
MAC TR-118

AN ABSTRACT MODEL OF A RESEARCH INSTITUTE:

SIMPLE AUTOMATIC PROGRAMMING APPROACH

Victor Briabrin

March 1974

Work reported herein was conducted at Project
MAC, Massachusetts Institute of Technology as
a part of research supported by the scientific
exchange program between the National Academy
of Sciences of the U.S.A. and the Academy of
Sciences of the u.s.s.R.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

An Abstract Model of a Research Institute:

Simple Automatic Programming Approach

ABSTRACT

A problem of knowledge representation is

considered in terms of designing a model

for a simple sociological structure. A

version of the access language is proposed

which is based on three kinds of expressions

acceptable by the system - constructors,

specificators and requests. In addition,

some topics concerned with model implementation

and extension are discussed.

--~-------------
- __ TI __ _

-2-

Acknowledgments

Papers and discussions produced by the Automatic Programming Group

contributed to the main ideas expressed in this paper. Some problems

directly or indirectly related to the subject of the paper were dis­

cussed with Bill Martin and Ed Fredkin to whom I am also most grateful

for the general encouragement and assistance in my work at Project MAC.

Carl Hewitt and Peter Bishop were my immediate colleagues and advisors

in studying PLANNER and other relative material. With Sudhindra Umarji

I discussed many different aspects of Automatic Programming.

Dottie Scanlon, Barbara Kohl and all members of Project MAC headquarters

gave me permanent and invaluable assistance in the use of literature,

equipment, computer time and in organizing everything which makes life

easier. My wife Galya did a tremendous amount of work typing and

editing the text, debugging sample programs and exhorting me to finish

this memo.

-3-

1. Motivation

A model has been created with two purposes in mind: a) an attempt

to simulate a simple sociological structure can show the underlying

reasons for building an Automatic Programming System based on the

scientific model; b) a sample implementation in PLANNER or CONNIVER

can give a taste of the applicability of these programming systems to

model construction and utilization.

During the development of the system an attempt has been made to

analyze the author's own actions and decisions in order to draw some

conclusions on:

a) which definitions are more universal than others;

b) what type of metalanguage is the most convenient for describing the

syntax of the external language;

c) how to restrict the model so that it could be implemented in a short

period of time and still contain enough kQowledge to be extended

without big changes in the basic structures;

d) what implementation language is the most appropriate for this kind of

system.

Some results of this analysis are reflected directly or indirectly

in the following text.

2. Contents of the Model

A model of an abstract research institute is considered from the

following points of view:

-4-

a) administrative (structure of divisions) :

b) scientific (association of divisions with research projects);

c) personnel (characteristics of the people and their assignments

to divisions and research project~~) ii

d) household building maintenance, equipment, energy supply);

e) financial sponsoring, money distribution, salaries etc.~

The goal of constructing a model is to create some formal scheme for

describing a scientific establishment and to give the user (scientific

or administrative manager, a guest, a student, or some snoopy person)

an instrument which can probably help to analyze the structure of the

institute, predict possible results of rearrangements, plan future

developments, etc.

Three stages can be outlined in the process of creating and

utilizing the system.

First stage - developing the frame which is supposed to be filled

up with specific information concerning an actual establishment. In

terms of LISP-like languages the frame is in fact a group of predefined

functions manipulating relations which are to be inserted into the

appropriate Data Base.

Second stage - filling the system with the neeessary information

so that the Data Base will represent the model of the speeific

establishment. Both the first and the second stages serve to create a

model, but in the first stage information provided to the system is

mostly procedural whereas in the second stage it is mostly relational.

-s-

Third stage - utilization of the system, i.e. posing questions,

giving commands, changing the model, etc. In fact, pure utilization is

impossible without permanent model readjustment: the whole cycle of

model creation and utilization can, therefore, be described as "define

the model, fill it with information, use it, repeat".

3. Language of Access

According to these three stages in model specification and

utilization, there are three major types of statements acceptable by

the system. They are:

-constructors

-specificators

-requests.

Statements of type "constructor" are used to define the internal

structure of the model. Syntax of constructor depends on the programming

system in which the model is implemented. In LISP-like language it

has a common form of function definition. Function name becomes a name

of releation to be used later in specificator or request. Function

arguments become relation arguments to be substituted by the names of

specific objects.

