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ABSTRAC'T 
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"debuggfn>g"' of' h:<1s model of: his. p;f'ofll'.em s·l;:tua.:t f,GR. In 
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1 Introduction 

The purpose of this research Is to 

explore a methodology for debugging certain models of real 

world situations. The models considered here consist of 

groups of well-defined submodels. The submodels themselves 

are fairly structured; the lnteractfon between submodels is 

not. In this paper I will discuss a program which uses the 

techniques of goal-programming to explore the lnteractive 

behavior of a given model. The basic idea is that a bug in 

the model wit 1 give rlse to a "problem". The program then 

tries to solve this problem in an environment defined and 

constrained bl' the model. Those steps at which the 

program's problem-solving process encounters constraints 

caused by unintended Interaction of submodels suggest 

possible locations of bugs within the model. 

To a large extent, the problems of this 

research are "artiflclal Intelligence" problems. That ls, 

the research problems involve representation of knowledge in 

a form which ts useful to the problem-solver, and 

representation of the problem-solving process as a computer 

program. The remainder of this paper will deal with one 

solution of these problems for a program whfch debugs models 

of management sltuatlons. Thfs section will nrP~Pnt ~ mnrP 
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complete explanation of the area of model-debuggfng as I see 

It. The next section provides an overview of the whole 

debugging process In the context of a d~taf led example. 

Later sections develop some J de.as about bugs, 

problem-solving, goal-programming, and the program Itself. 

1.1 Define "define" 

1.1.1 libAt. il .a model? 

Marvin Minsky describes the concept of a 

"model" as follows: 

If a creature can answer a question 
about a hypothetical experiment without actually 
performing It, then It has demonstrated some 
knowledge about the world. For his answer to the 
question must be an encoded description of the 
behavior (Inside the creature) of a sub-machine or 
"model" responding to an encoded des-.:rlptlon of 
the world situation described by the q~estion. 

We use the term "mode 1" In the fo 11 owl ng 
sense: to an observer B, an object A* l.s a model 
of an object A to the extent that B can use A• to 
answer questions that Interest him about A. 1121 

For the purpose of this research, the term "model" wll 1 be 

used In a much less general and more concre~e way. 

Specifically, the program discussed here requires that the 

"encoded desc r I pt I on" be of a pa rt lcu1 a r pre-def I ned type, 

that the kinds of world-objects "A" to be modelled belong to 

a very llm1ted class of things, and that 11 B111 s questions of 
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Interest be sharply restricted. 

After this section, the term "model" 

will be used to refer to a user-defined collection of 

constructs tn a model speclffcatton language CMSL) 

(presented In section 4.1) which describes a "real-world" 

management system. Cl) For now, suffice Jt to say that a 

"model" ts a 1..<ser's description of hfs system of Interest. 

That Js, the user thinks that the model describes his 

system--actually, the model contains bugs. 

1.1.2 i'Lb£t ~ debugging? 

When a model's performance Js not what 

the user expects, we say that the model has a "bug" (see 

section 3). The process of flndln~ what causes the 

discrepancy between performance anrl expectation Is called 

"debugging". It Is the nature of complex processes that the 

cause of a discrepancy may be related to the manifestation 

of the discrepancy only through a seemingly Intricate chain 

of reasoning. The purpose of this research fs to write a 

program which knows the necessary ktnd of reasoning to go 

from the manifestation to the cause of a bug. 

(1) 
Actually, a real-world business~. 
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In order to Incorporate this reasoning 

process, the program must have knowledge about MSL models 

(see 4.1), tt.e kinds of bugs that occur In MSL models (see 

3.3), how these bugs manifest themselves (see 4.4.2), and 

how the causes are related to the manifestations (see 

4.4.3). Of course, this Is In some sense the .. whole story"; 

before launching Into It, It might be a good Idea to examine 

our reasons for worrying about model-debucg~ng In the first 

place. 

1.2 IhA lmoortance .o..f. model-debygclng 

1.2.1 Model-debygglng ~A unlyersal concept 

The process of gaining knowledge about 

the world Is a procfl!ss of model formation and debugging. 

The progress of all organized thought, especially science, 

has often been described Jn this way. More recently, work 

by psychologists such as Piaget and artificial Intelligence 

researchers such as Seymour Papert has bro~1ght this model 

formatfon/debuggln~ view to bear on the entire learning 

process. Certainly, no one can doubt the Importance of 

studying so fundamental a process. 

Of course, 

viewpoint must be strictly limited. 

In this research, the 

The following sections 
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will describe a process which seems only barely related to 

the grandiose exaltations of the previous paragraph. For 

one thing, the extremely close Interaction between model 

debugging and formation will be greatly restricted to allow 

examlnatTon of the debugging process Itself. Also, the 

restrictions Inherent Cl) Tn the "show a workTng program" 

approach of this research make the class of problems seem 

trivial when compared to the overall problem of 

model-debugging. 

Although could now cl a Tm that the 

val ldlty of this research effort Ts that Tt provides an 

Initial Investigation into a very hairy area (the usual 

Induction step In artificial Intelligence theses), will 

move In more practical directions. (Of course, I hope for 

the higher parallels all along.) Specifically, consider 

the importance of the kind of model-debugging actually 

presented here for the new field of automatic programming. 

1.2.2 Model-Qebugglng Jll aytomatlc orogrammlng 

Cl) These restrictions are "Inherent" at this stage of our 
knowledge, at this stage of my knowledge, and in the 
exigencies of churning out a Master's the~is. Certainly, 
there are no Inherent restrictions In the capability of 
computers to Incorporate the process. 
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Automatic programming ts the art of 

providing a computer prop;ram (an .. automatic programming 

system" CAPS)) which takes as Input some user-amenable 

description of a task and produces as output computer 

programs to accomplish that task. The user's description of 

his task ts his 11model" In the sense descrfbed fn 1.1.1. 

This ts the "model" which the program described In this 

thesis must debu~. 

But why worry about model-debugging? 

Why not let the user specify something, let the system 

generate a solution program, and simply leave It to the user 

to respecify the problem If he doesn't lfke the results? 

There are several answers to this question, some obvious, 

others not so obvious. Basically, the reasons for providing 

sophisticated model-debuggfng af ds revolve around 

considerations of efficient use of the AP·s, ease of use of 

the APS, ease of construction of the APS, and "safety" In 

the use of the APS. 

The most obvious reason for 

model-debugging Is that since code-genera t I on Cl.e., 

actually writing the solution program after the task 

description Is in) Is a rather arduous process, It Is 

worthwh f le making sure that the user and the APS agree on 

what the problem Is before the APS actually· writes programs 
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to solve the problem. This idea of pre-code-generation 

debugging Is as old as compilers, and ls fairly well 

understood. (1) 

A related but not quite so obvious 

reason for providing model-debug~fng aids In an APS Is to 

make the system easter to use. This Is especially necessary 

In an APS like Protosystem I 191 whfch attempts to provfde 

problem-solving expertise to aid the user. The point ts 

that the APS is designed to provide problem-solving 

knowledge for a user who is not at all adept In computer 

problem-solving. To help him design a description of his 

task and then not to aid him fn debugging that description 

seems like providing not much help at all: descriptions of 

complex problems "always" have bugs, and f indlng them ts 

usually as sophisticated a tasK as writing the description 

In the first place. (2) Thus, beleve that an APS that 

does not provide model-debugging aid would be difficult, if 

not Impossible, to use. 

Supposing, then, that some kind of 

(1) The actual debugging of models may be quite different 
from the debuggfng of source code, but the reason for doing 
so Is the same In this case. 

(2) Statistics have shown that about 50% of the time In 
large system development ts spent In ciebugglng 121. 
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debugging aid Is necessary, how should It be Interfaced with 

the user and with the APS? The answer, I thlnk, Is that 

debugging should occur when the system's knowledge of the 

user's problem ts still at a high level of symbolic 

description. That Is, prior to code g~neratlon. This 

leaves the debugging effort In the realm of 

model-debugglng. The reason that It Is Important to keep 

debugging at a high symbolic level Is to keep the design of 

the APS as simple as possible. It Is quite difficult to 

maintain the links between mistakes which occur at low 

levels of description (e.g., programs) and their high-level 

causes. Certainly the user cannot be responsible for 

maintaining these links. If the APS tells him that "an 

Illegal reference was generated from location 11437", we 

cannot expect him to have-.any notion of what went wrong with 

his model description. In fact, the construction of an APS 

which could make this connection between the bug's 

manifestation and Its cause would be extremely difficult. 

It seems much more reasonable to carry on debugging at a 

high level of symbol le description which both the user and 

the APS can understand In terms of the user's model. 

Finally, there Is a ve~y special problem 

which arises In connection with ~he use of the APS. The 

user begins to develop a deoendencv on the APS and to trust 
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the results of the solution programs. When the system ts 

more expert then the user (as ts the case In Protosystem I), 

the user may even trust results which "common sense" (i.e., 

previous experience, educated guesses, etc.) tells him are 

wrong. In these c I rcums tances, t t ts of paramount 

Importance that the user be sure that the APS has a correct 

understanding of his model. Other than the model-debugging 

subsystem within the APS, there may be no source of feedback 

which enables the user to find out that there is anything 

wrong at al 1 • (1) 

The model-debugging facil lty has sole 

responsibility for helping the user to understand what ts 

wrong with his model In terms of the model--1.e., In the 

only terms the user understands. An A~S which does not 

provide a facll tty for Interactive discussion of the model's 

assumptions and their ramifications ts a dangerous tool 

Indeed. Thus, the user must always have some means of 

observing the effects of the assumptions In the model and 

for making sure that the APS "knows what he means". The 

model-debugging subsystem of the APS provides the necessary 

mechanism. 

Therefore, for reasons of efficiency, 

Cl) The output code and, in 
underlying Its generation 
ave rage user. 

many cases, the assumptions 
will be Incomprehensible to the 

-----------
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usability, and safety, a model-debugging facility ts a 

necessary part of an automatic programming system. St fl 1, 

the general problem of model-debugging In automatic 

programming Is much too large to be constdered here. In 

the next section, I will explain the partlc·ular subdomatn of 

automatic programming I will attack1 and my reasons for 

choos lng It. 

1.3 Details, details 

1.3.1 Restriction .t.Q. 1bA liQ.fili 

The program described In this thesis ts 

specialized to work on models chosen from the "world of 

business games" (WOBG). By this I mean an environment In 

which the concepts common to business games are the stock 

knowledge. There are several reasons for choosing this 

domain of Interest: Cl) the JT!Odels are sufficiently 

structured to be formally expressible, but are not so 

structured that they are susceptible to mathematical 

analysis; (2) the Interaction of submodels ts the most 

Interesting and complex aspect of the model; (3) this ts one 

of the few domains which Is both reasonable-sized and 

"real-world" Ctn the sense that there ts a r;reat deal of 

Interest In ft Independent of this rese·arch); (II) It Is a 
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natural subdomaln of the "world of business" (WOB) of 

Protosystem I I 91. 

Models In various domains differ greatly 

Jn the amount of "structure" present Jn the description of 

the model. By "structure" I mean clearly defined rules of 

construction and constraints on elements. The methods used 

In this research require well-defined models. However, If 

the mode 1 1 s "too we 11-def I ned", debugg l ng becomes 

uninteresting, or rs more easily accomplished by 

mathematical tools. The WOBG seems to have just the right 

level of structure. Since the Idea of modellfng business 

systems Is well established, there exist a variety of 

formalisms for expressing business models. These modelling 

formalisms are even more clearly defined for business games. 

The very Idea of a game Is to have a precise set of elements 

and rules for manipulating them. Nonetheless, understanding 

and debugging models of business games is by no means 

trivial. There ls good evfdence that users of even the 

simplest of business games have very poor and "buggy" models 

of what is going on l31,f6l,l8t. The main reason for thfs 

ts the complexity of the Interaction ~etween submodels Jn 

business games. 

am pa rt I cu 1 a r 1 y Interested In 

debugging models ln which Interaction of subparts Is a major 
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factor In model complexity. Most model-worlds which have 

been Investigated Jn artlficlal Intelligence research (e.g., 

the ''blocks world" 1211) have few complex Interdependencies. 

Existing Interaction problems tend to be downplayed In order 

to emphasize other aspects of the models. (For example, 

see Winograd's "solution" to the "flndspace problem" In 

1211; cf. 1171.> I wish to explore the other end of the 

Interdependency scale; I.e., highly Interactive models. (1) 

The kind of models which the program described Jn this 

research Is designed to debug are those In which the user 

has a good understanding of the various parts of the model, 

but does not understand how these parts (which I will call 

"submodels") Interact \'llth each other. (2) 

In fact, all. of the bugs which the 

program Is desfgned to find arise from Interaction of 

submodels (see sectlon 3.3). Business ~ames have very 

(1) Real world sftuatlons presumably fall somewhere In 
between these two extremes. However, I will devote a 
considerable amount of space Call of section 3) to an 
examlnatfon of how fnteractfon of submodels Is the major 
complexity factor In real world situations (In particular, 
in large business organizations), and how these real world 
Interdependency problems form the "semantic roots" of 
similar problems in the toy-world used In this research. I 
am hoping to motivate an Interest Jn the "Interaction bugs" 
which wf 11 preoccupy the remafnder of the thesis. 

(2) I believe that this ts a large and Important class of 
models, including models of "systems" with well-understood 
elements (see 131). 
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precisely defined elements (see the example game In Appendix 

A). However, these elements Interact wtth each other to 

the extent that understandfng how the "whole system" (I.e., 

all of the lnteractlng parts) works is a major challenge to 

the players. Thus, since poorly understood Interaction of 

submodels ts the major source of bugs In this domatn, the 

WOBG forms an excellent testing ground for my pro~ram. 

Business games also have the Important 

property of being Interesting in their own right. Playing 

and understanding business games is considered to be an 

Important activity at many schools of management throughout 

the world. There Is therefore ltttle danger of betng 

accused of deslp;nlng a program \"1hfch works only in an .a.d. ~ 

problem domain. Furthermore, since people are used to 

trying to model business games for themselves, they can 

appreciate the efforts of a program whlch atds In the 

debuggtng of such models. Thts "real world" flavor of 

buslness games ls one of their most important properttes for 

this research. 

Finally, the WOBG Is a natural subdomaln 

of the WOB of Protosystem I. Thts Is useful, first of all, 

because it allows a certain Inheritance of phtlosophy and 

technique from the larger project. More Importantly, 

though, It enables the model-debur,ger presented here to be 

------ -. ----------
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seen In the context of a large automatic programming system. 

Since the raison d'etre of my program Is use In an APS, this 

connection with Protosystem I ts an Important aspect of the 

research. 

Therefore, the 

model-debugging presented here will 

basic philosophy of 

be applied to models 

chosen from the world of business games. In order to show 

that my basic Ideas about debugging are Indeed "working 

Ideas", have written a program which uses these concepts 

to debug actual models of business games • 

1.3.2 .Iru:. L2.le. Q.f ~ program l.o. W, the s f s 

The program presented In this thesis 

serves several purposes: Illustration of Important methods, 

demonstration of the workability of the techniques, and 

discussion of design issues for model-debugging programs. 

Certainly, the major use of the program In the thesis ls to 

provide exam~les for the debugging theory developed In the 

research. All the major debugging Ideas are Illustrated by 

a scenario from the working program. As for the second use 

of the program, a little care ts necessary In explaining the 

"proof" va 1 ue of the program t n the th es Is. It ts often 

contended that working programs prove the utility of the 
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theories that they represent. This Is true, so long as the 

reader ts careful not to use some sort of false Induction 

principle to Infer too much from what the program actually 

~. As Is almost always the case, the program In this 

thesis can actually do only a subset of what Is talked 

about. I will always make It clear what the program can 

and cannot do, how the program can be extended to do more, 

etc. The reader should draw any general 

concluslons--carefully-·from this informatfon. 

Using this "program-as-Illustrator" 

philosophy of presentation, will now launch Into a 

detailed example of program operation on a simple model. 

This will hopefully give the reader a good basic Idea of 

what the rest of the thesis has to say. The issues raised 

In the example and the example Itself will be discussed at 

length In the rest of the thesis, each aspect of the problem 

appearing In Its logical section (see table of contents). 
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keep In mind 

of bugs In 

much the same way that people Cor Sussman's HACKER 1181) do: 

by trying to solve problems--and falling. In this section I 

will present the complete works of my program In connection 

with a very simple example. A lot of new notation Is 

presented here; please don't get bogged down In ft. 

present ft here only to avoid vagueness In showing what the 

program actually works with. More complete explanations of 

all the notation (and Indeed, the entire example) appear In 

the appropriate sections later on. This discussion focuses 

on what the program means by a "bug" and on some of the 

procedures used to go from the manifestation to the cause of 

a bug. Neither the procedures nor the descriptive 

mechanisms used by the program are discussed In detail here. 

Philosophical Issues about representation of knowledge In 

the program and goal-progranmlng are eschewed completely. 

This Is a quick "Introduction by doing" to the methodology 

of the program. 

Suppose the user presents the program 

with the following (tiny) model: 
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Consfder the followfng model 
of sales. A sale Ts a probabilistic occurence 
which depends only on the amount of advertising 
done. AdvertTsfng costs $3000 per page and Is 
good for one quarter. I buy three pages of 
advertising per quarter, ff the money to do so Is 
avaf lable. Sales take place during sales calls. 
There fs one call per salesman per quarter. A 
customer never buys more than one unit. If a unit 
ls sold, th~ company records $5000 In accounts 
receivable (A-R), which Is not collectable for 
another two quarters. At any time, a salesman has 
a 5% chance of qufttfng. If a salesman quits, a 
new man fs hf red. After three months of 
trafnfng, this man becomes a salesman and may 
start makfng calls. Both salesmen and trainees 
are paid $1000 per quarter. Trafnees also have a 
5% chance of quitting at any time. 

