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ABSTRACT 

A general model for parallel computation is developed in three 
parts. One part, the data flow graph, describes how actors which 
transform and test values are connected to the locations in a finite 
memory. Another part, an interpretation, supplies information about 
the contents of memory and the detailed nature of the transformations 
and tests. 

The third part :;pecifies how initiations und terminations of the 
act ore; clrE3 allowed to occur. We defi.ne this in a p;eneral way, using 
a S';t of sequences of initiation and termination events to model 
control. This allows us lo prove results which apply to a broad 
class of control mechanisms. 

Our major results are analogous to a theorem of Karp and Miller. 
Their theorem defines a class of schemata for which conflict­
[reeness is necessary and sufficient for determinacy. We use a 
w~ak~r notion of determinacy which depends only upon the final 
contents of a c;ubset of the memory locations. To establish 
necessity, we introduce the property of productivity which 
expresses whetlwr in div iclual transformations and tests con tribute 
to the final results of a computation. 
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1.1. l A Note on Mathematical Style 

It is conventional to use single lett~r~ to identify mathematical 

objects such as function:;, sets and relations. The advantage is 

primarily one of conciseness. Unfortunately, this may come at the 

expense of understandability, and almost certainly with a loss of 

readability. The number of formal oi: .'.~,~ts which will be in traduced in 

the course of this dissertation would quickly exhaust the alphabets 

commonly available on typewriters. Worse still, the mnemonic value 

would be vanishingly small. 

We will therefore abandon the single letter convention and freely 

use words or even phrases to identify formal objects. As often as not, 

the name we choose for a set will simply be the plural form of thP 

elements it comprises. Thus, we will not feel obliged to mention that 

SCHEMA INPUTS is a set whose elements are, in fact, schema inputs. As 

a means of avoiding unintended confusion, we will capitalize formal 

names. We will use these conventions throughout with the hope that 

they will enlighten rather than confuse. 

When mathematical precision conflicts with clarity or perspective 

in our definitions or proofs, we will favor the latter. For example, 

we will talk about "edges labeled with numbers" rather than formalize 

a "function from the set of edges into the natural numbers." In all 

cases, it should be clear how the proofs and definitions could be made 

more rigorous if so desired. 

A glossary can be found at the end of this dissertation for the 

reader's convenience. 
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l. 2 .l Introduction and 3ackground 

This dissertation is, in effect, a discussion of a model for parallel 

computation. Everything a mathematician needs to know about the model can 

be found in the subsequent chapters. However, the model is more than a 

collection of abstract definitions. Its form was influenced by a number 

of areas in computer science, and a knowledge of these may help the reader 

to push throup;h some of the abstractions and to feel comfortable with the 

model. 

l. 3. l Schematology 

Schemata are models for computation, as are Turing machines, finite 

state machines, programs written in a programming language, and so forth. 

The feature which distinguishes schemata is the lack of interpretation for 

primitive functions and predicates. To logicians, this is a familiar 

concept. For the rest of us, a common analogue is fortunately available. 

Suppose an ordinary compiler runs across a statement such as 

u + f(v,w,x, ··· ,y,z) 

Assume function f is externally defined. Although the compiler cannot 

know exactly what f does, it is not entirely in the dark. The compiler 

at least knows where f will get its inputs and where it will store its 

result. This may seem to be very little knowledge indeed, but, with a 

few more assumptions, it allows the compiler to perform transformations 

such as calling f with copies of the inputs or using u as a temporary 

work area until f has returned its result. For example, it could 

substitute something like 
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u ~ f(u,w,x,""" ,y,z) 

for the original statement, and not alter the meaning of the program. 

The point to be noticed here is that the transformation is valid 

no matter how f is defined (subject to certain assumptions we will 

presently discuss.) Schematology is concerned with making statements 

about computation which remain valid regardless of the definition of 

the functions and predicates used. From the above discussion, it should 

be clear that schematology has immediate application in compiler theory. 

Although the "external routine" analogue may be useful to those 

whose background tends more towards computers than towards formal logic, 

it must not be pushed too far. There are assumptions we make about 

functions and predicates that are not always true for arbitrary programs. 

Stated simply, we assume that all functions and predicates implement 

total mathematical functions. To emphasize what is not allowed as a 

function or predicate, some elaboration is in order. A function or 

predicate name may appear many times in a schema, but it must always take 

the same number of arguments. Thus, although one could argue for the 

desirability of a generalized addition function which returns the sum of 

an arbitrary number of arguments, such constructs will not be allowed in 

scherr,ata. Functions and predicates are presumed to be defined for all 

inputs. Thus, no function could precisely model division which is not 

defined for divisor 0. Given the same set of inputs, functions and 

predicates must always return the same results. This precludes certain 

routines with "memory" such as "clock functions" or predicates which are 

true only the first time they are used. Functions and predicates do not 



l 2 

alter their inputs, and have no "side-effects 11 whatever. 

From this discussion, the reader can surmise that the schemata defined 

herein are not intended to model every computation that might be possible 

using conventional programming languages. We are, instead, focusing on a 

limited, but very rich subset of such computations. 

In addition to compiler theory, there are other justifications for 

adopting a schematized model. The Turing machine is one of the best 

known models for interpreted computation. Hopelessly inefficient as a 

practical computing device, Turing machines have been most valuable in 

identifying problems which cannot be systematically solved. For example, 

we know there is no procedure for determining if an arbitrary Turing 

machine halts when started on a particular input, or whether two Turing 

machines compute the same partial function. We cannot find the 11 fastest" 

Turing machine which implements an arbitrary function because, in some 

cases, there is always a faster machine, and one still faster and so on 

ad infinitum. In the face of such undecidability results, we must lower 

our sights somewhat. Schematalogy sacrifices a certain amount of 

"relevance" for the possibility of answering questions analogous to the 

above. 

It would seem to be a better approach to go only half-way towards 

schemata and allow both interpreted and uninterpreted operations. After 

all, this is precisely the problem a compiler must handle. Unfortunately, 

the amount of interpretation which can be tolerated without introducing 

undecidability problems is very small. For example two counters with 

unlimited capacity are sufficient to mimic Turing machineslO, 
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l. 3. 2 Schematology - History 

Ianov is generally credited with the first schematized model for 

computation!S His model treats all of storage as a monolithic entity 

which is transformed by operations. The operation to be applied is 

determined by the outcome of a number of predicates testing the store. 

Ianov showed that equivalence of his schemata was decidable. Rutledge15 

later pointed out a correspondence between Ianov's schemata and a class 

of finite state machines. 

Luckham, Park and Paterson 9 developed a more familiar schematized 

model based on flow charts. Operator instructions in the flow charts 

are of the form 

label: x. + f(x. ,x. ," • · ,x. ) 
1 Jl J2 Jm 

with branching in the charts accomodated by transfer instructions such as 

label: p(x.),tlabel,flabel 
1 

By establishing a correspondence with a class of automata, they were 

able to show that the equivalence problem for schemata using two or more 

memory locations is not decidable. However, certain restricted classes 

of flow chart schemata were identified for which equivalence is decidable. 

Schemata have also been used by Hewitt and Paterson to allow 

meaningful comparison of various control mechanisms such as iteration, 

recursion, and recursion with limited parallelisml 2 . 
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l. 4 .1 Paralle llsm 

Parallel proccssint; a:o it exists today generally refers to concurrent 

execution 0£ several pr·ocesscs which are themselves strictly sequential. 

P.,l though this is iln important trend in the efficient use of computer 

systems, it is not the level of parallelism in which we are interested. 

We will be focusing on parallelism within a program at the instruction 

level. Therefore, we are discussing hardware which is not now common and 

probably wjll not be common for a generation or so. 

There is more than a theoretical difference between concurrent 

execution of one thousand programs and concurrent use of one thousand 

proc~ssors by a single program. An astronaut does not care if ground 

control can recompute a thousand courses in an hour. What he requires 

is one course recomputed in seconds. The number of such real time 

applications is constantly expanding. With speeds of individual 

processors approachinE limits imposed by the speed of light and the 

laws of thermodynamics, low level parallelism will take on increasing 

importance. 

In addition to such practical applications, one can make an argument 

for parallelism on theoretical grounds. A conventional algorithm may 

impose sequencing constraints which are arbitrary and have nothing to 

co with the function being implemented. A parallel specification can 

help to focus on this function by stripping away arbitrary sequencing 

and leaving only that which is essential. 
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l. 4. 2 Parallel Schematolory - Eistory 

Karp and Miller7 , Slutz16 , and Keller 8 have worked with schemata which 

model parallel computation. Using a hybrid operation which combines the 

roles of transformation and testing, they were able to identify certain 

classes of parallel schemata for which determinacy and equivalence are 

decidable. Some of the major results of this dissertation are extensions 

of the work of Karp and Miller to a model with more conventional 

operators and a weaker form of equivalence. 

Slutz 1 s marimum paY'aUel foY'/71 16 which maximized the number of possible 

computations for a given interpretation helped to motivate our notion of 

pY'oductivity. With our weaker form of equivalence, the possibility of 

useless operations arises. A workable analogue to Slutz's maximum 

parallel form would have to restrict computations to some level of 

productivity. Lacking this, unproductive activity could be added 

indefinitely without truly increasing parallelism. 

Parallel schemata in which the arrival of data triggers activity have 

been investigated by Rodriguez 13 , Dennis 3 and Fosseen5 . A desirable 

feature of these schemata is their inherent determinacy. The equivalence 

problem remains undecidable for general data flow schemata. However, 

both Rodriguez and Fosseen discuss decidable questions about equivalence 

of data links within a schema. 
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l. :i .1 Modularity 

Modularity is a term finding great favor both in computer science and 

on Madison Avenue. Informally, we might say that a modular system is the 

interconnection of a small number of components whose inputs, outputs and 

input/output behavior are explicitly defined. Although we have restricted 

modular systems to comprise only a few components, there is no real 

restriction on systeD size. Each component may be a modular system whose 

components are themselves systems and so forth. We are therefore talking 

about a style of systems design rather than a class of systems. 

Modular systems have the virtue of being easy to debug and easy to 

modify. If such a system malfunctions, the components can be "unplugged" 

~nd tested to sec that they meet their input/output specifications. 

Since this is, by definition, their only r6le in the system, operational 

components need not be checked in greater detail. This allows quick 

isolation of problems. Furthermore, any component can be replaced by 

another with the same input/output behavior. This allows us to take 

advantage of developments which make modules cheaper, faster, more 

reliable, or whatever. The value of such capabilities in large systems 

can scarcely be overestimated. 

The definition of equivalent schemata reflects our input/output 

orier: ~at.10'1. We view schemata much as a programmer views subroutines. 

When ;;iven inputs, they Pither run on forever or they halt and produce 

some outputs. Equivalence will amount to halting on the same inputs, 

yielding the same results. Intermediate values, storage used, amount of 

parallelism exploited and the like will be of no consequence as far as 

equivalence is concerned. 
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1.6.l Speed Independence 

Programmers on some early machines observed that they could initiate 

data input operations before they were finished with the data in the area 

to be overwritten. They knew there would be ample time to access the 

data before the relatively slow input devices could effect the transfer. 

This technique was actually an early form of parallel processing, but a 

decidedly dangerous one. For example, if the I/O device had been 

improved or the program simulated rather than executed, chaos could 

have resulted. 

The peculiarities of particular machines and operating systems now 

make any assumptions about relative speeds highly suspect. Our model 

will not assume that all operations take the same amount of time or 

even that a particular operation always terminates after a fixed delay 

after it has initiated. In fact, our model will make no mention of 

delays and timing. Instead, each action will have distinct, explicit 

initiation and termination events. All timing considerations will be 

modeled by the sequencing of these events. The model will therfore 

possess enough flexiblity to describe systems where the amount of time 

needed to complete an operation may be highly variable. 



2. l. l Data flow Grarhs - Introduction 

If schemata are 2 moclel for com~utatior; as we su~gested in the 

introduction, then we sho11ld begin with a ~road-Lrush approximation to 

just what a computation is. Let us informally define a computation as 

a process which performs transformations c:md tests on a set of values. 

This is obviously not to be taken too seriously. but it will serve as a 

foundation upon which to build. 

For c
0 xample, the llefini tion suggests that a model must have agents 

capable of trar;sforY.':ing vulues and agents capaLle of testinr; values. 

We refer to these agcmts as operators and deciders respectively, and 

call them actors collectively. As we noted in the introduction, with 

our schematized approach we do not define exactly what these actors do 

or even the sP-t of values they act upon. However, by associating 

function ~amea with operators and predicate names with deciders, we can 

constrain distinct actors to do the same thing, whatever that may be, 

by giving them the same function name or predicate name. 

If an operator performs a transformation of m values, we will 

depict the operator as a circle with its associated function name inside 

and with input arcs labeled l through m. An operator having no inputs 

is allowable: it allows us to model constants. Deciders arc similar 

but they will be diamor..d-shaped and we insist that they have at least 

one input: they must have something upon which to base a decision. Of 

course, all actors with which a given name is associated must have the 

same number of inputs. 

We assume that all operators have exactly one output. There is no 

real loss of generality, since we could always model a transformation 
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with k outputs by k single-output operators. Deciders, on the other 

hand, have no outputs. They have outcomes, either true or false. 

Again, binary deciders caG be put together in such a way as to model 

k-way tests. Figure 2.1 shows an operator and a decider. 

In our model, the values input to actors and produced by operators 

are presumed to reside in memory locations. Which location supplies 

which input is depicted by attaching the arcs on actors to memory 

locations. The same location may supply more than one input, and may 

also be the output location of an operator to which it supplies an 

input. Some actor/memory interconnections are shown in Figure 2.2. 

Labeling the arcs on such interconnections can be tedious and 

unenlightening. We will adopt the convention that arcs appear in 

order of increasing index starting from the bottom of the actor and 

proceding clockwise around it unless explicitly labeled otherwise. 

Thus, all arc labeling in Figure 2.2 is unnecessary. 

Presumably, we institute the series of transformations and tests 

which we called a computation because we are interested in some results. 

In general, we expect these results to depend in some way on an initial 

set of values we provide to the computation. In our actor/memory 

interconnections, we identify two ordered subsets of the memory 

locations. One set, the schema inputs, are presumed to hold the 

initial values when the comput: -::::c:: begi_;_,., The other set, the schema 

outputs, will contain the results if and when the co":"2.ctation terminates. 

The actor/memory interconnection and sc:1cma inputs anci outputs determine 

what we will call a data flow graph. 
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0 

1 
Figure 2.la An operator> o with 

m-ary functior. name f 

b 

20 

Figure 2.lb A decider d with 

n-ary predicate name p 

Figure 2.2 An interconnection of actors and memory locations 
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The class of computations we will be investigating have finite data 

flow graphs which are not altered during the course of computation. We 

cannot allocate additional memory locations, change the function name 

associated with an actor, or move an actor around in the graph. We c~o 

not claim to have a satisfactory way of representing structured ~ata 

such as arrays, lists or stacks. These features are not deemeJ 

unimportant, "i:rnt rather lie outside of the ::;cope of this disssrtation. 

If the reacer experiments with producing a clata flow graph 

corresponding to a familiar computation (as we shall do in Section 1.3), 

he will probably discover that simple assignment occurs. That is, we 

often want to simply copy th" contents of one location :into another. 

This is one functicr' which is always meaningful, independent of the 

domain of values ~i~~ whi2h ~.e are dealing. We therefore allow 

identity operators to be used in data flow graphs. We will reserve 

the function name":=" for these operators. 
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2. l. 2 Data Flow Graphs - Formal Definition 

A data flow graph is a directed, labeled, bipartite graph. One set 

of nodes is a finite number of locations collectively referred to as 

MEMORY. An ordered (possibly empty) subset of MEMORY is distinguished 

as the SCHEMA INPUTS, and another ordered (nonempty) subset is 

distinguished as the SCHEMA OUTPUTS. The other set of nodes are a 

finite collection of ACTORS, partitioned into OPERATORS and DECIDERS. 

Associated with each operator is one of a set of FUNCTION NAMES. For 

simplicity, we will assume that the number of its inputs (20) is 

implicit in the function name. If f is an m-ary function name, then 

any operator o with which f is associated has input arcs labeled l 

through m originating on (not necessarily distinct) locations in 

MEMORY. We call these locations the input locations of o. In 

. . . .th . t particular, we call the location on the arc labeled i the 'l 'lnpu 

location of o. Each operator o has a single output arc terminating on 

some location in MEMORY (not necessarily disjoint from the input 

locations of o.) We refer to this as the output location of o. 

Associated with each decider is one of a set of PREDICATE NAMES. As 

with function names, we will assume that the number of inputs (>O) is 

implicit in the predicate name. If p is an n-ary predicate name, then 

any decider d with which p is associated has input arcs labeled l 

through n originating on (not necessarily distinct) locations in 

MEMORY, the input locations of d. Deciders have no output arcs. 
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2.1.3 Data Flow c;rvph::; - Example 

It might he instructive to take a familiar model for computation, 

a program, and consider how a corresponding data flow graph could be 

defined. The program in Fisure 2.3 mimics intezcr division. That is, 

given a numerator N and a denominator D, it wil~ determine a quotient Q 

and remaincer ~, :;uch that N=QxD+P., ~;:e magi,~ tudc of P is less than the 

magnitude of D, and if R is r~ 'ro, .1 t ha,'; the same sign :cis Q. The 

example is not profound, l:ut t:,e ::"eader shoulc' look it over ::d nee we 

will refer to it in several later sections. 

An ooviow; first step is to equip our data flow graph v, ~ U1 a rr.cmory 

location for each variatle in the program. Of course, we may need 

addi tior1al lo cat ions for temporary results and the like. The choice of 

actors is not quite so clear. for example, in line 6 we wish to 

increase Q hy 1. 

to Q via the no' 

This could Le accomplished by addinz the constant l 

imction, or '.:iy using a special 

add- l-to-the-2:'' 1rn1~r1 t unary i unction. This obviously makes no 

difference in the program, but will lead to quite different data flow 

graprL3. A similar choice occurs for t:-1e comparisons with constant 0 on 

lines 9 and 13. 

A complete data flow graph is shown in Figure 2.4. We could have 

used function names like < or - hut these names are hard to dissociate 

from their conventional interpretations. Thinkinp; of c as .:::._omplement, 

£ as ~ess than, m ac ~ar;ni tude, s as .'.:'._Uhtract, t as tally (add l), and 

z as ~ero, the datu flow graph :c;houlcl Le quite easy to analyze. The 

reader is cncourag.=:cl to verify line ~JY line that the data flow of the 

program can be duplicated. The identity copies 0 for use by p and q. 
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SCFE~:A INPUTS ;:: {N ,D} 
SCHEMA OUTPUTS = {Q,R} 

:=or tr:" ;>rori:ram of Fi.::-:urc 2. J 



26 

2.2.l Events - Introduction 

Although actors are the atomic elements by which computation can be 

carried out, we want a description of their behavior which is more 

detailed than "actor a happens." This level would suffice for sequential 

computation:c:, in which there is only one site of activity. 1:~ a parallel 

computation, however, we need a mechanism capable of describi~g concurrent, 

asynchronous activity. 