Statements of type "specificator" in LISP-like language environment

correspond to function calls. Normally they have the following syntax:

(relation-name argl arg2 •••) (1)

where each argument can be either an atomic-object name or a list of

atomic-object-names. Atomic-object-name can represent a set of homo-

-6-

geneous objects (in this case it can be thought of as a common name

for typical members of a set) or a particular object (in this case it

is usually the proper name of an object). Syntax of an atomic-object­

name is as follows:

<atomic-object-name>::= <compound-name> [.<compound-name>] •••

<compound-name>::= <common-name> <Proper-name>

<common-name> I <proper-name>

<common-name>::= <chain-of-words>

<proper-name>::= <chain-of-words>

<chain-of-words>::= <Word> c..:..{<word> 1 <number>}l •..

Examples:

1) COMPUTER-SCIENCE-DEPARTMENT.PROJECT/ALPHA.RESEARCH-GROUP/Al

2) EMPLOYEE/JOHN-SMITH-JR

3) SALARY-1~~~~-DOLLARS-PER-YEAR

Compound names constituting an atomic-object-name have to be

ordered in accordance with the semantic subordination imposed by the

subordinate-type relation (see next paragraph). Thus in the first

example it is supposed that some relations had asserted already that

"Research Group Al is a part of Project ALPHA which in its turn is a

part of Computer Science Department".

The &_Ombination of common-name and proper-name is useful if any

ambiguity arises from utilizing only one or the other. Chain-of-words

is the basic syntactic element to create atomic-object-names (as well

as relation names). It is defined syntactically almost the same way

as an identifier in most programming languages but looks a little more

natural when defined through the utilization of the notions "word" and

"number".

-7-

The effect of a specificator accepted by the system is that some

additional substructure appears in the Data Base or some changes take

place in the existing structure.

Statements of the type "request" are similar to specificators in

syntax but the result of their evaluation is mostly informative rather

than creative. Request functions normally analyze the existing Data

Base structure and create temporary substructures which are used to

develop appropriate answers to given requests.

4. Specificators

Specificator is the major type of expression used to insert cer­

tain knowledge into the Data Base. It is useful to classify possible

specificators by introducing the notion of "specificator type".

Actually, specificator type defines a manner of connecting objects

within the Data Base structure. For the simple model of a Research

Institute the following specificator types seem to be adequate:

a) subordination

b) correlation

c) condition

Some examples are considered below. The first group of specifi­

cators is of type "subordination". The syntax of each specificator is

represented by a relation name and list of formal parameters (formal

parameters are given in lower case).

show the manner of their utilization.

were found to be most useful!_

Comments and simple examples

The following specificators
.)

-8-

1) (CONSIST-OF container constituent constituent-specification)

where

<constituent-specification>::=<list-of-specific-constituents>

<expectable-number-of-constituents> <empty>

CONSIST-OF specificator introduces two objects called "container"

and "constituent" and an optional "constituent-specification".

"Constituent-specification" can be either in the form of "list-of­

specific-constituents", or it can give the "expectable-number-of­

constituents", or it is empty.

Example:

If we want to express the fact "A laboratory consists of three sectors,

namely Al, A2 and A3", then a CONSIST-OF specificator can be used to

represent this fact to the system in the form:

(CONSIST-OF LABORATORY SECTOR (Al A2 A3))

or in the form:

(CONSIST-OF LABORATORY SECTOR 3)

or in the form:

(CONSIST-OF LABORATORY (SECTOR/Al SECTOR/A2 SECTOR/A3))

In the last example constituent is represented by the list of specific

objects rather than by a common name.

2) (WORK-ON actor activity activity-specification)

WORK-ON specificator describes an object, called "actor", which

is supposed to work on some "activity". Similar to CONSIST-OF

specificator this type of relation also can have an optional "list-of­

specific-activities" or "expectable-number-of-activities" as a form

of "activity-specification".

