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BACKUP AND RECOVERY OF ON-LINE INFORMATION 
IN ~ COMPUTER UTILITY 

by 

Jerry A. Stern 

ABSTRACT 

This thesis describes a design for an automatic backup 
mechanism to be incorporated in a computer utility for the 
protection of on-line information against accidental or 
malicious destruction. This protection is achieved by 
preserving on magnetic tape recent copies of all items of 
information known to the on-line file system. In the event 
of a system failure, file system damage is automatically 
assessed and missing information is recovered from backup 
storage. For isolated mishaps, users may directly request 
the retrieval of selected items of information. The design 
of the backup mechanism presented in this thesis is based 
upon an existing backup mechanism contained in the Multics 
system. As compared to the present Multics backup system, 
the new design lessens overhead, drastically reduces 
recovery time from system failures, eliminates the need to 
interrupt system operation for backup purposes, and scales 
up significantly better with on-line storage growth. 

This report reproduces a thesis of the same title 
submitted to the Department of Electrical Enqineerinq, 
Massachusetts Institute of Technology, on August 13, 1973 in 
partial fulfillment of the requirements for the degrees of 
Master of Science and Electrical Engineer~ 
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CHAPTER 1 

INTRODUCTION 

Among all engineering endeavors, perhaps no concern is 

more universal, nor more influential, than that of 

reliability. Certainly, in this respect, computer system 

design is no exception. When designing computer systems, 

one must admit from the outset that no 

incapable of failure. Furthermore, 

hardware device is 

programming errors, 

operational errors, and other human mistakes are inevitable. 

Thus, computer systems must be prepared to cope with all 

adverse contingencies ranging from minor recoverable 

malfunctions to total catastrophes which prevent continued 

system operation. 

The protection of 

involuntary destruction is 

reliability measures within 

stored information 

the final backstop 

a computer system. 

against 

of all 

Although 

mishaps from time to time may cause individual computations 

to be aborted, or system service to be temporarily 

discontinued, the cost and inconvenience associated with 

such disruptions is minimized when all information is 

preserved. This thesis presents a design 

mechanism to be incorporated in a 

time-sharing system for the protection 

for a backup 

general-purpose 

of all on-line 

information against accidental or malicious destruction. 
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This protection is provided automatically by the system 

without requiring any effort on the part of individual 

users. 

Motivation 

Due to their simple nature, early computer systems were 

typically quite resilient. No information stored in memory 

was essential to continuing operation following a system 

"crash". Because permanent storage for all user data and 

programs was maintained outside the system, usually on 

punched cards or magnetic tapes, the impact of failures was 

restricted to those jobs being processed at the time of 

failure. By obeying just one cardinal rule, namely to 

refrain from destroying input data before successful job 

completion, full recovery was generally possible. Jobs 

could be restarted either from scratch or from a planned 

checkpoint. Of course, the susceptibility of tapes to 

"clobbering" and the susceptibility of punched cards to 

crimping and scattering was sometimes sufficient incentive 

for computer users to keep spare copies of important 

information. 

Owing to numerous innovations in computer system 

design, modern computer systems dwarf their ancestors in 

both power and complexity. Ironically, however, these 

sophisticated systems, particularly time-sharing systems, 
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have grown increasingly· sensitive to mishapso System data 

necessary for continued operation is commonly maintained 

both in main memory and secondary on-line storage, and is 

therefore liable to system failures. User programs and data 

are no longer stored externally, but instead are entrusted 

to the care of an internal file system which automatically 

manages the use of on-line storage devices. Thus, unlike 

the situation in early computer systems, all user 

information is constantly threatened by potential system 

failures. The common practice of updating files in-place 

may often leave inconsistent those files which were active 

at the time of a system crash. For this reason, and others, 

the restarting of interactive processes is, in general, 

neither feasible nor meaningful. Thus, recovery from 

failures in modern time-sharing systems usually amounts to 

salvaging as much on-line information as possible, in some 

cases restoring backup copies, and making the system 

available again to users. 

Clearly, in order to insure reliability and security, 

measures must be taken to prevent the involuntary 

destruction of both user and system information. Typically, 

a variety of ad hoc methods are employed to protect critical 

system data. Most time-sharing .systems, however, assume 

little or no obligation to protect user files against 

accidental harm. Although many of these systems are, 
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indeed, very reliable, none are infallible. Nor are their 

users infallible. Furthermore, none of these systems are 

invulnerable to external dangers such as fires, floods, 

explosions, etc. Consequently, users are forced to provide 

their own insurance against mishaps. Often the contention 

is made that a particular system is "reliable enough" for 

users to do without a system-provided backup mechanism. 

Unfortunately, this attitude ignores the fact that 

reliability is seductive. The more reliable a system 

becoroos, the greater the temptation to avoid the cost and 

nuisance of trying to prepare for potential mishaps. Thus, 

a user needs the kind of insurance that can only be provided 

by an automatic backup roochanism. 

In principle, at least, it is clear that a file system 

should be fully responsible for the safekeeping of all 

information entrusted to it. Some time-sharing systems 

have, in fact, begun to acJ::.nowledge this responsibility. 

Many systems, for instance, provide a primitive backup 

mechanism such as the copying of all user files once each 

night. Mechanisms of this kind, while better than none at 

all, leave much room for improvement. Most noticeably, few 

users are willing to accept the loss of a full day's work. 

No doubt, users of systems offering this level of protection 

still find it necessary to take precautionary measures of 

their own. Not only are these primitive backup mechanisms 
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deficient from the user's viewpoint, but also from the 

perspective of the system maintainer. As storage capacity 

increases with system growth, so too will the time required 

to copy the whole of on-line storage. Hence, backup 

overhead will increase in proportion to storage volume. 

This implies that with continuing storage expansion, backup 

overhead will consume an increasingly larger fraction of 

total system processing time. Clearly, at some point, it 

simply becomes infeasible to perform daily copying of 

secondary storage. Decreasing the frequency of backup 

copying will reduce overhead, but will sacrifice the quality 

of backup protection. 

In this thesis, the need for a system-provided backup 

mechanism, and accordingly, the design of such a mechanism, 

are evaluated within the context of a computer utility. 

Although no existing computer system has fully earned the 

title of "computer utility", several large-scale 

general-purpose time-sharing systems (e.g. Multics [l), 

TSS/360 [2), MTS (3)) have made much progress in this 

direction. Among these, however, only Multics accepts full 

responsibility for the safekeeping of all information 

entrusted to its file system. Many, if not most, users of 

the computer utility of the future are expected to possess 

little knowledge of the computer system itself beyond the 

minimal skills necessary to make use of the various services 
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offered. As in all public utilities, it is essential that 

the customer not be burdened with technical details. Thus, 

it is unreasonable to expect a technically unsophisticated 

user to assume responsibility for insuring against mishaps. 

A comprehensive system-provided backup mechanism is 

therefore not nerely a convenience, but rather a necessity, 

in the computer utility of the future. 

Objectives 

The backup mechanism described in this thesis is 

intended to augment storage reliability within a computer 

utility to the point where users may confidently entrust 

their only copies of information to an internal file system. 

The underlying assumption in the design of such a mechanism 

must be that system failures are relatively rare. Hence, 

the devotion of an immoderate proportion of system resources 

to backup protection is unwarranted. On the other hand, if 

users are to feel confident in entrusting information to a 

computer system, then clearly some limit must be placed on 

the amount of work which might be lost due to a system 

failure, user mistake, or other mishap. This time limit 

defines the "resolution" of the backup mechanism. Another 

important measure of backup performance is recovery time. 

Clearly, a computer utility must be capable of quick 

recovery in order that users may depend upon the 
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availability of its services. 

The backup mechanism must offer a reasonable compromise 

between cost and level of service for various environments. 

Dissimilar purposes and economic considerations at different 

sites may dictate different demands for backup protection. 

Therefore, resolution and recovery time must be adjustable. 

Even within a single installation, the demand for backup 

protection may change. For example, in a system undergoing 

development, one might expect system stability to improve 

gradually. From time to time, however, major system 

modifications may cause periods of anticipated risky service 

during which better than usual resolution and recovery time 

might be desired. The environment may also change due to 

system growth. The backup mechanism must, in the face of 

increasing system size, be able to maintain a constant level 

of service without consuming an exorbitant share of system 

resources. 

The backup mechanism is geared to the needs and 

finances of the "ordinary" user. It is assumed that the 

ordinary user can tolerate small setbacks, perhaps one 

hour's work lost, provided such setbacks are sufficiently 

rare; he cannot, however, tolerate exorbitant daily 

overheads. Although, as stated above, resolution must be 

adjustable, 

the needs 

the range of adjustment is not meant to satisfy 

of certain applications for which even the 
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smallest losses would be intolerable. Many on-line business 

applications, e.g. an airline reservation system or a 

purchase order entry system, fit this category. Typically, 

such special-purpose systems maintain journal tapes on which 

are logged all processed transactions and/or all data base 

updates. [4] Usually, these applications employ a dedicated 

computer. If, however, such a system were to coexist with 

ordinary users within a computer utility, it is not expected 

that the general backup mechanism described here would 

eliminate the need for the keeping of journal tapes or other 

highly specialized backup measures. It is expected, 

however, that the backup mechanism will entirely replace 

those precautionary measures commonly left to the discretion 

of individual users such as the storing of spare file copies 

off-line. Also, it expected that many applications able to 

tolerate occasional small losses will find the protection 

offered by the general backup mechanism to be satisfactory. 

One objective more of interest to the system designer 

than the ordinary user is to systematize and automate as 

much as possible the task of recovery from system failures. 

Automation is, of course, desirable to speed recovery and to 

minimize the possibility of operational errors. Also, 

automated recovery procedures can precisely assess losses, 

thereby minimizing the recovery effort required and 

preserving as much information as possible. Although it is 
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clear that recovery procedures must by nature be intimately 

familiar with specific system characteristics, a high-level 

organization is presented which is largely 

system-independent. 

The backup mechanism represents a general solution to 

the problem of protecting stored information against 

accidental harm. No explicit consideration need be given to 

techniques for protecting specific types of system data such 

as accounting records, user identification inforn~tion, 

batch job queues, etc. It is assumed that all such 

information is entrusted to the file system and therefore is 

uniformly protected by the general backup mechanism. 

Background 

The backup mechanism described in this thesis is based 

upon an existing backup mechanism incorporated in the 

Multics system. Multics, conceived as a prototype computer 

utility, has included a general backup Qechanism since its 

original design. [5,6] (1) In fact, CTSS [7, 8], the 

predecessor of Multics, also included such a facility. (2) 

(1) An early design and implementation plan for the Multics 
backup system is described by G. F. Clancy in a section of 
an unpublished Multics design notebook produced at M.I.T. 
Project MAC (August 18, 1966). 

(2) Some aspects of the CTSS backup facility are described 
by M. J. Bailey and R. C. Daley in an unpublished M.I.T. 
Computation Center programming staff note entitled "A CTSS 
Secondary Storage Back-up and File Retrieval Scheme" 
(September 15, 1964). 
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As a result, the Multics file system is so reliable that 

users routinely entrust their only copies of information to 

it without hesitation. Hence, the common practice of 

storing spare copies of programs and data on punched cards 

or magnetic tapes has disappeared from the work habits of 

Multics users. The burden is instead borne by an automatic 

backup system. 

The approach that has 

providing backup protection 

been taken by Multics in 

is to periodically copy newly 

created or modified files from on-line storage onto magnetic 

tape (currently at one hour intervals). The information is 

thus isolated from the effects of system failures and user 

mistakes. Certain tapes are stored off premises to guard 

against local calamities such as fires or explosions in the 

computer room. The production of backup tapes, known as 

"dumping", is performed in anticipation of mishaps. When 

such mishaps do occur, the backup system is then called upon 

to discover and reclaim any lost information. In the case 

of a system failure, a process known as "salvaging" is 

employed to examine the file system directory structure and 

storage assignment tables for missing or inconsistent data. 

When the results of salvaging indicate a global catastrophe, 

i.e the destruction of a major portion of on-line storage, a 

process known as "reloading" is employed to recover the 

former contents of on-line storage from backup tapes. For 

16 



minor mishaps, a process known as "retrieving• is used to 

recover selected items of information. These are the basic 

functions of the Multics backup system. It is this 

fundamental structure upon which the backup system described 

in this thesis is built. 

Although the present Multics 

applauded for having substantially 

backup system must be 

bolstered file system 

reliability, it has not done so without high costs and 

unwarranted sacrifices. In an effort to limit work loss to 

a maximum of one hour, significant overheads have been 

incurred. In spite of this large resource investment, 

recovery time from major system failures is currently 

intolerably slow. Also, the system must be shut down 

periodically for backup purposes which contradicts a Multics 

objective of continuous service. 

however, is the fact that the 

worsens with system growth. 

l~st discouraging of all, 

entire situation steadily 

It is insightful to briefly review the history of the 

Multics backup system in order to understand how the present 

problems developed. Before beginning any implementation, 

the entire Multics design, including the backup system, was 

carefully specified in detail. Once Multics implementation 

began, however, priorities had to be assigned and among the 

many areas of the system requiring attention, the backup 

system was not given top priority. Still, some interim 
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backup facility was needed as soon as possible. Hence, a 

temporary backup system, much less ambitious than the 

original, was rather hastily designed and implemented. Over 

a period of time, many changes and improvements were made to 

this interim facility, also with much hurry, and eventually 

the original design plans were forgotten. 

As one might expect from this rather haphazard history, 

a well-coordinated design has not evolved. Various 

components of the backup system were developed independently 

and consequently their interactions were not carefully 

planned nor well understood. Thus, the major effort of this 

thesis will be to develop a top-down view of the backup 

system and to produce from this perspective a coordinated 

design. Admittedly, this design will be strongly influenced 

by the structure of Multics, particularly the Multics file 

system. Nevertheless, the basic design concepts are thought 

to be sufficiently general so as to be applicable to many 

systems of the computer utility category. 