To this end, we associate with each op~rator in a data flow graph, an 

initiation event and a termination event. With each decider, we associate 

an initiation event and two termination events. In essence, an initiation 

event and corresponding termination event bracket what we referred to 

earlier as "actor a happening." However, it is not necessary for 

initiations and terminations of an actor to occur in strict alternation. 

By postulating a means of keeping track of initiations for which the 

corresponding termination has not yet taken place, we can allow several 

initiations to occur before a termination occurs. 

When we formally describe events in the next section, we do so by 

assuming that each actor has an associated queue and processor which 

computes the function or predicate named. It should be emphasized that 

these processors and queues are merely vehicles for defining the 

intended behavior of actors. Any implementation which gives rise to 

the same behavior would be equally acceptable. 

·,;2 now turn to a formalization of the semantics of events. 
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2.2.2 Events - Formal Description 

For each operator o with associated n-ary function name f, we 

define two events, the initiation of o, denoted o, and the termination 

of o, denoted o. When o initiates, a value is associated with each 

input arc of o by (non-destructively) reading the correspo0ding input 

location of o. This n-tuple of values can be thought of as being 

enqueued on an £-processor associated with o. The termination of o 

is defined only if this fifo queue is non-empty. (It should be noted 

that a queue containing 0-tuples is most certainly not empty.) In 

this case, the first n-tuple in the queue is removed, the £-processor 

is applied to the n-tuple, and the result is written into the output 

location of o, destroying any previous contents. 

For each decider d with associated n-.ary predicate name q, we 

define three events, the initiation of d, denoted d, and the true and 

false terminations of d, denoted dT and dF' !:'espectiv~l]. The intended 

semantics are similar to those for operators. Upon termination, there 

is no output location to overwrite, of course, but the outcome of the 

predicate named by p on the n-tuple of values is reflected in the 

choice of termination events. 

These rules define, for each data flow graph, an alphabet E of 

events associated with the actors. Since there are only finitely 

many actors, E is always finite. 
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2.2.3 Events - Example 

Suppose, referring back to the data flow graph of Figure 2.4, we 

consider the sequences of events ~ffff and ~ffff and their effect 

upon the contents of loc0tion Q. When we begin, the contents of Q are 

undefined. When w initiates, the contents of Q remain undefined, but 

now there is a 0-tuple enqueued on w's z-processor. When w terminates, 

a value which we can symbolically refer to as z() is written into Q. 

At this point, all queues are again empty. When f initiates, the 

1-tuple z() is enqueued on f's t-processor. Up until now, both of 

sequences we have been considering have caused the same behavior. 

If f now terminates immediately, t(z()) will be writt >:to Q, 

destroyin3 its former contents, z(). Aft'3..,., anothc:r ":-itiatio:: and 

termination of f, Q will contain t( t( 7'()): cmn :~1 qt:eues will be 

empty. 

On the other hand, if f reinitiates before terminating, z() is 

placed on the t-processor 1 s queue after the other 1-tuple (which also 

happens to be z().) The first •-::rmi::~ ~ _r __ of f leads to t(z()) being 

written into Q. The second t::rrr:inatio:·, then overwrites this value 

with the very same thing, t(z()). A~ain, all queues have been emptied. 

For the data flow graph shown, L">={w,::'.',a,~,b,~,c,::,e,::,f,~,g,~,h,~, 

d,dT,dF,p,pT,pF,q,qT,qF}. 
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2.3.l Data Flow Graphs - Summary 

Data flow graphs provide a formalism for describing the structural 

aspects of computation. They are not the only such mechanism one can 

devise. Karp and Miller7 , Slutzl 6 , and Keller8 have used a model in which 

actors are of a single, hybrid type. These "operations" combine the 

features of our operators and deciders by having one or more output 

locations and one or more possible outcomes. A graphical representation of 

such an actor is shown in Figure 2.5. An equivalent data flow graph 

structure is shown in Figure 2.6. We mimic the multiple outputs in the 

standard way. There are numerous methods for associating K(a) outcomes 

with collections of binary deciders. As shown, we use K(a)-1 deciders, 

and let the outcome correspond to the least index of a true decider, or 

K(a) if all are false. Thus, data flow graphs can model the hybrid 

operations. 

A more dramatic difference appears in one variant of the data flow 

schemata of Dennis 3 and Fosseen~ Here actors are interconnected by fifo 

queues instead of memory locations. Data flow graphs can also reproduce 

the behavior exhibited by data flow schemata. It can be shown that the 

so-called well-formed schemata can operate with queues of length 1. Such 

queues are easily modeled by memory locations. Furthermore, queues can be 

modeled by identity operators between memory locations, using the implied 

queuing of multiple operator initiations. 

Therefore, data flow graphs are a fairly general model for describing 

the structure of a computation and are not likely to generate much 

controversy. Indeed, this is one reason why the data flow structure has 

been separated from the rest of the schema specification. 
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Figure 2.5 A Karp-'.1iller operation 

Figure 2.6 A data flow graph model for the operation of Figure 2.5 
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3.1.l Control - Introduction 

Data flow graphs tell us only part of what we need to model a 

computation. They specify the structure of memory, transformations, and 

tests, but do not specify the order in which actors can initiate and 

terminate. This is the purpose of some sort of control mechanism. What 

we shall be referring to as a schema is a data flow graph and a 

specification of control. We review some possible control mechanisms 

before indicating how control is specified for our schemata. 

3.2.l Control - Sequential Models 

The most familiar control mechanisms, the ones used by virtually all 

conventional programming languages, are sequential. There is no concurrent 

activity, so actor initiations and terminations occur with no intervening 

events. After each operator termination, there is a unique actor 

initiation which follows. When a decider terminates, there are two actor 

initiations which might follow, the choice being determined by the decider 

outcome. The rules about which actor initiates next are implicit in the 

semantics of the programming language used. 

Flow charts are a general way of specifying the sequencing of actors 

in a sequential program. Figure 3.1 shows a flow chart for the program in 

Figure 2.3. One can envisage a single locus of control moving along the 

arcs of the chart, initiating and terminating actors as it passes. If a 

program contain~ go to statements, the topology of such a chart can be 

quite complicated, a fact used to argue for better behaved sequential 

control primitives such as do-loops and if-then-else conditional clauses. 
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Figure 3.1 A flow chart control specification 

for the data flow graph of Figure 2.4 
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3.3.l Control - Programs with Concurrency 

If we wish to maintain a program-like formalism but introduce 

concurrent activity, there must be a means of adding loci of control. 

If a program can be broken into completely independent parts, then each 

part can be assigned a dedicated locus of control. This is essentially 

what most multiprocessing systems do, assuring independence by working 

on unrelated programs. Practical programs, however, seldom factor into 

such independent parts. (If they did, they would be written as separate 

programs.) In general, then, the loci of control will interact. 

Fork and join primitives can be added to programming languages to 

express this interaction. At a fork, a single locus of control splits 

into several loci. At a join, a number of loci of control come together 

and a single locus exits. There have been numerous proposalsl,4 for 

implementation of such primitives, and we show a graphical representation 

of a program using these primitives in Figure 3.2. 

In inspecting such a graph, it is important to distinguish between 

the control flow through a fork primitive, in which control flows along 

all output arcs, and control out of deciders, in which control flows 

along exactly one of the output arcs. 

The resemblence to a precedence graph is quite striking here, with 

!!unordered" actors being capable of concurrent activation. Precedence 

graphs, embellished to allow conditionals and while~loops have also 

been used as control mechanisms~ 



Figure 3.2 A fork-join 

control specification for 

the data flow graph of 

Figure 2.4 
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3.4.1 Control - Petri Nets 

Breaking away from program-like formalisms can lead to control 

structures such as Petri nets, introduced by Holt~ Petri nets are such a 

simple yet powerful formalism for modeling concurrent activity that it is 

worth a short digression to study them. 

Petri nets are directed, labeled, bipartite graphs whose nodes are 

either states or events. States are drawn as circles and events as bars. 

States have an associated non-negative integer which is depicted by 

drawing the appropriate number of tokens in the state. This numbering is 

called the markinq of the net. Activity in a Petri net is governed by a 

simple firing rule. An event is said to be enabled if each state on an 

arc into the event contains at least one token. An enabled event can 

fire by removing one token from each input state and adding one token to 

each output state. Tokens need not be "conserved" by the process of 

firing. In fact, the total number of tokens in the net will change after 

an event fires unless the number of input states of the event equals the 

number of output states of the event. We show some Petri nets in Figure 

3.3. 

The event in Figure 3.3a is not enabled since there is an input state 

with no tokens. The event in Figure 3.3b is enabled, and, if it should 

fire, the resulting net would be that of Figure 3.3c. 

By associating the events determined by a data flow graph with a 

subset of the events in a Petri net, we can use the net as a control 

mechanism. We show such a net in Figure 3.4. 
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Figure 3.3a An event which is not enabled 

Figure 3.3b An event which is enabled 

Figure 3.3c The marking which would result if 

the event of Figure 3.3b fired 
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Figure 3.4 A Petri net control specific;j_tio;.c. :for the data 

flo,,_. :::::,ap!-'1 of FL,ur2 '.2. '+ 
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One reason that this control mechanism may appear complicated is the 

introduction of explicit initiation and termination events. Except for 

this, there is a strong resemblance to the fork/join formulation of Figure 

3.2. 

Slutz's fZo~ graph schemata have a control mechanism which closely 

parallels Petri nets!6 

3.5.l Control - Data Flow Models 

It is self-evident that an actor cannot initiate before its input 

h . h" . d Rd . 13 values ave been generated. Turning t is observation aroun , o riguez, 

Dennis~ and Fosseen5 have proposed models in which the arrival of values 

controls the initiation of actors. We will briefly describe one form of 

data flow schemata studied by Dennis and Fosseen~ We call these "Dennis-

Fosseen schemata" rather than "data flow schemata" to avoid possible 

confusion with our own data flow graphs. 

A Dennis-Fosseen schema is a directed, bipartite gra~h in which the 

nodes are either actors or links. It is helpful to think of the arcs in 

a Dennis-Fosseen schema as being able to hold a single value. Operators 

in Dennis-Fosseen schemata are actors with one or more inDut arcs, a 

single output arc, and an associated function name. If a value is present 

on each input arc and no value is present on the output arc, an operator 

is enabled to fire. When it fires, an operator removes the values from 

its input arcs and places on its output arc the value which results from 

applying the named function to the inputs. Deciders in a Dennis-Fosseen 

schema have one or more input arcs, a single output arc, and an 

associated predicate name. As with operators, these actors are enabled 
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to fire when there is a value on each input arc and no value on the output 

arc. When a decider fires, the values on its input arcs are removed, and 

the boolean value resulting from the named predicate on the input values is 

placed on the output arc. Dennis-Fosseen schemata are constructed in such 

a way that arcs carry either boolean values or data values, never both. 

Dennis-Fosseen schemata may contain boolean actors to perform logical 

operations on boolean values. Boolean actors are enabled to fire when a 

boolean value is present on each input arc and no value is present on the 

output arc. When such an actor fires, the input values are removed and the 

result of the named boolean operation on the input values is placed on the 

output arc. 

There are three types of actors which have both boolean and data 

input; true gates, false gates, and merges. A true gate has one input 

data arc, one input boolean arc, and one output data arc. A true gate is 

enabled to fire when a value is present on each input arc and no value is 

present on the output arc. When it fires, the input values are removed. 

If the boolean value was true, the input data value is placed on the 

output arc. Otherwise, no value is placed on the output arc. False gates 

are analogous, "passing" the input data value if a false boolean value is 

present and "swallowing" the data value for true boolean inputs. 

Merge actors have two input data arcs, one boolean input arc, and one 

output data arc. A merge is enabled to fire when there is a boolean value 

present, a data value on the input data arc indexed by the boolean value, 

and no value on the output arc. (The presence or absence of a data value 

on the other input data arc is irrelevant.) When it fires, a merge 

removes the boolean value and the indexed data input value, placing the 
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data value on the output arc. 

Link nodes serve as connection points and also eliminate the need for 

explicit identity operators. A link node is enabled when a value is 

present on its input arc and all output arcs contain no values. When a 

link node fires, the input value is removed and a copy of the value (data 

or boolean) is Dlaced on each output arc of the link node. 

Figure 3.5 summarizes the elements of Dennis-Fosseen schemata. Each 

element is shown in enabled status and then, immediately to the right, the 

element is shown as if it had fired. Arcs which carry boolean values have 

solid arrowheads while data arcs have open arrowheads. 

Figure 3.6 shows how the elements of a Dennis-Fosseen schema can be 

assembled to model the program of Figure 2.3. This kind of schema is 

probably foreign to most readers, but with a little experimentation, one 

can quickly become familiar with its behavior. In particular, gates and 

merges come in groups fed by the same boolean. When initialized merges 

are encountered before the gates, a loop structure can be realized. This 

is the case with the three merges and five gates fed by the decider in the 

middle of Figure 3.6. When the gates are encountered before the merge, a' 

is true with the gates and merges fed by the deciders at the top of Figure 

3.6, conditionals are realized. We recommend that the reader check the 

behavior of the schema by first assuming that each decider is false, then 

assuming each is true. Note, in particular, that the "loop merges 11 are 

reinitialized to true when the loop is exited. 
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3.6.l Control - Automata 

Consider a finite state acceptor whose state transitions are labeled 

with the events associated with a data flow graph. We can view the events 

on arcs out of a given state as those events which the acceptor allows in 

that state. Should one of the events occur, the acceptor enters the state 

to which the corresponding arc leads. We might call those sequences of 

events which lead from the initial state to some accepting state the 

sequences which are acceptable. 

Keller8 , Karp and Miller7 , and Slutz16 all consider state-machine 

control mechanisms, treating countably infinite state machines as well as 

finite state acceptors. Many of the other control mechanisms we have 

discusseil have finite state counterparts which allow exactly the same 

sequences of events to occur. If, for a given n~state petri net, there 

is an integer m such that no state in the net ever contains more than m 

tokens at a time, then there is a corresponding finite state control 

mechanism with no more than (m+l)n states. (A state in the finite state 

acceptor identifies how many tokens are present in each of the n states of 

the Petri net.) 

As the last example suggests, finite state acceptors may be consider­

ably more complicated than the other models. In Figure 3.7 we show the 

beginning of a state table for a finite state control mechanism for the 

data flow graph of Figure 2.4. 

One can imagine how pushdown automata or even Turing machines could 

be employed to control the events in a data flow graph. 
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Parli~l state table of a finite state control specification 

for the data flow graph of Figure 2.4 
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3.7.1 Control Sets - Overview 

The last few sections serve to indicate the diversity of control 

mechanisms which have been or could be proposed to direct activity in 

data flow graphs. Each has advantages, real or imagined, which make it 

difficult to agree on a "best" mechanism. 

It is unfortunate that many of the results in schematology depend 

upon the particular choice of control mechanism, in ways that become 

clear only when one attempts to carry the result over to a different 

model. This works a particular hardship on newcomers to schematology 

since there is no general theory unifying the various models. 

In an effort to begin a more general approach to schematology, we 

have adopted a specification of control which is not tied to any 

particular control mechanism. We do this by observing that all the 

mechanisms just discussed define sets of allowed sequences of events. 

We call these control sets, and we will generally be concerned with 

their properties as sets, not with the particular mechanism that 

determines them. 

This approach has both good and bad aspects. A control mechanism 

defines a control set inherently possessing properties which we must 

explicitly define and justify. Thus, our approach may appear slightly 

"verbose" and can be difficult to motivate. The advantage we gain in 

return is to make explicit those properties of control upon which 

schematalogical results depend. These results then carry over to all 

mechanisms which can be shown to impose the requisite properties. This 

may be au easier task than trying to establish the results directly. 
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3.7.2 Control Sets - Conventions and Formalisms 

Let r be a finite alphabet. As is conventional, we will use E* to 

denote the set of all finite strings over r. We let A represent the 

unique string of length 0, the empty string. 
co 

We use r to denote the 

set of countably infinite strings over r, and we define r to be the 

co 
union of E* and r . We will use the terms 'string' and 'sequence' 

interchangeably. 

We use italicized letters late in the alphabet and possibly 

subscripted, V, W, x 0 , x 1 , and so forth, to denote sequences in E. 

If we have sequences XEE* and YEL, then xy represents the sequence 
A 

in E formed by concatenating x and y. Given zcE and xcr*, x is a 

prefix of z if and only if there exists a sequence ycE such that 

xy=z. 

Suppose r is the alphabet of events associated with a data flow 

graph. A string ycr is said to be well-sequenced if, for every prefix 

x of y and for every actor a in the data flow graph, the number of 

occurrences of initiations of a in x is no less than the number of 

occurrences of terminations of a in x. In simple English, nothing 

is terminated which has not been initiated. Note that this property 

does not depend upon the connections in a data flow graph, only on 

the set of actors. 

A sequence YEE is well-defined (for the data flow graph which 

determines E) if it is well-sequenced and for each prefix xa of y, 

and for each input location 1 of actor a, 1 is a schema input, or 

1 is the output location of some operator o such that x ~ x1~2 • 
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That is, in a well-defined sequence, no actor initiates until the 

contents of all of its ..:.Lput locations are meaningfully defined. A 

set of sequences is said to be weU-defined if every sequence in the 

set is well-defined. 

We define a control set (of a data flow graph with alphabet of 

events~), CONTROL, to be any well-defined subset of~ with the 

following property. For each finite sequence XECONTROL, each schema 

output m is either the output location of some operator terminating 

in x, or mis a schema input (or both). Thus each control sequence, 

as we call the elements of CONTROL, which terminates leaves values in 

all schema output locations. 

Finally, and somewhat anticlimactically, we define a schema to 

be a data flow graph and some corresponding control set. 

3.7.3 Control Sets - Discussion 

The restriction of control sets to well-defined sequences is easy 

enough to justify. A string which is not well-sequenced, such as ~a, 

simply has no meaning in terms of the behavior of data flow graphs. 

Similarly, we cannot make any sense out of actors initiating before 

the contents of their input locations have been established. For 

example, e~ is well-sequenced for the data flow graph of Figure 2.4, 

but it is not meaningful because locations R and T have unspecified 

contents. Finally, if a sequence terminates, we expect it to leave a 

result in each schema output location. Although we do not exclude 

anythi ~· 'F~ry meaningful by assuming well-definition, there are noteworthy 

impL_cc>.tions. For example, the finite strings the state-machine 
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of figure 3.8 accepts are simply {a,~}*, but the set of all control 

sequences contained in {a,~}* cannot be recognized by any finite state 

acceptor. -k k (Informally, a~ must be accepted for all integers k~O. 

Fork greater than the number of states in a finite state machine, 

k some state must be visited more than once while a is being read. 

Then this cycle of length j>O could be repeated so that akak+j is 

also accepted. But this sequence is not well-sequenced, so it is 

not among the control sequences.) Thus, although it is semantically 

painless to exclude ill-defined sequences, it may be difficult or 

impossible to do so while maintaining a given control mechanism. 

a a 

Figure 3. 8 A finite state control specification for which CONTROL is 

not a regular set 
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4.1.l Interpretations - Introduction 

Schemata, via their data flow graphs and control sets, tell us 

everything of a structural and operational nature that we need to know 

about modeling computations. To put the schema model on a par with 

familiar models, however, we must supply the missing details about 'the 

function names and predicate names. 

