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ABSTRACT 

In [6] Rabin defines Automata on Infinite Trees, and the body of 
that paper is concerned with proving two the?rems about these automata. 

The result" we consider in the first chapter says that there exists 
an effective procedure to determine, given an automaton on infinite 
trees, whether or not it accepts anything at all. We present a new 
decision procedure which is much simpler than Rabin's since we do not 
use an induction argument as he does. We show in Theorem 1, the 
main theorem of Chapter 1, that if (It is an automaton on infinite 
trees, then T(Ul.) (the set accepted by Vt) is non-empty if and only 
if there exists a finite tree E and a run of Q1. on E of a particular 
type. This latter condition is equivalent to saying that the set 
accepted by a particular automaton on finite trees is non-empty. 
Hence (see Theorem 2) the emptiness problem for automata on infinite 
trees can be reduced by Theorem 1 to the emptiness problem for automata 
on finite trees, which is shown decidable in [7]. Theorem 1 is proven 
by showing how maps on finite trees can generate maps on infinite trees 
which are then said to be finitely-generable. A corollary of the proof 
of Theorem 1 is that if an automaton on infinite trees accepts some 
input tree, then it accepts a finitely-generable one; this result 
was proved in a much more complicated way by Rabin in [5]. 

Chapter 2 is concerned with the more difficult result of [6] 
that for every automaton on infinite trees, tit, there exists another 
one, (Jt 1

, such that O't.' accepts precisely the complement of the set 
accepted byot. Rabin's construction of Qt' and the proof that it 
works is an involved induction. In this paper we present a fairly 
simple description of a complement machine 01.', given Ot, such that it 
is very plausible that trc.' works in the sense that T(Ot.')=T(ot). The 
proof that our construction works, however, is difficult and very 
similar in complexity to Rabin's proof in [6] that his (more difficult) 
construction works. 
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CHAPTER 1 

The Emptiness Problem 

The analysis of finite automata on infinite trees is the basis for 

Rabin's remarkable proof of the decidability of S7-S (the mo11adlc secoml­

order theory of two successors) [6]. Rabin's proof follows the now 

standard form of Buchi and Elgot's proof for WSlS (weak, single successo'~) 

[1,3] and Thatcher-Wright's proof for weak S2S [7], and requires 

demonstrating effectively that the automata. are closed under union, 

projection, and negation, and that the emptiness problem for the 

automata is decidable. As in the case of SlS, the main difficulty in 

the case of S2S lies in proving closure under complementation of sets 

accepted by nondeterministic automata on infinite trees. The problem 

is complicated by the fact that nondeterministic infinite tree automata 

are known not to be equivalent to any of the likely definitions of 

deterministic infinite tree automata. 

In [6] Rabin shows how, given an automaton on infinite tree~C~, 

one can construct another one, o-t.', such that o-t' accepts exactJy the 

complement of the set accepted by l/'"l. His construction, however, is a 

very complicated induction. In Chapter 2, we present a fairly simple 

construction for 01.'. 

Curiously, the emptiness problem, which is easy for the other kinds 

of automata, turns out to be nontrivial for (nondeterministic) infinite 

tree automata. Rabin subsequently improved his original proof of the 

decidability of this emptiness problem, but even the second proof [ 5) 

uses an involved induction and consequently does not yield a simple 
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effective criterion for deciding emptiness.· 

In this chapter we provide such a criterion by showing that an 

infinite tree automaton accepts some valued tree if and only if there 

is a computation of the automaton containing a certain simple kind of 

finite subtree. Moreover, the set of finite subtrees of the kind we require 

is recognizable by a finite tree automaton, and in this way we reduce the 

emptiness problem for ~nfinite tree automata directly to that for 

finite tree automata. This also yields a simple proof of another 

result of Rabin's about "regular" runs by automata (see below). 

Section 2: 

For this paper the appropriate way to visualize the infinite 

binary tree T is as follows. At the top is the root A. Every x ET 

has a left son x • 0 and a right son x • 1. Hence T=( 0, l} *. 

. . * We define a partial ordering on T by x:;;; y if y=x• z for some z E ( 0, l} . 

If xs.;;y and xf.y, then we will write x<y. 

For each x ET, define the (sub) tree with root x to be the set 

Tx=(y!xs:y}. Thus T=TA.. 

Definition: A path TT of T is a set TTCT satisfying: 1) xErr; 
x x 

2) if yErr, either y-OEn or y•lErr but not both; 3) TI is a minimal 

subset of T satisfying 1) and 2). 
x 
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Notation: If x and y are members of T and x s: y, then we denote by 

[x,y] the set {zlxS:zS:y). 

For a set B we denote the cardinality of B by c(B) and the set of 

subsets of B by P(B). 

Definition: A set B c T is called a frontier of T if for every path 
x x 

TTCT we have c(nn B)=l. By Konig's Lemma, every frontier of T is x x 

finite. 

For x ET, a finite tree with root x is a set 

Ex={ z Ix s: z s: y, for some y EB}, where B is a fixed frontier of Tx. For 

E as above, Bis called the frontier of E and is denoted by Ft(E ). x x x 

Unless otherwise noted, we will use E to denote a finite tree with root A . 

Definition: A !;-tree is a pair t =(v,T ) such that v:T -t:E. A finite 
x x x 

!;-tree is a pair e =(v,E ) where v:E -.I;. Unless otherwise noted, we 
x x x 

will use t.and e to denote tA and eA respectively. If t=(v,T) is a 

!;-tree, then we use both (v,T) and t to denote (vlT ,T ). If t=(v,T), 
x x x x 

and E is a finite tree, then we use e and (v,E) to denote (vlE ,E ). x x x x x 

I -1 
Definition: For a mapping S:A-tB, In(S)={bEB c(S (b)f::w}. 

Definition: Let S:A-+B and let O=( <Li,Ui>)ls:i::;;n be a finite sequence 

of pairs of finite sets. We say e is of type 0, written e E [OJ, if for 

~ i, l::;;is:n, we have In(S)nU.f¢ and In(S)nL.=¢. If 0 is the 
1 1 

empty sequence, then we define it never to be the case that 9 E [O]. 

Definition:An f.a.t. (finite automaton on trees) is a system 

d'l.=<s,:E,M, s
0
,0> where Sis a finite set of states, I; is a finite set, 

M:sx:E-+P(SXS), s0 Es is the initial state, and 0=(<Li,ui>) 1S:iS:n is a 
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finite sequc1~e of pairs of finite sets. 

If t =(v,T ) is a L;-tree, then an 0(.-run on t is <lny mappi-:n? 
x x --x 

r:T -+s such t:,at: 
x 

1) r(x)=s
0 

and 

2) for a 11 y E T <r ( y' 0) , r ( y- l) > E N ( r ( y) , \ ( y) ) 
x' 

mapping r:Ex-tS such that: 1) r(x)~s 0 and 

2) for a 11 y E E -1' t (E ) , 
x x 

<r (Y" 0), r (y• l)> ( M(r (y), v(y)). 

The set o[ all(/"( -runs on t ( e ) wi 11 be clenotod by !Zn(.0(, L ) 
x x x 

( Rn(ot,e ), n:spectively). An acceptin3__(/L··run on t is ally rERn({:[,t) 
x x x 

st.:ch that for every path nCT, r/n E [OJ. Define 
x 

T(t'Z: )=( t I there exists an accepting OI-run en t } . T(Cll) is calJ cd 
x x 

the set accept(!d by 0-c, • 

Given an La. t. C/7_ = < S, L:, :M, s
0

, 0 > , we wish to determine 

whether or not T(Ol)=¢. Consider the automaton cJL. =<S,[a}, M, s
0

, O> 

where for all s ES, M(s,a)= ,Ll H(s,cr). 
CJ\:.: L; 

Clearly T(UL)=¢ <.~.-T(c}l)-· 1. 

Thus, the emptiness problem is reduced to the case of auto:nata 

over the single letter alphabet (a). Henceforth in this s2ction we 

restrict our attention to this case. Since lhere exists just one 

[a} -tree rooted at /\., (v, T), and for every finite tree E just one finite 

[a}-tree, (~,E), we will omit mention of the valuation~ and talk 

about t!I-runs on T and E, vtaccepting T, etc. Clearly, 

T ( Ol) / 1> "' T E T (or ) . 
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Theorem 1: >bcanf.a.t. 
i s: n 

T(Oz) 1' 0 ~ for some finite tree E there exists an r such thi:lt 

1) rERn(O(,E), 

2) foere exist mappings J: Ft(E) -~ E-Ft (f,) and H: rtrE) --l' 

E-Ft(E) such that for all x E Ft(E) 

a) H(x) s J(x) < x, 

b) r(J(x)) = r(x), 

c) r([H(x), J(x)]) r([J(x), x]), 

for some i, 1 s i ~ n, r ( [ J ( x) , x]) n t . = 0 and r ( x) E 1 · i· 
]_ 

Before we prove Theorem 1, we show that Theorem 1 easily yields th<~ 

following theorem. 

Theorem 2: The emptiness problem for f.a.t. 's is decidable. 

Proof of Theorem 2: Let Cl[ be as in the statement of Theorem 1. 

