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ABSTRACT 

Let Vi(n) be the mininrum number of binary comparisons that 

are required to determine the i-th largest of n elements drawn 

from a totally ordered set. In this thesis we use adversary 

strategies to prove lower bounds on V.(n). For i=3, our lower 
i 

bounds determine v
3

(n) precisely for infinitely many values of n, 

and determine v
3

(n) to within 2 for all n. For a general fixed 

i, our lower bound has the asymptotic form n + (i-l)logn -

O(log(log*n)) where log*n is a very slowly growing function. As a 

result, the asymptotic behavior of V.(n) is determined to within 
i 

O(log(log*n)). A more general problem is raised in which one wants 

to find an element which is (i,j)-mediocre, i.e., smaller than at 

least i elements and greater than at least j elements. For i=l, 

it is shown that the best algorithm is to select the i+lst 

largest of any subset of i+j+l elements. It is an interesting 

question whether for general i this procedure is also optimal for 

finding an (i,j)-mediocre element. An affirmative answer to this 

question would imply Vn/2(n) ~ 3n • 
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CHAPTER 1 

PRELIMINA.RIES 

1.1 Introduction 

In this thesis we are interested in the problem of determining 

the i-th largest element of a totally ordered set of n objects. 

We shall concentrate on selection methods in which only pairwise com-

parisons are allowed. 

The history of this problem dates back to 1883 when Lewis 

Carroll in an essay[2J pointed out that the usual playing procedures 

of a "knockout" tennis tournament would in most cases select the 

wrong second and third best players. Therefore in the essay he set 

out to devise a plan for finding the true second and third best 

players. There are of course many ways to achieve this goal, and a 

question that naturally arises is "In how few matches (assuming 

transitivity and antisynnnetry) between n players can one decide 

the i-th best player?" Let V.(n) 
1 

be the answer to this problem. 

The other closely related problem is to select in order the first, 

second, ••• ,and the i-th best players, and the minimum number of 

matches required here we denote by W. (n). 
1 

(i) 

Some obvious properties of V and W are: 

V • ( n) ~ W • ( n) 
1 1 

W. (n) 
1 

W ·+i(n) (by synnnetry) n-1 



(iii) 

(iv) 

3 

W.(n) ~ llog(i!)l, an information theoretic lower bound. 
1 

(All of our logarithms are taken to the base 2.) 

(cf. also Sec. 1.4) 

In 1932 Schreier[7] gave an algorithm for finding the first and 

second best of n players that requires at most n - 2 + llognl 

matches. This construction was generalized by Kislitsyn[3] in 1964 to 

show that 

W. (n) :-:;; n -
1 

i-2 
i + ~ llog(n-k)l 

k=O 
for all i. 

His algorithm uses first i stages of "tree selection" sort. (cf. 

Knuth[4], Sec. 5.2.3) We first set up a knockout tournament of n 

players, and determine the best player in n-1 matches. We then 

"output" the champion and select the best of the remaining players. 

(1) 

After repeating this procedure i times, we will have found the first, 

second, ••• , and the i-th best players. Note that after the initial 

tournament is set up, at each later stage only a portion of the tour-

nament needs to be reconstructed in order to find the new champion. 

One can in fact show that the first i stages require at most the 

number of matches as shown on the right hand side of (1). 

If only the i-th best player is desired, Hadian and Sobel[S] 

proved that 

V. (n) :-:;; n - i + (i-1) llog(n-i+2)1 for all i. 
1 

(2) 



Their construction is as follows: One sets aside a set S of i-2 

players and perform a knockout tournament on the remaining n-i+2 guys. 

(This requires n-i+l matches.) The champion of this tournament ranks 

higher than n-i+l players, and hence is too good to be the i-th 

best player. We replace him by a player from s. One rebuilds 

part of the tournament as needed to determine the new champion (which 

requires at most ilog(n-i+2}1 matches). Again, we replace the cham

pion after finding him. After i-1 passes, we have successfully 

eliminated i-1 players that are overqualified. Now the champion 

of the remaining n-i+l players in the tournament must be the true 

i-th best player. (The last step takes ilog(n-i+2)1 - 1 matches.) 

Sum:ning the matches, we get Equ.(2). 

For small i, both of the algorithms described above seem to be 

rather efficient. However, they require O(nlogn) comparisons when 

i = O(n). For a while it was not clear whether any efficient algori

tl:nns might exist in the case of large i. Finally, in 1971 Blum, 

Floyd, Pratt, Rivest, and Tarjan[l] proposed a uniform procedure 

which can find the i-th largest of n elements in 5.73n compari

sons for all i. 

A very challenging task in the theoretical study of algorithms 

is to prove lower bounds on the complexity ofa given problem. Until 

recently little was known about lower bounds in the tennis tournament 

problem. The first step was made in 1964 by Kislitsyn who showed, in 
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the same paper cited above, that n - 2 + r1ognl is in fact the mini-

nnnn number of comparisons required by any algorithm to find the largest 

and the second largest elements. Therefore, Schreier's construction 

gives an optimal algorithm. In 1971 Blum et al[l] proved that 

n + i + r1ognl 4 is a lower bound for selecting the i-th largest 

element where i ~ n/2. Recently this result was further improved by 

Pratt[6] to give 

and 

V. (n) ~ n + 2i - logn 
l. 

for i ~ n/3, 

V.(n) ~ (3n+i)/2 - logn for n/3 ~ i ~ n/2. 
l. 

Impressive as this bound is, it still leaves a considerable gap be-

(3) 

tween upper and lower bounds when i is small. As a matter of fact, 

the asymptotic behavior of the Hadian-Sobel upper bound (2) is 

,..., n + (i-1) logn while that of the previous lower bound is ,..., n + logn. 

It is therefore an intriquing problem to determine what the true 

asymptotic behavior of the optimal algorithm is. 

In this thesis, we present lower bounds for the selection of the 

i-th largest element and the selection of the largest i elements (in 

order). For i small relative ton, the gap between upper and lower 

bounds for either problem now has the leading term (i-l)(i-3)log(log*n) 

where log*n is a very slowly growing function. (cf. its definition 

in Sec.3.2) In the case of i 3, we have a tighter lower bound 

which actually determines v
3

(n) precisely for infinitely many values 

of n ; and determines v3(n) and w3(n) to within 1 or 2 for all 
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1.2 Tree Algorithm 

Let ••• , x be 
n 

n distinct numbers. To select the i-th 

largest of xl' • • •' x 
n 

is to determine 

and 

x ' r 
l~~n, such that 

( ~ I ~ < xr} :?: n - i . 