An interpretation for a schema specifies the set of elements which 

the memory locations can contain. For "familiar interpretations", 

these will include integers, character strings, representations of 

real numbers, and so forth. Of course, there are also interpretations 

dealing with trees, or only with integers, or only with the number 6: 

the choice of domain is virtually unrestricted. 

An interpretation also specifies functions and predicates over 

these elements for the function names and predicate names of the data 

flow graph. These functions and predicates are total, so "familiar 

interpretations" would have to be extended to define such things as 

1/0 and "cat"<3.14159. Finally, the interpretation specifies the 

elements initially contained in the schema input locations. 

4.1. 2 Interpretations - Formal Definition 

An inte:rrpretation I of a schema consists of 

1) A (non-empty) set, DOMAIN, of elements. 

2) For each m-ary function name f, a total function f 1 :DOMAINm+DOMAIN 

3) For each m-ary predicate name p, a total predicate pI:DOMAINm+{T,F} 

4) For each schema input location~' an initial element dEDOMAIN 
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4.1.3 Interpretations - Summary 

Although we have defined interpretations of schemata, it is 

evident that the definition depends only upon the data flow graph 

component. If we have two or more data flow graphs with the same 

number of schema inputs, we can meaningfully define a single 

interpretation for all of them. There will be a single DOMAIN, 

and the set of initial elements vrill apply to 2ach set of schema 

inputs. Functions and predicates illust be assigned for all function 

names and predicate names, but since the arity is implicit in the 

names, this can be done consistently. That is, f cannot be a unary 

name in one graph and a binary name in another. Thus, a function 

associated with name f works in all data flow graphs. We will later 

speak of interpretations for two or more schemata, understanding 

that this is what is meant. 

4.1.4 Interpretations - Example 

Suppose we define an interpretation for the data flow graph of 

Figure 2.4. We can recapture the original intent of the program 

from which it was derived by the following interpretation. 

1) DOMAIN = Z (The integers) 

2) z():=O m(x):=Jx\ t(x):=x+l c(x):=-x s(x,y):=x-y 

3) £(x,y):=x<y 

4) Initial elements = <l,-1> 

Example 4.1 An interpretation for the data flow graph of Figure 2.4 
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5 .l.l Data Dependence Graphs - Introduction 

We have defined schemata as the combination of data flow graphs, a 

formalism for describing the ir'.terconnectior: of memory locations and 

actors, and control sets, a formalism for defining how events in a data 

flow graph are sequenced. We now define a mechanism, the data dependence 

graph, or dadep graph, which brings these two formalisms together. 

Before proceeding, it should be noted that dadep graphs are derived 

algorithmically from a data flow graph and associated well-defined 

sequence. Thus, there is really nothing in a dadep graph we didn't 

already have, given the data flow graph and sequence. Our justification 

for introducing this new formalism is one of clarification and 

convenience. 

The virtue of dadep graphs is that they make it easy to overlook 

some less interesting aspects of schemata such as the choice of names 

for memory locations and actors, and focus on relevant issues such as 

transforming and testing values via functions and predicates. As we 

shall see, it is possible to do this in such a way that we can derive 

important information about interpretations from the structure of the 

dadep graph. 

Dadep graphs are labeled, bipartite graphs whose nodes we call values 

and actions. Starting only with the initial values input to the schema, 

actions are added as actors initiate. One set of labels indicates the 

function name or predicate name associated with an action. Another set 

of labels indicates which values are currently contained in the memory 

locations. This labeling aids in determining which values are inputs to 

an action, shown by directed, indexed arcs from values to actions. 



New values are added wh~n operators tcrninate. When deciders terminate, 

another set of labels indicate the outcome for the associated decision. 

Identity operators ao not create values, but rather chan.se the labeling 

with memory lnc tion name3 lo ~a~e existing values availatle under new 

.~.::ter formalizing these notions, an example of a dadep 

graph will be . ~velo7cd in some detail. 
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5. l. 2 Dadep Graphs - Formal Definition 

The dadep graph determined by a data flow graph and corresponding 

well-defined sequence is a directed, labeled, bipartite graph. One set 

of nodes is referred to as VALUES. The other set is referred to as 

ACTIONS. ACTIONS are partitioned into OPERATIONS and DECISIONS. If 

the data flow graph has m schema inputs, then there exist m values 

labeled 1 through m called INITIAL VALUES. Each operation is labeled 

with a function name and each decision with a predicate name. If an 

action has an n-ary name, there are arcs labeled 1 through n incident 

upon the action from n (not necessarily distinct: values. There may be 

a single arc from an operation to a value. Decisions are either 

unlabeled or ar·e labeled with a T or an F. A subset of VALUES are 

labeled with one or more locations in MEMORY. 

Suppose we fix a data flow graph. We define inductively the dadep 

graph determined by a corresponding well-defined sequence. For 

notational convenience, we will use subscripting to identify the 

sequence determining a dadep graph. For example, VALUES will denote 
x 

the set of values in the dadep graph determined by sequence x. 

For precision in the induction, we state the following induction 

hypothesis: 

Hypothesis 1: Each memory location which is either a schema 

input or the output location of some operator terminating 

in x is the label on exactly one value in VALUES . x 

Looking ahead to some further definitions, we also add induction 

hypotheses: 

Hypothesis 2: The dadep graph of sequence x is acyclic. 
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Hypothesis 3: Each value in VALUES is either one of the 
x 

INITIAL VALUES or it has a single input arc originating 
x 

from an operation in OPL:RATIONS (but not both.) 
x 

For the basis of our induction, we co~sider the dadep graph of the 

empty sequence, A. If the data flow graph has m schema inputs, then 

VALUESA = {v1 ,v 2 , ... ,vm}. If the ith schema input is location fl, then 

value v. is labeled fl. Furthermore, v. is distinguished as the ith 
l l 

initial value. There are no actions and no arcs. It is easy to see 

that hypotheses 1, 2 and 3 are trivially satisfied. 

Suppose that all the components of the well-:~'.efined sequence x have 

been defined, and xo, ocL, is also well-defined. We define the dadep 

graph of xo by cases as follows: 

INITIAL VALUES = INITIAL VALUES in any case. If o is not the 
XO X 

termination of some decider d, let j be the number of occurrences of o 

in xo. Otherwise, let j be the number of terminations of d in xo. 

Case 1: o is the initiation of an actor c other than an identity 

operator. Suppose g is the function name or predicate name associated 

with c. VALUES = VALUES , and the labeling with memory locations is 
XO X 

unaltered. We form ACTIONS by adding a new action, a, to ACTIONS 
~ x 

If c is an operator, a is added to OPERATIONS 
XO 

Otherwise, it is 

added to DECISIONS 
XO 

Action a is labeled g. Since xo is well-

defined, each input location of c is either a schema input, or is the 

output location of an operator terminating in x. By hypothesis 1, 

each of these locations is the label of exactly one value in VALUES . 
x 

If l . . h .th . . f dd lab l d . · ocation fl is t e i input location o c, a an arc e e i 

from the value in VALUESxo (=VALUESx) with label fl to the new action a. 
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(If c is a 0-ary operator, no arcs are added.) All other arcs remain 

as in the d.adep graph of x. We refer to °- as "the action corresponding 

th . th f to e J occurrence o c. 

Hypothesis l held for the dadep graph of x, no terminations were 

added, and the labeling with memory locations was unchanged. Hence 

hypothesis l still holds for the dadep graph of xa. Hypothesis 2 

still holds since all arcs added were to a node not in the dadep graph 

of x, so no cycles could be introduced. Hypothesis 3 follows from the 

fact that no new values were introduced. 

Case 2: a is the initiation of an actor c which is an identity 

operator. Suppose t is the input location of operator c. As in case 

1, there is a value in VALUES labeled with t. We will refer to this x 

value as "the value corresponding to the jth occurrence of c. 11 The 

dadep graph of xa is exactly the same as the dadep graph of x, so all 

hypotheses hold. 

Case 3: a is the termination of operator c which is not an identity 

operator. ACTIONS = ACTIONS • We form VALUES by adding a new value xa x xa 

v to VALUES . Since xa is well-defined, c has initiated at least j x 

times in x, so there will be an operation a in ACTIONS corresponding to x 

the jth occurrence of c. Add an arc from a to v, leaving all other arcs 

unchanged. Suppose the output location of c is t. If a value in 

VALUES has label t, remove the label i::1 the labeling of VALUES , and, x xa 

in any ca:::~~ , ~.abel v with t. 

The ( I'e) labeling procedure zuc\J'.'c1: t,~es -rhe validity of hypothesis l. 

Hypothesis 2 follows because the cc1y :ie·,: arc :;_~; to a node not in the 

Jadep graph of x. It will be seen that no other cases add values or 
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arcs into existing values. Thus hypothesis 3 is satisfied. 

Case 4: a is the termination c;f a clPcider c. Since xa is well-

defined, c has initiated at least j times in x. Hence, there is a 

d . . ACfION" d' tl .th f ecision a in ' 0 correspon ing to 1e J occurrence o · c. 
x 

In 

the dadep grapt of xa, a is given label T if a=c
1

, or label r if a=c r. 
No other changes are made, so all induction hypotheses remain valid. 

Case 5: cr is the termination of identity operator c. Since xcr is 

well-defined, there arc at least j initiations of c in x. Hence there 

. l . VA d. i • th f is a va ue v i~ LuES correspon ing to t11e J occurrence o c. 
x If 

t~e output location of c is £ and £ is the label on some value in 

VALUES , remove the label in the labeling of VALUES . 
X X0 

In any case, 

label v with £ in VALUES 
X0 

No other changes are made. 

The (re)labeling preserves hypothesis 1, and since no arcs or nodes 

are added, hypotheses 2 and 3 also hold. 
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5.1.3 Dadep Graphs - Example 

The formal definition of dadep graphs will be useful in constructing 

some believable proofs, but it makes dadep graphs appear more formidable 

than the really are. Stepping through a specific construction should 

help to eliminate many potential sources of confusion. In Figure 5.1 

we do this for the data flow graph of Figure 2.4 and the well-defined 

sequence x = w~cab~eddF~f!e~ddTppFqqTh~. 

Values are drawn as boxes, actions as the same shape as the 

corresponding actor in a data flow graph. We identify the initial 

values by the index depicted inside. The memory labels appear 

alongside values, function and predicate names appear inside the 

corresponding actions, and decision outcomes appear near the 

predicate names. We use the same arc labeling conventions 

introduced for data flow graphs. 

As an inspection of the dadep graph of x reveals, dadep graphs 

display the structural relationships between the values input and 

those gsnerated by a sequence. This structure can then be used to 

study what happens under a particular interpretation. 
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6. l. l Dadep Graphs - Definition of Depth 

In the sequel, we will find it co·,~2~ient to use certain structural 

properties of dadep graphs without havin~ to consider the particular 

sequence and data flow graph which determines them. One such feature is 

the depth of values and actions in a dadep graph. The depth will 

simply be the length (in terms of number of arcs) of the longest 

directed path leading to the value or action. 

Being a little more precise, we define the depth of all initial 

values to be C. We also define the depth of all 0-ary operations in a 

dadep graph to be 0. The depth of any value other than an initial value 

is defined to be l plus the depth of the operation of which it is the 

output value. (Such an operation exists by hypothesis 3 of dadep graphs.) 

The depth of an operation which is not 0-ary is defined to be l plus the 

maximum depth of its input values. The acyclic nature of dadep graphs 

(hypothesis 2) guarantees the validity of this definition. Figure 6.1 

shows a dadep graph with the J~~tt of each node indicated. 

Note that if there is a value [action] at depth k>l, there must be a 

value [operation] at depth k-2 on a path to it. Thus, there can be no 

"gaps:' in the depths of values [actions] greater than 2. 
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Figure 6.1 Depths of the nodes in the dadep graph of fi,gure 5.2 



6.2.l Intcrpretlng Dadep Graphs 

Any interpretation of a schema will supply all detail we need to 

associate specific domain elements with the values in ~ ~adep graph. The 

r6le of decisions in the generation of values is indirsct, an~ its 

explanation presupposes a thorough understanding of the nature of values 

and operations. We will therefore ignore, for now, the corr,ponent of 

interpretations which specifies predicates, and focus on the domain, 

functions and initial elements. 

These three components define an assignment of domain elements to 

values in the obvious way. Initial elements are paired with initial 

values anc the functions determine all other assignments. 

!fore formally, given a dadep graph D and an associated interpretation 

I, define a mapping ~I: VALULS ~DOMAIN by induction on depth as follows. 

Basis 1): If the depth of value vis O, then vis an initial value, 

say the ith. Define ~I(v) to be the initial element of I corresponding 

to the ith input location. 

Basis 2): If the depth of vis 1, then v must be the output value of 

an operation with a 0-ary function name, say f. Define ~I(v) to be the 

I 
element f () deter~ined by I. 

Induction step): Scpposc ~I is defined at all values whose depth is 

k (>l) or less. If there is no value at depth k+l or k+2, then ~I is 

definec for all values. (Recall that no gap greater than 2 can exist 

bet,1ee11 de:;=iths of values.) Otherwise, consider a typical operation o 

with :n-ary function name f, of which o!le of these values L: an cutput 
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value. The depth of o is either k or k+l so the depths of o's input 

values, v1 , v2 , vm' are k or less. Hence, sI is defined at each 

vi and we define sI(v) to be fI(sI(v
1

), ... ,sI(vm)). 

(The next induction step is at level k+2.) D 

In Figure 6.2 we show how such an assignment can be made by 

combining the dadep graph of Figure 5.2 with the interpretation of 

Example 4.1. The element associated with each value is shown inside 

the box representing the value. 

Such an interpreted graph shows a "history" of the elements 

generated if the given sequence can be observed under the given 

interpretation. (This "can be observed" issue is where the predicates 

will come in.) The labeling with memory locations then identifies 

the final contents of the schema output locations. Thus, such an 

interpreted dadep graph constitutes a completely satisfactory 

description of the input/output behavior of schemata for what we will 

define as I-computations. 



68 

Figure 6.2 Assignment of elements to the values of the dadep graph 

of Figure 5.~ using the interpretation of Example 4.1 

~--------------------------
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6.3.l Free Interpretations - Introduction 

The starred values in Figure 6.2 all were assigned the same domain 

element. We would like to know if this was purely coincidental, or if 

it will be true for all interpretations. This leads us to introduce 

free or Herbrand or one--one interpretations, and the notion of 

similarity in dadep graphs. 

A brief inspection of the interpreted dadep graph of Figure 6.2 

reveals that if a different set of initial elements had been chosen, 

say 5 and -3, then the starred values would have been distinct. It 

would be nice if we could find an interpretation which assigns the 

same domain element to distinct values only if all interpretations 

assign the same element to them. Such interpretations in fact exist, 

and are variously called free, Herbrand, or one-one interpretations. 

These interpretations are a formalization of the "symbolic 

representation" we referred to in the definition of events. 

6.3.2 Free Interpretations - Formal Definition 

To define a free interpretation of a schema, let DOMAIN be the set 

of strings over the nalphabet" composed of FUNCTION NAMES, the integers 

from l through the number of schema inputs, and, for clarity, commas and 

parentheses. The initial element corresponding to the first schema 

input location is 1 1 1 , that corresponding to the second schema input is 

'2', and so forth. 

If f is an m-ary function name, then f
1 

applied to domain elements 

(which are strings) s
1

, s
2

, ···, sm is defined to be the string formed 

by concat~nating function nam~ f, a left parenthesis, s
1

, a comma, s 2 , 
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a comma, and so on throufh s which is followed by a right parenthesis. - m 

For example, fI['l', 1 g(2)','h()'];:: 'f(l,g(2),h())'. 

Any set of total predicates over the given DOMAIN can be used to 

complete the interpretation. Thus, a data flow graph really has a family 

of free interpretations, differing only on the predicates assigned to the 

predicate names. 

6. 3. 3 Free Interpretations - Universality 

Suppose G
1 

and G
2 

are data flow graphs with the same number of schema 

inputs. Let D
1 

and D
2 

be dadep graphs of well-defined sequences for the 

respective data flow graphs. Then v~lues v
1 

of D
1 

and v
2 

of D
2 

are 

assigned the sor ~lement by every interpretation if and only if they are 

assigned the same element of a free interpretation. 

The 'only if' half of the above result is trivial. Therefore, we need 

only demonstrate that if v
1 

and v
2 

are assigned the same element by a free 

interpretation, then every interpretation assigns them the same element. 

We assume the contrary and derive a contradiction. 

Suppose that it is possible for values v
1 

and v
2 

to be assigned 

different elements by some interpretation I even though they are 

assigned the same element by a free interpretation. We can assume 

without loss of generality that v
1 

is a value of least depth for which 

such a condition can arise. 

If the depth of v
1 

is 0, it must be an initial value, say the ith 

S_i~""'.C2 v;:i _1s assigned the same element f i I by a free interpretation, it 

must he -'che .th 
initial value l in D2. But then the same initial element 

of every interpretation is assigned to both v
1 

and v
2

. So v
1 

must be at 



depch l or greater. 

If v
1 

is at depth 1, then it is the output value of an operation with 

some 0-ary function naY.Je f. The element of a free interpretation assigned 

t . th +:: ! f( ) ! • o v
1 

is ,ere~ore If v
2 

is assigned this same element by a free 

interpretation, it too must be the output value of an operation with 0-ary 

function name f. Since f
1

() would then be assigned to both v
1 

and v
2 

for 

every interpretation I, it follows that v
1 

must be at depth 2 or greater. 

r+ n1,::;t therefore be that v 
1 

is the output value of an operation o
1 

with m-ary function name 1::, and m:?:l. Therefore v
1 

and v
2 

are assigned 

element 'g(s
1

,s
2

,"" · ,sm)' by a free interpretation, where si is the 

element assigned by the free interpretation to the ith input value, vli' 

of o
1

. Thus v
2 

must also be the output value of an operation o
2 

with 

function name g and input values v
21 

through v
2

m which are assigned 

elements s
1 

through sm of the free interpretation. But each v
1

j has path 

depth at least 2 less than v
1

. By hypothesis, each vlj' being assigned 

the same element sj of a free interpretation as is assigned to v
2
j, must 

be assigned the same element as v
2

j for every interpretation. But then 

v
1 

and v
2 

could be assigned differing elements only if g
1 

gave different 

results for the same m-tuple of elements. This violates the functionality 

I 
of g . 

We conclude that an interpretation which assigns different elements 

to v
1 

and v
2 

cannot exist. 0 
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6.4.l Similarity - Formal Definition 

Suppose we have two data flow graphs, G1 and G2 , and dadep graphs D1 

and D2 of corresponding well-defined sequences over the respective data 

flow graphs. We define similarity, a relation on actions and on values, 

by the following induction. 

Values v
1 

in D
1 

and v2 in D
2 

are similar if each is the ith initial 

value, or if they are output values of similar operations. 

Actions a
1 

in D1 and a2 in D2 are similar if they are labeled with 

the same function name or predicate name, and, if the name is m-ary with 

l h f . h . th . l f . . . 7 h . th 
m~ , t en or l$i$m, t e i input va ue o a1 is s~m~~ar to t e i 

input value of a
2

. 

