
MAC TR-116

BACKUP AND RECOVERY OF ON-LINE INFORMATION

IN A COMPUTER UTILITY

Jerry A. Stem

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095, and was monitored by ONR under
Contract No. N00014-70-A-0362-0006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

ACKNOWLEDGMENTS

I wish to thank my thesis supervisor, Professor F. J.

Corbat6, for his encouragement and guidance in this

research, and for his helpful criticisms and suggestions

concerning the thesis presentation. Thanks are also due

Professors J. H. Saltzer and M. D. Schroeder for their

comments and advice. Finally, I would like to thank all of

my fellow graduate students in the computer systems research

group at Project MAC who offered useful suggestions, as well

as interesting distractions, throughout the course of this

work.

2

BACKUP AND RECOVERY OF ON-LINE INFORMATION
IN ~ COMPUTER UTILITY

by

Jerry A. Stern

ABSTRACT

This thesis describes a design for an automatic backup
mechanism to be incorporated in a computer utility for the
protection of on-line information against accidental or
malicious destruction. This protection is achieved by
preserving on magnetic tape recent copies of all items of
information known to the on-line file system. In the event
of a system failure, file system damage is automatically
assessed and missing information is recovered from backup
storage. For isolated mishaps, users may directly request
the retrieval of selected items of information. The design
of the backup mechanism presented in this thesis is based
upon an existing backup mechanism contained in the Multics
system. As compared to the present Multics backup system,
the new design lessens overhead, drastically reduces
recovery time from system failures, eliminates the need to
interrupt system operation for backup purposes, and scales
up significantly better with on-line storage growth.

This report reproduces a thesis of the same title
submitted to the Department of Electrical Enqineerinq,
Massachusetts Institute of Technology, on August 13, 1973 in
partial fulfillment of the requirements for the degrees of
Master of Science and Electrical Engineer~

3

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

Chapter

1. INTRODUCTION

Motivation
Objectives
Background
Thesis Plan

TABLE OF CONTENTS

2. STRATEGY AND ORGANIZATION OF THE BACKUP SYSTEM

The File System
Incremental (Primary) Dumping
Secondary Dumping
User-controlled Backup
Salvaging
Reloading
Retrieving
summary

3. PROGRAM STRUCTURE OF THE BACKUP SYSTEM

The Dumper
The Salvager
The Reloader
The Retriever

4. A MULTICS IMPLEMENTATION PLAN

Page

2

3

6

7

8
12
15
18

20

22
29
32
40
47
53
60
62

69

69
81
84
95

99

Handling Pathuids Within the File System 101
New Directory Items and Related Changes 103
A New Backup System Interface to the File System 104
Salvager Modifications 107
User-Controlled Backup 110
Suggested Implementation Plan 113

4

Chapter

5. CONCLUSIONS

Summary of Results
Remarks

BIBLIOGRAPHY

5

Page

116

116
122

123

LIST OF FIGURES

Figure Page

2.1 Schematic view of the backup system. 21

2.2 Example of a file hierarchy. 25

2.3 Sample secondary dumping schedules. 36

2.4 Example of a reloading situation. 56

2.5 The crash recovery procedure. 66

3.1 The dumper algorithm (part 1). 73

3.2 The incremental dumper algorithm (part 2). 74

3.3 The incremental and secondary dumper algorithm
(part 2). 77

3.4

3.5

3.6

3.7

3.8

The

The

The

The

The

dumper algorithm (part 1,

phase 1 reloader algorithm

phase 1 reloader algorithm

phase 1 reloader algorithm

retriever algorithm.

6

revised). 82

(part 1) • 89

(part 2). 90

(part 1, revised) • 92

98

CHAPTER 1

INTRODUCTION

Among all engineering endeavors, perhaps no concern is

more universal, nor more influential, than that of

reliability. Certainly, in this respect, computer system

design is no exception. When designing computer systems,

one must admit from the outset that no

incapable of failure. Furthermore,

hardware device is

programming errors,

operational errors, and other human mistakes are inevitable.

Thus, computer systems must be prepared to cope with all

adverse contingencies ranging from minor recoverable

malfunctions to total catastrophes which prevent continued

system operation.

The protection of

involuntary destruction is

reliability measures within

stored information

the final backstop

a computer system.

against

of all

Although

mishaps from time to time may cause individual computations

to be aborted, or system service to be temporarily

discontinued, the cost and inconvenience associated with

such disruptions is minimized when all information is

preserved. This thesis presents a design

mechanism to be incorporated in a

time-sharing system for the protection

for a backup

general-purpose

of all on-line

information against accidental or malicious destruction.

7

This protection is provided automatically by the system

without requiring any effort on the part of individual

users.

Motivation

Due to their simple nature, early computer systems were

typically quite resilient. No information stored in memory

was essential to continuing operation following a system

"crash". Because permanent storage for all user data and

programs was maintained outside the system, usually on

punched cards or magnetic tapes, the impact of failures was

restricted to those jobs being processed at the time of

failure. By obeying just one cardinal rule, namely to

refrain from destroying input data before successful job

completion, full recovery was generally possible. Jobs

could be restarted either from scratch or from a planned

checkpoint. Of course, the susceptibility of tapes to

"clobbering" and the susceptibility of punched cards to

crimping and scattering was sometimes sufficient incentive

for computer users to keep spare copies of important

information.

Owing to numerous innovations in computer system

design, modern computer systems dwarf their ancestors in

both power and complexity. Ironically, however, these

sophisticated systems, particularly time-sharing systems,

8

have grown increasingly· sensitive to mishapso System data

necessary for continued operation is commonly maintained

both in main memory and secondary on-line storage, and is

therefore liable to system failures. User programs and data

are no longer stored externally, but instead are entrusted

to the care of an internal file system which automatically

manages the use of on-line storage devices. Thus, unlike

the situation in early computer systems, all user

information is constantly threatened by potential system

failures. The common practice of updating files in-place

may often leave inconsistent those files which were active

at the time of a system crash. For this reason, and others,

the restarting of interactive processes is, in general,

neither feasible nor meaningful. Thus, recovery from

failures in modern time-sharing systems usually amounts to

salvaging as much on-line information as possible, in some

cases restoring backup copies, and making the system

available again to users.

Clearly, in order to insure reliability and security,

measures must be taken to prevent the involuntary

destruction of both user and system information. Typically,

a variety of ad hoc methods are employed to protect critical

system data. Most time-sharing .systems, however, assume

little or no obligation to protect user files against

accidental harm. Although many of these systems are,

9

indeed, very reliable, none are infallible. Nor are their

users infallible. Furthermore, none of these systems are

invulnerable to external dangers such as fires, floods,

explosions, etc. Consequently, users are forced to provide

their own insurance against mishaps. Often the contention

is made that a particular system is "reliable enough" for

users to do without a system-provided backup mechanism.

Unfortunately, this attitude ignores the fact that

reliability is seductive. The more reliable a system

becoroos, the greater the temptation to avoid the cost and

nuisance of trying to prepare for potential mishaps. Thus,

a user needs the kind of insurance that can only be provided

by an automatic backup roochanism.

In principle, at least, it is clear that a file system

should be fully responsible for the safekeeping of all

information entrusted to it. Some time-sharing systems

have, in fact, begun to acJ::.nowledge this responsibility.

Many systems, for instance, provide a primitive backup

mechanism such as the copying of all user files once each

night. Mechanisms of this kind, while better than none at

all, leave much room for improvement. Most noticeably, few

users are willing to accept the loss of a full day's work.

No doubt, users of systems offering this level of protection

still find it necessary to take precautionary measures of

their own. Not only are these primitive backup mechanisms

10

deficient from the user's viewpoint, but also from the

perspective of the system maintainer. As storage capacity

increases with system growth, so too will the time required

to copy the whole of on-line storage. Hence, backup

overhead will increase in proportion to storage volume.

This implies that with continuing storage expansion, backup

overhead will consume an increasingly larger fraction of

total system processing time. Clearly, at some point, it

simply becomes infeasible to perform daily copying of

secondary storage. Decreasing the frequency of backup

copying will reduce overhead, but will sacrifice the quality

of backup protection.

In this thesis, the need for a system-provided backup

mechanism, and accordingly, the design of such a mechanism,

are evaluated within the context of a computer utility.

Although no existing computer system has fully earned the

title of "computer utility", several large-scale

general-purpose time-sharing systems (e.g. Multics [l),

TSS/360 [2), MTS (3)) have made much progress in this

direction. Among these, however, only Multics accepts full

responsibility for the safekeeping of all information

entrusted to its file system. Many, if not most, users of

the computer utility of the future are expected to possess

little knowledge of the computer system itself beyond the

minimal skills necessary to make use of the various services

11

offered. As in all public utilities, it is essential that

the customer not be burdened with technical details. Thus,

it is unreasonable to expect a technically unsophisticated

user to assume responsibility for insuring against mishaps.

A comprehensive system-provided backup mechanism is

therefore not nerely a convenience, but rather a necessity,

in the computer utility of the future.

Objectives

The backup mechanism described in this thesis is

intended to augment storage reliability within a computer

utility to the point where users may confidently entrust

their only copies of information to an internal file system.

The underlying assumption in the design of such a mechanism

must be that system failures are relatively rare. Hence,

the devotion of an immoderate proportion of system resources

to backup protection is unwarranted. On the other hand, if

users are to feel confident in entrusting information to a

computer system, then clearly some limit must be placed on

the amount of work which might be lost due to a system

failure, user mistake, or other mishap. This time limit

defines the "resolution" of the backup mechanism. Another

important measure of backup performance is recovery time.

Clearly, a computer utility must be capable of quick

recovery in order that users may depend upon the

12

availability of its services.

The backup mechanism must offer a reasonable compromise

between cost and level of service for various environments.

Dissimilar purposes and economic considerations at different

sites may dictate different demands for backup protection.

Therefore, resolution and recovery time must be adjustable.

Even within a single installation, the demand for backup

protection may change. For example, in a system undergoing

development, one might expect system stability to improve

gradually. From time to time, however, major system

modifications may cause periods of anticipated risky service

during which better than usual resolution and recovery time

might be desired. The environment may also change due to

system growth. The backup mechanism must, in the face of

increasing system size, be able to maintain a constant level

of service without consuming an exorbitant share of system

resources.

The backup mechanism is geared to the needs and

finances of the "ordinary" user. It is assumed that the

ordinary user can tolerate small setbacks, perhaps one

hour's work lost, provided such setbacks are sufficiently

rare; he cannot, however, tolerate exorbitant daily

overheads. Although, as stated above, resolution must be

adjustable,

the needs

the range of adjustment is not meant to satisfy

of certain applications for which even the

13

smallest losses would be intolerable. Many on-line business

applications, e.g. an airline reservation system or a

purchase order entry system, fit this category. Typically,

such special-purpose systems maintain journal tapes on which

are logged all processed transactions and/or all data base

updates. [4] Usually, these applications employ a dedicated

computer. If, however, such a system were to coexist with

ordinary users within a computer utility, it is not expected

that the general backup mechanism described here would

eliminate the need for the keeping of journal tapes or other

highly specialized backup measures. It is expected,

however, that the backup mechanism will entirely replace

those precautionary measures commonly left to the discretion

of individual users such as the storing of spare file copies

off-line. Also, it expected that many applications able to

tolerate occasional small losses will find the protection

offered by the general backup mechanism to be satisfactory.

One objective more of interest to the system designer

than the ordinary user is to systematize and automate as

much as possible the task of recovery from system failures.

Automation is, of course, desirable to speed recovery and to

minimize the possibility of operational errors. Also,

automated recovery procedures can precisely assess losses,

thereby minimizing the recovery effort required and

preserving as much information as possible. Although it is

14

clear that recovery procedures must by nature be intimately

familiar with specific system characteristics, a high-level

organization is presented which is largely

system-independent.

The backup mechanism represents a general solution to

the problem of protecting stored information against

accidental harm. No explicit consideration need be given to

techniques for protecting specific types of system data such

as accounting records, user identification inforn~tion,

batch job queues, etc. It is assumed that all such

information is entrusted to the file system and therefore is

uniformly protected by the general backup mechanism.

Background

The backup mechanism described in this thesis is based

upon an existing backup mechanism incorporated in the

Multics system. Multics, conceived as a prototype computer

utility, has included a general backup Qechanism since its

original design. [5,6] (1) In fact, CTSS [7, 8], the

predecessor of Multics, also included such a facility. (2)

(1) An early design and implementation plan for the Multics
backup system is described by G. F. Clancy in a section of
an unpublished Multics design notebook produced at M.I.T.
Project MAC (August 18, 1966).

(2) Some aspects of the CTSS backup facility are described
by M. J. Bailey and R. C. Daley in an unpublished M.I.T.
Computation Center programming staff note entitled "A CTSS
Secondary Storage Back-up and File Retrieval Scheme"
(September 15, 1964).

15

As a result, the Multics file system is so reliable that

users routinely entrust their only copies of information to

it without hesitation. Hence, the common practice of

storing spare copies of programs and data on punched cards

or magnetic tapes has disappeared from the work habits of

Multics users. The burden is instead borne by an automatic

backup system.

The approach that has

providing backup protection

been taken by Multics in

is to periodically copy newly

created or modified files from on-line storage onto magnetic

tape (currently at one hour intervals). The information is

thus isolated from the effects of system failures and user

mistakes. Certain tapes are stored off premises to guard

against local calamities such as fires or explosions in the

computer room. The production of backup tapes, known as

"dumping", is performed in anticipation of mishaps. When

such mishaps do occur, the backup system is then called upon

to discover and reclaim any lost information. In the case

of a system failure, a process known as "salvaging" is

employed to examine the file system directory structure and

storage assignment tables for missing or inconsistent data.

When the results of salvaging indicate a global catastrophe,

i.e the destruction of a major portion of on-line storage, a

process known as "reloading" is employed to recover the

former contents of on-line storage from backup tapes. For

16

minor mishaps, a process known as "retrieving• is used to

recover selected items of information. These are the basic

functions of the Multics backup system. It is this

fundamental structure upon which the backup system described

in this thesis is built.

Although the present Multics

applauded for having substantially

backup system must be

bolstered file system

reliability, it has not done so without high costs and

unwarranted sacrifices. In an effort to limit work loss to

a maximum of one hour, significant overheads have been

incurred. In spite of this large resource investment,

recovery time from major system failures is currently

intolerably slow. Also, the system must be shut down

periodically for backup purposes which contradicts a Multics

objective of continuous service.

however, is the fact that the

worsens with system growth.

l~st discouraging of all,

entire situation steadily

It is insightful to briefly review the history of the

Multics backup system in order to understand how the present

problems developed. Before beginning any implementation,

the entire Multics design, including the backup system, was

carefully specified in detail. Once Multics implementation

began, however, priorities had to be assigned and among the

many areas of the system requiring attention, the backup

system was not given top priority. Still, some interim

17

backup facility was needed as soon as possible. Hence, a

temporary backup system, much less ambitious than the

original, was rather hastily designed and implemented. Over

a period of time, many changes and improvements were made to

this interim facility, also with much hurry, and eventually

the original design plans were forgotten.

As one might expect from this rather haphazard history,

a well-coordinated design has not evolved. Various

components of the backup system were developed independently

and consequently their interactions were not carefully

planned nor well understood. Thus, the major effort of this

thesis will be to develop a top-down view of the backup

system and to produce from this perspective a coordinated

design. Admittedly, this design will be strongly influenced

by the structure of Multics, particularly the Multics file

system. Nevertheless, the basic design concepts are thought

to be sufficiently general so as to be applicable to many

systems of the computer utility category.