Thesis Plan 

The thesis presentation is organized as a top-down 

description of a proposed backup system design for a 

computer utility. To establish a framework in which to 

discuss the backup system, chapter 2 first defines certain 

characteristics of an exemplary file system. The majority 
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of chapter 2 is devoted to a high-level discussion of backup 

system strategy and organization. The various functions of 

the backup system, i.e. dumping, salvaging, reloading, and 

retrieving are described. For the reader interested only in 

the basic approach and fundamental structure of the backup 

system, chapter 2 provides a useful overview. 

Chapter 3 investigates in further detail each of the 

backup system program modules introduced in chapter 2. 

Also, the interface between the file system and the backup 

system is carefully examined. Together, chapters 2 and 3 

represent a complete description of the general backup 

system design. 

A proposed Multics implementation of the backup system 

is discussed in chapter 4. Basically, certain additions and 

modifications to the Multics file system are needed to 

support the backup system components described in chapters 2 

and 3. This implementation proposal is intended to 

demonstrate the suitability of the design for a prototype 

computer utility such as Multics. 

Finally, chapter 5 reviews the results of this thesis 

and offers a few concluding remarks. 
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CHAPTER 2 

STRATEGY AND ORGANIZATION OF THE BACKUP SYSTEM 

The purpose of the backup mechanism proposed in this 

thesis is to insure the survival of information entrusted to 

~ computer system. Naturally, the specific nature of the 

backup mechanism must depend to some extent on the specific 

nature of the computer system which it protects. In 

particular, the structure of the file system must influence 

the design of the backup mechanism. A few file system 

characteristics (borrowed primarily from the Multics file 

system) are presented at the beginning of this chapter. 

While by no means a complete description of a file system, 

define an these characteristics are sufficient to 

environment in which to present the backup system design. 

The bulk of this chapter is devoted to an overview of 

the backup system strategy and organization. Figure 2.1 

depicts the various functions of the backup system and their 

relationships to the file system. The dumping function is 

responsible for the preservation of recent copies of all 

items of information known to the file system. Magnetic 

tape is chosen as the backup storage medium since it is 

detachable and thus can be isolated from all perils of the 

computer system and the computer room. 

is economical and conunonly available 
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Figure 2.1: Schematic view of the backup system. 
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systems. In the event of a system failure, the salvaging 

function is employed to assess damages to the file system. 

Clearly, in order to verify file system consistency, the 

salvaging procedure must embody independent knowledge of the 

file system structure as represented in memory. If the 

results of salvaging indicate a loss of information, the 

reloading function is employed to automatically recover any 

missing files from backup tapes. For minor mishaps, the 

retrieving function is used to recover information from 

backup tapes at the request of users. 

The File System 

The file system considered in this thesis maintains two 

classes of objects, namely files and directories. A file is 

defined to be simply an ordered sequence of bits. As far as 

the file system is concerned, a file has no other logical 

structure. Any formats imposed upon a file are known only 

to higher-level system or user programs. Directories are 

used to catalogue files. A directory contains a list of 

entries, analogous to a table of contents. Each entry 

"points to• a particular file which is said to be contained 

in the directory in which the entry appears. An entry is 

essentially a collection of attributes which describe a 

file. Among these attributes, for example, are the file 

names, the physical storage location, the time of last 
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reference, the time of last modification, and access control 

information. A directory also contains certain global 

attributes which apply to all of its entries. For example, 

a directory may have a quota which defines the maximum 

amount of storage space to be used by files contained in the 

directory. 

Entries may describe directories as well as files and 

therefore one directory may contain another. This 

organization gives rise to a tree-structured file hierarchy. 

All files appear as terminal nodes within this tree whereas 

directories may appear either as terminal or non-terminal 

nodes. Except for the root directory located at the root of 

the tree, every file and directory is described by an entry 

contained in its parent directory. 

defined to have level zero. Entries 

The root directory is 

contained within the 

root directory describe files and directories at level one. 

Level one directories in turn contain entries for level two 

files and directories, and so on for deeper levels. A 

directory at level ~ is said to be immediately superior to a 

file or directory at level n+l, and immediately inferior to 

a directory at level ~-1. Similarly, a directory a level ~ 

is said to be superior to a file or directory at level ~+~, 

and inferior to a directory at level n-m (for m)O). 

In order to uniquely specify a particular entry within 

the hierarchy, it is not sufficient to give only its entry 
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name. An entry name is unique within its containing 

directory, but may not be unique with respect to all 

directories. Therefore a pathname is used to uniquely 

identify an entry within the hierarchy. A pathname consists 

of an ordered sequence of entry names which describe a path 

from the root to the entry of interest. The individual 

entry names are separated by the symbol ")". Thus, 

"root)A)B" is the pathname for file B which is immediately 

inferior to directory A which in turn is immediately 

inferior to the root directory. 

Figure 2.2 shows how the file hierarchy might be used 

to organize information within a computer utility. This 

organization has been abstracted from the Multics file 

hierarchy. All system data files, e.g. accounting records 

and user identification information, are 

"system_control" directory. All system 

contained in a 

commands and 

subroutines are contained in a "system_library" directory. 

For administrative purposes users are grouped into projects, 

each of which is represented by a project directory. 

Immediately inferior to a project directory are found the 

home directories of individual users. A user may create an 

arbitrary subtree of files and directories below his home 

directory. The activities of a user, however, are not 

confined to his home directory alone. He may touch any 

parts of the hierarchy to which he has been granted access. 
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Figure 2.2: Example of a file hierarchy. 
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For example, all users are routinely granted access to use 

procedures in the system library. A user may grant other 

users permission to read or modify his personal files. 

To this point, we have seen basically an external view 

of the file system, i.e. the logical structure of the file 

hierarchy as it appears to the user. This picture 

adequately defines a setting in which to discuss those 

backup functions which require only external knowledge of 

the file system. These are the functions which actually 

make use the file system, namely dumping, reloading, and 

retrieving. The salvaging function, however, requires 

knowledge of internal file system structure in order to 

verify file system consistency following a system crash. 

Hence, any discussion of salvaging must necessarily be more 

file system-specific than the discussions of the other 

backup functions. For this purpose, some characteristics of 

internal file system structure are presented below. 

The internal file system organization is, of course, 

dependent upon the nature of the memory system. We will 

consider a two-level memory configuration composed of main 

oemory .:md secondary on-line mass storage. Furthermore, we 

will assume that the transfer of information between main 

memory and secondary storage is automatically managed by a 

segmented, virtual memory system. [9] Both files and 

directories exist as segments in the memory system, i.e. 
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variable-length collections of bits. Segments are 

subdivided into fixed-length blocks called pages which are 

moved in and out of main memory by the virtual memory 

system. 

Before a segment can be referenced, it must first be 

initiated into the virtual address space of a process. (1) 

The initiation of a segment is somewhat analogous to the 

opening of a file in a conventional file system. At the 

time a file is initiated, a user may request that some or 

all of his allowed access modes (e.g. read, write, etc.) be 

enabled. Whenever a file is initiated with write access, a 

notation is made in the entry of the file. Once a segment 

has been initiated, it becomes directly addressable and 

hence can be manipulated in essentially the same fashion as 

main memory is manipulated in a conventional computer 

system. Thus, both files and directories are rather dynamic 

objects in a segmented virtual memory system. This is in 

contrast to conventional file systems in which files and 

directories are comparatively static objects. When no 

further use is to be made of a segment, the segment is 

terminated from the virtual address space of a process. The 

termination of a segment is somewhat analogous to the 

closing of a file in a conventional file system. 

(1) We informally define a "process" to be the ongoing 
computation associated with an individual user. 
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When a segment is not actively in use, its pages reside 

in secondary storage. Each entry in the hierarchy contains 

a page map which indicates the secondary storage addresses 

of all pages of its associated segment. In order to keep 

track of secondary storage usage, the file system maintains 

a storage assignment table for each secondary storage 

device. Because segments may grow and shrink dynamically, 

it is necessary that storage assignment tables be kept 

either partially or fully in main memory to permit fast 

allocation of storage space. For simplicity, we will assume 

that storage assignment tables are stored entirely in main 

memory during normal system operation. Of course, if 

detachable storage devices are used, then only the storage 

assignment tables for attached devices need be kept in main 

memory. Different storage allocation strategies are 

compared in the discussion of salvaging. 

When a segment is actively in use, its pages are 

transferred in and out of main memory as needed. Before any 

pages of a segment can be brought into main memory, however, 

a page table must first be constructed for the segment in 

main memory. A page table is an array of page table words, 

each of which holds the address of a page. Intuitively, a 

page table serves as a working copy of a page map. A 

segment having a page table in main memory is said to be 

"active". As a page of an active segment moves between main 
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memory and secondary storage, its corresponding page table 

word is updated so as always to reflect the current address 

of the page. When a new page of a segment is created in 

main memory, its address is recorded in a previously empty 

page table word. At some later time, when this new page is 

removed from main memory, a free location in secondary 

storage is selected from the storage assignment tables. 

This new secondary storage address is recorded in the page 

table word for the new page. Eventually, the segment 

containing the new page will be "deactivated", i.e. its page 

table will be removed from main memory. At that time, the 

secondary storage address of the new page is updated into 

the page map in the entry for the segment. 

The brief description given above is intended to 

characterize how files and directories are accessed and how 

storage space is allocated. The significance of these two 

features will be explained in the discussion of salvaging. 

Other issues of internal file system organization are 

omitted since they do not significantly influence the design 

of the backup system. 

Incremental (Primary) Dumping 

An activity known as incremental dumping is principally 

responsible for keeping the backup system abreast of 

modifications to the file hierarchy. The purpose of 
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incremental dumping is to discover newly created or modified 

files and directories and to copy these files and 

directories onto backup tapes. Incremental dumping is 

performed during normal system operation by the incremental 

dumper, a system process which awakens periodically to scan 

the hierarchy for xoodifications. A single such pass over 

the hierarchy constitutes one incremental dump. The net 

effect of incremental dumping is to limit the amount of 

information which can be lost to those modifications which 

have occurred since the last incremental dump. 

In order to restrict the maximum time span during which 

modifications to the file hierarchy can go unnoticed by the 

backup system, it follows that the incremental dumper should 

scan the hierarchy frequently. On the other hand, because 

the incremental dumper competes with ordinary users for 

system resources, it becomes economically desirable to lower 

the incremental dumping rate. Therefore, the time interval 

between the start of incremental dumps is chosen as a 

compromise between these two considerations. It is assumed 

that the incremental dumper enjoys a sufficient scheduling 

priority to insure completion of a full hierarchy scan 

within the desired time interval. A typical interval is 

expected to range from as little as thirty minutes to as 

much as a few hours depending on the degree of protection 

desired. 
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The dumping of an entire file to record modifications 

encompassing only a small fraction of that file can be a 

rather expensive and heavy-handed measure. Instead, one 

might consider dumping only those pages of files which have, 

indeed, been modified. The dumping of pages rather than 

whole files will, of course, complicate recovery procedures. 

Therefore, if the maximum file size is limited and the 

median file size is small, it is simpler and not much more 

costly to dump files in full. On the other hand, if the 

maximum file size is unrestricted or very large, if the 

median file size comprises many pages, and if file 

modifications tend to be localized, then dumping pages might 

be more practical. For simplicity, we will hereafter assume 

the dumping of whole files. We will return to this issue in 

the discussion of recovery operations. 

The cost of incremental dumping will be proportional to 

the average number of files and directories rnodif ied per 

incremental dump interval. Intuitively, one would expect 

this modification rate to be roughly proportional to the 

processing activity of the system, but to be independent of 

total secondary storage usage. This assumption is based on 

the observation that as a typical user accumulates more 

storage, he still tends to maintain a temporal locality in 

his file modifications. Hence, it is expected that 

secondary storage growth will have little influence on 
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incremental dumping costs. Increases in processing 

activity, on the other hand, should produce a proportional 

increase in incremental dumping costs. This behavior has, 

in fact, been observed for the Multics system. 

Secondary Dumping 

In the 

recover the 

incremental 

event 

entire 

tapes 

of a 

file 

produced 

mishap, it would be possible to 

hierarchy by searching all 

since the beginning of system 

operation. It is necessary that all these tapes be examined 

since only recently modified files appear on recent tapes 

whereas files not modified for long periods of time appear 

only on older tapes. Obviously, as the age of the system 

increases, this approach becomes less and less practical. 

Recovery time would soon become intolerable, as would the 

burden of maintaining an ever expanding archive of backup 

tapes. Therefore, it is necessary to consolidate the 

information contained on incremental tapes. 

Secondary dumping is the mechanism used to accomplish 

this consolidation. A secondary dump scans the hierarchy 

during normal system operation collecting all files and 

directories which have been incrementally dumped later than 

some specified time in the past. Since that time, some 

number of incremental dumps will have occurred. Many 

evolving versions of a file can appear within those 
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incremental dumps, but only the latest version will appear 

in the secondary dump. Furthermore, files which appear in 

an incremental dump and are later deleted will not appear in 

a subsequent secondary dump. Therefore, a secondary dump 

can be substantially smaller than the set of incremental 

dumps which it supersedes. Generally, the larger the set of 

incremental dumps superseded, the greater the size 

reduction. 

Clearly, in order to limit the number of bar.kup tapes 

needed to recover the full hierarchy, all incremental dumps 

performed since the beginning of system operation must be 

consolidated periodically. This is essentially equivalent 

to dumping the entire file hierarchy (except for a few files 

which are so new that they have not yet been incrementally 

dumped). A secondary dump which supersedes all previous 

incremental dumps is called a complete secondary dump. A 

complete secondary dump represents a cutoff beyond which no 

older backup tapes need be inspected in order to find the 

latest backup copies of all files and directories which 

still exist in the file hierarchy. 

The cost of a complete secondary dump will, of course, 

be proportional to secondary storage size. For a large file 

hierarchy, a complete secondary dump will necessarily be 

very time-consuming and demanding of system resources. 