We shall write F.(x1, ••• , x) = r to denote that x is the i-th 
1 n r 

largest of ••• , x • 
n 

To sort ••• , x , then, is to compute 
n 

Fi(x1, ••• , xn) sinrultaneously for b;i~n ~or equivalently, to 

determine a pernrutation p(l)p(2)•••p(n) 

••• > We write 

which satisfies this condition. 

It is quite obvious that if 

such that xp(l) > xp(2) > 

for the pernrutation p 

and 

two sequences each consisting of n distinct numbers, with the pro-

perty that (Vj) (Vk) [ xj < ~ # yj < yk ] , then we must have 

Fi(x1, ••• , xn) = Fi(x1, ••• , xn) for all i, and G(x1, ••• , xn) = 

G(y1, ••• , yn). In other words, for operations such as sorting or 

selecting the i-th largest element, the answer depends solely on the 

ordering relation between the input elements. Hence, for this class 

of problems, it is natural to study computing techniques that are 

based entirely on pairwise comparisons between the input items. 

An algorithm that satisfies the above constraint can be repre-

sented by a binary tree structure, such as that shown in Figure 1, and 
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8 

will be called a tree algorithm. Each internal node contains two 

indices "i:j", denoting a comparison of the i-th input x. versus the 
l. 

j-th input x .• For simplicity, we shall always assume that all inputs 
J 

are distinct, so that each comparison may have two outcomes. The left 

subtree of this node then represents the subsequent comparisons to be 

made if x. < x , and the right subtree describes the succeeding moves 
l. j 

when x. > x .• Since we will be interested in minimizing the number 
l. J 

Figure 1 A tree algorithm for selecting the 

second largest of four elements 
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of comparisons needed, we may assume that no redundant comparisons 

occur in a tree algorithm. Thus the left and right subtrees of an 

internal node must both be accessible, and hence all external nodes 

are reachable from the root. If this algorithm is to compute the i-th 

largest of n items, then each external node of the tree shall con-

tain an index r denoting the fact that ••• , x) = r 
n 

has 

been established as a result of the comparisons made along the path 

from the root to this node. Similarly, for sorting algorithms each 

external node shall contain a permutation which equals G(x1 , ••• ,xn). 

As a complexity measure, we shall define the cost of a tree 

algoritlnn to be the maximal path length of its comparison tree. 

Thus, the functions V. (n) 
1-

and W.(n) that are informally defined 
1-

in the last section can be expressed as 

V. (n) = min [cost of A I A is a tree algoritlnn that computes 
1-

... ' x )} 
n 

W. (n) 
1-

min [cost of A I A is a tree algorithm that computes 

F.(x1 , ••• , x) simultaneously for L::j~i } 
J n 



10 

1.3 The Concept of a Strategy 

The cost of a tree algorithm can be considered from a game-theo-

retie point of view. This approach, as we shall see, enables us to 

obtain tight lower bounds on the minimum number of comparisons required 

to do various selections. 

For example, we may look at the computation of the i-th largest 

of n items as a two-person game in the following way. There is 

player A who makes the opening move, and whose move shall always be an 

inquiry of the form "Is x. 
1 

less than x.?". 
J 

The adversary B, in 

his turns, shall give a reply of either "yes" or "no" to the ques-

tion that A just asked. The game ends when A can successfully deter-

mine the i-th largest element. The payoff of B in this game is 

defined to be the total number of questions asked by A. 

Now, recall in game theory, a player's "strategy" is simply a 

complete specification of what he would do in each situation that 

might arise in the play of the game. In the game described above, any 

strategy that A may employ corresponds to a tree algorithm for select-

ing the i-th largest element, and vice versa. Once A has selected a 

strategy (i.e., a tree algorithm is given), the choice of a strategy 

·on B's part will then completely determine the path that the computa-

tion is going to follow in the comparison tree of this algorithm. 

Therefore, if we can show that for any strategy A may use, B can 
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always find an "adversary strategy" that quarantees a payoff of at 

least L.(n) for B, then we in fact will have proved that 
1 

V • ( n) :;;:-: L. ( n) • 
1 1 

Notice that, as far as proving lower bounds for tree algorithms 

is concerned, adversary B has the privilege of consulting the strategy 

which A has chosen while he makes up his own. However, all the adver-

sary strategies that are considered in the following chapters do have 

uniform prescriptions, i.e., decisions are solely based on previous 

moves and do not depend on the knowledge of A's strategy. 

In giving descriptions of strategies and situations that might 

arise in a computation, it is convenient to use the terminology of 

term.is tournaments. After all, this is where the selection problem 

originated! So, let us regard each input item as a tennis player. 

A comparison between x. and 
1 

x. then becomes a 
J 

"match" of x. 
1 

versus x.. If the outcome is x. < x., we say "x. is defeated by 
J 1 J 1 

x."; if x. > x., we say "x beats x" etc. (Here we have to 
J 1 J i j ' 

assume that tennis skill ~atisfies transitivity, i.e., if x. beats 
1 

x. and 
J 

x. beats 
J 

~' then x. would beat 
1 ~-) A sequence of matches, 

each tagged with its outcome, is called a tournament, usually denoted 

by T. The length of a tournament T, written as jT/, is the total 

number of matches T contains. Thus the payoff of adversary B corre-

sponds to the length of the resulting tournament. In connection with 

a tournament T, we shall let time t refer to the point when the t-th 
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1.4 Crucial vs. Noncrucial Comparisons 

With respect to a tournament T, let us write xj < ~ if in the 

final ranking xj is determined to be dominated by ~· We write 

xj ~ ~ if either xj < ~ or j = k. It is easy to see that 

1) if ~< xr' 

such that x. ~ 

2) if 

x ~ x .• 
r J 

J 

xr< ~' 

then 

x • 
r 

then 

in some match ~ must be defeated by an x. 
J 

in some match ~must beat an x. such that 
J 

Now, if T selects the i-th best player, there must be a player x 
r 

such that 

and j [ ~ I x r < ~} j = i - 1. 

Hence for each player other than x we must be able to isolate a 
r 

match of either type 1) or 2), which we call a crucial match. Thus 

T must contain n-1 crucial matches. Alternatively, if we look at 

the Hasse diagram that represents the partial ordering of the players 

as established by T, n-1 crucial matches are those required to form 

the links of a spanning tree on the n nodes, with 

"bottleneck". (cf. Figure 2) Thus we know that 

V. (n) ;::: n - 1 
1 

for all i. 

x looking like a 
r 

Incidentally, this proves v1(n) n - 1 since it is easy to see that 

v1(n) ~ n - 1. For general i, in order to improve this estimate on 
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the lower bound of V.(n), the adversary must try to entrap A into 
1 

making a large number of comparisons that are poncrucial. 

