


Tius blank page was inserted to preserve pagination.



MAC TR-111

PRODUCTIVITY IN PARALLEL COMPUTATION SCHEMATA

John P. Linderman

December 1973

This research was supported by the

National Science Foundation in part
under research grant GJ-432, and 1in
part under research grant GJ-34671.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139



N

PRODUCTIVITY IN PARALLEL COMPUTATION SCHEMATA
BY
John Parent Linderman

Submitted to the Department of Llectrical Engineering
on May 21, 1973, in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy

ABSTRACT

A general model for parallel computation is developed in three
parts. One part, the data flow graph, describes how actors which
transform and test values are connected to the locations in a finite
memory. Another part, an interpretation, supplies information about
the contents of memory and the detailed nature of the transformations
and tests.

The third part specifies how initiations and terminations of the
actors are allowed to cccur. We define this In a general way, using
a set of sequences of initiation and termination events to model
control. This allows us to prove results which apply to a broad
class of control mechanisms.

Our major results are analogous to a theorem of Karp and Miller.
Thelr theorem defines a class of schemata for which conflict-
freeness is necessary and sufficient for determinacy. We use a
weaker notion of determinacy which depends only upon the final
contents of a subset of the memory locations. To establish
necessity, we introduce the property of productivity which
expresses whether individual transformations and tests contribute
tc the final results of a computation.
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1.1.1 A Note on Mathematical Stvle

It is conventional to use single lettors to identify mathematical
objects such as functions, sets and relations. The advantage is
primarily one of conciseness. Unfortunately, this may come at the
expense of understandability, and almost certainly with a loss of
readability. The number of formal ori~cts which will be introduced in
the course of this dissertation would quickly exhaust the alphabets
commonly available on typewriters. Worse still, the mnemonic value
would be vanishingly small.

We will therefore abandon the single letter convention and freely
use words or even phrases to identify formal objects. As often as not,
the name we choose for a set will simply be the plural form of the
elements it comprises. Thus, we will not feel obliged to mention that
SCHEMA INPUTS is a set whose elements are, in fact, schema Inputs. As
a means of avoilding unintended confusion, we will capitalize formal
names. We will use these conventions throughout with the hope that
they will enlighten rather than confuse.

When mathematical precision conflicts with clarity or perspective
in our definitions or proofs, we will favor the latter. TFor example,
we Wwill talk about "edges labeled with numbers' rather than formalize
a "function from the set of edges into the natural numbers." In all
cases, it should be clear how the proofs and definitions could be made
more rigorous 1f so desired.

A glossary can be found at the end of this dissertation for the

reader's convenience.
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1.2.1 Introduction and Background

This dissertation is, in effect, a discussion of a model for parallel
computation. Everything a mathematlician needs to know about the model can
be found in the subsequent chapters. However, the model is more than a
collection_of abstract definitions. Its form was influenced by a number
of areas in computer science, and a knowledge of these may help the reader
to push through some of the abstractions and to feel comfortable with the

model.

1.3.1 Schematology

Schemata are models for computation, as are Turing machines, finite
state machines, programs written in a programming language, and so forth.
The feature which distinguishes schemata is the lack of interpretation for
primitive functions and predicates. To logicians, this is a familiar
concept. For the rest of us, a common analogue is fortunately available.

Suppose an ordinary compiler runs across a statement such as
u <« fv,w,x," " ,y,2)

Assume function f is externally defined. Although the compiler cannot
know exactly what f does, it is not entirely in the dark. The compiler
at least knows where f will get Its inputs and where it will store its
result. This may seem to be very little knowledge indeed, but, with a
few more assumptions, it allows the compiler to perform transformations
such as calling f with copies of the inputs or using u as a temporary
work area until f has returned its result. For example, it could

substitute something like
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u <« v

u < f(u,w,x,"',y,z)

for the original statement, and not alter the meaning of the program.
The point to be noticed here is that the transformation is valid
no matter how f is defined (subject to certain assumptions we will
presently discuss.) Schematology is concerned with making statements
about computation which remain valid regardless of the definition of
the functions and predicates used. From the above discussion, it should
be clear that schematology has immediate application in compiler theory.
Although the "external routine" analogue may be useful to those
whose background tends more towards computers than towards formal logic,
it must not be pushed too far. There are assumptions we make about
functions and predicates that are not always true for arbitrary programs.
Stated simply, we assume that all functions and predicates implement
total mathematical functioms. To emphasize what is not allowed as a
function or predicate, some elaboration is in order. A function or
predicate name may appear many times in a schema, but it must always take
the same number of arguments. Thus, although one could argue for the
desirability of a generalized additlon function which returns the sum of
an arbitrary number of arguments, such constructs will not be allowed in
schemata. Functions and predicates are presumed to be defined for all
inputs. Thus, no function could precisely model division which is not
defined for divisor 0. Given the same set of inputs, functions and
predicates must always return the same results. This precludes certain
routines with "memory" such as "clock functions" or predicates which are

true only the first time they are used. Functions and predicates do not
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alter their inputs, and have no "side-effects' whatever.

From this discussion, the reader can surmise that the schemata defined
herein are not intended to model every computation that might be possible
using conventional programming languages. We are, instead, focusing on a

limited, but very rich subset of such computations.

In addition to compiler theory, there are other justifications for
adopting a schematized model. The Turing machine is one of the best
known models for interpreted computation. Hopelessly inefficient as a
practical computing device, Turing machines have been most valuable in
identifying problems which cannot be systematically solved. Tor example,
we know there is no procedure for determining if an arbitrary Turing
machine halts when started on a particular input, or whether two Turing
machines compute the same partial function. We cannot find the "fastest"
Turing machine which implements an arbitrary function because, in some
cases, there is always a faster machine, and one still faster and so on
ad infinttum. In the face of such undecidability results, we must lower
our sights somewhat. Schematalogy sacrifices a certain amount of
"relevance" for the possibility of answering questions analogous to the
above.

It would seem to be a better approach to go only half-way towards
schemata and allow both interpreted and uninterpreted operaticns. After
all, this is precisely the problem a compiler must handle. Unfortunately,
the amount of interpretation which can be tolerated without introducing
undecidability problems is very small. For example two counters with

unlimited capacity are sufficient to mimic Turing machinesli?,
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1.3.2 Schematology - History

Tanov is generally credited with the first schematized model for
computationl® His model treats all of storage as a monolithic entity
which is transformed by operations. The operation to be applied is
determined by the outcome of a number of predicates testing the store.
Ianov showed that equivalence of his schemata was decidable. Rutledge15
later pointed out a correspondence between Ianov's schemata and a class
of finite state machines.

Luckham, Park and Paterson? developed a more familiar schematized
model based on flow charts. Operator instructions in the flow charts
are of the fbrm

label: x, < f(x. ,x, , " ",x. )
1 1 32 Im

with branching in the charts accomodated by transfer instructions such as

label: p(xi),tlabel,flabel

By establishing a correspondence with a class of automata, they were
able to show that the equivalence problem for schemata using two or more
memory locations is not decidable. However, certain restricted classes

of flow chart schemata were identified for which equivalence is decidable.

Schemata have also been used by Hewitt and Paterson to allow
meaningful comparison of various control mechanisms such as iteration,

recursion, and recursion with limited parallelism!Z.
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1.4.1 Parallelism

Parallel processing as it exists today generally refers to concurrent
execution of several processes which are themselves strictly sequential.
Although this 1s an Important trend in the efficient use of computer
systems, 1t Is not the level of parallelism in which we are interested.
We will be focusing on parallelism within a program at the instruction
level. Therefore, we are discussing hardware which is not now common and
probably will not De common for a generation or so.

There is more than a theoretical difference between concurrent
execution of one thousand programs and concurrent use of one thousand
processors by a single program. An astronaut does not care if ground
control can recompute a thousand courses in an hour. What he requires
is one course recomputed in seconds. The number of such real time
applications is constantly expanding. With speeds of individual
processors approaching limits Imposed by the speed of light and the
laws of thermodynamics, lowrlevel parallelism will take on increasing
importance.

In addition to such practical applications, one can make an argument
for parallelism on theoretical grounds. A conventional algorithm may
impose sequencing constraints which are arbitrary and have nothing to
do with the function being implemented. A parallel specification can
help to focus on this function by stripping away arbitrary sequencing

and leaving only that which is essential.
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1.4.2 Parallel Schematology - History

8 have worked with schemata which

Karp and Miller’, Slutzl®, and Keller
model parallel computation. Using a hybrid operation which combines the
réles of transformation and testing, they were able to identify certain
classes of parallel schemata for which determinacy and equivalence are
decidable. Some of the major results of this dissertation are extensions
of the work of Karp and Miller to a model with more conventional
operators and a weaker form of equivalence.

Slutz's maximum parallel form'® which maximized the number of possible
computations for a given interpretation helped to motivate our notion of
productivity. With our weaker form of equivalence, the possibility of
useless operations arises. A workable analogue to Slutz's maximum
parallel form would have to restrict computations to some level of

productivity. Lacking this, unproductive activity could be added

indefinitely without truly increasing parallelism.

Parallel schemata in which the arrival of data triggers activity have

13

been investigated by Rodriguez!3, Dennis3

and Fosseen®. A desirable

feature of these schemata is their inherent determinacy. The equivalence
problem remains undecidable for general data flow schemata. However,
both Rodriguez and Fosseen discuss decidable questions about equivalence

of data links within a schemna.
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1.5.1 Modularity

Modularity is a term finding great favor both in computer science and
on Madison Avenue. Informally, we might say that a modular system is the
interconnection of & small number of components whose inputs, outputs and
input/output behavior are explicitly defined. Although we have restricted
modular systems to comprise only a few components, there i1s no real
restriction on system size. Each component may be a modular system whose
components are themselves systems and so forth. We are therefore talking
about a style of systems design rather than a class of systems.

Modular systems have the virtue of being easy to debug and easy to
modify. If such a system malfunctions, the components can be "unplugged"
and tested to sec that they meet thelr input/output specifications.

Since this is, by definition, their only r8le in the system, operational
components need not be checked in greater detail. This allows quick
isolation of problems. Furthermore, any component can be replaced by
another with the same input/output behavior. This allows us to take
advantage of developments which make modules cheaper, faster, more
reliable, or whatever. The value of such capabilities iIn large systems
can scarcely be overestimated.

The definition of equivalent schemata reflects our input/output
criercation. We view schemata much as a programmer views subroutines.

When ziven inputs, they either run on forever or they halt and produce

=

some outputs. Egquivalence will amount to halting on the same inputs,
yielding the same results. Intermediate values, storage used, amount of
parallelism exploited and the like will be of nco consequence as far as

equivalence is concerned.



17

1.6.1 Speed Independence

Programmers on some early machines observed that they could initiate
data input operations before they were finished with the data in the area
to be overwritten. They knew there would be ample time to access the
data before the relatively slow input devices could effect the transfer.
This technique was actually an early form of parallel processing, but a
decidedly dangerous one. For example, if the I/0 device had been
improved or the program éimulated rather than executed, chaos could
have resulted.

The peculiarities of particular machines and operating systems now
make any assﬁmptions about relative speeds highly suspect. Our model
will not assume that all operations take the same amount of time or
even that a particular operation always terminates after a fixed delay
after it has initiated. In fact, our model will make no mention of
delays and timing. Instead, each actlon will have distinct, explicit
initiation and termination events. All timing considerations will be
modeled by the sequencing of these events. The model will therfore
possess enough flexiblity to describe systems where the amount of time

needed to complete an operation may be highly variable.
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2.1.1 Data Flow Grarhs - Introduction

If schemata are a model for computation as we suggested in the
Introduction, then we should begin with a broad-brush approximation to
just what a computation is. Let us informally define a computation as
a process which performs transformations and tests on a set of values.
This 1s obvicusly not to be taken too seriously, but it will serve as a
foundation upon which to build.

For =xample, the definition suggests that a model must have agents
capable of transforming values and agents capable of testing values.

We refer to these agents as operators and deciders respectively, and
call them aqetors collectively. As we noted In the Introduction, with
our schematized approach we do not define exactly what these actors do
or even the set of values they act upon. However, by assocliating
function names with operators and predicate names with deciders, we can
constrain distinct actors to do the same thing, whatever that may be,
by giving them the same function name or predicate name.

If an operator performs a transformation of m values, we will
depict the operator as a circle with its assoclated function name inside
and with input arcs labeled 1 through m. An operator having no inputs
is allowable: it allows us to model constants. Deciders are similar
but they will be diamond-shaped and we insist that they have at least
one input: they must have something upon which to base a decision. Of
course, all actors with which a given name is associated must have the
same number of inputs.

We assume that all operators have exactly one output. There is no

real loss of generality, since we could always model a transformation
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with k outputs by k single-output operators. Deciders, on the other
hand, have no outputs. They have outcomes, sither true or false.
Again, binary deciders carn be put together in such a way as to model
k-way tests. Figure 2.1 shows an operator and a decider.

Iﬁ our model, the values input to actors and produced by operators
are presumed to reside in memory locations. Which location supplies
which input is depicted by attaching the arcs on actors to memory
locations. The same location may supply more than one input, and may
also be the output location of an operator to which it supplies an
input. Some actor/memory interconnections are shown in Figure 2.2.

Labeling.the arcs on such Interconnections can be tedious and
unenlightening. We will adopt the convention that arcs appear in
order of increasing index starting from the bottom of the actor and
proceding clockwise around it unless explicitly labeled otherwise.

Thus, all arc labeling in Figure 2.2 is unnecessary.

Presumably, we institute the series of transformations and tests
which we called a computation because we are interested in some results.
In general, we expect these results to depend in some way on an initial
set of values we provide to the computation. In our actor/memory
interconnections, we identify two ordered subsets of the memory
locations. One set, the schema inputs, are presumed to hold the
initial values when the comput:iion begiii. The other set, the schema
outputs, will contain the results if and when the corputation terminates.
The actor/memory interconnection and schema inputs and outputs determine

what we will call a data flow graph.
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o

Figure 2.1la An operator o with Figure 2.1b A decider d with
m-ary function name f n-ary predicate name p
d

Figure 2.2 An interconnection of actors and memory locations
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The class of computations we will be investigating have finite data
flow graphs which are not altered during the course of computation. We
cannot allocate additional memory locations, change the function name
associated with an actor, or move an actor around in the graph. We do
not claim to have a satisfactory way of representing structured data
such as arrays, lists or stacks. These features are not deemed
unimportant, but rather lie outside of the scope of this dissertation.

If the reader experiments with producing a data flow graph
corresponding to a familiar computation {(as we shall do in Section 1.3),
he will probably discover that simple assignment occurs. That is, we
often want to simply copy the contents of one location into another.
This is one functicn which is always meaningful, independent of the
domain of values with which ve are dealing. We therefore allow
identity operators to be used in data flow graphs. We will reserve

the function name ":=" for these operators.
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2.1.2 Data Flow Graphs - Formal Definition

A data flow graph is a directed, labeled, bipartite graph. One set
of nodes 1s a finite number of locations collectively referred to as
MEMCRY. An ordered (possibly empty) subset of MEMORY is distinguished
as the SCHEMA INPUTS, and another ordered (nonempty) subset is
distinguished as the SCHEMA OQOUTPUTS. The other set of nodes are a
finite collection of ACTORS, partitioned into OPERATORS and DECIDERS.
Assoclated with each operator is one of a set of FUNCTION NAMES. For
simplicity, we will assume that the number of its inputs (20) is
implicit in the function name. If f is an m-ary function name, then
any operator o with which f is associated has input arcs labeled 1
through m originating on (not necessarily distinct) locations in
MEMORY. We call these locations the tnput locations of o. In
particular, we call the location on the arc labeled 1 the ith Lnput
location of o. Each operator o has a single output arc terminating on
some location in MEMORY (not necessarily disjoint from the input
locations of o.) We refer to this as the output location of o.
Associated with each decider is one of a set of PREDICATL NAMES. As
with function names, we will assume that the number of inputs (>0) is
implicit in the predicate name. If p is an n-ary predicate name, then
any decider d with which p is assoclated has input arcs labeled 1
through n originating on (not necessarily distinct) locations in

MEMORY, the imput locations of d. Deciderz have nmo output arcs.
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2.1.3 Data I'low Graphs - Example

It might be instructive to take a familiar model for computation,
a program, and consider how a corresponding data flow graph could be
defined. The program in Figure 2.3 mimics integer division. hat is,
given a numerater N and a denominator D, it will determine a quotient Q
and remainder T such that N=QxD+F, the magnitude of R is less than the
magnitude of D, and if R is r~ ro, 1t has the same sign as Q. The
example is not profound, but tue reader should look it over since we
will refer tco it in several later sections.

An obvious first step is to equip our data flow graph with a memory
location for each variable in the program. Of coursc, we may need
additional locations for temporary results and the like. The cholce of

actors is mnot quite so clear. Tor example, in line 6 we wish to

increase Q by 1. This could be accomplished by adding the constant 1
to Q via the nor-: additi<  Tnction, or by using a special
add-1l-to-the-arzument unary tunction. This obviously makes no

difference in the program, but will lead to quite different data flow
graphs. A similar choice occurs for the comparisons with constant 0 on
lines 9 and 13.

A complete data flow graph is shown in Figure 2.4. We could have
used function names like < or - but these names are hard to dissociate
from their conventional interpretations. Thinking of c as complement,
% as less than, m as magnitude, s as subtract, t as tally (add 1), and
z as zero, the data flow graph should be quite easy to analyze. The
reader is cncouraged to verif{y line by line that the data flow of the

program can be duplicated. The identity coplcs O for use by p and q.
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Figure 2.4 A data {low graph For the program of Figure 2.3



2.2.1 Events - Introduction

Although actors are the atomlic elements by which computation can be
carried out, we want a description of their behavior which is more
detailed than "actor a happens." This level would suffice for sequential
computations, in which there 1s only one site of activity. [ a parallel
computation, however, we need a mechanism capable of describing concurrent,
asynchronous activity.

To this end, we assoclate with each operator in a data flow graph, an
initiation event and a termination event. With each decider, we assoclate
an initiation event and two termination events. In essence, an initiation
event and corresponding termination event bracket what we referred to
earlier as "actor a happening.” However, it is not necessary for
initiations and terminations of an actor to occur in strict alternation.
By postulating a means of keeping track of initiations for which the
corresponding termination has not yet taken place, we can allow several
initiations to occur before a termination occurs.

When we formally describe events in the next section, we do so by
assuming that each actor has an associated queue and processor which
computes the function or predicate named. It should be emphasized that
these processors and queues are merely vehicles for defining the
intended behavior of actors. Any implementation which gives rise to
the same behavior would be equally acceptable.