The user would Input thf s model Into the program with the 

model specfffcatlon language presented Jn section 4.1. In 

these MSL terms, the model looks lfke: 

(•ACTIVITY HIRING 

) 

(*PREREQUISITES (•PRESENT (1000 CASH))) 
(*SCHEDULE ON QUIT) 
(•PRIORITY 2) 
(•OUTPUT (SOME TRAINEE)) 
(•TAKES 0) 

(•ACTIVITY ADVERTISING 
(•PREREQUISITES (•PRESENT (3000 CASH))) 
~*SCHEDULE 3) 
(*TAKES 1) 
(•PRIORITY 3) 
(•OUTPUT Cl PAGE-OF-ADVERTISING)) 

) 

(*ACTIVITY TRAINING 
(*PREREQUISITES 

(AND 

) 

(•PRESENT (1000 CASH)) 
(•PRESENT (SOME TRAINEE)) 
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) 
(•TAKES 3) 
C •OUTPUT (SOME SALESMAN)) 

) 

C•ACTIVJTY SALES-CALL 
C•PREREO.UJSITES 

CANO 

) 
(•TAKES 1) 

) 

) 

( •PR!SENT (1'009 CASH) ) 
(•PRESENT fl UN1T)) 
C•PRtSEWT CS:OME SALESMAN)) 

(•ACTIVITY COLLECTION 

) 

C •PREREQU 1 SI TES C •PRESENT (5000 .A-R))) 
(•TAKES 2) 
C •OUTPUT (5000 CASH)) 

(•EVENT SAlE 

) 

(•CONDITIONS SALES-PM>&AIULITY) 
(•ACTIVITIES (SALES-CALL) 

(•OUTPU.T CSGOO A•R)) 
) 

C •EVENT QU tTTt.NG 

) 

(•CONDITIONS QUITT1NG-P1tOB'ABllfTY) 
(•ACTIVITIES (SALES-CALL) 

( •CANC.El) 
C•REM<WE (THAT SALESMAN)) 

) 
C •ACTIVITIES CTRAI NUfG) 

C•CANCEl) 
(•REMOVE (THAT TRAINEE)) 

) 

(•FUNCTION SALES-PROBABILITY 

) 

(•ARGUMENTS C PAG:E-OF-ADVER1' ISi NG)) 
(•RETURN ad-funct Ion)) 

Cl will not show the exact nature of 
"ad-function", as It ts a •TAB.LE cons.truct (see 4.1)--
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just a bunch of numbers that we shouldn't worry about 
here <see Appendix B).) 

Now suppose the user gives the program 

the following: 

(•SIMULATE 4 1 
CC 30000 CASH) 
(50 UNIT) 
(DON SALESMAN) 
(MARK SALESMAN) 
(STEVE SALESMAN) 
(Bill SALESMAN) 
(.05 QUITTING-PROBABILITY)) ) 

or, In words, simulate the model for 4 quarters, showing a 

time-slice every quarter, and with the given lnfttal values. 

Before considering the actions of the program, ft Is 

worthwhile to note a few things. 

First, observe that the the user has 

given the model (50 UNIT) as an Initial resource. Thfs is a 

typical example of a model-testing technique: adding slack 

to decouple submodels. Presumably, UNIT is something 

created by another submodel which the user does not wish to 

consider at tnfs time. The user effectively removes this 

"other submodel" by making sure that the submodel Is never 

1 Tm I ted by the amount of UN IT ava I lab 1 e. (The PRODUCT I ON 

submodel which creates UNIT's Is shown tn Appendix B.)) 

Second, note that we are making an 

fmplfclt assumption about what the user will do with the 
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s I mu lat Ion after It Is presented by the program. We are 

assuming that he will be either satls.fled or dissatisfied 

wt th the result Cl) • tf he Is dlssatl'sfled, he wfl 1 express 

h Is expectat I on to t.he system In the form of a goal. Th Is 

Initiates the debugging process. At th I s t I me, 1 et us 

rejoin our example, In progress. 

The first actlon of the program Is to 

simulate the model as the u·ser requests. If the user's 

expectat I on f s ful f tl 1 ed, no further act Ion wl 11 be taken 

until the ~ser's next request for simulation. If his 

expectation Is not met, the ~rogram will help him find the 

bug In the model. 

The requested simulation Is shown below. 

The representat ton used here <and thro~ghout the thes Is) 

should be seen as a gras;>hfcal description of the complex of 

list structure which the program us.s to cfescrlhe simulation 

histories. Every part of the dlag:ram htt.s an analog fn the 

Conniver 1201 representation of the program (see section 

4. 2). 

Cl) We are also assuming that the user Is a good judge of 
the overall performance of the sys:t.Ht he Is tryJng to model. 
This Is of course n·ot Inconsistent wfth our basic premise 
that the user does not f.ul 1 y understand the work I ngs of the 
system (and therefore has bugs In his model). Rather, we 
are saying that the user knows ·pr&tty well what the model 
should do, but Is having trouble making the model do what ft 
should. 



SIMULATION-HISTORY 

•TIME-SLICE 0• 

RESOURCES: 
SALESMEN: DON, STEVE,MARK, BILL 
CASH: 30000 
UN1TS: 50 

•TIME-SLICE 1• 

RESOURCES: 
SALESMEN: 
CASH: 
UNITS: 
A-R: 

DON, STEVE, MARK, BILL 
17000 
48 
10000 

SCHEQULED •ACTIYITY's: 

•EVENT's: 

. SALES-CALL (DON) 
SALES-CALL (STEVE) 
SALES-CALL (MARK) 
SALES•CALL (BILL) 
ADVERTISING 
ADVERTISING 
ADVERTISING 
COLLECTION CTIME·LEFT • 2) 
COLLECTION CTIME-LEFT • 2) 

SALE CBILL) 
SALE COON) 

•TIME-SLICE 2• 

RESOURCES: 
SALESMEN: 
CASH: 
UNITS: 
A-R: 
TRAINEE: 

DON,MARK,BILL 
5000 
47 
15000 

GOOOl 

SCHEDULED •ACTIYITY's: 
SALES-CALL (DON) 
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•EVENT's: 

SALES-CALL (MARK) 
SA.lES-CA.l1 Clt.tll 
AOVERTIStNG 
ADVERTlSUIG 
ADV!RT f.S I NG 
COf...lEC.TUltl CTtM£-LEFT • ll) 
C.OttECTtQM CTlMl-LEFT • 11)! 
CtJll.ECTtON CTtfll£'•L£FT • 1) 
HUHNG 
TRAlNlNG (TIME-LEFT • 3:.) 

SALE (MAR:K) 
QUfTTtNG (STEVE) 

•TlME-SllCE 3• 

RRE.SQtJRCES: 
SALESMEN: DON, MARK, Bf, LL. 
CASH: 2:0,ft 
UNtlS: 46 
A-R: l&;ga 
TRA•NEE: 60001 

SCHEDULED •WlYlty•s: 

•EVENT's: 

SALES·-CA.L L (DON) 
s.A.l£S•CAll {Mt.UK) 
SALtS-CAll (B.tll) 
ADY£:RT IS l:NG 
ADVERTrstNG 
ADVERTfSING 
COlL.ECTJON CTl'ME-LEFT • 2:J 
CCl>lt.tc·TlOM (Tl'M£-LEFT • 1) 
TRAINING (TlME-LEFT • 21 

SALE (BILL) 

•TtME-SLJCE 4* 

RESOURCES: 
SALESMEN: 
CASH: 
UNITS: 
A-R: 

DON, MARK, EULL 
1800 
ft.5 
lOiHtO 
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TRAINEE: GOOOl 

$CHEDULED •ACTIYITY's: 

•EVENT's: 

SALES-CALl COON) 
SALES-CALL (MARK) 
SALES-CALL (Bill) 
ADVERTISING 
COLLECTON (TIME-LEFT • 2) 
COLLECTION (TIME-LEFT = 1) 
TRAJNING (TIME-LEFT • 1) 

SALE (MARK) 
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The simulation has resulted In 5 SALE's. 

Suppose that the user expected 6. There fs a bug In the 

model--but where? Note that the model runs out of CASH In 

the last quarter (and therefore cannot schedule all three 

ADVERTISING •ACTIVITY's). However, the bug fs not "NOT 

ENOUGH CASH". Rather, this effect fs svmptom@tic of the 

bug. Most of the effort of the program is to point out 

bugs, not their symptoms. But this requires problem-solving 

In the context of the simulation history. Back to the 

actual action of the program ••• 

The user notes that there were only 5 

SALE's rather than the expected 6. 

rectify things, the user gives the system 

(•GOAL (INCREASE SALE 1)) 

In order to try to 

The program Is now fn the debuggfng business. It must try 
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to solve the problem of Increasing the number of SALE's In 

the context of the given simulation hi-story. The places at 

which It encounters dubious constraints In the simulation 

env 1 ronment are 1 ts Poss I b 1 e 1 ocat lons fo;r bucs. 

The program uses the model and the 

simulation history to perform the requlslte problem-solving 

activity for each goal as It Is presented. This may be 

thought of as askfng two questions of the model and the 

s I mu 1 a t I on : 

(1) Why didn't you do this before? 

and, If there Is no good reason., 

(2) How could we do this? 

The method of asking and receiving answers to these 

questions Is best explained by continuation of the example. 

The f I rst goa 1 ( g lven by the u.ser) Is 

(*GOAL (INCREASE SALE 1)) 

Since this goal was given by the user, the first question Is 

not asked. However, the second question ls asked. How can 

we Increase the number of SALE's? ly examining the model 

and using the logic of INCREASE (explained In section 

4.4.1), we see that one way to Increase SALE's 1 s to 

Increase the probability of a SALE occur Ing. Thus, the 

system generates a new goal 
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(•GOAL (INCREASE SALES-PROBABILITY)) 

Now the program asks question number one: why wasn't 

SALES-PROBABILITY higher in the first place? The program 

looks at the simulation history and notes that the 

SALES-PROBABILITY was at a low In time-sllce 4. Why Is ft 

so low? There was not enough ADVERTISING, the program 

determines. This Is a BAD REASON: the model was 

RESOURCE-LIMITED. Okay, how can we get the necessary 

ADVERTISING? In order to Investigate this question, the 

program generates a new goal 

(•GOAL (SCHEDULE 2 ADVERTISING 4)) 

whfch means "try to schedule 2 ADVERTISING •ACTIVITY's In 

time-slice 4". (The fact that we need .z ADVERTISING 

*ACTIVITY's is presumably due to the exact nature of 

"ad-function", and wt 11 not be discussed he re.) Again, the 

program asks why the ADVERTISING •ACTIVITY's were not 

scheduled In the first place. The answer Is that there was 

not enough CASH; still RESOURCE-LIMITED, so we pursue this 

1 lne with: 

(•GOAL (INCREASE CASH 6000 4)) 

By again asking the questions and forming new goals, the 

program forms the following •GOAL line: 

(•GOAL (INCREASE CASH 6000 4)) 
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(•GOAL (SCHEDULE 2 COLLECTION 4)) 

(•GOAL CALLOW 2 SALE 2)) 

(•GOAL (SCHEDULE 3 ADVERTISING 2)) 
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("ALLOW" rather than "SCHEDULE" because SALE Is an •EVENT.) 

Note that we are back to SCHEDUllng ADVERTISING. Are we In 

some kind of 1 oop? No, we are movtng back In t lme. 

Furthermore, this time, when we ask why we dfdn 1 t schedule 

three more ADVERTISING •ACT1VITY 1 s In time-slice 2, we find 

that the reason Is that the user told us not to (via his 

•SCHEDULE specification In the ADVERTISING •ACTIVITY (see 

page 17)). Thus, ADVERTISING Is SCHEDULE-LIMITED In 

t lme-sl Ice 2. Th Is Is a GOOD R·EASON, and the program 

terminates action on th ls 1 lne of thought. Nonetheless,. It 

saves Information about the terminated 1 tne. · lf no more 

.. , , kel y" bug Is found, the program wt 11 tel 1 the user. that 

his •SCHEDULE specification for ADVERTISING ts Insufficient 

to allow the model to meet his expectations. In the 

meant lme, however, the program explores the model for more 

likely bugs. The program does this by "backing up".Cl) some 

Cl) This Is ng_t, automatic backup In the PLANNER sense. The 
program backs up only In certain cases, and only under 
program control. More Jmp.ortantly' the effects of the 
"backed-over" •GOAL' s a re "undone mI.x l.o. .ili context S2f. 
..t.ru:. slmylattoo blstorx. The terminated 1 Ines must be saved 
for later examination by the program. Thts ls essential for 
handling the •GROUP constructs discussed later In the 

-----------
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and trying a different 1 lne of attack. 

In this case, the program checks to see 

If there ls another way to accomplish 

(•GOAL CALLOW 2 SALE 2)) 

Usfng f ts usual questfon-asklng procedure, the program finds 

the alternate lfne 

(*GOAL CALLOW 2 SALE 2)) 

(•GOAL (INCREASE SALES-CALL 2 2)) 

(•GOAL (INCREASE SALESMAN 2 2)) 

(•GOAL (SCHEDULE 2 TRAINING -1)) ??? 

(Note that CASH does not have to be INCREASEd. Jn thfs line 

because there Is already a sufficient amount to support the 

new INCREASEs.) The program Immediately notes that It ts 

trying to schedule In negative time, and terminates the 

line. 

This finishes off the entire 

(•GOAL (INCREASE SALES-PROBABILITY)) 

Idea. But there ls still another way for the program to try 

to get that extra SALE It is looking for: by trying to 

increase the number of SALES-CALL's. Thus, 

(•GOAL (INCREASE SALE 1)) 

thesis, and for making final debugging recommendations (see 
section 4.4). 



(•GOAL (INCREASE SALES-CALL 2 4)) 

(•GOAL (INCREASE SALESMAN 2 4)) 
,, 

(•GOAl (SCHEDULE 2 TRAHU.S 1)) 

(•GOAL (I NCREAS£ TRAHUtfC 2 1)) 

(•GOAL (INCREASE HIRING 2 1)) 
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(The choice of time-slice 4 for IHCREASlng SALES-CALL was 

not arbitrary: the program chooses a sl Ice where It thinks 

It can do the most good.) But the program cannot accomplish 

this last goal. Why not? The user specifically said not to 

hire until someone quits. The program then checks to see 

ff HIRING did fn fact occur. Yes--one time-slice later. 

This particular set of circumstances suggests a common 

timing bug In the manager's "ff re-fighting" approach to 

problem so1vlng--no action was taken until tt was too late 

for Jt to do any good (the solution Is to anticipate 

problems; more detafls about managers' bugs In section 3). 

Since this bug arises from so specific a group of events, 

the program thinks rt Is a rather probable bug and gets 

ready to suggest It f I rst. It then chec.ks to see If the re 

are any other ways of INCREASlng the number of SALE 1s. 

Since there are not, It Is finished looking for bugs, and Is 

now ready to suggest the bugs It knows. 

As advertised, the f Jrst bug suggested 

to the user Is: 
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--BAD •SCHEDULE FOR HIRING: DEPENDENT ON QUIT; HIRING 
TOO LATE 

The user may agree that this Is the bug Cl think it is), 

or ask the program to try again. The next bug suggested 

ts 

--BAD SENSE OF PRIORITIES: HIRING AND ADVERTISING 

Essentially, the program suggests that ft could have 

gotten more ADVERTISING ff HIRING did not have higher 

priority. If the user doesn't buy this, the program 

suggests that he simply blew the •SCHEDULE specification 

on ADVERTISING: 

--BAD •SCHEDULE FOR ADVERTISING: NOT ENOUGH 

If the user still doesn't like what's happening (and 

since the program has suggested all of the bugs ft 

found), the program decides to see ff the user might have 

mis-specified or completely omitted a relevant part of 

his model (thfs happens more often than you mfght think) 

It then uses its access to WOBG knowledge to suggest 

--MISSING •ACTIVITY: FACTORING 

(the user may factor accounts-receivable to provide 

Instant cash) and 

--MISSING •ACTIVITY: RESEARCH ANO DEVELOPMENT 
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(the user may lncre.ase the probabll lty of a sale by 

Improving his product). 

The program goe.s out of the debugging 

business whenever the user ta:ke.s a sugges.tlon., or, of 

course, when Its. bag of tricks ls exhausted. The user 

can now fix his model or change his expectations and 

re-simulate. Eventually, this process of simulation and 

debug-g Ing wf 11 converge to a model that the user Is 

conf f dent that he and the APS both understand 

sufficiently. 

In this section f_ have tried to show 

a complete example of what th Is thes Is Is about. wfl 1 

now go f nto an 

approach, and 

Implementation. 

of bugs (ye ch) • 

exam I nat I.on of the foundat Ions of th Is 

the techniques that allow Its 

I begin with a philosophical discussion 

------- - -----------
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A bug Is something that prevents 

something from behaving the way someone expects It to. 

This section partlcularfzes the notion of "bug" to a 

concept which Is useful for this research. As usual, the 

program only knows about a narrowed-down version of 

"bug". 

We will be Interested here only in 

"understandlng-bugs"--J.e., bugs that exist only Jn the 

user's understandfng of the system he wishes to model 

(cf. Goldstein's "semantic bugs" ISi). This immediately 

removes from consideration "parenthesis errors" and other 

"syntactfc bugs" (of course, trivial syntax bugs 

sometfmes arise from a basfc mlsunderstandlng). Thus, 

there will be no Interest whatsoever in finding bugs due 
\ 

to MSL errors. In fact, no attention is given to bugs of 

any kind that arise from careless expression of the 

user's knowledge In the modelling formalism. 

The kinds of bugs wlth which the 

program Is concerned are those that seem to be "Inherent" 

In the way people understand (or misunderstand) systems. 

The rest of this section will be devoted to an 

examination of bugs that occur In the modelling process 
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and the features of the problem domain that cause them to 

occur. 

3 .1 1LLu: ln models 

3.1.1 libA.t .silJi .L .£2. wrong? 

What happens when p.eopl e try to mode 1 

systems? They usually do .some mumbl Ing and 

head-scratching and come out with some sort of expression 

of their Ideas. In this research, the "expression" fs 

required to be rather formal, but this doesn't matter 

much. Next, the modeller somehow tests his model to see 

how lt performs under various conditions (just as my 

system uses simulation, see section 4.2). Most of the 

time, the model does not perform as the modeller expects 

It to--"somethlng goes wrong". 

Actually, "something .rsnt. wrong" at 

define-time: there Is something In the definition of the 

model which Is causing the unexpected behavior. have 

already mentioned the hypothesis that the user has a good 

understanding of each submodel. Cl) Thus, the part of 

the model deflnf tfon whfch Is Jn error must be a 

Cl) The notion of "submodel" will become much more precise 
when I discuss MSL In section 4.1. 
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specification of submodel Interaction. The 

manifestation of such a bug varies widely wf th the 

particular bug Involved, and tends to be a detailed 

matter (I.e., highly dependent on the actual 

representation formalism). Therefore, will postpone 

(th discussion of this problem until after have 

described the formalism (4.4.2), and go on to an 

examination of the "semantic roots" of these ''Interaction 

bugs". 

3.1.2 Interaction .b.u.&.5, 

In order to understand the Idea of 

between submodels, ft fs helpful to view the 

process which deffnes the action of the 

system. Thus, the models we will examine here 

f nteract f on 

model as a 

model led 

all "do something". The model can be seen as a system 

which converts some sort of Input resources Into some 

predefined outputs. (This Is, In fact, a very popular 

view of management systems.) For the model to "do" 

anything, Its submodels must Interact with each other. 

That fs, the Inputs to t~e entire model are actually 

Inputs to certain submodels which convert them Into 

Intermediate quantities which are In turn Inputs to other 
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submodels--and so on until the desired outputs are 

obtained. 

Via this Interact ton, various 

dependencies between submodels arise. The most common 

Is that one submodel must waft for the completion of 

another before It can begin action. (See section 4.4 for 

a detailed account of dlfferent kinds of Interaction 

between MSL submodels.) Also, submodels often share 

baste resources, giving rise to conflicts between 

submode ls. 

