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ABSTRACT

In [6] Rabin defines Automata on Infinite Trees, and the body of
that paper is concerned with proving two theorems about these automata.

The result we consider in the first chapter says that there exists
an effective procedure to determine, given an automaton on infinite
trees, whether or not it accepts anything at all. We present a new
decision procedure which is much simpler than Rabin's since we do not
use an induction argument as he does. We show in Theorem 1, the
main theorem of Chapter 1, that if &t is an automaton on infinite
trees, then T(01) (the set accepted by ¢t) is non-empty if and only
if there exists a finite tree E and a run of ¢t on E of a particular
type. This latter condition is equivalent to saying that the set
accepted by a particular automaton on finite trees is non-empty.
Hence (see Theorem 2) the emptiness problem for automata on infinite
trees can be reduced by Theorem 1 to the emptiness problem for automata
on finite trees, which is shown decidable in [7]. Theorem 1 is proven
by showing how maps on finite trees can generate maps on infinite trees
which are then said to be finitely-generable. A corollary of the proof
of Theorem 1 is that if an automaton on infinite trees accepts some
input tree, then it accepts a finitely-generable one; this result
was proved in a much more complicated way by Rabin in [5].

Chapter 2 is concerned with the more difficult result of [6]
that for every automaton on infinite trees, &1, there exists another
one, Ol ', such that ¢1' accepts precisely the complement of the set
accepted byl . Rabin's construction of ¢t' and the proof that it
works is an involved induction., In this paper we present a fairly
simple description of a complement machine ¢l', given ¢U, such that it
is very plausible that £1' works in the sense that T(UU')=T(C(). The
proof that our construction works, however, is difficult and very
similar in complexity to Rabin's proof in [6] that his (more difficult)
construction works.
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CHAPTER 1

The Emptiness Problem

Section 1l: Introduction

The analysis of finite automata on infinite trees is the basis for
Rabin's remarkable proof of the decidability of S25 (the monadic second-
order theory of two successors) [6]. Rabin's proof follows the now
standard form of Blichi and Elgot's proof for WS1S (weak, single successor)
[1,3] and Thatcher-Wright's proof for weak S2S [7], and requires
demonstrating effectively that the automataz are closed under union,
projection, and negation, and that the emptiness problem for the
automata is decidable. As in the case of S1S, the main difficulty in
the case of $28 lies in proving closure under complementation of sets
accepted by nondeterministic automata on infinite trees. The problem
is complicated by the fact that nondeterministic infinite tree automata
are known not to be equivalent to any of the likely definitions of
deterministic infinite tree automata.

In [6] Rabin shows how, given an automaton on infinite trees (T,
one can construct another omne, ¢1', such that ¢gt' accepts exactly the
complement of the set accepted by ¢t. His construction, however, is a
very complicated induction. 1In Chapter 2, we present a fairly simple
construction for ¢t'.

Curiously, the emptiness problem, which is easy for the other kinds
of automata, turns out to be nontrivial for (nondeterministic) infinite
tree automata. Rabin subsequently improved his original proof of the
decidability of this emptiness problem, but even the second proof {5]

uses an involved induction and consequently does not yield a simple



6

effectivévcriterion for deciding emptiness.

In this chapter we provide such a criterion by showing that an
infinite tree automaton accepts some valued tree if and only if there
is a computation of the automaton containing a certain simple kind of
finite subtree. Moreover, the set of finite subtrees of the kind we require
is recognizable by a finite tree automaton, and in this way we reduce the
emptiness problem for infinite tree automata directly to that for
finite tree automata. This also yields a simple proof of another

result of Rabin's about "regular" runs by automata (see below).

Section 2:

For this paper the appropriate way to visualize the infinite
binary tree T is as follows. At the top is the root A, Every x€T

has a left son x°* 0 and a right son x* 1. Hence T={0,1} ",

/ \ \

, ', . . *
We define a partial ordering on T by x<y if y=x*z for some z€ {0,1} .
If x<y and x%y, then we will write x<vy.

For each x€T, define the (sub)tree with root x to be the set

Tx=(ylx <y}. Thus T=T,.

Definition: A path 1T of TX is a set TTCTX satisfying: 1) x€m;

2) if y&m, either y*O€T or y*1 €1 but not both; 3) T is a minimal

subset of Tx satisfying 1) and 2).
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Notation: If x and y are members of T and xSy, then we denote by
[x,y] the set {z|szSy}. .
For a set B we denote the cardinality of B by c¢(B) and the set of

subsets of B by P(B).

Definition: A set BC:Tx is called a frontier of TX if for every path
TTCITx we have c(m/1B)=1., By Kbnig's Lemma, every frontier of T, is
finite.

For x€T, a finite tree with root x is a set

Ex={zlezSy, for some y € B}, where B is a fixed frontier of Tx' For
Ex as above, B is called the frontier of Ex and is denoted by Ft(Ex).

Unless otherwise noted, we will use E to denote a finite tree with root A .

Definition: A Z-tree is a pair tx=(v,Tx) such that v:Tx-’E. A finite

Z-tree is a pair ex=(v,Ex) where V:Ex—n‘:. Unless otherwise noted, we
" will use ¢t and e to denote tA and ey respectively. If t=(v,T) is a
2~tree, then we use both (v,Tx) and t  to denote (vlT};,Tx). 1f t=(v,T),

and Ex is a finite tree, then we use e and (v,Ex) to denote (lex,Ex).

Definition: For a mapping ©:A-B, In(9)=[bEB|c(9-1(b))?—w} .
Definition: Let O:A*B and let (=( <L,,U >)1Sis“ be a finite sequence

of pairs of finite sets. We say 8 is of type (), written 6 € [2], if for

some i, 1<i<n, we have In(e)ﬂUi#ﬁb and In(8)N Li=¢ . If Q is the

empty sequence, then we define it never to be the case that © € [Q].

Definition:An f.a.t. (finite automaton on trees) is a system

Ol=<g5,Z M, so,Q> where S is a finite set of states, & is a finite set,

1S X2 X € i initi (< .
M:S P(S X S), s, €8 is the initial state, and (=( Li’Ui>)1SiSn is a




finite sequeuce of pairs of f{inite sets.
If t =(v,T ) is a Z-tree, then an ¢l-run on t is any mapping
X —
r:TX"S such tlat: 1) r(x):so and
2) for all yCT_, <r(y*0),r(y* >N (), v(y))-
If eX=(V,F,X) is a finite 2~tree, then an yz-run om e is any

mapping r:EX -+ S such thaty 1) r(x)=so and
2) for all y¢& EX—-r t(hx) ,
<r(y*0),r(y°1)>cM(r(y),v(y)).

The set of all ¢{-runs on tX (eX) will be denoted by ND(OZ,tX)

( Rn(Ol,eX), respectively). An accepting ¢/{L-run on t, is any rEI{n(&‘(,tX>

such that for every path TTCTX, rlﬂ € [(2), Defire
Tr)={ txltherc exists an accepting ¢T-run cu ty}. T(1) is calied

the set accepted by ¢7.

