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ABSTRACT 

The major method for verifying the correctness of 
computer programs is the inductive assertion approach. 
This approach has been limited in the past by the lack 
of techniques for handling data structures. In parti­
cular, there has been a need for concepts with which to 
describe structured data during intermediate and final 
stages of a computation. This thesis describes an 
approach by which this problem can be handled, and 
demonstrates its use in proving several programs correct, 

The key to the approach is the restriction of a 
data structure to a particular structural class. 
Primitive concepts are introduced which allow such a 
class to be concisely defined, Other concepts relate 
structures from a given class to data abstractions 
which the structures can be thought to represent. It 
is shown how to integrate the structural descriptions 
wlth the actual proofs of correctness by incorpora­
ting results of general applicability lnto a logical 
formalism for a given structural class. 
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Chapter 1 

INTRODUCTION TO PROGRAM VERIFICATION 

One of the first and saddest f.acts which a beginning 

computer programmer learns is that programs do not always 

do what they are supposed to. By this, I do not refer to 

the fact that a misplaced semicolon can mean the differ­

ence between a perfectly operating program and one which 

does not make it past the parsing stage of a compiler. 

What I mean is that a syntactically correct, fully 

compiled program will be fed some input data, run to 

completion, and produce a result different from the 

one the programmer desired. 

The first reaction of the novice programmer to 

this situation may well be to question the reliability 

of the computer upon which his program is being run. 

If wiser and more experienced heads are around, however, 

they will persuade the beginner to "hand-simulate" his 

program on the given input data to determine the nature 

of the error. In doing so, he will laboriously repeat 

the computation performed by the computer, presumably 

arriving at the same answer which it provided. While 

he will _now s~e that the computer is correct, he may not 

yet see what in the program is wrong. He may then be 

counselled to go back and hand-simulate the program again, 

this time on general input data, however, keeping all 
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computations in symbolic form. In doing so, he may dis­

cover that his DO-loop is always executed once more than 

he wants. Upon making the appropriate change, he is able 

to arrive at his first correctly-functioning computer 

program. 

What knowledge has the programmer gained from this 

episode? One hopes it is more than just to be careful 

about the range of a DO-loop. What he should learn from 

this experience is that hand-simulation of a program on 

symbolic data is one way to debug, and conversely to 

verify the correctness of, a program. Perhaps the next 

time he writes a program, before submitting it for a test 

run he will not only check it over for syntax errors, but 

also attempt to verify its correctness using this technique. 

A. Inductive assertions 

The desirability of proving a program correct was 

recognized soon after the concepts of the stored-program 

computer and programming itself were conceived. Goldstine 

and von Neumann[Gol6J] proposed a method of verifying 

correctness not very different from the informal notion 

of hand-simulation featured in the opening vignette. 

Their method used the concept of a state vector, a list 

of program variables with their corresponding values (in 

symbolic form) at a given control point in the program. 

Their idea was that the programmer could provide a 

symbolic state vector presumed to correspond to the control 
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point following each statement in his program. The 

verification procedure would then consist of confirming 

for each statement numbered i in the programs that the 

validity of the state vector following statement (i - 1) 

prior to the execution of statement i ensures the validity 

of the state vector following statement i after its 

execution. Proving this for each statement in the program 

would result in a proof that the computation of the program 

as a whole corresponds to the state vector following the 

last program statement. 

This procedure, while not terribly profound, is 

only a less sophisticated version of the best approach 

at present for proving a program's correctness. The one 

technique with widespread use, and applicable to programs 

with both applicative and imperative linguistic features, 

is the inductive assertion approach, first proposed by 

Floyd[Flo67Jand Naur[Nau66J • Other techniques, such as 

recursion induction[McC63J and structural induction[Bur691, 

are limited to programs written in a purely applicative 

language like pure LISP or R-PAL[Woz711 •1 

At the heart of the assertion approach are the asser-

t1ons themselves. These are Boolean expressions which 

characterize some or all of the data on which the program 

operates. An assertion is attached to a control point in 
1For a discussion of several of these other techniques, 

see Grett(Gre721. 
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the program, either a line of source code or an edge of 

a flowcharts in either case, the assertion is alleged to 

be true each time control reaches that point during the 

execution of the program. Assertions are thus the natural 

generalization of state vectors. Instead of specifying 

a vector of values, an assertion allows a virtually free­

form description of the data in the program. The one 

constraint is that the assertion as a whole be a Boolean 

expression. This is one important advantage of using 

assertions rather than state vectors. 

The other major improvement of the assertion approach 

over the idea of Goldstine and von Neumann is that asser­

tions need not be attached to every program statement. 

In fact, an inductive assertion proof requires only an 

input assertion, an output assertion, and one assertion 

for each loop in the program. To simplify a given proof, 

of course, additional intermediate assertions may be 

helpful and thus included, but one need provide no more 

than this minimum. Since the actual construction of the 

assertions is the most difficult aspect of the method 

(as noted by Good[Goo701 and Deutsch[Deu731, among others), 

this savings is extremely significant. In addition, the 

inductive character of the proof technique (see below) 

allows more complicated iterative control structures to 

be handled. 
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The input assertion of a program, also called the 

antecedent or precondition, usually specifies the domains 

of, and any joint constraints among, the input variables. 

The output assertion, also called the consequent or post­

condition, generally expresses the desired result of the 

program. The "proof of correctness" or "verification" 

is actually a proof that if the input assertion is true 

upon entry to the program, then the program will exit 

with its output assertion true. The loop assertions are 

required to construct the proof, as explained below. It 

is thus important that all assertions, particularly the 

antecedent and consequent, be stated correctly. An 

erroneous assertion can cause the proof of a correct pro­

gram to fail, or that of an incorrect one to succeed. 1 

The assertions are sometimes called "1nduct1ve" 

assertions because the proof of the program's correctness 

1s by induction on the number of iterations through its 

loops. For example, consider a program with the general 

control structure given by the macro-flowchart in 

Figure 1.1. INITIALIZATION, LOOP-BODY and FINALIZATION 

are intended to be loop-free program fragments, and 

LOOP-TEST is a simple predicate whose truth denotes the 

condition for loop termination. P, Q and B are assertions 
1As long as the antecedent and consequent are correct, 

however, an improper intermediate assertion can never 
allow an incorrect program to be "verified." 
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attached to the edges as showna P is the input assertion, 

Q the loop assertion, and R the output assertion. To 

prove the correctness of the program, it is sufficient to 

prove the follow1nga 

(1) Assuming assertion P is true before the execution 

of INITIALIZATION, assertion Q will be true 

after its execution. 

(2) Assuming Q is true and LOOP-TEST is false before 

execution of LOOP-BODY, Q will again be true 

after its execution. 

(J) Assuming Q 1s true and LOOP-TEST 1s true before 

execution of FINALIZATION, assertion R will be 

true after its execution. 

The above illustrates the general technique for asser~ 

tion proofs. For each possible path between two (not 

necessarily distinct) control points tagged by assertions, 

say Pl and P2, (with no intermediate point in the path 

also tagged by an assertion) a lemma is proved that if 

the path is taken with assertion Pl true at the first 

control point, then assertion P2 will be true when the 

second control point is reached. If each such lemma can 

be proved, then the proof of the theorem that the entire 

program is correct is a simple induction argument. 

There is one flaw in the above argumenta it impli­

citly assumes that each loop will eventually terminate. 
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However, there is no assurance that in the example above, 

say, LOOP-TEST will not always evaluate to false, resul­

ting in an infinite loop and a non-terminating program. 

The above type of proof, then, is only of partial correct­

~[Man69J 1 it proves that if the program terminates, 

the result will be correct. To complete the proof, one 

must prove in addition that each loop terminates. 

There are several bits of nomenclature associated 

with inductive assertion proofs. The lemmas to be proved 

for the various paths within the program are called 

verification conditions (v.c.'s for short), since they 

represent the conditions sufficient for verifying the 

overall correctness of the program. Within a given v.c., 

the assertions tagging its beginning and ending points 

are called the initial assertion and final assertion of 

the v.c., respectively. The source code in the path 

between these two endpoints is called the body of the v.c. 

Because each loop in the program is cut by an assertion, 

the body of a v.c. is guaranteed to be loop-free. 

Nothing in this mechanism is in any way dependent 

on the code under consideration being a .. program." In 

fact, the technique is equally applicable for typeless 

procedures, functions, and even mere sections of code. 

In this thesis, the computational objects used in proofs 

will be procedures in an ALGOL-like language (the details 

of which will be discussed in Chapter 2). 



-14-

B. Example proof using assertions 

A more concrete example should serve to clarify 

these ideas. Consider the simple procedure given in 

Figure 1.2. Its purpose is to divide positive integer y 

into positive integer x, giving quotient q and remainder r. 

(It is taken from Floyd's original paper on proving pro­

grams via assertions [Flo67J.) The assertions are attached 

to control points in the program by including them as 

comments located at the corresponding points in the source 

code. Because there is one loop in the program, there 

are three assertions~the precondition, the postcondition, 

and the loop assertion. 

A total of four verification conditions must be 

proved, corresponding to the four possible paths between 

points tagged by assertions. The first v.c. is that the 

truth of the input assertion followed by the execution of 

lines (1) through (4) results in the truth of the loop 

assertion. This can be abbreviatedla 

( x > O and y > 0 ) t ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) } ( O < x and 

x = r + y*q ~ O < y .$ r) • 

Its proof goes like this1 

(a) Since "x > 0" is in the initial assertion of the 

v.c. and the value of x is unchanged by the 
general, "P [ Q} R" is a notational shorthand fora 
"If the body of code given or represented by Q is 
executed with assertion P true as the precondition, 
then postcondition R will be true." Hoare [Hoa69] 
is the inventor of this notation. 
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procedure divide(x,y,q,r); 
declare x,y,q,r integer; 
begin 
comment assert "x .) 0 and y > 0"; 

(1) r := x; 
(2) q r= O; 
( 3) while y 4. r do 
(4) begin 

( 5) 
( 6) 
( 7) 

comment assert "O < x = r + y*q and 
O < y < r"; 

r := r - y; 
q := q + 1; 
end; 

commenr-assert "0 < x ~ r + y*q and 
O ..$ r .e:: y" ; 

end divide; 

Figure 1.2 

Example program 
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action of the body, "x > 0" must be valid 1n 

the final assertion. Similarly for "y > 0". 

(b) The action of line (1) assigns tor the value 

of x. Since this is the only assignment to r 

in the body, r = x at the end of the body. 

Similarly, q = O from line (2). Thus, 

r + y*q = x + y*O = x, so "r + y*q = x" is 

valid in the final assertion. 

(c) Since the loop body is entered, 1t follows 

that the test "y .:;, r" on line (3) must 

evaluate to~· Thus, since neither 

variable is changed between line (3) and the 

end of the body, "y ~ r" must be valid finally. 

This proves the validity of the entire final assertion, 

assuming the initial validity of the initial assertion. 

The v.c. is therefore verified. 

The second v.c. is that the input assertion followed 

by the action of lines (1) and (2) and a false outcome 

of the test at line (3) ensure the final validity of 

the output assertion. The proof of this v.c. proceeds 

identically to that of the first, the only difference 

being in part (c) of the proof. Here, 

(c) Since the loop body is not entered, it follows 

that the test "y ::, r" on line (3) must 

evaluate to false. Thus, since neither variable 
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gets changed between line (3) and the end of 

the body of the v. c. , r " y. Furthermore, 

since r = x and x > O, 1t must be that r ~ 0, 

so "0 ~ r < y" must be finally valid. 

The third ver1f1cat1on cond1t1on is that one iteration 

through the loop body preserves the validity of the loop 

assertion, that is1 

( O < x = r + y*q and O < y ~ r) { ( 5 ) , ( 6 ) , ( 7) , ( 3 ) , ( 4 >} 
( 0 < x == r + y*q and 0 < y $... r) • 

Its proof 1 

(a) Since "0 < x" and "O < y" are valid initially, 

and both x and y are unchanged by the body, 

both clauses are valid after execution of the 

body. 

(b) Denote the new values of rand q by r' and q', 

and the old values by ri and q1 • Then by the 

actions of lines ( 5) and (6) respectively, 

r' = ri - y and q' = qi + 1. So, 

r' + y*q I = ( ri - y) + y * (q1 + 1) 

= ri - y + y*q1 + y 

= ri + y*qi 

which by the initial assertion of the v.c. 

ls equal to x. Thus, "r + y*q = x" is valid 

in the final assertion. 

(c) Since the loop body ls re-entered, it follows 
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that the "y ~ r" test on line (3) must be ~. 

and since neither y nor r is subsequently 

changed, "y ~ r" in the final assertion follows. 

The last verification condition iss 

( O < x = r + y*q and O < y < r) ( 5 ) , ( 6 ) , ( 7) , ( 3 ) 

( O < x = r + y*q ~ O :s r < y) 

where the test on line (3) has an outcome of false. 

(a) "0 < x = r + y*q" in the final assertion follows 

from its validity in the initial assertion by 

reasoning similar to that used in parts (a) 

and (b) in the third v.c. 

(b) Since the loop is exited, the "y ::_ r" test on 

line (3) must have been false, so "r< y" 

follows. Since "y-:_ r" is true in the initial 

assertion and r is decremented by the value of 

y on line (5) and unchanged otherwise, we have 

that 0 S. r, so 0 ~ r < y. 

Finally, we must prove that the loop does, in fact, 

terminate. The termination condition, by line (3), is 

"r < y". By line (1), r is initialized to the value of x, 

which the input assertion states to be a finite, positive 

quantity. Each iteration of the loop decreases r by the 

value of y (on line (5)), also a finite, positive quantity 

(by the loop assertion). It is thus an easy matter to see 
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that (assuming the initial validity of the input asser­

tion) eventually "r< y'• is true and the loop terminates. 

c. Symbolic interpretation 

In proving the verification conditions above, a 

technique is employed which Burstall calls symbolic 

interpretation[Bur72b] • The basis of this approach is 

the method of "hand-simulation" mentioned earlier. That 

is, the person proving the v.c. "acts" as the computer, 

interpreting the source code in the body of the v.c. 

This "interpretation," however, is carried out in symbolic 

form. The initial values of all variables are unknown, 

except as they may be constrained by the initial assertion. 

As Good ~0070] shows, there are several variations 

under the general heading of "symbolic interpretation". 

Good discusses and demonstrates the equivalence of a 

few of theses forward accumulation, forward substitution, 

and backward substitution. The differences among these 

lie in whether one wor.ks backward or forward through the 

body of code, and whether one accumulates new results in 

separate instantiations of a variable(e.g. x1 , x2 , x3, ••• ) 

or substitutes the new results back into a single instance 

(i.e., simply x). Which of these variations one employs 

is chiefly a matter of taste and convenience1 both forward 

and backward substitution are used in this thesis. In its 

various forms, symbolic interpretation is the most commonly 

used technique for proving verification conditions. 
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The major alternative to this method is the formal 

approach taken by Hoare. This approach uses the more 

mathematically rigorous concepts of axioms and rules of 

inference to effect proofs. Each axiom corresponds to 

one kind of simple statement, and each ~ule of inference 

to a feature of control structure. A proof is then 

generally built from the bottom up, starting with proofs 

of the effects of individual statements by direct appli­

cation of axioms, and proceeding by combining these 

proofs into proofs of progressively larger program 

fragments, until ultimately the entire proof has been 

constructed. In his first major paper explaining his 

approach[Hoa69], Hoare supplied an axiom for simple 

ALGOL assignment statements and rules of inference to 

cover statement composition, conditional statements, 

and iteration. With these basic tools and elementary 

axioms of arithmetic, he proved the "divide" procedure 

of Figure 1.2 in twelve steps. In subsequent work, Hoare 

has extended his rules of inference to include function 

calls and a restricted form of jump[Cli72], and procedure 

calls [Hoa 71] • 

The major drawback to Hoare's approach, as I see it, 

is that it is simply not a .. natural" way for humans to 

prove programs. Eventually, when mechanization of the 

proof process on the computer becomes critical, the rela-
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tive informality of symbolic interpretation may have to 

give way to the rigor of Hoare's approach (although not 

necessarily 1 Good[ Goo?OJ , King [K1n69 J, Deutsch [Deu?JJ 

and others have had success in automating proofs using 

symbolic interpretation). At the moment, though, program 

verification is still in its formative stages, and as 

Burstall has noted[ Bur69J 1 

Although mechanised debugging is certainly 
very desirable, attempts to restrict the nature 
of the proofs devised to enable a computer to 
check them may delay the discovery of the 
variety of mathematical techniques which are 
applicable. 

One outgrowth of Hoare's work is an excellent notation 

for expressing the semantics of various source-language 

features, a notation which is employed later in this 

thesis. 

