
SSX!MtJ!IAJQ tJtJLSJ$tZSUl£££1LAl4§., .. JJIL iill22$UCU .. ! JJUJC!fa. ti! l#lJIJU SL .. l.&Ja;,UMA~#tiJ#i.i !.@UIJJJIMI

MAC TR.·121

Thb research vu sutl•..., w da!t:.•1cmal
Science ,_...tton under u1r11wit..-M U-34671.

CAMBlUDGE

-S

TABLE OF CONrENrS

CHAPTER 1 PRELIMINA..RIES

1.1 Introduction

1.2 Tree Algorithm

1.3 The Concept of a Strategy

1.4 Crucial vs. Noncrucial Comparisons

CHAPTER 2 SELECTION OF THE TIIIRD BEST PLAYER

2.1 Introduction

2.2 Weight Function and Basic Strategy

2.3 Nearly Exact Bounds for i=3

2.3.l Main Theorem

2.3.2 Proof of Lenuna. 1

CHAPTER 3 GENERAL LOWER BOUNDS FOR SMALL i

3.1 Introduction

3.2 Main Theorem

3.3 Proof of Main Theorem

3.4 Proof of Lenuna. 2

3.4.1 Auxiliary Propositions

3.4.2 The Inductive Proof

CHAPTER 4 FINDIN; A MEDIOCRE PLAYER

4.1 Introduction

4.2 Properties of S(i,j,n)

4.3 S(l,j,n) ~ v
2

(j+2)

4.4 Connections with Median Computation

1

ABSTRACT

Let Vi(n) be the mininrum number of binary comparisons that

are required to determine the i-th largest of n elements drawn

from a totally ordered set. In this thesis we use adversary

strategies to prove lower bounds on V.(n). For i=3, our lower
i

bounds determine v
3

(n) precisely for infinitely many values of n,

and determine v
3

(n) to within 2 for all n. For a general fixed

i, our lower bound has the asymptotic form n + (i-l)logn -

O(log(log*n)) where log*n is a very slowly growing function. As a

result, the asymptotic behavior of V.(n) is determined to within
i

O(log(log*n)). A more general problem is raised in which one wants

to find an element which is (i,j)-mediocre, i.e., smaller than at

least i elements and greater than at least j elements. For i=l,

it is shown that the best algorithm is to select the i+lst

largest of any subset of i+j+l elements. It is an interesting

question whether for general i this procedure is also optimal for

finding an (i,j)-mediocre element. An affirmative answer to this

question would imply Vn/2(n) ~ 3n •

2

CHAPTER 1

PRELIMINA.RIES

1.1 Introduction

In this thesis we are interested in the problem of determining

the i-th largest element of a totally ordered set of n objects.

We shall concentrate on selection methods in which only pairwise com-

parisons are allowed.

The history of this problem dates back to 1883 when Lewis

Carroll in an essay[2J pointed out that the usual playing procedures

of a "knockout" tennis tournament would in most cases select the

wrong second and third best players. Therefore in the essay he set

out to devise a plan for finding the true second and third best

players. There are of course many ways to achieve this goal, and a

question that naturally arises is "In how few matches (assuming

transitivity and antisynnnetry) between n players can one decide

the i-th best player?" Let V.(n)
1

be the answer to this problem.

The other closely related problem is to select in order the first,

second, ••• ,and the i-th best players, and the minimum number of

matches required here we denote by W. (n).
1

(i)

Some obvious properties of V and W are:

V • (n) ~ W • (n)
1 1

W. (n)
1

W ·+i(n) (by synnnetry) n-1

(iii)

(iv)

3

W.(n) ~ llog(i!)l, an information theoretic lower bound.
1

(All of our logarithms are taken to the base 2.)

(cf. also Sec. 1.4)

In 1932 Schreier[7] gave an algorithm for finding the first and

second best of n players that requires at most n - 2 + llognl

matches. This construction was generalized by Kislitsyn[3] in 1964 to

show that

W. (n) :-:;; n -
1

i-2
i + ~ llog(n-k)l

k=O
for all i.

His algorithm uses first i stages of "tree selection" sort. (cf.

Knuth[4], Sec. 5.2.3) We first set up a knockout tournament of n

players, and determine the best player in n-1 matches. We then

"output" the champion and select the best of the remaining players.

(1)

After repeating this procedure i times, we will have found the first,

second, ••• , and the i-th best players. Note that after the initial

tournament is set up, at each later stage only a portion of the tour-

nament needs to be reconstructed in order to find the new champion.

One can in fact show that the first i stages require at most the

number of matches as shown on the right hand side of (1).

If only the i-th best player is desired, Hadian and Sobel[S]

proved that

V. (n) :-:;; n - i + (i-1) llog(n-i+2)1 for all i.
1

(2)

Their construction is as follows: One sets aside a set S of i-2

players and perform a knockout tournament on the remaining n-i+2 guys.

(This requires n-i+l matches.) The champion of this tournament ranks

higher than n-i+l players, and hence is too good to be the i-th

best player. We replace him by a player from s. One rebuilds

part of the tournament as needed to determine the new champion (which

requires at most ilog(n-i+2}1 matches). Again, we replace the cham

pion after finding him. After i-1 passes, we have successfully

eliminated i-1 players that are overqualified. Now the champion

of the remaining n-i+l players in the tournament must be the true

i-th best player. (The last step takes ilog(n-i+2)1 - 1 matches.)

Sum:ning the matches, we get Equ.(2).

For small i, both of the algorithms described above seem to be

rather efficient. However, they require O(nlogn) comparisons when

i = O(n). For a while it was not clear whether any efficient algori

tl:nns might exist in the case of large i. Finally, in 1971 Blum,

Floyd, Pratt, Rivest, and Tarjan[l] proposed a uniform procedure

which can find the i-th largest of n elements in 5.73n compari

sons for all i.

A very challenging task in the theoretical study of algorithms

is to prove lower bounds on the complexity ofa given problem. Until

recently little was known about lower bounds in the tennis tournament

problem. The first step was made in 1964 by Kislitsyn who showed, in

5

the same paper cited above, that n - 2 + r1ognl is in fact the mini-

nnnn number of comparisons required by any algorithm to find the largest

and the second largest elements. Therefore, Schreier's construction

gives an optimal algorithm. In 1971 Blum et al[l] proved that

n + i + r1ognl 4 is a lower bound for selecting the i-th largest

element where i ~ n/2. Recently this result was further improved by

Pratt[6] to give

and

V. (n) ~ n + 2i - logn
l.

for i ~ n/3,

V.(n) ~ (3n+i)/2 - logn for n/3 ~ i ~ n/2.
l.

Impressive as this bound is, it still leaves a considerable gap be-

(3)

tween upper and lower bounds when i is small. As a matter of fact,

the asymptotic behavior of the Hadian-Sobel upper bound (2) is

,..., n + (i-1) logn while that of the previous lower bound is ,..., n + logn.

It is therefore an intriquing problem to determine what the true

asymptotic behavior of the optimal algorithm is.