Given an f.a.t. 7 =<8, 2, M, g 2>, we wish to determine
whether or not T@U)=¢% . Consider the automaton J7 =<S$S,{a}, N, Sg Q>
where for all s€38, ﬁ(s,a)=CKL_JE M(s,0). Clearly T(JL)=¢ “T(Cl) ¢ .
Thus, the emptiness problem is reduced to the case of automata
over the single letter alphabet {a]. Henceforth in this szction we
restrict our attention to this case. Since there exists just one
{a)-tree rooted at A, (v,T), and for every finite tree E just ome finite
{a)-tree, (v,E), we will omit mention of the valuztion V and talk

about ¢T-runs on T and E, ¢accepting T, etec. Clearly,

T(UNF P TETET).



Theorem 1: LetOb=<iS, {a}, M, s <(Li’ Ui))l C i< > be an f.a.t.

0’ i<n

T@ED # ¢ © for some finite tree E there exists an r such that
1 r € ru@,E),
2) there exist mappings J: Ft(E) - LE-Ft(L) and H: Tt(L) =
E~-Ft(E) such that for all x € Fu(E)
a) HE) < J®) < x,
b) r(J(x)) = r(x),
c) r([H(x), J(x)]) = r([J{x), x]),

¢) for some i, 1 € i < n, r([J(x), x])\”\Lj = ¢ and r(x) € ﬂi-

Before we prove Theorem 1, we show that Theorem 1 easily yields the

following theorcm.

Theorem 2: The emptiness problem for f.a.t.'s is decidable.

Proof of Theorem 2: Let O be as in the statement of Theorem 1.

Definition: Let E be a tree (finite or infinite). Let r be an ({l-run

on E. Let x € E. Since x € {0,1}" we can write x = 0,0, ... O . Define

.

o to be the following member of s . o, = r([g'r(cl)°r(0102)...r(x)u

,X 3

Notation:Let & be a finite string and let n and m be positive integers, nsm.
Then by o(n) we will mean the nth element (from the left) of «w. By
a([n,m)) we will mean the set of elements between aud including the nth

and the mth places of ~. Note that «(n) is only defined if 1< nSlength(a)

and @([n,m]) is only defined if 1sn<m<length(w).



Definition: Let o € S . We say that o is Cood if there exist positive

ry

integers H and J such that H < J < N = length(e), «(J) = «(I), of(iH,J]) =

i

@([J,N]), and there exists an i such that a(X) € U, and o([J,N]) & [P

Note that good is defined with respect to our f.a.t. Cl.

Lemma 1: The set of good strings is a regular set, i.c., iU is

recognizable by a finite state machine on finite input strings.

Proof of Lemma 1: Obvious. 0

T

Lemma 2: Let G be a regular set of finite strings on S. Tet 1l =
{EIE is a finite tree and there exists a run r on I such that for all
x € Ft(B), @ € G Then H is recognizable by a finite automzton on

3

finite trees a3z defimned in [7].

Proof of'Lemma_Z: Fairly obviocus. O

Completion of nroof of Theorem 2: By Theorem 1, Lemma 1, and Lemma 2,

the emptiness problem for 01 can be reduced to the emptiness problem
for a particular finite automaton on finite trees. But by Theorem 7 in

[7], this problem is decidable.

Proof of = in Theorem 1l: ©Let r be an accepting Cnrrun on T. By the

definition of accepting run and of good string, it is clear that for

every path m of T there exists an %, x € 17, such that o, is a good
3

string. Let B = {xly is good and for all y < x, « isn't goodj.

r,X

b r’

Then B is a frontier. {f we let E be the finite trece with frontier B,
then there exist mappings J and 1 which, together with rl|E, satisfy

conditions 1 and 2 of Theorem 1. This completes the proof of =,
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Proof of < in Theorem 1: Let E, r, J and H be as specified in 1) and

2) of Theorem 1.
We define a mapping M: T - E inductively as follows. Let M(&) = A .

If n(x) has been defined, then for ¢ ¢ {0,1}, define M(x*9 as follows.
Case 1: 1f m(x) € E - Ft(E), then let N(x*S)= Nn(x)*0.
Case 2: If n(x) € Ft(E), then let n(x'g)= J(n(x))*o.

Define r: T -+ S by ;(x) = r(n(x)), for all x € T. Clearly by 2)
b) of Theorem 1, r € Rn(Cﬂ, T) so that it suffices to show that for all
paths m < T, (r | m) € [7], because then T € Wg;{) and hence T(g]) # ¢.

Let m < T be a specific path. Let Yor Y10 Yor +o- be the infinite
subset of 7w (listed in increasing order under <) consisting of exactly
those members of ™ whose images under 11 are in Ft(E). Define v to be

the following infinite sequence of members of Ft(E) X Ft(E):

= < < <niv.) v >
Vo= yg)s Ny P, Sy, My, <nly,)s nlyy) >,

For all i <w we have by the definition of m, J(n(yi)) < ﬂ(yi+1)

and r(ly;, v, D) = c(LI(G ), nly;,4) ). Hemce, In(x | = =

U r([J{x), z]).

<X) Z> G In(\’ﬁ)
Clearly there exists a finite sequence (possibly with repetition)

of members of Ft(E), x,, Koy X . xm, such that

1 3’
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x, = x &and
‘m

1
(1) In(V,) = [<k1, X,>0 Kys Xg>y gy K>, e,

< > L]
*ael” *m }

From now on we will demnote J(xi) by Ji and H<xi) by H,» for all
1<4i<m.

We have from the preceding paragraph

for all 154 <m, J <%,
(1) m=1
and In(r | m = U x( [Ji' Xi41d)
i=1

(r | m) € [} is immediate from the third of the following three

lemmas.

Lemma 3:  There exists an M, 1 < M < m, such that for all i, 1 <1 <m,.

H.MSHi-

That is, HM = EiE(Hl’ ceey Hm}.

Proof: Our induction
hypothesis at stage h is that there exists an integer M', 1L < M' < h,
such that for all i, 1< 1 < h, H,, < H,. Clearly the basis case 1is

trivial, We assume the induction hypothesis for h and prove it for h+l.
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HM' < Hh , by the induction hypothesis.
Hh = Jh , by 2, a) in Theorem 1,
Ty S ¥ o Py D

Hence, HM' < X g

- ~F The \ . s > g . ‘he N s and
By 2) a) of Theorem 1 we also have Hh+1 < X1 Therefore, HM 11

Hh+1 are comparable (under «). Clearly for 211 i, 1 = i £ h+i,

.
min{H,,, H ) < 1. ]

If M # m, we can rename Mo Koy ees

true and Hm = min{Hl, ..., H}. Henceforth, without loss of generality
mn n

x 80 that (1) and (11) remain

we assume that M = n.

, B, then for all i, 1 < i < (m-1),

Lemma 4:. If H = min{H., ...
————— m — 1 m

e (i, x4 1) =2 (i, x. ).

Proof: Let i be any integer such that 1 < i <m, H <H, £ J, < X
AEE— Se

hence we have the picture:

i !
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Hence, r([Hm, xi+1]) 2 r([Hm, Hi]) §] r([Hi, Ji]). By 2) c¢) of Theorem 1,
r([H,, Ji]) = r([Ji, xi])- Hence, r([Hm, xi+1]) = r([Ji, xi]), and

therefore, r([Hm, Xi+1]) = r([Hm, xi])- 0

Lemma 5: If Hm = gig{Hl, ey Hm}, then for all i, 1 < i <€ (m-1),
2
r(MH , x 1) =2 r(lJ,, % D

Proof: Let i be any integer such that 1 < i < (m-1).
By Lemma 4 r([Hm’ xm]) =2 r([Hm, Xm-l])’ r([Hm, xm-].]) 2 r([Hm’ Xm-z])’
. o :
o e, x oD 2 T([H, %, 1) Hemce, r([H, x 1) 2 (0, x4 1.