D. Data structures in assertion proofs 

As Deutsch [Deu731 has observed, one difficulty with 

the assertion approach in practice is that it requires 

the semantics of the source language be fully understood 

and expressible. Hoare has shown that by excluding the 

unrestricted jump, all major control structures can be 

handled. Since the "goto" statement has been claimed to 

be harmful (Dijkstra[Dij68J, etc.) and in any case, been 

proven to be unnecessary (e.g., see Ashcroft and MannafAsh711), 

it is clear that control structures present no major 

obstacles to proving programs correct. 
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Unfortunately, the area of structured data did not 

at first receive the same degree of attention as that of 

control structures. Consequently, work in thls area has 

tended to lag behind, and only recently has there been 

much done to catch up. The first programs to be verified 

operated only on simple integer data. Obvious extensions 

to other simple data cla.sses(real numbers, Booleans, etc.) 

followed, and more importantly, techniques to handle 

arrays were developed ( [Goo?O] , [ Kin69] ) • The work wl th 

arrays constituted the first involvement of verification 

with structured data, though the structuring was simple 

and inflexible, 

In the past year or so, several significant works 

have emerged on more complicated data structures. This 

includes the work by Burstall[Bur72BJ and by Poupon and 

Wegbrei t [Pou72j on LISP-type lists, and that of Morris 

[~or?~ on data structures with pointers. The latter two 

works typify what I call the generalist approach. The 

generalist deals wlth a class of data structures general 

enough to include (disregarding nomenclature) all possible 

data structures, Both of the works cited obtain some 

useful results, but neither ls developed sufficiently 

to provide a complete framework for correctness proofs. 

Instead, each provides some tools which are useful but 

insufficient by themselves. 
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The alternative is to restrict the class of data 

structures under consideration in order to derive a 

complete (or nearly so) treatment with, of course, less 

generality of scope. Burstall[Bur72a] considers a class 

of LISP-type lists which he calls "Distinct Non-repeating 

List Systems." By the elimination of nesting of lists 

and the restriction of cycles, Burstall is able to obtain 

a quite satisfactory overall system for proofs of correct­

ness, The challenge, of course, once such a system is 

developed, is to progressively expand its domain of 

application by successive weakening and/or elimination 

of the restrictions. 

E. Approach of this thesis 

It is my contention that the most promising approach 

is a compromise between these two schools of thought. 

In particular, I believe that rather than develop specific 

new techniques and concepts, work in this area should 

strive to devise new classes of such tools. The specific 

tools to be used for an actual application can then be 

designed by tailoring specific elements of these classes 

for use in the given application. 

The primary emphasis 1n this thesis, then, is to 

develop general techniques for proving the correctness 

of programs involving data structures. This will entail 

considering the way data structures are used in programs 
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and the types of characterizations of structures which 

are necessary for constructing relevant assertions. New 

concepts will be devised which are directly translatable 

into the tools required for proofs of correctness. This 

area will be the focus of Chapter J. 

The development of new general concepts, however, 

without a detailed instantiation to demonstrate their 

practicality and utility is highly suspect. It therefore 

becomes incumbent upon me to illustrate the use of the 

techniques I describe by actually verifying programs which 

operate on data structures. The tools designed in Chapter J 

are intended to be specifically tailored for use with 

a particular class of structures. My demonstration is 

therefore on a specific structural class--simple singly­

linked lists--and is presented in Chapter 4. This data 

class has been chosen primarily for its simplicity, in 

order to keep extraneous details and attendant "hair" to 

a minimum. The example programs proved in Chapter 4, 

however, solve real-world problems, and the proofs are 

non-trivial enough to show the general utility of the 

approach. 

Before the substantive issues of this work can be 

tackled, though, an important administrative detail must 

be handled. In order for the rest of this thesis to be 

completely clear, the reader must be able to understand 
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Chapter 2 

DATA STRUCTURING IN THE SOURCE LANGUAGE 

The source language used throughout this thesis is 

a simple ALGOL-like language. Aside from its data­

structuring facilities, which are based on Hoare records 

[ Hoa68] , it is effectively a subset of ALGOL W[ Wir66] • 

Certain features of ALGOL w have been deliberately excluded, 

such as labels and jumps, but defining the precise extent 

of the language is not important. The aspects relating 

to data structures are carefully explained in this chapter. 

The rest of the language is intended to be obvious in 

both its syntax and semantics. For any detail which is 

not covered in this chapter explicitly, the ALGOL W paper 

[Wir66] can be used as a "reference manual." 

A. Record classes 

The record-handling facility of the language allows 

compound data objects to be composed from a group of simple 

objects. Arrays perform a similar function, of course, 

but the individual elements of a record need not all be 

of the same data type. As shall be seen shortly, it is 

this property which allows interesting data structures 

to be constructed using records. 

A record class definition does not itself create any 

data object. Rather, it establishes a new data type of 
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which data objects can be created. The record class 

definition provides the pattern for a typical record of 

the class. Each component element of the typical record 

is described by giving its data type and a unique 

identifier, called a selector, for accessing it. 

The syntax for a record class definition is given 

by the following set of BNF production rules a 

<record class definition> 11= 

record class <identifier> ( <body> ) 

<body> 1 1= <components> _l <components>;< body:> 

<components> 1 1= <id list> <data type> 

<id list> 1 1= < identifier> I <identifier>, <id list> 

An example of a record class definition isa 

record class rc(x,y,z real; sw boolean; 

table integer array [1120] ) 

Each record of class "re" would then contain five compo­

nents 1 three real components, selected by identifiers 

x,y and ZJ one Boolean component selected by sw; and a 

20-element integer array component selected by table. 

B. Reference variables and component selection 

The definition of record class "re" establishes 

a new data typer "reference(rc)", which can be shortened 

to "ref(rc)". A variable of a reference type either 

references a record of the given record class or possesses 
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the special value null. All reference variables are 

automatically initialized to null on being declared. 

A reference variable can ref er to any record of the 

one class, but not to any record of any other record class. 

A component of a record is accessed by an expression 

of the form 

11 (reference expression). <selector identifier) 11
• 

The (reference expression) is an expression which evaluates 

to a reference to the given record, and the <selector 

identifier/ selects the specific component of the record. 

So, if variable r is declared to be of type ref(rc), 

then "r.x", "r.y", "r.z", "r.sw", and 11 r.table" are all 

examples of component selection. The reference expression 

may itself contain a component selection in the case of 

a reference-typed record component. As the above indicates, 

the selection operation "•" associates to the left. 

It should be noted that the type of <reference 

expressior:i) can always be determined statically, i.e. at 

a hypothetical "compilation time. 11 A compiler could 

therefore ensure that the expression references a record 

of a class for which the selector is valid, or else 

register a compilation error. In verifying the correct­

ness of programs, we are solely concerned with dynamic 

correctness. The program to be verified is assumed to 

have successfully compiled, and all static issues can thus 



-29-

be ignored. The record-handling facility described here, 

allowing for a maximum of type-checking, frees us to as 

great an extent as possible from having to worry about 

these issues. It is with this 1n mind that the data­

structuring aspects of the language have been designed. 

While the class of the record to which 

<reference expressiotj> refers can be determined statically, 

there is a related issue which can only be checked 

dynamically. If the expression evaluates to !!!!11• 
then the component selection is undefined, which causes 

the program not to terminate normally. In proving a 

program correct, all component selection must be shown 

to be well-defined, in order that total correctness may 

be deduced from the'proof of partial correctness. 

The data type of a component-selection expression 

is simply the declared type of the selected component. 

Such an expression can occur in any context which is appro­

priate for a variable of that type. This includes the 

left-hand-side of an assignment statement--that is, 

individual components of a record are individually 

updatable. In fact, once a record has been created, 

the only way to change the values of its components is 

by updating individual components. 

The left-hand-side of an assignment statement can 

be a variable or record component of a reference data type. 
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The right-hand-side expression must then evaluate to a 

reference to a record of the same class. The assignment 

causes the left-hand-side object to reference this same 

record~no new copy of the record itself is made. 

Two reference expressions can be compared for 

equality by the Boolean relation "=". The relation is 

true if the two expressions refer to the same record 

(or both equal null), but not if they refer to different 

records which are component-wise equal. 

Procedure parameters of reference types differ from 

other parameters in that they are called by reference. 

They can thus be updated within a procedure call. 

All other parameters are passed by value. 

c. Record creation 

There is a special kind of reference expression 

which can only occur as the right-hand-side of an 

assignment statement. This is the record-creation 

expression, and it is the only mechanism by which new 

records can be created. The record-creation statement 

causes the object on the left-hand-side to be assigned 

a reference to the newly-created record. 

The form of a record-creation expression is 

"record-class-name (sell1exp1,sel2aexp2, ••• ,seln1expn)" 

where each expi is an expression which agrees in type with 
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the component selected by identifier seli. All components 

of the new record must be so initialized, except that 

reference components may be omitted and initialized by 

default to null. 

Thus, for a record class defined by 

record class mark(i,j integers up booleans 
end strings f ref(mark)} 

the following statement would create a new record and 

assign a reference to it .to variable x1 

x s= mark(ends•xyz', J15, upstrue, i10) 

Then x.f =null, x.end = 'xyz', x.j = 5, etc. 

D. Building structures from records 

The major importance of records is 1n their role as 

building blocks from which data structures are constructed. 

If record A contains as a component a reference to record B, 

then records A and B are considered "connected". Then a 

data structure can be defined as a collection of records 

which are connected together. 

Data structures can be represented pictorially as 

in Figure 2.1. Each record is drawn as a block which is 

divided into separate boxes for its component elements. 

The boxes of one record are labelled with selectors to 

its componentss other records (assuming they are of the 

same class) by convention follow the same pattern, Each 

box contains the value corresponding to that component. 
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x 

father 

name "Paul" "Harry" "Susan" "Lee" "Carol" 

next 

age 50 29 26 48 22 

height 70 74 63 68 67 
----

weight 182 171 98 164 120 

spouse 

ms. le true false 

sibling 

child 

J 

Figure 2.1 

Example data structure 
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A reference value is indicated by an arrow pointing to 

the referenced recordr a cross indicates a value of !'.!!!11· 

The records in the figure are all of the following 

record classa 

record class person(name stringr male booleanr 
age, height, weight inte~err 
next, father, child, sib ing, spouse ref(person)) 

The data structure pictured illustrates many of the 

important features of records. The most obvious of 

these is the usefulness of the record class definition 

as a template for organizing several groups of data items 

fitting a common pattern. Ea.ch individual record can be 

used to hold all the information about a separate person. 

Storing the information in separate records means 

that there must be a way to access each record. Rather 

than requiring a separate variable to reference each 

record, the records can be linked together into a chain, 

each one containing a reference to the next. This is 

the purpose of the "next" component. variable x references 

the first record, x.next references the second, 

x.next.next references the third, etc. until reaching the 

last record in the chain, whose "next" component equals 

!!1!11• Only one variable is required, no matter how many 

records are in the structure, and passing of the structure 

to a procedure, for instance, can be accomplished through 

this single parameter. In addition, the records can be 

kept in some fixed order if this is desired. 
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Referenoe-typed components are far more versatile 

than merely a mechanism for chaining records together. 

They can also be used to represent relations between 

records. The "father", "child", "sibling", and "spouse" 

components in Figure 2.1 are employed for this purpose, 

representing the obvious family relations. A person 

can have only one father or spouse, so the given component 

for such a relation simply references that record which 

is the object of the relation, if it exists, or else equals 

null. 

For a relation like "child", however, where more 

than one object can exist for a given record, a more 

complicated technique must be used. The programmer may 

decide that by convention, the "child" component references 

the oldest child (i.e. the record corresponding to the 

oldest child--I will often use the less precise language). 

The other children are then accessed by following the 

chain of "sibling" links from one record to another. 

An aspect of records which the figure can not illu­

strate is dynamic allocation. Through the record-creation 

statement, new records can dynamically be added onto a 

structure. Similarly, records can be removed from a 

structure and their storage reclaimed by standard 

automatic garbage-collection techniques, This facility 

of dynamic storage management is important ih several 
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applications, such as simulation. The structure in 

Figure 2.1, for example, could be used to represent a 

particular family. Changes !n the size and structure 

of the family through time (births, deaths, marriages, etc) 

could be recorded by dynamically adding and deleting 

people from the "family tree." 

The two features of dynamic allocation and reference­

typed components interact in such a way that each requires 

the other to be really useful. Without reference 

components, the ability to use dynamic allocation to 

create new records would be limited by the number of 

declared reference variables; while an unlimited number 

of records could still be created, only a fixed number 

would be accessible at any given time, the rest having 

been garbage-collected. Without dynamic allocation, on 

the other hand, it would be impossible to create many 

structures,and at best awkward to create the rest. 

E. Data structuring in other languages 

Most modern high-level languages contain facilities 

for constructing and manipulating data structures. The 

structural primitives are generally classes of objects 

analagous to records and references. As noted earlier, 

the record-handling mechanism described here has been 

designed to allow a maximum of static type checking. 
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Additional checking within proofs is required when using 

a language like ALGOL 68, which allows (the equivalent of) 

a record class to be the union of distinct classes, or 

PL/I, where pointers (references) can point to any data 

object, The major ideas presented 1n Chapter J, however, 

are applicable across a wide range of languages, 
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Chapter 3 

CHARACTERIZING DATA STRUCTURES 

In order to prove the correctness of programs which 

operate on structures, we need the ability to construct 

assertions which adequately characterize sttructures. 

Before this problem can be attacked, we must have a 

clear idea of what kinds of characterizations are "adequate" 

for proofs of correctness. If one thinks of a program 

as a sequence of actions being performed on a group of 

data objects (obs), then the following dichotomy is 

helpfula the information contained in an assertion can 

be divided into those facts which deal with individual 

obs, and those which relate two or more obs together. 

'l'he purpose of information of the former kind is to 

characterize as narrowly as possible the domain of possible 

values for an ob at the time the given assertion is to 

be valid. Facts of the latter variety represent joint 

constraints between the values which can be mutually 

selected for different obs from their respective domains. 

The declarations of a program serve as one means for 

restricting the domains of its obs. For example, declaring 

variable i to be of type integer restricts its domain to 

the integers, or more precisely the subset of the integers 

representable in the given machine. The domain can be 

further restricted by a clause in an assertion such as 
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"0 .::5 i :_JO". Similarly, another integer j may be 

restricted to the domain "-5 :_ j ~ 5". A clause 1n an 

assertion such as "i = j*j" represents a joint constraint 

between the values of these two obs. (Note that this 

particular joint constraint would allow the further 

restriction of the domain of i to [0,1,4,9,16,25} .) 

The distinction between these two kinds of infor­

mation is actually not as straightforward as the above 

indicates. The reason is the lack of precision associated 

with the term "data object". For instance, is an array 

a single ob, or a whole collection of elementary obs? 

That is, does the clause 

(yk)(O~ k < 100 ~ a[kl 5_ a[k+1l) 

restrict the domain of array a, or is it a shorthand way 

of expressing 100 joint constraints between pairs of obs? 

There is no "correct" answer one way or the other. 

Either interpretation may be the more valid one, depending 

on how the program operates on the array and its consti­

tuent elements. Since there is never any real need to 

resolve such a point, the ambiguity causes no problems. 

The reason for raising the issue at all is that it points 

up the approach taken toward data structures here. 

Records play the same role of constituent elements 

in a data structure as individual array elements do in 

an array. As with the array, one can imagine situations 
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in which the individual records should be considered 

separate obs. The point to be made here, though, 1s that 

this thesis is not concerned with such situations. Under 

those circumstances, records present no new problems in 

constructing assertions and proofs of correctnesss tech­

niques for simple data can be used, with each record 

component treated as a separate variable. It is only 

when a group of records is treated as a single structural 

unit that new tools and methods become needed. In this 

thesis then, the obs of direct interest will always be 

data structures, and our concern with records will be 

limited to the role they play in the structures which 

include them. 

We now have a guideline for organizing our thinking 

on the issue of characterizing structures. We require 

two kinds of ability--to restrict the domain of values 

a structure may assume, and to relate a structure to 

other obs, both other structures and non-structural data. 

The problem of restricting structural domains is considered 

first, since results obtained there influence the approach 

taken on the other problem. 

A. Restricting the domain of a structure 

As was noted for elementary obs, the preliminary 

basis for the restriction of domain of a structure is 

given by the declarations in the program, in particular 
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by the record class definitions. For example, consider 

the record class "person" defined in Chapter 21 

record class person(name string; male booleans 
age, height, weight 1nteier; 
next, father, child, sib 1ng, spouse ref(person)) 

A structure referenced by a variable of type ref (person) 

is known to belong to a domain P, which can be recursively 

def1ned1 each element (other than null) consists of a 

tuple of heterogeneous simple data 1tems~in particular, 

one character string, one Boolean, and three integers~ 

and references to five (possibly different) elements of P. 

The recursion in this definition is automatically 

introduced by the reference components, and illustrates 

the inherently recursive form of all structural domains 

of interest here. The recursion can sometimes be hidden 

to some extent by using components which reference records 

of different classes, as in a series of record class 

definitions likes 

record class class! 
record class class2 

• 
• 

( ... ' 
( ... ' linkl ref(class2))1 

link2 ref(class)))1 - ' 

record class classn ( ••• , linkn ref(class1))1 

The circularity in the pattern of referencing in these n 

record classes gives rise to n different structural 

domains, which together form a system of mutually 

recursive sets. 
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The only way to define record classes so as to 

guarantee non-recursive domains is to 11mit the linking 

to a f1xed finite chain of references. Changing the 

definitions of one or more of the record classes above 

1n a way which excluded all circular chains of reference 

components would result in a non-recursive domain. 

