

'l'bis thesis reports the design, conducting, and results of an experi
ment intended to measure the paging rate of a virtual DM!llDOry computer
system as a function of paging memory size. 'l'his experiment, conducted on
the Multics computer system at M.I.T., a large interactive computer utility
serving an acadanic c~nity, sought to predict paging rates for paging
memory sizes larger than the existent ••H'Y at the time. A trace of all
secondary memory references for two days was accuailated, and siamlation
techniques applicable to "stack" type paging algorithms (of which the
least-recently-used discipline used by ltaltics is one) were applied to it.

A technique for interfacing such an experiment to an operative com
puter utility in such a way that adequate data can be gathered reliably
and without degrading system perfonunce is described. Issues of dynamic
page deletion and creation are dealt with, appai:ently for the first re-
ported time~·. 1be. auc,~e~,fal ~f~~'lc~v~~~· · ·- . ~t ~rts the
viability of ReJif. o~.- ·.~ .. ~--.· t.~. '.Qf. -.~·v~'.)fi .·~1*lC .. ~'.'.~···~ . . 1'£ system.
'l'he results of.ifiev~~t.,.Jtre .a~ .. ".,,_ , ~ .. _ ;,,. , . , s of demand
paging behavior. ,~ .· . , _. . ,, . . ,. ~ ,..,. . .,

;,..i, '·, -·._', .'\..- ".i • '

THBSIS SUPERVISOR.: Jerome Boward Saltzer
TIT1B: Associate ProfeHor of Electrical Bngineering

3

Acknowledgements

I wish to thank the M.I.T. Information Processing Center for the use
of their machine and time-sharing service as live subjects for my experi
ments, and for the resources necessary to develop some of the necessary
software.

I wish to thank Deborah Cohen for the typing of this thesis, and
Muriel Webber for her superlative preparation of the diagrams herein, parti
cularly the wondrous block-and-pointerd:ltagi'Sia:in ·Appenttix·A. Both of them
have gone far beyond the call of duty in bringing this document to completion.

I wish to thank my fellow graduate students at Project MAC, particularly
David Clark, Jerry Stern, Lee Scheffler, and Douglas Hunt, for all nature
of help and inspiration along the way, and invaluable suggestions and in
sights.

I wish to thank Steven H. Webber of Honeywell Information Systems,
Inc., for my apprenticeship in the skills of the 16.tltics supervisor wtdch
were so necessary for this experiment.

I wish to thank Professor Michael D. Schroeder for reviewing many
early versions of this thesis, and taking an active interest in its pro
gress.

Finally, I wish to thank my thesis supervis?r, Professor Jerome H.
Saltzer, for the conception of this thesis, and the research leading up
to it. From the very begimiing, he has guided this work, in a very real
sense an extension of his own, and with a keen sense of what was relevant
and what was not, shaped the finished thesis. t thank him for his personal
commitment of time and energy to. this thesis, and helping me through many
problematic areas within it. Without him, this thesis would not have been
possible.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense under ARPA Order No. 2095,and was monitored by ONR
under Contract No. N00014-70-A-0362-0006.

SECTION

ABSTRACT

ACICNOJLEDGEMENTS

TABU: at COl'tl'BNTS

4

Table of Contents

TAlWl OF CON!D'.l'S·f/6.APPBNDU. A
LIST OP' fiGORES .

nrrRODUCTI<»t

1. Brief Statement of the Problem

2. Sunaary o.f .lleault

3. Smaary of tlle Work of Thie 'l'hesi&

4. Structure of This Thesis

CHAPTER I Virtual Memc>ry Performance.

1.1 Memory Performance Prediction •s a Goal

1 .. 2 Pr~gram Re:ference Patterns m¥f. Models

1.3 The- ExperUiental l>eterminatioa e>f Predicted Headways

1.4 Previcius Work in this Area

l.5 Novelty of the Work in 'l'hia 1.beais ;

CHAPTER II The Design of the Experiment

2.1 Stack Algoi:it~ and the .Ext~on Prob.l~.-
2.2 The Extension Problem 4Dd Multlca.

2.3 Performing an Experiment on !tlltics

CHAPrER III The Results of the Experiment

3.1 The Conducting of the Experiment

3.2 The Results of the Experiment

3.3 Reference Probability Models Suggested by
these Results

3.4 Accuracy of the Reported Results

PAGE

2

3

4

6

7

8

8

8

9

11

12

12

17

19

22

24

26

26

31

40

46

46.

47

55

58

5

3.4.1 The Effect of Lost Data 59

3.4.1.1 Lost Counter Accuracy 60

3.4.1.2 Stack Shifting Inaccuracies 61

3.4.2 Global Transparent Paging Device Inaccuracies 64

3. 4. 3 Inaccuracies Resulting frOPt,-List Deletions

3.4.4 Other Inaccuracies

3.5 Our Result and the Linear Model Measurements

67

72

74

CHAPTER IV Conclusions and Suggestions for Future Research 77

4. 1 Cone lus ion

4.2 The Paging Model Suggested

4.3 Unanswered Questions and Future DiJ:"ections

APPENDIX A A Structured Program Description of ~ltics
Page Control

APPENDIX B Implementation of the Hardcore Meters

Interface Details

APPENDIX C System Performance Graphs During Experiments

BIBLIOGRAPHY

77

78

80

83

127

131

135

139

6
Table of Contents of 9J>el!lix A

1. A Brief Overview of Page CQntrol 85

2. An Explanation of the •lia1aguce u.-.. ~ bl!!rl..-
'1'his Description 88

3. A Top-Leve 1 Prop'-tic View of l>age ContrC)l 94

4. A Top-Level View of the Objects Used by Page Control 96

5. A Description of the Object Types Used in Page Control 98

6. The Global Variables Used by Pa&e ~ol 101

7. Undocumented Routines Referenced ill This PrOgram 102

8. The Page Control Objects for a Single l'.11$•
(Illustration)

9. The Programs

1. page_fault

2. read_page

3. find_ core

4. tey_to_wite...J>a&e

5. write_p&ge

6. allocate_pd

7. page_is_zero

8. get_free_pd_record

9. post_page

10. start_rws

11. rws_abort

12. rws_done

13. Small Auxiliary Routines

14. Typical Paging I/O Routine

104

105

lOS

107

108

111

112

U.3
114

116

118

119

120

121

123

125

7

List of Figures

Figure Page

2.1 Behavior of Anomalies Resulting from Deletion 37

3.1 Linear/Linear Plot, Exception Ratio vs Memory
Extension 48

3.2 Exception Ratio vs Memory Extension, Logarithmic
Exception Ratio Axis 49

3.3 Lower RegionofFigure 3.1, Linear/Linear Plot 51

3.4 Exception Ratio vs Memory Extension, both
axes logarithlnic 52

3.5 MHBPF vs Memory Extension 53

3.6 Figure 3.1 Corrected for Worst-Case· Deletion Error 71

A.l The Page Control Objects for a Si1rgle Page 104

C.l User Load During Experiments 136

C.2 Percent -0£ System Idle During £x.periment 137

C.3 Percent of System Spent in Page Fault Overhead
During Experiment 138

8

Introdtictloil

1. BriE!f Statement of the Problem

In this thesis, we describe and report the results of an experiment

designed to predict the performance of automaticaily managed multilevel

memory systems for a previ.ously unexplored range of p~~ memory sizes.

2. Stmary of Result
. - :

We have developed techniques for predicting memorj system perfor-
, ;: •. ·' . "·- ,., , ".: f ~ ~:· - - r .-_·) ·• >.

mance on an operative computer utility, utili~ ._.aµ.toaa&tically man-

aged multilevel virtual memory. Based ~c,8~.~i.Jr~ ,th~ical tech

niques, we have c:lev•loped .,tieclmiquea -~P -~r~.~ pece&HitY:J~ta ~rom

a computer utility funct:Lo1~i:aa 1,llMiler a l.J,~ load, 1~ d~ &:o~ we c_on

sidered problems of dynamic creati~ ~ ·c¥µ~~ o~ p._.. wbJ,eh appa.

rently have not been de~l;-~tli .-,~ly,o! ... t~ ~1tl.1'9'-AA ,t,bese .~ch

niques was demons~.•t.e4 ,by -~fo~,~~l ~~t;&·,
~ ' ' ' ~~ ' '

Using these techniques, we have found that;' on'the'measured system,

the rate of accesses to data outside of primary memory decreased drasti

cally as primary memory size is increased above 2 x 108 bits (6 million

36-bit words, or 24 megabytes). We have found that the mean time be-

tween these accesses, as a function of primary mano-ry size was best ap-

proximated by a function of at least the second order, and possibly ex-

ponential. Previous research on the system under consideration showed

a linear function to hold for primary memory size up to 1.3 x 108 bits

(4 million 36-bit words, or 16 megabytes) (Sl}. Although these results

do not attempt to characterize Multics, we believe that they are rea-

9

sonably representative of the observed class of user behavior.

3. Summary of the Work of this Thesis

By means of an experiment on the Multics computer system (B2),

running on the Honeywell 645 at M. I. T., we have arri:Ved at me1surepients

of the predicted reference rates toc.,secondary maaory ,for hypothetical

extensions of primary mentory. 'l'hese measurements were made on an actual

user load, the M.I.T. cODDUnity, and not any sort of benchmark or test

load. From these measurements, models of program behavior in LRU*-man-

aged storage hierarchies can be derived. We suggest here one such model.

The essential technique for deriving these predictions frOQl such

measurements is known itt 'the literatuYe (Cl,C2) as the "extension•,prob-

lem". It is based upon the properties of a class of memory management

algorithms known as "stack algorithms" (Ml), which, include um. Using

these properties, we were able to sinu1at:e 0 the operation of the LRU al-

gorithm for larger primary memory sf.Zea than the actual one present for

the identical user load. 'l'he input to this sinnlation was a history of

all references to data outside of primary memory, specifically, on disk,

during the period of measurement. It is a property of the stack al-

gorithms that: one measurement and simulation can be used to predict se-

condary memory ~eference rates for .!!! pri!lary llmlDOry sizes.

The work reported in this thesis is significant because it is both

the first measurement of this type on a paged, segmented, multiprogramned

computer system which has been reported., and an extension of.our range of

*LRU, for beast _!!ecently !!,sed - a memory management policy whereby the
least recently used data is moved to slower memory when space is needed
in faster memory.

10

knowledge of the so-called "headway'' function micb ve have described

above. Previous measurements of this function (Sl) involved other tech-

niques, and only investigated it for pJ;~ ...,.,,. sises of up to 1 .. 3 x

10
8

bits. Our :measurements explored regions approaching 4·x 108 bits.

Although there is no bberent lillf.t on the -range·vllich- could :bl priuciple

be explored by our techniques, the liaitation of our explorati~ is due

only to the noteworthy fact that over a;tlaj''s rumdag·of th~ aperfaent,

8
no more than 4 x 10 bits of information ~e referenced more than once

by the M.I.T. c~nity.

· 'lhe .significance of the actual resultina measuremt!B is twofold:

First, it provides an aaple of typical behavior for. the .. meanred sys-

tem. Second, it suggests more general· Jlaiela of·>p110grmi: behavior.

4. Structure of this Thesis

Chapter 1 discusses the concepts. .of paging. &Dli- virtual 111e1ROry. We

provide justification for the types of: s~d.adc• an4 models we seek and

describe how to use t:hem in per£QnUmee: ~edicttone·... We discuss previous

research in this area, and provide a Dn"e det.aUed.statement of the

novelty of this thesis.

Chapter 2 describes the experiment. We cleacribe· -the relevant fea-

trues of the so-called "stack'' algorU:hms (Ml), and the)extend.on prob-

lem. We discuss the problems of adaptlng this type of a:perilleat to the

performing this experiment Oil aa operaring computer utility, Gld the

solutions we adopt.

Chapter 3 gives the results of the experiment. 'lhe results are pre-

11

sented graphically, and we suggest their interpretation. We analyze

these results, and provide a detailed error analysis.

Chapter 4 is a summary of the work done. We suggest future direc-

tions for research, and pose some of the questions left unanswered bt

this thesis.

There are three appendices.

Appendix A is an extremely detailed description of the Multics paging

control algorithm, as it was at the time of the experiment. We desctibe

it on several levels, allowing comprehension by the reader on whicheter

one he chooses. ! This background is useful for full comprehension of•cer-

tain design decisions in the planning of the experiment. It is alsoithe

first publication of this algorithm at this level of detail (Corbat6f (C4)

provides a less detailed discussiori).

Appendix B describes how the actual events of Multics memory maitage

ment were mapped into the idealized events of theoretical interest th the

experiment. We describe the modifications and the interface to the Mul-

tics supervisor necessary for this experiment. We assume that the r~ader

has some comprehension of the previous appendix.

Appendix C is a graphical presentation of user load, idle time, land

paging overhead on the Multics system on the days of the experiment.:

These figures were derived from routine metering performed by the adib.in-

istration of the M.I.T. Information Processing Center.

12
Clw>t!r 1

1. 1 Memory le{fonyp;e P£•iction e 1 goal .

.As digital computer systems have increued 1n size and complexity

since their inception almost twenty years ago, so have the memory archi-

tectures required to support -increasingly a4~~--·..,Pl!·C::~ion.s and,,..ays

telllS .. What is more,_ pro~~ss ~~q-1 ~~lpq.:~,,cF~at:ed,,- e:lethora

of memory media, ranging over a wide 1.uJ: o#. c~~t~. SJ>eeds, @d pro

perties. 'l'be desire for increased. tbr~put. -~ ~n real-time systeas, -

the desire for.quick respcose 1 .creat~.a aeed,..f0r,~Jl~ ~a.-test"'~J:Y tech

nology available. 'l'be fastest -.di.a, h~'17e~, are .• blo8t alw1ys the most

expensive o,n,a cost-per-bit bas~s. 'l'bua, ft?~ 1 a,:giy~ ~~ter system_. to

achieve or approach desired goals of 1lll!ll!'!OJ'J:o~C~S8J9i!ecl lfi~hia a given

economic constraint, it becomes use~l for Dletll,Qry~. sye.tems c~n.sisting of

varying 811¥)Unts of mixed JllSIPOry teclu;i,ol.op..es. tc:> be.-1:1sed 1n qp.e installa-

tion.

Most computers o.f the pas.t. twen~y y~a have ~ed Dlllglletic core as

their main, or primary memory •. T.tlat is t.9 sq1 .~ p~pce.a.sor.was capable

demands were met by the uae of t.&pAas, -~, ~: ~er bulk Jlledia, wbos.e

contents cC>\lld be trausierred 1n or out. o_f a,l~ed: .areas of prilllary

memory by explicit prop-aJa request. Mo.st of.the programs ud. operating

systems designed for this type of architecture allocated these areas for

input/output transfers 1n fixed, specific regions of primary memory.

When programs could not fit in their entirety in prilllary memory, they

were divided into independent pieces, or overlays, which were transferred

13

in and out of primary memory essentially at their own discretion.

In the last few years, a strategy known as virtu~l memory has achieved

popularity. With this scheme, programs are allowed, effectively, to re

ference data or instru~tions in primary memory or on any secondary storage

device in an identical manner, creating the impression of a very large,

or in some cases, conceptually infinite primary memory. References to

secondary memory cause software intervention, signalled by specialized

hardware, which results in selected code or data fr~gments being read into

primary memory. Clearly, this implies replacement of some other code or

data currently in primary memory, and in order to facilitate this task,

such systems divide all primary and secondary storage into equal-sized

areas, called blocks, or page frames. Information in the system is di

vided into pages, which may reside in various page frames at various times.

This implementation of virtual memory is thus known as demand paging, as

pages are read in on demand, i.e., when referenced. The selection of

appropriate pages in primary memory for replacement is a critical issue,

and is still a basis for nruch further study.

A page fault, as the software-assisted fetch of a page not in pri

mary memory is called, represents lost time. The time required to ac

cess and transfer the copy of the page on secondary storage is time during

which the requesting program may not run. The time that a processor must

spend in page fault software, deciding on an appropriate page to replace,

is a system overhead, which does not contribute to the progress -0f users'

programs. Multiprogramming, a scheme almost universally used on medium

and large scale systems, allows processors to serve one user's program

while another's is suspended, say for a page fault. But even here, most

14

systems limit the degree (number of simllltaneously runnable users) of

multiprogranming, and page faults can lead to a situation where a pro

cessor spends an undesirably large fracti0n of its time sitting idle,

accomplishing no function at all. Furthermore, fhe pl-imary memory space

occupied by all of the faulting program is umisable bjuy program for the

duration of the transfer. Thus, the minimizatiau of page faults in a
,.

virtual memory system is extremely desirable. It 18 an important function
I '

of the page-replacement algorithm, as the procedure'which selects pages

for replacement at page-fault time is kliown, to attempt to minimize the

number of page faults in the.forseeable future. 'l"hese decisions are usu-
; . ' ,

ally made with information gleaned from ob.ervad.on of page usage in the

iumediate past, occasional knowledge of p~e<lte·ted page usage patterns,

and some general models of program beh&vior.

Many page-replacement algorithms have thus· been des'igned for virtual

memory systems with the explicit objective of mf.'riimizing page faults.

These algorithms are subject to matheaultical analysis, which is not true

of arbitrary user programs. Hence, by 'careful observation of the storage

references made by a program or multiprogrmned collection of programs

(although the latter clearly requires some further remarks) we can ana-

lyze its interaction with any given page-replacement algorithm running

in any given size of primary memory, and ascertain which page faults

would or would not have occured had prilnary mem0ry been some other size.

These techniques are not in general applicable to non~virtual memory sys-

tems, for many programs have no ideii of how large a memory they are

running in, or how to take advantage oi it, and thus explicitly-requested

data transfers are not affected by changing memary size in any inter-

15

esting or easily analyzable way.

The ability to determine page fault rates (page faults per unit time)

for different memory sizes is a powerful tool in both performance analysis

and memory system engineering. Sekino (S2) has shawn the explicit depen

dence of response time and throughput in multiprogrammed systems on the

mean headway between page faults (MHBPF}. This quantity describes the

mean amount of useful work done by user programs between each two page

faults. It is most conveniently measured in total references to the vir

tual memory. If the mean amount of system overhead associated with a

page fault is known, as well as a proper characterization of system idle

time, we may compute MHBPF from the mean real time between page faults_

(MTBPF) and the processor reference rate. Hence, predictive techniques

to obtain page fault rates for contemplated memory sizes can be used to

deduce the system throughput and response time figurea which would result.

Hence, if one can indeed predict these figures, the economic tradeoffs

involved in acquiring improved memory system performance by increasing

primary memory size may be evaluated more methodically.

The use of more than one type of secondary memory in a single system

results in a situation where the average time to access a data item in

any part of the storage system is a function of both the average access

time to a data item in each unit and the probability of accessing that

unit. In a demand paging system, the probability of accessing each unit

is the sum of the probabilities of accessing each page stored on it. If

one can associate these probabilities with given pages of such a system,

one can create a composite memory system with an optimal average access

time within any given cost constraint. Ramamoorthy and Chandy (Rl) have

16

given an algorithm, whereby such a system may be conatrueted out of &J.lY

collection of memory types, whose speed 8Dd C()ft~e-r~bit characteristics

are knowti. In. G¥ case. it is clear that one should keep the pages with

the highest reference pobability on the fastest ator,.ge~-devices. Al

though, the iclentitiea of these pages uy hfa "'4te~~ by ~erimeutation,

observationt andprogi:;am 8ll&lysis, onecaa vi.ew theae"proh.Oilities awl/or

identities as ~tiouof. time ... l'hus, ane,~4'D devi•!·&lgol'lthmawhich

attempt to maintain pages wi.th given ,i:aag" -e(;.,.~~E•#•i:~e probal>ili,ties

on appropriate storage devices. It shCN.14be fairlJ' appqent that this

problem is identical to that o:f maintuning,pqe• ill Pt:~eyJMaOry with

the intent of minimizing page faults. .',l.'his 141~- ~~di .. cua,aed more later

on.. lbus, the design pf an optimal multil•vel .steraa._.,•ysteia, as such

configurations are known, can also be.anal.Y~ Q¥·tbe~Jmicpi•s-of pri

mary memory paging analysis. Again, the a.a~~i.~ ()f an .aepropDiate

model of_ prog~em behavior, both in general ad~- foi- ~ ~ paJ"tic;ulu . syatem.

at hand, is of crucial impoJ;t'8Ce ..

17

1.2 Program Reference Patterns and Models

Computer programs being among the most deterministic of all things,

any characterization of the data reference patterns of any particular pro

gram may be obtained by the simulated running of that program and the

observation of whatever characterizations are desired. However, system

engineering requires characterizations of programs which are to be run,

which, for the most part, have not yet been written. In a given computer

system, running under a given operation system, most running programs

have many features of their memory usage patterns in corrnnon. For instance,

in an operating system where an Algol-60 or PL/I-like run-time stack is

native to the environment, the pages containing the top of the stack will

always have a higher next-reference probability then page representing

lower regions. If the supervisor itself is paged, i.e., running in a

virtual memory, the same as users' programs, the supervisor has its own

reference patterns which will be present in any run of the system. The

same is true of compilers, assemblers, system utilities, library routines,

and other service programs. Code generated by the same compiler is likely

to produce certain corrnnon features in its reference patters, particularly

on a local level. Thus, there is great value in observing typical be

havior of programs in a large computer system, and trying to formulate

some model which is in some sense average or typical.

In a multiprogranuned system, this averaging is done for us in real

time. An experimental observation of program behavior in a multipro~

granuned computer system, made over some reasonable period of time, say a

day, will produce a characterization of typical system behavior, if one

indeed believes that such exists. This characterization takes into con-

18

sideration all of the programs run in that day, ~ relies on the CODJDOtl

features of programs discussed above to have any validity at all. The

interval of a day is chosen as reasonable;. fOl';that ta tbe:cycle.~ of

many forms of human interaction with a COBll*ter. People •a.l with an

interactive computer systein for several days, doing the s.-e type of work

at similar hours in the day.

The particular model of reference .behavior that we seek describes

next-reference probability of pages in a vir;tual 1118,DOry ayst~ as a func

tion of position in a certain dynamic orde:r:iJ:w9 ~as a.&~k, :1Jnpose4

by the page-replacement 'algorithm. The class of algorithms aaenable to

this analysis are precisely those which would keep the tQp n p~es of this

ordering in an n-page primary memory, wered.t vaed ,1iQ' m9naa,e ;such. This

will be discussed more fully in section 2.1. What is iapqrtant ~ere is

that we can arrive at a function p(x), where p. is th~.pro~ability of re

ference to. position x in this ordering. It.is tll.• obj~t.of that su~-class

of these page•replacemeat algorithms wllich "e e.c~ually.~eful for meQlOry

management to make thie' function lllOUOtOP;ically d•cc••~iJNJ. ~I-, t~e a~ ..

gorithm actually succeeds at this, it is cleetr tllat tken p.ages which are

most likely tq be referenced rill probably lte in the n"'Page pr~.memory,

and thus, the page-replacement algorithm has fnJC~eeded in ai'llillliziag re

ferences outside of the1n-page prhtery memoi:y, or.page faults• In the

case of multilevel memories, ve can pick out whatever poaitions in the

ordering are appropriate, by Ramamoorthy and Clleluly'saJaorithia, aJMl as

sign diem to whatever storage unit is required. C. IC.. Cbow (C3) has also

given an algorithm where an optimal ailtilevel memory f!Jystem within a cost

constraint may be conatructed directly from the, fuQC~ion p·(x).

19

1.3 The Experimental Determination of Predicted Headways

If we accept the function p(x) as a valid characterization of average

and typical behavior in a multiprogranmed system, we may predict page

fault headways for hypothetical memory extensions from it. Furthermore,

the function p(x) may be measured experimentally. In this section, we show

how to approximate and use p(x) in this way.

x is the position of a page in the algorithm-imposed ordering we have

been discussing. Assume we have constructed the necessary tools to mea-

sure r(x), where r(x) is the number of times a page in position x of the

ordering was referenced. Assuming pages which were never touched to be in

position "infinity" of the ordering, then the relative frequency of

touching a page in position x is

f (x) :::: r(x)
m
~ r(t) (1)

t :::; 1

Here, the numerator is the count of references to position x, and the

denominator is the total number of references to all positions. If p(x)

is indeed a valid characterization, f(x) should approximate p(x).

We have stated, that for the class of algorithms under consideration,

the first k positions of this ordering at any time contain precisely those

pages which would be in a primary memory of size k. Hence, references to

pages in the first k positions of the ordering never cause a page fault

in a k-page primary memory. and references to pages in any position beyond

k always cause page faults. Hence, if a program makes H references to

the virtual memory, the number of page faults it will take in the course

of those references is identically the total number of references made

20

to positions in the ordering beyond the primary memory size. 'lbus, the

program, running in a le-page primary memory, will produce a mean headway

MHBPF(k) = H
ao
L r(t) (2)

t"" k + 1

'Ibis relation holds true for any primary memory size k. If we have an

actual system, running in a primary memory of size n, we can predict the

MHBPF which would result on this system were memory extended to size E,

E being greater than n. We assume that we can measure MHBPF(n) on the

existing system, and that a tool for measuring r(t), for t>n, is available.