Definition: Let E be a tree (finite or infinite). Let r be an 01-run 

-;': 
on E. Let x E E. Since x E [O, l} we can write x = 0

1
0"

2 
CJ 

m 
Define 

Notation: Let et be a finite string and let n and m be positive integer,;, n:S:m. 

Then by O'(n) we wil1 mean the nth element (from the left) of Q'. By 

O'( [n,m]) we will mean the set of ele~m~nts bet-ween and in~luding the nth 

and the mth places of 0'. Note that c:(n) i» only defined if J<:: n-S:lellgth(c) 

and o:([n,m]) is only defined if ls n<::ms length(a). 
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·k 
Definition: Let Q' E S . 1;Je say that ct if. tgocl if there cxis: posibvc 

integers H and J such that H ~ J < N = lcn2,tlt(a), a(J) = u(N), r>'( IH,JJ) "-

a(rJ,N]), and there exists an i such that a(?~) E: Ui and o([J,J-;J) ~ 

Note that good is defined with respect to our f.a.t. 0-[. 

Lerruna 1: The set of good strings is a regular set, i.e., it is 

recognizable by a finite state machine on finite input strln~s. 

Proof of Lenuna 1: Obvious. 0 

Lenuna 2: Let G be a regular set of finite strings on S. T~ct 11 = 

i 

(EIE is a finite tree and there exists a run r on~ such that for all 

x E Ft(E), a E G} Then H is recognizable by a finite autorn:.iton 011 
r,x 

finite trees aa defined in f7]. 

Proof of Lenm1a 2: Fairly obvious. 0 

Completion of ryroof of Theoren1 2: By 1heoreu 1, lemrna 1, and Lemma 2, 

the emptiness problem for 07,, can be reduced to the emptiness prob] em 

for a particular finite automaton on finite trees. But by Theorem 7 in 

[7], this problem is decidablo. 

Proof of ~ in Theorem l: Let r be an accept:; ng {][-ru-n on T. By the 

definition of accepting run and of good strins, it is clear that for 

every path n of T there exists an x, x E such that a is a guod 
r,x 

string. Let n = [xi Y is good and for all y < x, Q' isn't good). 
r,x r,y 

Then B is a frontier. If we let E be the fi 11i te tree with frontier B, 

then there exist mappinp,s J and H which, together with rjE, s2tisfy 

conditions l and 2 of Thcor("m l. This comp](;tes the proof of ""' 
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Proof of~ in Theorem 1: T~et E, r, J and H be as specified in 1) and 

2) of Theorem 1. 

We define a mapping ri: T _. E inductively as follows. Let 'll(/\) = A • 

If ri(x) has been defined, then for cr E (O,~, define ricx·~ as follows. 

Case 1: If T](x) EE - Ft(E), then let 'll(x•cr)= T](x)•cr. 

Case 2: If T](x) E Ft(E), then let ri(x•a)= J(n(x))•cr. 

Definer: T 4 S by r(x) = r(T](x)), for all x ET. Clearly by 2) 

b) of '_:.'heorcm 1, r ( Rn(O(, T) so that it suffices to show that for al I 

paths TT c T, (~ j TT) E [OJ, because then T E" 1{0() and hence T(O"{) f (;~. 

Let TT c T be a specific path. Let y
0

, y
1

, y
2

, ... be the infinite 

subset of rr (listed in increasing order under s) consisting of exactly 

those members ,Jf TT whose images under n are in Ft(E). Define Vn to be 

the following Lnfinit2 sequ2nce of members of Ft(E) X Ft(E): 

For all i <c1J we have by the definition of ri, J(n(yi)) < '.'l(Yi-1_
1

) 

and r([yi, Yi+l]) = r([J('fl(yi)), Tl(Yi+l)]). Hence, In(r ! --;\ 

U r(fJ(x), z]). 
<X, z> E In(V ) 

TT 

Clearly there exists a finite sequence (possibly with repetition) 

:of members of Ft(E), x
1

, x
2

, x
3

, ... , x , 
m 

such that 
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)Cl = xm and 

(1) In(Vrr) = (<x
1

, x
2
>, <x2, x

3
>, <x3, x4>, ••• , 

<x 1, x >}. 
m• m 

From now on we will denote J(x1) by Ji and H(x1) by Hi' for all 

1 :!f: i ~ m. 

We have from the preceding para~raph 

for all 1 :s;; i < m, Ji < xi+l' 

(II) 
lil"' l 

and tn(r 1 TT) = u r ( [Ji' xi+lD 
i=l 

(r I rr) E r.n1 is immediate from the third of the followtng three 

lemmas. 

Lemma 3: There exists an M, l s M ~ m, such that for all i, l s i s m, 

Proof: our induction 

hypothesis at stage his that there exists an integer M', 1 s M' ~ h, 

such that for all i, 1 ~ i ~ h, l\i• ~Hi. Clearly the basis case is 

trivial. We assume the induction hypothesis for h •nd prove it for h+l. 



Hence, H,., < x_ 
1

. 
d h+ 

::;; J 
h 
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, by the induction hypothC'sis, 

by 2 1 a) in TI1eorem 1. 

, by (I I). 

By 2) a) •Jf Theorem 1 we also have llh+l < ~+l' Therefore, 11 a11d 
M 

Hh+l are comparable (under <:). Clearly for c:.11 i, 1 < j_ <: h+l, 

0 
If M Im, we can rename x

1
, x

2
, ..• , xrn so that (I) and (11) remain 

true a 11d 11 = !ni_!:'.f H 
1

, 
lll 

we assurn2 that M = m. 

Lemma 4 : . I f H 
m 

. . . ' H ' mJ . Henceforth, without loss of generality 

r([Il , x. 
1

]) ;:;;i r([H , x.)). 
m i+ m L 

Proof: Let i be any integer such that 1 s: i < m. 1\
11 

<:Hi :s; Ji < xi+l' 

hence we have the picture: 

H 
m 

"' 
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Hence, r([H, x.+1 ]) ::! r([J., x.]), and 
m 1 ~ 1 1 

Lemma 5: If Hm = min(H1, ... ,Rm}, then for all i, 1 ~ i ~ (m-1), 

r([Hm' xm]) ~ r([Ji, xi+l]). 

Proof: Let i be any integer such that 1 ~ i ~ (m-1). 

B.Y Lemma 4 r([H, x ]) ~ r([H , x 1J), r([H , x 1 J) ~ r([H , x 2 J), 
m m m m- m m- m m-

... , r([Hm' xi+2 ]) :1 r([Hm' xi+l]). Hence, r([Hm' xm]):? r([Hm' xi+l]). 

We have H ~ H. ~ J. < x.+l' That is the picture: 
m 1 1 1 

• 

Hence r( [H , x ]) ::! r( [J., x.+1]). 
m m 1 1 [] 

Completion of the Proof of Theorem 1: Without loss of generality we 

assume H 
m 

••• ' H } • 
m 

r ( [H , x j) :2 
m m 

By Lemma 5, 

m-1 
u 
i=l 

By part 2) d) of Theorem 1 we have for some·i, 1 ~ i ~ n, r([J, x] n m m 

I,, = ¢ and r(x ) EU .• By part 2) c) of Theorem 1, r([H , x ]) = 
1 m 1. m m 

r ( f J , x ]) • Hence, 
m m 
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rn-1 

u r ( [J.' xi+1]) 
'I J, . c/i, 

j ~ 1 l l 

a l1r:J 
],1- l 
I J r ( [ J.' xi+ 1]) n u. f ¢. 
i~1 

l l 

Therefore, l•" (JI) er ! n) r· 
~DJ. ,_, <._-

0 

Section 3: Pcm'lrks 

Jn fG] H.abin w;es the. foll0\:i11g defi11ition. 

ne;in:ition: An f.a.t. a sys tc·m 01 = 

< S, ~' H, s
0

, 'J >, where S is a finite set of states, !, is a fini~:e 

set, M: S X >~ -1 P(S X S), and '; c::: P(S) is the set of _cle~;j_c._i_y1_~ed sulisets. 

An 0(-nm on t = (v,TI is as defined :in Section 2. 0( ~pt~; t if 

there exh·ts an r 0 1{11(0(,t) such that for alJ paths TT,-- T, Jn(r l ~T) ( ',., 

m-1 

The proof of Tlteorem l can be extended to shO\,T thnt r ( [ll , x ] ) 
m m 

U r([Ji, xi+]]), where H., 
i=l l 

x.' 
l 

etc. are as in the proof of Theoreu l. 