Having the linking completely fixed, however, is tanta­

mount to having no linking at all and employing a single 

(possibly large) record to hold all the information, 

Techniques used for elementary data can be employed 

in such a situation to characterize the data, and therefore 

cases like this are of no interest here. 

Since the structural domains of interest are 

inherently recursive classes, the natural control 

structure to use 1n programs operating on such structures 

is the iterative loop. Hoare [Hoa72a1 has noted the 

natural correspondence between certain classes of 

data structures and certain control structures& in 

particular, recursive data structures correspond to 

the while or until loop (with an unbounded number of 

iterations) just as arrays do to the ALGOL 60 f.2!'. loop, 

or FORTRAN DO-loop,in which the number of iterations 

is bounded). The programming of any "interesting" 

operation on a structure almost always requires at 

least one loop, driven by iterating a reference variable 

over the successive records in part or all of a structure. 
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Al. Patterns 

The domain of a structure both before, during, and 

after such a loop is generally quite a bit more restricted 

than what is deducible from the record class definitions, 

All remaining restrictions must be reflected in the corre­

sponding assertions. Because of the loop structure, much 

of this information takes the form of patterns--relations 

within and among records which recur regularly throughout 

the structure or substructure accessed in iterating 

through the loop, The reason for this is obvious a a 

single iteration of the loop requires initially and/or 

causes finally the existence of certain conditions in 

the local piece of the structure upon which the loop 

body operates in that one iteration, Since such conditions 

must prevail over all loop iterations, the result is 

structure- or substructure-wide patterns. 

A key to characterizing the domains of structures, 

then, is the ability to describe these patterns, The 

set of records accessed by a loop generally consists of 

a chain of connected records, so that most patterns 

encompass a group of records in a chain. We therefore 

need basic primitives for describing such chains, As 

the baa1s of a chain is simply the connection between 

successive records, the logical primitive concept to 

consider is "connection." 
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A2. Direct connection 

We think of two records being (directly} connected 

1f a component of one record references the other record. 

This can be formal1zeda 

If p and q are reference values, then there 
1s a direct connection from p to q, denoted 
"p.,.. q", iff ( :iI sel){p.sel = q}. 

Notice that this relation is defined between references 

to records rather than records themselves. 'l'h1s is 

necessary since our only access to a record is PY an 

expression whioh evaluates to a reference to it. 

Before proceeding, I should point out and justify 

a bit of mathematical casualness in this definition. 

The definition contains the existential quantification 

of the variable "sel", whose implicit range 1s over all 

selectors for the record class of p, i.e. a certain set 

of character strings. If sel takes on the value 'next', 

for example, then the value of the expression "p.sel", 

strictly speaking, is that of "p.'next'", not of "p.next", 

though the latter is the only interpretation which makes 

sense in the definition. In a rigorous mathematical 

sense this is an error, but one which could easily be 

corrected by the invention of special quoting and 

dequoting functions. To do so would sacrifice clarity 

of presentation, however, since these special functions 

would serve no useful purpose and would simply create 
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clutter. Since the intent of the above definition is 

clear, I do not bother to correct the small imprecision. 

This attitude 1s carried over later 1n this thesis when 

I define and use predicates and functions which include 

selectors as parameters, It is important to realize that 

this is simply a matter of convenience, and that the de-

finition as it stands is no less well-defined or precise. 

The definition does suffer from a more practical 

problem, however, in that it is broader than what we 

generally want. The selector ttsel" can be any valid 

selector for the record class of p, or rather any such 

selector whose component is of the same type as q, 

!n the case of the record class ttperson" defined earlier, 

"p-+ q" could mean any of the following 1 

"p,next = q" or 
II p I chi ld = q II or 
"p,father = q" or 
"p.sibling = q" or 
"p,spouse = q", 

While in some situations we might wish to express this 

very fact, we usually want to be more restrictive. 

In particular, consider the need to describe structural 

chains, which, after all, provided the direct motivation 

for defining "connection," The system of linking in a 

chain is generally limited to a single component in each 

record, or at most to some subset of possible linking 

components. We need to be able to limit the connection 

relation accordingly, 
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Our means for effecting this restriction is to 

attach an optional tag to the "-+ " symbol, denoting 

the component(s) through which the linking is to be 

limited, To restrict linking to a single component, the 

selector name is simply written over the arrows 

"x next• y" is equivalent to "x,next = y", 

To restrict the linking to several components, a list 

of their selectors, separated by commas, can be used1 

"p a,b,c)q" is equivalent to 

"p,a = q or p,b = q or p,c = q". 

A more attractive alternatire is to let a new identifier 

denote the set of components, such as s = fa,b,c} , and 

then simply write "p..J4. q", The name "s" used for the 

set, of course, must not be the name of any actual 

selector. 

It should be clear that "p.J4. q" is more convenient 

to write than "p.a = q .2!: p,b = q or p.c = q", and 

its use could be justified on that ground alone, parti­

cularly if such a construction occurs numerous times in 

the assertions of a program. There are at least two 

other good reasons for this notation, though, which is 

why we bother with "x next) 7" rather than "x,next = y", 

One is that it gives us a good method for stating several 

facts like "p.a = q and q,b = r and r.c = t and 

t.d = u", etc., namelys 
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The need for this arises particularly when describing 

chains of links, and the notation here not only handles 

it concisely, but also affords a graphic picture of the 

chain. The second reason is that the notation can be 

directly carried over to the more powerful notion of 

"ultimate connection." 

AJ, Ultimate connection 

Ultimate connection is the relation existing between 

two records which are connected by a path of zero or 

more linking components. Formally, it is the reflexive 

transitive closure of the direct connection relation, and 

can be defined1 

If p and q are reference values, then there 
is an ultimate connection from p to q, denoted 
"~ q", iff (p = q) .2!: ( g r)(p-+ r~ q), 

A slightly different concept which is also useful is the 

non-reflexive transitive closure of "-+", which indicates 

a path of one or more links between records a 

"p=-9+ q" iff ( gr) ( p~ r=> q). 

In both cases, the relations can optionally be tagged so 

as to restrict the linking to one or more specific 

components. Note that "p a..R)q" is equivalent to 

"(p = q) or ( :!l:r)(p a,b> r a.b) q)", not to 

"p~ q or p~q". 

These primitives give us tremendous power to describe 

cha.ins of records. I indicated previously how to denote 
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a chain of specific records using a series of "~ " 

relations. Now we can be more general. If "a" names 

either the single selector or the set of selectors 

associated with a cha.in whose first record is referenced 

by u, then any record v in the chain is characterized 

by "u~ v". Common properties of records in the chain, 

i.e. patterns, can be described by an expression of the 

form 
a ( yv) ( u===:+ v ~ , •• v. , • ) 

where the right-hand-side of the implication is an 

expression of the properties for typical record v in the 

chain. 

The best way to illustrate the power of this 

notation is by an extended example, for which I will 

use a class of structures like that pictured in Figure 2.1. 

My belief is that this class of "family trees" is a good 

one for illustration purposes because virtually any type 

of structural relation one might wish to represent can 

be framed in terms of these family relationships, The 

connection primitives allow us to define any relation 

we choose. For instance, to say that p is a descendant 

of z (more precisely, that the person to whom the record 

referenced by p corresponds is a descendant of the person 

to whom the record referenced by z corresponds), we can 

define the following predicates 
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descendant(z,p) ( g q ) ( z child > q ~ p) 

where D = fchild,s1bling}. 

Similarly, an ancestor predicate can be defined1 

ancestor(z,u) ( :a: v) ( zfather • ~ u) 

where A= {father,spouse}. 

More complex relationships like "uncle" can also be handleds 

uncle(z,x) ( g a, b ,c) ( zfather) 8 spou§e ~· b and 

(bsibling) + 0 spouse &l x 

xspouse, csibl1ng) + b) 

or -
and male( x)). 

Figure J.1 illustrates each of these relations. 

As a more general illustration, the whole structural 

class can be concisely defined. Among the facts charac-

terizing the class ares 

(1) All the records are chained together in 

succession through their "next" components, 

with the chain ending in a record whose 

"nexttt component is null. 

(2) Each chain of "sibling"s is sorted by 

decreasing age. 

(J) Every person is in the same "sibling" chain 

as the (oldest) "childtt of his/her "father". 

(4) Every person is younger than his/her 

"father", and older than his/her "child". 

(5) Every person who has a spouse is of opposite 

sex to that spouse, and is the spouse's spouse. 
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-----1--~... . .. 

---+-~ ••• 
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descendants of z 

Figure J,1a 
The descendants of z are the records reachable from 
q = z.ch1ld by a path of zero or more "child" and/or 
"sibling" links. 
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Figure ),lb 
The ancestors of z are the records reachable from 
v = z.father by a path of zero or more "spouse" and/or 
"father" links. 
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aunts and uncles of z (uncles are those whose 
"male" component is true) 

Figure 3.1c 
The aunts and uncles of z are the siblings of the parents 
of z, and their spouses. The parents of z are z.father = a 
and z.father.spouse = d. 
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Other details could be added to these, of course, but 

let us stop here and see how this information can be 

expressed. Since these properties are all patterns 

which are in the form of a fact which is true of every 

record in the structure, they can be stated as applying 

to a general intermediete record referenced by a 

universally quantified variable p. If variable x 

references the first record of the structure, thens 

y p,q ,r) (xnext) P ~ ~ and q ~ !'.!Ell ~ 

( ( Pnext 1 + !U!il) and -
( Psi bl i ge; ' q ::> P • age > q • age ) and 

(pfather qch1ld > r., rsiblin5) p) and 

(Prather ) q :> p. age < q • age ) and -
( pc hi ld ) q ::> p,age > q ,age) and 

( Ps pous e..... q ..... 1 t 1 - 7' _, p,ma e = !12.... q,ma e 

and qspouse~ p))) 

A4, The invariant 

Very often, a programmer will write a number of 

programs each of which is designed to operate on a 

structure from the same structural class. It may be 

that certain of these programs are "top-level" routines 

and can each call certain others as subroutines, which 

in turn can each call others, etc. or, the programs 

may all be independent, each one performing a specific 
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basic operation on the structure, such as addition or 

deletion of a record, tests for certain predicates, 

rearrangement, etc. In any case, the structure possesses 

a lifetime which transcends the scope of one single program, 

In this situation, the restriction of the struc­

ture's domain to the given class assumes an importance 

far greater than when such a restriction is limited to 

a single point in time (i.e. a single assertion). The 

restriction now becomes a fundamental aspect of the 

structure, expressing what Foley and Hoare[Fol7U call 

the "purpose" of the structure. Following their 

terminology, the expression of this restriction is 

referred to as the invariant of the structure. In the 

section just previous, for instance, the invariant of a 

"family tree" was constructed. 

The invariant of a structure plays an important 

role in inductive assertion proofs of programs operating 

on the structure. Any program which takes the structure 

as an input should include the invariant within its 

input assertion. Every program which outputs the 

structure must include the invariant within its output 

assertion. It will also be the case that most, though 

not necessarily all, of the intermediate assertions of 

programs which operate on the structure will include the 

invariant. 
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Not all the assertions must include the invariant 

because it need not be truly "invariant" on a statement­

to-statement basis, but only a program-to-progra.m basis. 

In fact, the validity of the invariant will often lapse 

in the middle of a computation which performs a reasonably 

complex operation on the structure, or even such basic 

operations as insertion and deletion of records. Sections 

of code in which the invariant is temporarily invalidated 

can be considered critical sections. In the parlance 

of multiprogramming and concurrency of active procedures, 

a piece of code is called a "critical section" 1f its 

action must not be interrupted by that of another active 

process. An example would be the code between the addition 

of an item onto a stack and the subsequent updating of 

the stack pointer. Such a critical section is usually 

protected from interruption by use of a semaphore. 

Even though the programs under consideration are 

purely sequential, with no parallel concurrent activity, 

the concept of a "critical section" is still useful. 

Since the invariant expresses the "purpose" of the struc­

ture, and since other programs operating on the structure 

rely on the validity of the invariant, it is critical 

that any program which invalidates the invariant must 

reestablish its validity. In addition, it 1s the critical 

section which often performs the major work of the program. 
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The act of proving the program correct will, of course, 

verify the action of restoring the invariant. This is 

guaranteed by the necessary inclusion of the invariant 

in the output assertion. 

Use of the invariant offers a number of advantages 

in assertion proofs. Syntactically, it allows assertions 

to be more conciser the invariant need only be stated 

in its entirety once, at which point a convenient 

predicate (possibly in terms of one or more parameters) 

can be defined to represent it, This predicate can then 

be used in any assertions which include the invariant. 

This helps prevent the assertions from being filled 

with a lot of repeated, unchanging details, It also 

serves to separate the information within an assertion 

into two kindsr that which changes in the course of a 

program, and that which does not, This makes assertions 

easier to read and follow. Stating the invariant at 

the beginning of the program also allows the reader 

to see at a glance what kind of structure the program 

is designed to operate upon. 

The greatest advantage of the invariant is in the 

proof of correctness itself. In the programs which 

operate on the structure, most if not all assertions will 

contain the invariant, so that most if not all verifi­

cation conditions will require a proof of the continuing 
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validity of the invariant. There are only a limited 

set of ways to operate on a structure in a small, 

loop-free section of code (i.e. the body of a v,c,); 

hence, it is quite likely that a proof of correctness 

will require numerous applications of a result likes 

"A statement of the form 'p,link a= q,link' does not 

invalidate the invariant provided that,,,," It makes 

sense then to simply prove the result once as a lemma, 

after which the lemma can be invoked in any proof which 

requires the result. 

More generally, one can analyze !!l:. statements which 

might alter the structure, and prove a whole series of 

lemmas to decide in all oases whether the invariant 

is maintained, This may seem like a massive undertaking, 

but in fact it is not, as illustrated in Chapter 4, 

Proving the lemmas before attempting the actual proofs 

of correctness vastly simplifies the verification process. 

In fact, it may be helpful to state the lemmas before 

even writing any programs to operate on the structural 

classr the insights gained in the former task may prove 

beneficial for the latter, 

A5. Program invariants 

In proving the correctness of a program operating 

on structures from a given class, the invariant for 

that class will form part of each assertion in the program, 
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It may also be the case that over the course of the one 

program, certain other facts about the structure remain 

constantly true as well~the domain of the structure 

within that program may be restricted to some subset 

of the larger class defined by the invariant, It 

probably does not pay to define a new class invariant 

and construct the attendant series of lemmas for use 

in proving the one program correct, However, it would 

be nice to obtain the syntactic benefits of the invariant, 

the conciseness and structure afforded to the assertions. 

This can be accomplished by use of a program invariant, 

which plays a role similar to that of the class invariant, 

but on a scope local to a single program, The program 

invariant includes the class invariant and may also 

include any number of other clauses. It is stated at 

the very beginning of a program ( in a comment) and an 

abbreviation is generally given there to represent it 

in assertions. Although this abbreviation only takes 

one clause of an assertion syntactically, each actual 

clause of the program invariant must be proved true in 

each v,c, 

This concludes the discussion of how to restrict the 

domain of a structure, To summarize the resultss the 

connection primitives give us a means for describing 

intra-structural relations; using them 1n conjunction 
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with techniques developed for simpler data and the 

constructs of predicate calculus such as quantification, 

we can define concisely any structural class, and incor­

porate the definition into a class invariant. Lemmas can 

then be proved about the effects of various source-language 

statements on the validity of the invariant. This allows 

the characterization of the structural class to be inte­

grated into the actual proof of correctness. These 

concepts are put to use in proving actual programs in 

Chapter 4. To construct such proofs, however, we must 

address the other major issue mentioned at the beginning 

of this chapter~relating structures to other data. 

B. Relating a structure to other data 

To construct proofs of correctness involving a 

data structure, one must be able to express relations 

between the structure and any other ob a program can 

contain. This includes both elementary variables and also 

other structures. Perhaps most importantly, the value 

of a structure at a given point in time must be related 

to its value at a different point, such as its initial 

value, for any program manipulating the structure, we 

need to relate the final output structure to the initial 

input structure, in order to express the intended result 

of the program in the output assertion. Since the program 

invariant states what is unchanged about the structure, 
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what is required additionally is the ability to precisely 

describe changes in the structure due to the action of 

the program. 

B1. Containment relations 

The relation of a data structure to another ob 

is often one of containment. For instance, we may wish to 

express the fact that the structure (or some substructure 

of it) contains a record with a certain component equal 

in value to an elementary variable. Or, that a smaller 

structure is isomorphic (equal in all non-reference 

components, corresponding in its linking) to some sub-

structure of the larger structure. For a large class of 

relations such as these, the basic issue involved is 

containment. To express such a relation, we need to be 

able to refer to internal in.formation within a data 

structure. The intra-structural primitives for connection 

relations, along with more basic tools used for simpler 

data, provide the mechanism for doing so. 