Wz now turn to a formalization of the semantics of events.
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2.2.2 Events - Formal Description

For each operator o with associated n-ary function name f, we
define two events, the initiation of o, dencted o, and the termination
of o, denoted o. When o initiates, a value is associated with each
input arc of o by {(non-destructively) reading the corresponding input
location of o. This n-tuple of values can be thought of as being
enqueued on an f-processor assoclated with o. The termination of o
is defined only if this fifo queue is non-empty. (It should be noted
that a queue containing O-tuples is most certainly not empty.) In
this case, the first n-tuple in the queue is removed, the f-processor
is applied to the n-tuple, and the result is written into the output
location of o, destroying any previousbcontents.

For each decider d with assocliated n-ary predicate name g, we
define three events, the initiation of d, denoted d, and the true and
false terminations of d, denoted dp and dp, respectively. The intended
semantics are similar to those for operators. Upon termination, there
is no output location to overwrite, of course, but the outcome of the
predicate named by p on the n-tuple of values is reflected in the
choice of termination events.

These rules define, for each data flow graph, an alphabet I of
events associated with the actors. Since there are only finitely

many actors, I is always finite.
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2.2.3 Events - Example

Suppose, referring back to the data flow graph of Figure 2.4, we
consider the sequences of events ﬁyf§f§ and %ﬂ%?ff and their effect
upon the contents of location . When we begin, the contents of Q are
undefined. When w initiates, the contents of Q remain undefined, but
now there is a O-tuple enqueued on w's z-processor. When w terminates,
a value which we can symbolically refer to as z() is written into Q.

At this point, all queues are again empty. When f Initiates, the
1-tuple z() is enqueued on f's t-processor. Up until now, both of
sequences we have been considering have caused the same behavior.

If f now terminates immediately, t(z()) will be writt: = Iato Q,
destroying its former contents, z(). After another Initiation and
termination of f, Q will contain t(t7z{()}! anc =11 queues will be
empty.

On the other hand, If f reinitiates before terminating, z() is
placed on the t-processor's queue after the other l-tuple (which also
happens to be z().) The first “ermir:.:ic: of f leads to t(z()) being
written into Q. The second termination then overwrites this value
with the very same thing, t(z()). Again, all queues have been emptied.

For the data flow graph shown, ZZ{@,@,5,§,E,§,E,§,é,§,f,f,é,g,ﬁ,@,

dsdpsdpsP 5Py sPpsdsdysdpd -
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2.3.1 Data Flow Graphs - Summary

Data flow graphs provide a formalism for describing the structural
aspects of computation. They are not the only such mechanism one can
devise. Karp and Miller’, Slutzl®, anad Keller® have used a model in which
actors are of a single, hybrid type. These "operations" combine the
features of our operators and deciders by having one or more output
locations and one or more possible outcomes. A graphical representation of
such an actor is shown in Figure 2.5. An equivalent data flow graph
structure is shown in Figure 2.6. We mimic the multiple outputs in the
standard way. There are numerous methods for associating K(a) outcomes
with collections of binary deciders. As shown, we use K(a)-1 deciders,
and let the outcome correspond to the least index of a true decider, or
K(a) if all are false. Thus, data flow graphs can model the hybrid
operations.

A more dramatic difference appears in one variant of the data flow
schemata of Dennis3 and Fosseen? Here actors are interconnected by fifo
queues instead of memory locations. Data flow graphs can also reproduce
the behavior exhibited by data flow schemata. It can be shown that the
so-called well-formed schemata can operate with queues of length 1. Such
queues are easily modeled by memory locations. Furthermore, queues can be
modeled by identity operators between memory locations, using the implied
queuing of multiple operator initiations.

Therefore, data flow graphs are a fairly general model for describing
the structure of a computation and are not likely to generate much
controversy. Indeed, this is one reason why the data flow structure has

been separated from the rest of the schema specification.
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}

a has outcomes {al’aQ""’aK(a)

Figure 2.5 A Karp-Miller operation

Figure 2.6 A data flow graph model for the operation of Figure 2.5
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3.1.1 Control - Introduction

Data flow graphs tell us only part of what we need to model a
computation. They specify the structure of memory, transformations, and
tests, but do not specify the order in which actors can initiate and
terminate. This is the purpose of some sort of control mechanism. What
we shall be referring to as a schema i1s a data flow graph and a
specification of control. We review some possible control mechanisms

before indicating how control is specified for our schemata.

3.2.1 Control - Sequential Models

The most familiar control mechanisms, the ones used by virtually all
conventional programming languages, are sequential. There is no concurrent
activity, so actor initiations and terminations occur with no intervening
events. After each operator termination, there is a unique actor
initiation which follows. When a decider terminates, there are two actor
initiations which might follow, the choice being determined by the decider
outcome. The rules agbout which actor initiates next are implicit in the
semantics of the programming language used.

Flow charts are a general way of specifying the sequencing of actors
in a sequential program. Figure 3.1 shows a flow chart for the program in
Figure 2.3. One can envisage a single locus of control moving along the
arcs of the chart, initiating and terminating actors as it passes. If a
program contains g0 to statements, the topology of such a chart can be
quite complicated, a fact used to argue for better behaved sequential

control primitives such as do-loops and if-then-else conditional clauses.
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Figure 3.1 A flow chart control specification

for the data flow graph of Figure 2.4
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3.3.1 Control - Programs with Concurrency

If we wish to maintain a program-like formalism but introduce
concurrent activity, there must be a means of adding loci of control.

If a program can be broken into completely independent parts, then each
part can be assigned a dedicated locus of contrecl. This is essentially
what most multiprocessing systems do, assuring independence by working
on unrelated programs. Practical programs, however, seldom factor into
such independent parts. (If they did, they would be written as separate
programs.) In general, then, the loci of control will interact.

Fork and join primitives can be added to programming languages to
express this interaction. At a fork, a single locus of control splits
into several loci. At a join, a number of loci of control come together
and a single locus exits. There have been numerous proposalsls” for
implementation of such primitives, and we show a graphical representation
of a program using these primitives in Figure 3.2.

In inspecting such a graph, it is important to distinguish between
the contrecl flow through a fork primitive, in which control flows along
all output arcs, and control out of deciders, in which control flows
along exactly one of the output arcs.

The resemblence to a precedence graph is quite striking here, with
"unordered" actors being capable of concurrent activation. Precedence
graphs, embellished to allow conditionals and while-loops have alsc

been used as control mechanisms?
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Figure 3.2 A fork-join

control specification for
the data flow graph of
Figure 2.4
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3.4.1 Control - Petri Nets

Breaking away from program-like formalisms can lead to control
structures such as Petri nets, introduced by Holt® Petri nets are such a
simple yet powerful formalism for modeling concurrent activity that it is
worth a short digression to study them,

Petri nets are directed, labeled, bipartite graphs whose nodes are
either states or events. States are drawn as circles and events as bars.
States have an associated non-negative integer which is depicted by
drawing the appropriate number of tokens in the state. This numbering is
called the markinc of the net. Activity in a Petri net is governed by a
simple firiné rule. An event iz 3aid to be enabled if each state on an
arc into the event contains at least one token. An enabled event can
fire by removing one token from each input state and adding one token to
each output state. Tokens need not be '"conserved" by the process of
firing. In fact, the total number of tokens in the net will change after
an event fires unless the number of input states of the event equals the
number of output states of the event. We show some Petri nets in Figure
3.83.

The event in Figure 3.3a is not enabled since there is an input state
with no tokens. The event in Figure 3.3b is enabled, and, if it should
fire, the resulting net would be that of Figure 3.3c.

By associating the events determined by a data flow graph with a
subset of the events in a Petri net, we can use the net as a control

mechanism. We show such a net in Figure 3.4.
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Figure 3.3a An event which is not enabled

Figure 3.3b An event which is enabled

SRORG

Figure 3.3c The marking which would result if

the event of Figure 3.3b fired

O
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end

Figure 3.4 A Petri net control specificatiocn for the data

flow graph of Fizure 2.4
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One reason that this control mechanism may appear complicated is the
introduction of explicit initiation and termination events. Except for
this, there is a strong resemblance to the fork/join formulation of Figure
3.2.

Slutz's flow graph schemata have a control mechanism which closely

parallels Petri netsl®

3.5.1 Control - Data Flow Models

It is self-evident that an actor cannot initiate before its input
values have been generated. Turning this observation around, Rodriguezl,3
Dennis% and Fosseen® have proposed models in which the arrival of values
controls the initiation of actors. We will briefly describe one form of
data flow schemata studied by Dennis and Fosseens We call these "Dennis-
Fosseen schemata'" rather than ''data flow schemata" to avoid possible
confusion with our own data flow graphs.

A Dennis-Fosseen schema is a directed, bipartite graph in which the
nodes are either actors or lLinks. It is helpful to think of the arcs in
a Dennis-Fosseen schema as being able to hold a single value. Operators
in Dennis-Fosseen schemata are actors with one or more inout arcs, a
single output arc, and an associated function name. If a value is present
on each input arc and no value is present on the output arc, an operator
is enabled to fire. When it fires, an operator removes the values from
its input arcs and places on its output arc the value which results from
applying the named function to the inputs. Deciders in a Dennis-Fosseen
schema have one or more input arcs, a single output arc, and an

associated predicate name. As with operators, these actors are enabled
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to fire when there is a value on each input arc and no value on the output
arc. When a decider fires, the values on its input arcs are removed, and
the boolean value resulting from the named predicate on the input values is
placed on the output arc. Dennis-Fosseen schemata are constructed in such
a way that arcs carry either boolean values or data values, never both.

Dennis~Fosseen schemata may contain boolean actors to perform logical
operations on boolean values. Boolean actors are enabled to fire when a
boolean value is present on each input arc and no value is present on the
output arc. When such an actor fires, the input values are removed and the
result of the named boolean operation on the input values is placed on the
output arc.

There are three types of actors which have both boolean and data
input; true gates, false gates, and merges. A true gate has one input
data arc, one input boolean arc, and one output data arc. A true gate is
enabled to fire when a value is present on each input arc and no value is
present on the output arc. When it fires, the input values are removed.
If the boolean value was true, the input data value is placed on the
output arc. Otherwise, no value is placed on the output arc. False gates
are analogous, "passing" the input data value if a false boolean value is
present and "swallowing'" the data value for true boolean inputs.

Merge actors have two input data arcs, one boolean input arc, and one
output data arc. A merge is enabled to fire when there is a boolean value
present, a data value on the input data arc indexed by the boolean value,
and no value on the output arc. (The presence or absence of a data value
on the other input data arc is irrelevant.) When it fires, a merge

removes the boolean value and the indexed data input value, placing the
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data value on the output arc.

Link nodes serve as connection points and also eliminate the need for
explicit identity operators. A link node is enabled when a value is
present on its input arc and all output arcs contain no values. When a
link node fires, the input value is removed and a copy of the value (data
or boolean) is placed on each output arc of the link node.

Figure 3.5 summarizes the elements of Dennis-Fosseen schemata. Each
element is shown in enabled status and then, immediately to the right, the
element is shown as if it had fired. Arcs which carry boolean values have
solid arrowheads while data arcs have open arrowheads.

Figure 3.6 shows how the elements of a Dennis-Fosseen schema can be
assembled to model the program of Figure 2.3. This kind of schema is
probably foreign to most readers, but with a little experimentation, cone
can quickly become familiar with its behavior. In particular, gates and
merges come in groups fed by the same boolean., When initialized merges
are encountered before the gates, a loop structure can be realized. This
is the case with the three merges and five gates fed by the decider in the
middle of Figure 3.6. When the gates are encountered before the merge, a:
is true with the gates and merges fed by the deciders at the top of Figure
3.6, conditionals are realized. We recommend that the reader check the
behavior of the schema by first assuming that each decider is false, then
assuming each is ¢rue. Note, in particular, that the "loop merges" are

reinitialized to true when the loop is exited.



41

v=f(vl,"',v ) b=p(vl,"',vs)

operator decider

A

data link

boolean actor

Yirure 7.5 flements of Dennis--Frsseen schevata, enabled and fired




Denrils -T'osseen

schaima *

g

o

. - g
the preceram cof Figuve 2.3




43

3.6.1 Control - Automata

Consider a finite state acceptor whose state transitions are labeled
with the events associated with a data flow graph. We can view the events
on arcs out of a given state as those events which the acceptor allows in
that state. Should one of the events occur, the acceptor enters the state
to which the corresponding arc leads. We might call those sequences of
events which lead from the initial state to some accepting state the
sequences which are acceptable.

Keller8, Karp and Miller’, and Slutzl® all consider state-machine
control mechanisms, treating countably infinite state machines as well as
finite state.acceptors. Many of the other control mechanisms we have
discussed have finite state counterparts which allow exactly the same
sequences of events to occur. If, for a given n-state Petri net, there
is an integer m such that no state in the net ever contains more than m
tokens at a time, then there is a corresponding finite state control
mechanism with no more than (m+1)" states. (A state in the finite state
acceptor identifies how many tokens are present in each of the n states of
the Petri net.)

As the last example suggests, finite state acceptors may be consider-
ably more complicated than the other models. In Figure 3.7 we show the
beginning of a state table for a finite state control mechanism for the
data flow graph of Figure 2.4.

One can imagine how pushdown automata or even Turing machines could

be employed to control the events in a data flow graph.
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Figure 3.7 Partial state table of a finite state control specification

for the data flow graph of Figure 2.4
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3.7.1 Control Sets - Overview

The last few sections serve to indicate the diversity of control
mechanisms which have been or could be proposed to direct activity in
data flow graphs. Each has advantages, real or imagined, which make it
difficult to agree on a '"best" mechanism.

It is unfortunate that many of the results in schematology depend
upon the particular choice of control mechanism, in ways that become
clear only when one attempts to carry the result over to a different
model. This works a particular hardship on newcomers to schematology
since there is no general theory unifying the various models.

In an effort to begin a more general approach to schematology, we
have adopted a specification of control which is not tied to any
particular control mechanism. We do this by observing that all the
mechanisms just discussed define sets of allowed sequences of events.
We call these control sets, and we will generally be concerned with
their properties as sets, not with the particular mechanism that
determines them.

This approach has both good and bad aspects. A control mechanism
defines a control set inherently possessing properties which we must
explicitly define and justify. Thus, our approach may appear slightly
"verbose" and can be difficult to motivate. The advantage we gain in
return is to make explicit those properties of control upon which
schematalogical results depend. These results then carry over to all
mechanisms which can be shown to impose the requisite properties. This

may be an easier task than trying to establish the results directly.
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3.7.2 Control Sets - Conventions and Formalisms

Let I be a finite alphabet. As is conventional, we will use I¥* to
denote the set of all finite strings over I. We let A represent the
unique string of length 0, the empty string. We use 3~ to denote the
set of countably infinite strings over I, and we define g to be the
union of I* and I . We will use the terms 'string' and 'sequence'
interchangeably.

We use italicized letters late in the alphabet and possibly
subscripted, v, w, Tys Ty and so forth, to denote sequences in E.

If we have sequences xeI® and yei, then xy represents the sequence
in £ formed by concatenating x and y. Given ze% and zeX®*, x is a
prefix of z if and only if there exists a sequence yei such that
xY=2a.

Suppose I is the alphabet of events associated with a data flow
graph. A string yc§ is said to be well-~sequenced if, for every prefix
x of y and for every actor a in the data flow graph, the number of
occurrences of initiations of a in x is no less than the number of
occurrences of terminations of a in x. In simple English, nothing
is terminated which has not been initiated. Note that this property
does not depend upon the connections in a data flow graph, only on
the set of actors.

A sequence ye£ is well-defined (for the data flow graph which
determines ) if it is well-sequenced and for each.prefix xa of y,

and for each input location & of actor a, & is a schema input, or

2 is the output location of some operator o such that x = x 0%, -
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That is, in a well-defined sequence, no actor initiates until the
contents of all of its Input locations are meaningfully defined. A
set of sequences is said to be well-defined if every sequence in the
set is well-defined.

We define a control set (of a data flow graph with alphabet of
events L), CONTROL, to be any well-defined subset of £ with the
following property. For each finite sequence x¢CONTROL, each schema
output m is either the output location of some operator terminating
in £, or m is a schema input (or both). Thus each control sequence,
as we call the elements of CONTROL, which terminates leaves values in
all schema oﬁtput locations.

Finally, and somewhat anticlimactically, we define a schema to

be a data flow graph and some corresponding control set.

3.7.3 Control Sets - Discussion

The restriction of control sets to well-defined sequences 1is easy
enough to justify. A string which is not well-sequenced, such as gé,
simply has no meaning in terms of the behavior of data flow graphs.
Similarly, we cannot make any sense out of actors initiating before
the contents of their input locations have been established. For
example, ég is well-sequenced for the data flow graph of Figure 2.4,
but it is not meaningful because locations R and T have unspecified

contents. Finally, if a sequence terminates, we expect it to leave a

result in each schema output location. Although we do not exclude
anythi:. very meaningful by assuming well-definition, there are noteworthy

implications. For example, the finite strings the state-machine
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of Tigure 3.8 accepts are simply {a,g}*, but the set of all control
sequences contained in {a,g}* cannot be recognized by any finite state
acceptor. (Informally, akgk must be accepted for all integers k=z0.
For k greater than the number of states in a finite state machine,
some state must be visited more than once while gk is being read.

Then this cycle of length j>0 could be repeated so that 5k§k+j is

also accepted. But this sequence is not well-sequenced, so it is

not among the control sequences.) Thus, although it is semantically

painless to exclude ill-defined sequences, it may be difficult or

impossible to do so while maintaining a given control mechanism.

Figure 3.8 A finite state control specification for which CONTROL is

not a regular set
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4.1.1 Interpretations - Introduction

Schemata, via their data flow graphs and control sets, tell us
everything of a structural and operational nature that we need to know
about modeling computations. To put the schema model on a par with
familiar models, however, we must supply the missing details about the
function names and predicate names.

An interpretation for a schema specifies the set of elements which
the memory locations can contain. For "familiar interpretations',
these will include integers, character strings, representations of
real numbers, and so forth. Of course, there are also interpretations
dealing with'trees, or only with integers, or only with the number 6:
the choice of domain is virtually unrestricted.