These dependenc I es and conflicts 

between submodel s provide the environment for the 
, 

following basic "Interaction bugs•: 

(1) Unexpected conflict arising from competition for 
shared resources 

(2) Weak performance due to poor perception of 
t I me-phased occurences 

(3) Special complexity problems arising. from the 
concentration of Cl) and (2) 1n "tight systems" bound 
by higher-order constraints 

Although believe that these bugs have considerable 

general tty, wf-11 not discuss them In the abstract. 

Instead, will move Immediately Into the doma1n of 

management systems to provide a framework for discussion. 

-----~- --- -----~------- ------·-------·-·-· ·-·-~-~-----
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3.2 Interaction J..n management systems 

The bugs catalogued In the above 

subsection arise from poor understanding of complexity. 

This "complexity" Is directly inherited by the models from 

the modelled domain. As an introduction to the interaction 

complexity of organizations In the world of business (which 

form the basis for business games, the "modelled domain" of 

this thesis), I will quote In fu11 an Illustrative passage 

from Galbraith 141: 

There ls considerab-le variation in the 
amount of Interdependence in organizations. The 
kinds of variation can be Illustrated by 
considering a large research and development 
laboratory employing some 500 scientists who are 
pursuing the state-of-the-art. Thus we have a 
large number of elements and high task 
uncertainty. However, there Is little need for 
communication. All the projects are small and not 
directly connected to other projects. Therefore a 
schedule delay or a design change does not 
directly affect other design groups. The only 
source of Interdependence is that the design 
groups share the same pool of resources--men, 
facil ftfes, Ideas, and money. But once the 
initial resource allocations are made, the only 
necessary communication between design groups is 
to pass on new ideas (Allen, 1969). This type of 
Interdependence has been termed as pooled 
(Thompson, 1966, Pp. 54-5). 

If the nature of the projects 
is changed from 250 small independent ones to two· 
large ones, a different pattern of Interdependence 
arises. The large projects will require 
sequential designs. That Is, a device Is first 
designed to determine how much power ft will 
require. After It ls complete, then the design of 
the power source can take place. Under these 
conqltfons, a problem encountered Jn the design of 
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the device will directly affect the group working 
on the power souce. The greater the number of 
problems, the greater the amount of comunlcatlon 
that must take place to jointly resolve problems. 

The second example describes a 
situation which Is more complex and requlres 
greater amounts of information processing. The 
second example has all the problems that were 
described In the first example. There must be 
budget and facilities allocatlons made under 
conditions of uncertainty. There must be a flow 
of new Ideas among the technical speclaltles. 
But, in addltlon, the second example requires 
Information processing and decision making to 
regulate the schedule of sequential activities. 
This is because there Is greater Interdependence 
in the second example. 

The interdependence or 
interrelatedness of the design groups can be 
Increased above what Is descrlbed In the second 
example by the degree to which "design 
optimization'' is pursued. Optimization means that 
a highly efficient device Is desired and any 
change in the design of one of the components 
requires redesign of some others. 

This can be Illustrated by an 
automobile engine and body. The handling 
qualities of a car depend on the weight of 
the engine. The engine compartment can hold 
only a certain slze of engine with its 
accessories. The drive shaft and 
differential can handle only a 1 lmlted 
amount of torque. Changes Jn the weight, 
size, or output of the engine may 
necessitate changes In the body of the 
automobile. These Interrelations and many 
others must be taken Into account In the 
design of an automobile. 

Actually, In the case of a 
passenger automobile there ts a good deal of 
flexibility with regard to body-engine 
match. The engine compartment ts usually 
large, the parts of the suspension are 
easily changed, and the drive shaft probably 
has plenty of excess torque-carrying 
capabllty. Engines of a varlety of shapes 
an~ sizes are frequently placed Jn the same 
body. But th Is need not be the case. In 
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high-performance automobiles, the size of 
the engine compartment Is frequently sharply 
constrained by aerodynamics considerations. 
There may be efforts to lighten the whole 
automobile by making parts of the drive 
system and body as light as possible; given 
the required strengths. In such a 
situation, the flexlbil tty in the size, 
shape and performance of the engine placed 
In the body Is sharply reduced or 
eliminated. (Glennan, 1967) 

Thus the high performance auto Is a highly 
Interrelated system while the passenger car Is a 
flexible, loosely coupled system. The same ts 
true of organizational subunits which must design 
these systems. Any change In the engine design 
for the high performance car must be communicated 
to the group designing the body so that an optimal 
flt is still achieved after the change. This Is 
less true for a passenger car. Therefore, the 
organization designing the high performance car 
must be capable of handling the Information flows 
described in examples one and two for budgets, 
Ideas, and schedules and also those for all 
design-redesign decisions deriving from the 
Interrelated design. The amount of information 
that must be processed increases as the amount of 
interdependence increases. 

Each of Galbraith's examples illustrates 

a kind of interdependency between subunits of an 

organization. The first kind, pooled interdependency , 

gives rise to interaction bug (1) of the previous 

subsection. That Is, when resource sharing is present, there 

is liable to be unexpected confl Jct between subunits trying 

to use the same resources (These are the PRIORITY bugs of 

the example in section 2). Galbraith next cites an example 

of sequential interdependency, I.e., interaction over time 
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as well as resources. Again, this second kind of 

interdependency provides an environment for the second kind 

of Interaction bug: when subunits interact over tfme, the 

mode 11 er is 1 fable to mis-estimate time-effects, thus 

causing degraded performance (these are the SCHEDULE bugs of 

the example in section 2). Finally, Galbraith mentions 

higher-order constraint Interdependency. (1) Essentially, 

this means that a higher-order objective, shared by a group 

of subunits, has forced a need for greater Interdependency 

among the subunits of the group. What has happened is that 

in the new "tighter" system, the pooled and sequential 

interdependency has been spread to more (sometimes .£1J..) 

members of the interactive group. This kind of 

Interdependency has a direct interpretation In the WOBG 

which will be discussed in the next subsection. The third 

kind of Interaction bug from section 3.1.2 of course arises 

from the higher-order constraint environment. (There are no 

examples of this kind of bug fn the example of section 2; 

higher-order constraints were del fberately kept out for the 

( 1) 

I think that the introduction of the "design 
optimization" term here Is very unfortunate. The point Is 
that the subunits have become more Interactive due to the 
presence of a higher-order constraint. In this case, the 
constraint happens to be that the units must Interact Jn 
order to achieve an optimal design. However, In the next 
subsection I will discuss other higher-order constraints 
which cause ~he same increase in Interaction. 
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sake of simplicity. There will be examples of this kind of 

bug later In the thesis.) 

These three types of f nterdependency 

form the semantic roots of the bugs considered by my 

program. In the following subsection we will examine the 

way these real world organizational dependencies are 

modelled In the world of buslnes games. 

3 • 3 JWil l.o. ltQ.Wi mode J :a 

Business games provfde a laboratory for 

teaching managerial decl sfon-makfng. Since most fmportant 

management decisions Involve resolving conflfcts (or 

oossfble. conflfcts, In the case of plannfng) arfsfng from 

subunit Interdependency, the three kfnds of 

lnterdependencfes dfscussed In the prevfous section are 

emphasized In many business games. And, of course, with the 

three fnterdependencles come the three Interaction bugs. 

Pooled Interdependency arises from a 

natural sharing of resources by different parts of the 

game-player's 11busfness". The business game contains a 

very well-defined set of "resources" {Qili, sale:ameo, 

prodyction-llnes, etc.) which the player must manipulate 

accord ng to certain speclffed rules of play. (1) The basic 
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Idea ts to accumulate certain resources which are designated 

as "assets". There are a variety of strategies for 

accumulating assets (e.g., use research, do some 

advertising, learn about market trends, etc.). The 

Important point for us Is that the Implementation of aa:t 

strategy requires manipulation of various subunits of the 

player 1 s "business". These subunits share the pooled 

resource of~. Since ~ ts In limited supply, an 

Interdependency Is set up, and conflicts arise. Poor 

understanding of this pooled Interdependency gives rise to 

section 3.l.2 1 s bug type (1): "unexpected confl let arising 

from competition for shared resources." 

A much more Interesting aspect o.f the 

part tcular game have selected Is the sequential 

Interdependency among subunits. First of all, note that 

some of the actlvftles of the subunits are "long-term" ~-". 

(research and development, t ra In Ing sales personnel, 

constructing additional productton capacfty, etc.), while 

others are "short-term" (advertising, factoring accounts 

receivable, hiring, etc.). Second, there Is considerable 

linkage between the requirements of some activities and the 

Cl) This discussion Is based on the actual business game 
presented In Appendix A--lt might be a good Idea to glance 
over the description of the.game to gfve yourself the flavor 
of what's going on. 
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"outputs" of others (production provides units to sell, 

hiring provides employees to train, etc.). Ffnally, the 

game contains a rather rich 11 posslbf1Jty space" for any 

given strategy If the time-scale Is long enough. That Js, 

there are a variety of non-Independent ways of going about 

achieving a given task over time. All of this (plus the 

addition of probabilistic occurences over time) adds up to a 

complex pattern of sequential dependecles, which In turn 

gfves rise to bug (2), "weak performance due to poor 

perception of time-phased occurences". 

It ts characterfstlc of the game used 

here (and of most other business games) that the pooled and 

sequentfal Interdependencies are frequently made more 

Intense by "htgher-order constraints". These constraints 

arise from the actlvfty structure of the game. The key 

factor Is that various activities and functions of the 

organization depend on the outputs of msu:.e. .than .wi.e. prior 

activity (note that this was not the case In the example of 

section 2, and thus this problem was avoided). can 

present a deta I 1 ed account of these mutua 1 Interdependency 

relationships only after discuss the way the game Js 

modelled In MSL C will do this In 4.4). For now, It will 

suffice to say that two kinds of higher-order constraints 

are distinguished: the kind In which several activities (or, 
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more usually, chains of activities} must combine to provide 

resources for another activity, and the kind In which a 

number of activities can combine In various unstructured 

ways to achieve a functionally-determined goal. 

This section has been devoted to filling 

In rather general background Information about the kind of 

bugs the program knows about and how these a~lse naturally 

In real world systems. We now go on to an examination of 

how the program Incorporates some knowledge about these 

bugs, and how It goes about using this knowledge to debug 

models. 
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4 J:ISllt .t.hJ:. orogram works 

In this section I will present a program 

which finds the kind of Interaction bugs dlscussed above. 

An example of program operatlon has already been shown Jn 

section 2. From this example, the following pattern of 

program operation Is evident: the program starts with a 

model represented In a special format language; It takes 

this model and produces a simulation of it; If the user 

finds a discrepancy between his expectations of model 

performance and the results of the simulation, he presents 

the program with the goal of eliminating the discrepancy. 

The program then attempts, using both the model as 

6rlglnally stated by the user and the results of the model's 

simulation, to achieve that goal; In the course of fall Ing 

to achieve that goal Cl) , the program finds features of the 

model which It considers to be unintended causes of the 

fa 11 u re--.b.L1&5.. It then suggests these bugs Ctn order of 

"likelihood") ·to the user, leaving him to take the next step 

(and perhaps re-Initiate the process). 

This section considers each aspect of 

Cl) The program shoffld fall to achieve almost all user 
goal sl CTbe almost" Is due to probablt lstic 
considerations.) Otherwise, there was not a bug and the 
simulation would have achieved the goal in the first place. 

i 
I 

---------- --------------
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this process Jn turn. It begins (4.1) with an examfnatton 

of the model spectftcatton language, providing a ft rm basis 

for understanding what the program does and does not know 

about the user's model. Next (4.2), ·ft describes the 

slmulatfon of the model and the way the results of the 

simulation are presented to the debugger. Contrnufng along 

the debugging process, section 4.3 deals wfth the way user 

goals are formed and the way Jn which the system handles 

goals. Sectfon 4.4 can then talk about how the program's 

deductive mechanisms pursue goals and locate bugs--the real 

guts of the debugging problem. Finally, there Js a short 

section (4.5) on the way the program uses real•world 

knowledge In the debuggfng process. 

Into the heart of darkness ••• 

4.1 .rru:. model specification langyage 

In order for 

simulate-and-Investigate method for 

the program 

debugging 

to use the 

models, the 

models must be represented In a form that ts executable (by 

the simulator) and a form ·that Is examinable (by the 

problem-solving rout{nes). The model specification 

language CMSL) f s an attempt to combine these two necessary 

forms In a single language (which also purports to be fairly 
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user-oriented!). 

MSL is a set of simple primitives whfch 

can be used to describe models--especfally business game 

models (1) An MSL specification consists of an 

(unordered) collection of the three basic primit Ives 

*ACTIVITY, *EVENT, and *FUNCTION. The basic primitives are 

further described by modifying constructs. The model 

manipulates user-defined value/term pairs called "resource 

variables" (e.g. (1000 CASH), (SAM SALESMAN), etc.). An 

example of MSL specifications appear on pages 17-18, and In 

Appendix B. This section contains a brief description of 

the syntax and semantics of these MSL primitives. 

The basic MSL construct I s the 

*ACTIVITY. The concept of "activity" used here is precisely 

similar to the usual business sense of the word: a 

well-defined organizational task which processes some 

commodities or information that is used by the organization 

(see section 3.1.2; see also the WOB 191 for Its information 

on activities). An *ACTIVITY also corresponds to a submodel 

(2) --that thing that the user Is supposed to have a good 

(1) No claim is made for any "completeness" or 11 suff iclency" 
of this set of primitives. These are simply constructs 
which can be used to express my game models. 

(2) We will see Jn a few minutes that *EVENT's and 
*FUNCTION 1 s are also submodels. 
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grasp of (see 3.1.1).The •ACTIVITY speclflcatlon looks like 

(•ACTIVITY <•ACTIVITY-name> <modifiers>) 

( 1) 

As Is usually the case, the modifiers are the most 

Interesting part of the specification. 

One modifier which ts almost always 

present Is the •PREREQUISITES specification. This 

construct expresses the necessary Inputs of an •ACTfVITY. 

The •PREREQUISITES specification 

contains an arbitrary number of 

(•PRESENT <resource variable>) 

forms grouped (Implicitly) by OR or (explicitly) by AND. 

The basic Interpretation ts that the named <resource 

variable> must be present (2) for the •ACTIVITY to be 

Initiated. If there Is an AND specification, then (as one 

would expect) all of the "AND'ed" resource variables must be 

•PRESENT. Thus, In 

Cl) I will use the following notation: "<" 
metalinguistic brackets which surround 
statements. Everything else belongs there. 

and ">" are 
meta11ngulstlc 

(2) Clearly, there are the obvlous extensions 
"•MAY-BE-PRESENT", "MUST-BE-PRESENT", etc. I have not found 
these concepts necessary to express the models I have used. 
Therefore, they are not Included In the MSL, even though 
their Introduction would be straightforward. 



(•ACTIVITY SALES-CALL 
(•PREREQUISITES 

CANO 

) 

(•PRESENT (1000 CASH)) 
(•PRESENT Cl UNIT)) 
(•PRESENT (SOME SALESMAN)) 

) ) 
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there must be (1000 CASH), Cl UNIT), and (SOME SALESMAN) for 

SALES-CALL to be Initiated. 

Some further comment ts necessary on the 

quantlf lcatlon mechanism of •PRESENT. The "SOME" In (SOME 

SALESMAN) represents any name of a SALESMAN 

model. That ts, 

(•PRESENT (SOME SALESMAN)) 

will be satisfied with 

(MARK SALESMAN) or 

COON SALESMAN) or 

(STEVE SALESMAN) 

In the 

Numerical quantifications carry an Implicit "at least" 

modifier. That Is, 

(•PRESENT (1000 CASH)) 



will be sattsffed with 

(10000 CASH) 

(1000 CASH) 

but not (999 CASH) 
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or 

The "at leastu modifier may be explicitly stated, or may be 

changed to AT-MOST, as In 

(*PRESENT (1000 CASH) AT-LEAST) 

(*PRESENT (5 ERRORS) AT-MOST) 

The "outputs" of an *ACTIVITY are 

expressed by the *OUTPUT and *REMOVE constructs: 

(•OUTPUT <resource variable>> 

(•REMOVE <resource variable>> 

which add or delete the named resource variable from the 

model's resources. 

An *ACTIVITY construct may be further 

described by: 

(*TAKES <number>> 

to Indicate that If the *ACTIVITY Is Initiated In time-slice 

.n, Its outputs do not become available untfl tlme-sl Ice 
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n+<number> The purpose of thfs fs, of course, to allow 

the modell Ing of •ACTIVITY's which take an appreciable 

amount of time to be completed. Another important 

mod If I er, 

{•PRIORITY <number>) 

allows the user to Indicate preference In allocation of 

resources to •ACTIVITY's. Thus, Jf several •ACTIVITY's are 

vying for the same resource, the one wf th the lowest 

•PRIORITY <number> has first crack at It Cl) • 

•SCHEDULE specifications allow the user 

to give explicit scheduling fnformatfon to the simulator In 

order to llmft the use of an •ACTIVITY. The specfffcatlons 

that have b~en found useful so far are 

(•SCHEDULE <number>) 

to 1 lmlt the number of times an •ACTIVITY can be sc,heduled 

In any time-slice, 

(•SCHEDULE CON <•EVENT-name>)) 

to allow the scheduling of an •ACTIVITY only in the same 

(1) Again, obviously, this simple mechanism could be greatly 
expanded. More complex models would requf re tfme-varying 
and other computed •PRIORITY specifications. These have not 
been Included In MSL. 

-------------- --------
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time-slice as the occurence of the named •EVENT, and 

C •SCHEDULE C EVERY <number>)) 

to 1 lmlt the schedul Ing of the •ACTIVITY to time-slice 

<number>,2x<number>,3x<number>,etc. 

The above modifiers, along with the 

user 1 s ability to create resource variables and provide 

arbitrary •ACTIVITY structures, allow enough flex.Jbll lty to 

express all of the •ACTIVtTY's necessary to model the game 

t n Append T x A C see the mod·e 1 In Append Ix 8). The re a re, 

however, other kinds of submodels to b:e consldered. 

Another ba~lc construct Cl.e., 

submodel-speclfter) available to the modeller ls the •EVENT. 

This ts used to express parts of the model which are 

"outside of the system"--beyond the organl.zatlon's direct 

control. These outside influences are often modelled as 

probabilistic occurences~ so that •EVENT's are usually 

associated with the probabilistic parts of the model. 

•EVENT is very similar to •ACTIVITY fn basl.c syntax: 

(.•EVENT <•EVE·NT•name> <modifiers>> 

but the modifiers are somewhat dffferent. 

Instead of the •PREREQUISITES 

specfffcatlon, a •CONDITIONS list ts stated: 

\ ______ ~~----
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(•CONDITIONS <boolean expression>) 

That Is, the simulator expects the body of a •CONDITIONS 

list to evaluate to "true" or "false". Usually, the body 

contains some combination (perhaps related by AND or OR) of 

•FUNCTION names (1) (see below). The Intent is that the 

•EVENT may not be initiated unless the <boolean expression> 

evaluates to tttrue". 