-9-

Example:

The fact "Sector Al is working on Project STAR" can be expressed in the

form:

(WORK-ON SECTOR/Al PROJECT (STAR))

or in the form:

(WORK-ON SECTOR/Al PROJECT/STAR)

3) (HAS-ATTRIBUTE item attribute attribute-specification)

This type of specificator permits representing a fact that an

object called "item" has some "attributes", which can be represented

as in previous examples by an optional "list-of-specific-attributes"

or an "expectable-number-of-attributes".

Example:

Expression "A person is characterized by his experience, educational

degree, salary and creativeness" can be represented in the form of

relation:

(HAS-ATTRIBUTE PERSON CHARACTERISTIC

(EXPERIENCE EDUCATIONAL-DEGREE SALARY CREATIVENESS))

4) (MEASURED-in property unit-of-measure unit-specification)

This type of specif icator introduces the way of measuring for

some property. Unit-specification can represent either the range of

units-of-measure or a list of specific names for units-of-measure.

Example:

(MEASURED-IN EXPERIENCE DEGREE-OF-EXPERIENCE

(NOVICE DILETTANTE PROFESSIONAL EXPERT))

-10-

5) (SUPERVISE chief minor minor-specification)

SUPERVISE specificator is the most clear and direct representative

of subordination-type relation.

Example: (SUPERVISE BOSS EMPLOYEE 12)

6) (DURATION activity time time-specification)

DURATION specificator allows us to represent an activity which

is dependent on a specific amount of time.

Example: (DURATION SPONSORING-PERIOD MONTHS 24)

It can be noticed now that all relations described so far have

similar formats. General syntax of this format can be defined as

follows:

(subordination-name superior subordinate subordinate-specification) (2)

where

<subordination-name>::= <Chain-of-words>

<Superior>::= <atomic-object-name>

<Subordinate>::= <atomic-object-name> (<atomic-object-name>···>

<subordinate-specification>::= <list-of-specific-subordinates>

<expectable-number-of-subordinates> <empty>

Semantics of relation between superior and subordinates can be

represented in Data Base by the simple structure of Fig.l. We shall

call this type of structure a "relation-branch".

-11-

,-~·:. . ., . SUPERIOR .

RELATION ·*Si·~·.
.):, ":···~--

, ,'

. ~ '

SUBORDINATE2

~.. Fig.l

It is clear that the same object can participate as superior or

subordinate in different relations (probably of the same type but on

different levels). Therefore the main Data Base structure looks like

a multilevel and multilayer tree, constructed from relation-branches.

It was found that subordination-type specificator (which is

somewhat similar to set inclusion) is not sufficient for some elements

of model representation. "Correlation" is another type of specificator

used to complement the subordination.

General syntax of correlation is the following:

(correlation-name heading list-of-tuples-of-correlating-objects) (3)

Example:

If we want to express the fact: "Group Bl is occupying rooms 5~1, 5~2,

517, whereas Group B2 is occupying rooms 2~7, 213, 217" then the following

expression can be used:

(OCCUPATION GROUP ROOM (Bl (5~1 5~2 517))

(B2 (2~7 213 217)))

It is clear from this example that one-to-one correspondence is

supported between elements of the heading (in this case "GROUP" and

"ROOM") and elements of each tuple; or, in other words, each element

-12-

of the heading corresponds to a vertical crossection of the matrix,

represented by list-of-tuples. On the other hand each element of

tuple can be either a single item (like "Bl" or "B2") or a list (like

"(Sfll 5!12 517) "). This type of specificator can be illustrated by

the following structure (Fig. 2):

,.·;~_.,,_..,ru ... -,. CONSIST-OF relation•
A) •,11!'!Jlill" ''"" '

- ~·,t·it'~~~ ':

'.., "!· :.1 . ·~ 1

'. ::..»

t
i I

.,:./:i · ·r. ·•·.··"" ·<·. CTOR/X

,:·

'·;.· . GROUP/82 :J
"' '{

. ;.

'

' :

.r.

.. ~'1-f.:"'t"'~O',,. ~~·;r,,_ •• ,.,~~ ... ;,,.,..><'':,01;•

r: .. , __ .

Fig.2

.ii

·,.tl'
~ ~.

,,

.. ,.~
' :..;. ·~ < ·.

._·,,·,·-_,

Sometimes it is ambiguous what type of relation should be used to

express certain facts. For instance, the correspondence between

"G:imups!and "Projects" in the Research Institute can be expressed either

in the form of subordinations (WORK-ON) or in the form of correlations.