An interpretation also specifies functions and predicates over
these elements for the function names and predicate names of the data
flow graph. These functions and predicates are total, so "familiar
interpretations" would have to be extended to define such things as
1/0 and "cat"<3.14159. Finally, the interpretation specifies the

elements initially contained in the schema input locations.

b,1.2 Interpretations - Formal Definition
An interpretation 1 of a schema consists of
1) A (non-empty) set, DOMAIN, of elements.
2) TFor each m-ary function name f, a total function fI:DOMAINm+DOMAIN
3) For each m-ary predicate name p, a total predicate pI:DOMAINm+{T,F}

4) For each schema input location &, an initial element deDOMAIN
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4.1.3 Interpretations - Summary

Although we have defined interpretations of schemata, it is
evident that the definition depends only upon the data flow graph
component. If we have two or more data flow graphs with the same
number of schema inputs, we can meaningfully define a single
interpretation for all of them. There will be a single DOMAIN,
and the set of initlal elements will apply to zach set of schema
inputs. Functions and predicates must be assigned for all function
names and predicate names, but since the arity is implicit in the
names, this can be done consistently. That is, f cannot be a unary
name in one graph and a binary name in another. Thus, a function
associated with name f works in all data flow graphs. We will later
speak of interpretations for two or more schemata, understanding

that this is what is meant.

bol.b Interpretations - Example

Suppose we define an interpretation for the data flow graph of
Figure 2.4. We can recapture the original Intent of the program
from which it was derived by the following interpretation.

1) DOMAIN

1

Z (The integers)
2) z():=0 m(x):=|x| t(x):=x+1 clx):=-x s(x,y):=x-y
3) a(xr,y):=x<y

4) 1Initial elements = <1,-1>

Example 4.1 An interpretation for the data flow graph of Figure 2.4
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5.1.1 Data Dependence Graphs - Introduction

We have defined schemata as the combination of data flow graphs, a
formalism for describing the interconnectior: of memory locations and
actors, and control sets, a formalism for defining how events in a data
flow graph are sequenced. We now define a mechanism, the data dependence
graph, or dadep graph, which brings these two formalisms together.

Before proceeding, it should be noted that dadep graphs are derived
algorithmically from a data flow graph and associated well-defined
sequence. Thus, there is really nothing in a dadep graph we didn't
already have, given the data flow graph and sequence. Our justification
for introduéing this new formalism is one of clarification and
convenience.

The virtue of dadep graphs is that they make it easy to overlook
some less interesting aspects of schemata such as the choice of names
for memory locations and actors, and focus on relevant issues such as
transforming and testing values via functions and predicates. As we
shall see, it is possible to do this in such a way that we can derlive
important information about interpretations from the structure of the
dadep graph.

Dadep graphs are labeled, bipartite graphs whose nodes we call values
and actions. Starting only with the initial values input to the schema,
actions are added as actors initiate. One set of labels indicates the
function name or predicate name associated with an action. Another set
of labels indicates which values are currently contained in the memory
locations. This labeling aids in determining which values are inputs to

an action, shown by directed, indexed arcs from values to actions.
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New values are added when operators terminate. When deciders terminate,
another set of labels indicate the outcome for the associated decision.
Identity operators do not create values, but rather change the labeling
with memory lnc:tion names to make existing values avallable under new
location namc:. -~Iter formalizing these notions, an example of a dadep

graph will be vevelonad in some detail,
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5.1.2 Dadep Graphs - Formal Definition

The dadep graph determined by a data flow graph and corresponding
well-defined sequence is a directed, labeled, bipartite graph. One set
of nodes is referred to as VALUES. The other set is referred to as
ACTIONS. ACTIONS are partitioned into OPERATIONS and DECISIONS. If
the data flow graph has m schema inputs, then there exist m wvalues
labeled 1 through m called INITIAL VALUES. Each operation is labeled
with a function name and each decision with a predicate name. If an
action has an n-ary name, there are arcs labeled 1 through n incident
upon the action from n (not necessarily distinct; values. There may be
a single arc from an operation to a value. Decisions are either
unlabeled or are labeled with a T or an F. A subset of VALUES are
labeled with one or more locations in MEMORY.

Suppose we fix a data flow graph. We define inductively the dadep
graph determined by a corresponding well-defined sequence. For
notational convenience, we will use subscripting to identify the
sequence determining a dadep graph. For example, VALUESx will denote
the set of values in the dadep graph determined by sequence x.

For precision in the induction, we state the following induction
hypothesis:

Hypothesis 1: Each memory location which is either a schema
input or the output location of some operator terminating
in x is the label on exactly one value in VALUESx.

Looking ahead to some further definitions, we also add induction
hypotheses:

Hypothesis 2: The dadep graph of sequence x is acyclic.
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Hypothesis 3: Each value in VALUESx is either one of the
INITTAL VALUESx or it has a single input arc originating
from an operation in OPERATIONSx (but not both.)

For the basis of our induction, we consider the dadep graph of the
empty sequence, A. If the data flow graph has m schema inputs, then
VALUESA = {Vl,VQ,...,Vm}. If the ith schema input is location &, then
value v, is labeled 2. Furthermore, v, is distinguished as the ith
initial value. There are no actions and no arcs. It is easy to see
that hypotheses 1, 2 and 3 are trivially satisfied.

Suppose that all the components of the well-defined sequence x have
been defined, and xo, o¢Z, is also well-defined. We define the dadep
graph of xo by cases as follows:

INITIAL VALUESxO = INITIAL VALUESx in any case. If o 1s not the
termination of some decider d, let j be the number of occurrences of ¢
in xo. Otherwise, let j be the number of terminations of d in xo.

Case 1: 0 is the initiation of an actor c other than an identity
operator. Suppose g is the function name or predicate name assoclated
with c. VALUESxo = VALUESx, and the labeling with memory locations is
unaltered. We form ACTIONSQL‘0 by adding a new action, a, to ACTIONS

X

If ¢ is an operator, a is added to OPERATIONSxO. Otherwise, it is
added to DECISIONng. Action a is labeled g. Since gg is well-
defined, each input location of ¢ is either a schema input, or is the
output location of an operator terminating in x. By hypothesis 1,
each of these locations is the label of exactly one value in VALUESx

If location g is the it input location of ¢, add an arc labeled 1

from the value in VALUES,  (=VALUES ) with label g to the new action a.
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(If ¢ is a O-ary operator, no arcs are added.) All other arcs remain
as in the dadep graph of . We refer to & as "the action corresponding
to the jth occurrence of c.

Hypothesis 1 held for the dadep graph of x, no terminations were
added, and the labeling with memory locations was unchanged. Hence
hypothesis 1 still holds for the dadep graph of xo. Hypothesis 2
still holds since all arcs added were to a node not in the dadep graph
of , sc no cycies could be introduced. Hypothesis 3 follows from the
fact that no new values were introduced.

Case 2: 0 is the initiation of an actor c which is an identity
operator. Sﬁppose % is the input location of operator c. As in case
1, there is a value in VALUESx labeled with &. We will refer to this
value as "the value corresponding to the jth occurrence of c." The
dadep graph of o is exactly the same as the dadep graph of x, so all
hypotheses hold.

Case 3: o is the termination of operator c which is not an identity
operator. ACTIONSQC0 = ACTIONSx. We form VALUESxG by adding a new value
v to VALUESx. Since xo is well-defined, ¢ has initiated at least j
times in x, so there will be an operation a in ACTIONSx corresponding to
the jth occurrence of ¢. Add an arc from a to v, leaving all other arcs
unchanged. Suppose the output location of ¢ is &. If a value in
VALUES:)c has label &, remove the label in the labeling of VALUESxO, and,
in any ca:zz, _abel v with 2.

The (re)labeling procedure guaraitaes the validity of hypothesis 1.
Hypothesis 2 follows because the ¢ily new arc is to a node not in the

dadep graph of x. It will be seen that no other cases add values or




arcs into existing values. Thus hypothesis 3 is satisfied.

Case 4: ¢ 1s the termination of a decider c. Since xo is well-
defined, ¢ has initiated at least j times in x. Hence, there is a
.. . . - . .th
decision a 1n ACFIONox corresponding to the ] occurrence of c¢. In

the dadep graph of xo, a 1s given label T if O=Cps OP label F if o=c
No other changes are made, so all induction hypotheses remain valid.

Case 5: o is the termination of identity operator c¢. Since xo is
well-defined, there arc at least 7 Initiations of ¢ in x. Hence there
is a value v in VALUESx corresponding to the jth occurrence of c¢. If
the output location of ¢ 1s £ and & 1s the label on some value in
VALUESx, remcve the label in the labeling of VALUESxU. In any case,
label v with & in VALUEng. No other changes are made.

The (re)labeling preserves hypothesis 1, and since no arcs or nodes

are added, hypotheses 2 and 3 also hold.
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5.1.3 Dadep Graphs - Example

The formal definition of dadep graphs will be useful in constructing
some believable proofs, but it makes dadep graphs appear more formidable
than the really are. Stepping through a specific construction should
help to eliminate many potential sources of confusion. In Figure 5.1
we do this for the data flow graph of Figure 2.4 and the well-defined

Sequence x = ﬁgééﬁggadFSEfégadTﬁpFaqTﬁg.

Values are drawn as boxes, actions as the same shape as the
corresponding actor in a data flow graph. We identify the initial
values by the index depicted inside. The memory labels appear
alongside values, function and predicate names appear inside the
corresponding actions, and decision outcomes appear near the
predicate names. We use the same arc labeling conventions
introduced for data flow graphs.

As an inspection of the dadep graph of x reveals, dadep graphs
display the structural relationships between the values input and
those generated by a sequence. This structure can then be used to

o

study what happens under a particular interpretation.
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=

Figure 5.2 Dadep graph of x
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6.1.1 Dadep Graphs - Definition of Depth

In the sequel, we wlll find it convinlent to use certain structural
properties of dadep graphs without having to consider the particular
sequence and data flow graph which determines them. One such feature is
the depth of values and actions in a dadep graph. The depth will
simply be the length (in terms of number of arcs) of the longest
directed path leading to the value or action.

Being a little more precise, we define the depth of all initial
values to be G. We also define the depth of all O-ary operations in a
dadep graph to be 0. The depth of any value other than an initial value
is defined to be 1 plus the depth of the operation of which it is the
output value. (Such an operation exists by hypothesis 3 of dadep graphs.)
The depth of an operation which is not O-ary is defined to be 1 plus the
maximum depth of its input values. The acyclic nature of dadep graphs
(hypothesis 2) guarantees the validity of this definition. Figure 6.1
shows a dadep graph with the Jdopth of each node indicated.

Note that if there is a value [action] at depth k>1, there must be a
value [operation] at depth k-2 on a path to it. Thus, there can be no

"gaps” in the depths of values [actions] greater than 2.
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Figure 6.1 Depths of the nodes in the dadep graph of Figure 5.2
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6.2.1 Interpreting Ladep Graphs

Any interpretation of a schema will supply all detail we need to
associate specific domain elements with the values in s <adep graph. The
r&le of decisions in the generation of values is indirect, and its
explanation presupposes a thorough understanding of the nature of values
and operations. We will therefore ignore, for now, the component of
interpretations which specifies predicates, and focus on the domain,
functions and initial elements.

These three components define an assignment of domain elements to
values in the obvious way. Initial elements are paired with initial
values and the functions determine all other assignments.

More formally, given a dadep graph D and an associated interpretation

I, define a mapping EI: VALUES - DOMAIN by induction on depth as follows.

Basis 1): If the depth of value v is 0, then v is an initial value,
.th . I c e .
say the 1. Lefine £ (v) to be the initial element of I corresponding

.Th .
to the 1 input location.

Basis 2): If the depth of v is 1, then v must be the output value of
an operation with a O-ary function name, say f. Define EI(V) to be the

element fI() determined by I.

Induction step): Sunposec EI is defined at al} values whose depth is
k (>1) or less. If there 1s no value at depth k+l or k+2, then EI is
defined for all values. (Recall that no gap greater than 2 can exist
between depths of values.) Otherwise, consider a typical operation o

with m-ary function name f, of which one of these values 13 an cutput
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value. The depth of o is either k or k+l so the depths of o's input

values, Vis Vo, Y, v » are k or less. Hence, EI is defined at each
. I I.I ver I

v, and we define £ (v) to be £ (& (vl), ,E (vm))-

(The next induction step is at level k+2.)

In Figure 6.2 we show how such an assignment can be made by
combining the dadep graph of Figure 5.2 with the interpretation of
Example 4.1. The element associated with each value is shown inside
the box representing the value.

Such an interpreted graph shows a "history" of the elements
generated if the given sequence can be observed under the given
interpretation. (This '"can be observed" issue is where the predicates
will come in.) The labeling with memory locations then identifies
the final contents of the schema output locations. Thus, such an
interpreted dadep graph constitutes a completely satisfactory
description of the input/output behavior of schemata for what we will

define as I-computations.
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Figure 6.2 Assignment of elements to the values of the dadep graph

of Figure 5.2 using the interpretation of Example 4.1
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6.3.1 Free Interpretations - Introduction

The starred values in Figure 6.2 all were assigned the same domain
element. We would like to know if this was purely coincidental, or if
it will be true for all interpretations. This leads us to introduce
free or Herbrand or one-one interpretations, and the notion of
similarity in dadep graphs.

A brief inspection of the interpreted dadep graph of Figure 6.2
reveals that if a different set of initial elements had been chosen,
say 5 and -3, then the starred values would have been distinct. It
would be nice if we could find an interpretation which assigns the
same domain element to distinct values only if all interpretations
assign the same element to them. Such interpretations in fact exist,
and are variously called free, Herbrand, or one-one interpretations.
These interpretations are a formalization of the "symbolic

representation' we referred to in the definition of events.

6.3.2 Free Interpretations - Formal Definition

To define a free interpretation of a schema, let DOMAIN be the set
of strings over the "alphabet" composed of FUNCTION NAMES, the integers
from 1 through the number of schema inputs, and, for clarity, commas and
parentheses. The initial element corresponding to the first schema
input location is 'l', that corresponding to the second schema input is
'2', and so forth.

If £ is an m-~ary function name, then fI applied to domain elements

(which are strings) §1s Soo T, . is defined to be the string formed

by concatenating function name f, a left parenthesis, 5, @ comma, s,,
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a comma, and so on through s which is followed by a right parenthesis.
For example, £ ['1','g(2)",'h()'] = '£(1,g(2),h0)".

Any set of total predicates over the given DOMAIN can be used to
complete the interpretation. Thus, a data flow graph really has a family
of free interpretations, differing only on the predicates assigned to the

predicate names.

65.3.3 Free Interpretations - Universality

Suppose G, and G2 are data flow graphs with the same number of schema

1

inputs. Let Dl and D2 be dadep graphs of well-defined sequences for the

respective data flow graphs. Then values vy of Dl and v, of D, are

assigned the sswa olement by every interpretation if and only if they are
assigned the same element of a free interpretation.
The 'only if' half of the above result is trivial. Therefore, we need

cnly demonstrate that if vy and v, are assigned the same element by a free

interpretation, then every interpretation assigns them the same element.
We assume the contrary and derive a contradiction.

Suppose that it is possible for values vy and Vo to be assigned

different elements by some interpretation I even though they are
assigned the same element by a free interpretation. We can assume
without loss of generality that vy is a value of least depth for which

such a condition can arise.

If the depth of v, is 0, it must be an initial value, say the ith.

1

Sirce v, is assigned the same element 'i' by a free interpretation, it

) .th . ... . e s
must be the 1 initial value in DQ. But then the same initial element

of every interpretation is assigned to both vy and Ve So v, must be at
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depth 1 or greater.

If vy is at depth 1, then It is the output value of an operation with

some O-ary function name f. The element of a free interpretation assigned

to v, is therefore 'f()'. If Vo, is assigned this same element by a free

interpretation, it too must be the output value of an operation with O-ary

function name £. Since fI() would then be assigned to both vy and v, for

every interpretation I, it follows that v, must be at depth 2 or greater.

1

I* must therefore be that vy is the output value of an operation o,

with m-ary function name g, and mzl. Therefore vy and v, are assigned

element 'g(sl,sz,"',sm)' by a free interpretation, where s, is the
. . . .th .
element assigned by the free interpretation to the 1 input value, Viie

of Oy Thus v, must also be the output value of an operation o, with

function name g and input values Vo1 through Vo which are assigned

elements 5 through s of the free interpretation. But each vlj has path

depth at least 2 less than K By hypothesis, each Vlj’ beling assigned

the same element s. of a free interpretation as is assigned to v2j’ must

be assigned the same element as v2j for every interpretation. But then

4 and \& could be assigned differing elements only if gI gave different

results for the same m-tuple of elements. This violates the functionality
1
of g .

We conclude that an interpretation which assigns different elements

to vy and v, cannot exist. g
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6.4.1 Similarity - Formal Definition

Suppose we have two data flow graphs, Gl and G2, and dadep graphs Dl

and D2 of corresponding well-defined sequences over the respective data

flow graphs. We define similarity, a relation on actions and on values,
by the following induction.

Values 4 in Dl and v, in D2 are similar if each is the ith initial

value, or if they are output values of similar operations.

Actions a; in D, and a, in D, are simitlar if they are labeled with

the same function name or predicate name, and, if the name is m-ary with

th

m21, then for 1<i<m, the ith input value of a, is similar to the i

1

input vaiue of a,.
Again, the acyclic nature of dadep graphs guarantees the validity of

this inductive definition. That is, working back along directed arcs

always leads to an initial value or a O-ary operation. Values or actions

which are not similar are said to be dissimilar.

6.4.2 Similarity - Relation to Free Interpretations

We now show that values are similar if and only if they are assigned
the same element by free interpretationms.

If values vy and v, are similar and the lesser depth is 0, then one
of the values, say Vs is the i™® initial value. By hypothesis 3 of

dadep graphs and the definition of similarity, v, must also be the ith
initial value of its dadep graph. Both values are thus assigned 'i' by
a free interpretation.

Suppose similar values are assigned the same element by a free

interpretation if the lesser depth of the values is k or less. Suppose
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v, and v, are similar values such that the depth of v, in its dadep

1 2 1

graph is k+1 or k+2. Since vy and v, are similar and neither is an

initial value, v, and v, are output values of similar operations o

1 2 1

and o,. Since o, and o, are similar, they bear the same m-ary

2 1 2

function name f. If m is 0, v. and v, are both assigned 'f()' by a

1 2
. . . .s P .th
free interpretation. If m is positive, then, by definition, the i

input value of oy is similar to the ith input value of o, for 1l<i<m.

Since the depth of each input value of o, is k or less, it follows

1

by our induction hypothesis that the ith input value of oy is assigned
. . . .th .

the same element, ;o of a free interpretation as is the i~ input

value of o,. But then v, ani v, are both assigned 'f(sl,SQ,'

. 1
2 1 2 »5;,)

by any free interpretation.

The proof that values assigned the same element by a free
interpretation are similar can be carried out by induction on lesser
depth in a manner directly analogous to the proof above. We therefore

omit the details of the proof.

Combining the last two proofs allows us to draw the following

important conclusion.

