
;:a, IC 4£..J J $J@J!Ait4®iiAU#Jl AK'* J2£J J ,l£ a XUJ@Q) ry a a; l li;t(JJ!i4#U 12 3(. JtjJ JitJUJL4£U)l@Lk Jitakw 4J4MfL$.4.1f$i.4

MAC TR•l24

Mark Steven t..venth.tl

f.i i:(. ::~a f f):..":1'~ J)

. ' ::· ·::· : ?.,;~.·· -::; ~-·~ "2::'\~·1~>1 !3. ;:It; 1··(··~ ·, .. , ._:',, • ,,

1'li.• ~·•~b:Y~;.:MffW. ... *1.IAMl'!ll\l '"':.: .;.. i-i".,

·S~-1~~1-~~t~--;··-~lr;·;,;·;·· -~ 1

~SACfl~·;,tlf~1£!1M?~
1

~r
PltOJBCT MAC.

-2-

VERIFICATION OF PROGRAMS OPERATING ON STRUCTURED DATA

by

Mark Steven Laventhal

Submitted to the Department of Electrical Engineering
on January 23, 1974 in partial fulfillment of the
requirements for the Degrees of Bachelor of Science
and Master of Science.

ABSTRACT

The major method for verifying the correctness of
computer programs is the inductive assertion approach.
This approach has been limited in the past by the lack
of techniques for handling data structures. In parti­
cular, there has been a need for concepts with which to
describe structured data during intermediate and final
stages of a computation. This thesis describes an
approach by which this problem can be handled, and
demonstrates its use in proving several programs correct,

The key to the approach is the restriction of a
data structure to a particular structural class.
Primitive concepts are introduced which allow such a
class to be concisely defined, Other concepts relate
structures from a given class to data abstractions
which the structures can be thought to represent. It
is shown how to integrate the structural descriptions
wlth the actual proofs of correctness by incorpora­
ting results of general applicability lnto a logical
formalism for a given structural class.

THESIS SUPERVISORs Barbara H. Liskov
TITLEs Assistant Professor of Electrical Engineering

-3-

ACKNOWLEDGEMENTS

I wish to express my appreciation to Professor Barbara
Liskov for patiently supervising this research, and in
particular for helping me select the specific topic of
this thesis and then several times preventing me from
wandering too far afield.
I also want to thank Bill Mark and Jack Aiello for
reading previous drafts of the thesis, aiding me
considerably both by their general observations and
with detailed proofreading.
Finally, I wish to acknowledge the National Science
Foundation Graduate Fellowship Program for its finan­
cial support during the time I have been engaged in
this research.

-4-

TABLE OF CONTENTS

Table of Contents •• 4
List of Figures •• 5

Chapter ls Introduction to Program Verification •••••••••• 6
A. Inductive assertions ••••••••••••••••••••••••••••• ?
B. Example proof using assertions, ••••••••••••••••• 14
c. Symbolic interpretation ••••••••••••••••••••••••• 19
D. Data structures in assertion proofs, •••••••••••• 21
E. Approach of this thesis ••••••••••••••••••••••••• 23

Chapter 2s Data Structuring in the Source Language,.,,.,26
A. Record classes •••••••••••••••••••••••••••• ,,,,,,26
B. Reference variables and component selection ••••• 27
c. Record creation ••••••••••••••••••••••••••••••••• 30
D. Building structures from records •••••••••••••••• 31
E. Data structuring in other languages ••••••••••••• 35

Chapter 31 Characterizing Data Structures ••••••••••••••• 37
A. Restricting the domain of a structure ••••••••••• 39

Al. Pat terns •••••••••••••••••••••••••••••••••• 42
A2. Direct connection •••••••••••••••••••••••• ,4J
A3. Ultimate connection •••••••••• , ••••••••••• ,46
A4. The invariant •••••••••••••••••••••••••••• ,52
AS. Program invariants ••••••••••••••••• , •••••• 56

B. Relating a structure to other data •••••••••••••• 58
Bl. Containment relations, •••••••••••••••••••• 59
B2. Abstract relations •••••••••••••••••••••••• 60
BJ. Representation functions •••••••••••••••••• 62

c . Summary • •••••••••••••• , ••••••••••••••••••••••••. 66

Chapter 41 Singly-Linked Lists •••••••••••••••••••••••••• 67
A. Definition •••••••••••••••••••••• , •• , •••••• , ••••• 68
B. Representation functions •••••••••••••••••••••••• 74
c. Verification lemmas, ••••••••••••••••••••••••••• ,79
D. First example proof-Search and addition •••••••• 89
E. Issues raised by the example proof ••••••••••••• ,96
F. Second example proof-List reversal,,,,,,,,,,,,102
G. Third example proof-Insertion sort •••••••••••• 113

Chapter 51 Conclusions ••• •••••••••••••••.••••••••,, •••• 125
A. Summary . ••• , ..• , •. , ••.•••• , •••••••••••• , •..••• , 12 .5
B. Relation to structured programming ••••••••• ,,,,128
C. Further research, •••• ,, ••• , ••••••••••••• , •••••• 130

Bibliography ••••••••••••••••••••••••••••••• , ••••••••••• 133
Appendix As Axiomatization of Sequence Operations •••••• 136
Appendix Bs Proof of Lemma L,19 •••••••••••••••••••••••• 138

-5-

LIST OF FIGURES

1.1 Control structure for a single-loop program •••••••• 11

1.a Example program •••••••••••••••••••••••••••••••••••• 15

2.1 Example data structure ••••••••••••••••••••••••••••• 32

J.1 Family relationships ••••••••••••••••••••••••••••••• 49

4. 1 A typical list ••••••••••••••••••••••••••••••••••••• 69

4.2 Proof of Theorem L.) ••••••••••••••••••••••••••••••• 71

4. 3 Example program 1 •••••••••••••••••••••••••••••••••• 90

4.4 Flowchart of example program 1 ••••••••••••••••••••• 98

4. 5 Example program 2 ••••••••••••••••••••••••••••••••• 104

4.6 Flowchart of example program 2 •.•••••••••••••••••• 105

4.7 Intermediate computation state of example program.106

4. 8 Example program 3 ••••••••••••••••••••••••••••••••• 114

4.9 Flowchart of example program 3 •••••••••••••••••••• 115

-6-

Chapter 1

INTRODUCTION TO PROGRAM VERIFICATION

One of the first and saddest f.acts which a beginning

computer programmer learns is that programs do not always

do what they are supposed to. By this, I do not refer to

the fact that a misplaced semicolon can mean the differ­

ence between a perfectly operating program and one which

does not make it past the parsing stage of a compiler.

What I mean is that a syntactically correct, fully

compiled program will be fed some input data, run to

completion, and produce a result different from the

one the programmer desired.

The first reaction of the novice programmer to

this situation may well be to question the reliability

of the computer upon which his program is being run.

If wiser and more experienced heads are around, however,

they will persuade the beginner to "hand-simulate" his

program on the given input data to determine the nature

of the error. In doing so, he will laboriously repeat

the computation performed by the computer, presumably

arriving at the same answer which it provided. While

he will _now s~e that the computer is correct, he may not

yet see what in the program is wrong. He may then be

counselled to go back and hand-simulate the program again,

this time on general input data, however, keeping all

-?-

computations in symbolic form. In doing so, he may dis­

cover that his DO-loop is always executed once more than

he wants. Upon making the appropriate change, he is able

to arrive at his first correctly-functioning computer

program.

What knowledge has the programmer gained from this

episode? One hopes it is more than just to be careful

about the range of a DO-loop. What he should learn from

this experience is that hand-simulation of a program on

symbolic data is one way to debug, and conversely to

verify the correctness of, a program. Perhaps the next

time he writes a program, before submitting it for a test

run he will not only check it over for syntax errors, but

also attempt to verify its correctness using this technique.

A. Inductive assertions

The desirability of proving a program correct was

recognized soon after the concepts of the stored-program

computer and programming itself were conceived. Goldstine

and von Neumann[Gol6J] proposed a method of verifying

correctness not very different from the informal notion

of hand-simulation featured in the opening vignette.

Their method used the concept of a state vector, a list

of program variables with their corresponding values (in

symbolic form) at a given control point in the program.

Their idea was that the programmer could provide a

symbolic state vector presumed to correspond to the control

-8-

point following each statement in his program. The

verification procedure would then consist of confirming

for each statement numbered i in the programs that the

validity of the state vector following statement (i - 1)

prior to the execution of statement i ensures the validity

of the state vector following statement i after its

execution. Proving this for each statement in the program

would result in a proof that the computation of the program

as a whole corresponds to the state vector following the

last program statement.

This procedure, while not terribly profound, is

only a less sophisticated version of the best approach

at present for proving a program's correctness. The one

technique with widespread use, and applicable to programs

with both applicative and imperative linguistic features,

is the inductive assertion approach, first proposed by

Floyd[Flo67Jand Naur[Nau66J • Other techniques, such as

recursion induction[McC63J and structural induction[Bur691,

are limited to programs written in a purely applicative

language like pure LISP or R-PAL[Woz711 •1

At the heart of the assertion approach are the asser-

t1ons themselves. These are Boolean expressions which

characterize some or all of the data on which the program

operates. An assertion is attached to a control point in
1For a discussion of several of these other techniques,

see Grett(Gre721.

-9-

the program, either a line of source code or an edge of

a flowcharts in either case, the assertion is alleged to

be true each time control reaches that point during the

execution of the program. Assertions are thus the natural

generalization of state vectors. Instead of specifying

a vector of values, an assertion allows a virtually free­

form description of the data in the program. The one

constraint is that the assertion as a whole be a Boolean

expression. This is one important advantage of using

assertions rather than state vectors.

The other major improvement of the assertion approach

over the idea of Goldstine and von Neumann is that asser­

tions need not be attached to every program statement.

In fact, an inductive assertion proof requires only an

input assertion, an output assertion, and one assertion

for each loop in the program. To simplify a given proof,

of course, additional intermediate assertions may be

helpful and thus included, but one need provide no more

than this minimum. Since the actual construction of the

assertions is the most difficult aspect of the method

(as noted by Good[Goo701 and Deutsch[Deu731, among others),

this savings is extremely significant. In addition, the

inductive character of the proof technique (see below)

allows more complicated iterative control structures to

be handled.

-10-

The input assertion of a program, also called the

antecedent or precondition, usually specifies the domains

of, and any joint constraints among, the input variables.

The output assertion, also called the consequent or post­

condition, generally expresses the desired result of the

program. The "proof of correctness" or "verification"

is actually a proof that if the input assertion is true

upon entry to the program, then the program will exit

with its output assertion true. The loop assertions are

required to construct the proof, as explained below. It

is thus important that all assertions, particularly the

antecedent and consequent, be stated correctly. An

erroneous assertion can cause the proof of a correct pro­

gram to fail, or that of an incorrect one to succeed. 1

The assertions are sometimes called "1nduct1ve"

assertions because the proof of the program's correctness

1s by induction on the number of iterations through its

loops. For example, consider a program with the general

control structure given by the macro-flowchart in

Figure 1.1. INITIALIZATION, LOOP-BODY and FINALIZATION

are intended to be loop-free program fragments, and

LOOP-TEST is a simple predicate whose truth denotes the

condition for loop termination. P, Q and B are assertions
1As long as the antecedent and consequent are correct,

however, an improper intermediate assertion can never
allow an incorrect program to be "verified."

-11-

:1 i;A~ 1~_- 1 ;);; ~(~ /' ::I:1_tJ.._~~,-~:,

/_·-~r .. - ·Jc ~J<~<s.:··.

c ·-· tc ·') .t.{~ n ,, Figure 1.1 ·

·- ~

control ·struct~re 'i:or .i\'·s\~l.:~~gg;W~in

';""i·,

-12-

attached to the edges as showna P is the input assertion,

Q the loop assertion, and R the output assertion. To

prove the correctness of the program, it is sufficient to

prove the follow1nga

(1) Assuming assertion P is true before the execution

of INITIALIZATION, assertion Q will be true

after its execution.

(2) Assuming Q is true and LOOP-TEST is false before

execution of LOOP-BODY, Q will again be true

after its execution.

(J) Assuming Q 1s true and LOOP-TEST 1s true before

execution of FINALIZATION, assertion R will be

true after its execution.

The above illustrates the general technique for asser~

tion proofs. For each possible path between two (not

necessarily distinct) control points tagged by assertions,

say Pl and P2, (with no intermediate point in the path

also tagged by an assertion) a lemma is proved that if

the path is taken with assertion Pl true at the first

control point, then assertion P2 will be true when the

second control point is reached. If each such lemma can

be proved, then the proof of the theorem that the entire

program is correct is a simple induction argument.

There is one flaw in the above argumenta it impli­

citly assumes that each loop will eventually terminate.

-13-

However, there is no assurance that in the example above,

say, LOOP-TEST will not always evaluate to false, resul­

ting in an infinite loop and a non-terminating program.

The above type of proof, then, is only of partial correct­

~[Man69J 1 it proves that if the program terminates,

the result will be correct. To complete the proof, one

must prove in addition that each loop terminates.

There are several bits of nomenclature associated

with inductive assertion proofs. The lemmas to be proved

for the various paths within the program are called

verification conditions (v.c.'s for short), since they

represent the conditions sufficient for verifying the

overall correctness of the program. Within a given v.c.,

the assertions tagging its beginning and ending points

are called the initial assertion and final assertion of

the v.c., respectively. The source code in the path

between these two endpoints is called the body of the v.c.

Because each loop in the program is cut by an assertion,

the body of a v.c. is guaranteed to be loop-free.

Nothing in this mechanism is in any way dependent

on the code under consideration being a .. program." In

fact, the technique is equally applicable for typeless

procedures, functions, and even mere sections of code.

In this thesis, the computational objects used in proofs

will be procedures in an ALGOL-like language (the details

of which will be discussed in Chapter 2).

-14-

B. Example proof using assertions

A more concrete example should serve to clarify

these ideas. Consider the simple procedure given in

Figure 1.2. Its purpose is to divide positive integer y

into positive integer x, giving quotient q and remainder r.

(It is taken from Floyd's original paper on proving pro­

grams via assertions [Flo67J.) The assertions are attached

to control points in the program by including them as

comments located at the corresponding points in the source

code. Because there is one loop in the program, there

are three assertions~the precondition, the postcondition,

and the loop assertion.

A total of four verification conditions must be

proved, corresponding to the four possible paths between

points tagged by assertions. The first v.c. is that the

truth of the input assertion followed by the execution of

lines (1) through (4) results in the truth of the loop

assertion. This can be abbreviatedla

(x > O and y > 0) t (1) , (2) , (3) , (4) } (O < x and

x = r + y*q ~ O < y .$ r) •

Its proof goes like this1

(a) Since "x > 0" is in the initial assertion of the

v.c. and the value of x is unchanged by the
general, "P [Q} R" is a notational shorthand fora
"If the body of code given or represented by Q is
executed with assertion P true as the precondition,
then postcondition R will be true." Hoare [Hoa69]
is the inventor of this notation.

-15-

procedure divide(x,y,q,r);
declare x,y,q,r integer;
begin
comment assert "x .) 0 and y > 0";

(1) r := x;
(2) q r= O;
(3) while y 4. r do
(4) begin

(5)
(6)
(7)

comment assert "O < x = r + y*q and
O < y < r";

r := r - y;
q := q + 1;
end;

commenr-assert "0 < x ~ r + y*q and
O ..$ r .e:: y" ;

end divide;

Figure 1.2

Example program

-16-

action of the body, "x > 0" must be valid 1n

the final assertion. Similarly for "y > 0".

(b) The action of line (1) assigns tor the value

of x. Since this is the only assignment to r

in the body, r = x at the end of the body.

Similarly, q = O from line (2). Thus,

r + y*q = x + y*O = x, so "r + y*q = x" is

valid in the final assertion.

(c) Since the loop body is entered, 1t follows

that the test "y .:;, r" on line (3) must

evaluate to~· Thus, since neither

variable is changed between line (3) and the

end of the body, "y ~ r" must be valid finally.

This proves the validity of the entire final assertion,

assuming the initial validity of the initial assertion.

The v.c. is therefore verified.

The second v.c. is that the input assertion followed

by the action of lines (1) and (2) and a false outcome

of the test at line (3) ensure the final validity of

the output assertion. The proof of this v.c. proceeds

identically to that of the first, the only difference

being in part (c) of the proof. Here,

(c) Since the loop body is not entered, it follows

that the test "y ::, r" on line (3) must

evaluate to false. Thus, since neither variable

-17-

gets changed between line (3) and the end of

the body of the v. c. , r " y. Furthermore,

since r = x and x > O, 1t must be that r ~ 0,

so "0 ~ r < y" must be finally valid.

The third ver1f1cat1on cond1t1on is that one iteration

through the loop body preserves the validity of the loop

assertion, that is1

(O < x = r + y*q and O < y ~ r) { (5) , (6) , (7) , (3) , (4 >}
(0 < x == r + y*q and 0 < y $... r) •

Its proof 1

(a) Since "0 < x" and "O < y" are valid initially,

and both x and y are unchanged by the body,

both clauses are valid after execution of the

body.

(b) Denote the new values of rand q by r' and q',

and the old values by ri and q1 • Then by the

actions of lines (5) and (6) respectively,

r' = ri - y and q' = qi + 1. So,

r' + y*q I = (ri - y) + y * (q1 + 1)

= ri - y + y*q1 + y

= ri + y*qi

which by the initial assertion of the v.c.

ls equal to x. Thus, "r + y*q = x" is valid

in the final assertion.

(c) Since the loop body ls re-entered, it follows

-18-

that the "y ~ r" test on line (3) must be ~.

and since neither y nor r is subsequently

changed, "y ~ r" in the final assertion follows.

The last verification condition iss

(O < x = r + y*q and O < y < r) (5) , (6) , (7) , (3)

(O < x = r + y*q ~ O :s r < y)

where the test on line (3) has an outcome of false.