In this thesis, we present lower bounds for the selection of the

i-th largest element and the selection of the largest i elements (in

order). For i small relative ton, the gap between upper and lower

bounds for either problem now has the leading term (i-l)(i-3)log(log*n)

where log*n is a very slowly growing function. (cf. its definition

in Sec.3.2) In the case of i 3, we have a tighter lower bound

which actually determines v
3

(n) precisely for infinitely many values

of n ; and determines v3(n) and w3(n) to within 1 or 2 for all

&JJM411iL.tQUJC £HtA.21¥¥4AJJAU4 UJJL!EUtdltl!itji$fl2$WJ(£li@bti24!4ZJltJ5l$Li.!,£1&2£JQNA

·.

r ~.

' /

"],"'~!

X ..

7

1.2 Tree Algorithm

Let ••• , x be
n

n distinct numbers. To select the i-th

largest of xl' • • •' x
n

is to determine

and

x ' r
l~~n, such that

(~ I ~ < xr} :?: n - i .

We shall write F.(x1, ••• , x) = r to denote that x is the i-th
1 n r

largest of ••• , x •
n

To sort ••• , x , then, is to compute
n

Fi(x1, ••• , xn) sinrultaneously for b;i~n ~or equivalently, to

determine a pernrutation p(l)p(2)•••p(n)

••• > We write

which satisfies this condition.

It is quite obvious that if

such that xp(l) > xp(2) >

for the pernrutation p

and

two sequences each consisting of n distinct numbers, with the pro-

perty that (Vj) (Vk) [xj < ~ # yj < yk] , then we must have

Fi(x1, ••• , xn) = Fi(x1, ••• , xn) for all i, and G(x1, ••• , xn) =

G(y1, ••• , yn). In other words, for operations such as sorting or

selecting the i-th largest element, the answer depends solely on the

ordering relation between the input elements. Hence, for this class

of problems, it is natural to study computing techniques that are

based entirely on pairwise comparisons between the input items.

An algorithm that satisfies the above constraint can be repre-

sented by a binary tree structure, such as that shown in Figure 1, and

3

8

will be called a tree algorithm. Each internal node contains two

indices "i:j", denoting a comparison of the i-th input x. versus the
l.

j-th input x .• For simplicity, we shall always assume that all inputs
J

are distinct, so that each comparison may have two outcomes. The left

subtree of this node then represents the subsequent comparisons to be

made if x. < x , and the right subtree describes the succeeding moves
l. j

when x. > x .• Since we will be interested in minimizing the number
l. J

Figure 1 A tree algorithm for selecting the

second largest of four elements

9

of comparisons needed, we may assume that no redundant comparisons

occur in a tree algorithm. Thus the left and right subtrees of an

internal node must both be accessible, and hence all external nodes

are reachable from the root. If this algorithm is to compute the i-th

largest of n items, then each external node of the tree shall con-

tain an index r denoting the fact that ••• , x) = r
n

has

been established as a result of the comparisons made along the path

from the root to this node. Similarly, for sorting algorithms each

external node shall contain a permutation which equals G(x1 , ••• ,xn).

As a complexity measure, we shall define the cost of a tree

algoritlnn to be the maximal path length of its comparison tree.

Thus, the functions V. (n)
1-

and W.(n) that are informally defined
1-

in the last section can be expressed as

V. (n) = min [cost of A I A is a tree algoritlnn that computes
1-

... ' x)}
n

W. (n)
1-

min [cost of A I A is a tree algorithm that computes

F.(x1 , ••• , x) simultaneously for L::j~i }
J n

10

1.3 The Concept of a Strategy

The cost of a tree algorithm can be considered from a game-theo-

retie point of view. This approach, as we shall see, enables us to

obtain tight lower bounds on the minimum number of comparisons required

to do various selections.

For example, we may look at the computation of the i-th largest

of n items as a two-person game in the following way. There is

player A who makes the opening move, and whose move shall always be an

inquiry of the form "Is x.
1

less than x.?".
J

The adversary B, in

his turns, shall give a reply of either "yes" or "no" to the ques-

tion that A just asked. The game ends when A can successfully deter-

mine the i-th largest element. The payoff of B in this game is

defined to be the total number of questions asked by A.

Now, recall in game theory, a player's "strategy" is simply a

complete specification of what he would do in each situation that

might arise in the play of the game. In the game described above, any

strategy that A may employ corresponds to a tree algorithm for select-

ing the i-th largest element, and vice versa. Once A has selected a

strategy (i.e., a tree algorithm is given), the choice of a strategy

·on B's part will then completely determine the path that the computa-

tion is going to follow in the comparison tree of this algorithm.

Therefore, if we can show that for any strategy A may use, B can

11

always find an "adversary strategy" that quarantees a payoff of at

least L.(n) for B, then we in fact will have proved that
1

V • (n) :;;:-: L. (n) •
1 1

Notice that, as far as proving lower bounds for tree algorithms

is concerned, adversary B has the privilege of consulting the strategy

which A has chosen while he makes up his own. However, all the adver-

sary strategies that are considered in the following chapters do have

uniform prescriptions, i.e., decisions are solely based on previous

moves and do not depend on the knowledge of A's strategy.

In giving descriptions of strategies and situations that might

arise in a computation, it is convenient to use the terminology of

term.is tournaments. After all, this is where the selection problem

originated! So, let us regard each input item as a tennis player.

A comparison between x. and
1

x. then becomes a
J

"match" of x.
1

versus x.. If the outcome is x. < x., we say "x. is defeated by
J 1 J 1

x."; if x. > x., we say "x beats x" etc. (Here we have to
J 1 J i j '

assume that tennis skill ~atisfies transitivity, i.e., if x. beats
1

x. and
J

x. beats
J

~' then x. would beat
1 ~-) A sequence of matches,

each tagged with its outcome, is called a tournament, usually denoted

by T. The length of a tournament T, written as jT/, is the total

number of matches T contains. Thus the payoff of adversary B corre-

sponds to the length of the resulting tournament. In connection with

a tournament T, we shall let time t refer to the point when the t-th

•11'11'.-,~~~ Jell., Ml Jlbifltllls .. ,.J •.•• Ii di lJI LffP'~vr"

_"...,, -.1111••,;•11f--1flW.dll£ ... ltlLJa·•·•lllMPJ1 •ll'fJ• .
...........)$11111 '"

' • .,.t'"

,\} 'c.1
' .

' ~: l. ,,.•

. ,·' ~ "~ .. - '

. :...)'- •'

·:.!

, ,.,_ ·1;··
- : '"

· .. ,-,_

(_,., 'f'! :.: .

13

1.4 Crucial vs. Noncrucial Comparisons

With respect to a tournament T, let us write xj < ~ if in the

final ranking xj is determined to be dominated by ~· We write

xj ~ ~ if either xj < ~ or j = k. It is easy to see that

1) if ~< xr'

such that x. ~

2) if

x ~ x .•
r J

J

xr< ~'

then

x •
r

then

in some match ~ must be defeated by an x.
J

in some match ~must beat an x. such that
J

Now, if T selects the i-th best player, there must be a player x
r

such that

and j [~ I x r < ~} j = i - 1.