Then the same program which takes H virtual memory references will have a

MHBPF in the E page memory of

MHBPF(E) = H

~ r(t)

We now divide equation (3) by equation (2), obtaining

MRBPF(E) =
MDft(n)

~
t = n+l r(t)

!!
t = E+l r(t)

(3)

(4)

Observe that this equation allows us. to vred~ct,~PF,from a mea-
- - ~--· I t "' ~ - '

sured MHBPF and measured reference counts, a fact which will be used
[',_ . -~ - -. '

later. We now rewrite equation (1) to read

r(t) = f(t) ~ r(u)

u *= 1

(5)

letting t be what was x and u be what .was t. Substitut~g (5) in (4),

21

replacing r(t), we obtain

co

~ f (t)
co co

r(u)
co

f (t) L: r(u) L: L:
u 1

MHBPF {E2 t = n+l u 1 t = n+l
MHBPF(n) co

[_
co co co

f (t) L: r (u) L: r (u) L: f (t)
u 1 u 1 t +l

t = E+l

co
L: f (t)

t = n+l
co
L: f(t)

t E+l (6)

Multiplying both sides by MHBPF(n), we obtain

~ f (t)

MHBPF (E) MHBPF(n) t = n+l

~ f (t)

t E+l (7)

This equation states that mean headway between page faults which would

result from a memory extension to E pages may be computed from the mea-

sured mean headway between page faults on the unextended memory, and a

factor which is a function only of the program or programs being run and

the memory sizes concerned. The work of our thesis is to compute this

factor.

22

1.4 Previous Work in this Area

Since the advent of virtual memory computer sys·tems, the function

MHBPF(x) has been of great interest, being an easily identifiable charac-

terization of memory system performance. Investig~tors have run many pro-

grams in simulation, obtaining this mean headway as • function of memory

size experimentally. Almost all of these experiments have been done on

machines which attempt to 'compress' a program into• smaller space than

that in which it was intended to run. Such sy$tems may typically attempt

to fit five or ten programs, each running in a 32 k virtual memory into a

core memory of 96 to 150 k. In such instances, the set of pages referenced

by each program is small, as is the potential set which it can reference.

These sets of pages are usually disjoint, as they represent disjoint

virtual memories. Virtual memory in this case is simply a technique to

force several programs into a primary memory too small to contain all of

them.

Such work has been reported by Belady {lU), Belady and 'Kuehner (:83),

and Fine et al. (Fl), among others. A larae amount of this work was done

on an IBM M44/44X, a 7040 type machine at IBM Research Labs adapted to

demand paging. Belady and Kuehner report.an expected HBPF for single

2 programs running on this system of the general form e = a n , n being

primary memory size.

Brawn and Gustavson (B4) performed some measurements of typical com-

putational programs running on the same M44/44X. These measurements were

significant as they are apparently the first reported measurements of

programs specifically written for a virtual memory. They observed the

23
running time of programs, including page fault overhead, as a function

of real memory size. No analytic models were suggested.

Some performance analysis done by Schwartz {S3) on a Burroughs model

6700 is also of interest here. In this system, all data available to a

program is referenced as variable-size segments, brought into core on a

demand basis. Program code and certain data segments are shared~ and the

amount of information potentially accessible to a program is extremely

large. He reported headway functions of the form e = exp (a.n), variables

the same as above, for missing-segment exceptions as memory size was

varied. {These were actual measurements performed on various memory con-

figurations.)

The research which directly led to this thesis was done by Saltzer,

and later by Saltzer, Webber, and Snyder(Sl). Salt~er measured the MHBPF

on the Multics system (B2) at M.I.T., with two different sizes of configured

memory. He obtained the result e = a•n, which has since been called the

'linear paging model'. Saltzer later reported the results of an experiment

designed and conducted by Webber and Snyder, in which the reorderings of the

list by which the Multics paging drum is maintained were observed. Using

the techniques described in 1. 2 above, MHBPF{n) was extrapolated to a memory

size of 4000 pages (each Multics page is 1024 words by 36 bits), and was

found to be still within experimental error of the l.inear paging model.

24

1.5 Novelty of the Work in this Thesis

The work performed in this tflesis was ortgin8.l!y conceived as an

extension to Saltzer and Webber"s experiment, e-Iuci'cf.atillg the nature of

MHBPF(n) for n greater than 4000 pages. Th& Ihdtatlons of c&e linear

model were 8ought, as was the nature of wha·t:.ever model h'~ld beyonc:l that

range.

This series of experiments on the Mlllticti' systelli is unique for several

reasons. The data accessible to any progr* , .. ill MUttlcs is potentially

the entfr'e storage system,. and all dat'a''4:Ceo•i ar• *de ;;{a' th4i virtual.

memory mechanism. This is similar to the Jfurroug!Y &Ch~, but dissimilar

to the paged 'compressing' type systems described above. Furthe~re,

sharing is an extremely important consideration 'n(lt.lttics, ·as all pro

gram code, inclUdiri'g th. supervisor, iar shared. 'Tllis thesis fs also

apparently the first reported attempt to 'deal with cfyntlmically variable

virtual memories, i.e., those whose size grows and sflri.Dka on a second-to

secortd basis. The issues of dynamic Pase ·cre'at::l'.oa and destruct.ion which

result from this policy are sistematically crutt wfm·by Ottt ~1:.

The use of virtuat -.,ry aeems to 'be gail'li.Dg irl pOpulari ty as :rarge

general-purpose information syatema ·11ecome 'illOre C.GllmlDD.. Inereased interest

in systematic protection schemes has resulted in my new 4es'~s for

systems having segmented. uare.atns feabiraS s:flli'itar to thtJae found in

Multics. Demand paaing baa achieved conaiderably ..re popularity and

widespread use than the Burroughs techniquea aa an hlplementation for

segmentation, and has. recently been: added. by Dlf ta their extremely popu

lar System/370.

25

For these reasons, we feel that experiments made on a Multics-like

system are relevant to data systems in the near future, and the reference

patterns observed may have some features which are in some sense

characteristic of programs running in segmented, paged, environments.

26

Chapter 2

2.1 Stack Algorithms and the Extension Problem

The substance of the experiment performed was to reconstruct the en

tire history of a day's UlU-maintenance of the !mltics storage hierarchy,

and attempt to predict page-fault headways for hypothetical memory con

figurations from this history.

The basic strategy of memory sinmlation used was that proposed by

Mattson et al. (Ml). This technique, known as stack si.Jmlation, relies

on the fact that a large number of useful paging algorithms, including

urn, have the property that after any fixed DUDlber of addresses in an ad

dress trace have been processed by-the algorithm, the pages which are left

in primary memory are always a subs~t of what they would have been at the

sanie point in the trace had primary mmory been larger. This feature,

known as the "inclusion property'', thu• defines the class of "stack

algorithms". From this property, at any given point in the processing of

an address trace an ordering can be constructed. The first page in this

ordering would be that page which would then be in primary memory were it

of single-page capacity, the second would be that page which would .!l!2

be in primary memory were it of two-page size, the third that which would

be added were memory of three-page size, and so forth. The history of

the processing of an address trace can be viewed as a series of these

orderings, which are known as "stacks", the single page corresponding to

unit-size memory normally being considered the "top". As each new re

ference is processed, the algorithlll causes the stack to be reordered,

possibly corresponding to page motion for some size ~ry. The top n

----~ --.-- -------

27

pages on the stack being the pages which would be in a memory of n-page

capacity, any motion of a page into the top n-pages implies a physical

reading of a page into primary memory. For· a C':lem4ttd stack algorithm, this

movement can occur only as the result of a page fault. .Thus, we may infer

the behavior of an n-page primary memory by observing the number of times

that reference is made to position n:H or. beyomt in sudi a stack. As we

have defined this stack and the class of algorithms processing it as main

taining the first n pages in this stack in an n~page memory, no reference

to position n -0r below can ever cause a page fault. Mattson's technique

consists of taking a recorded or proposed address trace, running 'it

through a program which constructs the seque!lce of stacks'"Just described,

and act:umulates· the total nu:mher of reference&', t°'· each posi1:1on therein·•

When' the: processing of the trace begins, the a-tack is void, e,orresponding

to'an empty primary memory. At least until: a given page.ts fetched,. into

primary memory the first time, it will not have been in· the stack at all,

and its first fetch may be considered to have been made from position

"infinity". "·As the trace progresses, and repeated ref.erences to pages

are made, we accumulate counts for each position in the stack of how many

times a page in that position was moved upward by the algorithm. It can

be shown that for a demand stack algorithm, the only condition on which

a page may move upward in the stack is that it is that page which has

just been referenced. Simply, were this not tile ease, a page in position

n would move into an n-1 page primary memory without having been refer

enced, and the algorithm. would not be a demand pagi.ng algorithm.. As the

completion of the address trace, we can, for any n, sum the reference

counts for positions n+l to the total final length of the stack, plus the

28

count for position "infinity'', and this will be the number of page faults

which would have tr~pired had that address trace been nianaged by the

algorithm used in 411 u.,.page pr~ry. ~ry. .. ~te t;94t a single processing

of the trace can be wsed to produce.a r.-ult.which c,an ~en b~ used to

analyze any hypq~hetic:.al ..-o;y size.

· Thi•· technique al~ow.ii. µe to, .. Q£(;!r~ain:_~e pag~, fault co"Qnt f9r tbe

interval under co:Q.Sideration for any coute111>lated ~ry aiz~. By·sim.ply

dividing the total system he,adway dut"ing-the actu,~trace.by this page

fault count, we maY thus ascertain the ~re4icte~.~ ti.1'E! between. page

faults (MHBPF). for ~t _St<>J;"age sye~esa., :~~~X'Q!Ore1 ~tt clln plot tbe t"e

fertmce counts at. ~h.posit~on, no~lized 1~th ~·~ct:to tqe. t9tal

numl>er,·of .. ;refereuce counts, versus. t~ pos~tion ~er,, ~i~;i~tain. ll ~t'-4Ph
~ .

w\dch. describ~ what_~ shall .call;,acc;es ... freqqeocies. With this~· .we. can

aaaly~ the- be~avior of JDUltilevel memory l\IYStems processing thi.s trace,
. . ·- - " , .

and obtain an- optimal such systepi withb1, cos,t. c00§.tr•i1lt~ .u descJ:ibed ~n
. ~ ~ : ' .. - . ,· - ·. ' ._,, - -« ' -~ : _!_ ·' ' ... ~. - --~ • ~ -~

Chap,ter 1. The slulpe of this graph .al1u>. tells,. u.s, 111:1ch aJ>out the refa~ive

success of the particular algor4bm ~, ... ™'81Jl3. that p~t,i_cular. ad~re"IJ

. tracet without rep.rd to any single ~· con£igµ.;at~Qll. We .will co~

sider, the~ particular ·graph in. the case .of Qu.t:' resu.lta in ~eater detail

in the next chapter, and in so doing . fµrt}aer con.sider ~ch g:riq>h.s in

gener4l.

OIJr experiment sought to learn the sh~ aJMI nawre of this gi-aph at

positions correapol)ding , to memory sizes .of ~ ~JP, •. of pages. In

order to record a reference. t() positiOUiJl 4-n.a st~!'-as des'"x-ibed,_ there

must clearly be n-1 items above it. Tb.is implies .. tlµit at leas.t n dis-

th tinct items have been referenced by the time a reference to the n posi-

29

tion occurs. It can be seen that the extent of the address trace required

to produce meaningful statistics at the ten-thousandth page position would

require a prodigious address trace. At this point advantage may be taken

of another remarkable property of stack algorithms. It is possible to con

struct the portion of the stack from position n+l to the end without a full

address trace -- we use information extracted from a running algorithm

managing an n-page primary memory at times when page faults occur. This

is known as the "extension problem" (Cl,C2). The technique is as follows:

we maintain the stack (the "extension stack") for positions n+l and be

yond. When a page fault occurs, we know that the page faulted on cannot

be in the first n positions of the stack -- if so, it would not have been

faulted on. We locate the page in the extension stack; if not there, we

may consider it as having been at position "infinity". The counter cor

responding to the position from which the page was fetched is incremented.

We remove the page in question from the extension stack: it is now in the

top position of the real stack, which we are not maintaining. We now use

whatever information is necessary, from that normally obtainable to the

running algorithm, plus that we are maintaining, to reorder the extension

stack according to the policy of the running algorithm. This reordering

will usually include placing some page removed from primary memory by

the running algorithm at some point in the extension stack. In the case

where the replacement algorithm is LRU, the page removed from primary

memory is placed on top of the extension stack, and all pages previously

in the extension stack move down one location. Note that pages which

were below the fetched page in the extension stack stay in place during

the entire transaction.

30

I

The advantages of using a trace of ·a running algorithm in a large sys-

tem measured over an extended ·peri<>d of time, 'B Ofipbeed te>< a trace ob•

taillewl by si.smlatiol\ of a given program over-• Dll!ICRlari.:ly -..ch· shorter

period of time are stTaiaht£0'l'Ward. We are intereeted in 'system. perfor-

surement:s of a live system correspond to ;bo'tb ,t1ae.:.cu.a :scale and load mix

of interest. As long as ~he accur..acy of' th& •••sC r nm: can be ma1.nt:ai1led,

runnine of a progr l'

consider the Multics system·: 400,000 refereacee. ·to ·the virtual memory: oc-

cording 2 data items :Eor each page fault9 we a.we recltiCe4 the 'amount

It should be clear. that: the nsults iofth:la Wllper:baent, although simu-

lating hypothetical maaory system performance1- fib: '110lll, represent aiJnlllated

results. The measurements Diede corre&pand ·~an .-coatro-lle4 user popu-

lation during normal working ·.dq&, .\18-ing ·11rb:l.wsy ·tn!oBrW ·mider 6,..way

multiprogr-1.ng. The re«slts tbua·•sbow bow a ~ed.caJ. ...a:y .sys"'

ten would have behaved under dds ·real . uae~doad .•

31

2.2 The Extension Problem and Multics

The Multics system has a physical memory consis\:ing of 256K (1 K :::;;

1024 36-bit words = 3.7 x 104 bits) to 384 K words (l.2 x 107 bits) of

8 core, a 2000 to 4000 K word (1.5 x 10 bits) drum, and approximately

90,000 K words (3.3 x 109 bits) of disk, both movtas and fixed-head. The

variabilities stated above are dependent, upon. tke t:f.aie Qj: clay and the ¥Sel:'

load, governed by administrative policy. The entire· storage system is

divided into 1024-word pages, and is managed by the demand paging mechanism

(with the exception of several thousand words of n~m-pageable code and

data, such as the code for the paging meehanism itself, which must be

non-pageable in any case, and are thus net TeelJy of i~erest in memory

performance prediction). The algorithm used to mapage replacement of

pages in the core memory is essentially um. the v.-iation from I.RU is

explained in detail in Appendix A. Essentially, within the constraints

of operating system overhead and the precision of measurement of recency

of use provided by the hardware, it tries to implement I.RU as closely as

possible. Also, a non-demand prepage/postpurge policy was in effect

during these measurements, which caused s~pages,tQ:.move in and out of

core outside of the control of the I.RU algorithlll.

The 4000-page paging drum was at this tilae ·1*iJis used in a mode

which attempted to overcome rotational latency by making multiple copies

(S4), in this case two, and hence was of 2000 page capacity during these

experimelilts. Since January, 1972, the dtiml has bee~ used as part of a

hierarchically managed storage system, as a buffer.between core and .the

disk storage subsystem. In such systems, one att;~s, to keep pages

with the highest access frequencies on the u~t~st @v;ices, in order to

32

minimize the system's mean access time. In anautGD&tically managed sys

tem, the identity of those pages is cOtaStantly clumgtug. Aa the stack

access frequency graph discussed above can be used to 8JJSOCiate.access

frequency with stack position, page replacement algorit:blils identical to

those used to manage primary 'llellOry. are frecaueatly used to manqe other

tlevtces in ·a hierarchical memory systea Ue;.ach:ieve •tllie eDd. In .the Mul

tics sys·tem, another near•UW algorithm. ts used to ...aae the drum., which

is described as well in the Appendix. l'he·-drum''~t algorithm at

tempts to maintain copies of the top 2000;'pages of the theoreti-cal stack

corresponding to the lllU algoridua on. tU·•drua. Ille -model of program. 'be

havior implied by the UUJ algoritblll, and Terifted by·. the· renlts of this

experiment, implies t:h.at-t:hese pagea- are the most U.Jrel7. to be referenced.,

and at the time they are on the drua, thaa have the bighest access fre

quencies.

As currently implemented., a page whicll haa \leea;faulted on, and is

not on the drum, is read into core from.the disk. It wi.11 not be written

to the drum until the core management algaritlm. clee-iclu to oust it from

core. This impli-.es that the pqes corH:Bpcmding. ;to· that pprtion_ of the

!RU stack representing core are· not coaqlietel.y a subaet of those on·. the

drum. Hence the dTUIR will contaiu pages repre8.e1*iug a 200<kpage con

tiguous portion of the stack, whose topllDlt e:ittrfllae 18 anywhere \)et;ween

the top of the stack and the size of core laalotr it:. Of tbe 256 to 384K.

about lOOK is not uae4 for paging, leaving 150 to 280K for pagilg, thus

this variability represents about 7 to 15'1 ef t8e ~size of the drum.

'l'he stack-reordering procedure of 'the I.aU algorida is oue of the

simplest possible: the referet1eed page ·.moves to the-·top posid.oa of ~e

33

stack, as is necessary in any demand stack algorithm. The pages between

the top page and the old position of the referenced page all move down one

position. Thus, to use the extension technique described above for the

LRU algorithm, the only reordering information one need record is the

identity of the page thrown out of position p (p being the size of the non

extended memory, in pages), which will then occupy position p+l, at each

page fault, in addition to the identity of the page faulted on. The

"pushed" page becomes the top of the extension stack, the page previously

there becomes #2, etcetera, all the way down to the former position of the

faulted-on page. This is what we have done with the Multics core-drum

combination, considering it as a 200o+X page buffer, where X is some frac

tion of the size of core, itself at most fifteen percent of the drum, to

account for the top-of-drum variability described. As positions p+l and

on, in our case, correspond to the disk subsystems, we need only record

disk reads instead of page faults. (It is instructive to note that within

the entire operation of a Multics system, not a single direct-access I/O

transfer is done outside the paging mechanism, pre-paging being included

in this consideration.) As disk reads are two to five per second, we

have thus reduced our data-gathering chore by at least 95%. The experi

ment of Saltzer, Webber, and Snyder, which was similar in intent to this

experiment, but more limited in scope, has already produced results (Sl)

for primary memory sizes up to the maximum size of the drum. For this

reason, we did not consider it worthwhile to attempt to gather data for

that portion of the stack corresponding to regions in the drum. Hence,

the application of the extension technique to this core-drum combination

was adequate. All else that was needed was the recording of information

34

provided by the drum 111&1l&8ement algorithm as to the identity of pages

thrown off the drum. It can be seen that theee are the pages thrown out

of the core-drum combination, given that 1lO page is ever thrown OQ.t of

core without having been written to the drq.

In order to determine the validity of this tecbeique, the necessary

programs were written and tested on a staud~aloog Multics macbi~. This

machine had 131,072 words of core and a 256 .. paatt.cJ.nm. ,H•nc:e, most of the

range of the regular Multics drumvas in the exten.a~oa region of this ex

periment. 1'he mean headway curve resulting was very ~ell approximated by

a straight line, suggesting t:b.e linear pagieg llQdel. Th.ts provided a

good deal of confidence in both tb,e techtd.qwa -.Dd the software.

Hence, we see two types of JDOtion 1'et:ween core-~ and disk. Th.e

reading of a page constitutes motion from disk into core-drum. The

writing of a page, however, does not conetituteoutwardmotion. In gene

ral, writing is performed only when a copy of a page on disk is different

from a drum or core copy. The outwalid 8'0tioQ corresponding to a read is

really the claiming of the core or drum frmae previously occ_upied by the

page of interest. We call this phenomenoa 411 "oustiiig".

Unfortunately, a problem arises with even this ,.µaple uwdel. Certain

pages of the storage system, 3 in all, correspc:nlC}ing to the system's top

level directory, are special-cased by the paging. a,Qd drum-management al

gorithms such that they may never go on the druia. '!'his is due to cert.ain

integrity issues involving the reliability ~f the ci.ru8' and the ~treme

difficulty in reconstructing the contents of this directory. Hence,

these pages are never written to the drum, al1d leave the "core" portion

of the increasingly less theoretical I.RU stack directly for the disk por-

35

tion. (In this case, writing never takes place unless the concerned page

has actually been modified (see Appendix A)). More unfortunately, these

are among the most popular pages on the disk, as by the dictates of the

LRU algorithm, they should have by all means been on the drum. Thus, we

must check for pages being ousted directly from core to disk, and we thus

have two varieties (core and drum) of ousting to be recorded. The inter

pretation of the data resulting from movement of these pages will be de

ferred until Chapter 3.

Thus, we need record upward stack movement into the core-drum com

bination, meaning disk reads, and downward movement, meaning oustings.

Another event of interest is the creation and deletion of pages. In the

current implementation of Multics, logical pages are created out of the

void when a never before referenced page is referenced. By definition,

all such pages contain zeros, and hence never involve disk reading. Fur

thermore, these page faults will occur regardless of what size primary

memory is, and are thus not of interest in memory performance prediction.

This last statement is somewhat subject to current design and user beha

vior. Were there a tremendous amount of fast, cheap primary memory, it

is altogether possible that users would rarely delete programs or data,

but simply rewrite or modify them, thus making page creation a much rarer

event. We choose to ignore this possibility.

In the following discussion, "n" represents the size of "primary

memory", in pages, in terms of the extension problem. In terms of the

specific experiment on Multics, n is the size of the core-drum subsystem

in pages. As was explained earlier, this is the size of the drum (2000

pages) plus a fraction of the size of core.

36

Page faults which cause creation of pages involve neither disk traffic,

idle time, nor multiprogramning, and are th11s not of interest in MTBPF cal

culations. Since all new pages are created in.this way, we find them natu

rally falling past position n of the complete ,Lllll stae.k, into the extension

stack after sufficiently long disuse. Page deletion, on the .other hand,

can occur at any t:f.me·in the life of a page. If a pqe is destroyed.so

soon after its creatiov that it has never pas1H!4 posit.ionn i,n the stack,

we are oblivious to its entire existence. If, howeve~, it.is destroyed.

at such time that it is beyond, position n• its 4eat~ti.on 1RL&&t .be~

panied by its excision from. the extension stack. ,-:when a .paa,e is destroyed

in core or on the drum, the next page to be faulted·on replaces it without

any page being pushed down the LR.U stack. JlQWeYeJ', ·thtt·RQ&itioa in the

stack of the destroyed page is assumed by the 1aae.di.-ect~y under.it. The

page fault following a page destruction creates cmly_upward stac~ motion ·

nothing is pushed down.

Consider, in our theoretical n•page primary ~ry system, a page in

position n of the I.RU stack. This page is now -.t~oy•cl· .: A page in posi

tion n+m is now faulted on. In an actual memory sy•~• this page will

now be read into primary meaory without any page beiBg replaced,. the des

troyed page having created an empty page frame, b\tt.the newly faultecl .. on

page will be at the top of the I.RU stack. 'l'he~formerly ,first to n-lst

pages now become the second to nth pages in the st4ck~ 'l'he n+lst (first

page not in core) to ~1st pages retain their or~ginal sta~k position.

(See figure 2.1). '!be n+m'th position in the new stack is in a situa

tion akin to that of the nth position after tJie deletion of the page

there: the page in the n+mf-lst position cannot come up to fill the void

Position

1

2

3

4

n-2

n-1

n ----
n+l

n+2

n-kn-1

n-kn

n-kn+l

Pl

P2

P3

P4

PS

P6

P7

P8

P9

PlO

Pll

Pl2

LRU stack
before
deletion

37

Top of Stack

Pl Pll

P2 Pl

P3 P2

I

P4
deletion PS anomaly P4

PS ----
P7 P7

PS P8

P9 P9

PlO PlO New position

Pll
of anomaly

Pl2 Pl2

After deletion After faulting
of page P6 on page Pll

after deletion

Figure 2.1 -- Behavior of anomalies resulting from deletion.

38

that would not be demand paging. Until some reference is made to a further

position, say n+m+k, this will be the case. At the time the nf1ll+k refer

ence is made, position n+m+k now becomes anomalous. Hence, we _create an

anomaly when a page is deleted, which propagate& down the stack as any re

ference is made beyond it.

The strategy that we have chosen to deal with this, in thesinulation,

is simply to excise a page from the stack when it is deleted. Thus, any

reference to a position beyond the excision will be tallied as a reference

to position x instead of :x:+l. Note, however, that the position of the

excision has then moved to x. All references in front of excisions are

tallied correctly. The analysis of the inaccuracies resulting from this

treatment is quite involved, and is covered in detail in section3.4.3.

Thus, the data items which must be recorded in a trace are those re

presenting 1) reading of pages into memory, by demand or prepaging, from

disk, 2) claiming of pages bY ousting pages frCJQl drum to disk or from

core to disk, and 3) the deletion of pages from the storage system. Of

these events, types 1 and 3 represent excision of a page from the exten

sion stack, while type 2 represents the pushing of a page on to the top

of the extension stack. Events (1) also c~e the noting of the stack

position of the page read, and the incr~ting_ of a counter corresponding

to that position. There are actually some other events which must be re

corded in the case of the Multics system, but these are due to the parti

cular implementation of the core and drum management algorithms, and are

discussed in Appendix B.

The handling of page reads of pages which cannot be found in the

stack, i.e., their first reference, requires some thought as to inter-

39

pretation. Were this experiment run for a sufficiently long time, the

appearance of such pages would cease. Pages which are created come down

on the top of the stack, and any existent pagewhi.ch h&B not been refer

enced since the experiment began enters the core-drum extension-stack com

bination once and never leaves, until it is destroyed. These first refer

ence's, as discussed, are counted in the "infinity" position of the stack.

These fetches of pages not in the stack accounted for roughly a tenth

(7881/74530) of all disk page fetches. These references do not affect the

relative number of fetches to any two extensionstaek positions, as they

would not be in a core-drum memory of any size until the first time they

were referenced. Thus, when one considers disk accesses, one should con

sider these reads to be disk references in a core"'<irum system of any size.