(a) "0 < x = r + y*q" in the final assertion follows

from its validity in the initial assertion by

reasoning similar to that used in parts (a)

and (b) in the third v.c.

(b) Since the loop is exited, the "y ::_ r" test on

line (3) must have been false, so "r< y"

follows. Since "y-:_ r" is true in the initial

assertion and r is decremented by the value of

y on line (5) and unchanged otherwise, we have

that 0 S. r, so 0 ~ r < y.

Finally, we must prove that the loop does, in fact,

terminate. The termination condition, by line (3), is

"r < y". By line (1), r is initialized to the value of x,

which the input assertion states to be a finite, positive

quantity. Each iteration of the loop decreases r by the

value of y (on line (5)), also a finite, positive quantity

(by the loop assertion). It is thus an easy matter to see

-19-

that (assuming the initial validity of the input asser­

tion) eventually "r< y'• is true and the loop terminates.

c. Symbolic interpretation

In proving the verification conditions above, a

technique is employed which Burstall calls symbolic

interpretation[Bur72b] • The basis of this approach is

the method of "hand-simulation" mentioned earlier. That

is, the person proving the v.c. "acts" as the computer,

interpreting the source code in the body of the v.c.

This "interpretation," however, is carried out in symbolic

form. The initial values of all variables are unknown,

except as they may be constrained by the initial assertion.

As Good ~0070] shows, there are several variations

under the general heading of "symbolic interpretation".

Good discusses and demonstrates the equivalence of a

few of theses forward accumulation, forward substitution,

and backward substitution. The differences among these

lie in whether one wor.ks backward or forward through the

body of code, and whether one accumulates new results in

separate instantiations of a variable(e.g. x1 , x2 , x3, •••)

or substitutes the new results back into a single instance

(i.e., simply x). Which of these variations one employs

is chiefly a matter of taste and convenience1 both forward

and backward substitution are used in this thesis. In its

various forms, symbolic interpretation is the most commonly

used technique for proving verification conditions.

-20-

The major alternative to this method is the formal

approach taken by Hoare. This approach uses the more

mathematically rigorous concepts of axioms and rules of

inference to effect proofs. Each axiom corresponds to

one kind of simple statement, and each ~ule of inference

to a feature of control structure. A proof is then

generally built from the bottom up, starting with proofs

of the effects of individual statements by direct appli­

cation of axioms, and proceeding by combining these

proofs into proofs of progressively larger program

fragments, until ultimately the entire proof has been

constructed. In his first major paper explaining his

approach[Hoa69], Hoare supplied an axiom for simple

ALGOL assignment statements and rules of inference to

cover statement composition, conditional statements,

and iteration. With these basic tools and elementary

axioms of arithmetic, he proved the "divide" procedure

of Figure 1.2 in twelve steps. In subsequent work, Hoare

has extended his rules of inference to include function

calls and a restricted form of jump[Cli72], and procedure

calls [Hoa 71] •

The major drawback to Hoare's approach, as I see it,

is that it is simply not a .. natural" way for humans to

prove programs. Eventually, when mechanization of the

proof process on the computer becomes critical, the rela-

-21-

tive informality of symbolic interpretation may have to

give way to the rigor of Hoare's approach (although not

necessarily 1 Good[Goo?OJ , King [K1n69 J, Deutsch [Deu?JJ

and others have had success in automating proofs using

symbolic interpretation). At the moment, though, program

verification is still in its formative stages, and as

Burstall has noted[Bur69J 1

Although mechanised debugging is certainly
very desirable, attempts to restrict the nature
of the proofs devised to enable a computer to
check them may delay the discovery of the
variety of mathematical techniques which are
applicable.

One outgrowth of Hoare's work is an excellent notation

for expressing the semantics of various source-language

features, a notation which is employed later in this

thesis.

D. Data structures in assertion proofs

As Deutsch [Deu731 has observed, one difficulty with

the assertion approach in practice is that it requires

the semantics of the source language be fully understood

and expressible. Hoare has shown that by excluding the

unrestricted jump, all major control structures can be

handled. Since the "goto" statement has been claimed to

be harmful (Dijkstra[Dij68J, etc.) and in any case, been

proven to be unnecessary (e.g., see Ashcroft and MannafAsh711),

it is clear that control structures present no major

obstacles to proving programs correct.

-22-

Unfortunately, the area of structured data did not

at first receive the same degree of attention as that of

control structures. Consequently, work in thls area has

tended to lag behind, and only recently has there been

much done to catch up. The first programs to be verified

operated only on simple integer data. Obvious extensions

to other simple data cla.sses(real numbers, Booleans, etc.)

followed, and more importantly, techniques to handle

arrays were developed ([Goo?O] , [Kin69]) • The work wl th

arrays constituted the first involvement of verification

with structured data, though the structuring was simple

and inflexible,

In the past year or so, several significant works

have emerged on more complicated data structures. This

includes the work by Burstall[Bur72BJ and by Poupon and

Wegbrei t [Pou72j on LISP-type lists, and that of Morris

[~or?~ on data structures with pointers. The latter two

works typify what I call the generalist approach. The

generalist deals wlth a class of data structures general

enough to include (disregarding nomenclature) all possible

data structures, Both of the works cited obtain some

useful results, but neither ls developed sufficiently

to provide a complete framework for correctness proofs.

Instead, each provides some tools which are useful but

insufficient by themselves.

-23-

The alternative is to restrict the class of data

structures under consideration in order to derive a

complete (or nearly so) treatment with, of course, less

generality of scope. Burstall[Bur72a] considers a class

of LISP-type lists which he calls "Distinct Non-repeating

List Systems." By the elimination of nesting of lists

and the restriction of cycles, Burstall is able to obtain

a quite satisfactory overall system for proofs of correct­

ness, The challenge, of course, once such a system is

developed, is to progressively expand its domain of

application by successive weakening and/or elimination

of the restrictions.

E. Approach of this thesis

It is my contention that the most promising approach

is a compromise between these two schools of thought.

In particular, I believe that rather than develop specific

new techniques and concepts, work in this area should

strive to devise new classes of such tools. The specific

tools to be used for an actual application can then be

designed by tailoring specific elements of these classes

for use in the given application.

The primary emphasis 1n this thesis, then, is to

develop general techniques for proving the correctness

of programs involving data structures. This will entail

considering the way data structures are used in programs

-24-

and the types of characterizations of structures which

are necessary for constructing relevant assertions. New

concepts will be devised which are directly translatable

into the tools required for proofs of correctness. This

area will be the focus of Chapter J.

The development of new general concepts, however,

without a detailed instantiation to demonstrate their

practicality and utility is highly suspect. It therefore

becomes incumbent upon me to illustrate the use of the

techniques I describe by actually verifying programs which

operate on data structures. The tools designed in Chapter J

are intended to be specifically tailored for use with

a particular class of structures. My demonstration is

therefore on a specific structural class--simple singly­

linked lists--and is presented in Chapter 4. This data

class has been chosen primarily for its simplicity, in

order to keep extraneous details and attendant "hair" to

a minimum. The example programs proved in Chapter 4,

however, solve real-world problems, and the proofs are

non-trivial enough to show the general utility of the

approach.

Before the substantive issues of this work can be

tackled, though, an important administrative detail must

be handled. In order for the rest of this thesis to be

completely clear, the reader must be able to understand

-25-

the source language I - using. Vblle aoat teaturea ot
;; ·~.::,£· ;Jfi~i:)

the language are obnoua, tbOM UJMIG'8 1191.at;lng to data

struoture8:'~~ ~~·· ~~i~lJ.i. -~~,,~i';ti~~ore

1'eQutN',.~-i ... l••M.~~~J-·~'

pro~,;1it-;~ a.:.
. ! .~

-26-

Chapter 2

DATA STRUCTURING IN THE SOURCE LANGUAGE

The source language used throughout this thesis is

a simple ALGOL-like language. Aside from its data­

structuring facilities, which are based on Hoare records

[Hoa68] , it is effectively a subset of ALGOL W[Wir66] •

Certain features of ALGOL w have been deliberately excluded,

such as labels and jumps, but defining the precise extent

of the language is not important. The aspects relating

to data structures are carefully explained in this chapter.

The rest of the language is intended to be obvious in

both its syntax and semantics. For any detail which is

not covered in this chapter explicitly, the ALGOL W paper

[Wir66] can be used as a "reference manual."

A. Record classes

The record-handling facility of the language allows

compound data objects to be composed from a group of simple

objects. Arrays perform a similar function, of course,

but the individual elements of a record need not all be

of the same data type. As shall be seen shortly, it is

this property which allows interesting data structures

to be constructed using records.

A record class definition does not itself create any

data object. Rather, it establishes a new data type of

-27-

which data objects can be created. The record class

definition provides the pattern for a typical record of

the class. Each component element of the typical record

is described by giving its data type and a unique

identifier, called a selector, for accessing it.

The syntax for a record class definition is given

by the following set of BNF production rules a

<record class definition> 11=

record class <identifier> (<body>)

<body> 1 1= <components> _l <components>;< body:>

<components> 1 1= <id list> <data type>

<id list> 1 1= < identifier> I <identifier>, <id list>

An example of a record class definition isa

record class rc(x,y,z real; sw boolean;

table integer array [1120])

Each record of class "re" would then contain five compo­

nents 1 three real components, selected by identifiers

x,y and ZJ one Boolean component selected by sw; and a

20-element integer array component selected by table.

B. Reference variables and component selection

The definition of record class "re" establishes

a new data typer "reference(rc)", which can be shortened

to "ref(rc)". A variable of a reference type either

references a record of the given record class or possesses

-28-

the special value null. All reference variables are

automatically initialized to null on being declared.

A reference variable can ref er to any record of the

one class, but not to any record of any other record class.

A component of a record is accessed by an expression

of the form

11 (reference expression). <selector identifier) 11
•

The (reference expression) is an expression which evaluates

to a reference to the given record, and the <selector

identifier/ selects the specific component of the record.

So, if variable r is declared to be of type ref(rc),

then "r.x", "r.y", "r.z", "r.sw", and 11 r.table" are all

examples of component selection. The reference expression

may itself contain a component selection in the case of

a reference-typed record component. As the above indicates,

the selection operation "•" associates to the left.

It should be noted that the type of <reference

expressior:i) can always be determined statically, i.e. at

a hypothetical "compilation time. 11 A compiler could

therefore ensure that the expression references a record

of a class for which the selector is valid, or else

register a compilation error. In verifying the correct­

ness of programs, we are solely concerned with dynamic

correctness. The program to be verified is assumed to

have successfully compiled, and all static issues can thus

-29-

be ignored. The record-handling facility described here,

allowing for a maximum of type-checking, frees us to as

great an extent as possible from having to worry about

these issues. It is with this 1n mind that the data­

structuring aspects of the language have been designed.

While the class of the record to which

<reference expressiotj> refers can be determined statically,

there is a related issue which can only be checked

dynamically. If the expression evaluates to !!!!11•
then the component selection is undefined, which causes

the program not to terminate normally. In proving a

program correct, all component selection must be shown

to be well-defined, in order that total correctness may

be deduced from the'proof of partial correctness.

The data type of a component-selection expression

is simply the declared type of the selected component.

Such an expression can occur in any context which is appro­

priate for a variable of that type. This includes the

left-hand-side of an assignment statement--that is,

individual components of a record are individually

updatable. In fact, once a record has been created,

the only way to change the values of its components is

by updating individual components.

The left-hand-side of an assignment statement can

be a variable or record component of a reference data type.

-30-

The right-hand-side expression must then evaluate to a

reference to a record of the same class. The assignment

causes the left-hand-side object to reference this same

record~no new copy of the record itself is made.

Two reference expressions can be compared for

equality by the Boolean relation "=". The relation is

true if the two expressions refer to the same record

(or both equal null), but not if they refer to different

records which are component-wise equal.

Procedure parameters of reference types differ from

other parameters in that they are called by reference.

They can thus be updated within a procedure call.

All other parameters are passed by value.

c. Record creation

There is a special kind of reference expression

which can only occur as the right-hand-side of an

assignment statement. This is the record-creation

expression, and it is the only mechanism by which new

records can be created. The record-creation statement

causes the object on the left-hand-side to be assigned

a reference to the newly-created record.

The form of a record-creation expression is

"record-class-name (sell1exp1,sel2aexp2, ••• ,seln1expn)"

where each expi is an expression which agrees in type with

-31-

the component selected by identifier seli. All components

of the new record must be so initialized, except that

reference components may be omitted and initialized by

default to null.

Thus, for a record class defined by

record class mark(i,j integers up booleans
end strings f ref(mark)}

the following statement would create a new record and

assign a reference to it .to variable x1

x s= mark(ends•xyz', J15, upstrue, i10)

Then x.f =null, x.end = 'xyz', x.j = 5, etc.

D. Building structures from records

The major importance of records is 1n their role as

building blocks from which data structures are constructed.

If record A contains as a component a reference to record B,

then records A and B are considered "connected". Then a

data structure can be defined as a collection of records

which are connected together.

Data structures can be represented pictorially as

in Figure 2.1. Each record is drawn as a block which is

divided into separate boxes for its component elements.

The boxes of one record are labelled with selectors to

its componentss other records (assuming they are of the

same class) by convention follow the same pattern, Each

box contains the value corresponding to that component.

-32-

x

father

name "Paul" "Harry" "Susan" "Lee" "Carol"

next

age 50 29 26 48 22

height 70 74 63 68 67

weight 182 171 98 164 120

spouse

ms. le true false

sibling

child

J

Figure 2.1

Example data structure

-33-

A reference value is indicated by an arrow pointing to

the referenced recordr a cross indicates a value of !'.!!!11·

The records in the figure are all of the following

record classa

record class person(name stringr male booleanr
age, height, weight inte~err
next, father, child, sib ing, spouse ref(person))

The data structure pictured illustrates many of the

important features of records. The most obvious of

these is the usefulness of the record class definition

as a template for organizing several groups of data items

fitting a common pattern. Ea.ch individual record can be

used to hold all the information about a separate person.

Storing the information in separate records means

that there must be a way to access each record. Rather

than requiring a separate variable to reference each

record, the records can be linked together into a chain,

each one containing a reference to the next. This is

the purpose of the "next" component. variable x references

the first record, x.next references the second,

x.next.next references the third, etc. until reaching the

last record in the chain, whose "next" component equals

!!1!11• Only one variable is required, no matter how many

records are in the structure, and passing of the structure

to a procedure, for instance, can be accomplished through

this single parameter. In addition, the records can be

kept in some fixed order if this is desired.

-34-

Referenoe-typed components are far more versatile

than merely a mechanism for chaining records together.

They can also be used to represent relations between

records. The "father", "child", "sibling", and "spouse"

components in Figure 2.1 are employed for this purpose,

representing the obvious family relations. A person

can have only one father or spouse, so the given component

for such a relation simply references that record which

is the object of the relation, if it exists, or else equals

null.

For a relation like "child", however, where more

than one object can exist for a given record, a more

complicated technique must be used. The programmer may

decide that by convention, the "child" component references

the oldest child (i.e. the record corresponding to the

oldest child--I will often use the less precise language).

The other children are then accessed by following the

chain of "sibling" links from one record to another.

An aspect of records which the figure can not illu­

strate is dynamic allocation. Through the record-creation

statement, new records can dynamically be added onto a

structure. Similarly, records can be removed from a

structure and their storage reclaimed by standard

automatic garbage-collection techniques, This facility

of dynamic storage management is important ih several

-35-

applications, such as simulation. The structure in

Figure 2.1, for example, could be used to represent a

particular family. Changes !n the size and structure

of the family through time (births, deaths, marriages, etc)

could be recorded by dynamically adding and deleting

people from the "family tree."

The two features of dynamic allocation and reference­

typed components interact in such a way that each requires

the other to be really useful. Without reference

components, the ability to use dynamic allocation to

create new records would be limited by the number of

declared reference variables; while an unlimited number

of records could still be created, only a fixed number

would be accessible at any given time, the rest having

been garbage-collected. Without dynamic allocation, on

the other hand, it would be impossible to create many

structures,and at best awkward to create the rest.

E. Data structuring in other languages

Most modern high-level languages contain facilities

for constructing and manipulating data structures. The

structural primitives are generally classes of objects

analagous to records and references. As noted earlier,

the record-handling mechanism described here has been

designed to allow a maximum of static type checking.

-36-

Additional checking within proofs is required when using

a language like ALGOL 68, which allows (the equivalent of)

a record class to be the union of distinct classes, or

PL/I, where pointers (references) can point to any data

object, The major ideas presented 1n Chapter J, however,

are applicable across a wide range of languages,

-37-

Chapter 3

CHARACTERIZING DATA STRUCTURES

In order to prove the correctness of programs which

operate on structures, we need the ability to construct

assertions which adequately characterize sttructures.

Before this problem can be attacked, we must have a

clear idea of what kinds of characterizations are "adequate"

for proofs of correctness. If one thinks of a program

as a sequence of actions being performed on a group of

data objects (obs), then the following dichotomy is

helpfula the information contained in an assertion can

be divided into those facts which deal with individual

obs, and those which relate two or more obs together.

'l'he purpose of information of the former kind is to

characterize as narrowly as possible the domain of possible

values for an ob at the time the given assertion is to

be valid. Facts of the latter variety represent joint

constraints between the values which can be mutually

selected for different obs from their respective domains.

The declarations of a program serve as one means for

restricting the domains of its obs. For example, declaring

variable i to be of type integer restricts its domain to

the integers, or more precisely the subset of the integers

representable in the given machine. The domain can be

further restricted by a clause in an assertion such as

-38-

"0 .::5 i :_JO". Similarly, another integer j may be

restricted to the domain "-5 :_ j ~ 5". A clause 1n an

assertion such as "i = j*j" represents a joint constraint

between the values of these two obs. (Note that this

particular joint constraint would allow the further

restriction of the domain of i to [0,1,4,9,16,25} .)

The distinction between these two kinds of infor­

mation is actually not as straightforward as the above

indicates. The reason is the lack of precision associated

with the term "data object". For instance, is an array

a single ob, or a whole collection of elementary obs?