Hence for each player other than x we must be able to isolate a
r

match of either type 1) or 2), which we call a crucial match. Thus

T must contain n-1 crucial matches. Alternatively, if we look at

the Hasse diagram that represents the partial ordering of the players

as established by T, n-1 crucial matches are those required to form

the links of a spanning tree on the n nodes, with

"bottleneck". (cf. Figure 2) Thus we know that

V. (n) ;::: n - 1
1

for all i.

x looking like a
r

Incidentally, this proves v1(n) n - 1 since it is easy to see that

v1(n) ~ n - 1. For general i, in order to improve this estimate on

14

the lower bound of V.(n), the adversary must try to entrap A into
1

making a large number of comparisons that are poncrucial.

Figure 2 Crucial matches (solid lines) and noncrucial matches

(dotted lines) for selecting

of 12 playersQ

x as the fourth best
r

2.1 Introduction

15

CHAPTER 2

SELECTION OF THE

THIRD BEST PIAYER

The adversary approach, as introduced in Sec. 1.3, was used by

Knuth (Sec. 5.3.3 of [4]) in proving Kislitsyn's theorem that n - 2 +

r lognl comparisons are indeed necessary for finding the second largest

of n items. In this chapter, we present Basic Strategy which is a

slight modification of the strategy Knuth used. We shall first use

Basic Strategy to reconstruct Knuth's proof, and then proceed to estab-

lish lower bounds for v3(n) and w
3

(n). Lemma 1 describes a specific

situation that must arise in any computation controlled by Basic Strategy.

By taking advantage of this situation, one can create a large number of

noncrucial comparisons, and lower bounds for v3(n) and w3(n) are obtained

thereby. As a consequence, v
3

(n) is determined precisely for infinitely

many values of n, and to within 1 or 2 for general n. w3 (n) is also

determined to within 1 or 2 for all n.

16

2.2 Weight function and Basic Strategy

In Sec. 1. 3 we introduced the notion of using strategies to

establish lower bounds for selection problems. The Basic Strategy, to

be defined below, shall play an essential role in the forming of our

final strategiefi for the adversary. It is a modification of the strategy

Knuth used in proving Kislitsyn's lower bound onV2(n). First we

have to define a· weight function:

Definition 1 With respect to a tournament T, Qt(x) where x is any

player and O~t~ITI , is a positive integer known as x's weight at

time t , and is defined recursively as follows:

Ql. Q
0

(x) = 1 for all x .

Q2. If x inflicted y's first loss in the t-th match of T, then

Qt(x) = Qt_ 1(x) + Qt-l(y) , and Qt(z) = Qt_ 1(z) for all z

such that z ~ x •

Q3. If the loser of the t-th match was previously beaten, then

Q (x) = Q
1

(x) for all x .
t t-

We can now present

Definition 2 Basic Strategy

Assume x plays y in the t-th match of T:

BSl. If x is yet undefeated and y is not, then let x win.

BS2. If both x and y are undefeated and Qt_ 1(x) > Qt-l(y) ,

then let x win.

BS3. In other circumstances, let the outcome be arbitrary.

17

Definition 3 A tournament is said to be BS-ruled if the outcomes of

the successive matches are decided by Basic Strategy.

The following are some central effects of our Basic Strategy.

Fact 1 In a BS-ruled tournament, once a player is defeated, his

weight does not increase from then on.

Proof By the definition of Q (x) , a player's weight increases only
t

when he makes a first loss. From BSl, a player who has been defeated

cannot inflict any first loss, therefore his weight shall stay the

same.

Fact 2 In a BS-ruled tournament, a player's weight is at most 2k

after he makes k first defeats.

Proof A player's weight increases only with every first defeat he

makes. By BS2 and Q2 , his weight at most doubles when he does

make a first defeat. Since the initial weight is 1, Fact 2 is

proved by induction on k.

In the definitions of weight and Basic Strategy, only a player's

first defeat is relevant. Indeed, we can represent the players'

weights in a BS-ruled tournament T by a tree structure, called the

first-defeat-tree (abbr. FDT) of T. Every player is represented by

a node in the FDT, and y is a son of x iff x inflicted y's

first loss in T. Thus the FDT may be a disjoint union of several

rooted trees, with every root representing an undefeated player. (cf.

Figure ~) In view of Fact 1, we shall let Q(x) denote the maximum

18

value of x's weight in a BS-ruled tournament. Then we have

Fact 3 Given a BS-ruled tournament T, let D(x) be the set of x's

descendants (including x itself) in the FDT of T. Then Q(x)= ln(x)I.

Proof Argue by induction on the number of first defeats x makes.

Use Q2 and Fact 1. (Details omitted).

Thus, by Fact 3, Q(x) corresponds to the total number of nodes

(or the actual "weight") of the subtree rooted at x in the FDT. For

example, in Figure 3 we have Q(x)=lO and Q(y)=4.

x

I

Figure 3 First-defeat-tree of a BS-ruled tournament

19

It is now a simple matter to prove

Theorem (Kisli tsyn)

Proof Given any tree algorithm for selecting the second best player,

we apply the Basic Strategy to it. Note that the champion is also

detennined in the resulting tournament T (he is the singular player

dominating the selected second best), call him x
c

Since he must

be the only undefeated player in T, in the FDT of T he is hence the

unique root. By Fact 3, we have Q(x) = n
c

Therefore x must
c

have made at least llog nl first defeats in T. However, at most one

of these could be a crucial match (cf. Sec. 1.4) as far as selecting

the second best player is concerned. Since there must be n - 2

other crucial matches, we conclude that T ;::-: n - 2 + llog nl. This

proves that v
2

(n) ;::-: n - 2 + llog nl .

20

2.3 Nearly Exact Bounds for i=3

In this section, we proceed to prove fairly tight lower bounds for

v
3

Cn) (the minimum number of comparisons for selecting the third largest

element), and w
3

(n) (that for selecting the first, second, and third

largest elements in order).

2.3.1 Main Theorem

The main result of this section is the following theorem:

Theorem 1

H(n)

V (n) ~ H(n), where for
3

+ 2flog(n-l)l

+ 2rlog(n-l)l

+ 2flog(n-l)l

k ~ 1,

if

if

if

n =

3• 2k-l< n ::;;

2k + 1 < n::;;

By comparing H(n) with Hadian and Sobel's upper bound (cf. Sec.

1. 1) V
3

(n) ::;; n - 3 + 2r1og(n-l)l we see that V
3

(n) is determined

precisely if n = 2k+ 1 ; and is determined to within 1 or 2 for

general n . Since w
3

(n) ~ v
3

(n) ~ H(n) , comparing H(n) with

Kislitsyn's upper bound w
3

(n) ::;; n - 3 + flog nl + flog(n-1)1 shows

that W (n) is determined to within 1 or 2 for all n .
3

The following lennna is the key to the proof of Theorem 1. To

simplify notation, let us define

h (n) = H (n) - n + 1 •

It may be helpful to keep in mind that h(n) is an estimate of the

21

number of noncrucial (i.e., wasted) comparisons that the adversary

is aiming to create.

Lemma 1 Any BS-ruled tournament that selects the third best of n

players must reach a point in time t when one of the following two

situations arises:

(1) There exist 3 undefeated players A, B, and C; A and B toge

ther have made at least h(n) first defeats so far.