Hence for {f[ = < S, [a}, M, s
0

, S~ >, where c(S) = q, we \1ave: 

T(O!) ,1 rfi w for So:>!e finite tree f'. there exists an r such that 

1) r ( Rn(U(, E), 

2) there exist rn.:1ppings J: Ft(E) -• E-rtC~) and 11: Ft(L) _.. E-Ft<f.) 

such t:ho.t 

a) ll(x) <; J(x) < x, 

b ) r ( J ( ;~ ) ) - i· ( :-: ) , 

c) r([ll(x), J(x)j) •· r([J(x), x]), 

ell r([J(x), ::]) ( 'f. 
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The appropriate definition of a good string with respect to Gt 

is a simple modification of the definition of good string used in the proof 

of Theorem 2. For either definition of good string we can design a non-

deterministic finite automaton on finite striiigs, ~. which recognizes 

the set of good strings and which has at most 22q(q+l) states. By the 

subset construction we can design a deterministic automaton~' equivalent 

2
22q ( q+l) 

to 9Jl such that ~' has at most Q = states. Using ~· we can 

easily construct a finite automaton on finite trees, 01', such that T(Or) 

-/- ¢ if and only if T(Ol) -/: ¢ and such that the state set of 0-t' is the 

cross product of the state sets of O'( and IJll'. Hence Oi..' has at most qQ 

states. We can determine whether T(Ot') -/- ¢ in (q Q)
3 

computational 

steps. 

Hence given a finite automaton 01. on infinite trees which has q 

states and uses either notion of acceptance, we can determine whether or 

not T(Ol) -/- ¢ in computational steps. 

Remark 2: If we have a finite !I-tree (v,E), and a function J: Ft(E) ~ 

E-Ft(E) such that for all x E Ft(E), v(J(x)) = v(x), then we can 

generate a unique l.rtree (;,T) as in the proof of Theorem 1. Call any 

!I-tree which can be generated in this way a finitely-generable l.rtree. 

-- --rr 
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Rabin in [5] defines a ~-tree, (v,T), to be reg~lar if and only 

1 ~ 
if for each cr E Z, v- (cr) is a regular subset of (O,l}". It is easily 

shown that a 2:-tree is finitely-generable if and only if it is regular. 

Remark 3: From Theorem lit is easily shown that if an f.a.t. accepts 

any 2:-tree, then it accepts a finitely-generable 2:-tree. Rabin shows 

this in [5]. In [2] Buchi and Landweber prove that if P(X,Y) is a 

finite-state condition and X has a w-inning strategy, then X has a winning 

finite-state strategy. Rabin has observed in [5] 

that the set of winning strategies for X corresponds in a natural way 

to a set of (O,l}-trees defined by a (deterministic) infinite tree 

automaton. Hence, it easily follows from Rabin's result in f5] or from 

the results in this paper that if X has a winning strategy then X has a 

winning finite-state strategy. 

) . We can also observe the following. If X does not have a winning 

strategy, then by our Theorem l we see that X does not have a "partial" 

strategy of a particular kind. From this one can show that Y has a 

winning strategy for P(X,Y), thus showing that P(X,Y) is determined. 

This is another result of f2]. 
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CHAPTER 2 

The Comple1'!.entation Problem 

Section l· Introduction 

Given an automaton {,If.. on infinite :&-trees, one defines au-tree t 

to be accepted by C'1.. if there exists an ot-run on t such that for all 

paths, the sequence of states on that path satisfies a particular 

property. One can similarly define t to be duafu accepted by en if 

for all £/[-runs on t, there exists a path satisfying for that run the 

particular property. The problem is to conf:truct, for given f7l, an 

automaton OL' such that for any valued tree t, t is accepted by Vi' if 

and only if it is not accepted by t/!.. Since given l/t
1 

·1 .. 1e can construct an 

automaton Ol
2 

such that the set of :&-trees not accepted by ur.
1 

is 

precisely the set dually accepted by Vl
2

, the complementation problem 

can be reworded to state that given fll., we wish to construct an automaton 

ot' such that the set of valued trees dually accepted by vt is precisely 

the set accepted by ot'. 

That is, we want 01.' to accept t if anrl only if for every i/C -run on 

t there is a path such that the sequence of states along it satisfies 

the property defined by Cl!. The natural thing to look for in constructing 

Ol' is an automaton which can explicitly pick out an appropriate path 

for each Clt.-run on t. That is, we would like every O'l' -run on t to 

specify a path for each ot.-run on t, and we would like there to be some 

condition on sequences of c1l.' states which holds for all paths of the t/t.1 
-

run exactly when for each ot.-run, the sequence of (/(. states along the 

path specified for that run satisfies the {T(.-property. 

A natural point of view js to think of starting out at /\, and 

havi11g our VL'-run choose, for each possible pair of Ul-st:ates which can 
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occur at the nodes 0 and 1 (in an ot-run on t), whether to continue the 

path by going left or by going right, and continuing in this way, at e<'lch 

node choosing for each possibility of ot-run occurring innnediately below 

it whether to go left or right. An vr..' -run cannot tell us in one step 

what path to choose for each ot-run. But it can tell us each successive 

choice of left or right given each successive segment of the vt.:-run. 

A state of ut' will be, essentially, a finite sequence of states of 

Ol., Each member of an vt.' state at a node will represent the last state 

in the initial segment of a path chosen for the initial segment of a 

particular ot-run. For each member of an Cit' state at a node the ot' -run 

must say how to continue the pa th for each pair of vc. transitions 

possible (for t) beneath that node. It is therefore necessary that a 

state of err.' actually be a sequence of ordered pairs whose first part is 

a state'of f/t. and whose second part is a set of backward pointers. Yes, 

I said a set of backward pointers rather than just one; this is because 

in reality an ordered pair appearing at a node in an oz.'-run must 

represent the last state in the initial segments of (possibly) many paths 

chosen for the initial segments of (possibly) many Vt-runs. That is 

because the sequences making up the set of states of C/t1 must be bounded 

in length in order for (/(.1 to be a truly finite automaton. If we insure 

this bound by insisting that in every state of er..' an l'(-state can occur 

at most n times, then we formally denote OL' by !m1J.c.. 

The fact that everything accepted by ~~ is dually accepted by l/t. will 

follow easily from the definition of~~. The converse, that for 

sufficiently large n, if t is dually accepted by Cit we can find an 

accepting run for it on ~' is far from obvious, and our induction 

proof basically parallels the one Rabin presents in [6]. The difference 
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between our proof and his can be viewed as being that we keep, at each 

stage of the induction, information which he discards, so that we arrive 

at the end with a specific, non-inductive description of the desired 

automaton. 

Section ~ Some Definitions~ Jheorcms, and Proofs 

w 
Definition: If S is a set, denote by S the set of infinite sequences 

of members of S. We identify the sequence s
0
,s 1,. 

a:w-+S where a(i)=s .. 
J. 

with the map 

Notation: If <x,y> is an ordered pair, let p1(<x,y>)=x and let 

p
2

(<x,y>)=y. If Q'=Q'
0
,a

1
, ... is an infinite sequence of ordered pairs, 

Define p
2

(Q') similarly. 

Note that this notation is consistent with thinking of an infinite 

sequence as a map from w to a set. 

Notation: If xET and TI is a path of T , and r:T ~s, then denote by 
x x 

Crln)w the sequence r(x0),r(x
1
), ... where n=fx0 ,x1 , ... } and xi<xi+l 

for all iEw. 

Definition: A Generalized Automaton on Trees (G.A.T.) is a system 

Ol.=<S,:E,M,s
0

,Q> where S, ~. M, s
0

, are as in Chapter ~and Q is a subset 

w 
of S . If t is a :E-tree, let Rn(ot,t ) be defined as in Chapter 1. 

x x 

Define T(Ul), the set accepted by vt, by T(CI'(.)= 

There exists an rERn(ot,tx) such that for all paths ncrx' Crln)w E Q] 
(Call ran accepting run of 01. on t .) 

x 
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Define D ( 01), the set dually accepted by f/l , by D(&'Z.) = 

[t !For all rERn(tr.,t ), there exists a path nCT such that (:rln) EQ.} 
X X X I (JJ 

We now define three types of Finite Automatd on Trees. 

Definition: A pairs-automaton is a system Oi><S ,:B, M, .s
0

, 0 >where 

O=(<L. ,U. >)l:5:':5:k is a finite sequence of ordered pairs of subsets of 
1 1 1 

S, and S, !;, M, s
0 

are as above. I.et or.' he the G.A.T. <s,L:,M,s
0

,Q> 

where Q=[aEsw!aE [OJ}. Define T(ot) and D(ot) to be equal to T(t:'t') 

and D(Ot.') respectively. (Note that a pairs-automaton is the same 

thing that we meant by an f.a. t. in Chapter 1.) For such an 07., we say 

that 0 is of order k and that Cl7. is of order k. If Lk=¢, then we say 

that 0 and or. are of order k-ernpty. 

Definition: A sets-automatoD: is a systemOt.,·=<S,:E,M,s
0

,'.r> where '.1~P(S) 

(P(S) i.s the set of subsets of S.) and S, !;, M, s
0

, are as above. Let 

Ot' be the G.A.T. <S,}:;,M,s
0

,Q> where Q=[aEswlrn(a) E'.1}. Define T(vr) 

and D(OC) to be equal to T(ot') and D(Ot.') respectively. (Note that a 

sets-automaton is the same thing that we meant by an automaton with 

designated subsets in the remarks of Chapter 1.) 

Definition: An automaton-automaton is a system ot=<S,!;,M,s
0

,U.> where 

S, L:, M, s
0

, are as above and -U is a deterministic sequential automaton 

w 
(as defined in [6]) whose inputs are members of S . Let U"L' be the 

G.A.T. <s,!;,M,s
0

,Q> where Q=(aE swl0tET(U), the set accepted byU. .} 

Define T(Ol) and D(01) to be equal to T(O"L') and D(ot') respectively. 