For example, to state that a Boolean variable "in" 

expresses whether or not integer "i" is equal to the 

"num" component of any record in a chain linked by "next" 

• components, starting from record "x"s 
next in = ( g p) ( x ; p -1- null and p. num = i ) • 

Expressing the substructure-isomorphism relation is 

slightly more complicated, Since the concept of 
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isomorphism is recursive, an auxiliary recursive definition 

is employed1 

(az)(x~z 

where 

and isomorphic (z,p)) 

isomorphic(null, null) 

and isomorphic(q,r) = 
( Y s e lE N onref ) ( q • s e 1 = r. s e 1) and 

( Y link e Ref) (isomorphic ( q. link ,r. link)). 

Nonref and Ref designate the sets of all non-reference 

selectors and reference selectors repsectively for the 

given record class(es). Notice that this definition 

works only for structures in which cycles and shared 

substructures are not permitted. It could justifiably 

be used, then, only if the program invariant for the 

structure ensured this condition. 

This illustrates an important point. Our separate 

considerations of the two issues of domain-restriction 

and relations-to-data should not mislead one into 

supposing that there is no interaction between these two 

areas, In particular, the restriction of a structure 

to a specific domain can often be utilized to simplify 

the statements of its relations to other obs, A major 

use of this fact will be made shortly, 

B2. Abstract relations 

Unfortunately, there are many situations where one 

needs to express relations other than those in the broad 
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category of "containment." This often includes the very 

important case of relating the values of a structure 

on input to and output from a program. Consider, for 

example, the very simple operations of adding a record 

to and deleting a record from a structure. If the 

addition or deletion takes place somewhere in the middle 

of the structure, then there is no substructure-like 

relationship between the initial and final values of 

the structure. It is likely that one would not know 

at all where the given record actually iss the addition 

may be constrained so as to maintain some aspect of the 

invariant (such as an ordering relationship); the deletion 

might be based on the matching of some component to a 

key value. An accurate expression of the change in 

terms of the internal connections between records may 

be impossible, or else prohibitively complex. Yet these 

operations appear quite straightforward, and can be 

described in English rather simply, Why then the 

trouble? 

The reason for the difficulty is that the computational 

manipulation being performed is indeed complex. (If it 

were not, then the program to accomplish it, and hence 

its proof of correctness, would be trivial.) The surface 

simplicity is due to our ability to think and speak in 

terms of abstract objects and operations. Record addition 
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and deletion correspond in the abstract to adjoining and 

removing an element from a set, respectively. Given a 

way of mapping the structure into the set in question, 

the results can be easily stated in terms of simple set 

operat1onss 

Additions (Set mapped into by final structure) = 
(Set mapped into by initial structure) U 

[ (given elementfl 

Deletions (Set mapped into by final structure) = 
(Set mapped into by initial structure) -

[(given elementij 

Addition and deletion are among the simplest opera-

tions for which such a viewpoint can be taken. Numerous 

program manipulations which are complex computationally 

become considerably simpler when viewed as their correpon-

ding abstract operations. This suggests an alternative 

approach for relating structures to program data.s map 

structures into abstract data objects (such as sets) and 

then express the relations in the abstract domain. To 

do this, though, we must have a way of formalizing the 

mapping. 

BJ. Representation functions 

A vehicle for formalization is the representation 

function, a concept proposed by Hoare[Hoa72b]. A 

representation function maps elements from a given class 

of computational objects into a set of abstract data 

objects. Such a function can be defined in any way, so 
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long as its domain and range are appropriate to the 

above statement. Because of the generally recursive 

nature of structures, recursive function definitions 

are common. 

A class of 'computational objects can be held in 

correspondence simultaneously with several abstract 

data classes. There is thus no single "correct" 

representation function for a given structural class, 

but rather s.ne~l functions which can be used. One 

or another of these functions may prove especially helpful 

for describing the operation of a particular program, 

and hence be used in its assertions. The sole criterion 

for choosing a particular representation function is 

the extent to wh1ch its use contributes to the clarity 

of assertions and the ease of proof for the given program. 

While representation functions help to clarify the 

meaning and reduce the size of assertions, their use is 

not without cost. In the actual proof of a program's 

correctness, representation functions are a new class 

of alien objects which must be dealt with. The problem 

is not so much with the abstract data objects returned 

by the functions. Use of representation functions 

returning sets, for instance, may mean that the proof of 

correctness requires certain results of set theory. The 

results needed, however, are unlikely to be terribly 
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difficult or profound. The only possible problem might 

arise in connection with eventual mechanization of proofs~ 

set theory ls that much more mathematical material which 

must be covered by a mechanical program verifier's 

theorem base. 

The more serious aspect of the problem concerns the 

representation functions themselves. By including 

within assertions expressions which involve represen­

tation functions, we force the proofs of the v.c.'s to 

prove results about the values of these functions. In 

particular, we must prove how each statement in a 

program affects the value of each representation function 

included 1n 1ts assertions. 

This ls a fam111ar problem, for it corresponds 

exactly to one we faced earlier with regard to class 

invariants. A similar solution can be adopteda analyze 

all cases of interest beforehand, and prove lemmas on 

the effect of each kind of program statement on the 

value of the representation function. Using the 

representation function then actually simplifies the 

proof of correctness, since much of the unimportant 

detail of a proof can be submerged in the invoked lemmas. 

This would not be a practical solution if one defined 

a new special-purpose representation function for each 

structure in each program. It would just not be worth-
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while to bother proving the whole set of lemmas if 

they were to be used for proving only the one program. 

By restricting the domain of each representation function 

to a specific structural class (i.e. by associating the 

representation function directly with the class invariant), 

though, general-purpose representation functions can 

be defined which are applicable to all structures of the 

given class. 

The number of representation functions required for 

a given structural class need not be very large. The 

fact is that there aren't very many kinds of abstract 

data objects, as Hoare[Hoa72a], for example, shows, In 

fact, one really needs only two broad classes--sets and 

sequences--corresponding to whether the given collection 

of constituent elements is considered to be unordered or 

ordered, respectively. Other abstract data classes which 

are potentially useful all turn out to be special cases 

of these two; e.g., stacks and queues are two special 

cases of sequences in which only certain operations are 

permitted. Most structural classes therefore require 

representation functions yielding sets and sequences only, 

and usually this means just one function for each of the two. 

This is because parameters of the functions can be used 

to determine which links to follow in the chain and which 

(component) values are to be used as set or sequence elements. 
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c. Summary 

To summarize my approach, the restricted structural 

domain is used as the basis for constructing assertions 

about and proving programs operating on data structures. 

Such a domain can be defined by describing intra-structural 

relations using the primitives of direct and ultimate 

connection, and combining these relations with standard 

techniques to specify the class restrictions. This 

definition of the class is embodied in the class invariant. 

Structures in the class can be mapped into corresponding 

abstract data objects by defining representation funntions 

on the domain which yield sets and sequences. These 

abstract data objects can then be used to express relations 

between the structures and other data in the program. 

Inclusion of the invariant and the representation functions 

in assertions leads to the necessity of proving results 

about them in the course of proving the correctness of 

programs. This task is simplified by analyzing the 

various kinds of source-language statements, and proving 

lemmas concerning the effect of each on the invariant 

and the values of the representation functions. Chapter 4 

illustrates the application of this approach on a parti­

cular structural domain, and demonstrates the proofs of 

correctness which result. 

--- -~-n 
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Chapter 4 

SINGLY-LINKED LISTS 

The basic outline of my approach to handling data 

structures in verification proofs was presented in 

Chapter 3. Several new concepts were introduced, explained, 

and illustrated by examples. However, in order to really 

understand all the concepts, both individually and in 

relation to each other, one must follow through at least 

one complete application of the approach~from the choice 

of a particular class of structures to one or more actual 

proofs of correctness. This chapter takes a structural 

class which is particularly simple, and thus good for 

illustration purpos~s, and applies the approach, ulti­

mately proving three programs correct which operate on 

structures of the class. 

Consider the following simple technique for 

constructing a data structures take some number of 

records all of the same classr make sure that the class 

is defined so that at least one record component is itself 

a reference to records of the class; choose one reference 

component as the linking component for the structurer 

put the records in some type of order, based on some 

characteristic or completely arbitrary; connect the 

records together by having the link in each record reference 

the next record in succession, with the last record's link 

component equaling null. 
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The resulting structure, which will look like the 

one in Figure 4.1, is a singly-linked list, henceforth 

simply called a "list." 1 Because of their simplicity 

and wide versatility of application, lists are one of 

the most widely-used classes of structures. These quali-

ties also make them attractive for use here. Because of 

their versatility, a wide range of program applications 

are available for use in illustrating the concepts pre­

sented. Their simplicity of form makes them easy to use, 

and means that there will be a minimum of extraneous 

details to distract attention from the important concepts. 

A. Definition 

The first item of business is to define the class 

of lists formally. The easiest way to do this is by a 

recursive definition. If the record class to which the 

records in the list belong is named "re" and the link 

component selector is "next", thens 

Definition L.1 A list is referenced by either null 

or by reference to a record of class "re" 

whose "next" component references a list. 

This definition is theoretically sufficient, since 

it provides an effective test procedure for determining 

membership in the structural class. The main use for a 

structural class definition, however, is in the invariant 
1Notice that this is not a LISP-type "list", for which 

I will use the alternate term "List", after Knuth[Knu68]. 
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for a structure. For this purpose, what is needed is 

what I call an analytic definition~one which analyzes 

the structural properties which are characteristic of 

the class. This is provided by the following predicate, 

which takes as parameters a reference to the structure 

and the selector for the link components 

Definition L.2 LIST(p,next) - (pnext;) null and 

( V q ,r) ( Pn;xt) q ~ Pnext) r and 

q, next = r. next :> q = r) ) 

This states two conditions which a structure must meet 

to be a list, The chain of "next" components must ter-

minate on null, and no two distinct records in the chain 

can have equal "next" components. 

The two definitions for lists are in fact equivalents 

Theorem L.J LIST(p,next) iff 
~ 

p references a list with "next" as the link 

component according to Definition L.1. 

The proof of this theorem is given in Figure 4.2. 

The following corollaries to these definitions are 

immediately apparentr 

C 11 L 4 T( t) ~nd (pnext,. q) oro ary , LIS p,nex . ~ 

LIST( q, next), 

That is, any record within a list is itself the beginning 

of a list, This is fairly obvious from Definition L.1. 

---------
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Theorem L.J LIST(p,next) iff 

p references a list with "next" as its link 

component according to Definition L.1. 

Proof: by induction on n, the number of records in the 

structure referenced by p. 

Basiss n = Os preferences a structure with 0 records 

iff p = null. null references a list accordin~ to 

the first definition, and "LIST(null,next)" is 

true according to the second. So the two defi-

nitions are equivalent for the basis case. 

Induction steps Assume the theorem is true for structures 

of size (n - 1), where n > 1. Prove that it is 

satisfied for structures of size ns 

If preferences a list according to Definition L.1, 

then the first record's "next" component references a 

list. By the induction hypothesis, this list also 

satisfies Definition L.2. 

p.nextnex5 null 

Therefore, 

and 

next next.r & ( Vq,r)(p.next====~ q & p.next ~ q.next = r.next 

::> q=r). 

so, "(pnext) null)" follows immediately from the definition 

Of 11 '=9 II 

Figure 4.2 

Proof of Theorem L.) 
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and q.next = r.next" is true, 

next 
p.next ) r" is true, or 

at least one and possibly both of q and r are equal to p, 

by the definition of "~ "• If the first possibility, 

then q = r from above, the induction hypothesis. If 

both q and r are equal to p, then clearly q = r. 

If one but not both are equal to p, then without 

loss of generality, let it be q. Then q = p, and 

next > next 
p ~+ r. Sop.next r, and so 

next 
p.next ; + r.next, each of these last two following 

by the definition of "~ "• But since r.next = q.nex~, 

and q = p so that q.next = p.next, this means that 

next" p.next r+ p.next, and it can easily be shown that 

this contradicts the induction hypothesis that 
next 

p.next null. (Basically, the argument runs that 

the structure must be circular, and thus cannot terminate 

on~.) So this case is impossible, and both other 

cases confirm that the second clause of Definition L.2 

is satisfied. Since it was shown above that the first 

clause is also satisfied, this proves that Definition L.1 

implies Definition L,2, which completes half the proof. 

Figure 4,2(page 2) 



-73-

If "IIST(p,next)" is valid according to Definition 1.,2, 

then pnext>null and 

next next ( v q , r) ( p q and p r and q • next = r. next "J q = r) • 

Since n ~ 1, "p,next" is well-defined, and in fact 

next 
"p.next null" is true by definition of "~ " and 

next 
the fact that p >null above; similarly, 

next next 
" ( V q , r) ( p. next q and p. next r and q. next = r. next 

:;; q = r)" 

follows a fortiori from the similar clause above for p. 

So, by the induction hypothesis, p.next references a 

list according to Definition L.1, and by that definition, 

this means that p references a list. So Definition L,2 

implies Definition L.1. 

Since the validity of each definition implies that 

of the other, they are indeed equivalent for n-record 

structures, and by induction, for all structures. 

Q. E, D. 

Figure 4.2{page 3) 
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Corollary L.5 LIST(p,next) .:::> 

( next" d next) p ~ q ~ q p 1ff p = q). 

So, no two d1st1nct records can each be w1th1n the list 

headed by the other. 

B. Representation functions 

The next item of business ls to define general-

purpose representation functions on lists. We require 

mappings from lists to both sets and sequences. The 

mappings defined here are quite simple~1nto the set or 

sequence of successive values of one particular component 

from each record in the list in turn. These functions 

are adequate for a wide range of situations, including 

the three example proofs presented later in the chapter. 

A more generalized version of the functions would map a 

list into a set/sequence whose elements are each a 

tuple of component values from a single record. For the 

sake of simplicity, we content ourselves with the simpler 

functions, but it should be observed that the treatment 

required for the generalized functions would be directly 

analagous to that presented here for the simpler mappings. 

Since the particular component selected as set or 

sequence element will vary from list to list, and even 

from one application to another, it makes sense to 

include the selector to this component as a parameter 

to the representation functions. Other parameters which 
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are needed are a reference to the beginning of the list, 

and the link component selector, in order to get from 

one record to the next. With these parameters, we can 

now take advantage of the recursive form of the list 

structure to define the following two functionss 1 

Definition L.6 LISTSET(p,sel,next) 

if p = null then ¢ 

else f P· sel} u LISTSET(p.next,sel,next). 

Definition L.7 LISTSEQ(p,sel,next) -
if p = null then [] 

else concat( [p.sel] ,LISTSEQ(p.next,sel,next)). 

These functions perform the obvious task of accessing 

the selected component of each record in the list in 

succession, and adding it to the set or concatenating 

it onto the sequence, respectively. 

Two other functions are useful enough to define here. 

They represent the analogs to the above two functions for 

sublists, rather than full lists. The bounds of the 

sublist are indicated by two parameters, one of which 

references the first record in the sublist, and the other 

of which references the record immediately following the 

1The notation used for sequences here is that "[]" 
represents the empty sequence, "[aJ" represents 
the one-element sequence with single element ~. 
and "concat" is the operation of concatenation on 
sequences, 
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last record in the sublist. 1 The two functions are defined 

in the same way that the two functions for full lists weres 

Definition I.8 SUBLISTSET(p,q,sel,next) _ 

if p = null or p = q then 

else zp.sel} U SUBLISTSET(p.next,q,sel,next). 

Definition r .• 9 SUBLISTSEQ(p,q,sel,next) 

if p = null or p = q then [] 

else concat ( [P. sel] , SUBLISTSEQ ( p. next ,q, sel, next)). 

The test "p = null" is required in these two definitions 

to ensure that the functions be well-defined even when q 

does not reference a record in the list, i.e. when 

"pnext~ 11 i f 1 - q s a se. Neither of these two functions, 

nor the two for full lists, are guaranteed to be well-

defined, however, unless LIST(p,next) • 

Finally, notice that a list is merely a sublist which 

terminates on null, so that: 

Corollary L.10 SUBLISTSET(p,null,sel,next) = 
LISTSET(p,sel,next). 

Corollary 1.11 SUBLISTSEQ(p,null,sel,next) = 
LISTSEQ(p,sel,next). 

1The reason for this seemingly strange convention is that 
it allows for more general utility. If one desires to 
represent a sublist whose final record is referenced by 
"x", then this can be accomplished by using "x.next" 
as the second parameter to these functions. Were the 
opposite convention used, it would be difficult, if 
not impossible, to express the non-inclusive case, 
due to the absence of backward referencing in lists. 
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There are numerous other corollaries to the above 

definitions. Some of the more useful ones are: 

Corollary L.12 

LIST(p,next) and 
next next 

(p ; q r) 

(SUBLISTSET(p,r,sel,next) = 

SUBLISTSET(p,q,sel,next) U SUBLISTSET(q,r,sel,next) 

and 

SUBLISTSEQ(p,r,sel,next) = 
concat(SUBLISTSEQ(p,q,sel,next), 

SUBI.I STSEQ ( q , r, s e 1, next) ) ) • 

This corollary deals with a situation like that illustrated 

below: 

q r 

p ["""i ~ 

~ ..lJ ~ ~' 
__,._ ..::ii. , ,, -

Ll L2 

L 

That is, sublist L is the composition of sublists Ll and 

L2, In that case, the set mapped into by L is the union 

of the sets mapped into by 11 and 12, and the sequence 

mapped into by Lis the concatenation of the'sequences 

mapped into by Il and L2. Notice that if r =null, this 

result can be used for lists L and L2 rather than sublists, 

using Corollaries L,10 and L.11. 
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Corollary L.1.J LIST(p,next) and p :f. null 

(SUBLISTSET(p,p.next,sel,next) = fp.se13 and 

SUBLISTSEQ(p,p.next,sel,next) = (p.sel]). 