(2) There exist 2 undefeated players A' and B' who together

have made at least h(n) + 1 first defeats so far.

We first show how Theorem 1 can be proved by using Lemma 1. The

proof of Lemma 1 will be given in Sec. 2.3.2.

Proof of Theorem 1 We present a strategy which, when applied to any

algorithm for selecting the third best player, will result in a tour

nament that contains at least H(n) matches. The strategy has two

phases:

Phase I Basic Strategy

Follow Basic Strategy until either situation (1) or situation

(2) of Lemma 1 occurs. At this point t
'

switch to

Phase II Clear Strategy

csl. As a follow-up strategy for situation (1)' let A, B, c

always win when they play other players. Among A, B, C we shall

assign the order A > C, B > C In other cases we do not care.

22

CS2. As a follow-up strategy for situation (2), let A'
'

B'

always win when they play other players. In other cases, we do not

care.

Now, in the case of situation (1) followed up by CS1, player

C will necessarily be selected as the third best player, dominated by

A and B. But then, none of the h(n) met~hes as mentioned in

situation (1) is a crucial match as far as selecting the third best

player is concerned. Hence the entire tournament must contain at

least n - 1 + h(n) = H(n) matches.

Similarly, in the case of situation (2) followed up by CS2,

A' and B' necessarily become the two top winners of the tournament.

Among those h(n) + 1 first defeats made by A' and B' before time t,

one could be the first defeat of the third best player. However, this

is the only case where those h(n) + 1 matches may contain a crucial

one. Since there ought to be n - 2 other crucial matches, we see

that the length of the tournament is at least n - 2 + (h(n) + 1) ,

which equals H(n) . Theorem 1 is thus shown to follow from Lemma 1.

2.3.2 Proof of Lennna 1

It is clear that any BS-ruled tournament that selects the third

best player must fall into one of the following two classes:

(i) Those in which there is only one undefeated player left at the end.

(ii) Those in which there are two undefeated players left at the end.

23

For the proof of Lennna 1, we need only consider case (i). Indeed,

suppose the lennna is proved in this case. Let T be a tournament of

class (ii), so that two undefeated players say x and y are found at

time IT I. If QITI (y) ~ QITl(x), we may extend T by letting x play

and defeat y in an additional match. Call the resulting tournament

T'. Clearly T' has been following Basic Strategy, and moreover is in

class (i), so the lennna is true for T'. However, the particular time t

in T' as characterized by the lennna must satisfy t ~ITI, since at time

ITI+ 1 there is but one undefeated player x, not satisfying either

assertion (1) or (2). Hence the lennna must be in fact true for T.

Let us now look at the first-defeat-tree of a tournament of class

(i). (cf. Figure 4) The only undefeated player, namely the champion,

is denoted by x
c

Let .•• ' x be the sons of
s

x
c

arranged

in the order their first defeats by x took place.
c

Thus if t. ,
J

O~j~s is the time x inflicted x. 's first loss, then to< tl< ... c J

< t . For O~j~s, let d. denote the number of first defeats made by
s J

x .. (By BSl, they must all take place before time t ..)
J J

Claim Let M = max [j + dj I 0 ~ j ~ s } ---
and .R, min [j 0 ~ j ~ s, j + d, M } , then

J

(I) if .R, < s , we must have M ~ h(n).

(II) if .R, = s , we must have M ~ h(n) + 1 .

Note that once Claim is proved, Lennna 1 will follow immediately.

For, in case (I) is true, we can choose t to be the time t.R,- 1 .

24

At this moment, xc' xt and xt+l (note t+l ~ s) are all undefeated

since By this time x has made
c

first defeats

(namely on x0, x1, ... , xt_ 1), and has made Since by (I)

t + dt = M ~ h(n), assertion (1) of Lemma 1 is fulfilled if we choose

A, B, C to be x , x , and
c t

is true, we can choose t

xt+l · On the other hand, if (II) of Claim

to be t - 1.
s

At this time x and x are
c s

undefeated, and have made a total of s + d
s

M ~ h(n) + 1 first de-

feats. Thus choosing

tion (2) of Lemm.a 1.

•

t
s

A' and B' to be x and x will satisfy asser-
c s

Figure 4 FDT with a single root

25

So we have reduced the proof of Lemma 1 to the verification of

cases (I) and (II) of Claim.

Proof of Claim

(I) Assume t < s .

By the definition of M, we have j + d. ~ M for all O~j~s. In par-
- J

ticular, d IM/2l ~ M - IM/21 = LM/2J

By Fact 2,

d ~ M - s s
d.

Q(x.) ~ 2 J
J

Q(x) ~
s

for all O~j~s.

M-s
2

Summing the weights, we get

LM/2J - 1

Hence we have

f Q(x.) ~ 2LM/2J + 2 LM/2J-1 + 1 0 ••• + 2 + 2
i=IM/21 J

= 2 l!-f/2J +1 - 1

Also, xc has only made j first defeats prior to time t., hence by
J

Fact 2 of Sec. 2.2 has weight at most 2j before he plays x .•
J

This

implies that Q(x.) s 2j, for otherwise x. would not lose to
J J

BS2 of Basic Strategy. In particular, this is true for x.
J

x by
c

such that

26

<b;j<rM/21. Therefore,

rM/21-1
L: Q(x.)

J j=O
...

On the other hand, since in the first-defeat-tree the union of the

subtrees rooted at ~j~s, contains every node except x.'
J

Fact 3 of Sec. 2.2 we have

s
L: Q(x.) = n - 1

.i=O J

Now, from Equs. (4), (3) and (6), we obtain

2 rM/21 + 2 LM/2J +1 - 2 ~ n - 1

x ' by
c

Solving this inequality for M and compare with the definition of

h(n), we conclude that

M ~ h(n) •

(II) Assume t = s

(')

(6)

By the definition of t, we have M = s + d
s

but j + dj i M for all

j<s. Hence, drM121 < M - rM121 = LM/2J

drM/21+1 < t_M/2j - l

ds-l < M - s + 1

d = M - s s

Again, by Fact 2 we have

s
~ Q(x.)

_i=rM/21 J
2 LM/zj-1 + ••• + 2M-s + 2M-s

2LM/~

p#l:nUJ a L. .JJPU ... j ll 2' L !Qt,f,LL CMUUQMJ!.K&ilt.J .2. 21J$$U4!llk.2$2Jl4Jlllllllt.;:aztaJ Jbllt!.l4!Liiii14gtl
,~--

27

)t ::· ::~- 'fi~l~f

It then follows &a...-.. U), (f.). {1) that

Aa a reault, we get

M ~ h(ti) + 1 "

28

CHAPTER 3

GENERAL LOWER

BOUNDS FOR SMALL i

3.1 Introduction

In this chapter, we shall generalize the techniques of

Chapter 2 to deduce lower bounds on V.(n) and W.(n) for small i.
1. 1.

Although we appeal to the same scheme of using a two-phase strategy,

the analysis involved for i > 3 is considerably more difficult.

The major effort is contained in the proof of Lemma 2, which is

a generalization of the analysis we did on "first-defeat-trees"

in Lemma 1 of Sec.2.3.

