
MAC TR-125

A MODEL-DEBUGGING SYSTEM

William S. Mark

This research was supported by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N00014-70-
A-0362-0006.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

Page 2

A MODEL-DEBUGGINGSVSTEM

by

Will Jam Scott Mark

Submftted to the Depa.rtment of Electrical Englnee·rlng oft
January 23, 1.974 In partial fulfillment of the requlrements
fw the, Degree.s: of Bachelor of Sc r enc:e amt Mas t:e'T of
SC: (;ence: •'

ABSTRAC'T

This research discusses a p,arog.ram wn,fch aids the
user of an automatic programmln.g 9"ttlm (A'PSJ In the
"debuggfn>g"' of' h:<1s model of: his. p;f'ofll'.em s·l;:tua.:t f,GR. In
essence., the _..,.,must make sttre' that tre and'. the A.PS mtlB.
t·n. Mme: ttrFng by the de·scrf p:t'f"on of the p«rroblem wh tch the
AfJ'S J,s ro sal¥e. The probl'em c:tomatn c:Gft11-fdered Jn tlHs
thes:i S f S that Of "bus J ne SS game'S,. (J .e.,. the maaagemen:t
slmtr.f&"thm gantt!s whlch are used as a le·arntng tool ht the
stu4Y of· matlfag.1tment). A language for descrtblng models of
these· games ~s p.,resented. The paper tbe·ff cte·scrlb'es the
program;' s methods <'>f s fmu 1 at Ing and fl nd tng bug-s Jn models
written In· tnls Tanguage. Important a'spects of the program's
problem-·solvTng ap.proach to debugging are . fts fnterna1
knowledge o'f "bugs" and of user fn.tent''fon w·fthfn t·he ft'10<te:l.
Thfs lnttu·nal knoWtkdge stresses th• f~r'tanc.t!' o.f bug·s
arising from t1te fnt:eractlon of suf)modeTs wltttln ~he model.
Some detaf ls of· tlie program's f'.mptftlantat·fon (ln the
Connf'ver language) are discussed'. The necessity of
"modeol-debugg.fn.glt rn automat le progranmlng rs emphasized.

THESlS0 SBPER\HSOR: Wl 1 11 am A • Mart In
TfTlE: As.so.elate Professor of Ele:<:trlcal Engln.ee.rlng

Page 3

ACKNOWLEDGEMENTS

I would l Ike to acknowledge the key
t de a s an d use f u l c r t t i c t s m of P r o f • Ma r t i n w h i c h we re so
important to this thesis. I would also like to thank Mark
Laventhal for providing criticism in the later phases of
this research aPd for taking the trouble to proofread the
entire document.

Page 4

Contents

l
1.1

I n t rod uc t I on ••••••••••••••••••••••••••••••••••• 5
Deft'ne ''define"! ..•.....••••..•.•...••••....... 6

2

1.1.1 What I s a model ? ••••••••••••••••••••••••••••••• 6
1.1.2 What ts debugglng? •••••••••••••••••••••••••.••• 7

1.2 The Importance of model-debugglng ••••••••••••••••••• 8
1.2.1 Model-debugging as a universal concept ••••••••• 8
1.2.2 Model-debugging In automatic progranmtng ••••••• 9

1.3 Details, detalls ••••••••••••••••••••••••••••••••••• 14
1.3.1 Resttctlon to the WOBG •••••••••••••••••••••••• 14
1.3.2 Role of the program in the thests ••••••••••••• 18

Just to give you an tdea •••••••••••••••••••••• 20

3
3.1

Bugs • ••
Bugs In models •••••••••••••••••••••••••••••••
What did do wrong? •••••••••••••••••••••••••

.35
• 36

3 .1.1 • 36
3.1.2 Interaction bugs •••••••••••••••••••••••••••••• 37

3.2 Interaction In management systems •••••••••••••••••• 39
3.3 Bugs In WOBG models •••••••••••••••••••••••••••••••• 43

4 How the program works ••••••••••••••••••••••••• 47

5

4.1 The model specification language ••••••••.••••• 48
4.2 Simulation as a way of doing thtngs ••••••••••• 58

4.2.1 The simulator flnessed •••••••••••••••••••••••• 60
4.2.2 Simulation history and SIMULATION-HISTORY ••••• 62

4.3 Goals and envlronments •••••••••••••••••••••••• 68
4.4 Debugging by problem-solvlng •••••••••••••••••• 83

4.4.l The attack •••••••••••••••••••••••••••••••••••• 85
4.4.2 The voice of REASON ••••••••••••••••••••••••••• 90

4.4.2.1 GOOD REASON's •••••••••••••••••••••••••• 92
4.4.2.2 Basic BAD REASON's ••••••••••••••••••••• 96
4.4.2.3 Higher-order BAD REASON's ••••••••••••• 103

4.4.3 The post-mortem recrlmlnatlons ••••••••••••••• 114
4.5 Don't confuse me with the facts •••••••••••••• 120

Concluslons •••••••••••••••••••••••••••••••••• 123

Blbl lography••..•••••..•....•••••••••.•••..•..••.• 126

Append l x A .•........•.••.•..• •-• .••••.••••...•..•••••... 128

Append I x B •.•••••••••••••••••••••••••••••• fl •••••••••••• 13 8

Page 5

1 Introduction

The purpose of this research Is to

explore a methodology for debugging certain models of real

world situations. The models considered here consist of

groups of well-defined submodels. The submodels themselves

are fairly structured; the lnteractfon between submodels is

not. In this paper I will discuss a program which uses the

techniques of goal-programming to explore the lnteractive

behavior of a given model. The basic idea is that a bug in

the model wit 1 give rlse to a "problem". The program then

tries to solve this problem in an environment defined and

constrained bl' the model. Those steps at which the

program's problem-solving process encounters constraints

caused by unintended Interaction of submodels suggest

possible locations of bugs within the model.

To a large extent, the problems of this

research are "artiflclal Intelligence" problems. That ls,

the research problems involve representation of knowledge in

a form which ts useful to the problem-solver, and

representation of the problem-solving process as a computer

program. The remainder of this paper will deal with one

solution of these problems for a program whfch debugs models

of management sltuatlons. Thfs section will nrP~Pnt ~ mnrP

Page 6

complete explanation of the area of model-debuggfng as I see

It. The next section provides an overview of the whole

debugging process In the context of a d~taf led example.

Later sections develop some J de.as about bugs,

problem-solving, goal-programming, and the program Itself.

1.1 Define "define"

1.1.1 libAt. il .a model?

Marvin Minsky describes the concept of a

"model" as follows:

If a creature can answer a question
about a hypothetical experiment without actually
performing It, then It has demonstrated some
knowledge about the world. For his answer to the
question must be an encoded description of the
behavior (Inside the creature) of a sub-machine or
"model" responding to an encoded des-.:rlptlon of
the world situation described by the q~estion.

We use the term "mode 1" In the fo 11 owl ng
sense: to an observer B, an object A* l.s a model
of an object A to the extent that B can use A• to
answer questions that Interest him about A. 1121

For the purpose of this research, the term "model" wll 1 be

used In a much less general and more concre~e way.

Specifically, the program discussed here requires that the

"encoded desc r I pt I on" be of a pa rt lcu1 a r pre-def I ned type,

that the kinds of world-objects "A" to be modelled belong to

a very llm1ted class of things, and that 11 B111 s questions of

Page 7

Interest be sharply restricted.

After this section, the term "model"

will be used to refer to a user-defined collection of

constructs tn a model speclffcatton language CMSL)

(presented In section 4.1) which describes a "real-world"

management system. Cl) For now, suffice Jt to say that a

"model" ts a 1..<ser's description of hfs system of Interest.

That Js, the user thinks that the model describes his

system--actually, the model contains bugs.

1.1.2 i'Lb£t ~ debugging?

When a model's performance Js not what

the user expects, we say that the model has a "bug" (see

section 3). The process of flndln~ what causes the

discrepancy between performance anrl expectation Is called

"debugging". It Is the nature of complex processes that the

cause of a discrepancy may be related to the manifestation

of the discrepancy only through a seemingly Intricate chain

of reasoning. The purpose of this research fs to write a

program which knows the necessary ktnd of reasoning to go

from the manifestation to the cause of a bug.

(1)
Actually, a real-world business~.

Page 8

In order to Incorporate this reasoning

process, the program must have knowledge about MSL models

(see 4.1), tt.e kinds of bugs that occur In MSL models (see

3.3), how these bugs manifest themselves (see 4.4.2), and

how the causes are related to the manifestations (see

4.4.3). Of course, this Is In some sense the .. whole story";

before launching Into It, It might be a good Idea to examine

our reasons for worrying about model-debucg~ng In the first

place.

1.2 IhA lmoortance .o..f. model-debygclng

1.2.1 Model-debygglng ~A unlyersal concept

The process of gaining knowledge about

the world Is a procfl!ss of model formation and debugging.

The progress of all organized thought, especially science,

has often been described Jn this way. More recently, work

by psychologists such as Piaget and artificial Intelligence

researchers such as Seymour Papert has bro~1ght this model

formatfon/debuggln~ view to bear on the entire learning

process. Certainly, no one can doubt the Importance of

studying so fundamental a process.

Of course,

viewpoint must be strictly limited.

In this research, the

The following sections

Page 9

will describe a process which seems only barely related to

the grandiose exaltations of the previous paragraph. For

one thing, the extremely close Interaction between model

debugging and formation will be greatly restricted to allow

examlnatTon of the debugging process Itself. Also, the

restrictions Inherent Cl) Tn the "show a workTng program"

approach of this research make the class of problems seem

trivial when compared to the overall problem of

model-debugging.

Although could now cl a Tm that the

val ldlty of this research effort Ts that Tt provides an

Initial Investigation into a very hairy area (the usual

Induction step In artificial Intelligence theses), will

move In more practical directions. (Of course, I hope for

the higher parallels all along.) Specifically, consider

the importance of the kind of model-debugging actually

presented here for the new field of automatic programming.

1.2.2 Model-Qebugglng Jll aytomatlc orogrammlng

Cl) These restrictions are "Inherent" at this stage of our
knowledge, at this stage of my knowledge, and in the
exigencies of churning out a Master's the~is. Certainly,
there are no Inherent restrictions In the capability of
computers to Incorporate the process.

Page 10

Automatic programming ts the art of

providing a computer prop;ram (an .. automatic programming

system" CAPS)) which takes as Input some user-amenable

description of a task and produces as output computer

programs to accomplish that task. The user's description of

his task ts his 11model" In the sense descrfbed fn 1.1.1.

This ts the "model" which the program described In this

thesis must debu~.

But why worry about model-debugging?

Why not let the user specify something, let the system

generate a solution program, and simply leave It to the user

to respecify the problem If he doesn't lfke the results?

There are several answers to this question, some obvious,

others not so obvious. Basically, the reasons for providing

sophisticated model-debuggfng af ds revolve around

considerations of efficient use of the AP·s, ease of use of

the APS, ease of construction of the APS, and "safety" In

the use of the APS.

The most obvious reason for

model-debugging Is that since code-genera t I on Cl.e.,

actually writing the solution program after the task

description Is in) Is a rather arduous process, It Is

worthwh f le making sure that the user and the APS agree on

what the problem Is before the APS actually· writes programs

Page 11

to solve the problem. This idea of pre-code-generation

debugging Is as old as compilers, and ls fairly well

understood. (1)

A related but not quite so obvious

reason for providing model-debug~fng aids In an APS Is to

make the system easter to use. This Is especially necessary

In an APS like Protosystem I 191 whfch attempts to provfde

problem-solving expertise to aid the user. The point ts

that the APS is designed to provide problem-solving

knowledge for a user who is not at all adept In computer

problem-solving. To help him design a description of his

task and then not to aid him fn debugging that description

seems like providing not much help at all: descriptions of

complex problems "always" have bugs, and f indlng them ts

usually as sophisticated a tasK as writing the description

In the first place. (2) Thus, beleve that an APS that

does not provide model-debugging aid would be difficult, if

not Impossible, to use.

Supposing, then, that some kind of

(1) The actual debugging of models may be quite different
from the debuggfng of source code, but the reason for doing
so Is the same In this case.

(2) Statistics have shown that about 50% of the time In
large system development ts spent In ciebugglng 121.

Page 12

debugging aid Is necessary, how should It be Interfaced with

the user and with the APS? The answer, I thlnk, Is that

debugging should occur when the system's knowledge of the

user's problem ts still at a high level of symbolic

description. That Is, prior to code g~neratlon. This

leaves the debugging effort In the realm of

model-debugglng. The reason that It Is Important to keep

debugging at a high symbolic level Is to keep the design of

the APS as simple as possible. It Is quite difficult to

maintain the links between mistakes which occur at low

levels of description (e.g., programs) and their high-level

causes. Certainly the user cannot be responsible for

maintaining these links. If the APS tells him that "an

Illegal reference was generated from location 11437", we

cannot expect him to have-.any notion of what went wrong with

his model description. In fact, the construction of an APS

which could make this connection between the bug's

manifestation and Its cause would be extremely difficult.

It seems much more reasonable to carry on debugging at a

high level of symbol le description which both the user and

the APS can understand In terms of the user's model.

Finally, there Is a ve~y special problem

which arises In connection with ~he use of the APS. The

user begins to develop a deoendencv on the APS and to trust

Page 13

the results of the solution programs. When the system ts

more expert then the user (as ts the case In Protosystem I),

the user may even trust results which "common sense" (i.e.,

previous experience, educated guesses, etc.) tells him are

wrong. In these c I rcums tances, t t ts of paramount

Importance that the user be sure that the APS has a correct

understanding of his model. Other than the model-debugging

subsystem within the APS, there may be no source of feedback

which enables the user to find out that there is anything

wrong at al 1 • (1)

The model-debugging facil lty has sole

responsibility for helping the user to understand what ts

wrong with his model In terms of the model--1.e., In the

only terms the user understands. An A~S which does not

provide a facll tty for Interactive discussion of the model's

assumptions and their ramifications ts a dangerous tool

Indeed. Thus, the user must always have some means of

observing the effects of the assumptions In the model and

for making sure that the APS "knows what he means". The

model-debugging subsystem of the APS provides the necessary

mechanism.

Therefore, for reasons of efficiency,

Cl) The output code and, in
underlying Its generation
ave rage user.

many cases, the assumptions
will be Incomprehensible to the

Page 14

usability, and safety, a model-debugging facility ts a

necessary part of an automatic programming system. St fl 1,

the general problem of model-debugging In automatic

programming Is much too large to be constdered here. In

the next section, I will explain the partlc·ular subdomatn of

automatic programming I will attack1 and my reasons for

choos lng It.

1.3 Details, details

1.3.1 Restriction .t.Q. 1bA liQ.fili

The program described In this thesis ts

specialized to work on models chosen from the "world of

business games" (WOBG). By this I mean an environment In

which the concepts common to business games are the stock

knowledge. There are several reasons for choosing this

domain of Interest: Cl) the JT!Odels are sufficiently

structured to be formally expressible, but are not so

structured that they are susceptible to mathematical

analysis; (2) the Interaction of submodels ts the most

Interesting and complex aspect of the model; (3) this ts one

of the few domains which Is both reasonable-sized and

"real-world" Ctn the sense that there ts a r;reat deal of

Interest In ft Independent of this rese·arch); (II) It Is a

Page 15

natural subdomaln of the "world of business" (WOB) of

Protosystem I I 91.

Models In various domains differ greatly

Jn the amount of "structure" present Jn the description of

the model. By "structure" I mean clearly defined rules of

construction and constraints on elements. The methods used

In this research require well-defined models. However, If

the mode 1 1 s "too we 11-def I ned", debugg l ng becomes

uninteresting, or rs more easily accomplished by

mathematical tools. The WOBG seems to have just the right

level of structure. Since the Idea of modellfng business

systems Is well established, there exist a variety of

formalisms for expressing business models. These modelling

formalisms are even more clearly defined for business games.

The very Idea of a game Is to have a precise set of elements

and rules for manipulating them. Nonetheless, understanding

and debugging models of business games is by no means

trivial. There ls good evfdence that users of even the

simplest of business games have very poor and "buggy" models

of what is going on l31,f6l,l8t. The main reason for thfs

ts the complexity of the Interaction ~etween submodels Jn

business games.

am pa rt I cu 1 a r 1 y Interested In

debugging models ln which Interaction of subparts Is a major

Page 16

factor In model complexity. Most model-worlds which have

been Investigated Jn artlficlal Intelligence research (e.g.,

the ''blocks world" 1211) have few complex Interdependencies.

Existing Interaction problems tend to be downplayed In order

to emphasize other aspects of the models. (For example,

see Winograd's "solution" to the "flndspace problem" In

1211; cf. 1171.> I wish to explore the other end of the

Interdependency scale; I.e., highly Interactive models. (1)

The kind of models which the program described Jn this

research Is designed to debug are those In which the user

has a good understanding of the various parts of the model,

but does not understand how these parts (which I will call

"submodels") Interact \'llth each other. (2)

In fact, all. of the bugs which the

program Is desfgned to find arise from Interaction of

submodels (see sectlon 3.3). Business ~ames have very

(1) Real world sftuatlons presumably fall somewhere In
between these two extremes. However, I will devote a
considerable amount of space Call of section 3) to an
examlnatfon of how fnteractfon of submodels Is the major
complexity factor In real world situations (In particular,
in large business organizations), and how these real world
Interdependency problems form the "semantic roots" of
similar problems in the toy-world used In this research. I
am hoping to motivate an Interest Jn the "Interaction bugs"
which wf 11 preoccupy the remafnder of the thesis.

(2) I believe that this ts a large and Important class of
models, including models of "systems" with well-understood
elements (see 131).

Page 17

precisely defined elements (see the example game In Appendix

A). However, these elements Interact wtth each other to

the extent that understandfng how the "whole system" (I.e.,

all of the lnteractlng parts) works is a major challenge to

the players. Thus, since poorly understood Interaction of

submodels ts the major source of bugs In this domatn, the

WOBG forms an excellent testing ground for my pro~ram.

Business games also have the Important

property of being Interesting in their own right. Playing

and understanding business games is considered to be an

Important activity at many schools of management throughout

the world. There Is therefore ltttle danger of betng

accused of deslp;nlng a program \"1hfch works only in an .a.d. ~

problem domain. Furthermore, since people are used to

trying to model business games for themselves, they can

appreciate the efforts of a program whlch atds In the

debuggtng of such models. Thts "real world" flavor of

buslness games ls one of their most important properttes for

this research.

Finally, the WOBG Is a natural subdomaln

of the WOB of Protosystem I. Thts Is useful, first of all,

because it allows a certain Inheritance of phtlosophy and

technique from the larger project. More Importantly,

though, It enables the model-debur,ger presented here to be

------ -. ----------

Page 18

seen In the context of a large automatic programming system.

Since the raison d'etre of my program Is use In an APS, this

connection with Protosystem I ts an Important aspect of the

research.

Therefore, the

model-debugging presented here will

basic philosophy of

be applied to models

chosen from the world of business games. In order to show

that my basic Ideas about debugging are Indeed "working

Ideas", have written a program which uses these concepts

to debug actual models of business games •

1.3.2 .Iru:. L2.le. Q.f ~ program l.o. W, the s f s

The program presented In this thesis

serves several purposes: Illustration of Important methods,

demonstration of the workability of the techniques, and

discussion of design issues for model-debugging programs.