This simply gives the values of the representation functions 

for the special case of one-element sublists. 
next 

Corollary L.14 LIST(p,next) and not(p ) q) ::> 

(SUBLISTSET(p,q,sel,next) = LISTSET(p,sel,next) 

and 

SUBLISTSEQ(p,q,sel,next) = LISTSEQ(p,sel,next)). 

This result is for the case that the second parameter to 

the functions for sublists, q, does not reference a 

record in the list referenced by p. The values of the 

representation functions are then the same as if the 

second parameter were null. 

Corollary L.15 LIST(p,next) and 

( Pnext ,> qnext., + r) :l 

q.sel E SUBLISTSET(p,r,sel,next). 

That is, for any record q within a sublist, the component 

q.sel is guaranteed to belong to the set represented by 

the sublist. 

Corollary L.161 next LIST( p ,next) and ( p ~ + r) 

(p.sel = first(SUBLISTSEQ(p,r,sel,next) and 

SUBLISTSEQ(p.next,r,sel,next) = 

final(SUBLISTSEQ(p,r,sel,next))). 

1see Appendix A for definition of the primitive operations 
on sequences--first, final, initial, and last. 
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The first element of the sequence is the component of 

the first record, and the rest of the sequence is mapped 

into by the rest of the list or sublist. 
1 

Corollary L.17 
next -LIST(p,next) and (p ) + r i null) ~ 

(r.sel = last(SUBLISTSEQ(p,r.next,sel,next) and 

SUBLISTSEQ(p,r,sel,next) = 
ini t1al ( SUBI.ISTSEQ ( p ,r. next, sel, next))). 

Similarly, the last sequence element is the component 

of the last record, and the initial subsequence is 

represented by the initial sublist. 

C. Verification lemmas 

We have now reached the stage where we can construct 

a series of lemmas to formalize the effects of various 

source-language statements on the LIST invariant and on 

the values of the representation functions defined on the 

class. One might suppose that this is going to be a 

monumental task, but in fact it is surprisingly easy. 

For a number of reasons we are able to handle all relevant 

cases in only a handful of lemmas. 

One reason 1s that all our results are framed in 

the most general terms possible. That is, even though 

the records in a list which are most frequently operated 

uEon are the first and last 1 it is not necessarl to consider 
1 the footnote See on the previous page. 
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these special cases separately. The recursive nature of 

lists makes all results on intermediate records uniformly 

applicable. We also handle all effects of a given pro.gram 

statement in one lemma~we do not bother with separate 

lemmas stating the effect on the invariant and each 

representation function, but instead lump all these 

results together in one lemma. 

Finally, we take advantage of Corollaries L.10 and 

L.11, the fact that LISTSET and LISTSEQ are only special 

cases of SUBLISTSET and SUBLISTSEQ, Results need only 

be expressed in terms of the latter two functions. 

The lemmas stated here are presented without proof, 

The reason is that the proofs both lack any instructive 

value and are rather tedious. To give the reader the 

flavor of such proofs, Appendix B contains the proof 

of one of the lemmas, Lemma L.19. The proof uses the 

verification axioms of Hoare [Hoa69J as its logical foun­

dation, and is illustrative of the proofs required for 

the other lemmas. 

While the results embodied in the lemmas are compli­

cated to state, they are all really completely straight­

forward, following directly from the definitions of the 

invariant and the representation functions, Accompanying 

each lemma is a brief discussion explaining the result. 

All lemmas employ the convention that free variables are 
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assumed to be universally quantified. 

The nomenclature for the statement of the lemmas is 

borrowed from Hoarellioa6~and was introduced earlier. 

The basic form is "[P] [Q} [R] ", where Q is the code 

(in this case, statement) for which the lemma applies, 

P is the necessary precondition for application of the 

lemma, and-R is the resultant postcondition, An "i" 

subscript refers to values initial to the execution of 

the code. In proving programs later in this chapter, 

"i" subscripts will similarly be used to denote values 

which are initial to the verification condition under 

consideration. An 11 0" subscript is reserved to denote 

values initial to the entire program. only the "o" 

subscript can be used in assertions. 

The simplest operation possible on a list is to 

update a non-link component in one of its element 

records. The result is to leave the invariant valid, 

the representation functions for the given component 

changed by the single substitution, and representation 

functions for all other components unchanged. This is 

expresseds 
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I emma L, 18 

(LIST ( p, next) and ( pnext > q next>+ r )] 

l q. s e 1 : = expr J 
[LIST( p ,next) and ( pnext> qnext > + r) and 

SUBLISTSET(p,r,sel,next) = 

(SUBLISTSET(p,q,sel,next))i U { expr} 

U (SUBLISTSET(q.next,r,sel,next))i and 

SUBLISTST<;Q ( p, r, sel, next) = 
concat((SUBLISTSEQ(p,q,sel,next))i, 

concat([expr], (SUBLISTSEQ(q.next,r,sel,next) )i)) 

and (com ':/ sel .:::> 

(SUBLISTSET(p,r,com,next) = 

(SUBLISTSET(p,r,com,next))i and 

SUBLISTSEQ(p,r,com,next) = 

(SUBLISTSEQ(p,r,com,next))i) ~ 

A more complicated operation is the updating of a 

link component, In this case, the structure remains 

a list only if the new value references a list. In 

addition, the record whose component is being updated 

cannot initially be ultimately connected to the new value, 

or else the structure will become circular, The values 

of the representation functions are changed by adjoining 

onto the value represented by the initial sublist 

the value represented by the newly adjoined list: 
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Lemma L.19 

[LIST( p ,next) and ( pnext > qnext) + null)] 

f q.next := exprJ 

'\iLIST(p,next) iff LIST(expr,next) and 
next. not( expr 9 q)) 

( 
next 

q >+ r iff next 
expr > r) and 

(LIST(p,next) and 
next 
q==~ + r) ~ 

and 

SUBLISTSET(p,r,sel,next) = 
(SUBLISTSET(p,(q.next)i,sel,next))i U 

(SUBLISTSET(expr,r,sel,next)) and 
i 

SUBLISTSEQ(p,r,sel,next) = 
concat((SUBLISTSEQ{p,{q.next) 1 ,sel,next))i, 

(SUBLISTSEQ(expr,r,sel,next) )i)) J 
The link component of a record can also be changed 

by assigning to it a reference to a newly-created record. 

The conditions for the structure remaining a list are 

then the same as in the previous lemma.. The new values 

of the representation functions are then also the same, 

except for the insertion of the value of the new record's 

components 
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Lemma L.20 
next next J 

[LIST(p,next) and (p q + null) 

{q.next 1= rclass( ••• ,selsval, ••• ,next:expr, ••• )} 

LlLIST(p,next) iff 

LIST(expr,next) and not (exprnext) q)) and 

(pnext q) and 

( qnext ~ + r expr 
~ iff expr • r) and 

next, 
(LIST(p,next) and q 7 + r 

SUBLISTSET(p,r,sel,next) = 

(SUBLISTSET(p, (q.next)i,sel,next))i U {val~ 

U (SUBLISTSET(expr,r,sel,next))i and 

SUBLISTSEQ(p,r,sel,next) = 
concat((SUBLISTSEQ(p,{q.next)i,sel,next))i, 

c onca t ( [val] , 

(SUBLISTSEQ(expr,r,sel,next)) 1 )))_] 

One specific case of this lemma is important enough 

to warrant separate statement as a corollary. This is 

the case where "expr" is in fact "q.next." The effect 

of the statement is then to simply insert the new record 

into the list just after the record referenced by q. Several 

simplifications are then possible, since the structure 

must remain a list, and the value of the "set" function 

simply contains one new value. 



Corollary L.21 

'Q:.,IST(p,next) and (pnext) qnext > + r)] 

f q.next 1= rclass(.,,,sel:val,, •• ,nextsq.next, ••• ~ 

[LIST( p, next) and ( pnext) qnext }> + r) and 

SUBLISTSET(p,r,sel,next) = 
(SUBLISTSET(p,r,sel,next)) 1 

SUBLISTSEQ(p,r,sel,next) = 
concat((SUBLISTSEQ(p,(q.next) 1 ,sel,next))

1
, 

u [vali and 

concat( [val], (SUBLISTSEQ( (q.next)i ,r,sel,next) )1 ) LJ 

The final kind of statement to consider 1s a record 

creation statement in which a reference to the new record is 

assigned to a simple variables 

Lemma L.22 [true] 

1P 1= rclass(,.,,sel1val, •• ,,next1expr, ••• )} 

L(LIST(p,next) iff 

LIST( expr, next) and not ( exprnext) + p)) and 

( next .... 
P ,? + r iff exprnext > r) and 

(LIST(p,next) and r i p :> 

SUBLISTSET(p,r,sel,next) = 

{val} U SUBLISTSET(expr,r,sel,next))i and 

SUBLISTSEQ(p,r,sel,next) = 
conca t ( [val] , ( SUBLI STSEQ ( expr, r, sel, next) ) i) >] 
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Notice that there is no -precondition atta.ched to 

this lemma, or more precisely that the precondition is 

always "true." This is because it makes no difference 

what the value of p before the assignment is, since it 

is completely updated by the assip;nemnt. Otherwise, 

this case is quite similar to that of Lem.ma L.20. 

An important part of any proof of correctness is 

the proof of termination. There are really two separate 

issues in this a one is that all operations in the program 

are well-defined; that if "p.sel" appears in a statement, 

for instance, then "p '/.null" is guaranteed. This aspect 

is most easily handled as such statments are encountered 

in the body of each verification condition. Whenever 

there is any room for doubt, we will explicitly show 

that the given reference is not null. 

The other aspect involves termination of each loop 

in the program. It has been shown [Flo67] that a loop 

is guaranteed to terminate if some integer quantity 

can be found which is always finite and positive, and 

which decreases with each iteration through the loop. 

The most common form of iteration when operating on 

a list structure is a loop of the forml 

"while p i null [and Q] do s fl 

or "until p i null [£!: Q_] do s II ' , 
where Q, if included, is a predicate, and S is the loop 
1 
The.brackP.ts indicate a clause whose inclusion is optional. 
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body, either a simple or compound statement. In loops 

such as these, the length of the list referenced by p 

is a finite, positive, decreasing quantity, and thus 

can be used to prove loop termination. To formalize this, 

the length of a list can be defined: 

Definition L.2J LI8T(p,next) 9 

list-length(p) = if p = null then 0 

else 1 + list-length(p.next). 

The following lemma is then obvious: 

Lemma L.24 If "LIST(p,next)" is invariant within 

all iterations of a loop of the form 

or 

"while (p -:! null [and Q] ) 
"until ( p = null [or Q] ) 

do S" 

do S", 

then the loop terminates provided that the 

effect of the loop body S on the variable p 

is to assign to p the value of an expression 

"expr", such that "pnext> + expr" was true 

initially, i.e. at the beginning of that 

execution of s. 

The most common use of this lemma is when "expr" is 

simply "p.next", since a loop is most often used to 

iterate through the successive records in a list. 

In proving the termination of a program, we will 

deal exclusively with the proof of loop termination. 

As discussed above, the well-definedness of component 
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selection will be handled within the proofs of the v.c.'s, 

and will thus be considered "given" when termination is 

proved separately at the end. 

Now that we have developed a framework within which to 

verify programs which operate on lists, we test it out 

by the straightforward method of putting it into practice 

for the proofs of actual programs. The three pro~rams 

proved below varyin complexity, but all are solutions to 

real-life programming problems. They have been designed 

to illustrate a broad range of issues associated with 

proving the correctness of programs, particularly using 

the approach of this thesis. 

All three of these programs use lists whose records 

are from the simplest possible class of any practical 

use, namely1 

record class intcell(n integer; next ref(intcell)) 

This should not be taken as an indication that the 

approach is limited to use with such a simple record 

class. The reason for employing the class is the same 

reason for choosing lists as the subject of this chapter: 

to reduce the amount of extraneous detail to a minimum, 

and thus allow the important issues to stand out that 

much more clearly. Incidentally, since records of this 

class contain only one reference component, "~ 0 can 

next 
be used in place of " ) " 
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D. First example proof.-Search and addition 

The first example will be an exceedingly simple 

program, one which searches the records of a list for a 

given integer, and, if the integer is not found, adds a 

record containing this integer component to the 

beginning of the list. The program is listed in Figure 4.3, 

with the assertions included as comments. The program 

invariant, which is given in the very first comment, 

states that variable sp references a list in which no 

two distinct records have equal "n" components, 

The control structure of the program and the placement 

of the intermediate loop assertion require that four 

verification conditions be proved in order to verify the 

correctness of the program. These correspond to the 

four possible paths between assertions: 

(a) The path from the input assertion to the loop 

assertion, corresponding to lines (1) and (2) 

of the program text. 

(b) The path from the loop assertion back to 

itself, representing one iteration of the loop, 

lines (3) and (2) of the text. 

(c) The path from the loop assertion to the output 

assertion, lines (J), (2), (4) and (5). 

(d) The path from the input assertion to the output 

assertion (in the special case that no loop 
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procedure intlist_insert(j,sp); 
comment program invariant INV= "LIST(sp,next) and 

( v q,r)(sp#q==>+ r~+ null ..::>q.n :/. r.ri"'}", 
that 1s, no two records in t'f'i'e""'Iist have the 

same "n" component; 
record class intcell(n integeri next ref(intcell)); 
declare sp,p ref<tntcell); 
declare j integer; 
begin 
comment assert INV; 

(1) p 1= sp; 
(2) while (p :/. null and p.n :/. j) do 

comment assert "INv and (sp::::;'!!> p~+ null) 
and LISTSET(sp,n,next) = 
~- (LISTSET(sp ,n,next)) and 

j fj.. SUBLISTSE~(sp,p.nex£,n,next) "; 

(3) p 1= p.next; 
(4) 1f p = null then 
(5) sp.....-;-1ntcell(j,sp); 

comment assert 0 INV and 
LISTSET(sp,n,next) = (LISTSET{sp

0
,n,next}) 

U jj}" o.,; 
end intlist_1nsert; 

Figure 4.3 

Example Program 1 
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iterations are performed), lines (1), (2), (4) 

and (5) of the text, 

The body of code associated with verification 

condition (a) consists of the assignment on line (1) 

and the test on line (2) with a true outcome. The proof 

of the v.c. consists of proving the validity of each of 

the five clauses of the loop assertion1 , following 

execution of this code, with the initial assumption 

that the input assertion is valid, Each of the five 

clauses can be proved in turns 

(i) "LIST(sp,next" is valid since it is part of 

of the input assertion, and thus by assumption 

valid initially; and since the body of code 

contains no assignment to sp or to any link 

component in the list, so that it could not 

become invalidated, 

q.n -:I r.n)" remains valid from the input 

assertion since no assignment is made to either 

sp or to any component in the list. 

(iii) Also, "IISTSET(sp,n,next) = (IISTSET(sp0 ,n,next))
0

" 

is valid, since it is valid initially (trivially) 

and since no assignment is made which could 

invalidate it. 
1since the program invariant contains two clauses, the 

total number in the loop assertion is five, 
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(iv) The assignment on line (1) sets p to the 

value of sp, so it follows directly that 

"sp==9 p" is valid, since "=9 " is reflexive. 

And, since "sp~ null" by definition of LIST, 

"p~ null" also fallows. Finally, the test 

on line (2) confirms that p # !!!:!ll• so that 

"sp~ p~null" is validated. 

(v) SUBIISTSET(sn,p.next,n,next) = { sp.n} since 

sp = p, by Corollary r.13. By the test on 

line (2), sp.n # j, so it follows that 

"j ¢ SUBIISTSET(sp,p.next,n,next)." 

Verification condition (b) conceTns the loop body, 

i.e. the assignment on line (3) followed by the test on 

line (2) with an outcome of true. Its proof is also in 

five parts, corresponding to the five clauses in the 

loop assertions 

(i) "LIST(sp,next)" and 

(ii) "( vq,r)(sp~ q=9+ r~+ null ,:]q.n # r.n)" and 

(iii) "I ISTSET( sp ,n ,next) = ( I.ISTSET( sp
0 

,n ,next)) 0 " 

are all valid because they are valid initially, 

and since no assignment is made in the body to 

sp or to any component in the list which mi~ht 

invalidate them. 