Thesis Plan

The thesis presentation is organized as a top-down

description of a proposed backup system design for a

computer utility. To establish a framework in which to

discuss the backup system, chapter 2 first defines certain

characteristics of an exemplary file system. The majority

18

of chapter 2 is devoted to a high-level discussion of backup

system strategy and organization. The various functions of

the backup system, i.e. dumping, salvaging, reloading, and

retrieving are described. For the reader interested only in

the basic approach and fundamental structure of the backup

system, chapter 2 provides a useful overview.

Chapter 3 investigates in further detail each of the

backup system program modules introduced in chapter 2.

Also, the interface between the file system and the backup

system is carefully examined. Together, chapters 2 and 3

represent a complete description of the general backup

system design.

A proposed Multics implementation of the backup system

is discussed in chapter 4. Basically, certain additions and

modifications to the Multics file system are needed to

support the backup system components described in chapters 2

and 3. This implementation proposal is intended to

demonstrate the suitability of the design for a prototype

computer utility such as Multics.

Finally, chapter 5 reviews the results of this thesis

and offers a few concluding remarks.

19

CHAPTER 2

STRATEGY AND ORGANIZATION OF THE BACKUP SYSTEM

The purpose of the backup mechanism proposed in this

thesis is to insure the survival of information entrusted to

~ computer system. Naturally, the specific nature of the

backup mechanism must depend to some extent on the specific

nature of the computer system which it protects. In

particular, the structure of the file system must influence

the design of the backup mechanism. A few file system

characteristics (borrowed primarily from the Multics file

system) are presented at the beginning of this chapter.

While by no means a complete description of a file system,

define an these characteristics are sufficient to

environment in which to present the backup system design.

The bulk of this chapter is devoted to an overview of

the backup system strategy and organization. Figure 2.1

depicts the various functions of the backup system and their

relationships to the file system. The dumping function is

responsible for the preservation of recent copies of all

items of information known to the file system. Magnetic

tape is chosen as the backup storage medium since it is

detachable and thus can be isolated from all perils of the

computer system and the computer room.

is economical and conunonly available

20

Also, magnetic tape

in most computer

Figure 2.1: Schematic view of the backup system.

dumping

backup

storage

(magnetic tape)

retrieving

reloading

file

system

21

on-1.ine

storage

(disk, drum, etc.)

salvaging

systems. In the event of a system failure, the salvaging

function is employed to assess damages to the file system.

Clearly, in order to verify file system consistency, the

salvaging procedure must embody independent knowledge of the

file system structure as represented in memory. If the

results of salvaging indicate a loss of information, the

reloading function is employed to automatically recover any

missing files from backup tapes. For minor mishaps, the

retrieving function is used to recover information from

backup tapes at the request of users.

The File System

The file system considered in this thesis maintains two

classes of objects, namely files and directories. A file is

defined to be simply an ordered sequence of bits. As far as

the file system is concerned, a file has no other logical

structure. Any formats imposed upon a file are known only

to higher-level system or user programs. Directories are

used to catalogue files. A directory contains a list of

entries, analogous to a table of contents. Each entry

"points to• a particular file which is said to be contained

in the directory in which the entry appears. An entry is

essentially a collection of attributes which describe a

file. Among these attributes, for example, are the file

names, the physical storage location, the time of last

22

reference, the time of last modification, and access control

information. A directory also contains certain global

attributes which apply to all of its entries. For example,

a directory may have a quota which defines the maximum

amount of storage space to be used by files contained in the

directory.

Entries may describe directories as well as files and

therefore one directory may contain another. This

organization gives rise to a tree-structured file hierarchy.

All files appear as terminal nodes within this tree whereas

directories may appear either as terminal or non-terminal

nodes. Except for the root directory located at the root of

the tree, every file and directory is described by an entry

contained in its parent directory.

defined to have level zero. Entries

The root directory is

contained within the

root directory describe files and directories at level one.

Level one directories in turn contain entries for level two

files and directories, and so on for deeper levels. A

directory at level ~ is said to be immediately superior to a

file or directory at level n+l, and immediately inferior to

a directory at level ~-1. Similarly, a directory a level ~

is said to be superior to a file or directory at level ~+~,

and inferior to a directory at level n-m (for m)O).

In order to uniquely specify a particular entry within

the hierarchy, it is not sufficient to give only its entry

23

name. An entry name is unique within its containing

directory, but may not be unique with respect to all

directories. Therefore a pathname is used to uniquely

identify an entry within the hierarchy. A pathname consists

of an ordered sequence of entry names which describe a path

from the root to the entry of interest. The individual

entry names are separated by the symbol ")". Thus,

"root)A)B" is the pathname for file B which is immediately

inferior to directory A which in turn is immediately

inferior to the root directory.

Figure 2.2 shows how the file hierarchy might be used

to organize information within a computer utility. This

organization has been abstracted from the Multics file

hierarchy. All system data files, e.g. accounting records

and user identification information, are

"system_control" directory. All system

contained in a

commands and

subroutines are contained in a "system_library" directory.

For administrative purposes users are grouped into projects,

each of which is represented by a project directory.

Immediately inferior to a project directory are found the

home directories of individual users. A user may create an

arbitrary subtree of files and directories below his home

directory. The activities of a user, however, are not

confined to his home directory alone. He may touch any

parts of the hierarchy to which he has been granted access.

24

Figure 2.2: Example of a file hierarchy.

system_ control

system data files

----t> project
directory

root

projects

Planner

Smith

user files and
subdirectories

25

syotem_library

system commands
and subroutines

user home
directory

For example, all users are routinely granted access to use

procedures in the system library. A user may grant other

users permission to read or modify his personal files.

To this point, we have seen basically an external view

of the file system, i.e. the logical structure of the file

hierarchy as it appears to the user. This picture

adequately defines a setting in which to discuss those

backup functions which require only external knowledge of

the file system. These are the functions which actually

make use the file system, namely dumping, reloading, and

retrieving. The salvaging function, however, requires

knowledge of internal file system structure in order to

verify file system consistency following a system crash.

Hence, any discussion of salvaging must necessarily be more

file system-specific than the discussions of the other

backup functions. For this purpose, some characteristics of

internal file system structure are presented below.

The internal file system organization is, of course,

dependent upon the nature of the memory system. We will

consider a two-level memory configuration composed of main

oemory .:md secondary on-line mass storage. Furthermore, we

will assume that the transfer of information between main

memory and secondary storage is automatically managed by a

segmented, virtual memory system. [9] Both files and

directories exist as segments in the memory system, i.e.

26

variable-length collections of bits. Segments are

subdivided into fixed-length blocks called pages which are

moved in and out of main memory by the virtual memory

system.

Before a segment can be referenced, it must first be

initiated into the virtual address space of a process. (1)

The initiation of a segment is somewhat analogous to the

opening of a file in a conventional file system. At the

time a file is initiated, a user may request that some or

all of his allowed access modes (e.g. read, write, etc.) be

enabled. Whenever a file is initiated with write access, a

notation is made in the entry of the file. Once a segment

has been initiated, it becomes directly addressable and

hence can be manipulated in essentially the same fashion as

main memory is manipulated in a conventional computer

system. Thus, both files and directories are rather dynamic

objects in a segmented virtual memory system. This is in

contrast to conventional file systems in which files and

directories are comparatively static objects. When no

further use is to be made of a segment, the segment is

terminated from the virtual address space of a process. The

termination of a segment is somewhat analogous to the

closing of a file in a conventional file system.

(1) We informally define a "process" to be the ongoing
computation associated with an individual user.

27

When a segment is not actively in use, its pages reside

in secondary storage. Each entry in the hierarchy contains

a page map which indicates the secondary storage addresses

of all pages of its associated segment. In order to keep

track of secondary storage usage, the file system maintains

a storage assignment table for each secondary storage

device. Because segments may grow and shrink dynamically,

it is necessary that storage assignment tables be kept

either partially or fully in main memory to permit fast

allocation of storage space. For simplicity, we will assume

that storage assignment tables are stored entirely in main

memory during normal system operation. Of course, if

detachable storage devices are used, then only the storage

assignment tables for attached devices need be kept in main

memory. Different storage allocation strategies are

compared in the discussion of salvaging.

When a segment is actively in use, its pages are

transferred in and out of main memory as needed. Before any

pages of a segment can be brought into main memory, however,

a page table must first be constructed for the segment in

main memory. A page table is an array of page table words,

each of which holds the address of a page. Intuitively, a

page table serves as a working copy of a page map. A

segment having a page table in main memory is said to be

"active". As a page of an active segment moves between main

28

memory and secondary storage, its corresponding page table

word is updated so as always to reflect the current address

of the page. When a new page of a segment is created in

main memory, its address is recorded in a previously empty

page table word. At some later time, when this new page is

removed from main memory, a free location in secondary

storage is selected from the storage assignment tables.

This new secondary storage address is recorded in the page

table word for the new page. Eventually, the segment

containing the new page will be "deactivated", i.e. its page

table will be removed from main memory. At that time, the

secondary storage address of the new page is updated into

the page map in the entry for the segment.

The brief description given above is intended to

characterize how files and directories are accessed and how

storage space is allocated. The significance of these two

features will be explained in the discussion of salvaging.

Other issues of internal file system organization are

omitted since they do not significantly influence the design

of the backup system.

Incremental (Primary) Dumping

An activity known as incremental dumping is principally

responsible for keeping the backup system abreast of

modifications to the file hierarchy. The purpose of

29

incremental dumping is to discover newly created or modified

files and directories and to copy these files and

directories onto backup tapes. Incremental dumping is

performed during normal system operation by the incremental

dumper, a system process which awakens periodically to scan

the hierarchy for xoodifications. A single such pass over

the hierarchy constitutes one incremental dump. The net

effect of incremental dumping is to limit the amount of

information which can be lost to those modifications which

have occurred since the last incremental dump.

In order to restrict the maximum time span during which

modifications to the file hierarchy can go unnoticed by the

backup system, it follows that the incremental dumper should

scan the hierarchy frequently. On the other hand, because

the incremental dumper competes with ordinary users for

system resources, it becomes economically desirable to lower

the incremental dumping rate. Therefore, the time interval

between the start of incremental dumps is chosen as a

compromise between these two considerations. It is assumed

that the incremental dumper enjoys a sufficient scheduling

priority to insure completion of a full hierarchy scan

within the desired time interval. A typical interval is

expected to range from as little as thirty minutes to as

much as a few hours depending on the degree of protection

desired.

30

The dumping of an entire file to record modifications

encompassing only a small fraction of that file can be a

rather expensive and heavy-handed measure. Instead, one

might consider dumping only those pages of files which have,

indeed, been modified. The dumping of pages rather than

whole files will, of course, complicate recovery procedures.

Therefore, if the maximum file size is limited and the

median file size is small, it is simpler and not much more

costly to dump files in full. On the other hand, if the

maximum file size is unrestricted or very large, if the

median file size comprises many pages, and if file

modifications tend to be localized, then dumping pages might

be more practical. For simplicity, we will hereafter assume

the dumping of whole files. We will return to this issue in

the discussion of recovery operations.

The cost of incremental dumping will be proportional to

the average number of files and directories rnodif ied per

incremental dump interval. Intuitively, one would expect

this modification rate to be roughly proportional to the

processing activity of the system, but to be independent of

total secondary storage usage. This assumption is based on

the observation that as a typical user accumulates more

storage, he still tends to maintain a temporal locality in

his file modifications. Hence, it is expected that

secondary storage growth will have little influence on

31

incremental dumping costs. Increases in processing

activity, on the other hand, should produce a proportional

increase in incremental dumping costs. This behavior has,

in fact, been observed for the Multics system.

Secondary Dumping

In the

recover the

incremental

event

entire

tapes

of a

file

produced

mishap, it would be possible to

hierarchy by searching all

since the beginning of system

operation. It is necessary that all these tapes be examined

since only recently modified files appear on recent tapes

whereas files not modified for long periods of time appear

only on older tapes. Obviously, as the age of the system

increases, this approach becomes less and less practical.

Recovery time would soon become intolerable, as would the

burden of maintaining an ever expanding archive of backup

tapes. Therefore, it is necessary to consolidate the

information contained on incremental tapes.

Secondary dumping is the mechanism used to accomplish

this consolidation. A secondary dump scans the hierarchy

during normal system operation collecting all files and

directories which have been incrementally dumped later than

some specified time in the past. Since that time, some

number of incremental dumps will have occurred. Many

evolving versions of a file can appear within those

32

incremental dumps, but only the latest version will appear

in the secondary dump. Furthermore, files which appear in

an incremental dump and are later deleted will not appear in

a subsequent secondary dump. Therefore, a secondary dump

can be substantially smaller than the set of incremental

dumps which it supersedes. Generally, the larger the set of

incremental dumps superseded, the greater the size

reduction.

Clearly, in order to limit the number of bar.kup tapes

needed to recover the full hierarchy, all incremental dumps

performed since the beginning of system operation must be

consolidated periodically. This is essentially equivalent

to dumping the entire file hierarchy (except for a few files

which are so new that they have not yet been incrementally

dumped). A secondary dump which supersedes all previous

incremental dumps is called a complete secondary dump. A

complete secondary dump represents a cutoff beyond which no

older backup tapes need be inspected in order to find the

latest backup copies of all files and directories which

still exist in the file hierarchy.

The cost of a complete secondary dump will, of course,

be proportional to secondary storage size. For a large file

hierarchy, a complete secondary dump will necessarily be

very time-consuming and demanding of system resources.

Therefore, to avoid excessive dumping overhead, the time

33

interval between complete secondary dumps should be

substantially greater than the interval between incremental

dumps. on the other hand, the longer the time interval

between complete secondary dumps, the larger will be the

average and maximum number of incremental dumps needed to

recover the file hierarchy in the event of a mishap.

Therefore, the frequency of complete secondary dumps is

chosen as a compromise between cost and recovery time.

The expense of performing daily complete secondary

dumps is likely to be prohibitive in a large computer

utility attempting to provide continuous service.

Therefore, let us consider a time period of one week or

longer between complete secondary dumps. As an intermediate

measure for limiting recovery time, secondary dumping can be

used to consolidate some or all of those incremental dumps

produced since the latest complete secondary dump. A

secondary dump used in this fashion is called a partial

secondary dump.

Partial secondary dumping is similar in nature to

incremental dumping. In effect, a partial secondary dump

collects files and directories which have been modified over

a period of time encompassing some number of preceding

incremental dumps. Let us refer to this period of time as

the "consolidation interval" of a partial secondary dump.

The cost of a partial secondary dump is then proportional to

34

the number of files and directories modified per

consolidation interval. As argued earlier in the case of

incremental dumping, this modification rate is roughly

proportional to system processing activity, but is

negligibly influenced by secondary storage size.

Partial secondary dumping can be employed in a variety

of ways. Once again, the principal trade-off is one of cost

versus recovery time. Three examples of secondary dumping

schedules are illustrated graphically in figure 2.3. The

schedules are arranged in order of increasing dumping costs

and decreasing recovery time. Complete secondary dumps are

performed once per week in each of these schedules whereas

partial secondary dumps are used differently among the

three. In schedule A, each partial secondary dump

consolidates exactly one day's volume of incremental dumps.