Therefore, to avoid excessive dumping overhead, the time 
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interval between complete secondary dumps should be 

substantially greater than the interval between incremental 

dumps. on the other hand, the longer the time interval 

between complete secondary dumps, the larger will be the 

average and maximum number of incremental dumps needed to 

recover the file hierarchy in the event of a mishap. 

Therefore, the frequency of complete secondary dumps is 

chosen as a compromise between cost and recovery time. 

The expense of performing daily complete secondary 

dumps is likely to be prohibitive in a large computer 

utility attempting to provide continuous service. 

Therefore, let us consider a time period of one week or 

longer between complete secondary dumps. As an intermediate 

measure for limiting recovery time, secondary dumping can be 

used to consolidate some or all of those incremental dumps 

produced since the latest complete secondary dump. A 

secondary dump used in this fashion is called a partial 

secondary dump. 

Partial secondary dumping is similar in nature to 

incremental dumping. In effect, a partial secondary dump 

collects files and directories which have been modified over 

a period of time encompassing some number of preceding 

incremental dumps. Let us refer to this period of time as 

the "consolidation interval" of a partial secondary dump. 

The cost of a partial secondary dump is then proportional to 
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the number of files and directories modified per 

consolidation interval. As argued earlier in the case of 

incremental dumping, this modification rate is roughly 

proportional to system processing activity, but is 

negligibly influenced by secondary storage size. 

Partial secondary dumping can be employed in a variety 

of ways. Once again, the principal trade-off is one of cost 

versus recovery time. Three examples of secondary dumping 

schedules are illustrated graphically in figure 2.3. The 

schedules are arranged in order of increasing dumping costs 

and decreasing recovery time. Complete secondary dumps are 

performed once per week in each of these schedules whereas 

partial secondary dumps are used differently among the 

three. In schedule A, each partial secondary dump 

consolidates exactly one day's volume of incremental dumps. 

Hence, the number of partial secondary dump tapes needed for 

reloading increases linearly through the week, while dumping 

costs are fairly uniform. In schedule B, the partial 

secondary dumps performed Wednesday and Saturday consolidate 

three days' volume of incremental dumps. Hence, a recovery 

operation performed on Thursday, for example, would not 

involve partial secondary dumps from Monday and Tuesday 

since these are superseded by Wednesday's dump. In schedule 

c, each partial secondary dump supersedes all preceding 

partial secondary dumps performed the same week. Therefore, 
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Figure 2.3: Sample secondary dumping schedules. 
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both dumping costs and recovery time increase qradually 

through the week. 

It should be emphasized that the terms "partial" and 

"complete" refer to the temporal nature of a secondary dump. 

A secondary dump is called "partial" not because it dumps a 

part of the hierarchy, but because it supersedes a part of 

the incremental dumping history of the system. Similarly, a 

secondary dump is called "complete• not because it dumps the 

entire hierarchy, but because it supersedes the complete 

incremental dumping history of the system. In fact, a 

complete secondary dump actually does not dump the entire 

hierarchy. As mentioned above, new files which have not yet 

been incrementally dumped are ineligible for secondary 

dumping. Also, for reloading purposes, the system library 

is ignored by all incremental and secondary dumps. Instead, 

special dumps of the entire system library are performed 

either periodically or whenever the number of newly 

installed programs reaches a certain limit. 

As compared to incremental dumps, secondary 

naturally require a longer time to run. Since 

resolution of the backup system is determined by 

dumps 

the 

the 

incremental dumping rate, and because this resolution should 

be kept constant, incremental dumping cannot be postponed 

while secondary 

incremental and 

dumping 

secondary 

is 

dumps 
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concurrently. When they do run concurrently, a considerable 

load will be placed upon the system. Therefore, it is 

obviously desirable that secondary dumps be performed at 

times of light user load, e.g. late night and early morning 

hours. If a complete secondary dump should require more 

than a single night to run, it may be advantageous to 

stagger complete secondary dumping of different sections of 

the hierarchy over several nights rather than compete with 

heavier user loads during the daytime. 

In addition to reducing recovery time, secondary 

dumping also reduces the number of backup tapes that must be 

retained for long periods of time. If one were only 

interested in recovering the latest copies of files, then 

as soon as a backup tape was superseded by a later dump, it 

could be reused. Of course, situations arise in which the 

latest backup copy of a file is of no use. If, for example, 

a file is erroneously modified due to a programming bug, 

then the clobbered file will appear in subsequent 

incremental and secondary dumps. Hence, the latest backup 

copies will be of no value, but an older copy can be used to 

restore the file. 

Another reason for not quickly recycling backup tapes 

is that the added redundancy increases reliability. If for 

any reason a backup copy of a file cannot be read from a 

particular backup tape, then at least the next most recent 
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copy can be obtained from an older backup tape. Clearly, 

the writing of duplicate backup tapes for each dump would 

improve reliability. But it is important to recognize that 

tapes written in duplicate are to some extent susceptible to 

the same errors. Therefore, the temporal separation between 

different dumps is an important reliability factor which 

argues for the prolonged retention of backup tapes. 

To a limited degree, tape retention time represents a 

compromise between cost and reliability. However, since the 

cost of adding more tape reels to a backup archive is 

basically a small one-time expense, one can usually afford 

to be generous in this respect. On the other hand, the 

maintenance of an extremely large library of backup tapes is 

cumbersome, space-consuming, and prone to operational 

errors. Therefore, rather than hold all tapes for an equal 

length of time, it seems more practical to hold a small 

number of tapes for very long periods of time and the 

majority of tapes for only a comparatively short time. For 

example, one might decide to retain incremental dumps for 

one nonth, partial secondary dumps for three months, and 

complete secondary dumps for one year. This strategy 

recognizes the fact that when a mishap occurs which destroys 

a file, a backup copy is usually recovered within a short 

period of time. For the rare case of a user who wishes to 

recover a file deleted many months ago, the backup system 
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can still offer assistance if the file existed long enough 

to be recorded on a complete secondary dump. 

In order to facilitate recovery operations following a 

system failure, secondary dumps have been given certain 

special properties. Secondary dumps always include all 

directories in the hierarchy as well as all system data 

files necessary for normal system operation. Complete 

secondary dumps, of course, already include all files and 

directories, and hence implicitly satisfy this requirement. 

Partial secondary <lumps will typically include many 

directories and most system data files anyway, and therefore 

only a small additional overhead is incurred. The backup 

system maintains in the entry of each file the tape address, 

i.e. reel number and record number, of the latest secondary 

backup copy. The purposes of these special features will be 

explained in the discussion of reloading. 

User-Controlled Backup 

As described thus far, the user has no control over the 

production of backup copies. Whenever an eligible file is 

encountered by a dumping process, a backup copy of the file 

is dumped. Hence, a user has no means of controlling, or 

even determining, precisely when a particular file is dumped 

relative to any work in progress involving the file. This 

mode of operation creates two related problems. First, a 
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file may be inconsistent at the time it is encountered by 

the dumping process. Second, if the creation of backup 

copies is not synchronized with the user's work, he will 

find it difficult to discover precisely what modifications 

were performed before and after a given backup copy was 

produced. 

Since, for any file, the meaning of consistency depends 

upon its application, the backup system cannot itself 

determine whether or not a file is inconsistent. The file 

system does keep track of when a file is potentially 

inconsistent, i.e. when it is open to modification. Hence, 

it would be possible for the dumper to simply skip 

potentially inconsistent files. This approach, however, 

would provide poor protection for heavily used files which 

remain open to nodification for long periods of time. Even 

for files which are only briefly subject to modification, 

unfortunate timing of updates could cause a file to miss 

several consecutive incremental dumps. Thus, the dumping of 

a file would become a chance occurrence and, in general, the 

resolution of the backup system would suffer. 

The current Multics backup system entirely ignores the 

problem of consistency. Files are dumped regardless of 

whether or not they are open to rrodification. Surprisingly, 

however, files are rarely dumped in an inconsistent state. 

To understand this result, it is necessary to examine the 
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ways in which files are ordinarily modified. Most programs 

are deliberately cautious about modifying permanent files. 

For example, a text editor accumulates changes to a text 

file in a buffer area. The text file is only updated from 

the buffer at the explicit request of the user. Although 

the text file remains open to modification during the entire 

time the editor is in use, modifications are actually brief 

and infrequent. Similarly, when one compiles a program, the 

object code is compiled in a temporary area. If the 

compilation succeeds, this temporary area is then copied 

into a permanent file in one quick operation. This pattern 

is typical of many permanent file modifications. In 

situations of this kind, the probability of dumping a file 

while in an inconsistent state is small. Even when this 

does happen, there is still some consolation in the fact 

that the modifications responsible for the inconsistency 

will qualify the file for the next incremental dump. Hence, 

a consistent copy is eventually produced. 

In the situations mentioned above, i.e. editing and 

compiling, it is not essential that a user be able to 

specify the exact time at which a backup copy is produced. 

A user will probably be satisfied to know that a backup copy 

is produced sometime within the next incremental dump 

interval. The situation is somewhat different, however, if 

one considers applications involving more sophisticated data 
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management problems. To illustrate, let us imagine some 

business-like application which processes "transactions", 

each of which results in an update to a data file. As 

mentioned in chapter 1, large-scale applications of this 

type typically maintain journal tapes on which each 

transaction and/or each data base update is logged. The 

computer utility, however, 

applications of this nature 

may support many small-scale 

which c.lo not require, nor 

deserve, specialized backup mechanisms of their own. These 

small applications may find the level of protection provided 

by the general backup mechanism to be adequate. 

In order for the backup mechanism to be of significant 

use to a transaction-oriented application, the application 

program must be given more control over the production of 

backup copies. In particular, some method for specifying 

that a particular snapshot of a file be dumped seems 

necessary. This would not only allow the application 

program to guarantee the consistency of backup copies, but 

would also permit the application program to recognize the 

precise moment at which a backup copy was produced relative 

to the transactions being processed. For example, suppose 

that transactions were input to the application program from 

a terminal. The printed copy of the transactions produced 

at the terminal could serve as a log. Periodically, the 

application program would set aside copies of its data base 

43 



to be dumped. The times at which such backup copies were 

set aside could also be recorded at the terminal. In the 

event of a mishap, a particular backup copy could be 

retrieved and subsequent transactions could be resubmitted. 

The important point of the above example is that many 

applications require some control over the production of 

backup copies. The application program must be able to 

specify when backup copies are created. These copies, 

however, need not be immediately written to tape. Instead, 

they could be temporarily stored in the file hierarchy until 

encountered by the incremental dumper. In this way, user 

processes and the dumper process may continue to operate 

asynchronously. 

In order to provide users with a facility for 

specifying when backup copies are to be createdv each file 

entry in the hierarchy contains a switch to indicate whether 

or not user-controlled backup is desired. At the time a 

file is initiated with write access, a user may optionally 

request that this switch be turned on. If he does sov a 

nshadow" copy of the file is created and stored in the same 

directory as the original file. Thereafter, any attempt to 

dump the original file will result in the shadow copy being 

dumped. 'fhis permits the user to freely modify the original 

file without fear of inconsistent backup copies being 

produced. The user may, at his convenience, request the 
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file system to update the shadow copy from the original 

file. By doing so, he permits the backup system to dump 

successively more recent versions of his file. When the 

user is finished processing the file, he requests the file 

system to terminate the file. At this point, the shadow 

copy is discarded (since the original file is now itself 

consistent) and the switch indicating user-controlled backup 

is turned off. 

In order to distinguish and identify different versions 

of files, the time of last modification is recorded with 

every backup copy. Clearly, this modification time can only 

be changed while a file is initiated with write access. 

Therefore, at the time a user terminates a file which had 

been initiated with write access, the file system returns to 

him the latest modification time of that file. This 

modification time can be used to identify any subsequently 

dumped backup copies. However, a file may also be dumped 

during the time it is initiated with write access. If 

user-controlled backup is employed, the file system will 

return to the user the modification time of his file each 

time he updates a shadow copy. This modification time is 

stored with the shadow copy and is eventually recorded on 

tape with a corresponding backup copy. Hence, if 

user-controlled backup is employed, a user can identify 

every backup copy of a given file. If user-controlled 
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backup is not employed, the user will not be explicitly 

aware of the modification times of those backup copies 

produced while a file is initiated with write access. Note 

that whenever a file is reloaded or retrieved, its 

modification time is restored. 

One point deserving consideration is the question of 

how frequently users should update shadow copies. Clearly, 

in order to take full advantage of the backup system, shadow 

copies should be updated at least once per incremental dump 

interval. However, the use of shadow copies still 

introduces an extra delay which effectively weakens the 

resolution of the backup system. To see this, let us assume 

an incremental dump interval of one hour. If 

user-controlled backup is not employed, a modified file may 

wait at most one hour before being dumped. Similarly, if 

user-controlled backup is employed, an updated shadow copy 

may wait at most one hour before being dumped. However, the 

file modifications contained in the shadow copy were 

actually performed prior to the shadow copy update. 

Therefore, if shadow copy updates are performed only once 

per hour, then, at worst, a modified file may wait one hour 

before a shadow copy update is performed and another hour 

before being dumped. Hence, on the average, backup system 

resolution is reduced by a factor of two. 

In view of this extra delay introduced by 
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user-controlled backup, many users may wish to update shadow 

copies more frequently than once per incremental dump 

interval. For example, a user may wish to update a shadow 

copy every ten minutes, i.e. six times per hourly 

incremental dump cycle. In this case, a modified file may 

wait at most 70 minutes before being dumped. Hence, backup 

system resolution is only slightly reduced. Notice that 

only one of every six shadow copies will actually be dumped. 

The others will simply be replaced by more recent shadow 

copies before being dumped. The purpose of performing six 

shadow copy updates per hour is not to produce six backup 

copies per hour, but rather to insure that the one backup 

copy produced each hour is at most ten minutes old when 

dumped. 