(iv) let the value of p initial to the v.c. be called 
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"pi"• Then the assignment on line (3) updates 

the value of p to pi.next. From the initial 

validity of the loop assertion, "pi~+ null" 

so this selection is well-defined, and further 

"p~ null" is valid from the definition of "~ ". 

Also from the initial assertion, sp~ pi so 

sp~ pi.next= p, Finally, the test on line (2) 

confirms that p f null, so this validates the 

clause "sp~ p~+ null," 

(v) From the definition of SUBIISTSET, it is clear 

that SUBLISTSET(sp,p,next,n,next) = 

SUBLISTSET(sp,p,n,next) U fp.nJ • The initial 

assertion ensures that j i SUBLISTSET(sp,p,n,next) 

and the test on line (2) confirms that 

j f p,n, so "j ¢ SUBLISTSET(sp,p.next,n,next)" 

is validated, 

The body of code for verification condition (c) 

contains the assignment on line (3), the test on line (2) 

with false outcome, and lines (4) and (5). The false 

outcome of the test on line (2) can be for one of two 

reasons, depending upon which of the two clauses in 

the test is false. The proof of this v,c, is by case 

analysis of these two possibilities: 

(i) If the test outcome is because of the first 

clause, then p = null after execution of 
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where "p " i 

-94-

This means that pi.next= null, 

is the initial value of p to this 

v.c. Then the test on line (4) is true, and 

the assignment on line (5) is performed. 

"LIST(sp,next)" is finally valid, by Lemma L.22. 

By the same lemma, 1 ISTSET( sp, n, next) = l j S U 

( r.ISTSET( sp
0 

,n ,next)) 
0

, since the initial validity 

of the loop assertion ensures that this value 

has not chan~ed. Furthermore, since pi.next= 

null, it follows that SUBLISTSET(sp,p1 .next,n,next) 

= LISTSET(sp,n,next), so by the initial assertion 

again, j ff/.. LISTSET(sp,n,next) 1 , which can be 

rephrased, ( yq)(spi~ q .::> q.n # ~). This, 

together with the fact that the only change to 

any "n" component in the list is the addition 

of the new record with "n" component equal to 

j, means that the initial validity of 

" ( v q , r) ( s p=P q ;> + r~ + ~ :) q • n # r. n) " 

is sufficient to verify its final validity. 

(ii) If the test outcome is due to the second clause, 

then p ~null and p.n = j (the selection is 

well-defined since p #null). Then the test 

on line (4) 1s false, and the assignment on line 

(5) is skipped. Since "LIST(sp,next)" is 

valid initially, it must be valid finally, as 
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no action is performed which could invalidate 

it. Since sp::::;.. pi :::::9 + null, "sp=*" p" follows 

in the same way tha.t it did for verification 

condition (b), and so by Corollary L.15, 

j E LISTSET(sp,n,next} which by the initial 

assertion is equal to (LISTSET(sp
0

,n,next))
0

• 

Thus, "LISTSET(sp,n,next) = ((LIST!~ET(sp0 ,n,next)) 0 
U ~j~"· Finally, since no record comuonents 

in the list are cha.nged, 

"( Vq,r)(sp==?q~+ r ~+null:> q.n "r.n" 

remains valid. 

Verification condition (d) is associated with the 

special case that no loop iterations are performed, i.e. 

that the test on line (2) is false initially. The body 

of code thus consists of line (1), the false test on line 

(2), and lines (4) and (5). From the action of line (1), 

p = sp. The proof is again by case analysis on whether 

the false outcome is due to the first or second clause 

of the tests 

(i) If due to the first clause, then sp
0 

= null. 

Then (LISTSET(sp0 ,n,next))
0 

= ¢. Also, then 

the test on line (4) is true, and the assignment 

on line (5) is made. This results in sp.n = j 

and sp.next = null. "LIST(sp,next)" and 

"LISTSET(sp,n,next) = (LISTSET(sp
0

,n,next))
0 

U 

f j}" then follow directly from the definitions. 
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Because there is only the one record in the 

list,"( Vq,r)(sp 9q~+ r-;>+ null:Jq.n '1 r.n)" 

is true trivially. 

(ii) If due to the second clause, then sp.n = j. 

Then the test on line (4) is false and the 

action on line (5) is not performed. No 

change is made to the list, so both clauses 

of the invariant remain valid, and 

LISTSET(sp,n,next) = (LISTSET(sp0 ,n,next))
0

• 

From Corollary L.15, j ~ LISTSET(sp,n,next), so 

"LISTSET(sp,n,next) = (LISTSET(sp ,n,next)) U 
0 0 

[ J}" is valid. 

The final aspect of the proof involves proof of loop 

termination. The loop body consists of the single state-

ment "p 1= p.next" on line (3), and since "LIST(sp,next)" 

and "sp ~ p" are invariant within the loop, "LIST( p ,next)" 

is always true in the loop, so the conditions for Lemma L.24 

are met. By direct application of the lemma then, the 

loop is guaranteed to terminate. Thus, the program 

terminates. 

E. Issues raised by the example proof 

While the program is quite simple and the proof 

relatively straightforward, there are several instructive 

points raised by the proof above. First, despite the 
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simplicity of the program, as well as the use of a 

number of lemmas and corollaries developed earlier, the 

size of the proof is disconcertingly large. Unfortunately, 

proofs of programs tend to be quite a bit longer than one 

might hope. In fact, the length and complexity of the 

proofs, even of the simplest programs, has been the major 

obstacle in the way of building automatic program veri­

fication systems, a goal towards which much effort has 

been expended with rather disappointing results. In those 

systems which have been built, the theorem prover has 

turned out to be the weak link (see, for example [Kin69], 

~an?l] , etc.). 

B~cause of this size problem, it is helpful to the 

person proving programs to do everything possible to 

shorten and simplify the proofs. In fact, we could have 

significantly reduced the size of the above proof by a 

very simple technique. Consider Figure 4,4, which contains 

a flowchart of the example program. Notice that the 

loop assertion has been moved to a different control 

point, viz. before the loop termination test on line (2) 

rather than after 1t. 1 This change, though small on the 

1 This change of location would necessitate two changes 
to the loop assertion itself. The clause 
" ( sp~ p==> + null)" must be changed to 
" ( sp :;:. p ;>null)", and the last clause must be changed 
to "j t: SUBLISTSET(sp,p,n,next)". These two chani:i;es 
refl1ect the fact that the test on line ( 2) can no 
longer be assumed to have a true outcome. 



-98-

input assertion 

p 1= sp; 

loop 

true 

p 1= p.next; 

L_ _____ _ L----~ 

true 

p 1= intcell(j,sp); 

! output assertion • 

Figure 4.4 

Flowchart of example program 1 
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surface, has rather important repercussions. First, 

the number of v.c.'s is diminished from four to three. 

The fourth v.c.(d) in the original proof is no longer 

needed because the path from the input assertion to the 

output assertion now includes the loop assertion; v.c.(d) 

degenerates into the composition of v.c.'s (a) and (c). 

In addition, v.c.(c) is now simpler because the loop 

body is no longer part of its body. The improvement here 

is slight because the loop body consists of only one 

statement, line (J). However, in the general case, where 

the loop body is of substantial size, the change can be 

significant. 

Why did we not place the loop assertion at this 

control point originally? There are two reasons: one 

is that the change was not obvious when we were dealing 

with the program text. rt took the pictorial represen-

tation of the flowchart to make clear the benefit this 

change would bring. The other reason is that it is not 

immediately obvious where in the source text this particular 

control point represents. If we put the assertion between 

lines (1) and (2), it is not apparent that we intend this 

point to be part of the loop. 1 For both of these reasons, 

programs will henceforth be translated to flowchart form 
1The reason for this difficulty, of course, is purely due 

to the syntax of the source language. Deutsch[J)eu?jJ 
solved this problem by using a loop statement to 
mark the beginning of the loop, before the while 
statement, in his language. 
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before constructing and placing intermediate assertions. 

The next important point is that the loop assertion 

consists of the minimum information necessary for the 

proof, given the input and output assertions. Each 

clause of the loop assertion is used in v.c.(c), so that 

the validity of the output assertion could not be 

verified without all the information the loop assertion 

contains. (It might also be necessary, though it is not so 

here, for certain information to be included in the 1oop 

assertion so as to prove the continuing validity of other 

parts of the loop assertion itself, i.e. to prove v.c. (b).) 

Because of the lengthiness of the proofs, it is important 

that the intermediate assertions of a program contain no 

more information than is necessary for the proof. The 

introduction of a new clause in an intermediate assertion 

increases the size of the proof by adding that clause to 

what must be proved in at least two v.c.'s. 

Finally, it was necessary in the proof to constantly 

use statements like "Since 'LIST(sp,next)' is valid 

initially, and nothing in the body of source code changes 

either sp or any link in the list, it must still be valid." 

The problem with such statements is not any imprecision 

about them, but rather their wordiness. It makes more 

sense to have an additional lemma which states the same 

result, and which can be referred to whenever it is needed. 
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That is the reason for the followings 

Lemma L.25 (1) If "LIST(p,next)" is valid before 

a body of code is executed, and if no assign-

ment is made in that body of code to either p, 

or to any expression equivalent1 to q.next, 

for some q such that "pnext) q" is also valid 

initially, then "LIST(p,next) is true after 

execution of the code. 

(ii) If "pnext j r" is valid before a 

body of code is executed, and if no assignment 

is made in that body of code to either p, or 

to any expression equivalent to q,next, for 

some q such that pnext > qnext + r 1ni t1ally, 
next 

then "p > r" is true after execution of 

the body of code. 

(111) 
next 

If "LIST(p,next)" and "p ) r" 

are valid before a body of code 1s executed, and 

if no assignment is made in that body of code to 

either p, or to any expression equivalent to q,sel or 
next next q .next, for some q such that p > q ) + r 

initially, then the values of 

SUBLISTSET(p,r,sel,next) and 

SUBLISTSEQ(p,r,sel,next) are left unchanged by 

the execution of the body of code, 
111 Equi valent" here means "equal in L-v:-a_l_u_e_'_' -(-1-.-e-.-a-d_d_r_e_s_s_) __ 

as opposed to "equal in R-value"-the "=" relation. 
That is, the "next" component of some record is updated, 
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F. Second example proof~List reversal 

The second example is slightly more complicated than 

the first, due to a number of factors. For one thing, 

the program involves changing link values in the list, 

something which the first program did not do, For this 

reason, it provides a more stringent test of the formalism. 

It also performs a more complicated operation~reversing 

a list. This means that the abstraet operation which 

the computation corresponds to is one on sequences, 

which are more complicated than sets, Finally, it involves 

manipulations on two different list structures simulta-

neously in the course of its operation. 

Since the program corresponds to the abstract operation 

of sequence reversal, a suitable formal definition of 

this operation is required. The definition can be 

constructed using the primitive operations on sequences~ 

first, final, last, initial, and concat~as axiomatized 

by Hoare [Jloa72~ and repeated in Appendix A1 

reverse(s) = if s = [] then [] 

else concat( [last( s )] ,reverse( ini tia.l( s))), 

The abstract operation "reverse" can now be used in 

assertions and manipulated in accordance with the above 

definition, This technique of defining new abstract 

operations in terms of the primitives available, and 
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then using the new operations to express results of 

computational manipulations, is an important and power­

ful technique in our repertoire. 

The program appears in Figure 4.5, with its ante­

cedent and consequent stated. The corresponding flowchart, 

with the intermediate assertion attached, is in Figure 4.6. 

Figure 4.7 illustrates the intermediate state of the 

computation at the end of a loop iteration at line (8). 

The list of records referenced by lp has been reversed, 

while those referenced by mp (and also rp) are unchanged. 

A single loop iteration takes one additional record from 

the head of the "unchanged" listand places it at the 

head of the "reversed" list. The loop terminates when 

the unchanged list has been exhausted. 

No matter how general the rule, there will always 

be exceptions1 having just demonstrated that the number 

of verification conditions for a single-loop program can 

be reduced from four to three by judicious placement of 

the loop assertion, I now locate the loop assertion so 

as to require four v.c.'s, Why? 

The reason is that the loop assertion itself would 

have to be made more complex in order to locate it at 

its "optimal" (in terms of number of v.c.'s) location, 

just before the loop termination test on line (2). 

The difference between the "optimal" and actual placements 
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procedure intlist_reverse(p); 
comment program invariant is "LIST(p,next)"; 
record class 1ntcell(n integer; next ref(intcell)); 
declare p,lp,mp,rp ref(intcell)); 
begin ~-

comment assert "LIST(p,next)"; 
(1) mp := p; 
(2) until mp= null do 
(3) begin 
(4) rp 1= mp.next; 
(5) mp.next 1= lp; 
(6) lp 1= mp; 
(7) mp 1= rp; 
(8) end; 
(9) p 1= lp; 

comment assert "LIST(p,next) and 
LISTSEQ(p,n,next) = reverse((LISTSEQ(p0 ,n,next))

0
)"; 

end 1ntl1st_reverse; 

Fip;ure 4.5 

Example program 2 
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input assertion 

mp := p; 

. ----~---·--------- -~·-1 

false 

~
; := mp, next; 

mp.next := lp; 
lp := mp; 
mp 1= rp; 

L----i 
loop ass er_t_i_o_n __ _J 

p = = lp, I 
l output assertion 

assertions "LIST(p,next) and IIST(mp,next) and 
mp= (lp.next)

0 
and ~-

LISTSEQ(mp,n,next) = (IISTSEQ(mp,n,next))
0 

and 
LISTSEQ(lp,n,next) = 

reverse((SUBLISTSEQ(p,lp.next
0

,n,next))
0

)" 

Figure 4.6 

Flowchart of example program 2 
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is simply that the loop assertion reflects at least one 

execution of the loop body, Otherwise, the two locations 

are identical. In order for the loop assertion to fit 

the optimal location, it would also have to apply to the 

case of no previous iterations; this change would require 

a long, two-case expression which would complicate the 

proof of the v.c. whose body is one loop iteration. For 

this reason, the goal of overall proof simplicity is best 

met by the location for the assertion given in the flow­

chart. It should be noted that locating the assertion 

at the end of the loop body rather than the beginning 

does simplify the v.c. whose path is between the loop 

assertion and the output assertion, just as the optimal 

location would have done. Also, the additional v.c. 

required by this placement is quite simple, since it 

covers the trivial case of a zero-element (i.e. null) list, 

We must thus prove four verification conditions, 

with paths analagous to those for the first example 

program. 

(a) The first v.c. has the input assertion as its 

initial assertion, lines (1) through (7) as its body, 

and the loop assertion as its final assertion. The 

loop body contains five clauses to be proved: 

(i) The effect of the body on variable lp is to 

assign to it the value of mp on line (6). 
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From line (1), mp is given the value of p, 

i.e. a reference to the first record in the list 

referenced by p (note "I.IST(p,next)" in the input 

assertion, and the false outcome of the test 

on line (2) ensures that p ~null), Iine (5) 

assigns to mp.next the value of lp, which by 

default is null. So after line (7), the first 

time through the loop, lp.n = p.n and 

lp.next =null. From this,"LIST(lp,next)" 

follows directly from its definition, 

(ii) Similarly, "IISTSEQ(lp,n,next) = 

reverse(SUBLISTSEQ(p,lp,next0 ,n,next) 0 )" is 

immediately true from the definitions of "reverse" 

and SUBIISTSEQ, and the fact that lp = p. 

(iii) Line (7) assigns to mp the value of rp, 

which by lines (1) and (4) is (p,next) 0 • This 

is well-defined, since "LIST(p,next)" is in the 

input assertion, and p ~ null by the test on 

line (2). Since no action is performed on 

any records in the list beyond thefirst one, 

Le. by Lemma L,25, "LIST(mp,next)" remains 

valid. (It is initially valid, of course, 

since "LIST(p,next)" is in the input assertion 

and by Corollary L.4.) 

(iv) Similarly, "LISTSEQ(mp,n,next) = 
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(1ISTSEQ(mp,n,next))
0

" is valid by Lemma I .25. 

(v) Since the final value of lp is p0 , as explained 

in (i), and that of mp is (p.next) , as exaplained 
0 

in (iii), "mp= (lp.next)
0

" is valid. 

(b) The second v.c. has the loop assertion as both 

initial and final assertion, and lines (2) through (7) 

as body of code. Again, there are five clauses to prove: 

(i) From lines (5) and (6), the value of lp.next 

is "lpi"• the value of lp initial to the v.c. 

Since "LIST(lp,next)" is valid initially, 

"LIST(lp,next)" follows directly from 

Definition I.1 and Theorem 1.3. 

(ii) By Corollary r .• 17, 

lp.n = last((SUBLISTSEQ(p,lp.next 0 ,n,next)) 0 ). 

(Note that from the initial validity of 

"LISTSEQ(mp,n,next) = (I.ISTSEQ(mp,n,next))
0
", 

this value has not been changed.) By the same 

corollary, (SUBLISTSEQ(p,lp,n,next)) = 
0 

initial((SUBLISTSEQ(p,lp.next 0 ,n,next))
0

). 

By Definition L.7, it is clear that 

LISTSEQ(lp,n,next) = 

concat( [lp.n] , LISTSEQ.( lp.next,n,next)). 