For any fixed i, our lower bound for V.(n) and W.(n) has the
1. 1.

asymptotic behavior n + (i-l)logn - O(log(log*n)). By comparing it

with upper bounds as given by Equs.(l) and (2) of Sec. 1.1, we see

that the asymptotic behaviors of both V.(n) and W.(n) are deter-
1. 1.

mined to within a term of order O(log(log*n)).

29

3.2 Main Theorem

We shall derive lower bounds on V.(n) and W.(n) for i > 3.
J_ J_

by induction on i , based on the result established for i = 3 in

the previous chapter. The resulting formulas for both of our lower

bounds involve a quantity which is dependent on i as well as on n.

This quantity, formally defined below as h. (n),
J_

is fairly close to

log(n) when i is small relative to n •

Notation For ~2, let log*n denote the largest integer k such

that
.2 } 2· k

n '2': 2 •

Thus, log*2 = log*3 = 1 , log*4 = log* 5 ... log*15 2 , and so

forth.

Definition 4 For any i :<: 3, define h.(n) by the following formula:
J_

for i > 3, h.(n) = logn -
J_

h3 (n) = logn-2; J(S)
(i-3)log(log*n) - 2log((i-l)!) - (i-1) .

Our main results of this chapter are contained in the following

theorem:

Theorem 2 For any n and i such that n > i '2': 3, we have

vi (n) '2': n - 1. + (i·l)(hi(n) - 1)

W i (n) '2': n - 1 + (1-1)h
1

(n)

(9)

(10)

30

Remark 1 If we define h1(n) = h2(n) = llognl, then the lower bounds

as given by Theorem 2 also hold when i=l, 2. In fact, they a~e close

no the precise bounds that are known in these cases:

V1(n) = w1(n) = n - 1

v2(n) = w2(n) = n - 2 + llognl (Kislitsyn's Theorem)

Remark 2 For i=3, Theorem 2 gives the following lower bounds:

v3(n) ;;::: n - 3 + 2(logn - 3)

= n - 9 + 2logn,,

w3(n) ;;::: n - 3 + 2(logn - 2)

= n - 7 + 2logn •

These are slightly worse than the lower bounds we actually proved for

i=3 in Theorem 1 of Chapter 2. The reason is of course that here we

would rather use a varied (and slightly weakened) form of Lemma 1, if

only it could serve more conveniently as a basis for inductive argu

ments. (cf. Lemma 2 and its proof in Sec.3.4.2)

Remark 3 Compare the lower bounds of Theorem 2 with the upper

bounds of Hadian-Sobel and Kislitsyn respectively. From (8), we have

hi(n) > llognl - (i-3)log(log*n) - 2log((i-1)t) - i

since log + 1 > llognl • Hence by comparing Equs. (9), (10) with

31

(1) and (2) of Sec.1.1, we see that the gap between upper and lower

bounds on Vi(n) and Wi(n) is now less than

(i-l)(i-3)log(log*n) + (i-1) [21og((i-1)!) + i + lJ .

As a consequence, for any fixed i > 3, the asymptotic behaviors

of V.(n) and W.(n) are determined to within
i i

(i-l)(i-3)•log(log*n) + O(l) •

Remark 4 For large n and i, since

log((i-)!) ~ log(i!) ~ i(logi) ,

we see from the definition of h.(n) in (8) that
i

h.(n) ~ logn - i(2logi + log(log*n)).
i

Hence h.(n) approaches zero at i ~ (logn)/(2log(logn)).
i

Remark 5 When h.(n) gradually approaches zero or even becomes
i

negative as i grows larger and larger, formula (9) is superseded by

Pratt's lower bound as given by Equ.(3) of Sec.1.1:

V.(n) ~ n + 2i - logn
i

V.(n) ~ (3n+i)/2 - logn
i

for i ~ n/3 ,

for n/3~~ i ~ n/2 •

Also, (10) may be replaced by the following lower bound on Wi(n):

Thecu:em 3

32

For any n and i such that n ~ i,

w. (n) ~ n - i + r log (i l) 1 .
1

Proof This is purely by information-theoretical arguments. Suppose

in a tournament A1, ••• ,Ai (unordered) are known to be the best i

players, and the order of the remaining n-i players is fixed.

Then, just in order to completely determine the ranking of these i

top players, llog(i!)l matches between them could be necessary in the

worst case. However, for each of the remaining n-i players, there still

must be a match in the tournament in which he lost to someone whose

ranking is no higher than the i-th. Hence these n-i "crucial"

matches are completely disjoint from those llog(i!)l mentioned

before, and this tournament contains a total of n - i + llog(il)l

matches at least.

33

3. 3 Proof of Main Theorem

The proof of Theorem 2 depends on the following lennna the way

Theorem 1 of Sec. 2.3 depends on Lemma 1. Indeed, Lemm.a 2 gene-

ralizes the analysis of the first-defeat-tree as was done in

Lemm.a 1. Here a "championship" tournament is a tournament which

determines, among other things, the best player of all.

Lennna 2 Let T be a BS-ruled championship tournament of n players.

For any i such that i ~ 3, we assert that there must exist a time

t in T when the following two statements are true:

(i)i There are ~i-1 undefeated players who have made a total of

(i-l)hi(n) first defeats at least.

The champion himself has made at least h. (n)
1

first defeats.

(The second statement serves mainly as an induction hypothesis that is

needed for the proof of Lennna 2.)

As in Sec. 2.3, let us first assume that the lennna holds and

prove Theorem 2. The proof of Lemma 2 will be given in Sec. 3.4 •

Proof of Theorem 2

Gi.ven an algorithm for selecting the i""th best player, we can

find the champion by using at most v1(i-l) = i-2 additiorull matcbes

34

to determine the best among the top i-1 players. This means that if

V!(n) is the minimum number of comparisons for selecting the largest
1

!!!!! the i-th largest element, then

V. (n) ~ V! (n) - (i - 2)
1 1

and W • (n) ~ V ! (n) •
1 1

Thus, to prove Theorem 2, it suffices to show that

V! (n) ~ n - i + (i-l)h. (n) •
1 1

Given an algorithm for selecting the champion and the i-th best

player, we first apply Basic Strategy to it. By Lernna 2 there must be

a crucial moment t when there are j (l~j~i-1) undefeated players

A1, ••• , Aj who have made a total of (i-l)h. (n)
1.

first defeats at

least. As soon as this occurs, we shall switch. to a Clear Strategy.

Under the latter strategy, A1, ••• , Aj shall always win when they

play any of the remaining n - j guys; in other circumstances the

outcome may be arbitrary. Now, A1, ••• , Aj necessarily turn out to

be the j highest ranking players of the tournament. However, as far

as determining the i-th best player is concerned, V
1
(n-i+l) = n - i

matches have to be played between the n-i+l low ranking players in

order to determine the best among them. Since these players are com-

pletedly disjoint from the j highest ranking players, we see that

the tournament must contain no fewer than n - i + (i-l)hi(n) matches

all together.

35

3.4 Proof of Lemma 2

3.4.1. ~~ilisry Propo-siUons

Lemma 2 will be proved by induction on i. In trying to proceed

from say i=q to i=q+l, the problem of delicate "timing" in the

tournament turns out to be of vital importance. Propositions 1 and 2

below are two instances of how one deals with this problem in the

proof of Lenuna 2.