Salvaging 

Whenever a system crash occurs, the integrity of the 

file system must be questioned. In particular, the 

consistency of directories and of storage assignment tables 

need be verified. Also, users should be warned of 

potentially inconsistent files, i.e. those files not 

properly terminated before the crash occurred. A procedure 

known as salvaging is employed to detect, report, and 

correct wherever possible any inconsistencies in the file 

hierarchy and the storage assignment tables. Those parts of 
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the file hierarchy which cannot be salvaged must be 

discarded and later recovered from backup tapes. 

When main memory loss is not the cause of failure, it 

may often be possible to recover information from main 

memory before beginning salvaging. In Multics terminology, 

this operation is known as an "emergency shutdown". 

Essentially, an emergency shutdown attempts to r2vi ve th 

system in order to perform a regular shutdown. First, an 

attempt is made to deactivate all active segments. This 

involves flushing all pages from main memory to secondary 

storage and updating the page maps of all active segments 

whose page tables have been modified. After all segments 

have been deactivated, the storage assignment tables ar~ 

copied to secondary storage. The file system is then in a 

dormant state. 

Clearly, the success of the emergency shutdown 

operation depends to a large extent on the consistency of 

file system data bases following a system crash. If these 

data bases have been left in grossly inconsistent states, 

then the operation is likely to fail. On the other hand .. if 

file system data bases are left consistent, or nearly so, 

then an emergency shutdown can often succeed. Notice that 

an emergency shutdown is performed using the standard file 

sysLern. Hence, if an emergency shutdown runs to completion, 

one can ue fairly confident that no major inconsistencie~ 

48 



exist in the file system. There is some small risk, 

however, that minor inconsistencies may go unnoticed. 

The salvaging program, called the salvager, performs 

three functions: (1) verification of the internal 

consistency of all directories, (2) reconstruction of the 

storage assignment tables, and (3) notification to users of 

potentially inconsistent files. All of these functions are 

carried out simultaneously during one scan over the 

directory structure of the file hierarchy. If one wishPs to 

trust the file system following a successful emergency 

shutdown, a special salvaging mode could be used to perform 

only the third function. 

All directories are thoroughly examined by the salvager 

to verify internal consistency. Any detected errors are 

reported and , if possible, corrected. Certain problems can 

be trivially cured. For example, if an entry was left 

active, the active indicator is simply reset. The use of 

redundancy in the directory format can help to correct more 

serious errors. For example, if entry lists are doubly 

threaded, a single break in an entry list can be repaired. 

Still more serious errors may necessitate deletion of entry 

attributes, single files, or entire directories. In order 

to facilitate the recovery of files and directories which 

could not be salvaged, those directories from which entries 

have been lost are marked by the salvager. 

49 



As the salvager reads through the directory structure, 

it rebuilds the storage assignment tables. This is done by 

simply noting the secondary storage addresses used by each 

segment. It may happen, as a result of a crash, that two 

segments claim the same page in secondary storage. One way 

to resolve this conflict is to store a segment identifier 

and pdge number with every page. 

While scanning the directory structure of th~ 

hierarchy, the salvaging procedure checks every file entry 

to see if it was initiated with write access at the time of 

the crash. If so, a flag is set in the entry which will 

cause an error code to be returned on future attempts to 

initiate the file. In this way, users are warned of 

potentially inconsistent files. If a shadow copy exists for 

a potentially inconsistent file, both the original file and 

the shadow copy are retained in the file hierarchy. A user 

may discover that his original file is hopelessly 

inconsistent in which case he can replace the original file 

with the shadow copy. Alternatively, a user may find that 

his original copy is consistent or can be made consistent in 

which case the shadow copy can be discarded. Unti.l the user 

makes this decision, the backup system continues to use the 

shadow copy for dumping purposes. 

Among the nost disasterous of system crashes are those 

caused by the failure of a secondary storage device. 
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Clearly, the sensitivity of the file system to this kind of 

loss will depend largely on the storage allocation strategy 

used. For example, secondary storage might simply be viewed 

as one large allocation pool in which different pages of the 

same segment can be arbitrarily assigned to different 

devices. In this case, the failure of a single device may 

destroy or damage an undetermined number of files and 

directories, and is therefore likely to br: catastrophic. 

Merely requiring that all pages of a segment be o:i t::hP , J.me 

device adds little improvement since the loss of a directory 

on one device will effectively destroy inferior files and 

directories on other devices. Therefore, a more reliable 

allocation strategy would require that a directory r:o:tored on 

one device should have no inferiors stored on other devices. 

In other words, each device should hold a s1i.bt:ree, or 

perhaps several subtrees of the file hierarchy. Using this 

allocation strategy, the extent of damage c•.'l.(! to a device 

failure is limited to a well-defined portion of the file 

hierarchy. Therefore, both salvaging and subsequent file 

and directory reloading is simplified. 

Of course, while this allocation strategy is ~~~irable 

for reliability reasons, it has its disadvantages as far as 

file and directory growth are concerned. Subtrees confined 

to a device with no free space available will be unable to 

expand even though free space may exist on other devices. 
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To avoid this situation, substantial amounts of free space 

must be left on each device to accomodate potential 

expansion which might result in considerable space wastage. 

For this reason, it may be desirable to assign one very 

large subtree or several sn~ller subtrees to a pool of two 

or nx>re storage devices so as to reduce space breakage. 

uowever, if subtrees are pe:tmitted to span more thai. one 

device, reliability is also reduced. It is convenient t.o 

think of subtrees being assigned to "logical devices" where 

a logical device may be some fraction of a physical device, 

a whole physical device, or several physical devices. The 

size of logical devices can then be chosen as a compromise 

between reliability and space breakage considerations. 

The root directory and its closest descendants will 

form a superstructure for the file hierarchy below which all 

of the separately assigned subtrees will exist. The loss of 

this superstructure will, of course, necessitate reloading 

all of on-line storage. Therefore, to lessen the 

probability of such disasters, each directory of the 

superstructure should be duplicated on two independent 

devices.. In this way, no single device failure can ca~s~ 

the loss of the entire contents of secondary storage. 

The storage allocation strategy suggested above is 

desirable not only for reliability reasons, but also because 

it permits the file system to make use of detachable storage 
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devices. The physical device or devices assigned to a 

logical device, i.e. a subt~ee, can be attached and detached 

as needed. (1) Hence the assignment of subtr.ees of the file 

hierarchy to individual stora9e devices appears to of fer 

both reliability and economy. 

When salvaging finishes 11 the file system is left in a 

consistent state. At best, the enti=e file hierarchy is 

saved and no reloading is necessary~ In less fortunate 

circumstances, certain files and directories must be 

recovered from backap tapes. To facilitate this operation, 

those directories from which entries were deleted have been 

so marked. Also, file~ which a~e potentially inconsistent 

have been flagged. 

Reloading 

When the results of salvaging indicate a loss of 

information from the file hierarchy, a procedure known as 

reloading is employed to recover the most recent backup 

copies of all missinq files and directories. The reloading 

program, called the reloader, runs under the standard 

operating system. Therefore, the supervisor, the reloader, 

(1) Note that detachable ~ttorage devices used in this 
fashion will hold directory information assumed to be 
trustworthy by the file system. Therefore, for security 
reasons, detachable subtrees must be considered system 
property and must not be permitted to leave the computer 
installation. 
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and those commands and subroutines used during reloading 

must be loaded from a system bootstrap tape before reloading 

begins. For efficiency reasons, the reloading operation is 

divided into two phases. During phase 1, all directories 

;md some file::; are recovered. All remaining files are 

recovered during phase 2. The system can sometimes be made 

available to users immediately after salvaging. If not, the 

system can always be rnade available by the end of phase 1. 

A ledger is maintained by the operators which notes the 

starting time, completion time, and reel nwnbers for every 

incremental and secondary dump. This ledger serves as a 

reloading guide during phase 1. Beginning with the most 

recent dump, the dumps are selected in reverse chronological 

order according to starting time- Each dump is searched 

from beg-inning to end for missing files and directories 

which can be recognized as inferiors of those directories 

marked by the salvager. Because the dumps are selected in 

reverse chronological order, the IOC>St recent backup copies 

of files and directories are reloaded first after which 

older copies can be ignored. A flag is set in the entry of 

each reloaded file which will cause an error code to be 

returned on future attempts to initiate a reloaded file. In 

this way, users are warned of the fact that a backup copy 

has been reloadedB The identity of a reloaded backup copy 

can be determined by examining the modification time 
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recorded in the en try. 

Phase 1 terminates after the most recent secondary dump 

has been reloaded. In the example of figure 2.4, the 

incremental dumps from region 6 plus secondary dump 5 are 

reloaded during phase 1. Notice that the incremental dumps 

of regions 2 and 4 are superseded by secondary dumps 3 and 5 

and therefore need not be reloaded. In general, at the 

conclusion of phase 1, no incremental dumps remain to be 

reloaded. Also, by the end of phase 1, all directories and 

all system data files have been restored as a consequence of 

reloading the latest secondary dump. If the latest 

secondary dump is, in fact, a complete secondary dump, then 

reloading is finished by the end of phase 1. Otherwise, 

reloading continues during phase 2. 

The purpose of phase 2 is to recover any missing files 

not yet reloaded. This could be accomplished in the same 

manner as phase 1, i.e. by searching the remaining secondary 

dumps in reverse chronological order up to and including the 

latest complete secondary dump. This searching, however, is 

time-consuming and inefficient. If, for example, only a 

small fraction of the hierarchy has been lost, then missing 

files may be confined to only a few tapes. Notice that 

since all directories are restored during phase 1, so too 

are the entries for those files to be recovered during phase 

2. Each of these entries contains the tape address of the 
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Figure 2.4: Example of a reloading situation. 
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latest secondary backup copy of its associated file. 

Therefore, the file hierarchy is searched and the tape 

addresses of all files deserving to be reloaded are 

extracted. These tape addresses are then sorted into a 

systematic reloading order and the missing files are located 

and restored. No time is wasted examining backup copies not 

eligible for reloading. 

By the end of phase 1, all directories and all system 

data files have been recovered. Therefore, the system can 

be opened to users at this time. Those users whose files 

either survived the crash or were reloaded during phase l 

will find the system immediately useful. Other users must 

await the recovery of additonal files during phase 2. The 

entries of files to be recovered during phase 2 are 

specially marked so that premature attempts to initiate 

these files will generate an appropriate error message. Of 

course, most users depend upon commands and subroutines in 

the system library. Therefore, if the system library has 

been damaged, it is reloaded from the latest special dump of 

the system library before the system is opened to users. 

Often it will happen that salvaging succeeds in saving 

all but a very few files and minor directories. If all 

system data bases survive intact, then the system can be 

made available immediately rather than waiting until the 

finish of phase 1. The only danger here is that users will 
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be able to roodify directories as they are being reloaded. 

If a user deletes an entry, for example, it may later be 

restored by the reloader which cannot distinguish between a 

legitimate deletion made during reloading and a loss caused 

by a crash. Similarly, if a user inadvertently creates a 

new entry by the same name as some missing entry, he may 

prevent the missing entry from being reloaded. These 

problems are not encountered during phase 2 since the 

identities of all entries to be reloaded are known by the 

end of phase 1. Notice, however, that the only sensitive 

directories are those with missing entries, i.e. those 

directories marked by the salvager. Hence, one could forbid 

entry creation, deletion, or renaming in marked directories 

until they are fully restored. Alternatively, one could 

simply warn users of the consequences of modifying marked 

directories. Thus, the system can be made available 

inunediately after salvaging if no system data bases have 

been destroyed. 

The ability to open the 

reloading has the obvious advantage 

system to users 

of making the 

during 

system 

useful again as soon as possible to at least some users. 

However, these users compete with the reloading operation 

for system resources causing a reduction in reloading speed 

and thus further inconveniencing other users awaiting the 

recovery of files. In the case of a crash which causes only 
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a small amount of damage~ it seems reasonable t.hat the 

system should be made available as soon as possible since 

only a few users will suffer any delay. However, for more 

serious crashes, it might be wiser to postpone opening the 

system to users until a significant amount of reloading has 

been performed. 

To this point we have assumed that only whole files are 

dumped and reloaded rather than pages of files as postulated 

earlier. As it turns out, the dumping of pages does not 

upset the reloading framework already described. If we 

assume that incremental dumps copy individual pages and 

secondary dumps copy whole files, no major changes are 

required. (Directories are always dumped in full.) Phase 1 

will simply reconstruct files page-by-page. The tape 

addresses of all files not recovered by phase 1 will then be 

determined as before. Phase 2 will finish the job by 

reloading missing files and missing pages of files which 

were partially reconstructed during phase 1. 

Reloading time will depend upon the size and number of 

incremental and secondary dumps needed to recover the file 

hierarchy. The various trade-offs between dumping overhead 

and recovery time have already been discussed. I~ is clear 

that, for the worst of disasters, the work of reloading must 

increase with the size of secondary storageG However, 

increases in processing and I/O capacity can be used to 
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counteract the demands of enlarged storage volume. In order 

to take full advantage of available processing and I/O 

capacity, parallel processing is employed both during phase 

l and phase 2 as will be described in chapter 3. Of course, 

so long as storage capacity grows faster then processing and 

I/O capacity, reloading time will increase. It should be 

noted, however, that failures which necessitate reloading 

the whole of secondary storage are extremely rare. 

Therefore, much care has been taken to handle the milder, 

more common failures efficiently. For example, in the case 

of a single device failure, recovery time will depend on the 

size of the device, but not on the total size of secondary 

storage. The ability to open the system to users during 

reloading can minimize the number of users inconvenienced by 

a failure. 

Retrieving 

A procedure known as retrieving is used to recover 

backup copies of files and directories at the request of 

users. Retrieving, which is a remedy for isolated system 

mishaps and for personal user mishaps, is distinguished from 

reloading, which is a remedy for system-wide failures. The 

operation of the retrieving program, called the retriever, 

is quite simple. The retriever is supplied with a pathname 

and a tape address. The specified tape is mounted and the 
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file or directory named is located and restored to the file 

hierarchy. The retriever can also be requested to restore 

an entire subtree. In this case, the pathname of the 

directory which heads the subtree is specified and all 

members of the subtree found on the tape are restored to the 

hierarchy. 