We have H = Hi < J; <% That is the picture:
m

i+1’

=2 .
Hence, !Hm, xi+1] [Ji, xi+1] Hence r([Hm, xm]) =2 r([Ji, Xi+1])’

.

Completion of the Proof of Theorem 1: Without loss of generality we

assume Hm = min[Hl, cees Hm}. By Lemma 5,
m-1
1) =2
r([H , x_ 1) U e (3, =, 4D
i=1
By part 2) d) of Theorem 1 we have for some i, 1 < i < n, r([Jm, Xm](j

Li = ¢ and r(xm) € Ui' By part 2) ¢) of Theorem 1, r([Hm, xm]) =

r([Jm, xm]). Hence,




m=-1

| : =
Uoorag, 5 D 0=
i=1

and

lu"]_

| : M b
- r([Ji, yi+1]> ruy o

Thercefore, by (T1) (r | m) ¢ Q.

Section 3: Remarks
In 6] Rabin uses the following definition.

Definition: An f.a.t., with desionated subsets is a system {0 =
e e &~ s et s et A .

<S, =, M, Sg ¥ >, where § 1s a finite set of states, 7 is a finite

set, M: § x %

[
-

P(S %X S), and ¥ € P(S) is the set of degignat

gnated cubsets.

An f(-run on t = (v,T) is as defined in Section 2. OY accepts t if
there exicts an r € Rp{,t) such that for all paths ™ < T, In(r ! Ty G

The proof of Theorem 1 can be extended to show that r([Hm, xm]) =
m-1

U r(lJy., x,,.1), where H,, x., etc. are as in the proof of Theorem 1.
io1 i i+1 i i

Hence for = < S, {a), M, Sy & >, where c(S) = q, we have:
T@) # @ < for some finite tree I there exists an r such that
1) r € Rn(@,E),
2) there exist mappings J: TFt(E) - E~-Tt(3Z) and H: Tt(E) = E-Ft(L)
such that
a) 1(x) = J(x) < x,
by r()) = rix),
¢y (=), J(x)) = r([Jx), x]),

dY o r([T00, =) ¢,
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The‘appropriate definition of a good str.‘ing with respect to O
is a simple modification of the definition of good string used in the proof
of Theorem 2. For either definition of good string we can design a non-
deterministic finite automaton on finite strings, %, which recognizes
the set of good strings and which has at most 22q(q+1) states. By the
subset construction we can design a deterministic automaton M' equivalent

2q
2 (qtD) states. Using M' we can

to M such that M' has at; most Q = 2
easily construct a finite automaton on finite trees, O(', such that T({)
£ ¢ if and only if T(OD # ¢ and such that the state set of O{' is the
cross product of the state sets of J[and M. Hence OU' has at most ¢Q

states. We can determine whether T(®') # ¢ in (q Q)3 computational
steps,

Hence given a finite automaton & on infinite trees which has q

states and uses either nmotion of acceptance, we can determine whether or

3
2q
not TED # ¢ in (q 22 (q+1) ) computational steps.

Remark 2: 1If we have a finite 2-tree (v,E), and a function J: Ft(E) -+
E-Ft(E) such that for all x € Ft(E), v{J(x)) = v(x), then we can
generate a unique J-~tree (\-r,T) as in the proof of Theorem 1. Call any

2~tree which can be generated in this way a finitely-generable Y-tree.
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Rabin in [5] defines a Z-tree, (v,T), to be regular if and only

.
w

if for each o € 7, v-l(o) is a regular subset of {0,1} . It is easily

shown that a ¥-~tree is finitely-generable if and only if it is regular.

Remark 3: From Theorem 1 it is easily shown that if an f.a.t. accepts
any Z-tree, then it accepts a finitely-generable £-tree. Rabin shows
this in [5]). 1In [2] Buchi and Landweber prove that if P(X,Y) is a
finite-state condition and X has a winning strategy, then X has a winning
finite-state strategy. Rabin has observed in [5]

that the set of winning strategies for X corresponds in a natural way

to a set of {0,1}~trees defined by a (deterministic) infinite tree
automaton. Hence, it easily follows from Rabin's result in [5] or from
the results in this paper that if X has a winning strategy then X has a
winning finite-state strategy.

We can also observe the following. If X does not have a winning
strategy, then by our Theorem 1 we see that X does not have a '"partial"
strategy of a particular kind. From this one can show that Y has a
winning strategy for P(X,Y), thus showing that P(X,Y) is determined.

This is another result of [2].
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CHAPTER 2

The Complementation Problem

Section 1: Introduction

Given an automaton &t on infinite Z-trees, one defines a S-tree t

to be accepted by ¢l if there exists an vi-run on t such that for all
paths, the sequence of states on that path satisfies a particular
property. One can similarly define t to be dually accepted by ¢t if
for all ¢l~runs on t, there exists a path satisfying for that run the
particular property. The problem is to construct, for given (T, an
automaton @' such that for any valued tree t, t is accepted by ¢{' if

and only if it is not accepted by ¢1. Since givenﬂ.l we can comstruct an
automaton OQZ such that the set of 2Z~trees not accepted by Oil is
precisely the set dually accepted by 672, the complementation problem
can be reworded to state that given ¥, we wish to construct an automaton
ol' such that the set of valued trees dually accepted by ¢l is precisely
the set accepted by ot'.

That is, we want ¢t' to accept t if and only if for every «t-run on
t there is a path such that the sequence of states along it satisfies
the property defined by ¢t. The natural thing to look for in comstructing
UU' is an automaton which can explicitly pick out an appropriate path
for each ¢tl-run on t. That is, we would like every «U-run on t to
specify a path for each ¢l-run on t, and we would like there to be some
condition on sequences of ¢U' states which holds for all paths of the ¢U'-
run exactly when for eéch ol-run, the sequence of ¢t states along the
path specified for that run satisfies the ¢{~property.

A mnatural point of view is to think of starting out at A, and

having our ¢l'-run choose, for each possible pair of ¢tl-states which can
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occur at the nodes 0 and 1 (in an ¢-run on t), whether to continue the

bath by going left or by going right, and continuing in this way, at each
node choosing for each possibility of <t-run occurring immediately below
it whether to go left or right. An ¢t'-run cannot tell us in one step
what path to choose for each ¢l-run. But it can tell us each successive
choice of left or right given each successive segment of the ¢-run.

A state of ¢U' will be, essentiaily, a finite sequence of states of
Ol. Each member of an o state at a node will represent the last state
in the initial segment of a path chosen for the initial segment of a
particular ¢t-run. TFor each member of an ¢1' state at a node the o -run
must say how to continue the path for each pair of ¢t transitions
possible (for t) beneath that node. It is therefore necessary that a
state of ¢t actually be a sequence of ordered pairs whose first part is
a state’ of ¢t and whose second part is a set of backward pointers. Yes,
I said a set of backward pointers rather than just one; this is because
in reality an ordered pair appearing at a mnode in an ¢¢'-run must
represent the last state in the initial segments of (possibly) many paths
chosen for the initial segments of (possibly) many ¢Z-runs. That is
because the sequences making up the set of states of ¢7' must be bounded
in lenmgth in order for ¢t to be a truly finite automaton. If we insure
this bound by insisting that in every state of ¢' an ¢t-state can occur
at most n times, then we formally denote ¢t' by mﬁa.

