

This blank page was inserted to presenie pagination.

MAC TR-111

PRODUCTIVITY IN PARALLEL COMPUTATION SCHEMATA

John P. Linderman

December 1973

This research was supported by the
National Science Foundation in part
under research grant GJ-432, and in
part under research grant GJ-34671.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

2

PI,:JJDUCTIVITY IN PARALLEL COMPUTATION ~CHF:MATA

BY

John Parent Linderman

Submitted to the Department of Electrical Engineering
on May 21, 1373, in partial fulfillment of

the requirements for the Degree of Doctor of Philosophy

ABSTRACT

A general model for parallel computation is developed in three
parts. One part, the data flow graph, describes how actors which
transform and test values are connected to the locations in a finite
memory. Another part, an interpretation, supplies information about
the contents of memory and the detailed nature of the transformations
and tests.

The third part :;pecifies how initiations und terminations of the
act ore; clrE3 allowed to occur. We defi.ne this in a p;eneral way, using
a S';t of sequences of initiation and termination events to model
control. This allows us lo prove results which apply to a broad
class of control mechanisms.

Our major results are analogous to a theorem of Karp and Miller.
Their theorem defines a class of schemata for which conflict­
[reeness is necessary and sufficient for determinacy. We use a
w~ak~r notion of determinacy which depends only upon the final
contents of a c;ubset of the memory locations. To establish
necessity, we introduce the property of productivity which
expresses whetlwr in div iclual transformations and tests con tribute
to the final results of a computation.

THESIS SUPERVI~OR: Jack B. Dennis
TITLE: Professor of I:l~ctrical Enzirieerint,

3

ACK.NOW LE DGEMENTS

I would like to thank my thesis supervisor, Jack Dennis, for
introd,1ci ns·. :-nc to schemCJta, p;uiding my research, and carefully
reading drafts o:" this dissertation. I appreciate his interest
and editorial comments.

l·'.y
takin

LhaEks lo my readers, Carl I!ewitt and Al Meyer, for
the time to go over drafts of dubious literary merit.

A collective 'Thank You' to the people at Project MAC and
particularly the members of the Computational Structures Group.
They contributed in subtle but important ways to make the
pursuit of this research a genuine pleasure.

June, 1973 John P. Linderman

SECTION

CHAPT1=R ONF:

l. l. l
l. 2 .1
l. 3 .1
l. 3. 2
l. 4.1
l. 4. 2
l. 5 .1
l. l). l

CtiAP'iT:r~ TWO

2 .l.l
2. l. 2
2. l. 3
2.2.l
2.2.2
2.2.3
2.3.l

4

TABLE Of CONTENTS

Abstract . . .
Alknowledgements
Table of Contents
List of figures
List o' Theorems and Lemmas

A Note on Mathematical Style
Introduction and Background
Sc'.1ematoloc;y
Schcmatoloc;y - History
Parallelism .
Parallel Schematology - Kistory
Modularity
Speed Independence

Data flow Graphs - Introduction
Gata Flow Graphs - Formal Definition
Data Flow Graphs - Example .
Events - Introduction
Events - formal Description
Events - Example
Data Flow Graphs - Summary .

CHAPTER THREE

3.1. l
3.2.l
3.3.l
3.4.l
3.5.l
3.6.l
3.7.l
3.7.2
3.7.3

Control - Introduction
Control - Sequential Models
Control - Programs with Concurrency
Control - Petri Nets .
Control - Data Flow Models
Control - Automata
Control Sets - Overview .
Control Sets - Conventions and Formalisms
Control Sets - Discussion

Cl-JPP'~'F:P FOUR

'g _,___. _ _,___ Interpretations Introduction
4

,,
Interpretations - Forinal Definition > L

;! • l. 3 Interpretations - Summary
4-.l.Lf Interpretations - Example

PAGE

2
3
4
7
8

9
10
10
13
14
15
16
17

18
22
23
26
27
28
29

31
31
33
35
38
43
4-5
45
4-7

4-9
49
50
50

5

CHAPTER FIVE PAGE

51
53
57

5.1.l
5.1.2
5.1.3

CHAPTER SIX

6.1.l
6.2.l
6.3.l
6.3.2
6.3.3
6.4.l
6.4.2
6.5.l
6.5.2
6.5.3
6.6.l
6.7.l

6.8.1

Data Dependence Graphs - Introduction
Dadep Graphs - Formal Definition
Dadep Graphs - Example

Dadep Graphs - Definition of Depth 64
Interpreting Dadep Graphs 66
Free Interpretations - Introduction 69
Free Interpretations -· Formal Definition 69
Free Interpretations - Universality . 70
Similarity - Formal Definition 72
Similarity - Relation to Free Interpretations 72
Dadep Graphs - The R8le of Decisions 74
Consistency - Formal Definition 75
Consistency - Some Perspective 77
Equivalence of Sequences - Formal Definition 78
Determinacy and Equivalence of Schemata -. Formal Definition

Schemata - Some Perspective
79
80

CHAPTER SEVEN

7. l.l
7.2.l
7.3.l
7.4.1
7.5.l
7.6.l
7.7.l
7.8.l
7.9.l
7.10.l
7 .11.1

Schematology - Some Pitfalls
Properties of CONTROL -. Introduction
CONTROL - The Prefix Property .
CONTROL - Persistence
CONTROL - Commutativity .
CONTROL - Conflict
Determinacy - An Overview
Determinacy - Some Preliminary Notions
Persistence, Commutativity· and Conflict - Some Lemmas
Determinacy - Some Sufficient Conditions
Determinacy - Retrospect

CHAPTER EIGHT

8.1.l
8.2.l
8.3.l
8.4.l
8.4.2
8.4.3
8.5.l
8.5.2
8.6.l
5.7.l

Conflict and Non-determinacy - Introduction
Paths in Dadep Graphs - Similarity
Schemata - Some Additional Properties
Productivity - Overview •
Productivity - Formal Definition ·
Productivity - What Does it Mean?
Productivity of Schemata - Formal Definition
Productivity of Schemata - Discussion
Schemata - Repetitions
Weakly Productive Schemata - A Preliminary Result

81
83
85
85
87
88
89
:?9
93
97
98

99
100

. 102
104

. 105

. 106

. 107
108
109
110

8.8.l
8.9.l
8.9.7
8.10.l

6

Productivity - Undecidability .
Determinacy and Conflict ~ Some A iJitional Results
Determinacy and Conflict - Continued
Theorem 8.13 - A Post-Mortem

CHAPTER NINE

9 .l.l
9.2.l

Summary
future Directions

BIBLIOGF.APl-iY

APPENDIX r

I.l.l
I. 2 .l

Schema Systems .
Definition of Terms

GLOSSARY f,ND INDEX

BIOGRAPHICAL NOTE

PAGE

112
113
122
125

129
131

133

135
138

150

152

FIGURE

2.la
2.lb
2.2
2.3
2.4
2.5
2.6

3.1

3.2

3.3a
3.3b
3.3c

3.4

3.5
3.6
3,7

3.8

5.la-R.
5.2

6.1
6.2

7.la
7.lb
7.lc
7.2

7.3

8.1

I.l
I. 2

7

LIST OF FIGURES

PAGE

An operator o with m-ary function name f 20
A decider d with n-ary predicate name p 20
An interconnection of actors and memory locations 20
A sample program for integer division 24
A data flow graph for the program of Figure 2.3 . 25
A Karp-Miller operation . 30
A data flow graph model for the operation of Figure 2.5 30

A flow chart control specification for the data flow
graph of Figure 2.4 . 32

A fork-join control specification for the data flow
graph of Figure 2.4 . 34

An event which is not enabled . 36
An event which is enabled 36
The marking which would result if the event of Figure

· 3.3b fired . 36
A Petri net control specification for tie data flow

graph of Figure 2.4 . 37
Elements of Dennis-Fosseen .~c·~<;1~,ata, ena.Ole·:5. and fired 41
A Dennis-Fosseen schema for th2 program of l'igure 2.3 . 42
Partial state table of a finite state control

specification for the data flow graph of Figure 2.4 44
A finite state control specification for which CONTROL

is not a regular set 48

Dadep graph of ;~caE~eddf~ff 58-62
Dadep graph of x 63

Depths of the nodes in the dadep graph of Figure 5.2 65
Assignment of elements to the values of the dadep graph

of Figure 5.2 using the interpretation of Example 4.1 68

Data flow
Data flow
Data flow
Two Petri

graph of sl
graph of s 2
graph of composite schema
nets with CONTROL~ {o

1
a2 ,o 2o1 }

A Petri net control specification which is not
commutative

Data flow graph with identities for which conflict can
cause inconsistency .

Use of a schema as a macro-operator
Formalisms for describing a system sequence

82
82
82
84

84

127

136
. 140

Rr:SULT Pf,Gr:

Theorem b .1 73

Lemma 7.1 91

Lemma 7.2 92

Lemma 7.3 93

Lemr:1a 7. 1+ 94

Lemma 7. 5 9S

Lemma '!. b 95

Lemma 7.7 96

Theorem 7.8 97

Lemma 8.1 101

Lemma 8.2 101

Lemma 8.3 101

Theorem 8,4 llO

L,emma 8.5 ll4

Lf~rnma /j. b ll4

Lemma H, 'i 114

Lemma 8, 114

TJ:mma '. g 114

Theorem 8.10 120

Lemma il .11 122

Lemma 8.12 123

Theorem B.13 174

g

1.1. l A Note on Mathematical Style

It is conventional to use single lett~r~ to identify mathematical

objects such as function:;, sets and relations. The advantage is

primarily one of conciseness. Unfortunately, this may come at the

expense of understandability, and almost certainly with a loss of

readability. The number of formal oi: .'.~,~ts which will be in traduced in

the course of this dissertation would quickly exhaust the alphabets

commonly available on typewriters. Worse still, the mnemonic value

would be vanishingly small.

We will therefore abandon the single letter convention and freely

use words or even phrases to identify formal objects. As often as not,

the name we choose for a set will simply be the plural form of thP

elements it comprises. Thus, we will not feel obliged to mention that

SCHEMA INPUTS is a set whose elements are, in fact, schema inputs. As

a means of avoiding unintended confusion, we will capitalize formal

names. We will use these conventions throughout with the hope that

they will enlighten rather than confuse.

When mathematical precision conflicts with clarity or perspective

in our definitions or proofs, we will favor the latter. For example,

we will talk about "edges labeled with numbers" rather than formalize

a "function from the set of edges into the natural numbers." In all

cases, it should be clear how the proofs and definitions could be made

more rigorous if so desired.

A glossary can be found at the end of this dissertation for the

reader's convenience.

10

l. 2 .l Introduction and 3ackground

This dissertation is, in effect, a discussion of a model for parallel

computation. Everything a mathematician needs to know about the model can

be found in the subsequent chapters. However, the model is more than a

collection of abstract definitions. Its form was influenced by a number

of areas in computer science, and a knowledge of these may help the reader

to push throup;h some of the abstractions and to feel comfortable with the

model.

l. 3. l Schematology

Schemata are models for computation, as are Turing machines, finite

state machines, programs written in a programming language, and so forth.

The feature which distinguishes schemata is the lack of interpretation for

primitive functions and predicates. To logicians, this is a familiar

concept. For the rest of us, a common analogue is fortunately available.

Suppose an ordinary compiler runs across a statement such as

u + f(v,w,x, ··· ,y,z)

Assume function f is externally defined. Although the compiler cannot

know exactly what f does, it is not entirely in the dark. The compiler

at least knows where f will get its inputs and where it will store its

result. This may seem to be very little knowledge indeed, but, with a

few more assumptions, it allows the compiler to perform transformations

such as calling f with copies of the inputs or using u as a temporary

work area until f has returned its result. For example, it could

substitute something like

11

u ~ f(u,w,x,""" ,y,z)

for the original statement, and not alter the meaning of the program.

The point to be noticed here is that the transformation is valid

no matter how f is defined (subject to certain assumptions we will

presently discuss.) Schematology is concerned with making statements

about computation which remain valid regardless of the definition of

the functions and predicates used. From the above discussion, it should

be clear that schematology has immediate application in compiler theory.

Although the "external routine" analogue may be useful to those

whose background tends more towards computers than towards formal logic,

it must not be pushed too far. There are assumptions we make about

functions and predicates that are not always true for arbitrary programs.

Stated simply, we assume that all functions and predicates implement

total mathematical functions. To emphasize what is not allowed as a

function or predicate, some elaboration is in order. A function or

predicate name may appear many times in a schema, but it must always take

the same number of arguments. Thus, although one could argue for the

desirability of a generalized addition function which returns the sum of

an arbitrary number of arguments, such constructs will not be allowed in

scherr,ata. Functions and predicates are presumed to be defined for all

inputs. Thus, no function could precisely model division which is not

defined for divisor 0. Given the same set of inputs, functions and

predicates must always return the same results. This precludes certain

routines with "memory" such as "clock functions" or predicates which are

true only the first time they are used. Functions and predicates do not

l 2

alter their inputs, and have no "side-effects 11 whatever.

From this discussion, the reader can surmise that the schemata defined

herein are not intended to model every computation that might be possible

using conventional programming languages. We are, instead, focusing on a

limited, but very rich subset of such computations.

In addition to compiler theory, there are other justifications for

adopting a schematized model. The Turing machine is one of the best

known models for interpreted computation. Hopelessly inefficient as a

practical computing device, Turing machines have been most valuable in

identifying problems which cannot be systematically solved. For example,

we know there is no procedure for determining if an arbitrary Turing

machine halts when started on a particular input, or whether two Turing

machines compute the same partial function. We cannot find the 11 fastest"

Turing machine which implements an arbitrary function because, in some

cases, there is always a faster machine, and one still faster and so on

ad infinitum. In the face of such undecidability results, we must lower

our sights somewhat. Schematalogy sacrifices a certain amount of

"relevance" for the possibility of answering questions analogous to the

above.

It would seem to be a better approach to go only half-way towards

schemata and allow both interpreted and uninterpreted operations. After

all, this is precisely the problem a compiler must handle. Unfortunately,

the amount of interpretation which can be tolerated without introducing

undecidability problems is very small. For example two counters with

unlimited capacity are sufficient to mimic Turing machineslO,

13

l. 3. 2 Schematology - History

Ianov is generally credited with the first schematized model for

computation!S His model treats all of storage as a monolithic entity

which is transformed by operations. The operation to be applied is

determined by the outcome of a number of predicates testing the store.

Ianov showed that equivalence of his schemata was decidable. Rutledge15

later pointed out a correspondence between Ianov's schemata and a class

of finite state machines.

Luckham, Park and Paterson 9 developed a more familiar schematized

model based on flow charts. Operator instructions in the flow charts

are of the form

label: x. + f(x. ,x. ," • · ,x.)
1 Jl J2 Jm

with branching in the charts accomodated by transfer instructions such as

label: p(x.),tlabel,flabel
1

By establishing a correspondence with a class of automata, they were

able to show that the equivalence problem for schemata using two or more

memory locations is not decidable. However, certain restricted classes

of flow chart schemata were identified for which equivalence is decidable.

Schemata have also been used by Hewitt and Paterson to allow

meaningful comparison of various control mechanisms such as iteration,

recursion, and recursion with limited parallelisml 2 .

14

l. 4 .1 Paralle llsm

Parallel proccssint; a:o it exists today generally refers to concurrent

execution 0£ several pr·ocesscs which are themselves strictly sequential.

P.,l though this is iln important trend in the efficient use of computer

systems, it is not the level of parallelism in which we are interested.

We will be focusing on parallelism within a program at the instruction

level. Therefore, we are discussing hardware which is not now common and

probably wjll not be common for a generation or so.

There is more than a theoretical difference between concurrent

execution of one thousand programs and concurrent use of one thousand

proc~ssors by a single program. An astronaut does not care if ground

control can recompute a thousand courses in an hour. What he requires

is one course recomputed in seconds. The number of such real time

applications is constantly expanding. With speeds of individual

processors approachinE limits imposed by the speed of light and the

laws of thermodynamics, low level parallelism will take on increasing

importance.

In addition to such practical applications, one can make an argument

for parallelism on theoretical grounds. A conventional algorithm may

impose sequencing constraints which are arbitrary and have nothing to

co with the function being implemented. A parallel specification can

help to focus on this function by stripping away arbitrary sequencing

and leaving only that which is essential.

15

l. 4. 2 Parallel Schematolory - Eistory

Karp and Miller7 , Slutz16 , and Keller 8 have worked with schemata which

model parallel computation. Using a hybrid operation which combines the

roles of transformation and testing, they were able to identify certain

classes of parallel schemata for which determinacy and equivalence are

decidable. Some of the major results of this dissertation are extensions

of the work of Karp and Miller to a model with more conventional

operators and a weaker form of equivalence.

Slutz 1 s marimum paY'aUel foY'/71 16 which maximized the number of possible

computations for a given interpretation helped to motivate our notion of

pY'oductivity. With our weaker form of equivalence, the possibility of

useless operations arises. A workable analogue to Slutz's maximum

parallel form would have to restrict computations to some level of

productivity. Lacking this, unproductive activity could be added

indefinitely without truly increasing parallelism.

Parallel schemata in which the arrival of data triggers activity have

been investigated by Rodriguez 13 , Dennis 3 and Fosseen5 . A desirable

feature of these schemata is their inherent determinacy. The equivalence

problem remains undecidable for general data flow schemata. However,

both Rodriguez and Fosseen discuss decidable questions about equivalence

of data links within a schema.

lf)

l. :i .1 Modularity

Modularity is a term finding great favor both in computer science and

on Madison Avenue. Informally, we might say that a modular system is the

interconnection of a small number of components whose inputs, outputs and

input/output behavior are explicitly defined. Although we have restricted

modular systems to comprise only a few components, there is no real

restriction on systeD size. Each component may be a modular system whose

components are themselves systems and so forth. We are therefore talking

about a style of systems design rather than a class of systems.

Modular systems have the virtue of being easy to debug and easy to

modify. If such a system malfunctions, the components can be "unplugged"

~nd tested to sec that they meet their input/output specifications.

Since this is, by definition, their only r6le in the system, operational

components need not be checked in greater detail. This allows quick

isolation of problems. Furthermore, any component can be replaced by

another with the same input/output behavior. This allows us to take

advantage of developments which make modules cheaper, faster, more

reliable, or whatever. The value of such capabilities in large systems

can scarcely be overestimated.

The definition of equivalent schemata reflects our input/output

orier: ~at.10'1. We view schemata much as a programmer views subroutines.

When ;;iven inputs, they Pither run on forever or they halt and produce

some outputs. Equivalence will amount to halting on the same inputs,

yielding the same results. Intermediate values, storage used, amount of

parallelism exploited and the like will be of no consequence as far as

equivalence is concerned.

17

1.6.l Speed Independence

Programmers on some early machines observed that they could initiate

data input operations before they were finished with the data in the area

to be overwritten. They knew there would be ample time to access the

data before the relatively slow input devices could effect the transfer.

This technique was actually an early form of parallel processing, but a

decidedly dangerous one. For example, if the I/O device had been

improved or the program simulated rather than executed, chaos could

have resulted.

The peculiarities of particular machines and operating systems now

make any assumptions about relative speeds highly suspect. Our model

will not assume that all operations take the same amount of time or

even that a particular operation always terminates after a fixed delay

after it has initiated. In fact, our model will make no mention of

delays and timing. Instead, each action will have distinct, explicit

initiation and termination events. All timing considerations will be

modeled by the sequencing of these events. The model will therfore

possess enough flexiblity to describe systems where the amount of time

needed to complete an operation may be highly variable.

2. l. l Data flow Grarhs - Introduction

If schemata are 2 moclel for com~utatior; as we su~gested in the

introduction, then we sho11ld begin with a ~road-Lrush approximation to

just what a computation is. Let us informally define a computation as

a process which performs transformations c:md tests on a set of values.

This is obviously not to be taken too seriously. but it will serve as a

foundation upon which to build.

For c
0 xample, the llefini tion suggests that a model must have agents

capable of trar;sforY.':ing vulues and agents capaLle of testinr; values.

We refer to these agcmts as operators and deciders respectively, and

call them actors collectively. As we noted in the introduction, with

our schematized approach we do not define exactly what these actors do

or even the sP-t of values they act upon. However, by associating

function ~amea with operators and predicate names with deciders, we can

constrain distinct actors to do the same thing, whatever that may be,

by giving them the same function name or predicate name.

If an operator performs a transformation of m values, we will

depict the operator as a circle with its associated function name inside

and with input arcs labeled l through m. An operator having no inputs

is allowable: it allows us to model constants. Deciders arc similar

but they will be diamor..d-shaped and we insist that they have at least

one input: they must have something upon which to base a decision. Of

course, all actors with which a given name is associated must have the

same number of inputs.

We assume that all operators have exactly one output. There is no

real loss of generality, since we could always model a transformation

19

with k outputs by k single-output operators. Deciders, on the other

hand, have no outputs. They have outcomes, either true or false.