Again, the acyclic nature of dadep graphs guarantees the validity of 

this i~ductive definition. That is, working back along directed arcs 

always leads to an initial value or a 0-ary operation. Values or actions 

which are not similar are said to be dissimilar. 

6.4.2 Similarity - Relation to Free Interpretations 

We now show that values are similar if and only if they are assigned 

the same element by free interpretations. 

If values v
1 

and v2 are similar and the lesser depth is O, then one 

t~ l . h .th ... l l of u.e va ues, say v 1 , is t e i initia va ue. By hypothesis 3 of 

d d h d h d f . . . . . . b h . th a ep grap s an t e e inition of similarity, v2 must also e t e i 

initial value of its dadep graph. Both values are thus assigned 'i' by 

a free interpretation. 

Suppose similar values are assigned the same element by a free 

interpretation if the lesser depth of the values is k or less. Suppose 

------------ -------
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v1 and v2 are similar values such that the depth of v1 in its dadep 

graph is k+l or k+2. Since v
1 

and v2 are similar and neither is an 

initial value, vl and v2 are output values of similar operations 01 

and o2 . Since 01 and 02 are similar, they bear the same m-ary 

function name f. If m is O, v 
1 

and v 2 are both assigned 1 f()' by a 

f . . f . • • h b d f . . • h . th ree interpretation. I m is positive, t en, y e inition, t e i 

input value of o
1 

is similar to the ith input value of o2 for l:5i:5m. 

Since the depth of each input value of o
1 

is k or less, it follows 

b . d . h h . h h .th • y our in uction ypot esis t at t e i input value of o1 is assigned 

h 1 f f . . . h . th . t e same e ement, s., o a ree interpretation as is t e i input 
l 

value of o2 . But then v1 an·l v2 are both assigned 'f(s1,s 2 ,'" ,sm)' 

by any free interpretation. 

The proof that values assigned the same element by a free 

interpretation are similar can be carried out by induction on lesser 

depth in a manner directly analogous to the proof above. We therefore 

omit the details of the proof. 0 

Combining the last two proofs allows us to draw the following 

important conclusion. 

Theorem 6.1): Values v
1 

and v2 in dadep graphs D1 and D2 are 

assigned the same element by all interpretations if and only if the 

values are similar. 
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6.S.l Dadep Graphs - The R6le of Decisions 

Having investigated in some detail the nature of values in dadep 

graphs and the relation they bear to interpretations, we are now in a 

position to study decisions. 

As we saw, decisions are irrelevant with respect to the assignment 

of elements to values by any interpretation. However, the decisions in 

a dadep graph indicate whether the graph (and underlying sequence) are 

in some sense legitimate. 

For example, if 9., were interpreted as n1arger than or equal to" 

instead of as "less than" in Figure 5.2, the predicates determined by 

the interpretation would have specified the opposite outcomes from 

those in the dadep graph. Thus, the dadep graph is not consistent 

with such an interpretation. 

We will formalize this notion of consistency in several steps. We 

will first define what it mc'ans for a single decision to be consistent 

with an interpretation. Th_\ s easily extends to the definition of dadep 

graphs being consistent with an interpretation. It will then be 

possible to define what we mean by sequences, even infinite ones, being 

consistent with an interpretation. We can then circumvent interpretations 

and define consistency between decisions, dadep graphs and sequences. 

Throughout, consistency has the flavor of "agreeing on the outcome of 

identical decisions". 
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6.5.2 Consistency - Formal Definition 

Suppose we have a dadep §raph D and a decision d in D. Suppose d is 

labeled with predicate name p and one of the outcome labels, Tor F. 

Then decision d is said to be inconsistent with interpretation I if 

I p on the elements assigned to the input values of d has the outcome 

opposite that with which d is labeled. In any other case, including the 

case where d has no outcome label, d is said to be consistent with I. 

A dadep graph D is said to be consistent with an interpretation I if 

each decision in D is consistent with I. D is inconsistent with I if 

any decision in D is inconsistent with I. 

We have defined dadep graphs only for finite, well~defined sequences 

over a given data flow graph. Although it would be possible to extend 

the definition to infinite well-defined sequences, we are not as 

interested in the details of such infinite sequences as we are in the 

fact that they never terminate. To handle (potentially infinite) 

sequences, then, we make the following definition. 

A well-defined sequence is consistent with an interpretation I if 

the dadep graph of every prefix of the sequence is consistent with I. 

Otherwise, the sequence is said to be inconsistent with I. 

A control sequence consistent with an interpretation I can be thought 

of as a computation which might be observed for the schema under 

interpretation I. In this spirit, we call them I-computations. 

If d1 is a decision in dadep graph D
1 

and d
2 

a decision in D2 , then 

we define d
1 

to be consistent with d2 if there is some interpretation 

with which both d
1 

and d2 are consistent. Otherwise we say d1 is 

inconsistent with d2 . From our knowledge of similarity and 



76 

interpretations, we know that d1 and d2 are inconsistent if and only if 

they are similar and are labeled with opposite outcomes. 

A dadep graph is said to be (self-)consistent if every decision in the 

graph is consistent with every other decision in the graph. It is not 

difficult to see that a dadep graph is consistent if and only if there is 

an interpretation with which it is consistent. 

Dadep graph D1 is defined to be consistent with dadep graph D2 if each 

is self~consistent and each decision in n1 is consistent with every 

decision in n2 • (It follows automatically that each decision in D2 is 

then consistent with every decision in n1 .) Because we required that each 

dadep graph be self-consistent~ it follows that n1 is consistent with D2 

(having the same ntunber of initial values) if and only if there is some 

interpretation with which both are consistent. If n1 and D2 are not 

• 
consistent we say they are inconsistent. 

A control sequence is (self-Jconsistent if the dadep graph of. every 

prefix of the sequence is self-consistent. Control sequence x1 of schema 

s1 is consistent with control sequence ~2 of s2 (having the same number 

of schema inputs) if both are self-consistent and the dadep graph of every 

prefix of x1 is consistent with the dadep graph of each prefix of x
2

• 

Therefore, two control sequences are consistent if and only if there is 

some interpretation with which both are consistent. 
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6.5.3 Consistency - Some Perspective 

In sequential schemata such as Paterson's flow chart schemata (which we 

henceforth simply call Paterson schemata to avoid confusion with data flow 

graphs), an interpretation co~pletely determines what will occur. Only at 

decider outcomes is there any "choice" in a sequential schema, and the 

outcome of all decisions is fixed by an interpretation. 

When we move to parallel schemata, the choice of interpretation no 

longer determines which event must occur at each step in a computation. 

For example, in the Petri net model of Figure 3.4, the first event to occur 

might be w, a, orb, no matter what interpretation is involved. (Which of 

these events actually occurs first might, for some particular implementa­

tion, depend upon such things as the availability of a suitable processor 

or the details of a scheduling algorithm. These issues are not dealt with 

by our model: We are only concerned that the control set might allow any 

of several events to occur. ) Al though a:c, interpretation specifies the 

outcomes of all decisions, for parallel schemata this no longer uniquely 

determines a control sequence. The choice of an interpretation I only 

restricts control sequences to that subset consistent with I. Within this 

set of I-computations, any sequence might be observed for the schema under 

interpretation I. 

As mentioned, the self-consistent sequences are precisely those which 

are consistent with some interpretation. This subset of CONTROL is 

sufficiently important that we give it a name, EXECUTION SEQUENCES. A 

control sequence which is not an execution sequence is, in one sense, 

unintc;pesting since it cannot be observed under any interpretation. It 

may not be possible to uniformly eliminate inconsistent sequences, however. 
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6.6.1 Equivalence of Sequences - Formal Definition 

We can now define a meaningful comparison between control sequences 

of the same or differing schemata. Our definition of equivalent 

sequences will amount to producing the same, if any, outputs for all 

interpretations. We find it useful not to insist that equivalent 

sequences be consistent. 

Formally, suppose we have control sequence x
1 

of schema s
1 

having m
1 

schema input::; and n
1 

schema outputs, {1
11

,.e.
12

, • • • ,.e.
1
n

1
}. Suppose also 

that x
2 

is a control sequence of schema s
2 

having m
2 

inputs and n
2 

outputs 

{R.21 ,122 , • • · ,.t2n
2

}. Then x
1 

and x
2 

are (output} equivalent if 

1) m1=m2 and n1=n2 ,'and 

2a) both x
1 

and x2 are infinite, or 

2b) both x1 and x 2 are finite, and, for all interpretations I, and for 

all ~isn1 , the element assigned by I to the value with memory label 

t
1

i in the dadep graph of x
1 

is the same as the element assigned to 

the value with label R.
2
i in the dadep graph of x

2
• 

An immediate corollary of Theorem 6.1 is that clause 2b) can be 

replaced with 

2b') both x1 and x
2 

are finite, and, for all 1Si~n1 , the value with label 

t
1
i in the dadep graph of x

1 
is sL~ilar to the value with label t 2i 

in the dadep graph of x
2

• 

We will generally use this second form which makes no explicit 

mention of interpretations. We write x1~2 to denote that x
1 

is 

equivalent to x 2 • 



6.7.l Determinacy and Equivalence of Schemata - formal Definition 

A schema S is determinate if, for all interpretations I, all 

I-computations are equivalent sequences. Alternatively, schema S is 

determinate if, for all control sequences x
1 

and x
2 

such that x
1 

is 

consistent with x
2

, x
1 

and x
2 

are equivalent sequences. That the two 

definitions are equivalent follows from the fact that x
1 

and x
2 

are 

consistent if and only if there is an interpretation I such that both 

are I-computations. 

This form of determinacy is sometimes callc,, O'c-1tput detsY~'i·i/:cy or 

output functionality, since it deals only witt, the final contents of 

output locations. Since .'._ t .Ls t:.c orly form of determinacy W8 will 

treat, we will use the simpler tern. 

Two schemata s
1 

and S? are equivalent if, for all interpretations I, 

3n I-computation of one schema, ~'.:ere exists an equivalent 

•~· -crnr.putatio11 y of the other schema. 111. t~H? definition can be 

restated so that interpretatioL3 o not appear. In particular, s
1 

and s
2 

are equivalent if, for each ~~ccution sequence x of one schema, there is 

a consistent, equivalent execution sequence y of the other. 

Note that as stated, schemata need not be determinate for equivalence 

to apply. It is an easy exercise to show that two schemata are 

equivalent only if both are determinate or both are non-determinate. 

For determinate schemata, other definitions of equivalence are also 

seen in the literature. We can define two determinate schemata to be 

7,y equivalent if, for all interpretations I, if both schemata have 

finite I-computations, then these sequences are equivalent. There is no 

natural analogue to weak equivalence among non-determinate schemata. 
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6.8.l Schemata - Some Perspective 

Schemata as we have defined them have been the result of taking the 

common noti'on of a computation and splitting it into three parts. One 

part, the data flow graph, specified structural relationships between 

memory locations and actors, and indicated where inputs and outputs were 

expected. Another part, the interpretation, supplied the detailed 

information about the potential contents of memory locations and the 

effect of actors on these contents, The third part, the control set, 

specified allowable sequences of actor initiations and terminations. 

Dadep graphs were defined as a representation of a sequence and a 

data flow graph. We showed the "universality" of free interpretations, 

and the relationship of similarity in dadep graphs to equality in free 

interpretations. This enabled us to show that the structure of dadep 

graphs also includes "all we need to know" about interpretations. That 

is, the definitions of schemata determinacy and equivalence obtained by 

quantifying over all interpretations can also be stated in terms of 

dadep graph structure without explicit mention of interpretations. 

Thus dadep graphs constitute a powerful investigative tool combining 

all three of the parts mentioned above. They will find considerable use 

in the remainder of this dissertation. 
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7. l. l Schematology - Some Pitfalls 

It has long been known that the equivalence problem for Turing machines 

is not decidable 10, 14 . Since one can encode a Turing machine in most 

interpreted models for computation10, the equivalence problem for these 

models is also undecidable. An early hope for schematology was that by 

demanding equivalence for all interpretations, these encoding tricks could 

~~ circumvented and the schemata equivalence problem found solvable. 

Unfortunately, the equivalence problem for Paterson schemata has been 

shown to be undecidable 9 • 11 . Since the schemata we have defined can mimic 

Paterson schemata, it follows that the general equivalence problem for our 

schemata must also be unsolvable. 

As a further consequence, we can show that the general determinacy 

problem is also undecidable. To see this, suppose we have two m-input 

n-output Paterson schemata s
1 

and s2 whose equivalence we would like to 

test. We can assume that ACTORS
1

nACTORS 2=¢, since actors can be relabeled 

without altering function names or predicate names. We can then form a 

composite schema by merging the schema inputs and schema outputs of the 

data flow graphs as shown in Figure 7.1, and letting the new control set 

be CONTROL
1

uCONTROL2 . 

It is a property of Paterson schemata that each interpretation I 

defines exactly one I-computation. Thus, our composite schema would have 

exactly two I-computations, one from s
1 

and one from s2 • The composite 

::;chena will be determinate, then, if and only if s
1 

and s2 are equivalent. 

Since the latter is undecidable, so is the former. 
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Figure 7.la Data flow graph of s1 
Figure 7.lb Data flow graph of s2 

Figure 7.lc Data flow graph of composite schema 

--rr--
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7.2.l Properties of CONTROL - Introduction 

Knowing that the general equivalence and determinacy problems are 

undecidable, we will concentrate our efforts on identifying classes of 

schemata where the problems are more tractable. We define these classes 

by putting "syntactic" restrictions on control sets. So far, the only 

restrictions on control sets of schemata are that the sequences be well­

c":~fined and that finite control sequences leave results in the schema 

output locations. As we shall see, this allows control sets which run 

counter to our intuition about "proper" control. After developing some 

familiarity with control sets, we will begin restricting them to obtain 

more reasonable classes. 

If a is an event and x is a prefix of a control sequence, then we say 

that a is enahled after prefix x if xa is also a prefix of a control 

sequence. One must be careful not to read more into this definition than 

is really there. Without further details about the mechanism which 

determines the control set, all we can conclude is that after x has 

occurred, there is nothing to prevent a from happening next. Of course, 

xa may not be consistent with a given interpretation, or, for that matter, 

with any interpretation. In parallel schemata, we generally expect that 

many events may be enabled after a given prefix. 

If a control mechanism allows two events a
1 

and a
2 

to occur 

"simultaneously" after prefix x, this will be manifested in the existence 

of prefixes xa
1
a

2 
and xa

2
a

1
• The converse is not strictly true. Figure 

7.2 shows two Petri net controls each of which allows sequences 

fo_1D";~''J"?cr 1 }. Only in the first can the events be truly simultaneous. 

To us, however, the distinction is not an important one. 



\'I 
L 

Figure 7. 2 Two Petri nets with CONTROL = {o 
1

o
2 

,o 
2
o 

1
} 

Figure 7.3 A Petri net control specification which is not commutative 
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7.3.l CONTROL - The Pref ix Property 

One property we might expect of a reasonable control mechanism is 

that it be able to detect when a computation had completed, Since we 

are dealing with speed--independent systems, we must rely on the control 

mechanism to announce when things have come to a halt and results are 

ready in the schema outputs. 

The prefix property guarantees that when a computation terminates, 

no further activity is possible. Stated formally, a control set has the 

prefix property if no control sequence is the proper prefix of any other 

control sequence. In other words, after a finite control sequence, 

nothing is enabled. 

When dealing with a particular control mechanism, the control 

sequences are usually so defined as to have the prefix property 

automatically. This bears out our comment about the set-theoretic 

approach appearing to formalize the trivial. However, as the single 

state control mechanism of Figure 3.8 shows, what is obvious in some 

mechanisms may be absent in others. 

7.4.l CONTROL - Persistence 

In the proof of the undecidability of determinacy, the control set 

of the composite schema had some peculiar properties. The corrpc3ite 

control set was formed by taking the union of two control sets of 

sequential schemata whose alphabets of events were presumed disjoint. 

Initially, then, there would be two events enabled, corresponding to the 

first event from each of the component schemata. As soon as an event 

occurs, however, one of the component schemata becomes "irrelevant" 
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since it has no control sequences starting with that event. The event 

originally enabled in this component schema ceases to be enabled. Note 

that this happens, not because of an inconsistency with an interpretation, 

but because "something clicks" in the control set and precludes any 

further activity. 

If the reader feels that something is amiss here, it is probably 

because most of the familiar models for parallel computation have a 

property we call pePsistenae which is lacking in the composite schema. In 

a persistent schema, once an event is enabled, it remains enabled 'lllltil it 

occurs, or, in the case of a decider termination, the termination with 

opposite outcome occurs. 

Formally, a schema is pereistent if, given any prefixes xcr1 and :ro2 o:f 

control sequences such that o
1

;to 2 and o
1 

and a
2 

are not opposite 

terminations of the same decider, then 3Xf 1cr2 is also the prefix of a 

control sequence. (By symnetry, xcr2cr
1 

would also be a prefix.) 

Sequential schemata are trivially persistent since the only distinct 

prefixes of the form xa
1 

and xcr2 are those for which cr
1 

and cr2 ~ 

opposite terminations of a decider. Fork/join formalisms are also 

persistent since the loci of control are independent except at join nodes. 

Petri nets are persistent if multiple arcs out of state nodes lead only to 

alternative termination events of a decider. (This is a sufficient 

condition, but not a necessary one, as demonstrated in Figure 7.2.) 

Dennis-Fosseen schemata are always persistent since firing any enabled 

ele-..-,en t c211:1ot disable any other element. Finite state control mechanisms 

need not be persistent~ but the property can easily be verified by 

inspecting the state graph. 
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7.5.l CONTROL - Commutativity 

Persistence implied that the occurrence of one event could not disable 

another event. Thus, if xa
1 

and xa
2 

are consistent, distinct prefixes, 

xa
1
a

2 
and, reversing roles, xa

2
a

1
, are also prefixes. Corrmutativity will 

imply that if two events can occur in either order, as with a1 and a2 after 

prefix x above, then the actual order of occurrence is unimportant to the 

control mechanism. This "unimportance" can be stated in syntactic terms 

by requiring that anything which can happen after xa
1
a

2 
can also happen 

after xa 2o1 , and vice versa. 

Formally, a schema is comrrrutative if, for all prefixes xa1a2 and xa2a1 

of control sequences, xa
1

a2y is a control sequence if and only if xa2a1y 

is a control sequence. 

Sequential schemata are trivially commutative. Petri net and fork/join 

formalisms are not necessarily commutative. We show a Petri net 

counterexample in Figure 7.3. A fork/join counterexample would look much 

the same. Both a 3a 1a 2 and a3a2a1 are prefixes, but a 3a 2a 1a 4 is a prefix 

whereas a 3a
1

a 2a 4 is not. The problem here is that a
1 

in the two prefixes 

corresponds to different events in the Petri net. If events cannot be 

"enabled in parallel with themselves" as above, then fork/join controls 

and Petri nets, with branching out of state nodes restricted as in the 

last section, will be commutative. Dennis-Fosseen schemata are always 

commutative. If a finite stat''° machine is in r22'clced form, commutativity 

can easily be verified by checking that a
1
a

2 
and a2a1 lead to the same 

state from any given state in the state diagram. 