The fact that everything accepted by Wﬂ.is dually aéceptea by ¢z will
follow easily from the definition of mﬁi. The converse, that for
sufficiently large n, if t is dually accepted by ¢t we can find an
accepting run for it onfﬂi , is far from obvious, and our induction

proof basically parallels the one Rabin presents in [6]. The difference
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between our proof and his can be viewed as being that we keep, at each

stage of the induction, information which he discards, so that we arrive
at the end with a specific, mon-inductive description of the desired

automaton.

Section 2: Some Definitions, Theorems, and Proofs

w
Definition: If S is a set, denote by S the set of infinite sequences

S.5. « « Wwith the map

of members of S. We identify the séquence s 1?

0)
o:w+S where a(i)=si.

Notation: If <x,y> is an ordered pair, let p1(<x,y>)=x and let

is an infinite sequence of ordered pairs

120 - -
let pl(a)=the sequence pl(ao),pl(al),. . . . Define pz(a) similarly.

p2(<x,y>)=y. If o=y , @
Note that this notation is consistent with thinking of an infinite
sequence as a map from w to a set.

Notation: If x€T and m is a path of Tx’ and r:Tx»S, then denote by
(rlﬂ)w the sequence r(xo),r(xl),. . . where ﬂ={x0,x1,. . .} and xi<xi+1

for all ifw.

Definition: A Generalized Automaton on Trees (G.A.T.) is a system

01=<S,E,M,SO,Q> where S, X, M, s, are as in Chapter 1 and Q is a subset

0’
W
of S . 1If t, is a Z~tree, let Rn(otl,t ) be defined as in Chapter 1.
X

Define T(¢1), the set accepted by ¢1, by T(¢t)=

tx There exists an rGRn(&T,tX) such that for all paths_ﬂCTx, (rlﬁ)w €Q

(Call r an accepting run of ¢t on tx')

2

j
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Define D(¢1), the set dually accepted byesr , by D(¢U)=

{txlFor all r'ERn(ﬂz,tx), there exists a path WCITX such that (r!ﬂ)w(EQ.}

We now define three types of Finite Automata on Trees.

Definition: A pairs-automaton is a system &ﬁ=<S,E,M,sO,Q>*whore

Q=(<Li,Ui>)1sisk is a finite sequence of ordered pairs of subsets of
S, and S, X, M, s, are as above. let ¢t' be the G.A.T. <S,E,M,SO,Q>
where Q={a€5”|@€ [Q]}. Define T(s7) and D(£t) to be equal to T(T)
and D(c1') respectively. (Note that a pairs-automaton is the same
thing that we meant by an f.a.t. in Chapter 1l.) For such an 7, we say

that O is of order k and that ¢ is of order k. If Lk=¢, then we say

that {0 and U are of order k-empty.

Definition: A sets-automaton is a system ¢1=<S,2, M,s,,7> where F S P(S)

07

(P(S) is the set of subsets of S.) and S, 2, M, are as above. Let

502
cl' be the G.A.T. <S,E,M,SO,Q> where Q={a€ESw|In(a)€§?}. Define T(¢7)
and D(ct) to be equal to T(ot') and D(CT') respectively. (Note that a

sets-automaton is the same thing that we meant by an automaton with

designated subsets in the remarks of Chapter 1.)

Definition: An automaton~automaton is a system 61=<S,E,M,SO,ZL>-where

S, Z, M, are as above and U is a deterministic sequential automatomn

Sg»

(as defined in [6]) whose inputs are members of Sw. Let ¢st' be the
W

G.A.T. <S,E,M,SO,Q> where Q={w €S IaéET(Z(), the set accepted byl .}

Define T(¢1) and D(CT) to be equal to T(CU) and D(cU') respectively.

These three types of finite automata are all equivalent, in the sense

of Facts 1 and 7. These facts are easily shown by Rabin in [6].
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Fact 1: Let 2 be a finite set and let W be a set of Z~trees. Then

there exists a pairs-automaton €¢I, such that T(¢7,)=W <

1 1

there exists a sets-automaton&’z2 such that T(&12)=w 4

there exists an automaton-automaton 013 such that T(013)=W.
Fact 2: (same as Fact 1 only with T(&Tl), T(&TZ), T(G{B) replaced by

D(OTl), D(éiz), D(6T3) respectively.)

Now 1if ¢t =<S,E,M, s

.0,?1> is a sets-automaton, then by its definition

we see that D( <S,E,M,SO,P(S)-3> ) is exactly the complement (with
respect to the set of Z~trees) of T(¢t). This observation, together

with Facts 1 arnd 2, imply that whichever definition of finite automaton
on trees you choose, to solve the complementation problem it is sufficient
to exhibit for every pairs-automaton £{, an automaton-automaton ¢Z' such
that T(ZU' )=D(¢t). We shall do this. Now follows the main definition of

this chapter.

Notation: If n is a positive integer, let [n]={1,2,. . .,n}.

Definition: Let ot=< S, Z, M, Q > be a pairs-automaton. Let n be

807
a positive integer. We will define an automaton-automaton

My = < S‘,I:, 2, M,I,L <sg> ¢ >, Z(Z >. Let m=c(S). Then we define

n

(Every member of P([mn]) is to be thought of as a set of backward

o is & finite sequence of members of § X P([{mn]) such that for each

s €S, there are at most n values of i for which pl(a(i))=s.

pointers. Since each member of S can occur up to n times in a member of

STI

n
12 each member of S, can be as long as mn, hence the need for mn

backward pointers.)
The starting state of W@lis <so,¢ >, a sequence of length 1,

Let Q'GS;Z and let a€X. Define
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For all i, 1<i<length(®), if

<OIO,O/1>€ u=p1(a/(i)) and if <u

n "
1S X S

0’
M;;(Q',a)= a positive integer j suchk that either
. - . E .
1) py(@y(3))=uy and i€p,(ay(5)) or

1I) pl(al<J))=u1 and 1EP2(°/1(J))

u1>€M(u,a), then there exists /

-’

(Think of (i) as representing the value at some node x of a run of

tt on (v,T). 1If pl(d(i))=u and <u u1>€M(u,v(x)), then each DT?_ ~run

O’

must tell us either to go left to an element whose first part is ug or

right to an element whose first part is ul.)

It remains to define u,;; , and we will do this by defining a set

w
Qs (Sﬁ) and then arguing that there exists a deterministic sequential
w
: . n
automaton which accepts exactly Q. Firstly, if o€ (S, , =, Oy e s
define a thread of o to be an infinite sequence of integers,

J=jo,j1-,. . . such that for all i€uw, ai(ji) is defined, and such that

-t

for all i€uw, iiépz(ai+1(ji+1)). Define the S-sequence associated

with the thread J (for &) to be the sequence

B=p1 (e, (3g))>Py (@ (i), - - . so that <. Define
w
Q={x¢€ (Sb..nl) | For every S-sequence P associated with a thread of o, B€ [Q].].
So we have that Q=(S,) —Q=
W
{ae (SJZ) |for some thread of o, the associated S-sequence is not of type [(]}.