Again, binary deciders caG be put together in such a way as to model

k-way tests. Figure 2.1 shows an operator and a decider.

In our model, the values input to actors and produced by operators

are presumed to reside in memory locations. Which location supplies

which input is depicted by attaching the arcs on actors to memory

locations. The same location may supply more than one input, and may

also be the output location of an operator to which it supplies an

input. Some actor/memory interconnections are shown in Figure 2.2.

Labeling the arcs on such interconnections can be tedious and

unenlightening. We will adopt the convention that arcs appear in

order of increasing index starting from the bottom of the actor and

proceding clockwise around it unless explicitly labeled otherwise.

Thus, all arc labeling in Figure 2.2 is unnecessary.

Presumably, we institute the series of transformations and tests

which we called a computation because we are interested in some results.

In general, we expect these results to depend in some way on an initial

set of values we provide to the computation. In our actor/memory

interconnections, we identify two ordered subsets of the memory

locations. One set, the schema inputs, are presumed to hold the

initial values when the comput: -::::c:: begi_;_,., The other set, the schema

outputs, will contain the results if and when the co":"2.ctation terminates.

The actor/memory interconnection and sc:1cma inputs anci outputs determine

what we will call a data flow graph.

1

0

1
Figure 2.la An operator> o with

m-ary functior. name f

b

20

Figure 2.lb A decider d with

n-ary predicate name p

Figure 2.2 An interconnection of actors and memory locations

21

The class of computations we will be investigating have finite data

flow graphs which are not altered during the course of computation. We

cannot allocate additional memory locations, change the function name

associated with an actor, or move an actor around in the graph. We c~o

not claim to have a satisfactory way of representing structured ~ata

such as arrays, lists or stacks. These features are not deemeJ

unimportant, "i:rnt rather lie outside of the ::;cope of this disssrtation.

If the reacer experiments with producing a clata flow graph

corresponding to a familiar computation (as we shall do in Section 1.3),

he will probably discover that simple assignment occurs. That is, we

often want to simply copy th" contents of one location :into another.

This is one functicr' which is always meaningful, independent of the

domain of values ~i~~ whi2h ~.e are dealing. We therefore allow

identity operators to be used in data flow graphs. We will reserve

the function name":=" for these operators.

22

2. l. 2 Data Flow Graphs - Formal Definition

A data flow graph is a directed, labeled, bipartite graph. One set

of nodes is a finite number of locations collectively referred to as

MEMORY. An ordered (possibly empty) subset of MEMORY is distinguished

as the SCHEMA INPUTS, and another ordered (nonempty) subset is

distinguished as the SCHEMA OUTPUTS. The other set of nodes are a

finite collection of ACTORS, partitioned into OPERATORS and DECIDERS.

Associated with each operator is one of a set of FUNCTION NAMES. For

simplicity, we will assume that the number of its inputs (20) is

implicit in the function name. If f is an m-ary function name, then

any operator o with which f is associated has input arcs labeled l

through m originating on (not necessarily distinct) locations in

MEMORY. We call these locations the input locations of o. In

. . . .th . t particular, we call the location on the arc labeled i the 'l 'lnpu

location of o. Each operator o has a single output arc terminating on

some location in MEMORY (not necessarily disjoint from the input

locations of o.) We refer to this as the output location of o.

Associated with each decider is one of a set of PREDICATE NAMES. As

with function names, we will assume that the number of inputs (>O) is

implicit in the predicate name. If p is an n-ary predicate name, then

any decider d with which p is associated has input arcs labeled l

through n originating on (not necessarily distinct) locations in

MEMORY, the input locations of d. Deciders have no output arcs.

23

2.1.3 Data Flow c;rvph::; - Example

It might he instructive to take a familiar model for computation,

a program, and consider how a corresponding data flow graph could be

defined. The program in Fisure 2.3 mimics intezcr division. That is,

given a numerator N and a denominator D, it wil~ determine a quotient Q

and remaincer ~, :;uch that N=QxD+P., ~;:e magi,~ tudc of P is less than the

magnitude of D, and if R is r~ 'ro, .1 t ha,'; the same sign :cis Q. The

example is not profound, l:ut t:,e ::"eader shoulc' look it over ::d nee we

will refer to it in several later sections.

An ooviow; first step is to equip our data flow graph v, ~ U1 a rr.cmory

location for each variatle in the program. Of course, we may need

addi tior1al lo cat ions for temporary results and the like. The choice of

actors is not quite so clear. for example, in line 6 we wish to

increase Q hy 1.

to Q via the no'

This could Le accomplished by addinz the constant l

imction, or '.:iy using a special

add- l-to-the-2:'' 1rn1~r1 t unary i unction. This obviously makes no

difference in the program, but will lead to quite different data flow

graprL3. A similar choice occurs for t:-1e comparisons with constant 0 on

lines 9 and 13.

A complete data flow graph is shown in Figure 2.4. We could have

used function names like < or - hut these names are hard to dissociate

from their conventional interpretations. Thinkinp; of c as .:::._omplement,

£ as ~ess than, m ac ~ar;ni tude, s as .'.:'._Uhtract, t as tally (add l), and

z as ~ero, the datu flow graph :c;houlcl Le quite easy to analyze. The

reader is cncourag.=:cl to verify line ~JY line that the data flow of the

program can be duplicated. The identity copies 0 for use by p and q.

l

2

3

4

s

7

11

12

.13

14

l::::
.L)

~r:p:i t (r;

u "'- 0

Q +- :
'

'.J I

T "'. I ~, I I

Lio inti 1 F

(~ -< ·')+ l

i 1 I' < iJ

·r 1.c < ~)

:'..:.vis i.on

f

Fi~ure 2.4 A dat2 flow

25

SCFE~:A INPUTS ;:: {N ,D}
SCHEMA OUTPUTS = {Q,R}

:=or tr:" ;>rori:ram of Fi.::-:urc 2. J

26

2.2.l Events - Introduction

Although actors are the atomic elements by which computation can be

carried out, we want a description of their behavior which is more

detailed than "actor a happens." This level would suffice for sequential

computation:c:, in which there is only one site of activity. 1:~ a parallel

computation, however, we need a mechanism capable of describi~g concurrent,

asynchronous activity.

To this end, we associate with each op~rator in a data flow graph, an

initiation event and a termination event. With each decider, we associate

an initiation event and two termination events. In essence, an initiation

event and corresponding termination event bracket what we referred to

earlier as "actor a happening." However, it is not necessary for

initiations and terminations of an actor to occur in strict alternation.

By postulating a means of keeping track of initiations for which the

corresponding termination has not yet taken place, we can allow several

initiations to occur before a termination occurs.

When we formally describe events in the next section, we do so by

assuming that each actor has an associated queue and processor which

computes the function or predicate named. It should be emphasized that

these processors and queues are merely vehicles for defining the

intended behavior of actors. Any implementation which gives rise to

the same behavior would be equally acceptable.

·,;2 now turn to a formalization of the semantics of events.

27

2.2.2 Events - Formal Description

For each operator o with associated n-ary function name f, we

define two events, the initiation of o, denoted o, and the termination

of o, denoted o. When o initiates, a value is associated with each

input arc of o by (non-destructively) reading the correspo0ding input

location of o. This n-tuple of values can be thought of as being

enqueued on an £-processor associated with o. The termination of o

is defined only if this fifo queue is non-empty. (It should be noted

that a queue containing 0-tuples is most certainly not empty.) In

this case, the first n-tuple in the queue is removed, the £-processor

is applied to the n-tuple, and the result is written into the output

location of o, destroying any previous contents.

For each decider d with associated n-.ary predicate name q, we

define three events, the initiation of d, denoted d, and the true and

false terminations of d, denoted dT and dF' !:'espectiv~l]. The intended

semantics are similar to those for operators. Upon termination, there

is no output location to overwrite, of course, but the outcome of the

predicate named by p on the n-tuple of values is reflected in the

choice of termination events.

These rules define, for each data flow graph, an alphabet E of

events associated with the actors. Since there are only finitely

many actors, E is always finite.

28

2.2.3 Events - Example

Suppose, referring back to the data flow graph of Figure 2.4, we

consider the sequences of events ~ffff and ~ffff and their effect

upon the contents of loc0tion Q. When we begin, the contents of Q are

undefined. When w initiates, the contents of Q remain undefined, but

now there is a 0-tuple enqueued on w's z-processor. When w terminates,

a value which we can symbolically refer to as z() is written into Q.

At this point, all queues are again empty. When f initiates, the

1-tuple z() is enqueued on f's t-processor. Up until now, both of

sequences we have been considering have caused the same behavior.

If f now terminates immediately, t(z()) will be writt >:to Q,

destroyin3 its former contents, z(). Aft'3..,., anothc:r ":-itiatio:: and

termination of f, Q will contain t(t(7'()): cmn :~1 qt:eues will be

empty.

On the other hand, if f reinitiates before terminating, z() is

placed on the t-processor 1 s queue after the other 1-tuple (which also

happens to be z().) The first •-::rmi::~ ~ _r __ of f leads to t(z()) being

written into Q. The second t::rrr:inatio:·, then overwrites this value

with the very same thing, t(z()). A~ain, all queues have been emptied.

For the data flow graph shown, L">={w,::'.',a,~,b,~,c,::,e,::,f,~,g,~,h,~,

d,dT,dF,p,pT,pF,q,qT,qF}.

29

2.3.l Data Flow Graphs - Summary

Data flow graphs provide a formalism for describing the structural

aspects of computation. They are not the only such mechanism one can

devise. Karp and Miller7 , Slutzl 6 , and Keller8 have used a model in which

actors are of a single, hybrid type. These "operations" combine the

features of our operators and deciders by having one or more output

locations and one or more possible outcomes. A graphical representation of

such an actor is shown in Figure 2.5. An equivalent data flow graph

structure is shown in Figure 2.6. We mimic the multiple outputs in the

standard way. There are numerous methods for associating K(a) outcomes

with collections of binary deciders. As shown, we use K(a)-1 deciders,

and let the outcome correspond to the least index of a true decider, or

K(a) if all are false. Thus, data flow graphs can model the hybrid

operations.

A more dramatic difference appears in one variant of the data flow

schemata of Dennis 3 and Fosseen~ Here actors are interconnected by fifo

queues instead of memory locations. Data flow graphs can also reproduce

the behavior exhibited by data flow schemata. It can be shown that the

so-called well-formed schemata can operate with queues of length 1. Such

queues are easily modeled by memory locations. Furthermore, queues can be

modeled by identity operators between memory locations, using the implied

queuing of multiple operator initiations.

Therefore, data flow graphs are a fairly general model for describing

the structure of a computation and are not likely to generate much

controversy. Indeed, this is one reason why the data flow structure has

been separated from the rest of the schema specification.

30

Figure 2.5 A Karp-'.1iller operation

Figure 2.6 A data flow graph model for the operation of Figure 2.5

31

3.1.l Control - Introduction

Data flow graphs tell us only part of what we need to model a

computation. They specify the structure of memory, transformations, and

tests, but do not specify the order in which actors can initiate and

terminate. This is the purpose of some sort of control mechanism. What

we shall be referring to as a schema is a data flow graph and a

specification of control. We review some possible control mechanisms

before indicating how control is specified for our schemata.

3.2.l Control - Sequential Models

The most familiar control mechanisms, the ones used by virtually all

conventional programming languages, are sequential. There is no concurrent

activity, so actor initiations and terminations occur with no intervening

events. After each operator termination, there is a unique actor

initiation which follows. When a decider terminates, there are two actor

initiations which might follow, the choice being determined by the decider

outcome. The rules about which actor initiates next are implicit in the

semantics of the programming language used.

Flow charts are a general way of specifying the sequencing of actors

in a sequential program. Figure 3.1 shows a flow chart for the program in

Figure 2.3. One can envisage a single locus of control moving along the

arcs of the chart, initiating and terminating actors as it passes. If a

program contain~ go to statements, the topology of such a chart can be

quite complicated, a fact used to argue for better behaved sequential

control primitives such as do-loops and if-then-else conditional clauses.

/
/

32

/~ //'·,
/

T
/

F
d p

Figure 3.1 A flow chart control specification

for the data flow graph of Figure 2.4

33

3.3.l Control - Programs with Concurrency

If we wish to maintain a program-like formalism but introduce

concurrent activity, there must be a means of adding loci of control.

If a program can be broken into completely independent parts, then each

part can be assigned a dedicated locus of control. This is essentially

what most multiprocessing systems do, assuring independence by working

on unrelated programs. Practical programs, however, seldom factor into

such independent parts. (If they did, they would be written as separate

programs.) In general, then, the loci of control will interact.

Fork and join primitives can be added to programming languages to

express this interaction. At a fork, a single locus of control splits

into several loci. At a join, a number of loci of control come together

and a single locus exits. There have been numerous proposalsl,4 for

implementation of such primitives, and we show a graphical representation

of a program using these primitives in Figure 3.2.

In inspecting such a graph, it is important to distinguish between

the control flow through a fork primitive, in which control flows along

all output arcs, and control out of deciders, in which control flows

along exactly one of the output arcs.

The resemblence to a precedence graph is quite striking here, with

!!unordered" actors being capable of concurrent activation. Precedence

graphs, embellished to allow conditionals and while~loops have also

been used as control mechanisms~

Figure 3.2 A fork-join

control specification for

the data flow graph of

Figure 2.4

34

fork

35

3.4.1 Control - Petri Nets

Breaking away from program-like formalisms can lead to control

structures such as Petri nets, introduced by Holt~ Petri nets are such a

simple yet powerful formalism for modeling concurrent activity that it is

worth a short digression to study them.

Petri nets are directed, labeled, bipartite graphs whose nodes are

either states or events. States are drawn as circles and events as bars.

States have an associated non-negative integer which is depicted by

drawing the appropriate number of tokens in the state. This numbering is

called the markinq of the net. Activity in a Petri net is governed by a

simple firing rule. An event is said to be enabled if each state on an

arc into the event contains at least one token. An enabled event can

fire by removing one token from each input state and adding one token to

each output state. Tokens need not be "conserved" by the process of

firing. In fact, the total number of tokens in the net will change after

an event fires unless the number of input states of the event equals the

number of output states of the event. We show some Petri nets in Figure

3.3.

The event in Figure 3.3a is not enabled since there is an input state

with no tokens. The event in Figure 3.3b is enabled, and, if it should

fire, the resulting net would be that of Figure 3.3c.

By associating the events determined by a data flow graph with a

subset of the events in a Petri net, we can use the net as a control

mechanism. We show such a net in Figure 3.4.

36

Figure 3.3a An event which is not enabled

Figure 3.3b An event which is enabled

Figure 3.3c The marking which would result if

the event of Figure 3.3b fired

37

Figure 3.4 A Petri net control specific;j_tio;.c. :for the data

flo,,_. :::::,ap!-'1 of FL,ur2 '.2. '+

38

One reason that this control mechanism may appear complicated is the

introduction of explicit initiation and termination events. Except for

this, there is a strong resemblance to the fork/join formulation of Figure

3.2.

Slutz's fZo~ graph schemata have a control mechanism which closely

parallels Petri nets!6

3.5.l Control - Data Flow Models

It is self-evident that an actor cannot initiate before its input

h . h" . d Rd . 13 values ave been generated. Turning t is observation aroun , o riguez,

Dennis~ and Fosseen5 have proposed models in which the arrival of values

controls the initiation of actors. We will briefly describe one form of

data flow schemata studied by Dennis and Fosseen~ We call these "Dennis-

Fosseen schemata" rather than "data flow schemata" to avoid possible

confusion with our own data flow graphs.

A Dennis-Fosseen schema is a directed, bipartite gra~h in which the

nodes are either actors or links. It is helpful to think of the arcs in

a Dennis-Fosseen schema as being able to hold a single value. Operators

in Dennis-Fosseen schemata are actors with one or more inDut arcs, a

single output arc, and an associated function name. If a value is present

on each input arc and no value is present on the output arc, an operator

is enabled to fire. When it fires, an operator removes the values from

its input arcs and places on its output arc the value which results from

applying the named function to the inputs. Deciders in a Dennis-Fosseen

schema have one or more input arcs, a single output arc, and an

associated predicate name. As with operators, these actors are enabled

39

to fire when there is a value on each input arc and no value on the output

arc. When a decider fires, the values on its input arcs are removed, and

the boolean value resulting from the named predicate on the input values is

placed on the output arc. Dennis-Fosseen schemata are constructed in such

a way that arcs carry either boolean values or data values, never both.

Dennis-Fosseen schemata may contain boolean actors to perform logical

operations on boolean values. Boolean actors are enabled to fire when a

boolean value is present on each input arc and no value is present on the

output arc. When such an actor fires, the input values are removed and the

result of the named boolean operation on the input values is placed on the

output arc.

There are three types of actors which have both boolean and data

input; true gates, false gates, and merges. A true gate has one input

data arc, one input boolean arc, and one output data arc. A true gate is

enabled to fire when a value is present on each input arc and no value is

present on the output arc. When it fires, the input values are removed.

If the boolean value was true, the input data value is placed on the

output arc. Otherwise, no value is placed on the output arc. False gates

are analogous, "passing" the input data value if a false boolean value is

present and "swallowing" the data value for true boolean inputs.

Merge actors have two input data arcs, one boolean input arc, and one

output data arc. A merge is enabled to fire when there is a boolean value

present, a data value on the input data arc indexed by the boolean value,

and no value on the output arc. (The presence or absence of a data value

on the other input data arc is irrelevant.) When it fires, a merge

removes the boolean value and the indexed data input value, placing the

40

data value on the output arc.

Link nodes serve as connection points and also eliminate the need for

explicit identity operators. A link node is enabled when a value is

present on its input arc and all output arcs contain no values. When a

link node fires, the input value is removed and a copy of the value (data

or boolean) is Dlaced on each output arc of the link node.

Figure 3.5 summarizes the elements of Dennis-Fosseen schemata. Each

element is shown in enabled status and then, immediately to the right, the

element is shown as if it had fired. Arcs which carry boolean values have

solid arrowheads while data arcs have open arrowheads.

Figure 3.6 shows how the elements of a Dennis-Fosseen schema can be

assembled to model the program of Figure 2.3. This kind of schema is

probably foreign to most readers, but with a little experimentation, one

can quickly become familiar with its behavior. In particular, gates and

merges come in groups fed by the same boolean. When initialized merges

are encountered before the gates, a loop structure can be realized. This

is the case with the three merges and five gates fed by the decider in the

middle of Figure 3.6. When the gates are encountered before the merge, a'

is true with the gates and merges fed by the deciders at the top of Figure

3.6, conditionals are realized. We recommend that the reader check the

behavior of the schema by first assuming that each decider is false, then

assuming each is true. Note, in particular, that the "loop merges 11 are

reinitialized to true when the loop is exited.

v

f

•

f

v

v= f (v
1

, · · · , v r)

operator

cL=:.ta link bool2ar! link

'J

v

false L O-o

1 I
I

~ t:c•u.~ gate mer·gc·

b=p(v
1
,··· ,v

8
)

decider

boolean actor

v

v
I •

n
N

m

-- z

I"
)

t

i

I
c I

/

R
Q

43

3.6.l Control - Automata

Consider a finite state acceptor whose state transitions are labeled

with the events associated with a data flow graph. We can view the events

on arcs out of a given state as those events which the acceptor allows in

that state. Should one of the events occur, the acceptor enters the state

to which the corresponding arc leads. We might call those sequences of

events which lead from the initial state to some accepting state the

sequences which are acceptable.

Keller8 , Karp and Miller7 , and Slutz16 all consider state-machine

control mechanisms, treating countably infinite state machines as well as

finite state acceptors. Many of the other control mechanisms we have

discusseil have finite state counterparts which allow exactly the same

sequences of events to occur. If, for a given n~state petri net, there

is an integer m such that no state in the net ever contains more than m

tokens at a time, then there is a corresponding finite state control

mechanism with no more than (m+l)n states. (A state in the finite state

acceptor identifies how many tokens are present in each of the n states of

the Petri net.)

As the last example suggests, finite state acceptors may be consider­

ably more complicated than the other models. In Figure 3.7 we show the

beginning of a state table for a finite state control mechanism for the

data flow graph of Figure 2.4.

One can imagine how pushdown automata or even Turing machines could

be employed to control the events in a data flow graph.

w

a

b

w

a

b

w

a

b

w

a

b

Figure 3.7

44

c

a

b

w

a

b

w

a

b

w

b

Parli~l state table of a finite state control specification

for the data flow graph of Figure 2.4

45

3.7.1 Control Sets - Overview

The last few sections serve to indicate the diversity of control

mechanisms which have been or could be proposed to direct activity in

data flow graphs. Each has advantages, real or imagined, which make it

difficult to agree on a "best" mechanism.

It is unfortunate that many of the results in schematology depend

upon the particular choice of control mechanism, in ways that become

clear only when one attempts to carry the result over to a different

model. This works a particular hardship on newcomers to schematology

since there is no general theory unifying the various models.