That is, does the clause

(yk)(O~ k < 100 ~ a[kl 5_ a[k+1l)

restrict the domain of array a, or is it a shorthand way

of expressing 100 joint constraints between pairs of obs?

There is no "correct" answer one way or the other.

Either interpretation may be the more valid one, depending

on how the program operates on the array and its consti­

tuent elements. Since there is never any real need to

resolve such a point, the ambiguity causes no problems.

The reason for raising the issue at all is that it points

up the approach taken toward data structures here.

Records play the same role of constituent elements

in a data structure as individual array elements do in

an array. As with the array, one can imagine situations

-39-

in which the individual records should be considered

separate obs. The point to be made here, though, 1s that

this thesis is not concerned with such situations. Under

those circumstances, records present no new problems in

constructing assertions and proofs of correctnesss tech­

niques for simple data can be used, with each record

component treated as a separate variable. It is only

when a group of records is treated as a single structural

unit that new tools and methods become needed. In this

thesis then, the obs of direct interest will always be

data structures, and our concern with records will be

limited to the role they play in the structures which

include them.

We now have a guideline for organizing our thinking

on the issue of characterizing structures. We require

two kinds of ability--to restrict the domain of values

a structure may assume, and to relate a structure to

other obs, both other structures and non-structural data.

The problem of restricting structural domains is considered

first, since results obtained there influence the approach

taken on the other problem.

A. Restricting the domain of a structure

As was noted for elementary obs, the preliminary

basis for the restriction of domain of a structure is

given by the declarations in the program, in particular

-40-

by the record class definitions. For example, consider

the record class "person" defined in Chapter 21

record class person(name string; male booleans
age, height, weight 1nteier;
next, father, child, sib 1ng, spouse ref(person))

A structure referenced by a variable of type ref (person)

is known to belong to a domain P, which can be recursively

def1ned1 each element (other than null) consists of a

tuple of heterogeneous simple data 1tems~in particular,

one character string, one Boolean, and three integers~

and references to five (possibly different) elements of P.

The recursion in this definition is automatically

introduced by the reference components, and illustrates

the inherently recursive form of all structural domains

of interest here. The recursion can sometimes be hidden

to some extent by using components which reference records

of different classes, as in a series of record class

definitions likes

record class class!
record class class2

•
•

(... '
(... ' linkl ref(class2))1

link2 ref(class)))1 - '

record class classn (••• , linkn ref(class1))1

The circularity in the pattern of referencing in these n

record classes gives rise to n different structural

domains, which together form a system of mutually

recursive sets.

-41-

The only way to define record classes so as to

guarantee non-recursive domains is to 11mit the linking

to a f1xed finite chain of references. Changing the

definitions of one or more of the record classes above

1n a way which excluded all circular chains of reference

components would result in a non-recursive domain.

Having the linking completely fixed, however, is tanta­

mount to having no linking at all and employing a single

(possibly large) record to hold all the information,

Techniques used for elementary data can be employed

in such a situation to characterize the data, and therefore

cases like this are of no interest here.

Since the structural domains of interest are

inherently recursive classes, the natural control

structure to use 1n programs operating on such structures

is the iterative loop. Hoare [Hoa72a1 has noted the

natural correspondence between certain classes of

data structures and certain control structures& in

particular, recursive data structures correspond to

the while or until loop (with an unbounded number of

iterations) just as arrays do to the ALGOL 60 f.2!'. loop,

or FORTRAN DO-loop,in which the number of iterations

is bounded). The programming of any "interesting"

operation on a structure almost always requires at

least one loop, driven by iterating a reference variable

over the successive records in part or all of a structure.

-42-

Al. Patterns

The domain of a structure both before, during, and

after such a loop is generally quite a bit more restricted

than what is deducible from the record class definitions,

All remaining restrictions must be reflected in the corre­

sponding assertions. Because of the loop structure, much

of this information takes the form of patterns--relations

within and among records which recur regularly throughout

the structure or substructure accessed in iterating

through the loop, The reason for this is obvious a a

single iteration of the loop requires initially and/or

causes finally the existence of certain conditions in

the local piece of the structure upon which the loop

body operates in that one iteration, Since such conditions

must prevail over all loop iterations, the result is

structure- or substructure-wide patterns.

A key to characterizing the domains of structures,

then, is the ability to describe these patterns, The

set of records accessed by a loop generally consists of

a chain of connected records, so that most patterns

encompass a group of records in a chain. We therefore

need basic primitives for describing such chains, As

the baa1s of a chain is simply the connection between

successive records, the logical primitive concept to

consider is "connection."

-43-

A2. Direct connection

We think of two records being (directly} connected

1f a component of one record references the other record.

This can be formal1zeda

If p and q are reference values, then there
1s a direct connection from p to q, denoted
"p.,.. q", iff (:iI sel){p.sel = q}.

Notice that this relation is defined between references

to records rather than records themselves. 'l'h1s is

necessary since our only access to a record is PY an

expression whioh evaluates to a reference to it.

Before proceeding, I should point out and justify

a bit of mathematical casualness in this definition.

The definition contains the existential quantification

of the variable "sel", whose implicit range 1s over all

selectors for the record class of p, i.e. a certain set

of character strings. If sel takes on the value 'next',

for example, then the value of the expression "p.sel",

strictly speaking, is that of "p.'next'", not of "p.next",

though the latter is the only interpretation which makes

sense in the definition. In a rigorous mathematical

sense this is an error, but one which could easily be

corrected by the invention of special quoting and

dequoting functions. To do so would sacrifice clarity

of presentation, however, since these special functions

would serve no useful purpose and would simply create

-44-

clutter. Since the intent of the above definition is

clear, I do not bother to correct the small imprecision.

This attitude 1s carried over later 1n this thesis when

I define and use predicates and functions which include

selectors as parameters, It is important to realize that

this is simply a matter of convenience, and that the de-

finition as it stands is no less well-defined or precise.

The definition does suffer from a more practical

problem, however, in that it is broader than what we

generally want. The selector ttsel" can be any valid

selector for the record class of p, or rather any such

selector whose component is of the same type as q,

!n the case of the record class ttperson" defined earlier,

"p-+ q" could mean any of the following 1

"p,next = q" or
II p I chi ld = q II or
"p,father = q" or
"p.sibling = q" or
"p,spouse = q",

While in some situations we might wish to express this

very fact, we usually want to be more restrictive.

In particular, consider the need to describe structural

chains, which, after all, provided the direct motivation

for defining "connection," The system of linking in a

chain is generally limited to a single component in each

record, or at most to some subset of possible linking

components. We need to be able to limit the connection

relation accordingly,

-45-

Our means for effecting this restriction is to

attach an optional tag to the "-+ " symbol, denoting

the component(s) through which the linking is to be

limited, To restrict linking to a single component, the

selector name is simply written over the arrows

"x next• y" is equivalent to "x,next = y",

To restrict the linking to several components, a list

of their selectors, separated by commas, can be used1

"p a,b,c)q" is equivalent to

"p,a = q or p,b = q or p,c = q".

A more attractive alternatire is to let a new identifier

denote the set of components, such as s = fa,b,c} , and

then simply write "p..J4. q", The name "s" used for the

set, of course, must not be the name of any actual

selector.

It should be clear that "p.J4. q" is more convenient

to write than "p.a = q .2!: p,b = q or p.c = q", and

its use could be justified on that ground alone, parti­

cularly if such a construction occurs numerous times in

the assertions of a program. There are at least two

other good reasons for this notation, though, which is

why we bother with "x next) 7" rather than "x,next = y",

One is that it gives us a good method for stating several

facts like "p.a = q and q,b = r and r.c = t and

t.d = u", etc., namelys

-46-

The need for this arises particularly when describing

chains of links, and the notation here not only handles

it concisely, but also affords a graphic picture of the

chain. The second reason is that the notation can be

directly carried over to the more powerful notion of

"ultimate connection."

AJ, Ultimate connection

Ultimate connection is the relation existing between

two records which are connected by a path of zero or

more linking components. Formally, it is the reflexive

transitive closure of the direct connection relation, and

can be defined1

If p and q are reference values, then there
is an ultimate connection from p to q, denoted
"~ q", iff (p = q) .2!: (g r)(p-+ r~ q),

A slightly different concept which is also useful is the

non-reflexive transitive closure of "-+", which indicates

a path of one or more links between records a

"p=-9+ q" iff (gr) (p~ r=> q).

In both cases, the relations can optionally be tagged so

as to restrict the linking to one or more specific

components. Note that "p a..R)q" is equivalent to

"(p = q) or (:!l:r)(p a,b> r a.b) q)", not to

"p~ q or p~q".

These primitives give us tremendous power to describe

cha.ins of records. I indicated previously how to denote

-47-

a chain of specific records using a series of "~ "

relations. Now we can be more general. If "a" names

either the single selector or the set of selectors

associated with a cha.in whose first record is referenced

by u, then any record v in the chain is characterized

by "u~ v". Common properties of records in the chain,

i.e. patterns, can be described by an expression of the

form
a (yv) (u===:+ v ~ , •• v. , •)

where the right-hand-side of the implication is an

expression of the properties for typical record v in the

chain.

The best way to illustrate the power of this

notation is by an extended example, for which I will

use a class of structures like that pictured in Figure 2.1.

My belief is that this class of "family trees" is a good

one for illustration purposes because virtually any type

of structural relation one might wish to represent can

be framed in terms of these family relationships, The

connection primitives allow us to define any relation

we choose. For instance, to say that p is a descendant

of z (more precisely, that the person to whom the record

referenced by p corresponds is a descendant of the person

to whom the record referenced by z corresponds), we can

define the following predicates

-48-

descendant(z,p) (g q) (z child > q ~ p)

where D = fchild,s1bling}.

Similarly, an ancestor predicate can be defined1

ancestor(z,u) (:a: v) (zfather • ~ u)

where A= {father,spouse}.

More complex relationships like "uncle" can also be handleds

uncle(z,x) (g a, b ,c) (zfather) 8 spou§e ~· b and

(bsibling) + 0 spouse &l x

xspouse, csibl1ng) + b)

or -
and male(x)).

Figure J.1 illustrates each of these relations.

As a more general illustration, the whole structural

class can be concisely defined. Among the facts charac-

terizing the class ares

(1) All the records are chained together in

succession through their "next" components,

with the chain ending in a record whose

"nexttt component is null.

(2) Each chain of "sibling"s is sorted by

decreasing age.

(J) Every person is in the same "sibling" chain

as the (oldest) "childtt of his/her "father".

(4) Every person is younger than his/her

"father", and older than his/her "child".

(5) Every person who has a spouse is of opposite

sex to that spouse, and is the spouse's spouse.

z

sibling
child

q

•

----+------';> •••

• • •

-49-

-----1--~... . ..

---+-~ •••
---1-~ •••

descendants of z

Figure J,1a
The descendants of z are the records reachable from
q = z.ch1ld by a path of zero or more "child" and/or
"sibling" links.

-50-

• • • •
• • • •
• • • I

If'- i 1 f ~+-, --
I:::.

I I --4
I

t-- - ·---··· ··-- - ·------- ~
_::.,, ----· -~ r--

I -T I ~
-- ...

"'I

I?- v
f--

. -.

II'
ancestors o:r -"".

---~------'

&:.

father
spouse

If- z

Figure),lb
The ancestors of z are the records reachable from
v = z.father by a path of zero or more "spouse" and/or
"father" links.

z
J,

t-----------

-51-

-
1---------<I""' 1---------

~------

]

a-7 ~ ~ouse

~'------!,~

sibling
] .. Ji.
---+---"'~---

1
l

,..------,...::::.
L.
---1-1-----t

I

~ s- ---~
' ____ 4Fk4:-1-----t

b i

l

j----------~

aunts and uncles of z (uncles are those whose
"male" component is true)

Figure 3.1c
The aunts and uncles of z are the siblings of the parents
of z, and their spouses. The parents of z are z.father = a
and z.father.spouse = d.

-52-

Other details could be added to these, of course, but

let us stop here and see how this information can be

expressed. Since these properties are all patterns

which are in the form of a fact which is true of every

record in the structure, they can be stated as applying

to a general intermediete record referenced by a

universally quantified variable p. If variable x

references the first record of the structure, thens

y p,q ,r) (xnext) P ~ ~ and q ~ !'.!Ell ~

((Pnext 1 + !U!il) and -
(Psi bl i ge; ' q ::> P • age > q • age) and

(pfather qch1ld > r., rsiblin5) p) and

(Prather) q :> p. age < q • age) and -
(pc hi ld) q ::> p,age > q ,age) and

(Ps pous e..... q 1 t 1 - 7' _, p,ma e = !12.... q,ma e

and qspouse~ p)))

A4, The invariant

Very often, a programmer will write a number of

programs each of which is designed to operate on a

structure from the same structural class. It may be

that certain of these programs are "top-level" routines

and can each call certain others as subroutines, which

in turn can each call others, etc. or, the programs

may all be independent, each one performing a specific

-53-

basic operation on the structure, such as addition or

deletion of a record, tests for certain predicates,

rearrangement, etc. In any case, the structure possesses

a lifetime which transcends the scope of one single program,

In this situation, the restriction of the struc­

ture's domain to the given class assumes an importance

far greater than when such a restriction is limited to

a single point in time (i.e. a single assertion). The

restriction now becomes a fundamental aspect of the

structure, expressing what Foley and Hoare[Fol7U call

the "purpose" of the structure. Following their

terminology, the expression of this restriction is

referred to as the invariant of the structure. In the

section just previous, for instance, the invariant of a

"family tree" was constructed.

The invariant of a structure plays an important

role in inductive assertion proofs of programs operating

on the structure. Any program which takes the structure

as an input should include the invariant within its

input assertion. Every program which outputs the

structure must include the invariant within its output

assertion. It will also be the case that most, though

not necessarily all, of the intermediate assertions of

programs which operate on the structure will include the

invariant.

-54-

Not all the assertions must include the invariant

because it need not be truly "invariant" on a statement­

to-statement basis, but only a program-to-progra.m basis.

In fact, the validity of the invariant will often lapse

in the middle of a computation which performs a reasonably

complex operation on the structure, or even such basic

operations as insertion and deletion of records. Sections

of code in which the invariant is temporarily invalidated

can be considered critical sections. In the parlance

of multiprogramming and concurrency of active procedures,

a piece of code is called a "critical section" 1f its

action must not be interrupted by that of another active

process. An example would be the code between the addition

of an item onto a stack and the subsequent updating of

the stack pointer. Such a critical section is usually

protected from interruption by use of a semaphore.

Even though the programs under consideration are

purely sequential, with no parallel concurrent activity,

the concept of a "critical section" is still useful.

Since the invariant expresses the "purpose" of the struc­

ture, and since other programs operating on the structure

rely on the validity of the invariant, it is critical

that any program which invalidates the invariant must

reestablish its validity. In addition, it 1s the critical

section which often performs the major work of the program.

-55-

The act of proving the program correct will, of course,

verify the action of restoring the invariant. This is

guaranteed by the necessary inclusion of the invariant

in the output assertion.

Use of the invariant offers a number of advantages

in assertion proofs. Syntactically, it allows assertions

to be more conciser the invariant need only be stated

in its entirety once, at which point a convenient

predicate (possibly in terms of one or more parameters)

can be defined to represent it, This predicate can then

be used in any assertions which include the invariant.

This helps prevent the assertions from being filled

with a lot of repeated, unchanging details, It also

serves to separate the information within an assertion

into two kindsr that which changes in the course of a

program, and that which does not, This makes assertions

easier to read and follow. Stating the invariant at

the beginning of the program also allows the reader

to see at a glance what kind of structure the program

is designed to operate upon.

The greatest advantage of the invariant is in the

proof of correctness itself. In the programs which

operate on the structure, most if not all assertions will

contain the invariant, so that most if not all verifi­

cation conditions will require a proof of the continuing

-56-

validity of the invariant. There are only a limited

set of ways to operate on a structure in a small,

loop-free section of code (i.e. the body of a v,c,);

hence, it is quite likely that a proof of correctness

will require numerous applications of a result likes

"A statement of the form 'p,link a= q,link' does not

invalidate the invariant provided that,,,," It makes

sense then to simply prove the result once as a lemma,

after which the lemma can be invoked in any proof which

requires the result.

More generally, one can analyze !!l:. statements which

might alter the structure, and prove a whole series of

lemmas to decide in all oases whether the invariant

is maintained, This may seem like a massive undertaking,

but in fact it is not, as illustrated in Chapter 4,

Proving the lemmas before attempting the actual proofs

of correctness vastly simplifies the verification process.

In fact, it may be helpful to state the lemmas before

even writing any programs to operate on the structural

classr the insights gained in the former task may prove

beneficial for the latter,

A5. Program invariants

In proving the correctness of a program operating

on structures from a given class, the invariant for

that class will form part of each assertion in the program,

-57-

It may also be the case that over the course of the one

program, certain other facts about the structure remain

constantly true as well~the domain of the structure

within that program may be restricted to some subset

of the larger class defined by the invariant, It

probably does not pay to define a new class invariant

and construct the attendant series of lemmas for use

in proving the one program correct, However, it would

be nice to obtain the syntactic benefits of the invariant,

the conciseness and structure afforded to the assertions.

This can be accomplished by use of a program invariant,

which plays a role similar to that of the class invariant,

but on a scope local to a single program, The program

invariant includes the class invariant and may also

include any number of other clauses. It is stated at

the very beginning of a program (in a comment) and an

abbreviation is generally given there to represent it

in assertions. Although this abbreviation only takes

one clause of an assertion syntactically, each actual

clause of the program invariant must be proved true in

each v,c,

This concludes the discussion of how to restrict the

domain of a structure, To summarize the resultss the

connection primitives give us a means for describing

intra-structural relations; using them 1n conjunction

-58-

with techniques developed for simpler data and the

constructs of predicate calculus such as quantification,

we can define concisely any structural class, and incor­

porate the definition into a class invariant. Lemmas can

then be proved about the effects of various source-language

statements on the validity of the invariant. This allows

the characterization of the structural class to be inte­

grated into the actual proof of correctness. These

concepts are put to use in proving actual programs in

Chapter 4. To construct such proofs, however, we must

address the other major issue mentioned at the beginning

of this chapter~relating structures to other data.