It is easy to see that there exists a nondetermimnistic sequential

automaton, |/ 1° such that T(u1)=(3. But McNaughton [4] has shown
that for every nondeterministic sequentiai automaton u’l one can

construct a deterministic omne, 1{_2, such that T(?(,,)=T(u1). But it is

easy to see that given any such u there exists a deterministic sequential

2

automaton, 1{3, which accepts precisely the complement of T(uz). So
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let 7/421 be such that T(?,(;L)=Q . This finally completes the definition

ofﬁg,l,_.

Notation: Very often, if R is a imzc -run, we will want to refer to the
ith element of R(x) for some node x and some positive integer i. So
instead of writing (R(x))(i) we will write R(x,1).
ce . , e _ .
So if Lx=(V,Tx) is a Z-tree , RERn(S)ﬁ,,L,tX), yGTx, u~p1(R(y,1)),
and <u0,u1>€M(u,v(y)), then we require that there exist o €{0,1} and

a positive integer j such that pl(R(y-cr,j))=uc and isz(R(y‘c,j)).

Remark: Let g1 be a Z~pairs-automaton, and let n, and n, be positive
: : ny _ .0y ] ny
integers with nlsnz. Then since S, &§,¢, and if <a,a>€ S5, X Z then

n n n n I n
M, (o) SM,2(%,a), and T(U, L) ST(U,2), we have that TER,D) cTR,2).

We now state the main theorem of this chapter.

Theorem 3: Let ¢/{ be a pairs-automaton of order k. Let

k
n= 'Z—:‘o= (k(k2+1)). Then D(c) =T, ).
277 2

Half of Theorem 3 follows from Lemma 6.

Lemma 6: Lete1=<S,Z,M, Q> be a pairs-automaton. Let n be a

5 »
positive integer. Then D(O1) 2 T(‘J.T!BL ).

Proof of Lemma 6: Let t=(v,T) be a Z-tree such that tET(‘JJ?I;z). (Since it

is clear that for any of the tree automata we have defined, (vO,TX) is
accepted (dually accepted) if and only if (v('),T) is accépted (dually
accepted) where v(')(y)=o(x'y) for y€T, to prove Lemma 6 it is sufficient

to show that t €¢D(Z). )




25
5 . 3!
Let R be an accepting run of W(‘,l,v on t, that is, R€Rn{, ,t) and

for all paths WCT, (Rlﬂ)wET(u; ). Let r €Rn(dl,t). We wish to find

a path mCT such that (rlﬂ)wE [QQ]. To do this, we define by induction
a function f:w-=T such that £f(0)=A and f(i+l)=either £(i)*0 or £(i)-1,
and r£€[Q]. Then we merely let m={£(0),f(1),. . .}.

Simultaneously with f we define a function g:w- [mn] where m=c(S8).
(The idea is that the ith element of fhe path we construct will correspond
to R(£(i),g(1i)).) As an induction hypothesis at stage i we assume:
r(£(i))=p,(R(£(1),8(1))) and (for i>0) g(i-1) €p,(R(£(1),8(1))).

Define £(0)=A and g(0)=1. Clearly the induction hypothesis holds
so far, Assume that f(i) and g(i) have been defined and that the
induction hypothesis is true for i. We will define f and g at i+l.

Let x=f(i). Then r(x)=p1(R(x,g(i))). Let u0=r(x°0) and ulzr(x- 1.

Then <u u1> EM(r(x),v(x)). By the definition of ﬂ@crun we have

0’
that there is a positive integer j and a 0 € {0,1} such that
uo_=p1(R(x‘0,j)) and g(i) sz(R(:vc,j)). Define f(i+l)=x*c and g(i+l)=j.
Clearly the induction hypothesis holds at i+l.

Let m={£(0),£f(1),. . .}. T is a path of T so, since R is accepting,
(R|ﬂ)w€T(7,(,ft). By the hypothesis we have carried through the definition
of f and g, we see that the sequence g(0),g(l),. . . 1is a thread of
(le)w and that (r!ﬂ)w=
P1(R(£(0),8(0))), py(R(£(1),8(1))), py(R(£(2),8(2))),. . . =
the S-sequence associated with that thread. By the definition of 'L(_EL

we see that (rlﬂ)wé Q.

O

The other half of Theorem 3, namely that for ¢l and n as in Theorem 3

D(U) .CT(‘IT?S,), follows trivially, by induction, from the next three Theorems.
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Theorem 4: Let U be a pairs-automaton of order 0O (that is, the sequence

N : 1
of pairs is empty). Then D(O() ST, ).

Theorem 5: Let k be a nonnegative integer and let m be a positive integer
n
such that for every pairs-automaton .y of order k, D(Jr) ST(T,). Then

for every pairs-automaton £ of order k+l-empty, Ij(JZ) c1( ‘.an,)

Theorem 6: Let k and n be positive integers such that for every pairs-
automaton £~ of order k-empty, D(d) QT(EDQ ). Then for every pairs-

k
automaton €T of order k, D(¢t) QT(WB,_Z ).

Before we prove Theorem 4, we need the following definition.

Definition: Let Ul=<5,Z,M,s_, Q> be a pairs-automaton. Let s€S.

0)
Then define (/(_S to be the pairs-automaton (/{S=<S, Z,M,s ,Q>. That
is, (}ls_is the same as ¢l except that the initial state is changed to

S.

Proof of Theorem &:

Let d1=<8, L, M, s,, 1> be a pairs-automaton with (=the empty sequence

0’
and c(S)=m. Let t=(v,T) be a Z~tree such that t €D(¢T). We wish to
show that tET(mg};). (Recall that no map is of type (L)

Since t€D(gn), there are no Jl-runs omn t, that is,
Rn(gl,t)=$. For n a nonnegative integer and for x € T such that
length(x) <n, define the finite tree E:={y€'l‘x|1ength(y)£n}. Define
e:=(v,E::). By an application of Konig's Lemma we see that for some n,
Rn(U(,eX)=¢. Let N be such a number, tha is, Rn( ,e}?)=¢ .

. 1 ~
Define a map R:T-*S" as follows: R(A)=<s _, ¢ >; for x\:E/Ig,

0’

let R(x)=<s,,[m]>, <sz,[m]>,...,<s£,fm]> where s is

178957+

some cnumeration of the set {s GSan(U'(.S,eS)=¢]; for x such that
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length(x) > N, let R(x)=the empty sequence.

Clearly if m is a path of T, (Rlﬂ)w has no threads. Hence, if
R is a rum of ﬂ;t on t, it is an accepting run. So let xéEllf and let
s=p1( R(x,1i)) for some i. Then Rn(U‘CS,e}I\:)‘:QS . Let <uo,u1> €M(s,v(x)).
Then for some o€ {0,1}, Rn(ﬂuc,ez.c)=¢. So there exiéts a j such

that uo_=p1(R(x°O‘,j)) and iGpZ(R(x-c,j)). So R is a run on t. So

ceT(Myy. O

Theoreris 5 and 6 will be proved in the next two sections. To
this end, we make some more definitions.