In an effort to begin a more general approach to schematology, we

have adopted a specification of control which is not tied to any

particular control mechanism. We do this by observing that all the

mechanisms just discussed define sets of allowed sequences of events.

We call these control sets, and we will generally be concerned with

their properties as sets, not with the particular mechanism that

determines them.

This approach has both good and bad aspects. A control mechanism

defines a control set inherently possessing properties which we must

explicitly define and justify. Thus, our approach may appear slightly

"verbose" and can be difficult to motivate. The advantage we gain in

return is to make explicit those properties of control upon which

schematalogical results depend. These results then carry over to all

mechanisms which can be shown to impose the requisite properties. This

may be au easier task than trying to establish the results directly.

46

3.7.2 Control Sets - Conventions and Formalisms

Let r be a finite alphabet. As is conventional, we will use E* to

denote the set of all finite strings over r. We let A represent the

unique string of length 0, the empty string.
co

We use r to denote the

set of countably infinite strings over r, and we define r to be the

co
union of E* and r . We will use the terms 'string' and 'sequence'

interchangeably.

We use italicized letters late in the alphabet and possibly

subscripted, V, W, x 0 , x 1 , and so forth, to denote sequences in E.

If we have sequences XEE* and YEL, then xy represents the sequence
A

in E formed by concatenating x and y. Given zcE and xcr*, x is a

prefix of z if and only if there exists a sequence ycE such that

xy=z.

Suppose r is the alphabet of events associated with a data flow

graph. A string ycr is said to be well-sequenced if, for every prefix

x of y and for every actor a in the data flow graph, the number of

occurrences of initiations of a in x is no less than the number of

occurrences of terminations of a in x. In simple English, nothing

is terminated which has not been initiated. Note that this property

does not depend upon the connections in a data flow graph, only on

the set of actors.

A sequence YEE is well-defined (for the data flow graph which

determines E) if it is well-sequenced and for each prefix xa of y,

and for each input location 1 of actor a, 1 is a schema input, or

1 is the output location of some operator o such that x ~ x1~2 •

47

That is, in a well-defined sequence, no actor initiates until the

contents of all of its ..:.Lput locations are meaningfully defined. A

set of sequences is said to be weU-defined if every sequence in the

set is well-defined.

We define a control set (of a data flow graph with alphabet of

events~), CONTROL, to be any well-defined subset of~ with the

following property. For each finite sequence XECONTROL, each schema

output m is either the output location of some operator terminating

in x, or mis a schema input (or both). Thus each control sequence,

as we call the elements of CONTROL, which terminates leaves values in

all schema output locations.

Finally, and somewhat anticlimactically, we define a schema to

be a data flow graph and some corresponding control set.

3.7.3 Control Sets - Discussion

The restriction of control sets to well-defined sequences is easy

enough to justify. A string which is not well-sequenced, such as ~a,

simply has no meaning in terms of the behavior of data flow graphs.

Similarly, we cannot make any sense out of actors initiating before

the contents of their input locations have been established. For

example, e~ is well-sequenced for the data flow graph of Figure 2.4,

but it is not meaningful because locations R and T have unspecified

contents. Finally, if a sequence terminates, we expect it to leave a

result in each schema output location. Although we do not exclude

anythi ~· 'F~ry meaningful by assuming well-definition, there are noteworthy

impL_cc>.tions. For example, the finite strings the state-machine

48

of figure 3.8 accepts are simply {a,~}*, but the set of all control

sequences contained in {a,~}* cannot be recognized by any finite state

acceptor. -k k (Informally, a~ must be accepted for all integers k~O.

Fork greater than the number of states in a finite state machine,

k some state must be visited more than once while a is being read.

Then this cycle of length j>O could be repeated so that akak+j is

also accepted. But this sequence is not well-sequenced, so it is

not among the control sequences.) Thus, although it is semantically

painless to exclude ill-defined sequences, it may be difficult or

impossible to do so while maintaining a given control mechanism.

a a

Figure 3. 8 A finite state control specification for which CONTROL is

not a regular set

49

4.1.l Interpretations - Introduction

Schemata, via their data flow graphs and control sets, tell us

everything of a structural and operational nature that we need to know

about modeling computations. To put the schema model on a par with

familiar models, however, we must supply the missing details about 'the

function names and predicate names.

An interpretation for a schema specifies the set of elements which

the memory locations can contain. For "familiar interpretations",

these will include integers, character strings, representations of

real numbers, and so forth. Of course, there are also interpretations

dealing with trees, or only with integers, or only with the number 6:

the choice of domain is virtually unrestricted.

An interpretation also specifies functions and predicates over

these elements for the function names and predicate names of the data

flow graph. These functions and predicates are total, so "familiar

interpretations" would have to be extended to define such things as

1/0 and "cat"<3.14159. Finally, the interpretation specifies the

elements initially contained in the schema input locations.

4.1. 2 Interpretations - Formal Definition

An inte:rrpretation I of a schema consists of

1) A (non-empty) set, DOMAIN, of elements.

2) For each m-ary function name f, a total function f 1 :DOMAINm+DOMAIN

3) For each m-ary predicate name p, a total predicate pI:DOMAINm+{T,F}

4) For each schema input location~' an initial element dEDOMAIN

~o

4.1.3 Interpretations - Summary

Although we have defined interpretations of schemata, it is

evident that the definition depends only upon the data flow graph

component. If we have two or more data flow graphs with the same

number of schema inputs, we can meaningfully define a single

interpretation for all of them. There will be a single DOMAIN,

and the set of initial elements vrill apply to 2ach set of schema

inputs. Functions and predicates illust be assigned for all function

names and predicate names, but since the arity is implicit in the

names, this can be done consistently. That is, f cannot be a unary

name in one graph and a binary name in another. Thus, a function

associated with name f works in all data flow graphs. We will later

speak of interpretations for two or more schemata, understanding

that this is what is meant.

4.1.4 Interpretations - Example

Suppose we define an interpretation for the data flow graph of

Figure 2.4. We can recapture the original intent of the program

from which it was derived by the following interpretation.

1) DOMAIN = Z (The integers)

2) z():=O m(x):=Jx\ t(x):=x+l c(x):=-x s(x,y):=x-y

3) £(x,y):=x<y

4) Initial elements = <l,-1>

Example 4.1 An interpretation for the data flow graph of Figure 2.4

51

5 .l.l Data Dependence Graphs - Introduction

We have defined schemata as the combination of data flow graphs, a

formalism for describing the ir'.terconnectior: of memory locations and

actors, and control sets, a formalism for defining how events in a data

flow graph are sequenced. We now define a mechanism, the data dependence

graph, or dadep graph, which brings these two formalisms together.

Before proceeding, it should be noted that dadep graphs are derived

algorithmically from a data flow graph and associated well-defined

sequence. Thus, there is really nothing in a dadep graph we didn't

already have, given the data flow graph and sequence. Our justification

for introducing this new formalism is one of clarification and

convenience.

The virtue of dadep graphs is that they make it easy to overlook

some less interesting aspects of schemata such as the choice of names

for memory locations and actors, and focus on relevant issues such as

transforming and testing values via functions and predicates. As we

shall see, it is possible to do this in such a way that we can derive

important information about interpretations from the structure of the

dadep graph.

Dadep graphs are labeled, bipartite graphs whose nodes we call values

and actions. Starting only with the initial values input to the schema,

actions are added as actors initiate. One set of labels indicates the

function name or predicate name associated with an action. Another set

of labels indicates which values are currently contained in the memory

locations. This labeling aids in determining which values are inputs to

an action, shown by directed, indexed arcs from values to actions.

New values are added wh~n operators tcrninate. When deciders terminate,

another set of labels indicate the outcome for the associated decision.

Identity operators ao not create values, but rather chan.se the labeling

with memory lnc tion name3 lo ~a~e existing values availatle under new

.~.::ter formalizing these notions, an example of a dadep

graph will be . ~velo7cd in some detail.

53

5. l. 2 Dadep Graphs - Formal Definition

The dadep graph determined by a data flow graph and corresponding

well-defined sequence is a directed, labeled, bipartite graph. One set

of nodes is referred to as VALUES. The other set is referred to as

ACTIONS. ACTIONS are partitioned into OPERATIONS and DECISIONS. If

the data flow graph has m schema inputs, then there exist m values

labeled 1 through m called INITIAL VALUES. Each operation is labeled

with a function name and each decision with a predicate name. If an

action has an n-ary name, there are arcs labeled 1 through n incident

upon the action from n (not necessarily distinct: values. There may be

a single arc from an operation to a value. Decisions are either

unlabeled or ar·e labeled with a T or an F. A subset of VALUES are

labeled with one or more locations in MEMORY.

Suppose we fix a data flow graph. We define inductively the dadep

graph determined by a corresponding well-defined sequence. For

notational convenience, we will use subscripting to identify the

sequence determining a dadep graph. For example, VALUES will denote
x

the set of values in the dadep graph determined by sequence x.

For precision in the induction, we state the following induction

hypothesis:

Hypothesis 1: Each memory location which is either a schema

input or the output location of some operator terminating

in x is the label on exactly one value in VALUES . x

Looking ahead to some further definitions, we also add induction

hypotheses:

Hypothesis 2: The dadep graph of sequence x is acyclic.

54

Hypothesis 3: Each value in VALUES is either one of the
x

INITIAL VALUES or it has a single input arc originating
x

from an operation in OPL:RATIONS (but not both.)
x

For the basis of our induction, we co~sider the dadep graph of the

empty sequence, A. If the data flow graph has m schema inputs, then

VALUESA = {v1 ,v 2 , ... ,vm}. If the ith schema input is location fl, then

value v. is labeled fl. Furthermore, v. is distinguished as the ith
l l

initial value. There are no actions and no arcs. It is easy to see

that hypotheses 1, 2 and 3 are trivially satisfied.

Suppose that all the components of the well-:~'.efined sequence x have

been defined, and xo, ocL, is also well-defined. We define the dadep

graph of xo by cases as follows:

INITIAL VALUES = INITIAL VALUES in any case. If o is not the
XO X

termination of some decider d, let j be the number of occurrences of o

in xo. Otherwise, let j be the number of terminations of d in xo.

Case 1: o is the initiation of an actor c other than an identity

operator. Suppose g is the function name or predicate name associated

with c. VALUES = VALUES , and the labeling with memory locations is
XO X

unaltered. We form ACTIONS by adding a new action, a, to ACTIONS
~ x

If c is an operator, a is added to OPERATIONS
XO

Otherwise, it is

added to DECISIONS
XO

Action a is labeled g. Since xo is well-

defined, each input location of c is either a schema input, or is the

output location of an operator terminating in x. By hypothesis 1,

each of these locations is the label of exactly one value in VALUES .
x

If l . . h .th . . f dd lab l d . · ocation fl is t e i input location o c, a an arc e e i

from the value in VALUESxo (=VALUESx) with label fl to the new action a.

55

(If c is a 0-ary operator, no arcs are added.) All other arcs remain

as in the d.adep graph of x. We refer to °- as "the action corresponding

th . th f to e J occurrence o c.

Hypothesis l held for the dadep graph of x, no terminations were

added, and the labeling with memory locations was unchanged. Hence

hypothesis l still holds for the dadep graph of xa. Hypothesis 2

still holds since all arcs added were to a node not in the dadep graph

of x, so no cycles could be introduced. Hypothesis 3 follows from the

fact that no new values were introduced.

Case 2: a is the initiation of an actor c which is an identity

operator. Suppose t is the input location of operator c. As in case

1, there is a value in VALUES labeled with t. We will refer to this x

value as "the value corresponding to the jth occurrence of c. 11 The

dadep graph of xa is exactly the same as the dadep graph of x, so all

hypotheses hold.

Case 3: a is the termination of operator c which is not an identity

operator. ACTIONS = ACTIONS • We form VALUES by adding a new value xa x xa

v to VALUES . Since xa is well-defined, c has initiated at least j x

times in x, so there will be an operation a in ACTIONS corresponding to x

the jth occurrence of c. Add an arc from a to v, leaving all other arcs

unchanged. Suppose the output location of c is t. If a value in

VALUES has label t, remove the label i::1 the labeling of VALUES , and, x xa

in any ca:::~~ , ~.abel v with t.

The (I'e) labeling procedure zuc\J'.'c1: t,~es -rhe validity of hypothesis l.

Hypothesis 2 follows because the cc1y :ie·,: arc :;_~; to a node not in the

Jadep graph of x. It will be seen that no other cases add values or

Sb

arcs into existing values. Thus hypothesis 3 is satisfied.

Case 4: a is the termination c;f a clPcider c. Since xa is well-

defined, c has initiated at least j times in x. Hence, there is a

d . . ACfION" d' tl .th f ecision a in ' 0 correspon ing to 1e J occurrence o · c.
x

In

the dadep grapt of xa, a is given label T if a=c
1

, or label r if a=c r.
No other changes are made, so all induction hypotheses remain valid.

Case 5: cr is the termination of identity operator c. Since xcr is

well-defined, there arc at least j initiations of c in x. Hence there

. l . VA d. i • th f is a va ue v i~ LuES correspon ing to t11e J occurrence o c.
x If

t~e output location of c is £ and £ is the label on some value in

VALUES , remove the label in the labeling of VALUES .
X X0

In any case,

label v with £ in VALUES
X0

No other changes are made.

The (re)labeling preserves hypothesis 1, and since no arcs or nodes

are added, hypotheses 2 and 3 also hold.

57

5.1.3 Dadep Graphs - Example

The formal definition of dadep graphs will be useful in constructing

some believable proofs, but it makes dadep graphs appear more formidable

than the really are. Stepping through a specific construction should

help to eliminate many potential sources of confusion. In Figure 5.1

we do this for the data flow graph of Figure 2.4 and the well-defined

sequence x = w~cab~eddF~f!e~ddTppFqqTh~.

Values are drawn as boxes, actions as the same shape as the

corresponding actor in a data flow graph. We identify the initial

values by the index depicted inside. The memory labels appear

alongside values, function and predicate names appear inside the

corresponding actions, and decision outcomes appear near the

predicate names. We use the same arc labeling conventions

introduced for data flow graphs.

As an inspection of the dadep graph of x reveals, dadep graphs

display the structural relationships between the values input and

those gsnerated by a sequence. This structure can then be used to

study what happens under a particular interpretation.

58

Figure 5.1& Da~cp ~raph of ~

0
Figure 5.lb Dadep graph of w

Q

IJ0 0 D

Figure 5.lc Dadep graph of ww

Q

Figure 5.ld Dadep graph of wwc

N l

Fi~ure 5.le Dadep graph of wwca

Q

l 2 D

fi)_';ure 5.lf Dadep gra~h of wwcab

60

Q

Fiz11re 5. lz Dadep gra;::h of wwcal;a

Q

2 D

fir:;ure 5 .1:1 Dadep graph of Wwcabab

bl

N l 2 lJ

Figure S.li gra::J1 of wwcabahd

Q

2 D

l?

1---------')l)[J>---------~ t
Q,Z 0

N LJ

Figure ::i,lk

Figure 5.1£

f:aclep graph of wwcababdd cf - -- F-

z

Dadep graph of wwcababdd~cff
r- -

2 D

2 D

0
z

R

Fir;ure :J. araph cf x , 2 Dadep tc

63

b4

6. l. l Dadep Graphs - Definition of Depth

In the sequel, we will find it co·,~2~ient to use certain structural

properties of dadep graphs without havin~ to consider the particular

sequence and data flow graph which determines them. One such feature is

the depth of values and actions in a dadep graph. The depth will

simply be the length (in terms of number of arcs) of the longest

directed path leading to the value or action.

Being a little more precise, we define the depth of all initial

values to be C. We also define the depth of all 0-ary operations in a

dadep graph to be 0. The depth of any value other than an initial value

is defined to be l plus the depth of the operation of which it is the

output value. (Such an operation exists by hypothesis 3 of dadep graphs.)

The depth of an operation which is not 0-ary is defined to be l plus the

maximum depth of its input values. The acyclic nature of dadep graphs

(hypothesis 2) guarantees the validity of this definition. Figure 6.1

shows a dadep graph with the J~~tt of each node indicated.

Note that if there is a value [action] at depth k>l, there must be a

value [operation] at depth k-2 on a path to it. Thus, there can be no

"gaps:' in the depths of values [actions] greater than 2.

65

Figure 6.1 Depths of the nodes in the dadep graph of fi,gure 5.2

6.2.l Intcrpretlng Dadep Graphs

Any interpretation of a schema will supply all detail we need to

associate specific domain elements with the values in ~ ~adep graph. The

r6le of decisions in the generation of values is indirsct, an~ its

explanation presupposes a thorough understanding of the nature of values

and operations. We will therefore ignore, for now, the corr,ponent of

interpretations which specifies predicates, and focus on the domain,

functions and initial elements.

These three components define an assignment of domain elements to

values in the obvious way. Initial elements are paired with initial

values anc the functions determine all other assignments.

!fore formally, given a dadep graph D and an associated interpretation

I, define a mapping ~I: VALULS ~DOMAIN by induction on depth as follows.

Basis 1): If the depth of value vis O, then vis an initial value,

say the ith. Define ~I(v) to be the initial element of I corresponding

to the ith input location.

Basis 2): If the depth of vis 1, then v must be the output value of

an operation with a 0-ary function name, say f. Define ~I(v) to be the

I
element f () deter~ined by I.

Induction step): Scpposc ~I is defined at all values whose depth is

k (>l) or less. If there is no value at depth k+l or k+2, then ~I is

definec for all values. (Recall that no gap greater than 2 can exist

bet,1ee11 de:;=iths of values.) Otherwise, consider a typical operation o

with :n-ary function name f, of which o!le of these values L: an cutput

67

value. The depth of o is either k or k+l so the depths of o's input

values, v1 , v2 , vm' are k or less. Hence, sI is defined at each

vi and we define sI(v) to be fI(sI(v
1

), ... ,sI(vm)).

(The next induction step is at level k+2.) D

In Figure 6.2 we show how such an assignment can be made by

combining the dadep graph of Figure 5.2 with the interpretation of

Example 4.1. The element associated with each value is shown inside

the box representing the value.

Such an interpreted graph shows a "history" of the elements

generated if the given sequence can be observed under the given

interpretation. (This "can be observed" issue is where the predicates

will come in.) The labeling with memory locations then identifies

the final contents of the schema output locations. Thus, such an

interpreted dadep graph constitutes a completely satisfactory

description of the input/output behavior of schemata for what we will

define as I-computations.

68

Figure 6.2 Assignment of elements to the values of the dadep graph

of Figure 5.~ using the interpretation of Example 4.1

~--------------------------

69

6.3.l Free Interpretations - Introduction

The starred values in Figure 6.2 all were assigned the same domain

element. We would like to know if this was purely coincidental, or if

it will be true for all interpretations. This leads us to introduce

free or Herbrand or one--one interpretations, and the notion of

similarity in dadep graphs.

A brief inspection of the interpreted dadep graph of Figure 6.2

reveals that if a different set of initial elements had been chosen,

say 5 and -3, then the starred values would have been distinct. It

would be nice if we could find an interpretation which assigns the

same domain element to distinct values only if all interpretations

assign the same element to them. Such interpretations in fact exist,

and are variously called free, Herbrand, or one-one interpretations.

These interpretations are a formalization of the "symbolic

representation" we referred to in the definition of events.

6.3.2 Free Interpretations - Formal Definition

To define a free interpretation of a schema, let DOMAIN be the set

of strings over the nalphabet" composed of FUNCTION NAMES, the integers

from l through the number of schema inputs, and, for clarity, commas and

parentheses. The initial element corresponding to the first schema

input location is 1 1 1 , that corresponding to the second schema input is

'2', and so forth.

If f is an m-ary function name, then f
1

applied to domain elements

(which are strings) s
1

, s
2

, ···, sm is defined to be the string formed

by concat~nating function nam~ f, a left parenthesis, s
1

, a comma, s 2 ,

70

a comma, and so on throufh s which is followed by a right parenthesis. - m

For example, fI['l', 1 g(2)','h()'];:: 'f(l,g(2),h())'.

Any set of total predicates over the given DOMAIN can be used to

complete the interpretation. Thus, a data flow graph really has a family

of free interpretations, differing only on the predicates assigned to the

predicate names.

6. 3. 3 Free Interpretations - Universality

Suppose G
1

and G
2

are data flow graphs with the same number of schema

inputs. Let D
1

and D
2

be dadep graphs of well-defined sequences for the

respective data flow graphs. Then v~lues v
1

of D
1

and v
2

of D
2

are

assigned the sor ~lement by every interpretation if and only if they are

assigned the same element of a free interpretation.

The 'only if' half of the above result is trivial. Therefore, we need

only demonstrate that if v
1

and v
2

are assigned the same element by a free

interpretation, then every interpretation assigns them the same element.

We assume the contrary and derive a contradiction.