These three types of finite automata are all equivalent, in the sense 

of Facts l and ?. These facts are easily shown by Rabin in [6]. 
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Fact 1: Let L be a finite set and let W be a set of :&-trees. Then 

there exists a pairs-automaton ot
1 

such that T(v1' 1)=W ~ 

there exists a sets-automaton or.
2 

such that T(ot
2

)=W ~ 

there exists an automaton-automaton vz.
3 

such that T(oZ:
3

)=W. 

Fact 2: (same as Fact 1 only with T(t'll.
1
), T(C:-'!

2
), T(&t

3
) replaced by 

D(OC 1), D(ot 2), D(Ol3) respectively.) 

Now if 07. =<S,~,M,~0 ,S- > is a sets-automaton, then by its definition 

we see that D( <S,~,M,s0 ,P(S)-Ji> ) is exactly the complement (with 

respect to the set of :&-trees) of T(Ot). This observation, together 

with Facts 1 and 2, imply that whichever definition of finite automaton 

on trees you choose, to solve the complementation problem it is sufficient 

to exhibit for every pairs-automaton Ol., an automaton-automaton OZ:. 1 such 

that T(t7L')=D(c::-t:). We shall do this. Now follows the main definition of 

this chapter. 

Notation: If n is a positive integer, let [n]=(l,2, ... ,n}. 

Definition: Let tn =< S, :E, M, s
0

, 0 > be a pairs-automaton. Let n be 

a positive integer. We will define an automaton-automaton 

!'fl)U., = < Sn ""' ,..n < n.. > U n > ·""'.:., vt• .t.J, i·tvv s-0, 'I' ' Qt. • Let m=c(S). Then we define 

ct is a finite sequence of members of S X P([mn]) such that for 

s ES, there are at most n values of i for which p1(ct(i))=s. 

(Every member of P([mn]) is to be thought of as a set of backward 

pointers. Since each member of S can occur up to n times in a member of 

n n 
Svt, each member of S.,'L can be as long as mn, hence the need for mn 

backward pointers.) 

The starting state of IJTI~ is <s
0

, ¢ >, a sequence of length 1. 

n 
Let ct E s, .. l and let a E ~- Define 



23 

For all i, lsiS:length(O'), if 

u=p
1
(a(i)) and if<u

0
,u

1
>EM(u,a), then there 

a positive integer j suet that either 

I) p
1
(a

0
(j))=u

0 
and iEp

2
(a

0
(j)) or 

I I) p 
1 

(a 
1 

( j ) ) =u 
1 

and i E p 
2 

(Cc' 
1 

( j ) ) . 

(Think of O'(i) as representing the value at some node x of a run of 

must tell us either to go left to an element whose first part is u0 or 

right to an element whose first part is u 1.) 

It remains to define U~ , and we will do this by deHning a set 
w 

Q ~ (S~) and then arguing that there exists a deterministic sequential 

automaton which accepts exactly Q. 
nw 

Firstly, if a E (S.,J , O'=a0 , al'··· 

define a thread of a to be an infinite sequer~e of integers, 

such that for all i E <J, a. (j.) is defined, and such that 
l. l. 

for all i E w, j i E p2 (a i+l (j i+l)). Define the S-seguence associated 

with the thread J (for a) to be the sequence 

~=p 1 (a0 (j 0 )),p1 (a:1 (j 1)), . . . so that ~ESU. Define 

nwl Q=( a E (Sd) For every S-sequence ~ associated with a thread of a, ~ E [O].} . 

- nw 
So we have that Q=(S,,.t) - Q= 

nwl (aE (Sc1) for some thread of a, the associated S-sequence is not of type [O]}. 

It is easy to nee that there exists a nondeterministic sequential 

automaton, 1J.. 1 , such that T(U 
1

)=Q. But McNaughton [4] has shown 

that for every nondeterministic sequential' automaton ul one can 

construct a deterministic one, 1{
2

, such that T(l{
2
)=T(U

1
). But it is 

easy to see that given any such 7). 
2 

there exists a deterministic sequential 

automaton, l{ 
3

, which accepts precisely the complement of T(l{
2
). So 
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let 7)--f~ be such that T(U;_ )=Q . This finally completes the definit:Lon 

of~-. 

Notation: Very often, if R is a ~~-run, we will want to refer to the 

· th 1 f R ( ) f d d - t. . t . 1 e ement o: x or some no ex an some pos1 1ve in eger i. So 

instead of writing (R(x))(i) we will write R(x,i). 

So if tx=(v,Tx) is a ~tree, RERn(~Ol~1_,tx)' yETx' u=p 1(R(y,i)), 

and <u
0

,u
1
>EM(u,v(y)), then we require that there exist crE(O,l} and 

a positive integer j such that p
1

(R(yea,j))=uCJ and iEp2 (R(y-cr,j)). 

Remark: Let 01 be a ~pairs-automaton, and let n 1 
n1 n2 

integers with n
1

s=n
2

• Then since S t;;; S and if 
iJ1..,. "'"'loo- ' 

n1 c n2 nl n2 
M..n. (a',a) -M"" (cv,a), and T(1,("1-) t;;;T({A.,;1._), we have 

We now state the main theorem of this chapter. 

and n
2 

be positive 

n 
<ai, a> E sc_.} x L; then 

n1 n2 
that T ~"' ) ~ T OTI"71) • 

Theorem 3: Let Cl(. be a pairs-automaton of order k. Let 

k 

n= l = (k(k+l)). Then D(OL)==T~~). 
2

i=O 
2 

2 , 

Half of Theorem 3 follows from Lennna 6. 

Lennna 6 :. Let CIT..==< S, L;, M, s
0 

,0 > be a pairs-automaton. Let n be a 

positive integer. 
n 

Then D ( Ot) :2 T (~VL ) • 

Proof of Lcnnna 6: Let t=(v,T) be a 1:;-tree such that t ET~~). (Since it 

is clear that for any of the tree automata we have defined, CvaTx) is 

accepted (dually accepted) if and only if (v~,T) is accepted (dually 

accepted) where v0(y)==v
0
(x•y) for y ET, to prove Lemma 6 it is sufficient 

to show that t ( D((/l). ) 
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Let R be an accepting run of ~~ on t, that is, RE Rn('.JJ1~, , t) and 

for all paths TICT, (Rln) ET(U,~ ). Let rERn(Ol,t). We wish to find 
w "" 

a path TTCT such that CrJn) E [O]. To do this, we define by induction 
w 

a function f:w-+T such that f(O)=A and f(i+l)=either f(i) •O or f(i)• l, 

and rf E [O]. Then we merely let TT=( f(O), f(l), ... } . 

Simultaneously with f we define a function g :w-+ [mn] where m=c (S). 

(Th 'd . h h .th 1 f h h t ·11 i e i. ea is t at t e i. e ement o t e pat we construe wi. corresponr 

to R(f(i),g(i)).) As an induction hypothesis at stage i we assume: 

r(f(i))=p
1
(R(f(i),g(i))) and (for i>O) g(i-1) Ep

2
(R(f(i),g(i))). 

Define f(O)= A and g(O)=l. Clearly the induction hypothesis holds 

so far. Assume that f(i) and g(i) have been defined and that the 

induction hypothesis is true for i. We will define f and g at i+l. 

Let x=f(i). Then r(x)=p
1
(R(x,g(i))). Let u0~r(x•O) and u

1
=r(x•l). 

Then < u
0

, u
1 

> E M(r(x), v(x)). By the defin:•.tion of ~run we have 

that there is a posi tivc integer j and a cr E { 0, l! such the.t 

ucr=p1 (R(x•cr,j)) and g(i) Ep
2

(R(x•cr,j)). Define f(i+l)=x•cr and g(i+l)=j. 

Clearly the induction hypothesis holds at i+l. 

Let TT={f(O),f(l), .•. }. TT is a path of Tso, since R is accepting, 

(Rln)w E T(1l~. By the hypothesis we have carried through the definition 

of f and g, we see that the sequence g(O),g(l), •. is a thread of 

(Rln) and that Crin) = w w 

p 1 (R(f(O),g(O))), p
1
(R(f(l),g(l))), p

1
(R(f(2),g(2))), ... = 

the S-sequence associated with that thread. By the definition of 'Ll~ 

we see that Crin) E [O]. w C1 

The other half of Theorem 3, namely that for cr"t and n as in Theorem 3 

D(Ol.) c:;:T(ffll~), follows trivially, by induction, from the next three Theorems. 
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Theorem 4: LetV't be a pairs-automaton of order 0 (that is, the sequence 

of pairs is empty). 
. 1 

Then D (O() ~ T ~od . 

Theorem 5: Let k be a nonnegative integer and let n be a positive integer 

such that for every pairs-automaton ,if of order k, D(.b-) GT(~~). Then 

for every pairs-automaton Cit of order k+l-empty, D (O!) ~ T( ~~ ... .). 

Theorem 6: Let k and n be positive integers such that for every pairs-

automaton..tY of order k-empty, D(.;f,-) ~T(~) 
k 

automaton 0'1- of order k, D(cn) \;;;T(!J.Jl~2 ). 