Certainly, the major use of the program In the thesis ls to

provide exam~les for the debugging theory developed In the

research. All the major debugging Ideas are Illustrated by

a scenario from the working program. As for the second use

of the program, a little care ts necessary In explaining the

"proof" va 1 ue of the program t n the th es Is. It ts often

contended that working programs prove the utility of the

Page 19

theories that they represent. This Is true, so long as the

reader ts careful not to use some sort of false Induction

principle to Infer too much from what the program actually

~. As Is almost always the case, the program In this

thesis can actually do only a subset of what Is talked

about. I will always make It clear what the program can

and cannot do, how the program can be extended to do more,

etc. The reader should draw any general

concluslons--carefully-·from this informatfon.

Using this "program-as-Illustrator"

philosophy of presentation, will now launch Into a

detailed example of program operation on a simple model.

This will hopefully give the reader a good basic Idea of

what the rest of the thesis has to say. The issues raised

In the example and the example Itself will be discussed at

length In the rest of the thesis, each aspect of the problem

appearing In Its logical section (see table of contents).

The Important thing to

about this program Is that It finds the causes

Page 20

keep In mind

of bugs In

much the same way that people Cor Sussman's HACKER 1181) do:

by trying to solve problems--and falling. In this section I

will present the complete works of my program In connection

with a very simple example. A lot of new notation Is

presented here; please don't get bogged down In ft.

present ft here only to avoid vagueness In showing what the

program actually works with. More complete explanations of

all the notation (and Indeed, the entire example) appear In

the appropriate sections later on. This discussion focuses

on what the program means by a "bug" and on some of the

procedures used to go from the manifestation to the cause of

a bug. Neither the procedures nor the descriptive

mechanisms used by the program are discussed In detail here.

Philosophical Issues about representation of knowledge In

the program and goal-progranmlng are eschewed completely.

This Is a quick "Introduction by doing" to the methodology

of the program.

Suppose the user presents the program

with the following (tiny) model:

Page 21

Consfder the followfng model
of sales. A sale Ts a probabilistic occurence
which depends only on the amount of advertising
done. AdvertTsfng costs $3000 per page and Is
good for one quarter. I buy three pages of
advertising per quarter, ff the money to do so Is
avaf lable. Sales take place during sales calls.
There fs one call per salesman per quarter. A
customer never buys more than one unit. If a unit
ls sold, th~ company records $5000 In accounts
receivable (A-R), which Is not collectable for
another two quarters. At any time, a salesman has
a 5% chance of qufttfng. If a salesman quits, a
new man fs hf red. After three months of
trafnfng, this man becomes a salesman and may
start makfng calls. Both salesmen and trainees
are paid $1000 per quarter. Trafnees also have a
5% chance of quitting at any time.

The user would Input thf s model Into the program with the

model specfffcatlon language presented Jn section 4.1. In

these MSL terms, the model looks lfke:

(•ACTIVITY HIRING

)

(*PREREQUISITES (•PRESENT (1000 CASH)))
(*SCHEDULE ON QUIT)
(•PRIORITY 2)
(•OUTPUT (SOME TRAINEE))
(•TAKES 0)

(•ACTIVITY ADVERTISING
(•PREREQUISITES (•PRESENT (3000 CASH)))
~*SCHEDULE 3)
(*TAKES 1)
(•PRIORITY 3)
(•OUTPUT Cl PAGE-OF-ADVERTISING))

)

(*ACTIVITY TRAINING
(*PREREQUISITES

(AND

)

(•PRESENT (1000 CASH))
(•PRESENT (SOME TRAINEE))

I .._________ ___ ---

Page 22

)
(•TAKES 3)
C •OUTPUT (SOME SALESMAN))

)

C•ACTIVJTY SALES-CALL
C•PREREO.UJSITES

CANO

)
(•TAKES 1)

)

)

(•PR!SENT (1'009 CASH))
(•PRESENT fl UN1T))
C•PRtSEWT CS:OME SALESMAN))

(•ACTIVITY COLLECTION

)

C •PREREQU 1 SI TES C •PRESENT (5000 .A-R)))
(•TAKES 2)
C •OUTPUT (5000 CASH))

(•EVENT SAlE

)

(•CONDITIONS SALES-PM>&AIULITY)
(•ACTIVITIES (SALES-CALL)

(•OUTPU.T CSGOO A•R))
)

C •EVENT QU tTTt.NG

)

(•CONDITIONS QUITT1NG-P1tOB'ABllfTY)
(•ACTIVITIES (SALES-CALL)

(•CANC.El)
C•REM<WE (THAT SALESMAN))

)
C •ACTIVITIES CTRAI NUfG)

C•CANCEl)
(•REMOVE (THAT TRAINEE))

)

(•FUNCTION SALES-PROBABILITY

)

(•ARGUMENTS C PAG:E-OF-ADVER1' ISi NG))
(•RETURN ad-funct Ion))

Cl will not show the exact nature of
"ad-function", as It ts a •TAB.LE cons.truct (see 4.1)--

Page 23

just a bunch of numbers that we shouldn't worry about
here <see Appendix B).)

Now suppose the user gives the program

the following:

(•SIMULATE 4 1
CC 30000 CASH)
(50 UNIT)
(DON SALESMAN)
(MARK SALESMAN)
(STEVE SALESMAN)
(Bill SALESMAN)
(.05 QUITTING-PROBABILITY)))

or, In words, simulate the model for 4 quarters, showing a

time-slice every quarter, and with the given lnfttal values.

Before considering the actions of the program, ft Is

worthwhile to note a few things.

First, observe that the the user has

given the model (50 UNIT) as an Initial resource. Thfs is a

typical example of a model-testing technique: adding slack

to decouple submodels. Presumably, UNIT is something

created by another submodel which the user does not wish to

consider at tnfs time. The user effectively removes this

"other submodel" by making sure that the submodel Is never

1 Tm I ted by the amount of UN IT ava I lab 1 e. (The PRODUCT I ON

submodel which creates UNIT's Is shown tn Appendix B.))

Second, note that we are making an

fmplfclt assumption about what the user will do with the

Page 24

s I mu lat Ion after It Is presented by the program. We are

assuming that he will be either satls.fled or dissatisfied

wt th the result Cl) • tf he Is dlssatl'sfled, he wfl 1 express

h Is expectat I on to t.he system In the form of a goal. Th Is

Initiates the debugging process. At th I s t I me, 1 et us

rejoin our example, In progress.

The first actlon of the program Is to

simulate the model as the u·ser requests. If the user's

expectat I on f s ful f tl 1 ed, no further act Ion wl 11 be taken

until the ~ser's next request for simulation. If his

expectation Is not met, the ~rogram will help him find the

bug In the model.

The requested simulation Is shown below.

The representat ton used here <and thro~ghout the thes Is)

should be seen as a gras;>hfcal description of the complex of

list structure which the program us.s to cfescrlhe simulation

histories. Every part of the dlag:ram htt.s an analog fn the

Conniver 1201 representation of the program (see section

4. 2).

Cl) We are also assuming that the user Is a good judge of
the overall performance of the sys:t.Ht he Is tryJng to model.
This Is of course n·ot Inconsistent wfth our basic premise
that the user does not f.ul 1 y understand the work I ngs of the
system (and therefore has bugs In his model). Rather, we
are saying that the user knows ·pr&tty well what the model
should do, but Is having trouble making the model do what ft
should.

SIMULATION-HISTORY

•TIME-SLICE 0•

RESOURCES:
SALESMEN: DON, STEVE,MARK, BILL
CASH: 30000
UN1TS: 50

•TIME-SLICE 1•

RESOURCES:
SALESMEN:
CASH:
UNITS:
A-R:

DON, STEVE, MARK, BILL
17000
48
10000

SCHEQULED •ACTIYITY's:

•EVENT's:

. SALES-CALL (DON)
SALES-CALL (STEVE)
SALES-CALL (MARK)
SALES•CALL (BILL)
ADVERTISING
ADVERTISING
ADVERTISING
COLLECTION CTIME·LEFT • 2)
COLLECTION CTIME-LEFT • 2)

SALE CBILL)
SALE COON)

•TIME-SLICE 2•

RESOURCES:
SALESMEN:
CASH:
UNITS:
A-R:
TRAINEE:

DON,MARK,BILL
5000
47
15000

GOOOl

SCHEDULED •ACTIYITY's:
SALES-CALL (DON)

Page 25

•EVENT's:

SALES-CALL (MARK)
SA.lES-CA.l1 Clt.tll
AOVERTIStNG
ADVERTlSUIG
ADV!RT f.S I NG
COf...lEC.TUltl CTtM£-LEFT • ll)
C.OttECTtQM CTlMl-LEFT • 11)!
CtJll.ECTtON CTtfll£'•L£FT • 1)
HUHNG
TRAlNlNG (TIME-LEFT • 3:.)

SALE (MAR:K)
QUfTTtNG (STEVE)

•TlME-SllCE 3•

RRE.SQtJRCES:
SALESMEN: DON, MARK, Bf, LL.
CASH: 2:0,ft
UNtlS: 46
A-R: l&;ga
TRA•NEE: 60001

SCHEDULED •WlYlty•s:

•EVENT's:

SALES·-CA.L L (DON)
s.A.l£S•CAll {Mt.UK)
SALtS-CAll (B.tll)
ADY£:RT IS l:NG
ADVERTrstNG
ADVERTfSING
COlL.ECTJON CTl'ME-LEFT • 2:J
CCl>lt.tc·TlOM (Tl'M£-LEFT • 1)
TRAINING (TlME-LEFT • 21

SALE (BILL)

•TtME-SLJCE 4*

RESOURCES:
SALESMEN:
CASH:
UNITS:
A-R:

DON, MARK, EULL
1800
ft.5
lOiHtO

Pa.ge 26

TRAINEE: GOOOl

$CHEDULED •ACTIYITY's:

•EVENT's:

SALES-CALl COON)
SALES-CALL (MARK)
SALES-CALL (Bill)
ADVERTISING
COLLECTON (TIME-LEFT • 2)
COLLECTION (TIME-LEFT = 1)
TRAJNING (TIME-LEFT • 1)

SALE (MARK)

Page 27

The simulation has resulted In 5 SALE's.

Suppose that the user expected 6. There fs a bug In the

model--but where? Note that the model runs out of CASH In

the last quarter (and therefore cannot schedule all three

ADVERTISING •ACTIVITY's). However, the bug fs not "NOT

ENOUGH CASH". Rather, this effect fs svmptom@tic of the

bug. Most of the effort of the program is to point out

bugs, not their symptoms. But this requires problem-solving

In the context of the simulation history. Back to the

actual action of the program •••

The user notes that there were only 5

SALE's rather than the expected 6.

rectify things, the user gives the system

(•GOAL (INCREASE SALE 1))

In order to try to

The program Is now fn the debuggfng business. It must try

Page 28

to solve the problem of Increasing the number of SALE's In

the context of the given simulation hi-story. The places at

which It encounters dubious constraints In the simulation

env 1 ronment are 1 ts Poss I b 1 e 1 ocat lons fo;r bucs.

The program uses the model and the

simulation history to perform the requlslte problem-solving

activity for each goal as It Is presented. This may be

thought of as askfng two questions of the model and the

s I mu 1 a t I on :

(1) Why didn't you do this before?

and, If there Is no good reason.,

(2) How could we do this?

The method of asking and receiving answers to these

questions Is best explained by continuation of the example.

The f I rst goa 1 (g lven by the u.ser) Is

(*GOAL (INCREASE SALE 1))

Since this goal was given by the user, the first question Is

not asked. However, the second question ls asked. How can

we Increase the number of SALE's? ly examining the model

and using the logic of INCREASE (explained In section

4.4.1), we see that one way to Increase SALE's 1 s to

Increase the probability of a SALE occur Ing. Thus, the

system generates a new goal

Page 29

(•GOAL (INCREASE SALES-PROBABILITY))

Now the program asks question number one: why wasn't

SALES-PROBABILITY higher in the first place? The program

looks at the simulation history and notes that the

SALES-PROBABILITY was at a low In time-sllce 4. Why Is ft

so low? There was not enough ADVERTISING, the program

determines. This Is a BAD REASON: the model was

RESOURCE-LIMITED. Okay, how can we get the necessary

ADVERTISING? In order to Investigate this question, the

program generates a new goal

(•GOAL (SCHEDULE 2 ADVERTISING 4))

whfch means "try to schedule 2 ADVERTISING •ACTIVITY's In

time-slice 4". (The fact that we need .z ADVERTISING

*ACTIVITY's is presumably due to the exact nature of

"ad-function", and wt 11 not be discussed he re.) Again, the

program asks why the ADVERTISING •ACTIVITY's were not

scheduled In the first place. The answer Is that there was

not enough CASH; still RESOURCE-LIMITED, so we pursue this

1 lne with:

(•GOAL (INCREASE CASH 6000 4))

By again asking the questions and forming new goals, the

program forms the following •GOAL line:

(•GOAL (INCREASE CASH 6000 4))

•

(•GOAL (SCHEDULE 2 COLLECTION 4))

(•GOAL CALLOW 2 SALE 2))

(•GOAL (SCHEDULE 3 ADVERTISING 2))

Page 30

("ALLOW" rather than "SCHEDULE" because SALE Is an •EVENT.)

Note that we are back to SCHEDUllng ADVERTISING. Are we In

some kind of 1 oop? No, we are movtng back In t lme.

Furthermore, this time, when we ask why we dfdn 1 t schedule

three more ADVERTISING •ACT1VITY 1 s In time-slice 2, we find

that the reason Is that the user told us not to (via his

•SCHEDULE specification In the ADVERTISING •ACTIVITY (see

page 17)). Thus, ADVERTISING Is SCHEDULE-LIMITED In

t lme-sl Ice 2. Th Is Is a GOOD R·EASON, and the program

terminates action on th ls 1 lne of thought. Nonetheless,. It

saves Information about the terminated 1 tne. · lf no more

.. , , kel y" bug Is found, the program wt 11 tel 1 the user. that

his •SCHEDULE specification for ADVERTISING ts Insufficient

to allow the model to meet his expectations. In the

meant lme, however, the program explores the model for more

likely bugs. The program does this by "backing up".Cl) some

Cl) This Is ng_t, automatic backup In the PLANNER sense. The
program backs up only In certain cases, and only under
program control. More Jmp.ortantly' the effects of the
"backed-over" •GOAL' s a re "undone mI.x l.o. .ili context S2f.
..t.ru:. slmylattoo blstorx. The terminated 1 Ines must be saved
for later examination by the program. Thts ls essential for
handling the •GROUP constructs discussed later In the

Page 31

and trying a different 1 lne of attack.

In this case, the program checks to see

If there ls another way to accomplish

(•GOAL CALLOW 2 SALE 2))

Usfng f ts usual questfon-asklng procedure, the program finds

the alternate lfne

(*GOAL CALLOW 2 SALE 2))

(•GOAL (INCREASE SALES-CALL 2 2))

(•GOAL (INCREASE SALESMAN 2 2))

(•GOAL (SCHEDULE 2 TRAINING -1)) ???

(Note that CASH does not have to be INCREASEd. Jn thfs line

because there Is already a sufficient amount to support the

new INCREASEs.) The program Immediately notes that It ts

trying to schedule In negative time, and terminates the

line.

This finishes off the entire

(•GOAL (INCREASE SALES-PROBABILITY))

Idea. But there ls still another way for the program to try

to get that extra SALE It is looking for: by trying to

increase the number of SALES-CALL's. Thus,

(•GOAL (INCREASE SALE 1))

thesis, and for making final debugging recommendations (see
section 4.4).

(•GOAL (INCREASE SALES-CALL 2 4))

(•GOAL (INCREASE SALESMAN 2 4))
,,

(•GOAl (SCHEDULE 2 TRAHU.S 1))

(•GOAL (I NCREAS£ TRAHUtfC 2 1))

(•GOAL (INCREASE HIRING 2 1))

Page 32

(The choice of time-slice 4 for IHCREASlng SALES-CALL was

not arbitrary: the program chooses a sl Ice where It thinks

It can do the most good.) But the program cannot accomplish

this last goal. Why not? The user specifically said not to

hire until someone quits. The program then checks to see

ff HIRING did fn fact occur. Yes--one time-slice later.

This particular set of circumstances suggests a common

timing bug In the manager's "ff re-fighting" approach to

problem so1vlng--no action was taken until tt was too late

for Jt to do any good (the solution Is to anticipate

problems; more detafls about managers' bugs In section 3).

Since this bug arises from so specific a group of events,

the program thinks rt Is a rather probable bug and gets

ready to suggest It f I rst. It then chec.ks to see If the re

are any other ways of INCREASlng the number of SALE 1s.

Since there are not, It Is finished looking for bugs, and Is

now ready to suggest the bugs It knows.

As advertised, the f Jrst bug suggested

to the user Is:

Page 33

--BAD •SCHEDULE FOR HIRING: DEPENDENT ON QUIT; HIRING
TOO LATE

The user may agree that this Is the bug Cl think it is),

or ask the program to try again. The next bug suggested

ts

--BAD SENSE OF PRIORITIES: HIRING AND ADVERTISING

Essentially, the program suggests that ft could have

gotten more ADVERTISING ff HIRING did not have higher

priority. If the user doesn't buy this, the program

suggests that he simply blew the •SCHEDULE specification

on ADVERTISING:

--BAD •SCHEDULE FOR ADVERTISING: NOT ENOUGH

If the user still doesn't like what's happening (and

since the program has suggested all of the bugs ft

found), the program decides to see ff the user might have

mis-specified or completely omitted a relevant part of

his model (thfs happens more often than you mfght think)

It then uses its access to WOBG knowledge to suggest

--MISSING •ACTIVITY: FACTORING

(the user may factor accounts-receivable to provide

Instant cash) and

--MISSING •ACTIVITY: RESEARCH ANO DEVELOPMENT

Page 3~

(the user may lncre.ase the probabll lty of a sale by

Improving his product).

The program goe.s out of the debugging

business whenever the user ta:ke.s a sugges.tlon., or, of

course, when Its. bag of tricks ls exhausted. The user

can now fix his model or change his expectations and

re-simulate. Eventually, this process of simulation and

debug-g Ing wf 11 converge to a model that the user Is

conf f dent that he and the APS both understand

sufficiently.

In this section f_ have tried to show

a complete example of what th Is thes Is Is about. wfl 1

now go f nto an

approach, and

Implementation.

of bugs (ye ch) •

exam I nat I.on of the foundat Ions of th Is

the techniques that allow Its

I begin with a philosophical discussion

------- - -----------

Page 35

A bug Is something that prevents

something from behaving the way someone expects It to.

This section partlcularfzes the notion of "bug" to a

concept which Is useful for this research. As usual, the

program only knows about a narrowed-down version of

"bug".