Theorem 6.1): Values vy and v, in dadep graphs Dl and D2 are

assigned the same element by all interpretations if and only if the

values are similar.
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6.5.1 Dadep Graphs - The R&le of Decisions

Having investigated in some detail the nature of values in dadep
graphs and the relation they bear tc interpretations, we are now in a
position to study decisions.

As we saw, decisions are irrelevant with respect to the assignment
of elements to values by any interpretation. However, the decisions in
a dadep graph indicate whether the graph (and underlying sequence) are
in some sense legitimate.

For example, if & were interpreted as "larger than or equal to"
instead of as ''less than' in Figure 5.2, the predicates determined by
the interpretation would have specified the opposite outcomes from
those in the dadep graph. Thus, the dadep graph is not consistent
with such an interpretation.

We will formalize this notion of consistency in several steps. We
will first define what it means for a single decision to be consistent
with an interpretation. This easily extends to the definition of dadep
graphs being consistent with an interpretation. It will then be
possible to define what we mean by sequences, even infinite ones, being
consistent with an interpretation. We can then circumvent interpretations
and define consistency between decisions, dadep graphs and sequences.
Throughout, consistency has the flavor of "agreeing on the outcome of

identical decisions".
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6.5.2 Consistency - Formal Definition

Suppose we have a dadep graph D and a decision d in D. Suppose d is
labeled with predicate name p and one of the outcome labels, T or F.
Then decision d is said to be tnconsistent with interpretation I if
pI on the elements assigned to the input values of d has the outcome
opposite that with which d is labeled. In any other case, including the
case where d has no outcome label, d is said to be consistent with I.

A dadep graph D is said to be comsistent with an interpretation I if
each decision in D is consistent with I. D is inconsistent with I if
any decision in D is inconsistent with I.

We have defined dadep graphs only for finite, well-defined sequences
over a given data flow graph. Although it would be possible to extend
the definition to infinite well-defined sequences, we are not as
interested in the details of such infinite sequences as we are in the
fact that they never terminate. To handle (potentially infinite)
sequences, then, we make the following definition.

A well-defined sequence is eonsistent with an interpretation I if
the dadep graph of every prefix of the sequence is consistent with I.
Otherwise, the sequence is said to be inconsistent with I.

A control sequence consistent with an interpretation I can be thought
of as a computation which might be observed for the schema under
interpretation I. In this spirit, we call them I-computations.

then

If dl is a decision in dadep graph D, and d2 a decision in D

1 2?

we define dl to be consistent with d2 if there is some interpretation

with which both dl and d2 are consistent. Otherwise we say dl is

inconsistent with d,. From our knowledge of similarity and
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interpretations, we know that dl and d2 are inconsistent if and only if

they are similar and are labeled with opposite outcomes.

A dadep graph is said to be (self-Jconsistent if every decision in the
graph is consistent with every other decision in the graph. It is not
difficult to see that a dadep graph is consistent if and only if there is
an interpretation with which it is consistent.

Dadep graph D, is defined to be consistent with dadep graph D, if each

is self~consistent and each decision in Dy is consistent with every

decision in D,. (It follows automatically that each decision in b, is

then consistent with every decision in D,.) Because we required that each

lc

dadep graph be self-consistent, it follows that Dl is consistent with D2

(having the same number of initial values) if and only if there is some
interpretation with which both are consistent. If Dl and D, are not
consistent we s;y they are inconsistent.

A control sequence is (self-Jconsistent if the dadep graph of. every

prefix of the sequence is self-consistent. Control sequence xy of schema

S, is consistent with control sequence %

] of S, (having the same number

2

of schema inputs) if both are self-consistent and the dadep graph of every
prefix of x4 is consistent with the dadep graph of each prefix of Toe
Therefore, two control sequences are consistent if and only if there is

some interpretation with which both are consistent.
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6.5.3 Consistency - Some Perspective

In sequential schemata such as Paterson's flow chart schemata (which we
henceforth simply call Paterson schemata to avoid confusion with data flow
graphs), an interpretation completely determines what will occur. Only at
decider outcomes is there any 'choice" in a sequential schema, and the
outcome of all decisions is fixed by an interpretation.

When we move to parallel schemata, the cholce of interpretation no
longer determines which event must occur at each step in a computation.
For example, in the Petri net model of Figure 3.4, the first event to occur
might be w, a, or b, no matter what interpretation is involved. (Which of
these events.actually occurs first might, for some particular implementa-
tion, depend upon such things as the availability of a suitable processor
or the details of a scheduling algorithm. These issues are not dealt with
by our model: We are only concerned that the control set might allow any
of several events to occur.)} Although an interpretation specifies the
outcomes of all decisions, for parallel schemata this no longer uniquely
determines a control sequence. The choice of an interpretation I only
restricts control sequences to that subset consistent with I. Within this
set of I-computations, any sequence might be observed for the schema under
interpretation I.

As mentioned, the self-consistent sequences are precisely those which
are consistent with some interpretation. This subset of CONTROL is
sufficiently important that we give it a name, EXECUTION SEQUENCES. A
control sequence which is not an execution sequence is, in one sense,
uninteresting since it cannot be observed under any interpretation. It

may not be possible to uniformly eliminate inconsistent sequences, however.
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6.6.1 Equivalence of Sequences - Formal Definition

We can now define a meaningful comparison between control sequences
of the same or differing schemata. Our definition of equivalent
sequences will amount to producing the same, if any, outputs for all
interpretations. We find it useful not to insist that equivalent
sequences be consistent.

Formally, suppose we have control sequence x., of schema Sl having m

1 1
- “'\'ts ! . e .
schema inruts and n, schema outputs, {211,212, ,zlnl} Suppose also
that z, is a control sequence of schema 82 having m, inputs and n, outputs

{221,222, ,£2n2}. Then z, and x, are (output) equivalent if

1) m,=m, and n,=n,, and

2a) both x, and x, are infinite, or

2b) both x, and x, are finite, and, for all interpretations I, and for

all 1<i<n., the element assigned by I to the value with memory label

l’
xli in the dadep graph of x is the same as the element assigned to

the value with label zzi in the dadep graph of Lye

An immediate corollary of Theorem 6.1 is that clause 2b) can be
replaced with
2b') both x and x, are finite, and, for all lsisnl, the value with label

&.. in the dadep graph of xy is similar to the value with label 22i

1i
in the dadep graph of Zye
We will generally use this second form which makes no explicit
mention of interpretations. We write x(5%, to denote that x, is

equivalent to xye




6.7.1 Determinacy and Equivalence of Schemata - Formal Definition
A schema 3 is determinate if, for all interpretations I, all
I-computations are equivalent sequences. Alternatively, schema S is

determinate if, for all control sequences xq and z, such that x, is

2 1

consistent with Loy Ly and z, are equivalent sequences. That the two

definitions are equivalent follows from the fact that x4 and x, are
consistent 1f and only If there is an interpretation I such that both
are I-computations.

This form of determinacy 1s sometimes calle.. output deterrii-icy or
output functionality, since 1t deals only with the final contents of

output locations. Since It ls the only form of determinacy we will

treat, we will use the simpler torm.

2

£

Two schemata S, and S, are equivalent if, for all interpretations I,
if = Is an I-computation of one schema, i . *lere exists an equivalent

I-computation y of the other schema. Again, the definition can be
restated so that interpretatiors ‘o not appear. In particular, Sl and 82
are equivalent if, for each execution sequence x of one schema, there is
a consistent, equivalent execution sequence y of the other.

Note that as stated, schemata need not be determinate for equivalence
te apply. It is an easy exercise to show that two schemata are
equivalent only if both are determinate or both are non-determinate.

For determinate schemata, other definitions of equivalence are also
seen in the literature. We can define two determinate schemata to be
wealy equivalent 1f, for all interpretations I, 1f both schemata have

finite I-computations, then these sequences are equivalent. There is no

natural analogue to weak equivalence among non-determinate schemata.
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6.8.1 Schemata - Some Perspective

Schemata as we have defined them have been the result of taking the
common notion of a computation and splitting it into three parts. One
part, the data flow graph, specified structural relationships between
memory locations and actors, and indicated where inputs and outputs were
expected. Another part, the interpretation, supplied the detailed
information about the potential contents of memory locations and the
effect of actors on these contents. The third part, the control set,
specified allowable sequences of actor initiations and terminations.

Dadep graphs were defined as a representation of a sequence and a
data flow graph. We showed the 'universality'" of free interpretations,
and the relationship of similarity in dadep graphs to equality in free
interpretations. This enabled us to show that the structure of dadep
graphs also includes "all we need to know'" about interpretations. That
is, the definitions of schemata determinacy and equivalence obtained by
quantifying over all interpretations can also be stated in terms of
dadep graph structure without explicit mention of interpretations.

Thus dadep graphs constitute a powerful investigative tool combining
all three of the parts mentioned above. They will find considerable use

in the remainder of this dissertation.
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7.1.1 Schematology ~ Some Pitfalls

It has long been known that the equivalence problem for Turing machines
is not decidablel®,l*  Since one can encode a Turing machine in most
interpreted models for computationlo, the equivalence problem for these
models is also undecidable. An early hope for schematology was that by
demanding equivalence for all interpretations, these encoding tricks could
he circumvented and the schemata equivalence problem found solvable.

Unfortunately, the equivalence problem for Paterson schemata has been
shown to be undecidable?»1l, Since the schemata we have defined can mimic
Paterson schemata, it follows that the general equivalence problem for our
schemata musf also be unsolvable.

As a further consequence, we can show that the general determinacy
problem is also undecidable. To see this, suppose we have two m-input

n-output Paterson schemata Sl and S, whose equivalence we would like to

2
test. We can assume that ACTORSlnACTOR82=¢, since actors can be relabeled
without altering function names or predicate names. We can then form a
composite schema by merging the schema inputs and schema outputs of the
data flow graphs as shown in Figure 7.1, and letting the new control set
be CONTROLlUCONTROLQ.

It is a property of Paterson schemata that each interpretation I
defines exactly one I-computation. Thus, our composite schema would have
exactly two I-computations, one from Sl and one from 82. The composite

schema will be determinate, then, if and only if Sl and S, are equivalent.

S5ince the latter is undecidable, so is the former.
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Figure 7.1a Data flow graph of Sl
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Figure 7.1b Data flow graph of 82
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Figure 7.1c Data flow graph of composite schema
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7.2.1 Properties of CONTROL - Introcduction

Knowing that the general equivalence and determinacy problems are
undecidable, we will concentrate our efforts on identifying classes of
schemata where the problems are more tractable. We define these classes
by putting "syntactic" restrictions on control sets. So far, the only
restrictions on control sets of schemata are that the sequences be well-
¢nfined and that finite control sequences leave results in the schema
output locations. As we shall see, this allows control sets which run
counter to our intuition about "proper" control. After developing some
familiarity with control sets, we will begin restricting them to obtain
more reasonaﬁle classes.

If 0 is an event and x is a prefix of a control sequence, then we say
that o is enabled after prefix x if xo is also a prefix of a control
sequence. One must be careful not to read more into this definition than
is really there. Without further details about the mechanism which
determines the control set, all we can conclude is that after x has
occurred, there is nothing to prevent ¢ from happening next. Of course,
x0 may not be consistent with a given interpretation, or, for that matter,
with any interpretation. In parallel schemata, we generally expect that
many events may be enabled after a given prefix.

If a contrcl mechanism allows two events 9y and 9, to occur
"simultaneously" after prefix x, this will be manifested in the existence

of prefixes xo and xo,0 The converse 1is not strictly true. Figure

192 2%1°
7.2 shows two Petri net controls each of which allows sequences

{gwd:,ﬁqcl}.

Only in the first can the events be truly simultaneous.

To us, however, the distinction is not an important one.




®

}

Figure 7.2 Two Petri nets with CONTROL = {0102,0201

Figure 7.3 A Petri net control specification which is not commutative



85

7.3.1 CONTROL - The Prefix Property

One property we might expect of a reasonable control mechanism is
that it be able to detect when a computation had completed. Since we
are dealing with speed-independent systems, we must rely on the control
mechanism to announce when things have come to a halt and results are
ready in the schema outputs.

The prefix property guarantees that when a computation terminates,
no further activity is possible., Stated formally, a control set has the
prefix property if no control sequence is the proper prefix of any other
control sequence. In other words, after a finite control sequence,
nothing is eﬁabled.

When dealing with a particular control mechanism, the control
sequences are usually so defined as to have the prefix property
automatically. This bears out our comment about the set-theoretic
approach appearing to formalize the trivial. However, as the single
state control mechanism of Figure 3.8 shows, what is obvious in some

mechanisms may be absent in others.

7.4.1 CONTROL - Persistence

In the proof of the undecidability of determinacy, the control set
of the composite schema had some peculiar properties. The compcslite
control set was formed by taking the union of two control sets of
sequential schemata whose alphabets of events were presumed disjoint.
Initially, then, there would be two events enabled, corresponding to the
first event from each of the component schemata. As soon as an event

occurs, however, one of the component schemata becomes "irrelevant"
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since it has no control sequences starting with that event. The event
originally enabled in this component schema ceases to be enabled. Note
that this happens, not because of an inconsistency with an interpretation,
but because "something clicks" in the control set and precludes any
further activity.

If the reader feels that something is amiss here, it is probably
because most of the familiar models for parallel computation have a
property we call persistence which is lacking in the composite schema. In
a persistent schema, once an event is enabled, it remains enabled until it
occurs, or, in the case of a decider termination, the termination with
opposite outcome occurs.

Formally, a schema is persistent if, given any prefixes xo. and zo, of

1

control sequences such that 0,%0, and 9, and o, are not opposite

terminations of the same decider, then x0,0, is also the prefix of a
control sequence. (By symmetry, za,0, would also be a prefix.)

Sequential schemata are trivially persistent since the only distinct
prefixes of the form xa, and xo, are those for which o5 and o, are
opposite terminations of a decider. Fork/join formalisms are also
persistent since the loci of control are independent except at join nodes.
Petri nets are persistent if multiple arcs out of state nodes lead only to
alternative termination events of a decider. (This is a sufficient
ccndition, but not a neéessary one, as demonstrated in Figure 7.2.)
Dennis-Fosseen schemata are always persistent since firing any enabled
eleent cannot disable any other element. Finite state control mechanisms

need not be persistent, but the property can easily be verified by

inspecting the state graph.
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7.5.1 CONTROL - Commutativity
Persistence implied that the occurrence of one event could not disable

another event. Thus, if %0 and xo, are consistent, distinct prefixes,

xo,0, and, reversing roles, x0,0,, are also prefixes. Commutativity will

imply that if two events can occur in either order, as with o1 and 0, after

prefix x above, then the actual order of occurrence is unimportant to the
control mechanism. This "unimportance" can be stated in syntactic terms
by requiring that anything which can happen after xo. ¢, can also happen

12

after x0201, and vice versa.
Formally, a schema is commutative if, for all prefixes x0,0, and x0,0,

of control seQuences, X010,y is a control sequence if and only if x0,0,Y

1
is a control sequence.
Sequential schemata are trivially commutative. Petri net and fork/join
formalisms are not necessarily commutative. We show a Petri net
counterexample in Figure 7.3. A fork/join counterexample would look much
the same. Both 0,0,0, and 040,0, are prefixes, but 040,00, is a prefix

whereas 6,0.0,0, is not. The problem here is that o, in the two prefixes

371724 1

corresponds to different events in the Petri net. If events cannot be
"enabled in parallel with themselves'" as above, then fork/join controls
and Petrl nets, with branching out of state nodes restricted as in the
last section, will be commutative. Dennis-Fosseen schemata are always
commutative. If a finite stat:c machine is in reluced form, commutativity

and 0,0, lead to the same

can easily be verified by checking that 9,9, 201

state from any given state in the state diagram.
Commutativity is common because is requires more "states" to recall

the order of events than to ignore it. Thus, commutative control
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mechanisms tend to be simpler than non-commutative ones. Furthermore,
since sequences of the form xT,0, and 0,0 generally reflect the

situation that a; and o, can occur simultaneously, there are practical
(and philosophical) difficulties in actually determining the order of

occurrence.

7.6.1 CONTROL - Conflict

Conflict, or the absence thereof, is a joint property of control
sets and data flow graph topology. A confliet is said to exist if there
are prefixes xo and xo of control sequences where either
1) o is the initiation of some actor a such that the output location of

operator o is an input location of actor a, or
2) ¢ is the termination of some operator r#o such that r and o have the

same output location.
In either case, we say that xo and xo are in conflict. A schema is said
to be conflict-free if its control set has no conflicts.

A conflict exists, then, if two events can be enabled after the same
prefix and both are about to write into the same location or one is
about to write into a location the other is about to read. If the reader
senses something dangerous here, his fears are not groundless as will

become clear in the following sectionms.
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7.7.1 Determinacy - An Overview

A schema which is persistent, commutative and conflict-free and has
the prefix property may nevertheless exhibit properties which are quite
unconventional. For example, it may be that many initiated actors are
left unterminated when computations complete, or there may exist
interpretations with which no control sequence is consistent. In view
of such unorthodox possibilites, it might be surprising that such
schemata are always determinate! Those familiar with the work of Karp
and Miller will note the similarity of the proof of this fact to an

analogous result for their schemata’ .

7.8.1 Determinacy - Some Preliminary Notions

The rules for constructing dadep graphs are such that distinct
sequences need not generate dadep graphs which are different from one
another. To make this statement precise, we must define what we mean by
two sequences generating the '"same" dadep graph.

Suppose x and y are finite, well-defined sequences over a data flow
graph G. Let Dx and Dy be the dadep graphs of x and y, respectively.
Then x and y are dadep indistinguishable if the following four conditions

hold.

1) For each event ¢ in the alphabet of events of G, the number of

occurrences of ¢ in x equals the number of occurrences of ¢ in y.

2) 1If there is a jth occurrence of uninterpreted actor a in x, then the
. . . .th . -
action in D corresponding to the j occurrence of a is similar to
x

. . . . .th .
the action in D corresponding to the j occurrence of a, and, if a
Y
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is a decider, both decisions have the same outcome label, if any.

3) If there is a jth occurrence of identity operator o in x, then the
value in Dx corresponding to the jth occurrence of o is similar to

the value in Dy corresponding to the jth occurrence of o.

4) If & is a mepory location label on a value in Qx, then & is a label

on a similar value in Dy'

Condition 1 simply means that the dadep indistinguishable sequences are
made up of the same events, possibly occurring in a different order.
Conditions 2, 3, and 4 together imply that the differences in order do not
cause any significant differences in the values, actions, or memory
labeling in the dadep graphs.