Figure 2 Crucial matches (solid lines) and noncrucial matches 

(dotted lines) for selecting 

of 12 playersQ 

x as the fourth best 
r 
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CHAPTER 2 

SELECTION OF THE 

THIRD BEST PIAYER 

The adversary approach, as introduced in Sec. 1.3, was used by 

Knuth (Sec. 5.3.3 of [4]) in proving Kislitsyn's theorem that n - 2 + 

r lognl comparisons are indeed necessary for finding the second largest 

of n items. In this chapter, we present Basic Strategy which is a 

slight modification of the strategy Knuth used. We shall first use 

Basic Strategy to reconstruct Knuth's proof, and then proceed to estab-

lish lower bounds for v3(n) and w
3

(n). Lemma 1 describes a specific 

situation that must arise in any computation controlled by Basic Strategy. 

By taking advantage of this situation, one can create a large number of 

noncrucial comparisons, and lower bounds for v3(n) and w3(n) are obtained 

thereby. As a consequence, v
3

(n) is determined precisely for infinitely 

many values of n, and to within 1 or 2 for general n. w3 (n) is also 

determined to within 1 or 2 for all n. 
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2.2 Weight function and Basic Strategy 

In Sec. 1. 3 we introduced the notion of using strategies to 

establish lower bounds for selection problems. The Basic Strategy, to 

be defined below, shall play an essential role in the forming of our 

final strategiefi for the adversary. It is a modification of the strategy 

Knuth used in proving Kislitsyn's lower bound onV2(n). First we 

have to define a· weight function: 

Definition 1 With respect to a tournament T, Qt(x) where x is any 

player and O~t~ITI , is a positive integer known as x's weight at 

time t , and is defined recursively as follows: 

Ql. Q
0

(x) = 1 for all x . 

Q2. If x inflicted y's first loss in the t-th match of T, then 

Qt(x) = Qt_ 1(x) + Qt-l(y) , and Qt(z) = Qt_ 1(z) for all z 

such that z ~ x • 

Q3. If the loser of the t-th match was previously beaten, then 

Q (x) = Q 
1

(x) for all x . 
t t-

We can now present 

Definition 2 Basic Strategy 

Assume x plays y in the t-th match of T: 

BSl. If x is yet undefeated and y is not, then let x win. 

BS2. If both x and y are undefeated and Qt_ 1(x) > Qt-l(y) , 

then let x win. 

BS3. In other circumstances, let the outcome be arbitrary. 
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Definition 3 A tournament is said to be BS-ruled if the outcomes of 

the successive matches are decided by Basic Strategy. 

The following are some central effects of our Basic Strategy. 

Fact 1 In a BS-ruled tournament, once a player is defeated, his 

weight does not increase from then on. 

Proof By the definition of Q (x) , a player's weight increases only 
t 

when he makes a first loss. From BSl, a player who has been defeated 

cannot inflict any first loss, therefore his weight shall stay the 

same. 

Fact 2 In a BS-ruled tournament, a player's weight is at most 2k 

after he makes k first defeats. 

Proof A player's weight increases only with every first defeat he 

makes. By BS2 and Q2 , his weight at most doubles when he does 

make a first defeat. Since the initial weight is 1, Fact 2 is 

proved by induction on k. 

In the definitions of weight and Basic Strategy, only a player's 

first defeat is relevant. Indeed, we can represent the players' 

weights in a BS-ruled tournament T by a tree structure, called the 

first-defeat-tree (abbr. FDT) of T. Every player is represented by 

a node in the FDT, and y is a son of x iff x inflicted y's 

first loss in T. Thus the FDT may be a disjoint union of several 

rooted trees, with every root representing an undefeated player. (cf. 

Figure ~) In view of Fact 1, we shall let Q(x) denote the maximum 
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value of x's weight in a BS-ruled tournament. Then we have 

Fact 3 Given a BS-ruled tournament T, let D(x) be the set of x's 

descendants (including x itself) in the FDT of T. Then Q(x)= ln(x)I. 

Proof Argue by induction on the number of first defeats x makes. 

Use Q2 and Fact 1. (Details omitted). 

Thus, by Fact 3, Q(x) corresponds to the total number of nodes 

(or the actual "weight") of the subtree rooted at x in the FDT. For 

example, in Figure 3 we have Q(x)=lO and Q(y)=4. 

x 

I 

Figure 3 First-defeat-tree of a BS-ruled tournament 
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It is now a simple matter to prove 

Theorem (Kisli tsyn) 

Proof Given any tree algorithm for selecting the second best player, 

we apply the Basic Strategy to it. Note that the champion is also 

detennined in the resulting tournament T (he is the singular player 

dominating the selected second best), call him x 
c 

Since he must 

be the only undefeated player in T, in the FDT of T he is hence the 

unique root. By Fact 3, we have Q(x ) = n 
c 

Therefore x must 
c 

have made at least llog nl first defeats in T. However, at most one 

of these could be a crucial match (cf. Sec. 1.4) as far as selecting 

the second best player is concerned. Since there must be n - 2 

other crucial matches, we conclude that T ;::-: n - 2 + llog nl. This 

proves that v
2

(n) ;::-: n - 2 + llog nl . 
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2.3 Nearly Exact Bounds for i=3 

In this section, we proceed to prove fairly tight lower bounds for 

v
3

Cn) (the minimum number of comparisons for selecting the third largest 

element), and w
3

(n) (that for selecting the first, second, and third 

largest elements in order). 

2.3.1 Main Theorem 

The main result of this section is the following theorem: 

Theorem 1 

H( n) 

V (n) ~ H(n), where for 
3 

+ 2flog(n-l)l 

+ 2rlog(n-l)l 

+ 2flog(n-l)l 

k ~ 1, 

if 

if 

if 

n = 

3• 2k-l< n ::;; 

2k + 1 < n::;; 

By comparing H( n) with Hadian and Sobel's upper bound (cf. Sec. 

1. 1) V 
3

(n) ::;; n - 3 + 2r1og(n-l)l we see that V 
3

(n) is determined 

precisely if n = 2k+ 1 ; and is determined to within 1 or 2 for 

general n . Since w
3

(n) ~ v
3

(n) ~ H(n) , comparing H(n) with 

Kislitsyn's upper bound w
3

(n) ::;; n - 3 + flog nl + flog(n-1)1 shows 

that W (n) is determined to within 1 or 2 for all n . 
3 

The following lennna is the key to the proof of Theorem 1. To 

simplify notation, let us define 

h ( n) = H ( n) - n + 1 • 

It may be helpful to keep in mind that h(n) is an estimate of the 
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number of noncrucial (i.e., wasted) comparisons that the adversary 

is aiming to create. 

Lemma 1 Any BS-ruled tournament that selects the third best of n 

players must reach a point in time t when one of the following two 

situations arises: 

(1) There exist 3 undefeated players A, B, and C; A and B toge

ther have made at least h(n) first defeats so far. 