Usually •EVENT's affect pa rt I cul a r 

•ACTIVITY's.The suscteptlble •ACTIVITY's and the actions to 

be taken by the •EVENT are expressed within the •EVENT by 

the •ACTIVITIES modlf ler: 

(•ACTIVITIES C<llst of •ACTIVITY-names>) <actions>) 

If an •EVENT ·contains an •ACTIVITIES construct, ft can be 

Initiated only In a time-slice In which at least one of the 

named •ACTIVITY's ts scheduled. 

One rather unusual <action> which can be 

taken by an •EVENT ls 

(1) These •FUNCTION's usually express a probability with 
which the •EVENT 

1 
occurs In a given time-slice. The 

simulator sets up a probabilistic event (no confusion, 
please!) on the related sample space to express the 
•FUNCTION. It then calls a random number generator. If the 
value returned by the RNG falls within the defined event,the 
simulator assigns "true 11 to the value of that •FUNCTION. 
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(•CANCEL) 

This means that the Interrupted •ACTIVITY has been 

permanently disrupted, and ts to be unscheduled. (Of 

course, It can be rescheduled later.) In all other 

respects, •EVENT's are treated just like •ACTIVITY's. 

The f lnal baste construct In MSL ts 

•FUNCTION. It expresses a functional relationship between 

variables In the model, and, In general, accounts for 

Information flow within the model. It ts thus slightly 

different In spirit from the resource-handling •ACTIVITY's 

and •EVENT's. Nonetheless, It shares submodel 'Status Cl) , 
and Is similar In syntax to the other two basic constructs: 

(•FUNCTION <•FUNCTION-name> <modifiers>) 

•FUNCTION's are not "scheduled"; rather, they are Invoked by 

being mentioned In other constructs (just as In progranmlng 

language function calls). Thus, whenever SALES-PROBABILITY 

(see section 2) appears In the model (except In the 

•FUNCTION definition, of course), the •FUNCTION 

Cl) It Is important to recognize that informatton-handltng 
activities are submodels at the same level as other 
organizational activities. Forrester stresses this point 
In 131, and seems to use the homogeneity of basic submodels 
successfully. Of course, the uniform submodel constructs 
also lead to a gain In modelling efficiency and a lessening 
of the cognitive load of the MSL user. 
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. SALES-PROBABILITY will be Invoked. 

The analogous construct to 

•PREREQUISITES and •CONDITIONS Jn •FUNCTION Is 

(•ARGUMENTS <argument!> <argument2> ••• > 

which behaves like the usual argument-list In programming 

language functions. Missing arguments cause an "error" 

which stops the simulation (1) • 

The analogy to •OUTPUT Is 

(•RETURN <expression>> 

where <expression> can be a combination o.f •FUNCTION names 

and the special function-representing constructs 

(•TABLE (<•ARGUMENT-name> <•RESULT-name>) 

<argument/result pairs>) 

(•SUM-UP <<variable range)) <linear factors>> 

This Is about all there Is to the MSL. 

The semantics of •ACTIVITY's and •EVENT's are developed a 

bit further Jn the next section. •FUNCTION's are dealt wfth 

In 4.4.2.1. However, no really detailed descriptions are 

presented anywhere. There Is little point In ft. The only 

Cl) This Is, of course, the kind of bug we're JJ.2.t. Interested 
In here. 

-----·--~-----~· .~-------· 
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purpose of presenting MSL is to allow the reader to 

understand the examples and judge what the program does and 

does not know about a part i cu'l a r mode 1. 

Almost all of what the program knows 

about any given model is In the MSL specification. Cit 

knows a few other things discussed In 4~5.) MSL can be 

simple because the models considered are qulte simple. As 

the models become more complex we expect (by conservation of 

complexity) that MSL will become more comple.x. The hope Is 

that MSL contafns something general enough to handle some 

kinds o.f additional model co'Jnplexlty ,without additional 

language complexity. This "something" Is the basic 

philosophy of submodel structuring whtch Is reflected in the 

MSL. Thus, I have tried to e·mphaslze this ha.sic structure 

rather the details. In the next section we follow the 

course of the program's debugging process and examine the 

simulation of MSL models. 

4.2 Simulation li .a~ Qf doing thing~ 

Simulation ls a technique for observing 

the behavior of models. In the absence of analytical and 

other "high-level" tools Clfke educated guesses), simulation 

ls the only way to find out wha a model .. does" In any given 
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situation. In the model-debugging system presented in this 

thesis, the simulator sets up the baste feedback mechanism 

between user and APS. 

At the very least, any APS should 

provide a facility for checking out model behavior with 

simulation. That ts, the user formulates his model, tests 

It via simulation, changes it if he doesn't 1 Ike what he 

sees, and resimulates. For reasons discussed in the 

Introductory section, It Is necessary to go a step further. 

The program described here attempts to aid the user in 

discovering why the model does not perform as he expects it 

to • 

Therefore, this sectfon will concentrate 

on simulation as a way of initiating the debugging process. 

This emphasis Ignores very important Issues of presenting 

simulation results to the user. In fact, It completely 

downplays the Importance of the simulator Itself, 

concentrating only on the Interaction of the simulator and 

the deductive mechanisms of the debugging program. Thus, 

In this section will proceed to finesse the simulator and 

move on to the more relevant problems of representing the 

knowledge gained by the simulation in such a way that it can 

be used by the debugger. 
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4.2.l .lb.I:. simulator finessed 

In this section will very briefly 

describe the slmulatlon scheme used In the program. The 

whole s lmul at I on ph f 1 osophy presented he re Is k Ind of 

strange as viewed from th.e standpoint of "normal" simulation 

programs. This Is due to the presence of two major design 

criteria not usually found In the area of simulation 

progra11111Jng: 

Cl) Adherence to the "user only lcnows local submodel 

I nformat I on" canon ennunc Ja,ted earl 1 er C sect Ions 1. 3 .1 

and 3.1.1) 

(2) The goal of representfng knowledge found by the 

simulation In such a way that 1t can be used by the 

debugger 

The fl rst criterion gives rise to those funny MSL constructs 

which mysteriously appeared In the previous dtscusslon. 

It also motivates the style of simulation desc,rlbed Jn the 

rest of this section. The second criterion determ.fnes the 

actual Implementation of the algorithm, and ts dealt with Jn 

the following subsection. 

In MSL, the Information pertaining to a 
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particular submodel ts found only In that submodel. The 

kind of "Information" varies from submodel to submodel (as 

described In 4.1), but basically, the following 

specifications are necessary: 

--resources needed by the submodel 

--resources produced by the submodel, and the length of 

time necessary to produce them 

--explfclt policy for the conditions under which the 

submodel should be activated 

The baste operation of the simulator Is 

then straightforward.Each submodel ts activated when Its 

(user-specified) explicit pre-conditions are satisfied, 

provided that all of its necessary resources are available. 

If the user does not specify pre-conditions (via •SCHEDULE 

and •CONDITIONS--see 4.1), the submodel ts activated 

whenever Its necessary resources are available (subject to 

•PRIORITY restrictions, of course). When the time 

(specified by •TAKES) for submodel activity has elapsed, the 

output 

to the 

resources of the submodel (If any) become available 

whole model. This process of cycling through 

submodels actfvatfng "ready" ones, continuing "running" 

-------~---------- -------- ---------~ 
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ones, cleaning up finished ones, and augment Ing and 

depleting resources all along continues for the duration of 

the user-specified run-length. 

Now anyone who has ever glanced at the 

guts of a simulator knows that have just finessed 

lnumerable details (as wel 1 as a few Important Points). The 

algorithm used In the program ts actua l1 y a bit more 

sophisticated and a great deal ha Ir le r than the one 

"described" ahove. For example, I have not even ment toned 

the rather tlckl lsh problem of handling probabll lstlc 

occurences In this context, nor the des l.gn decisions for 

priority-scheduling of already-running submodels. am 

deliberately slufffng the details here because the slmlllator 

Itself Is not very important to the thesis as a whole. It 

ts Its output, the SIMULATION-HISTORY context, that I wish 

to emphasize here. 

4.2.2 Simulation hlstorv .Q.W1 SIMYLAIJON•HISTOBY 

The form of the output of a simulation 

program Is a 1 ways a key factor In I ts usefulness. In the 

debugging system presented here, It ts an essential link 

between the model and the deductive mechanisms of the 
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debugger, As discussed above~ much of the task of the 

simulator ts to present the knowledge gained by simulating 

the model tn a form that can be used by the rest of the 

program. This Is of course the old artificial lntell tgence 

task of representing knowledge In a form that can be used by 

procedural deductive mechanisms. 

The style of representation have 

chosen for the simulation knowledge Is the slmuJ1tlon 

history. Now this ts hardly startllng--simulatlon 

histories are frequently used to describe the behavior of 

systems. But here I wish to extend the coneept somewhat. 

In my program, the simulator constructs a simulation history 

(called SIMULATION-HISTORY) which then becomes the 

problem-solving environment of the debugger. By this 

mean that from the point of view of the deductive mechanisms 

In the debugger, the "world" Is a simulation history; I.e., 

a sequence of facts about the model which are true at 

various times determined by the simulation. The debugger 

lives Inside this simulation history. The things that It 

knows about the "world"--the kinds of knowledge found, the 

way events are related, etc.-- are the facts and rules of 

the simulation history world (1) • In thinking about the 

(1) Except for, as we shall see later, the facts It knows 
about the "real world .. of business games. 

-------- ··-------"--
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debugger, It Is well to keep In mind that It Is a citizen of 

the simulation history world. 

Well then, let's go slumming and look 

around the simulation history world ourselves for a few 

rollicking moments. Consider some set of observational 

variables on a simulation model. Then a slmulatlon history 

can be thought of as a recording of the "values" of these 

variables at various Instants of simulation-time. The 

Interesting questions are what observational variables 

should be used and how the record should be organized. We 

wl 11 see that these questions are Important with respect to 

the usefulness of the simulator to the debugger. 

For the simulation to progress from one 

time Instant to the next, the simulator must have a record 

of the state of the simulation. The simulation state of 

these simple MSL models consists of four main pieces of 

Information: 

(1) the value of each "resource variable" (see 4.1) at 

the end of each time-slice (1) 

(2) a record of the •ACTIVITY 1 s which were Initiated In 

the time-slice 

Cl) A tlme-~llce Is one ker-chunk of the simulator. 
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(3) a record of the •EVENT's which occur and the 

•ACTIVITY's they affect 

(4) an indication of the stage of completion of each 

"running" Ct.e., previously Initiated and not yet 

complete) •ACTIVITY and •EVENT 

Therefore, the simulator needs these four pieces of 

Information at the end of each time-slice in order to go on 

to the next time-slice. 

But what does this have to do with the 

"observational variables" for the simulation history? First, 

remember that the "observer" In this case Is the deductive 

mechanism of the debugger. Now, harking back to all that 

was said In sections 1 and 2 about debugging by 

problem-solving, we can see that the debugger is usually in 

the position of trying to change the course of the 

simulation in some way (to cause some desired outcome which 

causes another desired outcome, etc ••• which eventually 

causes the user's desired outcome). In order to decide 

whether It can make the change (1) lt must know something 

(1) Of course, It must also decide whether 
the change to be made. This part of 
discussed Jn 4.4.2. 

the 
the 

user wants 
problem Is 
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about the simulation. Specifically, It must know the state 

of the simulation and ways to change that state Cl) • The 

ways to change the state are encoded In procedural deductive 

mechanisms to be described later (4.4.1). The state of the 

simulation can be provided by the simulation history. 

Therefore, the observational variables for the slmulatfon 

history are Just the state variables discussed above (2) • 

Well, stnce the simulator needs the 

values of the state variables at the end of each time-slice, 

the program need only keep track of these values In some 

useful fashion. The problem now becomes one of organizing 

the slmulatl.on history. In order ot think about such an 

organization, we can look back to section 2 and remember a 

bit more about what the deductive mechanisms do with the 

simulation hfstory. 

The deductive mechanl.sms usually find 

themselves playing around In their little simulation history 

world In two ways: 

(1) examining a single time-slice to see whether a 

change can be made at that time 

Cl) This fs Its "world knowledge" of the simulation history 
world. 

(2) A schematic representation of these state variables as 
they appear In the simulation history Is found on pp. 21-23. 
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(2) examining a large segment of the simulation to 

choose a likely time-slfce for scheduling somethfng 

new, to follow the course of an •ACTIVITY or •EVENT, to 

pursue the consequences of a proposed change, or (as we 

shall see later In this section) to h~ndle higher-order 

constraints 

What we need ts a good representatfon for facile handling of 

time-slices and (usually contiguous) groups of time-slices. 

The representatfon should also allow ease fn the building-up 

and manipulation of the whole hf story. 

Such a representatfon fs the Conniver 

context I 20 I. The simulation history is Implemented as a 

Connfver context wt th the unlikely moniker of 

SIMULATION-HISTORY. Each tfme-sl Ice fs a layer 1201 of the 

context. Thfs Conniver implementatfon lmplfes the following 

relation between time-slfces: the simulator "grows" 

SIMULATION-HISTORY by adding on new tfme-slices; changes 

made to the data in a new time-slice are invisible to 

earl fer time~sllces, however, the status of any datum can be 

determined In any time-slice. This certainly gives us the 

record of the slmulatfon history that we want. Conniver 

also allows any part of the context to be regarded as a 

separate context. The Importance of this Is that the 

context can then be used as the database, or, more 
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precisely, as the working environment, for some set of 

programs. That Is, the programs In a given context work 

only with that context as a knowledge base. Thus, we can 

see that the deductive mechanisms of the debugger can "live 

Inside" the simulation history by simply using 

SIMULATION-HISTORY as their context. Furthermore, the 

deductive mechanisms can live Inside any . .124C.t of the 

simulation history which they must examine. Their world c.an 

be a single time-slice or a large, program-edited piece of 

the history. 

We will see that this ability to live 

lnsfde arbitrary pieces of SIMULATION-HISTORY ts a key 

requlstlte for the deductive mechanisms of the debugger. 

For the deductive mechanisms to work, they must apply thetr 

procedurally-embedded knowledge of how to change the course 

of the simulation to carefully chosen parts of the 

simulation. This Is why the simulation history and Its 

Implementation as SIMULATION-HISTORY fornrsuch an Important 

part of the program. In the next section, we wtl 1 find that 

the SIMULATION-HISTORY representation gains further 

Importance when the debugger generates hypothetical states 

of the simulation. 

4.3 Goals .and. environments 
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Throughout the thesis I have been using 

the word "goal" to describe a variety of phenomena. have 

spoken of user goals, system goals, and submodel goals. In 

section 2 I introduced another construct containing the word 

"goa 1 ": 

(•GOAL <strange words> <numbers> <lots of parentheses>> 

which purported to represent the various other kinds of 

goals to the program. In this section will discuss what 

these parenthetical thfngees me.an to the program. In the 

next section will talk about how they are created and 

manipulated. Here I describe only goals .ru.ia. •GOAL's--i.e., 

the common structural aspects of •GOAL 1 s. 

A goal expresses a desired state. In a 

debugging context this desired state is almost always 

inconsistent with the actual state. This is because the 

user has found a discrepancy between real lty and expectation 

and has thought of a desired state In which the discrepancy 

is resolved. Thus, the desired state, reflecting the fixed 

discrepancy, is inconsistent with the actual state. In the 

program presented here, the user can ask the program to 

produce this desired state (given the model and the 

simulation history--see section 2). (1) The request is made 

(1) As discussed elsewhere, the program falls In Its attempt 

__________ " ____ -11 
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via a •GOAL statement: 

(*GOAL <achieve desired state>) 

What does It mean to "achieve the 

desired state"? The user Is asking the program to change 

the course of the simulation. The program goes about this 

by first creating a hypothetical s lmulat Ion state 

Ctlme-sl Ice) which Includes the desired state. Then It 

attempts to make the rest of the simulation history (i.e., 

the previous t ime-sl Ices) consistent with the new 

hypothetical time-slice. (1) This Is done by the creation 

of a new •GOAL 

(•GOAL <make previous time-slice consistent with new one>> 

This new •GOAL Is clearly of the form 

(•GOAL <achieve desired state>) 

and can thus be handled exactly like the user goal. The 

program can thus recurse merrily along until It cannot 

achieve a desired state--f.e., unttl ft falls •. 

Now then, let's take a closer look at 

to produce the desired state, but this ts not Important to 
the discussion of this section. 

(1) This "work backwards" methodology Is due to the 
debugging philosophy of tracing a bug from Its manifestation 
~ to Its cause. 

·-----·· •·-·-··-~-
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this process. Each •GOAL requests a specific change to a 

specific local environment (the time-slice). Thus, each 

•GOAL ts attempted Jn the context of a local constraint 

environment represented by a single tfme-slice of the 

simulation hfstory. (1) If the •GOAL Is achieved, It will 

deffne a new envf ronment which ts fnconsfster.t with the old 

time-slice (because of the changes wrought by achieving the 

•GOAL). This new environment ls then consistent with the 

user's desired state, but inconsistent with the old 

simulation history. The program will then use this new 

local environment as a basts for defining the next desired 

state along the 1 fne toward making the whole simulation 

history consistent with the user's desired state. The 

program Is, Jn effect, constructing a new hypothetical 

simulation history which results in the user's desired 

state. (2) 

Thus, environments are Jntimately 

related to the semantics of •GOAL's. Each •GOAL ts 

constrained by a pre-specified part of the simulation 

Cl) Not quite. As we shall see Jn a second, multiple goals 
are achieved with respect to a local constraint environment 
consisting of several time-slices. 

(2) The next section deals with the problem of how the 
program constructs this simulation without destroying the 
original intent of the model. Specifically, section 4.4.2.l 
gives a better picture of what is "constraining" about a 
"local constraint environment". 
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envf ronment--that part which ft Is supposed to change. The 

achievement of a •GOAL can therefore be seen as a 

transformation: 

~GOAL 

This transformation Is a local phenomenon. However the 

effects of the transformation are non-local. The •GOAL has 

perturbed the local environment and made It inconsistent 

with the global environment. Since the eventual •oal of the 

problem solver ts to create a consistent simulation history 

which results Jn the user's desired state~ the global 

environment must be made consistent wt th this new 

Inconsistent piece: 

----~ 
- ---7" 

~·. 
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In order to make the global envf ronment 

consistent, the program must trace down the effects of 

changing that local piece. In other words, It must examine 

the way that local piece interacts with other pieces of the 

global environment: 

eAv\rort~f JW ~I 
~~ ifl Or'le.- /;r'le 

But this Is exactly what we want. The user is Incapable of 

following the Interactions of the model. If the program is 

to help the user find the "Interaction bugs" thus created, 

it must have some mechanism for tracing interactions. This 

mechanism is the problem-solver. 