For the data flow graph of Figure 2.4, each pair of sequences in the
following set are dadep indistinguishable,

{ Wiabh , Wawabb , Waaubb , Wabyb , Wazbby , Weabab , Wawbab )
A little combinatorial mathematics reveals that N operators in parallel
can occur in (2N)}! / (2N) distinct sequences. Thus, the three operators,
W, a, and b, determine 90 such dadep indistinguishable sequences, a
considerable gain in flexibility over the single sequence of sequential
schemata.

If two execution sequences are dadep indistinguishable, condition 4

immediately guarantees that the sequences are equivalent, and condition 2

ensures that they are consistent.
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Equally as important, if xz and y2 are finite control sequences and
x is dadep indistinguishable from y, then xz is dadep indistinguishable
from yz. This follows by induction from the fact that xo and yo are
dadep indistinguishable if x and y are. This, in turn, can easily be
verified by considering the five cases involved iIn the construction of
dadep graphs. We will carry out the proof here, but will avoid such

detailed expositions in the future.

Lemma 7.1: If x and y are dadep indistinguishable sequences and X0

is well-definzd, then o and yo are dadep indistinguishable.

Proof: Condition 1 of dadep indistinguishability for xo and yo
follows imm=diately from Condition 1 applied to x and y. If o is the
termination of some decider d, let j be the number of occurrences of
terminations of d in xo. Otherwise, let j be the number of occurrences
of o in xa., Let Dx and Dy be the dadep graphs of & and y, respectively.

We consider the following cases.

Case 1) o is the initiation of an actor c other than an identity
operator. By condition 4, the values in Dx which bear the names of
the input locations to ¢ are similar to the values bearing these
labels in Dy' Condition 2 holds for the new action, and conditions

3 and Y4 are unaffected.

Case 2) o0 is the initiation of an identity operator c. By condition 4,
the values in Dx and Dy to which this jth'occurrence of ¢ corresponds
are similar. Thus condition 3 holds, and conditions 2 and 4 are

unaffected.
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Case 3) ¢ is the termination of an operator c which is not an identity
operator. By condition 2, the actions in Dx and Dy corresponding to
the jth occurrence of ¢ are similar. Hence, the values added are
similar, so the values labeled with the name of the output location
of ¢ in the dadep graphs of xo and yo¢ are similar. This preserves

condition 4, and conditions 2 and 3 are unaffected.

Case 4) ¢ is the termination of a decider c. By condition 2, the
. s . s .T
decisions in Dx and Dy corresponding to the j h occurrence of ¢ are
similar, and here are given the same outcome label. This preserves

condition 2 and conditions 3 and 4 are unaffected.

Case 5) o is the termination of identity operator c¢. By condition 3,
the values in Qx and Py corresponding to the jth occurrence of ¢ are
similar. Thus, the values in the dadep graphs of xo and yo bearing
the name of the output location of ¢ are similar, preserving

condition 4. The other conditions-are unaffected. : 5]

Putting this lemma together with the observation which preceded it,

we cobtain the following lemma.

Lemma 7.2: If xz and yz are finite execution sequences and x and y
are dadep indistinguishable, then xz and yz are consistent and

equivalent.
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7.9.1 Persistence, Commutativity and Conflict - Some Lemmas
Persistence, commutativity and conflict all deal with well-defined

Tys and xo,.0.. We therefore derive

sequences of the form xcl, x0,, XT 291

1

some useful Jemmas about such sequences.

The first lemma shows that if o.#0, and o, and o, are not the

1 1 2

opposite terminations of some decider, then if %o and X0, are well-
defined seqguences which are not in conflict, x0,0, and x0,0, are dadep
indistinguishable. The proof, similar to that of Lemma 7.1, involves
checking a number of cases against the definition of dadep graphs. We

leave the details to interested readers and only outline the procof.

and ¢, and o, are not opposite terminations

Lemma 7.3: Suppose g,%0, 1 5

of the same decider. If %0y and xo, are well-defined sequences which are

not in conflict, then X0, 0, and xo,0, are dadep indistinguishable.
Proof: By exhausting all possible combinations of cases.

Case 1) 01:5, 32=5. Initiation events do not alter the labeling of
values with memory locations. The actions are therefore attached to
the same values independent of order. If either a or b or both are
identity operators, no action is added, but the value corresponding

to its occurrence is the one bearing the name of its input locationm.

As mentioned, this is not altered by another initiation.

Case 2) o.,=a, @

1 =b, b an operator. Since xb is well-defined, b must

2
terminate some actor initiated in x. Notably, the initiation of a
can have no effect on the operation to which this occurrence of b

corresponds. After b has been added to the dadep graph, the memory

labeling is changed. However, the change only involvas the name of
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the output location of b. If this is an input location of a, xra and
zb are in conflict. Otherwise, the change does not affect the action

added by the occurrence of a.

Case 3) o,=a, 02=dT or OQZdF. Since decider outcomes only add decision
labels, there can be no interference between 9y and Tye
Case U) g,7a, 02=§, a and b operators. If the output location of a is

the same as the out ut location of b, xa and xb are in conflict.

Otherwise, the order is Immaterial.

Case 5) g, &, OQ:dT or OQ:dF° As in case 3, there can be no problems.

d, or o.=d_, o.=¢,, or o,%e_. 1f d#e, the decisions referred

Case 6) 0,=d, 17%> P27 27°F

to must be distinct, and no problems arise. If d=e, then, since

917055 they must have opposite outcomes. But we also hypothesized
that oy and a, were not opposite terminations of the same decider.
Thus it cannot be that d=e. a

The next lemma shows that persistence has some global implications.

Lemma 7.4: In a persistent schema with the prefix property, if xo is
the prefix of a control sequence and xy is a finite control sequence,
then o occurs in y, or, if ¢ is a decider termination, the opposite
termination occurs in y.

Proof: Since xy i1s a finite control sequence, y is finite and we can
write it as a sequence of events gzalaQ"'an. If a is ¢ or the decider
termination of which o is the opposite termination, we are done.

Otherwise, xa, and xo are prefixes which, by persistence, imply that

1

ra,o is also a prefix of a control sequence. Repeating the argument for
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g and a5, O and ass and so forth, we must either find an a; equal to o or
the opposite termination thereof, or else xalaz"'anQ'is the prefix of

some contrcl sequence. But this would violate the prefix property, for

xy was a finite corntrol sequence. Thus, such an a; must be found. D

Lemma 7.5: In a persistent schema with the prefix property, if xo
is the prefix of a control sequence and is consistent with finite
execution sequence xy, then ¢ occurs in y.

Proof: If ¢ is not a decider termination, this follows immediately
from Lemma 7.4. So suppose ¢ is the jth’termination of some decider. By
Lemma 7.4, either ¢ or the opposite termination must occur in y. If the
opposite termination occurred first, then xo and xy would be inconsistent
about the outcome of the jth occurrence of the decider. Therefore, ¢

must be the next termination of the decider to occur. g
The next lemma shows that in a persistent, commutative schema, an
event which did not occur when it was first enabled can 'slide back".

Lemma 7.6: In a persistent, commutative schema, if xo is the prefix

of a control sequence and xyoz is a control sequence where neither ¢ nor,

in the case that ¢ is a decider termination event, the opposite termination

event, occurs in y, then xoyz is also a control sequence.

Proof: Suppose y=a, 'an, where each a; is an event. By

82
hypothesis, no a; is ¢ or the opposite termination event if ¢ is a

decider termination. By the same argument used in Lemma 7.4, xa, o,

*a,a,o, and so on through xalaQ"‘an“lo are all prefixes of control

sequences. Persistence then Implies that xalaQ"'

prefix of a control sequence. Since the schema is commutative,

a o a 1s also the
n-1 n
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xala2"'an_lcanz is also a control sequence. Repeating the argument n-1

times, we can conclude that xoyz is also a control sequence. O

An easy corollary follows if the schema is also conflict-free.

Lemma 7.7: In a persistent, commutative, and conflict-free schema,
if xo is the prefix of a control sequence and xyoz is a control sequence
where neither o nor, in the case that ¢ is a decider termination event,
the opposite termination event, occurs in y, then xoyz is a contrcl

sequence which is dadep indistinguishable from zyoz.

Proof: From Lemma 7.3 we know that xa, "‘a. .a.ca, . " ‘a_z and
1 i~171 Ti+l n
ra, - a; ;03.;a;, ., a2z are dadep indistinguishable for 1<i<n. One need

only show that dadep indistinguishability is a transitive relation for
the result to follow. By inspecting the definition of dadep
indistinguishability, it is clear that it is an equivalence relation,

hence transitive. 0
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7.10.1 Determinacy - Some Sufficient Conditions
We are now in a position to put some of the preceding lemmas together

to prove the following determinacy result.

Theorem 7.8: A persistent, commutative schema with the prefix
property is determinate if it is conflict-free.

Proof: Suppose & and y are I-computations. If both are infinite, they
are equivalent and we are done. So suppose that x is finite and no longer

than y. Suppose r=aja, a, and y=blb2 bn . We will find a sequence

of I-computations, Tys Tqs , x s such that Ty is dadep indistinguishable

from x and the prefix of length i of z, is ble"'bi.

Letting x.=x, we have the basis for our inductive argument. Suppose we

0
have I-computation T 4 satisfying the above conditions. We know that
xi_l:blb2 bi—lcici+l . Sinc~ blb2 bi—lbi i3 the prefix of an

execution sequence, y, which is consistent with x, and hence with T 1>

Lemma 7.5 ensures that bi occurs among the cj's. Suppose e is the first

q ‘e ce e .
such occurrence. By Lemma 7.7, blb2 bi~lbicici+l Cr-1%+1 c, 6 is a

control sequence which is dadep indistinguishable from Ty By the

1
transitivity of dadep indistinguishability, this sequence, which we shall
call Z: is also dadep indistinguishable from x.

Now consider xn=blb2 bn' If y is longer than x, blb2 bnbn+l is in
violation of the prefix property. By hypothesis, x was no longer than y.

Hence, X Y- Since dadep indistinguishability implies equivalence, xzy,

which is precisely what we needed to show determinacy. 0
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S P Determinacy - Retrospect

If the reader followed the last proof carefully, he will note that
the result is even stronger than we stated. Persistence, commutativity,
the prefix property, and conflict-freeness not only guarantee that
I-computations are equivalent in our sense; they imply that all finite
I-computations are dadep indistinguishable, mere "permutations” of ome
another.

Persistence, commutativity, conflict-freeness and the prefix
property are sufficiently strong that even if our model is extended to
allow subroutine-like use of schemata by other schemata, determinacy
is preserved. We formalize how schemata can be so extended and outline

the proof of determinacy in Appendix I.
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8.1.1 Conflict and Non-determinacy - Introduction

We have seen that for persistent, commutative schemata with the prefix
property, conflict-freeness is sufficient for determinacy. We will now
turn to a class of schemata for which conflict-freeness is necessary for
determinacy. We do not investigate such schemata simply "because they
are there". Non-determinacy is generally something we wish to avoid, not
to guarantee. By studying how a local problem such as a conflict can
develop into a global problem of non-determinacy, however, we improve our
understanding of how parallel systems behave. This understanding may

help to circumvent non-determinacy in other classes of parallel systems.
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8.2.1 Paths in Dadep Graphs - Similarity

Paths in a dadep graph show how actions depend upon the initial
values and output values of operations. To gain some additional V
familiarity with the properties of paths in dadep graphs, we establish
a simple result about paths and similarity.

Recall that arcs from values to actions are labeled with numbers.
If an action is m-ary for some positive m, there are arcs into the
action with labels 1 through m. Arcs from operations to values are
unlabeled since there is precisely cne such arc, if any.

A path 7 in a dadep graph is a sequence of arcs ul,a2,' ',an
such that for 1<i<n, the node from which arc oy emanates is the node
to which arc a leads. Let us agree that the ith node on path 7 is
the node from which arc a. emanates, and the n+1°% (and final) node
on path 7 is the node upon which arc a terminates. We say that 7 is
a path from the first node of n to the last node of w.

We say that path ul=al,a2,"',am in dadep graph B, is simiar to
path w2=81,82,"',3n in dadep graph D, if allbof the following

ecnditions hold:
1) m=n. That is, the paths have the same length.

2)  For 1l<i<m, either a; and Bi are both unlabeled, or both have the
same label. It follows that two similar paths both must hegin.on
value nodes, or both must begin on actien nodes.

3) For l<i<mtl, the ith node on path LAY is similar to the i™ node on

th w,.
rath 7,
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We can relate similar paths to similar nodes by the following

straightforward but useful lemma.

Lemma 8.1: Let w_ =a.,o in dadep graph

15%95 2,"',am be a path to node n

1
D, . Node n, in dadep graph D2 is similar to ny if and only if there is
a path w2=81,82, ,Bm to n, in D2 which is similar to Ty

Proof: Since the final nodes on similar paths are similar, one half
of the lemma is trivial.

Suppose n, and n, are similar. If oy is a value node, o must be

the unlabeled arc from the operation o, of which n. is the output value.

1 1

Since n, is 'similar to ni, it must be the output value of an operation

2

0, similar to o,. Let Bm be the unlabeled arc from o, to n,.

2 1 2

Suppose ny is an action node. Then o must be the arc labeled i

from Vs
th

i7" input value of n,, must be similar to V- Let Bm be the arc labeled

the ith input value of n Since n, is similar to Nys Vo the

1’ 2

i from v2 to n,.

Working our way back in this manner, it is obvious that we can

construct m,=8,,8,, » 8 similar to m,. 0

Two corollaries follow easily from Lemma 8,1.

Lemma 8.2: If 0, and n, are similar nodes in dadep graphs Dl and D2,

then there is a node m,. similar to

and if m. is a node on a path to 5

1 0>

m, on a path ton

1 2°

are dadep graphs and n, is a node in D

Lemma g8,3: If Dl and D 1 1

2

which is not similar to any node in D2, then no node on a path from ny

is similar to any node in D2.
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8.3.1 Schemata - Some Additional Properties

Since the first determinacy result did not depend upon properties
other than those mentioned, we made no attempt to further limit control
sets. We now discuss some properties which lead to behavior more in
line with the systems we mentioned in the introduction.

In a speed-independent system, one can make no assumptions about the
length of time between the reading of an m-tuple of values and the
completion of the processing thereon. If a control mechanism cannot
block termination events, they must be anticipated at any time after
the corresponding initiation event has occurred.

To make this precise, we say that a schema has the immediate property
if, whenever x is the prefix of a control sequence and either o is an
operator such that xo is well-sequenced or d is a decider such that xdT
and xdF are well-sequenced, then xo or xdT and’xdF are prefixes of

control sequences.

Sequential schemata, as we have noted, have exactly one I-computation
for each interpretation I. We generally expect parallel schemata to have
more than one I-computation, but we would hardly expect them to have none
at all. However, there are data flow graphs for which {ddT} satisfies
all the conditions necessary to qualify as a céntrol set. It is even
persistent, commutative and conflict-free, and it has the prefix
property. Any interpretation I which specified a false outcome for d's
predicate would have no I-computations.

Even the fact that a control set contains an I-computation for each

interpretation I is not sufficient to guarantee reasonable behavior.
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For example, {aang,EBQdF} could be such a control set for some data flow
graphs. If we view the sequence of events as occurring through time,
however, we see that once da has occurred, somehow d cannot terminate
with outcome false. This runs counter to our iIntuition about how control
mechanisms and decisions interact.

To preclude some of this pathological behavior, we define a property
called completeness. A schema is complete if, for every prefix x of a
control sequence and for every interpretation I with which x is consistent
there is an I-computation xy. In a complete schema, it is impossible to
"run into a dead-end" under any interpretation.

It might'seem that a schema with the immediate property would always

be complete, for whenever xd_, is a prefix, so is xdF. Unfortunately,

T
this is not enough to guarantee completeness. For example, the control
set a(dTaga)*dF has the immediate property, but, having no infinite

sequences, there is no I-computation for the interpretation in which d's

predicate is always true.
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8.4.1 Productivity - Overview

We now turn to a very Important notion, that of productivity.
Productivity formalizes the concept of an event in a computation
"accomplishing something useful." Initiating an actor in the course of
a computation can be justified in a number of ways (as one can
empirically verify by asking a programmer, "Why is that Instruction
in your program?") At the most trivial level, an actor is initiated
to carry out a particular transformation or test. At a more
satisfactory level, one can explain how the output of an operation
will be used by subsequent actors, or what will happen if a decision
comes out true. Best of all, the effect of an action on the iﬁput/
output behavior of the schema could be pointed out. From a modular
point of view, only the last justification is truly relevant.

We will define, in several cases, what we mean by the occurrence of
an actor being productive in a sequence. The cases are rather involved,
but the fundamental ideas are straightforward. For notaticnal
convenience, we define a schema output value to be any value in the
dadep graph of a finite control sequence labeled with the name of some
schema output location. In other words, a schema output value
corresponds to the final contents of a schema output location.

An occurrence of an operator which is not an ldentity operator will
be productive in a finite control sequence if the value it produces is
a schema output value, or influences a schema output value, or influences
a decision in the sequence. A decision will be productive if there are
two non-equivalent control seiﬁences between which the decisicn outcome

arbitrates. An occurrence of an identity operator in a finite sequence
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is productive if the location to which the value is moved is a schema
output location which is subsequently unchanged, or is the input location
of a subsequent productive actor initiation. After formalizing these

ideas, we will philosophize some about their meaning.

8.4.2 Productivity - Formal Definition

Suppose w=xaygz is a finite control sequence where the indicated
occurrence of uninterpretad cnirator c¢ is the jth such in w. Let D be the
dadep graph of w, and let v be the value which is added to D when ¢

. .th . .th R .
terminates for the j time. We say that the j occurrence of ¢ In W is
productive if v is a schema output value of D, or lies on a path to a

schemz output value of D, or lies on a path to a decision in D.

Suppose w.=zdz. and wifxaz

1 1 are control sequences where the indicated

2

occurrences of decider d are the jth such in w. and w,. We say that the

1

jth occurrence of d is productive for Wy and w, if w, and w, are not

equivalent, there exist jth terminations of d in w, and w, having

1

opposite outcomes, and all other decisions in wy and w, are consistent.
Finally, suppose w=x5ygz where the indicated occurrence of identity

operator ¢ with output location & is the jth such in w. Let D be the

dadep graph of w. We say that the jth occurrence of c in w is productive

if any or all of the following hold:

1) 2 is a schema output location and no operator terminating in z has
output location 2. (That is, ¢ moves a value to a schema output

location where it remains.)

~y . iz of the form z1532§23 where the indicated occurrence of operator

b is productive in w, & is an input location of b, and no operator
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terminating in .y has output location 2. (That is, the value moved
to location £ is subsequently used from there by a productive

operator.)