(2) There exist 2 undefeated players A' and B' who together 

have made at least h(n) + 1 first defeats so far. 

We first show how Theorem 1 can be proved by using Lemma 1. The 

proof of Lemma 1 will be given in Sec. 2.3.2. 

Proof of Theorem 1 We present a strategy which, when applied to any 

algorithm for selecting the third best player, will result in a tour

nament that contains at least H(n) matches. The strategy has two 

phases: 

Phase I Basic Strategy 

Follow Basic Strategy until either situation (1) or situation 

( 2) of Lemma 1 occurs. At this point t 
' 

switch to 

Phase II Clear Strategy 

csl. As a follow-up strategy for situation (1)' let A, B, c 

always win when they play other players. Among A, B, C we shall 

assign the order A > C, B > C In other cases we do not care. 
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CS2. As a follow-up strategy for situation (2), let A' 
' 

B' 

always win when they play other players. In other cases, we do not 

care. 

Now, in the case of situation (1) followed up by CS1, player 

C will necessarily be selected as the third best player, dominated by 

A and B. But then, none of the h(n) met~hes as mentioned in 

situation (1) is a crucial match as far as selecting the third best 

player is concerned. Hence the entire tournament must contain at 

least n - 1 + h(n) = H(n) matches. 

Similarly, in the case of situation (2) followed up by CS2, 

A' and B' necessarily become the two top winners of the tournament. 

Among those h(n) + 1 first defeats made by A' and B' before time t, 

one could be the first defeat of the third best player. However, this 

is the only case where those h(n) + 1 matches may contain a crucial 

one. Since there ought to be n - 2 other crucial matches, we see 

that the length of the tournament is at least n - 2 + (h(n) + 1) , 

which equals H(n) . Theorem 1 is thus shown to follow from Lemma 1. 

2.3.2 Proof of Lennna 1 

It is clear that any BS-ruled tournament that selects the third 

best player must fall into one of the following two classes: 

(i) Those in which there is only one undefeated player left at the end. 

(ii) Those in which there are two undefeated players left at the end. 
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For the proof of Lennna 1, we need only consider case (i). Indeed, 

suppose the lennna is proved in this case. Let T be a tournament of 

class (ii), so that two undefeated players say x and y are found at 

time IT I. If QITI (y) ~ QITl(x), we may extend T by letting x play 

and defeat y in an additional match. Call the resulting tournament 

T'. Clearly T' has been following Basic Strategy, and moreover is in 

class (i), so the lennna is true for T'. However, the particular time t 

in T' as characterized by the lennna must satisfy t ~ITI, since at time 

ITI+ 1 there is but one undefeated player x, not satisfying either 

assertion (1) or (2). Hence the lennna must be in fact true for T. 

Let us now look at the first-defeat-tree of a tournament of class 

(i). (cf. Figure 4) The only undefeated player, namely the champion, 

is denoted by x 
c 

Let .•• ' x be the sons of 
s 

x 
c 

arranged 

in the order their first defeats by x took place. 
c 

Thus if t. , 
J 

O~j~s is the time x inflicted x. 's first loss, then to< tl< ... c J 

< t . For O~j~s, let d. denote the number of first defeats made by 
s J 

x .. (By BSl, they must all take place before time t .. ) 
J J 

Claim Let M = max [ j + dj I 0 ~ j ~ s } ---
and .R, min [ j 0 ~ j ~ s, j + d, M } , then 

J 

(I) if .R, < s , we must have M ~ h(n). 

(II) if .R, = s , we must have M ~ h( n) + 1 . 

Note that once Claim is proved, Lennna 1 will follow immediately. 

For, in case (I) is true, we can choose t to be the time t.R,- 1 . 
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At this moment, xc' xt and xt+l (note t+l ~ s ) are all undefeated 

since By this time x has made 
c 

first defeats 

(namely on x0, x1, ... , xt_ 1), and has made Since by (I) 

t + dt = M ~ h(n), assertion (1) of Lemma 1 is fulfilled if we choose 

A, B, C to be x , x , and 
c t 

is true, we can choose t 

xt+l · On the other hand, if (II) of Claim 

to be t - 1. 
s 

At this time x and x are 
c s 

undefeated, and have made a total of s + d 
s 

M ~ h( n) + 1 first de-

feats. Thus choosing 

tion (2) of Lemm.a 1. 

• 

t 
s 

A' and B' to be x and x will satisfy asser-
c s 

Figure 4 FDT with a single root 
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So we have reduced the proof of Lemma 1 to the verification of 

cases (I) and (II) of Claim. 

Proof of Claim 

(I) Assume t < s . 

By the definition of M, we have j + d. ~ M for all O~j~s. In par-
- J 

ticular, d IM/2l ~ M - IM/21 = LM/2J 

By Fact 2, 

d ~ M - s s 
d. 

Q(x.) ~ 2 J 
J 

Q(x ) ~ 
s 

for all O~j~s. 

M-s 
2 

Summing the weights, we get 

LM/2J - 1 

Hence we have 

f Q(x.) ~ 2LM/2J + 2 LM/2J-1 + 1 0 ••• + 2 + 2 
i=IM/21 J 

= 2 l!-f/2J +1 - 1 

Also, xc has only made j first defeats prior to time t., hence by 
J 

Fact 2 of Sec. 2.2 has weight at most 2j before he plays x .• 
J 

This 

implies that Q(x.) s 2j, for otherwise x. would not lose to 
J J 

BS2 of Basic Strategy. In particular, this is true for x. 
J 

x by 
c 

such that 
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<b;j<rM/21. Therefore, 

rM/21-1 
L: Q(x.) 

J j=O 
... 

On the other hand, since in the first-defeat-tree the union of the 

subtrees rooted at ~j~s, contains every node except x.' 
J 

Fact 3 of Sec. 2.2 we have 

s 
L: Q(x.) = n - 1 

.i=O J 

Now, from Equs. (4), (3) and (6), we obtain 

2 rM/21 + 2 LM/2J +1 - 2 ~ n - 1 

x ' by 
c 

Solving this inequality for M and compare with the definition of 

h(n), we conclude that 

M ~ h(n) • 

(II) Assume t = s 

( ') 

( 6) 

By the definition of t, we have M = s + d 
s 

but j + dj i M for all 

j<s. Hence, drM121 < M - rM121 = LM/2J 

drM/21+1 < t_M/2j - l 

ds-l < M - s + 1 

d = M - s s 

Again, by Fact 2 we have 

s 
~ Q(x.) 