As in the proof of Lemma 1, we consider the first-defeat-tree of T,

the given BS-ruled championship tournament. Let x
0

, ••. , xs be those

players whose first defeats are made by x , the champion, at time
c

t 1, •.• , ts' respectively with t 0 < t 1 <•••<ts

the number of first defeats made by

Sec. 2. 3. 2) Furthermore, for any

x.'
J

x., O:>:j:>:s, let
J

Also let d. be
J

(cf. Figure 4 of

T. be the "subtour
J

nament" of T consisting of those matches (in the order they occur in T)

represented by the edges of the subtree, rooted at x. , of the FDT.
J

Let Tj denote the subtournament consisting of those matches of T1, ••• ,

T. 1 together with the first defeats of
J-

order they occur in T). (cf. Figure S)

x. 1 (also in the
J-

One can easily see that T.
J

and T! , when considered as tournaments themselves, are both BS-ruled
J

championship tournaments. Within T, both subtournaments T. and T'
J j

are completed before time t .•
J

36

Figure 5 Subtournaments T. and T'
J j

In terms of the notations defined in the last paragraph, we have

Proposition 1 Suppose Lennna 2 is true for i = q ~ 3. If for a~

given BS-ruled championship tournament T (of n players), there exist

j and m satisfying the following conditions, then Lennna 2 is also true

in T when i = q+l

(i) O~j~s and m ~ n ,

37

Proof Since x defeated x. at time t.' by Basic Strategy we
c J J

must have

Qt.-l(xc) ~ Qt.-l(xj) .
J J

Since

Qt.-l(xj) = Q(xj) ~ m '
J

this means that both tournaments T. and T~ involve at least m
J J

players.

By our induction hypothesis, there exists a time t in T. when
J

(1)
q

some ~ q-1 undefeated players in T. have made a total of
J

(q-l)h (m) first defeats at least;
q

(2) x. (the champion of T.) by this time has made at least h (m)
q J J q

first defeats.

Similarly, there exists a time t' in T~ when
J

(1) I same as statement (1) only T. is replaced by T~
q q J J

(2) I same as statement (2) only x. is replaced by x
q q J c

Now, if t'< t, then (2)' is also true at time t. Hence at
q

time t, by (1) and (2)' , there are ~q undefeated players who q q

have made a total of at least q •h (m) first defeats. Since by
q

assumption hq(m) ~ hq+l(n), this together with statement (2)~ above

show that both assertions of Lenuna 2 are true in T for i=q+l •

38

On the other hand, if t<t', we will choose the time to be t 1
•

Then statement (1)' and (2) above show that at time t' some ~q
q q

undefeated players have made a total of at least q•hq(m) ~ q•hq+l(n)

first defeats. Again, this together with (2)' show that Lemma 2
q

is satisfied for i=q+l.

Proposition 2 Suppose Lemma 2 is true for i = q ~ 3. If fora giV'Sn

BS-ruled championship tournamentT of n p1ayers, there eleists an m and

that satisf1" the following

conditions, then Lemma 2 is also true in T when i=q+l

(i)

(ii)

(cf.

m~n o~a~

Q(x.
Ji

) ~ m for

Figure 6)

x
s

jl < j2 < < J. ~ s and a ~ logn;
q-1

l.s:i~q-1 , and a+ (q-l)hq(m) ~ q•hq+l(n) •

Figure 6 A tournament of Proposition 2

39

Proof Since Q(x.) ~ m for l:s:t~q-1, this means that each of the
J_e

q-1 sub tournaments ... ' involves at least m players.

Applying the induction hypotheses, we see that for 1~,e~q-1,

there exists time t1 , t1 < tj_e , such that at time ti the follow

ing two statements are true:

(1) ,e
q

Some ~q-1 undefeated players in T. have made
J_e

a total of

(q-l)h (m) first defeats at least.
q

(2),e x. himself has made at least h (m) first defeats.
q J_e q

(I)

There are two cases:

t' < t - 1 for all l~t~q-1 •
,e a

If this is the case, then at time t - 1 a 9

defeats (namely on x0 , .•• , xa_ 1). Also, since

x. has made
c

t. ~ t > t -
J_e a O!

a first

1

x. are all undefeated at time
J ,e

t - 1 . a Hence, by (2)~ ' we know

that at time t - 1
O! '

x and
c

for l:s:~q-1 are q undefeated

players who have made a total of a+ (q-l)hq(m)

Since by assmnption

and

a~ logn, hence O! > hq+l(n) ,

a+ (q-l)hq(m) ~ q•hq+l(n) ,

first defeats •

we see that Lemma 2 is true for this tournament when i=q+l •

(II) ti~ ta- 1 for some t such that l~~q-1 •

For this particular t , xc at time ti has again made at least

a first defeats. And by statement (1): , at time t1 there are ~q-1

40

undefeated players who together with x
c

have made at least

~ + (q-l)h (m) ~ q•h (n) first defeats. Hence again Lemma 2 is true
q q

when i=q+l for this tournament. Thus the proof of Proposition 2

has been completed.

3.4.2 The Inductive Proof

We are now ready to prove Lennna 2.

A) Basis of induction, i=3.

Let us look at Figure 4 of Sec. 2.3.2. Suppose Lemma 2 were

false, we would have j + d. < 2logn - 4 for all j such that
J

logn - 2 $ j $ s . (If not so, we can choose the time to be t.-l where
J

j ~ logn - 2 and j + d. ~ 2logn- 4 = 2h3(n). At this time t.- 1 ' J J

both statements (1) 3 and (2) 3 of Lermna 2 are satisfied.) Thus,

dr I < 2logn - 4 -(rlognl - 2) $ rlognl - 2 logn1 -2

d < riognl - 3 riognl -1

d < 2 r logn l - 4 - s
s

From Fact 2 of Sec. 2.2, we have

~ Q(x.) 5 2 r1ognl-3 + 2 r1ognl-4 + ••• + 21 + 2o
r1ognl-2 J

= 2 r1ognl -2 1 (11)

(Note, if r1ognl - 2 s O, then h .(n) s: 0 for all i ~ 3, and Lemma 2 is
1

trivially true in this case. Hence we may assume n > 4.)

41

From (ll)and Equs. (5), (6) of Sec. 2.3, we get

llognl-3 s
n - 1 :E Q(x.)

j=O J
+ :E Q(x.)

j = r logn 1 -2 J

~ n - 2

which is a contradiction. This proves Lemma 2 for i=3.

B) Suppose the lemma is true for i=q~3, we will proceed to prove

it for i= q+l •

If for the given tournament, s ~ q•logn , then at time say t , s-q

x
c

and x s-q+l' x ' •.• , x 1 s-q+2 s- are q undefeated players where

xc alone has made s-q+l first defeats (namely on x0 , ••• , x
6

_q).