Commutativity is common because is requires more "states" to recall 

the order of events than to ignore it. Thus, commutative control 
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mechanisms tend to be simpler than non-conunutative ones. Furthermore, 

since sequences of the form xcr1cr2 and xcr2cr1 generally reflect the 

situation that a1 and o2 can occur simultaneously-, there are practical 

(and philosophical) difficulties in actually determining the order of 

occurrence. 

7.6.l CONTROL - Conflict 

Conflict, or the absence thereof, i.s a joint property of control 

sets and data flow graph topology. A conflict is said to exist if there 

are prefixes x~ and xa of control sequences where either 

1) a is the initiation of some acto~ a such that the output location of 

operator o is an input location of actor a, or 

2) er is the termination of some operator r~o such that r and o have the 

same output location. 

In either case, we say that x~ and xcr are in conflict. A schema is said 

to be conflict-free if its control set has no conflicts. 

A conflict exists, then, if two events can be enabled after the same 

prefix and both are about to write into the same location or one is 

about to write into a location the other is about to read. If the reader 

senses something dangerous here, his fears are not groundless as will 

become clear in the following sections. 
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7.7.l Determinacy - An Overview 

A schema which is persistent, commutative and conflict-free and has 

the prefix property may nevertheless exhibit properties which are quite 

unconventional. For example, it may be that many initiated actors are 

left unterminated when computations complete, or there may exist 

interpretations with which no control sequence is consistent. In view 

of such unorthodox possibilites, it might be surprising that such 

schemata are always determinate! Those familiar with the work of Karp 

and Miller will note the similarity of the proof of this fact to an 

analogous result for their schemata7 . 

7.8.l Determinacy - Some Preliminary Notions 

The rules for constructing dadep graphs are such that distinct 

sequences need not generate dadep graphs which are different from one 

another. To make this statement precise, we must define what we mean by 

two sequences generating the "same" dadep graph. 

Suppose x and y are finite, well-defined sequences over a data flow 

graph G. Let D and D be the dadep graphs of x and y, respectively. x y 

Then x and y are dadep indistinguishable i-::- the following four conditions 

hold. 

1) For each event a in the alphabet of events of G, the number of 

occuprences of a in x equals the number of occurrences of a in y. 

2) If there is a jth occurrence of uninterpreted actor a in x, then the 

action in D corresponding to the jth occurrence of a is similar to 
x 

the action in D corresponding to the jth occurrence of a, and, if a 
y 
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is a decider, both decisions have the same outcome label, if any. 

3) If there is a jth occurrence of identity operator o in x, then the 

value in D corresponding to the jth occurrence of o is similar to 
x 

h · d. h .th f t e value in D correspon ing to t e J occurrence o o. 
y 

4) If 1 is a me~ory location label on a value in DX, then 1 is a label 

on a similar value in D . 
y 

Condition 1 simply means that the dadep indistinguishable sequences are 

made up of the same events, possibly occurring in a different order. 

Conditions 2, 3, and 4 together imply that the differences in order do not 

cause any significant differences in the values, actions, or memory 

labeling in the dadep graphs. 

For the data flow graph of Figure 2.4, each pair of sequences in the 

following set are dadep indistinguishable. 

{ ~a:~!? , ;;~~~ , ;;a:~~£~ , wa~!~ , w~Ee! , ~ai>~ ,_ wa!E~ 1 
A little combinatorial mathematics reveals that N operators in parallel 

can occur in (2N)! / (2N) distinct sequences. Thus, the three operators, 

w, a, and b, determine 90 such dadep indistinguishable sequences, a 

considerable gain in flexibility over the single sequence of sequential 

schemata. 

If two execution sequences are dadep indistinguishable, condition 4 

inunediately guarantees that the sequences are equivalent, and condition 2 

ensures that they are consistent. 
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Equally as important, if xz and yz are finite control sequences and 

x is dadep indistinguishable from y, then xz is dadep indistinguishable 

from yz. This follows by induction from the fact that xa and ya are 

dadep indistinguishable if x and y ars. This, in turn, can easily be 

verified by considering the five cases involved in the construction of 

dadep graphs. We will carry out the proof here, but will avoid such 

detailed expositions in the future. 

Lemma 7 .1: If x and y are dadep indistinguishable sequences and xa 

is well-defi~~J, then xa and ycr are dadep indistinguishable. 

Proof: Condition l of dadep indistinguishability for xa and ya 

follows im:11'."')cliately from Condition l applied to x and y. If a is the 

termination of some decider d, let j be the number of occurrences of 

terminations of din xa. Otherwise, let j be the number of occurrences 

of a in xa. Let D and D be the dadep graphs of x and y, respectively. 
x y 

We consider the following cases. 

Case l) er is the initiation of an actor c other than an identity 

Case 

operator. By condition 4, the values in D which bear the names of 
x 

the input locations to c are similar to the values bearing these 

labels in D . Condition 2 holds for the new action, and conditions y 

3 and 4 are unaffected. 

2) er is the initiation of an identity operator c . By condition 4, 

the values in D and D to which this . th of c corresponds J occurrence x y 

are similar. Thus condition 3 holds, and conditions 2 and 4 are 

unaffected. 
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Case 3) a is the termination of an operator c which is not an identity 

operator. By condition 2, the actions in D and D corresponding to 
:r: y 

the jth occurrence of care similar. Hence, the values added are 

similar, so the values labeled with the name of the output location 

of c in the dadep graphs of :r:cr and YCJ are similar. This preserves 

condition 4, and conditions 2 and 3 are unaffected. 

Case 4) Cl is the termination of a decider c. By condition 2, the 

decisions in D and D corresponding to the jth occurrence of care 
:r: y 

similar, and here are given the same outcome label. This preserves 

condition 2 and conditions 3 and 4 are unaffected. 

Case 5) a is the termination of identity operator c. By condition 3, 

th l • D d D d. h . th f e va ues in an correspon ing to t e J occurrence o c are 
:r: y 

similar. Thus, the values in the dadep graphs of :r:a and ya bearing 

the name of the output location of c are similar, preserving 

condition 4. The other conditions· are unaffected. 0 

Putting this lemma together with the observation which preceded it, 

we obtain the following lemma. 

Lemma 7.2: If :r:z and yz are finite execution sequences and :r: and y 

are dadep indistinguishable, then :r:z and yz are consistent and 

equivalent. 
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7.9.l Persistence, Commutativity and Conflict - Some Lemmas 

Persistence, commutativity and conflict all deal with well-defined 

some useful lemmas about such sequences. 

The first lemma shows that if cr 1~cr2 and cr1 and cr2 are not the 

opposite terminations of some decider, then if xcr1 and xcr
2 

are well­

defined sequences which are not in conflict, xcr
1

cr
2 

and xcr
2

cr
1 

are dadep 

indistinguishable. The proof, similar to that of Lemma 7.1, involves 

checking a number of cases against the definition of dadep graphs. We 

leave the details to interested readers and only outline the proof. 

Lemma 7.3: Suppose cr1 ~cr 2 and cr
1 

and cr
2 

are not opposite terminations 

of the same decider. If xcr
1 

and xcr
2 

are well-defined sequences which are 

not in conflict, then xcr
1

cr
2 

and xcr
2

cr
1 

are dadep indistinguishable. 

Proof: By exhausting all possible combinations of cases. 

Case 1) -cr
1

=a, J" 2=b. Initiation events do not alter the labeling of 

values with memory locations. The actions are therefore attached to 

the same values independent of order. If either a orb or both are 

identity operators, no action is added, but the value corresponding 

to its occurrence is the one bearing the name of its input location. 

As mentioned, this is not altered by another initiation. 

Case 2) cr1=a, cr 2 =~, b an operator. Since xb is well-defined, ~ must 

terminate some actor initiated in x. Notably, the initiation of a 

can have no effect on the operation to which this occurrence of b 

corresponds. After b has been added to the dadep graph, the memory 

labeling is changed. However, the change only involvsr; the name of 
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the output location of b. If this is an input location of a, xa and 

xb are in conflict. Otherwise, the change does not affect the action 

added by the occurrence of a. 

Case 3) 0
1

:::a, CJ 
2

:::dT or CJ 
2
=dr. Since decider outcomes only add decision 

labels, there can be no interference between 0 1 and CJ 2 . 

Case 4) CJ
1

:::c::, 02 =~, a anc'. ~)operators. If the output location of a is 

the same ao; the c~'<t >Ut location of b, xa and xb are in conflict. 

Otherwise, the orc~cr is immaterial. 

Case 5) CJ
1

='.:, 0
2

=dT or CJ
2

:::df. As in case 3, there can be no problems. 

Case 6) CJ
1

:::dT or CJ
1

:::dF' 0 2 ~~T or 0 2:::eF. If d~e, the decisions referred 

to must be distinct, and ,;o problems arise. If d:::e, then, since 

0 1~0 2 , they must have opposite outcomes. But we also hypothesized 

that 0
1 

and 0
2 

were not opposite terminations of the same decider. 

Thus it cannot be that d:::e. 0 

The next lemma shows that persistence has some global implications. 

Lemma 7.4: In a persistent schema with the prefix property, if XCJ is 

the prefix of a control sequence and xy is a finite control sequence, 

then 0 occurs in y, or, if CJ is a decider termination, the opposite 

termination occurs in y. 

Proof: Since xy is a finite control sequence, y is finite and we can 

write it as a sequence of events y=a
1

a 2 an. If a
1 

is a or the decider 

termination of which a is the opposite termination, we are done. 

Otherwise, xa1 and XCJ are prefixes which, by persistence, imply that 

xa1CJ is also a prefix of a control sequence. Repeating the argument for 
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a and a
2

, cr and a
3

, and so forth, we must either find an ai equal to a or 

the opposite termination thereof, or else xa1a
2 

a q is the pref ix of 
n 

some control sequence. But this would violate the prefix property, for 

xy was a finite co~trol sequence. Thus, such an a. must be found. 
i 

Lemma 7.5: In a persistent schema with the prefix property, if :x:a 

is the prefix of a control sequence and is consistent with finite 

execution sequence xy, then a occurs in y. 

Proof: If a is not a decider termination, this follows inrrnediately 

from Lenrrna 7.4. S . th . th • • f d • d o suppose a is e J termination o some eci er. 

D 

By 

Lemma 7.4, either cr or the opposite termination must occur in y. If the 

opposite termination occurred first, then xa and :x:y would be inconsistent 

about the outcome of the j th occurrence of the decid2,::>. Therefore, cr 

must be the next termination of the decider to occur. 0 

The next lemma shows that in a persistent, commutative schema, an 

event which did not occur when it was first enabled can "slide back". 

Lemma 7.6: In a persistent, commutative schema, if :x:a is the prefix 

of a control sequence and xyaz is a control sequence where neither a nor, 

in the case that a is a decider termination event, the opposite termination 

event, occurs in y, then xayz is also a control sequence. 

an, where each ai is an event. By 

hypothesis, no a. is a or the opposite termination event if cr is a 
l 

decider termination. By the same argument used in Lemma 7.4, :x:a1a, 

sequences. Persistence then implies that xa
1

a
2
···an_1cr an is also the 

prefix of a control sequence. Since the schema is commutative, 
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a 
1
oa z is also a control sequence. Repeating the argument n-1 

n- n 

times, we can conclude that xoyz is also a control 3equence. D 

An easy corollary follows if the schema is also conflict-free. 

Lemma 7.7: In a persistent, commutative, and conflict-free schema, 

if xo is the prefix of a control sequence and xyaz is a control sequence 

where neither a nor, in the case that a is a decider termination event, 

the opposite termination event, occurs in y, then xoyz is a control 

sequence which is dadep indistinguishable from xyaz. 

Proof: From Lemma 7.3 we know that xa
1
···a. 

1
a.aa. 

1
···a z and 

1~ 1 it n 

xa
1
···a. 1aa.a. 

1
···a z are dadep indistinguishable for l~i~n. One need 

i- i i+ n 

only show that dadep indistinguishability is a transitive relation for 

the result to follow. By inspecting the definition of dadep 

indistinguishability, it is clear that it is an equivalence relation, 

hence transitive. 0 
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7.10.l Determinacy - Some Sufficient Conditions 

We are now in a position to put some of the preceding lemmas together 

to prove the following determinacy result. 

Theorem 7.8: A persistent, commutative schema with the prefix 

property is determinat~ if it is conflict-free. 

Proof; Suppose :;.; aPd y are I-computations. If both are infinite, they 

are equivalent and we are done. So suppose that x is finite and no longer 

than y. Suppose x=a
1

a
2
···an and y=b

1
b

2
'''bn···. We will find a sequence 

of I-computations, x
0

, x1 , ···, xn' such that xi is dadep indistinguishable 

from x and the prefix of length i of xi is b1b 2 '''bi. 

Letting x
0
=x, we have the basis for our inductive argument. Suppose we 

have I-computation xi-l satisfying the above conditions. We know that 

xi-l =b1b 2'' 'bi-l ci ci+l'' ·en. Sine~ b1b 2 '' 'bi-lbi :'_s the prefix of an 

execution sequence, y, which is consistent with x, and hence with x. 1 , 
l-

Lemma 7.5 ensures that b. occurs among the c.'s. Suppose ck is the first 
l J 

such occurrence. By Lemma 7.7, b
1

b
2
'''b. 

1
b.c.c. 

1
'''c 

1
ck 

1
'''c is a 

l- l l l+ K- + n 

control sequence which is dadep indistinguishable from x. 1 . By the 
l-

transitivity of dadep indistinguishability, this sequence, which we shall 

call x., is also dadep indistinguishable from x. 
l 

Now consider xn=b1b 2 '''bn. If y is longer than x, b1b 2'''bnbn+l is in 

violation of the prefix property. By hypothesis, x was no longer than y. 

Hence, x =y. Since dadep indistinguishability implies equivalence, x=y, 
n 

which is precisely what we needed to show determinacy. D 
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·:· . l.t. l Determinacy - Retrospect 

If the reader followed the last proof carefully, he will note that 

the result is even stronger than we stated. Persistence, commutativity, 

the prefix property, and conflict-freeness not only guarantee that 

I-computations are equivalent in our sense; they imply that all finite 

I-computations are dadep indistinguishable, mere "permutation'>'~ of one 

another. 

Persistence, commutativity, conflict-freeness and the prefix 

property are sufficiently strong that even if our model is extended to 

allow subroutine-like use of schemata by other schemata, determinacy 

is preserved. We formalize how schemata can be so extended and outline 

the proof of determinacy in Appendix I. 
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8.1.l Conflict and Non-determinacy - Introduction 

We have seen that for persistent, commutative schemata with the prefix 

property, conflict-freeness is sufficient for determinacy. We will now 

turn to a class of schemata for which conflict-freeness is necessary for 

determinacy. Wf' do not investigate such schemata simply 11because they 

are there". Non·· determinacy is generally something we wish to avoid, not 

to guarantee. By studying how a local problem such as a conflict can 

develop into a global problem of non-determinacy, however, we improve our 

understanding of how parallel systems behave. This understanding may 

help to circumvent non-determinacy in other classes of parallel systems. 
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8.2.l Paths in Dadep Graphs - Similarity 

Paths in a dadep graph show how actions depend upon the initial 

values and output values of operations. To gain some additional 

familiarity with the properties of paths in dadep graphs, we establish 

a simple result about paths and similarity. 

Recall that arcs from values to actions are labeled with numbers. 

If an action is m-ary for some positive m, there are arcs into the 

action with labels l through m. Arcs from operations to values are 

unlabeled since there is precisely one such arc, if any. 

A path ir in a dadep graph is a sequence of arcs a
1

,a
2

, ,a 
n 

such that for l<isn, the node from which arc a. emanates is the node 
l. 

t h . h l d L h h .th d h . o w ic arc ai-l ea s. et us agree t at t e 1. no e on pat ir is 

the node from which arc a. emanates, and the n+lst (and final) node 
1. 

on path n is the node upon which arc a terminates. We say that n is 
n 

a path from the first node of n to the last node of w. 

We say that path 11'
1

=a
1 

,a
2

, ···,am in dadep graph n
1 

is sinn Zar to 

path n2=a1 ,a2 ,···,en in dadep graph n
2 

if all of the following 

conditions hold: 

1) m=n. That is, the paths have the same length._ 

2) For lsism, either a. and 6. are both unlabeled, or both have the 
.l. l. 

same label. It follows that two similar paths both must begin on 

value nodes, or both must begin on action nodes. 

3} For lSiSm+l, the ith node on path w
1 

is similar to the ith node on 

patr. ir2 . 

-------------·~-- --·-
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We can relate similar paths to similar nodes by the following 

straightforward but useful lemma. 

Lerruna 8.1: Let n1=a1 ,a2 ,··· ,am be a path to node n1 in dadep graph 

D
1

. Node n2 in dadep graph D
2 

is similar to n
1 

if and only if there is 

a path n2=B1 ,B 2 ,··· ,Bm to n2 in D2 which is similar to n1 . 

Proof: Since the final nodes on similar paths are similar, one half 

of the lerruna is trivial. 

Suppose n1 and n2 are similar. If n1 is a value node, am must be 

the unlabeled arc from the operation o
1 

of which n
1 

is the output value. 

Since n2 is.similar to n1 , it must be the output value of an operation 

o2 similar to o1 . Let Bm be the unlabeled arc from o2 to n2 . 

Suppose n
1 

is an action node. 

h .th . f t e 1 input value o n
1 

. 

Then a 
m 

must be the arc labeled i 

Since n
2 

is similar to n1 , v2 , the from v
1

, 

. th . 
1 input value of n2 , must be similar to v1 . 

i from v2 to n2 . 

Let Bm be the arc labeled 

Working our way back in this manner, it is obvious that we can 

D 

Two corollaries follow easily from Lemma 8.1. 

Lerruna 8.2: If n1 and n2 are similar nodes in dadep graphs D1 and D2 , 

and if m1 is a node on a path to n
1

, then there is a node m2 similar to 

m1 on a path to n 2 . 

Lemma 8.3: If D1 and D2 are dadep graphs and n
1 

is a node in D1 

which is not similar to any node in D
2

, then no node on a path from n1 

is similar to any node in D
2

. 
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8.3.1 Schemata - Some Additional Properties 

Since the first determinacy result did not depend upon properties 

other than those mentioned, we made no attempt to further limit control 

sets. We now discuss some properties which lead to behavior more in 

line with the systems we mentioned in the introduction. 

In a speed-independent system, one can make no assumptions about the 

length of time between the reading of an m-tuple of values and the 

completion of the processing thereon. If a control mechanism cannot 

block termination events, they must be anticipated at any time after 

the corresponding initiation event has occurred. 

To make this precise, we say that a schema has the immediate property 

if, whenever x is the prefix of a control sequence and either o is an 

operator such that x~ is well-sequenced or d is a decider such that xdT 

and x<Iy are well-sequenced, then x~ or xdr and xdF are prefixes of 

control sequences. 

Sequential schemata, as we have noted, have exactly one I-computation 

for each interpretation I. We generally expect parallel schemata to have 

more than one I-computation, but.we would hardly expect them to have none 

at all. However, there are data flow graphs for which {ddT} satisfies 

all the conditions necessary to qualify as a control set. It is even 

persistent, commutative and conflict-free, and it has the prefix 

property. Any interpretation I which specified a false outcome for d's 

predicate would have no I-computations. 