_i=rM/21 J 
2 LM/zj-1 + ••• + 2M-s + 2M-s 

2LM/~ 



p#l:nUJ a L. .JJPU ... j ll 2' L !Qt,f,LL CMUUQMJ!.K&ilt.J .2. 21J$$U4!llk.2$2Jl4Jlllllllt.;:aztaJ Jbllt!.l4!Liiii14gtl 
,~--

27 

)t ::· ::~- 'fi~l~f 

It then follows &a...-.. U), (f.). {1) that 

Aa a reault, we get 

M ~ h(ti) + 1 " 
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CHAPTER 3 

GENERAL LOWER 

BOUNDS FOR SMALL i 

3.1 Introduction 

In this chapter, we shall generalize the techniques of 

Chapter 2 to deduce lower bounds on V.(n) and W.(n) for small i. 
1. 1. 

Although we appeal to the same scheme of using a two-phase strategy, 

the analysis involved for i > 3 is considerably more difficult. 

The major effort is contained in the proof of Lemma 2, which is 

a generalization of the analysis we did on "first-defeat-trees" 

in Lemma 1 of Sec.2.3. 

For any fixed i, our lower bound for V.(n) and W.(n) has the 
1. 1. 

asymptotic behavior n + (i-l)logn - O(log(log*n)). By comparing it 

with upper bounds as given by Equs.(l) and (2) of Sec. 1.1, we see 

that the asymptotic behaviors of both V.(n) and W.(n) are deter-
1. 1. 

mined to within a term of order O(log(log*n)). 
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3.2 Main Theorem 

We shall derive lower bounds on V.(n) and W.(n) for i > 3. 
J_ J_ 

by induction on i , based on the result established for i = 3 in 

the previous chapter. The resulting formulas for both of our lower 

bounds involve a quantity which is dependent on i as well as on n. 

This quantity, formally defined below as h. ( n), 
J_ 

is fairly close to 

log(n) when i is small relative to n • 

Notation For ~2, let log*n denote the largest integer k such 

that 
.2 } 2· k 

n '2': 2 • 

Thus, log*2 = log*3 = 1 , log*4 = log* 5 ... log*15 2 , and so 

forth. 

Definition 4 For any i :<: 3, define h.(n) by the following formula: 
J_ 

for i > 3, h.(n) = logn -
J_ 

h3 (n) = logn-2; J(S) 
(i-3)log(log*n) - 2log((i-l)!) - (i-1) . 

Our main results of this chapter are contained in the following 

theorem: 

Theorem 2 For any n and i such that n > i '2': 3, we have 

vi (n) '2': n - 1. + (i·l)(hi(n) - 1) 

W i (n) '2': n - 1 + (1-1)h
1 

(n) 

(9) 

(10) 
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Remark 1 If we define h1(n) = h2(n) = llognl, then the lower bounds 

as given by Theorem 2 also hold when i=l, 2. In fact, they a~e close 

no the precise bounds that are known in these cases: 

V1(n) = w1(n) = n - 1 

v2(n) = w2(n) = n - 2 + llognl (Kislitsyn's Theorem) 

Remark 2 For i=3, Theorem 2 gives the following lower bounds: 

v3(n) ;;::: n - 3 + 2(logn - 3) 

= n - 9 + 2logn,, 

w3(n) ;;::: n - 3 + 2(logn - 2) 

= n - 7 + 2logn • 

These are slightly worse than the lower bounds we actually proved for 

i=3 in Theorem 1 of Chapter 2. The reason is of course that here we 

would rather use a varied (and slightly weakened) form of Lemma 1, if 

only it could serve more conveniently as a basis for inductive argu

ments. (cf. Lemma 2 and its proof in Sec.3.4.2) 

Remark 3 Compare the lower bounds of Theorem 2 with the upper 

bounds of Hadian-Sobel and Kislitsyn respectively. From (8), we have 

hi(n) > llognl - (i-3)log(log*n) - 2log((i-1)t) - i 

since log + 1 > llognl • Hence by comparing Equs. (9), (10) with 
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(1) and (2) of Sec.1.1, we see that the gap between upper and lower 

bounds on Vi(n) and Wi(n) is now less than 

(i-l)(i-3)log(log*n) + (i-1) [21og((i-1)!) + i + lJ . 

As a consequence, for any fixed i > 3, the asymptotic behaviors 

of V.(n) and W.(n) are determined to within 
i i 

(i-l)(i-3)•log(log*n) + O(l) • 

Remark 4 For large n and i, since 

log((i- )!) ~ log(i!) ~ i(logi) , 

we see from the definition of h.(n) in (8) that 
i 

h.(n) ~ logn - i(2logi + log(log*n)). 
i 

Hence h.(n) approaches zero at i ~ (logn)/(2log(logn)). 
i 

Remark 5 When h.(n) gradually approaches zero or even becomes 
i 

negative as i grows larger and larger, formula (9) is superseded by 

Pratt's lower bound as given by Equ.(3) of Sec.1.1: 

V.(n) ~ n + 2i - logn 
i 

V.(n) ~ (3n+i)/2 - logn 
i 

for i ~ n/3 , 

for n/3~~ i ~ n/2 • 

Also, (10) may be replaced by the following lower bound on Wi(n): 
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For any n and i such that n ~ i, 

w. ( n) ~ n - i + r log ( i l ) 1 . 
1 

Proof This is purely by information-theoretical arguments. Suppose 

in a tournament A1, ••• ,Ai (unordered) are known to be the best i 

players, and the order of the remaining n-i players is fixed. 

Then, just in order to completely determine the ranking of these i 

top players, llog(i!)l matches between them could be necessary in the 

worst case. However, for each of the remaining n-i players, there still 

must be a match in the tournament in which he lost to someone whose 

ranking is no higher than the i-th. Hence these n-i "crucial" 

matches are completely disjoint from those llog(i!)l mentioned 

before, and this tournament contains a total of n - i + llog(il)l 

matches at least. 
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3. 3 Proof of Main Theorem 

The proof of Theorem 2 depends on the following lennna the way 

Theorem 1 of Sec. 2.3 depends on Lemma 1. Indeed, Lemm.a 2 gene-

ralizes the analysis of the first-defeat-tree as was done in 

Lemm.a 1. Here a "championship" tournament is a tournament which 

determines, among other things, the best player of all. 

Lennna 2 Let T be a BS-ruled championship tournament of n players. 

For any i such that i ~ 3, we assert that there must exist a time 

t in T when the following two statements are true: 

(i)i There are ~i-1 undefeated players who have made a total of 

(i-l)hi(n) first defeats at least. 

The champion himself has made at least h. (n) 
1 

first defeats. 