3) 2 is of the form zlaz where d is a decider which has £ as an input,

2

and no operator terminating in 3, has output location 2. (That is,

1

the value is moved to a location from which it is used by a decision.)

8.u4.3 Productivity - What Does it Mean?

The definitions of productivity just given probably look mysterious
at best, but once understood, they are quite natural. For example, our
definition of decider productivity follows from the common-sense
principle: Don't ask questions if you don't care about the answers.
This translates into ocur requirement that under some circumstances, the
answer to just 1 question determines which of two non-equivalent
computations take place. An example might help to clarify this point.

Consider the following program and tabular representation of the output.

input ( X ) p ( X ) g ( X ) OUTPUT
ifp (%) T T £(X)

then if q ( X ) then X « £ ( X ) else X+ g ( X ) T P g(X)

else if q ( X ) then X « £ ( X ) else X+ g ( X ) F T £(X)

output ( X ) F F g(X)

From the second and third lines of the table summarizing the
behavior of the program, it can be seen that if p(X) is true, the
output may be g(X), and if it is false, the output may be f(X).

However, we do not consider the occurrence of p in the sequences
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5pTinff and ﬁpFaqTég productive because the sequences are not ccnsistent
about the decision made by q. There are no sequences for which p is
productive which is probably in line with the reader's intuition about
the usefulness of the test p(X) in the program. Our definition would
find productive occurrences of q, however, which is again what one would
expect.

The other forms of productivity are alsc grounded in common sense
principles. They can be paraphrased, "Don't generate values you aren't
going to use!" and "Don't move a value somewhere unless you need it

there!"

8.5.1 Productivity of Schemata - Formal Definition

Knowing what it means for an occurrence of an actor to be productive
in sequences, it is easy to extend the notion of productivity to
schemata. In fact, there are several ways in which we could extend t:ue
definition, and we shall mention these briefly after our definition of
weakly productive schemata.

A schema is said to be weakly operator productive if, for every
prefix xo of a control sequence, there is a finite control sequence
zoy in which the indicated occurrence of operator o is productive.

A schema is said to be weakly decider productive if, for every
prefix xd of a control sequence, there are control sequences xayl
xayQ for which the indicated occurrence of decider d is productive.

A schema is said to be weakly productive if it is both weakly

operator productive and weakly decider productive.
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8.5.2 Productivity of Schemata - Discussion

In plain English, a schema 1s weakly productive if it does not
initiate actions which cannot be useful. We have called this weak
productivity because it is possible to impose much stronger conditions.

For example, we could define a schema to be strongly operator
productive if, for every prefix xzo of a control sequence, the occurrence
of o is productive in every finite control sequence xoy.

Analogously, we could define a schema to be strongly decider
productive if, for every prefix xd of a control sequence, the occurrence
of d is productive for all control sequences xzdy and xdz in which the
occurrences have opposite outcome. Or, we could require that for each
control sequence xdy, there exists a control sequence xdz in which the
occurrence 1s productive. Or, we could require that there exist a
control sequence xdy such that the occurrence of d is productive for all
control sequences xdz in which the termination has opposite outcome.

Putting these variations on operator productivity and decider
productivity together, we could obtain many classes of productive schemata.
We will concentrate on weakly productive schemata because they are the
largest of the classes and seem the most natural for encouraging parallel-
ism: One can Initiate actors if there 1s a possibility they will be useful.

Before leaving this discussion of productivity, we would like to make
one observation. The Karp-Miller formalism for parallel schemata, because
of the stronger form of equivalence and the way all actors alter memory,
are inherently "very productive'. We feel that this quality contributes
substantially to the cleanness of thelr mathematical results. We pay for

greater generality with more complicated proofs.
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8.6.1 Schemata - Repetitions

The properties we have previously defined were ones that we found
natural or desirable for a schema to possess. The next two properties
are introduced less because they are natural than for the reason that
they make the study of schemata more tractable. For example, the
absence of these properties is intimately involved in Paterson's proof
of the undecidability of the equivalence problem. The properties
involve the noticon of doing the same thing more than once in the course
of a computation.

A sequence x is said to be free if no dadep graph of a prefix of x
contains distinct, similar decisions. A sequence x is said to be
liberal if no dadep graph of a prefix of x contains distinct, similar
operations. A sequence 1s said to be repetition-free if it is both
free and liberal.

A schema is said to be free [liberal, repetition-free] if all of
its control sequences are free [liberal, repetition-free.] One nice
feature of free schemata is that all control sequences are execution
sequences. This is easily seen if one recalls that a control sequence
which does not contain similar decisions with opposite outcomes 1s an
execution sequence. Since free sequences do not contain similar
decisions at all, they cannot have any with opposite outcomes. When
dealing with free schemata, then, we will use the terms control sequence

and execution sequence interchangeably.
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8.7.1 Weakly Productive Schemata - A Preliminary Result

As an example of the intuitive appeal of weakly productive schemata, we
prove a straightforward theorem. The proof will introduce a useful proof
technique for productive schemata.

Suppese we define a reduced sciema to be a schema for which every
actor in the data flow graph 1s used in at least cne control sequence. We
will show that two free, determinate, reduced schemata cannot be equivalent

if they employ substantially different functions or predicates.

Theorem 8.4: Let Sl and 82 be free, weakly productive, reduced,

determinate schemata. Sl is equivalent to 82 only if PREDICATE NAMES) =

PREDICATE NAMES2 and, except possibly for the identity functic: name,

FUNCTION NAMESl = FUNCTION NAMESQ.

Proof: Suppose uninterpreted operator o of Sl has function name f

and £ ¢ FUNCTION NAMESQ. Sl is reduced, so there is a control sequence in

which o occurs, say xoy. Since Sl is weakly productive, there 1is a finite
control sequence xoZ in which the occurrence of o is productive. Because

Sl is free, xoz is an execution sequence. Suppose the operation o, which

corresponds to the indicated occurrence of o lies or & path to a schema

output value in the dadep graph of xoz. Since o, has function name I, no

operation in a dadep graph of a control sequence from §, could be similar

to 0 By Lemma 8.3, it follows that no dadep graph of a control sequence

of S, could contain a schema output value similar to that to which o

2

1

leads. Hence, no sequence from 82 could be equivalent to 03,

Since 0, cannot lie on a path to a schema output value if the

schemata are to be eguivalent, it must be that o, lies on a path to a

1
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decision dl in the dadep graph of xoz. We can write xoz as szlaz2,

where the action corresponding to the indicated occurrence of d is dl'

By the weak productivity and freeness of Sl, there exist execution

sequences x5zlavl and xazlEUQ for which the occurrence of d is productive.

By definition, the only inconsistent decisions in these sequences are the

indicated occurrences of d. Therefore, there is an interpretation IT in

which the indicated cccurrence of d is true and which is consistent with

all other decisions in both sequences. Let I_ be identical to I,, except

F T

at the outcome of d. One of the sequences is an I -computation, and the

T

other is an IF—computation.

If S, has no IT-computations, then Sl and S, are obviously not

2 2

equivalent schemata. So suppose W is an IT-computation of S2. We

claim that w is also an IF computation, for, if not, it must contain a

decision similar to dl having true outcome. But dl lies on a path from

o, and no dadep graph of a sequence from S, can contain an operation

1 2
similar to 0 By Lemma 8.3, neither can it contain a decision similar
to dl'

Thus, w is both an I_-computation and an I_-computation. Since

T F

szlavl and xazlavz were not equivalent, w is equivalent to at most

one of them. It is therefore consistent with but not equivalent to the

other, so S, and 82 cannot be determinate and equivalent.

1

Exactly the same argument applies if there is a predicate name in

PREDICATE NAMESl - PREDICATE NAMES,. 0
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8.8.1 Productivity - Undecidability
The reader may have foreseen that productivity is '"too good to be
decidable.”" In fact, the proof that productivity is not generally
decidable follows easily from the unsolvability of the equivalence problem.
Suppose we take two m-input n-output Paterson schemata whose
equivalence we would like to determine. As in the proof of the
undecidability of the determinacy question, we can assume ACTORSl and

ACTORS2 are disjoint. Since the schemata have the same number of input

locations and output locations, we can form, as before, a composite data
flow graph by identifying the input locations of the schemata and the
output lccations of the schemata.

Let p be a unary predicate name which is not in PREDICATE NAMESl u

PREDICATE NAMES,, and let f be a O-ary function name which is not in

2’

FUNCTION NAMESl u FUNCTION NAMBSZ. Add to the composite data flow graph

a memory location which is the output location of a new operator o with
function name f, and the input location of a new decider d with predicate
name p. Form the composite CONTROL by prefacing each sequence in CONTROLl

with BgadT and each sequence in CONTROL2 with Bgad We claim 4 is

-
productive if and only if S

1 and 82 are not equivalent. This is true

because d is productive if and only if there exist sequences Bgad and

1
Bgaszz which are not equivalent but are consistent except for the outcome

of d. This obviously means that zy and %, are consistent, non-equivalent

sequences, that is, Sl and 82 are not equivalent.
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8.9.1 Determinacy and Conflict -~ Some Additional Results

For the remainder of this chapter, we will investigate a class of
schemata for which conflict-freeness is necessary for determinacy. We
are not suggesting that the properties which cause this problem with
determinacy are desirable. On the contrary, we are much more concerned
with ensuring determinacy than with precluding it. By understanding how
conflict leads to non-determinacy, however, we are in a better position
to avoid non-determinacy in schemata.

We begin by establishing a number of lemmas concerning repetition-free
schemata in which there are no identity operators. Let us fix some such
schema, S. TFor notational convenience, we will use DADEP(x) to denote
the dadep graph which is determined by the data flow graph of S and a
well-defined sequence x. If X0 Y0, is a sequence which is well~defined
if there 1s a path

for S, then we say that event o. influences event o

1 2

in DADEP(xclyd2) from the action corresponding to the indicated occurrence

of o, to the action corresponding to the indicated occurrence of Oye

The lemmas which follow share a great deal of notation. We shall
introduce the common notations here to avoid the necessity of repeating
the definitions with each lemma.

Let za and xo be prefixes of control sequences of S such that za and

xo are in conflict. Let wl=x59y5 and w2=x95y5 be prefixes of control

sequences of S. Let a, be the action in DADEP(wl) corresponding to the

indicated occurrence of a, and let a, be the action in DADEP(wz) which

2

corresponds to the indicated occurrence of a in W, Similarly, let bl

and b, be the actions in DADEP(wl) and DADEP(wQ), respectively, which

correspond to the indicated occurrences of b.
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We shall prove the following lemmas.

Lemma 8.5: ay is not similar to a,.

Lemma 8.6: b is influenced by a in w, iff b is influenced by a in w

1 2°

Lemma 8.7: b, is similar to b, iff a does not influence b in w

1
Lemma 8.8: If S is commutative, there is no prefix xgaz of a control
sequence of S such that DADEP(zoaz) contains an action similar to a;, and

no prefix xagz of a control sequence such that DADEP(xagz) contains an

action similar to a,-

Lemma 8.9: If xagz and xgaz are control sequences of S, they are

consistent.

Proof of Lemma 8.5 (al is not similar to 32‘):

Since za and xo are in conflict, m, the output location of operator o,
is an input location, say the kth, of actor a. Because za is well-
defined, m must be the label on some value v in DADEP(x). Since zo is
well-defined, there must be an operation o' in DADEP(x) to which this
termination of o corresponds. In DADEP(xo), a value v' is added as the
output value of o', and label m is removed from v to become the label on
v'. If v and v' were similar, v would have to be the output value of an
operation similar to o'. But this operation and o' would be distinct,
similar operations, contrary to the hypothesis that S is repetition-free.
Therefore, the KR input value of a, in DADEP(xa) is not similar to the

th

k" input value of a, in DADEP(xQE). It follows that ay and a, cannot be

similar. 0
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Proof of Lemma 8.6 (b is influenced by a in w, iff b is influenced by

a in w2.):

Note that except for the order of occurrence of a and 0, W, and w, are

identical. If the indicated occcurrence of a in wy is not terminated, then

neither is the occurrence of a in Wy and b is uninfluenced in both

sequences. If y=c 'cn and cy is the termination of a in w,, then cs

12 12

is also the termination of a in W, Tt is easy to see that the events

influenced by s in w, are the same as those influenced by c; in W,

1

from which the lemma follows. 0

Proof of Lemma 8.7 (bl is similar to b2 iff a does not influence b

in w..):
in w, )

We split the proof into halves. In both cases, we assume the

contrary and derive a contradiction.

Suppose bl is similar to b2 and there is a path from a, to bl' We

1

can assume that y=c 'cn is the shortest sequence after which such

1%2
similar, influenced initiations occur. The nodes on the path in DADEP(wl)

from a, to b, all correspond to events occurring in y. Let cj be the

last operation termination to which a node on the path corresponds.
(There must be at least one operator termination in y since a must

.) It follows that b, takes as an

terminate if there is a path from a ]

1

input value the output value of the operation which cj terminates. It is

also true that b2 takes as an input value the output value of the operation

which cj terminates in Wy Since bl and b2 are similar, these operations

must be similar. By Lemma 8.5, we know that a; and a, are not similar,

so cj cannot be the termination of the occurrences of a in wl and w2.
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It follows that cj must be the termination of an operation initiated in y,
say by event Cs - Both cj and c; are influenced by a in wl, and we have
concluded that the operation corresponding te s in DADEP(wl) is similar
to the operation corresponding to ¢y in DADEP(wQ). This contradicts our
hypothesis that y was the shortest sequence after which such initiations
could occur. We can conclude that if bl and b2 are similar, then b is

not influenced by a in w, .

To obtain the other half of the lemma, assume that b, and b2 are not

1

similar, that there is no path from a, to bl in DADEP(wl), and that

y=clc2' c, is the shortest sequence after which these conditions can
arise. If b were a 0-ary operator, bl and b2 would be similar, so we
can assume that b has at least one input location. The function names
or predicate names on actions bl and b2 are, of course, the same, so it
.th |, s s e s .th .

must be that the i input value of bl is dissimilar to the i~ input
© value of b2 for some i. Let m be the ith input location of b. If no
operator terminating in v, has output location m, then m must be a

. . .th .th . .
schema input location, say the j ', and the i input value of bl is
contains exactly the same termination

events as does w,, so the ith input value of b2 would also be the jth

the jth initial value. ‘Sequence v,
initial value, contrary to the assumption that the ith input values of bl
and b2 are dissimilar. So some operator terminating in wy has output
location m. Suppose the kth occurrence of operator ¢ in wy is the last
operator with output location m to terminate in w - It follows that the
h

output value of the operation in DADEP(wl) corresponding to the kt

occurrence of c is the ith input value of b It also follows that the

lo
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output value of the operation in DADEP(wQ) corresponding to the Kt

. . th
occurrence of ¢ 1s the 1
values are dissimilar, so must be the
th . ... ..
matter where the k initiations of c¢
hypothesis is contradicted.
initiation of ¢

Case 1): The kth

initiation of ¢ in w2 must also occur

operations would be similar, contrary

Case 2): The k™ initiation of c

of a.

' th . ... ..

Case 3): The k initiation of ¢

It follows that y is not the shortest
conditions can arise.

We conclude that if bl and b2 are

input value of b2.

This contradicts the assumption that there is no path from a

h

Since the ith input

operations. We now show that no

take place in w, and w,, some

1

in w The kO

1 occurs in prefix x.

in x, and the corresponding
to hypothesis.

in wl is the indicated occurrence

1 to bl'

in w

1 (and w2) is event c

h in y.

sequence after which the hypothesized

dissimilar, then b is influenced by

[

Proof of Lemma 8.8 (If S is commutative, there is no prefix xgéz of a

control sequence of S such that DADEP(xgéz) contains an action similar to

aj, and no prefix xégz of a control sequence such that DADEP(xagz)

contains an action similar to a2.):

We prove only the first half of the lemma.

by similar arguments. We assume that

sequence of S such that DADEP(xoaz) contains an action a

The second half follows
there is a prefix xgaz of a control

3 similar to al.

We =low that rno matter where the initiation of the action occurs, we can

derive a contradiction.
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Case 1): The initiation event to which ay corresponds occurs in prefix

x. Then xa is the prefix of a control sequence containing a repetition,
contrary to hypothesis.

Case 2); The initiation event to which ay corresponds is the indicated

occurrence of a in xoaz. By Lemma 8.5, a; is not similar to ag.

Case 3): The initiation event to which a, corresponds takes place

after prefix xoa. We can assume that ag corresponds to the initiation of

b in xgayﬁ. Let us hereafter refer to action a, as action b2 sSo we can

make use of the notation we have used in the previous lemmas, By

assumption, b2 is similar to a,. Since S is commutative, w

1 =x59y5 is also

1

the prefix of a control sequence.

Case 3a): b is not influenced by a in wy. Lemma 8.7 implies that b,

is similar to b2. Since b2 is similar to a bl must be similar to a

l’
contrary to the hypothesis tbat S is repetition-free.

l’

Case 3b): b is influenced by a in w There is therefore a path from

l'
ay to bl in DADEP(wl). By Lemma 8.6, there must also be a path from a, to

b2 in DADEP(wz). Since b, is similar to a;, it follows from Lemma 8.2

that there is an action similar to a, on a path to a

5 in DADEP(wl).

1

Actions on a path to a,, however, would have to correspond to events

l’
occurring in prefix x. Prefix xoa would therefore contain a repetition

of action a,, contrary to hypothesis.

It follows that no action in DADEP(mQEz) can be similar to a -
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Proof of Lemma 8.9 (If xaoz and xgéz are control sequences of S, they
are consistent.):
. . s .th
We assume the contrary and derive a contradiction. Suppose the j
occurrence of decider b in xaoz is inconsistent with some decision in xgaz.
.th , . . .. . - . .
Case 1)}: The j initiation of b in xaoz takes place In prefix x.
- . .th . . . . . -
The decision corresponding to the j initiation of b in zoaz would then
be similar and would have the same outcome. No other decision in xgaz
could be similar unless there were a repetition, so no inconsistency is
possible.
th o .. . . - . e s
Case 2): The j initiation of b in xaoz is the indicated occurrence
of a. By Lemma 8.8, there is no decision in xgéz which is similar.
Therefore, there is no inconsistent decision in xgéz.
.th . . . . . - .
Case 3): The ] initiation of b in xaoz takes place after prefix

. = - = . s .th
xao. Let us write xaoz as xaoyby' to indicate the j occurrence of b

and to match our previous notations.

Case 3a): b is not influenced by a in xégyBy'. By Lemma 8.7, the
decisions corresponding to the occurrences of b in xagyﬁy‘ and xgéyﬁy'
are similar and they have the same outcome. As in the first case, no
inconsistency can arise unless there is a repetition.