Since s-q+l > q•logn - q = q(logn - 1) ~ q•hq+l(n) , Lennna 2 is

true for i=q+l. Hence from now on we shall asslttile s < q•logn •

Notation For

and ~ denotle

1 ~ k ~ log*n , let

logn +(q-l)log(k)n.

log(k)n denote log•••log
._"li -

Also, let n'= n/(2log*n).

n '

We shall divide the problem up into log*n cases. Case k, for

l~log*n - 1, makes the as sum ptiom

L Q(x.) ::-:: n' •
. ~·<i J 1 k+l J k

42

The last case, Case log*n , makes the assumption

l Q(xj) > n/2 1 •

Os:j<2(q-l)+logn

It is seen that these log*n cases do cover all possibilities

since we always have

> I Q(x.)
J

= n - 1

+ ••• + I Q(xj)

OS:j<logm + 2(q-l)

(because ilog*n< logn + 2(q-1).)

~ n/(2log*n) + n/(2log*n) + ••• + (n/2 1) •

log*n - 1

1N<""', Case k , lSks:log*n - 1 , are proved in the same way.

Proof of Case k, lSk:S:log*n - 1

There are two possibilities:

(I) The maximum of Q(x.),
J

ik+l:S:j<ik ' is :2: n' /(q·l)

If only we can show hq(rf/(q .. 1)) ~ hq+l (n) '
then the desired

will follow from Proposition 1 of Sec. 3. 4. 1. Indeed,

result

h (n' /(q .. l)) ~ logn - log(q-1) - 1 - log(log*n) - (q-3)1og(log*n)
q

- 21og((q-l)l) - (q-1)

43

> logn - (q-2)log(log*n) - 2log(q!) • ~

= hq+l (n) •

Therefore we are done in this case.

(II) The maximum of Q(x.),
J ik+ 1 $; j < ik ' is < n' /(q-1).

In this case, let Q(x.) ' ... ' Q(x.) be the q-1 largest
J1 Jq-1

weights among Q(x.), j 8[ik+l' ik) . (note i - ik+l ~ q-1 .)
J k

Then we must have Q(x.) ~ n'/((q-l)(ik- ik+l))
J,e,

for all l$;£$;q-l.

Denote this last fraction by m • If we can show that ik+l+(q-l)hq(m)~

q•hq+l(n), then the conclusion will follow from Proposition 2 of

Sec. 3.4.1. Thus, since ik- ik+l ~ (q-l)log(k)n , and n 1=n/(2log*n),

+ (q-l)h (m) ~ logn + (q-l)log(k+l)n + (q-l)(logn -21og(q-1)
q

- log(k+l)n - 21og((q-l)-l) - q - (q-2)log(log*n))

~ q(logn - (q-2)log(log~<n) - 2log(ql) ~ q)

This completes the proof of Case k, l~~log''~n - 1.

44

Proof of Case log*n

In this case we have the assumption

Q(x.)
J

Q$;j<2(q-l)+logn

> n/2

But by Equ.(5) of Sec.2.3 we have

Q(x.)
J

1 •

•••

2
ilognl-2 _

n/4

From Equs. (12) and (13), we get

Q(x.) > n/4 •
J

logn-3<j<lognt2(q-l)

1

(12)

+ 2 ilognl-3

1

(13)

Hence the maximum of Q(x.), logn-3 < j < logn+2(q-l), must be greater
J

than n/8(q+l) •

As in (I) of the proof of Case k, k < log*n , we need only show that

h (n/8(q+l)) ~ h +l(n), then the result will follow immediately from
q ·q

Proposition 1 of Sec.3.4.1. The calculation is straightforward:

h (n/8(q+l)) ~ logn - 2 - log(2q+2) - (q-3)log(log*n) - 2log~q-l)V-(q-l)
q

~ logn - (q-2)log(log*n) - 2log(q!) - q

hq+l(n).

(We assume here n > 4 due to the remark following Equation (11).)
This proves Case log*n, and the proof of Lennna 2 is now complete.

45

CHAPTER 4

FINDIN; A MEDIOCRE PI.AYER

4.1 Introduction

In the preceding chapters we have successfully extended Kislitsyn's

lower bound to the case when, instead of finding the second best of n

players, the i-th best is to be determined. We now turn our attention

to another type of selection problems.

Given i and j with i + j + 1 ~ n, our objective now is to find a

player who is neither among the i top players nor one of the j worst

players. We shall say such a player is (i,j)-mediocre. Historically

this problem is closely connected with the finding of the median ele

ment, whose starting point is usually the selection of an element that

is not too close to either extreme.

Technically, the selection of the i+lst largest element is a

special case of this "mediocre player" problem in which n = i+j+l.

This connection suggests a way of finding an (i,j)-mediocre player.

We simply pick i+j+l elements arbitrarily and select the i+lst

largest among them; it is obvious that this element satisfies the

"(i,j)-mediocre" requirement. The question that naturally follows is

"Is this the best algoritlnn ?" In Sec. 4.3 we will prove that this is

the case when i=l. We will also show that if the answer to this

••~''- ,..,_. t.em1:1111&. *ll'•••:••·· .:t:;t_a. .

....... -..•••• .-t..tlisitw•r.1•••n lilt .. • mm11·

d•nn .. ·111-.n .. ii••-•·..__..._.••••-•• !JJ~DllJ.1. I.bf 1.

........... Till1 Hl••ldbtL

. - ~: ~ . .

. ':'''·

;._ .. . -: ;.• . -~ .·

47

4.2 Properties of S(i, j ,n)

For i+j+l ~ n, let S(i,j,n) denote the minimum number of com

parisons needed to find an (i,j)-mediocre element as defined in Sec.4.1.

The following facts are easy to verify:

(i) S(i,j,n') ~ S(i,j,n) if n'~ n ~ i+j+l.

This is true since from n' elements we can arbitrarily choose

n elements and in S(i,j,n) comparisons find a desired (i,j)

mediocre element.

(ii) There is an integer ~ ~ 12(i+j+l) such that

S (i, j, n)

Proof By the algorithm of Blum et al[l], it takes less than

6m comparisons to find the t-th largest of m elements for any

t~m. Since S(i,j,i+j+l) ; Vi+l(i+j+l), we thus have

S(i,j,n) ~ S(i,j,i+j+l) ~ 6(i+j+l) for all n ~ i+j+l by (i).

Since an optimal algorithm never consults more than 12(i+j+l)

elements, we must have

S(i,j,n) ~ S(i,j,12(i+j+l)) for n ~ 12(i+j+l).

Thus, for fixed i, j, the function S is non-increasing inn and

reaches a constant before n is 12(i+j+l).

48

As a result, we have

Theorem 4 For n ~ i+j+l, S(i,j,n) is independent of n if and only

if selecting (optimally) the i+lst largest element of an arbitrary

subset of i+j+l elements is an optimal procedure for finding an

(i,j)-mediocre element in n elements.

Proof If S(i,j,n) is independent of n, then

S(i,j,n) = S(i,j,i+j+l) = Vi+l(i+j+l) •

This shows that the proposed algorithm is optimal. On the other hand,

if the algorithm described in the theorem is optimal, 'W'e will have

S(i,j,n) = Vi+l(i+j+l) for all n ~ i+j+l

which shows that S(i,j,n) is independent of n.