Then for every pairs-

Before we prove Theorem L~, we need the following definition. 

Definition: Let Cl1.= < S ,!;,M, s
0

, 0> be a pairs-automaton. Let s ES. 

Then define O'l. to be the pairs-automaton 07. = <s, !;, M, s , 0>. That 
s s 

is, 07. is the same as ot except that the initial state is changed to s· 

s. 

Proof of Theorem 4: 

Let vt= <s, !;, M, s
0

, O> be a pairs-automaton with O=the empty sequence 

and c (S)=m. Let t=(v, T) be a :E-tree such that t E D(O"C). We wish to 

show that t ET( !J.Jl~). (Recall that .!!2. map is of type 0.) 

Since tED(Ot.), there are EQ. en-runs on t, that is, 

Rn(01, t) 4. For n a nonnegative integer and for x ET such that 

length(x) :5: n, define the finite tree En=( y ET I length(y):O:n}. Define x x 
n n 

e =(v,E ). By an application of Konig's Lenuna we see that for some n, x x 

Rn(ot, e~)= ¢ . Let N be such a number, thi:t: is, Rn( 

DefinearnapR:T-tS
1

as follows: R(A)=<s
0

, ¢ >; forxEE~, 

1 I:' t R ( x) = < s l' f m] > , < s 2 , [ m] > , ... , < sf,, f m] > where s l' s 
2

, ... , s .R, is 

some enumeration of the set (sESIRn(crt ,eN)=¢}; for x such that 
s x 



27 
length(x) > N, let R(x)=the empty sequence. 

Clearly if n is a path of T, (Rln)w has no threads. Hence, if 

1 N 
R is a run of !mvr. on t, it is an accepting run. So let x E EJ\ and let 

N 
s=p

1
( R(x,i)) for some i. Then Rn(ots,e)""¢. Let <u

0
,u1 > EM(s,v(x)). 

N Then for some er E (0, l}, Rn(Ol. ,e )= ¢. So there exists a j such 
UO' x•O' 

that ucr=p
1

(R(x•cr,j)) and iEp
2

(R(x•cr,j)). So Risa run on t. So 

t E T(!JJ?~. Q 

Theorer.1s 5 and 6 will be proved in the next two sections. To 

this end, we make some more definitions. 

Definition: Let01.=<S,:E,M, s
0
,0> be a pairs-automaton. Denote by 

-t7t the :Ex P(S) automaton <s, :Ex P(S), 'H, s
0

, O> where M is defined 

as follows. Let s 1 ES, a E :E, s
1
!;;S. Defi!l.e 

_ . -[M(sl'a) if s 1 fl. s1 M(s
1
,<a,s

1
>)-

. ¢ if s
1 

E s
1 

Definition: Let t =(v,T ) be a :E-tree, let S be a set, and let H x x 

be a subset of TXS. Then define t H to be the :ExP(S)-tree, (;,T ), 
x x 

where v(y)=<v(y),(sEsl <y,s>EH}> for yET. 
x 

Jntuitive Remarks: Let t't=<S, :E, M, s
0

, 0> be a pairs-automaton. Let 

t=(v, T) be a :E-tree. Let H ~ T x S. 

Every run of bi on tH is also a run of 01. on t, but there might 

be fewer of the former since Rn(dl,tH) is precisely those members, r, 

of Rn(ot,t) which don't 'run into" a member of H, that is, rERn(ot,tH) 

if and only if <y,r(y) >itH for all yET. Say that tED(Cll.). Then 

tH E D(Oi). If our goal is to show that t ET(~~ ) , it might be easier 

to show first that tH ET(~) since Rn(Ot , tH) might in some sense be en. 

a simpler set that Rn(Ot,t). 
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Consider what a run of ~ on tH looks like. It starts out the 

same as a run of~ on t, that is it's a map R:T-+ S~ such that 

R(A)== < s
0

, ¢ >, and it continues like a run of ~on t except that 

certain threads are allowed to die at members of H. For example, 

say that fo:c some x and i, p
1

(R(x,i))=u and <u
0

,u1>EM(u,v(x)). 

If R were a run of~~ on t, we would require there to exist a j 

such that for some crE(O,l}, ucr=p1(R.(x•cr,j)) and iEp2 (R(x•cr,j)). 

Since R is only a ~ -run on tH, we requi.re this condition only if 

<x,s> ~H. Hence, for a path ncT, (Rjn)w may have fewer threads 

than if RERn(IJ.n~,t) and therefore,as already claimed, it might he 

easier to find an accepting run of ~ on tH than of ~Df'L on t. 

How do these observations lead us towards constructing an 

. rmn ? accepting JJloz. -run on t. Maybe we can find a set HO~ TX S such that 

we can show tH
0 
ET(~~). Let R

0 
be an accepting run of ~ on tH

0
. 

R
0 

is partly an accepting run of ~on t, except that if <x, s > E H
0 

and p 1(1b(x,i))=s, then R
0 

doesn't continue properly for the ith 

element of R
0

(x). But, maybe we can find a set H <x,s> 
such that we 

can show that t H<x >ET(~ ) , that is, there exists an accepting 
x 's s 

run R< >of~ x,s vts on t H< >. Then we can use R< > to continue 
x x,s x, s 

threads of RO which had died. But for < x' , s '> E H<x > we need a ,s 

set H<x'~'> , etc. For the sake of uniformity we will refer to 

H0 as H<A >' ,so 
It is important to understand what 

means. R<x >differs from a member of 
,s 

n 
R<x > E Rn( Tl?.n. , t H< .,>) ,s s x x,u 

Rn( ~ , tH< >) only by x, s 

starting at x instead of /\ and by starting with < s, ¢ > rather than 

<s
0

, ¢ >. Assume now that we have a set H ~T x S such that <A,s
0
>EH 
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and such that for every < x, s >EH we have a subset of H, H< >' x,s 

with H<x s> f;:; (T -( x}) X S. Assume furthermore that for every < x, s >Ell 
' 

we have an accepting run R,...... > E Rn( ~ , t H< ». What we would -....,,,.,s V\.S x ·X,S 

like to do is 11 put together 11 the runs R< > to form an accepting x,s 
n 

run R of !JJlifL on t, as in the above paragraph. 

So for every x and every i, l~i~length(R(x)), R(x,i) will 

be associated with some <y,IEl>EH and some integer j such that 

y~x and p1(R(x,i))=p1(R<y,u>(x,j)). We use this association to 

de.termine which elements of R(x•O) and R(x• 1) should point backwards 

to R(x,i). 

The prol•lem that remains is how to decide what members of H the 

elements of R(x•O) and R(x•l) should be associated with. These 

decisions will be made so that R has the property that for any 

path TI er and any thread of (Rln)w, if the members of that thread 

are altogether associated with only a finite number of members of H, 

then that thread eventually has the same S-sequence as a thread of 

(R< u>ln) (for some <y,u>EH), which by hypothesis is of type 0. y, w 

The decisions must also be made in such a way that for any path 

TI CT and for any thread of (R In) , if the members of that thread 
w 

are associated with infinitely many members of H then the S-sequence 

of that thread is of type O. 

To prove both Theorems 5 and 6 we will find H, (H< >}'and ' x,s 

(R<x >} as above. However the way they are obtained and the way ,s 

the decisions referred to above are made will be different in 

the two proofs. 

In order to combine l_ffi~runs it will be convient to have a notion 
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of such a· run being well-formed. 

Definition: Let <.It=< s, E, M, s
0

, 0> be a pairs-automaton, with 

S=(s
0

,s
1

, .•• ,sm-l}, that is, we have imposed an ordering on S. Let 

t be a U.tree. Let n be a positive integer and let RE Rn( 9)1~t., t ) . x x 

Then we say that R is Well-formed (with respt?c t to the ordering on S, 

although this will usually not be explicitly stated in the future) if for 

all y>x, length(R(y))=mn, and if for all i, Os:iS:m-1, ar:.d all j, 

l:S:js:n, it is the case that p
1

(R(y,ni+j))=si. That is, R(y), for 

y > x_, is of the form: 

y y y y y y 
< sO,AO, l>' <sO ,AO, 2>' • •' ,<sO ,AO,?' <s l 'Al, l>,'. • '<s l 'Al, i{'' .. '<sm-1 'Am-l, n> 

where each A~ . ~ [mn]. 
1., J 

Lemma 7: Let Vt= <S, I;, M, s 
0

, 0> be a pairs•automaton where 

Let t =(v,T ) be a !::-tree. x x Let n be a positive 

integer. Let R be an accepting run of~ on t . Then there exists an 
x 

accepting run, R', of ~ on t which is well-formed. 
x 

Proof of Lenuna 7: The proof of lenuna 7 is actually quite easy in 

concept, but we shall do it in detail anyway. 

Let V(, t , and R be as in the lemma statement. Choose x 

f:{ <x,l>} U ((Tx-(x}) X [mn]) ... [mn] such that 

a) if 0 :S: i :S:m-1 and l:s"; j ~ n, and if y ET and f(y,ni+j) and 
x 

R(y,f(y,ni+j)) are defined, then p1 (R(y,f(y,ni+j)))=si and 

b) for every yE T and every t, 1 :S: i, s: length(R(y)), there exists x 

t' such that f(y,t')=t. 