(The second statement serves mainly as an induction hypothesis that is 

needed for the proof of Lennna 2. ) 

As in Sec. 2.3, let us first assume that the lennna holds and 

prove Theorem 2. The proof of Lemma 2 will be given in Sec. 3.4 • 

Proof of Theorem 2 

Gi.ven an algorithm for selecting the i""th best player, we can 

find the champion by using at most v1(i-l) = i-2 additiorull matcbes 
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to determine the best among the top i-1 players. This means that if 

V!(n) is the minimum number of comparisons for selecting the largest 
1 

!!!!! the i-th largest element, then 

V. (n) ~ V! (n) - (i - 2) 
1 1 

and W • ( n) ~ V ! ( n) • 
1 1 

Thus, to prove Theorem 2, it suffices to show that 

V! (n) ~ n - i + (i-l)h. (n) • 
1 1 

Given an algorithm for selecting the champion and the i-th best 

player, we first apply Basic Strategy to it. By Lernna 2 there must be 

a crucial moment t when there are j ( l~j~i-1 ) undefeated players 

A1, ••• , Aj who have made a total of (i-l)h. (n) 
1. 

first defeats at 

least. As soon as this occurs, we shall switch. to a Clear Strategy. 

Under the latter strategy, A1, ••• , Aj shall always win when they 

play any of the remaining n - j guys; in other circumstances the 

outcome may be arbitrary. Now, A1, ••• , Aj necessarily turn out to 

be the j highest ranking players of the tournament. However, as far 

as determining the i-th best player is concerned, V
1
(n-i+l) = n - i 

matches have to be played between the n-i+l low ranking players in 

order to determine the best among them. Since these players are com-

pletedly disjoint from the j highest ranking players, we see that 

the tournament must contain no fewer than n - i + (i-l)hi(n) matches 

all together. 
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3.4 Proof of Lemma 2 

3.4.1. ~~ilisry Propo-siUons 

Lemma 2 will be proved by induction on i. In trying to proceed 

from say i=q to i=q+l, the problem of delicate "timing" in the 

tournament turns out to be of vital importance. Propositions 1 and 2 

below are two instances of how one deals with this problem in the 

proof of Lenuna 2. 

As in the proof of Lemma 1, we consider the first-defeat-tree of T, 

the given BS-ruled championship tournament. Let x
0

, ••. , xs be those 

players whose first defeats are made by x , the champion, at time 
c 

t 1, •.• , ts' respectively with t 0 < t 1 <•••<ts 

the number of first defeats made by 

Sec. 2. 3. 2) Furthermore, for any 

x.' 
J 

x., O:>:j:>:s, let 
J 

Also let d. be 
J 

(cf. Figure 4 of 

T. be the "subtour
J 

nament" of T consisting of those matches (in the order they occur in T) 

represented by the edges of the subtree, rooted at x. , of the FDT. 
J 

Let Tj denote the subtournament consisting of those matches of T1, ••• , 

T. 1 together with the first defeats of 
J-

order they occur in T). (cf. Figure S) 

x. 1 (also in the 
J-

One can easily see that T. 
J 

and T! , when considered as tournaments themselves, are both BS-ruled 
J 

championship tournaments. Within T, both subtournaments T. and T' 
J j 

are completed before time t .• 
J 
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Figure 5 Subtournaments T. and T' 
J j 

In terms of the notations defined in the last paragraph, we have 

Proposition 1 Suppose Lennna 2 is true for i = q ~ 3. If for a~ 

given BS-ruled championship tournament T (of n players), there exist 

j and m satisfying the following conditions, then Lennna 2 is also true 

in T when i = q+l 

(i) O~j~s and m ~ n , 
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Proof Since x defeated x. at time t.' by Basic Strategy we 
c J J 

must have 

Qt.-l(xc) ~ Qt.-l(xj) . 
J J 

Since 

Qt.-l(xj) = Q(xj) ~ m ' 
J 

this means that both tournaments T. and T~ involve at least m 
J J 

players. 

By our induction hypothesis, there exists a time t in T. when 
J 

(1) 
q 

some ~ q-1 undefeated players in T. have made a total of 
J 

(q-l)h (m) first defeats at least; 
q 

(2) x. (the champion of T.) by this time has made at least h (m) 
q J J q 

first defeats. 

Similarly, there exists a time t' in T~ when 
J 

( 1) I same as statement (1) only T. is replaced by T~ 
q q J J 

(2) I same as statement (2) only x. is replaced by x 
q q J c 

Now, if t'< t, then (2)' is also true at time t. Hence at 
q 

time t, by (1) and (2)' , there are ~q undefeated players who q q 

have made a total of at least q •h (m) first defeats. Since by 
q 

assumption hq(m) ~ hq+l(n), this together with statement (2)~ above 

show that both assertions of Lenuna 2 are true in T for i=q+l • 



38 

On the other hand, if t<t', we will choose the time to be t 1
• 

Then statement (1)' and (2) above show that at time t' some ~q 
q q 

undefeated players have made a total of at least q•hq(m) ~ q•hq+l(n) 

first defeats. Again, this together with (2)' show that Lemma 2 
q 

is satisfied for i=q+l. 

Proposition 2 Suppose Lemma 2 is true for i = q ~ 3. If fora giV'Sn 

BS-ruled championship tournamentT of n p1ayers, there eleists an m and 

that satisf1" the following 

conditions, then Lemma 2 is also true in T when i=q+l 

(i) 

(ii) 

(cf. 

m~n o~a~ 

Q(x. 
Ji 

) ~ m for 

Figure 6) 

x 
s 

jl < j2 < < J. ~ s and a ~ logn; 
q-1 

l.s:i~q-1 , and a+ (q-l)hq(m) ~ q•hq+l(n) • 

Figure 6 A tournament of Proposition 2 



39 

Proof Since Q(x. ) ~ m for l:s:t~q-1, this means that each of the 
J_e 

q-1 sub tournaments ... ' involves at least m players. 

Applying the induction hypotheses, we see that for 1~,e~q-1, 

there exists time t1 , t1 < tj_e , such that at time ti the follow

ing two statements are true: 

(1) ,e 
q 

Some ~q-1 undefeated players in T. have made 
J_e 

a total of 

(q-l)h (m) first defeats at least. 
q 

(2),e x. himself has made at least h (m) first defeats. 
q J_e q 

(I) 

There are two cases: 

t' < t - 1 for all l~t~q-1 • 
,e a 

If this is the case, then at time t - 1 a 9 

defeats (namely on x0 , .•• , xa_ 1). Also, since 

x. has made 
c 

t. ~ t > t -
J_e a O! 

a first 

1 

x. are all undefeated at time 
J ,e 

t - 1 . a Hence, by (2)~ ' we know 

that at time t - 1 
O! ' 

x and 
c 

for l:s:~q-1 are q undefeated 

players who have made a total of a+ (q-l)hq(m) 

Since by assmnption 

and 

a~ logn, hence O! > hq+l(n) , 

a+ (q-l)hq(m) ~ q•hq+l(n) , 

first defeats • 

we see that Lemma 2 is true for this tournament when i=q+l • 

(II) ti~ ta- 1 for some t such that l~~q-1 • 

For this particular t , xc at time ti has again made at least 

a first defeats. And by statement (1): , at time t1 there are ~q-1 



40 

undefeated players who together with x 
c 

have made at least 

~ + (q-l)h (m) ~ q•h (n) first defeats. Hence again Lemma 2 is true 
q q 

when i=q+l for this tournament. Thus the proof of Proposition 2 

has been completed. 