Case 3b): b is influenced by a in xaoyby'. This means there is a

path from a. to bl in DADEP(xéQyB). By Lemma 8.8, no prefix of xgaz has

1

a dadep graph containing an action similar to a By Lemma 8.3, there

1
can bw no decision in xoaz similar to bl’ hence no decision inconsistent

with it.

We conclude that xaoz and xoaz are consistent. D
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With these lemmas to build upon, we can now show how one kind of

conflict leads to non-determinacy.

Theorem 8.10: Let za and xo be prefixes of a complete, persistent,
commutative, repetition-free, weakly productive schema with no identity
operators. If xa and xo are in conflict, then the schema is not

determinate.

Proof: Suppose xa and xo are in conflict. We will show that
consistent, non-equivalent execution sequences exist, demonstrating
that the schema is not determinate. By the persistence of the schema,
xgé is a prefix of a control sequence.

Case 1): Actor a is an operator. Since the schema is‘weakly
productive, there is a control sequence xgaz in which the occurrence of
a is productive.

Case la): xoaz is finite and there is a path in DADEP(xgaz) from
the action a, corresponding to the indicated occurrence of a to some
schema output value, say that value labeled by schema output location m.
Since the schema is commutative, xagz is a control sequence and, by Lemma
8.9, it is consistent with xgaz. By Lemma 8.8, there is no operation in

DADEP(zaoz) similar to a By Lemma 8.3, no value in DADEP(zaoz) is

o
similar to the value in DADEP(xoaz) with label m. Thus, zaoz and xoaz

cannot be equivalent. Since the schema is repetition-~free, these are

consistent, non-equivalent execution sequences.
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Case 1b): zoaz can be written zoayby' where the indicated initiation
of decider b is influenced by a. Appealing the the weak productivity of
the schema, there are control sequences vl=x95yﬁzl and v2=x95y522 for
which the occurrence of b is productive. Let Ip be any interpretation in
which the decision corresponding to the indicated occurrence of b is true,

and which is consistent with all other decisions in vl and 02. Let IF be

identical to 17 except at the outcome of the decision corresponding to b

which IF specifies as false. Since the schema is complete and xég is

consistent with I, , there is an IT—computation xaou. We claim xégu is

T
also an IF—computation, for, by Lemma 8.8, the dadep graph of any prefix
of xégu can contain no operations similar to 3, Since a, is on a pafh to
the only decision about whose outcome IT and IF differ, it follows from
Lemma 8.3 that there is no similar decision in xagu. Since vy and v, are

not equivalent, xaou is equivalent to at most one of them, but is consis-

tent with both. Therefore there is a non-determinacy.

Case 2): Actor a is a decider. This is virtually identical to case

1b, so we omit the proof. O
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8.9.2 Determinacy and Conflict - Continued

Prefixes xa and xb of control sequences were also said to be in
conflict if a and b were distinct operators with the same output location.
We will show that this kind of conflict can also cause non-determinate
behavior. Many of the arguments we use are virtually identical to those
in the case of conflict of the form xa and xo. We will therefore go into

less detail in the following proofs.

Lemma 8.11: Suppose xab and xba are prefixes of control sequences in a
commutative, repetition-free, weakly productive, complete schema with no
identities. Suppose b is productive in control sequence zabz. If xa and

xb are in conflict, then the schema is not determinate.

Proof: Let & be the memory location which is the output location of

both a and b. If value vy in DADEP(xab) with label & is similar to the

value v, in DADEP(xba) with label &, there is clearly a repetition in xab.

For the same reason, there can be no input value of an action in the dadep

graph of a sequence with prefix zba similar to ] since a's termination

removes the label from a value similar to v,- Analogously, no action
after prefix xab can have an input value similar to V,-

As in Lemma 8.7, it can be seen that the actions corresponding to the
indicated occurrences of c in xabyc and xbayc are similar if and only if

there is no path from v. to the action in DADEPGBgEyE). From this, as in

1
Lemma 8.9, it follows that xabz and zbaz are consistent. Since b was, by
hypothesis, productive in control sequence grabz, the same arguments used

in Theorem 8.10 apply and a non-determinacy can be shown to exist. O
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The last lemma shows that conflicts of the type Xa and Zb cause
trouble when b is productive. We now show that conflicts of this type

imply the existence of conflicts involving productive operations.

Lemma 8.12: Let xa and xb be conflicting prefixes of a persistent,
commutative, weakly productive schema with the prefix property and the
immediate property. Either there exists a conflict of the form vo, ve,
or there exist sequences vcoz and vocz in which ¢ is productive and vc
and vo are in conflict.

Proof: We can assume, without loss of generality, that a initiates
before b in prefix x, say x= x axQEx Since the schema is weakly

1 3’

productive, there is a finite sequence xlaxQEz in which the occurrence

of b is productive. If a does not terminate in 2, then, by the immediate
property, x15x252§ is the prefix of a control sequence, in violation of

the prefix property. So we can assume both b and a terminate in z.

Suppese a terminates before b so z=z azQst. Let 32=clc2"'c

1= n’

Using the immediate property, persistence and commutativity, we can

"slide b to the left" as in Lemma 7.6. That is, x.ac. bz ac. ' ""be. " ‘c_z
= 17277111 -1 n 3

is also a control sequence for 1<i<n. From Lemma 7.7 , we know that the

sequences formed by moving b are dadep indistinguishable unless b reaches

a c; such that z ax, bz .ac.c """

180,bz, ac, ¢, ci—lci and xlabez ac.c Ci—lg are in

1-7172

conflict. This will certainly happen when b reaches a. But when it

first happens, we have a conflict of the type hypothesized in the lemma.
Sc suppose b terminates before a in z so that z=zl§zQ§z3. Since a

overwrites the location % written by b, b could not be productive in the

sequence unless some actor initiating in Z, has % as an input location.
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Let us write 3, as 2 where actor c has input location &. As above,
£

219427

a are prefixes

a can migrate left so that x 01

laXQDZIEZQlC and xlabezlgz

in conflict as hypothesized. 0

Putting the last two lemmas together with Theorem 7.8 ard Theorem 8.10,

we obtain the following major result.

Theorem 8.13: A persistent, commutative, complete, repetition-free,
weakly productive schema without identity operators which has the prefix
property and the immediate property is determinate if and only if it is

conflict-free.
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8.10.1 Theorem 8,13 - A Post-Mortem

Theorem 8.13 contalns a not inconsiderable number of conditions, and
the reader may question whether any schemata of interest can satisfy all
of them. To allay such doubts, we will review the nature of these
conditions.

Completeness, as we mentioned, 1s such a natural property that one
would probably not bother to point out that a schema model possesses it.
Practically any control mechanism which anticipates both outcomes of
decisions will automatically ensure completeness. Similarly, the prefix
property 1s generally satisfied by definition: finite control sequences
are defined to be those for which no further activity is possible. Thus,
completeness and the prefix property do not seriously restrict the class
of systems we can model.

Persistence and commutativity are natural properties for systems with
multiple, independent loci of control. These properties reflect practical
limitations on the ability of such systems to co-ordinate activity.
Commutativity might be viewed as accepting that if two events can occur
arbitrarily close together in time, it makes little sense to behave
differently on the basis of order of occurrence. Similarly, persistence
can be consldered to model the inability to cancel actlvity on
arbitrarily short notice. Of course, non-commutative and non-persistent
control mechanisms can be defined, and they may exhibit certain
advantages. We simply suspect that practical systems will tend to be

persistent and commutative.,
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Weak productivity, even though it is not generally a decidable
property, appears to be a desirable one in practical terms. The increase
of concurrency in computation should not arise solely from the introduction
of unproductive activity. We should point out that parallelism,
persistence, and productivity are occasionally at odds with one another.

A simple example of this is the case where we wish to perform some action
if either or both of two decisions are true. Parallelism encourages us to
allow the decislions to proceed concurrently. If one decision terminates
with true outcome before the other has even initiated, however,
productivity would incline us to cancel the other decision, whereas
persistence forbids cancellation. Clearly, some trade-offs between
parallelism and productivity must be made.

Whether Theorem 8.13 remains valid if identity operators are allowed
is not known. Using an extended notion of repetition-freeness which
prohibits use of an identity operator to restore the contents of a
memory location to a value similar to one it held earlier in the
computation (X:=X being a simple violation), we were unable to disprove
the theorem. However, certain of the lemmas we used to prove the

dd..

theorem certainly cease to apply. TFor example, sequences x:55§§EcT :

and y:éE@gEcTad for the data flow graph of Figure 8.1 are not consistent

F

since the decision corresponding to Cr in x is similar to the decision

corresponding to d_ in y. Thus, the analogue to Lemma 8.9 fails.

F

Although we suspect the theorem remains true nevertheless, a different

appreoach will be needed to prove it.
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bl

SCHEMA INPUTS = {X,2}

Figure ©.1 Data flow graph with identities for which conflict can

cause inconsistency
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Repetition-freeness and the immediate property are less pervasive than
some of the other properties mentioned, but they are by nc means unlikely
to be observed. The immediate property, like persistence and commutativity,
will tend to be present when there is considerable independence among locil
of control. Sequential schemata, fork/join formalisms, and Dennis-Fosseen
schemata always have the immediate property. Petri net and finite-state
centrols can easlly be checked for the immediate property.

Repetition-freeness in sequential schemata is decidable!l, and it
appears that t-counter transition systems as described in an appendix of
Slutz's thesis!® can be used to determine repetition-freeness in fork/join
controls, Dennis-Fosseen schemata, Petri net models in which the number
of tokzrs In the net is bounded, and finite state models In which the
number of "unterminated initiations" of actors is bounded. We know of no
decision procedure for repetition-freeness of unbounded Petri net or
state-machine controlled schio:ate, As cihcwn by Patersonll, the freeness
of an illiberal schema is not decidable.

Conflicts in sequential schemata and Dennis-Fosseen schemata cannot
arise. Conflict-freeness ior fork/loln, Petrl net, and finite state
controlled schemata is decidable.

Thus, the conditions in Theorem 8.13 are not so unusual or restrictive
as one might first suspect. The reader can verify that the various
implementations of our sample program in Chapter 3 are all persistent,
commutative, complete, repetition-free, weakly productive, and have the

prelfl o zooperty and the immediate property. Fortunately, they are also

conili at-free, hence determinate.

3
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9.1.1 Summary

Our state of knowledge about parallel processing is, at the moment,
rather primitive. In a way, this is not surprising. Individuals seem to
be incapable of consciously working on more than one thing at a time, so
we have less "introspective intuition" about parallel computation than we
do for sequential processing. Only recently have computer hardware and
software made parallel processing possible, and parallelism at the
instruction level is still not practical.

This dissertation has attempted to do some groundwork in parallel
processing. ‘Recognizing the lack of practical experience with parallel
control mechanisms, we have defined a very flexible model for parallel
computation. Many proposed control mechanisms can be cast in terms of
our model, allowing meaningful comparison of apparently diverse schemes.

Our definition of equivalence reflected a modular, input/ocutput
orientation. A schema is determinate if all the computations which
might be observed for a given interpretation are equivalent. Although
we noted that determinacy is not generally decidable, we showed that
persistent, commutative schemata with the prefix property are determinate
if they are conflict-free. Many control mechanisms which have been or
might be proposed are persistent, commutative, and have the prefix
property.

Since not all actors alter schema output locations, we introduced
the notion of productivity to formalize the way in which the occurrence
of an actor can ultimately affect input/output behavior. It was seen

that the rdéles of operators and deciders are quite different, supporting
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our decision to treat them as distinct actors as opposed to the hybrid
operations of Karp and Miller’.

We extended the concept of productivity to schemata, requiring, in
the weakest form, that no actor initiate unless it might be useful.
Such weakly productive schemata satisfied some intuitive properties
such as precluding equivalence of schemata which use different functions
or predicates.

Although weak productivity is not decidable in general, it can
usually be observed in "real programs". Programmers may not have our
formal notion of productivity in mind when they create programs, but in
the process of program development, instructions are added "for a
reason'. Generally, at least for good programmers, this satisfies our
requirements for productivity.

In the last chapter, we showed how conflicts can lead to non-
determinacy. Although conditions such as repetition-freeness are less
natural than others like completeness, the conditions for Theorem 8.13
are not unlikely to be met. This argues for models such as Dennis-
Fosseen schemata in which confiicts simply cannot occur. At the very
Jeast, 1t seems we should favor models where detection of conflicts

is uncomplicated.
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g9.2.1 Future Directions

We would like to see the issue of identity operators in Theorem 8.13
put to rest. We suspect that "non-repetitious' identity operators will
not alter the validity of the theorem. It may also be possible to relax
repetition-freeness which seems to be an unnecessarily restrictive
condition.

We share with other schematologists a desire to see a better model
for dealins with structured data such as arrays and lists. Considering
the complications introduced by the identity operator alone, we expect
that allowing "just enough Interpretation'" to handle structured data
without getting into problems of undecidability may be difficult indeed.

It would be worthwhile to look into treating mathematical properties
such as asscclativity and commutativity of actors. It seems that
commutative arguments can be modeled in a data flow graph by using the
same index on arcs from the Inputs which commute. (0f courze, eimilarity
would have to be redefined, but the changes appear straightforward.)
Assoclativity and distributivity might also be handled, but appear to
lead us toward the treacherous territory of rewrite rules.

Identifying classes of schemata for which equivalerce I decidable
1s an important goal. We would hope that such classes could be
characterized "syntactlically" to make the results relatively independent
of contreol mechianism. Schemata which are strongly productive in the

<

sense of Section 8.5.2 seem to be a promising start for such a class.
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These who hiave read this far in this dissertation will probably see
other directions for extending our worx. We hopce that the model and
results presented here may be of some use in continuing the study of

parallel systems.
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Appendix I Schema Systems

An m-input, n-output schema looks, from our modular viewpoint, very
much like an operator. Operators always have one output, whereas n can
be greater than one, but this is not an important distinction. A more
significant difference is that operators have well defined outputs for
all interpretations while schemata may have infinite computations for
some interpretations and therefore may not produce outputs.

There is a natural way of allowing a schema to use other schemata
as '""macro-operators". Data flow graphs can be extended tc allow m-input
n-output actors with associated schema names. We call this new form of
actor an appiication. When an application initiates in a control
sequence, we can consider that a new aetivation of the named schema is
created. The schema input locations for the activation are initialized
from the input locations of the application, and the activation can then
proceed concurrently with the sequence which spawned it. Of course, the
corresponding application termination event in the original sequence
cannot occur until the activation has completed. If the activation
does terminate and the application termination event is enabled, it can
occur, copying the schema output values of the activation into the
output locations of the application. In a practical system, the storage
used by the activation could then be deallocated.

In Figure 1.1, we show a simple example of the use of a schema as
a macro-operator. Applications appear as hexagons to distinguish them

from the other actors.




zZ
CONTROL ={dd ff,dd gg}
SCHEMA INPUTS ={Y}

SCHEMA OUTPUTSS={Z}

CONTROL={bhhaba," " "}
SCHEMA INPUTS={U}

SCHEMA OQUTPUTS={W,X}

er
)]

Main sequence bhh a
First activation of S ad d‘l‘ 3 £
Second activation of S d da g g

X ,Z W.,2

0°"1 0>72

Figure I.1 Use of a schema as a macro-operator
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The example also shows possible sequences of events from the main
schema and the two activations of schema S. Note that b, the termination
of application b, may have been enabled in the seqguence from the main
schema immediately after b initiated, but could not occur until the
first activation of S completed. An extended dadep graph shows the
effect of the sequences. Labels from the activations are subscripted
to avoid confusion. The reader may be able to reconstruct the dadep
graph step by step from the sequences shown and the description of the
way application initiations and terminations behave.

Once one understands the use of schema applications, it is easy to
see that there is, in principle, no difficulty in allowing schemata to
apply themselves, or to allow recursive applications of arbitrary
complexity. In this appendix, we will formalize the notions introduced
here and give a semi-formal proof that commutativity, persistence and
the prefix property are sufficlent to guarantee determinacy for such

schema systems.
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I.2.1 Definition of Terms

An extended schema S is a schema in which ACTORS may include
applications with associated names from a set of SCHEMA NAMES. If S
is an mi—input, n, -output schema name and a is an application with
schema name Si’ then the data flow graph of S contains arcs labeled 1
through m, from (not necessarily distinct) locations in MEMORY to a,
and arcs labeled 1 through ng from a to distinct locations in MEMORY.
The alphabet of events, I, of S contains an initiation event a and a
termination event a for each application a.

Terms such as well-sequenced, well-defined, persistent, commutative,
eontrol sequence, and conflict-free are analogous to the definitions for
ordinary schemata when applications are treated like operators. In
particular, xa and xb are in eonfliet if any output location of a is
also an input location of b, and similarly for zxa and xb.

A schema system S is a finite collection Sl? 82, e, Sk of extended

"',Sk} > SCHEMA NAMESi for 1<i<k. S, is the

schemata such that {S 1

13823
distinguished main schema. We can assume without loss of generality that
the alphabets of events of the extended schemata are pairwise disjoint.

Let I = L uL,u"" UL, be the alphabet of events of S.

k

The control sets of the extended schemata in a schema system
determine what we will be defining as the system sequences of the schema
system. As in the example, system sequences will comprise events from
the individual schemata. Since there may be several concurrent
activations of individual schemata, there must be additional structure

imposed on the sequence of events to indicate which events correspond to
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which activations. In the example, we used spacing to show this. We add
this structure formally by defining a mapping ¢:N-Nu{0} which specifies,
for each event in the system sequence, the index of an activation to
which it belongs. That is, Y(i)=j means the ith event in the system
sequence is from the jth activation. We reserve index 0 to identify the
initial activation of the main schema. The other indexes are important
only insofar as they uniquely identify activations.

If ©x is a sequence of events and ¥ is a mapping as described above,
we will write Ew(x,i) to denote the sequence formed by eliminating from
x all those events which are not mapped into i by %. When § is clear
from context, we may also write this as E(x,i). Since ¢ is defined to
identify activations of schemata, we expect E(x,i) to be the control
sequence of some extended schema, or at least a prefix, possibly empty,
of such a control sequence.

We need still another formalism to recapture the information present
in our example. Although ¥ determines the activation in which an event
occurs, we need to relate application initiations and terminations to
activations. We formalize this information by another partial mapping
z:N>N where, if the ith event in sequence x is an application initiation
or an application termination, (i) is the index of the activation it
initiates or terminates.

For our sample sequence, we can tabularly present some of these

formalisms as follows. It should be evident that x, ¥, and 7 supply all

the information we need to reconstruct our example.