We will be Interested here only in

"understandlng-bugs"--J.e., bugs that exist only Jn the

user's understandfng of the system he wishes to model

(cf. Goldstein's "semantic bugs" ISi). This immediately

removes from consideration "parenthesis errors" and other

"syntactfc bugs" (of course, trivial syntax bugs

sometfmes arise from a basfc mlsunderstandlng). Thus,

there will be no Interest whatsoever in finding bugs due
\

to MSL errors. In fact, no attention is given to bugs of

any kind that arise from careless expression of the

user's knowledge In the modelling formalism.

The kinds of bugs wlth which the

program Is concerned are those that seem to be "Inherent"

In the way people understand (or misunderstand) systems.

The rest of this section will be devoted to an

examination of bugs that occur In the modelling process

Page 36

and the features of the problem domain that cause them to

occur.

3 .1 1LLu: ln models

3.1.1 libA.t .silJi .L .£2. wrong?

What happens when p.eopl e try to mode 1

systems? They usually do .some mumbl Ing and

head-scratching and come out with some sort of expression

of their Ideas. In this research, the "expression" fs

required to be rather formal, but this doesn't matter

much. Next, the modeller somehow tests his model to see

how lt performs under various conditions (just as my

system uses simulation, see section 4.2). Most of the

time, the model does not perform as the modeller expects

It to--"somethlng goes wrong".

Actually, "something .rsnt. wrong" at

define-time: there Is something In the definition of the

model which Is causing the unexpected behavior. have

already mentioned the hypothesis that the user has a good

understanding of each submodel. Cl) Thus, the part of

the model deflnf tfon whfch Is Jn error must be a

Cl) The notion of "submodel" will become much more precise
when I discuss MSL In section 4.1.

Page 37

specification of submodel Interaction. The

manifestation of such a bug varies widely wf th the

particular bug Involved, and tends to be a detailed

matter (I.e., highly dependent on the actual

representation formalism). Therefore, will postpone

(th discussion of this problem until after have

described the formalism (4.4.2), and go on to an

examination of the "semantic roots" of these ''Interaction

bugs".

3.1.2 Interaction .b.u.&.5,

In order to understand the Idea of

between submodels, ft fs helpful to view the

process which deffnes the action of the

system. Thus, the models we will examine here

f nteract f on

model as a

model led

all "do something". The model can be seen as a system

which converts some sort of Input resources Into some

predefined outputs. (This Is, In fact, a very popular

view of management systems.) For the model to "do"

anything, Its submodels must Interact with each other.

That fs, the Inputs to t~e entire model are actually

Inputs to certain submodels which convert them Into

Intermediate quantities which are In turn Inputs to other

Page 38

submodels--and so on until the desired outputs are

obtained.

Via this Interact ton, various

dependencies between submodels arise. The most common

Is that one submodel must waft for the completion of

another before It can begin action. (See section 4.4 for

a detailed account of dlfferent kinds of Interaction

between MSL submodels.) Also, submodels often share

baste resources, giving rise to conflicts between

submode ls.

These dependenc I es and conflicts

between submodel s provide the environment for the
,

following basic "Interaction bugs•:

(1) Unexpected conflict arising from competition for
shared resources

(2) Weak performance due to poor perception of
t I me-phased occurences

(3) Special complexity problems arising. from the
concentration of Cl) and (2) 1n "tight systems" bound
by higher-order constraints

Although believe that these bugs have considerable

general tty, wf-11 not discuss them In the abstract.

Instead, will move Immediately Into the doma1n of

management systems to provide a framework for discussion.

-----~- --- -----~------- ------·-------·-·-· ·-·-~-~-----

Page 39

3.2 Interaction J..n management systems

The bugs catalogued In the above

subsection arise from poor understanding of complexity.

This "complexity" Is directly inherited by the models from

the modelled domain. As an introduction to the interaction

complexity of organizations In the world of business (which

form the basis for business games, the "modelled domain" of

this thesis), I will quote In fu11 an Illustrative passage

from Galbraith 141:

There ls considerab-le variation in the
amount of Interdependence in organizations. The
kinds of variation can be Illustrated by
considering a large research and development
laboratory employing some 500 scientists who are
pursuing the state-of-the-art. Thus we have a
large number of elements and high task
uncertainty. However, there Is little need for
communication. All the projects are small and not
directly connected to other projects. Therefore a
schedule delay or a design change does not
directly affect other design groups. The only
source of Interdependence is that the design
groups share the same pool of resources--men,
facil ftfes, Ideas, and money. But once the
initial resource allocations are made, the only
necessary communication between design groups is
to pass on new ideas (Allen, 1969). This type of
Interdependence has been termed as pooled
(Thompson, 1966, Pp. 54-5).

If the nature of the projects
is changed from 250 small independent ones to two·
large ones, a different pattern of Interdependence
arises. The large projects will require
sequential designs. That Is, a device Is first
designed to determine how much power ft will
require. After It ls complete, then the design of
the power source can take place. Under these
conqltfons, a problem encountered Jn the design of

Page 40

the device will directly affect the group working
on the power souce. The greater the number of
problems, the greater the amount of comunlcatlon
that must take place to jointly resolve problems.

The second example describes a
situation which Is more complex and requlres
greater amounts of information processing. The
second example has all the problems that were
described In the first example. There must be
budget and facilities allocatlons made under
conditions of uncertainty. There must be a flow
of new Ideas among the technical speclaltles.
But, in addltlon, the second example requires
Information processing and decision making to
regulate the schedule of sequential activities.
This is because there Is greater Interdependence
in the second example.

The interdependence or
interrelatedness of the design groups can be
Increased above what Is descrlbed In the second
example by the degree to which "design
optimization'' is pursued. Optimization means that
a highly efficient device Is desired and any
change in the design of one of the components
requires redesign of some others.

This can be Illustrated by an
automobile engine and body. The handling
qualities of a car depend on the weight of
the engine. The engine compartment can hold
only a certain slze of engine with its
accessories. The drive shaft and
differential can handle only a 1 lmlted
amount of torque. Changes Jn the weight,
size, or output of the engine may
necessitate changes In the body of the
automobile. These Interrelations and many
others must be taken Into account In the
design of an automobile.

Actually, In the case of a
passenger automobile there ts a good deal of
flexibility with regard to body-engine
match. The engine compartment ts usually
large, the parts of the suspension are
easily changed, and the drive shaft probably
has plenty of excess torque-carrying
capabllty. Engines of a varlety of shapes
an~ sizes are frequently placed Jn the same
body. But th Is need not be the case. In

Page 41

high-performance automobiles, the size of
the engine compartment Is frequently sharply
constrained by aerodynamics considerations.
There may be efforts to lighten the whole
automobile by making parts of the drive
system and body as light as possible; given
the required strengths. In such a
situation, the flexlbil tty in the size,
shape and performance of the engine placed
In the body Is sharply reduced or
eliminated. (Glennan, 1967)

Thus the high performance auto Is a highly
Interrelated system while the passenger car Is a
flexible, loosely coupled system. The same ts
true of organizational subunits which must design
these systems. Any change In the engine design
for the high performance car must be communicated
to the group designing the body so that an optimal
flt is still achieved after the change. This Is
less true for a passenger car. Therefore, the
organization designing the high performance car
must be capable of handling the Information flows
described in examples one and two for budgets,
Ideas, and schedules and also those for all
design-redesign decisions deriving from the
Interrelated design. The amount of information
that must be processed increases as the amount of
interdependence increases.

Each of Galbraith's examples illustrates

a kind of interdependency between subunits of an

organization. The first kind, pooled interdependency ,

gives rise to interaction bug (1) of the previous

subsection. That Is, when resource sharing is present, there

is liable to be unexpected confl Jct between subunits trying

to use the same resources (These are the PRIORITY bugs of

the example in section 2). Galbraith next cites an example

of sequential interdependency, I.e., interaction over time

Page 42

as well as resources. Again, this second kind of

interdependency provides an environment for the second kind

of Interaction bug: when subunits interact over tfme, the

mode 11 er is 1 fable to mis-estimate time-effects, thus

causing degraded performance (these are the SCHEDULE bugs of

the example in section 2). Finally, Galbraith mentions

higher-order constraint Interdependency. (1) Essentially,

this means that a higher-order objective, shared by a group

of subunits, has forced a need for greater Interdependency

among the subunits of the group. What has happened is that

in the new "tighter" system, the pooled and sequential

interdependency has been spread to more (sometimes .£1J..)

members of the interactive group. This kind of

Interdependency has a direct interpretation In the WOBG

which will be discussed in the next subsection. The third

kind of Interaction bug from section 3.1.2 of course arises

from the higher-order constraint environment. (There are no

examples of this kind of bug fn the example of section 2;

higher-order constraints were del fberately kept out for the

(1)

I think that the introduction of the "design
optimization" term here Is very unfortunate. The point Is
that the subunits have become more Interactive due to the
presence of a higher-order constraint. In this case, the
constraint happens to be that the units must Interact Jn
order to achieve an optimal design. However, In the next
subsection I will discuss other higher-order constraints
which cause ~he same increase in Interaction.

Page 43

sake of simplicity. There will be examples of this kind of

bug later In the thesis.)

These three types of f nterdependency

form the semantic roots of the bugs considered by my

program. In the following subsection we will examine the

way these real world organizational dependencies are

modelled In the world of buslnes games.

3 • 3 JWil l.o. ltQ.Wi mode J :a

Business games provfde a laboratory for

teaching managerial decl sfon-makfng. Since most fmportant

management decisions Involve resolving conflfcts (or

oossfble. conflfcts, In the case of plannfng) arfsfng from

subunit Interdependency, the three kfnds of

lnterdependencfes dfscussed In the prevfous section are

emphasized In many business games. And, of course, with the

three fnterdependencles come the three Interaction bugs.

Pooled Interdependency arises from a

natural sharing of resources by different parts of the

game-player's 11busfness". The business game contains a

very well-defined set of "resources" {Qili, sale:ameo,

prodyction-llnes, etc.) which the player must manipulate

accord ng to certain speclffed rules of play. (1) The basic

Page 44

Idea ts to accumulate certain resources which are designated

as "assets". There are a variety of strategies for

accumulating assets (e.g., use research, do some

advertising, learn about market trends, etc.). The

Important point for us Is that the Implementation of aa:t

strategy requires manipulation of various subunits of the

player 1 s "business". These subunits share the pooled

resource of~. Since ~ ts In limited supply, an

Interdependency Is set up, and conflicts arise. Poor

understanding of this pooled Interdependency gives rise to

section 3.l.2 1 s bug type (1): "unexpected confl let arising

from competition for shared resources."

A much more Interesting aspect o.f the

part tcular game have selected Is the sequential

Interdependency among subunits. First of all, note that

some of the actlvftles of the subunits are "long-term" ~-".

(research and development, t ra In Ing sales personnel,

constructing additional productton capacfty, etc.), while

others are "short-term" (advertising, factoring accounts

receivable, hiring, etc.). Second, there Is considerable

linkage between the requirements of some activities and the

Cl) This discussion Is based on the actual business game
presented In Appendix A--lt might be a good Idea to glance
over the description of the.game to gfve yourself the flavor
of what's going on.

Page 45

"outputs" of others (production provides units to sell,

hiring provides employees to train, etc.). Ffnally, the

game contains a rather rich 11 posslbf1Jty space" for any

given strategy If the time-scale Is long enough. That Js,

there are a variety of non-Independent ways of going about

achieving a given task over time. All of this (plus the

addition of probabilistic occurences over time) adds up to a

complex pattern of sequential dependecles, which In turn

gfves rise to bug (2), "weak performance due to poor

perception of time-phased occurences".

It ts characterfstlc of the game used

here (and of most other business games) that the pooled and

sequentfal Interdependencies are frequently made more

Intense by "htgher-order constraints". These constraints

arise from the actlvfty structure of the game. The key

factor Is that various activities and functions of the

organization depend on the outputs of msu:.e. .than .wi.e. prior

activity (note that this was not the case In the example of

section 2, and thus this problem was avoided). can

present a deta I 1 ed account of these mutua 1 Interdependency

relationships only after discuss the way the game Js

modelled In MSL C will do this In 4.4). For now, It will

suffice to say that two kinds of higher-order constraints

are distinguished: the kind In which several activities (or,

Page 46

more usually, chains of activities} must combine to provide

resources for another activity, and the kind In which a

number of activities can combine In various unstructured

ways to achieve a functionally-determined goal.

This section has been devoted to filling

In rather general background Information about the kind of

bugs the program knows about and how these a~lse naturally

In real world systems. We now go on to an examination of

how the program Incorporates some knowledge about these

bugs, and how It goes about using this knowledge to debug

models.

-Page 47

4 J:ISllt .t.hJ:. orogram works

In this section I will present a program

which finds the kind of Interaction bugs dlscussed above.

An example of program operatlon has already been shown Jn

section 2. From this example, the following pattern of

program operation Is evident: the program starts with a

model represented In a special format language; It takes

this model and produces a simulation of it; If the user

finds a discrepancy between his expectations of model

performance and the results of the simulation, he presents

the program with the goal of eliminating the discrepancy.

The program then attempts, using both the model as

6rlglnally stated by the user and the results of the model's

simulation, to achieve that goal; In the course of fall Ing

to achieve that goal Cl) , the program finds features of the

model which It considers to be unintended causes of the

fa 11 u re--.b.L1&5.. It then suggests these bugs Ctn order of

"likelihood") ·to the user, leaving him to take the next step

(and perhaps re-Initiate the process).

This section considers each aspect of

Cl) The program shoffld fall to achieve almost all user
goal sl CTbe almost" Is due to probablt lstic
considerations.) Otherwise, there was not a bug and the
simulation would have achieved the goal in the first place.

i
I

---------- --------------

Page 48

this process Jn turn. It begins (4.1) with an examfnatton

of the model spectftcatton language, providing a ft rm basis

for understanding what the program does and does not know

about the user's model. Next (4.2), ·ft describes the

slmulatfon of the model and the way the results of the

simulation are presented to the debugger. Contrnufng along

the debugging process, section 4.3 deals wfth the way user

goals are formed and the way Jn which the system handles

goals. Sectfon 4.4 can then talk about how the program's

deductive mechanisms pursue goals and locate bugs--the real

guts of the debugging problem. Finally, there Js a short

section (4.5) on the way the program uses real•world

knowledge In the debuggfng process.

Into the heart of darkness •••

4.1 .rru:. model specification langyage

In order for

simulate-and-Investigate method for

the program

debugging

to use the

models, the

models must be represented In a form that ts executable (by

the simulator) and a form ·that Is examinable (by the

problem-solving rout{nes). The model specification

language CMSL) f s an attempt to combine these two necessary

forms In a single language (which also purports to be fairly

Page 49

user-oriented!).

MSL is a set of simple primitives whfch

can be used to describe models--especfally business game

models (1) An MSL specification consists of an

(unordered) collection of the three basic primit Ives

*ACTIVITY, *EVENT, and *FUNCTION. The basic primitives are

further described by modifying constructs. The model

manipulates user-defined value/term pairs called "resource

variables" (e.g. (1000 CASH), (SAM SALESMAN), etc.). An

example of MSL specifications appear on pages 17-18, and In

Appendix B. This section contains a brief description of

the syntax and semantics of these MSL primitives.

The basic MSL construct I s the

*ACTIVITY. The concept of "activity" used here is precisely

similar to the usual business sense of the word: a

well-defined organizational task which processes some

commodities or information that is used by the organization

(see section 3.1.2; see also the WOB 191 for Its information

on activities). An *ACTIVITY also corresponds to a submodel

(2) --that thing that the user Is supposed to have a good

(1) No claim is made for any "completeness" or 11 suff iclency"
of this set of primitives. These are simply constructs
which can be used to express my game models.

(2) We will see Jn a few minutes that *EVENT's and
*FUNCTION 1 s are also submodels.

Page 50

grasp of (see 3.1.1).The •ACTIVITY speclflcatlon looks like

(•ACTIVITY <•ACTIVITY-name> <modifiers>)

(1)

As Is usually the case, the modifiers are the most

Interesting part of the specification.

One modifier which ts almost always

present Is the •PREREQUISITES specification. This

construct expresses the necessary Inputs of an •ACTfVITY.

The •PREREQUISITES specification

contains an arbitrary number of

(•PRESENT <resource variable>)

forms grouped (Implicitly) by OR or (explicitly) by AND.

The basic Interpretation ts that the named <resource

variable> must be present (2) for the •ACTIVITY to be

Initiated. If there Is an AND specification, then (as one

would expect) all of the "AND'ed" resource variables must be

•PRESENT. Thus, In

Cl) I will use the following notation: "<"
metalinguistic brackets which surround
statements. Everything else belongs there.

and ">" are
meta11ngulstlc

(2) Clearly, there are the obvlous extensions
"•MAY-BE-PRESENT", "MUST-BE-PRESENT", etc. I have not found
these concepts necessary to express the models I have used.
Therefore, they are not Included In the MSL, even though
their Introduction would be straightforward.

(•ACTIVITY SALES-CALL
(•PREREQUISITES

CANO

)

(•PRESENT (1000 CASH))
(•PRESENT Cl UNIT))
(•PRESENT (SOME SALESMAN))

))

Page 51

there must be (1000 CASH), Cl UNIT), and (SOME SALESMAN) for

SALES-CALL to be Initiated.

Some further comment ts necessary on the

quantlf lcatlon mechanism of •PRESENT. The "SOME" In (SOME

SALESMAN) represents any name of a SALESMAN

model. That ts,

(•PRESENT (SOME SALESMAN))

will be satisfied with

(MARK SALESMAN) or

COON SALESMAN) or

(STEVE SALESMAN)

In the

Numerical quantifications carry an Implicit "at least"

modifier. That Is,

(•PRESENT (1000 CASH))

will be sattsffed with

(10000 CASH)

(1000 CASH)

but not (999 CASH)

Page 52

or

The "at leastu modifier may be explicitly stated, or may be

changed to AT-MOST, as In

(*PRESENT (1000 CASH) AT-LEAST)

(*PRESENT (5 ERRORS) AT-MOST)

The "outputs" of an *ACTIVITY are

expressed by the *OUTPUT and *REMOVE constructs:

(•OUTPUT <resource variable>>

(•REMOVE <resource variable>>

which add or delete the named resource variable from the

model's resources.

An *ACTIVITY construct may be further

described by:

(*TAKES <number>>

to Indicate that If the *ACTIVITY Is Initiated In time-slice

.n, Its outputs do not become available untfl tlme-sl Ice

Page 53

n+<number> The purpose of thfs fs, of course, to allow

the modell Ing of •ACTIVITY's which take an appreciable

amount of time to be completed. Another important

mod If I er,

{•PRIORITY <number>)

allows the user to Indicate preference In allocation of

resources to •ACTIVITY's. Thus, Jf several •ACTIVITY's are

vying for the same resource, the one wf th the lowest

•PRIORITY <number> has first crack at It Cl) •

•SCHEDULE specifications allow the user

to give explicit scheduling fnformatfon to the simulator In

order to llmft the use of an •ACTIVITY. The specfffcatlons

that have b~en found useful so far are

(•SCHEDULE <number>)

to 1 lmlt the number of times an •ACTIVITY can be sc,heduled

In any time-slice,

(•SCHEDULE CON <•EVENT-name>))

to allow the scheduling of an •ACTIVITY only in the same

(1) Again, obviously, this simple mechanism could be greatly
expanded. More complex models would requf re tfme-varying
and other computed •PRIORITY specifications. These have not
been Included In MSL.