Since lp.next = lpi, the initial validity of 

the loop assertion says that 
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LISTSEQ(lp.next,n,next) = LISTSEQ(lp1 ,n,next) 

= reverse((SUBLISTSEQ(p,lp
1

.next ,n,next)) ) 
0 0 

= reverse((SUBLISTSEQ(p,lp,n,next)) 0 ). 

Thus, the statement above, 

"LISTSEQ(lp,n,next) = 
conca t ( [lp. n] , LISTSEQ ( lp. next, n, next)) 11 

becomes 

"LISTSEQ(lp,n,next) = concat( [last(S~, 

reverse(init1al(S)))" 

where S = (SUBLISTSEQ(p,lp.next 0 ,n,next)) 0 • 

But th1s 1s just the definition of "reverse," 

so that "LISTSEQ(lp,n,next) = 
reverse((SUBLISTSEQ(p,lp.next

0
,n,next)) 0 )" 

is verified. 

(iii) From lines (4) and (7), the new value of mp 

1s mpi.next, where "mpi" is its value initial 

to this v.c. S1nce "LIST(mp,next)" is true 

initially, 1t must be true finally by 

Corollary L.4 and Lemma L.25. 

(1v) Also by Lemma 1.25, 

''LISTSEQ (mp, n, next) = ( LISTSEQ (mp, n, next) ) " 
0 

must remain valid. 

(v) By 11ne (6), lp = mp1 and from (111) above, 

mp= mpi,next, so that "lp • (mp,next)l" 1s 

olearly valid, S1noe "LISTSEQ(mp,n,next) = 
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(LISTSEQ(mp,n,next)) " is valid initially, 
0 

(mp.next)i must equal (mp.next) 0 , so that 

"lp = (mp.next)
0

" is verified, 

(c) The third v.c. takes the loop assertion as 

its initial assertion, the true test on line (2) followed 

by line (9) as its body, and the output assertion as its 

final assertion, There are two clauses to be proved: 

(i) "LIST(p,next)" follows directly from the 

assignment "p := lp" on line (9) and the 

inclusion of "LIST(lp,next)" in the loop 

assertion. 

(ii) From the true outcome on line ( 2), mp = null. 

By the loop assertion, this means that 

(lp.next)
0 

= null, so again by the loop 

assertion, 

LISTSEQ{lp,n,next) = 
reverse((SUBLISTSEQ(p

0
,null,n,next)) ) = 

- 0 

reverse((LISTSEQ(p ,n,next)) ) 
0 0 

by Corollary L.11. Since p = lp from line (9), 

this verifies that "LISTSEQ(p,n,next) = 
reverse((LISTSEQ(p ,n,next)) )", 

0 0 

(d) The fourth v,c, concerns the special cae of no 

loop iterations. Its initial and final assertions are 

t.he program's input and output assertions, respectively, 
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and its body of code cons is ts of lines ( 1) , ( 2) (with a. 

true outcome), and (9). The true outcome means that 

mp= null, which from line (1) means that p0 =null. 

Then (LISTSEQ(p
0

,n,next))
0 

= [] ,the empty sequence, 

by definition of IISTSEQ. The assignment on line (9) 

assigns to p the value of lp, which is null by default. 

So "LIST(p,next)" follows trivially, as does 

"LISTSEQ(p,n,next) = reverse((LISTSEQ(p
0

,n,next)) )", 
0 

since [ J = reverse ( [ J ) by the definition of "reverse". 

By clause (iii} in the proof of v.c.(b), each 

iteration of the loop assigns to mp the old value of 

mp.next. Since "LIST(mp,next)" is valid throughout 

the loop, Lemma I.24 can be used to establish the termi-

nation of the loop, and thus of the program. 

Again, notice that the loop assertion is minimal. 

Each clause in the assertion is required either for the 

proof of the output assertion in v.c.(c), or else for 

the proof of the continuing validity of other clauses 

in the loop assertion in v.c.(b}. 

Before leaving this example, I would like to extend 

a word of acknowledgement to Doug Mcilroy. In a talk 

he gave at Project MAC on "What Makes Programs Intelligible", 

he used this basic program to illustrate the benefit of 

allowing parallel assignment in programming langua~es. 

After hearing his talk, I decided that this would be an 

interesting program to prove. 
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G. Third example proof~Insertion sort 

Both of the first two example programs had the 

standard single-loop control structure. That is, they 

were each composed of an initialization section, a main 

section which was a loop driven by a variable iterating 

over consecutive records in a list, and a final (possibly 

empty) "clean-up" section. This is a natural control 

structure to employ for many operations on lists, and 

in fact is, the one most commonly used for such applications. 

Some operations require more complicated control struc­

tures, however, and proofs of programs with these more 

complex structures illustrate some ideas which the simpler 

flow of control does not bring out. The final example 

is chosen with this in mind, 

The program is listed in Figure 4.8. Its purpose 

is to sort the elements of a list into increasing order 

of a particular component. The sorting method used is 

an insertion sort. That is, the program handles two lists, 

the unsorted input list and the sorted output list. Records 

are detached from the input list one by one, and inserted 

into the output list in the correct position to maintain 

the sorted order. Two loops are required in the program: 

the outer loop iterates over the records in the input 

list, and the inner loop iterates over the records thus 

far in the outnut list until the proper place for the 
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procedure intlist_sort(sp); 
comment program invariant is "LIST(sp,next)" 
record class 1ntcell(n integer; next ref (intcell)); 
declare sp,p,op,np ref(intcell); 
begin ~-

comment assert "LIST(sp,next)"; 
p 1= sp.next; 
sp.next := null; 
until p = null do 

begin-
op := sp; 
if p.n < sp.n 

begin 
then -

sp 1= p; 
p := p.next; 
sp.next 1= op; 
end; 

else 'begin 

end; 

np 1= sp.next; 
until (np = null ~ np.n ~ p.n) do begi_n __ 

op s= np; 
np := np,next; 
end; 

op.next -;;;-Pl 
p 1= p,next; 
op.next.next s= np; 
end; 

comment assert "LIST(sp,next) and 
( sp=*q~+ r~+ null :::::> q:IlL. r,n) and 
LISTSET(sp,n,nextr-;;-(LISTSETTsp

0
,n,next)) "; 

end 1ntlist_sort; 0 

Figure 4,8 

Example program 3 
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input ass.ertion 
~P~-,=~s~p~.-n_e_x~ 

sp,next s= ~~ 

-------·-----·----- ----- --·--1 
outer loop assertion 

output assertion 

np 

inner loop 
assertion 

np 

[

op.nex 1= p; -
p s= p,next; 
op, next. next _' = 

np; 

op 1= np; 

1= np,next~ J 

false 

op 1= sp; 

true 

sp := p; 
p s= p,next; 

sp,next 1= op; 

I - --c-=-~=- ------ .. -. ------------- -> _J 
outer loop assertions "LIST(sp,next) and LIST(p,next) and 

(sp~ ~+ r==i;)+ null ::::> q,n < r.n) and 
LISTSET(sp,'n,next) U LISTSET(p,n,next) = 

(LISTSET(sp
0

,n,next) ) 0 '' 

inner loop assertions 
(p # null) 

"(outer loop assertion) 
and ( sp~ op.-,:. np) and 

Figure 4.9 

Flowchart of example program 3 

and 
TP:"" n > op. n) " 
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insertion is found, The flowchart in Figure 4.9 illustrates 

the control structure of the program, and contains both 

of the intermediate assertions required, 

Notice that there are two possible paths through 

the body of the outer loop, depending upon the outcome 

of the test on line (6). With a true outcome, lines (7) 

through (11) are executed. If the outcome is fals~, the 

alternative action is lines (12) through (22), including 

an unspecified number of iterations through the loop of 

lines (14) through (18). In the first example program, 

there was a conditional statement, but we did not employ 

a seuarate verification condition for each outcome due 

to its simplicity. Instead, the proof was handled in a 

single v.c. which was proved by cases, This situation 

is more complex, though, so separate v,c.'s are used, 

There are thus six verification conditions, as indicated 

the following tables 

~ initial assertion bod~ final assertion 

(a) input (1)-(2) outer loop 

( b) outer loop (3)-(11) outer loop 

( c) outer loop (3)-(6), inner loop 
(12)-(13) 

( d) inner loop (14)-(18) inner loop 

( e ) inner loop ( 14) , outer loop 
(19)-(22) 

( f) outer loop ( 3) output 

by 
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This illustrates the tremendous benefit obtainable 

by judicious location of intermediate assertions. Place­

ment of both loop assertions after their corresponding 

tests, rather than before, would cause an increase in 

the number of v.c.'s from six to ten, as well as more 

complicated bodies for some v.c.'s, The proof then 

involves proving the six v.c.'s1 

(a) The body of this v,c, consists simply of the 

two statements, lines (1) and (2). From their action, 

p = (sp0 .next} 0 and sp.next = null. There are four 

clauses in the outer loop assertion: 

(i) "LIST(sp,next)" follows directly from the 

definition of LIST. 

(ii) "LIST(p,next)" follows directly from the fact 

that p = (sp
0

.next) 0 and the initial validity 

of "LIST(sp,next)" using corollary L.4 and 

Lemma L.25. 

(iii) "(sp~ q~ + r~+ null :>q.n < r.n)" is 

valid trivially. Since sp.next = null, 

there exist no q and r which satisfy the 

hypothesis of the implication. 

(iv) LISTSET(sp,n,next) U LISTSET(p,n,next) = 

[sp0 .n} U LISTSET(sp
0

.next0 ,n,next) = 
(LISTSET(sp0 ,n,next})

0 

directly from the definition of LISTSET. 
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(b) This v,c, covers the case that the test on 

line (6) has a true outcome, so that lines (7) through 

(11) are executed and control loops back to the point 

where the outer loop assertion is located, The executed 

statements of the body are the test on line (3), the 

assignment on line (5), the test on line (6), and the 

assignment statements on lines (8), (9), and (10), 

There are four clauses in the outer loop assertion to 

be proved: 

(i) The final value of sp is pi' from line (8), 

Line (10) assigns to sp,next the value of op, 

which is spi by line (5), Since "LIST(sp,next)" 

is valid initially, sp,next references a 

list, so by Definition L.1 and Theorem 1.3, 

"LIST(sp,next)" is valid finally, 

(ii) The sole statement affecting pis line (9), 

assigning top the value of pi.next. By the 

test on line (J), pi~ null, so the result is 

well-defined, and by Corollary L.4, 

"LIST(p,next)" ls valid. 

(ill) If "sp=? q=====*+ r==9+ null", then one of two 

things must be true of the record referenced 

by q: either it was in the initial list, or 

it was the record added to the list by line (10), 

1,e, it was initially referenced by p1 • If 
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the former, then for any reference r such that 

q==;}+ r, this was also true initially, so that 

q.n ~ r.n by the initial validity of this clause. 

If the latter, then by the test on line (6), 

q.n L spi .n, and by the transitivity of "~", 

this means that for any r such that q~+ r, 

q.n ~ r.n. In either case, then, the validity 

of "(sp~ q~ r:::::::ap+ null J> q.n ~ r.n)" is 

maintained. 

(iv) Since sp.next = sp1 , it follows from the 

definition of LISTSET that the final value of 

LISTSET(sp,n,next) is simply its initial value 

augmented by the new value of sp.n, which is 

pi.n. Since p =pi.next, on the other hand, 

the final value of LISTSET(p,n,next) is 

simply its initial value with the (possible) 

removal of pi.n (the value is not removed if 

it is duplicated in the list). In any case, 

the value of LISTSET(sp,n,next) U 

LISTSET(p,n,next) is unchanged, so 

"LISTSET(sp,n,next) U LISTSET(p,n,next) = 

(LISTSET(sp
0

,n,next))
0

" remains valid. 

(c) The only assignment statements in the body of 

this v.c. are those on lines (5) and (13). The first of 
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these is sandwiched between two tests with false outcomes, 

on lines (3) and (6). 

(i) "LIST(sp,next)" and 

(ii) "LIST(p,next)" and 

(iii) "(sp~ q=*+ r~+ ~:;) q.n < r.n)" and 

(iv) "LISTSET(sp,n,next) U LISTSET(p,n,next) = 

(LISTSET(sp
0

,n,next))
0

" 

are all valid finally because they are valid 

initially, and neither assignment in the body 

affects either list, so by Lemma L.25. 

(v) "p i null" is valid by the test on line ( J). 

(vi) From line (5), op= sp and from line (13), 

np = sp.next, so "sp==:> op~ np" follows directly 

from the definitions. 

(vii) Since op = sp, the test on line (6) ensures 

the validity of "p.n > op.n". 

(d) The body of this v.c. is simply the test on 

line (14) and the two assignment statements on lines (16) 

and ( 17). 

(1) "LIST(sp,next)" and 

(1i) "LIST(p,next)" and 

(111) "(sp~ q~+ r==;>+ null~ q.n.£ r.n)" and 

(iv) "LISTSET(sp,n,next) U LISTSET(p,n,next) = 
and 
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(v) "p i null" 

are again all valid because of their initial 

validity, and by Lemma 1.25, 

(vi) From line (16), op= npi, while from line (17), 

np = npi.next. (By the test on line (14), 

npi i null, so this is well-defined.) So 

op-+ np, and since sp~npi from the initial 

validity of this clause, the final validity of 

"sp=;) op4 np" is verified. 

(vii) Since op= npi' the test on line (14) 

ensures the validity of "p.n :> op.n". 

(e) The body of this v.c. consists of a true 

outcome on line (14), and the assignments on lines (19), 

(20), and (21), There are four clauses to be proved, 

(i) Since "LIST(sp,next)" and "sp~ op.-+- np" are 

valid initially, np references a list, by 

Corollary L.4. Since by line (21), 

op.next.next = np, this means that op.next.next 

references a list, so op.next references a list, 

and so op references a list (all by Definition 

L.1). Finally, since sp~ op, this means 

that sp references a list, so "LIST(sp,next)" 

is valid. 
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(ii) Since "LIST(p,next)" and "p :f. null" are valid 

initially, the effect of line (20) leaves 

"LIST(p,next)" valid, 

(iii) Initially, op.next = np, so since sp=;> op, 

initially LISTSET(sp,n,next) = 
SUBLISTSET(sp,np,n,next) U LISTSET(np,n,next) 

by Corollaries L,12 and L.10. The effect 

of line (19) is to assign to op.next the value 

of pi' but line (21) assigns to pi.next the 

value of np, so 

SUBLISTSET(sp,np,n,next) = {pi,nJ U 

(SUBLISTSET(sp,np,n,next))i, 

i,e, its initial value augmented by the new 

element pi,n' The value of LISTSET(np,n,next} 

is unchanged, by Lemma L,25, So, the value 

of LIS'rSET(sp,n,next), which is the union of 

these two, is its old value augmented by the 

new element p1 .n. On the other hand, pis 

assigned the value of pi.next by line (20), 

so the value of LISTSET(p,n,next) is its initial 

value, with the (possible) removal of pi.n' 

(As in v.c.(b), the value is not removed if 

it is duplicated in the list.) The value of 

LISTSET(sp,n,next) U LISTSET(p,n,next) is 

thus unchanged, and so the validity of 
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"LISTSET(sp,n,next) U LISTSET(p,n,next) = 
(LISTSET(sp

0
,n,next))

0
" 

is preserved. 

(iv) If 11 
( sp==.> q~+ r=?>+ null)" is true, then 

either one of q and r is equal to pi, or neither 

is, If neither, then q.n ~ r.n by the initial 

validity of the inner loop assertion. If q 

is equal to pi' then q.n ~ np.n by the test on 

line (14) (note that np ~null if such an r 

exists), so since q~ np (see (iii) above), 

np~r. By the initial assertion, np.n-=_ r.n, 

so by transitivity, q.n-::: r.n. If it is r 

that equals pi, then by completely analagous 

reasoning (using the initial validity of 

"p,n > op,n" instead of the test on line ( 14)), 

q.n ~ r.n can be proved, Thus, 

"(sp~ q~+ r=9+ null .J q.n ~ r.n)" ls 

verified. 

( f) The "body" of this v, c. is simply the true 

outcome of the test on line (3). There are three clauses 

in the output assertion to prove: 

(1) "LIST(sp,next)" and 

(ii) "(sp=9 q===;.+ r=;>+ null .-:::> q.n ~ r.n)" 

are valid because they are in the initial 

assertion of the v.c, 



-124-

(iii) Since p =null by the test on line (3), 

LISTSET(p,n,next) = ¢, by the definition of 

LISTSET. Thus, the initial validity of 

"LISTSET(sp,n,next) U LISTSET(p,n,next) = 
(LISTSET(sp

0
,n,next))

0
" 

directly implies the final validity of 

"LISTSET(sp,n,next) = (LISTSET(sp
0

,n,next))
0
". 