Definition: Letol=<S, T M, s., 2> be a pairs-automaton. Denote by

0’
) Ol the ZX P(S) automaton <S, XX P(S), M, Sg* 0> where M is defined

1§S . Defire

M(sl,a) if sy ¢ S1

as follows. Let s1€S, a€2, S
- ¢ if 31651

Definition: Let tx=(v,Tx) be a Z~tree, let S be a set, and let H

be a subset of TXS. Then define txH to be the ZX P(S)~-tree (;’Tx)’

where V(y)=<v(y),(s €8] <y,s>€H}> for yGTx.

Intuitive Remarks: Let Ul=<S, X, M, s., (1> be a pairs-automaton. Let

0’
t=(v,T) be a Z-tree. Let HESTXS.

Every run of JU on tH is also a run of 1 on t, but there might
be fewer of the former since Rn(/l,tH) is precisely those members, r,
of Rn(dT,t) which don't 'fun into" a member of H, that is, r € Rn(di,tH)
if and only if <y,r(y) >¢H for all y€T. Say that t&€D(t). Then
tHED(gr). If our goal is to show that tGT(fm;} ), it might be easier
to show first that t:H€T(93§1.€) since Rn(0T ,tH) might in some sense be

a simpler set that Rn(ci,t).
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Consider what a run of fm% on tH looks like. It starts out the

same as a run of wﬁ}_ on t, that is it's a map R:T-’S‘E such that
R(A)=<so, ¢ >, and it continues like a run of mon t except that
certain threads are allowed to die at members of H. TFor example,
say that for some x and i, pl(R(x,i))=u and <u0,u-1>€M(u,v(x)) .
If R were a run of gﬁ?p on t, we would require there to exist a j
such that for some o€ (0,1}, u0=p1(R(x'c,j)) and iEpz(R(x‘c,j)).
Since R is only a 33‘% ~run on tH, we require this condition only if
<x,s> ¢H. Hence, for a path mCT, (R|Tr)w may have fewer threads
than if R € Rn( ‘JJI:}L,t) and therefore,as already claimed, it might bhe
easier to find an accepting run of m:—‘-t on tH than of W({L on t.

How do these observations lead us towards constructing an
accepting EmEL -run on t? Maybe we can find a set HOQTX S such that
we can show tHOGT(_ﬁJIB—t). Let RO be an accepting run of W’% on tHO.

R is partly an accepting run of W?Lon t, except that if <x,s >€HO

0
and p,(Rfx,1))=s, then Ro doesn't continue properly for the i *B

element of Ro(x). But, maybe we can find a set H<x,s> such that we

can show that txH<x,s>e T(Em%s ), that is, there exists an accepting

run of & on t . T we can use R to continue
R« s> g °F xH<x s> hen n <x,s>

b 3

. . 1 1
threads of R, which had died. But for. <x',s >EH<x,s> we need a

set H<x',s' etc. For the sake of uniformity we will refer to

> b

HO as H</\,so>'
‘1
ERn( ‘.m’}-is,t H

It is important to understand what R . <x,s>)

<X, s>

means. R<x,s> differs from a member of Rn( W}}l ’tH<x,s>) only by

starting at x instead of A and by starting with <s, ¢ > rather than

<SO’ ® >. Assume now that we have a set HET x S such that </\,so>€H
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and such that for every <x,s>€H we have a subset of H, H<x o>
3

with H<X s>€;(T -{x}) xS. Assume furthermore that for every <x,s>€ll

i 1) . What w uld
we have an accepting run R<x’s>€§Rn( Ols’txH<x,s>) e wou

like to do is '"put together" the runs R<x to form an accepting

g>

]

run R of H&i on t, as in the above paragraph.

So for every x and every i, 15§iS§1ength(R(x)), R(x,i) will
be associated with some <y,a>€H and some integer j such that
y<x and pl(R(x,i))=p1(R<y’u>(x,j)). We use this association to
determine which elements of R(x*0)and R(x*1) should point backwards
to R(x,1i).

The proltilem that remains is how to decide what members of H the
elements of R(x*0) and R(x*1l) should be associated with. These"
decisions will be made so that R has the property that for any
path m CT and any thread of (Rlﬂ)w, if the members of that thread
are altogether associated with only a finite number of members of H,
then that thread eventually has the same S-sequence as a thread of

(R

<y,u>lﬂ)w (for some <y,u>€H), which by hypothesis is of type (i

The decisions must also be made in such a way that for any path
TCT and for any thread of (R‘ﬂ)w, if the members of that thread
are associated with infinitely many members of H then the S-sequence
of that thread is of type Q.

To prove both Theorems 5 and 6 we will fipd H, [H<k,s>]’ and

{R } as above., However the way they are obtained and the way

<x, s8>
the decisions referred to above are made will be different in

the two proofs.

: ! . . ;
In order to combine Mrruns it will be convient to have a notion
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of such a run being well=-formed.

Definition: Let ¢t=<§, X M, s,., Q> be a pairs-automaton, with

0’

S=(s that is, we have imposed an ordering on S. Let

0°%1> - ¢ ’Sm-l] :

tx be a 2Z~-tree. Let n be a positive integer and let R & Rn( UTI?BL, tx)'

Then we say that R is Well~-formed (with respect to the ordering on S,

although this will usually not be explicitly stated in the future) if for
all y>x, length(R(y))=mn, and if for all i, 0<i<m~l, ard all j,
1<j<n, it is the case that pl(R(y,ni+j))=si. That is, R(y), for

y>x, is of the form:

y

y y >
<s0’A0,1>’<S 8,27 Sm—l’Am-l,ﬂ

y
0:70,277° " ’<SO’A0,n

where each A).r . € [mn].
1,17

>,<s,A7 1>,...,<s1,z\31”n>,...,<

Lemma 7: Let =<8, %, M, s, Q2> be a pairs~automaton where

0,

S={ . .,sm_l]. Let tx=(v,Tx) be a Z-tree, Let n be a positive

8p2871s-
integer. Let R be an accepting run of 53?2 on tx' Then there exists an

accepti'ng run, R', of fm‘;,_ on tx which is well~formed.

Proof of Lemma 7: The proof of Lemma 7 is actually quite easy in

concept, but we shall do it in detail anyway.

Let m,tx, and R be as in the lemma statement. Choose
f:(<x,1>3)} U ((_Tx-[x}) X [mn]) » [mn] such that

a) if 0<i<m-1 and 1< j<n, and if yETx and f{(y,ni+j) and
R(y,f(y,ni+j)) are defined, then pl(R(y,f(y,n:l-!—j)))=si , and

b) for every y€ Tx and every &, 1S,€,Slength'(R(y)), there exists

L' such that f(y,4')=4.