Even the fact that a control set contains an I-computation for each 

interpretation I is not sufficient to guarantee reasonable behavior. 
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For example, {da~dT,d.b~_dF} could be such a control set for some data flow 

graphs. If we view the sequence of events as occurring through time, 

however, we see that once da has occurred, somehow d cannot terminate 

with outcome false. This runs counter to our intuition about how control 

mechanisms and decisions interact. 

To preclude some of this pathological behavior, we define a property 

called completeness. A schema is complete if, for every prefix x of a 

control sequence and for every interpretation I with which x is consistent 

there is an I-computation xy. In a complete schema, it is impossible to 

"run into a dead-end" under any interpretation. 

It might seem that a schema with the immediate property would always 

be complete, for whenever xdT is a prefix, so is xdF. Unfortunately, 

this is not enough to guarantee completeness. For example, the control 

set d(dTa~d)*dF has the immediate property, but, having no infinite 

sequences, there is no I-computation for the interpretation in which d's 

predicate is always true. 
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8.4.l Productivity - Overview 

We now turn to a very important notion, that of productivity. 

Productivity formalizes the concept of an event in a computation 

"accomplishing something use.ful." Initiating an actor in the course of 

a computation can be justified in a number of ways (as one can 

empirically verify by asking a programmer, "Why is that instruction 

in your program?") At the most trivial level, an actor is initiated 

to carry out a particular transformation or test. At a more 

satisfactory level, one can explain how the output of an operation 

will be used by subsequent actors, or what will happen if a decision 

comes out true. Best of all, the effect of an action on the input/ 

output behavior of the schema could be pointed out. From a modular 

point of view, only the last justification is truly relevant. 

We will define, in several cases, what we mean by the occurrence of 

an actor being productive in a sequence. The cases are rather involved, 

but the fundamental ideas are straightforward. For notational 

convenience, we define a schema output value to be any value in the 

dadep graph of a finite control sequence labeled with the name of some 

schema output location. In other words, a schema output value 

corresponds to the final contents of a schema output location. 

An occurrence of an operator which is not an identity operator will 

be productive in a finite control sequence if the value it produces is 

a schema output value, or influences a schema output value, or influences 

a decision in the sequence. A decision will be productive if there are 

two non~equivalent control sequences between which the decision outcome 

arbitrates. An occurrence of an identity operator in a finite sequence 
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is productive if the location to which the value is moved is a schema 

output location which is subsequently unchanged, or is the input location 

of a subsequent productive actor initiation. After formalizing these 

ideas, we will philosophize some about their meaning. 

8.4.2 Productivity - Formal Definition 

Suppose w=xcy~z is a finite control sequence where the indicated 

occurrence of uninterpreted c: .~:."a tor c is the j th such in w. Let D be the 

dadep ;raph of w, and let v be the value which is added to D when c 

. f h .th . terminates or t e J time. We say that the jth occurrence of c in w is 

productive if v is a schema output value of D, or lies on a path to a 

schem3. output value of D, or lies on a path to a decision in D. 

Suppose w1=xd.z1 and w~, -:xd.z
2 

are control sequences where the indicated 

f d "d d h .th h . occurrences o eci er are t e J sue in w
1 

and w
2

• We say that the 

jth occurrence of d is productive for w
1 

and w
2 

if w
1 

and w
2 

are not 

equivalent, there exist jth terminations of din w
1 

and w
2 

having 

opposite outcomes, and all other decisions in w
1 

and w
2 

are consistent. 

Finally, suppose w=xcy~z where the indicated occurrence of identity 

operator c with output location t is the jth such in w. Let D be the 

d d h f W h the ].th f . . d t" a ep grap o w. e say t at occurrence o c in w is pro uc ~ve 

if any or all of the following hold: 

1) t is a schema output location and no operator terminating in z has 

output location t. (That is, c moves a value to a schema output 

location where it remains.) 

-i:.:; of the form z 1bz 2~z 3 where the indicated occurrence of operator 

b is productive in w, £ is an input location of b, and no operator 
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terminating in z
1 

has output location£. (That is, the value moved 

to location £ is subsequently used from there by a productive 

operator.) 

3) z is of the form z
1

dz
2 

where dis a decider which has 1 as an input, 

and no operator terminating in z
1 

has output location£. (That is, 

the value is moved to a location from which it is used by a decision.) 

8.4.3 Productivity - What Does it Mean? 

The definitions of productivity just given probably look mysterious 

at best, but once understood, they are quite natural. For example, our 

definition of decider productivity follows from the common-sense 

principle: Don't ask questions if you don't care about the answers. 

This translates into our requirement that under some circumstances, the 

answer to just l question determines which of two non-equivalent 

computations take place. An example might help to clarify this point. 

Consider the following program and tabular representation of the output. 

input ( X ) 

if p ( x ) 

then if q ( X 

else if q ( X 

output ( X ) 

then X + f ( X 

then X + f ( X 

else X + g ( X 

else X + g x 

p ( X ) q ( X ) OUTPUT 

T 

T 

F 

F 

T 

F 

T 

F 

f(X) 

g(X) 

f(X) 

g(X) 

From the second and third lines of the table summarizing the 

behavior of the program, it can be seen that if p(X) is true, the 

output may be g(X), and if it is false, the output may be f(X). 

However, we do not consider the occurrence of p in the sequences 
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ppTqqFf~ and ppFqqTg~ productive because the sequences are not consistent 

about the decision made by q. There are no sequences for which p is 

productive which is probably in line with the reader's intuition about 

the usefulness of the test p(X) in ths ?rogram. Our definition would 

find productive occurrences of q, however, which is again what one would 

expect. 

The other forms of productivity are also grounded in conunon sense 

principles. They can be paraphrased, "Don't generate values you aren't 

going to use!" and "Don't move a value somewhere unless you need it 

there!" 

8.5.1 Productivity of Schemata - Formal Definition 

Knowing what it means for an occurrence of an actor to be productive 

in sequences, it is easy to extend the notion of productivity to 

schemata. In fact, there are several ways in which we could extend Lie 

definition, and we shall mention these briefly after our definition of 

weakly productive schemata. 

A schema is said to be weakly operator productive if, for every 

prefix xo of a control sequence, there is a finite control sequence 

xoy in which the indicated occurrence of operator o is productive. 

A schema is said to be weakly d.ecider productive if, for every 

prefix xd of a control sequence, there are control sequences xdy1 

xdy 2 for which the indicated occurrence of decider d is productive. 

A schema is said to be weakly productive if it is both weakly 

operator productive and weakly decider productive. 
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8.5.2 Productivity of Schemata - Discussion 

In plain English, a schema is weakly productive if it does not 

initiate actions which cannot be useful. We have called this weak 

productivity because it is possible to impose much stronger conditions. 

For example, we could define a schema to be strongly operator 

productive if, for every prefix xo of a control sequence, the occurrence 

of o is productive in every finite control sequence xoy. 

Analogously, we could define a schema to be strongly decider 

productive if, for every prefix xd of a control sequence, the occurrence 

of d is productive for all control sequences xdy and xdz in which the 

occurr2~ces have opposite outcome. Or, we could require that for each 

control seouence xdy, there exists a control sequence xdz in which the 

occurrence is productive. Or, we could require that there exist a 

control sequence xdy such that the occurrence of d is productive for all 

control sequences xdz in which the termination has opposite outcome. 

Putting these variations on operator productivity and decider 

productivity together, we could obtain many classes of productive schemata. 

We will concentrate on weakly productive schemata because they are the 

largest of the classes and seem the most natural for encouraging parallel­

ism: One can ini tiat2 actors if there is a possibility they will be useful. 

Before leaving this discussion of productivity, we would like to make 

one observation. The Karp-Miller formalism for parallel schemata, because 

of the stronger form of equivalence and the way all actors alter memory, 

are inherently "very productive". We feel that this quality contributes 

s~bstantially to the cleanness of their mathematical results. We pay for 

[!:rsater generality with more complicated proofs. 
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8.6.l Schemata - Repetitions 

The properties we have previously defined were ones that we found 

natural or desirable for a schema to possess. The next two properties 

are introduced less because they are natural than for the reason that 

they make the study of schemata more tractable. For example, the 

absence of these properties is intimately involved in Paterson's proof 

of the undecidability of the equivalence problem. The properties 

involve the notion of doing the same thing more than once in the course 

of a computation. 

A sequence x is said to be free if no dadep graph of a prefix of x 

contains distinct, similar decisions. A sequence xis said to be 

liberal if no dadep graph of a prefix of x contains distinct, similar 

operations. A sequence is said to be repetition-free if it is both 

free and liberal. 

A schema is said to be free [liberal~ repetition-free] if all of 

its control sequences are free [liberal, repetition-free.] One nice 

feature of free schemata is that all control sequences are execution 

sequences. This is easily seen if one recalls that a control sequence 

which does not contain similar decisions with opposite outcomes is an 

execution sequence. Since free sequences do not contain similar 

decisions at all, they cannot have any with opposite outcomes. When 

dealing with free schemata, then, we will use the terms control sequence 

and execution sequence interchangeably. 
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8.7.l Weakly Productive Schemata - A Preliminary Result 

As an example of the intuitive appeal of weakly productive schemata, we 

prove a straightforward theorem. The proof will introduce a useful proof 

technique for productive schemata. 

Suppose we define a reduced scnema to be a schema for which every 

actor in the data flow graph is used in at least one control sequence. We 

will show that two free, determinate, reduced schemata cannot be equivalent 

if they employ substantially different functions or predicates. 

Theorem 8.4: Let s
1 

and s
2 

be free, weakly productive, reduced, 

determinate schemata. s
1 

is equivalent to s
2 

only if PREDICATE NAMES1 = 

PREDICATE NAMES
2 

and, except possibly for the identity functic name, 

fL~CTION NAMES
1 

= FUNCTION NAMES
2

. 

Proof; Suppose uninterpreted operator o of s
1 

has function name f 

and f i FUNCTION NAMES
2

. s
1 

is reduced, so there is a control sequence in 

which o occurs, say xoy. Since s
1 

is weakly productive, there is a finite 

control sequence xoz in which the occurrence of o is productive. Because 

s
1 

is free, xoz is an execution sequence. Suppose the operation o
1 

which 

corresponds to the indicated occurrence of o lies or a path to a schema 

output value in the dadep graph of xoz. Since o
1 

has function name f, no 

operation in a dadep graph of a control sequence from s
2 

could be similar 

to o
1

. By Lemma 8.3, it follows that no dadep graph of a control sequence 

of s
2 

could contain a schema output value similar to that to which o
1 

leads. Hence, no sequencR from s
2 

could be equivalent to xoz. 

Since o
1 

cannot lie on a path to a schema output value if the 

schemata are to be equivalent, it must be that o
1 

lies on a path to a 
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decision d
1 

in the dadep graph of xoz. We can write xoz as xoz
1

dz 2 , 

where the action corresponding to the indicated occurrence of dis d
1

. 

By the weak productivity and freeness of s
1

, there exist execution 

sequences xozldvl and xozldv2 for which the occurrence of d is productive. 

By definition, the only inconsistent decisions in these sequences are the 

indicated occurrences of d. Therefore, there is an interpretation IT in 

which the indicated occurrence of d is true and which is consistent with 

all other decisions in both sequences. Let IF be identical to IT except 

at the outcome of d. One of the sequences is an IT-computation, and the 

other is an IF-computation. 

If s 2 has no IT-computations, then s
1 

and s 2 are obviously not 

equivalent schemata. So suppose w is an IT-computation of s 2. We 

claim that w is also an IF computation, for, if not, it must contain a 

decision similar to d
1 

having true outcome. But d
1 

lies on a path from 

o
1 

and no dadep graph of a sequence from s 2 can contain an operation 

similar to o
1

. By Lemma 8.3, neither can it contain a decision similar 

to d1 . 

Thus, w is both an IT-computation and an IF-computation. Since 

xozldvl and ~ozl<lv2 were not equivalent, w is equivalent to at most 

one of them. It is therefore consistent with but not equivalent to the 

other, so sl and s2 cannot be determinate and equivalent. 

Exactly the same argument applies if there is a predicate name in 

PREDICATE NAMES
1 

- PREDICATE NAMES 2. 0 
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8.8.l Productivity - Undecidability 

The reader may have foreseen that productivity is "too good to be 

decidable." In fact, the proof that productivity is not generally 

decidable follows easily from the unsolvability of the equivalence problem. 

Suppose we take two m-input n-output Paterson schemata whose 

equivalence we would like to determine. As in the proof of the 

undecidability of the determinacy question, we can assume ACTORS1 and 

ACTORS 2 are disjoint. Since the schemata have the same number of input 

locations and output locations, we can form, as before, a composite data 

flow graph by identifying the input locations of the schemata and the 

output locations of the schemata. 

Let p be a unary predicate name which is not in PREDICATE NAMES1 u 

PREDICATE NAMES2 , and let f be a 0-ary function name which is not in 

FUNCTION NAMES
1 

u FUNCTION NAMES
2

• Add to the composite data flow graph 

a memory location which is the output location of a new operator o with 

function name f, and the input location of a new decider d with predicate 

name p. Form the composite CONTROL by prefacing each sequence in CONTROL1 

with o~ddT and each sequence in CONTROL2 with o~ddF. We claim d is 

productive if and only if s
1 

and s2 are not equivalent. This is true 

because d is productive if and only if there exist sequences o~ddTzl and 

o~ddr22 which are not equivalent but are consistent except for the outcome 

of d. This obviously means that z
1 

and z 2 are consistent, non-equivalent 

sequences, that is, sl and s2 are not equivalent. 
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8.9.l Determinacy and Conflict - Some Additional Results 

For the remainder of this chapter, we will investigate a class of 

schemata for which conflict-freeness is necessary for determinacy. We 

are not suggesting that the properties which cause this problem with 

determinacy are desirable. On the contrary, we are much more concerned 

with ensuring determinacy than with precluding it. By understanding how 

conflict leans to non-determinacy, however, we are in a better position 

to avoid non-determinacy in schemata. 

We begin by establishing a number of lemmas concerning repetition-free 

schemata in which there are no identity operators. Let us fix some such 

schema, S. For notational convenience, we will use DADEP(x) to denote 

the dadep graph which is determined by the data flow graph of S and a 

well-defined sequence x. If xcr
1

ycr 2 is a sequence which is well-defined 

for S, then we say that event cr 1 influences event cr
2 

if there is a path 

in DADEP(xcr1ycr 2 ) from the action corresponding to the indicated occurrence 

of cr1 to the action corresponding to the indicated occurrence of cr 2 . 

The lemmas which follow share a great deal of notation. We shall 

introduce the common notations here to avoid the necessity of repeating 

the definitions with each lemma. 

Let xa and xo be prefixes of control sequences of S such that xa and 

xo are in conflict. Let w1=xa~yb and w2 =x~ayb be prefixes of control 

sequences of S. Let a1 be the action in DADEP(w
1

) corresponding to the 

indicatr"d occurrence of a, and let a
2 

be the action in DADEP(w
2

) which 

corresponds to the indicated occurrence of a in w
2

. Similarly, let b
1 

and b 2 be the actions in DADEP(vY1 ) and DADEP(w
2
), respectively, which 

correspond to the indicated occurrences of b. 
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We shall prove the following lemmas. 

Lemma 8.5: a1 is not similar to a2• 

Lemma 8.6: b is influenced by a in w
1 

iff bis influenced by a in w
2

• 

Lennna 8.7: b
1 

is similar to b
2 

iff a does not influence bin w
1

. 

LeD111a 8. 8: If S is commutative, there is no prefix ~az of a control 

sequence of S such that DADEP(xoaz) contains an action similar to a1 , and 

no prefix xa~z of a control sequence such that DADEP(xaoz) contains an 

action similar to a2 . 

Lemma 8.9: If xaoz and xoaz are control sequences of S, they are 

consistent. 

Proof of Lenuna 8.5 (a
1 

is not similar to a2 .): 

Since xa and xo are in conflict, m, the output location of operator o, 

th ~ 
is an input location, say the k , of actor a. Because xa is well-

defined, m must be the label on some value v in DADEPC.x). Since :co is 

well-defined, there must be an operation o' in DADEP(.x) to which this 

termination of o corresponds. In DADEP(x~}, a value v' is added as the 

output value of o', and label mis removed from v to become the label' on 

v'. If v and v' were similar, v would have to be the output value of an 

operation similar too'. But this operation and ,o' would be distinct, 

similar operations, contrary to the hypothesis that S is repetition~fre~. 

th Therefore, the k input value of a1 in DADEP(:ra) is not similar to the 

k th . 1 f · r_ -} input va ue o a2 in DADEP\;.{;oa • It follows that a1 and a2 cannot be 

similar. D 
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Proof of Lemma 8.6 (b is influenced by a in w
1 

iff b is influenced by 

a in w2 .): 

Note that except for the order of occurrence of a and ~' w1 and w2 are 

identical. If the indicated occurrence of a in w
1 

is not terminated, then 

neither is the occurrence of a in w
2

, and b is uninfluenced in both 

sequences. If y=c
1

c
2
'''cn and ci is the termination of a in w1 , then ci 

is also the termination of a in w
2

• It is easy to see that the events 

influenced by ci in w
1 

are the same as those influenced by ci in w2 , 

from which the lemma follows. 

Proof of Lemma 8.7 (b
1 

is similar to b
2 

iff a does not influence b 

in w
1
.): 

We split the proof into halves. In both cases, we assume the 

contrary and derive a contradiction. 

Suppose b
1 

is similar to b 2 and there is a path from a1 to b1 • We 

0 

can assume that y=c
1

c 2 '''cn is the shortest sequence after which such 

similar, influenced initiations occur. The nodes on the path in DADEPCw1 ) 

from a
1 

to b1 all correspond to events occurring in y. Let c. be the 
J 

last operation termination to which a node on the path corresponds. 

(There must be at least one operator termination in y since a must 

terminate if there is a path from a
1

.) It follows that b1 takes as an 

input value the output value of the operation which c. terminates. It is 
J 

also true that b
2 

takes as an input value the output value of the operation 

which cj terminates in w
2

• Since b
1 

and b2 are similar, these operations 

must be similar. By Lemma 8.5, we know that a1 and a 2 are not similar, 

so cj cannot be the termination of the occurrences of a in w1 and w2 • 
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It follows that c. must be the termination of an operation initiated in y, 
J 

say by event c .. Both c. and c. are influenced by a in w
1

, and we have 
i J i 

concluded that the operation corresponding to ci in DADEP(w1 ) is similar 

to the operation corresponding to ci in DADEP(w2). This contradicts our 

hypothesis that y was the shortest sequence after which such initiations 

could occur. We can conclude that if b
1 

and b 2 are similar, then b is 

not influenced by a in wl. 