Suppose that it is possible for values v
1

and v
2

to be assigned

different elements by some interpretation I even though they are

assigned the same element by a free interpretation. We can assume

without loss of generality that v
1

is a value of least depth for which

such a condition can arise.

If the depth of v
1

is 0, it must be an initial value, say the ith

S_i~""'.C2 v;:i _1s assigned the same element f i I by a free interpretation, it

must he -'che .th
initial value l in D2. But then the same initial element

of every interpretation is assigned to both v
1

and v
2

. So v
1

must be at

depch l or greater.

If v
1

is at depth 1, then it is the output value of an operation with

some 0-ary function naY.Je f. The element of a free interpretation assigned

t . th +:: ! f() ! • o v
1

is ,ere~ore If v
2

is assigned this same element by a free

interpretation, it too must be the output value of an operation with 0-ary

function name f. Since f
1

() would then be assigned to both v
1

and v
2

for

every interpretation I, it follows that v
1

must be at depth 2 or greater.

r+ n1,::;t therefore be that v
1

is the output value of an operation o
1

with m-ary function name 1::, and m:?:l. Therefore v
1

and v
2

are assigned

element 'g(s
1

,s
2

,"" · ,sm)' by a free interpretation, where si is the

element assigned by the free interpretation to the ith input value, vli'

of o
1

. Thus v
2

must also be the output value of an operation o
2

with

function name g and input values v
21

through v
2

m which are assigned

elements s
1

through sm of the free interpretation. But each v
1

j has path

depth at least 2 less than v
1

. By hypothesis, each vlj' being assigned

the same element sj of a free interpretation as is assigned to v
2
j, must

be assigned the same element as v
2

j for every interpretation. But then

v
1

and v
2

could be assigned differing elements only if g
1

gave different

results for the same m-tuple of elements. This violates the functionality

I
of g .

We conclude that an interpretation which assigns different elements

to v
1

and v
2

cannot exist. 0

72

6.4.l Similarity - Formal Definition

Suppose we have two data flow graphs, G1 and G2 , and dadep graphs D1

and D2 of corresponding well-defined sequences over the respective data

flow graphs. We define similarity, a relation on actions and on values,

by the following induction.

Values v
1

in D
1

and v2 in D
2

are similar if each is the ith initial

value, or if they are output values of similar operations.

Actions a
1

in D1 and a2 in D2 are similar if they are labeled with

the same function name or predicate name, and, if the name is m-ary with

l h f . h . th . l f . . . 7 h . th
m~ , t en or lim, t e i input va ue o a1 is s~m~~ar to t e i

input value of a
2

.

Again, the acyclic nature of dadep graphs guarantees the validity of

this i~ductive definition. That is, working back along directed arcs

always leads to an initial value or a 0-ary operation. Values or actions

which are not similar are said to be dissimilar.

6.4.2 Similarity - Relation to Free Interpretations

We now show that values are similar if and only if they are assigned

the same element by free interpretations.

If values v
1

and v2 are similar and the lesser depth is O, then one

t~ l . h .th ... l l of u.e va ues, say v 1 , is t e i initia va ue. By hypothesis 3 of

d d h d h d f b h . th a ep grap s an t e e inition of similarity, v2 must also e t e i

initial value of its dadep graph. Both values are thus assigned 'i' by

a free interpretation.

Suppose similar values are assigned the same element by a free

interpretation if the lesser depth of the values is k or less. Suppose

------------ -------

73

v1 and v2 are similar values such that the depth of v1 in its dadep

graph is k+l or k+2. Since v
1

and v2 are similar and neither is an

initial value, vl and v2 are output values of similar operations 01

and o2 . Since 01 and 02 are similar, they bear the same m-ary

function name f. If m is O, v
1

and v 2 are both assigned 1 f()' by a

f . . f . • • h b d f . . • h . th ree interpretation. I m is positive, t en, y e inition, t e i

input value of o
1

is similar to the ith input value of o2 for l:5i:5m.

Since the depth of each input value of o
1

is k or less, it follows

b . d . h h . h h .th • y our in uction ypot esis t at t e i input value of o1 is assigned

h 1 f f . . . h . th . t e same e ement, s., o a ree interpretation as is t e i input
l

value of o2 . But then v1 an·l v2 are both assigned 'f(s1,s 2 ,'" ,sm)'

by any free interpretation.

The proof that values assigned the same element by a free

interpretation are similar can be carried out by induction on lesser

depth in a manner directly analogous to the proof above. We therefore

omit the details of the proof. 0

Combining the last two proofs allows us to draw the following

important conclusion.

Theorem 6.1): Values v
1

and v2 in dadep graphs D1 and D2 are

assigned the same element by all interpretations if and only if the

values are similar.

74

6.S.l Dadep Graphs - The R6le of Decisions

Having investigated in some detail the nature of values in dadep

graphs and the relation they bear to interpretations, we are now in a

position to study decisions.

As we saw, decisions are irrelevant with respect to the assignment

of elements to values by any interpretation. However, the decisions in

a dadep graph indicate whether the graph (and underlying sequence) are

in some sense legitimate.

For example, if 9., were interpreted as n1arger than or equal to"

instead of as "less than" in Figure 5.2, the predicates determined by

the interpretation would have specified the opposite outcomes from

those in the dadep graph. Thus, the dadep graph is not consistent

with such an interpretation.

We will formalize this notion of consistency in several steps. We

will first define what it mc'ans for a single decision to be consistent

with an interpretation. Th_\ s easily extends to the definition of dadep

graphs being consistent with an interpretation. It will then be

possible to define what we mean by sequences, even infinite ones, being

consistent with an interpretation. We can then circumvent interpretations

and define consistency between decisions, dadep graphs and sequences.

Throughout, consistency has the flavor of "agreeing on the outcome of

identical decisions".

75

6.5.2 Consistency - Formal Definition

Suppose we have a dadep §raph D and a decision d in D. Suppose d is

labeled with predicate name p and one of the outcome labels, Tor F.

Then decision d is said to be inconsistent with interpretation I if

I p on the elements assigned to the input values of d has the outcome

opposite that with which d is labeled. In any other case, including the

case where d has no outcome label, d is said to be consistent with I.

A dadep graph D is said to be consistent with an interpretation I if

each decision in D is consistent with I. D is inconsistent with I if

any decision in D is inconsistent with I.

We have defined dadep graphs only for finite, well~defined sequences

over a given data flow graph. Although it would be possible to extend

the definition to infinite well-defined sequences, we are not as

interested in the details of such infinite sequences as we are in the

fact that they never terminate. To handle (potentially infinite)

sequences, then, we make the following definition.

A well-defined sequence is consistent with an interpretation I if

the dadep graph of every prefix of the sequence is consistent with I.

Otherwise, the sequence is said to be inconsistent with I.

A control sequence consistent with an interpretation I can be thought

of as a computation which might be observed for the schema under

interpretation I. In this spirit, we call them I-computations.

If d1 is a decision in dadep graph D
1

and d
2

a decision in D2 , then

we define d
1

to be consistent with d2 if there is some interpretation

with which both d
1

and d2 are consistent. Otherwise we say d1 is

inconsistent with d2 . From our knowledge of similarity and

76

interpretations, we know that d1 and d2 are inconsistent if and only if

they are similar and are labeled with opposite outcomes.

A dadep graph is said to be (self-)consistent if every decision in the

graph is consistent with every other decision in the graph. It is not

difficult to see that a dadep graph is consistent if and only if there is

an interpretation with which it is consistent.

Dadep graph D1 is defined to be consistent with dadep graph D2 if each

is self~consistent and each decision in n1 is consistent with every

decision in n2 • (It follows automatically that each decision in D2 is

then consistent with every decision in n1 .) Because we required that each

dadep graph be self-consistent~ it follows that n1 is consistent with D2

(having the same ntunber of initial values) if and only if there is some

interpretation with which both are consistent. If n1 and D2 are not

•
consistent we say they are inconsistent.

A control sequence is (self-Jconsistent if the dadep graph of. every

prefix of the sequence is self-consistent. Control sequence x1 of schema

s1 is consistent with control sequence ~2 of s2 (having the same number

of schema inputs) if both are self-consistent and the dadep graph of every

prefix of x1 is consistent with the dadep graph of each prefix of x
2

•

Therefore, two control sequences are consistent if and only if there is

some interpretation with which both are consistent.

77

6.5.3 Consistency - Some Perspective

In sequential schemata such as Paterson's flow chart schemata (which we

henceforth simply call Paterson schemata to avoid confusion with data flow

graphs), an interpretation co~pletely determines what will occur. Only at

decider outcomes is there any "choice" in a sequential schema, and the

outcome of all decisions is fixed by an interpretation.

When we move to parallel schemata, the choice of interpretation no

longer determines which event must occur at each step in a computation.

For example, in the Petri net model of Figure 3.4, the first event to occur

might be w, a, orb, no matter what interpretation is involved. (Which of

these events actually occurs first might, for some particular implementa­

tion, depend upon such things as the availability of a suitable processor

or the details of a scheduling algorithm. These issues are not dealt with

by our model: We are only concerned that the control set might allow any

of several events to occur.) Al though a:c, interpretation specifies the

outcomes of all decisions, for parallel schemata this no longer uniquely

determines a control sequence. The choice of an interpretation I only

restricts control sequences to that subset consistent with I. Within this

set of I-computations, any sequence might be observed for the schema under

interpretation I.

As mentioned, the self-consistent sequences are precisely those which

are consistent with some interpretation. This subset of CONTROL is

sufficiently important that we give it a name, EXECUTION SEQUENCES. A

control sequence which is not an execution sequence is, in one sense,

unintc;pesting since it cannot be observed under any interpretation. It

may not be possible to uniformly eliminate inconsistent sequences, however.

78

6.6.1 Equivalence of Sequences - Formal Definition

We can now define a meaningful comparison between control sequences

of the same or differing schemata. Our definition of equivalent

sequences will amount to producing the same, if any, outputs for all

interpretations. We find it useful not to insist that equivalent

sequences be consistent.

Formally, suppose we have control sequence x
1

of schema s
1

having m
1

schema input::; and n
1

schema outputs, {1
11

,.e.
12

, • • • ,.e.
1
n

1
}. Suppose also

that x
2

is a control sequence of schema s
2

having m
2

inputs and n
2

outputs

{R.21 ,122 , • • · ,.t2n
2

}. Then x
1

and x
2

are (output} equivalent if

1) m1=m2 and n1=n2 ,'and

2a) both x
1

and x2 are infinite, or

2b) both x1 and x 2 are finite, and, for all interpretations I, and for

all ~isn1 , the element assigned by I to the value with memory label

t
1

i in the dadep graph of x
1

is the same as the element assigned to

the value with label R.
2
i in the dadep graph of x

2
•

An immediate corollary of Theorem 6.1 is that clause 2b) can be

replaced with

2b') both x1 and x
2

are finite, and, for all 1Si~n1 , the value with label

t
1
i in the dadep graph of x

1
is sL~ilar to the value with label t 2i

in the dadep graph of x
2

•

We will generally use this second form which makes no explicit

mention of interpretations. We write x1~2 to denote that x
1

is

equivalent to x 2 •

6.7.l Determinacy and Equivalence of Schemata - formal Definition

A schema S is determinate if, for all interpretations I, all

I-computations are equivalent sequences. Alternatively, schema S is

determinate if, for all control sequences x
1

and x
2

such that x
1

is

consistent with x
2

, x
1

and x
2

are equivalent sequences. That the two

definitions are equivalent follows from the fact that x
1

and x
2

are

consistent if and only if there is an interpretation I such that both

are I-computations.

This form of determinacy is sometimes callc,, O'c-1tput detsY~'i·i/:cy or

output functionality, since it deals only witt, the final contents of

output locations. Since .'._ t .Ls t:.c orly form of determinacy W8 will

treat, we will use the simpler tern.

Two schemata s
1

and S? are equivalent if, for all interpretations I,

3n I-computation of one schema, ~'.:ere exists an equivalent

•~· -crnr.putatio11 y of the other schema. 111. t~H? definition can be

restated so that interpretatioL3 o not appear. In particular, s
1

and s
2

are equivalent if, for each ~~ccution sequence x of one schema, there is

a consistent, equivalent execution sequence y of the other.

Note that as stated, schemata need not be determinate for equivalence

to apply. It is an easy exercise to show that two schemata are

equivalent only if both are determinate or both are non-determinate.

For determinate schemata, other definitions of equivalence are also

seen in the literature. We can define two determinate schemata to be

7,y equivalent if, for all interpretations I, if both schemata have

finite I-computations, then these sequences are equivalent. There is no

natural analogue to weak equivalence among non-determinate schemata.

80

6.8.l Schemata - Some Perspective

Schemata as we have defined them have been the result of taking the

common noti'on of a computation and splitting it into three parts. One

part, the data flow graph, specified structural relationships between

memory locations and actors, and indicated where inputs and outputs were

expected. Another part, the interpretation, supplied the detailed

information about the potential contents of memory locations and the

effect of actors on these contents, The third part, the control set,

specified allowable sequences of actor initiations and terminations.

Dadep graphs were defined as a representation of a sequence and a

data flow graph. We showed the "universality" of free interpretations,

and the relationship of similarity in dadep graphs to equality in free

interpretations. This enabled us to show that the structure of dadep

graphs also includes "all we need to know" about interpretations. That

is, the definitions of schemata determinacy and equivalence obtained by

quantifying over all interpretations can also be stated in terms of

dadep graph structure without explicit mention of interpretations.

Thus dadep graphs constitute a powerful investigative tool combining

all three of the parts mentioned above. They will find considerable use

in the remainder of this dissertation.

81

7. l. l Schematology - Some Pitfalls

It has long been known that the equivalence problem for Turing machines

is not decidable 10, 14 . Since one can encode a Turing machine in most

interpreted models for computation10, the equivalence problem for these

models is also undecidable. An early hope for schematology was that by

demanding equivalence for all interpretations, these encoding tricks could

~~ circumvented and the schemata equivalence problem found solvable.

Unfortunately, the equivalence problem for Paterson schemata has been

shown to be undecidable 9 • 11 . Since the schemata we have defined can mimic

Paterson schemata, it follows that the general equivalence problem for our

schemata must also be unsolvable.

As a further consequence, we can show that the general determinacy

problem is also undecidable. To see this, suppose we have two m-input

n-output Paterson schemata s
1

and s2 whose equivalence we would like to

test. We can assume that ACTORS
1

nACTORS 2=¢, since actors can be relabeled

without altering function names or predicate names. We can then form a

composite schema by merging the schema inputs and schema outputs of the

data flow graphs as shown in Figure 7.1, and letting the new control set

be CONTROL
1

uCONTROL2 .

It is a property of Paterson schemata that each interpretation I

defines exactly one I-computation. Thus, our composite schema would have

exactly two I-computations, one from s
1

and one from s2 • The composite

::;chena will be determinate, then, if and only if s
1

and s2 are equivalent.

Since the latter is undecidable, so is the former.

82

Figure 7.la Data flow graph of s1
Figure 7.lb Data flow graph of s2

Figure 7.lc Data flow graph of composite schema

--rr--

83

7.2.l Properties of CONTROL - Introduction

Knowing that the general equivalence and determinacy problems are

undecidable, we will concentrate our efforts on identifying classes of

schemata where the problems are more tractable. We define these classes

by putting "syntactic" restrictions on control sets. So far, the only

restrictions on control sets of schemata are that the sequences be well­

c":~fined and that finite control sequences leave results in the schema

output locations. As we shall see, this allows control sets which run

counter to our intuition about "proper" control. After developing some

familiarity with control sets, we will begin restricting them to obtain

more reasonable classes.

If a is an event and x is a prefix of a control sequence, then we say

that a is enahled after prefix x if xa is also a prefix of a control

sequence. One must be careful not to read more into this definition than

is really there. Without further details about the mechanism which

determines the control set, all we can conclude is that after x has

occurred, there is nothing to prevent a from happening next. Of course,

xa may not be consistent with a given interpretation, or, for that matter,

with any interpretation. In parallel schemata, we generally expect that

many events may be enabled after a given prefix.

If a control mechanism allows two events a
1

and a
2

to occur

"simultaneously" after prefix x, this will be manifested in the existence

of prefixes xa
1
a

2
and xa

2
a

1
• The converse is not strictly true. Figure

7.2 shows two Petri net controls each of which allows sequences

fo_1D";~''J"?cr 1 }. Only in the first can the events be truly simultaneous.

To us, however, the distinction is not an important one.

\'I
L

Figure 7. 2 Two Petri nets with CONTROL = {o
1

o
2

,o
2
o

1
}

Figure 7.3 A Petri net control specification which is not commutative

85

7.3.l CONTROL - The Pref ix Property

One property we might expect of a reasonable control mechanism is

that it be able to detect when a computation had completed, Since we

are dealing with speed--independent systems, we must rely on the control

mechanism to announce when things have come to a halt and results are

ready in the schema outputs.

The prefix property guarantees that when a computation terminates,

no further activity is possible. Stated formally, a control set has the

prefix property if no control sequence is the proper prefix of any other

control sequence. In other words, after a finite control sequence,

nothing is enabled.

When dealing with a particular control mechanism, the control

sequences are usually so defined as to have the prefix property

automatically. This bears out our comment about the set-theoretic

approach appearing to formalize the trivial. However, as the single

state control mechanism of Figure 3.8 shows, what is obvious in some

mechanisms may be absent in others.

7.4.l CONTROL - Persistence

In the proof of the undecidability of determinacy, the control set

of the composite schema had some peculiar properties. The corrpc3ite

control set was formed by taking the union of two control sets of

sequential schemata whose alphabets of events were presumed disjoint.

Initially, then, there would be two events enabled, corresponding to the

first event from each of the component schemata. As soon as an event

occurs, however, one of the component schemata becomes "irrelevant"

86

since it has no control sequences starting with that event. The event

originally enabled in this component schema ceases to be enabled. Note

that this happens, not because of an inconsistency with an interpretation,

but because "something clicks" in the control set and precludes any

further activity.

If the reader feels that something is amiss here, it is probably

because most of the familiar models for parallel computation have a

property we call pePsistenae which is lacking in the composite schema. In

a persistent schema, once an event is enabled, it remains enabled 'lllltil it

occurs, or, in the case of a decider termination, the termination with

opposite outcome occurs.

Formally, a schema is pereistent if, given any prefixes xcr1 and :ro2 o:f

control sequences such that o
1

;to 2 and o
1

and a
2

are not opposite

terminations of the same decider, then 3Xf 1cr2 is also the prefix of a

control sequence. (By symnetry, xcr2cr
1

would also be a prefix.)

Sequential schemata are trivially persistent since the only distinct

prefixes of the form xa
1

and xcr2 are those for which cr
1

and cr2 ~

opposite terminations of a decider. Fork/join formalisms are also

persistent since the loci of control are independent except at join nodes.

Petri nets are persistent if multiple arcs out of state nodes lead only to

alternative termination events of a decider. (This is a sufficient

condition, but not a necessary one, as demonstrated in Figure 7.2.)

Dennis-Fosseen schemata are always persistent since firing any enabled

ele-..-,en t c211:1ot disable any other element. Finite state control mechanisms

need not be persistent~ but the property can easily be verified by

inspecting the state graph.

87

7.5.l CONTROL - Commutativity

Persistence implied that the occurrence of one event could not disable

another event. Thus, if xa
1

and xa
2

are consistent, distinct prefixes,

xa
1
a

2
and, reversing roles, xa

2
a

1
, are also prefixes. Corrmutativity will

imply that if two events can occur in either order, as with a1 and a2 after

prefix x above, then the actual order of occurrence is unimportant to the

control mechanism. This "unimportance" can be stated in syntactic terms

by requiring that anything which can happen after xa
1
a

2
can also happen

after xa 2o1 , and vice versa.

Formally, a schema is comrrrutative if, for all prefixes xa1a2 and xa2a1

of control sequences, xa
1

a2y is a control sequence if and only if xa2a1y

is a control sequence.

Sequential schemata are trivially commutative. Petri net and fork/join

formalisms are not necessarily commutative. We show a Petri net

counterexample in Figure 7.3. A fork/join counterexample would look much

the same. Both a 3a 1a 2 and a3a2a1 are prefixes, but a 3a 2a 1a 4 is a prefix

whereas a 3a
1

a 2a 4 is not. The problem here is that a
1

in the two prefixes

corresponds to different events in the Petri net. If events cannot be

"enabled in parallel with themselves" as above, then fork/join controls

and Petri nets, with branching out of state nodes restricted as in the

last section, will be commutative. Dennis-Fosseen schemata are always

commutative. If a finite stat''° machine is in r22'clced form, commutativity

can easily be verified by checking that a
1
a

2
and a2a1 lead to the same

state from any given state in the state diagram.

Commutativity is common because is requires more "states" to recall

the order of events than to ignore it. Thus, commutative control

88

mechanisms tend to be simpler than non-conunutative ones. Furthermore,

since sequences of the form xcr1cr2 and xcr2cr1 generally reflect the

situation that a1 and o2 can occur simultaneously-, there are practical

(and philosophical) difficulties in actually determining the order of

occurrence.