Hence, the number of partial secondary dump tapes needed for

reloading increases linearly through the week, while dumping

costs are fairly uniform. In schedule B, the partial

secondary dumps performed Wednesday and Saturday consolidate

three days' volume of incremental dumps. Hence, a recovery

operation performed on Thursday, for example, would not

involve partial secondary dumps from Monday and Tuesday

since these are superseded by Wednesday's dump. In schedule

c, each partial secondary dump supersedes all preceding

partial secondary dumps performed the same week. Therefore,

35

Figure 2.3: Sample secondary dumping schedules.

number of days
consolidated

All

1

Sun

number of days
consolidated

All

3

2
1

Sun

number of days
consolidated

All

6

5

4
3

2

Sun

Schedule A

~--------complete

partial

Schedule B

<E----------- complete ----------~

partial

Mon Tue Wed Sat

Schedule C

.er--------- complete

partial

Mon Tue Wed Thu Fri Sat

36

Sun

Sun

Sun

both dumping costs and recovery time increase qradually

through the week.

It should be emphasized that the terms "partial" and

"complete" refer to the temporal nature of a secondary dump.

A secondary dump is called "partial" not because it dumps a

part of the hierarchy, but because it supersedes a part of

the incremental dumping history of the system. Similarly, a

secondary dump is called "complete• not because it dumps the

entire hierarchy, but because it supersedes the complete

incremental dumping history of the system. In fact, a

complete secondary dump actually does not dump the entire

hierarchy. As mentioned above, new files which have not yet

been incrementally dumped are ineligible for secondary

dumping. Also, for reloading purposes, the system library

is ignored by all incremental and secondary dumps. Instead,

special dumps of the entire system library are performed

either periodically or whenever the number of newly

installed programs reaches a certain limit.

As compared to incremental dumps, secondary

naturally require a longer time to run. Since

resolution of the backup system is determined by

dumps

the

the

incremental dumping rate, and because this resolution should

be kept constant, incremental dumping cannot be postponed

while secondary

incremental and

dumping

secondary

is

dumps

37

in progress.

must be able

Therefore,

to run

concurrently. When they do run concurrently, a considerable

load will be placed upon the system. Therefore, it is

obviously desirable that secondary dumps be performed at

times of light user load, e.g. late night and early morning

hours. If a complete secondary dump should require more

than a single night to run, it may be advantageous to

stagger complete secondary dumping of different sections of

the hierarchy over several nights rather than compete with

heavier user loads during the daytime.

In addition to reducing recovery time, secondary

dumping also reduces the number of backup tapes that must be

retained for long periods of time. If one were only

interested in recovering the latest copies of files, then

as soon as a backup tape was superseded by a later dump, it

could be reused. Of course, situations arise in which the

latest backup copy of a file is of no use. If, for example,

a file is erroneously modified due to a programming bug,

then the clobbered file will appear in subsequent

incremental and secondary dumps. Hence, the latest backup

copies will be of no value, but an older copy can be used to

restore the file.

Another reason for not quickly recycling backup tapes

is that the added redundancy increases reliability. If for

any reason a backup copy of a file cannot be read from a

particular backup tape, then at least the next most recent

38

copy can be obtained from an older backup tape. Clearly,

the writing of duplicate backup tapes for each dump would

improve reliability. But it is important to recognize that

tapes written in duplicate are to some extent susceptible to

the same errors. Therefore, the temporal separation between

different dumps is an important reliability factor which

argues for the prolonged retention of backup tapes.

To a limited degree, tape retention time represents a

compromise between cost and reliability. However, since the

cost of adding more tape reels to a backup archive is

basically a small one-time expense, one can usually afford

to be generous in this respect. On the other hand, the

maintenance of an extremely large library of backup tapes is

cumbersome, space-consuming, and prone to operational

errors. Therefore, rather than hold all tapes for an equal

length of time, it seems more practical to hold a small

number of tapes for very long periods of time and the

majority of tapes for only a comparatively short time. For

example, one might decide to retain incremental dumps for

one nonth, partial secondary dumps for three months, and

complete secondary dumps for one year. This strategy

recognizes the fact that when a mishap occurs which destroys

a file, a backup copy is usually recovered within a short

period of time. For the rare case of a user who wishes to

recover a file deleted many months ago, the backup system

39

can still offer assistance if the file existed long enough

to be recorded on a complete secondary dump.

In order to facilitate recovery operations following a

system failure, secondary dumps have been given certain

special properties. Secondary dumps always include all

directories in the hierarchy as well as all system data

files necessary for normal system operation. Complete

secondary dumps, of course, already include all files and

directories, and hence implicitly satisfy this requirement.

Partial secondary <lumps will typically include many

directories and most system data files anyway, and therefore

only a small additional overhead is incurred. The backup

system maintains in the entry of each file the tape address,

i.e. reel number and record number, of the latest secondary

backup copy. The purposes of these special features will be

explained in the discussion of reloading.

User-Controlled Backup

As described thus far, the user has no control over the

production of backup copies. Whenever an eligible file is

encountered by a dumping process, a backup copy of the file

is dumped. Hence, a user has no means of controlling, or

even determining, precisely when a particular file is dumped

relative to any work in progress involving the file. This

mode of operation creates two related problems. First, a

40

file may be inconsistent at the time it is encountered by

the dumping process. Second, if the creation of backup

copies is not synchronized with the user's work, he will

find it difficult to discover precisely what modifications

were performed before and after a given backup copy was

produced.

Since, for any file, the meaning of consistency depends

upon its application, the backup system cannot itself

determine whether or not a file is inconsistent. The file

system does keep track of when a file is potentially

inconsistent, i.e. when it is open to modification. Hence,

it would be possible for the dumper to simply skip

potentially inconsistent files. This approach, however,

would provide poor protection for heavily used files which

remain open to nodification for long periods of time. Even

for files which are only briefly subject to modification,

unfortunate timing of updates could cause a file to miss

several consecutive incremental dumps. Thus, the dumping of

a file would become a chance occurrence and, in general, the

resolution of the backup system would suffer.

The current Multics backup system entirely ignores the

problem of consistency. Files are dumped regardless of

whether or not they are open to rrodification. Surprisingly,

however, files are rarely dumped in an inconsistent state.

To understand this result, it is necessary to examine the

41

ways in which files are ordinarily modified. Most programs

are deliberately cautious about modifying permanent files.

For example, a text editor accumulates changes to a text

file in a buffer area. The text file is only updated from

the buffer at the explicit request of the user. Although

the text file remains open to modification during the entire

time the editor is in use, modifications are actually brief

and infrequent. Similarly, when one compiles a program, the

object code is compiled in a temporary area. If the

compilation succeeds, this temporary area is then copied

into a permanent file in one quick operation. This pattern

is typical of many permanent file modifications. In

situations of this kind, the probability of dumping a file

while in an inconsistent state is small. Even when this

does happen, there is still some consolation in the fact

that the modifications responsible for the inconsistency

will qualify the file for the next incremental dump. Hence,

a consistent copy is eventually produced.

In the situations mentioned above, i.e. editing and

compiling, it is not essential that a user be able to

specify the exact time at which a backup copy is produced.

A user will probably be satisfied to know that a backup copy

is produced sometime within the next incremental dump

interval. The situation is somewhat different, however, if

one considers applications involving more sophisticated data

42

management problems. To illustrate, let us imagine some

business-like application which processes "transactions",

each of which results in an update to a data file. As

mentioned in chapter 1, large-scale applications of this

type typically maintain journal tapes on which each

transaction and/or each data base update is logged. The

computer utility, however,

applications of this nature

may support many small-scale

which c.lo not require, nor

deserve, specialized backup mechanisms of their own. These

small applications may find the level of protection provided

by the general backup mechanism to be adequate.

In order for the backup mechanism to be of significant

use to a transaction-oriented application, the application

program must be given more control over the production of

backup copies. In particular, some method for specifying

that a particular snapshot of a file be dumped seems

necessary. This would not only allow the application

program to guarantee the consistency of backup copies, but

would also permit the application program to recognize the

precise moment at which a backup copy was produced relative

to the transactions being processed. For example, suppose

that transactions were input to the application program from

a terminal. The printed copy of the transactions produced

at the terminal could serve as a log. Periodically, the

application program would set aside copies of its data base

43

to be dumped. The times at which such backup copies were

set aside could also be recorded at the terminal. In the

event of a mishap, a particular backup copy could be

retrieved and subsequent transactions could be resubmitted.

The important point of the above example is that many

applications require some control over the production of

backup copies. The application program must be able to

specify when backup copies are created. These copies,

however, need not be immediately written to tape. Instead,

they could be temporarily stored in the file hierarchy until

encountered by the incremental dumper. In this way, user

processes and the dumper process may continue to operate

asynchronously.

In order to provide users with a facility for

specifying when backup copies are to be createdv each file

entry in the hierarchy contains a switch to indicate whether

or not user-controlled backup is desired. At the time a

file is initiated with write access, a user may optionally

request that this switch be turned on. If he does sov a

nshadow" copy of the file is created and stored in the same

directory as the original file. Thereafter, any attempt to

dump the original file will result in the shadow copy being

dumped. 'fhis permits the user to freely modify the original

file without fear of inconsistent backup copies being

produced. The user may, at his convenience, request the

44

file system to update the shadow copy from the original

file. By doing so, he permits the backup system to dump

successively more recent versions of his file. When the

user is finished processing the file, he requests the file

system to terminate the file. At this point, the shadow

copy is discarded (since the original file is now itself

consistent) and the switch indicating user-controlled backup

is turned off.

In order to distinguish and identify different versions

of files, the time of last modification is recorded with

every backup copy. Clearly, this modification time can only

be changed while a file is initiated with write access.

Therefore, at the time a user terminates a file which had

been initiated with write access, the file system returns to

him the latest modification time of that file. This

modification time can be used to identify any subsequently

dumped backup copies. However, a file may also be dumped

during the time it is initiated with write access. If

user-controlled backup is employed, the file system will

return to the user the modification time of his file each

time he updates a shadow copy. This modification time is

stored with the shadow copy and is eventually recorded on

tape with a corresponding backup copy. Hence, if

user-controlled backup is employed, a user can identify

every backup copy of a given file. If user-controlled

45

backup is not employed, the user will not be explicitly

aware of the modification times of those backup copies

produced while a file is initiated with write access. Note

that whenever a file is reloaded or retrieved, its

modification time is restored.

One point deserving consideration is the question of

how frequently users should update shadow copies. Clearly,

in order to take full advantage of the backup system, shadow

copies should be updated at least once per incremental dump

interval. However, the use of shadow copies still

introduces an extra delay which effectively weakens the

resolution of the backup system. To see this, let us assume

an incremental dump interval of one hour. If

user-controlled backup is not employed, a modified file may

wait at most one hour before being dumped. Similarly, if

user-controlled backup is employed, an updated shadow copy

may wait at most one hour before being dumped. However, the

file modifications contained in the shadow copy were

actually performed prior to the shadow copy update.

Therefore, if shadow copy updates are performed only once

per hour, then, at worst, a modified file may wait one hour

before a shadow copy update is performed and another hour

before being dumped. Hence, on the average, backup system

resolution is reduced by a factor of two.

In view of this extra delay introduced by

46

user-controlled backup, many users may wish to update shadow

copies more frequently than once per incremental dump

interval. For example, a user may wish to update a shadow

copy every ten minutes, i.e. six times per hourly

incremental dump cycle. In this case, a modified file may

wait at most 70 minutes before being dumped. Hence, backup

system resolution is only slightly reduced. Notice that

only one of every six shadow copies will actually be dumped.

The others will simply be replaced by more recent shadow

copies before being dumped. The purpose of performing six

shadow copy updates per hour is not to produce six backup

copies per hour, but rather to insure that the one backup

copy produced each hour is at most ten minutes old when

dumped.

Salvaging

Whenever a system crash occurs, the integrity of the

file system must be questioned. In particular, the

consistency of directories and of storage assignment tables

need be verified. Also, users should be warned of

potentially inconsistent files, i.e. those files not

properly terminated before the crash occurred. A procedure

known as salvaging is employed to detect, report, and

correct wherever possible any inconsistencies in the file

hierarchy and the storage assignment tables. Those parts of

47

the file hierarchy which cannot be salvaged must be

discarded and later recovered from backup tapes.

When main memory loss is not the cause of failure, it

may often be possible to recover information from main

memory before beginning salvaging. In Multics terminology,

this operation is known as an "emergency shutdown".

Essentially, an emergency shutdown attempts to r2vi ve th

system in order to perform a regular shutdown. First, an

attempt is made to deactivate all active segments. This

involves flushing all pages from main memory to secondary

storage and updating the page maps of all active segments

whose page tables have been modified. After all segments

have been deactivated, the storage assignment tables ar~

copied to secondary storage. The file system is then in a

dormant state.

Clearly, the success of the emergency shutdown

operation depends to a large extent on the consistency of

file system data bases following a system crash. If these

data bases have been left in grossly inconsistent states,

then the operation is likely to fail. On the other hand .. if

file system data bases are left consistent, or nearly so,

then an emergency shutdown can often succeed. Notice that

an emergency shutdown is performed using the standard file

sysLern. Hence, if an emergency shutdown runs to completion,

one can ue fairly confident that no major inconsistencie~

48

exist in the file system. There is some small risk,

however, that minor inconsistencies may go unnoticed.

The salvaging program, called the salvager, performs

three functions: (1) verification of the internal

consistency of all directories, (2) reconstruction of the

storage assignment tables, and (3) notification to users of

potentially inconsistent files. All of these functions are

carried out simultaneously during one scan over the

directory structure of the file hierarchy. If one wishPs to

trust the file system following a successful emergency

shutdown, a special salvaging mode could be used to perform

only the third function.

All directories are thoroughly examined by the salvager

to verify internal consistency. Any detected errors are

reported and , if possible, corrected. Certain problems can

be trivially cured. For example, if an entry was left

active, the active indicator is simply reset. The use of

redundancy in the directory format can help to correct more

serious errors. For example, if entry lists are doubly

threaded, a single break in an entry list can be repaired.

Still more serious errors may necessitate deletion of entry

attributes, single files, or entire directories. In order

to facilitate the recovery of files and directories which

could not be salvaged, those directories from which entries

have been lost are marked by the salvager.

49

As the salvager reads through the directory structure,

it rebuilds the storage assignment tables. This is done by

simply noting the secondary storage addresses used by each

segment. It may happen, as a result of a crash, that two

segments claim the same page in secondary storage. One way

to resolve this conflict is to store a segment identifier

and pdge number with every page.

While scanning the directory structure of th~

hierarchy, the salvaging procedure checks every file entry

to see if it was initiated with write access at the time of

the crash. If so, a flag is set in the entry which will

cause an error code to be returned on future attempts to

initiate the file. In this way, users are warned of

potentially inconsistent files. If a shadow copy exists for

a potentially inconsistent file, both the original file and

the shadow copy are retained in the file hierarchy. A user

may discover that his original file is hopelessly

inconsistent in which case he can replace the original file

with the shadow copy. Alternatively, a user may find that

his original copy is consistent or can be made consistent in

which case the shadow copy can be discarded. Unti.l the user

makes this decision, the backup system continues to use the

shadow copy for dumping purposes.

Among the nost disasterous of system crashes are those

caused by the failure of a secondary storage device.