Two loops must be tested for termination. The inner 

loop terminates because line (17) assigns to np the old 

value of np.next, and "LIST(sp,next)" and "sp~np" 

are invariant within the loop, so "LIST(np,next)" is 

true within the loop, and the conditions for Lemma L.24 

are met. For the outer loop, each iteration assigns to 

p the old value of p.next, either on line (9) or line (20), 

and again "LIST(p,next)" is true throughout. Thus, 

Iemma L.24 can again be used to prove its termination. 

Since both loops terminate, the program is guaranteed 

to terminate. 
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Chapter 5 

CONCLUSIONS 

The process we went through in Chapter 4 is a good 

example application of the approach described in Chapter J. 

The first step was to isolate a specific class of data 

structures~in this case, singly-linked lists~and to 

define the class precisely in an invariant. From the 

definition, we were able to immediately deduce some 

useful corollaries. We then defined some representation 

functions, mapping elements of the structural class to 

sets and sequences in a fairly obvious way. The function 

definitions led to several more potentially useful 

corollary results. We had now arrived at a point where 

we could analyze how various types of source-language 

statements might affect the validity of the class invariant 

and the values of the representation functions. These 

results were embodied in a series of lemmas, along with 

an important result concerning loop termination. With 

this logical foundation, we were then able to prove the 

correctness of three programs which operate on structures 

from the class. In doing so, we realized the need for 

one more type of lemma~one which covers all those cases 

which have no effect at all on the invariant and represen-
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tation functions. 

The two people whose work has most influenced my 

approach are Hoare and Burstall. Hoare has done so much 

in the area of verification that it is doubtful whether 

a work such as mine could exist at all without him. 

He was the first to systematically analyze the semantics 

of source languages with relation to verification[Hoa69]. 

His axioms are both the historical predecessors of my 

verification lemmas and the logical foundation upon which 

the lemmas rest (and by which they can be proved, as in 

Appendix B). The concepts of the "invariant" and the 

"representation function" both originated with him ([Fol 71] 

and (Hoa72~ respectively). His axiomatizations of 

abstract data classes lHoa728.] are an important basis 

for the use of representation functions. 

Burs tall' s work on LISP-type lists fBur?2a] is the 

single closest approach to mine. Working with a specific 

subclass of Lists, Burstall introduced a notation for 

"connection" somewhat similar to what I use, and stated 

a series of axioms analagous to my "verification lemmas". 

His concepts were narrower in scope than mine, since his 

domain of interest was more restricted, but it is not 

hard to see how they could be generalized to anply to 

larger classes of structures. 
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Having acknowledged these debts, I still feel that 

the approach presented in this thesis represents a new 

and valuable method for handling data structures in 

proving the correctness of programs. The major benefit 

of the work is in the area of data characterization 

rather than proof technique itself. That is, while the 

verification lemmas help ease the task of actually proving 

the verification conditions, they are not essential. The 

same programs could be proved correct without them, 

using basic axioms like those of Hoare and by resorting 

directly to the definitions of the invariant and the 

representation functions. While the proofs would be 

considerably more difficult and detailed, they would still 

be manageable. 

Without the descriptive mechanisms I have introduced, 

however, it is difficult to see how the assertions for 

these programs could be expressed. Consider, for instance, 

the third example program of Chapter 4, which performs 

an insertion sort on a list. I know of no suitably 

formal method for stating the output condition of this 

program~that the output list is a sorted version of the 

input list~without using notation such as mine. The 

intermediate assertions would be even more difficult to 

express. 
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What has held back work on verifying programs which 

operate on data structures up to now has been a lack of 

tools for describing structures. Because a structure 

is so much bigger and more complex than a single variable, 

and because its exact size and form may not be precisely 

known to a program which operates on it, new problems 

arise in terms of characterizing it. In particular, 

characterizing structures requires two capabilities 

additional to those used for elementary data. Unlike 

the simple variable, which is regarded as unitary and 

undecomposable, the data structure must in part be viewed 

in terms of its internal structure. On the other hand, 

a structure must sometimes be considered not only as a 

single object, but as merely the concrete embodiment of 

a data abstraction. By recognizing these two almost 

opposite needs, and combining them together with the 

practical requirements of correctness proofs, my approach 

represents an important step toward a total system for 

handling data structures in proofs of correctness. 

B. Relation to structured programming 

Dijkstra [Di j72] and Hoare [Hoa72a] have been amonp; 

the leading proponents of "structured programming" as 

a design tool for writing programs. Under the regimen 

of structured programming, the programmer first constructs 
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his program at a very high level of abstraction; i,e,, 

operations and data are expressed only as abstract concents, 

The program is then refined by successively specifying 

these concepts in terms of lower-level constructs, some 

of which may themselves be abstractions which must subse­

quently be specified, The process ends when all constructs 

in the program are expressed in terms of features in the 

source language, 

Both Dijkstra and Hoare advocate the practice of 

creating a program and its proof simultaneously, arguing 

that each task is made easier by performing it along with 

the other, My approach to proving correctness is 

particularly well-suited to use in conjunction with 

structured programming. My two major concepts of 

"invariants" and "representation functions" both corre­

spond to important ideas in structured programming. 

The invariant of a structure is the lower-level speci­

fication of a complex abstract data object, The 

representation function is the mapping from the object 

at a lower level of abstraction to the abstract object 

at a higher level which it represents. 

Thus, for instance, the assertions of a program 

can be constructed at a point where the program's data 

and the basic operations on that data are specified as 
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abstractions. The actual abstraction can then be formed 

by substituting for each abstract data object the repre­

sentation function mapping the data structure in the 

source-language program into that abstraction; the 

specification of each structure at the lower level 1s 

then added as its invariant to complete the assertion. 

This simplifies the task of constructing assertions, 

since at the higher level of abstraction the operation 

of the pro~ram is clearer, and thus the assertions are 

easier to create. 

c. Further research 

The approach toward handling data structures which 

this thesis describes and illustrates is intended to be 

of general applicability. Its use should not be limited 

to data structures similar to lists, nor to source languages 

resembling the one used here. Yet much of this is pure 

speculation, as I have had a chance to try out the 

approach on a few classes of structures only. 

A more complex class of structures than lists will 

require greater complexity in the class invariant and 

the representation functions, and consequently a larger 

number of corollaries and lemmas to create a really 

effective formalism. In particular, the greater the 

number of reference components per record, and the more 
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invariant relations between these components, the 

greater will be the complexity required. (In fact, 

these two factors could serve as reliable metrics for 

the complexity of a structural class.) The class of 

"family trees" introduced in Chapter 2 and defined 

(in an invariant) in Chapter J, for instance, requires 

a quite extensive treatment. Whether the concepts I 

introduce here are adequate for even more complex 

structural classes is an issue to be examined. 

The situation is similar with respect to other 

source languages. As noted in Chapter 2, the language 

used here was designed to incorporate a good deal of 

static type- and component-checking. Use of a language 

like PL/I, in which such checking is considerably 

weaker, would create a greater burden on the assertions 

and on the proofs. Whether an approach such as mine is 

adequate for such a language remains to be seen. It 

seems that several new primitives would be required at 

least, to characterize such properties as "component­

existence." A language like LISP has its own special 

aspects, of course, which would have to be handled 

specially. 

As this discussion indicates, the example of Chapter 4 

represents something like the minimum in inherent 

complexity for an application of my approach. Use of 
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other source languages and less simple structural classes 

requires that much more detail. This complexity can 

be limited, however. 

A variation which I feel has strong possibilities 

is to generalize one full level. Instead of proving 

lemmas about a single inva.riant, it should be possible 

to prove "meta-lemmas" which are valid for any invariant 

in a broad class. That is, the validity of a certain 

kind of lemma may hinge on one or two particular pro­

perties of the class invariant; any invariant for which 

those properties hold will admit such a lemma. 

The lemmas in Chapter 4 for lists, for example, could 

easily be generalized to cover any structural class 

(such as binary trees) which is recursively defined and 

which prohibits shared substructures. Embodying such 

results in meta-lemmas would make them available for 

any structural class so defined. 

Ideas such as this can carry the approach of this 

thesis forward to the point where any program can be 

quickly and precisely verified. Perhaps then, verifi­

cation will become a routine part of program construction; 

error-free programs will finally then become the norm. 
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APPENDIX A 

AXIO!ViA'I'IZATION OF SEQUENCE OPERATIONS 

Hoare' s paper "Notes on Data Structuring" [Hoa?2a] 

describes and axiomatizes several abstract data classes. 

Since representRtion functions have been defined in the 

thesis to yield only sets and sequences, we need axiomatize 

only these two classes, Set theory is well enough 

established that its results need not be explicitly 

stated but instead can simply be referred to as needed. 

Since this is not the case for sequences, however, this 

axiomatization is needed, 

The basic operation on sequences is concatenation, 

which is performed by the binary prefix operator "concat", 

It is taken as basic, and is not axiomatized beyond the 

fact that it is associative. The basic operators for 

breaking down a sequence into its component parts are 

the unary prefix operators "first" and "last", which 

yield the first and last items of a non-empty sequence, 

respectively, and "initial" and "final", which remove 

the last or first item of a non-empty sequence, respec­

tively. The domain of sequences is defined in terms of 

an element domain D, with representative member d, As 

noted previously, " [] " signifies the empty sequence, and 

"[d] " signifies the sequence with single element d. 
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The class of sequences S with elements from domain D 

is defined: 

(1) [J is an element of s. 

(2) If s is an element of Sand d is an element 

of D, then concat(s, [d] ) is an element 

of s. 

(3) The only elements of Sare as specified 

in (1) and (2) above. 

The operations on sequences can then be axiomatizeds 

(4) concat(x,concat(y,z)) = concat(concat(x,y),z)). 

(5) last(concat(s, [d] )) = d. 

(6) initial(concat(s, [d] )) = s. 

( 7) first( [d] ) = d. 

( 8) s :I [] :::> first(concat(s, Ld] ) ) = 
first(s). 

( 9) final ( [ d J ) = []. 

(10) s :I [ J :J final(concat(s, [d] )) = 

concat(final(s), [d] ) ) • 

(11) last, initial, first, and final are not 

defined for [ J. 
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APPENDIX B 

PROOF OF LF.MJYLA L, 19 

Lemma L.19 in Chapter 4 expresses the result of a 

statement in the source language which updates the value 

of a link component in a record which is part of a list, 

That is, it states the result of the statement 

"q,next := expr", where "expr" is any expression other 

than a record-creation expression, given the precondition 
next next 

that "LIST(p,next) and (p q ) + null)" is true, 

Th lt i d is that "pnext " i till t e resu , n wor s, ==~ q s s rue; 

th t f next if d 1 if next~ a or any r, q + r an on y expr ,, r; 

that p still references a list if and only if expr 

references a list not containing q; and that if p still 

references a list, it is the adjoinin~ of the original 

sublist from p to q inclusive, with the list referenced 

by expr, so that the values of the representation 

functions are the union and concatenation, respectively, 

of the functions for these two sublists, 

This result can be proved formally using the axioms 

and rules of inference of Hoare [Hoa69J, What will be 

proved here is actually just a part of the lemma; the 

conditions under which "LIST(p,next)" is claimed to 

be preserved will be assumed true, and the result will 

then be proved for that case, To complete the proof of 
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the lemma, it would be necessary to show that if either 

"IIST(expr,next)" were false or "exprnext, q" were true, 

then "LIST(p,next)" is not preserved. (It would also 

be necessary to show that the other clauses in the 

postcondition still followed, but these are all either 

totally independent of the "LIST(p,next)" result, such 
next 

as that "p } q" is preserved; or else trivial without 

the truth of "LIST(p,next)"-the clause for the values 

of the representation functions is true if "LIST(p,next)" 

is false because the left-hand-side of the implication 

then becomes false,making the implication true.) 

Proving that "LIST(p,next)" is not preserved under either 

of these conditions is quite uninteresting and totally 

obvious. Proving the case for which "LIST(p,next)" is 

preserved, however, is interesting, since it shows how 

general axioms like those of Hoare can be used to prove 

the more specific and more immediately useful result 

embodied in a verification lemma. 

The result to be proved, then, is '' P f Q J R" 

where the precondition 

[LIST(p,next) and 

LIST(expr,next) 

P is the followings 
next next 

(p= ) q )+null) and 

next ] and not(expr > q) 

the code Q is the statement "q.next 1= expr", 

and the postcondition R is the followings 
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r, ( t) d ( Pnext" q) and l_J,I ST p, nex an ;:o-

( 
next 

q + r iff exprnext> r) and 

( 
next . 

q + r ::J 

SUBLISTSET(p,r,sel,next) = 
(SUBLISTSET(p,q.next,sel,next))i U 

(SUBLISTSET(expr,r,sel,next)) 1 and 

SUBLISTSEQ(p,r,sel,next) = 
concat((SUBLISTSEQ(p,q.next,sel,next))i' 

(SUBLISTSEQ(expr,r,sel,next))i))] 

By Hoare' s Rules of Consequence, '' P [ Q S R" can be 

,, S 5Q1,. T " proved by proving some l ) such that p :> s and 

T ":JR. Furthermore, Hoare' s Axiom of Assignment guarantees 

l't q. next 5 Q <. A " the validity of Aexpr L ) for any assertion A, 
x 

where Ae represents the result of substituting e for all 

free occurrences of x in A. (Intuitively, what this 

axiom says is that any assertion which can be made about 

11 expr" before the assignment can be made about "q.next" 

after the assignment.) 

So, the proof can be accomplished by finding a T 

h that T d q.next Tq.next sue ~ R an P.:J Texpr , since expr will serve 

as an acceptable S for use with the Rules of Consequence. 

Let T be the followings 
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iff 
next expr ) r) and 

and 
next _ 

not ( q. next ~ q) 

SUBLISTSET(p,q.next ,sel,next) = 

and 

(SUBLISTSET(p,q.next,sel,next))i 

and SUBLISTSET(q.next,r,sel,next) = 
(SUBIISTSET(expr,r,sel,next))i 

and SUBLISTSEQ(p,q.next,sel,next) = 

(SUBLISTSEQ(p,q.next,sel,next))i 

and SUBLISTSEQ(q.next,r,sel,next) = 

( SUBLISTSEQ ( expr ,r, sel, next)) i) J . 

There are now two things to be shown. First, that 

T ::> R. And second, that p ::> Tq. next • ex pr 

To show that T..JlRc R consists of four clauses, so 

we must show that each of these clauses follows from T. 
next "LIST(p,next)" and "(p ) q)" both follow directly 

from the fact that each is included within T. 

"(qnext:>+ r iff 

next 
clause "(q.next ) r 

next expr > r)" follows from the 
next 

iff expr )r)" in T. In 

fact, these two clauses are equivalent, a fact which 

follows directly from the definitions of "~ " and "9 +". 

The final clause in R is the implication dealing 

with the representation functions, beginning 



-142-

next 
"q ') + r '3 II 

next 
Since "(p ~>q)" is in both Rand T, • • • 

Corollary L.12 can be used to show that 

(*) SUBLISTSET(p,r,sel,next) = 
SUBLISTSET(p,q.next,sel,next) U 

SUBLISTSET(q.next,r,sel,next) a.nd 

SUBLISTSEQ(p,r,sel,next) = 
concat(SUBLISTSEQ(p,q.next,sel,next), 

SUBLISTSEQ(q.next,r,sel,next)), 

given the assumption that qnext•+ r. Then the presence 

of the two clauses 

"SUBLISTSET(p,q.next,sel,next) = (SUBLISTSET(p,q.next1 , 

sel,next))i" 

and "SUBLISTSET(q.next,r,sel,next) = 

(SUBLISTSET(expr,r,sel,next))i" 

on the right-hand-side of the implication in T justifies 

their substitution(on the right-hand-side of the 

implication in ~into statement (*) above to yield 

"SUBLISTSET(p,r,sel,next) = 
(SUBLISTSET(p,q.next,sel,next))i U 

(SUBLISTSET(expr,r,sel,next))i" 

on the right-hand-side of the implication. A similar 

argument can be made for the part of the clause concerning 

SUBLISTSEQ. 

Thus, T.:) R is established. 
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Now consider Tq.next Making the substitution, ex pr • 

we gets 

[LIST(p,next) 
next (expr ) r 

and (p
next)" next 
==~::>' q > + null) and 

next 
expr ) r) and 

LIST(expr,next) 

(qnext)+ r ~ 

and next .!'.!9! ( expr ) q ) and 

SUBLISTSET(p,expr,sel,next) = 
(SUBLISTSET(p,expr,sel,next))i and 

SUBLISTSET(expr,r,sel,next) = 
(SUBLISTSET(expr,r,sel,next))i and 

SUBLISTSEQ(p,expr,sel,next) = 
(SUBLISTSEQ(p,expr,sel,next))i and 

SUBLISTSEQ(expr,r,sel,next) = 
(SUBLISTSEQ(expr,r,sel,next))i)} 

Each of the four equalities on the right-hand-side of 

the implication is true trivially, since in the 

precondition, all values are by definition the initial 

values, so the whole implication is trivially true. 
next next 

Similarly, the clause "(expr r iff expr ~ r)" 

is trivially true. The other four clauses are in fact 

the four clauses of P, so this establishes the fact that 

P :> Tq .next 
expr • By the reasoning given previously, this 

completes the proof. 
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