Define R' a~ follows. Let R'(x)=<s
0
,¢>. For zE T , cr E ( 0, 1} , and 

x 

y=z•cr, let R' (y) be the string of length mn such that for Q:S:i:S:m-1 

and 1:,; j :S: n and q=ni+j, we have 
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c) p 1 (R'(y,q))=si and 

d) if f(y,q) > ler.gth(R(y)), then p
2

(R' (y,q))"" 

(.tE [mnJlf(z,.t) is defined and f(z,t) >length(R(z))} 

e) if f(y,q) s=length(R(y)), then p
2

(R'(y,q))={tE [mnJ!f(z,£) is 

defined, and either f(z,t)>length(R(z)) or f(z,£) E p
2

(R(y,f(y,q)))} 

R' is well-formed. 
n 

To show that R' ERn(~ut,t) let zET, x x 

let t be such that R'(z,t) is defined, let u=p
1
(R'(z,i)) and let 

< u
0

, u
1
> E M(u, v(z)). If f(z, £) > length(R(z)) then by c), d), and e)we se~ 

that for crE{O,l} and some q, p
1

(R'(zocr,q))=ucr and £Ep2 (R'(z•cr,q)). 

If f(z,t) s=length(R(z)), then by a) and c), p 1(R(z,f(z,£)))=u. So for 

someerE(0,1} and some q, p
1

(R(z•cr,q ))=ucr and f(z,f,)Ep
2

(R(z•cr,q.,)). 

By b), there exists q' such that f(z•cr,q')=q. By a) and c) 

p 1 (R ' ( z •er, q ' ) ) =p 1 (R ( z •er , q) ) = u er. A 1 so, since f ( z, f,) E p 2 (R ( z • er, f ( z • cr, q ' ) ) ) , 

we have. bye) that £Ep2 (R'(z•er,q')). So R' ERn(~;,tx). 

It remains to show that R' is accepting. So let rrCT be a path, x 

n={x0 ,x1 , •.• } where ::i\ <xi+l for iEw. Let a=..e0 ,t1 , ••• be a thread 

of(R'ln)w. Note that f(x
0

,.e
0
)=f(x,l)=l so that f(x

0
,..e

0
):;;;length(R(x

0
)). 

Now let iEw be such that f(x.,.t.) s=length(R(x.)). So, since 
1 1 l 

we have by d) and e) above that 

So by induction we see that the infinite sequence 

is a thread of (Rln) . But by a) and c), 
w 

the S-sequence associated with a for (R' ln)w is the same as that 

associated with ~ for (Rln)w' and this is of type 0 since R is 

acceptlnE. 0 
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Section 3: Proof of Theorem 2 

Let k be a nonnegative integer and let n be a positive integer 

such that for every pairs-automaton ~ of order k, D(k )~T( IJJtj). Let 

(!'(, = < S, ~. M, s 0 , 0 > be a pairs-automaton where 0 = (<Li, U i >) lS-:i$;'k+l, 

Lk+l=¢, and S=(s0 ,s1, ..• ,sm_ 1). Let t=(v,T) be a fixed .I;-tree 

such that t E D(ut). We wish to show , eventually, that t ET( IJJt~. 

Define a set H~T~S by H=( <fl.,s0 >) U( <x,s>ltxED(01.s) and sEUk+l} 

For <x,s >EH, define H<x,s>=( <y,u>EH ly>x}. Let 

O' = ( :<Li' U i>) lS":i:s::'k' 

Lemma .!!., For every < x, s > E H and for every r E Rn ( (Jl , t ) , either 
s x 

I) there exists a path rrcT such that rln E [0'] or 
x 

II) there exists y>x such that <y,r(y) > EH<x,s>' 

Proof of Lemma .§..:. Assume otherwise. Let < x, s >EH and let 

rERn(O!. ,t) be such that for all paths TTCT , rlni [0' ], and such 
.s x x 

that for all y>x, <y,r(y) ><lH. 

Definition: If Y c T is a set of (pairwise) incomparable nodes (under S-:) 
x 

define Ty=(zET jfor all yEY, z:1y}=T -1 ly(T -(y}). 
x x x y'E y 

We will now define r' E Rn(ot , t ) such that for all paths TTCT , 
s x x 

r'lrr<t [OJ, contradicting the fact that t ED(t'! ). Let 
x s 

Y=(yETxly>x, r(y)EUk+l' and for all z, x<z<y, r(z)<luk+l}. 

Clearly the members of Y are incomparable. If zETY, define r'(z)=r(z). 
x 

Now let yEY, r(y)=u. Since uEUk+l and <y,u><lH, it must be 

the case that t i D(Ol. ) . So let r E Rn(Vt , t ) be such that for all 
y u y u y 

paths TTCT, r lnr/. [O]. For all yEY and all zET, define r'(z)=r (z). 
y y y y 

Clearly r' is a run of {1{
5 

on tx. Let nCT be a path. 
x 
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Then r' ln=rln so r' 1'1'1 [rJ' ]. But r' (n--[:,:})'=r(n-(x}) must n0t 

intersect Uk+l· So r 1 jni,l [OJ. 

Case 2: nnY}0 

Let (y}=nn Y. Let TT =nn T . Then r' !·1 '=r In . 
y y y y y 

So 

r' In i,l [O]. So r' In~ [fl]. y 

Contradiction. o 

Now define the pairs -automaton c.& = < S, :0, 11, s
0

, ~l' > . \·!h-:it Ler.': . .::. 

8 says is that for <x,s>EH, t H< >ED(l; ). But d.r is L•f ordec 
x x, s~ s s 

k. So by the hypothesis, for <x,s>EH, t H C:T('.:i::'i ). So for 
:-: <x, s> s 

<x,s>Ell, let R< >be an accepting run o[ '.'J~: on t ll< .. 1;ut 
x,s «.rs x x,s/ 

D1 is a. subsequence of D, so each R is also an accepting run of 
<x,s> 

~ .. on t H< >' UlS X X,S 

Without loss of generality (l'y Lennna 7) assume that for <x,s >EH 

R< > is a wel 1-formed accepting run of ~~ on t H . he want 
x,s . ·s x <x,s> 

to construct a we] l -formed acceptill{'; run, R, of ~~L on t. R(i\) wiJ 1 

equal <s
0

,¢> and for x>A, R(x) will be of length nm. Simultaneously 

with R we will construct a function f which is defined al a node x and 

integer £ if 1 <:::: £ s: length(R(x)). If defined, f(x, P.) Hill be a member 

of H, say for example <y, u > . The interp.·c::ation is that we think 

th 
of the £ element of R(x) being continued like some element of 

R (x). 
<y,u> 

T.ike which element? Well if y=x then R (x) has only 
' - ' <y' u> 

one element, namely, <u,¢>, and we better make sure that p
1

(R(x, ))=u. 

Otherwise, that: is if y>x, we associate R(x,i) with R~ >(x,£), which 
.... y,u 

we can do si11ce by lhe definition of \7el1-forme<l both elements have the 
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same first part. To speak of the two cases uniformly we define a 

function g such that we always Lhink of associating R(x,1-) with 

Rf(x,l-)(x,g(x,1-)). We also have to make sure that Rf(x,f,) gives us 

acceptable directions on how to continue the f,th element of R(x), und 

therefore carry along various induction hypotheses in the definition of 

R and f. To define f, we will need a well-ordering on H. 

We now begin more formally. Let ~ be a fixed well-ordering on 

TX S; clearly ~ induces a well-ordering on H. Denote by < the usual 

strict well-ordering determined by ~. 

We now define R:T-+S:and f:(<A,J>}U((T .. (J\}) X [mn)) --+IL We will 

define them by induction, and at every stage the following will be true: 

If R(x) is defined and 1=:;;;1,::;: length(R(x)), then f(x, i-) is defined; 

if f(x,1-)=<y,u> and p
1

(R(x,fi))=s, then 

a) y =:;;; x and 

b) if y=x then u=s and 

c) < x, s > ~ H <y' u> 

Let R(J\)= < s
0

,¢ >. Let f(J\, l)= <A.,s
0 

>. Clearly the above 

hypothesis holds so far. 

Assume now that R(x) and f have been defined so that the above 

hypothesis holds. For £, l-5: £ ::;:1ength(R(x)), define 

Let a E (0, l}. Define R(x•<J) to be of length mn such that for 
q 

1 ~ q :c;;: mn, pl (R(x•cr ,q) )=si where i= the greatest integer less that 
11 

and such that 
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p
2

(R(x•cr,q))=(.el f(x,.e) is defined and g(x,.e) E p2 (Rf(x,.£.) (x•cr,q))}. 

We now define£. Let s=p
1

(R(x•cr,q)). If <x•o-,s>EH let 

f(x•cr,q)= <x•cr,s >. Clearly this preserves the induction hypothesis. 

If <x•cr,s><lH, let f(x•cr,q)=minimum{f(x,.e)l.£,Ep
2

(R(x•cr,q))}. Clearly 
under ~ 

a) and b) are preserved for x•cr, and since <x•o·,s >~H, c) is true 

at x•cr. 