50

Clearly, the sensitivity of the file system to this kind of

loss will depend largely on the storage allocation strategy

used. For example, secondary storage might simply be viewed

as one large allocation pool in which different pages of the

same segment can be arbitrarily assigned to different

devices. In this case, the failure of a single device may

destroy or damage an undetermined number of files and

directories, and is therefore likely to br: catastrophic.

Merely requiring that all pages of a segment be o:i t::hP , J.me

device adds little improvement since the loss of a directory

on one device will effectively destroy inferior files and

directories on other devices. Therefore, a more reliable

allocation strategy would require that a directory r:o:tored on

one device should have no inferiors stored on other devices.

In other words, each device should hold a s1i.bt:ree, or

perhaps several subtrees of the file hierarchy. Using this

allocation strategy, the extent of damage c•.'l.(! to a device

failure is limited to a well-defined portion of the file

hierarchy. Therefore, both salvaging and subsequent file

and directory reloading is simplified.

Of course, while this allocation strategy is ~~~irable

for reliability reasons, it has its disadvantages as far as

file and directory growth are concerned. Subtrees confined

to a device with no free space available will be unable to

expand even though free space may exist on other devices.

51

To avoid this situation, substantial amounts of free space

must be left on each device to accomodate potential

expansion which might result in considerable space wastage.

For this reason, it may be desirable to assign one very

large subtree or several sn~ller subtrees to a pool of two

or nx>re storage devices so as to reduce space breakage.

uowever, if subtrees are pe:tmitted to span more thai. one

device, reliability is also reduced. It is convenient t.o

think of subtrees being assigned to "logical devices" where

a logical device may be some fraction of a physical device,

a whole physical device, or several physical devices. The

size of logical devices can then be chosen as a compromise

between reliability and space breakage considerations.

The root directory and its closest descendants will

form a superstructure for the file hierarchy below which all

of the separately assigned subtrees will exist. The loss of

this superstructure will, of course, necessitate reloading

all of on-line storage. Therefore, to lessen the

probability of such disasters, each directory of the

superstructure should be duplicated on two independent

devices.. In this way, no single device failure can ca~s~

the loss of the entire contents of secondary storage.

The storage allocation strategy suggested above is

desirable not only for reliability reasons, but also because

it permits the file system to make use of detachable storage

52

devices. The physical device or devices assigned to a

logical device, i.e. a subt~ee, can be attached and detached

as needed. (1) Hence the assignment of subtr.ees of the file

hierarchy to individual stora9e devices appears to of fer

both reliability and economy.

When salvaging finishes 11 the file system is left in a

consistent state. At best, the enti=e file hierarchy is

saved and no reloading is necessary~ In less fortunate

circumstances, certain files and directories must be

recovered from backap tapes. To facilitate this operation,

those directories from which entries were deleted have been

so marked. Also, file~ which a~e potentially inconsistent

have been flagged.

Reloading

When the results of salvaging indicate a loss of

information from the file hierarchy, a procedure known as

reloading is employed to recover the most recent backup

copies of all missinq files and directories. The reloading

program, called the reloader, runs under the standard

operating system. Therefore, the supervisor, the reloader,

(1) Note that detachable ~ttorage devices used in this
fashion will hold directory information assumed to be
trustworthy by the file system. Therefore, for security
reasons, detachable subtrees must be considered system
property and must not be permitted to leave the computer
installation.

53

and those commands and subroutines used during reloading

must be loaded from a system bootstrap tape before reloading

begins. For efficiency reasons, the reloading operation is

divided into two phases. During phase 1, all directories

;md some file::; are recovered. All remaining files are

recovered during phase 2. The system can sometimes be made

available to users immediately after salvaging. If not, the

system can always be rnade available by the end of phase 1.

A ledger is maintained by the operators which notes the

starting time, completion time, and reel nwnbers for every

incremental and secondary dump. This ledger serves as a

reloading guide during phase 1. Beginning with the most

recent dump, the dumps are selected in reverse chronological

order according to starting time- Each dump is searched

from beg-inning to end for missing files and directories

which can be recognized as inferiors of those directories

marked by the salvager. Because the dumps are selected in

reverse chronological order, the IOC>St recent backup copies

of files and directories are reloaded first after which

older copies can be ignored. A flag is set in the entry of

each reloaded file which will cause an error code to be

returned on future attempts to initiate a reloaded file. In

this way, users are warned of the fact that a backup copy

has been reloadedB The identity of a reloaded backup copy

can be determined by examining the modification time

54

recorded in the en try.

Phase 1 terminates after the most recent secondary dump

has been reloaded. In the example of figure 2.4, the

incremental dumps from region 6 plus secondary dump 5 are

reloaded during phase 1. Notice that the incremental dumps

of regions 2 and 4 are superseded by secondary dumps 3 and 5

and therefore need not be reloaded. In general, at the

conclusion of phase 1, no incremental dumps remain to be

reloaded. Also, by the end of phase 1, all directories and

all system data files have been restored as a consequence of

reloading the latest secondary dump. If the latest

secondary dump is, in fact, a complete secondary dump, then

reloading is finished by the end of phase 1. Otherwise,

reloading continues during phase 2.

The purpose of phase 2 is to recover any missing files

not yet reloaded. This could be accomplished in the same

manner as phase 1, i.e. by searching the remaining secondary

dumps in reverse chronological order up to and including the

latest complete secondary dump. This searching, however, is

time-consuming and inefficient. If, for example, only a

small fraction of the hierarchy has been lost, then missing

files may be confined to only a few tapes. Notice that

since all directories are restored during phase 1, so too

are the entries for those files to be recovered during phase

2. Each of these entries contains the tape address of the

55

Figure 2.4: Example of a reloading situation.

dump size Incremental dumps

number of days
consolidated

All

1 .

Sun

1

?"un

not reloaded

~
2 4

Mon

Secondary dumps

reloaded during
phase 2

/"_
3

Mon

56

reloaded during
phase 1

!
time of

6 /crash
Tue

reloaded during

~lse
1

5

.
Tue

latest secondary backup copy of its associated file.

Therefore, the file hierarchy is searched and the tape

addresses of all files deserving to be reloaded are

extracted. These tape addresses are then sorted into a

systematic reloading order and the missing files are located

and restored. No time is wasted examining backup copies not

eligible for reloading.

By the end of phase 1, all directories and all system

data files have been recovered. Therefore, the system can

be opened to users at this time. Those users whose files

either survived the crash or were reloaded during phase l

will find the system immediately useful. Other users must

await the recovery of additonal files during phase 2. The

entries of files to be recovered during phase 2 are

specially marked so that premature attempts to initiate

these files will generate an appropriate error message. Of

course, most users depend upon commands and subroutines in

the system library. Therefore, if the system library has

been damaged, it is reloaded from the latest special dump of

the system library before the system is opened to users.

Often it will happen that salvaging succeeds in saving

all but a very few files and minor directories. If all

system data bases survive intact, then the system can be

made available immediately rather than waiting until the

finish of phase 1. The only danger here is that users will

57

be able to roodify directories as they are being reloaded.

If a user deletes an entry, for example, it may later be

restored by the reloader which cannot distinguish between a

legitimate deletion made during reloading and a loss caused

by a crash. Similarly, if a user inadvertently creates a

new entry by the same name as some missing entry, he may

prevent the missing entry from being reloaded. These

problems are not encountered during phase 2 since the

identities of all entries to be reloaded are known by the

end of phase 1. Notice, however, that the only sensitive

directories are those with missing entries, i.e. those

directories marked by the salvager. Hence, one could forbid

entry creation, deletion, or renaming in marked directories

until they are fully restored. Alternatively, one could

simply warn users of the consequences of modifying marked

directories. Thus, the system can be made available

inunediately after salvaging if no system data bases have

been destroyed.

The ability to open the

reloading has the obvious advantage

system to users

of making the

during

system

useful again as soon as possible to at least some users.

However, these users compete with the reloading operation

for system resources causing a reduction in reloading speed

and thus further inconveniencing other users awaiting the

recovery of files. In the case of a crash which causes only

58

a small amount of damage~ it seems reasonable t.hat the

system should be made available as soon as possible since

only a few users will suffer any delay. However, for more

serious crashes, it might be wiser to postpone opening the

system to users until a significant amount of reloading has

been performed.

To this point we have assumed that only whole files are

dumped and reloaded rather than pages of files as postulated

earlier. As it turns out, the dumping of pages does not

upset the reloading framework already described. If we

assume that incremental dumps copy individual pages and

secondary dumps copy whole files, no major changes are

required. (Directories are always dumped in full.) Phase 1

will simply reconstruct files page-by-page. The tape

addresses of all files not recovered by phase 1 will then be

determined as before. Phase 2 will finish the job by

reloading missing files and missing pages of files which

were partially reconstructed during phase 1.

Reloading time will depend upon the size and number of

incremental and secondary dumps needed to recover the file

hierarchy. The various trade-offs between dumping overhead

and recovery time have already been discussed. I~ is clear

that, for the worst of disasters, the work of reloading must

increase with the size of secondary storageG However,

increases in processing and I/O capacity can be used to

59

counteract the demands of enlarged storage volume. In order

to take full advantage of available processing and I/O

capacity, parallel processing is employed both during phase

l and phase 2 as will be described in chapter 3. Of course,

so long as storage capacity grows faster then processing and

I/O capacity, reloading time will increase. It should be

noted, however, that failures which necessitate reloading

the whole of secondary storage are extremely rare.

Therefore, much care has been taken to handle the milder,

more common failures efficiently. For example, in the case

of a single device failure, recovery time will depend on the

size of the device, but not on the total size of secondary

storage. The ability to open the system to users during

reloading can minimize the number of users inconvenienced by

a failure.

Retrieving

A procedure known as retrieving is used to recover

backup copies of files and directories at the request of

users. Retrieving, which is a remedy for isolated system

mishaps and for personal user mishaps, is distinguished from

reloading, which is a remedy for system-wide failures. The

operation of the retrieving program, called the retriever,

is quite simple. The retriever is supplied with a pathname

and a tape address. The specified tape is mounted and the

60

file or directory named is located and restored to the file

hierarchy. The retriever can also be requested to restore

an entire subtree. In this case, the pathname of the

directory which heads the subtree is specified and all

members of the subtree found on the tape are restored to the

hierarchy.

In order to request retrievals, a user must have some

method for determining when and where backup copies of his

files and directories were produced. For this purpose, a

dump map is created with every dump. A dump map specifies

the name, tape address, modification time, and dumping time

of each file and directory included in a particular dump.

Of course, it would be extremely tedious to search through a

large number of dump maps in order to locate a copy of a

given file or directory. Therefore, a user should remember

approximately when his file was lost or damaged. Also, if

the file was recently modified, the user should know

approximately when it was modified. If user-controlled

backup was employed, the user should know the exact

modification time of the backup copy he seeks. With this

information and knowledge of the dumping schedule, a

reasonable guess can be made as to which dump contains a

suitable copy of the desired file.

It is not intended that users should actually examine

printed dump maps directly. This arrangement would be

61

inconvenient and would implicitly prohibit retrievals being

requested from remote locations. Also, permitting users to

freely browse through dump maps would constitute a security

loophole since the names, and hence the existence, of all

files and directories would be exposed. Therefore, two

other approaches are suggested. The simplest approach would

be to give an operator or some other computer center

employee responsibility for examining dump maps. Users

could then request backup information concerning particular

files or directories, or could simply ask for a copy to be

retrieved according to modification time or some other

criteria. Preferably, however, dump maps could be

maintained on-line and users would be permitted to inspect

these maps subject to access controls enforced by the

system. In this case, all dump map searching could be

performed automatically. Of course, this approach involves

some overhead in an-line storage costs for the dump maps.

In either case, retrieval requests would be submitted via

the computer system so that the identity of a user making a

request could be verified.

Summary

The backup system presented in this thesis is designed

to protect a tree-structured file hierarchy. The files and

directories which comprise this file hierarchy are

62

implemented as segments in a segmented, virtual memory. The

various activities of the backup system can be divided into

two general

anticipation

categories:

of mishaps

response to mishaps.

(1)

and

activities performed in

(2) activities performed in

The first category of activities includes both

incremental and secondary dumping. Incremental dumping is

responsible for keeping the backup system abreast of

modifications to the file hierarchy. Periodically, the

incremental dumper scans the file hierarchy and copies to

tape all newly created or modified files and directories.

The interval between the start of incremental dumps defines

the resolution of the backup system. In order to limit the

time needed to recover the file hierarchy from backup tapes,

the information contained on incremental dump tapes must be

consolidated periodically. Secondary dumping is the

mechanism used to accomplish tl1is consolidation. Two types

of secondary dumps are employed by the backup system. A

complete secondary dump is used to consolidate all

incremental dumps since the beginning of system operation.

A partial secondary dump is used to consolidate some or all

of those incremental dumps performed since the latest

complete secondary dump.

User processes and the dumping processes operate

asynchronously. Files eligible for backup are copied at the

63

time they are encountered by the

operation is satisfactory while files

dumper. This mode of

are not subject to

modification. Certain applications, however, require

control over the production of backup copies while files are

subject to modification. This is necessary to guarantee

consistency and to record the status of backup copies

relative to work in progress. For this purpose, a

user-controlled backup mode can be requested for files

initiated with write access. Under this scheme, file copies

are created at times specified by the user and stored in the

file hierarchy where they can be found by the dumper.

The second category of activities performed by the

backup system includes salvaging, reloading, and retrieving.

Salvaging and reloading are used to recover from system

failures whereas retrieving is performed on behalf of users

to recover from personal losses. Following a system

failure, the integrity of the file system must be

questioned. If possible, an emergency shutdown is performed

to recover information from main memory. Next, salvaging is

performed to verify the internal consistency of directories,

reconstruct storage assignment tables, and warn users of

potentially inconsistent files. The salvager also marks

those directories, if any, from which entries have been

lost. Any missing entries are recovered from backup tapes

by Lhe reloading procedure. Reloading is divided into two

64

phases. During phase 1, all directories, all system files,

and some user files are restored. All remaininq files are

recovered during phase 2. The system can be opened to users

immediately following salvaging if no system files have been

lost. Otherwise, the system can be made available by the

conclusion of phase 1. The various steps and decisions of

the crash recovery procedure are illustrated in the flow

chart of figure 2.5. By comparison, the retrieving

procedure is fairly simple. A user wishing to retrieve a

backup copy of a particular file or directory specifies the

pathname and tape address of the backup copy he desires.

The appropriate backup tape is mounted and the desired

backup copy is extracted and restored to the file hierarchy.

The names, tape addresses, modification times, and dumping

times of backup copies are listed in dump maps produced with

every dump.

A primary objective of the backup system design is to

be able to scale up with system growth. Ideally, one might

hope that as secondary storage size increases, resolution

and recovery

overhead is

time can be held constant while dumping

kept within reasonable limits. The proposed

The cost of design closely approximates this

incremental dumping is proportional

activity and therefore will remain a

goal.

to system processing

constant fraction of

system processing time regardless of on-line storage

65

Figure 2.5: The crash recovery procedure.

CRASH

attempt
emergency

shutdown

salvage

load system.
bootstrap tape

system library yes

damaged?

no

system files
missing?

yes

phase 1
reload

no

reload system
library

open system
to users

open system to
users if not
already open

66

user files
missing?

yes

phase 2
reload

DONE

expansion. The same is true of partial secondary dumping.