B. Relating a structure to other data

To construct proofs of correctness involving a

data structure, one must be able to express relations

between the structure and any other ob a program can

contain. This includes both elementary variables and also

other structures. Perhaps most importantly, the value

of a structure at a given point in time must be related

to its value at a different point, such as its initial

value, for any program manipulating the structure, we

need to relate the final output structure to the initial

input structure, in order to express the intended result

of the program in the output assertion. Since the program

invariant states what is unchanged about the structure,

-59-

what is required additionally is the ability to precisely

describe changes in the structure due to the action of

the program.

B1. Containment relations

The relation of a data structure to another ob

is often one of containment. For instance, we may wish to

express the fact that the structure (or some substructure

of it) contains a record with a certain component equal

in value to an elementary variable. Or, that a smaller

structure is isomorphic (equal in all non-reference

components, corresponding in its linking) to some sub-

structure of the larger structure. For a large class of

relations such as these, the basic issue involved is

containment. To express such a relation, we need to be

able to refer to internal in.formation within a data

structure. The intra-structural primitives for connection

relations, along with more basic tools used for simpler

data, provide the mechanism for doing so.

For example, to state that a Boolean variable "in"

expresses whether or not integer "i" is equal to the

"num" component of any record in a chain linked by "next"

• components, starting from record "x"s
next in = (g p) (x ; p -1- null and p. num = i) •

Expressing the substructure-isomorphism relation is

slightly more complicated, Since the concept of

-60-

isomorphism is recursive, an auxiliary recursive definition

is employed1

(az)(x~z

where

and isomorphic (z,p))

isomorphic(null, null)

and isomorphic(q,r) =
(Y s e lE N onref) (q • s e 1 = r. s e 1) and

(Y link e Ref) (isomorphic (q. link ,r. link)).

Nonref and Ref designate the sets of all non-reference

selectors and reference selectors repsectively for the

given record class(es). Notice that this definition

works only for structures in which cycles and shared

substructures are not permitted. It could justifiably

be used, then, only if the program invariant for the

structure ensured this condition.

This illustrates an important point. Our separate

considerations of the two issues of domain-restriction

and relations-to-data should not mislead one into

supposing that there is no interaction between these two

areas, In particular, the restriction of a structure

to a specific domain can often be utilized to simplify

the statements of its relations to other obs, A major

use of this fact will be made shortly,

B2. Abstract relations

Unfortunately, there are many situations where one

needs to express relations other than those in the broad

-61-

category of "containment." This often includes the very

important case of relating the values of a structure

on input to and output from a program. Consider, for

example, the very simple operations of adding a record

to and deleting a record from a structure. If the

addition or deletion takes place somewhere in the middle

of the structure, then there is no substructure-like

relationship between the initial and final values of

the structure. It is likely that one would not know

at all where the given record actually iss the addition

may be constrained so as to maintain some aspect of the

invariant (such as an ordering relationship); the deletion

might be based on the matching of some component to a

key value. An accurate expression of the change in

terms of the internal connections between records may

be impossible, or else prohibitively complex. Yet these

operations appear quite straightforward, and can be

described in English rather simply, Why then the

trouble?

The reason for the difficulty is that the computational

manipulation being performed is indeed complex. (If it

were not, then the program to accomplish it, and hence

its proof of correctness, would be trivial.) The surface

simplicity is due to our ability to think and speak in

terms of abstract objects and operations. Record addition

-62-

and deletion correspond in the abstract to adjoining and

removing an element from a set, respectively. Given a

way of mapping the structure into the set in question,

the results can be easily stated in terms of simple set

operat1onss

Additions (Set mapped into by final structure) =
(Set mapped into by initial structure) U

[(given elementfl

Deletions (Set mapped into by final structure) =
(Set mapped into by initial structure) -

[(given elementij

Addition and deletion are among the simplest opera-

tions for which such a viewpoint can be taken. Numerous

program manipulations which are complex computationally

become considerably simpler when viewed as their correpon-

ding abstract operations. This suggests an alternative

approach for relating structures to program data.s map

structures into abstract data objects (such as sets) and

then express the relations in the abstract domain. To

do this, though, we must have a way of formalizing the

mapping.

BJ. Representation functions

A vehicle for formalization is the representation

function, a concept proposed by Hoare[Hoa72b]. A

representation function maps elements from a given class

of computational objects into a set of abstract data

objects. Such a function can be defined in any way, so

-63-

long as its domain and range are appropriate to the

above statement. Because of the generally recursive

nature of structures, recursive function definitions

are common.

A class of 'computational objects can be held in

correspondence simultaneously with several abstract

data classes. There is thus no single "correct"

representation function for a given structural class,

but rather s.ne~l functions which can be used. One

or another of these functions may prove especially helpful

for describing the operation of a particular program,

and hence be used in its assertions. The sole criterion

for choosing a particular representation function is

the extent to wh1ch its use contributes to the clarity

of assertions and the ease of proof for the given program.

While representation functions help to clarify the

meaning and reduce the size of assertions, their use is

not without cost. In the actual proof of a program's

correctness, representation functions are a new class

of alien objects which must be dealt with. The problem

is not so much with the abstract data objects returned

by the functions. Use of representation functions

returning sets, for instance, may mean that the proof of

correctness requires certain results of set theory. The

results needed, however, are unlikely to be terribly

-64-

difficult or profound. The only possible problem might

arise in connection with eventual mechanization of proofs~

set theory ls that much more mathematical material which

must be covered by a mechanical program verifier's

theorem base.

The more serious aspect of the problem concerns the

representation functions themselves. By including

within assertions expressions which involve represen­

tation functions, we force the proofs of the v.c.'s to

prove results about the values of these functions. In

particular, we must prove how each statement in a

program affects the value of each representation function

included 1n 1ts assertions.

This ls a fam111ar problem, for it corresponds

exactly to one we faced earlier with regard to class

invariants. A similar solution can be adopteda analyze

all cases of interest beforehand, and prove lemmas on

the effect of each kind of program statement on the

value of the representation function. Using the

representation function then actually simplifies the

proof of correctness, since much of the unimportant

detail of a proof can be submerged in the invoked lemmas.

This would not be a practical solution if one defined

a new special-purpose representation function for each

structure in each program. It would just not be worth-

-65-

while to bother proving the whole set of lemmas if

they were to be used for proving only the one program.

By restricting the domain of each representation function

to a specific structural class (i.e. by associating the

representation function directly with the class invariant),

though, general-purpose representation functions can

be defined which are applicable to all structures of the

given class.

The number of representation functions required for

a given structural class need not be very large. The

fact is that there aren't very many kinds of abstract

data objects, as Hoare[Hoa72a], for example, shows, In

fact, one really needs only two broad classes--sets and

sequences--corresponding to whether the given collection

of constituent elements is considered to be unordered or

ordered, respectively. Other abstract data classes which

are potentially useful all turn out to be special cases

of these two; e.g., stacks and queues are two special

cases of sequences in which only certain operations are

permitted. Most structural classes therefore require

representation functions yielding sets and sequences only,

and usually this means just one function for each of the two.

This is because parameters of the functions can be used

to determine which links to follow in the chain and which

(component) values are to be used as set or sequence elements.

-66-

c. Summary

To summarize my approach, the restricted structural

domain is used as the basis for constructing assertions

about and proving programs operating on data structures.

Such a domain can be defined by describing intra-structural

relations using the primitives of direct and ultimate

connection, and combining these relations with standard

techniques to specify the class restrictions. This

definition of the class is embodied in the class invariant.

Structures in the class can be mapped into corresponding

abstract data objects by defining representation funntions

on the domain which yield sets and sequences. These

abstract data objects can then be used to express relations

between the structures and other data in the program.

Inclusion of the invariant and the representation functions

in assertions leads to the necessity of proving results

about them in the course of proving the correctness of

programs. This task is simplified by analyzing the

various kinds of source-language statements, and proving

lemmas concerning the effect of each on the invariant

and the values of the representation functions. Chapter 4

illustrates the application of this approach on a parti­

cular structural domain, and demonstrates the proofs of

correctness which result.

--- -~-n

-67-

Chapter 4

SINGLY-LINKED LISTS

The basic outline of my approach to handling data

structures in verification proofs was presented in

Chapter 3. Several new concepts were introduced, explained,

and illustrated by examples. However, in order to really

understand all the concepts, both individually and in

relation to each other, one must follow through at least

one complete application of the approach~from the choice

of a particular class of structures to one or more actual

proofs of correctness. This chapter takes a structural

class which is particularly simple, and thus good for

illustration purpos~s, and applies the approach, ulti­

mately proving three programs correct which operate on

structures of the class.

Consider the following simple technique for

constructing a data structures take some number of

records all of the same classr make sure that the class

is defined so that at least one record component is itself

a reference to records of the class; choose one reference

component as the linking component for the structurer

put the records in some type of order, based on some

characteristic or completely arbitrary; connect the

records together by having the link in each record reference

the next record in succession, with the last record's link

component equaling null.

-68-

The resulting structure, which will look like the

one in Figure 4.1, is a singly-linked list, henceforth

simply called a "list." 1 Because of their simplicity

and wide versatility of application, lists are one of

the most widely-used classes of structures. These quali-

ties also make them attractive for use here. Because of

their versatility, a wide range of program applications

are available for use in illustrating the concepts pre­

sented. Their simplicity of form makes them easy to use,

and means that there will be a minimum of extraneous

details to distract attention from the important concepts.

A. Definition

The first item of business is to define the class

of lists formally. The easiest way to do this is by a

recursive definition. If the record class to which the

records in the list belong is named "re" and the link

component selector is "next", thens

Definition L.1 A list is referenced by either null

or by reference to a record of class "re"

whose "next" component references a list.

This definition is theoretically sufficient, since

it provides an effective test procedure for determining

membership in the structural class. The main use for a

structural class definition, however, is in the invariant
1Notice that this is not a LISP-type "list", for which

I will use the alternate term "List", after Knuth[Knu68].

11nk

" ' .:-. ' _;~"" ·.-'=t-

:
•

, .-r..-.,"'

~ .,_ ... ,,
'Jl'j "-'''

• • •
• • •

.... ""·'* ""h!iitiC n• -

;} •(.

"1t~ · J~!:o .~1· .t J;·trf : ~r~·T: ~ :1a1.i· ~
• •

P1gure 4.1 ~ j' .""'.~'Xi "' F''

,,,,~!~'--!

• • •

_., r
j'' "

•

-70-

for a structure. For this purpose, what is needed is

what I call an analytic definition~one which analyzes

the structural properties which are characteristic of

the class. This is provided by the following predicate,

which takes as parameters a reference to the structure

and the selector for the link components

Definition L.2 LIST(p,next) - (pnext;) null and

(V q ,r) (Pn;xt) q ~ Pnext) r and

q, next = r. next :> q = r))

This states two conditions which a structure must meet

to be a list, The chain of "next" components must ter-

minate on null, and no two distinct records in the chain

can have equal "next" components.

The two definitions for lists are in fact equivalents

Theorem L.J LIST(p,next) iff
~

p references a list with "next" as the link

component according to Definition L.1.

The proof of this theorem is given in Figure 4.2.

The following corollaries to these definitions are

immediately apparentr

C 11 L 4 T(t) ~nd (pnext,. q) oro ary , LIS p,nex . ~

LIST(q, next),

That is, any record within a list is itself the beginning

of a list, This is fairly obvious from Definition L.1.

-71-

Theorem L.J LIST(p,next) iff

p references a list with "next" as its link

component according to Definition L.1.

Proof: by induction on n, the number of records in the

structure referenced by p.

Basiss n = Os preferences a structure with 0 records

iff p = null. null references a list accordin~ to

the first definition, and "LIST(null,next)" is

true according to the second. So the two defi-

nitions are equivalent for the basis case.

Induction steps Assume the theorem is true for structures

of size (n - 1), where n > 1. Prove that it is

satisfied for structures of size ns

If preferences a list according to Definition L.1,

then the first record's "next" component references a

list. By the induction hypothesis, this list also

satisfies Definition L.2.

p.nextnex5 null

Therefore,

and

next next.r & (Vq,r)(p.next====~ q & p.next ~ q.next = r.next

::> q=r).

so, "(pnext) null)" follows immediately from the definition

Of 11 '=9 II

Figure 4.2

Proof of Theorem L.)

For any q and r such that

next Pnext~ r "p > q and :>'

next
either "p. next) q and

-72-

and q.next = r.next" is true,

next
p.next) r" is true, or

at least one and possibly both of q and r are equal to p,

by the definition of "~ "• If the first possibility,

then q = r from above, the induction hypothesis. If

both q and r are equal to p, then clearly q = r.

If one but not both are equal to p, then without

loss of generality, let it be q. Then q = p, and

next > next
p ~+ r. Sop.next r, and so

next
p.next ; + r.next, each of these last two following

by the definition of "~ "• But since r.next = q.nex~,

and q = p so that q.next = p.next, this means that

next" p.next r+ p.next, and it can easily be shown that

this contradicts the induction hypothesis that
next

p.next null. (Basically, the argument runs that

the structure must be circular, and thus cannot terminate

on~.) So this case is impossible, and both other

cases confirm that the second clause of Definition L.2

is satisfied. Since it was shown above that the first

clause is also satisfied, this proves that Definition L.1

implies Definition L,2, which completes half the proof.

Figure 4,2(page 2)

-73-

If "IIST(p,next)" is valid according to Definition 1.,2,

then pnext>null and

next next (v q , r) (p q and p r and q • next = r. next "J q = r) •

Since n ~ 1, "p,next" is well-defined, and in fact

next
"p.next null" is true by definition of "~ " and

next
the fact that p >null above; similarly,

next next
" (V q , r) (p. next q and p. next r and q. next = r. next

:;; q = r)"

follows a fortiori from the similar clause above for p.

So, by the induction hypothesis, p.next references a

list according to Definition L.1, and by that definition,

this means that p references a list. So Definition L,2

implies Definition L.1.

Since the validity of each definition implies that

of the other, they are indeed equivalent for n-record

structures, and by induction, for all structures.

Q. E, D.

Figure 4.2{page 3)

-74-

Corollary L.5 LIST(p,next) .:::>

(next" d next) p ~ q ~ q p 1ff p = q).

So, no two d1st1nct records can each be w1th1n the list

headed by the other.

B. Representation functions

The next item of business ls to define general-

purpose representation functions on lists. We require

mappings from lists to both sets and sequences. The

mappings defined here are quite simple~1nto the set or

sequence of successive values of one particular component

from each record in the list in turn. These functions

are adequate for a wide range of situations, including

the three example proofs presented later in the chapter.

A more generalized version of the functions would map a

list into a set/sequence whose elements are each a

tuple of component values from a single record. For the

sake of simplicity, we content ourselves with the simpler

functions, but it should be observed that the treatment

required for the generalized functions would be directly

analagous to that presented here for the simpler mappings.

Since the particular component selected as set or

sequence element will vary from list to list, and even

from one application to another, it makes sense to

include the selector to this component as a parameter

to the representation functions. Other parameters which

-75-

are needed are a reference to the beginning of the list,

and the link component selector, in order to get from

one record to the next. With these parameters, we can

now take advantage of the recursive form of the list

structure to define the following two functionss 1

Definition L.6 LISTSET(p,sel,next)

if p = null then ¢

else f P· sel} u LISTSET(p.next,sel,next).

Definition L.7 LISTSEQ(p,sel,next) -
if p = null then []

else concat([p.sel] ,LISTSEQ(p.next,sel,next)).

These functions perform the obvious task of accessing

the selected component of each record in the list in

succession, and adding it to the set or concatenating

it onto the sequence, respectively.

Two other functions are useful enough to define here.

They represent the analogs to the above two functions for

sublists, rather than full lists. The bounds of the

sublist are indicated by two parameters, one of which

references the first record in the sublist, and the other

of which references the record immediately following the

1The notation used for sequences here is that "[]"
represents the empty sequence, "[aJ" represents
the one-element sequence with single element ~.
and "concat" is the operation of concatenation on
sequences,

-76-

last record in the sublist. 1 The two functions are defined

in the same way that the two functions for full lists weres

Definition I.8 SUBLISTSET(p,q,sel,next) _

if p = null or p = q then

else zp.sel} U SUBLISTSET(p.next,q,sel,next).

Definition r .• 9 SUBLISTSEQ(p,q,sel,next)

if p = null or p = q then []

else concat ([P. sel] , SUBLISTSEQ (p. next ,q, sel, next)).

The test "p = null" is required in these two definitions

to ensure that the functions be well-defined even when q

does not reference a record in the list, i.e. when

"pnext~ 11 i f 1 - q s a se. Neither of these two functions,

nor the two for full lists, are guaranteed to be well-

defined, however, unless LIST(p,next) •

Finally, notice that a list is merely a sublist which

terminates on null, so that:

Corollary L.10 SUBLISTSET(p,null,sel,next) =
LISTSET(p,sel,next).

Corollary 1.11 SUBLISTSEQ(p,null,sel,next) =
LISTSEQ(p,sel,next).

1The reason for this seemingly strange convention is that
it allows for more general utility. If one desires to
represent a sublist whose final record is referenced by
"x", then this can be accomplished by using "x.next"
as the second parameter to these functions. Were the
opposite convention used, it would be difficult, if
not impossible, to express the non-inclusive case,
due to the absence of backward referencing in lists.