However, the longer the experiment runs, the fewer will these references

become. ntus, since we are interested in steady-state behavior, we have

chosen to consider these r.eads a start-up transient, and not count them

in any calculation. They tell only of the length of the experiment, not

of what is being measured.

40

2.3 Perforndng an Experiment· on Multics

Having developed the theoretical haaes of the extension problem, and,

adapted it to Multics, the next step was to, proceed.. t.o' coutruet tlle

necessary eo!Rare to develop the extension acldrees trace, collect it.,

and perform the Utu stack simulation with it. ,

A privileged-access facility was set up in the Multics hardcore super

visor specifically for this experiment. Wllen.enalecl,,,a trace of all of

the events mentioned above wu0 &ecWDUlatecl in a circular 1008-1i10rd bufUr.

Eaeh trace item included the physical device addrds of some.. page being

read, ousted from core-drum, or deleted., in&mne.cion ae to which of these

events is represented, ud a flag iadicat:i~ for statistical purposes,

whether or not it was one of the previously· ..a.ttoned pagea,,wnich are ll()t

allowed. to go oa the drum. Also recorde4 waa iafonM.tion allowing ., the

program which inspects this buffer to s~onize itself with it cor

rectly. A program was developed which. inspected thi.s buffer regularly

from the !mltics standpoint, a privileged operation •. 'l'his program.as

sembled the buffer images into a continuous trace·, which coulcl be a~. long

as necessary, suitable for further, repeated processing.

'Dlis strategy was decided upon because of the extensive time required

to search an I.RU stack for a given page, and the large amount of space re

quired to store this stack. 'l'his ruled out the possibility of having a

special-purpose module of the Multics supervisor perform the experiment

in real time. 'l'he performance degradation necessitated by the time re

quired to search and the space, which would have had to been non-pageable,

to store the I.RU stack would have been wholly unacceptable. Furthermore,

the accUDUlating of the trace data for further processing allows many pro-

---·----- ·--------------------

41

grams and versions of programs to be run on this data, increasing both its

usefulness and the accuracy of the results obtained from it.

One disadvantage of the data collection strategy described is the pos

sibility of the data collecting program losing synchronism with the circu

lar trace buffer, i.e., data being overwritten by new data be-

fore it has been duly noted. This situation can come about when the data

collecting program has made a decision about how often the buffer should

be sampled, and an intense unexpected burst of activity causes the buffer

to be written into significantly faster than before. The data-gathering

program samples the buffer again, and notices that data has been lost,

but anticipating further loss reschedules itself. Another way that data

can be lost from buffer mis-synchronization is the data-gathering pro-

cess falling behind in the multiprogranuning queue due to Multics sched

uling policies and heavy user load. The implementation of the data

gathering program tried to compensate for this by being written as a multi

process program, i.e., a program running in a coordinated way in many pro

cesses at once. Not only did this give it a scheduling advantage, but in

creased the reliability of the data-gathering operation as a whole.

Unfortunately, data losses of the types described were cormnon, espe

cially in initial, developmental runs of this software. The greatest

losses would typically occur at midnight, when a large number of user pro

grams scheduled to run then would, creating heavy paging activity refer

encing pages neither in drum nor core, and only one or two processes would

be supporting the data-gathering operation. The extents and analysis of

these losses are considered in the next chapter.

A danger of running a large complex data-gathering system in many pro-

42

cesses is that of creating a great deal of activity which would Mas the

result of the measurements by measuri1;1g itself. '1'he sharing.features of

the Multics syat- helped count:erl>alauce this ;effect: all of the data ·

bases and procedures of the.data-gathering ay1c- wm:e fully-shared, having

only one copy. Only the· per-process work ,areas ·W!t:e not .shared. ' '.ftle

actual data-gathering system, in order to handle the·control of multiple

processes, poHibly aalt:iph tel.'minal!s, ·aM 41yWf.c achedoling was, in

fact, quite complex, requiring sh sefarat!e -pr.oce4m'.es. · '!'he sharecl data

bases and procedures totalled ten pages. Approslaat~Uy two pases of work

area per process were needed.

The data gathered was stored in data segments m the -.iltics virtual

memory. 'l'he stack atallation was au'buquently perforaed, using Chia data

as the extension address traoe9 exactly aa deacrtbed above. 'Dae proceclu-res

which performed this reduction ran in anuurestrined Mal:tics enviroaaent,

and hence had practically-no restriction on ctme or apace ... The um stack

was represented as a list, in whieh each node represented a siack posi•

tion. A push of a page onto the top of ·-the stack!requt:red the allocation

of a newinOde, and the redefinitiOll of ~ls·nod• 'at the top of the stack.

'Dlis node was then made to point to the foraer ataak top. The . esd:sion of

a page from the stack ref'.IUirei locatil'lg the node correspoading to this page

(each node contained a physical page address), the reallocatioa .. of this

node, and tile reconaeeting·of the list arou.l it!.;i' l'or trace data repre ..

senting disk reads, however, it was necessary to ascertain the position in

the list of the relevant page. · '!'bis required a search of the· entire list.

In order to reduce the work of discovering that a page was-not in the list

at all, a bit table was constructed, describing, for each possible physical

43

disk address, whether or not it was in the list at all. This saved the

necessity of walking the entire list.

The above list-maintenance algorithm spends a great deal of time

searching the list to determine the position of pages in it. Several al

gorithms were considered to avoid the seemingly crude strategy of linear

search, but most of these algorithms caused the list to grow increasingly

disorganized, requiring periodic time consuming re-organizations, or re

quired large amounts of data movement, a poor approach in a paged system.

Because of the availability of a stand-alone machine which could easily

provide the computer time necessary to perform this processing, the develop

ment of a better list-maintenance algorithm was not pursued further.

The result of the stack simulation was a table, describing for each

position in the extension stack, how many times a page in that position

had been referenced. The sum of all of these counts, plus those at posi

tion "infinity", represented the total number of all page fetches from

disk during the period of the measurement. Although a graphical display

of this information is of some interest, the calculation of MHBPF was the

immediate objective. Thus, a table was created displaying, versus exten

sion stack position, the total number of fetches observed divided by the

sum of the counts for all of the positions further down the stack. For

a given position N, the interpretation of this number, x, is as follows:

had memory ~ore/drum) been extended N pages above its actual size, we

would make one disk reference under that circumstance for every x refer

ences we make now. We thus refer to x as 'references per exception'.

Note that we have not included the "infinity" fetches in the 'total re

ference' count in the actual results shown here, for the reasons dis-

44

cussed in section 2.2.

One may choose to interpret x as the "ralaU.ve. .i,ncreasa in mean head-

way'', which is to aay, the factor by which mec b~ will inc~ase over

its current val-qe if the exc;..nsU>n ()f N ~es is. Jaad.e . to ~o.i:e~drua. For

in~&J;lCe, if. "refer,encq ~r· acep.tiou''· ~· ~ .t. Ii .?c 40QO. ~&AS. the in~ . . -· ·- . - ·-~ . . - . -· ·- •' '

terpretation wou.ld be: If • adde4 ano~ 4~ ~· to the. drum, we

woul,4 £ault to the disk oiie-fifth as. often .aa. we .,,.to ·la'JW~ this consti-

Refwmcea .o~d .· . , I Mean ~ .~ •.~. ~repcea .·
References beyond position R

= Jlefer!l!Cff obseeyec! X. 'H• .~;f!f Stl!!Hti!ent
References beyond position R References observed

= TW duraswm .sf. evedeallt ..
References byond position N

I • . .

= Mean time between references beyond position N

= Expected mean time between references were memory extended by N

Multiplying this DUlllber by the measured system headway in virtual

memory references during the experiment, and dividing b).' the time dura

tion of the experiment, we obtain the expected mean headway between page

faults were memory extended by N.

We have displayed both references per exception, versus memory exten

sion size, and. predicted inter-reference headway, 'as a funetion of memory

size.

Note that in all of this discussion, mean time computed from an ex-

45

periment taking many hours must be t~n. ~te literally. The averaging

effect over a day of usage varying between a heavy user load and solely

the data-gathering program* produces a result which is really applicable

to neither, but only a theoretical load somewhere in between. For this

reason, we feel that 'references per exception' is a more useful inter-

pretation of the results of this experiment ~ 'm,e~n t~ beyween ex-

ceptions'. Attempting to tune a system to the theoretical point described
,, J

by such measurements will not help the system when it needs ~e most help.

lbe reference counts and references per exception were subsequently

displayed in printed tabular form, and the references per exception ver-
~ ~ _,;,, ~ ~. - '

sus stack position plotted on a Stromberg-Carlson 4020 Microfilm Recorder.

Some of these results are reproduced and discussed in detail in the next

chapter.

*Some more precise descriptions of the exact user load during the experi
ment are provided in Appendix C.

46
gn:r;~,£'.J"SV_~ ;S,~"T - . J.Li.s:la:HI $;lilt--,:", l1J:tlillf:.11~ ~ &ttl:ie.::i 1n:sfliJ;'l9<J

;;~ '~ ::--,~~~ ~ }~ .. >- ; ._: '-, ~· - -. --, ,_ ' -

,1~:.~,.·~);•r.v•~'
:•~:di:am~.:r:. -.· '.· . . . Oti.

·. ··.· ~~ .. ·· .· :a~. ·-.XJJ:. - '1 .. l. ·~·j.··.•P-.. : .. ·~. . . -·>···.a· ,. -~ --.
;·· ••·•-· -~:mi•·-•;·•11~.,:·1: •••

- ' _,._ SL'_c "·.:c

;\:i • .. · ··a.t1•1••• .-- .::lir';~·11:1::

·• ; ... -- • ·-~ ·>-)tJ11iur1

-; :'~-_ .-.1_1 . ., ..•• :~- U.!f .. M#i~···-···-----···
, "::r~·~·-·-··a._l!l l.IJ.HAlllf'·:""·•ll1 .• ltUJl!1[•.11i~ --.
'~~~: j~-, ••••·u· aa.r•: ·•,-ic£:111tilf·-•:-._.

:-_ • - ', -.. '•,;. "o''"'""::'•;·o '•

.. . <U.M,ea.-'••a.W _Ila C.

_, lo··.~ !> ~9VO :t:>Sil$
~- . - . .

--~-_;lllQ1 .. 1·ti·---. -.
("" ~->:-<:.''."' .-_' .

_- ~

47

3.2 TI>.e Results of the Experiment

TI>.e form that we have chosen to display is that of an "exception

ratio11
, or MHBPF(l!:)/MHBPF(n), where n is the adjusted 'primary' memory

size (core-drum) as explained in sectiort 2.2, and E.is a hypothetical

memory, both in pages. This exception ratio is the quantity expressed by

equation 1.6. We plot this ratio versus primary memory extension in

figure 3 .1. We express the abscissa of" bur graph as· 'memory extension' ,

which is the hypothetical.· increase of cor•-drum instead of absolute memory

size because of the variability of the size of core-drum as discussed in

Chapter 2. The size of core-drum is not the sum of sizes of core and

drum, because of duplications, created pages in core which have n~t been

copied out to drum, and possibly even different configured sizes of core.

The extension size to core-drum is meaningful however, because th& data

and results derived from the measured data represent the behavior of a

hypothetical extension of the given size, oblivious to all of the above

considerations. If a figure for the size of core-drum is needed, 2100

pages is reasonable. The .shape of this graph suggests an exponential be-

havior. Thus, we next plot this ratio on a logarithmic vertical axis, to

better view this behavior. This is figure 3.2. The plot almost traverses

the graph diagonally, suggesting the straight line which would correspond

to an exponential. We have drawn a straight-line approximation, which

corresponds to

(l!:-n)/(7.00 x 107 bits)
MHBPF ~) /MHBPF (n) = 3 .42 e (l)

The surprising closeness o.f the dtm 21 and dt:m 23 plota gives some con-

fidence in this result. A similarity to the unpublished Burroughs re-

350

300

250

200

150

100

50

Exception
Ratio

Figure 3.1 Linear/Linear Plot,
Exception Ratio vs
Memory Extension

Memory Size above the Drum, in pages
0 ----

0 1000 2000 3000 4000 5000 6000 7000 8000

~
00

100

56

32

18

10

5.6

3.2

1. 8

.1

Exception
Ratio

1000

Figure 3.2 Exception Ratio vs Memory Extension

2000

Logarithmic Exception
Ratio Axis

~
..._ Exponential

Approximation
Exception
Ratio =

3 •42e(E-n)/7 x 10
7

bits

Memory size above the Drum, in pages

3000 4000 5000 6000 7000 8000 9000

+""
\0

so

ault (S3) mentioned in Chapter 1 may be noted. subject to the limitations

.dtlsCQsed there. 'Ibis sillilarity goes only aa far aa that Schwartz ne-

It c;an l>e .seen daat the lov regiona. i.e •• below 2000 .,.ges above the··

.dtun. fall· short of the ~tial 'approswtion ..._..ted. 'Daus. we pro~

vi.de fipre 3.3, in wllicb ,,_ display the low'ngi.Ola of flpre 3.1. !his

1'~~ shows a decicl .. 17 less than ezponeatialt belaarior. Fr• ·one vi~ ·

point, this is comforting, as the aper1-at of Saltaer, Webber, and Sny"'.'

der (Sl) measured this function in this tange., aDd oa,qtned a linear fanc•

tiOll;. Jloweyer, our plot .._. ~o ~ov cO!Qideraltly faster tba 11-.ly

in ~is region. !his can be seen u a .oticeUlJ' different cb.g4e ,.& be- .

. Jaavtor.

:la which both me ory eztenaion and excepti_. •ei•,, are t~tted logaritJa.. . ,,.

ically. It is seen that the higher regions of this, it lot .approach quacl

r~tte, slope, and the increu~ slope leads ~-· conftdence to the ex

poa81ltial ~ted abaft. lloveftr, no ~ quadratic curve suuest:s
•',,

itaelf.

'1'he most that can be said ta·" tlt&t llllP!"(l)/IBPF(a) is a function of

at least second order, 8'·"•;..n.eaeeeda 3000 pmaea.

We also prori._.-f.ig'lire 3.S, in whlcb we plot ..W(I) directly as a

function of •P. ory ertenaion, by aaltiplying the orclia&te of figure 3.1 by
,.

the:w.aur:ed .JIDn .411. .. bota. -•11111:wset.a1.-- --.... p'lell ·aeeptioe·ratio ·

does not car,reapon¢,to the·- !ISPF on both ~i ... diff.rent

mean headways were observed. '1'his is clue to the variability of the system

10

8

6

4

2

0

0

Exception
Ratio

200 400

Figure 3.3 Lower Region of Figure 3.1
Linear/Linear Plot

Me~ory Size above Drum, in pages

600 800 1000 1200 1400 1600

/
//

1800 2000

Vl
1--'

100

50

20

iO

5

2

1

Exception
Ratio

52

Figure 3.4 Exception Ratio vs
·Memory Extension,
both axes logarithmic

dtm

Size above the Drum, in

100 200 500 1000 2000 5000 8000

6xl07

5xl07

4xl07

3xl07

2xlo7

lxl07

0

MHBPF
' Virtual

Memory
References

1000 2000

Figure 3.5 MHBPF vs Memory Extension

3000 4000 5000

//
,/.

/

Memory Size above Drum, in pages

6000 7000 8000. 9000
f·

U1
w

54

load on these days. The difference, however, is not very significant.

-. ,:

,: ·?·!
~.i '

.-~
--o'.~;.'

.. c:a..-..11J>t'- - . ' .· ~·
(C.) ·. .••. .· . . ' •· pro&i;••• • •4'8~~1Lnl!/:

(s~3a111•ee1 ... If.DIX •IQIJIL _.,' .. -.

'~~'
-~ ~ ;~::·~

. . .. =~~'. • jp;(~tit• ·~· ····~··
'•·,_·:~-·'"f ~Ujfj'l(f.~·f·~J~~

. . . --

Wt: & ,f) ••.••• f

ttae.+i···-·~.-:: ·.· . t• .· .· .·. '·

., .. .
-·~·:.ifit.,,t~ m:~.:~

(~)

. ·~- f •• : to·. ···•.Jit '1jWttl1:iti'.~:
(i I)

(4)

·. ~, ~···••·1'1141'flir .

.-.·.

. :. " . . ;:_.._· - .

- I _-•• , :·_Ull[lf:
an_,~:Jlii.,_-. ·-----. ,- .-: --

. .
cZ aol:!laoq: ·tt1 ~'?9l$--2; ,,. y,;tli,;

. - . - - ;p(1d· -.. • - ·•
~.tuw:) xinc ~-a .-w~ ~il!Jtf~tflll

- (;).

57

the polynomial headway function MHBPF(x)

knk
pk (x) = k+l

x

k
ax giving in general

(12)

which subsumes (8), (10), and (11). The exponential model (9) is the only

one of these probability distributions which is characterized by an inde-

pendent parameter, y. Letting A = 1/y, we rei-..rrite (9) as

p(x) 1 - (x-n)/A
~ e (13)

A has the dimensions of pages. It in some sense characterizes a 'radius

of locality of reference' of the programs running. It is the mean fetch

depth into the extension stack.

58

3.4 Accuracy of the Reported Results

The question of accuracy of the results of a supposedly deterministic

simulation seems at first to be unnecessary. However, this simulation was

based upon a measurement. Thus, the techniques used to interface this ex

periment to the Multics system (see Appendix B) became a source of inac

curacy. Furthermore, the behavior of anomalous pages (the so-called "glo

bal transparent paging device" pages) caused significant deviation from

the assumed LRU model. The deletion of pages in LRU list created prob

lems, as an inordinate amount of effort would have been required to handle

these correctly (see Chapter 2).

'Til.us, we will consider three sources of inaccuracy: lost data, glo

bal transparent paging device pages, and list deletions.

59

3.4.1 The Effect of Lost Data

The loss of data was due to failure to retrieve it from the Multics

supervisor before it was overwritten. This was a consequence of the cir

cular buffer strategy chosen to solve the problem of real-time storage of

this data. These strategies were discussed in detail in section 2.3.

The effect of these losses are twofold: some counters for stack posi

tions were not incremented for lost data, and the ordering of the stack

was affected by this lost data. We consider these problems separately.

60

3.4.1.1 Lost Counter Accuracy

In order to deal with either of these problems, we assume that lost

data has no correlation to page reference patterns. We thus deduce that

it shares the same distribution over stack position as the successfully

accumulated data, and the shape of the resulting histogram is not se

verely affected by this loss. For the measurement "dtm 23", the most suc

cessful and accurate of thos made, 435 trace items were lost out of a

total of about 200,000 successfully recorded items. This represents a

total inaccuracy in counting of less than one quarter of a percent. For

the slightly less accurate "dtm 21", 1200 items were lost at various times.

Measured against the 150,000 items successfully collected here, this is

still less than one percent.

61

3.4.1.2 Stack Shifting Inaccuracies

This type of inaccuracy, resulting from inaccurate reconstruction of

the I.RU extension stack, is considerably more subtle, and damaging in its

effect. Failure to notice certain movement into and out of the extension

stack causes the stack to stray progressively farther from a realistic re-

construction. Items remain in the simulated extension stack which were

in fact removed by lost data, and items which should have been pushed on

its top are not so pushed. The result of items not being removed cor-

rectly is twofold: first, the item will appear twice in the stack when it

is pushed out legitimately onto the top of the extension stack in the fu-

ture, and items further down the stack than the false appearance will have

their stack position incorrectly recorded. The double appearance is only

a problem because of the latter effect. 'lbe stack-managing algorithm of

the simulation program used a bit table to record the known presence of

every storage system page in the extension stack. Thus, the legitimate
f ~::

pushing (the second time) of such a page has no effect, and the later

fetchin~ of that page from the extension stack fetches the correct in

stance, aiid the bit table indicates the page as no longer being in the

stack.

The result of items not being pushed because of failure to record

their pushing is similar. Their absence at the top of the extension stack

causes all items below them, which is the entire stack, to have their posi-
.:· ., ;

tions incorrectly recorded. These items appear one position higher than
- ' . ,:: ' ,p. ·~ . -

they should be, for each nµ.ssing item. Thus, until the missing item is

later requested from the stack, by virtue_of a ~;cor~ed fetch, all items

which were on the stack before the failure to place the missing item will

62

have· their pos~tions incorrectly tallied: Also, a later reference to the
, 1 '_•.,

unpushed page will be recorded as a transient, not-in-stack page fetch, as

discussed in section 2.2. 'lbe"effect' of .DOt accountl~ this .fetch to any
,.

stack position was already discussed.
- , ' :.; - ,_;, ,_.

Note that the effect of pushi1t8 and then fetching any single page has

no effect on the extension stack orderings before ~-pushing and after the
! : ~

fetching. '11lat is to say, if the i)ushing aad fetchtDg were not recorded

at all, only the stack order.ins• between the two ..:OU1a be incorrect. 'l'h.us,

· if at any one time a data retrieval ft.~·· the hardeor~ .~~rv:i.sor notices

that x data items were lost, all such puah-f~ti~ ·~ir;~'. rii:liiD the x lost

data items have no st.:Ck-reordering tnaccuraey ~i~t~ with thelll, and
.. ' .- ... •

only the lost-counter inaccuracy occurs. A ~·fernce:.~·pair, on the
- . ·. :· . '·_ ·;,.. ::: ;-· .

other hand, causes both types of inaccuracy. Although it seems evident, by

; locality of reference, that any string df coutlauoa~· I~~~;~~~ ·items must
.•

contain a large number of push-fetch pairs, i~·e., •. pqe' r~~htly pushed

out of cor~-drum is one of the most lik~ly 'to be f~tched back .iii soon, ·a

more car.eful math~tical analysts show~ th:i.s t·~ be '-'false. ·k&ea· upon

parameters derived .from· the data accurately record~' tD. "cft:m 23", '100 page

fetches within a string of contiguous lost data itema will statistiCally
- ·i -: ,- 1.r. ' .. '. . ::: . ·- " ·" .·

include only 4 fetches of page• pushed within the lost data U:ems.

We DlSt thus assume the werst case, that every iost data item was in
- .:. r ':·· - :_: ~·+' Ill:.; . , • , ·- .,.--;:;'

fact a push or a fetch not properly matched Within the lost data. Bence,

for the 435 lost trace, items in. 11dta 23~r, the !f't~t "~£ '1~.i:tn8·''thia data

could not have been worse than ;he pushing .;t"43i~~~refere~ced-.Ptn
' -' : " - - ... ~ ; ,•r:. , • ,'' -'"!(!"". -~ : . .. - . "

pages on the top of the extension stack, or the exciaic:iu of '435 random

points from the stack. In the first ca&~. ·the :r...;t~·~.isj t~t later

63

fetches are accounted to le>weJ;""'.'~ed; ~~OU$, tha.Q. .. ~y s]wuld hav~ ,
·- - "- _,ii,._,, __ ~- • - - --- --·- - • -

been, and in the second case, sOJne later fetches axe.,aceou~ted, t.o,:positions

of higher munber th@ tjley shoul4 ba,ve be~. In ei.t¥r cas~., th;e .total .ef

fect is rthat of an uncertainty of e\&Qs i435,.pr +~; ;QD. ,the,s.tJl.ek ppsi

tion axis of any dt!J:ived graph. In real4J• the).o•t d,at~ must.,contaiu an

almost equal number of pushes ~ fetches~ (Jly conaerv&tion of~~ the

difference 111118.t be exactJ_y the di.,ff~r~e beprief!J! R.~ .er~ .and des

troyed in core-drum.) As a result, a t7p~ ~~ p• ~n the ex- .

tension stack will s,,.ffer an average ~l~< ,~t 435/2.~ due, to the

lost fetches. Hence~ th~ .. total UJlCertainty. ¥1. the .•~k po~ition 11Xis of

any derived gi'.aph ;ls DQ.f:; gx:eat~ than pluf .QI: iai~us_co_..half ~ nupiber .of
- . - ';- - ··-· . ' . ' ~ - - _- '··"'·' , ""'; - '. - --<- . -

lost data ittlUlS •. For "4tm 2J"~. th~ is 2.}.8, ~i~~i.on•~,, .~t of our graphs

are plotted to a resolution of 500 stac;k pqs~ps~, .~QlllPUed to. the

8000 or so positions of interest, . this ~~IJ!~Y:~ is .JlC)~ ~ ~ignificaat.

Sumnarizing, the effect of lost tr~ .4-t.it. "- .·~ both as lQst ~pi

racy in countiug. and uuc~taillty in tb.e -~~ti.Qu.~i:s of deri'V'eci

graphs. Both uncertainties are proportional ~o the amount of).pet ~4,-

64

3.4.2 Global Transparent PMfn@ DiiVicW'J~t!et

' 'lhis fype' of inaccuracy' r«!su11:'8' fnlt::the ~1 haDdti.ng of the -BYs

tait's top level dirM:'tc>ry pages", t&i-ee .. tit '"ltll.o ~·~-iiagea are OU&tecl from

the core ... c:trum ·i~tton '"'Prillia~~~ a clkt~· by a· ·aysteil- refiabtllty

poli-cy which att.,ted 'to i'n8Ure :the: ttft:egtt~· ;of tbine P4e• 'by keeping

them ()'ff of the drum. As ·a result,· they'~ lit f~ uaed;.;JDOte 'often than

the •pages 1-eg1t1Jaately ~··th top··'l1!Wf.tt&l''t:h.Ei'1"z~1tih 11tack;: ana·1tbUa, ·

had no rigb:t to be 1n dtts •~ack 1lt 'ell'. '·'!bat 1•~ t:d- • ., they- wonld ·llm

been on the drunr at· ahloer· alt ttiaea WI· ttief'bc:it ~~ ·ao •pec:tatl..icaaect~
'fhe· anomalOUir' effect 0£ these -~it.cf 1b&elf-.eimr early- 'tit the wt>rt'

o.f this thesis.· Ail~·-·d~to'ft~Viif1 ~ddptftcance'o~'

of

all lillrics disk trdfic wa 'a 'rOU1;1:: ~ 'theee -~~cased pages.