The cost of complete secondary dumping, on the other hand,

is proportional to secondary storage size. However, because

the resolution of the backup system is upheld by incremental

dumping, complete secondary dumps need not be performed

frequently. Therefore, total dumping overhead need not rise

sharply with secondary storage growth.

Whether or not reloading time will remain constant with

on-line storage expansion will depend upon the "halaPc~· of

system growth. If processing and I/O capacity increase at

the same pace as on-line storage size, reloading time need

not increase. However, if secondary storage expansion

outstrips available processing capacity or tape I/O

capacity, then reloading time will increase. Of course, a

system administrator always has the option of adding

additional tape dirives and I/O channels to improve

reloading speed through parallel processing.

Recovery time should not be measured solely in terms of

the time required to completely reload secondary storage.

System failures which destroy all of on-line storage are

extremely rare. Therefore, much effort has been devoted to

recovering from the milder, zoore common failures quickly and

efficiently. Files and directories which can be salvaged

following a system failure need

system crashes, of course, will

67

not be reloaded. Most

require no reloading

whatsoever. More serious failures may necessitate the

reloading of a single device or a number of scattered files

and directories. In IOOSt such cases, the majority of users

will be able to resume work as soon as salvaging has

completed. In this sense, recovery time from all but the

most catastrophic of system failures need not increase with

on-line storage size.

68

CHAPTER 3

PROGRAM STRUCTURE OF THE BACKUP SYSTEM

The backup system is composed of four basic program

modules: the dumper (which performs both incremental and

secondary dumping), the salvager, the reloader, and the

retriever. In this chapter, the operations of the dumper,

reloader, and retriever are examined in detail. Due to its

predominantly ad hoc character and its intimate involvement

with peculiarities of file system structure, the operation

of the salvager is not further explored in this thesis. The

salvager/reloader interface, however, is described in this

chapter.

The Dumper

The dumper program is designed to scan portions of the

file hierarchy in search of files and directories eligible

for dumping. Each pass over the hierarchy is guided by a

control file in which are specified the pathnames of

directories, i.e. subtrees, to be searched. If, for

example, it was desired to divide complete secondary dumping

of the hierarchy among four separate dumps, then four

different control files could be used to select four

different portions of the hierarchy. As mentioned in

69

chapter 2, the system library is ignored by standard

incremental and secondary dumps. Hence, the pathname

"root)system_library" would not appear in the control files

for such dumps. However, when special dumps of the system

library are performed, the control file will contain only

the pathname •root)system_library".

The eligibility of a file or directory for incremental

dumping depends upon its time of last modification. The

file system maintains in every entry the date/time modified

(dtm) of its associated file or directory. Also, the backup

system maintains in every entry a date/time dumped {dtd).

Hence, a file or directory is

dumping whenever dtm)dtd, i.e.

eligible for incremental

whenever the file or

directory has been modified more recently than it has been

dumped. Immediately before a file or directory is dumped,

the current time is read from the system clock. Inunediately

after a file or directory is dumped, its dtd is reset to the

prior clock reading. This procedure guarantees that any

modifications occurring while a file or directory is being

dumped will qualify that file or directory for the next

incremental dump.

It would be extremely time-consuming and inefficient if

the incremental dumper were required to search the entire

hierarchy for m:>dified files and directories on every pass.

The hierarchy might contain thousands of directories,

70

whereas only a comparatively small number of directories are

likely to be in use during any single incremental dump

interval. To avoid this excessive searchinq, dtm and dtd

for a directory are interpreted to refer to the subtree

rooted by the directory. In other words, dtm gives the time

that a directory or any of its inferiors were last modified.

Similarly, dtd gives the time that a directory or any of its

inferiors were last incrementally dumped. Therefore, if

dtm)dtd for a directory, then neither the directory itself

nor any of its inferiors have been modified more recently

than they were last dumped. Consequently, if dtm)dtd for a

directory, the dumper need not search the subtree below that

directory. Because searching time is minimized in this way,

the unit cost of incrementally dumping a file will not

increase with the size of the hierarchy.

For reloading purposes, it is desirable that a file or

directory contained in a backup dump be preceded by all of

its superior directories. Since secondary dumps include all

directories and since the dumper searches and dumps the

hierarchy in top-down order, every file and directory must

be preceded by all of its superior directories. This same

property has also been incorporated in incremental dumps as

a by-product of the special interpretation of dtm and dtd

for directories. Whenever a file or directory is modified,

all of its superior directories also appear to be modified.

71

Consequently, any file

incremental dump must

directories. Special

or

be

care

directory contained in an

preceded by all of its superior

must be taken to dump the

superior directories of those subtrees named in the control

file. ~he incremental dumping algorithm is summarized in

the flow charts of figures 3.1 and 3.2.

The eligibility of a file for secondary dumping depends

entirely on its incremental dumping history. As explained

in chapter 2, a secondary dump is used to consolidate some

number of preceding incremental dumps. Therefore, for each

secondary dump, one must indicate exactly how many preceding

incremental dumps are to be consolidated. This is done by

specifying a time called "timel". All incremental dumps

which began after timel and before the current secondary

dump will be consolidated. For complete secondary dumps,

timel is set equal to zero, i.e. the beginning of system

operation. For partial secondary dumps, timel is set equal

to the starting time of some previous secondary dump. For

simplicity in secondary dumping and reloading, we require

that no incremental dump be in progress at the time a

secondary dump is started. Therefore, a secondary dump can

be understood to supersede some whole number of immediately

preceding incremental and secondary dumps.

The problem of determining whether or not a file is

eligible for secondary dumping is somewhat more subtle than

72

Figure 3.1: The dump<-·r algt>riL'1111 (p.irl 1).

dumper

get control file

any pathnames
control file

P ~ next pathname

dump any superior
directories of P
not yet dumped

dump P

is P a

directory?

yes

13

DONE

Figure 3.2: The incremental dumper algorithm (part 2).

no

dump subtree(D)

get entry
list for D

any entries
in D not yet
inspected?

yes

E ~ next entry

dtm > dtd?

yes

read clock

dump E

is E a

directory?

no

dtd <-- clock time

74

no

yes

RETURN

call
dump_subtree(E)

it appears. one might, for example, declare a file eligible

for secondary dumping whenever dtd)tirnel. Unfortunately,

this test causes redundant secondary dumping of files. The

trouble is that because a secondary dump takes a substantial

amount of time to run, it would not only consolidate

preceding incremental dumps, but also portions of concurrent

incremental dumps. Therefore, the incremental dumps

consolidated by consecutive secondary dumps would always

overlap to some extent.

In view of this problem, the dumper records its

starting time as utirne2" at the beginning of each secondary

dump. A file can then be declared eligible for secondary

dumping whenever timel(dtd(time2. Unfortunately, if a file

is incrementally dumped shortly after time2, the secondary

dumper cannot determine whether or not it was also dumped

between timel and time2. Of course, in the event of a

system failure, a file incrementally dumped after time2 will

be reloaded from an incremental tape. (Remember that the

latest incremental dumps are reloaded before the latest

secondary dump.) Therefore, for reloading purposes alone,

the secondary dumper could skip files incrementally dumped

later than time2. However, we have assumed that incremental

tapes are not retained as long as secondary tapes. Thus, a

version of a file omitted from a secondary dump, but

included in a concurrent incremental dump, would not survive

75

in backup storage as long as contemporary versions of files

included in the secondary dump. Hence, we must reject this

solution.

The difficulty with the above approach is that once a

file has been incrementally dumped after time2, the

secondary dumper can no longer determine if that file was

also dumped between timel and tirne2. Therefore, while a

secondary dump is in progress, the incremental dumper must

not reset dtd for a file without first testing if that file

is eligible for secondary dumping. If the file is eligible

for the concurrent secondary dump, then the incremental

dumper will turn on a secondary dump switch (sdsw) in the

entry of the file. Hence, a file is eligible for secondary

dumping whenever sdsw=l or timel(dtd(time2. Remember, too,

that all directories and system files which have ever been •
incren~ntally dumped are also eligible for secondary

dumping. For simplicity, we assume that system files can be

identified by a special indicator kept in each entry. The

combined incremental and secondary dumping algorithm, part

2, is shown in figure 3.3. Also shown is the special

dumping algorithm used for the system library which simply

dumps entire subtrees. (Part l of the dumping algorithm,

shown in figure 3.1, is identical for all types of dumps.)

Note that the incremental dumper may, at times, turn on the

sdsw for a file after that file has been encountered by a

76

Figure 3.3: The incremental <1nd secondary dumper algorithm (part 2).

incremental

dtm > dtd?

yes

incremental

Is E a file & no

sdsw ,_ 1

dtd <- clock time

dump_subtrcc(D)

get entry

list for D

any entries
in D not yet
inspected?

yes

E ..- next entry

dump type?

special

read clock

dump E

dump type?

special

77

no
RETURN

secondary

yes

yes

directory or
system file
and dtd > O?

sdsw = 1 or
timel<dtd<time2

?

secondary

no
Is E a file?

yes

sdsw .- 0

record tape addr.

concurrent secondary dump. This means that

remain eligible for the next secondary dump.

the file will

Although this

was not the intended purpose of turning on the sdsw, it does

no harm since the file has already qualified for the next

secondary dump as a result of being incrementally dumped

after time2.

User-controlled backup is basically invisible to the

dumper. If a shadow copy exists for a file, the file system

insures that the dumper sees the dtm of the shadow copy

rather than the possibly nore current dtm of the original

file. Similarly, when the dumper attempts to initiate a

file for dumping, the file system insures that if a shadow

copy exists, the shadow copy is initiated rather than the

original copy. Precautions must be taken to prevent

interference between the dumper and user processes when

user-controlled backup is employed. The dumper may attempt

to dump a file at the same time a user attempts to initiate

the file, update its shadow copy, or terminate the file.

Once again, the file system coordinates these operations in

a manner unseen by the user or the dumper. Specific

solutions to these problems for a proposed Multics

implementation are discussed in chapter 4.

The use of pathnames to identify file and directory

copies causes problems for the backup system. Pathnames are

composed of entry names which are, of course, subject to

78

change. If a pathname is recorded on tape with a backup

copy, this pathname may no longer be valid at some later

time when an attempt is made to reload the backup copy.

Hence, the reloader may mistakenly decide that a file has

been deleted and should not be reloaded when, in fact, all

that has really happenned is that tl1e file has been renamed.

To a lesser degree, the use of pathnames also causes similar

trouble for the dumper. Between the time that the dumper

obtains the entry list for a directory and the time it

finishes dumping all eligible entries in that directory, a

user may rename one or I'!Dre of tl1ose entries. It will

appear to the dumper that these renamed entries have been

deleted.

Clearly, what is needed to resolve this naming problem

is some means of identification not subject to change. For

this purpose, a unique identifier (uid) is assigned to each

entry at its time of creation. The file system guarantees

that this uid will never again be assigned to another entry

in the same directory even after the original entry has been

deleted. In the same way that pathnames are constructed

from entry names, "pathuids" are constructed

uids. A pathuid is guaranteed to uniquely

particular entry for the lifetime of the system.

from entry

identify a

Pathuids can be viewed simply as numbers. Let us

assume that each uid is represented by a single machine

79

word. Furthermore, assume that the maximum depth of the

hierarchy is restricted to sixteen levels. Then, a pathuid

can be represented by sixteen machine words which, together,

can be treated as a single binary number. The uid of the

root directory is always the high-order word of a pathuid.

The uid of some immediate inferior of the root directory is

always the second word of a pathuid, and so on for

succeeding words. If the entry described by a pathuid is

less than sixteen levels deep in the hierarchy, the

low-order words of its pathuid are padded with zeroes.

The idea of treating pathuids as numbers is employed

during phase 1 reloading to synchronize parallel reloading

processes as will be explained later. For this purpose, it

is necessary that all files and directories appear in

numerical pathuid order within a backup dump. This implies

that the treewalk performed by the dumper should be

organized so as to encounter files and directories in

pathuid order. Therefore, for each directory searched, the

entry list must first be sorted into ui<l order. This

procedure guarantees that within a directory, all entries

dumped will appear in uid order on the backup tapes.

Furthermore, since this procedure is applied recursively to

successively inferior directories, it follows that within a

subtree, all entries dumped will appear in pathuid order.

To insure that different subtrees appear in pathuid order,

80

the pathnames listed in the control file are converted to

pathui<ls and sorted into numerical order at the beqinninq of

each dump. Bence, all entries in the entire dump must

appear on the dump tapes in pathuid order as desired.

The sorting of entry lists, if performed for a large

number of directories on every dump, can be expensive.

Therefore, one might specifically design the file system to

thread entry lists in uid order so that no sorting will be

necessary. We will hereafter assume that entry lists are

threaded in uid order. Hence, the only change to the dumper

algorithm needed to dump files and directories in pathuid

order is the sorting of the control file. This change to

part 1 of the dumper algorithm is shown in figure 3.4.

The dump record written on a backup tape for a file or

directory includes a preamble followed by the contents of

the file or directory. The preamble section includes a

pathuid, pathname, time

information to reconstruct

dumped,

the entry

and

of

the

the

necessary

file or

directory plus all superior entries. The reasons for

including all superior entries in each preamble will be

explained in the ensuing discussions of reloading and

retrieving.

The Salvager

Unlike the other backup system components, the salvager

81

Figure 3.4: The dumper algorithm (part 1, revised)

no

dumper

get control file

onvert pathnames
to pathuids

and sort
control file

any pathuids
in control file no

not yet
inspected?

P <- next pathuid

dump any superior
directories of P
not yet dumped

dump P

Is P a
directory?

call
dump_subtree(P)

82

DONE

requires knowledge of internal file system structure. In

fact, the specific nature of the salvaginq operation is

determined by the peculiarities of this internal structure.

The task of attempting to generalize or, at least, to

systematize the salvager design is not undertaken in this

thesis. Therefore, we will not be concerned so much with

the method of salvaging, but rather Hith its results. The

overview of salvaging contained in chapter 2 basically

describes the current Multics salvager with a few added

enhancements. In chapter 4, minor modifications to the

Multics salvager are described which would

compatible with the proposed backup system.

make it

When salvaging concludes, the directory structure of

the file hierarchy and the storage assignment tables have

been put in a consistent state. Those files which were not

properly terminated at the time of the crash have been

flagged as potentially inconsistent. Those directories in

the hierarchy from which entries were lost have been

appropriately marked. Each entry which describes a

directory contains a missing entries switch (mesw) for this

purpose. Also, to improve reloading efficiency, the

salvager labels the superior entries of those entries in

which it has turned on the mesw. Each entry contains an

inferior reload switch (irsw} for this purpose. When turned

on by the salvager, the irsw indicates the existence of an

83

inferior entry having its mesw turned on. However, the irsw

is also used for other purposes by the reloader as described

in the next section.

The H.eloader

The phase 1 reloader is designed to read through backup

tapes in search of files and directories eligible for

reloading. As described in chapter 2, backup dumps are

selected for reloading in reverse chronological order so

that the most recent copies of files and directories will be

encountered first after which older copies can be ignored.

Each dump is scanned from beginning to end so as to retrace

the treewalk originally performed by the dumper. This

procedure insures that the reloader will never encounter a

file or directory before first encountering all of its

superior directories (except in the unusual case of a tape

reading error described later}.