The problem-solver uses a *GOAL to 

express a global environment perturbation. It then uses the 

deductive mechanisms described in the next section to follow 

that perturbation throughout the local environment, the 

local change at each point being determined by a *GOAL. 
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When the program comes to a point where the perturbation 

cannot be continued (I.e., where a •GOAL falls), ft has, in 

effect, discovered a part of the environment which cannot~ 

~ .t.Q. conform to the user's desired environment. It has 

traced the Interaction path to Its roots--lt has bracketed 

the bug location between the user's desired simulation state 

and the user's desired constrafnt whfch gave rise to the 

lnteractfon (see 4.4.3). 

Thus, •GOAL 1 s are the vehicle for 

exploring the lnteractfve behavfor of the model. As we have 

seen above, the use of •GOAL's In thfs way requf res 

sophisticated manipulations of local environments. In 

order to tie down some of the concepts discussed In the 

prevfous paragraphs, I will now discuss some of the problems 

the program faces with respect to this envfronment-handling. 

Flrst, each •GOAL must be achieved with 

respect to a local envf ronment. That Is, the •GOAL must 

only "see" the constraints of a local envf ronment (not the 

whole thing) Cl) , and must directly affect only that local 

environment. Otherwise, the dlstfnctlon between local and 

Interactive behavior fs lost--there fs no such thing as a 

(1) This fs due first to the nature of the problem-solvfng 
process--"set up a local environment and then make the next 
local environment up the line consistent with lt"--and 
second to the debugging philosophy espoused In 4.4.2.1. 
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"perturbat ton". 

Fortunately, the environment to be 

examined ts the SIMULATION-HISTORY context. We will see rn 

4.4.2.1 that the required local environment Is (usually) 

just a TIME-SLICE of the SIMULATION-HISTORY. The *GOAL can 

thus be made to .. see" only a local environment by making the 

required TIME-SLICE Its working environment (as In 4.2) Cl) 

The context structure makes the re 1 at ion between 

TIME-SLICE's evident Ct.e., because each is a Conniver 

layer), so that the distinction between 1 ocal and 

Interact Ive constraints Is expl left in the built-in 

(Conniver) semantics of SIMULATION-HISTORY. 

Now the •GOAL must also be made to 

affect only a local environment if the semantics discussed 

earlier are to be preserved. It would seem that this is 

just as easy: simply keep the TIME-SLICE fn question as the 

•GOAL's working environment, and all changes will expl icftly 

have the required 1oca1 tty. However, there ts a 

complicating factor found in all searching problem-solvers: 

the problem-solver must make provisions for discarding an 

old line of attack and beginning a new one. This is the old 

problem of backup which has been discussed extensively in 

(1) This isn't quite so simple for multiple •GOAL's, as 
we'll see in a second. 
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171 and 1191. 

The backup problem Is germane to the 

debugging process because the debugger usually attempts to 

find all possible causes of a particular discrepancy Ctn the 

hope that one of them ts the actual bug). Thus, It will 

follow down one line of attack, fall, and try another. It 

must therefore be ready to erase the consequences of the 

line to be discarded. But this Is a particularly hard 

problem for the debugger. Here, the tracks leading to 

failures are the key to the rest of the process. They 

cannot be simple "erased", but must be preserved In some 

form which the program can use to suggest bugs and to 

explain Its actions to the user see 4.4.3). 

Furthermore, wh 11 e the effects of likb. 

•GOAL must be restlcted to a local envlronmet, the effects 

of .All the •GOAL's must create a new consistent environment 

(1) Thus, the program must malntafn some new environment 

whfch localizes the effects of the •GOAL's, allows a 

controlled backup with preservation of the backed-over 

Information, and which forces consistency of all affected 

environments. Certainly, SIMULATION-HISTORY will not do. 

But something like It wfll. The program 

again uses a lavered-context structure. In each layer it 

(1) They must, In fact, create a new simulation hfstory. 
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records the changes made by a •GOAL to the particular 

TIME-SLICE Involved. It then appends this new layer to 

SIMULATION-HISTORY and uses this new augmented context as 

the working environment of the debugger. Now, remembering 

the little dts6usston of context semantics In 4.2 (or, 

referring to 1201), we see that this causes the following 

effects: 

Cl) The effects of a •GOAL are 

since they occur only In a 

corresponds to a single TIME-SLICE. 

certainly localized 

single layer which 

see a (2) The debugger 

environment by 

SIMULATION-HISTORY 

can always 

looking 

as far as 

up 

the 

the 

last 

consistent 

augmented 

affected 

TIME-SLICE; the semantics of context then say that 

the data seen by the debugger ts just what was in 

SIMULATION-HISTORY before (which Is consistent via the 

simulator) except where contradicted by the parts that 

were changed by •GOAL's (which are consistent (up to 

that point) via the deductive mechanisms). 

Perhaps ft is well to interrupt here with an explanatory 

diagram ••• 
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S\ MlJLATtQ}j- H\ STORY 

seJt-{.O~ste.+, ~t 
\. Jfll()r'}~i~ wit ' /----, ' 
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which ts, due to the semantics of context, equivalent to: 

SlMULATI0~-\-1 \STORY 

~~-cons~ .nlJ 
el\\)t(Dnr'Jtefl"f 

(W\ckncrJYlStHUUrrtOO-
H~f o'R~ ------~-- - __. - - - ~ - - -----------

which ts certainly an easter conceptualization of what has 

gone on so far. However, the first ptcture ts necessary to 

explain 
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(3) The Jay~rs which record the changes made by a •GOAL 

(the dashed parts of the first picture) can be peeled 

off and saved at any time, thus restoring the context 

to Its orlgrnal condition and savfng the effects of the 

•GOAL (the track toward falure) for further use 

methodology f 111 s the b 111 so far. 

there Is one final problem which compl tcates 

picture (you just knew there would be). 

Unfortunate 1 y, 

this 1 lttle 

This complication comes from an as yet 

unseen aspect of the problem-solver: multiple goals. 

mentioned earlier (section 3) the existence of "higher-order 

constraint Interdependencies" In the model. (This 

we I rd-sound Ing effect wa.s conven I ent 1 y kept out of the 

example In section 2.) We will see ta section 4.4.2.3 that 

higher-order interdependency leads to multiple goals. That 

ls, Instead of simple goals, the program must deal with 

constructs like: 

and 

(•GOAL (•AND 

(•GOAL ••• ) 

(•GOAL ••• ) 

(•GOAL ••• )) ) 



(•GOAL (•GROUP 

(•GOAL ••• ) 

(•GOAL •.• ) 

(•GOA l ... ) ) ) 
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We'll see more about multiple goals later. For now we need 

only examine one aspect of their behavior. 

The raison d'etre of •AND and •GROUP is 

the expression of the fact that their component •GOAL's are 

not Independent. That Is, the •GOAL's they contain share 

common resources and cannot be achieved at each other's 

expense. (This Is how they model interdependency.) Thus, 

the notion of a "local constraint environment" varies from 

the one bandied about earlier. Here we must have several 

•GOAL's sharing a single local environment. Furthermore, 

because of the Interdependence of the •GOAL's, a component 

•GOAL that has not yet been completed must "see" the 

constraints posed by the completion of other component 

•GOAL's. Thus, the local constraint environment might 

cover several TIME-SLICE's. 

Clearly this hairs things up a bit. 

Nonetheless, the program must preserve the semantics of 

these constructs because they are Important effects of the 

model which give rise to their own special bugs (see 

4.4.2.3). Actually, given the flexibility of contexts, the 
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Jmplementatfon Is rather strafghtforward. The l fttle 

schematfc of environments now looks lfke: 
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In terms of the prevlous discussion of 

perturbations, local and global environments, etc., nothing 

has changed except that the "local" environments now may 

have a hairy mlcrostructure of local environments: 

Uninterested readers may squint at the above picture (and 

concept), leaving everything as before. 

Thus, a *GOAL Indicates a local 

perturbation. The deductive mechanisms of the 

problem-solver follow through the Interactions defined by 

the model to carry the perturbation throughout the 

simulation history in order to produce a consistent 

environment. The next section considers these deductive 

mechanisms and their interaction (via failure) with the 

bug-f lnders. 

4.4 Debygglng .tu!. problem-solving 
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The basic task of the program Is to 

trace a bug from Its manifestation to Its source. Th Is Is 

done by taking In the manifestation as a •GOAL to be 

achieved (as discussed earlier). The process of achieving 

such a •GOAl Is usually called "problem-solvfngu. But this 

Is a rather special use of problem-solving: the program 

expects to fall In the attempt. In fact, It Is not until 

after a line of attack has failed that It becomes 

Interesting to the debugger. In this section we see how 

lines of attack are formed 1 how they fall, and how they are 

used after they fall. 

The most Important part of any 

problem-solving process is the formation of subgoals (1) 

Section 4.4.1 considers the methods (those deductive 

mechanisms we've heard so much about) for devising new 

subgoals fn order to ach leve a goal. This corresponds to 

asking the tthow could we do this ?" question of section 2. 

But In this program, the object of the problem-solver is not 

this d I rect attack on the problem. Instead, the 

problem-solver must make certain It does not change the 

Intent of the user's model In trying to debug It. 

Thus, the process of attacking the 

(1) Especially In this problem-solver. Since subgoals are 
rarely achieved, the whole process turns Into 
subgoal-formation. 



Page 85 

user's goal leads directly Into the problem of separating 

the constraints which are In the simulation history because 

of user Intent from those which are artifacts of unintended 

model operation. At certain key points In the deduction 

process, the program determines whether or not It should (Jn 

terms of user Intentions) make the changes required by the 

deduction. This process of assigning GOOD and BAD REASON's 

to model action corresponds to asking the "why didn't you do 

this before?" question of section 2. In 4.4.2 we examine 

this REASONlng process In terms of the philosophy of bugs 

presented In section 3. 

The REASONing process leaves the program 

with a failed line of attack. This appears as a stream of 

•GOAL 1 s, annotated at each point with the BAD REASON that 

triggered further program action. The program must then 

examine the ~ecord of the problem-solver to attach blame to 

the proper offending model part; i.e., to find the bug. 

This task of post-mortem recrimination Is the subject of 

4.4.3. 

4.4.1 .I.W:. attack 

Here we examine 

phase of the debugging process. The 

-----------~--- ------

the problem-solving 

key problem-solving 
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task of the program is to ffnd the proper local changes 

throughout the global environment which will lead to the 

desired change. Since each desired change fs represented by 

a •GO·AL, the problem-solver proceeds by subgoal formatfon. 

The subgoal-formation parts of the 

program (the "deductfve mechanfsms'' mentioned earl fer) are 

responsf ble for ffgurJng out how one local change can be 

brought about by another. As an example of the way thf s 

cause-effect knowledge Is procedurally represented fn the 

problem-solver, the INCREASE function Is presented here. 

The explanation of how INCREASE works will lead us directly 

fnto the REASONlng methods of 4.4.2. 

The program's ma Jn vehfcle for askfng 

the "how?" question fs the INCREASE •GOAL: 

(•GOAL (INCREASE <resource variable or submodel> 

<amount> <tlme-slfce> Cl) )) 

That is, "goal: fncrease the resource variable or submodel 

by the specified amount In the specified time-slice." The 

user's Initial •GOAL Is usually of the INCREASE type (see 

section 2). This just means that the user's dfscrepancy Is 

usually a defffcfency of some resource varfable (or lack of 

(1) If a <tfme-sllce> fs not gfven, the program 
heurlstlcaliy chooses one. 
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the appearance of some submodel) which he is asking the 

program to fix up. 

As we saw in section 4.3, the program 

Immediately sets up a hypothetical local environment in 

which the defflclency has been rectified. Then It trfes to 

deduce an earlier environment which would cause the new 

deslred slmulation state. It does this deduction via the 

"logic of INCREASE" mentioned in section 2. The "logic", 

briefly stated, runs as follows: 

(1) Constant quantities cannot be INCREASE 1 d 

(2) In order to INCREASE a quantity that Is a resource 

variable which Is *OUTPUT (*REMOVE'd) by an *ACTIVITY 

or *EVENT, set up a new *GOAL to INCREASE (DECREASE) 

the number of occurences of that *ACTIVITY or *EVENT 

(3) In order to INCREASE a quantity that Is *RETURN'ed 

by a *FUNCTION, set up a new INCREASE-FUNCTION *GOAL (1) 

(4) In order to INCREASE the number of occurences of an 

*ACTIVITY, set up (If necessary (2) ) a new *GOAL to 

Cl) INCREASE-FUNCTION's major claim to fame is that it sets 
up *GROUP *GOAL 1 s. I will therefore discuss it when I talk 
about *GROUP In 4.4.2.3 rather than here. For now it's okay 
to view INCREASE-FUNCTION as analogous to INCREASE applied 
to *ACTIVITY 1 s. 
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INCREASE the resources needed by that •ACTIVITY 

(5) In order to INCREASE the number of occurences of an 

•EVENT, set up a new •GOAL to INCREASE the frequency 

with which its •CONDITIONS are val Id (which might 

Include a •GOAL to INCREASE the number of occurences of 

the •ACTIVITY's which the •EVENT affects) 

Clearly, the Intent of this list Is to cover anything which 

the user or another part of the program Cl> might ask to 

INCREASE. However, the rules In the list are by no means of 

uniform character; they differ greatly In their logJcal 

bases. 

The ff rst ~ule can be vfewed as a 

"fact 11
, or, if you wlll, a property of the concept 

11 l nc rease." That ls, the first rule depends .2Dlx on the 

concept of "Jncrease"--not on MSL, models, etc. The second 

rule expresses a deflnlte property of MSL rooted in the 

semantics of •OUTPUT. It therefore depends not only on 

"Increase", but also on the deflnltlon of MSL. The third 

rule, which will be discussed later, depends on ''Jncrease", 

the deflnltfon of MSL, and the rules of mathematfcs Cslnce 

(2) Some necessary resources may already be present Jn 
sufflcJent quantJty. 

Cl) Since INCREASE is defined recursively, the "other part 
of the program" might be INCREASE Itself. 
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mathematical functTons are being Increased). Again, ft Is 

valid for any MSL model. The fourth and fifth rules are 

different Jn a very important way. They depend not only on 

the definition of MSL and other "givens", but also on the 

particular model defined by the user. 

The reason for this is that the 

occurence of *ACTIVITY's (and thus *EVENT's vfa the 

*ACTIVITIES construct (see 4.1)) can be directly determined 

by user Intentions. These intentions are expressed by the 

*SCHEDULE modifier (see 4.1). •SCHEDULE is used whenever 

the modeller wishes to override the "always schedule when 

possible" default of the simulator. It therefore determines 

the pattern of *ACTIVITY and *EVENT activation throughout 

the simulation. *SCHEDULE is thus the primary expression of 

the user's pol fey for dfrecting the dynamics of his model. 

The fact that the "logic of INCREASE" 

must take Into account user intent Jon provides the key link 

between the "how?" and "why not?" questions. In the case 

of the first three rules of INCREASE, the "how?" question is 

perfectly well-formed. The program need only look at what 

is to be ltJCREASE'd wfthout worrying about reasons lW.l! ft 

shouldn't be done. There~ no reasons, because the rules 

are val Id for any case the program can encounter. Thus, 

the program can always go ahead and try the INCREASE. It 
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can either fall (1) (as In the case of INCREASfng a 

constant, for example) or It can set up the next subgoal 

(usually another INCREASE *GOAL)--all without worrying about 

"should" and "shouldn't". 

On the other hand, rules (4) and (5) 

must worry about "should" and "shouldn't" before setting up 

the next subgoal. Perhaps the user does not intend for the 

INCREASE to take place. Thus, INCREASE must ask the "why 

not?" question before It proceeds. 

4.4.2 .Ilul voice .2.f. REASON 

We saw In the previous section that the 

use of INCREASE to ask the "how?" question leads df rectly 

to the need for the "why not?" question. As usual, the 

program frames this question as a *GOAL. That Is, given the 

*GOAL of INCREASlng an *ACTIVITY "A" by "m" occurences in 

TIME-SLICE "n": 

(*GOAL (INCREASE Am n)) 

Cl) A fallu•e of this kind Is automatically for a "GOOD 
REASON"--see sections 2 and 4.4.2.1. 
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the program Immediately forms the *GOAL 

(*GOAL (SCHEDULE m A n)) 

to ascertain whether or not INCREASE should proceed. 

SCHEDULE's job Is to examine 

SIMULATION-HISTORY and the user's model to determine why the 

change suggested by INCREASE was not originally part of 

SIMULATION-HISTORY. After all, since It presumably leads to 

the desired state, why didn't the user cause the state 

suggested by INCREASE Jn the first place? 

There are two kinds of reasons for the 

user's not causing the suggested state to occur Initially. 

A GOOD REASON Is that he del lberately intends (for reasons 

best known to himself) the model not to allow that state. 

A BAD REASON Is that the Interaction of the submodels has 

caused a constraint which disallows the state. A BAD REASON 

Is .!121 a bug. It simply Implies that a constraint is due to 

submodel interaction and not user Intention. However, given 

the bug philosophy of section 3, the program treats a BAD 

REASON as "susplclous''--a cause for further Investigation. 

In this section we examine the way the 

program distinguishes GOOD REASON's from BAD REASON 1 s (and 

the way It classifies BAD REASON's>. The next subsection 

dfscusses the program's model of user intent--1.e., its 



method for discerning GOOD REASON's. 

classify BAD REASON's along the lines 

"Interaction bugs" presented In section 3. 

4.4.2.1 .GQ.Q.12. REASON 1 s 
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After this, we 

of the three 

At each stage of the debugging process, 

the program Is trying to change an envlronment ••• by using a 

resource, Inserting a new submodel,etc. In order to do 

this, the program must face the question of whether or not 

the change should Cln terms of user Intentions) be made. 

Of course, It. Is unreasonable to expect the user to have to 

tell the program at each step what should and should not be 

changed. In fact, given the philosophy of section 3, It Is 

very unlikely that the user could provide this Information 

If he wanted to. Thus, the program needs some sort of 

theory of which of the constraints found In 

SIMULATION-HISTORY are user-Intended and which are there 

because of a possible bug In the model. 

Going back to sections 1.3.1 and 3, we 

recall the previous assumptions about user Intentions: the 

user has a good understanding of each submodel, but only a 

very weak understanding of how submodels Interact to achieve 

an overall goal~ Thus, the program can assume, at least 
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temporarily, that all Information In the simulation history 

which Is derived directly from user statements about an 

Individual submodel Is user-Intended. All other Information 

Is necessarily the result of submodel Interaction and is 

therefore suspect. The programming task is to Interpret 

thfs simple theory Cl) of user Intention In terms of the 

deductive mechanisms and SIMULATION-HISTORY. 

Everything In an MSL specification 

pertains only to a specific submodel; this, fn fact, was a 

design criterion (see 4.1). Thus, everything so far is 

user-Intended, by our principle of locality. But this Ts 

only static Tnformatlon. Once the model is simulated, some 

of this static local Information gives rise to interaction 

between submodels. The question then becomes one of 

determing how locality is preserved in the dynamic behavior 

of the mode 1. That is, what's local about 

SIMULATION-HISTORY? 