-77-

There are numerous other corollaries to the above

definitions. Some of the more useful ones are:

Corollary L.12

LIST(p,next) and
next next

(p ; q r)

(SUBLISTSET(p,r,sel,next) =

SUBLISTSET(p,q,sel,next) U SUBLISTSET(q,r,sel,next)

and

SUBLISTSEQ(p,r,sel,next) =
concat(SUBLISTSEQ(p,q,sel,next),

SUBI.I STSEQ (q , r, s e 1, next))) •

This corollary deals with a situation like that illustrated

below:

q r

p ["""i ~

~ ..lJ ~ ~'
__,._ ..::ii. , ,, -

Ll L2

L

That is, sublist L is the composition of sublists Ll and

L2, In that case, the set mapped into by L is the union

of the sets mapped into by 11 and 12, and the sequence

mapped into by Lis the concatenation of the'sequences

mapped into by Il and L2. Notice that if r =null, this

result can be used for lists L and L2 rather than sublists,

using Corollaries L,10 and L.11.

-78-

Corollary L.1.J LIST(p,next) and p :f. null

(SUBLISTSET(p,p.next,sel,next) = fp.se13 and

SUBLISTSEQ(p,p.next,sel,next) = (p.sel]).

This simply gives the values of the representation functions

for the special case of one-element sublists.
next

Corollary L.14 LIST(p,next) and not(p) q) ::>

(SUBLISTSET(p,q,sel,next) = LISTSET(p,sel,next)

and

SUBLISTSEQ(p,q,sel,next) = LISTSEQ(p,sel,next)).

This result is for the case that the second parameter to

the functions for sublists, q, does not reference a

record in the list referenced by p. The values of the

representation functions are then the same as if the

second parameter were null.

Corollary L.15 LIST(p,next) and

(Pnext ,> qnext., + r) :l

q.sel E SUBLISTSET(p,r,sel,next).

That is, for any record q within a sublist, the component

q.sel is guaranteed to belong to the set represented by

the sublist.

Corollary L.161 next LIST(p ,next) and (p ~ + r)

(p.sel = first(SUBLISTSEQ(p,r,sel,next) and

SUBLISTSEQ(p.next,r,sel,next) =

final(SUBLISTSEQ(p,r,sel,next))).

1see Appendix A for definition of the primitive operations
on sequences--first, final, initial, and last.

-79-

The first element of the sequence is the component of

the first record, and the rest of the sequence is mapped

into by the rest of the list or sublist.
1

Corollary L.17
next -LIST(p,next) and (p) + r i null) ~

(r.sel = last(SUBLISTSEQ(p,r.next,sel,next) and

SUBLISTSEQ(p,r,sel,next) =
ini t1al (SUBI.ISTSEQ (p ,r. next, sel, next))).

Similarly, the last sequence element is the component

of the last record, and the initial subsequence is

represented by the initial sublist.

C. Verification lemmas

We have now reached the stage where we can construct

a series of lemmas to formalize the effects of various

source-language statements on the LIST invariant and on

the values of the representation functions defined on the

class. One might suppose that this is going to be a

monumental task, but in fact it is surprisingly easy.

For a number of reasons we are able to handle all relevant

cases in only a handful of lemmas.

One reason 1s that all our results are framed in

the most general terms possible. That is, even though

the records in a list which are most frequently operated

uEon are the first and last 1 it is not necessarl to consider
1 the footnote See on the previous page.

-80-

these special cases separately. The recursive nature of

lists makes all results on intermediate records uniformly

applicable. We also handle all effects of a given pro.gram

statement in one lemma~we do not bother with separate

lemmas stating the effect on the invariant and each

representation function, but instead lump all these

results together in one lemma.

Finally, we take advantage of Corollaries L.10 and

L.11, the fact that LISTSET and LISTSEQ are only special

cases of SUBLISTSET and SUBLISTSEQ, Results need only

be expressed in terms of the latter two functions.

The lemmas stated here are presented without proof,

The reason is that the proofs both lack any instructive

value and are rather tedious. To give the reader the

flavor of such proofs, Appendix B contains the proof

of one of the lemmas, Lemma L.19. The proof uses the

verification axioms of Hoare [Hoa69J as its logical foun­

dation, and is illustrative of the proofs required for

the other lemmas.

While the results embodied in the lemmas are compli­

cated to state, they are all really completely straight­

forward, following directly from the definitions of the

invariant and the representation functions, Accompanying

each lemma is a brief discussion explaining the result.

All lemmas employ the convention that free variables are

-81-

assumed to be universally quantified.

The nomenclature for the statement of the lemmas is

borrowed from Hoarellioa6~and was introduced earlier.

The basic form is "[P] [Q} [R] ", where Q is the code

(in this case, statement) for which the lemma applies,

P is the necessary precondition for application of the

lemma, and-R is the resultant postcondition, An "i"

subscript refers to values initial to the execution of

the code. In proving programs later in this chapter,

"i" subscripts will similarly be used to denote values

which are initial to the verification condition under

consideration. An 11 0" subscript is reserved to denote

values initial to the entire program. only the "o"

subscript can be used in assertions.

The simplest operation possible on a list is to

update a non-link component in one of its element

records. The result is to leave the invariant valid,

the representation functions for the given component

changed by the single substitution, and representation

functions for all other components unchanged. This is

expresseds

-82-

I emma L, 18

(LIST (p, next) and (pnext > q next>+ r)]

l q. s e 1 : = expr J
[LIST(p ,next) and (pnext> qnext > + r) and

SUBLISTSET(p,r,sel,next) =

(SUBLISTSET(p,q,sel,next))i U { expr}

U (SUBLISTSET(q.next,r,sel,next))i and

SUBLISTST<;Q (p, r, sel, next) =
concat((SUBLISTSEQ(p,q,sel,next))i,

concat([expr], (SUBLISTSEQ(q.next,r,sel,next))i))

and (com ':/ sel .:::>

(SUBLISTSET(p,r,com,next) =

(SUBLISTSET(p,r,com,next))i and

SUBLISTSEQ(p,r,com,next) =

(SUBLISTSEQ(p,r,com,next))i) ~

A more complicated operation is the updating of a

link component, In this case, the structure remains

a list only if the new value references a list. In

addition, the record whose component is being updated

cannot initially be ultimately connected to the new value,

or else the structure will become circular, The values

of the representation functions are changed by adjoining

onto the value represented by the initial sublist

the value represented by the newly adjoined list:

-83-

Lemma L.19

[LIST(p ,next) and (pnext > qnext) + null)]

f q.next := exprJ

'\iLIST(p,next) iff LIST(expr,next) and
next. not(expr 9 q))

(
next

q >+ r iff next
expr > r) and

(LIST(p,next) and
next
q==~ + r) ~

and

SUBLISTSET(p,r,sel,next) =
(SUBLISTSET(p,(q.next)i,sel,next))i U

(SUBLISTSET(expr,r,sel,next)) and
i

SUBLISTSEQ(p,r,sel,next) =
concat((SUBLISTSEQ{p,{q.next) 1 ,sel,next))i,

(SUBLISTSEQ(expr,r,sel,next))i)) J
The link component of a record can also be changed

by assigning to it a reference to a newly-created record.

The conditions for the structure remaining a list are

then the same as in the previous lemma.. The new values

of the representation functions are then also the same,

except for the insertion of the value of the new record's

components

-84-

Lemma L.20
next next J

[LIST(p,next) and (p q + null)

{q.next 1= rclass(••• ,selsval, ••• ,next:expr, •••)}

LlLIST(p,next) iff

LIST(expr,next) and not (exprnext) q)) and

(pnext q) and

(qnext ~ + r expr
~ iff expr • r) and

next,
(LIST(p,next) and q 7 + r

SUBLISTSET(p,r,sel,next) =

(SUBLISTSET(p, (q.next)i,sel,next))i U {val~

U (SUBLISTSET(expr,r,sel,next))i and

SUBLISTSEQ(p,r,sel,next) =
concat((SUBLISTSEQ(p,{q.next)i,sel,next))i,

c onca t ([val] ,

(SUBLISTSEQ(expr,r,sel,next)) 1)))_]

One specific case of this lemma is important enough

to warrant separate statement as a corollary. This is

the case where "expr" is in fact "q.next." The effect

of the statement is then to simply insert the new record

into the list just after the record referenced by q. Several

simplifications are then possible, since the structure

must remain a list, and the value of the "set" function

simply contains one new value.

Corollary L.21

'Q:.,IST(p,next) and (pnext) qnext > + r)]

f q.next 1= rclass(.,,,sel:val,, •• ,nextsq.next, ••• ~

[LIST(p, next) and (pnext) qnext }> + r) and

SUBLISTSET(p,r,sel,next) =
(SUBLISTSET(p,r,sel,next)) 1

SUBLISTSEQ(p,r,sel,next) =
concat((SUBLISTSEQ(p,(q.next) 1 ,sel,next))

1
,

u [vali and

concat([val], (SUBLISTSEQ((q.next)i ,r,sel,next))1) LJ

The final kind of statement to consider 1s a record

creation statement in which a reference to the new record is

assigned to a simple variables

Lemma L.22 [true]

1P 1= rclass(,.,,sel1val, •• ,,next1expr, •••)}

L(LIST(p,next) iff

LIST(expr, next) and not (exprnext) + p)) and

(next
P ,? + r iff exprnext > r) and

(LIST(p,next) and r i p :>

SUBLISTSET(p,r,sel,next) =

{val} U SUBLISTSET(expr,r,sel,next))i and

SUBLISTSEQ(p,r,sel,next) =
conca t ([val] , (SUBLI STSEQ (expr, r, sel, next)) i) >]

-86-

Notice that there is no -precondition atta.ched to

this lemma, or more precisely that the precondition is

always "true." This is because it makes no difference

what the value of p before the assignment is, since it

is completely updated by the assip;nemnt. Otherwise,

this case is quite similar to that of Lem.ma L.20.

An important part of any proof of correctness is

the proof of termination. There are really two separate

issues in this a one is that all operations in the program

are well-defined; that if "p.sel" appears in a statement,

for instance, then "p '/.null" is guaranteed. This aspect

is most easily handled as such statments are encountered

in the body of each verification condition. Whenever

there is any room for doubt, we will explicitly show

that the given reference is not null.

The other aspect involves termination of each loop

in the program. It has been shown [Flo67] that a loop

is guaranteed to terminate if some integer quantity

can be found which is always finite and positive, and

which decreases with each iteration through the loop.

The most common form of iteration when operating on

a list structure is a loop of the forml

"while p i null [and Q] do s fl

or "until p i null [£!: Q_] do s II ' ,
where Q, if included, is a predicate, and S is the loop
1
The.brackP.ts indicate a clause whose inclusion is optional.

-87-

body, either a simple or compound statement. In loops

such as these, the length of the list referenced by p

is a finite, positive, decreasing quantity, and thus

can be used to prove loop termination. To formalize this,

the length of a list can be defined:

Definition L.2J LI8T(p,next) 9

list-length(p) = if p = null then 0

else 1 + list-length(p.next).

The following lemma is then obvious:

Lemma L.24 If "LIST(p,next)" is invariant within

all iterations of a loop of the form

or

"while (p -:! null [and Q])
"until (p = null [or Q])

do S"

do S",

then the loop terminates provided that the

effect of the loop body S on the variable p

is to assign to p the value of an expression

"expr", such that "pnext> + expr" was true

initially, i.e. at the beginning of that

execution of s.

The most common use of this lemma is when "expr" is

simply "p.next", since a loop is most often used to

iterate through the successive records in a list.

In proving the termination of a program, we will

deal exclusively with the proof of loop termination.

As discussed above, the well-definedness of component

-88-

selection will be handled within the proofs of the v.c.'s,

and will thus be considered "given" when termination is

proved separately at the end.

Now that we have developed a framework within which to

verify programs which operate on lists, we test it out

by the straightforward method of putting it into practice

for the proofs of actual programs. The three pro~rams

proved below varyin complexity, but all are solutions to

real-life programming problems. They have been designed

to illustrate a broad range of issues associated with

proving the correctness of programs, particularly using

the approach of this thesis.

All three of these programs use lists whose records

are from the simplest possible class of any practical

use, namely1

record class intcell(n integer; next ref(intcell))

This should not be taken as an indication that the

approach is limited to use with such a simple record

class. The reason for employing the class is the same

reason for choosing lists as the subject of this chapter:

to reduce the amount of extraneous detail to a minimum,

and thus allow the important issues to stand out that

much more clearly. Incidentally, since records of this

class contain only one reference component, "~ 0 can

next
be used in place of ") "

-89-

D. First example proof.-Search and addition

The first example will be an exceedingly simple

program, one which searches the records of a list for a

given integer, and, if the integer is not found, adds a

record containing this integer component to the

beginning of the list. The program is listed in Figure 4.3,

with the assertions included as comments. The program

invariant, which is given in the very first comment,

states that variable sp references a list in which no

two distinct records have equal "n" components,

The control structure of the program and the placement

of the intermediate loop assertion require that four

verification conditions be proved in order to verify the

correctness of the program. These correspond to the

four possible paths between assertions:

(a) The path from the input assertion to the loop

assertion, corresponding to lines (1) and (2)

of the program text.

(b) The path from the loop assertion back to

itself, representing one iteration of the loop,

lines (3) and (2) of the text.

(c) The path from the loop assertion to the output

assertion, lines (J), (2), (4) and (5).

(d) The path from the input assertion to the output

assertion (in the special case that no loop

-90-

procedure intlist_insert(j,sp);
comment program invariant INV= "LIST(sp,next) and

(v q,r)(sp#q==>+ r~+ null ..::>q.n :/. r.ri"'}",
that 1s, no two records in t'f'i'e""'Iist have the

same "n" component;
record class intcell(n integeri next ref(intcell));
declare sp,p ref<tntcell);
declare j integer;
begin
comment assert INV;

(1) p 1= sp;
(2) while (p :/. null and p.n :/. j) do

comment assert "INv and (sp::::;'!!> p~+ null)
and LISTSET(sp,n,next) =
~- (LISTSET(sp ,n,next)) and

j fj.. SUBLISTSE~(sp,p.nex£,n,next) ";

(3) p 1= p.next;
(4) 1f p = null then
(5) sp.....-;-1ntcell(j,sp);

comment assert 0 INV and
LISTSET(sp,n,next) = (LISTSET{sp

0
,n,next})

U jj}" o.,;
end intlist_1nsert;

Figure 4.3

Example Program 1

-91-

iterations are performed), lines (1), (2), (4)

and (5) of the text,

The body of code associated with verification

condition (a) consists of the assignment on line (1)

and the test on line (2) with a true outcome. The proof

of the v.c. consists of proving the validity of each of

the five clauses of the loop assertion1 , following

execution of this code, with the initial assumption

that the input assertion is valid, Each of the five

clauses can be proved in turns

(i) "LIST(sp,next" is valid since it is part of

of the input assertion, and thus by assumption

valid initially; and since the body of code

contains no assignment to sp or to any link

component in the list, so that it could not

become invalidated,

q.n -:I r.n)" remains valid from the input

assertion since no assignment is made to either

sp or to any component in the list.

(iii) Also, "IISTSET(sp,n,next) = (IISTSET(sp0 ,n,next))
0

"

is valid, since it is valid initially (trivially)

and since no assignment is made which could

invalidate it.
1since the program invariant contains two clauses, the

total number in the loop assertion is five,

-92-

(iv) The assignment on line (1) sets p to the

value of sp, so it follows directly that

"sp==9 p" is valid, since "=9 " is reflexive.

And, since "sp~ null" by definition of LIST,

"p~ null" also fallows. Finally, the test

on line (2) confirms that p # !!!:!ll• so that

"sp~ p~null" is validated.

(v) SUBIISTSET(sn,p.next,n,next) = { sp.n} since

sp = p, by Corollary r.13. By the test on

line (2), sp.n # j, so it follows that

"j ¢ SUBIISTSET(sp,p.next,n,next)."

Verification condition (b) conceTns the loop body,

i.e. the assignment on line (3) followed by the test on

line (2) with an outcome of true. Its proof is also in

five parts, corresponding to the five clauses in the

loop assertions

(i) "LIST(sp,next)" and

(ii) "(vq,r)(sp~ q=9+ r~+ null ,:]q.n # r.n)" and

(iii) "I ISTSET(sp ,n ,next) = (I.ISTSET(sp
0

,n ,next)) 0 "

are all valid because they are valid initially,

and since no assignment is made in the body to

sp or to any component in the list which mi~ht

invalidate them.

(iv) let the value of p initial to the v.c. be called

-93-

"pi"• Then the assignment on line (3) updates

the value of p to pi.next. From the initial

validity of the loop assertion, "pi~+ null"

so this selection is well-defined, and further

"p~ null" is valid from the definition of "~ ".

Also from the initial assertion, sp~ pi so

sp~ pi.next= p, Finally, the test on line (2)

confirms that p f null, so this validates the

clause "sp~ p~+ null,"

(v) From the definition of SUBIISTSET, it is clear

that SUBLISTSET(sp,p,next,n,next) =

SUBLISTSET(sp,p,n,next) U fp.nJ • The initial

assertion ensures that j i SUBLISTSET(sp,p,n,next)

and the test on line (2) confirms that

j f p,n, so "j ¢ SUBLISTSET(sp,p.next,n,next)"

is validated,

The body of code for verification condition (c)

contains the assignment on line (3), the test on line (2)

with false outcome, and lines (4) and (5). The false

outcome of the test on line (2) can be for one of two

reasons, depending upon which of the two clauses in

the test is false. The proof of this v,c, is by case

analysis of these two possibilities:

(i) If the test outcome is because of the first

clause, then p = null after execution of

line (3).

where "p " i

-94-

This means that pi.next= null,

is the initial value of p to this

v.c. Then the test on line (4) is true, and

the assignment on line (5) is performed.

"LIST(sp,next)" is finally valid, by Lemma L.22.