7.6.l CONTROL - Conflict

Conflict, or the absence thereof, i.s a joint property of control

sets and data flow graph topology. A conflict is said to exist if there

are prefixes x~ and xa of control sequences where either

1) a is the initiation of some acto~ a such that the output location of

operator o is an input location of actor a, or

2) er is the termination of some operator r~o such that r and o have the

same output location.

In either case, we say that x~ and xcr are in conflict. A schema is said

to be conflict-free if its control set has no conflicts.

A conflict exists, then, if two events can be enabled after the same

prefix and both are about to write into the same location or one is

about to write into a location the other is about to read. If the reader

senses something dangerous here, his fears are not groundless as will

become clear in the following sections.

89

7.7.l Determinacy - An Overview

A schema which is persistent, commutative and conflict-free and has

the prefix property may nevertheless exhibit properties which are quite

unconventional. For example, it may be that many initiated actors are

left unterminated when computations complete, or there may exist

interpretations with which no control sequence is consistent. In view

of such unorthodox possibilites, it might be surprising that such

schemata are always determinate! Those familiar with the work of Karp

and Miller will note the similarity of the proof of this fact to an

analogous result for their schemata7 .

7.8.l Determinacy - Some Preliminary Notions

The rules for constructing dadep graphs are such that distinct

sequences need not generate dadep graphs which are different from one

another. To make this statement precise, we must define what we mean by

two sequences generating the "same" dadep graph.

Suppose x and y are finite, well-defined sequences over a data flow

graph G. Let D and D be the dadep graphs of x and y, respectively. x y

Then x and y are dadep indistinguishable i-::- the following four conditions

hold.

1) For each event a in the alphabet of events of G, the number of

occuprences of a in x equals the number of occurrences of a in y.

2) If there is a jth occurrence of uninterpreted actor a in x, then the

action in D corresponding to the jth occurrence of a is similar to
x

the action in D corresponding to the jth occurrence of a, and, if a
y

90

is a decider, both decisions have the same outcome label, if any.

3) If there is a jth occurrence of identity operator o in x, then the

value in D corresponding to the jth occurrence of o is similar to
x

h · d. h .th f t e value in D correspon ing to t e J occurrence o o.
y

4) If 1 is a me~ory location label on a value in DX, then 1 is a label

on a similar value in D .
y

Condition 1 simply means that the dadep indistinguishable sequences are

made up of the same events, possibly occurring in a different order.

Conditions 2, 3, and 4 together imply that the differences in order do not

cause any significant differences in the values, actions, or memory

labeling in the dadep graphs.

For the data flow graph of Figure 2.4, each pair of sequences in the

following set are dadep indistinguishable.

{ ~a:~!? , ;;~~~ , ;;a:~~£~ , wa~!~ , w~Ee! , ~ai>~ ,_ wa!E~ 1
A little combinatorial mathematics reveals that N operators in parallel

can occur in (2N)! / (2N) distinct sequences. Thus, the three operators,

w, a, and b, determine 90 such dadep indistinguishable sequences, a

considerable gain in flexibility over the single sequence of sequential

schemata.

If two execution sequences are dadep indistinguishable, condition 4

inunediately guarantees that the sequences are equivalent, and condition 2

ensures that they are consistent.

91

Equally as important, if xz and yz are finite control sequences and

x is dadep indistinguishable from y, then xz is dadep indistinguishable

from yz. This follows by induction from the fact that xa and ya are

dadep indistinguishable if x and y ars. This, in turn, can easily be

verified by considering the five cases involved in the construction of

dadep graphs. We will carry out the proof here, but will avoid such

detailed expositions in the future.

Lemma 7 .1: If x and y are dadep indistinguishable sequences and xa

is well-defi~~J, then xa and ycr are dadep indistinguishable.

Proof: Condition l of dadep indistinguishability for xa and ya

follows im:11'."')cliately from Condition l applied to x and y. If a is the

termination of some decider d, let j be the number of occurrences of

terminations of din xa. Otherwise, let j be the number of occurrences

of a in xa. Let D and D be the dadep graphs of x and y, respectively.
x y

We consider the following cases.

Case l) er is the initiation of an actor c other than an identity

Case

operator. By condition 4, the values in D which bear the names of
x

the input locations to c are similar to the values bearing these

labels in D . Condition 2 holds for the new action, and conditions y

3 and 4 are unaffected.

2) er is the initiation of an identity operator c . By condition 4,

the values in D and D to which this . th of c corresponds J occurrence x y

are similar. Thus condition 3 holds, and conditions 2 and 4 are

unaffected.

92

Case 3) a is the termination of an operator c which is not an identity

operator. By condition 2, the actions in D and D corresponding to
:r: y

the jth occurrence of care similar. Hence, the values added are

similar, so the values labeled with the name of the output location

of c in the dadep graphs of :r:cr and YCJ are similar. This preserves

condition 4, and conditions 2 and 3 are unaffected.

Case 4) Cl is the termination of a decider c. By condition 2, the

decisions in D and D corresponding to the jth occurrence of care
:r: y

similar, and here are given the same outcome label. This preserves

condition 2 and conditions 3 and 4 are unaffected.

Case 5) a is the termination of identity operator c. By condition 3,

th l • D d D d. h . th f e va ues in an correspon ing to t e J occurrence o c are
:r: y

similar. Thus, the values in the dadep graphs of :r:a and ya bearing

the name of the output location of c are similar, preserving

condition 4. The other conditions· are unaffected. 0

Putting this lemma together with the observation which preceded it,

we obtain the following lemma.

Lemma 7.2: If :r:z and yz are finite execution sequences and :r: and y

are dadep indistinguishable, then :r:z and yz are consistent and

equivalent.

93

7.9.l Persistence, Commutativity and Conflict - Some Lemmas

Persistence, commutativity and conflict all deal with well-defined

some useful lemmas about such sequences.

The first lemma shows that if cr 1~cr2 and cr1 and cr2 are not the

opposite terminations of some decider, then if xcr1 and xcr
2

are well­

defined sequences which are not in conflict, xcr
1

cr
2

and xcr
2

cr
1

are dadep

indistinguishable. The proof, similar to that of Lemma 7.1, involves

checking a number of cases against the definition of dadep graphs. We

leave the details to interested readers and only outline the proof.

Lemma 7.3: Suppose cr1 ~cr 2 and cr
1

and cr
2

are not opposite terminations

of the same decider. If xcr
1

and xcr
2

are well-defined sequences which are

not in conflict, then xcr
1

cr
2

and xcr
2

cr
1

are dadep indistinguishable.

Proof: By exhausting all possible combinations of cases.

Case 1) -cr
1

=a, J" 2=b. Initiation events do not alter the labeling of

values with memory locations. The actions are therefore attached to

the same values independent of order. If either a orb or both are

identity operators, no action is added, but the value corresponding

to its occurrence is the one bearing the name of its input location.

As mentioned, this is not altered by another initiation.

Case 2) cr1=a, cr 2 =~, b an operator. Since xb is well-defined, ~ must

terminate some actor initiated in x. Notably, the initiation of a

can have no effect on the operation to which this occurrence of b

corresponds. After b has been added to the dadep graph, the memory

labeling is changed. However, the change only involvsr; the name of

94

the output location of b. If this is an input location of a, xa and

xb are in conflict. Otherwise, the change does not affect the action

added by the occurrence of a.

Case 3) 0
1

:::a, CJ
2

:::dT or CJ
2
=dr. Since decider outcomes only add decision

labels, there can be no interference between 0 1 and CJ 2 .

Case 4) CJ
1

:::c::, 02 =~, a anc'. ~)operators. If the output location of a is

the same ao; the c~'<t >Ut location of b, xa and xb are in conflict.

Otherwise, the orc~cr is immaterial.

Case 5) CJ
1

='.:, 0
2

=dT or CJ
2

:::df. As in case 3, there can be no problems.

Case 6) CJ
1

:::dT or CJ
1

:::dF' 0 2 ~~T or 0 2:::eF. If d~e, the decisions referred

to must be distinct, and ,;o problems arise. If d:::e, then, since

0 1~0 2 , they must have opposite outcomes. But we also hypothesized

that 0
1

and 0
2

were not opposite terminations of the same decider.

Thus it cannot be that d:::e. 0

The next lemma shows that persistence has some global implications.

Lemma 7.4: In a persistent schema with the prefix property, if XCJ is

the prefix of a control sequence and xy is a finite control sequence,

then 0 occurs in y, or, if CJ is a decider termination, the opposite

termination occurs in y.

Proof: Since xy is a finite control sequence, y is finite and we can

write it as a sequence of events y=a
1

a 2 an. If a
1

is a or the decider

termination of which a is the opposite termination, we are done.

Otherwise, xa1 and XCJ are prefixes which, by persistence, imply that

xa1CJ is also a prefix of a control sequence. Repeating the argument for

95

a and a
2

, cr and a
3

, and so forth, we must either find an ai equal to a or

the opposite termination thereof, or else xa1a
2

a q is the pref ix of
n

some control sequence. But this would violate the prefix property, for

xy was a finite co~trol sequence. Thus, such an a. must be found.
i

Lemma 7.5: In a persistent schema with the prefix property, if :x:a

is the prefix of a control sequence and is consistent with finite

execution sequence xy, then a occurs in y.

Proof: If a is not a decider termination, this follows inrrnediately

from Lenrrna 7.4. S . th . th • • f d • d o suppose a is e J termination o some eci er.

D

By

Lemma 7.4, either cr or the opposite termination must occur in y. If the

opposite termination occurred first, then xa and :x:y would be inconsistent

about the outcome of the j th occurrence of the decid2,::>. Therefore, cr

must be the next termination of the decider to occur. 0

The next lemma shows that in a persistent, commutative schema, an

event which did not occur when it was first enabled can "slide back".

Lemma 7.6: In a persistent, commutative schema, if :x:a is the prefix

of a control sequence and xyaz is a control sequence where neither a nor,

in the case that a is a decider termination event, the opposite termination

event, occurs in y, then xayz is also a control sequence.

an, where each ai is an event. By

hypothesis, no a. is a or the opposite termination event if cr is a
l

decider termination. By the same argument used in Lemma 7.4, :x:a1a,

sequences. Persistence then implies that xa
1

a
2
···an_1cr an is also the

prefix of a control sequence. Since the schema is commutative,

96

a
1
oa z is also a control sequence. Repeating the argument n-1

n- n

times, we can conclude that xoyz is also a control 3equence. D

An easy corollary follows if the schema is also conflict-free.

Lemma 7.7: In a persistent, commutative, and conflict-free schema,

if xo is the prefix of a control sequence and xyaz is a control sequence

where neither a nor, in the case that a is a decider termination event,

the opposite termination event, occurs in y, then xoyz is a control

sequence which is dadep indistinguishable from xyaz.

Proof: From Lemma 7.3 we know that xa
1
···a.

1
a.aa.

1
···a z and

1~ 1 it n

xa
1
···a. 1aa.a.

1
···a z are dadep indistinguishable for l~i~n. One need

i- i i+ n

only show that dadep indistinguishability is a transitive relation for

the result to follow. By inspecting the definition of dadep

indistinguishability, it is clear that it is an equivalence relation,

hence transitive. 0

97

7.10.l Determinacy - Some Sufficient Conditions

We are now in a position to put some of the preceding lemmas together

to prove the following determinacy result.

Theorem 7.8: A persistent, commutative schema with the prefix

property is determinat~ if it is conflict-free.

Proof; Suppose :;.; aPd y are I-computations. If both are infinite, they

are equivalent and we are done. So suppose that x is finite and no longer

than y. Suppose x=a
1

a
2
···an and y=b

1
b

2
'''bn···. We will find a sequence

of I-computations, x
0

, x1 , ···, xn' such that xi is dadep indistinguishable

from x and the prefix of length i of xi is b1b 2 '''bi.

Letting x
0
=x, we have the basis for our inductive argument. Suppose we

have I-computation xi-l satisfying the above conditions. We know that

xi-l =b1b 2'' 'bi-l ci ci+l'' ·en. Sine~ b1b 2 '' 'bi-lbi :'_s the prefix of an

execution sequence, y, which is consistent with x, and hence with x. 1 ,
l-

Lemma 7.5 ensures that b. occurs among the c.'s. Suppose ck is the first
l J

such occurrence. By Lemma 7.7, b
1

b
2
'''b.

1
b.c.c.

1
'''c

1
ck

1
'''c is a

l- l l l+ K- + n

control sequence which is dadep indistinguishable from x. 1 . By the
l-

transitivity of dadep indistinguishability, this sequence, which we shall

call x., is also dadep indistinguishable from x.
l

Now consider xn=b1b 2 '''bn. If y is longer than x, b1b 2'''bnbn+l is in

violation of the prefix property. By hypothesis, x was no longer than y.

Hence, x =y. Since dadep indistinguishability implies equivalence, x=y,
n

which is precisely what we needed to show determinacy. D

98

·:· . l.t. l Determinacy - Retrospect

If the reader followed the last proof carefully, he will note that

the result is even stronger than we stated. Persistence, commutativity,

the prefix property, and conflict-freeness not only guarantee that

I-computations are equivalent in our sense; they imply that all finite

I-computations are dadep indistinguishable, mere "permutation'>'~ of one

another.

Persistence, commutativity, conflict-freeness and the prefix

property are sufficiently strong that even if our model is extended to

allow subroutine-like use of schemata by other schemata, determinacy

is preserved. We formalize how schemata can be so extended and outline

the proof of determinacy in Appendix I.

99

8.1.l Conflict and Non-determinacy - Introduction

We have seen that for persistent, commutative schemata with the prefix

property, conflict-freeness is sufficient for determinacy. We will now

turn to a class of schemata for which conflict-freeness is necessary for

determinacy. Wf' do not investigate such schemata simply 11because they

are there". Non·· determinacy is generally something we wish to avoid, not

to guarantee. By studying how a local problem such as a conflict can

develop into a global problem of non-determinacy, however, we improve our

understanding of how parallel systems behave. This understanding may

help to circumvent non-determinacy in other classes of parallel systems.

100

8.2.l Paths in Dadep Graphs - Similarity

Paths in a dadep graph show how actions depend upon the initial

values and output values of operations. To gain some additional

familiarity with the properties of paths in dadep graphs, we establish

a simple result about paths and similarity.

Recall that arcs from values to actions are labeled with numbers.

If an action is m-ary for some positive m, there are arcs into the

action with labels l through m. Arcs from operations to values are

unlabeled since there is precisely one such arc, if any.

A path ir in a dadep graph is a sequence of arcs a
1

,a
2

, ,a
n

such that for l<isn, the node from which arc a. emanates is the node
l.

t h . h l d L h h .th d h . o w ic arc ai-l ea s. et us agree t at t e 1. no e on pat ir is

the node from which arc a. emanates, and the n+lst (and final) node
1.

on path n is the node upon which arc a terminates. We say that n is
n

a path from the first node of n to the last node of w.

We say that path 11'
1

=a
1

,a
2

, ···,am in dadep graph n
1

is sinn Zar to

path n2=a1 ,a2 ,···,en in dadep graph n
2

if all of the following

conditions hold:

1) m=n. That is, the paths have the same length._

2) For lsism, either a. and 6. are both unlabeled, or both have the
.l. l.

same label. It follows that two similar paths both must begin on

value nodes, or both must begin on action nodes.

3} For lSiSm+l, the ith node on path w
1

is similar to the ith node on

patr. ir2 .

-------------·~-- --·-

101

We can relate similar paths to similar nodes by the following

straightforward but useful lemma.

Lerruna 8.1: Let n1=a1 ,a2 ,··· ,am be a path to node n1 in dadep graph

D
1

. Node n2 in dadep graph D
2

is similar to n
1

if and only if there is

a path n2=B1 ,B 2 ,··· ,Bm to n2 in D2 which is similar to n1 .

Proof: Since the final nodes on similar paths are similar, one half

of the lerruna is trivial.

Suppose n1 and n2 are similar. If n1 is a value node, am must be

the unlabeled arc from the operation o
1

of which n
1

is the output value.

Since n2 is.similar to n1 , it must be the output value of an operation

o2 similar to o1 . Let Bm be the unlabeled arc from o2 to n2 .

Suppose n
1

is an action node.

h .th . f t e 1 input value o n
1

.

Then a
m

must be the arc labeled i

Since n
2

is similar to n1 , v2 , the from v
1

,

. th .
1 input value of n2 , must be similar to v1 .

i from v2 to n2 .

Let Bm be the arc labeled

Working our way back in this manner, it is obvious that we can

D

Two corollaries follow easily from Lemma 8.1.

Lerruna 8.2: If n1 and n2 are similar nodes in dadep graphs D1 and D2 ,

and if m1 is a node on a path to n
1

, then there is a node m2 similar to

m1 on a path to n 2 .

Lemma 8.3: If D1 and D2 are dadep graphs and n
1

is a node in D1

which is not similar to any node in D
2

, then no node on a path from n1

is similar to any node in D
2

.

102

8.3.1 Schemata - Some Additional Properties

Since the first determinacy result did not depend upon properties

other than those mentioned, we made no attempt to further limit control

sets. We now discuss some properties which lead to behavior more in

line with the systems we mentioned in the introduction.

In a speed-independent system, one can make no assumptions about the

length of time between the reading of an m-tuple of values and the

completion of the processing thereon. If a control mechanism cannot

block termination events, they must be anticipated at any time after

the corresponding initiation event has occurred.

To make this precise, we say that a schema has the immediate property

if, whenever x is the prefix of a control sequence and either o is an

operator such that x~ is well-sequenced or d is a decider such that xdT

and x<Iy are well-sequenced, then x~ or xdr and xdF are prefixes of

control sequences.

Sequential schemata, as we have noted, have exactly one I-computation

for each interpretation I. We generally expect parallel schemata to have

more than one I-computation, but.we would hardly expect them to have none

at all. However, there are data flow graphs for which {ddT} satisfies

all the conditions necessary to qualify as a control set. It is even

persistent, commutative and conflict-free, and it has the prefix

property. Any interpretation I which specified a false outcome for d's

predicate would have no I-computations.

Even the fact that a control set contains an I-computation for each

interpretation I is not sufficient to guarantee reasonable behavior.

103

For example, {da~dT,d.b~_dF} could be such a control set for some data flow

graphs. If we view the sequence of events as occurring through time,

however, we see that once da has occurred, somehow d cannot terminate

with outcome false. This runs counter to our intuition about how control

mechanisms and decisions interact.

To preclude some of this pathological behavior, we define a property

called completeness. A schema is complete if, for every prefix x of a

control sequence and for every interpretation I with which x is consistent

there is an I-computation xy. In a complete schema, it is impossible to

"run into a dead-end" under any interpretation.

It might seem that a schema with the immediate property would always

be complete, for whenever xdT is a prefix, so is xdF. Unfortunately,

this is not enough to guarantee completeness. For example, the control

set d(dTa~d)*dF has the immediate property, but, having no infinite

sequences, there is no I-computation for the interpretation in which d's

predicate is always true.

104

8.4.l Productivity - Overview

We now turn to a very important notion, that of productivity.

Productivity formalizes the concept of an event in a computation

"accomplishing something use.ful." Initiating an actor in the course of

a computation can be justified in a number of ways (as one can

empirically verify by asking a programmer, "Why is that instruction

in your program?") At the most trivial level, an actor is initiated

to carry out a particular transformation or test. At a more

satisfactory level, one can explain how the output of an operation

will be used by subsequent actors, or what will happen if a decision

comes out true. Best of all, the effect of an action on the input/

output behavior of the schema could be pointed out. From a modular

point of view, only the last justification is truly relevant.

We will define, in several cases, what we mean by the occurrence of

an actor being productive in a sequence. The cases are rather involved,

but the fundamental ideas are straightforward. For notational

convenience, we define a schema output value to be any value in the

dadep graph of a finite control sequence labeled with the name of some

schema output location. In other words, a schema output value

corresponds to the final contents of a schema output location.

An occurrence of an operator which is not an identity operator will

be productive in a finite control sequence if the value it produces is

a schema output value, or influences a schema output value, or influences

a decision in the sequence. A decision will be productive if there are

two non~equivalent control sequences between which the decision outcome

arbitrates. An occurrence of an identity operator in a finite sequence

105

is productive if the location to which the value is moved is a schema

output location which is subsequently unchanged, or is the input location

of a subsequent productive actor initiation. After formalizing these

ideas, we will philosophize some about their meaning.

8.4.2 Productivity - Formal Definition

Suppose w=xcy~z is a finite control sequence where the indicated

occurrence of uninterpreted c: .~:."a tor c is the j th such in w. Let D be the

dadep ;raph of w, and let v be the value which is added to D when c

. f h .th . terminates or t e J time. We say that the jth occurrence of c in w is

productive if v is a schema output value of D, or lies on a path to a

schem3. output value of D, or lies on a path to a decision in D.