'l'hus, our-~ wasdllDCltfilKf ta-uOtti<tit'UW ~ daU·vhen such

pages were be11:ag fetdied or 'OUBtf.f4 ~'~Jn~/ ·1JH a.Chat• :by which

iti Appendh A.

'lhe predominant inaccuracy caused by these page• is a distortion of

the very low end of the f (x) and r(x) curves (see aect:ion 1.3). 'lhe stack-

reordering inaccuracy created by these pag" camaot: be more than plus or

minus three positions (as there are only three of these pages) at any

point in time or stack, and is thus totally inaipificant. .U these

pages rightfully belong on the drum, tlaey are ueually fetched very soon

after they are ousted, and thus, never migrate ·very far down the stack.

Thus, many reference counts at lov-~recl stack positions are at-
-

tributable to these pages. If the core-drum combination were extended by

65

any finite amount, and managed as currently do-ne (i.e., at the time of the

experiment), the anomalous references would still app~ar outside of core-

drum. One should thus consider these references to be ~o f,l;aek position.

"infinity", meaning that they would be disk references no matter how far

core-drum were extended, or simply nhighly anomalous", and not considering

them at all. The latter course, which we have chosen here, is equivalent

to ignoring the effect of these pages on the extension stack orderi1118, and

considering them to be outside the domain of the extension stack, that is,

in core-drum. The effect of removing references to such pages on MlilBPF(n)

is easily calculated. Starting from equation 3.4, we DUltiply both sides

by MHBPF(n), and obtain

~ r(t)
t = n+l MHBPF (E) = MHBPF (n)--------m

E
t = E+lr(t)

If E is greater than the deepest position in the extension stack to which

any of the anomalous pages ever migrates, the only place in this equation

where anomalous pages are counted is MHBPF(n). The effect of removing the

anomalous fetches from this quantity is simply to scale it proportionately

to the number of page fetches to be not considered. That is, if T page

fetches (other than the "startup transient" fetches of section 2.2) were

observed, A of them to the anomalous pages,

MHBPF(n)adjusted = MHBPF(E)adiusted =
MHBPF(n)old MHBPF(E)old

T - A
T

'lllis ratio was observed to be between .92 and .96 for the measure-

ments "dtm 23" and "dtm 21" displayed here.

66

Surmnarizing, the anomalous drum-abhorring pages create an inaccuracy

of about 4 to 8 percent in the headways and headway ratios calculated from

the measured data.

67

3.4.3 Inaccuracies Resulting from List Deletions

These inac-curacies result from a design decision ·to implement a simple,

fast list-maintenance algorithm, as correct treatment of these deletions
-- ·, } .

would require a fairly time-consuming technique. Hence, we proceed to ana-

lyze the extent of the inaccuracies resulting from. this inaccurai:e treat-

ment of deletions.

Recall from Chapter 2.2 that the deletion of pages in core-drum does

not affect the ordering of the extension ·;tack. sucli'a deletion implie~
. --"~ . r.;_ ·~-~: .. ,:;-., :: gr .i~t' -'.· .

that a fetch into core-drum will occur with no corresponding ousting. As

this is in fact what happens, there is no inaccuracy im7~lved with core-
. '

drum (or "out of list") deletions.

•' The deletion of a page from. the extension stack creates a "moving

anomaly", as discussed in section 2.2. All references to pages in posi

tions in front of the anomaly (whi~h occupies the pci&'u:ion of the deleted

page in the extension stack) are. ~allied correctly •. 'i'he 'fir.st- ~'eference
'f 1 -C- :~ •. ·>··--""'-i.:.' »v•,.~, :, -t

to a page behind the anomaly is t•llied ~c~~eetly;·'because we chose not
. -;\ -- - - : .. > .. ;;_;.t .J.i.\""·:;__, .!.(; :)~-f> '\

to record the anomaly. It is recorded as being one page closer to the top

of the extension stack than it sh~ld h&ve been.: - H.~~;r, the anomaiY. now
moves down to the position of thaJ fetch~' The situ~ii~ is now the '~ame
as had the page just referenced b~n deleted:. ae'fer~nces :i.n front of that

position are tallied cor~ectly, ai ex~tly o~ rei;rence ;~hind' it is

... " -- ". I " .f."
tallied incorrectly, and the anomaly moves down.

'_, : f ' ; ·r- . --~ '-~ ··' .. - .'

We proceed to analyze the motion of such an anomaly d<>Wn the extension

stack. In the worst case, the page deletec(~~''at ~th·~r:\re#Y"top of t'.he ~x-
• - > t -. . ' . ' '~ :- -... ~ F.f ~- ~ ·_; ,; , .

tension stack, and thus, the next reference is ·gtiarant'eecf to be tallied

incorrectly. Probabilistically' this -~efere~e c~ttf't~ ;t::o ~that c.'extensi~n

68

stack position which is the mean of the distrib~tion f(x), the measured
f i " . L! \- '',. ' ..,-~:

reference frequency distribution. There is a probability of q that this

reference will be as far down the I.RU stack that a fraction q of the

weight of the distribution f (x) is below it. Now for the measurement "dtm . . .

23", there were about 2000 in-list deletions per 50,000 in-list reads.
·~ :t~}~ .• ; l ,·;j { " ··~

This means that there was one deletion per 25 reads. In order to calcu-
;:

late the probability that a deletion anomaly is put a certain depth in

the extension stack by 25 reads, we consider-the eaqteri;ment, tried 25 times,
,;--.:;:·,: .. _, ·.·-~~i -,_~·} -~<·;·-'"'"'~;,··:·~ ·"~

of en~~ntering .a read ~~ leas~ ~t ;~~ ~-~ ::~'7 ~~ack. 'l'he probability

of succ~ss of one read being in that pol'tion of the stack where a fraction
~ ' ' ;. .' - -, - ---=~-~:- '.-_,·:,-. -;~~-·- ...;· ~ ' - ~,_: ';. ?"'. ·~ ·, ~- ;

q of the weight of f(x) is left is epetly··q. 'l'be, Fobab.ility _of a
. ,.-~t":): 't~1-; '. ~; ' '-·. ~ : --- "'.-' . ~

failure :(.s (1-q). 'l'he probability of 2S failures is (1-q)25 • 'l'he pro-
-·- · .' ' ---. :;rtL: -::;-1~- ,~ -~n\~ J -~ ~ .

bability of at least one success in 25 tries b one mimls the probability ., .·: .. · .. 25· ·:;.-L;:::;-;: ;,\ b~:.t.:·.'}:":-.:i: ''· ·'"'::··

of exactly 25 failures, or (1-(l•q)). Por q = .1, ~.e., the ninety per-
'. j ~';,..:Ji:.!'_ ··H$ ~.:..:~.,

centile point of f(x). it is .93. For q = .OS, it ia .72. Bence, by the
· · -£•-: f •• - -::: · ~ r ·~.-1 :::.~ --,~~-~ = !] ·. ::.-- .,,~:-

time the next deletion is recorded, it is quite likely that the anomaly
~'.: '.,;-::·~·'f:~.j 2.l \:;5::~·j$,:•'.": $;;_:~,.;;':-"~"::cc ... >.

generated by t_he previous deletion is quite f" d<NQ the extension stack.
~ -·.r.;-.: .J--· - _ .. · -· _;_- •. _; __-s.o-~."1...,.._ t-::.l :1.I _,::.~~-~(1.:·~~-i: :w :· :·

Bence, for the upper portion of the extension stack• the effect of dele-
:..· -·· ,- . ~ - .'!' « • f . ~ ''

tions do not CU1111late. Hence, each deletion generated an inaccuracy of
·J:J· -~ ; ~~ ·:~")J -~ ~;-:;:':(: <~f.j ~ </•,.

one stack position for each read behind it, but the corresponding anomaly
- • - • •)_,· _).::;''""~-, ~- 1 ·~--: 'J ·.;, "- .. '

moves sufficiently rapidly down the extension stack that the effect of
, - ~· • : •• • ·, - • -

0

: ••• - -.·' ;_./!~.:; ,,""{l_-;_:,vr:;·:;_·~:) b~_; :.~: .. "" -~ . ~

later deletions are independent. 'Daus, for the upper portion of the
~-~ ,,.-;1¥~/:1.fLL .:. .f:; b..o~ !!'.'.~.I") .~~;< ·;-~_o: · ~.,;· .• ~

stack, th.e result of these delet~ons is a total uocertainty of one stack
, . _ _., - .. - -· ·• !' ---"1- -_:._:.,~ "':4:::-{I;;;;~;.~ ~-~-J r_,..-j~:i-...

position, a negligib_le amount.
• > ,, • i .· ·; . ·_: ~ -' . -- '. . l . , .. t

' ' • • 1--~ ,; ,.,.

The a~ve i;e~o_nillg correctly implie~,, t~~ ~ ,a,no-l~~s,r,e~~~ing

from deletions &CC1-fl&te at th~ lover reaches of tlae extension stack,
-· · .r : -~ r .r:, _J [~y , 1 · ~· : -~ i -· ""· - · ·

69

and that fetches from these regions have a large'cUllallative error. In

order to analyze this effect, we construct a queueiug theoretical model of

list deletions. A deletion anomaly causetJc the firat fetch to a position

behind it to be off by one position. Several delet~ anomalies in the

extension stack cause the fiY'st fetch behind them lb be off by that many

positions (the number of deleti<>n anomalies)• 'Howe'\rer, once this first

fetch has occured, ·the next fetch from this ·posil:ioa Will be off by one

less position, and so on, until all of the deletion anomalies have moved

behind the position in question, and fetche$ from this position are tallied

correctly. 'l'hus, we may construct the following inHrpreta'fion: '!be dele-

tion anomalies in ft<nit of pos'ition p form a'. queue. 'lhleb- -htch behind

position p "sertrices" one request. i.e., remoivieS- ·olt6' ita from the queue.

The rate of arrivals to this queue, in the worst case (all deleeions. from

the very top of the extension stac~) is the rat:e: of deletions. The rate

of service is the rate of references to stack ~sitions behind position p.

The length of the queue is the number of outstanding anomalies in front of

position p, which is the total error in stack positiGft':"Y which fetches

from position p will be tallied. Assuming exponentially distributed arri-

vals and services, with respective means X and µ, the average

queue length at position p is known to be L = 1/(1-~/µ) from queueing

theory. X/µ, the ratio of arrival rate to. service rate, is the total

number of deletions (assuming the worst case) divided.by the number of re

ferefices past position p, both immediately obi"ain~ble :~r:om the ~easured
. . .

data. As there were 2000 total deletions"\ queue length approaches infin-

ity at the point in the extension stack where 2000 references were counted

below that point. This point is at 3650 pages depth. At 500 positions

*In measurement "dtm 23".

;-~ ' . ,; .

70

before this~· q\leue leagth is,dmfQ to 4. Atonly-100 positions before it.

queue length is 20. Bence. up to ~QOO ~ •. ~ :effe:ct ~S: ~ligible.,.

At positious below .that point wb.el:e ttier.e -~ 2QOO; .. p,iase _·fet~s -recorded.

below, the queue grows £aster _than it ia a~iceci. At the time, th£ ~j.-

ment is .stopped_, the 'QUIDher of ~if>Jl\ ·•'W)-iiea,,~.ema1-1Wls· ? '.~ in .

front -Q-f po&ition p', wher.e p' .is -~ ~- .2000 ··"fer~~~ point in the

extension stack is .the toeal .~ qf_ de~ ,(in. ttie .worst case.) mimis

the number of references beyond position p' • .As -~ of these quantities

pre~ly ~ ~- a -'COJUJ~t .rate, t~ &V4tJ;_.__.~~Q!; ~- ai:aek poaitJ..Oll of

a rece>rded reWeace t.o posit~on p' is o~-~f ~-q~~ ~th. 'J.'his

allows us to rec~ruct an appr~~ion ~ .~e c~~t X' (~) ad f(x).

and then.all of the -ra.uit,iag ~s, :by ~~~18. •·~t~._,, more. accu-,

rate rCx). r' (x) aa

r' (x) r:: r (x) for x < 2000, .. ~a :,- . .: ...

vh.-e t (x) = f r (y)
y=x

'nlis implies that at the very tail of the distribution, there is a stack
- ' . ;. . ~ ,, :~~j ~.,-~·

position inaccuracy o-f 2000/2 • 1000 positions.. At a stack depth of 5000

positions. there is an i114Ccuracy of 500 positions. 'J.'his does not seri

ously affect the shape of the exception ratio and MBBPF curves in the

region of interest as one can see from figure 3.6. We have re-plotted
1::_,:

he~e figure 3.1 and corrected as above.

4oor

350

300

250

200

15 o-1

lOOT
I

5 ()1

Exception
ratio Figure 3.6

Figure 3.1, Corrected for Worst-Ca~e Deletion Error

dtm

I

23 I

I I
I I

I

I I

I I
I dtm 21/ I I

/ / 1 i +- corrected dtm 23

I /+-corrected ~
/ dtm 21

I I

/ I I

I I

/ I
I

//
/

[Memory size above the Drum, pages
0 . ' • ~ ~-

1000 2000 3000 4000 5000 6000 7000 8000 9000

72

3.4.4 Other Inaccuracies

Another possible source of inaccu~y yas the forced oustings of

pages to disk directly from core, no1; ctoe-tj, global transparency to the

paging device. A close inspection o:f "try_'to_vrite_page!J in Appendix A

reveals that pages which should be ousted·~- core to the paging device
- /-· :

~the drum) are occasionally.· ou.sted-·tO diskr because there is. no r()Olll on
!·-··

the·pagi.ng device. 'l'his actJ,on avoids rec~8.ton·lu the process of, finding

,. a free core frame, as de la~ta- pr~ess would otlervise posaibq involve - . ~

ous~ing pages froa dr18, which could require fiud.ing a free core ~ame.
-·

Altlaough we do. uo~·have data on the frequency of this occurrence ~ the

: : 4&.Y• of the .~riment, we have observed !ml tics at other times, and the : . , -,1 /

pen:entage bf disk writes caused by such outUgs is leas than a tenth of

,.. a iercent/~f all disk writes. It is true of ltilt:iea that the rat;!P of

reads t~ writes r.-ains fairly -constant. lach read corresponds t-o one
..

page fetch, and each fetch nuat be ·acc<Mtpanied by an ousting at ~~

time./ Bence, 'forced' ouatings llU8t be ·a sDdlarly mall perc~e ~f

all oustings, and not a significant effeCt.

73

3.5 Correlation between dtm 21 and dtm 23

Observing figure 3.2, the correlation between the two plots is fairly

remarkable. Within any reasonable accuracy for what is meant to be used

in engineering approximations, these curves represent a measurement of

the same quantity.

74

3.6

Our meaD,1~a.chiay. ~~., .. .(i~•J.,-::l ... <3 .. ~;.~ll ~t;~t 41fi~ences

from .the curves give~ in Sl .f.- ,tM,.._ .• ._~~~~·,the *l~~4J .

system. We can :~t~~ ·J:~onAA~ .·~· ~~c•bJ-' ~~i.na: x

the nature of the user load during the two different expe~~t:;.41.,

'l'he measured mean headway between disk Pase faults, in terms of vir

tual memory references per disk fault, was bet1'een tvo and three times the

figure measured in Sl. What: is more, the slope of the two curves differs,

ours starting out at almost .six times the slope of the curve Sl. We attri ..

bute this to differi.Dg values of A in equation l.13, iD terms of. the model

proposed in this experiment. ·"°re specifically, the 'tightness' of

working sets was greater for our experillent, and the number of distinct

users was fewer, causing even greater ttgbtnesa of the system's "combined

working set" at any time. 'Jhe measurnr•ts given in Sl were made during

a day of very heavy system usage, in August 1972. User load at this time

consisted primarily of systems progr.-..ers eugqed in program development,

an activity which references vast extents of li'brariea, tools, and spe ..

cialized procedure and data. These users were also operating without

ecouomic restriction, and thus bad little incentive to minimize the re ..

sources used by their activities. Our experiments were conducted at a

time when some of the !mltics user load bacl.shtftecl to the Honeywell 6180

!mltics system, in a state of development at that time. All of the sys

tems programmers had moved to the new machine attbe time of our experi ..

ments, and the remaining user load was quf.te light, consisting of the

M.I.T. academic c~nity. The lightness of user load also implies a

smaller mmaber of distinct users.

75

The mean headway curves which can be extrapolated from our measure-

ments may be viewed as a function of user load I system working set

tightness, giving rise to the family of graphs of figure 3.7. From this,

it can be seen that a linear region on a curve corresponding to a large

system working set can correspond to a non-linear region on a graph cor-

responding to a smaller system working set, and the latter will rise

faster than the former. If one draws the line C C' corresponding to the

core-drum to disk boundary, both the differences on measured headway and

slope differences can be more readily understood.

Another factor which gives rise to the family of graphs in figure 3.7

is the transient response of the experiment. As the length of the LRU ex-

tension stack grows, so does the observed vaiue of X. Especially when
I

user load is light (smaller number of dtSk teferences per hour), it takes

longer to develop curves of low X than high X, and this was the case in

our measurements. Hence, it is possible t:ba~ a more extensive measurement

could have allowed a curve of higher appaTeal:A to result.

Mean
Headway
Between
Page
Faults

Figure 3.7

c
r

I

76

I
c'

//
/

+- High A.

Memory Size/ LRU Stnck Depth

Family of Headway Curves of Differing A.

17

Chapter 4

Conclusions and Suggestions for Future Research

4.1 Conclusion

The most general and useful conslusion that can be drawn from this
.. -. :

thesis is that increased pr~ memory aize decreases page fault overhead

in virtual memory systems very sharply as it grow, -c_tJi,taecrease being

-
We hypothesize that the- reference pat:tenas olRRD:!Yed., mMl the headlrey

functions duived are characteristic of a :1.aqe•scala :cQmPU;t:er utility

being used by an acad•ic c~y through mter*ctd.ivci eonseles·~ ·'JJle data

were it accessed via explicit d'i'Bk requeat:s :on. some other type of computer

utility, we expect ta see ~lie same "patteru<814 haaclWay functions.

The 1n0st specific and couerete reeult "tlbich ·w·1have arrived at is a

measuremeiit of the mean lleadvay funetion ·far :Mllltics, sbawj.ng how page

fault overhead decreases as prtmary memory sf.ze.apltrvaches 4 x 10
8

h:Lts.

78

4. 2 '.l'be P•i.• Model Suages1:ed

'l'be mean headway funct.ion MBBPF(x), where x is primary JD8lll01:y size iii
~·)'

pages, may be expressed as a pol,Dc.ia1 hi"i,

(1)

-. !',

Saltzer 1 s measurements suggest that
• ,• j

(2)

is an adequate ohazMt:erUa.t:toa··of the-,,-...:~' Pf JtllJ.~ in the

raga.~.:!& 10,~-~.,. Our-.er~ . .-.lj> ... ~.~ -·-.. - -

surements ·we a4e., that t:he quad~at.ic t«M · ,t.,q · (l.) ~· ~ficant at

x = .ajprcxH1tie1¥ 1.0x1a
8

bits. ·.· 1.'be tX-. McU.~a Ugq.res, 3.1 .4A1l ...

3.4 -u•at dist ·Miaber ·.t-.. l>ec-. ~it.c~ i"1f :_~ ~ ~eas.,, .iur_~

dier. 'l'his would tie cODaist.ent 1Q.tJa ••~~...,.t~ 1M4e,.mt 11rl>i-

trary increase.ill priaary WO U.. .~,-.,,,~~71f1JDl!;y,,:AJ:P.~ ~
·. . . k

above. <Belady an4:.llfebner (B3) :aM~ ~) ;..~ aitM•~t:e O.'!~· for

'real life progra11a' • - . In ·~tar41tde.s~ ,JJIM 1/l!IA-1447+ and System

360/.61 whines. ·tbe7.fCNncl It to tM« v4J,_..., ·~ ~',~*~q.c;e)~ 2',•

'l'bis model also can be described by the general repreMUtation of equa

tion (1) above. 'l'bese observations also suggest, as cloes figure 3.2,

that

(3)

is in some cases a valuable approximation. 'l'be constant term becomes in-

significant for sufficiently large x, and we 118.Y write

~)x
MBBPI' ('X) = ~ " (4)

79

a very simple model which is very appealing. As was sbOWo. in Chapter 3,
"', >_ f- • c' .- --/ ,: _.

this model corresponds to a reference probability distribution

p(x) = e-x/).. (5)

where x is I.RU stack depth and p(x) is the probability of reference to

~hat position. This simple model of program behavior i~ particularly ap-
••. "<,• .'·-;:'' ,• •

pealing, as it characterizes "program size" as a distribution. Denning

(Dl) has given the concept of 'working set' .as a measure of program size,

within a given time interval. Equation (5) is or a more specific class
_; :: ; " .~" . -'

of program charactei:izations, expressiniJ the 'size' of the program as a

distribution. 'l'be parameter).. may be viewed as a 'radius of locality' of

the programs running, expressing i~ some seQfe their 'tightness' or 'to-
, :::- l ~ ' . .; ;· ,.,

getherness'. In this sense,).. is akin to the cqncept of working set.

' ' t

80 .

4.3 Unansweied Questions and Future Directions
. •, ,-, _;: «,· . ;! I - . _:::, ..

The most obvious extension of the work presented here is to extend
- , " ' . .-:-~ -; ~-,1 '.:S ::· ~:- ... : '

upward the range of primary memory sizes . for libich the nature of MBBPP (:x) .

is known. Although the techniques used in this thtlsis.are cc:mpletely ex

tensible .in this regard, it is not ciear .edi~ m. oot. "there is any value

in such research beyond some po~t. tf a ~ce'itd.il ~t of ~-,~ry

reduces secondary ~ accesses ; to ":cince Cl ~ ~' '°'£o~ instance, ' th~ issue

of secondary memory access time verau;jc~st <Pi1c~Iy.takes precedence over

prtmarY ~ry cost versus seec>naaey. · -~ releienc~ ~ih~~. For in-.

stllDCe, 'our meas~ements ;Jiredic't t'b;~t c'~ ~~-~11'.!on: ~rd; ·ot core~

drum would reduce dislt refere~~s to ~-~(mry ·~ -jd~f~~. At ·t;~{s' ~rate'
: •· • ~ l, • :'·"• -- -·,f~J··-, .. '".; .,... .. .,'~ '"; .. "_A·:·'>-~"· •

the economic viabllitj .of ·a £a.;t; d:i..sk i~ a "great~r'' is&ue than the ~r-

form&nc~ improv~nt resulting from '~fe'~o~e~: 'i~r liist~e. a large

12 (10 bit) slow (1 sec access time) store aight be quite acceptable as a

baclting store.

Another area of research is to fully understand the program behavior

patterns which are responsible for models of progr .. behavior such as

Saltzer's linear model and the B>del proposed above. We understand the

working set model because we know that prop-• loops, subroutines, etc.,

cause repeated reference to certain data it-.., &Dll this behavior is some-

what extensible to larger views of progr-. We do not know what "causes"

the linear model, or other such models in this senee. We can understand

"distribution" type B>dels by the •- considerations of 'spatial lo-

~ality' and 'temporal locality' ('M2) on which the working set 'B>del and

the LRlJ replacement algorithm are-baaed, but we have no insight into the

basis for any particular distribution in progr .. behavior.

81

82

models.

Sekino (S2) shows the significance of MHBPF(x) in system performance

calculations, particularly throughput and response time. Although our re

sults may be used in these calculations, we have not pursued this course

here.

83

.Aeeendix A

A Structured Pros~am Desc~iptidn of '~ltics~ Page Control

This appendix describes the functioning of the fault and interrupt

driven mechanisms within the Multics virtual memory management algorithm as

it existed in May, 1973, at the time of the experiment. Only the paths

within the so-called 'Page Control' subsystem relevant to this thesis have

been sh<>Wn. This excludes some fairly complex mechanisms relating to error

handling and the allocation of page tables. Within the paths shown here,

however, this results in only a few small omissions.

The aim of this appendix is to familiarize the reader with the inter-

nal operation of page control to whatever depth is necessary for compre-

hension of the rest of this thesis, particularly Oiapter 2 and Appendix B.

To this end, we have provided a description on several levels.

The most detailed description of page control given here is an approxi-

m ately "structured" program, in which we have functionally modularized

page control into 14 small routines. We have taken the liberty of creating

a new language in which to write this program, which we explain within.

We feel that this language conveys the general class of manipulation des-

cribed herein with a maximum of clarity and succinctness.

We have liberally renamed objects, substituting names which we feel

are more mnemonic than the actual names used in lmltics. We have also

made minor modifications to control flow, and subroutinized routines which

were not originally subroutines where we felt that clarity would be

aided. In any case, the algorithm as given is essentially identical to

the actual assembler-code algorithm at the time of the experiment, with

/

84

respect to state, sequencing, and side effects.

The plus sign (+) in the left-hand margin denotes references to routines

explained in detail within.

85

A Brief Overview·

Multics manages both core and drum (the latter known as the 11 paging

device", or "pd") by approximations to the least-recently-used algorithm.