In order to request retrievals, a user must have some 

method for determining when and where backup copies of his 

files and directories were produced. For this purpose, a 

dump map is created with every dump. A dump map specifies 

the name, tape address, modification time, and dumping time 

of each file and directory included in a particular dump. 

Of course, it would be extremely tedious to search through a 

large number of dump maps in order to locate a copy of a 

given file or directory. Therefore, a user should remember 

approximately when his file was lost or damaged. Also, if 

the file was recently modified, the user should know 

approximately when it was modified. If user-controlled 

backup was employed, the user should know the exact 

modification time of the backup copy he seeks. With this 

information and knowledge of the dumping schedule, a 

reasonable guess can be made as to which dump contains a 

suitable copy of the desired file. 

It is not intended that users should actually examine 

printed dump maps directly. This arrangement would be 
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inconvenient and would implicitly prohibit retrievals being 

requested from remote locations. Also, permitting users to 

freely browse through dump maps would constitute a security 

loophole since the names, and hence the existence, of all 

files and directories would be exposed. Therefore, two 

other approaches are suggested. The simplest approach would 

be to give an operator or some other computer center 

employee responsibility for examining dump maps. Users 

could then request backup information concerning particular 

files or directories, or could simply ask for a copy to be 

retrieved according to modification time or some other 

criteria. Preferably, however, dump maps could be 

maintained on-line and users would be permitted to inspect 

these maps subject to access controls enforced by the 

system. In this case, all dump map searching could be 

performed automatically. Of course, this approach involves 

some overhead in an-line storage costs for the dump maps. 

In either case, retrieval requests would be submitted via 

the computer system so that the identity of a user making a 

request could be verified. 

Summary 

The backup system presented in this thesis is designed 

to protect a tree-structured file hierarchy. The files and 

directories which comprise this file hierarchy are 
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implemented as segments in a segmented, virtual memory. The 

various activities of the backup system can be divided into 

two general 

anticipation 

categories: 

of mishaps 

response to mishaps. 

(1) 

and 

activities performed in 

(2) activities performed in 

The first category of activities includes both 

incremental and secondary dumping. Incremental dumping is 

responsible for keeping the backup system abreast of 

modifications to the file hierarchy. Periodically, the 

incremental dumper scans the file hierarchy and copies to 

tape all newly created or modified files and directories. 

The interval between the start of incremental dumps defines 

the resolution of the backup system. In order to limit the 

time needed to recover the file hierarchy from backup tapes, 

the information contained on incremental dump tapes must be 

consolidated periodically. Secondary dumping is the 

mechanism used to accomplish tl1is consolidation. Two types 

of secondary dumps are employed by the backup system. A 

complete secondary dump is used to consolidate all 

incremental dumps since the beginning of system operation. 

A partial secondary dump is used to consolidate some or all 

of those incremental dumps performed since the latest 

complete secondary dump. 

User processes and the dumping processes operate 

asynchronously. Files eligible for backup are copied at the 
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time they are encountered by the 

operation is satisfactory while files 

dumper. This mode of 

are not subject to 

modification. Certain applications, however, require 

control over the production of backup copies while files are 

subject to modification. This is necessary to guarantee 

consistency and to record the status of backup copies 

relative to work in progress. For this purpose, a 

user-controlled backup mode can be requested for files 

initiated with write access. Under this scheme, file copies 

are created at times specified by the user and stored in the 

file hierarchy where they can be found by the dumper. 

The second category of activities performed by the 

backup system includes salvaging, reloading, and retrieving. 

Salvaging and reloading are used to recover from system 

failures whereas retrieving is performed on behalf of users 

to recover from personal losses. Following a system 

failure, the integrity of the file system must be 

questioned. If possible, an emergency shutdown is performed 

to recover information from main memory. Next, salvaging is 

performed to verify the internal consistency of directories, 

reconstruct storage assignment tables, and warn users of 

potentially inconsistent files. The salvager also marks 

those directories, if any, from which entries have been 

lost. Any missing entries are recovered from backup tapes 

by Lhe reloading procedure. Reloading is divided into two 
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phases. During phase 1, all directories, all system files, 

and some user files are restored. All remaininq files are 

recovered during phase 2. The system can be opened to users 

immediately following salvaging if no system files have been 

lost. Otherwise, the system can be made available by the 

conclusion of phase 1. The various steps and decisions of 

the crash recovery procedure are illustrated in the flow 

chart of figure 2.5. By comparison, the retrieving 

procedure is fairly simple. A user wishing to retrieve a 

backup copy of a particular file or directory specifies the 

pathname and tape address of the backup copy he desires. 

The appropriate backup tape is mounted and the desired 

backup copy is extracted and restored to the file hierarchy. 

The names, tape addresses, modification times, and dumping 

times of backup copies are listed in dump maps produced with 

every dump. 

A primary objective of the backup system design is to 

be able to scale up with system growth. Ideally, one might 

hope that as secondary storage size increases, resolution 

and recovery 

overhead is 

time can be held constant while dumping 

kept within reasonable limits. The proposed 

The cost of design closely approximates this 

incremental dumping is proportional 

activity and therefore will remain a 

goal. 

to system processing 

constant fraction of 

system processing time regardless of on-line storage 
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Figure 2.5: The crash recovery procedure. 
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expansion. The same is true of partial secondary dumping. 

The cost of complete secondary dumping, on the other hand, 

is proportional to secondary storage size. However, because 

the resolution of the backup system is upheld by incremental 

dumping, complete secondary dumps need not be performed 

frequently. Therefore, total dumping overhead need not rise 

sharply with secondary storage growth. 

Whether or not reloading time will remain constant with 

on-line storage expansion will depend upon the "halaPc~· of 

system growth. If processing and I/O capacity increase at 

the same pace as on-line storage size, reloading time need 

not increase. However, if secondary storage expansion 

outstrips available processing capacity or tape I/O 

capacity, then reloading time will increase. Of course, a 

system administrator always has the option of adding 

additional tape dirives and I/O channels to improve 

reloading speed through parallel processing. 

Recovery time should not be measured solely in terms of 

the time required to completely reload secondary storage. 

System failures which destroy all of on-line storage are 

extremely rare. Therefore, much effort has been devoted to 

recovering from the milder, zoore common failures quickly and 

efficiently. Files and directories which can be salvaged 

following a system failure need 

system crashes, of course, will 
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whatsoever. More serious failures may necessitate the 

reloading of a single device or a number of scattered files 

and directories. In IOOSt such cases, the majority of users 

will be able to resume work as soon as salvaging has 

completed. In this sense, recovery time from all but the 

most catastrophic of system failures need not increase with 

on-line storage size. 
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CHAPTER 3 

PROGRAM STRUCTURE OF THE BACKUP SYSTEM 

The backup system is composed of four basic program 

modules: the dumper (which performs both incremental and 

secondary dumping), the salvager, the reloader, and the 

retriever. In this chapter, the operations of the dumper, 

reloader, and retriever are examined in detail. Due to its 

predominantly ad hoc character and its intimate involvement 

with peculiarities of file system structure, the operation 

of the salvager is not further explored in this thesis. The 

salvager/reloader interface, however, is described in this 

chapter. 

The Dumper 

The dumper program is designed to scan portions of the 

file hierarchy in search of files and directories eligible 

for dumping. Each pass over the hierarchy is guided by a 

control file in which are specified the pathnames of 

directories, i.e. subtrees, to be searched. If, for 

example, it was desired to divide complete secondary dumping 

of the hierarchy among four separate dumps, then four 

different control files could be used to select four 

different portions of the hierarchy. As mentioned in 
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chapter 2, the system library is ignored by standard 

incremental and secondary dumps. Hence, the pathname 

"root)system_library" would not appear in the control files 

for such dumps. However, when special dumps of the system 

library are performed, the control file will contain only 

the pathname •root)system_library". 

The eligibility of a file or directory for incremental 

dumping depends upon its time of last modification. The 

file system maintains in every entry the date/time modified 

(dtm) of its associated file or directory. Also, the backup 

system maintains in every entry a date/time dumped {dtd). 

Hence, a file or directory is 

dumping whenever dtm)dtd, i.e. 

eligible for incremental 

whenever the file or 

directory has been modified more recently than it has been 

dumped. Immediately before a file or directory is dumped, 

the current time is read from the system clock. Inunediately 

after a file or directory is dumped, its dtd is reset to the 

prior clock reading. This procedure guarantees that any 

modifications occurring while a file or directory is being 

dumped will qualify that file or directory for the next 

incremental dump. 

It would be extremely time-consuming and inefficient if 

the incremental dumper were required to search the entire 

hierarchy for m:>dified files and directories on every pass. 

The hierarchy might contain thousands of directories, 
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whereas only a comparatively small number of directories are 

likely to be in use during any single incremental dump 

interval. To avoid this excessive searchinq, dtm and dtd 

for a directory are interpreted to refer to the subtree 

rooted by the directory. In other words, dtm gives the time 

that a directory or any of its inferiors were last modified. 

Similarly, dtd gives the time that a directory or any of its 

inferiors were last incrementally dumped. Therefore, if 

dtm)dtd for a directory, then neither the directory itself 

nor any of its inferiors have been modified more recently 

than they were last dumped. Consequently, if dtm)dtd for a 

directory, the dumper need not search the subtree below that 

directory. Because searching time is minimized in this way, 

the unit cost of incrementally dumping a file will not 

increase with the size of the hierarchy. 

For reloading purposes, it is desirable that a file or 

directory contained in a backup dump be preceded by all of 

its superior directories. Since secondary dumps include all 

directories and since the dumper searches and dumps the 

hierarchy in top-down order, every file and directory must 

be preceded by all of its superior directories. This same 

property has also been incorporated in incremental dumps as 

a by-product of the special interpretation of dtm and dtd 

for directories. Whenever a file or directory is modified, 

all of its superior directories also appear to be modified. 
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Consequently, any file 

incremental dump must 

directories. Special 

or 

be 

care 

directory contained in an 

preceded by all of its superior 

must be taken to dump the 

superior directories of those subtrees named in the control 

file. ~he incremental dumping algorithm is summarized in 

the flow charts of figures 3.1 and 3.2. 

The eligibility of a file for secondary dumping depends 

entirely on its incremental dumping history. As explained 

in chapter 2, a secondary dump is used to consolidate some 

number of preceding incremental dumps. Therefore, for each 

secondary dump, one must indicate exactly how many preceding 

incremental dumps are to be consolidated. This is done by 

specifying a time called "timel". All incremental dumps 

which began after timel and before the current secondary 

dump will be consolidated. For complete secondary dumps, 

timel is set equal to zero, i.e. the beginning of system 

operation. For partial secondary dumps, timel is set equal 

to the starting time of some previous secondary dump. For 

simplicity in secondary dumping and reloading, we require 

that no incremental dump be in progress at the time a 

secondary dump is started. Therefore, a secondary dump can 

be understood to supersede some whole number of immediately 

preceding incremental and secondary dumps. 

The problem of determining whether or not a file is 

eligible for secondary dumping is somewhat more subtle than 
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Figure 3.1: The dump<-·r algt>riL'1111 (p.irl 1). 
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Figure 3.2: The incremental dumper algorithm (part 2). 
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it appears. one might, for example, declare a file eligible 

for secondary dumping whenever dtd)tirnel. Unfortunately, 

this test causes redundant secondary dumping of files. The 

trouble is that because a secondary dump takes a substantial 

amount of time to run, it would not only consolidate 

preceding incremental dumps, but also portions of concurrent 

incremental dumps. Therefore, the incremental dumps 

consolidated by consecutive secondary dumps would always 

overlap to some extent. 

In view of this problem, the dumper records its 

starting time as utirne2" at the beginning of each secondary 

dump. A file can then be declared eligible for secondary 

dumping whenever timel(dtd(time2. Unfortunately, if a file 

is incrementally dumped shortly after time2, the secondary 

dumper cannot determine whether or not it was also dumped 

between timel and time2. Of course, in the event of a 

system failure, a file incrementally dumped after time2 will 

be reloaded from an incremental tape. (Remember that the 

latest incremental dumps are reloaded before the latest 

secondary dump.) Therefore, for reloading purposes alone, 

the secondary dumper could skip files incrementally dumped 

later than time2. However, we have assumed that incremental 

tapes are not retained as long as secondary tapes. Thus, a 

version of a file omitted from a secondary dump, but 

included in a concurrent incremental dump, would not survive 
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in backup storage as long as contemporary versions of files 

included in the secondary dump. Hence, we must reject this 

solution. 

The difficulty with the above approach is that once a 

file has been incrementally dumped after time2, the 

secondary dumper can no longer determine if that file was 

also dumped between timel and tirne2. Therefore, while a 

secondary dump is in progress, the incremental dumper must 

not reset dtd for a file without first testing if that file 

is eligible for secondary dumping. If the file is eligible 

for the concurrent secondary dump, then the incremental 

dumper will turn on a secondary dump switch (sdsw) in the 

entry of the file. Hence, a file is eligible for secondary 

dumping whenever sdsw=l or timel(dtd(time2. Remember, too, 

that all directories and system files which have ever been • 
incren~ntally dumped are also eligible for secondary 

dumping. For simplicity, we assume that system files can be 

identified by a special indicator kept in each entry. The 

combined incremental and secondary dumping algorithm, part 

2, is shown in figure 3.3. Also shown is the special 

dumping algorithm used for the system library which simply 

dumps entire subtrees. (Part l of the dumping algorithm, 

shown in figure 3.1, is identical for all types of dumps.) 

Note that the incremental dumper may, at times, turn on the 

sdsw for a file after that file has been encountered by a 
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Figure 3.3: The incremental <1nd secondary dumper algorithm (part 2). 
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concurrent secondary dump. This means that 

remain eligible for the next secondary dump. 

the file will 

Although this 

was not the intended purpose of turning on the sdsw, it does 

no harm since the file has already qualified for the next 

secondary dump as a result of being incrementally dumped 

after time2. 