To obtain the other half of the lemma, assume that b
1 

and b2 are not 

similar, that there is no path from a
1 

to b
1 

in DADEP(w1 ), and that 

y=c
1

c
2
"''cn is the shortest sequence after which these conditions can 

arise. If b were a 0-ary operator, b
1 

and b
2 

would be similar, so we 

can assume that b has at least one input location. The function names 

or predicate names on actions b
1 

and b
2 

are, of course, the same, so it 

b h • th . f . . . . h . th • must e t at the i input value o b
1 

is dissimilar to t e i input 

value of b
2 

for some i. Let m be the i th input location of -b. If no 

operator terminating in w
1 

has output location m, then m must be a 

h · t 1 t' say the J.th d th .th · t l f b · sc ema inpu oca ion, , an e i inpu va ue o 
1 

is 

h . th . . • l . 1 h . t. t e J initial va ue. Sequence w
2 

contains exact y t e same termina ion 

t d h ·th · 1 f b ld 1 b the J. th evens as oes w
1

, sot e i input va ue o 
2 

wou a so e 

initial value, contrary to the assumption that the ith input values of b
1 

and b2 are dissimilar. So some operator terminating in w1 has output 

location m. th Suppose the k occurrence of operator c in w1 is the last 

operator with output location m to terminate in w
1

• It follows that the 

output value of the operation in DADEP(Ju
1

) corresponding to the kth 

.c • th . th . 1 f b occurrence o~ c is e i input va ue o 
1

• It also follows that the 



117 

th output value of the operation in DADEP(w 2) corresponding to the k 

f · h .th · 1 f b s· h .th · occurrence o c is t e i input va ue o 
2

. ince t e i input 

values are dissimilar, so must be the operations. We now show that no 

h h k th . . . . f k 1 . d matter w ere t e initiations o c ta e p ace in w
1 

an w
2

, some 

hypothesis is contradicted. 

Case 1): The kth initiation of c in wl occurs in prefix x. The kth 

initiation of c in w
2 

must also occur in x, and the corresponding 

operations would be similar, contrary to hypothesis. 

C 2) Th k th . . . . f . . . d" d ase : e initiation o c in w
1 

is the in icate occurrence 

of a. This contradicts the assumption that there is no path from a
1 

to b
1

. 

C 3 ) Th kth . . . . f . ( ) . . ase : e initiation o c in w
1 

and w
2 

is event ch in y. 

It follows that y is not the shortest sequence after which the hypothesized 

conditions can arise. 

We conclude that if b
1 

and b
2 

are dissimilar, then b is influenced by 

D 

Proof of Lemma 8.8 (If S is commutative, there is no prefix xaaz of a 

control sequence of S such that DADEP(xoaz) contains an action similar to 

a
1

, and no prefix xa~z of a control sequence such that DADEP(xaoz) 

contains an action similar to a
2
.): 

We prove only the first half of the lemma. The second half follows 

by similar arguments. We assume that there is a prefix x~az of a control 

sequence of S such that DADEP(x~az) contains an action a 3 similar to a1 . 

We r~:1ow tLat T·'.) rr.atter where the irci-tiation of the action occurs' we can 

d~rive a contradict~on. 
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Case 1): The initiation event to which a3 corresponds occurs in prefix 

x. Then xa is the prefix of a control sequence containing a repetition, 

contrary to hypothesis. 

Case 2): The initiation event to which a 3 corresponds is the indicated 

occurrence of a in xoaz. By Lemma 8.5, a1 is not similar to a3 • 

Case 3): The initiation event to which a3 corresponds takes place 

after prefix x~a. We can assume that a 3 corresponds to the initiation of 

b in x~ayb. Let us hereafter refer to action a3 as action b2 so we can 

make use of the notation we have used in the previous lemmas, By 

assumption, b2 is similar to a1 . Since S is commutative, w
1
=xa9y£ is also 

the prefix of a control sequence. 

Case 3a): :b is not influenced by a in w
1

, Lemma 8. 7 implies that b1 

is similar to b2. Since b 2 is similar to a1 , b1 must be similar to a1 , 

contrary to the hypothesis tbat S is repetition-free. 

Case 3b): :b is influenced by a in w1 , There is therefore a path from 

a1 to b1 in DADEP(w1). By Lemma 8.6, there must also be a path from a 2 to 

b2 in DADEP(w2). Since b2 is similar to a1 , it follows from Lemma 8.2 

that there is an action similar to a2 on a path to a
1 

in DADEP(w1). 

Actions on a path to a1 , however, would have to correspond to events 

occurring in prefix x. Prefix xoa would therefore contain a repetition 

of action a2 , contrary to hypothesis. 

It follows that no action in DADEP(xoaz) can be similar to a
1

• 0 
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Proof of Lermna 8.9 (If xaoz and xoaz are control sequences of s, they 

are consistent.): 

We assume the contrary and derive a contradiction. Suppose the jth 

occurrence of decider b in xaoz is inconsistent with some decision in xoaz. 

Case l); The jth initiation of bin xaoz takes place in prefix x. 

The decision corresponding to the jth initiation of b in xoaz would then 

be similar and would have the same outcome. No other decision in xoaz 

could be similar unless there were a repetition, so no inconsistency is 

possible. 

Case 2): The jth initiation of bin xaoz is the indicated occurrence 

-of a. By Lemma 8.8, there is no decision in xoaz which is similar. 

Therefore, there is no inconsistent decision in xoaz. 

C 3) Th .th . . . . f b . - k 1 ft f' ase : e J initiation o in xa~z ta es p ace a er pre ix 

xao. L . - b- ' . d' h . th f b et us write xaoz as xa~y y to in icate t e J occurrence o 

and to match our previous notations. 

Case 3a); b is not influenced by a in xa~y:by'. By Lemma 8. 7, the 

decisions corresponding to the occurrences of b in xa~yEy' and x~ayby' 

are similar and they have the same outcome. As in the first case, no 

inconsistency can arise unless there is a repetition. 

Case 3b): bis influenced by a in xa~yby'. This means there is a 

path from a
1 

to b 
1 

in DADEP (xa~yb) . By Lemma 8. 8, no prefix of xoaz has 

a dadep graph containing an action similar to a
1

. By Lemma 8.3, there 

can b,, rw decision in xoaz similar to b
1

, hence no decision inconsistent 

with it. 

We conclude that xaoz and xoaz are consistent. D 
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With these lemmas to build upon, we can now show how one kind of 

conflict leads to non-determinacy. 

Theorem 8.10: Let xa and x~ be prefixes of a complete, persistent, 

commutative, repetition-free, weakly productive schema with no identity 

operators. If xa and XO are in conflict, then the schema is not 

determinate. 

Proof: Suppose xa and xo are in conflict. We will show that 

consistent, non-equivalent execution sequences exist, demonstrating 

that the schema is not determinate. By the persistence of the schema, 

xoa is a prefix of a control sequence. 

Case 1): Actor a is an operator. Since the schema is weakly 

productive~ there is a control sequence xoaz in which the occurrence of 

a is productive. 

Case la): xoaz is finite and there is a path in DADEP(xoaz) from 

the action a2 corresponding to the indicated occurrence of a to some 

schema output value, say that value labeled by schema output location m. 

Since the schema is commutative, xaoz is a control sequence and, by Lemma 

8.9, it is consistent with xoaz. By Lemma 8.8, there is no operation in 

DADEP(xa~z) similar to a2 . By Lemma 8.3, no value in DADEP(xaoz) is 

similar to the value in DADEP~oaz) with label m. -Thus , .xaoz and xoaz 

cannot be equivalent. Since the schema is repetition-free, these are 

consistent, non-equivalent execution sequences. 
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Case lb): xoaz can be written xoauby' where the indicated initiation 
- v 

of decider b is influenced by a. Appealing the the weak productivity of 

the schema, there are control sequences v1=x9aybz 1 and v
2
=x9aybz

2 
for 

which the occurrence of b is productive. Let IT be any interpretation in 

which the decision corresponding to the indicated occurrence of b is true, 

and which is consistent with all other decisions in v1 and v
2

• Let IF be 

identical to IT except at the outcome of the decision corresponding to b 

which IF specifies as false. Since the schema is complete and xao is 

consistent wi~h IT' there is an IT-computation xaou. We claim xaou is 

also an IF-computation, for, by Lemma 8.8, the dadep graph of any prefix 

of xaou can contain no operations similar to a 2 . Since a 2 is on a path to 

the only decision about whose outcome IT and IF differ, it follows from 

Lemma 8.3 that there is no similar decision in xaou. Since v
1 

and v
2 

are 

not equivalent, xaou is equivalent to at most one of them, but is consis-

tent with both. Therefore there is a non-determinacy. 

Case 2): Actor a is a decider. This is virtually identical to case 

lb, so we omit the proof. D 
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B.9.2 Determinacy and Conflict - Continued 

Prefixes xa and xb of control sequences were also said to be in 

conflict if a and b were distinct operators with the same output location. 

We will show that this kind of conflict can also cause non-determinate 

behavior. Many of the arguments we use are virtually identical to those 

in the case of conflict of the form .xa and .xo. We will therefore go into 

less detail in the following proofs. 

Lemma 8.11: Suppose .x~ and x!:~ are prefixes of control sequences in a 

commutative, repetition-free, weakly productive, complete schema with no 

identities. Suppose h is productive in control sequence xabZ. If .xa and 

xb are in conflict, then the schema is not determinate. 

Proof: Let 1 be the memory location which is the output location of 

both a and b. If value v1 in DADEP(.x~) with label R. is simil.ar to the 

value v2 in DADEP(.x~~) with label 1, there is cl.early a repetition in .x~. 

For the same reason~ there can be no input value of an action in the dadep 

graph of a sequence with prefix.%~~ similar to v1 since a's termination 

removes the label from a value similar to v1 • Analogousl.y, no action 

after prefix .x~ can have an input value similar to v2 • 

As in Lemna 8.7, it can be seen that the actions corresponding to the 

indicated occurrences of c in x~yc and .x~~c are similar if and only if 

there is no path from v1 to the action in DADEP{.x~yc). From this, as in 

Lemma 8. 9, it :follows that .x~z and xbaz are consistent. Since b was, by 

hypothesis, productive in control sequence ~~z, the same arguments used 

in Theorem 8.10 apply and a non-determinacy can be shown to exist. D 



123 

The last lemma shows that conflicts of the type x~ and x~ cause 

trouble when b is productive. We now show that conflicts of this type 

imply the existence of conflicts involving productive operations. 

Lemma 8.12: Let x~ and x~ be conflicting prefixes of a persistent, 

commutative, weakly productive schema with the prefix property and the 

immediate property. Either there exists a conflict of the form v~, vc, 

or there exist sequences vcoz and vocz in which c is productive and vc 

and vo are in conflict. 

Proof: We can assume, without loss of generality, that a initiates 

before b in prefix x, say x= x
1

ax2bx3 . Since the schema is weakly 

productive, there is a finite sequence x 1ax2bz in which the occurrence 

of b is productive. If a does not terminate in z, then, by the immediate 

property, x1ax2bz~ is the prefix of a control sequence, in violation of 

the prefix property. So we can assume both b and a terminate in z. 

Suppose a terminates before b so z=z 1~ 2~z 3 . Let z 2=c1c2 '''cn. 

Using the immediate property, persistence and commutativity, we can 

"slide b to the left" as in Lemma 7.6. That is, x1ax 2bz 1~c1 " ·~ci" 'cnz
3 

is also a control sequence for lsisn. From Lemma 7.7, we know that the 

sequences formed by moving ~ are dadep indistinguishable unless b reaches 

a ci such that x1ax2Ez 1~c1c 2 '''ci-lci and x1ax 2Ez 1~c1c2 '''ci-l~ are in 

conflict. This will certainly happen when b reaches a. But when it 

first happens, we have a conflict of the type hypothesized in the lemma. 

So suppose b terminates before a in z so that z=z 1~z 2~ 3 . Since a 

overwrites the location i written by ~' b could not be productive in the 

sequence unless some actor initiating in z
2 

has i as an input location. 
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Let us write z
2 

as z
21

cz
22 

where actor c has input location £. As above, 

a can migrate left so that x1~ 2iJz 1~z 21c and x1ax 2bz 1~z 21 '.:1 are prefixes 

in conflict as hypothesized. 0 

Putting the last two lemmas together with Theorem 7.8 ard Theorem 8.10, 

we obtain the following major result. 

Theorem 8.13: A persistent, commutative, complete, repetition-free, 

weakly productive schema without identity operators which has the prefix 

property and the immediate property is determinate if and only if it is 

conflict-free. 
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8.10.l Theorem 8,13 - A Post-Mortem 

':'heorem 8. 13 conta_ins a not inconsiderable number of conditions, and 

t:he reader may question whether any schemata of interest can satisfy all 

of then. To allay such doubts, w12 will Peview the natur'e of these 

conditions. 

Complete.:iess, as we mentioned, is such a natural property that one 

woulcl prol::ably not bother to point out that a schema model possesses it. 

Practically any control mechanism which anticipates both outcomes of 

decisions will automatically ensure completeness. si~ilarly, the prefix 

property is generally satisfied by definition: finite control sequences 

arc defined to be those for which no further activity is possible. Thus, 

cornpletene:c;s and tLe pre::Cix property do not seriously restrict the class 

of systems we can model. 

Persistence and commutativity are natural properties for systems with 

multiple, independent loci of control. These properties reflect practical 

limitations on the ability of such systems to co-ordinate activity. 

Commutativity might be viewed as accepting that if two events can occur 

arbitrarily close together in time, it makes little sense to behave 

differently on the basis of order of occurrence. Similarly, persistence 

can be considered to model the inability to cancel activity on 

arbitrarily short notice. Of course, non-commutative and non-persistent 

control mechanisrr_s can be defined, and they may exhibit certain 

advantages. We simply suspect that practical systems will tend to be 

p :c~sistent and cor.imutati ve. 
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Weak productivity, even though it is not generally a decidable 

prop~rty, appears to be a desirable one in practical terms. The increase 

of concurrency in computation should not arise solely from the introduction 

of unproductive activity. We should point out that parallelism, 

persistence, and productivity are occasionally at odds with one another. 

A simple example of this is the case where we wish to perform some action 

if either or both of two decisions are true. Parallelism encourages us to 

allow the decisions to proceed concurrently. If one decision terminates 

with true outcome before the other has even initiated, however, 

productivity would incline us to cancel the other decision, whereas 

persistence forbids cancellation. Clearly, some trade-offs between 

parallelism and productivity must be made. 

Whether Theorem 8.13 remains valid if identity operators are allowed 

is not known. Using an extended notion of repetition-freeness which 

prohibits use of an identity operator to restore the contents of a 

memory location to a value similar to one it held earlier in the 

computation (X:=X being a simple violation), we were unable to disprove 

the theorem. However, certain of the lemmas we used to prove the 

theorem certainly cease to apply. For example, sequences x=~E~~~cTadf 

and y=ab~~ccTddF for the data flow graph of Figure 8.1 are not consistent 

since the decision corresponding to cT in x is similar to the decision 

corresponding to dF in y. Thus, the analogue to Lemma 8.9 fails. 

Although we suspect the theorem remains true nevertheless, a different 

approach will be needed to prove it. 
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Repetition-freeness and the immediate property are less pervasive than 

some of the other properties mentioned, but they are by no means unlikely 

to be observed. The immedtate property, like persistence and commutativity, 

will tend to be present when there is considerable independence among loci 

of control. Sequential schemata, fork/join formalisms, and Dennis-Fosseen 

schemata always have the immediate property. Petri net and finite-state 

controls can easily be checked for the immediate property. 

Repetition-freeness in sequential schemata is decidable 11 , and it 

appears that t--counter tr•ansition systems as described in an appendix of 

Slutz's thesis 16 can be used to determine repetition-freeness in fork/join 

controls, Dennis-Fosseen schemata, Petri net models in which the number 

of toksL: ~n the net is hounded, and finite state models in which the 

number of "unterminated ini liations" of actors is bounded. We know of no 

decision procedure for repetition-freeness of unbounded Petri net or 

state-machine controlled '3clt,~: :·. t-2. ~own by Paterson 11 , the freeness 

of an illiberal schema ic; :r:ot decida:ile. 

Conflicts in sequential schema·ta and Dennis-Fosseen schemata cannot 

arise. ronflict-freeness far fork/join, Petri net, and finite state 

controlled schemata is decidable. 

Thus, the conditions in Theorem 8.13 are not so unusual or restrictive 

as one might first suspect. The reader can verify that the various 

implementations of our sample program in Chapter 3 are all persistent, 

commutat iTJe, complete, repetition-free, weakly productive, and have the 

pr~: i : _ '>;;erty and the immediate property. Fortunately, they are also 

co::~·:;..:.(:= -free, hence determinate. 
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9,1, l Summary 

Our state of knowledge about parallel processing is, at the moment, 

rather primitive. In a way, this is not surprising. Individuals seem to 

be incapable of consciously working on more than one thing at a time, so 

we have less "introspective intuition" about parallel computation than we 

do for sequential processing. Only recently have computer hardware and 

software made parallel processing possible, and parallelism at the 

instruction level is still not practical. 

This dissertation has attempted to do some groundwork in parallel 

processing. Recognizing the lack of practical experience with parallel 

control mechanisms, we have defined a very flexible model for parallel 

computation. Many proposed control mechanisms can be cast in terms of 

our model, allowing meaningful comparison of apparently diverse schemes. 

Our definition of equivalence reflected a modular, input/output 

orientation. A schema is determinate if all the computations which 

might be observed for a given interpretation are equivalent. Although 

we noted that determinacy is not generally decidable, we showed that 

persistent, commutative schemata with the prefix property are determinate 

if they are conflict-free. Many control mechanisms which have been or 

might be proposed are persistent, commutative, and have the prefix 

property. 

Since not all actors alter schema output locations, we introduced 

the notion of productivity to formalize the way in which the occurrence 

of an actor can ultimately affect input/output behavior. It was seen 

that the roles of operators and deciders are quite different, supporting 
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our decision to treat them as distinct actors as opposed to the hybrid 

operations of Karp and Miller7 . 

We extended the concept of productivity to schemata, requiring, in 

the weakest form, that no actor initiate unless it might be useful. 

Such weakly productive schemata satisfied some intuitive properties 

such as precluding equivalence of schemata which use different functions 

or predicates. 

Although weak productivity is not decidable in general, it can 

usually be observed in "real programs". Programmers may not have our 

formal notion of productivity in mind when they create programs, but in 

the process of program development, instructions are added ''for a 

reason". Generally, at least for good programmers, this satisfies our 

requirements for productivity. 

In the last chapter, we showed how conflicts can lead to non-. 

determinacy. Although condit-ions such as repetition-.freeness are less 

natural than others like completeness, the conditions for Theorem 8.13 

are not unlikely to be met. This argues for models such as Dennis­

Fosseen schemata in which conflicts simply cannot occur. At the very 

least, it seems we should favor models where detection of conflicts 

is uncomplicated. 

-------------------- ---
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9.2.l future Directions 

We would like to see the issue of identity operators in Theorem 8.13 

put to rest. We suspect that "non-repetitious" identity operators will 

not alter the validity of the theorem. It ~ay also be possible to relax 

repetition-freeness which seems to be an unnecessarily restrictive 

condition. 

We share with other schematologists a desire to see a better model 

for deali~7 with structured data such as arrays and lists. Considering 

the complications introduced by the identity operator alone, we expect 

thut allowing "just enough interpretation" to handle structured data 

witt1out getting into oroblems of undecidability may le Jifficult indeed. 