Two lists, the core used list and the paging device used list are main-

tained for this purpose, the top of each list designating the least recently

used page (which is the best choice for replacement), and the bottom of

each list designating the most recently used page (which is the worst

choice for replacement) on the respective devices. How these lists are

maintained can best be learned by reading the program that we have pro-

vided. The core used list contains logical descriptions of core frames, in-

eluding pointers to descriptions of logical pages and/or paging device re-

cords when such entities may be associated with the core frame. Similarly,

the paging device used list contains logical descriptions of paging device

records, including pointers to descriptions of logical pages and core

frames, when such entities may be associated with the paging device record.

Multics tries to maintain copies of the most recently used P pages

(where P is the size of the paging device, in records) of the storage

system on the paging device. The most recently used C pages (where C is

the size of core memory in page frames) are to be in core, as well. (It-

is assumed tha.t C i.s less than P.)

lbus, pages being ousted from core may be written to the paging de-

vice, even if a good copy exists on disk. lbis fact should be kept

strongly in mind when reading "try_to_write_page". Except for the case

where the paging device has no copy, pages which we.re identical to pages

in secondary storage are never written out. Pages of zeros are never

86

written out, but their logical dascd.p~ion ie ·,· s~ modified that they are

created in core when faulted on.

nie processor hardware maintains usage in.formation about a logical

page in a hardware descriptor. Specifically, the ~cur~nce of usage and/or

modification is noted in the descriptor.

A page fault is resolved by finding a page of core into which to bring

the page, and bringing it in. Finding a page of core.consists of reor

ganizing the core used list to reflect the latest usage .informad.on, and.··

finding the least recently used page frame, ~ usag."it. ; i>~es Which

have been marked as modified canno't be claimed in., this way' but are writ-
' : .. --:·(.~-:--··~··:..:__; :. ·.:>~'- ", . '.·--

ten out. When the writing is complete, at some future time, the page will
.·- ' . t t.. 7 ' ~- ~, f J • . , ,· -

be in the same state as a page which has not been recently used or modi-

fied, and will be claimed in the handling" of some futur~ page fault. Note

that this 'writing' consists of inttiatin8 the physic81' operation, but not

waiting for it to complete. It is at th-i~ vritt~ time that' secondarY sto-
- , ·. I-_ - f:. , · " - _- _. __ . i ·.

age is allocated, and pages containing zeros.are noted. It is at the ti.Die

that zero pages are noted and that ~e~ondUy' .ator'qe i~ dea·llocated •.

At the beginning of page fault' handiin&, h~isekeeplng is performed

on the paging device, which consists of tryillg to insure· that at least
·- ,_.;.,, i ~- '.J·. _;:... '_,·_~--.)tr.:·: __ ' .-·.

ten records are either free or in the proces-s of being freed. This· is

done by removing as many of the least rec•ntiy ueed,;p*les o~'the paging

device as necessary. When a pag~" is so moved. it is checked''Cvia soft-
.· ,.)" ~-.·~-~J:.:. , __ ' >_ ·~ .·-.

ware-maintained switches) to see if it is identical to a copy on disk.
' - - . . --

If so, it may simply be deallocated .. from the paging device. ·If not, a
:,-; '

sequence known as a read-write sequence (rws) Dlst be performed. 'Ibis se-

quence consists of allocating a page of ~~e to be' \ised ~s a buffer,

87

reading the page into it from the paging device, writing it to disk, and

deallocating the paging device copy. The core buffer is then freed.

A page fault which occurs on a page for which a read-write sequence

is in progress causes an event known as an rws abort to occur. The freeing

of the buffer page and the paging device page are inhibited, and the buf

fer page is used as the core copy of the page, and the fault is resolved.

88

Jin bpl.anatf.on Df the ,JMS"lt

used f,~ J!lt:•as l\bls ~ueff?D

The language whI.ch we have used to d~scrtbe ''!aje1 COn.tr'o1 is a bas

tardization of PL/I, with new primitives for' 'some basic· 6J»erai:tons (!A

gueue, mas'kea proo8clures, ··etc.) aDd an Algoi>6'&;.1'tke~'torat:l1.sm for repre.o:

seuting relationsnips auiOi-.g atriictui-ed ent!titi•;~~ - ·, '

Underlined words are language keywords. Lower-case identifiers re-

present names o.f subroutines, functions, .or labels. Identifiers beginning

with an upper-case character represent references to cells, which will be

described below. Statement syntax is essentially the same as 'P.L/I, but

":=" is used for asaigmaent, and"=" is used to teat equality. There is

no lexical nesting of procedure or begin blocks.

A progr• consists of begin blocks, entered from the outside world

in some unspecified way, procedures and functions, and declarations.

declare (dcl) declarations may appear anywhere, including outside of blocks,

and are global in scope. 'l'hey define the cles and !!.!!. of variables,

and the types of Oblects used by the program. local declarations appear

within blocks, and define a local scope of variables, identical to that

produced when a variable is used as a formal par-ter in a procedure or

function.

The point of this language is to associate cells with values. 'l'he

domain of values is the space of Ob:lectt. Objects are unique. Two cells

have equal values if and only if their values are the same Object.

There are three classes of Objects: prf.aitive Objects, structurea

Objects, and .!!.!!!. Objects. Within each class, there are different types

•

89

of Objects. Objects have no namea. :OQl.7 pr:JJU,tiVtt·QbjectJ.:ft can be- Jeferred

to explicitl.y, i.e., other than by i::-efe~ence to• cell having the:.de&i.red

Object as a value,, or a· function r~1'bg ~e3:tktd~· Qbj~t.

Primitive Objects can. be of tbree:ct:ypea. .Qae- :ftr&t 1- p991!111·

There are exactly two boo.lean Obj,ects .: O. .. CaD))!8, rd.-a:.,cl ~ explicitly

as !!2!• the other ,falae.. The .. second ta gw 'Mtk •. 'lll\ere. i• . .a first~

order infinity of theee:abjecta, which ~ ~~U7 .. :tfl;e;. :i;ateser•"' 'Ibey

can be referrred to ~U.citl.y. aa 7S~ 16:1711216•, -rae. •etc.,.. 'l\le·. d)it:4 is

literal. They are sinlply £1>itrary pt"Uilt:n. ~tar' Jibes•, 2ll% unful

property is their uniqueneea. · '1'bey caa be: ~ti«> •Pl~l.y: as n f-0011
,

"bar11
, "1110 stuff', etc.. They ••··~ eh~t.er.• ~ ta err aenae, but

simply .unique prf.lllit:ive,-01>.)ec:te of !!1!9: Lf1?'trr1"'"'

Structured Objects consist of a flut.Jle ~:.~· ~~b.> •a·e:ell

can have as a value J.~1a,L7 . .oae· type·of Ob)l!lcC:,~1'.fM, t. one eoltass, u

well). These cells are called cfMl?MPtg Rf' tdte ~ l'IJe.t1e1 .~ell&. do

have naDiJ&, .and they 'fire apec*fiied ·ib\ •4ec.bmnion1~ 4\e•ri~.-dle

concerned~ .of a:truc.au:!Bll .Object. ·· .,. .. ~.·-. ,.,

Set. Objects -conaiat;.epf .an orcleJ.!ed, set of~~-., of· t.he aaiae type

and class. ill- refe-.:en,ce8'. GJ.lepf:i,,:t!WW!fl.•~f0rrnn•:,...,.~i. ~f.der. ,, ,

the fil. Object as unordered. One c-.'9tllr•~>SC!••·,~ a. tJe.t Object,

remove~ or--4egu.eue &o. '1t, a• j.f ,a ,P'WtA1~ ,j.a_.- !!91ter• Qf it,

or cause a cell to be aasiped ·~~~lYaM•M• wh.,,y~\J.tl-.being, a dif- .

ferent Objec.J: in the ~ .d>~t;. ·i'll '"'" ~· °"'~;.. ::<>

Varlab-les an the ,ot;h~;~yp~rof ~ .. ,.,~ ~~&.;~ bqJ.d; Qn:l,y ·()~.

class and type of Object, just like the: o~.J:~ !i>l ~j~ il:~_Jjltqi.c

tured Object component.

90

Assignment (performed by ":=" operati.On in~'. st:ate.n.ts ilhd aa:sign"'.

ment statements) consists of replacing .;eke ¥aloe of ai~ll with anotheT.

value, i.e., chan•tng . the valuE! of th~ cell. The U..jecr 1lh..tch was the pre•'

vious val.ue is neither changed nor destroyed ln- any way.:.

Binding consist• of saving the value of·•· vari.•te ltlhen a procedure,

The latter operation ts· called Ullbi!dtne·• .Al·l<: an•••tt:a• and bindings ,

made betw•eil the time a vari-able is 'beund•and" ~ ~iil!g 1.Ulbinding

have a· tranSl>U'ent effect• when the bloclc. ~ ~>.binding ia exited.-

A local declar.ation .of ·a Va'l':f.able tn· a block;·cau,sea.tc.uch '• bintli.ng to take

place for that variable when the block· if encaect; .an4 the c'mteSponding

/

to procedut'E;I and functions. ln this case,' aflter 'ttre 'Gld· :value t.s· saved,

the value of the correapoacl'ing .formal ·argmmi~ i,g,;CO!fed to. ,the '9ariable.

Hence, all calla .. Y be seen. u ••cau l>Y''.VUue",

or, if it is primitive, one .£!!! refer to ,t1: ~lici:tl.~: Jlo ·!fllfn' to a

variable, sillple state its name. To .refer.'to • :COllllpotant. of ;a· •tnctuited

structured Object, and • close· 1>ar:eitthesia. . ·

An assignment is a ref-eren.ce to a cell'; ":=1', >:ahd ~ J;•f4rence to an

Objec~ of the same type and class declared .for th•t 'C'ell.

Variables need not be deela~ed'. • Th.e defaUtt: claw of any call is

Object type declaration is as follows:

91

(declare}
dcl structured Foo (compdcl-1, compdcl-2, ••• compdcl-n);

[] = optional (} = select one

The compdcls, or component declarations, are of the same syntax as variable

declarations, except that the name is the name of the component, and the

optional keyword variable is illegal.

The syntax for a variable or structured Object component declaration

is as follows:

(declare} [variable]
dcl Foo (~){objt:yp]

where objtyp is either boolean, literal, arithmetic, '811Y structured Object

type named in a structured Object •type declaration, 6r §.!!t objtyp, where

objtyp is, rec::ursively enough, any possibility named ~n:·-thi.s sentence.

local declarations only name their variable,· although they can declare

its type as well.

do statements differ from PL/I in that any cell can be used to the

left of the ":=", n<>t necessarily variables. ~·particular form "do

Foo: = ra.nge Bar" means that the value of Bar is a '.lget oltject'., and the

do is to iterate over each Object therein, in no special order.

The special constructor function construct is u~ed to create new

structured objects. The syntax of a reference to it is

construct Foo (compname-l:object-l,compname-2:object-2 •••),

whose value is the new Object.

The unique Object "null" can be used as a value of any cell. It has

all types and classes.

The predicate .Y2!2. takes as an argument a reference to a set Object,

and returns ~or false (boolean Objects), depending on whether or not

92

it is empty. 'lbe operators "=" and ·~· may be used to test if two refer-
:.J·"

ences are equal, i.e., refer to the same.Object. An appropriate boolean

Object is returned as a value. 'lbe operators "or" "and" and "not" _, -· -. ~- z ; . it ; ·y.~ t ·t

operate on boolean Objects in the obvious way. 1.'he conventional arithmetic

operators operate upon arithmetic Objects, returning an arithmetic Object

with the expected value.

,!! statements have as their predicate a reference to boolean Object.

A call statement conaists of the word sl1! followed by either a pro

cedure name and an optional crgwaeht :tiJt w". a c~z fu.nction'-i-eference
. . :.!'

and -an u~t liat.. An.F~nt list_ la a.~#'~~~'-!J.isecl U.s.~ .of (po_s-
. '. _,:_· :.,._ ~ ~-y:..-· ;,:_.:-.·:. ..., .r ". ,. '---<"".. ·"-

A complex function . . r ~- .

referepce 1-:. a ~t;ion ~~ferenc~. to-~~- ~~1~-,p£;:-fh~-l~~- ,~~ction

which will return. aa .•value a eroc;""",,.,~ic~-~"' ~nds, on the argu

ments to the function, which will be called by the call st:,atement, with

the .-su-ien~s to the call.

lbe ev:aluati~ ~pf:, aqmaents in, ~ "~ Mfl c+~- !TOt¥1~,tional. as in

Lisp .l.5 ~) ,ancl pr~a from left. tQ .. rtp.t. ,_

93

A Program to: Find the Man Who_:il!ma.-#!•-Bla@k.::House,

and Have Him and His Father Switch Houses

declare structured Person

(Father ~ Person,

House);

declare structured House

(Color literal,

Owner .ill!:!. Person);

declare Son Person, House2 Bouse;

declare Brooklyn ~ House; /*assumed to be initialized*/~

switch_houses :begin;-

do House := rang! Brooklyn; /I search the set "Brook
I I· lyn"

ll Color (Bouse). : "b~k'' !ib.!a ~;

House2 != House (Father (Owner (House)));

llffwJd him

//find the other house

Son := Owner(House);

House (Son) := Bouse2;

Owner (House2) -:= Son;

House(Father(Son)) := House;
" ~-- :·-_ ' . __ ; ,• .. - ,;. '

Owner (House := Father (Son);

return;

end· __ ,

--- -- :~H~eif.e;,,,:.er wb'.6 ls the
II tJjjaiJY
J/SoJt qgw owns,Bouse2

~s ~.-1 -. • . . ,- ' ,

//Father owns house

< •• _:_.

94

A page fault causes the following:

'1'he paging device ts housek.ept.

(page_fault)

Transient conditions such as i/o in progress or an rws on

the faulted page are noticed and handled.

A free page is clai:med, and the faq.lted page is read or created·

into it.

If i/o was started, the page is waiJ:ed for.

Finding a free page· consists of the followi.ng: · .(€1Jld: ~ore)

'Die core used list is searched for a ~,pllfl_~-~·. . , • .• I ·,

llecently used ·pages are .not good candidates. '!hey are skipped, and
_ , ., _ . . : :~i ~ (;o;f _ ~ : . . · .. 'I . ·.)-,

re- judged as 110t-so-recently used for,~ tme;-· ··· --- ~-,-- -

Pages which have been ~ified (stored iDt.o) caunot be c laiaed now.

They are written out, and re-judged. ae not to ha..~ ~ied.
ii'-:: •. :...~.;.-;-~" ,., ,·,

A page which has not been modified, and has been '"'ed approximately
--- .• - 't-~- ~-· • -,. ,.;:~::!_;2_-i.7. :1<:-_,•,f.L'i :

less recen~~ tban any other page, 18 p~e-e.ptea·tta1a its core

frame, and this -core frame i*1~•ittee'paa6:~.ftwn.

Wri~ing. a eve .~~ .,f~~~te of the follnJ.gg: . _ ... , ,,, (vr~~te_page)
'1'he page's. ~on~s,are checked, and ·1£ aii ~~~~~:"'!:~ page. is

f18gg8d ··as naf Deeding to be read .or 1'rttt'Mi • :.O·wrf.t!ilil'.,takes

place, and disk and paging device sp114'·~"-1ioc.t4'4 ,~9-. the. ~e

are freed •
. ~ .. 'i ' ':·~ ·,;·. ·{:.: : 1: . ·J'-.

'1'he page is given a residence on disk, if it.does not alre.-ly have

one.

The page is given a residence on the paging 4evice, if it dQ«!S not

already have one, and one is available.

1.he page is written out t() its residence on the paging device, t£ it
has one, otherwise to disk. 1.he CQlllPletion. of 1/o is not vai'*'

for.

95

Housekeeping the paging deyice consists .of tlle · 5gllowing: (get_free_pd_record)

An attempt is made to insure that there are ten paging device re-

co.rds free or being freed, which is :dO,• as follows:

The pd· used list is s.earched for a gQOd c8l1Cl1-date to pre-empt.

'lbe search is made starting at the least-receutly used pd record.

Records which contain pages in core are recently used. 'Ibey are re-

judged as such aµd . s$ipped •.

Records containiD& paaes identical to pag~ o~ disk are acceptable.

The pages in t1lem are pre-e.pted, the.~ecord is now free.

Other records have to be writ;ten b~kto 41,s~. which is done by

performing a read-write sequence (rws) on them.

Performing ad:r;e4d-wr,ite se99enc@ on a pgs;c991i1.tj of the following:

(start_rws,rws_done)

A free page of core is obtained.

The pqe is reacl into it. from the pqiqg·deviee.

When the read is completed, the page ~s ..,ritten out to·the disk.

When the write is completed, the page of core and the paging device

record are freed.

A page fault on the page involved in the sequence at any point

during it ca)Mes the seqqence to " al:>Qi;ted at the nex~ complete

operation in the sequence, and t~e cpre page is used as the

page's home in co~e.

A~ Object

A Descriptor Object,

A Coreadd Object

A PDrec Object

A DevadCl'Object

An Io-status Object

An Io-program Object

96

is the'·logieal deacriptia of ... page'of the

stdrqe system,_u oppoaed to a page frallie. 01l

some device.

in actuality a "page table 'liio!'d''i; is· the physical

ctes~ii;tor~·•fttia ll'*•* • Pli&e·

It c0ntatns a M"e ,acldft .. ~-'UW.P Mu, and. a bit

whiCh cause• ~a· Ntilt,,... ·off t ''

describes a physical core block. It describes

the . •tabla-:Of . .thf:a'. llhe.kr· ~'*•' 2'ii11Plid.tl);'; ·

its position in the core used list.

·describes a'\pqmg'ctavtee-Ttieod~· 'or ·fl"ilae• It

deacrtl>ea die status bef :ik&';fffmeJ' ~'lneliUdblg; im

plicitly, f.ts ~1tfn"'itt'&~~jqtJ'8-dritc4!-veed

list.

repr«!sents a pliyateat2dttti.. Ol"·dl'Um 'adb•ss,- and

lts content•. :1ncbiaM1·tn tlltar.ebjut. 1• an iden

tification of the clevice·.:;ifi:'wlllclltiit!tii• HI• frame

resides.

,
is a hardware-generated object, which describes an

input-output operation which has completed.

is a sequence of co==ands for the system i/o con

troller to give to an i/o device. It specifies

the type of operation Tequirecl, the record within

the device concerned, and a core address con

cerned.

A Trace-Datum Object

97

is a recorded datum of information about traffic

between disk and core-drum, for the purpose of

the thesis experiment.

I• Description of the structured Object tYi>es used by PaRe Control.

Recall that the default type of a structured Ohject component Is
the Slmfl as Its name. •I

JIG.l 1grysgyr1d Pa«•

(Descriptor,
Dev add,

Coreadd,

PD re~,
Event llgeraJ,

lo_ln_pror.ress bqpltan,

On_pd bgg J Hn.

II Represents a paKe of sone se«ment of Multics, as opposed to
II a pa1te of core or some device.
II The hardware descriptor by which processors access the contents of Pase.
II The phvslc11 disk or pd address from which Pa1te should be
II read or written to. tf On,J1d Is true, Is a pd address. Otherwise,
II It Is a disk atMress. A nevadd of "null", however, represents a
II pa'-• full o; zeros.
II The core frame associated with thls pa,.e. Vall~ only when
II Addressable (nescrlptor (Pa1te)) Is true.