-------------- --------

Page 54

time-slice as the occurence of the named •EVENT, and

C •SCHEDULE C EVERY <number>))

to 1 lmlt the schedul Ing of the •ACTIVITY to time-slice

<number>,2x<number>,3x<number>,etc.

The above modifiers, along with the

user 1 s ability to create resource variables and provide

arbitrary •ACTIVITY structures, allow enough flex.Jbll lty to

express all of the •ACTIVtTY's necessary to model the game

t n Append T x A C see the mod·e 1 In Append Ix 8). The re a re,

however, other kinds of submodels to b:e consldered.

Another ba~lc construct Cl.e.,

submodel-speclfter) available to the modeller ls the •EVENT.

This ts used to express parts of the model which are

"outside of the system"--beyond the organl.zatlon's direct

control. These outside influences are often modelled as

probabilistic occurences~ so that •EVENT's are usually

associated with the probabilistic parts of the model.

•EVENT is very similar to •ACTIVITY fn basl.c syntax:

(.•EVENT <•EVE·NT•name> <modifiers>>

but the modifiers are somewhat dffferent.

Instead of the •PREREQUISITES

specfffcatlon, a •CONDITIONS list ts stated:

\ ______ ~~----

Page 55

(•CONDITIONS <boolean expression>)

That Is, the simulator expects the body of a •CONDITIONS

list to evaluate to "true" or "false". Usually, the body

contains some combination (perhaps related by AND or OR) of

•FUNCTION names (1) (see below). The Intent is that the

•EVENT may not be initiated unless the <boolean expression>

evaluates to tttrue".

Usually •EVENT's affect pa rt I cul a r

•ACTIVITY's.The suscteptlble •ACTIVITY's and the actions to

be taken by the •EVENT are expressed within the •EVENT by

the •ACTIVITIES modlf ler:

(•ACTIVITIES C<llst of •ACTIVITY-names>) <actions>)

If an •EVENT ·contains an •ACTIVITIES construct, ft can be

Initiated only In a time-slice In which at least one of the

named •ACTIVITY's ts scheduled.

One rather unusual <action> which can be

taken by an •EVENT ls

(1) These •FUNCTION's usually express a probability with
which the •EVENT

1
occurs In a given time-slice. The

simulator sets up a probabilistic event (no confusion,
please!) on the related sample space to express the
•FUNCTION. It then calls a random number generator. If the
value returned by the RNG falls within the defined event,the
simulator assigns "true 11 to the value of that •FUNCTION.

Page 56

(•CANCEL)

This means that the Interrupted •ACTIVITY has been

permanently disrupted, and ts to be unscheduled. (Of

course, It can be rescheduled later.) In all other

respects, •EVENT's are treated just like •ACTIVITY's.

The f lnal baste construct In MSL ts

•FUNCTION. It expresses a functional relationship between

variables In the model, and, In general, accounts for

Information flow within the model. It ts thus slightly

different In spirit from the resource-handling •ACTIVITY's

and •EVENT's. Nonetheless, It shares submodel 'Status Cl) ,
and Is similar In syntax to the other two basic constructs:

(•FUNCTION <•FUNCTION-name> <modifiers>)

•FUNCTION's are not "scheduled"; rather, they are Invoked by

being mentioned In other constructs (just as In progranmlng

language function calls). Thus, whenever SALES-PROBABILITY

(see section 2) appears In the model (except In the

•FUNCTION definition, of course), the •FUNCTION

Cl) It Is important to recognize that informatton-handltng
activities are submodels at the same level as other
organizational activities. Forrester stresses this point
In 131, and seems to use the homogeneity of basic submodels
successfully. Of course, the uniform submodel constructs
also lead to a gain In modelling efficiency and a lessening
of the cognitive load of the MSL user.

Pa.e:e 57

. SALES-PROBABILITY will be Invoked.

The analogous construct to

•PREREQUISITES and •CONDITIONS Jn •FUNCTION Is

(•ARGUMENTS <argument!> <argument2> ••• >

which behaves like the usual argument-list In programming

language functions. Missing arguments cause an "error"

which stops the simulation (1) •

The analogy to •OUTPUT Is

(•RETURN <expression>>

where <expression> can be a combination o.f •FUNCTION names

and the special function-representing constructs

(•TABLE (<•ARGUMENT-name> <•RESULT-name>)

<argument/result pairs>)

(•SUM-UP <<variable range)) <linear factors>>

This Is about all there Is to the MSL.

The semantics of •ACTIVITY's and •EVENT's are developed a

bit further Jn the next section. •FUNCTION's are dealt wfth

In 4.4.2.1. However, no really detailed descriptions are

presented anywhere. There Is little point In ft. The only

Cl) This Is, of course, the kind of bug we're JJ.2.t. Interested
In here.

-----·--~-----~· .~-------·

Page 58

purpose of presenting MSL is to allow the reader to

understand the examples and judge what the program does and

does not know about a part i cu'l a r mode 1.

Almost all of what the program knows

about any given model is In the MSL specification. Cit

knows a few other things discussed In 4~5.) MSL can be

simple because the models considered are qulte simple. As

the models become more complex we expect (by conservation of

complexity) that MSL will become more comple.x. The hope Is

that MSL contafns something general enough to handle some

kinds o.f additional model co'Jnplexlty ,without additional

language complexity. This "something" Is the basic

philosophy of submodel structuring whtch Is reflected in the

MSL. Thus, I have tried to e·mphaslze this ha.sic structure

rather the details. In the next section we follow the

course of the program's debugging process and examine the

simulation of MSL models.

4.2 Simulation li .a~ Qf doing thing~

Simulation ls a technique for observing

the behavior of models. In the absence of analytical and

other "high-level" tools Clfke educated guesses), simulation

ls the only way to find out wha a model .. does" In any given

Page 59

situation. In the model-debugging system presented in this

thesis, the simulator sets up the baste feedback mechanism

between user and APS.

At the very least, any APS should

provide a facility for checking out model behavior with

simulation. That ts, the user formulates his model, tests

It via simulation, changes it if he doesn't 1 Ike what he

sees, and resimulates. For reasons discussed in the

Introductory section, It Is necessary to go a step further.

The program described here attempts to aid the user in

discovering why the model does not perform as he expects it

to •

Therefore, this sectfon will concentrate

on simulation as a way of initiating the debugging process.

This emphasis Ignores very important Issues of presenting

simulation results to the user. In fact, It completely

downplays the Importance of the simulator Itself,

concentrating only on the Interaction of the simulator and

the deductive mechanisms of the debugging program. Thus,

In this section will proceed to finesse the simulator and

move on to the more relevant problems of representing the

knowledge gained by the simulation in such a way that it can

be used by the debugger.

Page 60

4.2.l .lb.I:. simulator finessed

In this section will very briefly

describe the slmulatlon scheme used In the program. The

whole s lmul at I on ph f 1 osophy presented he re Is k Ind of

strange as viewed from th.e standpoint of "normal" simulation

programs. This Is due to the presence of two major design

criteria not usually found In the area of simulation

progra11111Jng:

Cl) Adherence to the "user only lcnows local submodel

I nformat I on" canon ennunc Ja,ted earl 1 er C sect Ions 1. 3 .1

and 3.1.1)

(2) The goal of representfng knowledge found by the

simulation In such a way that 1t can be used by the

debugger

The fl rst criterion gives rise to those funny MSL constructs

which mysteriously appeared In the previous dtscusslon.

It also motivates the style of simulation desc,rlbed Jn the

rest of this section. The second criterion determ.fnes the

actual Implementation of the algorithm, and ts dealt with Jn

the following subsection.

In MSL, the Information pertaining to a

Page 61

particular submodel ts found only In that submodel. The

kind of "Information" varies from submodel to submodel (as

described In 4.1), but basically, the following

specifications are necessary:

--resources needed by the submodel

--resources produced by the submodel, and the length of

time necessary to produce them

--explfclt policy for the conditions under which the

submodel should be activated

The baste operation of the simulator Is

then straightforward.Each submodel ts activated when Its

(user-specified) explicit pre-conditions are satisfied,

provided that all of its necessary resources are available.

If the user does not specify pre-conditions (via •SCHEDULE

and •CONDITIONS--see 4.1), the submodel ts activated

whenever Its necessary resources are available (subject to

•PRIORITY restrictions, of course). When the time

(specified by •TAKES) for submodel activity has elapsed, the

output

to the

resources of the submodel (If any) become available

whole model. This process of cycling through

submodels actfvatfng "ready" ones, continuing "running"

-------~---------- -------- ---------~

Page 62

ones, cleaning up finished ones, and augment Ing and

depleting resources all along continues for the duration of

the user-specified run-length.

Now anyone who has ever glanced at the

guts of a simulator knows that have just finessed

lnumerable details (as wel 1 as a few Important Points). The

algorithm used In the program ts actua l1 y a bit more

sophisticated and a great deal ha Ir le r than the one

"described" ahove. For example, I have not even ment toned

the rather tlckl lsh problem of handling probabll lstlc

occurences In this context, nor the des l.gn decisions for

priority-scheduling of already-running submodels. am

deliberately slufffng the details here because the slmlllator

Itself Is not very important to the thesis as a whole. It

ts Its output, the SIMULATION-HISTORY context, that I wish

to emphasize here.

4.2.2 Simulation hlstorv .Q.W1 SIMYLAIJON•HISTOBY

The form of the output of a simulation

program Is a 1 ways a key factor In I ts usefulness. In the

debugging system presented here, It ts an essential link

between the model and the deductive mechanisms of the

Page 63

debugger, As discussed above~ much of the task of the

simulator ts to present the knowledge gained by simulating

the model tn a form that can be used by the rest of the

program. This Is of course the old artificial lntell tgence

task of representing knowledge In a form that can be used by

procedural deductive mechanisms.

The style of representation have

chosen for the simulation knowledge Is the slmuJ1tlon

history. Now this ts hardly startllng--simulatlon

histories are frequently used to describe the behavior of

systems. But here I wish to extend the coneept somewhat.

In my program, the simulator constructs a simulation history

(called SIMULATION-HISTORY) which then becomes the

problem-solving environment of the debugger. By this

mean that from the point of view of the deductive mechanisms

In the debugger, the "world" Is a simulation history; I.e.,

a sequence of facts about the model which are true at

various times determined by the simulation. The debugger

lives Inside this simulation history. The things that It

knows about the "world"--the kinds of knowledge found, the

way events are related, etc.-- are the facts and rules of

the simulation history world (1) • In thinking about the

(1) Except for, as we shall see later, the facts It knows
about the "real world .. of business games.

-------- ··-------"--

Page 64

debugger, It Is well to keep In mind that It Is a citizen of

the simulation history world.

Well then, let's go slumming and look

around the simulation history world ourselves for a few

rollicking moments. Consider some set of observational

variables on a simulation model. Then a slmulatlon history

can be thought of as a recording of the "values" of these

variables at various Instants of simulation-time. The

Interesting questions are what observational variables

should be used and how the record should be organized. We

wl 11 see that these questions are Important with respect to

the usefulness of the simulator to the debugger.

For the simulation to progress from one

time Instant to the next, the simulator must have a record

of the state of the simulation. The simulation state of

these simple MSL models consists of four main pieces of

Information:

(1) the value of each "resource variable" (see 4.1) at

the end of each time-slice (1)

(2) a record of the •ACTIVITY 1 s which were Initiated In

the time-slice

Cl) A tlme-~llce Is one ker-chunk of the simulator.

Page 65

(3) a record of the •EVENT's which occur and the

•ACTIVITY's they affect

(4) an indication of the stage of completion of each

"running" Ct.e., previously Initiated and not yet

complete) •ACTIVITY and •EVENT

Therefore, the simulator needs these four pieces of

Information at the end of each time-slice in order to go on

to the next time-slice.

But what does this have to do with the

"observational variables" for the simulation history? First,

remember that the "observer" In this case Is the deductive

mechanism of the debugger. Now, harking back to all that

was said In sections 1 and 2 about debugging by

problem-solving, we can see that the debugger is usually in

the position of trying to change the course of the

simulation in some way (to cause some desired outcome which

causes another desired outcome, etc ••• which eventually

causes the user's desired outcome). In order to decide

whether It can make the change (1) lt must know something

(1) Of course, It must also decide whether
the change to be made. This part of
discussed Jn 4.4.2.

the
the

user wants
problem Is

Page 66

about the simulation. Specifically, It must know the state

of the simulation and ways to change that state Cl) • The

ways to change the state are encoded In procedural deductive

mechanisms to be described later (4.4.1). The state of the

simulation can be provided by the simulation history.

Therefore, the observational variables for the slmulatfon

history are Just the state variables discussed above (2) •

Well, stnce the simulator needs the

values of the state variables at the end of each time-slice,

the program need only keep track of these values In some

useful fashion. The problem now becomes one of organizing

the slmulatl.on history. In order ot think about such an

organization, we can look back to section 2 and remember a

bit more about what the deductive mechanisms do with the

simulation hfstory.

The deductive mechanl.sms usually find

themselves playing around In their little simulation history

world In two ways:

(1) examining a single time-slice to see whether a

change can be made at that time

Cl) This fs Its "world knowledge" of the simulation history
world.

(2) A schematic representation of these state variables as
they appear In the simulation history Is found on pp. 21-23.

I
I
I

I
I

I
I
!
I

i
I

I
I

I
I
I
j

Page 67

(2) examining a large segment of the simulation to

choose a likely time-slfce for scheduling somethfng

new, to follow the course of an •ACTIVITY or •EVENT, to

pursue the consequences of a proposed change, or (as we

shall see later In this section) to h~ndle higher-order

constraints

What we need ts a good representatfon for facile handling of

time-slices and (usually contiguous) groups of time-slices.

The representatfon should also allow ease fn the building-up

and manipulation of the whole hf story.

Such a representatfon fs the Conniver

context I 20 I. The simulation history is Implemented as a

Connfver context wt th the unlikely moniker of

SIMULATION-HISTORY. Each tfme-sl Ice fs a layer 1201 of the

context. Thfs Conniver implementatfon lmplfes the following

relation between time-slfces: the simulator "grows"

SIMULATION-HISTORY by adding on new tfme-slices; changes

made to the data in a new time-slice are invisible to

earl fer time~sllces, however, the status of any datum can be

determined In any time-slice. This certainly gives us the

record of the slmulatfon history that we want. Conniver

also allows any part of the context to be regarded as a

separate context. The Importance of this Is that the

context can then be used as the database, or, more

Page 68

precisely, as the working environment, for some set of

programs. That Is, the programs In a given context work

only with that context as a knowledge base. Thus, we can

see that the deductive mechanisms of the debugger can "live

Inside" the simulation history by simply using

SIMULATION-HISTORY as their context. Furthermore, the

deductive mechanisms can live Inside any . .124C.t of the

simulation history which they must examine. Their world c.an

be a single time-slice or a large, program-edited piece of

the history.

We will see that this ability to live

lnsfde arbitrary pieces of SIMULATION-HISTORY ts a key

requlstlte for the deductive mechanisms of the debugger.

For the deductive mechanisms to work, they must apply thetr

procedurally-embedded knowledge of how to change the course

of the simulation to carefully chosen parts of the

simulation. This Is why the simulation history and Its

Implementation as SIMULATION-HISTORY fornrsuch an Important

part of the program. In the next section, we wtl 1 find that

the SIMULATION-HISTORY representation gains further

Importance when the debugger generates hypothetical states

of the simulation.

4.3 Goals .and. environments

Page 69

Throughout the thesis I have been using

the word "goal" to describe a variety of phenomena. have

spoken of user goals, system goals, and submodel goals. In

section 2 I introduced another construct containing the word

"goa 1 ":

(•GOAL <strange words> <numbers> <lots of parentheses>>

which purported to represent the various other kinds of

goals to the program. In this section will discuss what

these parenthetical thfngees me.an to the program. In the

next section will talk about how they are created and

manipulated. Here I describe only goals .ru.ia. •GOAL's--i.e.,

the common structural aspects of •GOAL 1 s.

A goal expresses a desired state. In a

debugging context this desired state is almost always

inconsistent with the actual state. This is because the

user has found a discrepancy between real lty and expectation

and has thought of a desired state In which the discrepancy

is resolved. Thus, the desired state, reflecting the fixed

discrepancy, is inconsistent with the actual state. In the

program presented here, the user can ask the program to

produce this desired state (given the model and the

simulation history--see section 2). (1) The request is made

(1) As discussed elsewhere, the program falls In Its attempt

__________ " ____ -11

Page 70

via a •GOAL statement:

(*GOAL <achieve desired state>)

What does It mean to "achieve the

desired state"? The user Is asking the program to change

the course of the simulation. The program goes about this

by first creating a hypothetical s lmulat Ion state

Ctlme-sl Ice) which Includes the desired state. Then It

attempts to make the rest of the simulation history (i.e.,

the previous t ime-sl Ices) consistent with the new

hypothetical time-slice. (1) This Is done by the creation

of a new •GOAL

(•GOAL <make previous time-slice consistent with new one>>

This new •GOAL Is clearly of the form

(•GOAL <achieve desired state>)

and can thus be handled exactly like the user goal. The

program can thus recurse merrily along until It cannot

achieve a desired state--f.e., unttl ft falls •.

Now then, let's take a closer look at

to produce the desired state, but this ts not Important to
the discussion of this section.

(1) This "work backwards" methodology Is due to the
debugging philosophy of tracing a bug from Its manifestation
~ to Its cause.

·-----·· •·-·-··-~-

Page 71

this process. Each •GOAL requests a specific change to a

specific local environment (the time-slice). Thus, each

•GOAL ts attempted Jn the context of a local constraint

environment represented by a single tfme-slice of the

simulation hfstory. (1) If the •GOAL Is achieved, It will

deffne a new envf ronment which ts fnconsfster.t with the old

time-slice (because of the changes wrought by achieving the

•GOAL). This new environment ls then consistent with the

user's desired state, but inconsistent with the old

simulation history. The program will then use this new

local environment as a basts for defining the next desired

state along the 1 fne toward making the whole simulation

history consistent with the user's desired state. The

program Is, Jn effect, constructing a new hypothetical

simulation history which results in the user's desired

state. (2)

Thus, environments are Jntimately

related to the semantics of •GOAL's. Each •GOAL ts

constrained by a pre-specified part of the simulation

Cl) Not quite. As we shall see Jn a second, multiple goals
are achieved with respect to a local constraint environment
consisting of several time-slices.

(2) The next section deals with the problem of how the
program constructs this simulation without destroying the
original intent of the model. Specifically, section 4.4.2.l
gives a better picture of what is "constraining" about a
"local constraint environment".

Page 72

envf ronment--that part which ft Is supposed to change. The

achievement of a •GOAL can therefore be seen as a

transformation:

~GOAL

This transformation Is a local phenomenon. However the

effects of the transformation are non-local. The •GOAL has

perturbed the local environment and made It inconsistent

with the global environment. Since the eventual •oal of the

problem solver ts to create a consistent simulation history

which results Jn the user's desired state~ the global

environment must be made consistent wt th this new

Inconsistent piece:

----~
- ---7"

~·.