3.4.2 The Inductive Proof 

We are now ready to prove Lennna 2. 

A) Basis of induction, i=3. 

Let us look at Figure 4 of Sec. 2.3.2. Suppose Lemma 2 were 

false, we would have j + d. < 2logn - 4 for all j such that 
J 

logn - 2 $ j $ s . ( If not so, we can choose the time to be t.-l where 
J 

j ~ logn - 2 and j + d. ~ 2logn- 4 = 2h3(n). At this time t.- 1 ' J J 

both statements (1) 3 and (2) 3 of Lermna 2 are satisfied.) Thus, 

dr I < 2logn - 4 -( rlognl - 2) $ rlognl - 2 logn1 -2 

d < riognl - 3 riognl -1 

d < 2 r logn l - 4 - s 
s 

From Fact 2 of Sec. 2.2, we have 

~ Q(x.) 5 2 r1ognl-3 + 2 r1ognl-4 + ••• + 21 + 2o 
r1ognl-2 J 

= 2 r1ognl -2 1 (11) 

(Note, if r1ognl - 2 s O, then h .(n) s: 0 for all i ~ 3, and Lemma 2 is 
1 

trivially true in this case. Hence we may assume n > 4.) 
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From (ll)and Equs. (5), (6) of Sec. 2.3, we get 

llognl-3 s 
n - 1 :E Q(x.) 

j=O J 
+ :E Q(x.) 

j = r logn 1 -2 J 

~ n - 2 

which is a contradiction. This proves Lemma 2 for i=3. 

B) Suppose the lemma is true for i=q~3, we will proceed to prove 

it for i= q+l • 

If for the given tournament, s ~ q•logn , then at time say t , s-q 

x 
c 

and x s-q+l' x ' •.• , x 1 s-q+2 s- are q undefeated players where 

xc alone has made s-q+l first defeats (namely on x0 , ••• , x
6

_q). 

Since s-q+l > q•logn - q = q(logn - 1) ~ q•hq+l(n) , Lennna 2 is 

true for i=q+l. Hence from now on we shall asslttile s < q•logn • 

Notation For 

and ~ denotle 

1 ~ k ~ log*n , let 

logn +(q-l)log(k)n. 

log(k)n denote log•••log 
._"li -

Also, let n'= n/(2log*n). 

n ' 

We shall divide the problem up into log*n cases. Case k, for 

l~log*n - 1, makes the as sum ptiom 

L Q(x.) ::-:: n' • 
. ~·<i J 1 k+l J k 
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The last case, Case log*n , makes the assumption 

l Q(xj) > n/2 1 • 

Os:j<2(q-l)+logn 

It is seen that these log*n cases do cover all possibilities 

since we always have 

> I Q(x.) 
J 

= n - 1 

+ ••• + I Q(xj) 

OS:j<logm + 2(q-l) 

(because ilog*n< logn + 2(q-1). ) 

~ n/(2log*n) + n/(2log*n) + ••• + (n/2 1) • 

log*n - 1 

1N<""', Case k , lSks:log*n - 1 , are proved in the same way. 

Proof of Case k, lSk:S:log*n - 1 

There are two possibilities: 

(I) The maximum of Q(x.), 
J 

ik+l:S:j<ik ' is :2: n' /(q·l) 

If only we can show hq(rf/(q .. 1)) ~ hq+l (n) ' 
then the desired 

will follow from Proposition 1 of Sec. 3. 4. 1. Indeed, 

result 

h (n' /(q .. l)) ~ logn - log(q-1) - 1 - log(log*n) - (q-3)1og(log*n) 
q 

- 21og((q-l)l) - (q-1) 
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> logn - (q-2)log(log*n) - 2log(q!) • ~ 

= hq+l (n) • 

Therefore we are done in this case. 

(II) The maximum of Q(x.), 
J ik+ 1 $; j < ik ' is < n' /(q-1). 

In this case, let Q(x. ) ' ... ' Q(x. ) be the q-1 largest 
J1 Jq-1 

weights among Q(x.), j 8[ik+l' ik) . (note i - ik+l ~ q-1 . ) 
J k 

Then we must have Q(x. ) ~ n'/((q-l)(ik- ik+l)) 
J,e, 

for all l$;£$;q-l. 

Denote this last fraction by m • If we can show that ik+l+(q-l)hq(m)~ 

q•hq+l(n), then the conclusion will follow from Proposition 2 of 

Sec. 3.4.1. Thus, since ik- ik+l ~ (q-l)log(k)n , and n 1=n/(2log*n), 

+ (q-l)h (m) ~ logn + (q-l)log(k+l)n + (q-l)(logn -21og(q-1) 
q 

- log(k+l)n - 21og((q-l)-l) - q - (q-2)log(log*n)) 

~ q(logn - (q-2)log(log~<n) - 2log(ql) ~ q) 

This completes the proof of Case k, l~~log''~n - 1. 
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Proof of Case log*n 

In this case we have the assumption 

Q(x.) 
J 

Q$;j<2(q-l)+logn 

> n/2 

But by Equ.(5) of Sec.2.3 we have 

Q(x.) 
J 

1 • 

••• 

2 
ilognl-2 _ 

n/4 

From Equs. (12) and (13), we get 

Q(x.) > n/4 • 
J 

logn-3<j<lognt2(q-l) 

1 

(12) 

+ 2 ilognl-3 

1 

(13) 

Hence the maximum of Q(x.), logn-3 < j < logn+2(q-l), must be greater 
J 

than n/8(q+l) • 

As in (I) of the proof of Case k, k < log*n , we need only show that 

h (n/8(q+l)) ~ h +l(n), then the result will follow immediately from 
q ·q 

Proposition 1 of Sec.3.4.1. The calculation is straightforward: 

h (n/8(q+l)) ~ logn - 2 - log(2q+2) - (q-3)log(log*n) - 2log~q-l)V-(q-l) 
q 

~ logn - (q-2)log(log*n) - 2log(q!) - q 

hq+l(n). 

(We assume here n > 4 due to the remark following Equation (11).) 
This proves Case log*n, and the proof of Lennna 2 is now complete. 
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CHAPTER 4 

FINDIN; A MEDIOCRE PI.AYER 

4.1 Introduction 

In the preceding chapters we have successfully extended Kislitsyn's 

lower bound to the case when, instead of finding the second best of n 

players, the i-th best is to be determined. We now turn our attention 

to another type of selection problems. 