Define R' as follows. Let R'(x)-—=<so, $>. For z€ TX, c€{0,1), and
y=z*C, let R'(y) be the string of length mn such that for 0<Sism-1

and 1= j<n and q=ni+j, we have
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¢) py(R'(y,q))=s; and

d) if f(y,q) >length(R(y)), then pz(R' (y,q))=
(L€ [mn]|£(z,4) is defined and f(z,%) > length(R(z)))

e) if £(y,q) <lemgth(R(y)), then p,(R'(y,q))£€ [mn]]£(z,4) is
defined, and either f(z,£)>length(R(z)) or f(z,4) Epz(R(y,f(y,q)))}

R' is well-fgrmed. To show that R' € Rn( 97(2{, tx) let zETx,

let £ be such that R'(z,£) is defined, let u=p1(R'(z,£)) and let
<u0_,u1>€M(u,v(z)). If f(z,4) >1length(R(z)) then by c), d), and e)we se2
that for € {0,1} and some q, pl(R'(Z'O',q))=uo_ and !,Epz(R’(z'c,q)).
If f(z,4) <length(R(z)), then by a) and c¢), pl(R(z,f(z,ﬂ)))=u. So for
some o € {0,1} and some q , pl(R(z'c,q ))=i1(I and £(z,4) Epz(R(z'O‘,q‘. )).
By b), there exists q such that f(z*c,q')=q. By a) and c¢)
pl(R'(z'o,q'))=p1(R(z'c,q))=uc. Also, since f(z,4) Epz(R(z'U,f(z'c,q'))),
we have by e) that ZEpz(R'(z-G,q')). So R! ERn(m;,tx).

It remains to show that R' is accepting. So let TCT, be a path,

1T={x0,x1,. . .} where Xi<xi for i €w, Let o= ,(’,1,. . « be a thread

+1 0’

of(R'|m) . Note that £(xg 4g)=E(x,1)=1 so that £(x,,4;) < length(R(x,)).
Now let i €w be such that f(xi,ﬁi) Slength(R(xi)). So, since

we have by d) and e) above that

1
£y €y R (%4958 19)),

£
f(xi+1, i+1) < 1ength(R(xi+1)) and f(xi,ﬂi) 6p2(R(xi+1,f(xi+1,£i+1))).
So by induction we see that the infinite sequence
B=f(x0,£0),f(x1,£1),. . . 1is a thread of (Rln)w' But by a) and ¢),
the S-sequence associated with o for (R' |n)w is the same as that

associated with B for (Rlﬂ)w, and this is of type (I since R is

accepting. .|
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Section 3: Proof of Theorem 5

Let k be a nonnegative integer and let m be a positive integer
n
such that for every pairs-automaton J of order k, D(a&)-C—T(ﬁﬁjf). Let

o =<5,2,M,s,,(0> be a pairs-automaton where Q=( <L,,U; > ) 1ei<ktl?

0,

Lk+1=¢ » and S={Sos51,' .« o585 1)+ Let t=(v,T) be a fixed Z~tree

such that t€D(¢r). We wish to show , eventually, that tET(fmf,lL).
‘Define a set HETXS by H=( <A,so>} U( <x,s>|tx€D(0'(.s) and s¢ Uk-l-l) .
For <x,s>€H, define H_ . =(<y,u>€H ly>x}. Let

[ -
Q'=(<LiU>) e

Lemma 8: For every <x,s>€H and for every rERn(ﬁZS,tx), either

I) there exists a path 1'rCTx such that r'nE [Q'] or

IT) there exists y>x such that <y,r(y)> €H<x,s>'

Proof of Lemma 8: Assume otherwise. Let <x,s>€CH and let

rERn(ﬂs,tx) be such that for all paths TCT, rl'né [Q'], and such
that for all y>x, <y,r(y)>¢H.
Definition: If YCTx is a set of (pairwise) incomparable nodes (under <)
define Ti={z€Tx|for all y€vy, z;‘y)-—-Tx-ng(Ty-[y}).

We will now define r' ERn(dls,tx) such that for all paths TTCTX,
r'l'rré [Q], contradicting the fact that tXGD(ﬁtS). Let

Y={yETxly>x, r(y) €U and for all z, x<z<y, r(z) ¢U

k+1° k+1} ’

Clearly the members of Y are incomparable. 1If zeTi, define r'(z)=r(z).
Now let y€Y, r(y)=u. Since u-EUk_*_1 and <y;u>€H , it must be

the case that tyéD(&Lu). So let ryERn(uLu,ty) be such that for all

paths TTCTy, ryln({ [Q]. For all y€Y and all zETy, define r'(z)=ry(z).

Clearly r' is a run of Uls on t . Let TTCTx be a path.



Case 1: T Y=9
Then r' ITT:rITT so r' I’TQ' [']. But r'(-{x})=r(r={x}) must not

intersect U So r' ‘TTQ 1a].

k+1"
Case 2: MY #¢
Let {y}=nr1Y. Llet m _=r{1T . Then r'!'w oy l” o
Y Y y 'y ¥
r'ITTyng]. Sor'lﬂ@[@],

Contradiction. 3

Now define the pairs -automaton .H=<S§, Z, 1, S 0'>. What Lema

+ T - ol 1 o . . i

8 says is that for <x,s>€l, tXH<X,S>€D(_1, S). But 4 ; is of order
. ‘o - - 1 : ~ _KT.FE_ “ - .

k. So by the hypothesis, for <x,s>¢H, L:<H<x,s>< I'( st). S0 for
3 > let i oL . b
<x,s>€1, let R<X,s> be an accepting run of L Fu on LXH<X’S>. but

Q' 1s a subsequence of (2, so each R_ - is also an accepting run of
X, 8

n
) on t .
Iig xH<x,s>

Without loss of generality (by Lemma 7) assume that for <x,s>¢H,

. 1 .
a - i F Dl . We we
R<x,s> is a well-formed accepting run of I o txH<x,s> ‘¢ want
. n A e

to construct a well-formed accepting run, R, of I; on t. R(A) will
equal <s0,®> and for x>A, R(x) will be of length wmn. Simultaneously
with R we will construct a function f which is defined at a node x and
integer £ if 1< 4 <length(R(x)). If defined, f(x,4) will be a member
of H, say for example <y,u> , The interprutation is that we think

th
of the £ element of R(x) being continued like some element of

R<y,u>(x>' Like which element? Well, if y=x, then R<y,u>(x) has only

one element, namely, <u,®>, and we better make sure that pl(R(x,,{})*—u.
Otherwise, that is 1f y>=x, we associate R(x,4) with R<V U>(x,£), which
Joy

we can do since by the definition of well-formed both elements have the
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same first part. To speak of the two cases uniformly we define a

function g such that we always Lhink of associating R(x,4) with

Re(x z)(x,g(x,ﬁ)). We also have to make sure that R gives us

£(x, 4)
. . . th .

acceptable directions on how to continue the £ element of R(x), and

therefore carry along various induction hypotheses in the definition of

R and f. To define £, we will need a well-ordering on H.

We now begin more formally. Let < be a fixed well-ordering on
TxS; clearly < induces a well-ordefing on H. Denote by =< the usual
strict well-ordering determined by <.

We mow define R:T~+S, and f£:(<A,T>}U((T={A}) X [mn]) *1. We will

define them by induction, and at every stage the following will be true:

If R(x) is defined and 1<{<length(R(x)), then f(x,4) is defined;
if f(x,4)=<y,u> and pl(R(x,ﬂ))=s, then

a) ysx and

b) if y=x then uss and

<
c) X’S>¢H<y,u> )

Let R(A)=<so,¢> . Let f(A,],)=<A,so> . Clearly the above
hypothesis'holds so far,
Assume now that R(x) and f have been defined so that the above
hypothesis holds. For £, 1= L<length(R(x)), define
1if py(£(x,4))=x
g(x,L)=
4 if py(£(x,£)Fx
Let 0€ (0,1}. Define R(x*0) to be of length mn such that for
q

1< q<mn, pl(R(x-o*,q))=si where i= the greatest integer less that =

and such that
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pz(R(x-c,q))=[z|f<x,£) is defined and g(x,4) €p,(Ry 4 (x°0,q))) .