Page 73

In order to make the global envf ronment

consistent, the program must trace down the effects of

changing that local piece. In other words, It must examine

the way that local piece interacts with other pieces of the

global environment:

eAv\rort~f JW ~I
~~ ifl Or'le.- /;r'le

But this Is exactly what we want. The user is Incapable of

following the Interactions of the model. If the program is

to help the user find the "Interaction bugs" thus created,

it must have some mechanism for tracing interactions. This

mechanism is the problem-solver.

The problem-solver uses a *GOAL to

express a global environment perturbation. It then uses the

deductive mechanisms described in the next section to follow

that perturbation throughout the local environment, the

local change at each point being determined by a *GOAL.

Page 74

When the program comes to a point where the perturbation

cannot be continued (I.e., where a •GOAL falls), ft has, in

effect, discovered a part of the environment which cannot~

~ .t.Q. conform to the user's desired environment. It has

traced the Interaction path to Its roots--lt has bracketed

the bug location between the user's desired simulation state

and the user's desired constrafnt whfch gave rise to the

lnteractfon (see 4.4.3).

Thus, •GOAL 1 s are the vehicle for

exploring the lnteractfve behavfor of the model. As we have

seen above, the use of •GOAL's In thfs way requf res

sophisticated manipulations of local environments. In

order to tie down some of the concepts discussed In the

prevfous paragraphs, I will now discuss some of the problems

the program faces with respect to this envfronment-handling.

Flrst, each •GOAL must be achieved with

respect to a local envf ronment. That Is, the •GOAL must

only "see" the constraints of a local envf ronment (not the

whole thing) Cl) , and must directly affect only that local

environment. Otherwise, the dlstfnctlon between local and

Interactive behavior fs lost--there fs no such thing as a

(1) This fs due first to the nature of the problem-solvfng
process--"set up a local environment and then make the next
local environment up the line consistent with lt"--and
second to the debugging philosophy espoused In 4.4.2.1.

Page 75

"perturbat ton".

Fortunately, the environment to be

examined ts the SIMULATION-HISTORY context. We will see rn

4.4.2.1 that the required local environment Is (usually)

just a TIME-SLICE of the SIMULATION-HISTORY. The *GOAL can

thus be made to .. see" only a local environment by making the

required TIME-SLICE Its working environment (as In 4.2) Cl)

The context structure makes the re 1 at ion between

TIME-SLICE's evident Ct.e., because each is a Conniver

layer), so that the distinction between 1 ocal and

Interact Ive constraints Is expl left in the built-in

(Conniver) semantics of SIMULATION-HISTORY.

Now the •GOAL must also be made to

affect only a local environment if the semantics discussed

earlier are to be preserved. It would seem that this is

just as easy: simply keep the TIME-SLICE fn question as the

•GOAL's working environment, and all changes will expl icftly

have the required 1oca1 tty. However, there ts a

complicating factor found in all searching problem-solvers:

the problem-solver must make provisions for discarding an

old line of attack and beginning a new one. This is the old

problem of backup which has been discussed extensively in

(1) This isn't quite so simple for multiple •GOAL's, as
we'll see in a second.

Page 76

171 and 1191.

The backup problem Is germane to the

debugging process because the debugger usually attempts to

find all possible causes of a particular discrepancy Ctn the

hope that one of them ts the actual bug). Thus, It will

follow down one line of attack, fall, and try another. It

must therefore be ready to erase the consequences of the

line to be discarded. But this Is a particularly hard

problem for the debugger. Here, the tracks leading to

failures are the key to the rest of the process. They

cannot be simple "erased", but must be preserved In some

form which the program can use to suggest bugs and to

explain Its actions to the user see 4.4.3).

Furthermore, wh 11 e the effects of likb.

•GOAL must be restlcted to a local envlronmet, the effects

of .All the •GOAL's must create a new consistent environment

(1) Thus, the program must malntafn some new environment

whfch localizes the effects of the •GOAL's, allows a

controlled backup with preservation of the backed-over

Information, and which forces consistency of all affected

environments. Certainly, SIMULATION-HISTORY will not do.

But something like It wfll. The program

again uses a lavered-context structure. In each layer it

(1) They must, In fact, create a new simulation hfstory.

Page 77

records the changes made by a •GOAL to the particular

TIME-SLICE Involved. It then appends this new layer to

SIMULATION-HISTORY and uses this new augmented context as

the working environment of the debugger. Now, remembering

the little dts6usston of context semantics In 4.2 (or,

referring to 1201), we see that this causes the following

effects:

Cl) The effects of a •GOAL are

since they occur only In a

corresponds to a single TIME-SLICE.

certainly localized

single layer which

see a (2) The debugger

environment by

SIMULATION-HISTORY

can always

looking

as far as

up

the

the

last

consistent

augmented

affected

TIME-SLICE; the semantics of context then say that

the data seen by the debugger ts just what was in

SIMULATION-HISTORY before (which Is consistent via the

simulator) except where contradicted by the parts that

were changed by •GOAL's (which are consistent (up to

that point) via the deductive mechanisms).

Perhaps ft is well to interrupt here with an explanatory

diagram •••

Page 78

S\ MlJLATtQ}j- H\ STORY

seJt-{.O~ste.+, ~t
\. Jfll()r'}~i~ wit ' /----, '

Page 79

which ts, due to the semantics of context, equivalent to:

SlMULATI0~-\-1 \STORY

~~-cons~ .nlJ
el\\)t(Dnr'Jtefl"f

(W\ckncrJYlStHUUrrtOO-
H~f o'R~ ------~-- - __. - - - ~ - - -----------

which ts certainly an easter conceptualization of what has

gone on so far. However, the first ptcture ts necessary to

explain

This

·Page 80

(3) The Jay~rs which record the changes made by a •GOAL

(the dashed parts of the first picture) can be peeled

off and saved at any time, thus restoring the context

to Its orlgrnal condition and savfng the effects of the

•GOAL (the track toward falure) for further use

methodology f 111 s the b 111 so far.

there Is one final problem which compl tcates

picture (you just knew there would be).

Unfortunate 1 y,

this 1 lttle

This complication comes from an as yet

unseen aspect of the problem-solver: multiple goals.

mentioned earlier (section 3) the existence of "higher-order

constraint Interdependencies" In the model. (This

we I rd-sound Ing effect wa.s conven I ent 1 y kept out of the

example In section 2.) We will see ta section 4.4.2.3 that

higher-order interdependency leads to multiple goals. That

ls, Instead of simple goals, the program must deal with

constructs like:

and

(•GOAL (•AND

(•GOAL •••)

(•GOAL •••)

(•GOAL •••)))

(•GOAL (•GROUP

(•GOAL •••)

(•GOAL •.•)

(•GOA l ...)))

Page 81

We'll see more about multiple goals later. For now we need

only examine one aspect of their behavior.

The raison d'etre of •AND and •GROUP is

the expression of the fact that their component •GOAL's are

not Independent. That Is, the •GOAL's they contain share

common resources and cannot be achieved at each other's

expense. (This Is how they model interdependency.) Thus,

the notion of a "local constraint environment" varies from

the one bandied about earlier. Here we must have several

•GOAL's sharing a single local environment. Furthermore,

because of the Interdependence of the •GOAL's, a component

•GOAL that has not yet been completed must "see" the

constraints posed by the completion of other component

•GOAL's. Thus, the local constraint environment might

cover several TIME-SLICE's.

Clearly this hairs things up a bit.

Nonetheless, the program must preserve the semantics of

these constructs because they are Important effects of the

model which give rise to their own special bugs (see

4.4.2.3). Actually, given the flexibility of contexts, the

Page 82

Jmplementatfon Is rather strafghtforward. The l fttle

schematfc of environments now looks lfke:

Page 83

In terms of the prevlous discussion of

perturbations, local and global environments, etc., nothing

has changed except that the "local" environments now may

have a hairy mlcrostructure of local environments:

Uninterested readers may squint at the above picture (and

concept), leaving everything as before.

Thus, a *GOAL Indicates a local

perturbation. The deductive mechanisms of the

problem-solver follow through the Interactions defined by

the model to carry the perturbation throughout the

simulation history in order to produce a consistent

environment. The next section considers these deductive

mechanisms and their interaction (via failure) with the

bug-f lnders.

4.4 Debygglng .tu!. problem-solving

Page 84

The basic task of the program Is to

trace a bug from Its manifestation to Its source. Th Is Is

done by taking In the manifestation as a •GOAL to be

achieved (as discussed earlier). The process of achieving

such a •GOAl Is usually called "problem-solvfngu. But this

Is a rather special use of problem-solving: the program

expects to fall In the attempt. In fact, It Is not until

after a line of attack has failed that It becomes

Interesting to the debugger. In this section we see how

lines of attack are formed 1 how they fall, and how they are

used after they fall.

The most Important part of any

problem-solving process is the formation of subgoals (1)

Section 4.4.1 considers the methods (those deductive

mechanisms we've heard so much about) for devising new

subgoals fn order to ach leve a goal. This corresponds to

asking the tthow could we do this ?" question of section 2.

But In this program, the object of the problem-solver is not

this d I rect attack on the problem. Instead, the

problem-solver must make certain It does not change the

Intent of the user's model In trying to debug It.

Thus, the process of attacking the

(1) Especially In this problem-solver. Since subgoals are
rarely achieved, the whole process turns Into
subgoal-formation.

Page 85

user's goal leads directly Into the problem of separating

the constraints which are In the simulation history because

of user Intent from those which are artifacts of unintended

model operation. At certain key points In the deduction

process, the program determines whether or not It should (Jn

terms of user Intentions) make the changes required by the

deduction. This process of assigning GOOD and BAD REASON's

to model action corresponds to asking the "why didn't you do

this before?" question of section 2. In 4.4.2 we examine

this REASONlng process In terms of the philosophy of bugs

presented In section 3.

The REASONing process leaves the program

with a failed line of attack. This appears as a stream of

•GOAL 1 s, annotated at each point with the BAD REASON that

triggered further program action. The program must then

examine the ~ecord of the problem-solver to attach blame to

the proper offending model part; i.e., to find the bug.

This task of post-mortem recrimination Is the subject of

4.4.3.

4.4.1 .I.W:. attack

Here we examine

phase of the debugging process. The

-----------~--- ------

the problem-solving

key problem-solving

Page 86

task of the program is to ffnd the proper local changes

throughout the global environment which will lead to the

desired change. Since each desired change fs represented by

a •GO·AL, the problem-solver proceeds by subgoal formatfon.

The subgoal-formation parts of the

program (the "deductfve mechanfsms'' mentioned earl fer) are

responsf ble for ffgurJng out how one local change can be

brought about by another. As an example of the way thf s

cause-effect knowledge Is procedurally represented fn the

problem-solver, the INCREASE function Is presented here.

The explanation of how INCREASE works will lead us directly

fnto the REASONlng methods of 4.4.2.

The program's ma Jn vehfcle for askfng

the "how?" question fs the INCREASE •GOAL:

(•GOAL (INCREASE <resource variable or submodel>

<amount> <tlme-slfce> Cl)))

That is, "goal: fncrease the resource variable or submodel

by the specified amount In the specified time-slice." The

user's Initial •GOAL Is usually of the INCREASE type (see

section 2). This just means that the user's dfscrepancy Is

usually a defffcfency of some resource varfable (or lack of

(1) If a <tfme-sllce> fs not gfven, the program
heurlstlcaliy chooses one.

Page 87

the appearance of some submodel) which he is asking the

program to fix up.

As we saw in section 4.3, the program

Immediately sets up a hypothetical local environment in

which the defflclency has been rectified. Then It trfes to

deduce an earlier environment which would cause the new

deslred slmulation state. It does this deduction via the

"logic of INCREASE" mentioned in section 2. The "logic",

briefly stated, runs as follows:

(1) Constant quantities cannot be INCREASE 1 d

(2) In order to INCREASE a quantity that Is a resource

variable which Is *OUTPUT (*REMOVE'd) by an *ACTIVITY

or *EVENT, set up a new *GOAL to INCREASE (DECREASE)

the number of occurences of that *ACTIVITY or *EVENT

(3) In order to INCREASE a quantity that Is *RETURN'ed

by a *FUNCTION, set up a new INCREASE-FUNCTION *GOAL (1)

(4) In order to INCREASE the number of occurences of an

*ACTIVITY, set up (If necessary (2)) a new *GOAL to

Cl) INCREASE-FUNCTION's major claim to fame is that it sets
up *GROUP *GOAL 1 s. I will therefore discuss it when I talk
about *GROUP In 4.4.2.3 rather than here. For now it's okay
to view INCREASE-FUNCTION as analogous to INCREASE applied
to *ACTIVITY 1 s.

Page 88

INCREASE the resources needed by that •ACTIVITY

(5) In order to INCREASE the number of occurences of an

•EVENT, set up a new •GOAL to INCREASE the frequency

with which its •CONDITIONS are val Id (which might

Include a •GOAL to INCREASE the number of occurences of

the •ACTIVITY's which the •EVENT affects)

Clearly, the Intent of this list Is to cover anything which

the user or another part of the program Cl> might ask to

INCREASE. However, the rules In the list are by no means of

uniform character; they differ greatly In their logJcal

bases.

The ff rst ~ule can be vfewed as a

"fact 11
, or, if you wlll, a property of the concept

11 l nc rease." That ls, the first rule depends .2Dlx on the

concept of "Jncrease"--not on MSL, models, etc. The second

rule expresses a deflnlte property of MSL rooted in the

semantics of •OUTPUT. It therefore depends not only on

"Increase", but also on the deflnltlon of MSL. The third

rule, which will be discussed later, depends on ''Jncrease",

the deflnltfon of MSL, and the rules of mathematfcs Cslnce

(2) Some necessary resources may already be present Jn
sufflcJent quantJty.

Cl) Since INCREASE is defined recursively, the "other part
of the program" might be INCREASE Itself.

Page 89

mathematical functTons are being Increased). Again, ft Is

valid for any MSL model. The fourth and fifth rules are

different Jn a very important way. They depend not only on

the definition of MSL and other "givens", but also on the

particular model defined by the user.

The reason for this is that the

occurence of *ACTIVITY's (and thus *EVENT's vfa the

*ACTIVITIES construct (see 4.1)) can be directly determined

by user Intentions. These intentions are expressed by the

*SCHEDULE modifier (see 4.1). •SCHEDULE is used whenever

the modeller wishes to override the "always schedule when

possible" default of the simulator. It therefore determines

the pattern of *ACTIVITY and *EVENT activation throughout

the simulation. *SCHEDULE is thus the primary expression of

the user's pol fey for dfrecting the dynamics of his model.

The fact that the "logic of INCREASE"

must take Into account user intent Jon provides the key link

between the "how?" and "why not?" questions. In the case

of the first three rules of INCREASE, the "how?" question is

perfectly well-formed. The program need only look at what

is to be ltJCREASE'd wfthout worrying about reasons lW.l! ft

shouldn't be done. There~ no reasons, because the rules

are val Id for any case the program can encounter. Thus,

the program can always go ahead and try the INCREASE. It

Page 90

can either fall (1) (as In the case of INCREASfng a

constant, for example) or It can set up the next subgoal

(usually another INCREASE *GOAL)--all without worrying about

"should" and "shouldn't".

On the other hand, rules (4) and (5)

must worry about "should" and "shouldn't" before setting up

the next subgoal. Perhaps the user does not intend for the

INCREASE to take place. Thus, INCREASE must ask the "why

not?" question before It proceeds.

4.4.2 .Ilul voice .2.f. REASON

We saw In the previous section that the

use of INCREASE to ask the "how?" question leads df rectly

to the need for the "why not?" question. As usual, the

program frames this question as a *GOAL. That Is, given the

*GOAL of INCREASlng an *ACTIVITY "A" by "m" occurences in

TIME-SLICE "n":

(*GOAL (INCREASE Am n))

Cl) A fallu•e of this kind Is automatically for a "GOOD
REASON"--see sections 2 and 4.4.2.1.

Page 91

the program Immediately forms the *GOAL

(*GOAL (SCHEDULE m A n))

to ascertain whether or not INCREASE should proceed.

SCHEDULE's job Is to examine

SIMULATION-HISTORY and the user's model to determine why the

change suggested by INCREASE was not originally part of

SIMULATION-HISTORY. After all, since It presumably leads to

the desired state, why didn't the user cause the state

suggested by INCREASE Jn the first place?

There are two kinds of reasons for the

user's not causing the suggested state to occur Initially.

A GOOD REASON Is that he del lberately intends (for reasons

best known to himself) the model not to allow that state.

A BAD REASON Is that the Interaction of the submodels has

caused a constraint which disallows the state. A BAD REASON

Is .!121 a bug. It simply Implies that a constraint is due to

submodel interaction and not user Intention. However, given

the bug philosophy of section 3, the program treats a BAD

REASON as "susplclous''--a cause for further Investigation.

In this section we examine the way the

program distinguishes GOOD REASON's from BAD REASON 1 s (and

the way It classifies BAD REASON's>. The next subsection

dfscusses the program's model of user intent--1.e., its

method for discerning GOOD REASON's.

classify BAD REASON's along the lines

"Interaction bugs" presented In section 3.

4.4.2.1 .GQ.Q.12. REASON 1 s

Page 92

After this, we

of the three

At each stage of the debugging process,

the program Is trying to change an envlronment ••• by using a

resource, Inserting a new submodel,etc. In order to do

this, the program must face the question of whether or not

the change should Cln terms of user Intentions) be made.

Of course, It. Is unreasonable to expect the user to have to

tell the program at each step what should and should not be

changed. In fact, given the philosophy of section 3, It Is

very unlikely that the user could provide this Information

If he wanted to. Thus, the program needs some sort of

theory of which of the constraints found In

SIMULATION-HISTORY are user-Intended and which are there

because of a possible bug In the model.

Going back to sections 1.3.1 and 3, we

recall the previous assumptions about user Intentions: the

user has a good understanding of each submodel, but only a

very weak understanding of how submodels Interact to achieve

an overall goal~ Thus, the program can assume, at least

Page 93

temporarily, that all Information In the simulation history

which Is derived directly from user statements about an

Individual submodel Is user-Intended. All other Information

Is necessarily the result of submodel Interaction and is

therefore suspect. The programming task is to Interpret

thfs simple theory Cl) of user Intention In terms of the

deductive mechanisms and SIMULATION-HISTORY.

Everything In an MSL specification

pertains only to a specific submodel; this, fn fact, was a

design criterion (see 4.1). Thus, everything so far is

user-Intended, by our principle of locality. But this Ts

only static Tnformatlon. Once the model is simulated, some

of this static local Information gives rise to interaction

between submodels. The question then becomes one of

determing how locality is preserved in the dynamic behavior

of the mode 1. That is, what's local about

SIMULATION-HISTORY?

According to 4.3, the answer seems to be

that the TIME-SLICE Is used by the program as a "local

(1) This theory Ts of course quite liberal in its suggestion
of "suspect" constraints. At this stage, this seems to be
the best strategy. The deductive mechanisms are capable of
el imlnating non-bugs rather easily so that things don't blow
up (see sect ion 2). However, if really large models were
used, a better theory would be necessary to avoid smothering
the program with possible leads (see section 4.5).

Page 94

environment" ••• but why? The TIME-SLICE preserves local lty

because direct user policy Is at the TIME-SLICE level.