User-controlled backup is basically invisible to the 

dumper. If a shadow copy exists for a file, the file system 

insures that the dumper sees the dtm of the shadow copy 

rather than the possibly nore current dtm of the original 

file. Similarly, when the dumper attempts to initiate a 

file for dumping, the file system insures that if a shadow 

copy exists, the shadow copy is initiated rather than the 

original copy. Precautions must be taken to prevent 

interference between the dumper and user processes when 

user-controlled backup is employed. The dumper may attempt 

to dump a file at the same time a user attempts to initiate 

the file, update its shadow copy, or terminate the file. 

Once again, the file system coordinates these operations in 

a manner unseen by the user or the dumper. Specific 

solutions to these problems for a proposed Multics 

implementation are discussed in chapter 4. 

The use of pathnames to identify file and directory 

copies causes problems for the backup system. Pathnames are 

composed of entry names which are, of course, subject to 
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change. If a pathname is recorded on tape with a backup 

copy, this pathname may no longer be valid at some later 

time when an attempt is made to reload the backup copy. 

Hence, the reloader may mistakenly decide that a file has 

been deleted and should not be reloaded when, in fact, all 

that has really happenned is that tl1e file has been renamed. 

To a lesser degree, the use of pathnames also causes similar 

trouble for the dumper. Between the time that the dumper 

obtains the entry list for a directory and the time it 

finishes dumping all eligible entries in that directory, a 

user may rename one or I'!Dre of tl1ose entries. It will 

appear to the dumper that these renamed entries have been 

deleted. 

Clearly, what is needed to resolve this naming problem 

is some means of identification not subject to change. For 

this purpose, a unique identifier (uid) is assigned to each 

entry at its time of creation. The file system guarantees 

that this uid will never again be assigned to another entry 

in the same directory even after the original entry has been 

deleted. In the same way that pathnames are constructed 

from entry names, "pathuids" are constructed 

uids. A pathuid is guaranteed to uniquely 

particular entry for the lifetime of the system. 

from entry 

identify a 

Pathuids can be viewed simply as numbers. Let us 

assume that each uid is represented by a single machine 
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word. Furthermore, assume that the maximum depth of the 

hierarchy is restricted to sixteen levels. Then, a pathuid 

can be represented by sixteen machine words which, together, 

can be treated as a single binary number. The uid of the 

root directory is always the high-order word of a pathuid. 

The uid of some immediate inferior of the root directory is 

always the second word of a pathuid, and so on for 

succeeding words. If the entry described by a pathuid is 

less than sixteen levels deep in the hierarchy, the 

low-order words of its pathuid are padded with zeroes. 

The idea of treating pathuids as numbers is employed 

during phase 1 reloading to synchronize parallel reloading 

processes as will be explained later. For this purpose, it 

is necessary that all files and directories appear in 

numerical pathuid order within a backup dump. This implies 

that the treewalk performed by the dumper should be 

organized so as to encounter files and directories in 

pathuid order. Therefore, for each directory searched, the 

entry list must first be sorted into ui<l order. This 

procedure guarantees that within a directory, all entries 

dumped will appear in uid order on the backup tapes. 

Furthermore, since this procedure is applied recursively to 

successively inferior directories, it follows that within a 

subtree, all entries dumped will appear in pathuid order. 

To insure that different subtrees appear in pathuid order, 
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the pathnames listed in the control file are converted to 

pathui<ls and sorted into numerical order at the beqinninq of 

each dump. Bence, all entries in the entire dump must 

appear on the dump tapes in pathuid order as desired. 

The sorting of entry lists, if performed for a large 

number of directories on every dump, can be expensive. 

Therefore, one might specifically design the file system to 

thread entry lists in uid order so that no sorting will be 

necessary. We will hereafter assume that entry lists are 

threaded in uid order. Hence, the only change to the dumper 

algorithm needed to dump files and directories in pathuid 

order is the sorting of the control file. This change to 

part 1 of the dumper algorithm is shown in figure 3.4. 

The dump record written on a backup tape for a file or 

directory includes a preamble followed by the contents of 

the file or directory. The preamble section includes a 

pathuid, pathname, time 

information to reconstruct 

dumped, 

the entry 

and 

of 

the 

the 

necessary 

file or 

directory plus all superior entries. The reasons for 

including all superior entries in each preamble will be 

explained in the ensuing discussions of reloading and 

retrieving. 

The Salvager 

Unlike the other backup system components, the salvager 
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Figure 3.4: The dumper algorithm (part 1, revised) 
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requires knowledge of internal file system structure. In 

fact, the specific nature of the salvaginq operation is 

determined by the peculiarities of this internal structure. 

The task of attempting to generalize or, at least, to 

systematize the salvager design is not undertaken in this 

thesis. Therefore, we will not be concerned so much with 

the method of salvaging, but rather Hith its results. The 

overview of salvaging contained in chapter 2 basically 

describes the current Multics salvager with a few added 

enhancements. In chapter 4, minor modifications to the 

Multics salvager are described which would 

compatible with the proposed backup system. 

make it 

When salvaging concludes, the directory structure of 

the file hierarchy and the storage assignment tables have 

been put in a consistent state. Those files which were not 

properly terminated at the time of the crash have been 

flagged as potentially inconsistent. Those directories in 

the hierarchy from which entries were lost have been 

appropriately marked. Each entry which describes a 

directory contains a missing entries switch (mesw) for this 

purpose. Also, to improve reloading efficiency, the 

salvager labels the superior entries of those entries in 

which it has turned on the mesw. Each entry contains an 

inferior reload switch (irsw} for this purpose. When turned 

on by the salvager, the irsw indicates the existence of an 
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inferior entry having its mesw turned on. However, the irsw 

is also used for other purposes by the reloader as described 

in the next section. 

The H.eloader 

The phase 1 reloader is designed to read through backup 

tapes in search of files and directories eligible for 

reloading. As described in chapter 2, backup dumps are 

selected for reloading in reverse chronological order so 

that the most recent copies of files and directories will be 

encountered first after which older copies can be ignored. 

Each dump is scanned from beginning to end so as to retrace 

the treewalk originally performed by the dumper. This 

procedure insures that the reloader will never encounter a 

file or directory before first encountering all of its 

superior directories (except in the unusual case of a tape 

reading error described later}. 

The only files and directories eligible for reloading 

are missing inferiors of those directories for which the 

salvager has turned on the mesw. If the reloader finds on 

tape a file which already exists in the hierarchy, then 

either that file was successfully salvaged or else the most 

recent backup copy has already been reloaded. The same is 

true of directories except when the mesw is enabled. In 

this case, missing entries should be restored to the 
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directory. Whenever a directory does not deserve to be 

reloaded, the reloader knows inunediately that none of its 

inferiors deserve to be reloaded unless the irsw for that 

directory is turned on. 

The first step in the hierarchy restoration process 

occurs when the reloader finds on tape a copy of a directory 

for which the mesw has been turned on. At that time, all 

entries in the backup copy of the directory not already in 

the hierarchy are restored. In each such entry, a reload 

pending switch (rpsw) is turned on which prevents the entry 

from being initiated by a user. The mesw can now be turned 

off since all entries have been restored. However, the irsw 

is turned on to indicate that inferior files and directories 

must be reloaded. 

After missing entries have been restored to a 

directory, the reloader proceeds to recover the files and 

directories belonging to those entries. When the reloader 

finds on tape a file for which the rpsw has been turned on, 

the file is reloaded and its rpsw is turned off. Also, a 

reload flag is set in the entry of the file to warn users 

that a backup copy of the file has been recovered. 

Similarly, when the reloader finds on tape a directory for 

which the rpsw has been turned on, the directory is reloaded 

and its rpsw is turned off. To insure that the inferiors of 

this directory are recovered, the rpsw is turned on in each 
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entry contained in the directory and the irsw for the 

directory itself is turned on. In this way, all missing 

files and directories encountered during phase 1 are 

restored to the hierarchy. 

Notice that the entry for a file or directory is 

restored at the time its parent directory is reloaded. 

Therefore, if the entry for a file or directory does not 

exist in the hierarchy at the time the reloader encounters a 

backup copy of that file or directory on tape, this 

indicates that the entry has been legitimately deleted and 

should not be reloaded. Of course, when the reloader 

determines that a directory has been deleted, it knows that 

all inferiors of that directory have also been deleted and 

should not be reloaded. 
' 

There is one situation which contradicts the above 

assumption regarding deletions. When a tape reading error 

occurs causing backup records to be skipped, the reloader 

may encounter a file or directory before some of its parent 

directories have been restored. The reloader should not 

bypass readable files and directories simply because their 

superiors could not be read. This would only increase the 

severity of the error. Hence, the reloader must be able to 

distinquish between legitimately deleted entries and entries 

not restored due to tape errors. Fortunately, this 

uistinction can be made quite easily. In the absence of 
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tape errors, the superiors of a file or directory will 

always precede it in a dump. Therefore, at the time a file 

or directory is read from tape, it should be true that none 

of it superior directories will have the rnesw or rpsw turned 

on. If such a superior directory does exist, then a tape 

error (or perhaps some other error) must have prevented 

intervening directories from being reloaded. Therefore, the 

reloader must fabricate these intervening directories in 

order to reload the file or directory in hand. The entry 

for this file or directory plus the entries of all superior 

directories are contained in the preamble section of the 

current dump record. Hence, these entries can be restored 

immediately. Other entries, however, cannot be restored to 

the fabricated directories. Therefore, in the entry for 

each fabricated directory the reloader turns on a 

fabrication switch (fabsw) to indicate that these 

directories have not been completely reloaded. If a copy of 

a fabricated directory is later encountered on an older dump 

during phase 1, missing entries and non-entry items will be 

restored and the fabsw will be turned off. 

One last concern of the phase 1 reloader is to make 

certain that for each reloaded file and directory, the dtd, 

sdsw, and secondary dump tape address are properly reset. 

Except in the case of tape errors, the entry for a file or 

directory is restored at the time its parent directory is 
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reloaded. ~t the time a directory is dumped, however, its 

inferiors have yet to be dumped. Hence, the dtd, sdsw, and 

tape address for an entry may change after its containing 

directory has been dumped if the entry itself is dumped. 

Therefore, if a file or directory is reloaded from the same 

dump as its parent directory, the latest backup information 

must be restored when the file or directory itself is 

encountered. When reloading an incremental dump record, the 

<ltd and sdsw must be updated. When reloading a secondary 

dump record, the sdsw and tape address must be updated. The 

phase 1 reloading algorithm is summarized in the flow charts 

of figures 3.5 and 3.6. 

As mentioned earlier, multiple reloading processes can 

be employed during phase 1 to reload several dumps 

concurrently. One rule of the phase 1 reloading algorithm 

is that the latest backup copies of files and directories 

must be encountered first. Hence, if several dumps are to 

be reloaded at once, some mechanism must be employed to 

insure that this rule is obeyed. As explained earlier, 

files and directories always appear in pathuid order within 

a dump. A pathuid uniquely and permanently identifies the 

tree position of a file or directory within the hierarchy 

relative to all other files and directories. As the 

reloader scans a dump from beginning to end, it essentially 

retraces the treewalk originally performed by the dumper. 
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Figure 3.5: The phase 1 reloader algorithm (part 1). 
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Figure 3.6: The phase 1 reloader algorithm (part 2). 
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Therefore, parallel reloading processes can be synchronized 

according to tree position. A reloader scanning a 

particular dump must stay behind (in terms of tree position) 

all reloaders scanning more recent dumps. In order to 

distinguish the relative ages of <lumps, each dump reloaded 

during phase 1 is assigned a sequence number. The most 

recent dump is assigned sequence number one. The second 

most recent dump is assigned sequence number two, and so on 

for older dumps. A counter accessible to all reloading 

processes gives the sequence number of the next dump to be 

reloaded. Initially, of course, this counter is set to one. 

When a reloading process begins a new dump, it takes the 

current sequence number from the counter and then increments 

the counter by one. For each dump to be reloaded during 

phase 1 there exists a tree position indicator accessible to 

all reloading processes. The contents of a tree position 

indicator is a pathuid. As a reloading process scans 

through dump i, it repeatedly updates the tree position 

indicator for dump i with the pathuid of the file or 

directory it has last scanned. A reloading process working 

on dump i is forbidden to pass the tree position of the 

reloading process working on dump i-1. The synchronization 

discipline of the phase 1 reloading algorithm, part 1, is 

sununarized in the flow chart of figure 3.7. Part 2 of the 

phase 1 reloading algorithm is unchanged. 
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Figure 3.7: The phase 1 reloader algorithm (part 1, revised). 
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Phase 1 normally ends after the latest secondary dump 

has been reloaded. At this point, all directories should be 

restored. If, however, any portion of the latest secondary 

<lump is unreadable, certain directories may not be restored. 

If a large number of directories could not be recovered, 

phase l can be extended to include older secondary dumps 

until all directories have been reloaded. If only a small 

number of directories were missed due to tape errors, these 

directories can be separately retrieved during or after 

phase 2 reloading. 

At the conclusion of phase 1, the entries of all files 

to be reloaded during phase 2 can be found in the hierarchy. 

In each of these entries, the rpsw is turned on. Remember 

that every entry in the hierarchy contains the tape address 

of the latest secondary backup copy of its associated file 

or directory. Hence, the hierarchy is searched and the tape 

addresses of all files deserving to be reloaded during phase 

2 are extracted into a list. Note that it is not necessary 

to search all directories in the hierarchy for entries 

having the rpsw turned on. For any such entry, the irsw 

must be turned on in all superior entries. Hence, entries 

having the rpsw turned on can be located with a minimum of 

searching. At the same tirae it may also be useful, for 

diagnostic purposes, to produce a reload map, i.e. a listing 

of all files and directories reloaded during phase 1 or 
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eligible for reloading during phase ") 

~-
As described 

previously, the rpsw, rnesw, and fabsw are turned off for 

those files and directories reloaded during phase 1. 