49

4.3 S(l,j,n) = V2(j+2)

Because of Theorem 4 of the last section, it becomes an intri-

quing question whether S(i,j,n) is independent of nor n.Ot. 'In this

section we will show that S(l,j,n) is independent of n. This

lends support to the conjecture that S(i,j,n) depends only on i and

j. We will discuss some implications of this conjecture in the next

section.

Theorem 5 S(l,j,n) = v2(j+2) = j + ilog(j+2)l

Proof It suffices to show that S(l,j,n) ~ j + ilog(j+2)1. For any

given algorithm that finds a (l,j)-mediocre player, we shall apply

Basic Strategy (cf. Sec. 2.2) to it and call the resulting tournament

T. Suppose x is the (l,j)-mediocre player found in T, define
m

A = {x I either x=x or
m

x is determined to be inferior to

x by T }.
m

By the definition of "(l,j)-mediocre" x nrust be defeated at least once
m

in T; hence none of the guys in A is an undefeated player. Also, let

B = {y I y is undefeated at the end of T and has weight > 1}.

Thus, if B = {y1 , .•• ,yr}' then y1 , ••. ,yr are those players corre-

sponding to the. roots that have at least one descendant (besides

50

itself) in the first-defeat-tree of T. Certainly A II B = ¢.

Claim If for l~i;5:r, y£ has weight mt' then we must have

r
L, ilog(mt)l ~ l1og(j+2)1 •

£=1

Proof of Claim Suppose for l~.R,::;;r, we have

Then,
r
L, llog(m£) l = (k1+ l) +

J,=l
= r + (k1 +

On the other hand,

Hence

•••

•••

•••

+ (k + 1)
r

+ k) • r

k +1
+ 2 r

k +1
2 r

••• + k)
r

(14)

(15)

However, since every player in A nrust be the descendant of some Y,e,,

l::;;.R,~, we have

~ + • • • + mr ~ r + I A j ~ 1 + I A I • (16)

Since by the definition of (i,j)-mediocre we must have IAI ~ j+l,

Equ. (16) becomes

m1 + ••• + mr ~ j + 2 • (17)

The Claim then follows from Equs. (14), (15) and (17).

51

Now that Claim has been proved, Theorem 5 follows quite easily.

Indeed, from Claim and Fact 2 of Sec. 2.2, we know that y1 , ..• , yr

have played at least llog(j+2)1 matches all together. But from the

definition of A, it follows that at least I A I - 1 matches have been

played between the players of A (one "crucial" match for each player

in A other than x). Since A and Bare disjoint, we see that this
m

tournament nrust contain at least

llog(j+2)1 + I Al - 1 ~ llog(j+2)l + j

matches. Thus the proof of Theorem 5 is complete.

52

4.4 Connections with Median Computation

In the last section we proved that S(l,j,n) is independent

of n. This by no means implies S(i,j,n) is independent of n

for other i as well. However, if this should indeed be true, it

would have the following interesting consequence.

Proposition If S(i,j,n) is independent of n for all i,j, then one

can find the median of n elements by using no more than 3n compari-

sons.

Proof Let M(n) be the minimum number of comparisons for finding the

median of n elements. Then, for a given n, to find 8'I (n/2, n/2)-medi

ocre element among 3n/2 elemenns·one aan proceed in two ways:

l) Pick any n + 1 elements and find their median. This requires

M(n+l) _comparisons in the worst case.

2) Divide the 3n/2 elements into n/2 triplets and sort each

triplet. Then take the central elements of all the triplets and

find their median. This element is easily seen to be a desired

(n/2, n/2)-mediocre element, and this method requires

3•(n/2) + M(n/2) comparisons in the worst case.

Now, if S(i,j,n) is independent of n then the first method is

optimal by Theorem 4. Therefore we have

;g£M1#44Lt.£J Kmuu;:,1s;t1,a.1paezsg:zJttt;:.x ... ttQJJQ.J. 11QtL4lM1,J,lU•UAJ.Uli4iiQM!lSQi#MJK.JQ!#)JJJijQ
' • • • ' ~ >. ' ·~, ,_, ••• --·-f-' •,-.. , ', - ; ; " \ ,, - ,: - - - ' .·~·:"

OfCOGSMW have

(·' ..

54

BIBLIOGRAPHY

[l] Blum, Floyd, Pratt, Rivest, and Tarjan

"Linear Time Bounds for Median Computations", Proceedings of

fourth Annual ACM Symposium on Theory of Computing, May,1972

[2) Carroll, St. James's Gazette, August 1, 1883, pp. 5-6

[3] Kislitsyn, "On the Selection of the k-th Element of an Ordered

Set by Pairwase Comparisons" Sibirskii Mat. Zhurnal 5, 1964

[4) Ktruth, The Art of Computer Programming, vol. 3 Addison-Wesley

[5] Hadian and Sobel, "Selecting the t-th Largest Using Binary

Errorless Comparisons" Technical Report 121, Department of

Statistics, University of Minnesota May, 1969

[6) Pratt and Yao, "On Lower Bounds for Computing The i-th Largest

Element", Proceedings of the Fourteenth Symposium on Switching

and Automata Theory, 1973

[7] Schreier, Mathesis Polska 7 (1932), pp. 154-160

55

ACK'J'l)WLEDGEMENrS

I would like to thank my advisor Professor Michael Fischer

for his patient guidance throughout my graduate study. His help

and encouragement is most important to my work. I also want to

thank Professor Albert Meyer whose lectures are always a source

of inspiration. I am also indebted to Professor Joel Spencer

for many useful suggestions concerning this thesis.

I wish to express my gratitute to M.I.T. and Project MAC for

the financial support I received during my graduate study.

Finally, I wish to thank my husband, Andrew, for his delightful

companionship and warm understanding,during the preparation of this

thesis.

CS-TR Scanning Project
Document Control Form

Report # LGS :JP- - I~ I

Date : .J_ I J. l Ii!:_

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
M_ Laboratory for Computer Science (LCS)

Document Type:

'M,, Technical Report (TR) D Technical Memo (TM)

D Other: -----------
Document Information Number of pages: 6 0 (£ 5'- i'rn~G~s]

Originals are:

D Single-sided or

~Double-sided
Print type:

0 Typewriter 0 Offset Press

0 InkJet Printer ~ Unknown

- Not to include DOD forms, printer intstructions, etc ... original pages only.

Intended to be printed as :

D Single-sided or

~ Double-sided

0 Laser Print

D Other: ______ _

Check each if included with document:

0 DOD Form D Funding Agent Form 0 Cover Page

D Spine D Printers Notes D Photo negatives

~Other: B d3LvG'rv~~N I<.. 01'1,, SHr;tl
Page Data:

Blank PageS(bypagenumber): __________ _

PhotographsfT onal Material (by page number): ________ _

Other cno1e description/page number):
Description : Page Number:

-::c·ma c;:r: MA f: O v Go) l;.,N'#
1.e-v T~IL£ 9l.A1v H, ~eu:

- J }
0 F <l)tJT5-iu Is B LArJ R .. fAf;°f§

Scanning Agent Signoff:

Date Received: 2-_1J..91 ?6 Date Scanned: __ 1._1.!.!!_1 9{ Date Returned: __2_1 J..1 I ti

Rev 9llM DSILCS OocuJMnt Control Form cstrlorm.vsd

-----~~---

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