Scheduling decisions set certain *ACTIVITY 1 s to occur tn

certain TIME-SLICE 1 s (see description of •SCHEDULE In 4.1).

•PREREQUISITES are checked at the TIME-SLICE level, •OUTPUT

occurs at the TIME-SLICE level, •FUNCTION's are called,

•EVENT's trlggered,etc.--all at the TIME-SLICE level. All

of the direct user decisions, as specified by the static

Information In the MSL, affect the simulation at the

TIME-SLICE level. Therefore, the program takes a constraint

to be local (and thus user-intended) If it depends only on

what happens in a single TIME-SLICE.

Now I mentioned In 1.3.1 that the models

used In this thesis are especially interactive.

Furthermore, as said above, the criteria for suggesting

unintended constraints can afford to be 1 lberal--we would

rather suggest wrong bugs than miss a possible bug. Thus,

we would expect there to be few local "user-Intended"

constraints and many non-local "suspect" constraints. This

Is Indeed the case. The resources present Jn any TIME-SLICE

are dependent on the action of the model over many

TIME-SLICE's and are thus non-local. Similarly, the timing

of •ACTIVITY's which do not contain •SCHEDULE specifications

becomes resource-dependent and thus non-local. •EVENT

Page 95

occurences are specified by probabfllstlc functions of

resources and are thus non-local. Finally, higher-order

constraints like coincident presence of several resources

span several TIME-SLICE's (see 4.3) and are, almost by

definition, non-local. These non-local constraints give

rise to the BAD-REASON's discussed In the next two

subsections. For now, let's mention the few GOOD REASON's

that exist.

Most GOOD REASON's concern constraints

that arise from •SCHEDULE constructs. If the change

requested by INCREASE would violate the •ACTIVITY's

•SCHEDULE for that TIME-SLICE, SCHEDULE denies the request

for GOOD-REASON (1) • Thus, If, as in section 2, there are

three ADVERTISING •ACTIVITY's already In a .TIME-SLICE and

ADVERTISING contains the modifier

(•SCHEDULE 3)

SCHEDULE will deny any request to up the amount of

ADVERTISING In that TIME-SLICE. Similarly, SCHEDULE views

the other avatars of •SCHEDULE <see 4.1) as

GOOD-REASON-generators.

The other kinds of GOOD REASON's are

Cl) There Is one exception to this which will be discussed
In the next ~ubsectlon.

Page 96

those that are based on "fact" or are "true by definition"

(see the first three rules of INCREASE In 4.4.1). Thus,

SCHEDULE wfl 1 deny attempts to schedule In negative t lme,

increase constants, etc. for GOOD REASON. Actual 1 y, these

REASON 1 s can be viewed as being based on the "common sense

knowledge" the user has In addition to his knowledge about

submode ls. That ts, the user df rectly Intends his model to

be "sensible" as well as to be In accordance with known

submodel constraints.

Thus, GOOD REASON 1 s apply to constraints

which depend only on single TIME-SLICE Information, I.e.,

which reflect the locality which Is characteristic of user

Intention. We now go on to Investigate the way fn which the

program deals with non-local constrafnts.

4.4.2.2 Basic .11At2. REASON's

If the program cannot find a GOOD REASON

for a constraint, It must attribute ·its existence to a BAD

REASON. From the "Interaction bug" philosophy of section 3

we see that the user's understanding of his model falters In

the three critical areas mentioned at the beginning of this

section:

Page 97

(1) the effects of resource competition among submodels

(2) tfmlng effects of submodels

(3) the effects of higher-order constraints

If a constraint Is there for no GOOD ~EASON, the program

considers the possibility that the constraint arose

unintentionally from one of these three misunderstandings.

It will therefore try to come up with a BAD REASON for the

constraint's existence so that it can Inform the debugger of

the possible anomaly (see section 4.4.3). This section

will consider the BAD REASON's related to the first two

kinds of Interaction. These BAD REASON's form the basis for

BAD REASON's arising from higher-order lnterdependencles--as

discussed In 4.4.2.3. Now, to continue with our favorite

process, the SCHEDULE •GOAL was just seeing why the desired

•ACTIVITY wasn't scheduled In that TIME-SLICE In the first

place •••

Since the user didn't specifically ask

for the •ACTIVITY not to be scheduled, there can be only two

reasons why the •ACTIVITY wasn't there:

Cl) some of Its prerequisite resources weren't present

I'

Page 98

(2) It ts dependent on an •EVENT that didn't occur

Thus, the pro.gram first checks out the resource situation In

the TIME-SLI~!. If the r~sources are not sufficient to

support the •ACTIVITY, there can be two reasons why:

(1) the resources s.a:, available In the TIME-SLICE but

were used~up by higher-priority •ACTIVITY's before the

•ACTIVITY In question got a chance at them

(2)· the resources Just a In' t the re

To check out the first possibility, the program looks at the

status of the higher-priority •ACTIVITY's In the TIME-SLICE.

If any of these •ACTIVITY 1 s Indeed "stole" resources which

would have .allowed scheduling of the desired •ACTIVITY,

the Ir names are collected and the BAD REASON

(PRIORITY•R£~0URCE·BOUND (<names of offending •ACTIVITY's>))

Is recorded.

If no higher-priority •ACTIVITY's stole

the resources, the~ the resources must just have been absent

from the TIME-SLICE In the first place. The ubiquitous

two possible reasons:

Page 99

(1) The *ACTIVITY's which •OUTPUT the desired resources

weren't scheduled until It was too late for the

resources to be available In the TIME-SLICE

(2) The •ACTIVITY's which •OUTPUT the desired resources

were scheduled too early and the resources were

gobbled up by higher-priority •ACTIVITY's In the

Intervening TIME-SLICE 1 s

Of course, In either Instance, the user may have Intended

this to be the case (well we know how to check that out •••).

On the other hand, the •OUTPUT •ACTIVITY 1 s may have ended up

In the wrong place because of the user's poor understanding

of timing effects (1) --a BAD REASON. To determine which Is

the case, the program proceeds as follows. It first finds

out what •ACTIVITY 1 s •OUTPUT the desired resources and

checks to see If they were scheduled too late to do the

desired •ACTIVITY any good. Then, It sees whether the

•OUTPUT •ACTIVITY's were "late" for GOOD REASON. If not, it

notes a BAD REASON:

(1) Note that the "lnteractton Information" about timing Is
Implicit In the resources. That Is, there are no expl left
timer-alarms to say when something ts too late or too early.
The only evidence of a timing error In the model will be
found In the levels of particular resources over time.

(RESOURCE-BOUND (TOO LATE C<names

of offending •ACTIVITY 1 s>)))

Page 100

If there are no "late" •ACTIVITY 1 s, or lf the •ACTIVITY's

were late for GOOD REASON, the program looks back up the

SIMULATION-HISTORY for two things: *ACTIVITY 1 s which •OUTPUT

the needed resources scheduled "too early" for no GOOD

REASON and "Interloping" •ACTIVITY's of higher priority

which stole the needed resources. If both of these things

exist, the program notes:

(RESOURCE-BOUND (TOO-EARLY (<names of offending •ACTIVITY 1 s)

<<names of Interloping •ACTIVITY's>)))

Thus, the PRIORITY-RESOURCE-BOUND and

RESOURCE-BOUND BAD REASON's take care of the case tn which

the •ACTIVITY cannot be scheduled because of a lack of

prerequisite resources (1) • Thls leaves the other case in

which the •ACTIVITY could not be scheduled because It is

Cl) As discussed previously, the program would try to
alleviate this defficlency with an appropriate INCREASE
•GOAL. The reason for th Is Is to make sure that the program
traces through the entire Interaction path: after all, this
resource defflclency could just be the result of an earlier
decision which reflects the actual bug. Mo,re on this In
4.4.3.

I

f'

Page 101

dependent on an •EVENT that didn't occur.

The program can easily recognize this

second case because ft can only arise from the

(•SCHEDULE CON <•EVENT-name>))

specification (see 4.1). If the specified •EVENT did not

occur in the TIME-SLICE, the desired •ACTIVITY could not be

scheduled. Now, if the program were acting like it did

before, it would try to find out 11why 11 the •EVENT df dn 1 t

take place In the TIME-SLICE. However, this is

inappropriate for •EVENT 1 s, which, after a 11 , model

occurences which are beyond the modeller's direct control.

Of course, this raises the question of why a modeller would

make an •ACTIVITY dependent on an •EVENT in the first place.

Indeed, the program becomes suspicious: It Is possible that

because of the user's poor understanding of timing effects,

the •EVENT dependency (plus the time needed by the

•ACTIVITY) will cause the •ACTIVITY to take effect at the

wrong tlme--usually too late (1) • The program checks out

Cl) The most common cause of this •EVENT-dependency Is the
"ff re-fighting" approach to solving problems: when the event
occurs, start doing something about It. (Thi~ is, In fact,
the problem In the example of section 2: HIRING Is dependent
on QUITTING.) Note that this BAD REASON ts the exception
to the "If •SCHEDULE says It's okay, It's okay" dictum
referred to earl ler.

Page 102

this p0sstb.fl.lty by looking up and down StMUlATlON-HISTORY

to see If the •ACTIVITY was scheduled "too late" or "too

early". If etther of these is the case, the program notes a

BAO IEA'SON:

(•EVENT•TR IGG·ERED-SCHEOULE <offend Ing •ACTIVITY>

<"T-00 LATE" or atTOO £A~LT">)

If neither of these Is the case, the program simply

termln-ates lts 1 lne of attack (1) on

(•EVENT-TR I GG.ERED•SOHEDULE)

and goes away mumb 1 Ing to Itself (actual 1 y, th Is would be

the first "·GOOD REASON" It looks at after all the BAD

REASO'N' s were checked by the debugge.r).

Well, this wraps up the "basic BAD

REASON 1 s" arising from Poor understandfng of resource

con'f1 let and t lmln.g effects .• Now we go on to see how

mlstanderstandlng of higher-order const·ra.fnts le.ads to th·e

use of thes:e same BAD REASON's In an ·expanded context.

(1) Note that unl Ike the other BAD REAS8N's, this .one causes
the line of attack to termlnate--no further tnvestfgatlon Is
possible (see 4.4.3).

Page 103

4.4.2.3 Higher-order BAD REASON's

Up until now (except for part of 4.3), I

have over-slmpl ified the interactive behavior of submodels

for the purposes of discussion. Specifically, I have

pretended that a submodel can depend on only one other

submodel for its sources of input. Thus, my •ACTIVITY's

have had only one unfilled •PREREQUISITE, my •FUNCTION's

only one *ARGUMENT. This is of course quite unreal fstic,

and not a real restriction of MSL. In this section I remove

this artificial restriction.

The introduction of multiple dependency

brings up the issue of higher-order constraints. As we saw

In 4.3, when submodels depend on several other submodels for

Input, the problem-solver must take into account the

lnterrelationshto of the Input •ACTIVITY's. The input

•ACTIVITY's are In fact operating under a "higher-order

constraint" (see section 3.2)--they must combine to provide

resources for a single •ACTIVITY (or •FUNCTION) at a certain

time • This higher-order constraint Ts modelled by forcing

the Input *ACTIVITY's to share a local constraint

environment (see 4.3). That is, all •ACTIVITY's sharing a

higher-order constraint must be scheduled not only in

accordance with their own needs, but also with the needs of

Page 104

the •ACTIVITY or •FUNCTION that depends on them. There are

two types of environment-sharing, reflected by two types of

•GOAL's to handle the higher-order dependencies. The first

of these Is •AND, the expression of the way •ACTIVITY's

depend on each other when their higher-order constraint ts

another •ACTIVITY. The second Is •GROUP, which models the

•ACTIVITY-•FUNCTION dependency.

•AHO dependency arises from •ACTIVITY's

that look 1 Ike

(•ACTIVITY SALES-CALL
(•PREREQUISITES

(•AND

SALESMAN))))

•
•)

(•PRESENT (1000 CASH))
(•PRESENT Cl UNIT))
(•PRESENT (SOME

That Is, SALES-CALL depends on the submodels which •OUTPUT

CASH,UNIT, and SALESMAN. All. of these •OUTPUT 1 s must be

present at on,ce (i.e., In the same TIME-SLICE). Thus, any

•GOAL which tries to schedule a new SALES-CALL •ACTIVITY

must take this Into account. Specifically, If the resources

are not available, .all of the •OUTPUT •ACTIVITY's .Involved

must be scheduled. That Is, given the •GOAL

(•GOAL (INCREASE SALES-CALL m n))

Page 105

and assuming none of the necessary resources are on hand (1)

, the program must generate the subgoal

))

(•GOAL (INCREASE CASH j n))
(•GOAL (INCREASE UNIT k n))
(•GOAL (INCREASE SALESMAN 1 n))

Now, just as before, the program must be

careful not to INCREASE things contrary to the intentions of

the user. Again, It uses the SCHEDULE •GOAL to ffnd out the

REASON for constraints. However, the SCHEDULE •GOAL cannot

simply check out each INCREASE •GOAL Independently as

before. The INCREASE •GOAL's are now interdependent and

must be treated as such. So now, f lnding GOOD and BAD

REASON's Is a whole new game.

Not really. Fortunately, the process

Isn't very different, especially in the case of •AND. First

of all, examination of the whole GOOD REASON-f lndlng

philosophy and implementation will show that It Is

completely unaffected by higher-order Interdependencies.

This Is almost by definition: GOOD REASON 1 s pertain to

Individual submodels and TIME-SLICE's, while higher-order

(1) In section 2 I kept higher-order constraints out of the
picture by buffering away dependencies. Thus, In the case
of SALES-CALL, all resources except SALESMAN were available
already (see section 2).

Page 106

Interdependencies transcend these boundaries of locality.

Thus, SCHEDULE's GOOD REASONlng processes are still the

same. Certainly, however, the BAD REASONlng Is different.

But most of the differences have been taken care of already

by the environment-sharing discussed In 4.3. That is, the

effects of higher-order constraints on resource conflicts

and time dependencies are already reflected Jn the way •AND

•GOAL's are set up and processed--the higher-order

interdependency Is already modelled. For example, If

satlsfyfng one component •GOAL steals resources from another

or disturbs the timing of another, the shared environment

wll 1 make this Interaction expl felt: the resources needed by

each •GOAL are recorded separately so that the effects of

everything done in the •AND environment can be traced to the

proper source.

All this Is saying that all SCHEDULE has

to do about •AND's Is to realize that it Is In a shared

environment and attribute BAD REASON's to the effects of

sharing. Thus, the searches for higher-priority •ACTIVITY's

and timing problems which were previously carried out only

In a single TIME-SLICE are now carried out Jn the whole •AND

environment. The "new" BAD REASON's they generate look 1 ike

(PRIORITY-RESOURCE-BOUND (<names of offending
•ACTIVITY's>) •AND-MODE)

(RESOURCE-BOUND (TOO-EARLY ((names
of offending •ACTIVITY's>)

Page 107

•ANO-MODE (<names of Interloping •ACTIVITY's
in the •AND environment>) <<names of other

Interloping •ACTIVITY's>))

etc.

The theme here Ts that most of the work

for finding hTgher-order BAD-REASON's Tn the •AND case was

done by setting up the •AND environment in the first place.

That Is, the Interdependency Is already expl Jcitly modelled

by the way •AND •GOAL's work, and need only be checked

through by SCHEDULE to find the appropriate BAD REASON's.

This theme ts elaborated for the •GROUP case.

In 4.4.1 postponed the issue of

INCREAStng •FUNCTION 1 s by attributing this task to a

separate INCREASE-FUNCTION •GOAL-type. The job of

INCREASE-FUNCTION ts to figure out a way to Increase the

value •RETURN 1 ed by a •FUNCTION by changing the values of

Its •ARGUMENTS (thus, ft Ts completely analogous to

INCREASE). Obviously, this problem ts extremely diffTcult

for a large class of functions. Fortunately, the functions

needed In business games, and, indeed, Tn most of business

processing, are of a very simple nature (1) • MSL currently

(1) The mathematics of management sclence--T.e., mathematics
meant to model systems and decislons--can be quite
sophisticated, but this Is not business processing. Indeed,
even in a business game, the probability-handling can get
tricky. But all of this ts built into MSL--the user can

Page 108

allows the representation of only two kfnds of functional

dependencies: tables and linear functions of a few

variables. The mathematfcal technfques for Increasing these

•FUNCTION's are simple and are not of Interest here. The

Interesting part of •FUNCTION's for thfs discussion fs they

are responsible for the second kind· of

Interdependency.

h I ghe r-orde r

We just saw how the relation between

•PREREQUISITES and •OUTPUT 1 s causes •AND Interdependency.

Similarly, the relation between •ARGUMENTS and •RETURN'ed

value causes •GROUP Jnterdepency. In the •AND case, the

interdependency was that ill. •PREREQUISITES must be present

In the proper quantltfes Jn a single TIME-SLICE for the

*ACTIVITY to be Initiated. •GROUP f nterdependency Is

weaker. We know only that~ combination .Q.f changes to

the components wf 11 brfng about the desired change to the

higher-order constrafnt. That Is, each subgoal can

contribute an unspecfffed amount to the success of the

overall •GOAL. Perhaps the Increase of only one of the

•ARGUMENT resources will suffice to fncrease the •RETURN 1ed

value. Or, all may be necessary--makfng the •GROUP an •AND

at the extreme.

Now the program must model this kind of

only define simple functfons which use the probabllfty
machinery.

Page 109

interdependency when It tries to INCREASE •FUNCTION's.

Furthermore, in trying to solve the INCREASE-FUNCTION

problem, it must go about the task pretty much the same way

organizations do In order to run Into the same kind of

Interactive behavior. That Is, the interaction involved fn

a kind of breadth-first approach to the problem (increase

each •ARGUMENT resource a little In turn until the

•RETURN 1 ed value has been INCREASE'd the desired amount)

causes very different subgoal interaction than, say, a

depth-first approach (Increase each •ARGUMENT as much as

possible separately to see how much it helps to INCREASE the

•FUNCTION). The differences are In which subgoals are

allowed to be achieved at the expense of others (1) , the

range of subgoals tried, and the extent to which each

subgoal Is exercised (2) Clearly, d f ffe rent

interdependencies are tapped by different subgoal attack

methods.

So the program must try to overcome the

(1) Unlike •AND, this is allowed because not all •GROUP'ed
subgoals must be achieved. The only requirement is that all
of the subgoals whfch eventually succeed must share the same
local constraint environment (otherwise the construct
doesn't model higher-order interdependency).

(2) Note that this need to model the organization's
problem-solving method was not present in the •AND case.
Since all subgoals must be achieved as stated, no
"resource-steal Ing" fs allowed among them and all of them
must be fully tried and executed.

Page 110

higher-order constraint of Increasing a

functionally-determined value the same way organizations do.