The only files and directories eligible for reloading

are missing inferiors of those directories for which the

salvager has turned on the mesw. If the reloader finds on

tape a file which already exists in the hierarchy, then

either that file was successfully salvaged or else the most

recent backup copy has already been reloaded. The same is

true of directories except when the mesw is enabled. In

this case, missing entries should be restored to the

84

directory. Whenever a directory does not deserve to be

reloaded, the reloader knows inunediately that none of its

inferiors deserve to be reloaded unless the irsw for that

directory is turned on.

The first step in the hierarchy restoration process

occurs when the reloader finds on tape a copy of a directory

for which the mesw has been turned on. At that time, all

entries in the backup copy of the directory not already in

the hierarchy are restored. In each such entry, a reload

pending switch (rpsw) is turned on which prevents the entry

from being initiated by a user. The mesw can now be turned

off since all entries have been restored. However, the irsw

is turned on to indicate that inferior files and directories

must be reloaded.

After missing entries have been restored to a

directory, the reloader proceeds to recover the files and

directories belonging to those entries. When the reloader

finds on tape a file for which the rpsw has been turned on,

the file is reloaded and its rpsw is turned off. Also, a

reload flag is set in the entry of the file to warn users

that a backup copy of the file has been recovered.

Similarly, when the reloader finds on tape a directory for

which the rpsw has been turned on, the directory is reloaded

and its rpsw is turned off. To insure that the inferiors of

this directory are recovered, the rpsw is turned on in each

85

entry contained in the directory and the irsw for the

directory itself is turned on. In this way, all missing

files and directories encountered during phase 1 are

restored to the hierarchy.

Notice that the entry for a file or directory is

restored at the time its parent directory is reloaded.

Therefore, if the entry for a file or directory does not

exist in the hierarchy at the time the reloader encounters a

backup copy of that file or directory on tape, this

indicates that the entry has been legitimately deleted and

should not be reloaded. Of course, when the reloader

determines that a directory has been deleted, it knows that

all inferiors of that directory have also been deleted and

should not be reloaded.
'

There is one situation which contradicts the above

assumption regarding deletions. When a tape reading error

occurs causing backup records to be skipped, the reloader

may encounter a file or directory before some of its parent

directories have been restored. The reloader should not

bypass readable files and directories simply because their

superiors could not be read. This would only increase the

severity of the error. Hence, the reloader must be able to

distinquish between legitimately deleted entries and entries

not restored due to tape errors. Fortunately, this

uistinction can be made quite easily. In the absence of

86

tape errors, the superiors of a file or directory will

always precede it in a dump. Therefore, at the time a file

or directory is read from tape, it should be true that none

of it superior directories will have the rnesw or rpsw turned

on. If such a superior directory does exist, then a tape

error (or perhaps some other error) must have prevented

intervening directories from being reloaded. Therefore, the

reloader must fabricate these intervening directories in

order to reload the file or directory in hand. The entry

for this file or directory plus the entries of all superior

directories are contained in the preamble section of the

current dump record. Hence, these entries can be restored

immediately. Other entries, however, cannot be restored to

the fabricated directories. Therefore, in the entry for

each fabricated directory the reloader turns on a

fabrication switch (fabsw) to indicate that these

directories have not been completely reloaded. If a copy of

a fabricated directory is later encountered on an older dump

during phase 1, missing entries and non-entry items will be

restored and the fabsw will be turned off.

One last concern of the phase 1 reloader is to make

certain that for each reloaded file and directory, the dtd,

sdsw, and secondary dump tape address are properly reset.

Except in the case of tape errors, the entry for a file or

directory is restored at the time its parent directory is

87

reloaded. ~t the time a directory is dumped, however, its

inferiors have yet to be dumped. Hence, the dtd, sdsw, and

tape address for an entry may change after its containing

directory has been dumped if the entry itself is dumped.

Therefore, if a file or directory is reloaded from the same

dump as its parent directory, the latest backup information

must be restored when the file or directory itself is

encountered. When reloading an incremental dump record, the

<ltd and sdsw must be updated. When reloading a secondary

dump record, the sdsw and tape address must be updated. The

phase 1 reloading algorithm is summarized in the flow charts

of figures 3.5 and 3.6.

As mentioned earlier, multiple reloading processes can

be employed during phase 1 to reload several dumps

concurrently. One rule of the phase 1 reloading algorithm

is that the latest backup copies of files and directories

must be encountered first. Hence, if several dumps are to

be reloaded at once, some mechanism must be employed to

insure that this rule is obeyed. As explained earlier,

files and directories always appear in pathuid order within

a dump. A pathuid uniquely and permanently identifies the

tree position of a file or directory within the hierarchy

relative to all other files and directories. As the

reloader scans a dump from beginning to end, it essentially

retraces the treewalk originally performed by the dumper.

88

Figure 3.5: The phase 1 reloader algorithm (part 1).

Is P inferior
to D?

no

Do- 0

reloader

begin new clump

D ,___ 0

read next
dump record

end of dump?

no

P ,___ pathuid
of current

dump record

D O?

yes

89

yes

yes

anymore dumps
for phase l?

no

DONE

Note: "D" is used
to hold the pathuid
of a directory in
eligible for reload
ing. (see part 2)

Figure 3.6: The phase 1 reloader algorithm (part 2).

load_record(P,D)

Is P in no
the hierarchy?

yes

rpsw = l?
yes

Is p a
directory?

yes

fabsw = l?

no

yes
mesw = l?

no

no
irsw = l?

yes

rpsw, mesw
or fabsw = 1
for nearest
parent of P?

yes

restore missing
superior entries
of P and turn on

fabsw for each

load entry for P

reload P

Is p a
directory?

es

irsw +- 1
turn on rpsw
for all entries
of P

restore non-entry

data to P

restore missing
entries to P and

turn on rpsw
for each

D p

90

no Is P a

directory?

yes

D p

no
set reload flag

update sdsw, dtd,
and tape address
if necessary

rpsw +- 0

mesw +- 0
fabsw +- 0
irsw +- 1

RETURN

Therefore, parallel reloading processes can be synchronized

according to tree position. A reloader scanning a

particular dump must stay behind (in terms of tree position)

all reloaders scanning more recent dumps. In order to

distinguish the relative ages of <lumps, each dump reloaded

during phase 1 is assigned a sequence number. The most

recent dump is assigned sequence number one. The second

most recent dump is assigned sequence number two, and so on

for older dumps. A counter accessible to all reloading

processes gives the sequence number of the next dump to be

reloaded. Initially, of course, this counter is set to one.

When a reloading process begins a new dump, it takes the

current sequence number from the counter and then increments

the counter by one. For each dump to be reloaded during

phase 1 there exists a tree position indicator accessible to

all reloading processes. The contents of a tree position

indicator is a pathuid. As a reloading process scans

through dump i, it repeatedly updates the tree position

indicator for dump i with the pathuid of the file or

directory it has last scanned. A reloading process working

on dump i is forbidden to pass the tree position of the

reloading process working on dump i-1. The synchronization

discipline of the phase 1 reloading algorithm, part 1, is

sununarized in the flow chart of figure 3.7. Part 2 of the

phase 1 reloading algorithm is unchanged.

91

Figure 3.7: The phase 1 reloader algorithm (part 1, revised).

T(i) .,.. P

Is p inferior
to D?

no

D 0

wait until
T(i-1.) > P

no

no

reloader

i <- N
N <- N + 1

begin dump i

D <- 0
T(i) 0

read next
dump record

end of dump?

P pathuid of
current dump

record

D = O?

yes

T(i-1) > P

call
load_record(P,D)

92

yes
T(i) co

anymore dumps
for phase 1?

DONE

Note:
''N" is the dump
sequence number counter.

"T(i)" is the tree
position indicator for
dump i.

Phase 1 normally ends after the latest secondary dump

has been reloaded. At this point, all directories should be

restored. If, however, any portion of the latest secondary

<lump is unreadable, certain directories may not be restored.

If a large number of directories could not be recovered,

phase l can be extended to include older secondary dumps

until all directories have been reloaded. If only a small

number of directories were missed due to tape errors, these

directories can be separately retrieved during or after

phase 2 reloading.

At the conclusion of phase 1, the entries of all files

to be reloaded during phase 2 can be found in the hierarchy.

In each of these entries, the rpsw is turned on. Remember

that every entry in the hierarchy contains the tape address

of the latest secondary backup copy of its associated file

or directory. Hence, the hierarchy is searched and the tape

addresses of all files deserving to be reloaded during phase

2 are extracted into a list. Note that it is not necessary

to search all directories in the hierarchy for entries

having the rpsw turned on. For any such entry, the irsw

must be turned on in all superior entries. Hence, entries

having the rpsw turned on can be located with a minimum of

searching. At the same tirae it may also be useful, for

diagnostic purposes, to produce a reload map, i.e. a listing

of all files and directories reloaded during phase 1 or

93

eligible for reloading during phase ")

~-
As described

previously, the rpsw, rnesw, and fabsw are turned off for

those files and directories reloaded during phase 1.

Instead of turning these switches off, the phase 1 reloader

will set them to a "standby" position so that files and

directories reloaded during phase 1 can be recognized and

hence a reload map can later be generated.

Now begins phase 2 which is entirely automatic. The

list of tape addresses compiled during the hierarchy search

is sorted by tape reel number and record number. This

sorting groups together tape addresses having identical reel

numbers, and within each such group, the record numbers

appear in numerical order. Each group of tape addresses

having a common reel number can be interpreted as a

reloading guide which identifies the locations of files to

be reloaded on a given reel. As many reloading processes as

JX>Ssible (or as is optimal) are created, each being assigned

a tape drive. Each reloader selects a reloading guide for a

particular reel and requests that the corresponding reel be

mounted. It then skips through the tape, stopping at the

record numbers found in the reloading guide, and reloading

the files found at each stop. Notice that no interprocess

synchronization is required during phase 2. Reloading ends

when all reels containing missing files have been processed.

94

The Retriever

The retriever program is designed to restore specified

files and directories to the hierarchy from backup tapes.

The pathnames of files and directories to be retrieved are

listed in a control file accompanied by the tape addresses

of the desired backup copies. Hence, in order to retrieve a

particular backup copy of a file or directory, the retriever

merely mounts the specified tape reel, skips to the

specified location, and reads the backup record found at

that location. The pathnames and tape addresses included in

a retrieval control file are determined by examining dump

maps as described in chapter 2.

For each directory pathname included in a retrieval

control file, a "subtree" option may specified. The subtree

option indicates that not only should the directory itself

be retrieved, but also all inferiors of that directory on

the same tape. The dumping algorithm insures that all

members of a subtree ~ust appear contiquously within a dump.

Hence, beginning with the head directory of the subtree, the

retriever simply reads each backup record in sequence until

reaching the end of the subtree or the end of the tape.

The retrieving of a subtree is handled quite

differently from the reloading of a subtree. At the time a

directory is retrieved, only the non-entry information is

restored. The entries contained in the directory are not

95

restored at this time since not all of the inferiors of the

directory will necessarily be retrieved. For example, if a

subtree is retrieved from an incremental tape, many inferior

files and directories of the subtree may not be retrieved

because they were not included in the incremental dump.

Therefore, the entry for a file or directory is not restored

at the time its parent directory is retrieved, but rather at

the time the file or directory itself is retrieved. A user

may request that a file, directory, or subtree be retrieved

for which some superior directories no longer exist. In

this case, the superior directories are simply created with

default attributes. The entries for these superior

directories can be restored from the preamble portion of the

backup record being retrieved.

Often a user may wish to retrieve a subtree, some part

of which still exists in the hierarchy. In this situation,

the user normally will not want existing files and

directories to be overwritten by hackup copies. He will

want only those files and directories which do not currently

exist in the hierarchy to be retrieved. Hence, if a file or

directory encountered on a hackup tape still exists in the

hierarchy, it is not retrieved as a matter of standard

procedure. In certain circumstances, however, a user may

wish t.o overwrite an existing file or to restore non-entry

information to an existing directory. Therefore, for each

96

pathname in

option may

overwrite

the retrieval control file, an "overwrite"

be specified which will cause the retriever to

existing files and to restore non-entry

information to existing directories.

The retriever algorithm is summarized in the flow chart

of figure 3.8.

97

Figure 3.8: The retriever algorithm.

subtree optio
and E inferior

to P?

yes

retriever

get control file

any pathnames
control file no
not yet
inspected

yes

P - next pathname

get tape address,
mount and
position tape

read next record

end of tape?

no

E r- pathname of
current record

E P?

DONE

yes '------------~yes

restore entry for
E plus any
missing superior
entries

no ..,_ __

no

Is E in yes overwrite

the hierarchy? option?

retrieve E

yes
subtree option?>----------------•

98

CHAPTER 4

A MULTICS IMPLEMENTATION PLAN

As described in chapter 1, the backup system design

presented in this thesis represents a continuing evolution

of earlier file system backup facilities implemented on CTSS

and Multics. The success of these earlier mechanisms in

augmenting file system reliability has already demonstrated

the usefulness of the general design approach. The

inability of the current Multics backup system to scale up

with system growth, however, has been the principal

motivation for seeking improvements. The recent movement of

Multics to a new hardware base has substantially increased

system work capacity. As a result, much concern has

developed regarding file system reliability in general, and

backup system overhead and performance in particular.

One objective of the work of this thesis has been to

produce a practical design which could be implemented on the

Multics system and perhaps, with appropriate translation, on

other large-scale time-sharing systems as well. In this

chapter the job of implementing the backup system defined in

chapters 2 and 3 within Multics is examined. This chapter

is intended primarily for readers familiar with the Multics

system.

The present Multics backup system contains dumper,

99

reloader, retriever, and salvager modules. The Multics

salvager will require only minor modifications for use with

the new backup system. The present dumper, reloader, and

retriever differ substantially, however, from their proposed

counterparts and hence must be discarded.

reloader, and retriever programs must be

according to the specifications of chapter 3.

New dumper,

implemented

A number of changes and additions to the Multics file

system will be required to support the new backup system.

The file system is not currently equipped to deal with

pathuids, but this capability can be added in a

straightforward manner. Several new backup-related items of

information must be added to each entry in the Multics file

hierarchy, some of which require special interpretation by

the file system during reloading. Also, a new file system

interface is needed for the dumper and reloader. A number

of file system enhancements will be required to provide the

user-controlled backup option described in chapter 2.

In summary, the implementation tasks for the new backup

system include:

1. new dumper, reloader, and retriever programs

2. handling pathuids within the file system

3. new directory items and related changes

4. new backup system interface to the file system

5. salvager modifications

100

6. user-controlled backup

The dumper, reloader, and retriever programs ~ave

already been carefully described in chapter 3 and hence will

not be reviewed in thi~ chapter.

separately considered here.

Each of the other tasks is

At the conclusion of the

chapter, an integrated plan is suggested

implementation of the backup system on Multics.

Handling Pathuids Within the Fil~ System

for the

As discussed in chapter 3, pathuids serve two purposes.

First, they permit the dumpet· and t.h.e reloader to be

unaffected by entry name changes. Second, they permit the

synchronization of parallel reloading processes during phase

l reloading. Each entry in the l'.iultics file hierarchy is

assigned a uid. However, thf.se uids cannot be used to name

entries in any way t.mderstood bl the fi.Le system.

The abilit.{ to accept pathuid~ :._.r. place o 2 pathnames

can be added to the Multics file system ir:. a straightforward

manner. A file system module known as i.find " is

responsible for searching the hierarchy for entries

specified by pathname.. A. new entrv point could eas5.l v be

added to this module to nandlc pc-thu.:i.ds., The basic

searching logic of the find program would be t:hf:' same for

pathuids as for pathnames. He 11ever, tne pathname lookup

procedure makes use cf entry name hash tables kept in each

lOl

directory. Therefore, in order to achieve equal efficiency

in the use of pathuids, uid hash tables must be added to

each directory.