It remains to show that RE Rn( ~i, t), and that R is accepting. 

Let x,.e,s,u
0
,ul' be such that R(x,t) is defined, p1 (R(x,f,))=s, and 

<u
0

,u1>EM( s,v(x)). Either by b) or by the fact that Rand Rf(x,.l) 

are well-formed (depending on whether or not p 1 (f(x,.£,))=x) we can 

conclude that pl (Rf(x, .£,) (x,g(x, £)) )=s. Now recall that if f(x, 1)= <y, u >, 

then Rf(x,.£,) is a run of ~u on tyH<y,u>' Since <x,s>~H<y,u> (by c) ) 

we know that there exists crE (0,1} and q such that p 1 (Rf(x,.£.)(x•cr,q))"'Ucr 

and g(x,t) Ep2 (Rf(x,.t)(x•cr,q)). Since Rand Rf(x,t) are well-formed, 

p 1 (R(x•cr,q))=ucr. 

RE Rn( !IR~, t) . 

And by the definition of R, .£, E p,,(R(x•cr,q)). 
'-

So 

To show that R is accepting, let TICT be a path, 1T=(x
0

,x1,. .. } 

where xi <xi+l for iEw, and let cr-t0 ,t1,. be a thread of (Rlrr)w. 

~~For infinitely many i, x.=p
1
(f(x.,t.)). 

l. l. l. 

By b), p
1
(R(x.,t.))=p

2
(f(x.,.£..)) for infinitely many i. But by 

l. l. l. l. 

the definition of H, this implies that pl (R(xi, .£.i)) E Uk+l for infinitely 

many i, and hence, that the S-sequence associated uith ~ is of type O. 

Case 2: xi=p 1(f(xi,.£.i)) for only finitely many i. 

So for sufficiently large j, xj+lfp1(f(xj+l',ej+l)). By the 

definition of f, we have that for sufficiently large j 

f(xj+l'.ej+l)«;f(xj,f.j). Since~ well-orders H, there exists an i 
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such that if j"2:i, f(x.,l,j)=f(x.,l,.). Let <y,u>=f(x.,.e.). 

J 1 1 l. 1 
Then 

y::;; x.. By definition of R we have that if j > i, 
1 

is a thread of 

y=R< >(x.+1),R< u>(x.+2), ... y,u 1 y, 1 
Since R and R< > are well-formed, y,u 

the S-sequence associated with P for R(xi+l), R(xi+2). is the 

same as the S-sequence associated with p for y. so it is sufficient 

to show that this s-sequence is of type 0. 

Let TT =ml T . We know that the S-sequence associated with a thread 
y y 

of (R<y, u> ITTY) w is of type 0. We want to be able to say that the .ti+l 

element of R<y,u>(xi+l) can be traced back to the first and only 

element of R< >(y), that is, that there exists a finite string of 
y,u 

numbers P' such that P'·P is a thread of (R<y,u>jTTy)w. Let z•cr=xi+l 

where zETY and crE (O,l}. Since f(xi+l'.ei+l)=<y,u>, there must 

exist a·q such that f(z,q)=<y,u>and qEp 2 (R(xi+P,ei+l)). So 

g(z,q)Ep2 (R<y,u>(xi+l',ei+l)). If z=y we are done. Otherwise, g(z,q)=q, 

so we have that q•p is a thread of R<y,u>(z) •y and f(z,q)=<y,u>. 

Continuing in this way we see that there exists ~' such that p'•p is 

a thread of (R< u>ITT ) . So R is accepting. 0 y, y w 

Section ~ Proof of Theorem ..§. 

Definition: Let 8:A-.B, let O=(<Li,Ui>)l::;;i::;;k be a sequence of pairs 

of subsets of B. Then we say 9 is of type o .. empty, written e E (O,e], 

if 9 E [O) and for ~ i, l::;;i::;;k, 8(A)nt.=¢ (where 8(A)={9(a)laEA}). 
1 

The point of the defiuiti:>n will be that the property of a sequence 

being of type 0-empty is basically simpler than the property of being 

of type 0. In particular, if 0 is of order k we can "recognize" if a 
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sequence is of type 0 -empty with an 0' of order k-empty. This i.s 

made more precise in Lemma 9. 

Now let k and n be positive integers su~h that if J:r is a pairs­

automaton of order k-empty, then D(jf) ~T(~). Let 

i/l.==<s,I;, M, s
0
,0> be a pairs-automaton-where s~(s0 ,s 1 , ••• ,sm-l} 

and 0=(<Li,Ui>) 1:s;i$k' Let t=(v,T) beak-tree such that tED(i/l). 

2k 
Eventually we will show that t ET( ~Jf'l ) . 

Below, we will define a pairs-automaton of order k-empt:y whose 

state set is S x P( [k]). To this end, 

w 
Qefinition: If aEs, O'=u

0
,ul' •.• 

0 w 
, define a E ( S X P ( [ k)) ) by 

0 
Q' = < uO' NO> ' < ul' Nl>' • where N

0
=i/J and N.+1=N. U (j lu. EL.} for all 

1 1 1 J 

iEw. 

Notation: If N is a finite set of positive integers and j is a positive 

integer, let N(j) be the jth smallest member of N (if c(N; ~ j; otherwise 

N(j) is undefined) . That is, N(j) is y(j) where y is the finite sequence 

obtained by listing N in increasing order. 

Definition: Let 0'=(<Lf. ,Uf. >)ls;iSk where for 1S:i$k-l we let 

Ui_ =( <u,N> ESXP([k])li:s;c(N) S:k-1 and uEUN(i)} and 

Li_=( <u,N> ESXP([k])liS:c(N)S:k-1 and uELN(i)}; define 

Uk=( <u,N> ES XP([k])jfor some j, ls;jS:k, uEU. and j ~N (so c(N) <k)} 
J 

and I'k: = ¢ . Note that 0' is of order k-empty. 

Let N==(j, l:5:j.S:k I for some iEw, u. EL.}. Then by the definition of 
1 J 

o o I 
Q', we have In(a )=( <u,N> uE In(O')}. 

=.;.: Let ctE [O,e]. Tlien c (N) < k. Let j be such that In( a) nu .I¢ 
J 
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and In(a) n L.= ¢. If j rt. N, then 
J 

Ir(a0 ) n Uk_/¢ so cP E [0' ]. If j EN, 

there cxistc q such that N(q)=j. 

0 

Then In(cP) n U'..;. ¢ and In('-t'Q) n 1 1
'-" 1J. 

q q 

So a E [0']. 

<:.:: Let cf?' E [D' ]. 
0 

If In(a ) n Uk f ¢, then there ex is ts j such 

that In(conu. f.¢ and j ~N. So aE [O,e]. If there exists q, l:<:::q:::;-k-1 
J 
0 0 

such that In(a )nu~f.¢ and In(a )nL~=¢, then In(C<')nuN(q)f¢ and 

In(a)n1N(q)=¢. Since c(N) <k, we have aE [O,e]. Cl 

Definition: Define the pairs-automaton 

.t-=<sxP([k]),L;,M 1 ,<s
0
,¢>,0'> where for sES, N~[k), aEL;, 

M' ( < s , N > , a) ={ < <u 
0

, N' >, <u 
1

, N' > > I < u 
0

, u 
1 

> E M ( s , a) and N' == N U { j I s ( L j } } . 

Fact 3:For x ET, s ES, if r is a run of ;f;<s ,¢> on tx' then p 1r is a 

run of IJ7. on t , and if TTCT is a path, then by lemma 9, 
s x x 

rlnE [0'] ~ p
1
rlTIE [O,e]. 

(Recall that t E D(Ot). ) 
It. would be nice if t E D(..b). For then, since J/ is of order 

k-empty, we would have that t ET(~~) and an accepting run of ~ on 

2k 
t would clearly yield an accepting run of ~c. on t. It is not however 

necessarily true that t ED(.$). But what if we had a set 

If <A > r; TX (S X P ( [k])) such that t )f <II. >ED ( k) ? • • 
,so ,so 
With this approach in mind we define a (possibly trans-finite) 

sequence of pairwise disjoint subsets of T x s, {H
6 

lo <y} for some 

ordinal y, as follows: 

0 0 
Let H = ¢ . Assume that R has been defined for 6 < ~. Define 

n~-~<x,s> for all rERn(01 ,t ), either· 
s x ~-U Ho there exists a path TICT such that rln E [O,e) 

6 o<~ 
there exists y>x such that <y,r(y) > E 0~~ R • 

Let y be the least ordinal >O such that Hy=¢• Let L' o R= J H 
6<Y 
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Proof of Lemma 10: Assume that <A,s0>~H. We will construct by 

induction a rur r of oi on t such that for aJl paths nC:T, rln~ [OJ, 

contradicting the fact that tED(Cf(). 

As in the proof of Lemma 8, if Y C'.r is a set of (i,Jairwise) 

incomparable points, define Ty-=( z ET I for all y E Y, z 1, y}. 

Stage ~ Let Y
0

=(A} and define r(A)~s0 • Clearly Y
0 

is a set of 

incomparable nodes and for y E Y
0

, <y,r(y) > r[H. 