By the same lemma, 1 ISTSET(sp, n, next) = l j S U

(r.ISTSET(sp
0

,n ,next))
0

, since the initial validity

of the loop assertion ensures that this value

has not chan~ed. Furthermore, since pi.next=

null, it follows that SUBLISTSET(sp,p1 .next,n,next)

= LISTSET(sp,n,next), so by the initial assertion

again, j ff/.. LISTSET(sp,n,next) 1 , which can be

rephrased, (yq)(spi~ q .::> q.n # ~). This,

together with the fact that the only change to

any "n" component in the list is the addition

of the new record with "n" component equal to

j, means that the initial validity of

" (v q , r) (s p=P q ;> + r~ + ~ :) q • n # r. n) "

is sufficient to verify its final validity.

(ii) If the test outcome is due to the second clause,

then p ~null and p.n = j (the selection is

well-defined since p #null). Then the test

on line (4) 1s false, and the assignment on line

(5) is skipped. Since "LIST(sp,next)" is

valid initially, it must be valid finally, as

-95-

no action is performed which could invalidate

it. Since sp::::;.. pi :::::9 + null, "sp=*" p" follows

in the same way tha.t it did for verification

condition (b), and so by Corollary L.15,

j E LISTSET(sp,n,next} which by the initial

assertion is equal to (LISTSET(sp
0

,n,next))
0

•

Thus, "LISTSET(sp,n,next) = ((LIST!~ET(sp0 ,n,next)) 0
U ~j~"· Finally, since no record comuonents

in the list are cha.nged,

"(Vq,r)(sp==?q~+ r ~+null:> q.n "r.n"

remains valid.

Verification condition (d) is associated with the

special case that no loop iterations are performed, i.e.

that the test on line (2) is false initially. The body

of code thus consists of line (1), the false test on line

(2), and lines (4) and (5). From the action of line (1),

p = sp. The proof is again by case analysis on whether

the false outcome is due to the first or second clause

of the tests

(i) If due to the first clause, then sp
0

= null.

Then (LISTSET(sp0 ,n,next))
0

= ¢. Also, then

the test on line (4) is true, and the assignment

on line (5) is made. This results in sp.n = j

and sp.next = null. "LIST(sp,next)" and

"LISTSET(sp,n,next) = (LISTSET(sp
0

,n,next))
0

U

f j}" then follow directly from the definitions.

-96-

Because there is only the one record in the

list,"(Vq,r)(sp 9q~+ r-;>+ null:Jq.n '1 r.n)"

is true trivially.

(ii) If due to the second clause, then sp.n = j.

Then the test on line (4) is false and the

action on line (5) is not performed. No

change is made to the list, so both clauses

of the invariant remain valid, and

LISTSET(sp,n,next) = (LISTSET(sp0 ,n,next))
0

•

From Corollary L.15, j ~ LISTSET(sp,n,next), so

"LISTSET(sp,n,next) = (LISTSET(sp ,n,next)) U
0 0

[J}" is valid.

The final aspect of the proof involves proof of loop

termination. The loop body consists of the single state-

ment "p 1= p.next" on line (3), and since "LIST(sp,next)"

and "sp ~ p" are invariant within the loop, "LIST(p ,next)"

is always true in the loop, so the conditions for Lemma L.24

are met. By direct application of the lemma then, the

loop is guaranteed to terminate. Thus, the program

terminates.

E. Issues raised by the example proof

While the program is quite simple and the proof

relatively straightforward, there are several instructive

points raised by the proof above. First, despite the

-97-

simplicity of the program, as well as the use of a

number of lemmas and corollaries developed earlier, the

size of the proof is disconcertingly large. Unfortunately,

proofs of programs tend to be quite a bit longer than one

might hope. In fact, the length and complexity of the

proofs, even of the simplest programs, has been the major

obstacle in the way of building automatic program veri­

fication systems, a goal towards which much effort has

been expended with rather disappointing results. In those

systems which have been built, the theorem prover has

turned out to be the weak link (see, for example [Kin69],

~an?l] , etc.).

B~cause of this size problem, it is helpful to the

person proving programs to do everything possible to

shorten and simplify the proofs. In fact, we could have

significantly reduced the size of the above proof by a

very simple technique. Consider Figure 4,4, which contains

a flowchart of the example program. Notice that the

loop assertion has been moved to a different control

point, viz. before the loop termination test on line (2)

rather than after 1t. 1 This change, though small on the

1 This change of location would necessitate two changes
to the loop assertion itself. The clause
" (sp~ p==> + null)" must be changed to
" (sp :;:. p ;>null)", and the last clause must be changed
to "j t: SUBLISTSET(sp,p,n,next)". These two chani:i;es
refl1ect the fact that the test on line (2) can no
longer be assumed to have a true outcome.

-98-

input assertion

p 1= sp;

loop

true

p 1= p.next;

L_ _____ _ L----~

true

p 1= intcell(j,sp);

! output assertion •

Figure 4.4

Flowchart of example program 1

-99-

surface, has rather important repercussions. First,

the number of v.c.'s is diminished from four to three.

The fourth v.c.(d) in the original proof is no longer

needed because the path from the input assertion to the

output assertion now includes the loop assertion; v.c.(d)

degenerates into the composition of v.c.'s (a) and (c).

In addition, v.c.(c) is now simpler because the loop

body is no longer part of its body. The improvement here

is slight because the loop body consists of only one

statement, line (J). However, in the general case, where

the loop body is of substantial size, the change can be

significant.

Why did we not place the loop assertion at this

control point originally? There are two reasons: one

is that the change was not obvious when we were dealing

with the program text. rt took the pictorial represen-

tation of the flowchart to make clear the benefit this

change would bring. The other reason is that it is not

immediately obvious where in the source text this particular

control point represents. If we put the assertion between

lines (1) and (2), it is not apparent that we intend this

point to be part of the loop. 1 For both of these reasons,

programs will henceforth be translated to flowchart form
1The reason for this difficulty, of course, is purely due

to the syntax of the source language. Deutsch[J)eu?jJ
solved this problem by using a loop statement to
mark the beginning of the loop, before the while
statement, in his language.

-100-

before constructing and placing intermediate assertions.

The next important point is that the loop assertion

consists of the minimum information necessary for the

proof, given the input and output assertions. Each

clause of the loop assertion is used in v.c.(c), so that

the validity of the output assertion could not be

verified without all the information the loop assertion

contains. (It might also be necessary, though it is not so

here, for certain information to be included in the 1oop

assertion so as to prove the continuing validity of other

parts of the loop assertion itself, i.e. to prove v.c. (b).)

Because of the lengthiness of the proofs, it is important

that the intermediate assertions of a program contain no

more information than is necessary for the proof. The

introduction of a new clause in an intermediate assertion

increases the size of the proof by adding that clause to

what must be proved in at least two v.c.'s.

Finally, it was necessary in the proof to constantly

use statements like "Since 'LIST(sp,next)' is valid

initially, and nothing in the body of source code changes

either sp or any link in the list, it must still be valid."

The problem with such statements is not any imprecision

about them, but rather their wordiness. It makes more

sense to have an additional lemma which states the same

result, and which can be referred to whenever it is needed.

-101-

That is the reason for the followings

Lemma L.25 (1) If "LIST(p,next)" is valid before

a body of code is executed, and if no assign-

ment is made in that body of code to either p,

or to any expression equivalent1 to q.next,

for some q such that "pnext) q" is also valid

initially, then "LIST(p,next) is true after

execution of the code.

(ii) If "pnext j r" is valid before a

body of code is executed, and if no assignment

is made in that body of code to either p, or

to any expression equivalent to q,next, for

some q such that pnext > qnext + r 1ni t1ally,
next

then "p > r" is true after execution of

the body of code.

(111)
next

If "LIST(p,next)" and "p) r"

are valid before a body of code 1s executed, and

if no assignment is made in that body of code to

either p, or to any expression equivalent to q,sel or
next next q .next, for some q such that p > q) + r

initially, then the values of

SUBLISTSET(p,r,sel,next) and

SUBLISTSEQ(p,r,sel,next) are left unchanged by

the execution of the body of code,
111 Equi valent" here means "equal in L-v:-a_l_u_e_'_' -(-1-.-e-.-a-d_d_r_e_s_s_) __

as opposed to "equal in R-value"-the "=" relation.
That is, the "next" component of some record is updated,

-102-

F. Second example proof~List reversal

The second example is slightly more complicated than

the first, due to a number of factors. For one thing,

the program involves changing link values in the list,

something which the first program did not do, For this

reason, it provides a more stringent test of the formalism.

It also performs a more complicated operation~reversing

a list. This means that the abstraet operation which

the computation corresponds to is one on sequences,

which are more complicated than sets, Finally, it involves

manipulations on two different list structures simulta-

neously in the course of its operation.

Since the program corresponds to the abstract operation

of sequence reversal, a suitable formal definition of

this operation is required. The definition can be

constructed using the primitive operations on sequences~

first, final, last, initial, and concat~as axiomatized

by Hoare [Jloa72~ and repeated in Appendix A1

reverse(s) = if s = [] then []

else concat([last(s)] ,reverse(ini tia.l(s))),

The abstract operation "reverse" can now be used in

assertions and manipulated in accordance with the above

definition, This technique of defining new abstract

operations in terms of the primitives available, and

-103-

then using the new operations to express results of

computational manipulations, is an important and power­

ful technique in our repertoire.

The program appears in Figure 4.5, with its ante­

cedent and consequent stated. The corresponding flowchart,

with the intermediate assertion attached, is in Figure 4.6.

Figure 4.7 illustrates the intermediate state of the

computation at the end of a loop iteration at line (8).

The list of records referenced by lp has been reversed,

while those referenced by mp (and also rp) are unchanged.

A single loop iteration takes one additional record from

the head of the "unchanged" listand places it at the

head of the "reversed" list. The loop terminates when

the unchanged list has been exhausted.

No matter how general the rule, there will always

be exceptions1 having just demonstrated that the number

of verification conditions for a single-loop program can

be reduced from four to three by judicious placement of

the loop assertion, I now locate the loop assertion so

as to require four v.c.'s, Why?

The reason is that the loop assertion itself would

have to be made more complex in order to locate it at

its "optimal" (in terms of number of v.c.'s) location,

just before the loop termination test on line (2).

The difference between the "optimal" and actual placements

-104-

procedure intlist_reverse(p);
comment program invariant is "LIST(p,next)";
record class 1ntcell(n integer; next ref(intcell));
declare p,lp,mp,rp ref(intcell));
begin ~-

comment assert "LIST(p,next)";
(1) mp := p;
(2) until mp= null do
(3) begin
(4) rp 1= mp.next;
(5) mp.next 1= lp;
(6) lp 1= mp;
(7) mp 1= rp;
(8) end;
(9) p 1= lp;

comment assert "LIST(p,next) and
LISTSEQ(p,n,next) = reverse((LISTSEQ(p0 ,n,next))

0
)";

end 1ntl1st_reverse;

Fip;ure 4.5

Example program 2

loop

-10.5-

input assertion

mp := p;

. ----~---·--------- -~·-1

false

~
; := mp, next;

mp.next := lp;
lp := mp;
mp 1= rp;

L----i
loop ass er_t_i_o_n __ _J

p = = lp, I
l output assertion

assertions "LIST(p,next) and IIST(mp,next) and
mp= (lp.next)

0
and ~-

LISTSEQ(mp,n,next) = (IISTSEQ(mp,n,next))
0

and
LISTSEQ(lp,n,next) =

reverse((SUBLISTSEQ(p,lp.next
0

,n,next))
0

)"

Figure 4.6

Flowchart of example program 2

p

n

... •

•m11Juae•• l1et

·~ .
•,.J• ,\

In~...,_ 'fl£ •nl.tJh ,~ 2 .•
(.~1 ·fl ,,. 1• ---..,

-107-

is simply that the loop assertion reflects at least one

execution of the loop body, Otherwise, the two locations

are identical. In order for the loop assertion to fit

the optimal location, it would also have to apply to the

case of no previous iterations; this change would require

a long, two-case expression which would complicate the

proof of the v.c. whose body is one loop iteration. For

this reason, the goal of overall proof simplicity is best

met by the location for the assertion given in the flow­

chart. It should be noted that locating the assertion

at the end of the loop body rather than the beginning

does simplify the v.c. whose path is between the loop

assertion and the output assertion, just as the optimal

location would have done. Also, the additional v.c.

required by this placement is quite simple, since it

covers the trivial case of a zero-element (i.e. null) list,

We must thus prove four verification conditions,

with paths analagous to those for the first example

program.

(a) The first v.c. has the input assertion as its

initial assertion, lines (1) through (7) as its body,

and the loop assertion as its final assertion. The

loop body contains five clauses to be proved:

(i) The effect of the body on variable lp is to

assign to it the value of mp on line (6).

-108-

From line (1), mp is given the value of p,

i.e. a reference to the first record in the list

referenced by p (note "I.IST(p,next)" in the input

assertion, and the false outcome of the test

on line (2) ensures that p ~null), Iine (5)

assigns to mp.next the value of lp, which by

default is null. So after line (7), the first

time through the loop, lp.n = p.n and

lp.next =null. From this,"LIST(lp,next)"

follows directly from its definition,

(ii) Similarly, "IISTSEQ(lp,n,next) =

reverse(SUBLISTSEQ(p,lp,next0 ,n,next) 0)" is

immediately true from the definitions of "reverse"

and SUBIISTSEQ, and the fact that lp = p.

(iii) Line (7) assigns to mp the value of rp,

which by lines (1) and (4) is (p,next) 0 • This

is well-defined, since "LIST(p,next)" is in the

input assertion, and p ~ null by the test on

line (2). Since no action is performed on

any records in the list beyond thefirst one,

Le. by Lemma L,25, "LIST(mp,next)" remains

valid. (It is initially valid, of course,

since "LIST(p,next)" is in the input assertion

and by Corollary L.4.)

(iv) Similarly, "LISTSEQ(mp,n,next) =

-109-

(1ISTSEQ(mp,n,next))
0

" is valid by Lemma I .25.

(v) Since the final value of lp is p0 , as explained

in (i), and that of mp is (p.next) , as exaplained
0

in (iii), "mp= (lp.next)
0

" is valid.

(b) The second v.c. has the loop assertion as both

initial and final assertion, and lines (2) through (7)

as body of code. Again, there are five clauses to prove:

(i) From lines (5) and (6), the value of lp.next

is "lpi"• the value of lp initial to the v.c.

Since "LIST(lp,next)" is valid initially,

"LIST(lp,next)" follows directly from

Definition I.1 and Theorem 1.3.

(ii) By Corollary r .• 17,

lp.n = last((SUBLISTSEQ(p,lp.next 0 ,n,next)) 0).

(Note that from the initial validity of

"LISTSEQ(mp,n,next) = (I.ISTSEQ(mp,n,next))
0
",

this value has not been changed.) By the same

corollary, (SUBLISTSEQ(p,lp,n,next)) =
0

initial((SUBLISTSEQ(p,lp.next 0 ,n,next))
0

).

By Definition L.7, it is clear that

LISTSEQ(lp,n,next) =

concat([lp.n] , LISTSEQ.(lp.next,n,next)).

Since lp.next = lpi, the initial validity of

the loop assertion says that

-110-

LISTSEQ(lp.next,n,next) = LISTSEQ(lp1 ,n,next)

= reverse((SUBLISTSEQ(p,lp
1

.next ,n,next)))
0 0

= reverse((SUBLISTSEQ(p,lp,n,next)) 0).

Thus, the statement above,

"LISTSEQ(lp,n,next) =
conca t ([lp. n] , LISTSEQ (lp. next, n, next)) 11

becomes

"LISTSEQ(lp,n,next) = concat([last(S~,

reverse(init1al(S)))"

where S = (SUBLISTSEQ(p,lp.next 0 ,n,next)) 0 •

But th1s 1s just the definition of "reverse,"

so that "LISTSEQ(lp,n,next) =
reverse((SUBLISTSEQ(p,lp.next

0
,n,next)) 0)"

is verified.

(iii) From lines (4) and (7), the new value of mp

1s mpi.next, where "mpi" is its value initial

to this v.c. S1nce "LIST(mp,next)" is true

initially, 1t must be true finally by

Corollary L.4 and Lemma L.25.

(1v) Also by Lemma 1.25,

''LISTSEQ (mp, n, next) = (LISTSEQ (mp, n, next)) "
0

must remain valid.

(v) By 11ne (6), lp = mp1 and from (111) above,

mp= mpi,next, so that "lp • (mp,next)l" 1s

olearly valid, S1noe "LISTSEQ(mp,n,next) =

-111-

(LISTSEQ(mp,n,next)) " is valid initially,
0

(mp.next)i must equal (mp.next) 0 , so that

"lp = (mp.next)
0

" is verified,

(c) The third v.c. takes the loop assertion as

its initial assertion, the true test on line (2) followed

by line (9) as its body, and the output assertion as its

final assertion, There are two clauses to be proved:

(i) "LIST(p,next)" follows directly from the

assignment "p := lp" on line (9) and the

inclusion of "LIST(lp,next)" in the loop

assertion.

(ii) From the true outcome on line (2), mp = null.

By the loop assertion, this means that

(lp.next)
0

= null, so again by the loop

assertion,

LISTSEQ{lp,n,next) =
reverse((SUBLISTSEQ(p

0
,null,n,next))) =

- 0

reverse((LISTSEQ(p ,n,next)))
0 0

by Corollary L.11. Since p = lp from line (9),

this verifies that "LISTSEQ(p,n,next) =
reverse((LISTSEQ(p ,n,next)))",

0 0

(d) The fourth v,c, concerns the special cae of no

loop iterations. Its initial and final assertions are

t.he program's input and output assertions, respectively,

-112-

and its body of code cons is ts of lines (1) , (2) (with a.

true outcome), and (9). The true outcome means that

mp= null, which from line (1) means that p0 =null.

Then (LISTSEQ(p
0

,n,next))
0

= [] ,the empty sequence,

by definition of IISTSEQ. The assignment on line (9)

assigns to p the value of lp, which is null by default.

So "LIST(p,next)" follows trivially, as does

"LISTSEQ(p,n,next) = reverse((LISTSEQ(p
0

,n,next)))",
0

since [J = reverse ([J) by the definition of "reverse".