Obviously, this ts a tall order. Firs~ of all, functional

relationships are usually Implicit In organizations, not

explicit as In MSL--so It's hard to see what organizations

do about them. Second, It ts reasonable to assume that

different organizations attack different functional problems

In different ways at different times. Finally, It ls

possible that the actual process Is not pre-defined at all

In many cases, but Is Instead made-up and modified during

the course of each problem's solution. What I am trying to

say by all of this Is that I'm not about to solve the whole

problem or even a very big part of It •••

What ~done Is to program a single,

slightly sophisticated method of attacking higher-order

functional constraints which attempts to model one way in

which an organization might do it. It should be seen as an

experiment for demonstrating the approach of the program In

deal Ing with this kind of constraint, not a fully developed

piece of the system. This part of the program, Incorporated

In INCREASE-FUNCTION, works as follows: given a •GOAL of the

form

(•GOAL
(•GROUP

(•GOAL (INCREASE argumentl tlmel))
(•GOAL (INCREASE argument2 tlme2))

Page 111

))

the program takes the first •GOAL

(•GOAL (INCREASE argument! trmel))

and trres to INCREASE argumentl the mrntmum possrble amount

as a "feasrbrltty study". It carries the •GOAL all the way

to completion, ff ft can. If the •GOAL ts unsuccessful

(for GOOD REASON), It rs wlthdrwan from the •GROUP and the

program does a "feasibility study" on the next •GOAL rn the

•GROUP. If no "feasibility study" Is successful, the whole

•GROUP naturally falls. Now, If any of the "stud res" are

successful, the program wfl 1 keep attacking the studied 1 ine

until It fa 11 s. When this happens, I.e., when the

part fcular •ARGUMENT has been INCREASE 1 d as much as

possible, the program considers Itself to have a 11 pa rt i a 1

success". That ts, the effect of the INCREASE'd •ARGUMENT

ts now calculated Into the overall •GROUP •GOAL, so that a

new •GROUP •GOAL rs formed such that

Cl) The fully INCREASE'd •GOAL is no longer In the

•GROUP

(2) The overall •GOAL is reduced by the amount

contributed by the successfully INCREASE'd •GOAL

---------------------------- -~--

I

Page 112

In this ~ •GROUP environment, the other •GOAL's

similarly processed until success (or failure) occurs.

are

A 11 of this hopefully goes toward

modelling the way an organization attacks this kind of

problem: by checking out and eliminating posslblltttes one

by one, and pushing winning lines as far as possible to

achieve the overall •GOAL. As lntlmaied tn 4.3, the process

Is model led C 1 Ike •ANO) by the pr~per sharing of

environments. Obviously, the envf ronment-hackery for

•GROUP's ts a bit more complicated than for •AND (for

example, It must Incorporate the notion of "partial success"

and the fact that all the eventually successful •GOAL's and

only the eventually sucGessful •GOAL's share the same local

constraint environment). The question for us here ts how

this affects the GOOD and BAD REASON Ing process.

Again, the answer Is "not all that

much". As with the •AND case, the only difference ts that

the BAD REASON's differentiate between constraints caused by

higher-order Interaction .and those caused by other kinds of

interaction. This ts again just a matter of tracing through

the expl lclt relationships set up In the •GOAL is environment

structure. As far as actual BAD REASON 1 $ for constraints

go, •GROUP only adds two Cmfnor) new wrinkles. First of

all, It will make a special notation If the constrafnt comes

Page 113

up d~rlng a feaslbllfty trfal. Second, it carefully notes

which •GROUP •GOAL 1 s have already succeeded when the

constraint comes up. These are just convenience factors

which the bug-finder uses when suggesting •GROUP bugs to the

user; It wants to make clear exactly what the program was

doing when It ran Into the constraint. This ts important,

because, as mentioned above, different interaction occurs

depending on exactly what the program does.

This brings up a ffnal important point.

•GROUP BAD REASON's are perhaps the weakest in the REASON

repertol re because they depend directly on the actual

exploratfon methods used. That ts, the program might

suggest a BAD REASON which the user may never rea 11 y

encounter because of the way his organization handles

functional dependencies. Thus, the debugger saves

•GROUP-type bugs for last. Nonetheless, think that it I s

very important to Include this kind of REASONing in the

debugger: •GROUP-style dependencies are pervasive In

organizations. Furthermore, they point the way toward

modelling more sophisticated kinds of submodel-submodel

Interact Ions The weakness of the •GROUP method In this

program Is Its Incompleteness, not Its basic concept.

This section has catalogued all of the

BAD REASON's generated by the program. Now we finally get

Page 114

around to finishing the bug story by· showing how the BAD

REASON 1 s are used to suggest the actual model bugs.

i..4.3 .I.b.e. ~-mortem recriminations

So far, the debugger has been left with

a bunch of GOOD and BAD REASON's for constraints. It Is now

time to turn these Into bug suggestions. So, let's see what

the REASON's mean to the debugger. If the problem-solver Is

faced with a BAD REASON for a constraint, It knows that the

constraint Is based on submodel interaction. Its job Is to

explore that Interaction. Therefore. when SCHEDULE returns

a BAD REASON, the problem-solver considers It a cause for

further Investigation. In this way, It carries the

perturbation as far as It can-·traclng the Interaction

patterns to their roots.

GOOD REASON's are the "roots" that stop

this search through the interaction path. They imply that

the constraint blocking the path ts not due to Interaction,

but rather to direct user Intent. The program should not

disturb user intent, since Its only purpose In changing the

environment is to debug the existing model. It now has a

GOOD REASON to stop changing the environment, so It stops.

Page 115

Its current line of attack is said to "fall" (in its attempt

to bring about the desired change). Thus, the

problem-solver's activities leave a 1 lne of *GOAL's attached

to BAD REASON's ending In a *GOAL attached to a GOOD REASON

(1) • Now what does all of this have to do with debugging?

Simply this: the program has now tried to overcome every

Interaction-based constraint In the way of producing the

user's desired state. It has reached a user-desired

constraint which is the root cause of all of the

interaction-based constraints. Therefore, lt has reached

the end of the 1 lne and cannot produce .t.b.e. user's desired

state. There can be three reasons for this state of

affairs:

(1) The user's desired state Is off-base: he has set
the model an Impossible task

(2) One of the user's original Intentions is wrong;
I.e., one of the root constraints Is the bug

(3) One or more of the interaction-based constraints
between the root constraints and the desired state are
Incorrect: the model has an Interaction bug

It is obvious from what has been said before that the

program thinks that possibility (3) is the most likely. It

therefore suggests that one or more of the interactive

constraints (noted by BAD REASON's) are caused by the bug.

(1) Except for the *EVENT-TRIGGERED-SCHEDULE case discussed
In 4.4.2.3.

Page 116

That Is, given that the Interaction constraints are wrongly

causing the discrepancy, the debugger's job Is to find the

part of the model which gives rise to the faulty

constraints. This is then suggested as the "bug" In the

user's model. If the user doesn't agree with any of the

program's suggestions based on possibility (3), the program

falls back on (2), and finally (1). Anyway, let's pick up

the process again at the possibllty (3) suggestion phase.

The program now has the location of the

bug bracketed between the beginning and end of a "1 tne of

attack". Furthermore, the submodels which could have caused

the bug have been narrowed down to a relatively smalll

"Interaction group" (the union of all submodels mentioned In

the bracket) (1) The program must now pick out the

Cl) The size of the "bracket" and "Interaction group" of
course depends on the model. However, In the experfence I
have had, the relevant groups have been small: a few BAD
REASON 1 s and thus slightly more possible submodels. In the
case of higher-order stuff, the group gets somewhat larger.
There ts no reason to expect brackets or interaction groups
to get much larger for larger models: the key factor In
determining their size Is the amount of control the user
exercises over his model (In MSL, the extent to which things
are determined by •SCHEDULE 1 s). Control means GOOD REASON's
and thus short paths between Initial manlfestatlon·s of a
discrepancy and GOOD REASON's to close the bracket. Control
also means smaller groups of submode1s which can affect the
timing and resource-allocation of other submodels. Since
managers (and modellers) exert considerable control over
their systems, the amount of uncontrolled Interaction
possible In any realistic model Is probably quite
reasonable-sized. This In turn means that brackets and
Interaction groups should also stay reasonable~slzed.

Page 117

submodels Jn the "group" which caysed the BAD constraints In

the "bracket".

Sometimes this is quite easy: all of the

BAD REASON's are traceable to a single submodel interaction.

Examples of this are the *EVENT which triggers an *ACTIVITY

at the wrong time, the *ACTIVITY which constantly steals

resources from other necessary *ACTIVITY's, and the

*ACTIVITY which Is always too late (too early) to allow

another *ACTIVITY to be Initiated on time. The program

looks for these single-cause Interactions by scanning the

BAD REASON 1 s In the bracket, looking for "give-away" BAD

REASON 1 s like •EVENT-DEPENDENT-SCHEDULE or consistencies in

the "offending •ACTIVITY's" and "Interloping •ACTIVITY's"

listings. If, In the process of examining the bracket, the

debugger finds a single such cause for the BAD REASON 1 s of

the bracket, it immediately labels the faulty interaction

(I.e., the submodels Involved In the interaction) as~ bug

for that bracket, and files it away. Often, however, in

looking at the BAD REASON 1 s of a bracket, the program finds

that a particular BAD REASON could have been caused by any

of several interactions. For example, •ACTIVITY A couldn't

be scheduled because B stole Its resources, or because C

caused D to be late so that D couldn't provide the necessary

resources for A. The program handles this by noting each

Page 118

cause separatelv as a bug.

Sometimes this straightforward process

breaks down: the program ts unable to pick out the cause for

the BAD constraints of a bracket (this happens mostly In

•AND's and (especially) •GROUP's>. Currently, the program

simply presents the troublesome bracket to the user telling

him that "there's something wrong In there". consider

this an incomplete part of the program (see 4.5).

When the program has found the bug (or

the few bugs) for each bracket, It presents them to the user

In order of 11 1 lkel lhood". The debugger's model of the

likelihood that a suggested bug ts actually a bug In the

model is

(1) The more soeclflc the suggested bug, the more

1 tkely It Is that it Is genuine; thus, bugs 1 Ike

•EVENT-DEPENDENT-SCHEDULE which correspond to a single

BAD Interaction are suggested flrst.

(2) The more definite a suggested bug, the more likely

It Is; I.e., brackets which contain a single possible

bug are suggested before those with multlple bugs,

which are In turn before those which are just brackets

with the "somethlng 1 s wrong" tag.

I

Page 119

(3) The more Interactions encompassed by a single bug,

the more likely ft ts; this ts just a recursive

application of Murphy's law ••• the more Interaction

decisions a user has to make, the more he'll blow--thus

•AND bugs (1) and long timing chain bugs CA was late

for B was late for C was •••) come early.

(4) Timing bugs are more likely than resource-confl let

bugs; PRIORITY determinations are much closer to local

specifications, and are thus more likely to be

user-Intended than the multi-TIME-SLICE machinations of

a timing bug.

(5) •GROUP bugs are saved for last.

(6) After all of the bugs due to Interaction are gone,

the program works on the second possibility stated

above--J.e., ft starts suggesting that the GOOD

constraints are faulty (I.e., wrong •SCHEDULE

specification, etc.); It starts wf th the

•EVENT-DEPENDENT-•SCHEDULE REASON If It Is

around--f t's suspicious.

Cl) •GROUP bugs would be here too, except, as I mentioned In
4.4.2.3, for the fact the mechanism for handl Ing them Is
rather dubious.

--~--~

Page 120

(7) The program suggests missing submodels (see 4.5).

Thus, the program goes through Its suggestion repertoire bug

by bug, providing the user with an orderly statement of what

the program thinks might be wrong with the model (see

section 2 for the format of the suggestions). The user can

always ask to see the Interaction path leading to a bug, the

bracket of a bug, and any other bugs which pertain to a

particular bracket.

If the user does not agree with any of

the bugs suggested, the program will suggest possibility

(1): that his original •GOAL was wrong. If the user is

still unsatisfied after all this work~ the program Informs

him as to the location of his head and logs him out.

ii. 5 oon 't confyse !llit fil1h !filt facts

Most of the program's knowledge about

models Is contained In Its conceptions of MSL (Including,

for example, Its Ideas of how to INCREASE MSL quantities)

and Its notions of user intentlon--as discussed Jn ~.4.

However, as mentioned In section 2, It Is useful from a

debugging point of view to Include actual "world" knowledge

of business games. Clearly, this knowledge can be used to

suggest bugs which transcend the MSL specification.

Page 121

This Js, In fact, the only use the

current program has for WOBG knowledge. As shown Jn section

2, the program has a facility for suggesting "missing" parts

of an MSL specification. This comes from a (very simple)

model of what an MSL model of a business game (1) ,ould

contain. The program simply checks at various points to

see whether the addition of an •ACTIVITY could solve some

problem (usually alleviate some defflcfency) in the user's

model. Thus, when there Js a lack of CASH Jn the sample run

In section 2, the program notes that the addition of a

FACTORING •ACTIVITY (see description ln Appendix A and

specification In Appendix B) could solve the problem.

While this sort of thing is certainly

useful, ft Is only a "zeroeth order" attempt at using world

knowledge In debugging. A more Important use of WOBG

knowledge would be to aid In finding bugs within the MSL

specification (.I.e., the same kind of bugs the program now

finds). As mentioned In 4.4, a major determiner of the

eff lcacy of the debugging program Is the number and size of

the "brackets" which enclose possible bugs. In the current

program, brackets are determined by the amount of

uncontrolled interactlon--1.e., a purely MSL-level

criterion. In a more thorough-going approach, WOBG

(1) In fact, It Is based entirely on the game in Appendix A.

- -- -- - -------

Page 122

knowledge could be used to determine which interactions are

really natural and which are possible bugs (1) --thus

1 lmltfng or even eliminating brackets. Also, WOBG knowledge

could be used to suggest suspiciously specified *ACTIVITY's,

etc.

The main reason that have not

exploited WOBG knowledge tn these more sophisticated ways is

that It has not been necessary for the models I have

investigated so far. Furthermore, ft Is Interesting to see

how far a "domain-Independent" (2) debugger can go toward

finding bugs in MSL models. Thus, WOBG knowledge does not

enter Into the main bug-finding process at all. Its sole

use Is In suggesting the addition of *ACTIVITY's to the

cu r re n t mode 1 (3) •

(1) This sort of thing ts actually found to some degree in
the programs of Sussman 1181 and Goldstein 151.

(2) See Sussman's discussion of the domain-independence of
HACKER 1181.

(3) It operates off a WOBG database which will not be
described here. It works a lot like MAPL 1101, and was in
fact designed to be compatible with the larger MAPL database
of Protosystem I (the WOB 191).

Page 123

5 Conclusions

would like to use this concluding

section to flt my model-debugging system Into the "big

picture", vfewlng It ffrst as a debugging tool, and second

as part of an automatic programming system.

The approach of my debuggfng system

should be seen as one method of the several which can be

used by the human or machine problem-solver. The

simulate-and-Investigate technique shown here is useful for

debugging poorly understood but easily modelled systems. It

requires the modeller's knowledge and lack of knowledge to

be of a certain character, as outl toed earl fer. It Is also

most useful for handling highly Interactive systems. If the

problem domafn fs very well understood, or If actions fn ft

are basically Independent, other techniques are simpler and

much better.

Furhtermore, It should be stressed that

the debugging methods of the program are quite naive In the

context of a real Cf .e., non-game) Interactive system. It

Is almost certain that all of the techniques described here

would have to be shored up with procedures based on

knowledge of the problem domain (see 4.5). Remember that

Page 124

the basic "smarts" of my system is ln the exploration of the

simulation history. In real life, this exploration phase Is

usually preceded by some knowldgable guess work

of the debugger: almost all expert human

on the part

debuggers

(progranmers, consultants,etc.) start their exploration for

a bug with a good preconceived notion of the nature of the

bug. This "notion" comes from the utll lzatlon of long

experience about what kind of bugs are attached to what kind

of problems; most debuggers~ that only one or two things

could possibly cause a bug at any given time In their

exploration. No one yet knows how to encode this key

experiential knowledge into a computer program. Certainly,

no attempt has been made in this thesis.

Thus, the program presented here, when

viewed only as a general debugging technique, should be seen

as part of a larger system: It fits In after an Initial

"guesswork" phase (as one of several possibly applicable

techniques) and just before a "weeding out" phase which

makes thorough use of knowledge in the problem domain to

narrow down the choice of possible bugs.

The model-debugging needs of an

automatic programming system are somewhat different. Here

the user Is Interested in expressing a model of his problem

to the machine in such a way that he can be sure that the

Page 125

machine understands It properly. Thus, after a phase of

model specification aid at deflne-.tl.ln.e. Cl) , a

model-debugging system like the one here can come In and

demonstrate the APS's Idea of the model to the user's

satisfaction (and help the user overcome any dlcrepancys).

The slmulate~and-lnvestfgate and domain-Independence

philosophies of my system are well-adapted to this purpose:

the system can afford to be an expert in Its own modelling

language and do a great deal of exploration work In finding

bugs. Furthermore, the user can tolerate a reasonable

number of program-generated choices of bugs In his model If

he can be certain of eventual understanding by the APS.

Therefore, I think that the techniques used here might find

direct application In automatic programming.

Nonetheless, for a debugger to be truly

useful, whether In an automatic programming or general

artificial lntell lgence environment, It must incorporate the

same kind of experiential debugging knowledge found In the

human expert. This kind of stuff will surely be the basis

of the next generation of debuggers which are now on the

horizon.

Cl) See 191 for Protosystem l's "activity expert modules".

Page 126

Btbl lography

Ill Balzer, Robert, "Automatic Programming", Institute
Technical Memorandum 1, University of Southern
Cal lfornla Information Sciences Institute,
Sept., 1972.

121 Boehm, Barry W., "Software and Its Impact: A
Quantitative Assessment", RAND Study P-4997,
Dec., 197 2.

131 Forrester, Jay W., Principles .Q.f Svstems, Wright-
Al len, Cambridge, Mass., 1968.

141 Galbraith, Jay R., "Organization Design: An
Information Processing Vlew", unpublished
Sloan School of Management working paper
No. 425-69, MIT, Cambridge, Mass., Oct.,1969.

ISi Goldstein, Ira, Understanding Fixed Instruction Turtle
Programs, PhD Thesis, MIT, Cambridge, Mass., Sept.,
1973. .

161 Gorry, G.A., "The Development of Managerial Models",
Sloan Management Review, Vol. 12, No. 2, Winter,
1971.

171 Hewitt, Carl, oescrlptlon .an,g_ Theoretical Analysis
(Using Schemata) Q.f PLANNER: A Language f.QL
Proylng Theorems and. Manipulating Models .lu ~
Robot, PhD Thesis, MIT, Cambridge, Mass., April,
1972.

18 I LI t t le, John D. C., "Models and Manage rs: The Concept
of a Decision Calculus 11

, unpublished Sloan School
of Management working paper No. 403-69, MIT,
Cambridge, Mass., June, 1969.

191 Martin, William A., "Interactive Design In Proto
system I", Project MAC Automatic Programnlng
Group Internal Memo No. 4, MIT, Cambridge, Mass.,
August, 1972.

Page 127

1101 Martin, William A. and Rand B. Krumland, "MAPL, A
language for Describing Models of the World",
Project MAC Automatic Programming Group Internal
Memo No. 6, MIT, Cambridge, Mass., Oct., 1972.

1111 McKenney, James L., Slmylatlon Gaming .f.Q.r:. Management
Development, Harvard Division of Research, Boston,
Mass., 1972.