Given i and j with i + j + 1 ~ n, our objective now is to find a 

player who is neither among the i top players nor one of the j worst 

players. We shall say such a player is (i,j)-mediocre. Historically 

this problem is closely connected with the finding of the median ele

ment, whose starting point is usually the selection of an element that 

is not too close to either extreme. 

Technically, the selection of the i+lst largest element is a 

special case of this "mediocre player" problem in which n = i+j+l. 

This connection suggests a way of finding an (i,j)-mediocre player. 

We simply pick i+j+l elements arbitrarily and select the i+lst 

largest among them; it is obvious that this element satisfies the 

"(i,j)-mediocre" requirement. The question that naturally follows is 

"Is this the best algoritlnn ?" In Sec. 4.3 we will prove that this is 

the case when i=l. We will also show that if the answer to this 
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4.2 Properties of S(i, j ,n) 

For i+j+l ~ n, let S(i,j,n) denote the minimum number of com

parisons needed to find an (i,j)-mediocre element as defined in Sec.4.1. 

The following facts are easy to verify: 

(i) S(i,j,n') ~ S(i,j,n) if n'~ n ~ i+j+l. 

This is true since from n' elements we can arbitrarily choose 

n elements and in S(i,j,n) comparisons find a desired (i,j)

mediocre element. 

(ii) There is an integer ~ ~ 12(i+j+l) such that 

S (i, j, n) 

Proof By the algorithm of Blum et al[l], it takes less than 

6m comparisons to find the t-th largest of m elements for any 

t~m. Since S(i,j,i+j+l) ; Vi+l(i+j+l), we thus have 

S(i,j,n) ~ S(i,j,i+j+l) ~ 6(i+j+l) for all n ~ i+j+l by (i). 

Since an optimal algorithm never consults more than 12(i+j+l) 

elements, we must have 

S(i,j,n) ~ S(i,j,12(i+j+l)) for n ~ 12(i+j+l). 

Thus, for fixed i, j, the function S is non-increasing inn and 

reaches a constant before n is 12(i+j+l). 
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As a result, we have 

Theorem 4 For n ~ i+j+l, S(i,j,n) is independent of n if and only 

if selecting (optimally) the i+lst largest element of an arbitrary 

subset of i+j+l elements is an optimal procedure for finding an 

(i,j)-mediocre element in n elements. 

Proof If S(i,j,n) is independent of n, then 

S(i,j,n) = S(i,j,i+j+l) = Vi+l(i+j+l) • 

This shows that the proposed algorithm is optimal. On the other hand, 

if the algorithm described in the theorem is optimal, 'W'e will have 

S(i,j,n) = Vi+l(i+j+l) for all n ~ i+j+l 

which shows that S(i,j,n) is independent of n. 
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4.3 S(l,j,n) = V2(j+2) 

Because of Theorem 4 of the last section, it becomes an intri-

quing question whether S(i,j,n) is independent of nor n.Ot. 'In this 

section we will show that S(l,j,n) is independent of n. This 

lends support to the conjecture that S(i,j,n) depends only on i and 

j. We will discuss some implications of this conjecture in the next 

section. 

Theorem 5 S(l,j,n) = v2(j+2) = j + ilog(j+2)l 

Proof It suffices to show that S(l,j,n) ~ j + ilog(j+2)1. For any 

given algorithm that finds a (l,j)-mediocre player, we shall apply 

Basic Strategy (cf. Sec. 2.2) to it and call the resulting tournament 

T. Suppose x is the (l,j)-mediocre player found in T, define 
m 

A = {x I either x=x or 
m 

x is determined to be inferior to 

x by T }. 
m 

By the definition of "(l,j)-mediocre" x nrust be defeated at least once 
m 

in T; hence none of the guys in A is an undefeated player. Also, let 

B = {y I y is undefeated at the end of T and has weight > 1}. 

Thus, if B = {y1 , .•• ,yr}' then y1 , ••. ,yr are those players corre-

sponding to the. roots that have at least one descendant (besides 
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itself) in the first-defeat-tree of T. Certainly A II B = ¢. 

Claim If for l~i;5:r, y£ has weight mt' then we must have 

r 
L, ilog(mt)l ~ l1og(j+2)1 • 

£=1 

Proof of Claim Suppose for l~.R,::;;r, we have 

Then, 
r 
L, llog(m£) l = (k1+ l) + 

J,=l 
= r + (k1 + 

On the other hand, 

Hence 

••• 

••• 

••• 

+ (k + 1) 
r 

+ k ) • r 

k +1 
+ 2 r 

k +1 
2 r 

••• + k ) 
r 

(14) 

(15) 

However, since every player in A nrust be the descendant of some Y,e,, 

l::;;.R,~, we have 

~ + • • • + mr ~ r + I A j ~ 1 + I A I • (16) 

Since by the definition of (i,j)-mediocre we must have IAI ~ j+l, 

Equ. ( 16) becomes 

m1 + ••• + mr ~ j + 2 • (17) 

The Claim then follows from Equs. (14), (15) and (17). 



51 

Now that Claim has been proved, Theorem 5 follows quite easily. 

Indeed, from Claim and Fact 2 of Sec. 2.2, we know that y1 , ..• , yr 

have played at least llog(j+2)1 matches all together. But from the 

definition of A, it follows that at least I A I - 1 matches have been 

played between the players of A (one "crucial" match for each player 

in A other than x ). Since A and Bare disjoint, we see that this 
m 

tournament nrust contain at least 

llog(j+2)1 + I Al - 1 ~ llog(j+2)l + j 

matches. Thus the proof of Theorem 5 is complete. 
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4.4 Connections with Median Computation 

In the last section we proved that S(l,j,n) is independent 

of n. This by no means implies S(i,j,n) is independent of n 

for other i as well. However, if this should indeed be true, it 

would have the following interesting consequence. 

Proposition If S(i,j,n) is independent of n for all i,j, then one 

can find the median of n elements by using no more than 3n compari-

sons. 

Proof Let M(n) be the minimum number of comparisons for finding the 

median of n elements. Then, for a given n, to find 8'I (n/2, n/2)-medi

ocre element among 3n/2 elemenns·one aan proceed in two ways: 

l) Pick any n + 1 elements and find their median. This requires 

M(n+l) _comparisons in the worst case. 

2) Divide the 3n/2 elements into n/2 triplets and sort each 

triplet. Then take the central elements of all the triplets and 

find their median. This element is easily seen to be a desired 

(n/2, n/2)-mediocre element, and this method requires 

3•(n/2) + M(n/2) comparisons in the worst case. 

Now, if S(i,j,n) is independent of n then the first method is 

optimal by Theorem 4. Therefore we have 
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