Suppose w1=xd.z1 and w~, -:xd.z
2

are control sequences where the indicated

f d "d d h .th h . occurrences o eci er are t e J sue in w
1

and w
2

• We say that the

jth occurrence of d is productive for w
1

and w
2

if w
1

and w
2

are not

equivalent, there exist jth terminations of din w
1

and w
2

having

opposite outcomes, and all other decisions in w
1

and w
2

are consistent.

Finally, suppose w=xcy~z where the indicated occurrence of identity

operator c with output location t is the jth such in w. Let D be the

d d h f W h the].th f . . d t" a ep grap o w. e say t at occurrence o c in w is pro uc ~ve

if any or all of the following hold:

1) t is a schema output location and no operator terminating in z has

output location t. (That is, c moves a value to a schema output

location where it remains.)

-i:.:; of the form z 1bz 2~z 3 where the indicated occurrence of operator

b is productive in w, £ is an input location of b, and no operator

106

terminating in z
1

has output location£. (That is, the value moved

to location £ is subsequently used from there by a productive

operator.)

3) z is of the form z
1

dz
2

where dis a decider which has 1 as an input,

and no operator terminating in z
1

has output location£. (That is,

the value is moved to a location from which it is used by a decision.)

8.4.3 Productivity - What Does it Mean?

The definitions of productivity just given probably look mysterious

at best, but once understood, they are quite natural. For example, our

definition of decider productivity follows from the common-sense

principle: Don't ask questions if you don't care about the answers.

This translates into our requirement that under some circumstances, the

answer to just l question determines which of two non-equivalent

computations take place. An example might help to clarify this point.

Consider the following program and tabular representation of the output.

input (X)

if p (x)

then if q (X

else if q (X

output (X)

then X + f (X

then X + f (X

else X + g (X

else X + g x

p (X) q (X) OUTPUT

T

T

F

F

T

F

T

F

f(X)

g(X)

f(X)

g(X)

From the second and third lines of the table summarizing the

behavior of the program, it can be seen that if p(X) is true, the

output may be g(X), and if it is false, the output may be f(X).

However, we do not consider the occurrence of p in the sequences

107

ppTqqFf~ and ppFqqTg~ productive because the sequences are not consistent

about the decision made by q. There are no sequences for which p is

productive which is probably in line with the reader's intuition about

the usefulness of the test p(X) in ths ?rogram. Our definition would

find productive occurrences of q, however, which is again what one would

expect.

The other forms of productivity are also grounded in conunon sense

principles. They can be paraphrased, "Don't generate values you aren't

going to use!" and "Don't move a value somewhere unless you need it

there!"

8.5.1 Productivity of Schemata - Formal Definition

Knowing what it means for an occurrence of an actor to be productive

in sequences, it is easy to extend the notion of productivity to

schemata. In fact, there are several ways in which we could extend Lie

definition, and we shall mention these briefly after our definition of

weakly productive schemata.

A schema is said to be weakly operator productive if, for every

prefix xo of a control sequence, there is a finite control sequence

xoy in which the indicated occurrence of operator o is productive.

A schema is said to be weakly d.ecider productive if, for every

prefix xd of a control sequence, there are control sequences xdy1

xdy 2 for which the indicated occurrence of decider d is productive.

A schema is said to be weakly productive if it is both weakly

operator productive and weakly decider productive.

108

8.5.2 Productivity of Schemata - Discussion

In plain English, a schema is weakly productive if it does not

initiate actions which cannot be useful. We have called this weak

productivity because it is possible to impose much stronger conditions.

For example, we could define a schema to be strongly operator

productive if, for every prefix xo of a control sequence, the occurrence

of o is productive in every finite control sequence xoy.

Analogously, we could define a schema to be strongly decider

productive if, for every prefix xd of a control sequence, the occurrence

of d is productive for all control sequences xdy and xdz in which the

occurr2~ces have opposite outcome. Or, we could require that for each

control seouence xdy, there exists a control sequence xdz in which the

occurrence is productive. Or, we could require that there exist a

control sequence xdy such that the occurrence of d is productive for all

control sequences xdz in which the termination has opposite outcome.

Putting these variations on operator productivity and decider

productivity together, we could obtain many classes of productive schemata.

We will concentrate on weakly productive schemata because they are the

largest of the classes and seem the most natural for encouraging parallel­

ism: One can ini tiat2 actors if there is a possibility they will be useful.

Before leaving this discussion of productivity, we would like to make

one observation. The Karp-Miller formalism for parallel schemata, because

of the stronger form of equivalence and the way all actors alter memory,

are inherently "very productive". We feel that this quality contributes

s~bstantially to the cleanness of their mathematical results. We pay for

[!:rsater generality with more complicated proofs.

109

8.6.l Schemata - Repetitions

The properties we have previously defined were ones that we found

natural or desirable for a schema to possess. The next two properties

are introduced less because they are natural than for the reason that

they make the study of schemata more tractable. For example, the

absence of these properties is intimately involved in Paterson's proof

of the undecidability of the equivalence problem. The properties

involve the notion of doing the same thing more than once in the course

of a computation.

A sequence x is said to be free if no dadep graph of a prefix of x

contains distinct, similar decisions. A sequence xis said to be

liberal if no dadep graph of a prefix of x contains distinct, similar

operations. A sequence is said to be repetition-free if it is both

free and liberal.

A schema is said to be free [liberal~ repetition-free] if all of

its control sequences are free [liberal, repetition-free.] One nice

feature of free schemata is that all control sequences are execution

sequences. This is easily seen if one recalls that a control sequence

which does not contain similar decisions with opposite outcomes is an

execution sequence. Since free sequences do not contain similar

decisions at all, they cannot have any with opposite outcomes. When

dealing with free schemata, then, we will use the terms control sequence

and execution sequence interchangeably.

110

8.7.l Weakly Productive Schemata - A Preliminary Result

As an example of the intuitive appeal of weakly productive schemata, we

prove a straightforward theorem. The proof will introduce a useful proof

technique for productive schemata.

Suppose we define a reduced scnema to be a schema for which every

actor in the data flow graph is used in at least one control sequence. We

will show that two free, determinate, reduced schemata cannot be equivalent

if they employ substantially different functions or predicates.

Theorem 8.4: Let s
1

and s
2

be free, weakly productive, reduced,

determinate schemata. s
1

is equivalent to s
2

only if PREDICATE NAMES1 =

PREDICATE NAMES
2

and, except possibly for the identity functic name,

fL~CTION NAMES
1

= FUNCTION NAMES
2

.

Proof; Suppose uninterpreted operator o of s
1

has function name f

and f i FUNCTION NAMES
2

. s
1

is reduced, so there is a control sequence in

which o occurs, say xoy. Since s
1

is weakly productive, there is a finite

control sequence xoz in which the occurrence of o is productive. Because

s
1

is free, xoz is an execution sequence. Suppose the operation o
1

which

corresponds to the indicated occurrence of o lies or a path to a schema

output value in the dadep graph of xoz. Since o
1

has function name f, no

operation in a dadep graph of a control sequence from s
2

could be similar

to o
1

. By Lemma 8.3, it follows that no dadep graph of a control sequence

of s
2

could contain a schema output value similar to that to which o
1

leads. Hence, no sequencR from s
2

could be equivalent to xoz.

Since o
1

cannot lie on a path to a schema output value if the

schemata are to be equivalent, it must be that o
1

lies on a path to a

111

decision d
1

in the dadep graph of xoz. We can write xoz as xoz
1

dz 2 ,

where the action corresponding to the indicated occurrence of dis d
1

.

By the weak productivity and freeness of s
1

, there exist execution

sequences xozldvl and xozldv2 for which the occurrence of d is productive.

By definition, the only inconsistent decisions in these sequences are the

indicated occurrences of d. Therefore, there is an interpretation IT in

which the indicated occurrence of d is true and which is consistent with

all other decisions in both sequences. Let IF be identical to IT except

at the outcome of d. One of the sequences is an IT-computation, and the

other is an IF-computation.

If s 2 has no IT-computations, then s
1

and s 2 are obviously not

equivalent schemata. So suppose w is an IT-computation of s 2. We

claim that w is also an IF computation, for, if not, it must contain a

decision similar to d
1

having true outcome. But d
1

lies on a path from

o
1

and no dadep graph of a sequence from s 2 can contain an operation

similar to o
1

. By Lemma 8.3, neither can it contain a decision similar

to d1 .

Thus, w is both an IT-computation and an IF-computation. Since

xozldvl and ~ozl<lv2 were not equivalent, w is equivalent to at most

one of them. It is therefore consistent with but not equivalent to the

other, so sl and s2 cannot be determinate and equivalent.

Exactly the same argument applies if there is a predicate name in

PREDICATE NAMES
1

- PREDICATE NAMES 2. 0

112

8.8.l Productivity - Undecidability

The reader may have foreseen that productivity is "too good to be

decidable." In fact, the proof that productivity is not generally

decidable follows easily from the unsolvability of the equivalence problem.

Suppose we take two m-input n-output Paterson schemata whose

equivalence we would like to determine. As in the proof of the

undecidability of the determinacy question, we can assume ACTORS1 and

ACTORS 2 are disjoint. Since the schemata have the same number of input

locations and output locations, we can form, as before, a composite data

flow graph by identifying the input locations of the schemata and the

output locations of the schemata.

Let p be a unary predicate name which is not in PREDICATE NAMES1 u

PREDICATE NAMES2 , and let f be a 0-ary function name which is not in

FUNCTION NAMES
1

u FUNCTION NAMES
2

• Add to the composite data flow graph

a memory location which is the output location of a new operator o with

function name f, and the input location of a new decider d with predicate

name p. Form the composite CONTROL by prefacing each sequence in CONTROL1

with o~ddT and each sequence in CONTROL2 with o~ddF. We claim d is

productive if and only if s
1

and s2 are not equivalent. This is true

because d is productive if and only if there exist sequences o~ddTzl and

o~ddr22 which are not equivalent but are consistent except for the outcome

of d. This obviously means that z
1

and z 2 are consistent, non-equivalent

sequences, that is, sl and s2 are not equivalent.

113

8.9.l Determinacy and Conflict - Some Additional Results

For the remainder of this chapter, we will investigate a class of

schemata for which conflict-freeness is necessary for determinacy. We

are not suggesting that the properties which cause this problem with

determinacy are desirable. On the contrary, we are much more concerned

with ensuring determinacy than with precluding it. By understanding how

conflict leans to non-determinacy, however, we are in a better position

to avoid non-determinacy in schemata.

We begin by establishing a number of lemmas concerning repetition-free

schemata in which there are no identity operators. Let us fix some such

schema, S. For notational convenience, we will use DADEP(x) to denote

the dadep graph which is determined by the data flow graph of S and a

well-defined sequence x. If xcr
1

ycr 2 is a sequence which is well-defined

for S, then we say that event cr 1 influences event cr
2

if there is a path

in DADEP(xcr1ycr 2) from the action corresponding to the indicated occurrence

of cr1 to the action corresponding to the indicated occurrence of cr 2 .

The lemmas which follow share a great deal of notation. We shall

introduce the common notations here to avoid the necessity of repeating

the definitions with each lemma.

Let xa and xo be prefixes of control sequences of S such that xa and

xo are in conflict. Let w1=xa~yb and w2 =x~ayb be prefixes of control

sequences of S. Let a1 be the action in DADEP(w
1

) corresponding to the

indicatr"d occurrence of a, and let a
2

be the action in DADEP(w
2

) which

corresponds to the indicated occurrence of a in w
2

. Similarly, let b
1

and b 2 be the actions in DADEP(vY1) and DADEP(w
2
), respectively, which

correspond to the indicated occurrences of b.

114

We shall prove the following lemmas.

Lemma 8.5: a1 is not similar to a2•

Lemma 8.6: b is influenced by a in w
1

iff bis influenced by a in w
2

•

Lennna 8.7: b
1

is similar to b
2

iff a does not influence bin w
1

.

LeD111a 8. 8: If S is commutative, there is no prefix ~az of a control

sequence of S such that DADEP(xoaz) contains an action similar to a1 , and

no prefix xa~z of a control sequence such that DADEP(xaoz) contains an

action similar to a2 .

Lemma 8.9: If xaoz and xoaz are control sequences of S, they are

consistent.

Proof of Lenuna 8.5 (a
1

is not similar to a2 .):

Since xa and xo are in conflict, m, the output location of operator o,

th ~
is an input location, say the k , of actor a. Because xa is well-

defined, m must be the label on some value v in DADEPC.x). Since :co is

well-defined, there must be an operation o' in DADEP(.x) to which this

termination of o corresponds. In DADEP(x~}, a value v' is added as the

output value of o', and label mis removed from v to become the label' on

v'. If v and v' were similar, v would have to be the output value of an

operation similar too'. But this operation and ,o' would be distinct,

similar operations, contrary to the hypothesis that S is repetition~fre~.

th Therefore, the k input value of a1 in DADEP(:ra) is not similar to the

k th . 1 f · r_ -} input va ue o a2 in DADEP\;.{;oa • It follows that a1 and a2 cannot be

similar. D

115

Proof of Lemma 8.6 (b is influenced by a in w
1

iff b is influenced by

a in w2 .):

Note that except for the order of occurrence of a and ~' w1 and w2 are

identical. If the indicated occurrence of a in w
1

is not terminated, then

neither is the occurrence of a in w
2

, and b is uninfluenced in both

sequences. If y=c
1

c
2
'''cn and ci is the termination of a in w1 , then ci

is also the termination of a in w
2

• It is easy to see that the events

influenced by ci in w
1

are the same as those influenced by ci in w2 ,

from which the lemma follows.

Proof of Lemma 8.7 (b
1

is similar to b
2

iff a does not influence b

in w
1
.):

We split the proof into halves. In both cases, we assume the

contrary and derive a contradiction.

Suppose b
1

is similar to b 2 and there is a path from a1 to b1 • We

0

can assume that y=c
1

c 2 '''cn is the shortest sequence after which such

similar, influenced initiations occur. The nodes on the path in DADEPCw1)

from a
1

to b1 all correspond to events occurring in y. Let c. be the
J

last operation termination to which a node on the path corresponds.

(There must be at least one operator termination in y since a must

terminate if there is a path from a
1

.) It follows that b1 takes as an

input value the output value of the operation which c. terminates. It is
J

also true that b
2

takes as an input value the output value of the operation

which cj terminates in w
2

• Since b
1

and b2 are similar, these operations

must be similar. By Lemma 8.5, we know that a1 and a 2 are not similar,

so cj cannot be the termination of the occurrences of a in w1 and w2 •

116

It follows that c. must be the termination of an operation initiated in y,
J

say by event c .. Both c. and c. are influenced by a in w
1

, and we have
i J i

concluded that the operation corresponding to ci in DADEP(w1) is similar

to the operation corresponding to ci in DADEP(w2). This contradicts our

hypothesis that y was the shortest sequence after which such initiations

could occur. We can conclude that if b
1

and b 2 are similar, then b is

not influenced by a in wl.

To obtain the other half of the lemma, assume that b
1

and b2 are not

similar, that there is no path from a
1

to b
1

in DADEP(w1), and that

y=c
1

c
2
"''cn is the shortest sequence after which these conditions can

arise. If b were a 0-ary operator, b
1

and b
2

would be similar, so we

can assume that b has at least one input location. The function names

or predicate names on actions b
1

and b
2

are, of course, the same, so it

b h • th . f h . th • must e t at the i input value o b
1

is dissimilar to t e i input

value of b
2

for some i. Let m be the i th input location of -b. If no

operator terminating in w
1

has output location m, then m must be a

h · t 1 t' say the J.th d th .th · t l f b · sc ema inpu oca ion, , an e i inpu va ue o
1

is

h . th . . • l . 1 h . t. t e J initial va ue. Sequence w
2

contains exact y t e same termina ion

t d h ·th · 1 f b ld 1 b the J. th evens as oes w
1

, sot e i input va ue o
2

wou a so e

initial value, contrary to the assumption that the ith input values of b
1

and b2 are dissimilar. So some operator terminating in w1 has output

location m. th Suppose the k occurrence of operator c in w1 is the last

operator with output location m to terminate in w
1

• It follows that the

output value of the operation in DADEP(Ju
1

) corresponding to the kth

.c • th . th . 1 f b occurrence o~ c is e i input va ue o
1

• It also follows that the

117

th output value of the operation in DADEP(w 2) corresponding to the k

f · h .th · 1 f b s· h .th · occurrence o c is t e i input va ue o
2

. ince t e i input

values are dissimilar, so must be the operations. We now show that no

h h k th f k 1 . d matter w ere t e initiations o c ta e p ace in w
1

an w
2

, some

hypothesis is contradicted.

Case 1): The kth initiation of c in wl occurs in prefix x. The kth

initiation of c in w
2

must also occur in x, and the corresponding

operations would be similar, contrary to hypothesis.

C 2) Th k th f . . . d" d ase : e initiation o c in w
1

is the in icate occurrence

of a. This contradicts the assumption that there is no path from a
1

to b
1

.

C 3) Th kth f . () . . ase : e initiation o c in w
1

and w
2

is event ch in y.

It follows that y is not the shortest sequence after which the hypothesized

conditions can arise.

We conclude that if b
1

and b
2

are dissimilar, then b is influenced by

D

Proof of Lemma 8.8 (If S is commutative, there is no prefix xaaz of a

control sequence of S such that DADEP(xoaz) contains an action similar to

a
1

, and no prefix xa~z of a control sequence such that DADEP(xaoz)

contains an action similar to a
2
.):

We prove only the first half of the lemma. The second half follows

by similar arguments. We assume that there is a prefix x~az of a control

sequence of S such that DADEP(x~az) contains an action a 3 similar to a1 .

We r~:1ow tLat T·'.) rr.atter where the irci-tiation of the action occurs' we can

d~rive a contradict~on.

118

Case 1): The initiation event to which a3 corresponds occurs in prefix

x. Then xa is the prefix of a control sequence containing a repetition,

contrary to hypothesis.

Case 2): The initiation event to which a 3 corresponds is the indicated

occurrence of a in xoaz. By Lemma 8.5, a1 is not similar to a3 •

Case 3): The initiation event to which a3 corresponds takes place

after prefix x~a. We can assume that a 3 corresponds to the initiation of

b in x~ayb. Let us hereafter refer to action a3 as action b2 so we can

make use of the notation we have used in the previous lemmas, By

assumption, b2 is similar to a1 . Since S is commutative, w
1
=xa9y£ is also

the prefix of a control sequence.

Case 3a): :b is not influenced by a in w
1

, Lemma 8. 7 implies that b1

is similar to b2. Since b 2 is similar to a1 , b1 must be similar to a1 ,

contrary to the hypothesis tbat S is repetition-free.

Case 3b): :b is influenced by a in w1 , There is therefore a path from

a1 to b1 in DADEP(w1). By Lemma 8.6, there must also be a path from a 2 to

b2 in DADEP(w2). Since b2 is similar to a1 , it follows from Lemma 8.2

that there is an action similar to a2 on a path to a
1

in DADEP(w1).

Actions on a path to a1 , however, would have to correspond to events

occurring in prefix x. Prefix xoa would therefore contain a repetition

of action a2 , contrary to hypothesis.

It follows that no action in DADEP(xoaz) can be similar to a
1

• 0

119

Proof of Lermna 8.9 (If xaoz and xoaz are control sequences of s, they

are consistent.):

We assume the contrary and derive a contradiction. Suppose the jth

occurrence of decider b in xaoz is inconsistent with some decision in xoaz.

Case l); The jth initiation of bin xaoz takes place in prefix x.

The decision corresponding to the jth initiation of b in xoaz would then

be similar and would have the same outcome. No other decision in xoaz

could be similar unless there were a repetition, so no inconsistency is

possible.

Case 2): The jth initiation of bin xaoz is the indicated occurrence

-of a. By Lemma 8.8, there is no decision in xoaz which is similar.

Therefore, there is no inconsistent decision in xoaz.

C 3) Th .th f b . - k 1 ft f' ase : e J initiation o in xa~z ta es p ace a er pre ix

xao. L . - b- ' . d' h . th f b et us write xaoz as xa~y y to in icate t e J occurrence o

and to match our previous notations.

Case 3a); b is not influenced by a in xa~y:by'. By Lemma 8. 7, the

decisions corresponding to the occurrences of b in xa~yEy' and x~ayby'

are similar and they have the same outcome. As in the first case, no

inconsistency can arise unless there is a repetition.

Case 3b): bis influenced by a in xa~yby'. This means there is a

path from a
1

to b
1

in DADEP (xa~yb) . By Lemma 8. 8, no prefix of xoaz has

a dadep graph containing an action similar to a
1

. By Lemma 8.3, there

can b,, rw decision in xoaz similar to b
1

, hence no decision inconsistent

with it.

We conclude that xaoz and xoaz are consistent. D

120

With these lemmas to build upon, we can now show how one kind of

conflict leads to non-determinacy.