by Pa~e.
Used to Identify the
In Interprocess slsnatJns.
not known to have

II If on
1

r>d Is true, this Is the pd record used
II Some lgeral quantity unique for each oa~e.
II occurence of events associated with this pace
II Truth Indicates llo In pro~rPss, or at leest
II completed, on Pa~•. ,
II Specifies that P•A• has an al located PO record, n .. ly PDrec (Pll'Ce).

~~~d,m!:;,; II Indicates that P•ft• must always remain addressable. . .:, 
II Ind I cat•s that Pa11e Is forb I dden to '!O on the pd, for rel I ab,l 11 t• reasons. 

"""'1. 1grysgurtd nescrlptor 

(Phys_Coreadd arltbeegle, 

AddtelHble Wit•· 
Usue bool1u, 

Modlf led hppl•.,,>J 

.dQl 1trystyr1d Coreadd 
(Patte, 

Phys_Coreadd ertlhc;wgle. 
Next 1Xe! Corea , 
Previous !Xe! Coreadd, 
lo_read_or_wrlte JlgcraJ, 

Rws_ln_fraaie bgglcan. 

II Rf'presents a pa'-e table word (ptw), the Phnlcal descriptor t:ty 
II wh I ch processors. access a Pait•. 
II The phystcal core ac!dress occupied by the i>•~e to which this 
II helon111. Valfd If and only If Addressable Is true. 
II Truth a1 low1 Pt1ys_coreadd to he used by the proce11or. 'ahl~y 
II causes the proc:edure "P•ce_fauH" to h executed. · .•. 
II Set by the hardware whtfte¥er this 1>escrl1>tor h used, 
II or more accurately, fetched Into the associative memory. 
II Set by the harchiirare wheliever a store-OH 0peraclon is 
II performed usln.c this descriptor, or an associative ..-ry 
II copy thereof. · 

II Represents a core na(e frame. 

DMcrlptor 
..... l 

II "null" reor••ents '" una11ocattd r>afe frlfRe Otherwise, thtt II Paite contalnett In th ls frame. his s only for norm.a pa•e•h01dln1 

H 
II 
II 
II 
II 
II 

use, not rws 1 s, 
T~o physical core adrlress represented by this frame. 
The next MOre recently used core frame. 
The next least recently used core frame. 
If lo_ln pro«ress(Pa,,e(Coroadd)) Is truet or Rws_rn_frame, 

tells which direction of llo ·is belnK oerronned. 
Sl1nlfles an rws In prosress In this frame. 

\0 
QO 

'< 

··~ v, 
;~t. 

\ 
t 
) 

N 

{ 
! 
\; 

'ti 
' .~ 

'1~ 
:.~ 
·~ 
/:l 

I 
I 
,~ 

,~ 
!¥ 

' 1~ 



• 

PDrec); 

~ 1tcusturcd Devadd 
(Oevlce 1~5c~~I Phrs_Devaitmcgts)1 

~ agrysgyr~d Pnrec 
Pa,,e, 

Dlskaddr llll Devadd, 
Devadd, 
Coreadli, 

ffeat_r>d t5Ptr~rec, 
Prevlous_p Pnrec, 
Event Jtgcral• 

ln_use b90tcaa. 
Rws_ln_pror.ress bpgJ91n, 
lncore bpplua, 

Hodlf led_from_dlsk b90Jc1a, 

Abort_f I•• bpplc•p, 

Abort_c01110lete bgolc•o>; 

~ agrys&YfiTd lo pror.ram 
rectTon 11scu1. 

~hys_Devadd ar!ghpwgls, 
Pb11_coreadd arlJtmr~ls, 
Neac type IO..Pf'O•rat11 I 

.dl;l 'l'MCIM'Cd lo_status 

c:::~::~::::~'!!f~!!i!lts. 
1o_procra111, 

Coreadd)J 

~ ll"YFtufgd Trace_datum 
evadd, 

Type I htr• I h 

II Used only If Rw1_1n_fra111e Is true. Specifies Pnrec havln1 an rw1. 

II Represents a physlcal device address. 
II lcfentlfles a secondary stora~e ct~vlce. 
II ldcnt"lfles a physlcal record number on some device. 

II Represents a oar.Inc device (pd) record, 
II If ln_use Is true, ~escrlbes the Pnr.e on this record. 
II If ln_use Is true, describes the disk address occupied by our ..-ae. 
II T~e Physlcal device address of this record, 
II \lhen Rws_ln_riro1tre11 Is true, ctescrlhes the core fratlle 
II belnc used as an rws huffer. · 
II nescrlbes the neat !!'Ore recently used pd record, 
II nescrlhes the nut leHt recenth used pd record, 
II A unique llgcr•I associated with this od record, Used to Identify the 
II latter In lnterorocess 1lr.na!ln•. 
II Tell1 If this od record Is In u1e or free. 

·II s1,nlf le1 that ..- rw1 or rw1 allort 11 In pro,re11 In thl1 pd record. 
II Sh~nlfles that th• PBH In thh pd record h In cor• rlaht now, 
II V1ed for malntalna th• LRU ordetlna of the o4 used llst. 
II Truth Indicates that the pd copy of Paa• Is dtfferent 
II than the disk cooy. 
II Turn•d on to start an nrs abort by IOllle proce11 faultln1 on an rvt 1 1n& 
II Paae. . 
II Slr.nlfles that oost

1
oar.e (q,v,) has allorted an rws, and a cleanup 

II by rws_ot•ort (q.v. > s expected. 

II A POrtlon of a channel oroaram, 
II Indicates read or write. 
II l'tlytlcal ctevlce addres1 ln¥Olved. 
II l't1rslcal cor• •~lfr•11 Involved. 
II Neat oroara~ In channel 11Ueue • 

II ftepresents a completed l/o ooeratlon to an 
II llo control routine. 
II ld•ntlfles th• p~yslcal device address Involved. 
II l~•ntlfles the ~hyslcal core alfctress lnvolvect. 
fl, T.ti~. le.,.qn;·t'tt·" i:~ieft1'!\Jll lnltl•'4ld th•. operation 
J , ii'lln t , I s ... e r. , r . d . . . ·I~' fble-· ~\'e ~ n J t ~t'ocl3f:I 3ffh~l't,y1_Coreadd. Althouah 
II not actuall, present here, the one•to•one NPPlna between 
II Coreactct•s and nlld Phn_Coreadlf 1 s leu u1 use this here for 
II clarlty. 

II 
II 
II 

An 1te111 of trace data for the eaoer ltnent. 
The disk address concerned. 

II "read" •• 
II Mwrl ce" • 

The direction and descrlotlOft of lo1lcal 1110tlon. 
a par.• fault to ctlsk or an nrs abort 
an rws Initiation 

II "vlrcual" • an ousclns from core to disk 

ID 
ID 

I 
11 



~ 
Ill 

"O 

0 .., 
"Cl 
0 

" ..r::. .., . 
" l>C 
Ill 

E o 
0 
L 111 .... .... 
~o 
c 
-c 
'-'O ,,,_ 
::J.., 
0 cu 
c cu 
111-c 

I CU 
..r::. : .., 

Ill • 
::J 
.-: 
L ti - .., 
> " ,_ 

"O " 0"0 

100 



101 

The Global Variables Used by Page Control 

dcl 

Page_table_lock li!;e,f al, 

CoreTop !I2!, Coreadd, 

A qu&Jltity uaed to insure that only one pro

cessor at a .·~ is in page control. A pro

cess desiring. to "hold" this lock loops con

tinuously \1-lltll it- is ualoeked, ·8'111d then 
locks i.t. 

'l1le least r~.,Y used Co~aadd Object. 

Writes_outstanding arit!'B'tic, 
'l'he. number of_ uite. operations started which 

, £_' ~ "' ' - ·-! '~' - > 

have DQt ye.t ~ known t.o complete. Used 
: ,..,: -. ~ -

as a heuristic to call poet_any_io. 

Rws_active_count arithmetic, 'l'he D\lllber q.f ..-~uite sequences which have 

been initiated and not yet known to be com

pleted. 

Number_of_free_pd_records aritlaetic,· 
'l'he number of Paaing device records free or 

in the iw:oeeM·<P.) of beiog. fr.-d. 

Top_ of_pd _used_ liat !!J!!_ Nrec, 
'lbe least rec~tly used PJ>rec Object. 

,_ ' 

Channel_Queue m.! Io_program, 
nte executable ~e of i/o programs for a 

disk or drum. 

Experiment_active boolean, ·Tells if meterfli«;experiment is in progress. 

Trace_queue ~ Trace_datum, The total of all trace data accumulated by the 

experiment. 



102 

Undocumented Routines Referenced in this Program 

page_wait (literal) 

notify {literal) 

clear_associative_memory 

allocate_disk_record() 

Suspends the calling process until a call to 

notify is made with the identical literal. 

page_walt a~'tllllOcks -: .... l..tOJ.e lock once 

·the t:lrkffib ~l data bases are locked. 

CauS'eS any pt".oee•• which called page_wait 

with the webtltfa'li literal to be resumed. 

Cauee& all pr,GceQbrs to c1SS:.d1air •. aocd.a

tive memories. 'l'his routine does not return 

until all processoe!A< ~.J;JlltcaQacl: t:hatr: J:hey, 
·--~;-l'.:":!(U)fl :_:.,!~l . . 

have done so. Used to force access turtiof fs 

''~ti ~tfie~fb!t:"furnoffs to take effect. 
" -- .... ·-- E ·-·4 _f. 

Returns an unallocated Devadd Object. Marks 

it' u :all~.:· , -;.rt : .'" :: 

relinquish~disk_space(Phys_Devadd) 

start_io(Io_progrma) 

thread_to_top(Coreadd) 

thread_to_bottom(Coreadd) 

Marks a Devadd.Object as unallocated to allo-

cate_disk_re.c;o~ .•... 
"' . ..: . _,· .. . .,· ,. :. L ~ · .. - . 

:; ., 

ftart• a ~lr«xecuting .an i/o program. 

Changes core usecl l'Utl 4119.t.Y•lUe ei~~'J;oP .. 'l' 
sUCh 'tliat ''cJ;:eaal'1s moved to the top of the 

Core used list (least recently used). 
"ore ...... n nnu ,._ ... ~j.fi•::. >''l.' , .•.. •, !• 

",}'~c-p ~"!'If' ~"".,,"'f,c,;~~· 

Changes core used list and value of CoreTop 

au~·.~ ~r~si• ~!fJ>S~. ~!~.~t~9.81 of 
the core used list (•st recently used). 

Next (Coreadd) now=. ~J,Tgp •. .. . ~:--:-, ,;; ' " ..-. . -,' ... . . , : 



109 

7 ?~/', 

~ r ~ 



Core Map 
(Coreadd Objects) 

!Wi! 
to read or write 
1twi_1n_'fraie 

PD Map 
(PDrec Objec;ta) 

In uae -Rn_in_progreas 
Ineore 
Mo4ifted froa diek 
Abort_flig -
Abort_Camplete 

I!!.! Pase Control Obiects £2.!: .! Single Page 

Page Tables 
---------"" ...... ------~----~------------,. (Page Objects) Page table words ' 

(Descriptor Objects) 

e 

:.J. 

!f, ,,. 

lo_in_pro1re11 
On~ 
Wir8i 
Gt~: 

~ilk Recor~~ 

Fi~e A.1 

cou 

'', 

Paae 

..... 
~ 

'~ .·;J 
.i 
'~ 

r~ 

l ,, 

,l 
J 

I ., 

~ ... ~ 

',~, 
! 

:ia:; 

·,;1 

fl 

tJm' 

} 
,4 



+. 

+ 

page_fault 

.<U:J, Scu_data Vlrtual_reference; 
J1c.l stryctymf Vlrtual_reference (Page, Seiment); 
pa1e_faultr begin mtsked; 

·~ Pa1e; 

set_1ock Page_table_lock; 

Pase :• PaAe (Scu_data ); 

!!2 while Number_of_free_pd_records < 10; 

. $.1.!J. «et_free_pd_record; 
&II.If! .. 

lf. Aai•uab 1 e < Oesc r lAler ( Paae » 
t.b1.Q. unlock Pa1e_t•bte_1ock; 

JtlU lf lo_ln_proaress (Pit~~ 

Shen cal 1 page_wa~· ci~f'.&.~ ..... e) ); 
' '· ,, ~ ·, . 

' ~·' 

: .. , 

II This procedure Is transferred to when the 
II hardware determines that a reference has been 
II made throu~h a Oescrlptor whose Arldr~ssab1e bit 
If Ts .f.1.1.14. Rr.turn from this proc~dure causes 
II a second attempt to make that reference. 
II This procedure Is entered In such a way 
II that a11 external (I.e., l/o, etc) Interruptions 
II are dlsahled when ft Is entered. They are reenabled 
II when It Is exited. This is because such 
II Interruptions mfr.ht try to lock the pa1e-tab1e lock. 

II Prohibit access to par,e control by other 
II faultln~ processors. 
II Deter~lne from processor state at fault time which 
II pa3e was faulted on. """ 
II Housekeep the Par.In« device - try to have some free S 
II pd records for the flnd_core calls which will 
II surely follow. 

\. '· . , , .~ '. . , \ ~~; ~: ~ . ··:· ,. r r. •• :._ ! .. J i ~ 1 ~ , ·"' 
II ft 1k l>Osslhle tl'lat we took a PaP.e fault while the 
II r>a1e tabl~\wts, 1.,_nd, and the process holdlna the 

.)J ·\~,,brou.~tfti,ttie '.•P •~· ;ldt U tblf'/ts tf'U4h 
JJ. ;· f:t. l•,:toitc~le--ihat we took a oa11te. fault !!~.a .P8X• 

, ,··I.I.·- t~'''"'"'.:other r>r~e•• hft sHttef""'"'''"' t·ll. 

, 1 ~L,~;~::;:~1!t:~~~,,~ •.. ~~&L~~l.'ic~ ... ~~;~1:h~ ·: ''.. 
: lh.~us .. lQrti.•f.:t~e c•l\l•• s>.-qc.,.t:uun : \ 

II •,oint,,-.~" cacoeea.s. c.•Us n.ti,e-rOdUne t'lotlfy 
II with the tdentlcal Event with which pa~e_walt 

II wes calla~• P~alt also unlocks the 
It ~·-.. tttt\•. :\o.qk ·once he JlH \oclce4'1•.b.b: .Uta ,.bases. 

~ .!! On_pd <Pa1e) and 
l.tu:A a; 

\ .,_,.~-.{: • .. ,. " ,' ,,1t' ~ ,: (~·'. ;'..; ;· -~ .... ·.:' ~' i 

Rws_ln_pro1ress(Pl'\r'eq(~Jl " r.Jl ··U. lhlfl•.oac•· t:s;on the paging 
. J:Jr •iltft)c.;t, It) s \.POH 1 b'l• th•t .. 11.a read.....,. ke 

c;,tll. rw1_abort (Pa1e>; 

II sequence may be In r>ro~ress for It. 
II It must be aborted. 
II Abort the rws, or po .. lb1y clean up an 
II already complete abort. Unless we are 
II cleaning up, we will wait for It. 

,,j 

" ii 
" 

I 

·' 

" .,\! 

~I ,. 

~f; 



+ 

return; 

end page_fault; 

J:llil; 
.till. .s1s2; 

J:llil; 

l! Rws_ln_progress(PDrec(Paie)) II If we have cleaned up, we are 
II finished. If we started an abort or 
II noticed one In pror,ress, we must wait. 

then SA!.! page_walt CEvent(Pr.recCPa~e))}; II \'/alt for the abort to 
II Conplete. 

II ttormal case - we must bring Pa~e In. 
call read_page (Page); II Start read-In of PAr,e. If par.e is empty 

II (all zeros), or was on a fast device, we ~ay be done. 
If lo In pror.rcss(Page) II If real llo was started, and not finished, 
- then ~a11 par,e_walt(Event (Par,e)); //we must wait for post pa~e 

-- -- II to post Par,e. -
else unlock Par.e_table_lock; II Pa~e was all zeros or on fast ~evlce. 

II All done. 

II Restore machine state at time of fault. Retry 
II faulting reference. 

t-' 
g 



-+ 

-+ 

+ 

read_paae 

read_pa1e: erocedure(Page); 

( 

.laSi.f.L Coreaddi., 

tf On_pd CPace> · 
-- lb.ID If nws_1n41.~~•rtss 

ilim-1'111 ~. 
, 'i••' 

~ '• ·~ 
•"' I~ l . ~ 

Co~a99,~~'~ f{tJ'~~~t•q:J 

(PDrec. <Pue» 
n 

Pag._,,{<;~f: ... 4d \ ; • P11•1 u • net1di t,.a~er '·. · nai 1" -= "k·J;~f~C~d~f,~'..rt,c102' .,rd•> 
1 · • 

1gi"Dcatf'•l•U 4• Htdch 
Jtl"l'.'"lfT '>:Ji'll tnake_acceaslbl• <Pa«eh 
l·~i;:''IJ"f.d:4j. ~h.l'b< f' ;)I; ( ".'.H .;;'l!.;,"J; 

&la&JliU ' 
to_ln_progre11 (Page) :• ~ 
lo_reacLor_wrlte(Coteadd) :• read".; 

II This procedure Js resoonslble for 

II caw•tn~ a faulted Page to •ppear In core. 
/l.ff'l/q 1, "ece11ar~1 tt Js Initiated. If not, 
/I a pace of zeros Is created • 

' '\'b' ·,;' : '"" 

II ~hti.ow11ILtbh check ls CNde Jn PH•.:..fault, 
II· ft ;h .c~i\HP&N•J.h, lt?r>ortant that ·it be e:tade here. 
II for rfad.....,.lle •r ltei.•ca1 ted by ottler srstet'I 
11 funct ons. If an rws Is In orogress on Pa11;e, 
/I. t!ll9 .1411aon9t r~l4 .. 't. 1fn.t our cal IH tflUst el ther 
// ..• lt.i\iu• .or ,fnf Hate •IMtt proceeMnu. 
II A1l•U•·a;page,.of·eore for the oue. 

II ln•U'4•t• }'hat th~• Ht• bel'dttttt' here~ 
II A null devadd Indicates that a Daae Is defined 
11 to contatn zeros. 

r• oooeo •••• ;II ttake It all zeros. 
II ln41cate that this fr ... be1oncs to Pase. 
II Reset fault bft In the l')escrlptor, a11owlnc 
II processors to ref~rence Page. 

\ \ r~~a.p11t;.;; · 
Iii\....-~ ~\.btide~p.,..,t:,._. •ff4nfn. : 
II\,\ ~·-·~tltft 'MM't..S ftlo :ifft r'PHt'~IS.~· If Is 
11 •. \~•• t_,,tf\k,J• :-... Ar4f•e ""'"tlo s . 
I/·, l.!.'".liU >kftM• 1 .fe.; C;tt.ci ~he :t/;p -·roe~Jne1:oan ··~•set these 
11 \«t w ·:f.~ :• fut; ctP.Jw;•:!f In l•Ms .ot'fy ~ 

gll devlce_read CDevaddCPa11:e>. Phys_Coreacf~C~. "". ));,; ... ··· .' //$.ta-rt·ctie•.rNd•' •. · 
Ifl>n_pd CPaae> II,'~·~·· •04!1Ceft!ent .·~ tlMt· t~t' ,oqe,• 

WA aD.; '- \ ' . ,: " , ,. · .. 
.,,., .. I• 

4' 
~ ,) ; : 

~ read_page; 
.&DD.; 

. ·· ,,JncoreCPDrec<Pa,;e)) :• .uu.c.; //.~as .• ,,..,,. tn cor• C·•cefttlr:vffd.J. · 
·' 

1 call Pcl.thread_to_bottOilt{P1)recCPa~e))..;., .. This line Is •t ·. a the Mtnl 'code• 
II ·'.»•·absence 'CJOftltltd'Qff''• ·buc whfch was fcund 
II l.ater •. I c heb>s maln~aln the lRU 01-cferl'nc 
II ol th'e PO used t lst. •I 

&Gd; 

.... 
0 ....., 

~ 

~. 
.~ 
~. 

l 
J 



+ 

flnct_core 

flnct_corea functlon()J 

.d&.J. CoreTop Coreadd; 

= ::~ tYN.~~rHdd~i' 
J.suJ. 1~.:.J~lo.J:t~o,ier .ftfjnp•c, 

. . .. )1•4'°•.:..co'1ft'ttt art 1 
'. ·- 1~ '1 ' 

:.,.,,..:.,.f,p,..~~t~r s• OJ 

t"·'[ri;~m=r·~t.t•, • i 
Loo._iounter < 1J1072 ; 

P '.~ii~tth=tt;~J!f'~l.ns > SOJ 

; \.'.t ·• lo_aklp_counter 1• G; ,..., 
J! Paa• (CoreToP) • "nu11" "* ., 

·. ;i: 

ll This function lcnplements the ~~ulttc• cor• 
/J;: 9ap rep I acetntmt. ,.,...,, f thm. t t Is ca H~'lf to 
II f\ousekeep core, .Md· :ret·wrn OM free :Corf!fadf Obje.c:t. 
lh, Its· basic ctat9 b ... ls tfte core used llst, which 
II •• t.h• or. dt.rtnn of Coreadd Objects t4ef1ntd by the 
II ·~Cf!, 9-f .ffext ~neats of. £0fti<Md ObJects. 
Ji( 'tH ~•r'-'>le Cor•TPf» tiu .. ·H· ·• nlue the lust 
IL· m·ty well ~H'M. :i..t<Corttop>, 
"' u,...ue.reT•PU'#'· an.t· SO" on, .... t~add 
llt.'I< 'r •• *'"• ~·· lrteftu.tnctl~ tHent use. The core 
II e ·•4•. t :ta olf'Cu1e'tt_ .0 N9af···tai!e~t:'i-ecentlv used 
II •-*• • Cer.foP• •ne ••aer tHR ••'•ue to 
II orMt6. 

II l~ltle11z• cheet for· exc•ssfve 1b6pfn~. 

II .. ; '1fe . se .. cb. tile "*"; 11 st H l01t1r IS necessery. 
ltla.enlfefeuJit; h:.:M •"'" ~trlttn~'i'· 

. /I. Nt,.wu J .. ,._,, t rHu~n ,., frff •H•~, orr 41hn 
\ ,i··'~';;~~·r~•C'.I~,';:' 1· "i~'} ()f,,';'t fjt- 1• '"'\ '•,, It ·,,·, 

,/l..,,, •f1•1•t11 •ot1tl•i•t!ti•·:t•uH M6ft7·wrttei, see If 
\ \ N ,. q;·· cimt:-.J•.' ••k·tf nH • uarte~~; l•ptn1o1 · ; ' 
· '.11 ' t!lllll•trr'"etd•t,rc-vPe>t 4U'tu~fh<fH ·· 

II ytnhl1llze f lo c~k. Wtt heve Just done what 
II th s dMrck cou a Hiii. us to "o; . . 

'1 '1 h•;.1',ji) p-.. ~~.<'-~. •' (. ~ ~ 1' ~"~;!>}If'.;· 

..... 
0 
00 

/l,,_ if' .. JifJIJi;;·~· - .dl•P9telh~Jtttl~••~entfll·'Ultd Pace to 
'/(.'i!~ ., f ·. ~-·'•r . .-t6'ff.1Y ;@f'te.!"ft•~ lMll Cf happen by 
11 . ui ,or n , or a pa~e de 1 et I on) • If so, we take I t. 

Fr- a• CoreToPf .. ll .. Thlf tdllAt• t"9·1._,.,,..,.. •.. v. 
CoreTop :• lfext CoreTopJ:ll · 'P.ir t:Mt IS.tee as ttie most recenth used, and the 

II next least recently used the least. Motl ce that 
1
1
1 th

1
11 ~, n ooer1tlon ti trdlvlf1 on1r because of the 

I c rcu1arlt' of the core use st. 
return Fra111e' II Return this core fr.- as usHble. 

aaslJ ' 
!! to..2ln;.::p-l'o1re1s (Pa1e <CoreTop)) II If, In the next line, we are 1oln1 to skip this 

-~ 

~ 
.. ~.( 

·" ,; 

I 
" -t 
!· 

·-J 

J 
.~~ 
'~ 

I 
~ 

I .:.1 

i 
i 
·~ 
ci 

! 
I 
~~ 

J 

I 



+. 

, .. 

14 

+ 

+ 

II freme because of llo, other than an rws.golng on, 
II meter the times that we have done so. 

1h!!!. to_sklp_counter :• lo_sklp_counter • 1; 

l! lo_ln_progress (Page (CoreTop)) 
At Rws_tn_frame (CoreTop) 

.1hlD l! to_sklp_counter <100 

II See If we must skip this frame due to llo 
II In pror.ress there. 
II If we heve skipped a terse number of pages due to 
II to llo In them, see If any llo has since completed • .thin .dsu 

.£t.!.! post_any_lo; 
to_sklp_counter :• 

ust; 
O; II Reset this hl~h-water-mark. 
II nepeat the loop, trying chis last I/a-skipped 
II paie aialn • 

.!.!!.! CoreToP :• Next (Corefop); II Skip over this core frame, consider Next to 
II be LRU. 

I!!! l! Wired (Pa"e(CoreTop)) II Skip over Pa~es never claimable. 

im CoreTop :• tlext (CoreTop); 
. If Usage cnescrlptor (PaieCCoreTop))) II See If pa~e has been recently 

- llW1 ~; 
used. 

: .,. ' . ; """'~ .. 

IA.ft; 
.1.11& Jla; 

Usa"e(Descrlptor(Page(CoreTOP))) :• .f&la&; 
II If so, relnltlallze check for 
llrttf.~ ti,.. apct stlp this 
//Phe, making 
II It the l'!IOSt recently used. This 
ll fla•ttit l?Jl. ·~·'"' true by the 
Ii h-.r~fre., ~en the dest;r h)tor 1 t< used. 

CoreTop :• Nex.t (Coref•Ph .: //.; ~tdo •!et.It. · . ..., 
' 0 

ii At this ~~•&e11 , ..• t~c ... e al &be top of the '° 
II cote titH!lltl. lft·liNS ..... !I •... ••·•et;: .. c4y~ 'used. 
II It Is a''''"- tarct'-:fl'f,eetleGftltftt. We will 
II see If l~\"8,dt.'.~ '-'·'lifd~~eovout+. U nft> 
II 1~,tswt.r•-.reis!l1,,...~tt•J...;._._.,h•J•••· · 
11 return·,. we c.- ctal• the oaie. '81• 2• PaH(CoreTop); .· . :'/j1;-.lff!r~f~•lt::curr•wt::resl~~~t. 

~=o~· a~0~:!~P~CoreT1>P~~ :.•}, 1 '·1i 1;;;.~..:~=~-:i~~l .. ;.ttlo~ 
I , t"'.: 1t;~_.,,....1b•.MMd~ lff...W ultimate• 
I 1 11b~CJ1tl•.;la,,.,uih 1was :th4f rlcht. MOve. 
I .,·1g~1w·'1f9~'!ob it wt11 H ,_ to- recent 

r. .. ti use or'llo, an~ It Is stilt itood. 
~ try_to_wrlte_pa1e(Page); II See If pa~e needs wrltln~ out. 

II· 1.-htate MCh i Uo If so. 
!.! 11!! 10_1n_pro1tress (Pat:e> 1/ .lf.:..!n.:teJi;'W~lte~ ... e 111cce•ded In 

II t•t•H1 wrl "'"" o-.& P•11• .oasc ,,d), 
II·. t-\s .hold•• tt~~nd5e, .. ve .on. 

l.bm Jig,; , . II Tc,., to datm oa11te for ree 1. 
ca 11 make_nonaccess 1-1 e .'the' h 
- II Turn o f access to Pa,.e. lie do not 

II exit this call until a11 processors 
II have verified t~at •they have flushed 
II Oescrlptor (Pa~e) from 
II their associative 

·~ 

';! 
'; 
J 
.~' 



( 

+ + 

I .. ··•.• f · 
+ 

I .. , 



.... 

.... 

~ 

.+ 

trY~to_wrlte_p11e 

try_to_wrlte~1•:proc..ture CPaxe>J II Th Is proc•dure determl nes If a Pa~e has been 
II jl\Odlfhd~ •nd thus n•~.df .to .be w,.rltt•I'! out. Jt also. 
II t:.hecb for the cas•. ~h .•. n a Pa*• shOu 1 d 'be wr It ten .to 
II the pag I hlt dev Ice ~· t~ .. recenc~ of use~ 

~. 

,W;J.. Top_of_pd_used_llst PDrec; 

lL Oft_pdd Patt el . , 
lb.la' lf. UodUt td Oescr I PtOf' 

II If the ~·~• already has a copy on the ~·~Ing devlce, 
<Pue)) II the dectston to ·r.·~· ,, ttie .... H whHher ot not 

!.l!.! 

, .. ,. 
'" 

1hln. ..51!.! wr I t1t..P•1• 
!!.!!' . ' 

<Page,"110dtfled","Pd_o~">; . o: Pat.e h•:•. IHI~ ·~lfelell. . ::: 
II · Pa111e not mottl fHd/ lh-udy oft &Ml, nMd not write. .... 
II P•;it• Is nf>t' on t~e ..etti;a device •. If It can ao there, 
II ri wJ U puf fJ,·a· tri~ . , . .. . . 

Gtpd ( Par.e) . ': . II ' If P•1t•·.1 • . . t&'it!\ Jo &O ·on pd, ¥, , d •, 'tf. titl;.uH 'nol'_ef.,;.l)i.;,.used_11st> · ./ lr f.r~:~ l!e 'f'!i ltb" sl;ace for it, 
.. . .. .. ·r·· :ti.. II we clt'tnO~ trt U SM' th• pd. • i .·db; 1.f•·MfttfttcWDesct'tt:itor(Pa1119)) II Wrhe n b8ii;K f6' lht ., •. , modlfted, 