According to 4.3, the answer seems to be 

that the TIME-SLICE Is used by the program as a "local 

(1) This theory Ts of course quite liberal in its suggestion 
of "suspect" constraints. At this stage, this seems to be 
the best strategy. The deductive mechanisms are capable of 
el imlnating non-bugs rather easily so that things don't blow 
up (see sect ion 2). However, if really large models were 
used, a better theory would be necessary to avoid smothering 
the program with possible leads (see section 4.5). 
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environment" ••• but why? The TIME-SLICE preserves local lty 

because direct user policy Is at the TIME-SLICE level. 

Scheduling decisions set certain *ACTIVITY 1 s to occur tn 

certain TIME-SLICE 1 s (see description of •SCHEDULE In 4.1). 

•PREREQUISITES are checked at the TIME-SLICE level, •OUTPUT 

occurs at the TIME-SLICE level, •FUNCTION's are called, 

•EVENT's trlggered,etc.--all at the TIME-SLICE level. All 

of the direct user decisions, as specified by the static 

Information In the MSL, affect the simulation at the 

TIME-SLICE level. Therefore, the program takes a constraint 

to be local (and thus user-intended) If it depends only on 

what happens in a single TIME-SLICE. 

Now I mentioned In 1.3.1 that the models 

used In this thesis are especially interactive. 

Furthermore, as said above, the criteria for suggesting 

unintended constraints can afford to be 1 lberal--we would 

rather suggest wrong bugs than miss a possible bug. Thus, 

we would expect there to be few local "user-Intended" 

constraints and many non-local "suspect" constraints. This 

Is Indeed the case. The resources present Jn any TIME-SLICE 

are dependent on the action of the model over many 

TIME-SLICE's and are thus non-local. Similarly, the timing 

of •ACTIVITY's which do not contain •SCHEDULE specifications 

becomes resource-dependent and thus non-local. •EVENT 
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occurences are specified by probabfllstlc functions of 

resources and are thus non-local. Finally, higher-order 

constraints like coincident presence of several resources 

span several TIME-SLICE's (see 4.3) and are, almost by 

definition, non-local. These non-local constraints give 

rise to the BAD-REASON's discussed In the next two 

subsections. For now, let's mention the few GOOD REASON's 

that exist. 

Most GOOD REASON's concern constraints 

that arise from •SCHEDULE constructs. If the change 

requested by INCREASE would violate the •ACTIVITY's 

•SCHEDULE for that TIME-SLICE, SCHEDULE denies the request 

for GOOD-REASON (1) • Thus, If, as in section 2, there are 

three ADVERTISING •ACTIVITY's already In a .TIME-SLICE and 

ADVERTISING contains the modifier 

(•SCHEDULE 3) 

SCHEDULE will deny any request to up the amount of 

ADVERTISING In that TIME-SLICE. Similarly, SCHEDULE views 

the other avatars of •SCHEDULE <see 4.1) as 

GOOD-REASON-generators. 

The other kinds of GOOD REASON's are 

Cl) There Is one exception to this which will be discussed 
In the next ~ubsectlon. 
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those that are based on "fact" or are "true by definition" 

(see the first three rules of INCREASE In 4.4.1). Thus, 

SCHEDULE wfl 1 deny attempts to schedule In negative t lme, 

increase constants, etc. for GOOD REASON. Actual 1 y, these 

REASON 1 s can be viewed as being based on the "common sense 

knowledge" the user has In addition to his knowledge about 

submode ls. That ts, the user df rectly Intends his model to 

be "sensible" as well as to be In accordance with known 

submodel constraints. 

Thus, GOOD REASON 1 s apply to constraints 

which depend only on single TIME-SLICE Information, I.e., 

which reflect the locality which Is characteristic of user 

Intention. We now go on to Investigate the way fn which the 

program deals with non-local constrafnts. 

4.4.2.2 Basic .11At2. REASON's 

If the program cannot find a GOOD REASON 

for a constraint, It must attribute ·its existence to a BAD 

REASON. From the "Interaction bug" philosophy of section 3 

we see that the user's understanding of his model falters In 

the three critical areas mentioned at the beginning of this 

section: 
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(1) the effects of resource competition among submodels 

(2) tfmlng effects of submodels 

(3) the effects of higher-order constraints 

If a constraint Is there for no GOOD ~EASON, the program 

considers the possibility that the constraint arose 

unintentionally from one of these three misunderstandings. 

It will therefore try to come up with a BAD REASON for the 

constraint's existence so that it can Inform the debugger of 

the possible anomaly (see section 4.4.3). This section 

will consider the BAD REASON's related to the first two 

kinds of Interaction. These BAD REASON's form the basis for 

BAD REASON's arising from higher-order lnterdependencles--as 

discussed In 4.4.2.3. Now, to continue with our favorite 

process, the SCHEDULE •GOAL was just seeing why the desired 

•ACTIVITY wasn't scheduled In that TIME-SLICE In the first 

place ••• 

Since the user didn't specifically ask 

for the •ACTIVITY not to be scheduled, there can be only two 

reasons why the •ACTIVITY wasn't there: 

Cl) some of Its prerequisite resources weren't present 
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(2) It ts dependent on an •EVENT that didn't occur 

Thus, the pro.gram first checks out the resource situation In 

the TIME-SLI~!. If the r~sources are not sufficient to 

support the •ACTIVITY, there can be two reasons why: 

(1) the resources s.a:, available In the TIME-SLICE but 

were used~up by higher-priority •ACTIVITY's before the 

•ACTIVITY In question got a chance at them 

( 2 )· the resources Just a In' t the re 

To check out the first possibility, the program looks at the 

status of the higher-priority •ACTIVITY's In the TIME-SLICE. 

If any of these •ACTIVITY 1 s Indeed "stole" resources which 

would have .allowed scheduling of the desired •ACTIVITY, 

the Ir names are collected and the BAD REASON 

(PRIORITY•R£~0URCE·BOUND (<names of offending •ACTIVITY's>)) 

Is recorded. 

If no higher-priority •ACTIVITY's stole 

the resources, the~ the resources must just have been absent 

from the TIME-SLICE In the first place. The ubiquitous 

two possible reasons: 
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(1) The *ACTIVITY's which •OUTPUT the desired resources 

weren't scheduled until It was too late for the 

resources to be available In the TIME-SLICE 

(2) The •ACTIVITY's which •OUTPUT the desired resources 

were scheduled too early and the resources were 

gobbled up by higher-priority •ACTIVITY's In the 

Intervening TIME-SLICE 1 s 

Of course, In either Instance, the user may have Intended 

this to be the case (well we know how to check that out ••• ). 

On the other hand, the •OUTPUT •ACTIVITY 1 s may have ended up 

In the wrong place because of the user's poor understanding 

of timing effects (1) --a BAD REASON. To determine which Is 

the case, the program proceeds as follows. It first finds 

out what •ACTIVITY 1 s •OUTPUT the desired resources and 

checks to see If they were scheduled too late to do the 

desired •ACTIVITY any good. Then, It sees whether the 

•OUTPUT •ACTIVITY's were "late" for GOOD REASON. If not, it 

notes a BAD REASON: 

(1) Note that the "lnteractton Information" about timing Is 
Implicit In the resources. That Is, there are no expl left 
timer-alarms to say when something ts too late or too early. 
The only evidence of a timing error In the model will be 
found In the levels of particular resources over time. 
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If there are no "late" •ACTIVITY 1 s, or lf the •ACTIVITY's 

were late for GOOD REASON, the program looks back up the 

SIMULATION-HISTORY for two things: *ACTIVITY 1 s which •OUTPUT 

the needed resources scheduled "too early" for no GOOD 

REASON and "Interloping" •ACTIVITY's of higher priority 

which stole the needed resources. If both of these things 

exist, the program notes: 

(RESOURCE-BOUND (TOO-EARLY (<names of offending •ACTIVITY 1 s) 

<<names of Interloping •ACTIVITY's>))) 

Thus, the PRIORITY-RESOURCE-BOUND and 

RESOURCE-BOUND BAD REASON's take care of the case tn which 

the •ACTIVITY cannot be scheduled because of a lack of 

prerequisite resources (1) • Thls leaves the other case in 

which the •ACTIVITY could not be scheduled because It is 

Cl) As discussed previously, the program would try to 
alleviate this defficlency with an appropriate INCREASE 
•GOAL. The reason for th Is Is to make sure that the program 
traces through the entire Interaction path: after all, this 
resource defflclency could just be the result of an earlier 
decision which reflects the actual bug. Mo,re on this In 
4.4.3. 
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dependent on an •EVENT that didn't occur. 

The program can easily recognize this 

second case because ft can only arise from the 

(•SCHEDULE CON <•EVENT-name>)) 

specification (see 4.1). If the specified •EVENT did not 

occur in the TIME-SLICE, the desired •ACTIVITY could not be 

scheduled. Now, if the program were acting like it did 

before, it would try to find out 11why 11 the •EVENT df dn 1 t 

take place In the TIME-SLICE. However, this is 

inappropriate for •EVENT 1 s, which, after a 11 , model 

occurences which are beyond the modeller's direct control. 

Of course, this raises the question of why a modeller would 

make an •ACTIVITY dependent on an •EVENT in the first place. 

Indeed, the program becomes suspicious: It Is possible that 

because of the user's poor understanding of timing effects, 

the •EVENT dependency (plus the time needed by the 

•ACTIVITY) will cause the •ACTIVITY to take effect at the 

wrong tlme--usually too late (1) • The program checks out 

Cl) The most common cause of this •EVENT-dependency Is the 
"ff re-fighting" approach to solving problems: when the event 
occurs, start doing something about It. (Thi~ is, In fact, 
the problem In the example of section 2: HIRING Is dependent 
on QUITTING.) Note that this BAD REASON ts the exception 
to the "If •SCHEDULE says It's okay, It's okay" dictum 
referred to earl ler. 
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this p0sstb.fl.lty by looking up and down StMUlATlON-HISTORY 

to see If the •ACTIVITY was scheduled "too late" or "too 

early". If etther of these is the case, the program notes a 

BAO IEA'SON: 

( •EVENT•TR IGG·ERED-SCHEOULE <offend Ing •ACTIVITY> 

<"T-00 LATE" or atTOO £A~LT">) 

If neither of these Is the case, the program simply 

termln-ates lts 1 lne of attack (1) on 

(•EVENT-TR I GG.ERED•SOHEDULE) 

and goes away mumb 1 Ing to Itself (actual 1 y, th Is would be 

the first "·GOOD REASON" It looks at after all the BAD 

REASO'N' s were checked by the debugge.r). 

Well, this wraps up the "basic BAD 

REASON 1 s" arising from Poor understandfng of resource 

con'f1 let and t lmln.g effects .• Now we go on to see how 

mlstanderstandlng of higher-order const·ra.fnts le.ads to th·e 

use of thes:e same BAD REASON's In an ·expanded context. 

(1) Note that unl Ike the other BAD REAS8N's, this .one causes 
the line of attack to termlnate--no further tnvestfgatlon Is 
possible (see 4.4.3). 
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4.4.2.3 Higher-order BAD REASON's 

Up until now (except for part of 4.3), I 

have over-slmpl ified the interactive behavior of submodels 

for the purposes of discussion. Specifically, I have 

pretended that a submodel can depend on only one other 

submodel for its sources of input. Thus, my •ACTIVITY's 

have had only one unfilled •PREREQUISITE, my •FUNCTION's 

only one *ARGUMENT. This is of course quite unreal fstic, 

and not a real restriction of MSL. In this section I remove 

this artificial restriction. 

The introduction of multiple dependency 

brings up the issue of higher-order constraints. As we saw 

In 4.3, when submodels depend on several other submodels for 

Input, the problem-solver must take into account the 

lnterrelationshto of the Input •ACTIVITY's. The input 

•ACTIVITY's are In fact operating under a "higher-order 

constraint" (see section 3.2)--they must combine to provide 

resources for a single •ACTIVITY (or •FUNCTION) at a certain 

time • This higher-order constraint Ts modelled by forcing 

the Input *ACTIVITY's to share a local constraint 

environment (see 4.3). That is, all •ACTIVITY's sharing a 

higher-order constraint must be scheduled not only in 

accordance with their own needs, but also with the needs of 
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the •ACTIVITY or •FUNCTION that depends on them. There are 

two types of environment-sharing, reflected by two types of 

•GOAL's to handle the higher-order dependencies. The first 

of these Is •AND, the expression of the way •ACTIVITY's 

depend on each other when their higher-order constraint ts 

another •ACTIVITY. The second Is •GROUP, which models the 

•ACTIVITY-•FUNCTION dependency. 

•AHO dependency arises from •ACTIVITY's 

that look 1 Ike 

(•ACTIVITY SALES-CALL 
(•PREREQUISITES 

(•AND 

SALESMAN)))) 

• 
• ) 

(•PRESENT (1000 CASH)) 
(•PRESENT Cl UNIT)) 
(•PRESENT (SOME 

That Is, SALES-CALL depends on the submodels which •OUTPUT 

CASH,UNIT, and SALESMAN. All. of these •OUTPUT 1 s must be 

present at on,ce (i.e., In the same TIME-SLICE). Thus, any 

•GOAL which tries to schedule a new SALES-CALL •ACTIVITY 

must take this Into account. Specifically, If the resources 

are not available, .all of the •OUTPUT •ACTIVITY's .Involved 

must be scheduled. That Is, given the •GOAL 

(•GOAL (INCREASE SALES-CALL m n)) 
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and assuming none of the necessary resources are on hand (1) 

, the program must generate the subgoal 

) ) 

(•GOAL (INCREASE CASH j n)) 
(•GOAL (INCREASE UNIT k n)) 
(•GOAL (INCREASE SALESMAN 1 n)) 

Now, just as before, the program must be 

careful not to INCREASE things contrary to the intentions of 

the user. Again, It uses the SCHEDULE •GOAL to ffnd out the 

REASON for constraints. However, the SCHEDULE •GOAL cannot 

simply check out each INCREASE •GOAL Independently as 

before. The INCREASE •GOAL's are now interdependent and 

must be treated as such. So now, f lnding GOOD and BAD 

REASON's Is a whole new game. 

Not really. Fortunately, the process 

Isn't very different, especially in the case of •AND. First 

of all, examination of the whole GOOD REASON-f lndlng 

philosophy and implementation will show that It Is 

completely unaffected by higher-order Interdependencies. 

This Is almost by definition: GOOD REASON 1 s pertain to 

Individual submodels and TIME-SLICE's, while higher-order 

(1) In section 2 I kept higher-order constraints out of the 
picture by buffering away dependencies. Thus, In the case 
of SALES-CALL, all resources except SALESMAN were available 
already (see section 2). 
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Interdependencies transcend these boundaries of locality. 

Thus, SCHEDULE's GOOD REASONlng processes are still the 

same. Certainly, however, the BAD REASONlng Is different. 

But most of the differences have been taken care of already 

by the environment-sharing discussed In 4.3. That is, the 

effects of higher-order constraints on resource conflicts 

and time dependencies are already reflected Jn the way •AND 

•GOAL's are set up and processed--the higher-order 

interdependency Is already modelled. For example, If 

satlsfyfng one component •GOAL steals resources from another 

or disturbs the timing of another, the shared environment 

wll 1 make this Interaction expl felt: the resources needed by 

each •GOAL are recorded separately so that the effects of 

everything done in the •AND environment can be traced to the 

proper source. 

All this Is saying that all SCHEDULE has 

to do about •AND's Is to realize that it Is In a shared 

environment and attribute BAD REASON's to the effects of 

sharing. Thus, the searches for higher-priority •ACTIVITY's 

and timing problems which were previously carried out only 

In a single TIME-SLICE are now carried out Jn the whole •AND 

environment. The "new" BAD REASON's they generate look 1 ike 

(PRIORITY-RESOURCE-BOUND (<names of offending 
•ACTIVITY's>) •AND-MODE) 

(RESOURCE-BOUND (TOO-EARLY ((names 
of offending •ACTIVITY's>) 
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•ANO-MODE (<names of Interloping •ACTIVITY's 
in the •AND environment>) <<names of other 

Interloping •ACTIVITY's>)) 

etc. 

The theme here Ts that most of the work 

for finding hTgher-order BAD-REASON's Tn the •AND case was 

done by setting up the •AND environment in the first place. 

That Is, the Interdependency Is already expl Jcitly modelled 

by the way •AND •GOAL's work, and need only be checked 

through by SCHEDULE to find the appropriate BAD REASON's. 

This theme ts elaborated for the •GROUP case. 

In 4.4.1 postponed the issue of 

INCREAStng •FUNCTION 1 s by attributing this task to a 

separate INCREASE-FUNCTION •GOAL-type. The job of 

INCREASE-FUNCTION ts to figure out a way to Increase the 

value •RETURN 1 ed by a •FUNCTION by changing the values of 

Its •ARGUMENTS (thus, ft Ts completely analogous to 

INCREASE). Obviously, this problem ts extremely diffTcult 

for a large class of functions. Fortunately, the functions 

needed In business games, and, indeed, Tn most of business 

processing, are of a very simple nature (1) • MSL currently 

(1) The mathematics of management sclence--T.e., mathematics 
meant to model systems and decislons--can be quite 
sophisticated, but this Is not business processing. Indeed, 
even in a business game, the probability-handling can get 
tricky. But all of this ts built into MSL--the user can 
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allows the representation of only two kfnds of functional 

dependencies: tables and linear functions of a few 

variables. The mathematfcal technfques for Increasing these 

•FUNCTION's are simple and are not of Interest here. The 

Interesting part of •FUNCTION's for thfs discussion fs they 

are responsible for the second kind· of 

Interdependency. 

h I ghe r-orde r 

We just saw how the relation between 

•PREREQUISITES and •OUTPUT 1 s causes •AND Interdependency. 

Similarly, the relation between •ARGUMENTS and •RETURN'ed 

value causes •GROUP Jnterdepency. In the •AND case, the 

interdependency was that ill. •PREREQUISITES must be present 

In the proper quantltfes Jn a single TIME-SLICE for the 

*ACTIVITY to be Initiated. •GROUP f nterdependency Is 

weaker. We know only that~ combination .Q.f changes to 

the components wf 11 brfng about the desired change to the 

higher-order constrafnt. That Is, each subgoal can 

contribute an unspecfffed amount to the success of the 

overall •GOAL. Perhaps the Increase of only one of the 

•ARGUMENT resources will suffice to fncrease the •RETURN 1ed 

value. Or, all may be necessary--makfng the •GROUP an •AND 

at the extreme. 

Now the program must model this kind of 

only define simple functfons which use the probabllfty 
machinery. 
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interdependency when It tries to INCREASE •FUNCTION's. 