Instead of turning these switches off, the phase 1 reloader 

will set them to a "standby" position so that files and 

directories reloaded during phase 1 can be recognized and 

hence a reload map can later be generated. 

Now begins phase 2 which is entirely automatic. The 

list of tape addresses compiled during the hierarchy search 

is sorted by tape reel number and record number. This 

sorting groups together tape addresses having identical reel 

numbers, and within each such group, the record numbers 

appear in numerical order. Each group of tape addresses 

having a common reel number can be interpreted as a 

reloading guide which identifies the locations of files to 

be reloaded on a given reel. As many reloading processes as 

JX>Ssible (or as is optimal) are created, each being assigned 

a tape drive. Each reloader selects a reloading guide for a 

particular reel and requests that the corresponding reel be 

mounted. It then skips through the tape, stopping at the 

record numbers found in the reloading guide, and reloading 

the files found at each stop. Notice that no interprocess 

synchronization is required during phase 2. Reloading ends 

when all reels containing missing files have been processed. 
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The Retriever 

The retriever program is designed to restore specified 

files and directories to the hierarchy from backup tapes. 

The pathnames of files and directories to be retrieved are 

listed in a control file accompanied by the tape addresses 

of the desired backup copies. Hence, in order to retrieve a 

particular backup copy of a file or directory, the retriever 

merely mounts the specified tape reel, skips to the 

specified location, and reads the backup record found at 

that location. The pathnames and tape addresses included in 

a retrieval control file are determined by examining dump 

maps as described in chapter 2. 

For each directory pathname included in a retrieval 

control file, a "subtree" option may specified. The subtree 

option indicates that not only should the directory itself 

be retrieved, but also all inferiors of that directory on 

the same tape. The dumping algorithm insures that all 

members of a subtree ~ust appear contiquously within a dump. 

Hence, beginning with the head directory of the subtree, the 

retriever simply reads each backup record in sequence until 

reaching the end of the subtree or the end of the tape. 

The retrieving of a subtree is handled quite 

differently from the reloading of a subtree. At the time a 

directory is retrieved, only the non-entry information is 

restored. The entries contained in the directory are not 
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restored at this time since not all of the inferiors of the 

directory will necessarily be retrieved. For example, if a 

subtree is retrieved from an incremental tape, many inferior 

files and directories of the subtree may not be retrieved 

because they were not included in the incremental dump. 

Therefore, the entry for a file or directory is not restored 

at the time its parent directory is retrieved, but rather at 

the time the file or directory itself is retrieved. A user 

may request that a file, directory, or subtree be retrieved 

for which some superior directories no longer exist. In 

this case, the superior directories are simply created with 

default attributes. The entries for these superior 

directories can be restored from the preamble portion of the 

backup record being retrieved. 

Often a user may wish to retrieve a subtree, some part 

of which still exists in the hierarchy. In this situation, 

the user normally will not want existing files and 

directories to be overwritten by hackup copies. He will 

want only those files and directories which do not currently 

exist in the hierarchy to be retrieved. Hence, if a file or 

directory encountered on a hackup tape still exists in the 

hierarchy, it is not retrieved as a matter of standard 

procedure. In certain circumstances, however, a user may 

wish t.o overwrite an existing file or to restore non-entry 

information to an existing directory. Therefore, for each 
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pathname in 

option may 

overwrite 

the retrieval control file, an "overwrite" 

be specified which will cause the retriever to 

existing files and to restore non-entry 

information to existing directories. 

The retriever algorithm is summarized in the flow chart 

of figure 3.8. 
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Figure 3.8: The retriever algorithm. 
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CHAPTER 4 

A MULTICS IMPLEMENTATION PLAN 

As described in chapter 1, the backup system design 

presented in this thesis represents a continuing evolution 

of earlier file system backup facilities implemented on CTSS 

and Multics. The success of these earlier mechanisms in 

augmenting file system reliability has already demonstrated 

the usefulness of the general design approach. The 

inability of the current Multics backup system to scale up 

with system growth, however, has been the principal 

motivation for seeking improvements. The recent movement of 

Multics to a new hardware base has substantially increased 

system work capacity. As a result, much concern has 

developed regarding file system reliability in general, and 

backup system overhead and performance in particular. 

One objective of the work of this thesis has been to 

produce a practical design which could be implemented on the 

Multics system and perhaps, with appropriate translation, on 

other large-scale time-sharing systems as well. In this 

chapter the job of implementing the backup system defined in 

chapters 2 and 3 within Multics is examined. This chapter 

is intended primarily for readers familiar with the Multics 

system. 

The present Multics backup system contains dumper, 
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reloader, retriever, and salvager modules. The Multics 

salvager will require only minor modifications for use with 

the new backup system. The present dumper, reloader, and 

retriever differ substantially, however, from their proposed 

counterparts and hence must be discarded. 

reloader, and retriever programs must be 

according to the specifications of chapter 3. 

New dumper, 

implemented 

A number of changes and additions to the Multics file 

system will be required to support the new backup system. 

The file system is not currently equipped to deal with 

pathuids, but this capability can be added in a 

straightforward manner. Several new backup-related items of 

information must be added to each entry in the Multics file 

hierarchy, some of which require special interpretation by 

the file system during reloading. Also, a new file system 

interface is needed for the dumper and reloader. A number 

of file system enhancements will be required to provide the 

user-controlled backup option described in chapter 2. 

In summary, the implementation tasks for the new backup 

system include: 

1. new dumper, reloader, and retriever programs 

2. handling pathuids within the file system 

3. new directory items and related changes 

4. new backup system interface to the file system 

5. salvager modifications 
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6. user-controlled backup 

The dumper, reloader, and retriever programs ~ave 

already been carefully described in chapter 3 and hence will 

not be reviewed in thi~ chapter. 

separately considered here. 

Each of the other tasks is 

At the conclusion of the 

chapter, an integrated plan is suggested 

implementation of the backup system on Multics. 

Handling Pathuids Within the Fil~ System 

for the 

As discussed in chapter 3, pathuids serve two purposes. 

First, they permit the dumpet· and t.h.e reloader to be 

unaffected by entry name changes. Second, they permit the 

synchronization of parallel reloading processes during phase 

l reloading. Each entry in the l'.iultics file hierarchy is 

assigned a uid. However, thf.se uids cannot be used to name 

entries in any way t.mderstood bl the fi.Le system. 

The abilit.{ to accept pathuid~ :._.r. place o 2 pathnames 

can be added to the Multics file system ir:. a straightforward 

manner. A file system module known as i.find " is 

responsible for searching the hierarchy for entries 

specified by pathname.. A. new entrv point could eas5.l v be 

added to this module to nandlc pc-thu.:i.ds., The basic 

searching logic of the find program would be t:hf:' same for 

pathuids as for pathnames. He 11ever, tne pathname lookup 

procedure makes use cf entry name hash tables kept in each 
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directory. Therefore, in order to achieve equal efficiency 

in the use of pathuids, uid hash tables must be added to 

each directory. 

The addition of uid hash tables to directories will 

require a non-trivial amount of work and, once .implemented~ 

will slightly increase file system overhead. Therefore, one 

must question the necessity of such a change. The present 

Multics dumper and reloader operate without the benefit of 

pathuids. Unfortunately, however, they do not operate 

correctly. Both the dumper and the reloader are susceptible 

to confusion caused by entry name changes. 

the name of an entry being examined by 

For example, if 

the dumper is 

changed, or if the name of any superior entry is changed, it 

will appear to the <lumper that the renamed entry has been 

deleted. This implies that the renamed entry and its 

inferiors, if any, will be skipped by the dumper. A more 

serious error can occur if a name is moved from one entry to 

another entry in the same directory. In this case, the 

dumper may actually dump the wrong file or directory due to 

the name switch. 

Although the present dumper is oblivious to its own 

problems, it is concerned about the problems of reloading. 

In an effort to insulate the reloader from the effects of 

entry name changes, the dumper incrementally dumps every 

file and directory having a modified entry. The reasoninq 

102 



behind this strategy is that a modified entry might imply a 

ItK>dified entry name. Therefore, anytime any entry attribute 

is modified, the associated file or directory is dumped. In 

addition to being grossly inefficient, this strategy also 

fails to make reloading work properly. Whenever a directory 

name is changed, the pathnames of all inferiors are also 

changed. Hence, the present reloader will occasionally fail 

to reload a directory or, worse yet, will combine two 

different directories. To rectify this situation, it would 

be necessary to dump the entire subtree of a directory each 

time the directory was renamed. (And even this heavy-handed 

measure would not succeed if a crash occurred during a 

dump.) 

All of the above problems are eliminated by the use of 

pathuids. 

facilitated 

Also, user 

by the use 

logins during 

of pathuids. 

reloading 

Hence, 

are 

the 

implementation of pathuids within the Multics file system 

seems warranted. 

New Directory Items ~ Related Changes 

Several new items of backup information must be added 

to each entry in the Multics file hierarchy. Included in 

this group are the secondary dump switch (sdsw), the 

secondary dump tape address, the missing entries switch 

(mesw), the inferior reload switch (irsw), the fabrication 
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switch (fabsw), and the reload pending switch (rpsw). In 

order to permit user logins during reloading, the file 

system must enforce certain restrictions associated with the 

reload-related switches. First, the file system must be 

modified to forbid the initiation of files and directories 

for which the rpsw is enabled. An appropriate error message 

must be returned to the user. Second, whenever a request is 

made during phase 1 reloading to add an entry name to a 

directory or to delete an entry from a directory for which 

the mesw or the fabsw is enabled, the user must be warned 

that his request may affect the reloading of the directory 

as explained in chapter 2. 

A New Backup System Interface !2, ~ ~ System 

A number of new file system 

provided exclusively for the use of 

These new file system •primitives• 

Note that all of these primitives 

commWlicate with the file system. 

entry points must be 

the backup system. 

are described below. 

use pathuids to 

Four file system primitives are needed by the dumper: 

1. get_directory 

This procedure is called by the dumper to obtain a 

copy of a specified directory. Naturally, a 

directory copy is produced under the protection of 
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the directory lock in order to insure consistency. 

2. uid initiate 

This procedure is called by the dumper to initiate a 

file specified by pathuid. 

3. set dtd 

This procedure is called by the dumper when 

performing an incremental dump to reset the dtd for 

a specified entry. Also, the sdsw for the entry may 

optionally be turned on. 

4. set_tape_addr 

This procedure is called by the dumper when 

performing a secondary dump to reset the secondary 

dump tape address for a specified entry. Also, the 

sdsw for the entry is turned off. 

Nine file system primitives are needed by the reloader: 

1. reload status 

This procedure is called by the reloader to obtain 

the rpsw, irsw, mesw, and fabsw settings for a 

specified entry. If the specified entry does not 

exist, the same information is returned for the 

closest superior entry which does exist. 
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2. load_directory 

This procedure is called by the reloader to restore 

an entire directory. The rpsw is turned on in each 

entry contained in the directory. The rpsw for the 

directory itself is turned off and the irsw is 

turned on. 

3. reload initiate 

This procedure is called l.>y the reloader to initiate 

a file to be reloaded. It differs from the 

•uid_initiate• call only in its ability to initiate 

a file for which the rpsw is turned on. 

4. reload terminate 

This procedure is called by the reloader to 

terminate a specified file which has been reloaded. 

The rpsw is turned off for the file. 

s. get_uid_list 

This procedure is called by the reloader to obtain a 

list of uids for all entries of a specified 

directory for which either the mesw or the fabsw is 

enabled. By comparing this list to a list of uids 

obtained from a backup copy cf the directory, the 

reloader can determine the identities of missing 

entries deserving to be reloaded. 

106 



6. load_entry 

This procedure is called by the reloader to restore 

a missing entry to a specified directory for which 

the mesw or the fabsw is enabled. Either the rpsw 

or the fabsw may optionally be turned on in the 

restored entry. Note that the entry must be 

inserted in uid order within the entry list. 

7. reset dir switches 

This procedure is called by the reloader to turn off 

both the rnesw and the fabsw for a specified 

directory and to turn on the irsw after all missing 

entries have been restored. 

a. set dtd 

(same as above) 

9. set_tape_addr 

(same as above) 

Salvager Modifications 

The current Multics salvager can be employed by the new 

backup system with relatively few changes. The only 

significant modification to salvager operation is the 

communication between the salvager and the reloader. The 

salvager will indicate to the reloader those directories 
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from which entries are lost. This is accomplished through 

the use of the irsw and the mesw as described in chapter 3. 

The cooperation of the salvager and reloader in 

assessing file system damage and reloading only missing 

files and directories represents a considerable improvement 

over the present Multics recovery scheme. Currently, 

whenever the salvager fails to recover all but a few files 

or minor directories, a co1w~lete reload of secondary storage 

must be performed. Even though the salvager may succeed in 

saving a large fraction of the hierarchy, these files and 

directories are simply abandoned due to the nature of the 

current reloading scheme. Because a storage device failure 

always implies a complete reload of on-line storage,· the 

Multics salvager has not been designed to run after a device 

failure. 

Under the new recovery scheme, a device failure will 

not necessarily imply a complete reload of on-line storage. 

As discussed in chapter 2, the level of catastrophe will 

depend upon the storage allocation strategy used. 

Currently, the Multics file system views secondary storage 

essentially as one large allocation pool. Pages of files 

and directories are arbitrarily as~igned to different 

storage devices. Hence, the failure of any single device is 

likely to destroy some number of directories and thereby 

effectively destroy inferior files and directories on other 
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devices. For this reason, even under the new recovery 

scheme, a device failure is likely to necessitate a major 

recovery effort. 