The addition of uid hash tables to directories will

require a non-trivial amount of work and, once .implemented~

will slightly increase file system overhead. Therefore, one

must question the necessity of such a change. The present

Multics dumper and reloader operate without the benefit of

pathuids. Unfortunately, however, they do not operate

correctly. Both the dumper and the reloader are susceptible

to confusion caused by entry name changes.

the name of an entry being examined by

For example, if

the dumper is

changed, or if the name of any superior entry is changed, it

will appear to the <lumper that the renamed entry has been

deleted. This implies that the renamed entry and its

inferiors, if any, will be skipped by the dumper. A more

serious error can occur if a name is moved from one entry to

another entry in the same directory. In this case, the

dumper may actually dump the wrong file or directory due to

the name switch.

Although the present dumper is oblivious to its own

problems, it is concerned about the problems of reloading.

In an effort to insulate the reloader from the effects of

entry name changes, the dumper incrementally dumps every

file and directory having a modified entry. The reasoninq

102

behind this strategy is that a modified entry might imply a

ItK>dified entry name. Therefore, anytime any entry attribute

is modified, the associated file or directory is dumped. In

addition to being grossly inefficient, this strategy also

fails to make reloading work properly. Whenever a directory

name is changed, the pathnames of all inferiors are also

changed. Hence, the present reloader will occasionally fail

to reload a directory or, worse yet, will combine two

different directories. To rectify this situation, it would

be necessary to dump the entire subtree of a directory each

time the directory was renamed. (And even this heavy-handed

measure would not succeed if a crash occurred during a

dump.)

All of the above problems are eliminated by the use of

pathuids.

facilitated

Also, user

by the use

logins during

of pathuids.

reloading

Hence,

are

the

implementation of pathuids within the Multics file system

seems warranted.

New Directory Items ~ Related Changes

Several new items of backup information must be added

to each entry in the Multics file hierarchy. Included in

this group are the secondary dump switch (sdsw), the

secondary dump tape address, the missing entries switch

(mesw), the inferior reload switch (irsw), the fabrication

103

switch (fabsw), and the reload pending switch (rpsw). In

order to permit user logins during reloading, the file

system must enforce certain restrictions associated with the

reload-related switches. First, the file system must be

modified to forbid the initiation of files and directories

for which the rpsw is enabled. An appropriate error message

must be returned to the user. Second, whenever a request is

made during phase 1 reloading to add an entry name to a

directory or to delete an entry from a directory for which

the mesw or the fabsw is enabled, the user must be warned

that his request may affect the reloading of the directory

as explained in chapter 2.

A New Backup System Interface !2, ~ ~ System

A number of new file system

provided exclusively for the use of

These new file system •primitives•

Note that all of these primitives

commWlicate with the file system.

entry points must be

the backup system.

are described below.

use pathuids to

Four file system primitives are needed by the dumper:

1. get_directory

This procedure is called by the dumper to obtain a

copy of a specified directory. Naturally, a

directory copy is produced under the protection of

104

the directory lock in order to insure consistency.

2. uid initiate

This procedure is called by the dumper to initiate a

file specified by pathuid.

3. set dtd

This procedure is called by the dumper when

performing an incremental dump to reset the dtd for

a specified entry. Also, the sdsw for the entry may

optionally be turned on.

4. set_tape_addr

This procedure is called by the dumper when

performing a secondary dump to reset the secondary

dump tape address for a specified entry. Also, the

sdsw for the entry is turned off.

Nine file system primitives are needed by the reloader:

1. reload status

This procedure is called by the reloader to obtain

the rpsw, irsw, mesw, and fabsw settings for a

specified entry. If the specified entry does not

exist, the same information is returned for the

closest superior entry which does exist.

105

2. load_directory

This procedure is called by the reloader to restore

an entire directory. The rpsw is turned on in each

entry contained in the directory. The rpsw for the

directory itself is turned off and the irsw is

turned on.

3. reload initiate

This procedure is called l.>y the reloader to initiate

a file to be reloaded. It differs from the

•uid_initiate• call only in its ability to initiate

a file for which the rpsw is turned on.

4. reload terminate

This procedure is called by the reloader to

terminate a specified file which has been reloaded.

The rpsw is turned off for the file.

s. get_uid_list

This procedure is called by the reloader to obtain a

list of uids for all entries of a specified

directory for which either the mesw or the fabsw is

enabled. By comparing this list to a list of uids

obtained from a backup copy cf the directory, the

reloader can determine the identities of missing

entries deserving to be reloaded.

106

6. load_entry

This procedure is called by the reloader to restore

a missing entry to a specified directory for which

the mesw or the fabsw is enabled. Either the rpsw

or the fabsw may optionally be turned on in the

restored entry. Note that the entry must be

inserted in uid order within the entry list.

7. reset dir switches

This procedure is called by the reloader to turn off

both the rnesw and the fabsw for a specified

directory and to turn on the irsw after all missing

entries have been restored.

a. set dtd

(same as above)

9. set_tape_addr

(same as above)

Salvager Modifications

The current Multics salvager can be employed by the new

backup system with relatively few changes. The only

significant modification to salvager operation is the

communication between the salvager and the reloader. The

salvager will indicate to the reloader those directories

107

from which entries are lost. This is accomplished through

the use of the irsw and the mesw as described in chapter 3.

The cooperation of the salvager and reloader in

assessing file system damage and reloading only missing

files and directories represents a considerable improvement

over the present Multics recovery scheme. Currently,

whenever the salvager fails to recover all but a few files

or minor directories, a co1w~lete reload of secondary storage

must be performed. Even though the salvager may succeed in

saving a large fraction of the hierarchy, these files and

directories are simply abandoned due to the nature of the

current reloading scheme. Because a storage device failure

always implies a complete reload of on-line storage,· the

Multics salvager has not been designed to run after a device

failure.

Under the new recovery scheme, a device failure will

not necessarily imply a complete reload of on-line storage.

As discussed in chapter 2, the level of catastrophe will

depend upon the storage allocation strategy used.

Currently, the Multics file system views secondary storage

essentially as one large allocation pool. Pages of files

and directories are arbitrarily as~igned to different

storage devices. Hence, the failure of any single device is

likely to destroy some number of directories and thereby

effectively destroy inferior files and directories on other

108

devices. For this reason, even under the new recovery

scheme, a device failure is likely to necessitate a major

recovery effort.

The proposed salvaging/reloading method will benefit

substantially from the adoption of a new storage allocation

strategy. The idea of assigning subtrees of the file

hierarchy to a portion of a storage device, a whole storage

device, or a group of storage devices was described in

chapter 2. Under this scheme, the failure of a single

device will necessitate reloading only a limited,

well-defined section of the file hierarchy. If such an

allocation strategy is adopted, it will then become

worthwhile to modify the current Multics salvager to operate

following a system crash caused by a device failure. This

basically involves the additon of a mechanism to inform the

salvager that a particular device is •out-of-service• and

hence any pages located on the device must be considered

destroyed.

One other file system change which could improve

salvaging success is the storing of a uid and page number

with every page in secondary storage. Following a system

crash, the salvager may detect a reused address, i.e. a page

in secondary storage claimed by 1oore than one segment.

Currently, the salvager has no means for determining the

true identity of such a page and hence, for security

109

reasons, the page cannot be awarded to any segment. This

problem can be eliminated by storing a uid and page number

with every page.

User-Controlled Backup

A user-controlled backup optio~ was dGscLihed in

chapter 2 which effectively gives the user the ability to

specify the times at which backup copies are produced. With

this degree of control, an application program can guarantee

the consistency of backup copies and can record the status

of backup copies relative to file updates in progress.

Currently, no such facility is available in the Multics file

system and little demand for such an option has developed.

However, as the Multics system ventures into the cormnercial

world, the need for a user-controlled backup facility may

evolve.

Enhancements to the Multics file system will, of

course, be required to support the user-controlled backup

facility. The file system must be adapted to create and

maintain shadow copies. Users must be provided with some

means for initiating, updating, and terminating files in

user-controlled backup mode. Similarly, the dumper must be

provided with a means for initiating and terminating shadow

copies.

The file system must manage the creation, updating, and

110

deletion of shadow copies in such

processes and the dumper may

asynchronously without unwarranted

a fashion

continue

delays

that user

to operate

or other

interference. A problem arises, however, if a user attempts

to update or terminate a file while its shadow copy is being

dumped. Clearly, the shadow copy cannot be discarded at

that time. Therefore, the dumper will turn on a dump switch

in the entry of a shadow copy before dumping it. If a user

attempts to update a shadow copy for which the dump switch

is on, a second shadow copy will be created. If a user

attempts to terminate a file with a shadow copy for which

the dump switch is on, the shadow copy will not be deleted

immediately. When the dumper finishes dumping a shadow

copy, it will turn off its dump switch. If a more recent

shadow copy has been created, or if the file is no longer

initiated in user-controlled backup mode, the shadow copy

will be deleted.

The frequent updating of shadow copies can be

prohibitively expensive, especially when large files must be

copied. Therefore, it may be desirable to simply copy the

page map for a file rather than copy the file itself. A

special bit must be turned on in each page map word of the

file to indicate that if the associated page is ever

modified, it must be written out to a new secondary storage

address. Hence, the file and its shadow copy will initially

111

share all pages of the file in secondary storage. As the

file is used, however, roodified pages will be written to new

secondary storage locations. Note that a file and its

shadow copy will not share any pages in main memory.

Three new file system primitives are required for ordinary

.ocrs •

1. ucb initiate

This procedure is called by a user program to

initiate a specified file in user-controlled backup

JK>de. If a shadow copy does not already exist, one

is created.

2. ucb_update

This procedure is called by a user program to update

the shadow copy for a specified file. The former

shadow copy is discarded unless its dump switch is

turned on in which case a second shadow copy is

created. The dtm of the new shadow copy is returned

to the user.

3. ucb terminate

This procedure is called by a user program to

terminate a specified file. The current shadow

copy, if any, is discarded unless its dump switch is

turned on or unless the file is initiated in

112

user-controlled .backup mode by other users. The dtm

of the original file is retur.!led to the user.

Two new file system primitives are needed by the dumper:

1. dumper_initiate

This procedure is called by the dumper to initiate a

specified file for dumping. If a shadow copy

exists, the shadow copy is initiated instead. The

dump switch is turned on in the entry of the file or

its shadow copy, whichever is initiated.

2. dumper_terminate

This procedure is called by the dumper to terminate

a specified file or its shadow copye If a shadow

copy is being terminated, but the file is no longer

in user-controlled ba.ckup mode, or a more recent

shadow copy has been created, then the shadow copy

is deleted. Otherwise, the shadow copy remains and

its dump switch is turned off.

Suggested Implementation Plan

As can be seen from the

implementation of the proposed

substantial amount of work~

preceding discussion, the

backup system involves a

Rather than attempting to

implement all of the new backup system features at once, the

113

work can be divided into several stages.

implementation will include only those

The first stage of

tasks absolutely

necessary to produce a preliminary, operative version of the

new backup system. Succeeding stages can then add those

features anitted from the preliminary implementation. A

plan of this type is suggested below.

Stage 1: A preliminary backup system

1. Modify the file system to accept pathuids.

2. Add new entry items to the directory format.

3. Implement the new backup system interface to the file

system.

4. Implement the dumper, reloader, and retriever.

5. Modify the salvager to set the mesw and the irsw.

At this point the new backup system can begin

operation. The easiest way to change ov~r to the new backup

system is simply to shut down the system and perform a

complete dump of the entire hierarchy with the new dumper.

Normal Multics operation can then be resumed using the new

backup system.

Stage 2: User logins during reloading

1. Modify the file system to properly interpret the rpsw,

mesw, and fabsw.

114

Stage 3: File system reliability improvement

1. Modify the file system storage allocation strategy to

assign subtrees to •1ogical devices• and to duplicate the

superstructure of the file hierarchy.

2. Modify the salvager to be able to run after a device

failure.

Stage 4: User-controlled backup

1. Modify the file system to create and maintain shadow

copies.

2. Implement the user and dumper interface to the

user-controlled backup facility.

3. Modify the dumper to use the new interface.

115

CHAPTER 5

CONCLUSIONS

Sununary of Results

This thesis has described a design for an automatic

backup system td be incorporated in a computer utility for

the protection of on-line information against accidental or

malicious destruction. As discussed in chapter 1, the

present Multics backup system has served as a starting point

in the development of this design. Therefore, it now seems

appropriate to review the problems of the Multics backup

system which this thesis has attempted to solve, and to

identify improvements and innovations in the new design.

The present Multics backup system has succeeded in

augmenting storage reliability to the point where users

routinely and confidently entrust their only copies of

infonnation to an internal file system. This confidence

stems from the ability of the Multics backup system to

enforce a maximum work loss limit of one or two hours.

Unfortunately, however, the Multics backup system has not

achieved a reasonable compromise between cost and recovery

time. In spite of significant dumping overhead, recovery

time from all but the mildest of failures is intolerably

slow. Also, Multics operation must be interrupted

116

periodically for backup purposes which contradicts a

computer utility objective of continuous service. The most

distressing shortcoming of the Multics backup system,

however, is its inability to scale up with system growth.

The problems of high cost, slow recovery, and interruptions

of service all worsen steadily with on-line storage

expansion.

The need to periodically shut down the Multics system

for backup purposes is due to a special type of dump known

as a •save". A save is essentially a paqe-by-nage copy of

secondary storage which ignores ::he logical structure of the

file hierarchy. The viri~ue of a save is that it can be

reloaded nvre quickly than a standard backup dump.

Unfortunately, however, il save c.~nnot be performed during

normal sys tern operation. There fore, to limit recovery time,

Multics is shut down for a fE:..w hours every other day to

perform a save. Currently, these interruptions of service

are tolerable. However, with cont:inning on-line storage

growth, these inte~.~ruptions wonld soon become intolerable.

Therefore, saves have been eliminated from the new design.

The high cost of dumping in the current Multics backup

system is due

dumper program.

at least- in part to the inefficiency of the

Hence, in the new design, the dumper

:.Jeen streamlined substantiall:y.. The new file program has

system interface for the dumper sucrgested in chapter 4

117

should yield a siqnificant performance improvement. Of

course, the elimination of saves represents a major cost

redvction in t.hia form of increased system availability.

Th~ :'.:oremost. innovation of this thesis has been the

design of an c~ntirely new crash recovery procedure which

offers drama~ic improvements over the current Multics

recovery scheme. The cooperation of the salvager and the

reloadez. in asse~sing file system damage and reloading only

:missing files and directories is one such improvement. In

the curr~.nt Multics backup system, no communication link

ex~nts betNeen the salvager and the reloader. Hence,

whenever the ~J;:..lvager fails to recover all but a few files

or minor dL-:-ecw:r.ies, a complete reload of on-line storage

must be performed~ Thus, moderate failures are no less

disasterous i:.1.J.un total failures under the present Multics

recovery echeme3

A second major improvement to the crash recovery

procedu.re ~-s a. new tape searching strategy employed by the

reloader. ~he current Multics reloader searches every

brckup tape which might possibly contain files or

directorJ.es e;ligible for reloading. In the new design, the

reload.i..ng operation has been divided into two phases.