Furthermore, in trying to solve the INCREASE-FUNCTION 

problem, it must go about the task pretty much the same way 

organizations do In order to run Into the same kind of 

Interactive behavior. That Is, the interaction involved fn 

a kind of breadth-first approach to the problem (increase 

each •ARGUMENT resource a little In turn until the 

•RETURN 1 ed value has been INCREASE'd the desired amount) 

causes very different subgoal interaction than, say, a 

depth-first approach (Increase each •ARGUMENT as much as 

possible separately to see how much it helps to INCREASE the 

•FUNCTION). The differences are In which subgoals are 

allowed to be achieved at the expense of others (1) , the 

range of subgoals tried, and the extent to which each 

subgoal Is exercised (2) Clearly, d f ffe rent 

interdependencies are tapped by different subgoal attack 

methods. 

So the program must try to overcome the 

(1) Unlike •AND, this is allowed because not all •GROUP'ed 
subgoals must be achieved. The only requirement is that all 
of the subgoals whfch eventually succeed must share the same 
local constraint environment (otherwise the construct 
doesn't model higher-order interdependency). 

(2) Note that this need to model the organization's 
problem-solving method was not present in the •AND case. 
Since all subgoals must be achieved as stated, no 
"resource-steal Ing" fs allowed among them and all of them 
must be fully tried and executed. 
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higher-order constraint of Increasing a 

functionally-determined value the same way organizations do. 

Obviously, this ts a tall order. Firs~ of all, functional 

relationships are usually Implicit In organizations, not 

explicit as In MSL--so It's hard to see what organizations 

do about them. Second, It ts reasonable to assume that 

different organizations attack different functional problems 

In different ways at different times. Finally, It ls 

possible that the actual process Is not pre-defined at all 

In many cases, but Is Instead made-up and modified during 

the course of each problem's solution. What I am trying to 

say by all of this Is that I'm not about to solve the whole 

problem or even a very big part of It ••• 

What ~done Is to program a single, 

slightly sophisticated method of attacking higher-order 

functional constraints which attempts to model one way in 

which an organization might do it. It should be seen as an 

experiment for demonstrating the approach of the program In 

deal Ing with this kind of constraint, not a fully developed 

piece of the system. This part of the program, Incorporated 

In INCREASE-FUNCTION, works as follows: given a •GOAL of the 

form 

(•GOAL 
(•GROUP 

(•GOAL (INCREASE argumentl tlmel)) 
(•GOAL (INCREASE argument2 tlme2)) 
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)) 

the program takes the first •GOAL 

(•GOAL (INCREASE argument! trmel)) 

and trres to INCREASE argumentl the mrntmum possrble amount 

as a "feasrbrltty study". It carries the •GOAL all the way 

to completion, ff ft can. If the •GOAL ts unsuccessful 

(for GOOD REASON), It rs wlthdrwan from the •GROUP and the 

program does a "feasibility study" on the next •GOAL rn the 

•GROUP. If no "feasibility study" Is successful, the whole 

•GROUP naturally falls. Now, If any of the "stud res" are 

successful, the program wfl 1 keep attacking the studied 1 ine 

until It fa 11 s. When this happens, I.e., when the 

part fcular •ARGUMENT has been INCREASE 1 d as much as 

possible, the program considers Itself to have a 11 pa rt i a 1 

success". That ts, the effect of the INCREASE'd •ARGUMENT 

ts now calculated Into the overall •GROUP •GOAL, so that a 

new •GROUP •GOAL rs formed such that 

Cl) The fully INCREASE'd •GOAL is no longer In the 

•GROUP 

(2) The overall •GOAL is reduced by the amount 

contributed by the successfully INCREASE'd •GOAL 

---------------------------- -~--
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In this ~ •GROUP environment, the other •GOAL's 

similarly processed until success (or failure) occurs. 

are 

A 11 of this hopefully goes toward 

modelling the way an organization attacks this kind of 

problem: by checking out and eliminating posslblltttes one 

by one, and pushing winning lines as far as possible to 

achieve the overall •GOAL. As lntlmaied tn 4.3, the process 

Is model led C 1 Ike •ANO) by the pr~per sharing of 

environments. Obviously, the envf ronment-hackery for 

•GROUP's ts a bit more complicated than for •AND (for 

example, It must Incorporate the notion of "partial success" 

and the fact that all the eventually successful •GOAL's and 

only the eventually sucGessful •GOAL's share the same local 

constraint environment). The question for us here ts how 

this affects the GOOD and BAD REASON Ing process. 

Again, the answer Is "not all that 

much". As with the •AND case, the only difference ts that 

the BAD REASON's differentiate between constraints caused by 

higher-order Interaction .and those caused by other kinds of 

interaction. This ts again just a matter of tracing through 

the expl lclt relationships set up In the •GOAL is environment 

structure. As far as actual BAD REASON 1 $ for constraints 

go, •GROUP only adds two Cmfnor) new wrinkles. First of 

all, It will make a special notation If the constrafnt comes 
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up d~rlng a feaslbllfty trfal. Second, it carefully notes 

which •GROUP •GOAL 1 s have already succeeded when the 

constraint comes up. These are just convenience factors 

which the bug-finder uses when suggesting •GROUP bugs to the 

user; It wants to make clear exactly what the program was 

doing when It ran Into the constraint. This ts important, 

because, as mentioned above, different interaction occurs 

depending on exactly what the program does. 

This brings up a ffnal important point. 

•GROUP BAD REASON's are perhaps the weakest in the REASON 

repertol re because they depend directly on the actual 

exploratfon methods used. That ts, the program might 

suggest a BAD REASON which the user may never rea 11 y 

encounter because of the way his organization handles 

functional dependencies. Thus, the debugger saves 

•GROUP-type bugs for last. Nonetheless, think that it I s 

very important to Include this kind of REASONing in the 

debugger: •GROUP-style dependencies are pervasive In 

organizations. Furthermore, they point the way toward 

modelling more sophisticated kinds of submodel-submodel 

Interact Ions The weakness of the •GROUP method In this 

program Is Its Incompleteness, not Its basic concept. 

This section has catalogued all of the 

BAD REASON's generated by the program. Now we finally get 
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around to finishing the bug story by· showing how the BAD 

REASON 1 s are used to suggest the actual model bugs. 

i..4.3 .I.b.e. ~-mortem recriminations 

So far, the debugger has been left with 

a bunch of GOOD and BAD REASON's for constraints. It Is now 

time to turn these Into bug suggestions. So, let's see what 

the REASON's mean to the debugger. If the problem-solver Is 

faced with a BAD REASON for a constraint, It knows that the 

constraint Is based on submodel interaction. Its job Is to 

explore that Interaction. Therefore. when SCHEDULE returns 

a BAD REASON, the problem-solver considers It a cause for 

further Investigation. In this way, It carries the 

perturbation as far as It can-·traclng the Interaction 

patterns to their roots. 

GOOD REASON's are the "roots" that stop 

this search through the interaction path. They imply that 

the constraint blocking the path ts not due to Interaction, 

but rather to direct user Intent. The program should not 

disturb user intent, since Its only purpose In changing the 

environment is to debug the existing model. It now has a 

GOOD REASON to stop changing the environment, so It stops. 
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Its current line of attack is said to "fall" (in its attempt 

to bring about the desired change). Thus, the 

problem-solver's activities leave a 1 lne of *GOAL's attached 

to BAD REASON's ending In a *GOAL attached to a GOOD REASON 

(1) • Now what does all of this have to do with debugging? 

Simply this: the program has now tried to overcome every 

Interaction-based constraint In the way of producing the 

user's desired state. It has reached a user-desired 

constraint which is the root cause of all of the 

interaction-based constraints. Therefore, lt has reached 

the end of the 1 lne and cannot produce .t.b.e. user's desired 

state. There can be three reasons for this state of 

affairs: 

(1) The user's desired state Is off-base: he has set 
the model an Impossible task 

(2) One of the user's original Intentions is wrong; 
I.e., one of the root constraints Is the bug 

(3) One or more of the interaction-based constraints 
between the root constraints and the desired state are 
Incorrect: the model has an Interaction bug 

It is obvious from what has been said before that the 

program thinks that possibility (3) is the most likely. It 

therefore suggests that one or more of the interactive 

constraints (noted by BAD REASON's) are caused by the bug. 

(1) Except for the *EVENT-TRIGGERED-SCHEDULE case discussed 
In 4.4.2.3. 
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That Is, given that the Interaction constraints are wrongly 

causing the discrepancy, the debugger's job Is to find the 

part of the model which gives rise to the faulty 

constraints. This is then suggested as the "bug" In the 

user's model. If the user doesn't agree with any of the 

program's suggestions based on possibility (3), the program 

falls back on (2), and finally (1). Anyway, let's pick up 

the process again at the possibllty (3) suggestion phase. 

The program now has the location of the 

bug bracketed between the beginning and end of a "1 tne of 

attack". Furthermore, the submodels which could have caused 

the bug have been narrowed down to a relatively smalll 

"Interaction group" (the union of all submodels mentioned In 

the bracket) (1) The program must now pick out the 

Cl) The size of the "bracket" and "Interaction group" of 
course depends on the model. However, In the experfence I 
have had, the relevant groups have been small: a few BAD 
REASON 1 s and thus slightly more possible submodels. In the 
case of higher-order stuff, the group gets somewhat larger. 
There ts no reason to expect brackets or interaction groups 
to get much larger for larger models: the key factor In 
determining their size Is the amount of control the user 
exercises over his model (In MSL, the extent to which things 
are determined by •SCHEDULE 1 s). Control means GOOD REASON's 
and thus short paths between Initial manlfestatlon·s of a 
discrepancy and GOOD REASON's to close the bracket. Control 
also means smaller groups of submode1s which can affect the 
timing and resource-allocation of other submodels. Since 
managers (and modellers) exert considerable control over 
their systems, the amount of uncontrolled Interaction 
possible In any realistic model Is probably quite 
reasonable-sized. This In turn means that brackets and 
Interaction groups should also stay reasonable~slzed. 
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submodels Jn the "group" which caysed the BAD constraints In 

the "bracket". 

Sometimes this is quite easy: all of the 

BAD REASON's are traceable to a single submodel interaction. 

Examples of this are the *EVENT which triggers an *ACTIVITY 

at the wrong time, the *ACTIVITY which constantly steals 

resources from other necessary *ACTIVITY's, and the 

*ACTIVITY which Is always too late (too early) to allow 

another *ACTIVITY to be Initiated on time. The program 

looks for these single-cause Interactions by scanning the 

BAD REASON 1 s In the bracket, looking for "give-away" BAD 

REASON 1 s like •EVENT-DEPENDENT-SCHEDULE or consistencies in 

the "offending •ACTIVITY's" and "Interloping •ACTIVITY's" 

listings. If, In the process of examining the bracket, the 

debugger finds a single such cause for the BAD REASON 1 s of 

the bracket, it immediately labels the faulty interaction 

(I.e., the submodels Involved In the interaction) as~ bug 

for that bracket, and files it away. Often, however, in 

looking at the BAD REASON 1 s of a bracket, the program finds 

that a particular BAD REASON could have been caused by any 

of several interactions. For example, •ACTIVITY A couldn't 

be scheduled because B stole Its resources, or because C 

caused D to be late so that D couldn't provide the necessary 

resources for A. The program handles this by noting each 
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cause separatelv as a bug. 

Sometimes this straightforward process 

breaks down: the program ts unable to pick out the cause for 

the BAD constraints of a bracket (this happens mostly In 

•AND's and (especially) •GROUP's>. Currently, the program 

simply presents the troublesome bracket to the user telling 

him that "there's something wrong In there". consider 

this an incomplete part of the program (see 4.5). 

When the program has found the bug (or 

the few bugs) for each bracket, It presents them to the user 

In order of 11 1 lkel lhood". The debugger's model of the 

likelihood that a suggested bug ts actually a bug In the 

model is 

(1) The more soeclflc the suggested bug, the more 

1 tkely It Is that it Is genuine; thus, bugs 1 Ike 

•EVENT-DEPENDENT-SCHEDULE which correspond to a single 

BAD Interaction are suggested flrst. 

(2) The more definite a suggested bug, the more likely 

It Is; I.e., brackets which contain a single possible 

bug are suggested before those with multlple bugs, 

which are In turn before those which are just brackets 

with the "somethlng 1 s wrong" tag. 
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(3) The more Interactions encompassed by a single bug, 

the more likely ft ts; this ts just a recursive 

application of Murphy's law ••• the more Interaction 

decisions a user has to make, the more he'll blow--thus 

•AND bugs (1) and long timing chain bugs CA was late 

for B was late for C was ••• ) come early. 

(4) Timing bugs are more likely than resource-confl let 

bugs; PRIORITY determinations are much closer to local 

specifications, and are thus more likely to be 

user-Intended than the multi-TIME-SLICE machinations of 

a timing bug. 

(5) •GROUP bugs are saved for last. 

(6) After all of the bugs due to Interaction are gone, 

the program works on the second possibility stated 

above--J.e., ft starts suggesting that the GOOD 

constraints are faulty (I.e., wrong •SCHEDULE 

specification, etc.); It starts wf th the 

•EVENT-DEPENDENT-•SCHEDULE REASON If It Is 

around--f t's suspicious. 

Cl) •GROUP bugs would be here too, except, as I mentioned In 
4.4.2.3, for the fact the mechanism for handl Ing them Is 
rather dubious. 

--~--~ 
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(7) The program suggests missing submodels (see 4.5). 

Thus, the program goes through Its suggestion repertoire bug 

by bug, providing the user with an orderly statement of what 

the program thinks might be wrong with the model (see 

section 2 for the format of the suggestions). The user can 

always ask to see the Interaction path leading to a bug, the 

bracket of a bug, and any other bugs which pertain to a 

particular bracket. 

If the user does not agree with any of 

the bugs suggested, the program will suggest possibility 

(1): that his original •GOAL was wrong. If the user is 

still unsatisfied after all this work~ the program Informs 

him as to the location of his head and logs him out. 

ii. 5 oon 't confyse !llit fil1h !filt facts 

Most of the program's knowledge about 

models Is contained In Its conceptions of MSL (Including, 

for example, Its Ideas of how to INCREASE MSL quantities) 

and Its notions of user intentlon--as discussed Jn ~.4. 

However, as mentioned In section 2, It Is useful from a 

debugging point of view to Include actual "world" knowledge 

of business games. Clearly, this knowledge can be used to 

suggest bugs which transcend the MSL specification. 
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This Js, In fact, the only use the 

current program has for WOBG knowledge. As shown Jn section 

2, the program has a facility for suggesting "missing" parts 

of an MSL specification. This comes from a (very simple) 

model of what an MSL model of a business game (1) ,ould 

contain. The program simply checks at various points to 

see whether the addition of an •ACTIVITY could solve some 

problem (usually alleviate some defflcfency) in the user's 

model. Thus, when there Js a lack of CASH Jn the sample run 

In section 2, the program notes that the addition of a 

FACTORING •ACTIVITY (see description ln Appendix A and 

specification In Appendix B) could solve the problem. 

While this sort of thing is certainly 

useful, ft Is only a "zeroeth order" attempt at using world 

knowledge In debugging. A more Important use of WOBG 

knowledge would be to aid In finding bugs within the MSL 

specification (.I.e., the same kind of bugs the program now 

finds). As mentioned In 4.4, a major determiner of the 

eff lcacy of the debugging program Is the number and size of 

the "brackets" which enclose possible bugs. In the current 

program, brackets are determined by the amount of 

uncontrolled interactlon--1.e., a purely MSL-level 

criterion. In a more thorough-going approach, WOBG 

(1) In fact, It Is based entirely on the game in Appendix A. 

- -- -- - -------
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knowledge could be used to determine which interactions are 

really natural and which are possible bugs (1) --thus 

1 lmltfng or even eliminating brackets. Also, WOBG knowledge 

could be used to suggest suspiciously specified *ACTIVITY's, 

etc. 

The main reason that have not 

exploited WOBG knowledge tn these more sophisticated ways is 

that It has not been necessary for the models I have 

investigated so far. Furthermore, ft Is Interesting to see 

how far a "domain-Independent" (2) debugger can go toward 

finding bugs in MSL models. Thus, WOBG knowledge does not 

enter Into the main bug-finding process at all. Its sole 

use Is In suggesting the addition of *ACTIVITY's to the 

cu r re n t mode 1 ( 3 ) • 

(1) This sort of thing ts actually found to some degree in 
the programs of Sussman 1181 and Goldstein 151. 

(2) See Sussman's discussion of the domain-independence of 
HACKER 1181. 

(3) It operates off a WOBG database which will not be 
described here. It works a lot like MAPL 1101, and was in 
fact designed to be compatible with the larger MAPL database 
of Protosystem I (the WOB 191). 
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5 Conclusions 

would like to use this concluding 

section to flt my model-debugging system Into the "big 

picture", vfewlng It ffrst as a debugging tool, and second 

as part of an automatic programming system. 

The approach of my debuggfng system 

should be seen as one method of the several which can be 

used by the human or machine problem-solver. The 

simulate-and-Investigate technique shown here is useful for 

debugging poorly understood but easily modelled systems. It 

requires the modeller's knowledge and lack of knowledge to 

be of a certain character, as outl toed earl fer. It Is also 

most useful for handling highly Interactive systems. If the 

problem domafn fs very well understood, or If actions fn ft 

are basically Independent, other techniques are simpler and 

much better. 

Furhtermore, It should be stressed that 

the debugging methods of the program are quite naive In the 

context of a real Cf .e., non-game) Interactive system. It 

Is almost certain that all of the techniques described here 

would have to be shored up with procedures based on 

knowledge of the problem domain (see 4.5). Remember that 
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the basic "smarts" of my system is ln the exploration of the 

simulation history. In real life, this exploration phase Is 

usually preceded by some knowldgable guess work 

of the debugger: almost all expert human 

on the part 

debuggers 

(progranmers, consultants,etc.) start their exploration for 

a bug with a good preconceived notion of the nature of the 

bug. This "notion" comes from the utll lzatlon of long 

experience about what kind of bugs are attached to what kind 

of problems; most debuggers~ that only one or two things 

could possibly cause a bug at any given time In their 

exploration. No one yet knows how to encode this key 

experiential knowledge into a computer program. Certainly, 

no attempt has been made in this thesis. 

Thus, the program presented here, when 

viewed only as a general debugging technique, should be seen 

as part of a larger system: It fits In after an Initial 

"guesswork" phase (as one of several possibly applicable 

techniques) and just before a "weeding out" phase which 

makes thorough use of knowledge in the problem domain to 

narrow down the choice of possible bugs. 

The model-debugging needs of an 

automatic programming system are somewhat different. Here 

the user Is Interested in expressing a model of his problem 

to the machine in such a way that he can be sure that the 
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machine understands It properly. Thus, after a phase of 

model specification aid at deflne-.tl.ln.e. Cl) , a 

model-debugging system like the one here can come In and 

demonstrate the APS's Idea of the model to the user's 

satisfaction (and help the user overcome any dlcrepancys). 

The slmulate~and-lnvestfgate and domain-Independence 

philosophies of my system are well-adapted to this purpose: 

the system can afford to be an expert in Its own modelling 

language and do a great deal of exploration work In finding 

bugs. Furthermore, the user can tolerate a reasonable 

number of program-generated choices of bugs In his model If 

he can be certain of eventual understanding by the APS. 