Stage i_+l: Assume that Y CT is a set of incomparable nodes and that 
i 

Y· 
r has been defined on T 1 such that if y EY., then <y,r(y) >rt. H. 

l. 

Let yEY., r(y)=u. Since <y,u>\lH, there exists 
l. 

r E Rn(v't , t ) such that for all 
y u y 

paths TT CT , r I TT~ [0, e) and such that 
y y 

for x>y, <x,r (x) ></. H. Let 
y 

I) :x > y 

G = xET II) for all j, 1:;;; j::;;; k, there exists z, y::;;; z:::;;; x, such that 
y y 

r (z) EL. 
y J 

III) x is a minimal (under ::;;;) node satisfying I) and II) 

Clearly G is a set of incomparable points. 
y 

Let Y .. 1= U G . Clearly Y
1
.+l is a set of incomparable points 

i-t- yEY. Y 
l. 

and TYi+l ~ 

) 

TY. 
l. • Let zETYi+l _ TYi. There exists a unique yEY. such that y<z. 

. l. 

Define r(z)=ry(z). So if xEYi+l' <x,r(x) >\lH. 

This completes the definition of r. Since for all i, every 

member of Y. is of length at least i, r is defined on all of T. 
]_ 

Clearly r is a run of 01. on t, Let TTCT be a path. Let Y=-= l J Y .. 
iE'w i 
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Case 1: c(nl: Y)=ul. 

Then if i E UJ there exists y. E Y. such that y. E TT, ancl 
l l l 

So for every i ( u and every j, 1 5 j s;; k, we have 

r([y.,y.+ 1 ])riJ,. /c¢. 
l l .L J 

So for every j, l,::;j<;;k, In(rJn)n1 .. l:f·. 
J 

So 

rJnV1 [OJ. 

Case 2: nn Y is finite. 

Let y= rn1ximum(n n Y). Let n =TTn T . Then r In =r I·;: . 
y y y 

AJso, it 

under s y y 

must be the c.1se that for some j, 1-::: j <;; k, r (n ) n I .. = 0 . 
y y J 

chosen so that r In r/ [~2,e]. 
y y 

Contradiction. o 

Sor In r/ [OJ. So rln (/_ [C-2]. 
y y 

But r was 
y 

Defini t~on: For 6 < Y, and < x, s > E 11
6

, define JI< ." = lJ H ~; Jet 
x, &---- ~<6 

N - > = [ <y' < u' N > > E T x ( SX p ( [ k J ) ) I < y' u > ( H < > ~ . 
~x,s x,s 

Ry the d2finition of 11, <x, s >EH implies that for all 

r E Rn(Ol ,t ) either there exists a path nCT such that rln 1
::: [~l,ej, 

s x 

or there exists y>x such that <y,r(y)>EII< >' Therefore, by Fact 3, 
x, s 

we know that if < x, s > EH, then 

hypothesis of Theorem 6, D(j'.,- < '""» c T( :D:~ . ) • 
s ,.,_) o<s ,r/l> 

So let R~ s> be an accepting run of J~ on t ff< fo:c <x, s > E 11. 
x, ,_, <s ,¢> x -x, s> 

We would 1 ike R<' > to have the following propertv: :-·or all y ET , 
x,s x 

v E [ 0 , 1} , .£ , q , if < u 1 , N 
1 

> = p 
1 

( R ~x, s> ( y, r; ) and 

<u2 ,N2>=p 1 (R~x,s>(y"u,q)) and x,Ep 2 (R~x,s>(y-a,q)), then 

N2=N
1 

U ( j I u
1 

C l,j) . If this .EE.2J?e~_!".:.Y docs not hold we could remove Z 

have left would still be an 

• f ITjlll Dr.cept1 lr~ run o. -.t- , 
,.,_. <s' ~)> 

on t Jf _ .. 
x <....x, s.> 

So for < x, s > C 11 , assume 

without loss of f,cncrality that R'. s> has thjs EE .. <?..LE2IE· 
<-x, .· 
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For <x,s>EH, define R< >:T-+S~t as follows: 
x,s x 

if y ET , 
x 

let R< >(y) be the same length as R<' >(y); if 1 :£:is: length(R<' , ,.,...,,(y)), x,s x,s x,o/ 

define p2 (R< ...,,(y,i))=p2 (R~ >(y,i)) and define p1 (R<· s>(y,i))= 
x , s/ x, s k x, . 

p 1 (p 1 (R~ >(y,i))). SoR< >ERn(9Jl~~ ,tH< >). LetnCT bca x,s x,s s x x,s x 

Path; let f3 be a thread of (R< >Irr) and let Q' be the S-sequence x, s . w 

associated with P for (R< >In) . x,s w Then p is a thread of (R<' )rr)w, x, s 

and the S-sequence associated with p for (R' In) is, by the above <..x,s> w 
0 

property, Q' • We know, since R' is an accepting run of ~- , 
<x, s> '1f <s, ¢> 

0 
that a E [0'). So by Leurrna 9, aE [O,e), so aE [O]. 

By the above paragraph and Lemma 7, we can finally conclude 
k 

that for <x, s> EH, there exists a well-formed accepting run of ~2 on 
s 

t H< >" x x,s Denote it by R< >. x, s 
n2k 

We 11ow proceed to construct R, a well-formed run of !Dlrn. on t. 

We first define a. total ordering, ~· on H as follows: 

and <y,u>EH~; then we put <y,u>)<x,s> if p<o, or 

6 
Let <x,s>EH 

if ~=O and 

<y,u> °" <x,s> where°" is a fixed well-ordering of TXS as in Section 

3. Clearly ~ is a well-ordering of H. 
H 

Denote by ii the obvious strict 

well-ordering determined by ~· It is important to note that if 

<y,u> EH< >' then <y,u>-<H<x,s>. x, s 

At the same time as we define R we will define a function 

f:{</\, l>} U ( (T-(/\.}) X [mn2k]) -+R. As before, we carry along the 

following induction hypothesis: If R(x) is defined and 1::::: i, ~ length(R(x)), 

then f(x,t) is defined; if f(x,.l)=<y,u> and p
1

(R(x,.l))=s, then 

a) y::::: x and 

b) if y=x then u=s and 

c) <x,s>r.f. ll/ > 
'-Y,U 



'j') < "- ' Let 1~ ~ , ~ s O, cµ ,,,. • Clearly the above 

hypothe:,sis holds so far. 

Assume now that R(x) and f have been dc:fincd so that the ~1bove 

hypothesis holds. For ,.e, Jc=;£~length(R(x)), define 

Let o-((0,l}. 
k 

Define R(x•o-) to be of le11zth mn2 such that for all q, 

~ 0 
Jc=;q:S:rnn2', p

1
(R(x•c,q))=s

1
. where i_=the greatest integer less tho.n 

and such that p
2

(R(x•o,q))= 

[£/ f(x,£) if: defined and g(x,J!,) C p 2 (Rf(x,£) (x•o-,'l.))!. 

We now define f. Let s=p_(l{(x•u,q)). If <x•o,s>Q'll, define 
l 

f(x•o,q)=rninimL·m [f(x,£)!£Ep/R(x•u,q))}. If <x•o-,s>·~H, define 
under ~ 

H 

f(x•(T,q)=minimun1 ([ <x•cr,s>} U(f(x,£)j£E: p
2

(R(x•u,q))}). Clearly 
under < 

Tl 

a) a1~ b) arc ~reserved. To see tr;at c) is true at x·cr, oliserve 

that if <x•cr,s> (Hf( ) then <x•cr;s>E11 and 
x•cr,q 

conL:_·adic ting the definition of f (x• CJ, q). 
')k 

E -.Jl~ 
This completes the definition of R and £. That R Rn( ~J':-·t , t) 

.,k 
11/ 

follows exactly as in the previous section. It remains to show l:h~:r R 

i E w. 

f(x. il'J!,·+-1) <ll f(x.,£.). 
]_· - ]_' ]_ ]_ 

be a thread of (Rin),,. for al 1 

So, since < well-orders H, there exists an 
H 

i such that j :, i implies that f(x.,£.)=f(x.,£.). Therefore the proof 
J J ]_ ]_ 

that R is acceptin~ is identical to that in Case 2) at the end of 

Sec t~on 3. 0 
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Proof of Theorem 3: 

(~-(_k+_l )) 
2 

_l;r_'2S_~ion: Fork a nonnegative integer, let n(k)=2 

k+l 
2 n(k)=n(k+l). 

Nole th<' t 

Let our induction hypothesis at stage at stage K be that if 

n(K) 
(/[is a pairs-aut0111aton of order K, then IJ(U7.) c T( !D:f/l- ) • 

The hypothesis is· true at K=O by TI1eon~rn 4. i\sc;ume it is ti.·uc 

for K=k. we w:ish to sliow it f0r K=k+L l~y Theorem 5, if .,,f;- , ,. . ... 
J....U 0 .. 

pairs-automaton of order k+l-empty, then D( 0 ) r T( T!~_(k)). Therefore, 

by Theorem G, :;_ f {J<. is of or cl er k+ l, D ( u l) r T ( 111~ ~ k+ l) ) . 

This together with Lemma 6 completes the proof. LJ 
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