Theorem 8.10: Let xa and x~ be prefixes of a complete, persistent,

commutative, repetition-free, weakly productive schema with no identity

operators. If xa and XO are in conflict, then the schema is not

determinate.

Proof: Suppose xa and xo are in conflict. We will show that

consistent, non-equivalent execution sequences exist, demonstrating

that the schema is not determinate. By the persistence of the schema,

xoa is a prefix of a control sequence.

Case 1): Actor a is an operator. Since the schema is weakly

productive~ there is a control sequence xoaz in which the occurrence of

a is productive.

Case la): xoaz is finite and there is a path in DADEP(xoaz) from

the action a2 corresponding to the indicated occurrence of a to some

schema output value, say that value labeled by schema output location m.

Since the schema is commutative, xaoz is a control sequence and, by Lemma

8.9, it is consistent with xoaz. By Lemma 8.8, there is no operation in

DADEP(xa~z) similar to a2 . By Lemma 8.3, no value in DADEP(xaoz) is

similar to the value in DADEP~oaz) with label m. -Thus , .xaoz and xoaz

cannot be equivalent. Since the schema is repetition-free, these are

consistent, non-equivalent execution sequences.

121

Case lb): xoaz can be written xoauby' where the indicated initiation
- v

of decider b is influenced by a. Appealing the the weak productivity of

the schema, there are control sequences v1=x9aybz 1 and v
2
=x9aybz

2
for

which the occurrence of b is productive. Let IT be any interpretation in

which the decision corresponding to the indicated occurrence of b is true,

and which is consistent with all other decisions in v1 and v
2

• Let IF be

identical to IT except at the outcome of the decision corresponding to b

which IF specifies as false. Since the schema is complete and xao is

consistent wi~h IT' there is an IT-computation xaou. We claim xaou is

also an IF-computation, for, by Lemma 8.8, the dadep graph of any prefix

of xaou can contain no operations similar to a 2 . Since a 2 is on a path to

the only decision about whose outcome IT and IF differ, it follows from

Lemma 8.3 that there is no similar decision in xaou. Since v
1

and v
2

are

not equivalent, xaou is equivalent to at most one of them, but is consis-

tent with both. Therefore there is a non-determinacy.

Case 2): Actor a is a decider. This is virtually identical to case

lb, so we omit the proof. D

122

B.9.2 Determinacy and Conflict - Continued

Prefixes xa and xb of control sequences were also said to be in

conflict if a and b were distinct operators with the same output location.

We will show that this kind of conflict can also cause non-determinate

behavior. Many of the arguments we use are virtually identical to those

in the case of conflict of the form .xa and .xo. We will therefore go into

less detail in the following proofs.

Lemma 8.11: Suppose .x~ and x!:~ are prefixes of control sequences in a

commutative, repetition-free, weakly productive, complete schema with no

identities. Suppose h is productive in control sequence xabZ. If .xa and

xb are in conflict, then the schema is not determinate.

Proof: Let 1 be the memory location which is the output location of

both a and b. If value v1 in DADEP(.x~) with label R. is simil.ar to the

value v2 in DADEP(.x~~) with label 1, there is cl.early a repetition in .x~.

For the same reason~ there can be no input value of an action in the dadep

graph of a sequence with prefix.%~~ similar to v1 since a's termination

removes the label from a value similar to v1 • Analogousl.y, no action

after prefix .x~ can have an input value similar to v2 •

As in Lemna 8.7, it can be seen that the actions corresponding to the

indicated occurrences of c in x~yc and .x~~c are similar if and only if

there is no path from v1 to the action in DADEP{.x~yc). From this, as in

Lemma 8. 9, it :follows that .x~z and xbaz are consistent. Since b was, by

hypothesis, productive in control sequence ~~z, the same arguments used

in Theorem 8.10 apply and a non-determinacy can be shown to exist. D

123

The last lemma shows that conflicts of the type x~ and x~ cause

trouble when b is productive. We now show that conflicts of this type

imply the existence of conflicts involving productive operations.

Lemma 8.12: Let x~ and x~ be conflicting prefixes of a persistent,

commutative, weakly productive schema with the prefix property and the

immediate property. Either there exists a conflict of the form v~, vc,

or there exist sequences vcoz and vocz in which c is productive and vc

and vo are in conflict.

Proof: We can assume, without loss of generality, that a initiates

before b in prefix x, say x= x
1

ax2bx3 . Since the schema is weakly

productive, there is a finite sequence x 1ax2bz in which the occurrence

of b is productive. If a does not terminate in z, then, by the immediate

property, x1ax2bz~ is the prefix of a control sequence, in violation of

the prefix property. So we can assume both b and a terminate in z.

Suppose a terminates before b so z=z 1~ 2~z 3 . Let z 2=c1c2 '''cn.

Using the immediate property, persistence and commutativity, we can

"slide b to the left" as in Lemma 7.6. That is, x1ax 2bz 1~c1 " ·~ci" 'cnz
3

is also a control sequence for lsisn. From Lemma 7.7, we know that the

sequences formed by moving ~ are dadep indistinguishable unless b reaches

a ci such that x1ax2Ez 1~c1c 2 '''ci-lci and x1ax 2Ez 1~c1c2 '''ci-l~ are in

conflict. This will certainly happen when b reaches a. But when it

first happens, we have a conflict of the type hypothesized in the lemma.

So suppose b terminates before a in z so that z=z 1~z 2~ 3 . Since a

overwrites the location i written by ~' b could not be productive in the

sequence unless some actor initiating in z
2

has i as an input location.

124

Let us write z
2

as z
21

cz
22

where actor c has input location £. As above,

a can migrate left so that x1~ 2iJz 1~z 21c and x1ax 2bz 1~z 21 '.:1 are prefixes

in conflict as hypothesized. 0

Putting the last two lemmas together with Theorem 7.8 ard Theorem 8.10,

we obtain the following major result.

Theorem 8.13: A persistent, commutative, complete, repetition-free,

weakly productive schema without identity operators which has the prefix

property and the immediate property is determinate if and only if it is

conflict-free.

125

8.10.l Theorem 8,13 - A Post-Mortem

':'heorem 8. 13 conta_ins a not inconsiderable number of conditions, and

t:he reader may question whether any schemata of interest can satisfy all

of then. To allay such doubts, w12 will Peview the natur'e of these

conditions.

Complete.:iess, as we mentioned, is such a natural property that one

woulcl prol::ably not bother to point out that a schema model possesses it.

Practically any control mechanism which anticipates both outcomes of

decisions will automatically ensure completeness. si~ilarly, the prefix

property is generally satisfied by definition: finite control sequences

arc defined to be those for which no further activity is possible. Thus,

cornpletene:c;s and tLe pre::Cix property do not seriously restrict the class

of systems we can model.

Persistence and commutativity are natural properties for systems with

multiple, independent loci of control. These properties reflect practical

limitations on the ability of such systems to co-ordinate activity.

Commutativity might be viewed as accepting that if two events can occur

arbitrarily close together in time, it makes little sense to behave

differently on the basis of order of occurrence. Similarly, persistence

can be considered to model the inability to cancel activity on

arbitrarily short notice. Of course, non-commutative and non-persistent

control mechanisrr_s can be defined, and they may exhibit certain

advantages. We simply suspect that practical systems will tend to be

p :c~sistent and cor.imutati ve.

1?6

Weak productivity, even though it is not generally a decidable

prop~rty, appears to be a desirable one in practical terms. The increase

of concurrency in computation should not arise solely from the introduction

of unproductive activity. We should point out that parallelism,

persistence, and productivity are occasionally at odds with one another.

A simple example of this is the case where we wish to perform some action

if either or both of two decisions are true. Parallelism encourages us to

allow the decisions to proceed concurrently. If one decision terminates

with true outcome before the other has even initiated, however,

productivity would incline us to cancel the other decision, whereas

persistence forbids cancellation. Clearly, some trade-offs between

parallelism and productivity must be made.

Whether Theorem 8.13 remains valid if identity operators are allowed

is not known. Using an extended notion of repetition-freeness which

prohibits use of an identity operator to restore the contents of a

memory location to a value similar to one it held earlier in the

computation (X:=X being a simple violation), we were unable to disprove

the theorem. However, certain of the lemmas we used to prove the

theorem certainly cease to apply. For example, sequences x=~E~~~cTadf

and y=ab~~ccTddF for the data flow graph of Figure 8.1 are not consistent

since the decision corresponding to cT in x is similar to the decision

corresponding to dF in y. Thus, the analogue to Lemma 8.9 fails.

Although we suspect the theorem remains true nevertheless, a different

approach will be needed to prove it.

l. •;'/ LI

d b

x z

c d

SCHEMA INPUTS "- {X,Z}

FiEurs F.l Data flow with identities 1or which conflict can

cause i~consistency

128

Repetition-freeness and the immediate property are less pervasive than

some of the other properties mentioned, but they are by no means unlikely

to be observed. The immedtate property, like persistence and commutativity,

will tend to be present when there is considerable independence among loci

of control. Sequential schemata, fork/join formalisms, and Dennis-Fosseen

schemata always have the immediate property. Petri net and finite-state

controls can easily be checked for the immediate property.

Repetition-freeness in sequential schemata is decidable 11 , and it

appears that t--counter tr•ansition systems as described in an appendix of

Slutz's thesis 16 can be used to determine repetition-freeness in fork/join

controls, Dennis-Fosseen schemata, Petri net models in which the number

of toksL: ~n the net is hounded, and finite state models in which the

number of "unterminated ini liations" of actors is bounded. We know of no

decision procedure for repetition-freeness of unbounded Petri net or

state-machine controlled '3clt,~: :·. t-2. ~own by Paterson 11 , the freeness

of an illiberal schema ic; :r:ot decida:ile.

Conflicts in sequential schema·ta and Dennis-Fosseen schemata cannot

arise. ronflict-freeness far fork/join, Petri net, and finite state

controlled schemata is decidable.

Thus, the conditions in Theorem 8.13 are not so unusual or restrictive

as one might first suspect. The reader can verify that the various

implementations of our sample program in Chapter 3 are all persistent,

commutat iTJe, complete, repetition-free, weakly productive, and have the

pr~: i : _ '>;;erty and the immediate property. Fortunately, they are also

co::~·:;..:.(:= -free, hence determinate.

129

9,1, l Summary

Our state of knowledge about parallel processing is, at the moment,

rather primitive. In a way, this is not surprising. Individuals seem to

be incapable of consciously working on more than one thing at a time, so

we have less "introspective intuition" about parallel computation than we

do for sequential processing. Only recently have computer hardware and

software made parallel processing possible, and parallelism at the

instruction level is still not practical.

This dissertation has attempted to do some groundwork in parallel

processing. Recognizing the lack of practical experience with parallel

control mechanisms, we have defined a very flexible model for parallel

computation. Many proposed control mechanisms can be cast in terms of

our model, allowing meaningful comparison of apparently diverse schemes.

Our definition of equivalence reflected a modular, input/output

orientation. A schema is determinate if all the computations which

might be observed for a given interpretation are equivalent. Although

we noted that determinacy is not generally decidable, we showed that

persistent, commutative schemata with the prefix property are determinate

if they are conflict-free. Many control mechanisms which have been or

might be proposed are persistent, commutative, and have the prefix

property.

Since not all actors alter schema output locations, we introduced

the notion of productivity to formalize the way in which the occurrence

of an actor can ultimately affect input/output behavior. It was seen

that the roles of operators and deciders are quite different, supporting

130

our decision to treat them as distinct actors as opposed to the hybrid

operations of Karp and Miller7 .

We extended the concept of productivity to schemata, requiring, in

the weakest form, that no actor initiate unless it might be useful.

Such weakly productive schemata satisfied some intuitive properties

such as precluding equivalence of schemata which use different functions

or predicates.

Although weak productivity is not decidable in general, it can

usually be observed in "real programs". Programmers may not have our

formal notion of productivity in mind when they create programs, but in

the process of program development, instructions are added ''for a

reason". Generally, at least for good programmers, this satisfies our

requirements for productivity.

In the last chapter, we showed how conflicts can lead to non-.

determinacy. Although condit-ions such as repetition-.freeness are less

natural than others like completeness, the conditions for Theorem 8.13

are not unlikely to be met. This argues for models such as Dennis­

Fosseen schemata in which conflicts simply cannot occur. At the very

least, it seems we should favor models where detection of conflicts

is uncomplicated.

-------------------- ---

131

9.2.l future Directions

We would like to see the issue of identity operators in Theorem 8.13

put to rest. We suspect that "non-repetitious" identity operators will

not alter the validity of the theorem. It ~ay also be possible to relax

repetition-freeness which seems to be an unnecessarily restrictive

condition.

We share with other schematologists a desire to see a better model

for deali~7 with structured data such as arrays and lists. Considering

the complications introduced by the identity operator alone, we expect

thut allowing "just enough interpretation" to handle structured data

witt1out getting into oroblems of undecidability may le Jifficult indeed.

It would be worthwhile to look into treating matherr;aticaJ p-roperties

such as associativity and commutativity of actors. ::~t secr:~s that

commutative arguments can be modeled in a data flow zrarh 1;y using the

saoe index on arcs from the inputs which commute. (Of cour2e, similarity

would have to be redefined, but the changes appear straigjtfcrward.)

Associativity and distributivity might also be handled, but appear to

lead u~ toward the treacherous territory of rewrite rules.

Identifyinp: classes of schemata for which equiYcci~e'."cc-: > 12ciciable

is an importa.nt Z,oal. We would hope that such classes could be

characterized "syntactically" to make tL-2 results re la ti vely independent

of control Fi>:ci:anism. Schemata which are strongly productive ir. the

sense of Section 8.5.2 seem to be a promising start for such a class.

132

These v,·i10 Lave rc<tc th is far in this clissertatior: will probal,ly ~;ee

ether clirec Lions :or ex ter:d1 r1g our worf::.

rE"sults rresentcd he'~"' n;ay Le of some use in continuing the study of

i:;arallel sys~cms.

133

BIBLIOGRAPHY

l. Conway, M. E., "A Multiprocessor System Design", Proceedings of the
FJCC, 1963, pp. 139-146.

2. Dennis, J. B., Computation Structures. Notes for subject 6.232,
Department of Electrical Engineering, M.I.T., Cambridge,
Massachusetts, 1970.

3. Dennis, J. B., J. B. Fosseen and J. P. Linderman, "Data Flow Schemas",
paper prepared for Symposium on Theoretical Programming, Novosibirsk,
USSR, 1972.

4. Dennis, J. B. and E. C. Van Horn, "Programming Semantics for
Multiprogrammed Computations", Communications of the ACM, VoZ.. 9,
No. 3, March, 1966, pp. 143-155.

5. Fosseen, J. B., Representation of Algorithms by Ma:rimaZ.Z.y Parallel
Schemata, S.M. Thesis, M.I.T., Cambridge, Massachusetts, June 1972.

6. Holt, A. W. and F. Commoner, Events and Conditions, (in three parts),
Applied Data Research, New York, 1970.

7. Karp, R. M. and R. E. Miller, "Parallel Program Schemata", Journal of
Computer and System Sciences, VoZ.. 3, No. 2, May, 1969, pp. 147-195.

8. Keller, R. M., "On Maximally Parallel Schemata", IEEE Conference
Record. Eleventh Annual Symposium on Switching and Automata Theory,
1970, pp. 32-50.

9. Luckham, D. C., D. M. R. Park and M. S. Paterson, "On Formalized
Computer Programs", Journal of Computer and System Sciences, Vol. 4,
No. 3, June, 1970, pp. 220-249.

10. Minsky, M. L., Computation: Finite and Infinite Machines, Prentice­
Hall, Englewood Cliffs, New Jersey, 1967.

11. Paterson, M. S., Equivalence Problems in a Model of Computation, Ph.D.
Thesis, University of Cambridge, August, 1967.

12. Paterson, M. S. and C. E. Hewitt, "Comparitive Schematology", Record
of the Project MAC Conference on Concurrent Systems and ParaZ.Z.el
Computation, ACM, New York, 1970, pp. 119-127

13. Rodriguez, J. E., A Graph Model for ParaZ.Z.el Computation, Report
MAC-TR-64, Project MAC, M.I.T., Cambridge, Massachusetts, 1968.

P Fo~ers, H., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967.

134

15. Rutledge, J. [j., "On lanov' s Program Sche;:iata", Journal of the ACM~
Vol. 11~ No. 1, ~Tanuary, 19f)4, pp. 1-cl.

15. Slutz, D. L, Tne Flew Gr•crph Schemata Model of Parallel Corrrputation,
Report MAC-TR-53, ProjecL MAC, M.I.T., Cambridge, Massachusetts, 1968.

135

Appendix I Schema Systems

An m-input, n-output schema looks, from our modular viewpoint, very

much like an operator. Operators always have one output, whereas n can

be greater than one, but this is not an important distinction. A more

significant difference is that operators have well defined outputs for

all interpretations while schemata may have infinite computations for

some interpretations and therefore may not produce outputs.

There is a natural way of allowing a schema to use other schemata

as "macro-operators". Data flow graphs can be extended to allow m-input

n-output actors with associated schema names. We call this new form of

actor an application. When an application initiates in a control

sequence, we can consider that a new activation of the named schema is

created. The schema input locations for the activation are initialized

from the input locations of the application, and the activation can then

proceed concurrently with the sequence which spawned it. Of course, the

corresponding application termination event in the original sequence

cannot occur until the activation has completed. If the activation

does terminate and the application termination event is enabled, it can

occur, copying the schema output values of the activation into the

output locations of the application. In a practical system, the storage

used by the activation could then be deallocated.

In Figure I.l, we show a simple example of the use of a schema as

a macro-operator. Applications appear as hexagons to distinguish them

from the other actors.

h

a

CONTROL= {b~~~, .. ' }

SCHEMA INPUTS={U}

SCHEMA OUTPUTS={W,X}

Main sequence

First activation of S

Second activation of S

136

b f

z

CONTROL5={ddTf!,dd~g}
SCHEMA INPUTS

5
={Y}

SCHEMA OUTPUTSs={Z}

bhh a b a

dd.rf f

d dF g g

Fi6ure I.l Use of a schema as a macro-operator

d

137

The example also shows possible sequences of events from the main

schema and the two activations of schema S. Note that h, the termination

of application h, may have been enabled in the seouence from the main

schema immediately after b initiated, hut could not occur until the

first activation of S completed. An extended dadep graph shows the

effect of the sequences. Labels from the activations are subscripted

to avoid confusion. The reader may be able to reconstruct the dadep

graph step by step from the sequences shown and the descriptLon of the

way application initiations and terminations behave.

Once one understands the use of schema applications, it is easy to

see that there is, in principle, no difficulty in allowin6 schemata to

0pply themselves, or to allow recursive applications of arbitrary

complexity. In this appendix, we will formalize the notions introduced

here and give a semi-formal proof that commutativity, persistence and

the prefix property are sufficient to guarantee determinacy for such

schema systems.

138

I. 2.1 Definition of Terms

An extended sahema S is a schema in which ACTORS may include

appliaations with associated names from a set of SCHEMA NAMES. If S.
1

is an m.-input, n.-output schema name and a is an application with
1 l.

schema name S., then the data flow graph of S contains arcs labeled l
l.

through m. from (not necessarily distinct) locations in MEMORY to a,
l.

and arcs labeled l through n. from a to distinct locations in MEMORY.
l.

The alphabet of events, E, of S contains an initiation event a and a

termination event a for each application a.

Terms such as well-sequenced, well-defined, persistent, aorrmutative,

aontrol sequenae, and aonflict-free are analogous to the definitions for

ordinary schemata when applications are treated like operators. In

particular, .x~ and xb are in aonflict if any output location of a is

also an input location of b, and similarly for .x~ and x~.

A schema system S is a finite collection s1_, s2 , • · ·, Sk of extended

schemata such that {S1 ,s2 ,··· ,Sk} :J SCHEMA NAMESi for lSiSk. s1 is the

distinguished main schema. We can assume without loss of generality that

the alphabets of events of the extended schemata are pairwise disjoint.

The control sets of the extended schemata in a schema system

determine what we will be defining as the system sequences of the schema

system. As in the example, system sequences will comprise events from

the individual schemata. Since there may be several concurrent

activations of individual schemata, there must be additional structure

imposed on the sequence of events to indicate which events correspond to

139

which activations. In the example, we used spacing to show this. We add

this structure formally by defining a mapping ~:N+Nu{O} which specifies,

for each event in the system sequence, the index of an activation to

which it belongs. That is, ~(i)=j means the ith event in the system

. f h .th . . sequence is rom t e J activation. We reserve index 0 to identify the

initial activation of the main schema. The other indexes are important

only insofar as they uniquely identify activations.

If x is a sequence of events and ~ is a mapping as described above,

we will write E~(x,i) to denote the sequence formed by eliminating from

x all those events which are not mapped into i by ~. When ~ is clear

from context, we may also write this as E(x,i). Since ~is defined to

identify activations of schemata, we expect E(x,i) to be the control

sequence of some extended schema, or at least a prefix, possibly empty,

of such a control sequence.