The proposed salvaging/reloading method will benefit 

substantially from the adoption of a new storage allocation 

strategy. The idea of assigning subtrees of the file 

hierarchy to a portion of a storage device, a whole storage 

device, or a group of storage devices was described in 

chapter 2. Under this scheme, the failure of a single 

device will necessitate reloading only a limited, 

well-defined section of the file hierarchy. If such an 

allocation strategy is adopted, it will then become 

worthwhile to modify the current Multics salvager to operate 

following a system crash caused by a device failure. This 

basically involves the additon of a mechanism to inform the 

salvager that a particular device is •out-of-service• and 

hence any pages located on the device must be considered 

destroyed. 

One other file system change which could improve 

salvaging success is the storing of a uid and page number 

with every page in secondary storage. Following a system 

crash, the salvager may detect a reused address, i.e. a page 

in secondary storage claimed by 1oore than one segment. 

Currently, the salvager has no means for determining the 

true identity of such a page and hence, for security 
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reasons, the page cannot be awarded to any segment. This 

problem can be eliminated by storing a uid and page number 

with every page. 

User-Controlled Backup 

A user-controlled backup optio~ was dGscLihed in 

chapter 2 which effectively gives the user the ability to 

specify the times at which backup copies are produced. With 

this degree of control, an application program can guarantee 

the consistency of backup copies and can record the status 

of backup copies relative to file updates in progress. 

Currently, no such facility is available in the Multics file 

system and little demand for such an option has developed. 

However, as the Multics system ventures into the cormnercial 

world, the need for a user-controlled backup facility may 

evolve. 

Enhancements to the Multics file system will, of 

course, be required to support the user-controlled backup 

facility. The file system must be adapted to create and 

maintain shadow copies. Users must be provided with some 

means for initiating, updating, and terminating files in 

user-controlled backup mode. Similarly, the dumper must be 

provided with a means for initiating and terminating shadow 

copies. 

The file system must manage the creation, updating, and 
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deletion of shadow copies in such 

processes and the dumper may 

asynchronously without unwarranted 

a fashion 

continue 

delays 

that user 

to operate 

or other 

interference. A problem arises, however, if a user attempts 

to update or terminate a file while its shadow copy is being 

dumped. Clearly, the shadow copy cannot be discarded at 

that time. Therefore, the dumper will turn on a dump switch 

in the entry of a shadow copy before dumping it. If a user 

attempts to update a shadow copy for which the dump switch 

is on, a second shadow copy will be created. If a user 

attempts to terminate a file with a shadow copy for which 

the dump switch is on, the shadow copy will not be deleted 

immediately. When the dumper finishes dumping a shadow 

copy, it will turn off its dump switch. If a more recent 

shadow copy has been created, or if the file is no longer 

initiated in user-controlled backup mode, the shadow copy 

will be deleted. 

The frequent updating of shadow copies can be 

prohibitively expensive, especially when large files must be 

copied. Therefore, it may be desirable to simply copy the 

page map for a file rather than copy the file itself. A 

special bit must be turned on in each page map word of the 

file to indicate that if the associated page is ever 

modified, it must be written out to a new secondary storage 

address. Hence, the file and its shadow copy will initially 
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share all pages of the file in secondary storage. As the 

file is used, however, roodified pages will be written to new 

secondary storage locations. Note that a file and its 

shadow copy will not share any pages in main memory. 

Three new file system primitives are required for ordinary 

.ocrs • 

1. ucb initiate 

This procedure is called by a user program to 

initiate a specified file in user-controlled backup 

JK>de. If a shadow copy does not already exist, one 

is created. 

2. ucb_update 

This procedure is called by a user program to update 

the shadow copy for a specified file. The former 

shadow copy is discarded unless its dump switch is 

turned on in which case a second shadow copy is 

created. The dtm of the new shadow copy is returned 

to the user. 

3. ucb terminate 

This procedure is called by a user program to 

terminate a specified file. The current shadow 

copy, if any, is discarded unless its dump switch is 

turned on or unless the file is initiated in 
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user-controlled .backup mode by other users. The dtm 

of the original file is retur.!led to the user. 

Two new file system primitives are needed by the dumper: 

1. dumper_initiate 

This procedure is called by the dumper to initiate a 

specified file for dumping. If a shadow copy 

exists, the shadow copy is initiated instead. The 

dump switch is turned on in the entry of the file or 

its shadow copy, whichever is initiated. 

2. dumper_terminate 

This procedure is called by the dumper to terminate 

a specified file or its shadow copye If a shadow 

copy is being terminated, but the file is no longer 

in user-controlled ba.ckup mode, or a more recent 

shadow copy has been created, then the shadow copy 

is deleted. Otherwise, the shadow copy remains and 

its dump switch is turned off. 

Suggested Implementation Plan 

As can be seen from the 

implementation of the proposed 

substantial amount of work~ 

preceding discussion, the 

backup system involves a 

Rather than attempting to 

implement all of the new backup system features at once, the 
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work can be divided into several stages. 

implementation will include only those 

The first stage of 

tasks absolutely 

necessary to produce a preliminary, operative version of the 

new backup system. Succeeding stages can then add those 

features anitted from the preliminary implementation. A 

plan of this type is suggested below. 

Stage 1: A preliminary backup system 

1. Modify the file system to accept pathuids. 

2. Add new entry items to the directory format. 

3. Implement the new backup system interface to the file 

system. 

4. Implement the dumper, reloader, and retriever. 

5. Modify the salvager to set the mesw and the irsw. 

At this point the new backup system can begin 

operation. The easiest way to change ov~r to the new backup 

system is simply to shut down the system and perform a 

complete dump of the entire hierarchy with the new dumper. 

Normal Multics operation can then be resumed using the new 

backup system. 

Stage 2: User logins during reloading 

1. Modify the file system to properly interpret the rpsw, 

mesw, and fabsw. 
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Stage 3: File system reliability improvement 

1. Modify the file system storage allocation strategy to 

assign subtrees to •1ogical devices• and to duplicate the 

superstructure of the file hierarchy. 

2. Modify the salvager to be able to run after a device 

failure. 

Stage 4: User-controlled backup 

1. Modify the file system to create and maintain shadow 

copies. 

2. Implement the user and dumper interface to the 

user-controlled backup facility. 

3. Modify the dumper to use the new interface. 
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CHAPTER 5 

CONCLUSIONS 

Sununary of Results 

This thesis has described a design for an automatic 

backup system td be incorporated in a computer utility for 

the protection of on-line information against accidental or 

malicious destruction. As discussed in chapter 1, the 

present Multics backup system has served as a starting point 

in the development of this design. Therefore, it now seems 

appropriate to review the problems of the Multics backup 

system which this thesis has attempted to solve, and to 

identify improvements and innovations in the new design. 

The present Multics backup system has succeeded in 

augmenting storage reliability to the point where users 

routinely and confidently entrust their only copies of 

infonnation to an internal file system. This confidence 

stems from the ability of the Multics backup system to 

enforce a maximum work loss limit of one or two hours. 

Unfortunately, however, the Multics backup system has not 

achieved a reasonable compromise between cost and recovery 

time. In spite of significant dumping overhead, recovery 

time from all but the mildest of failures is intolerably 

slow. Also, Multics operation must be interrupted 

116 



periodically for backup purposes which contradicts a 

computer utility objective of continuous service. The most 

distressing shortcoming of the Multics backup system, 

however, is its inability to scale up with system growth. 

The problems of high cost, slow recovery, and interruptions 

of service all worsen steadily with on-line storage 

expansion. 

The need to periodically shut down the Multics system 

for backup purposes is due to a special type of dump known 

as a •save". A save is essentially a paqe-by-nage copy of 

secondary storage which ignores ::he logical structure of the 

file hierarchy. The viri~ue of a save is that it can be 

reloaded nvre quickly than a standard backup dump. 

Unfortunately, however, il save c.~nnot be performed during 

normal sys tern operation. There fore, to limit recovery time, 

Multics is shut down for a fE:..w hours every other day to 

perform a save. Currently, these interruptions of service 

are tolerable. However, with cont:inning on-line storage 

growth, these inte~.~ruptions wonld soon become intolerable. 

Therefore, saves have been eliminated from the new design. 

The high cost of dumping in the current Multics backup 

system is due 

dumper program. 

at least- in part to the inefficiency of the 

Hence, in the new design, the dumper 

:.Jeen streamlined substantiall:y.. The new file program has 

system interface for the dumper sucrgested in chapter 4 

117 



should yield a siqnificant performance improvement. Of 

course, the elimination of saves represents a major cost 

redvction in t.hia form of increased system availability. 

Th~ :'.:oremost. innovation of this thesis has been the 

design of an c~ntirely new crash recovery procedure which 

offers drama~ic improvements over the current Multics 

recovery scheme. The cooperation of the salvager and the 

reloadez. in asse~sing file system damage and reloading only 

:missing files and directories is one such improvement. In 

the curr~.nt Multics backup system, no communication link 

ex~nts betNeen the salvager and the reloader. Hence, 

whenever the ~J;:..lvager fails to recover all but a few files 

or minor dL-:-ecw:r.ies, a complete reload of on-line storage 

must be performed~ Thus, moderate failures are no less 

disasterous i:.1.J.un total failures under the present Multics 

recovery echeme3 

A second major improvement to the crash recovery 

procedu.re ~-s a. new tape searching strategy employed by the 

reloader. ~he current Multics reloader searches every 

brckup tape which might possibly contain files or 

directorJ.es e;ligible for reloading. In the new design, the 

reload.i..ng operation has been divided into two phases. 

During phaSf~ ~ _ .. , the latest incremental dumps and the most 

rl!c:en t s'C!'condary dun1p are searched for missing files and 

directorier.>. The bulk of reloading, however, is generally 
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performed during phase 2 which requires no tape searching~ 

The tape addresses of all files to be recovered during phase 

2 are known by the end of phase 1. Hence, only those tapes 

containing missing files need be examined during phase 2. 

If not for phase 2, it would be necessary to examine all 

secondary dump tapes produced since the latest complete dump 

no matter how small or how large the extent of damage. 

Hence, it is the efficiency of phase 2 reloading which makes 

the salvager/reloader cooperation valuable. 

A third major improvement to the crash recovery 

procedure is the ability to open the system to users during 

reloading. This is especially attractive in view of the 

fact that salvaged portions of the hierarchy will be 

immediately available. If no system files require 

reloading, the system can be opened to users as soon as 

salvaging has completed. Otherwise, the system can be made 

available to users after phase 1. Hence, only those users 

whose files are actually destroyed by a system failure need 

suffer any considerable delay before resuming work. 

The fourth and last major improvement to the crash 

recovery procedure is the parallel processing capability of 

the reloading operation. Multiple dump tapes can be 

simultaneously processed both during phase 1 and phase 2 

reloading. Therefore, maximum advantage can be taken of 

available processing and I/O capacity. 
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All of tim :ihove impx:ovements significantly enhance the 

ab:i.lity of the backup system to ecale up with system growth. 

Having discarded saves, the probleni of system shutdown time 

increasing with OAl""line storage size is entirely eliminated. 

Also~ in the absence of save•, dumping costs need not rise 

sharply with secondary &toraqe growth. The cost of 

incrt::triei~t.;al dumpiilg ia proportional to system processing 

aci:..ivity dl&d therEifore will remain a constant fraction of 

system procesaing time regardless of on-line storage 

expu.11slon. The saiac ia true of partial secondary dumping. 

Al th,,ugh the oo&t of complete secondary dumping will 

increase in proportion to secondary storage usage, complete 

secondary dumping need not be performed frequently. This is 

feasible because the resolution of the backup system is 

upheld by incremental dWllping and because recovery speed has 

been substantially increased Wlder the new design. 

Au imp0rtant consequence of the parallel processing 

c.:apabili'l.:y of the reloading operation is that reloading time 

~~dn b.,. ht.!ld (...'01u:itant with system growth so long as on-line 

uto~·age <:Xt-JiiUSioa is balanced by corresponding increases in 

pi o•:e•J:;in9 d.nd l/O caEJaCity. Of course, in many computer 

systems, on-line storage growth typically surpasses 

increaBes in processing and I/O capacity. Therefore, the 

time required to fully reload on-line storage will increase. 

H0wev0"'~ it thi.:3 should become a serious problem, additonal 
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tape drives and I/O channels can usually be aeJed to 

compensate for storage growth. 

System failures which necessitate reloading all of 

on-line storage are extremely rare. Hence, much care has 

been taken to optimize recovery from the milder, more common 

failures. Due to the new salvager/reloader cooperation and 

the new two-phase reloading strategy, the work of recovery 

has been made commensurate with the extent of damage. Only 

missing files and directories need be reloaded and, during 

phase 2, only tapes containing missing files need be 

examined. Also, the ability to open the system to users 

during reloading will, in most cases, permit the majority of 

users to resume work quickly following a system crash. 

Thus, for all but the very worst and most rare of system 

failures, recovery time need not increase with on-line 

storage size. 

In addition to reduced overhead and faster recovery, a 

new functional capability has been added to the backup 

system design. Currentlyr no convenient means exists for 

Multics users to exercise any control over the production of 

backup copies. The user-controlled backup facility corrects 

this deficiency by permitting application programs to 

specify the times at which files subject to modification are 

copied. With this degree of control, an application program 

can guarantee the consistency of backup copies and can 
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record the status of backup copies relative to file updates 

in progress. 

Remarks 

The subject of on-line storage backup and recovery in 

qeneral-purpose computer sytems has rarely received adequate 

attention from system designers. In the past, the idea of a 

system-provided backup mechanism was often wrongly dismissed 

as unnecessary or impractical. Today there is little 

argument about the need for on-line storage backup, but few 

serious design efforts have been undertaken. Too often 

system designers have underestimated or failed to recognize 

the difficult problems and important objectives of a backup 

system. Consequently, many mechanisms have been implemented 

which do not of fer satisfactory protection and which cannot 

neet the demands of system growth. This thesis has 

attempted to expose and to deal with a number of issues 

inherent in on-line storage backup and recovery. It is 

hoped that the work described here will be of interest to 

designers of future computer systems. 
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