Fig.3 represents the structure using only subordination specificators,

whereas Fig.4 represents almost the same knowledge with the aid of

correlation specificator (RESPONSIBILITY) •

---·-··----------------------

f

f .
. t

-13-

PROJECT/ALPHA

Fig.3

CONSIST-OF relations

RESPONSlJULI TY corre I aUon

Fig.4

PROJECT/BETA

SCIENTIFIC-ACTIVITY

Subordination- and correlation-type specificators give the

possibility of representing a static, affirmative knowledge about the

domain. There is a need also to represent suppositions of the type:

"If a person with professional experience in symbol

manipulation is employed in the Group B2 then (*)

Project BETA could be finished in six months".

-14-

Condition is a type of specificator which helps to represent

conditional knowledge. General syntax of condition:

(condition-name set-of-predicates list-of-expressions) (4)

where

<set-of-predicates>::= <predicate>

(<predicate> [{AND I OR} <Predicate>] •••)

<list-of-expressions>::= <expression> [<expression>] •••

<predicate>::= <Specificator> I <programming-system-predicate>

<expression>::= <Specificator> I <programming-system-expression>

Evaluation of conditions is going on in the following way:

1) Set-of-predicates is evaluated as a logical expression with respect

to AND and OR operators, where precedence is established either by

brackets or by usual operator precedence. Each predicate can be

either in the form of specificator or in the form of any eligible

predicate for a given programming system, such as (EQUAL argl arg2)

in LISP.

Specificator is evaluated to truth value T if an appropriate

relation exists already in the Data Base; otherwise it is evaluated

to the false value NIL. Programming-system-predicate is evaluated

to truth or false value according to appropriate rules of the

implementation language.

-15-

An additional feature is the possibility of using a specificator

as an argument of progrannning-system-predicate. Also, specificator used

within condition is allowed to contain variables, which can get their

values by application of condition to the Data Base (see example

below).

2) If the value of the set-of-predicates is T, then the list-of­

expressions is evaluated, otherwise evaluation returns with NIL

(meaning that given condition cannot be applied to the existing Data

Base).

Each expression in the list-of-expressions can be either specifi­

cator or any expression eligible for the given programming system.

Normally, during evaluation of the list-of-expressions, some temporary

amendments are made in the Data Base and specif icator variables are

bound to particular objects thus permitting analysis of the results of

new relation combinations.

Example:

The supposition expressed in the natural language statement (*) on

page 14 can be represented to the system in a following way:

(PROJECT-ACCELERATION-CONDITION ((CONSIST-OF GROUP/B2 (?X(?Y)))

AND (HAS-ATTRIBUTE ?X (EXPERIENCE PROFESSIONAL))

AND (HAS-ATTRIBUTE ?X (SPECIALTY SYMBOL-MANIPULATION)))

(DURATION PROJECT/BETA SIX-MONTHS)) (**)

In this example some new possibilites are illustrated. Set-of­

predicates consist of three specificators connected by AND operators.,.

Free variable X (denoted by the question-mark) participates in all

-16-

these specificators, which helps to represent the following idea:

"If any person could be found who is a member of Group B2

and has a professional experience in his specialty, namely

symbol-manipulation, then PROJECT-ACCELERATION-CONDITION

would be satisfied and as a result a relation (DURATION

PROJECT/BETA SIX-MONTHS) would be true."

Free variable Y represents "the rest of GROUP B2" which can consist

of one or more persons.

The lists (EXPERIENCE PROFESSIONAL) and (SPECIALTY SYMBOL-

MANIPULATION) are different forms of X's attributes which can be

attached to object X in the Data Base either directly as in Fig.5 or

indirectly as in Fig.6.