1121 Minsky, Marvin L., "Matter, Mind, and Models", In
Semantic Information Processing (Mlnsky,ed.),
MIT Press, Cambridge, Mass., 1968, pp.425- 432.

1131 Reitman, Jul tan, Compyter Simulation Aopllcatlons,
Wtley-lnterscfence, New York, N.Y., 1971.

1141 Rockart, John F., "Model-Based Systems
Analysls--A Methodology and Case Study",
unpublished Sloan School of Management working
paper No. 415-69, MIT, Cambridge, Mass., Sept.,1969.

1151 Rustin, Randal 1 Ced.), Debyggtng Techniques l.a. Large
Systems, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1971.

1161 Stogdlll, Ralph M. (ed.), .I.bJ:. Process .Qf. Model
Butldtng l.a. .t..!Jj}_ Behavioral Sciences, Ohio State
University Press, 1970.

1171 Sussman, Gerald J., "The FINDSPACE Problem", VISION
FLASH No. 18, Al Lab Vision Group, MIT, Cambridge,
Mass., Aug., 1972.

1181 Sussman, Gerald J., A Compytatlonal Model .Qf. Skill
Acqylsltlon, PhD Thesis, MIT, Cambridge, Mass.,
Aug., 1973.

1191 Sussman, Gerald J. and Drew V. McDermott, "Why Conniving
Is better than PLANNING", Al Memo No. 255A, Al Lab,
MIT, Cambridge, Mass., April, 1972.

1201 Sussman, Gerald J. and Drew V. McDermott, "The Conniver
Reference Manual", Al Memo No. 259, Al Lab, MIT,
Cambridge,· Mass., May, 1972.

1211 Winograd, Terry, Procedyres ~~Representation .f.Q.r ..Q.at.a
l.n 4 Comouter Program .f2L. Understanding Natural
Language, PhD Thesis, MIT, Cambridge, Mass., Feb.,
1971.

I -

Page 128

Appendix A

The following Is excerpted from
article "Business Games--Play One!" by G.R. Andllnger In
Harvard Business Review for March-April, 1958 C ©
President and Fellows of Harvard Unlverslty)--lt
reprinted by permission.

the
the
The

Is

It serves as an example of the
business games at which the program (and MSL) are
An MSL model of the game described here appears In
B.

kind of
directed.

Appendix

Page 129

Busfness Games--Play One!

Basfc Objectives

Games are as old as man. Usually, their
basic objective Is entertainment. The Busfness Management
Game, however, afms not at entertainment, but at learnfng.
Other differences between ft and a game like Monopoly, for
example, are:

--The degree to which ft approaches reality.

--The degree to which the players'
experfence, judgment, and skf 11--as opposed to luck-
Influence the outcome.

If any business game Is to serve a purpose beyond
that of a fascinating toy , there must be some transfer of
learning from the game situation to real lty. While there
probably Is some such transfer from playing a general lzed
business game that mirrors "any company" and not a
particular firm, an executive could derive Infinitely
greater benefit from a game that permits him to practice
guiding the destiny of his own company or one Jn his own
lndustry--whlch unfortunately, ts unavailable at this early
stage of business gaming. The success of specific war
games, which the military has been using for years to
simulate combat situations for trafnfng officers, however,
holds great promise for similar applications In business In
due course.

The Business Management Game Is a case
In point. We started It In 1956 with the Idea of applying
war-gaming techniques to business. In the course of the
year we tested, modified, and retested the game many times
to develop a fine balance between realism and playabilfty.
The more closely a game resembles reality, the more
cumbersome It becomes--untfl ft Is no longer playable.
Hence, there Is a need to compromise. Also, we designed
the game to be relatively stable. No extreme strategy can
result In sudden success; yet players can gain outstanding
success If they are good enough--or bankruptcy If they are
not careful.

The game Is partly deterministic and
partly probabilistic. Some results are determined directly
by the action of the players; others are, to varying
degrees, subject to chance or probability. The weight of
the elements of the game Is such that the longer the game,

Page 130

the smalller the influence of luck.

Rules of Play

In this section shall give a brief
general description of each game element and the specific
values, rules and probabilities that deffne each element In
quantitative terms. Instructions for the umpires are
Included at each point; but remember that they should not be
given to the players.

The Market

The market Is made up of 24 customers. Each
customer's potential Is different; In any one time period, a
few customers are not buying any units, while others may buy
four or five units Cat $10,000 per unit) lf. a salesman is
able to make a sale.

The market ts dynamic, so the customer
potent i a 1 s change. If the market is growl ng, they change
upward; should the market be hit by a recession, however,
they may drop drastically. The long-term trend of the
market is announced to the players; short term fluctuations
are not. If a company ts Interested In finding out what the
total market potential is In any time period, a $2000
expenditure for market research will buy this information
from the umpires.

The 24 customers divide geographically
Into four regions on the game board, each region containing
six accounts. This geographical division allows the company
to do local advertising (see the section on "Advertising the
Product") and conduct market research in only one region at
a time. Such market research, which tells a company the
potential of each customer In the region and permits the
pinpointing of the direct selling effort (see the section on
"Marketing the Product"), may be obtained by paying the
umpires $30,000 for "staff work."

In addition to the separation into
geographical regions, the market breaks down Into one rural
and two urban markets. The significance of this distinction
Is that in an urban market, where a salesman can make more
calls per day, he has two chances of making a sale during
each time period, while In the rural market he has only one
chance.

If at the end of a year a company
desires to find out what portion of the total market It has
been able to capture, It may but a share-of-market

Page 131

Information from the umpires for $2000.
The umpire should:

(1) Keep a list of all current account potentials.

(2) Distribute a total customer potential, which
comes to $360,000 at the beginning of the game, at random to
the 24 customers as follows:

1 account
3 accounts
5 accounts
13 accounts
2 accounts

$40,000
30,000
20,000
10,000
0

(3) Depending on the economic climate determined
In advance, change these starting potentials as the game
progresses as follows:

--For slow growth, chane one account each quarter
at random. Move ahead on the random number table
yntll a number between 01 and 24 appears, then add
$10, 000 to the potent l,a 1 of that account number.

--For faster market growth, change two or three
accounts In the same mannner as above for each
quarter.

--For a depression, change half or all of the
accounts to zero for one or more quarters.

(4) If a company decides to buy market Information
(total potentlal, market research, or share of market),
write the Information on a slip of paper and pass It to the
company.

Marketing the Product

Units are sold by salesmen, who call on
the 24 accounts In the market. In an urban market a
salesman may make two calls per quart.er; and In a rural
market, only one.

In the presence of an umpire, the sales
manager of a company points to the accounts he wants to call
on. The umpire will tell him, after examining the random
number table, whether a sale Is made or not. How many

Page 132

units are sold to a customer will depend on competitive
action. The completed decision form, returned to the
company at the end of the particular period, contains the
actual sales results by accounts.

Whenever a salesman has two calls, he
must make the second call on a any of the three to eight
accounts adjacent to the first square called ~n; that Is, he
may not jump accross territories. If no sale Is made on the
first call, he may, of course, call on the same account
again during the same quarter. Furthermore, there Is no
limit to the number of salesmen who may call on the same
account In one time period. Between quarters, salesmen may
be moved to any accounts that the company wishes to cover
during the next quarter.

Each time a salesman makes a call, he
has a certain fixed probability of making a sale. This
chance of making a sale may be Increased In one of three
ways or a combination thereof:

--A company may Intensify Its direct selling
effort by having more than one salesman cover one
account as described above. In such a case, if
the first salesman makes a sale, the second one
may move to any adjoining account for his calls.

--A company may support the salesman's effort by
advertising (see "Advertising the Product">.

--A company may attempt to Improve Its product by
spending more money for a research and development
effort (see "Research and Development").

Every salesman costs $10,000 to hire and
then $1000 per quarter In slary. (Since the product he will
be selling ts a high-price, complicated unit, It takes one
year to train a salesman before he can be sent out Into the
field.) There Is a possibility that a salesman will
resign, In which case the umpire Informs the company of this
loss.

The umpire should have the following
Instructions for marketing:

Cl) Each
each salesman. Move
many numbers as the
these numbers ts .OS
salesmen.

period there Is a 5% chance of loss for
ahead on the random number table as
company has salesmen; If one or more of
or less, the company loses one or more

(2) In an urban market, allow two calls per

Page 133

quarter; In a rural market, only one call.

(3) A salesman always has a 25% chance of making a
sale. For each call, examine the next number on the random
number table. If the number ts 25 or less, then a sale has
been made; ff ft ts 26 or more, no sale Is made.

Advertising the Product

Product advertising In any quarter
Increases the salesmen's chances of amkfng a sale. It
covers only the region or regions (1,11,11 I, and IV on the
game board) that the company designates, and Is effective In
the current quarter only. Advertising costs $3000 per
page, and a company may buy up to five pages of advertising
Jn any region In any quarter.

Here are the umpire's Instructions:

For each sales call within the regfon(s) In which
the company has advertised, go to the next number In the
random number table and determine whether or not there ts a
sale according to the probabilities In the following table.
If the number ts the same or below the probability
percentage, a sale Is made.

Pages
0
1
2
3
4
5

Amount
0
$3,000
6,000
9,000
12,000
15,000

Research and Development

Probabll tty of a sale
25%
29
35
42
48
52

If a company can develop a superior
product, It gains a competitive advantage. Usually,
research and development have to be fairly continuous to
achieve a product Improvement, but a "crash program" may
yield results In a relatively short time. The minimum
research effort per quarter costs $10,000, but a company may
Invest more than that In multiples of $10,000.

The umpire notifies the company
Immediately when Its research and development program has
produced results, and all units scheduled for production In
that quarter are considered to be equipped with the
Improvement. To find out the extent to which.customers wtl

Page 134

prefer an Improved product, $5,000 of market research
(obtained from the umpires) Is needed.

Of cou~se, these ground rules can be
altered to flt a company's situation more closely--just as
the ground rules for other aspects of the Business
Management Game can. A company manufactu-r Ing equ I pment for
railroads may well want to use different units of research
expenditure than would a comp·any making dies for plastic
products. The length of tfme necessary to get results from
research al so varies gre·a·tly from company to company, as
does the cost of research to measure customer reactions to
new products. These and other rules can·-and In many cases
should--be tailored to the realltles of the lndustry.

The umpires will tell a company as soon
as a competing team Introduces an Improved product In the
market. The players can then count~r with a stepped-up
marketing effort or a crash research and development
program.

If a company Is Interested In finding
out the total Industry research and development expenditures
for the past year, such fnforma-tlon Is available from the
umpires for $1,000.

In addition, the umpires should:

(1) Matntafn a cumulative account of each
company's expenses. After each break In continuity Ca
quarter without any R & D expenditures) and after each
product Improvement, start the accumulation over again.

(2) Make approprtat~ revtslons of the probability
of Improvement. The cumula,tlve dollar amount spent on
research and development determines the chances a company
has for obtafnfng a product lnnovatfon. Examlne the random
number table; If the next number Is the same as or below the
probabt11ty percentage, an Improvement Is achieved.

Cumulative amount

$10,000
20,000
30,000
40,000
so·, oo<>
60,000
70,000
80,000
90,000
:i.00,000 and over

Probabll lty of Improvement

oi
0
0
2
4
7
11
15
18
20

Page 135

(3) Whenever a cQmpany achieves an Improved
product, Increase all Its sales probabfl lty percentages by
10. For example, If Company A has an Improved product, this
Is the result:

Probability of sale
Old product 25%
Improved product +10

35%

If Company A spends $6000 on advertising In one
region AD.Si has an Improved product, this ts the result In
that reg f on:

Probabf 1 lty of sale
Old product with
two pages of advertising 35%
Improved product +10

-45%

(4) As soon as all three companies have Improved
products on the market, cancel the premium of 10 for all
three.

(5)
Improvements
achieved any,
by 20.

If one company achieves two product
before one or both of Its competitors have
Increase all Its sales probability percentages

Increasing Production

The Initial plant which each company
must build costs $150,000, and has a maximum throughput of
5 units each quarter. From then on a company may add other
production lines for $30,000 each. But each such $30,000
Increment will Increase the maximum throughput by 5 •

A company must pay for Increased
capacity as soon as It decides to start construction.
Construction time Is nine months (three time periods), and
only after completion may the first unit be put Into "work
In progress" for the new production line. The companies
are not allowed to sell or otherwise dispose of excess
capacity.

The total lead time In producing units
In a company's plant Is six months. First, production Is
scheduled, and this Involves no financial outlay. Then In
the next quarter un f ts a re put In to "work In progress" and

1_

Page 136

must be paid for. In the subsequent quarter these units
come off the product Ion 1 lne , are added to Inventory, and
may be sold.

Total production cost contains a fixed
cost and a variable element. The fixed cost Is Incurred
e.ach quarter, rega·rdless of how ·many un1ts are p·roduced. At
a maximum capacity of five units per quarter,. the fixed cost
Is $6000, and the variable cost per un.lt Is $3000. As
capacity Is Increased by additional production lines, fixed
costs ·rise and the variable cost per unit decreases. If a
company, prior to addlng a line, wants to know the exact
costs It wl11 Incur at the next leveJ of capacity, It can
get that fnformat Ion from the urttpl res · for $2000, but
otherwise the umpires will Inform the company what
production costs are when the new ltne goes f.tlto production.

Units are added to Inventory at actual
cost. When a unit Is sold, however, It Is deducted from
Inventory at the average cost (total Inventory Investment
dfvlded by number of units In 1nventory).

The umpires should calculate the
production costs at various capacity levels as follows:

Max. capac I ty Total unit cost Fixed cost

5
10
15
20
25

Financial Management

$4,200
3,600
3,000
2,400

1,800

per quarter
$6,000
14,400
22,500
28,800

·11,soo

Variable cost
per un It
$3,000
2,200
1,500
1,000

600

The management of a company's available
capital Is of critical Importance. Each company start·s
with $400,000 capltal1 and grow only through reinvested
earntngs. Profitability will be In direct relation to the
sktl 1 with which the various parts of the bu.s1neas are kept
In harmony with each other to achieve.sound c'iowth.

The price per unit of product Is fixed
at $10,000. When a sale Is made, accounts receivable are
Increased by the total amount of the ·sale, and on the game
·board an accounts receivable symbol Is p1aced on the fifth
space In the "accounts recefvable" c·o1umn. Every quarter
this symbol Is moved up one space untll after four Quarters
It reaches the top space and becomes cash. Competitive
pressure In the Industry forces the extension of credit;
hence the one year collection lag.

If a company ts short of 'cash, accounts
receivable may be factored to get cash Immediately. The

--------------- -----------,

Pa.e;e 137

cost of doing this Is 20% of the amount factored.

I ___ _

- /

Page 138

Appendix B

The following Is an MSL model of parts

of the game (for .mu:, "region") described fn Appendix A--as

seen from the point of vfew of a player wishing to

Investigate the game and see the effects of various

strategies. It Is presented here as an Illustration of the

use of MSt.

(•ACTIVITY HIRING

)

C•PREREQUISTITES (•PRESENT (1000 CASH)))
(•SCHEDULE ON CALL)
(*PR I 0 R I TY 2)
(•OUTPUT (SOME TRAINEE))
(•TAKES 0)

(•ACTIVITY TRAINING

)

C •PREREQUISITES

(•TAKES 3)

CANO (•PRESENT (1000 CASH))
(•PRESENT (SOME TRAINEE))))

(•OUTPUT (SOME SALESMAN))

(•ACTIVITY URBAN-CALL
(•PREREQUISITES

(AND C•PRESENT.CASSIGNED
(SOME SALESMAN)
(SOME URBAN-CUSTOMER))

(•PRESENT (500 CASH))))
(•TAKES .5)

)

(•ACTIVITY RURAL-CALL
(•PREREQUISITES

(AND (•PRESENT (ASSIGNED
(SOME SALESMAN)

-- ---- ---- ----------- -------

Page 139

(SOME RURAL-CUSTOMER)))
(•PRESENT (1000 CASH))))

(•TAKES 1)
)

(•EVENT QUITTING

)

(•CONDITIONS QUITTING-PROBABILITY)
(•ACTIVITIES (SALES-CALL)

(•CANCEL)
(•REMOVE (THAT SALESMAN)))

(•ACTIVITIES (TRAINING)
(•CANCEL)
(•REMOVE (THAT TRAINEE)))

(•ACTIVITY ADVERTISING

)

(•PREREQUISITES (•PRESENT (3000 CASH)))
(•SCHEDULE ON CALL)
(•OUTPUT Cl PAGE-OF-ADVERTISING))
(•PRIORITY 3)
(•TAKES 1)

(•ACTIVITY R&D

)

(•PREREQUISITES (•PRESENT (10000 CASH)))
(•TAKES 0)
(•SCHEDULE ON CALL)
(•OUTPUT (10000 R&D))

(•EVENT PRODUCT-IMPROVEMENT
(•CONDITIONS P-1-PROBABILITY)
(•ACTIVITIES CR&D)

)
(•OUTPUT Cl PRODUCT-IMPROVEMENT)))

(•ACTIVITY PRODUCT-INITIATION
(•PREREQUISITES (•PRESENT

)

Cl PRODUCTION-LINE)))
(•TAKES 1)
(•OUTPUT (5 UNITS-IN-PROGRESS))

(•ACTIVITY PRODUCTION-COMPLETION
(•PREREQUISITES (•PRESENT

(5 UNITS-IN-PROGRESS)))
(•TAKES 1)
(•OUTPUT (5 UNITS))

Page 140

)

(•ACTIVITY PRODUCTION-LINE-CONSTRUCTION
(•PREREQUISITES (•PRESENT (30000 CASH)))
(•TAKES 3)
(•OUTPUT Cl PRODUCTION-LINE))

)

(•ACTIVITY FACTOR

)

(•PREREQUISITES (•PRESENT (5000 A-R)))
(•TAKES 0)
(•OUTPUT (4900 CASH))
(•SCHEDULE ON CALL)

(•EVENT SALE

)

(•CONDITIONS SALES-PROBABILITY)
(•ACTIVITIES (SALES-CALL)

(•OUTPUT (10000 A-R)))

(•FUNCTION SALES-PROBABILITY

)

(•ARGUMENTS (PAGE-OF-ADVERTISING))
(PRODUCT-IMPROVEMENT))

(•RETURN

))

C•SUM-UP
.25
(AD-FUNCTION

PAGE-OF-ADVERTISING)
(TIMES .10

PRODUCT-IMPROVEMENT)

(•FUNCTION AD-FUNCTION

)

(•ARGUMENTS (PAGE-OF-ADVERTISING))
(•RETURN .

(•TABLE (PAGE-OF-ADVERTISING
•RESULT)

CO 0) Cl .04) (2 .10) C3 .17)
(4 .23) (5 .27)))

(•FUNCTION P-1 PROBABILITY
(•ARGUMENTS (RID))
(•RETURN (•TABLE (R&D •RESULT)

CCLESSP R&D 40000) 0) (40000 .02)
(50000 .04) (60000 .07) (70000 .11)
(80000 .15) (90000 .18) (100000 .20)

--~-------------------- ----~-- ------- -

This empty page was substih1ted for a
blank page in the original document.