During phaSf~ ~ _ .. , the latest incremental dumps and the most

rl!c:en t s'C!'condary dun1p are searched for missing files and

directorier.>. The bulk of reloading, however, is generally

118

performed during phase 2 which requires no tape searching~

The tape addresses of all files to be recovered during phase

2 are known by the end of phase 1. Hence, only those tapes

containing missing files need be examined during phase 2.

If not for phase 2, it would be necessary to examine all

secondary dump tapes produced since the latest complete dump

no matter how small or how large the extent of damage.

Hence, it is the efficiency of phase 2 reloading which makes

the salvager/reloader cooperation valuable.

A third major improvement to the crash recovery

procedure is the ability to open the system to users during

reloading. This is especially attractive in view of the

fact that salvaged portions of the hierarchy will be

immediately available. If no system files require

reloading, the system can be opened to users as soon as

salvaging has completed. Otherwise, the system can be made

available to users after phase 1. Hence, only those users

whose files are actually destroyed by a system failure need

suffer any considerable delay before resuming work.

The fourth and last major improvement to the crash

recovery procedure is the parallel processing capability of

the reloading operation. Multiple dump tapes can be

simultaneously processed both during phase 1 and phase 2

reloading. Therefore, maximum advantage can be taken of

available processing and I/O capacity.

119

All of tim :ihove impx:ovements significantly enhance the

ab:i.lity of the backup system to ecale up with system growth.

Having discarded saves, the probleni of system shutdown time

increasing with OAl""line storage size is entirely eliminated.

Also~ in the absence of save•, dumping costs need not rise

sharply with secondary &toraqe growth. The cost of

incrt::triei~t.;al dumpiilg ia proportional to system processing

aci:..ivity dl&d therEifore will remain a constant fraction of

system procesaing time regardless of on-line storage

expu.11slon. The saiac ia true of partial secondary dumping.

Al th,,ugh the oo&t of complete secondary dumping will

increase in proportion to secondary storage usage, complete

secondary dumping need not be performed frequently. This is

feasible because the resolution of the backup system is

upheld by incremental dWllping and because recovery speed has

been substantially increased Wlder the new design.

Au imp0rtant consequence of the parallel processing

c.:apabili'l.:y of the reloading operation is that reloading time

~~dn b.,. ht.!ld (...'01u:itant with system growth so long as on-line

uto~·age <:Xt-JiiUSioa is balanced by corresponding increases in

pi o•:e•J:;in9 d.nd l/O caEJaCity. Of course, in many computer

systems, on-line storage growth typically surpasses

increaBes in processing and I/O capacity. Therefore, the

time required to fully reload on-line storage will increase.

H0wev0"'~ it thi.:3 should become a serious problem, additonal

120

tape drives and I/O channels can usually be aeJed to

compensate for storage growth.

System failures which necessitate reloading all of

on-line storage are extremely rare. Hence, much care has

been taken to optimize recovery from the milder, more common

failures. Due to the new salvager/reloader cooperation and

the new two-phase reloading strategy, the work of recovery

has been made commensurate with the extent of damage. Only

missing files and directories need be reloaded and, during

phase 2, only tapes containing missing files need be

examined. Also, the ability to open the system to users

during reloading will, in most cases, permit the majority of

users to resume work quickly following a system crash.

Thus, for all but the very worst and most rare of system

failures, recovery time need not increase with on-line

storage size.

In addition to reduced overhead and faster recovery, a

new functional capability has been added to the backup

system design. Currentlyr no convenient means exists for

Multics users to exercise any control over the production of

backup copies. The user-controlled backup facility corrects

this deficiency by permitting application programs to

specify the times at which files subject to modification are

copied. With this degree of control, an application program

can guarantee the consistency of backup copies and can

121

record the status of backup copies relative to file updates

in progress.

Remarks

The subject of on-line storage backup and recovery in

qeneral-purpose computer sytems has rarely received adequate

attention from system designers. In the past, the idea of a

system-provided backup mechanism was often wrongly dismissed

as unnecessary or impractical. Today there is little

argument about the need for on-line storage backup, but few

serious design efforts have been undertaken. Too often

system designers have underestimated or failed to recognize

the difficult problems and important objectives of a backup

system. Consequently, many mechanisms have been implemented

which do not of fer satisfactory protection and which cannot

neet the demands of system growth. This thesis has

attempted to expose and to deal with a number of issues

inherent in on-line storage backup and recovery. It is

hoped that the work described here will be of interest to

designers of future computer systems.

122

BIBLIOGRAPHY

[l] Corbat6, F. J., Clingen, c. T., and Saltzer, J. H.,
"Multics: The First Seven Years", AFIPS Conf. Proc. 40
(1972 SJCC), AFIPS Press, pp. 571-583.

[2] Schwemm, R. E., "Experience Gained in the Development
and Use of TSS/360", AFIPS Conf. Proc. 40 (1972 S,JCC), AFIPS
Press, pp. 559-569.

[3] Alexander, M. T., "Organization and Features of the
Michigan Terminal System", AFIPS Conf. Proc~ 40 (1972 SJCC),
AFIPS Press, pp. 585-591.

[4] Tonik, A. B. (chairman), "Recovery of On-Line Data
Bases (Panel)", Proceedings of the 1971 Annual Conference,
ACM, August 3-5, 1971, Chicago.

[5] Corbatb, F. J. and Vyssotsky, v. A., "Introduction and
Overview of the Multics System", AFIPS Conf. Proc. 27 (1965
FJCC), Spartan Books, Washington, D.c., ~.pp. 18'3'="196.

[6] Daley, R. c. and Neumann, P. G., "A General-Purpose
File System for Secondary Storage", AFIPS Conf. Proc. 27
(1965 FJCC), Spartan Books, Washington, D.c:-;--19~ pp.
213-229.

[7] Corbatb F. J., Daggett, M. M., and Daley R. c., "An
Experimental Time-Sharing System•, AFIPS Conf. Proc. ~,
Spartan Books, 1962, pp. 335-344.

[8] Crisman, P. A. (editor), "The Compatible Time-Sharinq
System: A Programmer's Guide", second edition, M~I.T.
Press, Canwridge, Mass., 1965.

[9] Bensoussan, A., Clin9cn, c. T., and Daley, R. c., "The
Multics Virtual Memory", ACM Second S~mposium on Oeerating
System Princi~les, OctOber 20·· 2, 1969-,- Princeton
university, pp. o-42.

123

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.l.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

CS-TR Scanning Project
Document Control Form

Report# Le..:; IR - II f,

Date : ~ 1J-1, 1J.!:_

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
':E(Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR)

D Other:

D Technical Memo (TM)

~---------~

Document Information Number of pages: IJ.¥(tcY.1-/mA~c;.))
Not to include DOD forms, printer intstructions, etc ... original-Pages only.

Originals are:

D Single-sided or

~ Double-sided

Print type:
.:Kt Typewriter 0 Offset Press D Laser Print

Intended to be printed as :

D Single-sided or

X Double-sided

0 InkJet Printer 0 Unknown D Other: ______ _

Check each if included with document:

D DOD Form D Funding Agent Form D Cover Page

D Spine D Printers Notes D Photo negatives

~ Other: -'•6Li c G'~.2.../\§?f-!i<- vAT9' ShJ~IT
Page Data:

Blank Pages(bvpagenumber): Fo 1....LouJS LAsl f AC£~ (i.:3)
J

Photographsff anal Material (bv page number): ________ _

Other <"""' descriptio!Vpage number):

Description : Page Number:

(
.)

ImAGR {hf&! I - IJ.-'f} t ·p (;\NfIJir> fill-£ fAG(
7

ci-'"' la:-3)
l-\•V:!:f i(D BtA µ k,

Scanning Agent Signoff:

Date Received: ~ I J.<7 I 1 h Date Scanned: 3_1 19 11 k; Date Returned: _l_1c:J..(13..Q

Scanning Agent Signature:
Rev 9/IM OS/LCS Document Control Fonn csbfonn. YSd

_, _____________ _
• I I I I • I I I I • I I I I • I I I I • I I I I •

10

111111, 11,111111111111 11111111111111
1

1111111111111 111111111111!111
11

1
1
111111111111 111111111111

1
111 11111111111111 11111111111111111 1111111111111111 111111111111:11: 1:1111111111111 111111111111r :

1
:11111111

1----- ---- -- -- -- - - - -~~-----1

i',:; 1~ 11111
2 8

11111
2

·
5

1111~ 11111
32

1,1g; 3 6
111~ 11111

:~ 11111!2 111112. 0

111111.
8

111111.
4

111111.
6

NMA MICROFONT QJKLPYZ
6BSl2GHSD4X7LJjW8V9E
PQR4SDE9UV670FG8STHIJNOWXABYZ
1KLM 12(I I""'> - '•-'''"'' M

ABCDEFGHIJKLMNOPQRSTUVW
XYZabcdefghijklmnopqrst

100-
u v w x y z 0123456789 OCR-8 w-

80-

ABCDEFGHIJKLMNOPQRSTUV 70
-

WXYZabcde f ghijklmnopqr 60
-

stuvwxyzl234567890PICA so-

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 40

-

1234567890 Elite

ABCD EFGH IJ K LM NOPQRS TUVWX Y l

obcdcfgh 11 kl rn nofX.! r~tuvwxyz

1234567890 Spartan Medium 6 pt

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefgh ij kl mnopq rstuvwxyz
1234567890 Spartan Medium 8 pt

A8LDE:fGHIJKL1"NQPQRSlUVWXYl

_600
- ·-400

I
120

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefgh ij kl mnopq rstuvwxyz
1234567890 Spartan Medium 10 pt

IEEE Std 167A-1987
FACSIMILE TEST CHART

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefgh ijkl m nopq rstuvwxyz
1234567890 Spartan Medium 12 pt

Prepared hy the !LEE Facsimile Subcommittee and printed by
I astman Kodak Company. Use in accordance with IEEE Std 167-
1966, Test Procedure for Facsimile. Copyright 1987, Institute of
Electrical and Electronics Fngineers.

-~------

I I

·~ 4
5

123456
6

654321

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

AllM SCANNER TEST CHART# 2
Spectra
AACDFFGHIJKLM NOPQRSTUVWXYZabcdefgh11ktmriopqrs!uvw~yz ' /?$0 123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'',./?$0123456789

ABCDEFG H IJ K LM NOPQ R STUVWXYZabcdefg hij kl m nopqrstuvwxyz;:' ',. !?$0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'',./?$0123456789
Times Roman
A BCD EFG HIJ KLM~OP()R~ Ill\ 'W X Y /.Jh< dd'gh1Jklmnopq"t'" v. X!i

ABCDEFGHIJKLMNOPQRSTUVWXYZahcdefghijklmnopqrstuvwxyz;:",./?$0123450789

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

ABCD EFG HIJKLMNOPQRSTUVWXYZabcdef ghijklmnopqrstuvwxyz;: ", ./?$01234567 89
Century Schoolbook Bold

4 PT ABCDEFGHI,JKLYINOPQRSTt:VWXYZabcdefghijklmnopqrstuvwxyz;:",./°!$01~3456789

6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012 '156789

6 PT

8 PT

JO PT

HT

!//(/J/ /(,l/f!f\l.\f\(l/'f)H~!I I If\)/'"/u,J,ji:hi11!1111"'f"I"""" t10

AllCJJl.'FG//!}KLJ/iVOPQRSTl/T· tr X >Zalm!tf~hijklmnopqr.~tu11cn.:;: ',./.~$01 :!.11.)6 /lJl.J

A HC/JHFCll /JK/,MNOPQRSTU VWX YZabcdefr:hijklmnopqrslllrn·xyz;: " .. l?SOJ 23·156 789

A BCDEFG//IJK LM NOPQR STU VW X YZabcdefghijklmnopqrstuvwxyz;: "',./?SO

Greek and Math Symbols
A Br .\.I· =:Oil l K /\M 'JOJl<l>P~T\ !lX•1'?,,{Jy6<(i:IYJOKAµvmrd>µ<n1'<"\•''~

6 PT ABrt.E=:OlllKAMNOll<l>P~TY!1X'l'Za/ly8tcO')tKAµvo?T<j>pcrrvwx0(~-"",./ ~±~+ "> <?-4:~<=
8 PT ABlt.E:=:8HIKAMNOII<l>P~TYflX'i'Za/3yoE~lh7iKA/Wo7T<j>p(TTVWXW~~=F",. / ::;;+ + 0 > <:J><t><=
10 PT ABr.:lE:=:8HIKAMNOil¢P}:TY!1XIJ1Za~yoE~lh7tKAµvo?TCppcTT xij;~> +",.I <+==F0 > <:J><t><

White Isolated Characters

123456 D
MESH

65

85

100

110

A4 Page 4321 O

654321

A4 Page 6543210

A4 Page 654321 O

654321
6
5
4 !•

BIBLIOGRAPHIC DATA 11. Report No.
SHEET MAC TR-llo

4. Title and Subtitle

Backup and Recovery of On-Line Information

in a Computer Utility
7. Author(s)

Jerry A. Stern
9. Performing Organization Name and Address

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :

545 Technology Square, Cambridge, Massachusetts 02139

12. Sponsoring Organizarion Name and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlin__g_toni Va 22217

15. Supplementary Notes

3. Recipient's Accession No.

5, Report Dare : Is sued
January 1974

6.

8. Performing Organization Rept.

No. MAC-TR- ll6
10. Project/Task/Work Unir No.

11. Contract /Grant No.

N00014-70-A-0362-0006

13. Type of Report & Period
Coverec : Interim
Scientific Report

14.

S.M. +EE Degr~e, Thesis, M.I.T., Department of Electrical Engineering

16. Abstracts

This thesis describes a design for an automatic backup mechanism to be incorporated
in a computer utility for the protection of on-line information against accidental
or malicious destruction. This protection is Ftchiti>ved by preserving onr.magnetic
tape recent copies of all items of information known to the on-line file system. In
the event of a system failure, file system damage is automatically assessed and
missing information is recovered from backup storage. For isolated mishaps, users
may directly request the retrieval of selected items of information. The design of
the backup mechanism presented in this thesis is based upon an existing backup
mechanism contained in the Multics system. As compared to the present Multics backup
system, the new design lessens overhead, drastically reduces recovery time from
system failures, eliminates the need to interrupt system operation for backup purposes,
and scales up significantly better with on-line storage growth.

17. Key Words and Document Analysis. 17a. Descriptors

File Backup
Crash Recovery
On-Line Storage
File System
Computer Utility
Multics
Reliability

17b. Identifiers/Open-Ended Terms

l 7c. COSA TI Field/Group

1----------------------------.-:-::--::---:----::-:---:::::-:-:----r::-:--~-~:------·
18. Availability Statement 19. Securitv Class (This 21. :\o. of Pages '

Re port) ;
Un 1 imit e d Distribution ~,........,--"l""";N..,K""": i..,..A~lS"";s ... IlE~llill~-<:-----+=-=---"l::_.::2"-4'-------'

20. Security Class (This 22. Price
Write Project MAC Publications Page j

L------------------------------......L--~U:..:..N:..:.'C~l..:.:-A.!.S;;.:S..:.:l.:.F..:.l~E-;,;.D __ -.1..~:-:-:-:-:-:--::-:~~:- _ J
FORM NTlS-35 (REV, 3-72) THlS FORM MAY BE REPRODUCED '.JSCOMM-DC ,49~,2-P7,;_