--
" \

j)-,.,,

Fig.5
• ,1 •, '

-17-

x

EXPERIENCE SPECIALTY

PROFESSIONAL SYMBOL-MANIPULATION

MEASURED-IN relations

Fig.6

Conditions are not evaluated when they are introduced to

the system and they do nothing with the existing model structure

in the Data Base. Instead, they are collected (like theorems in

PLANNER), together with associated lists of patterns which should

permit their pattern-directed invocation. In the previous example

the pattern associated with PROJECT-ACCELERATION-CONDITION is:

(DURATION PROJECT/BETA SIX-MONTHS) •

In the case when several expressions constitute list-of­

expressions in the condition, a complex pattern is created which

sometimes looks similar to a small tree-like substructure kept

temporarily apart from the main model structure. Possible

utilization of this substructure can happen during a pattern­

directed request (see below) when a small tree-like pattern is

matched against different pieces of the gigantic Data Base.

-18-

5. Requests

Requests are used in the stage of model analyzing and getting

information about different aspects of the simulated establishment.

Underlying motives for different forms of requests are described

informally below.

A) . There is a need for information about some substructure repre­

senting a particular set of relations between immediately connected

objects, their attributes, measures, etc. This type of information

could be obtained through a "plane-pattern-request" (P-P-R) •

Syntactically, plane-pattern-requests correspond to subor­

dination- or correlation-type specificators with question-marked

variables in the places of unknown elements.

Examples:

A-1) (P-P-R (?X LABORATORY SECTOR))

This request can have the meaning: "What is a direct relationship

between objects, called LABORATORY and SECTOR?"

A-2) (P-P-R (OCCUPATION ?Z ROOM (5j11 517)))

This request can correspond to the question: "Who occupies rooms

Sjll and 517?"

A-3) (P-P-R (WORK-ON SECTOR/Al ?ACTIVITY))

This expression can represent the question: "What is the name of

activity carried out by SECTOR/Al?"

-19-

B). In addition to possibilities given by plane-pattern-requests, it

is necessary to discover deep interrelations or "relation paths"

between particular objects or groups of objects. A request for

this kind of information can be named "cross-pattern-request"

(C-P-R) .

Syntactically, cross-pattern-request looks like a set-of­

predicates in condition-type specificator.

Example:

(C-P-R (WORK-ON (?X(?YPP PROJECT/BETA) AND (HAS-ATTRIBUTE ?X

((DEGREE PHD-COMP-SC) (SPECIALTY COMPILER-CONSTRUCTION)))))

This expression can represent the following inquiry:

"Is there anything in the Data Base which is working on Project BETA

and has as its part an item (?X}, presumably a human being, who is

lucky to have such attribute as PhD in Computer Science and is

specializing in Compiler Construction?"

An end-user requiring this information would probably be satisfied

if the system extracts from the Data Base and displays a structure

of Fig.7 as an answer.

GROUP/82

CONSIST-OF

Fig.7

-20-

In fig.7 only the objects in rectangles are participating in the

request, whereas all other objects and their relationships are extracted

from the Data Base.

C). Finally, an end-user might have an understandable desire to look at

possible results of some rearrangements in the model. Condition-type

specif icators can provide the necessary information if they are pre­

pared to do that. "Call-by-name" (C-B-N) or "Pattern-directed-re­

quest" (P-D-R) are possible forms of condition invocation.

Examples:

C-1) (C-B-N PROJECT-ACCELERATION-CONDITION (X =JIM-JONES))

C-2) (P-D-R (DURATION PROJECT/BETA ?W))

Both these requests could invoke, for instance, specificator (**)

given in the example on page 16. In the first type of invocation

(example C-1) variable X should be bound to JIM-JONES value prior to

evaluation of the set-of-predicates in (**) . Possible system response

could be the answer:

(HAS-ATTRIBUTE JIM-JONES (EXPERIENCE PROFESSIONAL)) IS FAULT

THEREFORE PROJECT-ACCELERATION-CONDITION CANNOT BE SATISFIED.

In example C-2 variable X has to be bound iteratively to different

elements, members of GROUP/B2, until the whole set-of-predicates in

(**) is evaluated to the truth value. If no one member of GROUP/B2

has the necessary attributes to satisfy the given set-of-predicates,

then the answer to this request would be negative.

-21-

§~ Implementation and Extension

A simple model designed on the basis of the above considerations

can be implemented without serious problems if a programming system is

available which allows flexible symbol manipulation and has the possi­

bility of creating a structured Data Base. Even standard LISP can be

used for this purpose, but advanced systems (like PLANNER[l], CONNIVER

[2] and SETL[3]) permit much more convenience and flexibility in the

stage of developing constructors (i.e. functions defining the internal

structure of the model).