We need still another formalism to recapture the information present

in our example. Although ~ determines the activation in which an event

occurs, we need to relate application initiations and terminations to

activations. We formalize this information by another partial mapping

~:N+N where, if the ith event in sequence xis an application initiation

or an application termination, ~(i) is the index of the activation it

initiates or terminates.

For our sample sequence, we can tabularly present some of these

formalisms as follows. It should be evident that x, ~' and ~ supply all

the information we need to reconstruct our example.

140

l 2 3 4 5 6 7 8 9 10 11 12 13 14

x b h h d dT f a d f df b g ~ a

ijJ 0 0 0 l l l 0 2 l 2 0 2 2 0

I:_; l 2 l 2

E (x, 0) b h h a b a

E(X ,1) d dT f f -

E(x ,2) d df g ~

figure I. 2 formalisms for describing a system sequence

141

We formalize the notion of a system sequence as follows. (Throughout

this appendix, we will make no distinction between a function and the

restriction of that function to a subset of its domain. No serious

confusion should arise.)

Suppose x=a1a2a3 ··· is a sequence in~' and$ ands are mappings as

introduced above. We say that x;$;s is a system sequence for S if and

only if the following conditions hold:

1) $(1)=0. E(x,O) is a control sequence of the main schema, s1 , or is

the prefix of a control sequence of s1 • (Thus, the first thing to

happen must come from the main schema.)

2) Suppose $(j)~O. Then there is in x an initiation a. of an application
1.

a with schema name Sk' say the mth initiation of a in E(x,$(i)), such

that i<j, s(i)=$(j), and E(x,$(j)) is a control sequence of schema Sk

or a prefix thereof. Furthermore, if there exists an n~i such that

s(n)=$(j), then a must be the mth termination of a in E(x,$(i)),
n

E(x,$(j)) must be a finite control sequence of Sk' and, if t is the

largest integer for which $(t)=$(j), then t<n, (As complicated as

this may appear, it simply states that activations are started by

application initiations, behave like the schema applied& and must

themselves terminate before the application termination can occur.)

142

We can extend the familiar notion of prefixes to schema systems as

follows. Let x;~;G and z;~';r;' be system sequences of S. Then x;w;r;

is said to be a prefix of z;l/>';r;' if

l) x is a prefix of z. Say x=a1a2 a
n

2)

3) For all i,j~n, if a. is an application initiaition or an application
1

termination, then r,;(i)=l/>(j) if and only if r,;'(i)=l/>'(j).

If conditions l through 3 are met and x~z, then we say that x;ip;z;

is a pI>Opez> pzaefix of z ;l(i' ;z;'.

A system sequence x;l/>;l; is a control sequence of S if x is infinite,

or if xis finite and there is no system sequence z;l/>t;r;' of which x;l/>;l;

is a proper prefix. In other words, a system sequence is a control

sequence if it runs forever or if it comes to a halt and no event can

occur in any activation. This last restriction resembles the prefix

property extended to schema systems.

If x;l/>;l; is a system sequence of S and if x is finite, we can outline

the aefinition of the dad.ep gx>aph of x;l/>;l; by the following induction.

The dadep graph of A;l/>;I; consists of m1 initial values where m1 is the

number of schema input locations of the main schema, s1 . If X is the ith

schema input location of s
1

, the ith initial value has label x0 •

In general, all memory location labels in our extended dadep graphs

will be subscripted with the index of the activation which uses them.

This will ensure that activations operate independently of one another.

Only application initiations and terminations will be able to influence

143

labels from another activation and, by definition, there is no activity

within the influer1ced activation when the application events occur.

and we have already defined the dadep

If ai is the initiation of an application a with schema name Sk' the

dadep of a
1

···ai;\j!;r, is produced from the dadep graph of a
1
···ai_

1
;\j!;r,

by adding labels to values as follows. Suppose X is the jth input location

f l . . d . h . th h . . f h s o app ication a, an Y is t e J sc ema input location o sc ema k"

Then label Yr,(i) is added to the value bearing label X\j!(i)" (In a more

formal definition, we would use an induction hypothesis to guarantee that

X\j!(i) exists as a label on precisely one value in the dadep graph of

a
1

a
2

" ··ai_
1

;w;c. We leave it to the reader to fill in such missing

details using the definition of ordinary dadep graphs as a model.)

If ai is the termination of an application a with schema name Sk'

then we know that E(a
1

a
2
·· ·ai_

1
,r,(i)) is a finite control sequence of

Sk. By the definition of control sequences of individual schemata, all

output locations of schema Sk are assigned values by such an activation.

We form the dadep graph of a
1

···ai;\j!;r, from the dadep graph of a
1
·· 'ai_

1
;

\j!;r, by moving and/or adding labels as follows. Suppose X is the jth

output location of application a, and Y is the jth schema output location

of schema Sk. Then X\j!(i) is removed from any value on which it may have

been a label, and X\j!(i) is added as a label to the value with label Yr, (i).

The cases where a. is an operator or decider initiation or termination
i

are ~ircctlv analo~ous to the cases for ordinary dadep graphs. The only

difference i~; l 1,at tr1ey deal with labf'ls suhscr'ipted with lj!(i). We

therefore omit the details for these cases.

144

An interpretation for· a schema system s1 ,s2 , · • • ,sk simply defines a

single DOMAIN, functions for each function name in any schema S.,
.l.

predicates for each uredicate r.--ime in any schema S. , and a set of
.l.

initial elements for the main schema sl.

Assignment of elements to values, consistency, similarity and other

terms carry over to extended dadep graphs in a straightforward way. In

particular, two control sequences x;w;~ and z;w';~' are equivalent if

both x and z are infinite, or if both are finite, and, for each output

location X of the main schema, the value labeled x0 in the dadep graph of

x;"';~ is similar to the value labeled x
0

in the dadep graph of z;~';~'.

We say that a schema system S = s1 ,s2;·· ,Skis persistent,

corrmutative, conflict-free and has the prefix property if each extended

schemata S. is persistent, conunutative, conflict-free and has the prefix
.l.

property. We can show that such a system is determinate by the same

techniques we used in the earlier proof for unextended schemata. Rather

than repeat almost verbatim the lelJBilas proved earlier, we will only

outline parts of the proof. It will hopefully be possible for interested

readers to use the formalisms we have introduced to fill in the details

with as much rigor as they wish.

Suppose x;w;~ and z;w';~' are I-computations of schema system S. If

both x and z are infinite, the computations are equivalent, and we are

done. We can therefore suppose that x=a
1

a
2
···an and is no longer than

z=b1b2"""bn···. As before, we will find I-computations x0 ;1fJ0 ;~ 0 ···

xn;lfJn;~n equivalent to x;w;~ such that xi=b11 2···1ici+l···cn, and

b b •• "b J, • • ' f

l 2 .;~.;~.is a prefix of z;"' ;~ •
.l. .l. .l.

145

Letting x 0 ;~ 0 ;s 0 be x;~;s, the basis for our inductive argument is

established. Suppose x. 1 ;~.
1

;s.
1

has been found. This means that
l- l- l-

z = with

~i-l(l) = 0 = ~'(l). Additionally, for j ,k<i, ~i-l(j) = ~i-l(k) iff

~ I (j) = ~ ' (k) and s i -1 (j) = ~ i -1 (k) if f s I (j) = ~ I (k) .

We consider the activation with index ~'(i) in z;~' ;s' in which event

b. occurs.
l

We know that v is the

prefix of some control sequence and that b. can occur next in this
l

activation. We will proceed as follows. We will show that there is an

occurred and for which b. can occur next. We will show that if b. does
l l

not occur later in this activation, x. 1 ;~.
1

;s.
1

is the proper prefix
l- l- l-

of a system sequence in which b. does occur in the activation. Since
l

this would contradict our hypothesis that x. 1 ;~.
1

;s.
1

is a control
l- l- l-

sequence, we will conclude that b. eventually occurs in the activation
l

with index J
0

. We will then argue that h. 's occurrence can take place
l

imDediately after prefix b
1

b
2
···b. 1 ;~.

1
;s.

1
without changing the

l- l- l-

dadep graph of x. 1 ;~.
1

;s.
1

. This will provide us with I-computation
l- l- l-

x. ;~. ;s., completing the induction.
l l]

146

We begin by finding the activation of x. 1 ;w. 1 ;~. 1 with index j 0 J.- 1.- J.-

which is "analogous" to the activation of z;l{i';~' with index w'(i). If

1"'(i) = O, let j 0 = 0. EW·
1

(b1b2 """bi-l , 0) = v because 1"'(1) = 0
J.-

and w. 1(1) = o and w'(j) = 1"'(1) iff ip. 1{j) = ip. 1(1). If 1"'(i) ~ o,
1.- 1.- 1.-

then there is some k < i such that ~'(k) = 1"'(i). Again, by our inductive

hypotheses, w'(j) = ~'(k) iff W· 1(j) = ~. 1(k). In this case, let j
0

be
1.- J.-

~i-l(k). In either case, we see that E•·
1
< b1b2 """bi-l , j 0) = v.

1.-

Let vw = Eip.
1

(xi-l , j
0

). That is, w is the rest of the sequence from
1.-

the activation of which v was the prefix.

We now argue that event b. must occur in w, for suppose not. Since
1.

persistence of the individual schemata, vwb. would then be the prefix of
.1.

a control sequence. Suppose b. is the termination of an application.
1.

(This is the most complicated case. Other types of events can be treated

in a similar manner.) Let k
0

be the index in z of the corresponding

application initiation event. That is, k
0

is the unique index for which

~' (k) = .,, '(i).
0

Since k
0

< i, we know by our induction hypotheses that

Since b • was able
1.

been a finite control sequence. But E,,, (b1b2···bi-l , ~i-l(k0 })
"i-1

147

is the same finite cor:tr·ol sequence, so b. is free to occur in the
l

actl·vati.on wi"th index ft ~· bl: "'"b ,1, . Jo a er pre~ix
1

;
2

. 1 ;~. 1 ;s.
1

.
}.- l- l-

Extend

consider x.
1

b. ;l/!:
1

;s.
1

. If this is a system sequence, x.
1

;l/;.
1

;s. 1 l- l ~- l- l- l- l-

is clearly a proper prefix of it, violating the hypothesis that

x.
1

;l/!.
1

;s.
1

is a control sequence. We have shown that vwb. is
l- l- i- l

E,1, (x.
1

b. , j
0

) , thE: prefix of a control sequence. We know that
~i-1 l- l.

the activation indexed by si-l(n+l) has already terminated, so this cannot

prevent b. from occurring. The only thing which could prevent
l

x.
1
b. ;l/;.

1
;s.

1
fron satisfying the definition of a sys1:em sequence

l-- l l- l-

is that some application termination event in xi-l terminate the

activation indexed by j
0

before bi can occur. But this would imply

that some proper prefix of Wb. is a control sequence, contradicting the
l

hypothesized prefix property of the individual schemata. Thus, we can

conclude that event b. occurs in w.
l

We have succeeded in showing that w ;::: w
1

ckw
2

where ck :::: bi. The

persistence and commutativity of the individual schemata allow us to

conclude that vckw
1

zJ
2

is a control sequence or prefix thereof.

148

Let x. = b1b2"""bi-lckcici+l ck-lck+l c
l n

Let "'i (j) = ipi-1 (j) for j < i and j > k

= ifli-l(k) for j = i

= ljl. l (j-1) for i < j :5 k
1-

Let l';i (j) = i;i-l(j) for j < i and j > k

= l';i-l{k) for j = i

= I';. l(j-1) for i < j $ k
1-

In short, x.;tjl.;1';. is the result of promoting the occurrence of event
l J. l

~ in activation j 0 of x. 1 ;ip.
1

;r;. 1 • By arguments similar to those
.IC 1- 1- 1-

used in showing that b. occurred in w, x.;ijl.;~. is a control sequence.
J. J. l i

The sequences observed in all activations except that activation indexed

by j 0 remain the same as in x. 1 ;ifl. 1 ;~.
1

.
1- J.- J.-

while E~.(xi , j 0) = v~w1w2 • Since the individual schemata are
l

do exactly the same thing to the initial values of activation j 0 • (A

formal proof would follow the lines of the dadep indistinguishability

results for unextended schemata.) Therefore, the dadep graph of x.;ifi.;~.
i l l

is virtually identical to the dadep graph of x.
1

;ljl. 1 ;~. 1 . This means
J.- J.- l.-

x.;$.;~. is an I-computation equivalent to x. 1 ;ip. 1 ;~. 1 , completing the
l l. l 1- l.- 1-

induction.

·~ ----------r-- -----~--------~

149

We can now conclude the proof as in the case of ordinary schemata.

If x ;~ ;~ is a proper prefix of z;~' ;~', we
n n n -

contradict the assumption that x ;~ ;~ is a control sequence. If n n n

x = z, and x ;~ ;~ is a prefix of z;~' ;~', it follows that the
n n n n

sequences are equivalent. (They need not be identical. That is, I/! (i)
n

need not equal ~'(i). However, the restrictions that ~ (i) = ~ (j) iff n n

~'(i) = ~'(j) and~ (i) = ~ (j) iff ~'(i) = ~'(j) make any differences
n n

unimportant. That is, the sequences differ only on the "names" of the

activations.)

Since x;~;~ is equivalent to x ;~ ;~ which is, in turn, equivalent n n n

to z;~' ;~', the original I-computations are equivalent, and the schema

is determinate. This concludes the outline of the proof.

150

GLOSSARY AND INDEX

ITEM

ACTION'~

activ3tior_

ACTORS

actors, in Dennis-Fosseen

PAGE

139

46

66

27

46

46

46

139

53

135

22

Schemata 38

alphabet of events, E 27

application 135

assignment of elements to
values 66

commutativity 87

completeness 103

conflict 88

consistency 74-76

CONTROL 47

control sets 45-48

dadep graph 51-63

dadep indistinguishable 89

data dependency graph
= dadep graph 51-63

data flow graph 18-26

data flow schemata =
Dennis-Fosseen
schemata

DECIDERS

DECISIONS

38

22

53

ITEM

Dennis-Fosseen schemata

depth

determinacy

DOMAIN

elements, of DOMAIN

enabled event,

in control sequence

in Petri net

equivalent sequences

equivalent schemata

events,

PAGE

38

64

79

49

49

83

35

78

79

of data flow graph 26-28

in fetri net 35

EXECUTION SEQUENCES 77

firing rule of Petri nets 35

fork and join primitives 33

free interpretation 69

free schemata 109

FUNCTION NAMES 22

gates

Herbrand interpretation

I-computation

identity operator

immediate property

influence

initial element

INI.TlAL VALUES

initiation event

input location

interpretation

liberal schemata

39

69

75

21

102

113

49

53

27

22

49-50

109

ITEM PAGE

links 38

locations 22

MEMORY 22

merges 39

modularity 16

one-one interpretation 69

OPERATIONS 53

OPERATORS 22

outcome 19

output location 22

Paterson schemata
= flow chart schemata 13

path in dadep graph 100

persistence

Petri nets

PHEDICATE NAMI':S

prefix

prefix property

productivity,

in sequences

of schemata

reduced schemata

repetition

schema

SCHEMA INPUTS

SCHEMA OUTPUTS

schema systems

sequence

85

35

22

46

85

105

107-108

llO

109

47

22

22

135-149

151

ITL:M

similarity,

of actions and values

of paths in dadep
1~raphs

slates in Petri nets

state machines

string

system sequence

termination event

tokens

VALUES

well-defined sequence

well-sequenced string

PAGE

72

100

'- J ~)

43

46

141

27

35

53

46

46

·,

152

BIOGRAPHICAL NOTE

John Parent Linderman was born in Eau Claire, Wisconsin on September
18, 1946. He graduated from Regis High School, Eau Claire, Wisconsin,
in 1964. Mr. Linderman received an S.B. in mathematics at MIT in 1968.
He entered the computer science area of the Electrical Engineering
Department at MIT where he received an S.M. in 1970 and a Ph.D. in 1973.

As an undergraduate, Mr. Linderman was a Sloan National Scholar.
He held an N:.;r Fellowship during the first three years of graduate
study, and was a research assistant at Project MAC for the last two
years.

Mr. Linderman was employed as a programmer-analyst by the MIT
Offic2 of P..:!ministrative Information Systems during the suI!llllers of
1965 through 1971, and on a part-time basis during the school years.
He became a full-time research assistant at Project MAC in the fall
of 1971 and remained there until June, 1973.

Mr. Linderman expects to join the staff at Bell '~abs Raritar. Iliver
Center in New Jersey.

....
'~ -~.-

',,,....

, .. ··~··>- ·1

(

'
'

'

J

' \

I.,

\
~

\

• ' _.:.,-... •

(
(
•

CS-TR Scanning Project
Document Control Form

Report # LC. S -TR. - /I I

Date: A 115 11.f_

Each of the following should be identified by a checkmark:
Originating Department:

..e._ Artificial lntellegence Laboratory (Al)
A Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR}

D Other:

D Technical Memo (TM}

Document Information Number of pages: /S"~(ls<?-i'mAGYs)

- Not to include DOD forms, printer intstructions, etc ... original pages only.

Originals are:

D Single-sided or

~ Double-sided

Print type:
0 Typewriter 0 Offset Press

Intended to be printed as :

D Single-sided or

~ Double-sided

D Laser Print

D Ink.let Printer ..)(_ Unknown D Other:.~----------------
Check each if included with document:

)(DOD Form

D Spine

D Funding Agent Form

0 Printers Notes

~Cover Page

0 Photo negatives

D Other: ------------
Page Data:

Blank Pages(byP9911 number): __________ _

PhotographsfTonal Material (byP9911 numbef): ________ _

Other 1na111 ~ numbef):

Description : Page Number:

-=i:mAc;(!nA~ ~ {1- JSd..) iv11/ff~OJJTLi f AG'f
1

J.- /Si> .
(t ;3 - /58) J<Afvcc"JrRO L./:o 1)£~ PODJTR.GTS-(J J

Scanning Agent Signoff:

Date Received: cJ., 1 I S(9£ Date Scanned: J....1d..~ 11 (Date Returned: .ti:_1J..11 'l £

Scanning Agent Signature: ___ .._~-=;........&...~~-"--+--'-ljv-'--....;,~ ~--
Rev IW4 DSll..CS ~ Conlrol Form cslrlonn.vsd

BIBLIOGRAPHIC DATA
SHEET

4. Title and Subtitle
11. Report No.

NSF-OCA-GJ-1.i..2.1.l-TR-111

Productivity in Parallel Computation Schemata

7. Author(s)
John P. Linderman

9. Performing Organization Name and Address

r·

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139

12. Sponsoring Organization Name and Address
Associate Program Director
Office of Computing Activities
National Science Foundation
Washi~gton_~ D. c. 20550

15. Supplementary Notes

. ;

Ph.D. Thesis, M.I.T., Department of Electrical Engineering

16. Abstracts

3. Recipient's Accession No.

5. Report Date : Issued
December 1973

6.

8. Performing Organization Re pt.
No.MAC-TR-111

10. Project/Task/Work Unit No.

11. Contract/Grant No.
GJ-43 2
G_J_-346 71

13. Type of Report & Pe~iod
Covered : Interim
Scientific Report

14.

A general model for parallel cbmputation is developed in three parts. One ·par~» the
data flow graph, describes how actors which transform and test values are connected to
the locations in a finite memory. Another part, an interpretation, supplies information
about the contents of memory and the detailed nature of the transformations and tests.

The third part specifies how initiations and terminations of the actors are allowed
to occur. We define this in a general way, using a set of sequences of initiation and
termination events to model control. This allows us to prove results which apply to a
broad class of control mechanisms.

Our major results are analogous to a theorem of Karp and Miller. Their theorem de­
fines a class of schemata for which conflict-freeness is necessary and sufficient for de
terminacy. We use a weaker notion of determinacy which depends only upon the final con­
tents of a subset of the memory locations. To establish necessity, we introduce the prop
erty of productivity which expresses whether individual transformations and tests con-

~~l~t:~riib~111~Lt.J:Wet~:o~~r·h~1~~__f.i~inw1a~J~_r~:_e_~~~uuil~r·lbJ~_o_u~~~a....J~~~om1m.12muw~~!:.a..t.~~~LolJ.ll..n--~~~~~~~~~~~~========t --~ -
17. Key Words and Document Analysis. 17a. Descriptors

Program Schemata

Parallel Computation

Theory of Programs

17b. Identifiers/Open-Ended Terms

17 c. COSA TI Field /Group

18. Availability Statement
Unlimited Distribution

19. Security Class (This
Re~SSIElEll_

Write Project MAC Publications
20". Security Class (This

Page
UNCLASSIFIED

FORM NTIS-35 (REV" 3-72) THIS FORM MAY BE REPRODUCED

21. No. of Pages
153

22. Price

IJSCOMM-DC 14952-P72

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgLwpw Rev. 9/94