- tbAtl WJ wrl.t....,.1e(Pace, 1'1nodlfled"t""fi-tt~",. i ... '11 . '-'·' . . .• . •• 

ilii; II f · . . ' f•d, •• t•·. . , .. 
.I.LU - 11 ,..J. :ff 1 '' .. o U. P4!':~ wltther' mo.st fl e4Lor· not. 

lf HodlfledU>es.crtptor<P•1.•» II lf'.,.~M~.•.•:.· ....... ~.··.·.·.'·· df. ff\dlci!.'t.).t. ud trite h1o 1!ltn 11 writ · <Pa e "mO~tlt .. 'i-!'""Ou '" .. 1n · · · 
'•· ' "•1111:1li.'titttthHft: <Pa:e:"not..Jnodl; .,.,.1-.! n . ); i 11 ,.,., t•. even ff not modified • 

ret~tn; 
end trv_to_wr te_paae; -

'·1 

~ 

~ 
,\ 



...... 

... 

~ 

wrf te..P•I• 

wrlt•..P•1•1 procedure (Pa1e, Modflai, ft0f1aa)J 

•slere Modf1a1 u ttr;n, 1tlf1a1 IUH'-J' 
.·". . ., . "" 

" t ~· 

.lf P•••-••.:.Ut'o CP•ltl> 'lb!!. tdectO 
Modi" ·~L CD11cr I otor, (hi•)) · r• ·r.·1111 

,. "· t'" •. ':· . . . 

II Tf\h .. procedure, which Is ca11ed when It Ii 
II de tar"'lned that a r>a~e ~st !>e wrl tten out, 
II does so. It Is defined In t'u1tlcs that 
II a Pa~e of zeros ts never wrlteen out, but specially 
II flaJK.•~·. ·'fe~~k• .. that cf\•c~ here. . 
11 .. ••~• '•• ... ~. ·r,~r'· 9f .1"ee.r•. It her•. - .Modi "•d 11 t•.tUhw "~ l ,r Qr '!"L~# t?111n1 ,,. 
II W.tntir or no ' tjrn 6ft'CQdffl•d. r~dlsk 
II ~'°'tc«rtr.1n r ',:,,.f~•&# tf'"-ttShat_onJdtt~ tel ls 
II ut ~•'•fH~¢:Hi a new Pd record for Page. 

' .. . ~.. . . 

II .~ '' ; ·. u '. "• ' ;- ·•· ' . . 
11 ti~., iCt;t~t•tnet ittos, Ito wfhe need be done, 

II . \ •v ~ · ·4·-~1t c•fro" t9 Pale. Any 

..... .... 
I\) 

a.!.! cl•,~f!·~~·~·~~~~~.~r:r1. ,, 
tM.mJlraeM•ttltaC•t ;;1-• :.u.1 ,; " ··. · > 

· ,, bl..,_tWNrJflh' I t•<Core9ddlJiie > > 1 • "wr I te" 1 
J.f Devaid(Pa1•> • •nutt• 

ll "·· ~f c•i,iJ't~-.· f t~fs ·.·Polfu .. c·actua. I h the next 
11. eall tn1] ., "4~14.bl ';-~or~ onct. th• l/o that 
/rwt'wHlujfar't' tfi rhtU · d' ", • .. ': . ·.· . . 
'l tt\ \tN"lit; 1'f · ll' 1 .o fh • . . .. . .. · .ll ·'"tef''~t.ftif.. '1''S· is·· ti':, ·.· 'li'lo~ffy -~firs P•~' ... "°. t. • 

, , ~.r.· .. ':;JJ11;tut«le~. · · · ·. 17:Z~attfit.';b~4~f•.•: ti n4t .n•'•b••· 
11 · ' fiff /1'~ri•'J · , ~It l.tfnd '·cs·f ;, lo · tOolc P r.c•. · 
II ff page tial M Mcondar.y ltoraa home, I.e., waa ·~ 10~...,o.(''"''bt;"'""r,~"i'.~ r(""',;~ i 1? '.; bil 'p • .. ~ 

. .&ho Devadd <'•P> 1• 11 locate_dhk_record() J " ... Previous ty .. •1.1 zeros, .r Ive rt one. 
!! Jina& • "PUL,.on_pd" · ~ " ~ IS ~e,, Qn D~ fiye ",!i . recency of UH, 

.cJ!u .ulJ •11Maff..pd(Paaeh < '.. ·>. t: , ·~·=-·~' ;J .... .,ir1~~1tU4;;MP-a~ pf fee 
' • • , •1• , :,'/';: .J..~, . : , : ~,. l>: Q.~ e • .ll' .Jill: , ' ()J' 

, ' · if ~~> , "" ,' 11-~ .-,., « •titt'il 'hale'., o.rw. ''.fJ. , ' 
.&ibla *1 II then uJHtate the status of Its net reco;d. 

If Modflaa • -..,dlfled" /I If P•«• h .. heen modlfled while In core, 
· then r.todlfled_from_dlsk (Pbrec(Pei•>> a• l.CMC.J // we must lndlc~te that the pd COPY that we 

II are •bout to start wrltln« Is dlff•r•~t from the 
lJ dlfk COPY'· . 

~, JM1-t,hre<•4-to....,bottom (PDrecCPan>>J ll ndlcate that this pd record has seen recent uae. 

Start the actual write. Jfl./t dev,~!.:Wr1 :~,~~add(~•••>, PhH_CorHdd(Coreadd(P•a•»h 
ros 

eftd wrlCe_pueJ -
II 

l 
l :,•, 
,:.1• 

:i, 

~" 
·1 

i 
,\' 

~ 
j 

I,,} 
I~ 

~· I 

• ~ 
~ 
~ 
t 
~ 

i 
J 
i 
i I 
: .. _,~ 
,, 
\ ~ 

';~ 

-fi 

~ ;,· 
;~ 
;~ 

l 
,1 
'.<~ 

'~ 

' 



,, 
~ .. 
·¥ 

:: 
~ 

"' 1i!1 
.'..\, 

"' 
I 
.. 1 ,.. 

• fl' -·-111 

"" 
3 • I ... 

f;! 

·~ ... 
l 
'.ii 
I • . i 

.. 

·AU 

i 

• 

J 
•• I 



--• I .. -

~ ... :: -,. 
I 

-• ·• l -
i : .. • u -

.. -1 -• -• -• 
=· 

l 
I i • 
~ i 
! I 
~ 

114 
M • • 

• 

.. -:t • .. 
I 
• ii: .. 
! .. 
1 --3 
: 
I 
I -



• 

+ 

II 
I 
i 
1f 

U.5 

. ) 



.. 
a • 
} .. 
j 
I 

. -
il~i~ .! :.;;ta: 

.t: .. • .. ; .... : '• ·-- ... .. :: :1=·~ IPC• -· ~-.,"' 1' ! r:: _ ... 
o.:"D• 

1
.1 .. •i• -.., .1 .. .: c.: ... , .. -

:?ttP ;.!: •a ·1 •• ".J •• ! ... 
.:'" .. .:'"-:JI 
.11 .. ";f-i 
.. - 1-, .... _.., 
... c 1··. ... - c .... u"'"-j .., c 
0 0 ..... ..... - c 
GOU WU •••c•'" ... _ c ·- .. u - •"D ....... c 
~ =-·-· .. s;l , ..... -

~t.:1.: 
................................. .................................. 

.. 

i 
j 

' 

. 
I --e 
·i 

..... .... 

116 

,. 
-(• :-'-
l •. 

• 
. ,,.. 
' 

{" 
,, 

_, 



i 
I ...,. ... 

3 

1 
w ...... 
~, 4· -w· 

~ 

li 
,. . 

.. M 
It i1' 
!'f a 
tI 

8Jt· 
u1·· 

+~,:~. 

··: .. :~;,/;. 

.,,,_, 

,. 
...... 

"' f 
£ 

I ' -• 
l • .I 

.. .. 
·~ 
• I 



4-

post_page 

pe>st_pace:procedure(Coreadd); II This procedure Is resPonslble for chanr.lng the 
II state of par,e control data bases when the completion 
II of an llo operation Is observed. It is Invoked 
II from Individual device control routines • 

.l.s25al Page; 

.!!. Rws_ln_frame (Coreadd) II If there was an rws here, r.o process t~e completion 
II or a bo r t I n g • 

~ ~ rws_done CCoreadd); 

J:.lll. ~; 11 This was a normal page read or write. 
Identify the page Involved In this operation. 
Turn of llo flag. 

return; 
~ PoSt_page; 

Page :• Pa(e(Coreadd); II 
lo_ln_progress (Page) :• ~; II 
l! lo_reacf_or _wr I te CCoreadd) • "read" II See If read or write completed • 

..t.bJm .sl.g_; 
Coreadd(Par.e> :• Coreadd; II 
call muke accessible (Page); II 

.ens!-;- -
Page will be made accessible In this frame. 
Insert physical core address, turn on access. 

I-' 
I-' 
00 

~ .shl; 
llrltes_outstandlnp; 
call thread_to_top 

w; 
£!.!l notify (Event(Page)); 

II Handle a write completion. 
:• Wrltes_outstandlng - l; II Maintain heuristic for flnd_core. 
(Coreadd); II r~ake this core fra:ne the most likely 

II candidate for claiming. The usual reason that a 
II write was started Is that it was a ~ood candidate for 
II clalmln~ In the first place. If Par.e has been used, 
II (this Includes ~oclflecf) since the Usage bit was turned 
II off, find core will not claim this pa~e now. Otherwise, 
II It will ue the very next page claimec. 

II Cause any process waiting for the co~pletion of this 
II llo operation to resu~e. 



+ + 

.f. 

start_rws 

1tart_rw1:procedure CPDrec>; 

.lQ.s;&l. Coreadd; 

II Th Is procedure In I ti ates the MOY Ing of a 
// mqdlfled pa~e fr.om the Pagln& device to the dhk • 

dgslarc Rws_actlve_count arl t,brpott.s; 

Coreadd :• flnd_core()J 
Rws_ln_frame (Coreadd) t• .tDIAJ 

fl This counter. Is a h•urtstlc f.or tlmltln1: rws activity. 

II Cet a page o'f ~ore for ttl• r)l'I buffer~ 
II Matt: this P•J·,.·e fraine. •.• !qi.·· cJa~~b.11.• •.. F1a1; II aho lets post_page kn0w litt\flt to ilo •. ... 

Rws_ln_proaress CPOrec> :• .t.c.M&I 
lo_read_or_wrlte CCoreadd) s• "read"J 

II Hark th fl S>d ,f'ttcorr;t. ~s liavl~~ an r"'s. t ~ progress. 
II lndlcate the di rectlon of *lo for POSLPa&e. .... 

.... 
'° Coreadd CPD rec) : • Coreadd; II \SH Uf». tht't rt1attot\, so th•t r"!1.abon can 

, · II find Coreadd. . . . . · . , , . . 
PDrecCCoreadd) :• PDr•f.fo,;; .. . . , · ·II Set_uo tMs re.latfon,~ .. ~ thac·nis,;.done cln find PDrec. 
all pd_thread_out CP'O~h , ··~ . ., · ' II l'fif'itW• tnhk: .·®.t ~f ,dse:ct I lst, so It c.n•t be clalMd. 
aJJ devlce_readU>ev.•d'C"'Dr.ec>, Phft1.li.Coteadd(Coread4)); .ll" Jf•rcf·a.,~.PQill'bly finish the read. 
.SID meteradl . ~;it)~addr(PDrec), write"); /1 ·.\,._f•r·,•t..W to the ·dfd. . . ... 
llWi""_. .. • ,. rt'•e . ''"4'.Ctlleftt • l; //:.Mahtta~•i~urts:t,t.c.;'1 ': • •• •. , · N~e.,t'f: .~~"-~:' .• NU111ber_of_free_pd_rer.or41i • :i,t, "11', 'ln«HCl,.t~ "at ·~,hh. i;»d' r,,~fd 

'·''J.iio<: · .. " . , -.r.z~ . ; ' II b kW tltfi ~--·Of ~fi'Vc freed. 
MocftlT1ed_lrom_dlsk(POrec> a• UJ.l&J II: J~lct!'t• rtb.at thf1J>4 r~~ord wf 1l be, s-. _.,dH'Sk 

.di> whl le Rws_actlve_count > JO; 

,,.~ 1. ·PeitO .. any_to; 
,W;~ 

//OOf>Y•''" ·.' ·n .... ,,. '· . '·" 

II If thel"e l's • lfr(• amourit of r.s actrvlty eotns on, 
11 w It for . sor.le of' I t 'to · $11bs tde. . 
II see what tin cfdmptec•d· · 

.. . : :.Pi·••r.AtYCQ!e 
.!!!.d start. 

~ 

:r 



+ 
+ 

rw1_1bort 

- rws_alH>r;tt -ewectyreCPa .. h II This l>f'OCedure Is Invoked when a r>aire fault 
11 Is taken on a r>•r.• !llf\_I ch has an rws In pro1rH11. 

> 

'1-a;,.,_.., 
11 ~- '"'~- ;~lii jhr~," S'j.l~~ •. CJ~••-· U ''No abort has 
l'f· bee~f 1.rr-tt•M4 : • ~lnlH•'• ~ ..,,._ ,.,,.f;e - _ 
1 t -foill" WOtff h••n " f1i'tilij 'rw;,Jtone. U AnOther 
II process.has Initiated one. We wait for It. 

- 11
1 

l'l '_ W. -"av•_ Jt~'--_tn. !' __ ._ "~-_l'_ t• ___ .. d _ I»~ _rw,_clc>.pe, , .,.ct, -... t 
-- ' - . ""!': \' 11;: ·~1~-- -~lttW- "'°" . -· --' - -

Pb'Hte I • • ,.., r~c c Pa,;e); ' II~ "'•{" 1nli0'.t'f Jit or '_,,,._ .. ' I nffl'plt here. , &t.-t;;[rtJJm;"k•· -. .. , :ii:-' •• .i : ____ ,_ ·; ""' 
1 ~11"/'f · tf~ t-..1.irt-i' 'llt~~_FW_' ,. z•V>t '_ · •_ bO••_~- · · H,, '-S..C..tnt- .CIONia> .. - :· '-' N"- 4f·Mt~••~ d•c:cHe S. We clean up, and the "' ---- - - , . ...._,_ - ~-It:· .. " I' , ' 'l .,.,,, , \ I;,,, , \; "•\' -,,, ·, ' \ //;,tfltl. ,.._,If.WW n... ;,., .,. ov, .... , -,. 

- ' ,-- ,,jttH,-ft•li,.,iC<h':"''- _.n •. __ :•·11 No_.;.1',_Hrii_bi_ t 1 '0t'WS __ '. __ ,_ .. ,., 
, _ _, · ', ,_;;Mitt_C0raptete(POrec:~ aws ii\pr~,,~e.r'.::,ii:pJ:t;!'): ._ ,,. _ ----
- 1. __ , , •r•add<Pue> :• Cor'HddCPDre'I>;·>' ,._, · i/}1' U-lt twt' " "'as' a ~ for Pase. 

· st!! •tce_acce11lbte <Pase);"' , · ~·?' ·1~·'"-"5f J>h.rslcal ttfdr_,• h't' -
' ..,illqg~ I //.Dtse--rtH•t,·Mt tv'h Oft adtss. 

ca11 111eter_dl1k(Dl1k-4dr(ll'Drec>t"r~t$h _ , , ''Uj , . , . , """ { 1 ,<_' .. ,_, 
.~ : • • ,·--"''-=!": \' ,,t .. ,,. , .. ,..,-.fff-t• re". c-!'ta !" e'.h··, -

· : .. -r':'l'!'ll'-: · \/,Stti -tH ·illfil ,,t . k _ .h.nce 'we 
' • e· '•\/lf~i .f1"tt~1 t "' I ' .,. fr· '-9t ~~' .. . ·-"-.._...u .. cc.. ... .,,.mo,.,~.t~ · · · ·. ,1,.J,. •• , ..... 

thr..O...to..1'ott• C.-OHc)ji·d? · ¥ 11 --..t~~. r rMntlv used. 

·. ~ '} 

.. .. - , ln_uH (IDrec). ,:• -"lllJ, .. ll '·' Unday .,\~-ff/_ ~-,_,A.,_.; ._, -· ; 
' - ,. ' • ; .J

1Wii1 _ t 1• .._.cU~t •ifj"· • .ii..-·rr 1F"lfifritafr. tllfl 'tle'urlstlc. 
"1''·;·· ·-: .... • .... ,.. _RwLtn_fr .. _ -CorHdd~Rrec>) i• ,. __ 'HJ_ I/ .Jfau __ .. ~,"-_- "--·-· __ -· •AA._l'_""' "' '" - -11...-.r_of f~td --- \\ ~q 'b!il~.$-·p.01. T'.v -..o";oirp:rr~~' , _ , .. . 

•• 1..b.r_of_fr~_:ecor\ts .Jt';I" 0 •"Jff'~'e'tefle! ttfe~l~l~~-J~ ;. · -~-"· z~n4.f, •' ~,, 

11 by 1tart_rw1. 
llUl; // Return to pa~e_,au1t with Rws_ln_procress off. 

el1e1 II Case 2. Abort alr .. dy started. saaae_fault wl11 
- II waft for ft. 

e11e Abort_f111 (.-Oree> 1• lallJ 
rtgyru II Case 1. Abort the rws. pa1e_fau 1 t •111 wa It for 

II Return to pa1e_f1ult to either contlnye 
w ,..._. .... , II and re1tart the fault,, or wait. 

.... 
N 
0 

It. 

·~ 

~ 
-~j 
~ 

·~: 
1 

'i 
" ' ·f. 
_) 

:t: 
-~ 

-~ 
i 
·'<' 

,.. 
l' 

1 
i 
t~ 
;i; 

~,''m 

1 

) 
1 
-~ 
i 
'!} 

~ 
~ 
-~ 
-~ 
% 
§ 

._, 

. ~ 
i 
(-

-~ 

-~ 



i" 

rws_done 

rws_done:procedure(Coreadd); II This procedure handles the completion of 
II llo done on behalf of read-write sequences. 
II AIJorts are noticed here, as we11. 

declare nws_actlve_count arithmetic, Wrltes_outstandln~ arithmetic; 
.lsuiAl POrec; 
PDrec :• PDrec(Coreadd); II Identify the concerned pd record from the 

II field specially reserved for this puri>0se • 
..U Abort_flaat (PDrec) II If an abort was requested 

.than ,dsl; II abort the rws. 
---r! lo_read_or_wrlte (Coreadd) • 11 read11 II If a read was aborted, we will not write, 

..1b.t.o t1odlfled_from_dlsk (PDrec) :• lJ:J,&&; II and must re-Indicate that record differs 
II from disk • 

.!lll Wrl tes_outstandlng :• Wrltes_outstandlnat - 1; /1 · Otherwise, lf!lalntaln write count. 

Abort_Complete (POrec) :• JLMA; II Indicate that we havP. ahorted t~e rws. We 
II cannot make the Pa'-• addressable because 
II (p0lnt of factl) we have no way to locate 
II Par.e(PDrec) In the actual Implementation. 
II This ls due to not havln1 enou~h space to 
II save the required POlnters. 

$!JJ notify (Event (PDrec)); II lfe now cause all Drocesses who faulted on 
II this Pace du.cine the rws to res..,.. They 

W; 
&Lu ,do.; 

• ' l.~ ' ; 

II will all re·t•ke the pa~e faults which made them 

ii '.''st Sltlt~.·.tfri~ .. ·i>il'i1~•" .. · .. ·.b•<'f·'it ee ... e t.···J•e.·k' II the P•1t•~ ~•Ni. . & ,,.!'~ ll.i . p o.t«e 
II addressa'( 'i•·• . .£,. t!)f f w ·~ ~ pd 1,Jhfli , 

,. rn JI thero 11}0.-rtif"it.,i•i.~su ••&e_foult) 
II and slmpr~ returf\.\• ;; 1.,;..'>,, -i;.:; ,, ,,,, 

u 1o_reatt_or ~~rt ieccor'e~dd> ... ,,.ct• './ 1r· ~~H:J~!/nnr:~:~,r·~!H'i~r~:n!~"· 
.th&D. ,do.; 

lo read_or_wrfteCCoreadd) :• "write"; II Indicate llo direction for next time. 
cafl devlce_wrlte(Dlskaddr(POrec>,P~ys_Cnreadd(CorP.add)); II Start t~e write. 

...... 
N ...... 

ma; 
.t:.Lu ,do.; II The write, and hence the rws, has finished, successfully 

II (I.e., without an abort.) 
Rws_actlve_count :• Rws_actlve_count - 1; II Maintain the rws activity heuristic. 
Wrltes_outstandlnr. :• lirltes_outstandlng - 1; II t~alntaln flnd_core's heuristic. 
Rws_ln_frame (Coreadd) :• !.IJ.1c.; II Turn ~ff rws Indicator. 
Rws_ln_Dro~ress (PDrtc) :• ~; II Turn off rws indicator for pd record. 
ln_use CPOrec) :• ~; II This record Is now free. 

" 

~ 

1: 

;. 

t.: 

r 

' J 
,\ 
'1'. 



re tyro; 
~ rws_done; 

.s:.w1; 

k§..Ll pd thread to top (POrec); 
Devadd fPar.e(P~rec)) :• Dlskaddr(PDrec); 

II This record Is now claimable. 
II The page that was on this pd record 
II Is now on disk. 

On_pd(Page(P!1rec)) :• Wa; 
Pa~e (CorPadn) :•"null"; 

call thread_to_top (Coreadd); 
msi; 

II let all know. 
II The corP block us~d as an rws buffer Is now 
II lrimedlately claimable. 
II Make It best candidate for claiming. 

I-' 
N 
N 



-+ 

aux I 11 arles 

/* Althou~h some of these short routines mlr.ht be.tter be expressed In 
line, they are conceptually modules In their own right, and 
may be called from other points In the system.•/ 

I• Smalt auxiliary routines •I 

devlce_read:procedure (Devadd, Phys_Coreadd); 

~eclarc Phys_Coreadd arlghmctlc; · 

II Called to Initiate a read -
II selects correct l/o routine. 

!!. Device Cr'levadd) ... "drUt11" II meter disk reads 
.1.b.IJl "-1.1.L mt1ter_dlsk (Devadd, "read"); II meter It 

.saJ.l (select_lo_routlne_entry(Devlce(Devadd), "read">> 

end devlce_read; 
(Phys_Devadd (Devadd), Phys_Coreadd); II call right routine. 

devlce_wrlte: procedure (Devadd, Phys_Coreadd); II Called to write a page. 

Hrltes_outstandlng :• Wrltes_outstandlng •1; 
"4ll. (select_lo_routlne_entry (Oevlce(Oevadd), "write">> 

(Phys_Oevadd (Oevadd), Phys_Coreadd); 
.!n_d devlce_wrlte; 

make_accesslble: procedure(Paae>; 

Phys_Coreadd CDescrlptor(Pa~e)) 
Addressable (Descriptor (Page)) 

!rul make_accesslble; 

makeJ(6Aacceslf•<ret procedure< PH•>; 
· Addr9'1tbte <Descriptor <P~s•>> 

"4lJ. clear ~Jfoclatlv,_~.o~r; ·w make_nonaccess I bTco · ........ · 
,--.,·; .-. I ; ,"· , , ' :,. ~ 

meter_dlsk:procetnlte CP~vadd,Ty~e)i 

II Called to make a page acc:esslble. 

:• Phys_Coreadd(CoreaddCPa1e>>; 
, • .tc.u&; 

II Fl11 In ph~slcal address. 
II snake oa1&e addressable. 

I( Called to make a Pase "°"•11ec:esslble. 
. :: u •ltw.i ··'*I• "6it•adlressable. 

~. 41. . flush descriptor fr• •noc:Jatlve ....-orles. 

" 
1J'.,;; ;_ ·~ ' ': ~ .__ .•. .-~~ 

""" N 
w 

declare 'type ltgeral, Ex6etl11erit_actlve bqglean; 
II Prlnc:t.~1 pro~e~re of lfN rnetertna exPerlment. 

If ruu. Experlment_actlve .1b.m return; . U ~nnQt M:CUlll.!1H4t dat'- •f~~tfer ,,at.~lred. 
f'race_d~t.Ulll:='M.'tryct Trace_datum(Devadd:neve,ctd, .Tn>e.c)Tv:pe)>; · · ·· • ' · 

'-i -

' 

" 

~ 

·.I 

': i 

::. 

~( 
/,' 

,\ 



enqueue (Trace datum.Trace queue); 
end meter_dlsk; - -

post_any_lo:procedure; 

declare lo_devlces set literal; 

J.w;.a.1 Device literal; 

II T~ls routine Is called In any situation where pa~e 
II control discovers some llo bottleneck. 
II It polls llo rout I res for complete status. They will 
II call post_oa~e If Any status arrives. 

s1.Q. Device :• range lo_devlces; II loop over all lo devices. 
~ Cselect_lo routlne_entry CDevlce,"post")) 

(); II make an appropriate call • 
.c.wt; 

!!!.S post_any_lo; 

~ 
N 
+"' 



+ 

ftxed_head_control 

I• A Typical Pagln.: 110 Control Routine •I 

I• This routine Is the llo control routine for the fixed-heed di.sit. There exist routines 
almost Identical to It for the l!IOVln,,•head disk end drum. The routine setect_lo_routlne_entry 
(not given here) Is used to select the appropriate entry of the 1pproprlate routine 
elven the device ldentlf ler and the function to be performed. •I 

II Reed entry. 

~1cJ1r1 Phys_Devedd 1rlgt)metlc, Phys_Coreadd 1rltbmtglc; 

flxed_head_read:,rocedur1 (Phys_Oevedd, Phys_Coreadd); 
call f xed_hea _surt (Phys_Devedd,Phys_Coreadd,"re•d"); II Ca 11 connon queue I n1 rout I ne. 

&DA; -

flxed_heed_wrlte:procedure (Phys Devadd, Phys_Coreedd); II Write entry. 
CAl.l. flxed_head_start CPhys_Devedd, Phys_Coreadd, ''write"); II Call common queueing routine. 

1.nsh 
flxed_head_start:procedure (Phys_Devadd,Phys_Coreadd,Dlrectlon); 

dc;l•r~ Olrectlon literal; 

II COlllllDn routine to queue flaed•heed 
II disk requests. 

II See If any operations 
II have completed. 

.uW 
·"'>t.\ 

~ flxed_head_post; 

engytye (construct 

.!!. Cfhed head disk 

lo...proaram 
(Phys_Devadd1Phy1_Devedd, II Construct a channel pro«r .. 
Phys_Coreedd: Phirs_Col"eedd, 11 and enqueue It. 
Dlrectlon:DtrectlCMt. 
Nut: .. nu 11 ">.Fl •ed_Head_Channe t_Queue) J 

Is not buo> ghen cel 1 start_lo(Flaed_Head_Chnnel_ttueueh 
- · II There Is MW work for the 

II fixed head disk. Start It If 
II It Is Idle • 

I,.\.• ::.,.' " 
\ : ~; { f . ~. ;,.: 

'Ti')~,~)' ~,/"#~fl ",; ,1 .. i- - ' .. ~. • ~· r 

fhed_head_post:erocedur#) · . c·•,;; ;·, ~ ~. · 1:. 1 -~ ~ 0. · ,,.,_; ':- · ;:; • ··'ff.VIM· to PGlt ~ltt'H' oWet'ttlohs. 
els> lo~u,~. :.•::.u.g.,, <tP•· ... ,1.~,lll•:· 11t1Mush //L•t>k' et ill' Mtt status·. · . "".: 

·n:mu.< •~t•\la: ~·t.l.Cti.ef: CG1t1t1ete status);\\ 11·.rr.a.- ttf~•f':1 ..,.HM9r'e"' qwa. •. 
''..fflll.; ,....t...f'a ... ·Oireidd-Ho_st•tus)); \ \ " II• :/fW.fel"M"*''~cCNittrol. See the 

II ~ectiritlon of lo_status. 
. ~ I o_pro«ram ~I o_s ta tus) !.!!!!! F lxed_Head_Chaftntf,~fluet*) 1 

1 
"·": '· ·,, :· ', >' 

&DJl.j' ..... ,,., ~;:\"'•'···· r'-t;..~j1~ .,.: ,.\ , . ~··· 

"·1"·f" 

\ \ tJ c"' A£U1; < & ,. r 
' ~ 

) \ ,l,;. '1-l r. 'j. \ ;1· ~- -,~ 

' ' \. \~> 
,1 1:.-r· 

..... 
N 
Vt 

~ 

' 

•i 

{": 

. .. . , 
'.; 

'~; 
j'J 

:'~;% 
y, 



+ 
,+ 

l 
___ _J 



127 

Appendi,x B 

Implementation of the Hardcore Meters 

In 'this appendix, we relate the exatt identitfes·'-cff the measured 

events of Murtics page control with which ehis experinlent was concerned. 

This is necessary both to provide validity· for what we have done, and to 

help others design similar techniques. 'for other systems. tt is assumed 

that the first appendix has been at lea·st partiall'y 'understood, perhaps 

'with the OVerview Sections fully understC>od ."', c! 

We also discuss here the t~chnique's used'"in- implementing the Multics 

Supervisor interface for 'this experiment'~ 
',;: .,' 

. 
As should be crear from Chapter 2, we are iriteres'ted in metering 

movement of pages in and out of the composite 'entity of core-drum. This 

"movement" in fact consists of copy creation and copy d~struction. Move-

ment "into" core druni consists of the creat'ian of a page copy' in core-

drum where - there previously was none, and movement "out o"'ff' core druni con-
••'j 

sists of the destruction of core OT drum copies of a page, such that there 

is no copy in core-drum. We speak of this-creation and deletion as move

ment because it is represented as movement of-pages l'n an LRU stack. 

We will now analyze the dlfferent types of' mb1t.fon in and out of 

core-drum. Pages come into core-drum e1ther from th:e· outside, i.e., disk, 

or by being created in core. Pages entering frdmdtsk can only do so as 

the result of a pag~ fault to disk· or a pre..:p'agihg from dHik; so a call to 

"meter_disk" (see Appendix A) was installed in the i/ci dispatching 

routine to record all reads from disk. Pages cre11:ted in core never 

involve input/output. For the most part, these are pages which were 