PLANNER and CONNIVER are also very advantageous because they have

system-defined pattern search and pattern-directed procedure invocation.

Both these features are in fact the major mechanisms for implementation

of requests.

The proposed approach for developing a model of a Research Institute

is strongly influenced by the ideas of MAPL language[4], particularly

by the MAPL relational approach to knowledge representation. In this

memo the author has tried to stress the idea that it is worthwhile to

concentrate on the development of the following aspects:

- creating a frame of the model: definition of general model structure,

introduction of relation types and development of an assortment of

relation patterns which will be used in the later stage of model

specification:

- design of a set of operators manipulating model elements: these

operators can specify a search for particular node (object) or arc

(relationship), or they can help to extract information about

associatively connected sets of elements, etc.

-22-

Certain balance should be achieved between the amount of work

performed by system-programmer, by domain-expert and by an end-user.

All three categories should be permitted to participate to some

extent in model creation and amendment as well as in knowledge speci­

fication and utilization.

Classifying possible statements into three main types (constructors,

specificators and requests) is, of course, not the only possible

classification for a given problem. However, this kind of classifica­

tion helps to clarify what kind of work has to be done in order to

achieve a simple and extensible solution for the problem.

In terms of a proposed approach, extension of the model can be

performed by the development of additional types of specificators and

requests. In some cases it requires only minor modifications of

existing constructors, in other cases new constructors should be

created with the purpose of complementing or replacing some of the

existing constructors. It is essential that modification of the set

of constructors should not require extensive modification of the

existing Data Base, but instead just give another point of view of the

heap of knowledge stored in the computer memory.

-n-

References.

1. C.Hewitt, Description and Theoretical Analysis of PLANNER: A

Language for Proving Theorems and Manipulating Models in a Robot,

Ph.D. Thesis, MIT, AI-TR-258, April 1972

2. D.McDermott, G. Sussman, The CONNIVER Reference Manual, MIT,

AI-M-259, May _1972

3. SETL Users Manual, Courant Institute of Mathematical Sciences,

October 1972

4. W.Martin, P.Krumland, MAPL - A Language for Describing Models of

the World, MIT, PROJECT MAC, Automatic Programming Int. Memo 6, 1972

CS-TR Scanning Project
Document Control Form

Report# L<- 5-TR..-11'8'

Date : !_J !l. ~ I jj_

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~Laboratory for Computer Science {LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other:
·~---------~

Document Information Number of pages: J-J(?.~-ifl1A(;};S)
- Not to include DOD forms, printer lntstructions, etc ... original pages only.

Originals are:

~ Single-sided or

D Double-sided

Print type:
)l(Type'Miter 0 Offset Press

Intended to be printed as :

D Single-sided or

~Double-sided

D laser Print

D Ink.Jet Printer 0 Unknown D other:·---~---
Check each if included with document:

D DOD Fonn 0 Funding Agent Fonn D CoverPage

0 Spine 0 Printers Notes 0 Photo negatives

'Rf. Other: {3; BL; c (j?fV. 6' H jc_ 0)\TA 5 HftT lH
Page Data:

Blank Pages(bypage number):. __________ _

Photographs/Tonal Material (byi-ge number):. ________ _

Other <"* deKription/pllg number):

Description : Page Number:

§ ::tm11cf mr=e: (1- J..J)iAirJ-#).co I.TIX ~e.rr~O f.R~
J- J3

mi- (J-t.t,ol~)s<./Qtvc.o;y~s,e.1eL:o DAiJ. sHrs::T(~)7PG1)s(J)
l!7Ct.vTl!-.Eas/(""" f;G'y Qtyf~0C5 Jl-rJJ/(-Dy 11

Scanning Agent Signoff:

Date Received: ~ I J. 1 I 'i b Date Scanned:] _ _1 J.l.J'i ' Date Returned: .}_jjj_J Y £

Scanning Agent Signature:. __ ~-'--_;__' __ '"--fh~J:...;1;...;:cJ::r;:;;L.IO~-
R"" 111114 OSILCS Document Conlrol Form cmfann.wd

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9~4