By clause (iii} in the proof of v.c.(b), each

iteration of the loop assigns to mp the old value of

mp.next. Since "LIST(mp,next)" is valid throughout

the loop, Lemma I.24 can be used to establish the termi-

nation of the loop, and thus of the program.

Again, notice that the loop assertion is minimal.

Each clause in the assertion is required either for the

proof of the output assertion in v.c.(c), or else for

the proof of the continuing validity of other clauses

in the loop assertion in v.c.(b}.

Before leaving this example, I would like to extend

a word of acknowledgement to Doug Mcilroy. In a talk

he gave at Project MAC on "What Makes Programs Intelligible",

he used this basic program to illustrate the benefit of

allowing parallel assignment in programming langua~es.

After hearing his talk, I decided that this would be an

interesting program to prove.

-113-

G. Third example proof~Insertion sort

Both of the first two example programs had the

standard single-loop control structure. That is, they

were each composed of an initialization section, a main

section which was a loop driven by a variable iterating

over consecutive records in a list, and a final (possibly

empty) "clean-up" section. This is a natural control

structure to employ for many operations on lists, and

in fact is, the one most commonly used for such applications.

Some operations require more complicated control struc­

tures, however, and proofs of programs with these more

complex structures illustrate some ideas which the simpler

flow of control does not bring out. The final example

is chosen with this in mind,

The program is listed in Figure 4.8. Its purpose

is to sort the elements of a list into increasing order

of a particular component. The sorting method used is

an insertion sort. That is, the program handles two lists,

the unsorted input list and the sorted output list. Records

are detached from the input list one by one, and inserted

into the output list in the correct position to maintain

the sorted order. Two loops are required in the program:

the outer loop iterates over the records in the input

list, and the inner loop iterates over the records thus

far in the outnut list until the proper place for the

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12'
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

-114-

procedure intlist_sort(sp);
comment program invariant is "LIST(sp,next)"
record class 1ntcell(n integer; next ref (intcell));
declare sp,p,op,np ref(intcell);
begin ~-

comment assert "LIST(sp,next)";
p 1= sp.next;
sp.next := null;
until p = null do

begin-
op := sp;
if p.n < sp.n

begin
then -

sp 1= p;
p := p.next;
sp.next 1= op;
end;

else 'begin

end;

np 1= sp.next;
until (np = null ~ np.n ~ p.n) do begi_n __

op s= np;
np := np,next;
end;

op.next -;;;-Pl
p 1= p,next;
op.next.next s= np;
end;

comment assert "LIST(sp,next) and
(sp=*q~+ r~+ null :::::> q:IlL. r,n) and
LISTSET(sp,n,nextr-;;-(LISTSETTsp

0
,n,next)) ";

end 1ntlist_sort; 0

Figure 4,8

Example program 3

-115-

input ass.ertion
~P~-,=~s~p~.-n_e_x~

sp,next s= ~~

-------·-----·----- ----- --·--1
outer loop assertion

output assertion

np

inner loop
assertion

np

[

op.nex 1= p; -
p s= p,next;
op, next. next _' =

np;

op 1= np;

1= np,next~ J

false

op 1= sp;

true

sp := p;
p s= p,next;

sp,next 1= op;

I - --c-=-~=- ------ .. -. ------------- -> _J
outer loop assertions "LIST(sp,next) and LIST(p,next) and

(sp~ ~+ r==i;)+ null ::::> q,n < r.n) and
LISTSET(sp,'n,next) U LISTSET(p,n,next) =

(LISTSET(sp
0

,n,next)) 0 ''

inner loop assertions
(p # null)

"(outer loop assertion)
and (sp~ op.-,:. np) and

Figure 4.9

Flowchart of example program 3

and
TP:"" n > op. n) "

-116-

insertion is found, The flowchart in Figure 4.9 illustrates

the control structure of the program, and contains both

of the intermediate assertions required,

Notice that there are two possible paths through

the body of the outer loop, depending upon the outcome

of the test on line (6). With a true outcome, lines (7)

through (11) are executed. If the outcome is fals~, the

alternative action is lines (12) through (22), including

an unspecified number of iterations through the loop of

lines (14) through (18). In the first example program,

there was a conditional statement, but we did not employ

a seuarate verification condition for each outcome due

to its simplicity. Instead, the proof was handled in a

single v.c. which was proved by cases, This situation

is more complex, though, so separate v,c.'s are used,

There are thus six verification conditions, as indicated

the following tables

~ initial assertion bod~ final assertion

(a) input (1)-(2) outer loop

(b) outer loop (3)-(11) outer loop

(c) outer loop (3)-(6), inner loop
(12)-(13)

(d) inner loop (14)-(18) inner loop

(e) inner loop (14) , outer loop
(19)-(22)

(f) outer loop (3) output

by

-117-

This illustrates the tremendous benefit obtainable

by judicious location of intermediate assertions. Place­

ment of both loop assertions after their corresponding

tests, rather than before, would cause an increase in

the number of v.c.'s from six to ten, as well as more

complicated bodies for some v.c.'s, The proof then

involves proving the six v.c.'s1

(a) The body of this v,c, consists simply of the

two statements, lines (1) and (2). From their action,

p = (sp0 .next} 0 and sp.next = null. There are four

clauses in the outer loop assertion:

(i) "LIST(sp,next)" follows directly from the

definition of LIST.

(ii) "LIST(p,next)" follows directly from the fact

that p = (sp
0

.next) 0 and the initial validity

of "LIST(sp,next)" using corollary L.4 and

Lemma L.25.

(iii) "(sp~ q~ + r~+ null :>q.n < r.n)" is

valid trivially. Since sp.next = null,

there exist no q and r which satisfy the

hypothesis of the implication.

(iv) LISTSET(sp,n,next) U LISTSET(p,n,next) =

[sp0 .n} U LISTSET(sp
0

.next0 ,n,next) =
(LISTSET(sp0 ,n,next})

0

directly from the definition of LISTSET.

-118-

(b) This v,c, covers the case that the test on

line (6) has a true outcome, so that lines (7) through

(11) are executed and control loops back to the point

where the outer loop assertion is located, The executed

statements of the body are the test on line (3), the

assignment on line (5), the test on line (6), and the

assignment statements on lines (8), (9), and (10),

There are four clauses in the outer loop assertion to

be proved:

(i) The final value of sp is pi' from line (8),

Line (10) assigns to sp,next the value of op,

which is spi by line (5), Since "LIST(sp,next)"

is valid initially, sp,next references a

list, so by Definition L.1 and Theorem 1.3,

"LIST(sp,next)" is valid finally,

(ii) The sole statement affecting pis line (9),

assigning top the value of pi.next. By the

test on line (J), pi~ null, so the result is

well-defined, and by Corollary L.4,

"LIST(p,next)" ls valid.

(ill) If "sp=? q=====*+ r==9+ null", then one of two

things must be true of the record referenced

by q: either it was in the initial list, or

it was the record added to the list by line (10),

1,e, it was initially referenced by p1 • If

-119-

the former, then for any reference r such that

q==;}+ r, this was also true initially, so that

q.n ~ r.n by the initial validity of this clause.

If the latter, then by the test on line (6),

q.n L spi .n, and by the transitivity of "~",

this means that for any r such that q~+ r,

q.n ~ r.n. In either case, then, the validity

of "(sp~ q~ r:::::::ap+ null J> q.n ~ r.n)" is

maintained.

(iv) Since sp.next = sp1 , it follows from the

definition of LISTSET that the final value of

LISTSET(sp,n,next) is simply its initial value

augmented by the new value of sp.n, which is

pi.n. Since p =pi.next, on the other hand,

the final value of LISTSET(p,n,next) is

simply its initial value with the (possible)

removal of pi.n (the value is not removed if

it is duplicated in the list). In any case,

the value of LISTSET(sp,n,next) U

LISTSET(p,n,next) is unchanged, so

"LISTSET(sp,n,next) U LISTSET(p,n,next) =

(LISTSET(sp
0

,n,next))
0

" remains valid.

(c) The only assignment statements in the body of

this v.c. are those on lines (5) and (13). The first of

-120-

these is sandwiched between two tests with false outcomes,

on lines (3) and (6).

(i) "LIST(sp,next)" and

(ii) "LIST(p,next)" and

(iii) "(sp~ q=*+ r~+ ~:;) q.n < r.n)" and

(iv) "LISTSET(sp,n,next) U LISTSET(p,n,next) =

(LISTSET(sp
0

,n,next))
0

"

are all valid finally because they are valid

initially, and neither assignment in the body

affects either list, so by Lemma L.25.

(v) "p i null" is valid by the test on line (J).

(vi) From line (5), op= sp and from line (13),

np = sp.next, so "sp==:> op~ np" follows directly

from the definitions.

(vii) Since op = sp, the test on line (6) ensures

the validity of "p.n > op.n".

(d) The body of this v.c. is simply the test on

line (14) and the two assignment statements on lines (16)

and (17).

(1) "LIST(sp,next)" and

(1i) "LIST(p,next)" and

(111) "(sp~ q~+ r==;>+ null~ q.n.£ r.n)" and

(iv) "LISTSET(sp,n,next) U LISTSET(p,n,next) =
and

-121-

(v) "p i null"

are again all valid because of their initial

validity, and by Lemma 1.25,

(vi) From line (16), op= npi, while from line (17),

np = npi.next. (By the test on line (14),

npi i null, so this is well-defined.) So

op-+ np, and since sp~npi from the initial

validity of this clause, the final validity of

"sp=;) op4 np" is verified.

(vii) Since op= npi' the test on line (14)

ensures the validity of "p.n :> op.n".

(e) The body of this v.c. consists of a true

outcome on line (14), and the assignments on lines (19),

(20), and (21), There are four clauses to be proved,

(i) Since "LIST(sp,next)" and "sp~ op.-+- np" are

valid initially, np references a list, by

Corollary L.4. Since by line (21),

op.next.next = np, this means that op.next.next

references a list, so op.next references a list,

and so op references a list (all by Definition

L.1). Finally, since sp~ op, this means

that sp references a list, so "LIST(sp,next)"

is valid.

-122-

(ii) Since "LIST(p,next)" and "p :f. null" are valid

initially, the effect of line (20) leaves

"LIST(p,next)" valid,

(iii) Initially, op.next = np, so since sp=;> op,

initially LISTSET(sp,n,next) =
SUBLISTSET(sp,np,n,next) U LISTSET(np,n,next)

by Corollaries L,12 and L.10. The effect

of line (19) is to assign to op.next the value

of pi' but line (21) assigns to pi.next the

value of np, so

SUBLISTSET(sp,np,n,next) = {pi,nJ U

(SUBLISTSET(sp,np,n,next))i,

i,e, its initial value augmented by the new

element pi,n' The value of LISTSET(np,n,next}

is unchanged, by Lemma L,25, So, the value

of LIS'rSET(sp,n,next), which is the union of

these two, is its old value augmented by the

new element p1 .n. On the other hand, pis

assigned the value of pi.next by line (20),

so the value of LISTSET(p,n,next) is its initial

value, with the (possible) removal of pi.n'

(As in v.c.(b), the value is not removed if

it is duplicated in the list.) The value of

LISTSET(sp,n,next) U LISTSET(p,n,next) is

thus unchanged, and so the validity of

-123-

"LISTSET(sp,n,next) U LISTSET(p,n,next) =
(LISTSET(sp

0
,n,next))

0
"

is preserved.

(iv) If 11
(sp==.> q~+ r=?>+ null)" is true, then

either one of q and r is equal to pi, or neither

is, If neither, then q.n ~ r.n by the initial

validity of the inner loop assertion. If q

is equal to pi' then q.n ~ np.n by the test on

line (14) (note that np ~null if such an r

exists), so since q~ np (see (iii) above),

np~r. By the initial assertion, np.n-=_ r.n,

so by transitivity, q.n-::: r.n. If it is r

that equals pi, then by completely analagous

reasoning (using the initial validity of

"p,n > op,n" instead of the test on line (14)),

q.n ~ r.n can be proved, Thus,

"(sp~ q~+ r=9+ null .J q.n ~ r.n)" ls

verified.

(f) The "body" of this v, c. is simply the true

outcome of the test on line (3). There are three clauses

in the output assertion to prove:

(1) "LIST(sp,next)" and

(ii) "(sp=9 q===;.+ r=;>+ null .-:::> q.n ~ r.n)"

are valid because they are in the initial

assertion of the v.c,

-124-

(iii) Since p =null by the test on line (3),

LISTSET(p,n,next) = ¢, by the definition of

LISTSET. Thus, the initial validity of

"LISTSET(sp,n,next) U LISTSET(p,n,next) =
(LISTSET(sp

0
,n,next))

0
"

directly implies the final validity of

"LISTSET(sp,n,next) = (LISTSET(sp
0

,n,next))
0
".

Two loops must be tested for termination. The inner

loop terminates because line (17) assigns to np the old

value of np.next, and "LIST(sp,next)" and "sp~np"

are invariant within the loop, so "LIST(np,next)" is

true within the loop, and the conditions for Lemma L.24

are met. For the outer loop, each iteration assigns to

p the old value of p.next, either on line (9) or line (20),

and again "LIST(p,next)" is true throughout. Thus,

Iemma L.24 can again be used to prove its termination.

Since both loops terminate, the program is guaranteed

to terminate.

A. Summary

-125-

Chapter 5

CONCLUSIONS

The process we went through in Chapter 4 is a good

example application of the approach described in Chapter J.

The first step was to isolate a specific class of data

structures~in this case, singly-linked lists~and to

define the class precisely in an invariant. From the

definition, we were able to immediately deduce some

useful corollaries. We then defined some representation

functions, mapping elements of the structural class to

sets and sequences in a fairly obvious way. The function

definitions led to several more potentially useful

corollary results. We had now arrived at a point where

we could analyze how various types of source-language

statements might affect the validity of the class invariant

and the values of the representation functions. These

results were embodied in a series of lemmas, along with

an important result concerning loop termination. With

this logical foundation, we were then able to prove the

correctness of three programs which operate on structures

from the class. In doing so, we realized the need for

one more type of lemma~one which covers all those cases

which have no effect at all on the invariant and represen-

-126-

tation functions.

The two people whose work has most influenced my

approach are Hoare and Burstall. Hoare has done so much

in the area of verification that it is doubtful whether

a work such as mine could exist at all without him.

He was the first to systematically analyze the semantics

of source languages with relation to verification[Hoa69].

His axioms are both the historical predecessors of my

verification lemmas and the logical foundation upon which

the lemmas rest (and by which they can be proved, as in

Appendix B). The concepts of the "invariant" and the

"representation function" both originated with him ([Fol 71]

and (Hoa72~ respectively). His axiomatizations of

abstract data classes lHoa728.] are an important basis

for the use of representation functions.

Burs tall' s work on LISP-type lists fBur?2a] is the

single closest approach to mine. Working with a specific

subclass of Lists, Burstall introduced a notation for

"connection" somewhat similar to what I use, and stated

a series of axioms analagous to my "verification lemmas".

His concepts were narrower in scope than mine, since his

domain of interest was more restricted, but it is not

hard to see how they could be generalized to anply to

larger classes of structures.

-127-

Having acknowledged these debts, I still feel that

the approach presented in this thesis represents a new

and valuable method for handling data structures in

proving the correctness of programs. The major benefit

of the work is in the area of data characterization

rather than proof technique itself. That is, while the

verification lemmas help ease the task of actually proving

the verification conditions, they are not essential. The

same programs could be proved correct without them,

using basic axioms like those of Hoare and by resorting

directly to the definitions of the invariant and the

representation functions. While the proofs would be

considerably more difficult and detailed, they would still

be manageable.

Without the descriptive mechanisms I have introduced,

however, it is difficult to see how the assertions for

these programs could be expressed. Consider, for instance,

the third example program of Chapter 4, which performs

an insertion sort on a list. I know of no suitably

formal method for stating the output condition of this

program~that the output list is a sorted version of the

input list~without using notation such as mine. The

intermediate assertions would be even more difficult to

express.

-128-

What has held back work on verifying programs which

operate on data structures up to now has been a lack of

tools for describing structures. Because a structure

is so much bigger and more complex than a single variable,

and because its exact size and form may not be precisely

known to a program which operates on it, new problems

arise in terms of characterizing it. In particular,

characterizing structures requires two capabilities

additional to those used for elementary data. Unlike

the simple variable, which is regarded as unitary and

undecomposable, the data structure must in part be viewed

in terms of its internal structure. On the other hand,

a structure must sometimes be considered not only as a

single object, but as merely the concrete embodiment of

a data abstraction. By recognizing these two almost

opposite needs, and combining them together with the

practical requirements of correctness proofs, my approach

represents an important step toward a total system for

handling data structures in proofs of correctness.

B. Relation to structured programming

Dijkstra [Di j72] and Hoare [Hoa72a] have been amonp;

the leading proponents of "structured programming" as

a design tool for writing programs. Under the regimen

of structured programming, the programmer first constructs

-129-

his program at a very high level of abstraction; i,e,,

operations and data are expressed only as abstract concents,

The program is then refined by successively specifying

these concepts in terms of lower-level constructs, some

of which may themselves be abstractions which must subse­

quently be specified, The process ends when all constructs

in the program are expressed in terms of features in the

source language,

Both Dijkstra and Hoare advocate the practice of

creating a program and its proof simultaneously, arguing

that each task is made easier by performing it along with

the other, My approach to proving correctness is

particularly well-suited to use in conjunction with

structured programming. My two major concepts of

"invariants" and "representation functions" both corre­

spond to important ideas in structured programming.

The invariant of a structure is the lower-level speci­

fication of a complex abstract data object, The

representation function is the mapping from the object

at a lower level of abstraction to the abstract object

at a higher level which it represents.

Thus, for instance, the assertions of a program

can be constructed at a point where the program's data

and the basic operations on that data are specified as

-130-

abstractions. The actual abstraction can then be formed

by substituting for each abstract data object the repre­

sentation function mapping the data structure in the

source-language program into that abstraction; the

specification of each structure at the lower level 1s

then added as its invariant to complete the assertion.