Therefore, I think that the techniques used here might find 

direct application In automatic programming. 

Nonetheless, for a debugger to be truly 

useful, whether In an automatic programming or general 

artificial lntell lgence environment, It must incorporate the 

same kind of experiential debugging knowledge found In the 

human expert. This kind of stuff will surely be the basis 

of the next generation of debuggers which are now on the 

horizon. 

Cl) See 191 for Protosystem l's "activity expert modules". 
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Appendix A 

The following Is excerpted from 
article "Business Games--Play One!" by G.R. Andllnger In 
Harvard Business Review for March-April, 1958 C © 
President and Fellows of Harvard Unlverslty)--lt 
reprinted by permission. 

the 
the 
The 

Is 

It serves as an example of the 
business games at which the program (and MSL) are 
An MSL model of the game described here appears In 
B. 

kind of 
directed. 

Appendix 
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Busfness Games--Play One! 

Basfc Objectives 

Games are as old as man. Usually, their 
basic objective Is entertainment. The Busfness Management 
Game, however, afms not at entertainment, but at learnfng. 
Other differences between ft and a game like Monopoly, for 
example, are: 

--The degree to which ft approaches reality. 

--The degree to which the players' 
experfence, judgment, and skf 11--as opposed to luck-
Influence the outcome. 

If any business game Is to serve a purpose beyond 
that of a fascinating toy , there must be some transfer of 
learning from the game situation to real lty. While there 
probably Is some such transfer from playing a general lzed 
business game that mirrors "any company" and not a 
particular firm, an executive could derive Infinitely 
greater benefit from a game that permits him to practice 
guiding the destiny of his own company or one Jn his own 
lndustry--whlch unfortunately, ts unavailable at this early 
stage of business gaming. The success of specific war 
games, which the military has been using for years to 
simulate combat situations for trafnfng officers, however, 
holds great promise for similar applications In business In 
due course. 

The Business Management Game Is a case 
In point. We started It In 1956 with the Idea of applying 
war-gaming techniques to business. In the course of the 
year we tested, modified, and retested the game many times 
to develop a fine balance between realism and playabilfty. 
The more closely a game resembles reality, the more 
cumbersome It becomes--untfl ft Is no longer playable. 
Hence, there Is a need to compromise. Also, we designed 
the game to be relatively stable. No extreme strategy can 
result In sudden success; yet players can gain outstanding 
success If they are good enough--or bankruptcy If they are 
not careful. 

The game Is partly deterministic and 
partly probabilistic. Some results are determined directly 
by the action of the players; others are, to varying 
degrees, subject to chance or probability. The weight of 
the elements of the game Is such that the longer the game, 
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the smalller the influence of luck. 

Rules of Play 

In this section shall give a brief 
general description of each game element and the specific 
values, rules and probabilities that deffne each element In 
quantitative terms. Instructions for the umpires are 
Included at each point; but remember that they should not be 
given to the players. 

The Market 

The market Is made up of 24 customers. Each 
customer's potential Is different; In any one time period, a 
few customers are not buying any units, while others may buy 
four or five units Cat $10,000 per unit) lf. a salesman is 
able to make a sale. 

The market ts dynamic, so the customer 
potent i a 1 s change. If the market is growl ng, they change 
upward; should the market be hit by a recession, however, 
they may drop drastically. The long-term trend of the 
market is announced to the players; short term fluctuations 
are not. If a company ts Interested In finding out what the 
total market potential is In any time period, a $2000 
expenditure for market research will buy this information 
from the umpires. 

The 24 customers divide geographically 
Into four regions on the game board, each region containing 
six accounts. This geographical division allows the company 
to do local advertising (see the section on "Advertising the 
Product") and conduct market research in only one region at 
a time. Such market research, which tells a company the 
potential of each customer In the region and permits the 
pinpointing of the direct selling effort (see the section on 
"Marketing the Product"), may be obtained by paying the 
umpires $30,000 for "staff work." 

In addition to the separation into 
geographical regions, the market breaks down Into one rural 
and two urban markets. The significance of this distinction 
Is that in an urban market, where a salesman can make more 
calls per day, he has two chances of making a sale during 
each time period, while In the rural market he has only one 
chance. 

If at the end of a year a company 
desires to find out what portion of the total market It has 
been able to capture, It may but a share-of-market 



Page 131 

Information from the umpires for $2000. 
The umpire should: 

(1) Keep a list of all current account potentials. 

(2) Distribute a total customer potential, which 
comes to $360,000 at the beginning of the game, at random to 
the 24 customers as follows: 

1 account 
3 accounts 
5 accounts 
13 accounts 
2 accounts 

$40,000 
30,000 
20,000 
10,000 
0 

(3) Depending on the economic climate determined 
In advance, change these starting potentials as the game 
progresses as follows: 

--For slow growth, chane one account each quarter 
at random. Move ahead on the random number table 
yntll a number between 01 and 24 appears, then add 
$10, 000 to the potent l,a 1 of that account number. 

--For faster market growth, change two or three 
accounts In the same mannner as above for each 
quarter. 

--For a depression, change half or all of the 
accounts to zero for one or more quarters. 

(4) If a company decides to buy market Information 
(total potentlal, market research, or share of market), 
write the Information on a slip of paper and pass It to the 
company. 

Marketing the Product 

Units are sold by salesmen, who call on 
the 24 accounts In the market. In an urban market a 
salesman may make two calls per quart.er; and In a rural 
market, only one. 

In the presence of an umpire, the sales 
manager of a company points to the accounts he wants to call 
on. The umpire will tell him, after examining the random 
number table, whether a sale Is made or not. How many 
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units are sold to a customer will depend on competitive 
action. The completed decision form, returned to the 
company at the end of the particular period, contains the 
actual sales results by accounts. 

Whenever a salesman has two calls, he 
must make the second call on a any of the three to eight 
accounts adjacent to the first square called ~n; that Is, he 
may not jump accross territories. If no sale Is made on the 
first call, he may, of course, call on the same account 
again during the same quarter. Furthermore, there Is no 
limit to the number of salesmen who may call on the same 
account In one time period. Between quarters, salesmen may 
be moved to any accounts that the company wishes to cover 
during the next quarter. 

Each time a salesman makes a call, he 
has a certain fixed probability of making a sale. This 
chance of making a sale may be Increased In one of three 
ways or a combination thereof: 

--A company may Intensify Its direct selling 
effort by having more than one salesman cover one 
account as described above. In such a case, if 
the first salesman makes a sale, the second one 
may move to any adjoining account for his calls. 

--A company may support the salesman's effort by 
advertising (see "Advertising the Product">. 

--A company may attempt to Improve Its product by 
spending more money for a research and development 
effort (see "Research and Development"). 

Every salesman costs $10,000 to hire and 
then $1000 per quarter In slary. (Since the product he will 
be selling ts a high-price, complicated unit, It takes one 
year to train a salesman before he can be sent out Into the 
field.) There Is a possibility that a salesman will 
resign, In which case the umpire Informs the company of this 
loss. 

The umpire should have the following 
Instructions for marketing: 

Cl) Each 
each salesman. Move 
many numbers as the 
these numbers ts .OS 
salesmen. 

period there Is a 5% chance of loss for 
ahead on the random number table as 
company has salesmen; If one or more of 
or less, the company loses one or more 

(2) In an urban market, allow two calls per 
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quarter; In a rural market, only one call. 

(3) A salesman always has a 25% chance of making a 
sale. For each call, examine the next number on the random 
number table. If the number ts 25 or less, then a sale has 
been made; ff ft ts 26 or more, no sale Is made. 

Advertising the Product 

Product advertising In any quarter 
Increases the salesmen's chances of amkfng a sale. It 
covers only the region or regions (1,11,11 I, and IV on the 
game board) that the company designates, and Is effective In 
the current quarter only. Advertising costs $3000 per 
page, and a company may buy up to five pages of advertising 
Jn any region In any quarter. 

Here are the umpire's Instructions: 

For each sales call within the regfon(s) In which 
the company has advertised, go to the next number In the 
random number table and determine whether or not there ts a 
sale according to the probabilities In the following table. 
If the number ts the same or below the probability 
percentage, a sale Is made. 

Pages 
0 
1 
2 
3 
4 
5 

Amount 
0 
$3,000 
6,000 
9,000 
12,000 
15,000 

Research and Development 

Probabll tty of a sale 
25% 
29 
35 
42 
48 
52 

If a company can develop a superior 
product, It gains a competitive advantage. Usually, 
research and development have to be fairly continuous to 
achieve a product Improvement, but a "crash program" may 
yield results In a relatively short time. The minimum 
research effort per quarter costs $10,000, but a company may 
Invest more than that In multiples of $10,000. 

The umpire notifies the company 
Immediately when Its research and development program has 
produced results, and all units scheduled for production In 
that quarter are considered to be equipped with the 
Improvement. To find out the extent to which.customers wtl 
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prefer an Improved product, $5,000 of market research 
(obtained from the umpires) Is needed. 

Of cou~se, these ground rules can be 
altered to flt a company's situation more closely--just as 
the ground rules for other aspects of the Business 
Management Game can. A company manufactu-r Ing equ I pment for 
railroads may well want to use different units of research 
expenditure than would a comp·any making dies for plastic 
products. The length of tfme necessary to get results from 
research al so varies gre·a·tly from company to company, as 
does the cost of research to measure customer reactions to 
new products. These and other rules can·-and In many cases 
should--be tailored to the realltles of the lndustry. 

The umpires will tell a company as soon 
as a competing team Introduces an Improved product In the 
market. The players can then count~r with a stepped-up 
marketing effort or a crash research and development 
program. 

If a company Is Interested In finding 
out the total Industry research and development expenditures 
for the past year, such fnforma-tlon Is available from the 
umpires for $1,000. 

In addition, the umpires should: 

(1) Matntafn a cumulative account of each 
company's expenses. After each break In continuity Ca 
quarter without any R & D expenditures) and after each 
product Improvement, start the accumulation over again. 

(2) Make approprtat~ revtslons of the probability 
of Improvement. The cumula,tlve dollar amount spent on 
research and development determines the chances a company 
has for obtafnfng a product lnnovatfon. Examlne the random 
number table; If the next number Is the same as or below the 
probabt11ty percentage, an Improvement Is achieved. 

Cumulative amount 

$10,000 
20,000 
30,000 
40,000 
so·, oo<> 
60,000 
70,000 
80,000 
90,000 
:i.00,000 and over 

Probabll lty of Improvement 

oi 
0 
0 
2 
4 
7 
11 
15 
18 
20 
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(3) Whenever a cQmpany achieves an Improved 
product, Increase all Its sales probabfl lty percentages by 
10. For example, If Company A has an Improved product, this 
Is the result: 

Probability of sale 
Old product 25% 
Improved product +10 

35% 

If Company A spends $6000 on advertising In one 
region AD.Si has an Improved product, this ts the result In 
that reg f on: 

Probabf 1 lty of sale 
Old product with 
two pages of advertising 35% 
Improved product +10 

-45% 

(4) As soon as all three companies have Improved 
products on the market, cancel the premium of 10 for all 
three. 

(5) 
Improvements 
achieved any, 
by 20. 

If one company achieves two product 
before one or both of Its competitors have 
Increase all Its sales probability percentages 

Increasing Production 

The Initial plant which each company 
must build costs $150,000, and has a maximum throughput of 
5 units each quarter. From then on a company may add other 
production lines for $30,000 each. But each such $30,000 
Increment will Increase the maximum throughput by 5 • 

A company must pay for Increased 
capacity as soon as It decides to start construction. 
Construction time Is nine months (three time periods), and 
only after completion may the first unit be put Into "work 
In progress" for the new production line. The companies 
are not allowed to sell or otherwise dispose of excess 
capacity. 

The total lead time In producing units 
In a company's plant Is six months. First, production Is 
scheduled, and this Involves no financial outlay. Then In 
the next quarter un f ts a re put In to "work In progress" and 
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must be paid for. In the subsequent quarter these units 
come off the product Ion 1 lne , are added to Inventory, and 
may be sold. 

Total production cost contains a fixed 
cost and a variable element. The fixed cost Is Incurred 
e.ach quarter, rega·rdless of how ·many un1ts are p·roduced. At 
a maximum capacity of five units per quarter,. the fixed cost 
Is $6000, and the variable cost per un.lt Is $3000. As 
capacity Is Increased by additional production lines, fixed 
costs ·rise and the variable cost per unit decreases. If a 
company, prior to addlng a line, wants to know the exact 
costs It wl11 Incur at the next leveJ of capacity, It can 
get that fnformat Ion from the urttpl res · for $2000, but 
otherwise the umpires will Inform the company what 
production costs are when the new ltne goes f.tlto production. 

Units are added to Inventory at actual 
cost. When a unit Is sold, however, It Is deducted from 
Inventory at the average cost ( total Inventory Investment 
dfvlded by number of units In 1nventory). 

The umpires should calculate the 
production costs at various capacity levels as follows: 

Max. capac I ty Total unit cost Fixed cost 

5 
10 
15 
20 
25 

Financial Management 

$4,200 
3,600 
3,000 
2,400 

1,800 

per quarter 
$6,000 
14,400 
22,500 
28,800 

·11,soo 

Variable cost 
per un It 
$3,000 
2,200 
1,500 
1,000 

600 

The management of a company's available 
capital Is of critical Importance. Each company start·s 
with $400,000 capltal1 and grow only through reinvested 
earntngs. Profitability will be In direct relation to the 
sktl 1 with which the various parts of the bu.s1neas are kept 
In harmony with each other to achieve.sound c'iowth. 

The price per unit of product Is fixed 
at $10,000. When a sale Is made, accounts receivable are 
Increased by the total amount of the ·sale, and on the game 
·board an accounts receivable symbol Is p1aced on the fifth 
space In the "accounts recefvable" c·o1umn. Every quarter 
this symbol Is moved up one space untll after four Quarters 
It reaches the top space and becomes cash. Competitive 
pressure In the Industry forces the extension of credit; 
hence the one year collection lag. 

If a company ts short of 'cash, accounts 
receivable may be factored to get cash Immediately. The 

--------------- -----------, 
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cost of doing this Is 20% of the amount factored. 
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Appendix B 

The following Is an MSL model of parts 

of the game (for .mu:, "region") described fn Appendix A--as 

seen from the point of vfew of a player wishing to 

Investigate the game and see the effects of various 

strategies. It Is presented here as an Illustration of the 

use of MSt. 

(•ACTIVITY HIRING 

) 

C•PREREQUISTITES (•PRESENT (1000 CASH))) 
(•SCHEDULE ON CALL) 
( *PR I 0 R I TY 2 ) 
(•OUTPUT (SOME TRAINEE)) 
(•TAKES 0) 

(•ACTIVITY TRAINING 

) 

C •PREREQUISITES 

(•TAKES 3) 

CANO (•PRESENT (1000 CASH)) 
(•PRESENT (SOME TRAINEE)))) 

(•OUTPUT (SOME SALESMAN)) 

(•ACTIVITY URBAN-CALL 
(•PREREQUISITES 

(AND C•PRESENT.CASSIGNED 
(SOME SALESMAN) 
(SOME URBAN-CUSTOMER)) 

(•PRESENT (500 CASH)))) 
(•TAKES .5) 

) 

(•ACTIVITY RURAL-CALL 
(•PREREQUISITES 

(AND (•PRESENT (ASSIGNED 
(SOME SALESMAN) 

-- ---- ---- ----------- -------
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(SOME RURAL-CUSTOMER))) 
(•PRESENT (1000 CASH)))) 

(•TAKES 1) 
) 

(•EVENT QUITTING 

) 

(•CONDITIONS QUITTING-PROBABILITY) 
(•ACTIVITIES (SALES-CALL) 

(•CANCEL) 
(•REMOVE (THAT SALESMAN))) 

(•ACTIVITIES (TRAINING) 
(•CANCEL) 
(•REMOVE (THAT TRAINEE))) 

(•ACTIVITY ADVERTISING 

) 

(•PREREQUISITES (•PRESENT (3000 CASH))) 
(•SCHEDULE ON CALL) 
(•OUTPUT Cl PAGE-OF-ADVERTISING)) 
(•PRIORITY 3) 
(•TAKES 1) 

(•ACTIVITY R&D 

) 

(•PREREQUISITES (•PRESENT (10000 CASH))) 
(•TAKES 0) 
(•SCHEDULE ON CALL) 
(•OUTPUT (10000 R&D)) 

(•EVENT PRODUCT-IMPROVEMENT 
(•CONDITIONS P-1-PROBABILITY) 
(•ACTIVITIES CR&D) 

) 
(•OUTPUT Cl PRODUCT-IMPROVEMENT))) 

(•ACTIVITY PRODUCT-INITIATION 
(•PREREQUISITES (•PRESENT 

) 

Cl PRODUCTION-LINE))) 
(•TAKES 1) 
(•OUTPUT (5 UNITS-IN-PROGRESS)) 

(•ACTIVITY PRODUCTION-COMPLETION 
(•PREREQUISITES (•PRESENT 

(5 UNITS-IN-PROGRESS))) 
(•TAKES 1) 
(•OUTPUT (5 UNITS)) 
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) 

(•ACTIVITY PRODUCTION-LINE-CONSTRUCTION 
(•PREREQUISITES (•PRESENT (30000 CASH))) 
(•TAKES 3) 
(•OUTPUT Cl PRODUCTION-LINE)) 

) 

(•ACTIVITY FACTOR 

) 

(•PREREQUISITES (•PRESENT (5000 A-R))) 
(•TAKES 0) 
(•OUTPUT (4900 CASH)) 
(•SCHEDULE ON CALL) 

(•EVENT SALE 

) 

(•CONDITIONS SALES-PROBABILITY) 
(•ACTIVITIES (SALES-CALL) 

(•OUTPUT (10000 A-R))) 

(•FUNCTION SALES-PROBABILITY 

) 

(•ARGUMENTS (PAGE-OF-ADVERTISING)) 
(PRODUCT-IMPROVEMENT)) 

(•RETURN 

)) 

C•SUM-UP 
.25 
(AD-FUNCTION 

PAGE-OF-ADVERTISING) 
(TIMES .10 

PRODUCT-IMPROVEMENT) 

(•FUNCTION AD-FUNCTION 

) 

(•ARGUMENTS (PAGE-OF-ADVERTISING)) 
(•RETURN . 

(•TABLE (PAGE-OF-ADVERTISING 
•RESULT) 

CO 0) Cl .04) (2 .10) C3 .17) 
(4 .23) (5 .27))) 

(•FUNCTION P-1 PROBABILITY 
(•ARGUMENTS (RID)) 
(•RETURN (•TABLE (R&D •RESULT) 

CCLESSP R&D 40000) 0) (40000 .02) 
(50000 .04) (60000 .07) (70000 .11) 
(80000 .15) (90000 .18) (100000 .20) 

--~-------------------- ----~-- ------- -
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