E(x,0)

E(x,1)

E(z,2)

Figure 1.2

o
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Formalisms for describing a system sequence

13

14

N
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We formalize the notion of a system sequence as follows. (Throughout
this appendix, we will make no distinction between a function and the
restriction of that function to a subset of its domain. No serious
confusion should arise.)

A

Suppose x=a ' is a sequence in I, and ¥ and r are mappings as

1%2%3
introduced above. We say that x;y;z is a system sequence for S if and

only if the following conditions hold:

1) ¢(1)=0. E(x,0) is a control sequence of the main schema, Sl’ or is

the prefix of a control sequence of S (Thus, the first thing to

1
happen must.come from the main schema.)

2) Suppose Y(j)#0. Then there is in £ an initiation a; of an application
a with schema name Sk’ say the mth initiation of a in E(x,9(i)), such
that i<j, z(i)=¢(j), and E(x,yp(j)) is a control sequence of schema Sk
or a prefix thereof. Furthermore, if there exists an n#i such that
z(n)=y(j), then a_ must be the ™ termination of a in E(x,p(i)),
E(x,9(j)) must be a finite control sequence of S,» and, if t is the
largest integer for which $(t)=¢(j), then t<n. (As complicated as
this may appear, it simply states that activations are started by

application initiations, behave like the schema applied, and must

themselves terminate before the application termination can occur.)
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We can extend the familiar notion of prefixes to schema systems as
follows. Let x;y;¢ and z;y’';0' be system sequences of S. Then x;¥;Z
is said to be a prefix of z;y';;' if

1) =z is a prefix of z. Say x= a

a,a, 0
2) For all i,j<n, $(i)=¢(3) if and only if $*(i)=¢'(3).
3) TFor all i,j<n, if a; is an application initiaition or an application

termination, then £(i)=¢(j) if and only if ¢'(i)=y'(j).

If conditions 1 through 3 are met and z=#z, then we say that x=;¥;g

is a proper prefix of z;y';r'.

A system sequence x;¥;C is a control sequence of S if x is infinite,
or if x is finite and there is no system sequence z;¥';¢' of which x;¥;Z
is a proper prefix. In other words, a system sequence is a control
sequence if it runs forever or if it comes to a halt and no event can
occur in any activation. This last restriction resembles the prefix

property extended to schema systems.

If z;¥;L is a system sequence of S and if x is finite, we can outline
the definition of the dadep graph of x;¢;C by the following induction.

The dadep graph of A;¥;C consists of my initial values where m is the
number of schema input locations of the main schema, Sl' If X is the ith
schema input location of Sl’ the ith initial value has label L

In general, all memory location labels in our extended dadep graphs
will be subscripted with the index of the activation which uses them.

This will ensure that activations operate independently of one another.

Only application initiations and terminations will be able to influence
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labels from another activation and, by definition, there is no activity
within the influenced activation when the application events occur.

Suppose x:ala2"'ai_lai"' and we have already defined the dadep

graph of aja, ai~l;w;C'

If a. is the initiation of an application a with schema name Sk’ the

dadep of a "'ai;w;c is produced from the dadep graph of al"'ai_l;w;c

1
by adding labels to values as follows. Suppose X 1is the jth input location
of application a, and Y is the jth schema input location of schema Sk'
Then label Y_,., is added to the value bearing label X, , ... (In a more
z (1) Y(i)
formal definition, we would use an induction hypotheslis to guarantee that
Xw(i) exists as a label on precisely one value in the dadep graph of
T IR 1t to the re fi i suce issi

aja, ai_l,w,c. We leave 1t to the reader tc fill in such missing
details using the definition of ordinary dadep graphs as a model.)

If a. is the termination of an application a with schema name S

ka
then we know that E(alaQ-..ai~l’C(i)) is a finite control sequence of
S, . By the definition of control sequences of individual schemata, all

k

output locaticns of schema S, are assigned values by such an activation.

k
We form the dadep graph of al"'ai;w;c from the dadep graph of al"'ai_l;
V3¢ by moving and/or adding labels as follows. Suppose X 1s the jth
ocutput location of application a, and Y is the jth schema output location
of schema Sk' Then Xw(i) is removed from any value on which it may have
been a label, and Xw(i) is added as a label to the value with label YC(i)'
The cases where a; is an operator or decider initiation or termination
are directly analogous to the cases for ordinary dadep graphs. The only

difference is that they deal with labels subscripted with ¢(i). We

therefore omit the details for these cases.
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An interpretation for a schema system Sl,SZ,"',Sk simply defines a
single DOMAIN, functions for each function name in any schema Si’
predicates for each predicate rame in any schema Si’ and a set of
initial elements for the main schema Sl,

Assignment of elements to values, consistency, similarity and other
terms carry over to extended dadep graphs in a straightforward way. In
particular, two control sequences z;y;f and z;y';L' are equivalent if
both x and z are infinite, or if both are finite, and, for each output
location X of the main schema, the value labeled X0 in the dadep graph‘of
P3¢ is similar to the value labeled X0 in the dadep graph of z;¥';z’.

We say that a schema system S = Sl,SQ,"',Sk is persistent,
eommutative, conflict-free and has the prefix property if each extended
schemata Si is persistent, commutative, conflict-free and has the prefix
property. We can show that such a system is determinate by the same
techniques we used in the earlier proof for unextended schemata. Rather
than repeat almost verbatim the lemmas proved earlier, we will only
outline parts of the proof. It will hopefully be possible for interested
readers to use the formalisms we have introduced to fill in the details
with as much rigor as they wish.

Suppose z;y;Z and z;P';z' are I-computations of schema system S. If
both x and 3 are infinite, the computations are equivalent, and we are

done. We can therefore suppose that z=a "an and is no longer than

192
z=blb2"'bn"'. As before, we will find I-computations Z43¥03%,

‘e, and

xn;wn;;n equivalent to 2;¥;f such that xi=blb2 bici+l N

b1b2"-bi3*i;‘i is a prefix of z;y';z'.
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Letting xogwo;go be x;y3;L, the basls for our inductive argument is
established. Suppose xi—l;wi—l;ci—l has been found. This means that
_ ey I . _ . R ‘e
b4 ble bl—lbl and Lo q ble bl*lclcl+l c > wi h

_ ~ . . . sy .
U _l(l) = 0 = Y'(1). Additionally, for j,k<i, wi_l(]) wi_l(k) iff
Pesy = g oy . POy ot
P13 = 909 and ¢, ((5) = b, (k) Iff £'(3) = ¢k,
We consider the activation with index ¢'(i) in 2;¢':;z' in which event

bi occurs. Let v = EW'( blbg"'bi_l , Y'(1) ). We know that v is the

prefix of some control sequence and that bi can occur next in this

activation. We will proceed as follows. We will show that there is an

5 bi—l;wi—lszi—l in which prefix v has

activation with index jO in blb
occurred and for which bi can occur next. We will show that if bi does

not occur later in this activation, xi_lgw is the proper prefix

i-1°%1-1

of a system sequence in which b, does occur in the activation. Since
i

this would contradict our hypothesis that X is a control

~13¥i-155500
sequence, we will conclude that bi eventually occurs in the activation

with index jO. We will then argue that bi's occurrence can take place

immediately after prefix ble"'b without changing the

s-13%5o15%5 1

dadep graph of x. This will provide us with I-computation

NELSELTIE

xi;wi;gj, completing the induction.
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We begin by finding the activation of xi-l;wi—l;gi-l with index g
which is "analogous" to the activation of z;¥';z' with index ¥'(i). If

P'(i) = 0, let jo = 0. E ( b,b,”" b 0 ) = v because P'(1) = 0

s _ s
wi—l 172 i-1
_ V02N - ot . sy = .
and ¢, (1) = 0 and 9'(J) = ¢'(2) iff g, .(§) =9, (). If ¢'(i) =0,
then there is some k < i such that ¢'(k) = ¢'(i). Again, by our inductive
hypotheses, 9'(j) = g'(k) iff wi_l(j) = Ci~l(k)' In this case, let j, be
(k). In either case, we see that Ewi_l( blb2 bi—l > 3 ) = v,

}. That is, w is the rest of the sequence from

51

let vw = E (

T, a3
wi—l i~1 0

the activation of which v was the prefix.

We now argue that event bi must occur in w, for suppose not. Since

b, = E,,( bb," b, , ¥'(i) ), b, is enabled after prefix ». By the

wl

persistence of the individual schemata, vwbi would then be the prefix of
a control sequence. Suppose bi is the termination of an application.
(This is the most complicated case. Other types of events can be treated
in a similar manner.) Let kO be the index in 2z of the corresponding

application initiation event. That is, k, is the unique index for which

0

g'(ko) = $'(i). Since ko < i, we know by our induction hypotheses that

for all j < i, c'(ko) = ¢'(j) iff ;i_l(ko) = wi_l(j). Since bi was able

to occur when it 4id in z;¢';z', Ew'(‘ble..'bi«l ) g'(ko) ) must have

been a finite control sequence. But E ( b,b b

4 s Ty 1(kg) )
wi—l 2 i-1 i-1770
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is the same finite control sequence, so b, is free to occur in the
1

. 5 Cin i . i £ T
activation with index Iy after prefix ble b1~l’w1—l’cl—l Extend

wi—l and ci—l so that wi_l(n+l) = j. and Ci_l(n+l) = Ci_l(ko), and

0

consider x, bi;w

- ‘s is ey er.
_1b. If this 1s a system sequence, xl—l’wl—l’él—l

i-13%5-1

is clearly a proper prefix of it, vicolating the hypothesis that

x is a control sequence. We have shown that vwbi is

1-13%5 o350

EW ( I j0 ), the prefix of a control sequence. We know that
i1 . (

the activaticn indexed by Ci_l(n+l) has already terminated, so this cannot
prevent bi from cccurring. The only thing which could prevent

x from satisfying the definition of a system sequence

. .b.sy. L.
i-1 1’w1—l’él"l
is that some application termination event in iy terminate the

activation indexed by jb before bi can occur. But this would imply
that some proper prefix of wai is a control sequence, contradicting the
hypothesized prefix property of the individual schemata. Thus, we can
conclude that event bi occurs in w.

We have succeeded in showing that w = WG, where S bi' The

persistence and commutativity of the individual schemata allow us to

conclude that Ve wiw, is a control sequence or prefix thereof.
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Let @; = byby™ "Dy 19%%1%+1 “k-1%+1  °n
Let’¢i(j) = wi—l(j) for j < i and j > k
= ¥, (k) for j = i

= ¥, l(j—l) for i <<k

Let z.(j) = ci_l(j) for j <iand j > k
= g; (k) for § = i
=g, ,0G-1 | for i < j <k

In short, xi;wigci is the result of promoting the occurrence of event

), in activation j0 of By arguments similar to those

¥3o13¥5-13%50
used in showing that bi occurred in w, xi;¢i;ci is a control sequence.

The sequences observed in all activations except that activation indexed
by iy remain the same as in xi-15¢i—15§i—1' E¢'_1( T, 1 os 30 ) = W o w,

while Ewi( x5 Jg ) = v, w w,. Since the individual schemata are
conflict-free, it is not too difficult to see that vwlckw2 and vckwlw2

do exactly the same thing to the initial values of activation jo. (A
formal proof would follow the lines of the dadep indistinguishability
results for unextended schemata.) Therefore, the dadep graph of x;5%;38;

is virtually identical to the dadep graph of z. This means

i-13%3-13%5-1

- T TH is an I-computation equivalent to z.

1-13%5-1585.3 completing the

induction.




149

We can now conclude the proof as in the case of ordinary schemata.
That is, xn=blb2"'bn. If xn;wngcn is a proper prefix of z;9'0t, we
contradict the assumption that xngwngtn is a control sequence. If
T = E, and xn;wn;cn is a prefix of z;y';z', it follows that the
sequences are equivalent. (They need not be identical. That is, wn(i)
need not equal Y'(i). However, the restrictions that wn(i) = wn(j) iff
v'(i) = '(j) and En(i) = wn(j) iff £'(i) = ¢$'(j) make any differences
unimportant. That is, the sequences differ only on the '"mames" of the
activations.j

Since x;¥3;Z is equivalent to xngwngcn which is, in turn, equivalent
to z;¥';L', the original I-computations are equivalent, and the schema

is determinate. This concludes the outline of the proof.




ACTIONS
activatiorn
ACTOR3

actors, in Dennis-Fosseen
Schemata

alphabet of events, X
application

assignment of elements to
values

commutativity
completeness

conflict

consistency

CONTROL

control sets

dadep graph

dadep indistinguishable

data dependency graph
= dadep graph

data flow graph

data flow schemata =
Dennis-Fosseen
schemata

DECIDERS
DECISIONS

150

GLOSSARY AND INDEX

PAGE ITEM PAGE
139 Dennis-Fosseen schemata 38
16 depth 64
66 determinacy 79
27 DOMAIN 49
46 elements, of DOMAIN kg
46 enabled event,
46 in control sequence 83
139 in Petri net 35
53 equivalent sequences 78
135 equivalent schemata 79
22 events,

of data flow graph  26-28
38

in Petri net 35

27 EXECUTION SEQUENCES 717
135 firing rule of Petri nets 35
66 fork and join primitives 33

87 free interpretation 69
103 free schemata 109
88 FUNCTION NAMES 22
TH-T6 gates 39
47 Herbrand interpretation 69
L5-48 I-~computation 75
51-63 identity operator 21
89 immediate property 102
influence 113

51-63 initial element 49
18-26 INITIAL VALUES 53
initiation event 27

38 input location 22

99 interpretation 4g9-50

53 liberal schemata 109




ITEM PACL
links 38
locations 22
MEMORY 22
merges 39
modularity 16
onc-one interpretation 69
OPERATIONS 53
OPERATORS 22
outcome 19
output location 22
Paterson schemata

= flow chart schemata 13
path in dadep graph 100
persistence 85
Petri nets 35
PREDICATE NAMES 22
prefix L6
prefix property 85
productivity,

in sequences 105

of schemata 107-108
reduced schemata 110
repetition 109
schema 47
SCHEMA INPUTS 22
SCHEMA OUTPUTS 22
schema systems 135-149
sequence L6

ITEM
similarity,
of actions and values

of paths in dadep
graphs

states in Petrl nets
state machines

string

system seguence
termination event
tokens

VALUES

well-defined sequence

well-sequenced string

PAGE

72

100

43
Lo
141
27
35
53
ue
4b



e

152

BIOGRAPHICAL NOTE

John Parent Linderman was born in Eau Claire, Wiscomsin on September
18, 1946. He graduated from Regis High School, Eau Claire, Wisconsin, . >
in 1964. Mr. Linderman received an S.B. in mathematics at MIT in 1968.
He entered the computer science area of the Electrical Engineering

Department at MIT where he received an S.M. in 1970 and a Ph.D. in 1873. \
As an undergraduate, Mr. Linderman was a Sloan National Scholar.

He held an N3F Fellowship during the first three years of graduate ‘ i

study, and was a research assistant at Project MAC for the last two

years.

o

Mr. Lindsrman was employed as a programmer-analyst by the MIT
Office of Administrative Information Systems during the summers of
1965 through 1871, and on a part-time basis during the school years.
He became a full-time research assistant at Project MAC in the fall i
of 1971 and remained there until June, 1973. :

Mr. Linderman expects to join the staff at Bell Labs Raritan River
Center in New Jersey.

A
"
Iy




CS-TR Scanning Project
Document Control Form Date: A/ IS 17¢

Report# LCJ-TR-//I

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
k Laboratory for Computer Science (LCS)

Document Type:

KTechnical Report MR) L1 Technical Memo (TM)
0O other:

Document Information  Number of pages: 158(158 - imacES )

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or [0 Single-sided or
X[ Double-sided X Double-sided
Print type:

[0 Typewriter [[] offsetPress [ ] Laser Print
[ inkJet Printer X Unknown [] other.
Check each if included with document:

\,ﬂ DOD Form [0 Funding Agent Form JZ( Cover Page
] spine [0 Printers Notes [ Photo negatives
O Other:

Page Data:

Blank Pages sy page numben:

Photographs/Tonal Material py page numben:

Other (note description/page numben:
Description : Page Number:

EMAGE mA(‘? /!- ]SQJ wHFEO TITLE PAGE ol 15

(153 -158 ) 5<AM,C~T67\OL <0 U&MSG)

Scanning Agent Signoff:
Date Received: & //5 194 Date Scanned: IS8/ TE Date Returned: R /471

Scanning Agent Signature: W 7‘/ JGMA_4 Rev o/od DSALCS Form cetrform.vad




BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient's Accession No.

SHEET NSF-OCA-GJ34671-TR-111 .
4. Title and Subtitle 5. Report Date : Tssued
, Dacember 1973
Productivity in Parallel Computation Schemata 5.
7. Author(s) 8. gerforming Organization Rept.
John P. Linderman ®MAC-TR-111
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :

11. Contract /Grant No.

545 Technology Square, Cambridge, Massachusetts 02139 GJ-432
_ GJ-34671
12, Sponsoring Organization Name and Address 13. Type of Report & Petiod

Covered ¢ Interim

Associate Program Director Scientific Report

Office of Computing Activities -
National Science Foundation 14.
Washington, D. C. 20550

15. Supplementary Notes
Ph.D. Thesis, M.I.T., Department of Electrical Engineering

16. Abstracts 7
A general model for parallel computation is developed in three parts. Qne -pars, the

data flow graph, describes how actors which transform and test values are connected to
the locations in a finite memory. Another part, an interpretation, supplies information
about the contents of memory and the detailed nature of the transformations and tests.

The third part specifies how initiations and terminations of the actors are allowed
to occur. We define this in a general way, using a set of sequences of initiation and
termination events to model control. This allows us to prove results which apply to a
broad class of control mechanisms.

Our major results are analogous to a theorem of Karp and Miller. Their theorem de-
fines a class of schemata for which conflict-freeness is necessary and sufficient for dej
terminacy. We use a weaker notion of determinacy which depends only upon the final con-

tents of a subset of the memory locations. To establish necessity, we introduce the prop{
erty of productivity which expresses whether individual transformations and tests con-

i i ults of a computation
17. Key Words and Document Analysis. 17a. Descriptors

Program Schemata
Parallel Computation

Theory of Programs

17b. Identifiers /Open-Ended Terms

17¢c. COSATI Field/Group

18. Availability Statement 19.. Security Class (This 21. No. of Pages
i . . . . - Report)
Unlimited Distribution UNCLASSIFIED 153
A . A ., * |20, Security Class (This 22. Price
Write Project MAC Publications Page
UNCI.ASSIFIED
FORM NTIS-35 (REV. 3-72) 1JSCOMM-DC 14952-P72

THIS FORM MAY BE REPRODUCED




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94