It would be worthwhile to look into treating matherr;aticaJ p-roperties 

such as associativity and commutativity of actors. ::~t secr:~s that 

commutative arguments can be modeled in a data flow zrarh 1;y using the 

saoe index on arcs from the inputs which commute. (Of cour2e, similarity 

would have to be redefined, but the changes appear straigjtfcrward.) 

Associativity and distributivity might also be handled, but appear to 

lead u~ toward the treacherous territory of rewrite rules. 

Identifyinp: classes of schemata for which equiYcci~e'."cc-: > 12ciciable 

is an importa.nt Z,oal. We would hope that such classes could be 

characterized "syntactically" to make tL-2 results re la ti vely independent 

of control Fi>:ci:anism. Schemata which are strongly productive ir. the 

sense of Section 8.5.2 seem to be a promising start for such a class. 
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These v,·i10 Lave rc<tc th is far in this clissertatior: will probal,ly ~;ee 

ether clirec Lions :or ex ter:d1 r1g our worf::. 

rE"sults rresentcd he'~"' n;ay Le of some use in continuing the study of 

i:;arallel sys~cms. 
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Appendix I Schema Systems 

An m-input, n-output schema looks, from our modular viewpoint, very 

much like an operator. Operators always have one output, whereas n can 

be greater than one, but this is not an important distinction. A more 

significant difference is that operators have well defined outputs for 

all interpretations while schemata may have infinite computations for 

some interpretations and therefore may not produce outputs. 

There is a natural way of allowing a schema to use other schemata 

as "macro-operators". Data flow graphs can be extended to allow m-input 

n-output actors with associated schema names. We call this new form of 

actor an application. When an application initiates in a control 

sequence, we can consider that a new activation of the named schema is 

created. The schema input locations for the activation are initialized 

from the input locations of the application, and the activation can then 

proceed concurrently with the sequence which spawned it. Of course, the 

corresponding application termination event in the original sequence 

cannot occur until the activation has completed. If the activation 

does terminate and the application termination event is enabled, it can 

occur, copying the schema output values of the activation into the 

output locations of the application. In a practical system, the storage 

used by the activation could then be deallocated. 

In Figure I.l, we show a simple example of the use of a schema as 

a macro-operator. Applications appear as hexagons to distinguish them 

from the other actors. 
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The example also shows possible sequences of events from the main 

schema and the two activations of schema S. Note that h, the termination 

of application h, may have been enabled in the seouence from the main 

schema immediately after b initiated, hut could not occur until the 

first activation of S completed. An extended dadep graph shows the 

effect of the sequences. Labels from the activations are subscripted 

to avoid confusion. The reader may be able to reconstruct the dadep 

graph step by step from the sequences shown and the descriptLon of the 

way application initiations and terminations behave. 

Once one understands the use of schema applications, it is easy to 

see that there is, in principle, no difficulty in allowin6 schemata to 

0pply themselves, or to allow recursive applications of arbitrary 

complexity. In this appendix, we will formalize the notions introduced 

here and give a semi-formal proof that commutativity, persistence and 

the prefix property are sufficient to guarantee determinacy for such 

schema systems. 
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I. 2.1 Definition of Terms 

An extended sahema S is a schema in which ACTORS may include 

appliaations with associated names from a set of SCHEMA NAMES. If S. 
1 

is an m.-input, n.-output schema name and a is an application with 
1 l. 

schema name S., then the data flow graph of S contains arcs labeled l 
l. 

through m. from (not necessarily distinct) locations in MEMORY to a, 
l. 

and arcs labeled l through n. from a to distinct locations in MEMORY. 
l. 

The alphabet of events, E, of S contains an initiation event a and a 

termination event a for each application a. 

Terms such as well-sequenced, well-defined, persistent, aorrmutative, 

aontrol sequenae, and aonflict-free are analogous to the definitions for 

ordinary schemata when applications are treated like operators. In 

particular, .x~ and xb are in aonflict if any output location of a is 

also an input location of b, and similarly for .x~ and x~. 

A schema system S is a finite collection s1_, s2 , • · ·, Sk of extended 

schemata such that {S1 ,s2 ,··· ,Sk} :J SCHEMA NAMESi for lSiSk. s1 is the 

distinguished main schema. We can assume without loss of generality that 

the alphabets of events of the extended schemata are pairwise disjoint. 

The control sets of the extended schemata in a schema system 

determine what we will be defining as the system sequences of the schema 

system. As in the example, system sequences will comprise events from 

the individual schemata. Since there may be several concurrent 

activations of individual schemata, there must be additional structure 

imposed on the sequence of events to indicate which events correspond to 
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which activations. In the example, we used spacing to show this. We add 

this structure formally by defining a mapping ~:N+Nu{O} which specifies, 

for each event in the system sequence, the index of an activation to 

which it belongs. That is, ~(i)=j means the ith event in the system 

. f h .th . . sequence is rom t e J activation. We reserve index 0 to identify the 

initial activation of the main schema. The other indexes are important 

only insofar as they uniquely identify activations. 

If x is a sequence of events and ~ is a mapping as described above, 

we will write E~(x,i) to denote the sequence formed by eliminating from 

x all those events which are not mapped into i by ~. When ~ is clear 

from context, we may also write this as E(x,i). Since ~is defined to 

identify activations of schemata, we expect E(x,i) to be the control 

sequence of some extended schema, or at least a prefix, possibly empty, 

of such a control sequence. 

We need still another formalism to recapture the information present 

in our example. Although ~ determines the activation in which an event 

occurs, we need to relate application initiations and terminations to 

activations. We formalize this information by another partial mapping 

~:N+N where, if the ith event in sequence xis an application initiation 

or an application termination, ~(i) is the index of the activation it 

initiates or terminates. 

For our sample sequence, we can tabularly present some of these 

formalisms as follows. It should be evident that x, ~' and ~ supply all 

the information we need to reconstruct our example. 
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E(X ,1) d dT f f -

E(x ,2) d df g ~ 

figure I. 2 formalisms for describing a system sequence 
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We formalize the notion of a system sequence as follows. (Throughout 

this appendix, we will make no distinction between a function and the 

restriction of that function to a subset of its domain. No serious 

confusion should arise.) 

Suppose x=a1a2a3 ··· is a sequence in~' and$ ands are mappings as 

introduced above. We say that x;$;s is a system sequence for S if and 

only if the following conditions hold: 

1) $(1)=0. E(x,O) is a control sequence of the main schema, s1 , or is 

the prefix of a control sequence of s1 • (Thus, the first thing to 

happen must come from the main schema.) 

2) Suppose $(j)~O. Then there is in x an initiation a. of an application 
1. 

a with schema name Sk' say the mth initiation of a in E(x,$(i)), such 

that i<j, s(i)=$(j), and E(x,$(j)) is a control sequence of schema Sk 

or a prefix thereof. Furthermore, if there exists an n~i such that 

s(n)=$(j), then a must be the mth termination of a in E(x,$(i)), 
n 

E(x,$(j)) must be a finite control sequence of Sk' and, if t is the 

largest integer for which $(t)=$(j), then t<n, (As complicated as 

this may appear, it simply states that activations are started by 

application initiations, behave like the schema applied& and must 

themselves terminate before the application termination can occur.) 
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We can extend the familiar notion of prefixes to schema systems as 

follows. Let x;~;G and z;~';r;' be system sequences of S. Then x;w;r; 

is said to be a prefix of z;l/>';r;' if 

l) x is a prefix of z. Say x=a1a2 a 
n 

2) 

3) For all i,j~n, if a. is an application initiaition or an application 
1 

termination, then r,;(i)=l/>(j) if and only if r,;'(i)=l/>'(j). 

If conditions l through 3 are met and x~z, then we say that x;ip;z; 

is a pI>Opez> pzaefix of z ;l(i' ;z;'. 

A system sequence x;l/>;l; is a control sequence of S if x is infinite, 

or if xis finite and there is no system sequence z;l/>t;r;' of which x;l/>;l; 

is a proper prefix. In other words, a system sequence is a control 

sequence if it runs forever or if it comes to a halt and no event can 

occur in any activation. This last restriction resembles the prefix 

property extended to schema systems. 

If x;l/>;l; is a system sequence of S and if x is finite, we can outline 

the aefinition of the dad.ep gx>aph of x;l/>;l; by the following induction. 

The dadep graph of A;l/>;I; consists of m1 initial values where m1 is the 

number of schema input locations of the main schema, s1 . If X is the ith 

schema input location of s
1

, the ith initial value has label x0 • 

In general, all memory location labels in our extended dadep graphs 

will be subscripted with the index of the activation which uses them. 

This will ensure that activations operate independently of one another. 

Only application initiations and terminations will be able to influence 
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labels from another activation and, by definition, there is no activity 

within the influer1ced activation when the application events occur. 

and we have already defined the dadep 

If ai is the initiation of an application a with schema name Sk' the 

dadep of a
1

···ai;\j!;r, is produced from the dadep graph of a
1
···ai_

1
;\j!;r, 

by adding labels to values as follows. Suppose X is the jth input location 

f l . . d . h . th h . . f h s o app ication a, an Y is t e J sc ema input location o sc ema k" 

Then label Yr,(i) is added to the value bearing label X\j!(i)" (In a more 

formal definition, we would use an induction hypothesis to guarantee that 

X\j!(i) exists as a label on precisely one value in the dadep graph of 

a
1

a
2

" ··ai_
1

;w;c. We leave it to the reader to fill in such missing 

details using the definition of ordinary dadep graphs as a model.) 

If ai is the termination of an application a with schema name Sk' 

then we know that E(a
1

a
2
·· ·ai_

1
,r,(i)) is a finite control sequence of 

Sk. By the definition of control sequences of individual schemata, all 

output locations of schema Sk are assigned values by such an activation. 

We form the dadep graph of a
1

···ai;\j!;r, from the dadep graph of a
1
·· 'ai_

1
; 

\j!;r, by moving and/or adding labels as follows. Suppose X is the jth 

output location of application a, and Y is the jth schema output location 

of schema Sk. Then X\j!(i) is removed from any value on which it may have 

been a label, and X\j!( i) is added as a label to the value with label Yr, ( i). 

The cases where a. is an operator or decider initiation or termination 
i 

are ~ircctlv analo~ous to the cases for ordinary dadep graphs. The only 

difference i~; l 1,at tr1ey deal with labf'ls suhscr'ipted with lj!(i). We 

therefore omit the details for these cases. 
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An interpretation for· a schema system s1 ,s2 , · • • ,sk simply defines a 

single DOMAIN, functions for each function name in any schema S., 
.l. 

predicates for each uredicate r.--ime in any schema S. , and a set of 
.l. 

initial elements for the main schema sl. 

Assignment of elements to values, consistency, similarity and other 

terms carry over to extended dadep graphs in a straightforward way. In 

particular, two control sequences x;w;~ and z;w';~' are equivalent if 

both x and z are infinite, or if both are finite, and, for each output 

location X of the main schema, the value labeled x0 in the dadep graph of 

x;"';~ is similar to the value labeled x
0 

in the dadep graph of z;~';~'. 

We say that a schema system S = s1 ,s2;·· ,Skis persistent, 

corrmutative, conflict-free and has the prefix property if each extended 

schemata S. is persistent, conunutative, conflict-free and has the prefix 
.l. 

property. We can show that such a system is determinate by the same 

techniques we used in the earlier proof for unextended schemata. Rather 

than repeat almost verbatim the lelJBilas proved earlier, we will only 

outline parts of the proof. It will hopefully be possible for interested 

readers to use the formalisms we have introduced to fill in the details 

with as much rigor as they wish. 

Suppose x;w;~ and z;w';~' are I-computations of schema system S. If 

both x and z are infinite, the computations are equivalent, and we are 

done. We can therefore suppose that x=a
1

a
2
···an and is no longer than 

z=b1b2"""bn···. As before, we will find I-computations x0 ;1fJ0 ;~ 0 ··· 

xn;lfJn;~n equivalent to x;w;~ such that xi=b11 2···1ici+l···cn, and 

b b •• "b J, • • ' f 

l 2 .;~.;~.is a prefix of z;"' ;~ • 
.l. .l. .l. 
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Letting x 0 ;~ 0 ;s 0 be x;~;s, the basis for our inductive argument is 

established. Suppose x. 1 ;~. 
1

;s. 
1 

has been found. This means that 
l- l- l-

z = with 

~i-l(l) = 0 = ~'(l). Additionally, for j ,k<i, ~i-l(j) = ~i-l(k) iff 

~ I ( j ) = ~ ' ( k ) and s i -1 ( j ) = ~ i -1 ( k ) if f s I ( j ) = ~ I ( k ) . 

We consider the activation with index ~'(i) in z;~' ;s' in which event 

b. occurs. 
l 

We know that v is the 

prefix of some control sequence and that b. can occur next in this 
l 

activation. We will proceed as follows. We will show that there is an 

occurred and for which b. can occur next. We will show that if b. does 
l l 

not occur later in this activation, x. 1 ;~. 
1

;s. 
1 

is the proper prefix 
l- l- l-

of a system sequence in which b. does occur in the activation. Since 
l 

this would contradict our hypothesis that x. 1 ;~. 
1

;s. 
1 

is a control 
l- l- l-

sequence, we will conclude that b. eventually occurs in the activation 
l 

with index J 
0

. We will then argue that h. 's occurrence can take place 
l 

imDediately after prefix b
1

b
2
···b. 1 ;~. 

1
;s. 

1 
without changing the 

l- l- l-

dadep graph of x. 1 ;~. 
1

;s. 
1

. This will provide us with I-computation 
l- l- l-

x. ;~. ;s., completing the induction. 
l l ] 
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We begin by finding the activation of x. 1 ;w. 1 ;~. 1 with index j 0 J.- 1.- J.-

which is "analogous" to the activation of z;l{i';~' with index w'(i). If 

1"'(i) = O, let j 0 = 0. EW· 
1

( b1b2 """bi-l , 0 ) = v because 1"'(1) = 0 
J.-

and w. 1(1) = o and w'(j) = 1"'(1) iff ip. 1{j) = ip. 1(1). If 1"'(i) ~ o, 
1.- 1.- 1.-

then there is some k < i such that ~'(k) = 1"'(i). Again, by our inductive 

hypotheses, w'(j) = ~'(k) iff W· 1(j) = ~. 1(k). In this case, let j
0 

be 
1.- J.-

~i-l(k). In either case, we see that E•· 
1
< b1b2 """bi-l , j 0 ) = v. 

1.-

Let vw = Eip. 
1

( xi-l , j
0 

). That is, w is the rest of the sequence from 
1.-

the activation of which v was the prefix. 

We now argue that event b. must occur in w, for suppose not. Since 
1. 

persistence of the individual schemata, vwb. would then be the prefix of 
.1. 

a control sequence. Suppose b. is the termination of an application. 
1. 

(This is the most complicated case. Other types of events can be treated 

in a similar manner.) Let k
0 

be the index in z of the corresponding 

application initiation event. That is, k
0 

is the unique index for which 

~' (k ) = .,, '(i). 
0 

Since k
0 

< i, we know by our induction hypotheses that 

Since b • was able 
1. 

been a finite control sequence. But E,,, ( b1b2···bi-l , ~i-l(k0 } ) 
"i-1 
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is the same finite cor:tr·ol sequence, so b. is free to occur in the 
l 

actl·vati.on wi"th index ft ~· bl: "'"b ,1, . Jo a er pre~ix 
1

;
2 

. 1 ;~. 1 ;s. 
1

. 
}.- l- l-

Extend 

consider x. 
1

b. ;l/!: 
1

;s. 
1

. If this is a system sequence, x. 
1

;l/;. 
1

;s. 1 l- l ~- l- l- l- l-

is clearly a proper prefix of it, violating the hypothesis that 

x. 
1

;l/!. 
1

;s. 
1 

is a control sequence. We have shown that vwb. is 
l- l- i- l 

E,1, ( x. 
1 

b. , j 
0 

) , thE: prefix of a control sequence. We know that 
~i-1 l- l. 

the activation indexed by si-l(n+l) has already terminated, so this cannot 

prevent b. from occurring. The only thing which could prevent 
l 

x. 
1
b. ;l/;. 

1
;s. 

1 
fron satisfying the definition of a sys1:em sequence 

l-- l l- l-

is that some application termination event in xi-l terminate the 

activation indexed by j
0 

before bi can occur. But this would imply 

that some proper prefix of Wb. is a control sequence, contradicting the 
l 

hypothesized prefix property of the individual schemata. Thus, we can 

conclude that event b. occurs in w. 
l 

We have succeeded in showing that w ;::: w
1 

ckw
2 

where ck :::: bi. The 

persistence and commutativity of the individual schemata allow us to 

conclude that vckw
1

zJ
2 

is a control sequence or prefix thereof. 
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Let x. = b1b2"""bi-lckcici+l ck-lck+l c 
l n 

Let "'i (j) = ipi-1 (j) for j < i and j > k 

= ifli-l(k) for j = i 

= ljl. l (j-1) for i < j :5 k 
1-

Let l';i (j) = i;i-l(j) for j < i and j > k 

= l';i-l{k) for j = i 

= I';. l(j-1) for i < j $ k 
1-

In short, x.;tjl.;1';. is the result of promoting the occurrence of event 
l J. l 

~ in activation j 0 of x. 1 ;ip. 
1

;r;. 1 • By arguments similar to those 
.IC 1- 1- 1-

used in showing that b. occurred in w, x.;ijl.;~. is a control sequence. 
J. J. l i 

The sequences observed in all activations except that activation indexed 

by j 0 remain the same as in x. 1 ;ifl. 1 ;~. 
1

. 
1- J.- J.-

while E~.( xi , j 0 ) = v~w1w2 • Since the individual schemata are 
l 

do exactly the same thing to the initial values of activation j 0 • (A 

formal proof would follow the lines of the dadep indistinguishability 

results for unextended schemata.) Therefore, the dadep graph of x.;ifi.;~. 
i l l 

is virtually identical to the dadep graph of x. 
1

;ljl. 1 ;~. 1 . This means 
J.- J.- l.-

x.;$.;~. is an I-computation equivalent to x. 1 ;ip. 1 ;~. 1 , completing the 
l l. l 1- l.- 1-

induction. 
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We can now conclude the proof as in the case of ordinary schemata. 

If x ;~ ;~ is a proper prefix of z;~' ;~', we 
n n n -

contradict the assumption that x ;~ ;~ is a control sequence. If n n n 

x = z, and x ;~ ;~ is a prefix of z;~' ;~', it follows that the 
n n n n 

sequences are equivalent. (They need not be identical. That is, I/! (i) 
n 

need not equal ~'(i). However, the restrictions that ~ (i) = ~ (j) iff n n 

~'(i) = ~'(j) and~ (i) = ~ (j) iff ~'(i) = ~'(j) make any differences 
n n 

unimportant. That is, the sequences differ only on the "names" of the 

activations. ) 

Since x;~;~ is equivalent to x ;~ ;~ which is, in turn, equivalent n n n 

to z;~' ;~', the original I-computations are equivalent, and the schema 

is determinate. This concludes the outline of the proof. 
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