This simplifies the task of constructing assertions,

since at the higher level of abstraction the operation

of the pro~ram is clearer, and thus the assertions are

easier to create.

c. Further research

The approach toward handling data structures which

this thesis describes and illustrates is intended to be

of general applicability. Its use should not be limited

to data structures similar to lists, nor to source languages

resembling the one used here. Yet much of this is pure

speculation, as I have had a chance to try out the

approach on a few classes of structures only.

A more complex class of structures than lists will

require greater complexity in the class invariant and

the representation functions, and consequently a larger

number of corollaries and lemmas to create a really

effective formalism. In particular, the greater the

number of reference components per record, and the more

-131-

invariant relations between these components, the

greater will be the complexity required. (In fact,

these two factors could serve as reliable metrics for

the complexity of a structural class.) The class of

"family trees" introduced in Chapter 2 and defined

(in an invariant) in Chapter J, for instance, requires

a quite extensive treatment. Whether the concepts I

introduce here are adequate for even more complex

structural classes is an issue to be examined.

The situation is similar with respect to other

source languages. As noted in Chapter 2, the language

used here was designed to incorporate a good deal of

static type- and component-checking. Use of a language

like PL/I, in which such checking is considerably

weaker, would create a greater burden on the assertions

and on the proofs. Whether an approach such as mine is

adequate for such a language remains to be seen. It

seems that several new primitives would be required at

least, to characterize such properties as "component­

existence." A language like LISP has its own special

aspects, of course, which would have to be handled

specially.

As this discussion indicates, the example of Chapter 4

represents something like the minimum in inherent

complexity for an application of my approach. Use of

-132-

other source languages and less simple structural classes

requires that much more detail. This complexity can

be limited, however.

A variation which I feel has strong possibilities

is to generalize one full level. Instead of proving

lemmas about a single inva.riant, it should be possible

to prove "meta-lemmas" which are valid for any invariant

in a broad class. That is, the validity of a certain

kind of lemma may hinge on one or two particular pro­

perties of the class invariant; any invariant for which

those properties hold will admit such a lemma.

The lemmas in Chapter 4 for lists, for example, could

easily be generalized to cover any structural class

(such as binary trees) which is recursively defined and

which prohibits shared substructures. Embodying such

results in meta-lemmas would make them available for

any structural class so defined.

Ideas such as this can carry the approach of this

thesis forward to the point where any program can be

quickly and precisely verified. Perhaps then, verifi­

cation will become a routine part of program construction;

error-free programs will finally then become the norm.

[Ash?~

[Bur69]

[Bur72~

[Bur?2i?]

{cli 72]

[Deu73]

[Dij68]

[Di j72]

-133-

BIBIIOGRAPHY

Ashcroft, R. and z. Manna, "The translation of
'goto' programs to 'while' programs,"
Information Processing 11• Vol, I,
c. V. Freiman (ed,), North-Holland Publishing
Co., Amsterdam, 1972,

Burstall, R. M,, "Proving properties of programs
by structural induction," Computer Journal,
12,1,41-68 (February 1969),

Burstall, R. M., "Some Techniques for Proving
Correctness of Programs which Alter Data
Structures," Machine Intelligence z,
D. Michie (ed,), American Elsevier, New
York, 1972,

Burstall, R. M, and R. Topor, Mechanizing
Program Correctness Ex Symbolic Interpretation,
(work in progress), Department of MRchine
Intelligence and Perception, University of
Edinburgh, November 1972,

Clint, M, and c. A. R. Hoare, "Program Proving:
Jumps and Functions," Acta Informatica,
1, 214-224 (1972). --

Deutsch, L. P., An Interactive Program Verifier,
Report No, CSL-73-1, Xerox Corp., Palo Alto,
May 1973,

Dijkstra, E. w., "Goto statements considered
harnful," Communications ACM, 11, 3, 147-8
(March 1968).

Dijkstra, E. w., "Notes on structured Programming,"
Structured Programming, Academic Press,
New York, 1972,

[Els72] Elspas, B., K. M. Levitt, R. J. Waldinger, and
A. Waksman, "An Assessment of Techniques for
Proving Program Correctness," Computing
Surveys, 4, 2, 97-147 (June 1972),

[Flo6ij Floyd, R. W,, "Assigning meanings to programs,"
Proceedings of ~ Symposium in Applied
Mathematics, American Mathematical Society,
J. T. Schwartz (ed.), Providence, 1967,

1!017ij

[Goo70J

[Gre72]

[Hoa68]

[Hoa69J

[Hoa71]

{!:Ioa72a]

[Hoa72b]

(Kin69]

[Kin71]

-134-

Foley, M. and C. A. R. Hoare, "Proof of a
recursive programs Quicksort," Computer
Journal, 14, 4, 391-5 (November 1971).

Goldstine, H. R. and J. von Neumann, "Planning
and coding problems for an electronic computer
instrument, part 2, vol. 1-3," John von
Neumann collected works, Vol. 5---;-p;:: ~Traub
(ed,), Pergamon Press, New York, 1963.

Good, D. I., Toward ~~-Machine System for
Proving Program Correctness, University of
Texas, TSN-11, Austin, June 1970,

Greif, I. G., Induction in Proofs About Programs,
Project MAC, M.I.T., MAC-TR-93, Cambridge,
February 1972.

Hoare, C. A. R. , "Record Handling," Programming
Languages, F. Genuys (ed,), Academic Press,
New York, 1968,

Hoare, C. A. R., "An Axiomatic Basis for Computer
Programming," Communications ACM, 12, 10,
576-583 (October 1969).

Hoare, C. A. R., "Procedures and Parameters:
An Axiomatic Approach," Symposium on Semantics
of Algorithmic Languages, E. Engeler (ed.),
Springer Verlag, New York, 1971.

Hoare, c. A. R,, "Notes on Data Structuring,"
Structured Programming, Academic Press,
New York, 1972,

Hoare, C. A. R., "Proof of Correctness of Data
Representations," Acta Informatica, 1, 271-
281 (1972) I -

King, J. c., 6 Program Verifier, Computer
Science Department, Carnegie-Mellon University,
Pittsburgh, September 1969,

King, J. C. , "A program verifier," Information
Processing 71• Vol. I, C, V. Freiman (ed.),
North-Holland Publishing co,, Amsterdam, 1972.

Knuth, D. E., The Art of Computer Programming,
Vol, I, Addison-Wesley, Reading, 19 8,

[Man69J

[Man711

[Mcc63]

[Mor72J

[Nau66]

[Pou72]

[Sta67]

[Wir66]

[Woz71J

-135-

Manna, z. , "The Correctness of Programs,"
Journal of 9omluter and System Sciences,
3, 2, 119-127 May 1969).

Manna, z. and R. J. waldinger, "Toward Automatic
Program Synthesis," Communications ACf'i,
14, 3, 151-165 (March 1971). -

McCarthy, J., "A Basis for a 1'lathematical Theory
of Computation," Computer Programming and
Formal Systems, North-Holland Publishing Co.,
Amsterdam, 1963.

Morris, J. H., Verification-oriented La~uage
Design, University of California-Berke ey
Computer Science Technical Report No. ?,
Berkeley, December 1972.

Naur, P. , "Jroof s of algorithms by general
snapshots," BIT, 6, 4, 310-316 (1966).

Poupon, J. and B. Wegbreit, Covering Functions,
Center for Research 1n computing Technology,
Harvard University, Cambridge, September 1972.

Standish, T. A., A Data Definition Facility
for Programmin5 Languages, Carnegie-Mellon
University, Pittsburgh, May 1967.

Wirth, N. and c. A. R. Hoare, "A Contribution
to the Development of ALGOL," Communications
ACM, 9, 6, 413-429 (June 1966).

Wozencraft, J. M. and A. Evans, Notes on
Programming Linguistics, Department or-­
Electrical Engineering, M. I. T., 1971.

-136-

APPENDIX A

AXIO!ViA'I'IZATION OF SEQUENCE OPERATIONS

Hoare' s paper "Notes on Data Structuring" [Hoa?2a]

describes and axiomatizes several abstract data classes.

Since representRtion functions have been defined in the

thesis to yield only sets and sequences, we need axiomatize

only these two classes, Set theory is well enough

established that its results need not be explicitly

stated but instead can simply be referred to as needed.

Since this is not the case for sequences, however, this

axiomatization is needed,

The basic operation on sequences is concatenation,

which is performed by the binary prefix operator "concat",

It is taken as basic, and is not axiomatized beyond the

fact that it is associative. The basic operators for

breaking down a sequence into its component parts are

the unary prefix operators "first" and "last", which

yield the first and last items of a non-empty sequence,

respectively, and "initial" and "final", which remove

the last or first item of a non-empty sequence, respec­

tively. The domain of sequences is defined in terms of

an element domain D, with representative member d, As

noted previously, " [] " signifies the empty sequence, and

"[d] " signifies the sequence with single element d.

-137-

The class of sequences S with elements from domain D

is defined:

(1) [J is an element of s.

(2) If s is an element of Sand d is an element

of D, then concat(s, [d]) is an element

of s.

(3) The only elements of Sare as specified

in (1) and (2) above.

The operations on sequences can then be axiomatizeds

(4) concat(x,concat(y,z)) = concat(concat(x,y),z)).

(5) last(concat(s, [d])) = d.

(6) initial(concat(s, [d])) = s.

(7) first([d]) = d.

(8) s :I [] :::> first(concat(s, Ld])) =
first(s).

(9) final ([d J) = [].

(10) s :I [J :J final(concat(s, [d])) =

concat(final(s), [d])) •

(11) last, initial, first, and final are not

defined for [J.

-138-

APPENDIX B

PROOF OF LF.MJYLA L, 19

Lemma L.19 in Chapter 4 expresses the result of a

statement in the source language which updates the value

of a link component in a record which is part of a list,

That is, it states the result of the statement

"q,next := expr", where "expr" is any expression other

than a record-creation expression, given the precondition
next next

that "LIST(p,next) and (p q) + null)" is true,

Th lt i d is that "pnext " i till t e resu , n wor s, ==~ q s s rue;

th t f next if d 1 if next~ a or any r, q + r an on y expr ,, r;

that p still references a list if and only if expr

references a list not containing q; and that if p still

references a list, it is the adjoinin~ of the original

sublist from p to q inclusive, with the list referenced

by expr, so that the values of the representation

functions are the union and concatenation, respectively,

of the functions for these two sublists,

This result can be proved formally using the axioms

and rules of inference of Hoare [Hoa69J, What will be

proved here is actually just a part of the lemma; the

conditions under which "LIST(p,next)" is claimed to

be preserved will be assumed true, and the result will

then be proved for that case, To complete the proof of

-139-

the lemma, it would be necessary to show that if either

"IIST(expr,next)" were false or "exprnext, q" were true,

then "LIST(p,next)" is not preserved. (It would also

be necessary to show that the other clauses in the

postcondition still followed, but these are all either

totally independent of the "LIST(p,next)" result, such
next

as that "p } q" is preserved; or else trivial without

the truth of "LIST(p,next)"-the clause for the values

of the representation functions is true if "LIST(p,next)"

is false because the left-hand-side of the implication

then becomes false,making the implication true.)

Proving that "LIST(p,next)" is not preserved under either

of these conditions is quite uninteresting and totally

obvious. Proving the case for which "LIST(p,next)" is

preserved, however, is interesting, since it shows how

general axioms like those of Hoare can be used to prove

the more specific and more immediately useful result

embodied in a verification lemma.

The result to be proved, then, is '' P f Q J R"

where the precondition

[LIST(p,next) and

LIST(expr,next)

P is the followings
next next

(p=) q)+null) and

next] and not(expr > q)

the code Q is the statement "q.next 1= expr",

and the postcondition R is the followings

-140-

r, (t) d (Pnext" q) and l_J,I ST p, nex an ;:o-

(
next

q + r iff exprnext> r) and

(
next .

q + r ::J

SUBLISTSET(p,r,sel,next) =
(SUBLISTSET(p,q.next,sel,next))i U

(SUBLISTSET(expr,r,sel,next)) 1 and

SUBLISTSEQ(p,r,sel,next) =
concat((SUBLISTSEQ(p,q.next,sel,next))i'

(SUBLISTSEQ(expr,r,sel,next))i))]

By Hoare' s Rules of Consequence, '' P [Q S R" can be

,, S 5Q1,. T " proved by proving some l) such that p :> s and

T ":JR. Furthermore, Hoare' s Axiom of Assignment guarantees

l't q. next 5 Q <. A " the validity of Aexpr L) for any assertion A,
x

where Ae represents the result of substituting e for all

free occurrences of x in A. (Intuitively, what this

axiom says is that any assertion which can be made about

11 expr" before the assignment can be made about "q.next"

after the assignment.)

So, the proof can be accomplished by finding a T

h that T d q.next Tq.next sue ~ R an P.:J Texpr , since expr will serve

as an acceptable S for use with the Rules of Consequence.

Let T be the followings

next
(q.next ; r

LIST(q.next,next)

(q nex) + r :J

-141-

iff
next expr) r) and

and
next _

not (q. next ~ q)

SUBLISTSET(p,q.next ,sel,next) =

and

(SUBLISTSET(p,q.next,sel,next))i

and SUBLISTSET(q.next,r,sel,next) =
(SUBIISTSET(expr,r,sel,next))i

and SUBLISTSEQ(p,q.next,sel,next) =

(SUBLISTSEQ(p,q.next,sel,next))i

and SUBLISTSEQ(q.next,r,sel,next) =

(SUBLISTSEQ (expr ,r, sel, next)) i) J .

There are now two things to be shown. First, that

T ::> R. And second, that p ::> Tq. next • ex pr

To show that T..JlRc R consists of four clauses, so

we must show that each of these clauses follows from T.
next "LIST(p,next)" and "(p) q)" both follow directly

from the fact that each is included within T.

"(qnext:>+ r iff

next
clause "(q.next) r

next expr > r)" follows from the
next

iff expr)r)" in T. In

fact, these two clauses are equivalent, a fact which

follows directly from the definitions of "~ " and "9 +".

The final clause in R is the implication dealing

with the representation functions, beginning

-142-

next
"q ') + r '3 II

next
Since "(p ~>q)" is in both Rand T, • • •

Corollary L.12 can be used to show that

(*) SUBLISTSET(p,r,sel,next) =
SUBLISTSET(p,q.next,sel,next) U

SUBLISTSET(q.next,r,sel,next) a.nd

SUBLISTSEQ(p,r,sel,next) =
concat(SUBLISTSEQ(p,q.next,sel,next),

SUBLISTSEQ(q.next,r,sel,next)),

given the assumption that qnext•+ r. Then the presence

of the two clauses

"SUBLISTSET(p,q.next,sel,next) = (SUBLISTSET(p,q.next1 ,

sel,next))i"

and "SUBLISTSET(q.next,r,sel,next) =

(SUBLISTSET(expr,r,sel,next))i"

on the right-hand-side of the implication in T justifies

their substitution(on the right-hand-side of the

implication in ~into statement (*) above to yield

"SUBLISTSET(p,r,sel,next) =
(SUBLISTSET(p,q.next,sel,next))i U

(SUBLISTSET(expr,r,sel,next))i"

on the right-hand-side of the implication. A similar

argument can be made for the part of the clause concerning

SUBLISTSEQ.

Thus, T.:) R is established.

-143-

Now consider Tq.next Making the substitution, ex pr •

we gets

[LIST(p,next)
next (expr) r

and (p
next)" next
==~::>' q > + null) and

next
expr) r) and

LIST(expr,next)

(qnext)+ r ~

and next .!'.!9! (expr) q) and

SUBLISTSET(p,expr,sel,next) =
(SUBLISTSET(p,expr,sel,next))i and

SUBLISTSET(expr,r,sel,next) =
(SUBLISTSET(expr,r,sel,next))i and

SUBLISTSEQ(p,expr,sel,next) =
(SUBLISTSEQ(p,expr,sel,next))i and

SUBLISTSEQ(expr,r,sel,next) =
(SUBLISTSEQ(expr,r,sel,next))i)}

Each of the four equalities on the right-hand-side of

the implication is true trivially, since in the

precondition, all values are by definition the initial

values, so the whole implication is trivially true.
next next

Similarly, the clause "(expr r iff expr ~ r)"

is trivially true. The other four clauses are in fact

the four clauses of P, so this establishes the fact that

P :> Tq .next
expr • By the reasoning given previously, this

completes the proof.

CS-TR Scanning Project
Document Control Form

Report # Le. 5-if-. - I dJi,

Date : ~ I J... ~ I ~ £

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al) X Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other:
----------~

Document Information Number of pages: I i4 (14q- llY)f\()-1:-S)
- Not to include DOD fonns, printer intstructions, etc ... original pages only.

Originals are:

D Single-sided or

'%.Double-sided

Print type:
D Typewriter D Offset Press D Laser Print

Intended to be printed as :

D Single-sided or

)8r. Double-sided

0 Ink.Jet Printer "')&(_ Unknown D Other: ______ _

Check each if included with document:

0 DOD Fonn D Funding Agent Fann D Cover Page

D Spine D Printers Notes D Photo negatives

_)S" Other: fl1'f?L; oGR.td'J.I ,·~ DATA :'>fiCfT

Page Data:

Blank Pages(bypagenumber): f(;l.Low3 LA?J: fAr;:(' f 4))

PhotographsfT onal Material (by page number): ________ _

Other (nm. description/page number):

Description : Page Number:

~mAG'f" /YlAO' ~ (t .. 19<;) 4/Vif)&D i[fL~ fAGE" [)__ - JY}J
))

l.vvlt KD OL/<ltvk

Scanning Agent Signoff:

Date Received: ~ 1J..'i /qi, Date Scanned: .2_1_!_!.1 ~ { Date Returned: _l_l JJI! 1 (

Scanning Agent Signature: 1J.ru f 4v • C~
Rev 11194 DSIL.CS Oocument Conlrol Form cslrlorm.vsd

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