never touched before, and would thus cause a page fault no matter how 



128 

large core-drum were. These page faufts~Jhbwever, involve neither 

multiprogranming, i/o, nor idle time., ~ ~Fe t~s qf ,sU,gh_tly .. le•1& 

interest in performance predictions than P:P;ce :ol~J~~~r~)., ~~~: faul,F,s. We 

chose to ignore th~. There is one other. typ~ of ~~J"d moU;.on, whi_ch 

will be motivated. in our discussion .of outward mo.tioa., · - · · · · "~f ! -t r : ,-; J ::~ ·· ;··
--' ... '. 

Outward motioit conais_ts of oqstiJ!g• ~I'~ col'e,'7~µm~ _This consists 
'- - - -· - - :· ,_ -- - - . '. __ .. __ .,, .. 

of o\lstings from dt'lqll (wi\ich,. as can be ver~.1i.~Jt, ~J"~.,:,~~ePt..)F-;•~J>~i_,ref~~Jl" 

in the last appendix can only ~~.PP8'1,J~ ~,a, i.,~.-~,~~P.PY.: ;LJl. cor~) ,or tr;"!fl 

core •. Ouatings tr~ .5ore ·~~_only 9~FJ~-• .,~~- F~f~--4r~ ,if ,page con

trol (specifically, "try_to_write...P~;&!!~): ~e<(~ll 1:t~~.1:.~ !ht!~d, no.tr be, 

writtep_ to the. druin because ~f either:, _l_a,;k .~£ ... •,_"-~, .~r!!, q~r t;he; c.opcerned 
. .. _,· _ .· • , -~. i""'!. ,- hr - ,, ~-- . ~ _, -- • . . · , 

page is one Of the special-C&B:f!d "gt~~t r•·· ~ !f~J-;l ~:~'.fcS~ iC::?n~id~f . 

the ousting,s fr<>m<dr~. :The ou._ting ~f,,a. ~e. ~\~J-fsj ~~.ffe,rent than 

its disk copy, if one was ever made,_ is a_cc~;~~~~~4.b~_. th~_ il\1-,t,ia,t;j.on ~-~ 

a read-write s~u~ce (rws). Theae rwa initiaUons were thus metet:ed a~ 
< • ' ' ~ • ,. - ·" - ' ' ' • _, • -· _.,..., ' • -,: • ' 

outward movement. The ousting of a .P•~e which-~• .id~tic-".-~ tp, a disk 

copy is don~ .by .s:i,m.ply cla:l,mµig the _.d,r~ tra.,a. (s'~-'~;'f-~~~:&,ee_pd.,.record"), 

and this event was likewise noted. OQsting~ ff~- for:" ,4tt~est ~s, ~en"." 

ever they are not ouatµ.gs to the drUIQ ... (Me ~firua ~ ous.t~ng, "from core 
' ' ) :. ;. - ••• ' .. : • :;:. -~ ·- ~ • . . ,._ '_ '. ' _; ,.1 ." 

to the drum" to be an oustjpg_ ft:om core ·~~n ~ copy .P.f._ the concerned page 

is on drum. Note that this implJes.~n ordering of th~ ~1,,_.arch1:cal 

memory system.) Tb,ese 0"18.t_ipg~ from fOt'_~ ~o~~il.Y Jla,fp,~n o~y fo:r the 

special "G.lobal transparent pa.gin& d~vic.~, (gtpd)" ~5~ of 
1
the root direc

tory, who.se treatment was already fully cov.e;red1 • ~d. in .bad .cases pf page 

faults or rws initiations, when there are no fre.e, dr• ft:.~ts •vai~le. 



129 

This case was also covered. As an interesting consequence of this defini-

tion of an ousting n.ot to the drum, we observed a large number (approxi

mately 2400 per hour) of oustings of pages which were all zeros, and were 

all zeros when brought into core (the conjunctiGn of these statements es-

sentially implies that these pages had no copies on either drum or disk).* 
~ '.l 

Some special experiments designed to discover the source of this peculiar 

traffic were essentially fruitless. The data reduction programs described 

in section 2.3 were modified to ignore these aiwmalous oustings. 

One consequence of metering read-write sequence initiation as out-

ward motion is that the aborting, or reversal due to e. page fault, of a 

read-write sequence must be metered as inward motion. This was done (see 

"rws_ai:>orc"). 

One remaining event which had to be metered was that of page destruc-

tion. The event we chose to represent this destruction was the handing 

back of the disk frame, if one existed, to the free disk pool, of any disk 

frame at all. This happens in two cases. First, explicit page destruc-

tion via the deletion of segments of the virtual memory requested by super-

visor call, or their explicitly requested truncation causes this to hap-

pen. Secondly, as we have described, find_core deallocates both disk and 

drum frames when a page containing all zeros (a void page) is found with its 

usedbit off. As described in section 2.2, we are interested only in the 

destruction of pages which are not in core-drum. The destruction of any 

such non-void page will always involve the deallocation of a disk frame, 

and thus will be properly metered. The destruction of void pages is not 

*'Even though this constituted about one quarter of all core-drum oustings, 
they bear absolutely no significance to the experiment. 



130 

a significant event, as they do not occupy a place in either the LRU or 

LRU extension stacks of section 2.1. The discovery of a newly void page 

by find core also causes such an event to be recorded in the trace data 

as a page deletion. However, this page cannot be in the extension stack, 

because it was found by find_core because it was, in fact, in core. The 

data reduction programs were aware of these out-of-list deletions, and 

duly ignored them. The destruction of pages in core-drum which were never 

ousted is handled and ignored by this same mechanism. 



J_ 

131 

Interface Details 

'l'he Multics hardcore interface for this experiment was designed to be 

a semi-permanent part of the Multics system, and thus have as little ef-

feet as possible on it when not it use. Thus, a page of the virtual memory 

was allocated for the circular buffer described in section 2.3 and its 

auxiliary data. When the experiment was enabled, via highly privileged 

supervisor primitive, this page was given a dedicated page frame and with-

drawn from the pool of pageable core. 'l'bis was necessary to insure that 

page control, when storing data in this buffer, would not take a page 

fault. Page control was also made to check a switch (the "enabled/dis-

abled" switch) as to whether or not this had been done before attempting 

to reference the buffer. Another highly privileged supervisor primitive 

freed the page frame given to this buffer, resetting this switch before 

doing so. 

'l'he copying of data out of this buffer, via privileged supervisor 

entry point, ostensibly requires si.Jnply copying its contents into a user-

specified area. However, it was an aim of the interface design to insure 

that the buffer would not change while the information was being copied. 

This could happen by either the processor not doing the copying taking a 

page fault, or the processor doing the copying taking a page fault refer-

encing the user's area. Hence, to insure that no page control activity 

took place while this data was being copied, the data-gathering primitive 
f. . 

had to lock the "page table lock" while doing this copying. This, in 

essence, prevents page faults from being processed, and cannot be done 

until any other process has unlocked this lock. nie effect of this lock 

is to insure that only one processor is in page control at a time. When 



132 

one has the page table lock locked, one uust not take a page fault, or infi-
;;::~ __:, ! ~ . :' ~ j '-

ni te looping will result when that processor tries to lock-the page table 
,..,.,-

lock to process it. What is more, the page fault handler is not recur-

sive. 'lhus, it was necessar}r to "'Wire" a dedicated page of the virtual 

~ (allocate a dedlc.ated core~& fr- .~.:~didraw the .\latter from 
... ' .~ ·,; ... ;_ -, ' . ·.:· 

the pool of pageable core) to copy the wired buffer into. Both pages 
·._. • -~o '·:. r~~- ;.r:- ..;-.;.., './ ~ .. '· J. .• :--i:· ~-~ :~~::.-~ ~::.:··-.'~.Et·-' ;d:l 11-.tHi¥ ~·~~~-~Et ~~~-~--J .. ~ .. ]'°:(L: 

being wired (the buffer and the temporary copy page) ensured that no page 
~':l~ ,:;j_·~.:; ~fi"~1-~_;· ;:·."- :· .. -· 

fault would take place during the copy. 'l'he contents of the copy page 

could then be copied to the user-specified area after the page table lock 
., 
'. 

bad been unlocked. 
;.J .~- -'-. -~·~;<- :_;f:~_:: 

A further difficulty arose because the segment contaia1ng the tem-

porary copy page 
.· ~-~· _: J , • ; ' --~ -~ » ·:·u;. .. - ~L.,-~ ·.\/ ,. "': ·: ... -} 

by two processes siailtaneously. 'l'hus, a lock had to be used to exclude 
.-. :. ·~ ~ ~'.~ :_:~)-:·Js t;l'.'",~:i_··· :-:;··<-s ··_, ,.· -·'.;;.:..·1 . .: 

such use of this segment. 'l'his lock woul.4 be loeked l>y any process wanting 

to gather data before it wired the temporary copy page, and unlocked after 
.. _. _ :· -,:- :. · 1 ~-. , _ £ ·~ " -. ·~ 1 ! : •• LtJt::· :;'.· .:; .F>b ·-~ C Zji L~ ·~~ '~ \J- _; 

it had been unwired. A process or fincU.ng the lock locked would be DJ.lti-
. : :--<- ~' 'g -~~t:r.~~.i!_! '):'.f ·~fd.3-2:.t!:9:j:~ :~: ·-'···; 

----programmed, and the associated process notified when the lock was unlocked. 
• ·:· ') !>- _,. •• • • . -~ ~>,·~; :J l 1' ':t.:.:1 .r.!7r~~~}fr ~ ;,.~~-~:,-·";·f ,~ , 

'lhe code which copies the wired buffer iatO the temporarily wired 

temporary copy page is entered only when the lattel' bu been wired. Bow-
. I . . 

• •. _,,;: '."'' " ··-~ .- \_:,;; -~.~-i- ",(<~ LJ ..• -:.;·.1·:::·~~! .,,, > 

ever, it ia possible that the fonaer may not be wired, specifically, if 
·.;; ·=-f' J.rI.f:_:\, :!(L·-~~:~~)~·''.!,._T -~'(~.: -~- ':;.; :. .. :.. 

the experiment has not been enabled. If this :U tile caae, a fatal page 
-.~:-l·-·:;,. -1 ,:._.: !f<-, "''!' . .::.·:n~L: .. ;.~: .. ~LLi ..:.-~·Li . . :~·":; 

fault with the page, table lock locked wauid ruult. To avoid this, the 
- · _ {" f:.: :l .1:-~ h -:» .i. L~ · ... :: ~~.-- _ + ; • ~ 

enabled/disabled switch wuat be checked by this code, but it cannot check 

this switch until the page table lock le actually locked. Only when it is 
•• ~ <. F.:=: ·~,~~--~~,-f 

locked can no page poHibly be llade uarefereucealale, aa no other process 

can be in page control. 'l'he enablecl/dia-1>led switch ia turned to disabled 



133 

BEFORE the buffer is unwired, and the,,buffer ,~mi only be macle unreference

able AFTER the page table lock is loc'ked-Al'T£lf;tt·h•a'been wired. Thus, 

the sequence of events in a call to gather i' aff follows: 
-: ;;•3' '·' ;).U.':, > ~ . · 

1. 

2. 

3. 

4. : 

Attempt to lock the copy page lock; nultipc>gram aml retry if 

failure. 

Wire the temporary copy page. 

Attempt to lock the page table loek; -ld<>p until successful. 

Inspect me ::eAablMAd:tsal>bed switZeit;, copy•,;,the wbed buffer. into 

.the copy page if ,,eJ;l&b:\.ed, ,elae <r9PJ,zet;~s!',.'" 
- - • J • - • • •• °'·-· ............ 

5. Unlock the page table lock. 

6. Copy the temporary copy page out to the user-specified area. 

7. Zero the temporary copy page, and unwire it. 

8. Unlock the copy page lock; notify any waiting processes. 

The step of zeroing the copy page is done so that this page will be iDlne-

diatedly claimable to find_core. This is done as both a friendly gesture 

and an attempt to keep this page off of the drum and out of the disk traf-

fie visible to the experiment. The page frame is always void when unwired 

(returned to the pool of pageable core). 

The sequence for enabling the experiment is as follows: 

1. Wire the buffer page. 

2. Set the enabled/disabled switch to enabled. 

The sequence for disabling the experiment is as follows: 

1. Set the enabled/disabled switch to disabled. 

2. Unwire the buffer page. 

The only remaining question of locking is that of the buffer be-

coming unwired as page control is placing data in it. This cannot happen. 

Any page control operation sequence other than those just described can 

be sumnarized as: 



134 

lo Attempt to lock the page table lock; loop until successfulo 

2. Do all nature of page control. 

3. Conditionally, unlock the page table lock and end this sequenceo 

4. Check the enabled/disabled switch; add data to the buffer if and 

only if it is enabledo 

5. Go back to step 2o 

The making unreferenceable of pages by find_core falls under step 2 

above. During the checking of the switch and the placing of data in the 

buffer, this making unreferenceable cannot happen on this processor. The 

page table lock excludes any other processor, and there is no problemo 



135 

Appendix c 

System Performance Graphs duriBg Experiments 

We present here graphs of user load, cp,u utili,aticJP,., and paging over

head as functions o~ -=ime of day on ~be days of tlJ,~ .. two ~periments, 11dtm 
.-4' ~ '"'~ -

. ' .-c .';:" /' --: 
21" and "den 23n. '!hlls data was ,condensed from a "gi"afl:Eeal presentation 

of these parameters rputinely p~pared by the M.~;T~ l1lfermation Processing 
:~ . - ~ ~i;.; El ;~: E . ~ 

Center. It is giv• here to pq,vide a- Ueling f. tthe-~1."elaUl.ve user load . ~ ,· . 

during the experiment', and to alloW- a rough approx~tion t~~ toal system 
' 

headway during the ~riment to be ..c9iaPutecl. Th.is may be dOmputed by 
...,_ ,, 

multiplying the time J>f ~the experimen~---(~~- 14 hours, J 50,000 seconds) 
~.... - .....___~_ ~ t~ 

$ ~ 

by the fraction of the qstem which was not id1e- ~~-or pa~ng overhead 
~ 

(quite roughly, 40tj,~o'f>taining 20,000 seconds, and 'lmlti~Ytng by the 
:""'i: , ., .-· .. ~ 

system memory reference ~):ate (400, 000 refereac~f~~~ second)~ obtaining 

8 x 10
9 

virtual mesqo~ r.ferences. _,,.--



User 40 
load, 

I 
Figure C.l 

Users 

301 

I 

20 ~I ~~-' ., .... ,, v ' ... .... . 
\ 

' I . - , 

10 

0 

1000 1200 1400 

User Load during Experiments 
/""'\ -- dtm 21, 0945 - 2359 

May 7, 1973 
I'"\. I , - , \ 

dtm 23, 0945 - 2359 
May 14, 1973 

v,- \ \ 

\ 

\~, -
_,, 

I //I ' .. ' 
' \ 

\ 
I \ ~ 

' .... / 

\, ' 
I. 

Time of day, EDT 

.. 
1600 1800 2000 2200 0000 

Next 
Day 

""""' (.;.) 
CJ'\ 



% of total 
system 100 
time 
spent 
idle 

80 

60 

40 
I 

/ 

20 

0 

1000 

Figure C.2 Percent of Total System Time 
Spent Idle, as a Function of 
Time of Day (approximate). 
All types of idle time combined. 

I 

/ 
\ 

dtm 21 
,, 

dt:m 23 
I \ 

/--/---.. 
.1 ' ) 

~// 

\ 

\ 

~ 
I ,; 

'~ / 

......... ./ 

' ..-- / 

I 
I 

I 

I 

1200 

\ I 

\ 
I 

\ I 

Time of day, EDT 

1400 1600 

I I I 
I 

( 

l 
\ I 
I 

J 

\.. ,, 

1800 

( 

2000 2200 

\ 

\ 

0000 
Next 
day 

I-' 
VJ 
...... 



Percent of 
total 100 
system time 
spent in 
paging 
overhead 80 

60 

40 

20 

0 

Figure C.3 Percentage of Total System Time 
Spent in Paging Overhead as a 
Function of Time (approximate) 

dtm 21 

dtm 23 

/ ' 
; 

/ 

'- ~ ~ 
- - - - --- -------- ------ __,,.,,..., ---- -

/ / 
' _/ 

1000 1200 1400 1600 1800 2000 2200 

Time of day, EDT 

' 

0000 
Next 
day 

..... 
VJ 
CXl 



139 

B!bliolr&J?!\Y 
.. r:, ''· 

Cl Coffman, E.G., and Jones, N.D., "Priority Paging 'AlgOrtt:tiifts 'antt 'the 
Extension Problem:, l!.2.£. Switchipg and Agt9!1!1 1.'heorv Symposium, 
Oct. 1971. IEEE Computer Society, Horthridge, Cal., pp. 177-180. 

C2 Coffman, E.G., and Randell, B., "Performance Predictions for Extended 
Paged Memories", Acta Informatica 1, (1971), pp. 1-13. 

C3 Chow, C. K., "On Optimization of Memory Hierarchies" , IBM Research Re
port RC 4015, IBM Thom.as J. Watson B.esearch Center, Yorktown Heights, 
N.Y., Sept. 1972. 

C4 CorbatcS, F .J., "A Paging Experiment with the li.lltics System" in 
Ingard, In Honor of P.M. Morse, M.I.T. Press, Cambridge, Mass., 
(1969), pp. 217-228.- -

Dl Denning, Peter J., "The Working Set Model for Program Behavior", 
Communications of the ~ 11, 5 (May 1968), pp. 323-333. 

Fl Fine, Gerald H., et al., "Dynaic Program Behavior under Paging", 
~ Proceedinas .2! the .ll!£ National GonffJpce, ~. Thompson 
Books, Washington, D.C., (1966), pp. 223·228. 

Ml Mattson, R.L., et al., "Evaluation Techniques for Storage Hierarchies", 
!!!! Systems Journal 2, 2 (1970), pp. 78-117. 

M2 Madnick, S.E., "Storage Hierarchy Systems", Ph.D. Thesis, M.I.T. 
Dept. of Electrical Engineering, April, 1973. 

M3 McCarthy, John, et al., Lisp 1.5 Programer's Manual, M.I.T. Press, 
Cambridge, Mass., 1965. 



nl '•~st~ e~l:.J!- ~cl:t 
~ .a:a,at.f ts:J!b!'ld-~ ti$Ht'.ti 

t aw.iv~~ m$Tgon ~1 I1l<idi ·:.t~ ~. '"'" ~~<-•ln~e9.. i"1,'· 
.~z~-ut .qq; .c<saer ·t:~ ' ~ii:· ... . ;:1trr•~· 

1 °::i~fi ~~1~-~4lv~u!~ .. ~-. ~~:-;;~~~~;t~~:·;f-~' ·~lt 111 
., -~ffr ~~-- ~-e~~ -t•t1.f1~M· .: ~".- -. _ --. :~••11211 -~ · ~a~s-ts~ _ ·l·. liit:· ·_:· _ ··: ,· · -.-s '°~• "-uGnl' . - . 1"1!'1{ •- : · .. · ..... - "~-"- .,.,, -"·' . : ""-· -- • . .. 

s~'!o:ta '.JO:i - . . . .. >· :--:,:;,:}~·,~~;~~:~·~* t4oa~~&K. !M 

.tllt8il ·Ill 

,, 



' ., CS-TR Scanning Project 
Document Control Form 

Report# L<:.s:rR.-/J..J 

Date: _l.__17 I~( 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
~ Laboratory for Computer Science (LCS) 

Document Type: 

~ Technical Report (TR) 

D Other: 

D Technical Memo (TM) 

-----------
Document Information Number of pages: l«j.o (14, _,, f!)t<Cf5 ) 

- Not to include DOD forms, printer intstructions, etc ... original pages only. 

Originals are: 

D Single-sided or 

~ Double-sided 

Print type: 
D Typewriter 0 Offset Press D Laser Print 

Intended to be printed as : 

0 Single-sided or 

~ Double-sided 

D InkJet Printer )8t Unknown D Other: ______ _ 

Check each if included with document: 

_$:( DOD Form 

D Spine 

D Funding Agent Form 

D Printers Notes 

_)( Cover Page 

D Photo negatives 

D Other: ------------
Page Data: 

Blank Pages(bys-ge numbe<J: __________ _ 

PhotographsfTonal Material (by page number): ________ _ 

Other cna1a ~number): 
Description : Page Number: 

:t/b1'G°~ tnA~ ~ a -No } UNit1~o T;rf..A' . f flt.<;'~, J.- IYo 
(t'1J- (lfC,) 5~~ .... c;.p,,f\P...ol) Cov~B) Do D} T~1~ (3 J 

Scanning Agent Signoff: 

Date Received: _J_/_L/ "( (, Date Scanned: _.!:1_1 J!J..,1 1 b Date Returned: _J:_1 JJ.1.1£_ 

/"\ t 11 p q,_ • I ~ I 
Scanning Agent Signature: __ ~ ......... ~:;;......::;~1-, ..:...f..:..,_ V....;;:~~~-__ 



BIBLIOGRAPHIC DATA 
SHEET 

4. Title and Subtitle 
Il. Report No. 

MAC TR- 127 
3. Recipient's Accession No. 

An Experimental Analysis of Program Reference Patterns in 
the Multics Virtual Memory 

s. Report Date: Issued 
Ma_y_ 1974 

6. 

7. Auchor(s) 8. Performing Organization Rept. 
Bernard S. Greenberg No. MAC TR- 127 

9. Performing Organization Name and Address 10. Project/Task/Work Unit No. 

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY: 

545 Technology Square, Cambridge, Massachusetts 02139 
11. Contract/Grant No. 

12. Sponsoring Organization Name and Address 

Office of Naval Research 
Department of the Navy 
Information Systems Program 
Arli~toni Va 22217 

15. Supplementary Notes 

N00014-70-A-0362-0006 
13. Type of Report & Period 

Covere0 : Interim 
Scientific Report 

14. 

S.M. Thesis, M.I.T., Department of Electrical Engineering, January 31, 1974 
16. Abstracts : This thesis reports the design, conducting, and results of an experiment 

intended to measure the paginf rate of a virtual memory computer system as a function 
of paging memory size. This experiment, conducted on the Multics computer system at 
M.I.T., a large interactive computer utility serving an academic community, sought to 
predict paging rates for paging memory sizes larger than the existent memory at the 
time. A trace of all secondary memory references for two days was accullD.llated, and 
simulation techniques applicable to "stack"type paging algorithms (of which the least
recently-used discipline used by Multics is one) were applied to it. 

A technique for interfacing such an experiment to an operative computer utility 
in such a way that adequate data can be gathered reliably and without degrading system 
performance is described. Issues of dynamic page deletion and creation are dealt with, 
apparently for the first reported time. The successful performance of this experiment 
asserts the viability of performing this type of measurement on this type of system. 
The results of the experiment are given, which suggest models of demand paging behavioJ:Jo 

17. Key Words and Document Analysis. 17a. Descriptors 

Virtual 1m.emory 

Demand paging 

Computer System Performance evaluation 

Computer System Performance prediction 

Stack algorithms 

17b. Identifiers/Open-Ended Terms 

17c. COSATJ Field/Group 

18. Availability Statement 

Unlimited Distribution 

Write Project MAC Publications 

19. Security Class (This 
Report) 

iINC.LA_SSlE lEl2 
21r. Security Class (This 

Page 
UNCLASSIFIED 

FORM NTIS-35 tREV. 3-72) 
THlS FORM MAY BE REPRODUCED 

21. No. of Pages 

141 
22. Price 

USCOMM-DC 14952·P72 



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 