We now define f£. Let s=p1(R(x'0,q)). If <x*c,s>¢H let
f(x*0,q)=<x*0,s>. Clearly this preserves the induction hypothesis.

If <x°0,s>¢H, let f(x*0,q)=minimum{f(x,%) lzépz(R(xoc,q))] . Clearly

under <

a) and b) are preserved for x°*c, and since <x*0,s>¢H, c¢) is true
at x°o.

It remains to show that R & Rn( 9]2?1,1:), and that R is accepting.
Let x,ﬁ,s,uo,ul, be such that R(x,£) is defined, pl(R(x,,G))=s, and
<u0,u1>€ M(s,v(x)). Either by b) or by the fact that R and Rf(x,f,)
are well-formed (depending on whether or not pl(f(x,ﬂ))=x) we can

conclude that pl(R 2) (%x,2(x,4)))=s. Now recall that if f(x,£)=<y,u>,

f(x,

is e i <x,s>
£(x, 0) is a run of 7 on tyH<y,u>' Since <x,s €H<y,u>

we know that there exists ¢ € {0,1} and q such that pl(Rf(x,ﬂ,) (x'o"q))zuo_

then R (by ¢) )

£(x, £) are well~formed,

: pl(R(x'O',q))=uG. And by the definition of R, EEpz(R(xw‘,q)). So

and g(x, %) Epz(Rf(x 2) (x*0,q)). Since R and R
. 3

R € Rn( T, t) .
To show that R is accepting, let TCT be a path, ﬂ=[x0,x1,. -

where xi<xi+1 for i€w, and let oz=£o,,€ be a thread of (Rln)w.

1

P=cteeit~ch

Case 1l: For infinitely many i, xi-—-pl(f(xi,l?,i)).
By b), pl(R(xi,Li))=p2(f(xi,£i)) for infinitely many i. But by
the definition of H, this implies that pl(R(xi,ﬂi)) EUk+1 for infinitely

many i, and hence, that the S~sequence associated with o is of type (.

Case 2: xi=p1(f(xi,,€i)) for only finitely many i.
So for sufficiently large j, Xj+l%p1(f(xj+1"ej+1))' By the

definition of f, we have that for sufficiently large j

<

£( Ej+1)<f(xj,£j). Since < well-orders 1, there exists an i

*y41?
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fuch that if j=2i, f(xj,zj)=f(xi,li). Let <<y,u:>=f(xi,£i). Then

y<x;. By definition of R we have that if j>i,

L i = e . i £
£j65p2(R<y’u>(xj+1, j+1)). That is, B zi+1’£i+2’ is a thread o
= { Y -l Ad
Y R<y,u>(xi+1)’R<y,u>(xi+2)" .« .« Since R and I\<y,u> are well-formed,
the S-sequence associated with B for R(Xi+1)’ R(Xi+2)' . is the

same as the S-sequence associated with B for y. so it is sufficient
to show that this S-sequence is of type (.
Let ﬂy=ﬂf]Ty. We know that the S-sequence associated with a thread

of (R is of type 0. We want to be able to say that the £i+1

<y,U>|"y)w

element of R

<y,u>(xi+1) can be traced back to the first and only

element of R<v u>(y), that is, that there exists a finite string of
sy
numbers B' such that BB is a thread of (R<y,u>|ﬂy)w' Let ze0=x, 4
3 =< S
where z€Ty and c €{0,1}. Since f(xi+l"ei+1) y,u>, there must
exist a q such that f(z,q)=<y,uv>and qEEpZ(R(xi+1,£i+1)). So
8(Z,Q)€p2(R<y’u>(xi+l,Ei+1)). If z=y we are done. Otherwise, g(z,q)=q,

so we have that q*B is a thread of R (z) *vy and f(z,q)=<y,uv>.

<y,u>

Continuing in this way we see that there exists B' such that B'¢B is

a thread of (R . So R is accepting. O

<5l

Section 4: Proof of Theorem 6

Definition: Let 6:A-B, let £}=('<Li,Ui>>)1$iSk be a sequence of pairs

of subsets of B. Then we say 6 is of type Qeempty, written 6 € [Q,e],

if 8 € [Q) and for some i, 1<is<k, B(A)NL,=¢ (where 6 (A)={6(a)|aca)).

The point of the definitbn will be that the property of a sequence
being of type (-empty is basically simpler than the property of being

of type Q. In particular, if Q is of order k we can "recognize'" if a
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sequence is of type Q-empty with an (' of order k-empty. This is

made more precise in Lemma 9.

Now let k and n be positive integers suczh that if o is a pairs-
automaton of order k-empty, then D(.f) ET(WQ). Let
=<8, L, M, 53 Q> be a pairs-automaton where Sr{so,sl,. . "Sm-l}

= < > = - o < y .
and Q=( Li’Ui )1Sis‘k' Let t=(v,T) 1;be a 2~tree such that t €D(0)
Eventually we will show that tET(fm?,lz‘ ).

Below, we will define a pairs~automaton of order k-empty whose
state set is SXP([k]). To this end,

(s w e ol w
Definition: If @€S , A=Uy,Ugse o , define o € (SXP([k])) by
Q
=< > < > = ‘]
o uO’NO , ul,N1 s« « « where N0=¢ and Ni+1 NiU{JIuiELj} for all
i€w,
Notation: If N is a finite set of positive integers and j is a positive
integer, let N(j) be the jth smallest member of N (if c¢(N) = j; otherwise
N(j) is undefined) . That is, N(j) is y(j) where y is the finite sequence
obtained by listing N in increasing order.
initi : t Q'=(<L! ' > Sigke

Definition: Let ( Li ,Ui )1SiSk where for 1l<isk-l we let

U ={ <u,N> €S xP([k])]isc(N) Sk-1 and u€U and

N(i)!

Ll ={ <u,N> €SxXxP([k])]isc(N) sk-1 and u€L define

Ul'< ={ <u,N> € § XP([k])Ifor some j, lsjsk, uGUj and €N (so ¢(N) <k) }

and Ll'<=¢ . Note that ' is of order k-empty.

Lemma 9: Let ¢ €S>, Then o€ [Q’e]wuﬂe [€' 7.

Proof of Lemma 9: Let a=u, Uy .. ; let OIQ=<u N0>’ <u N1>,...

0’ 1’
Let N={j, 1=j<k l for some i €w, ug ELJ.}. Then by the definition of

Q - Q
o, we have In(o )={ <u,N>|u€ In(o)}.

=: Let o€ [Q,el. Then c(N) <k. Let j be such that In(a)ﬂUjf¢
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and In(@)N Lj=¢>. If j ¢ N, then Ir(a/Q)ﬂUl'(}-‘Qﬁ so o' ¢ [Q']. If jEN,

Q
there exists g such that N(q)=j. Then In(otQ)ﬂU('liéQ" and In(e )N L('1=¢’-
Q
So o € [Q'].
<«: Let o €[Q']. If In(e )ﬂUf(#¢, then there exists j such
that In(EY)nUJ.7£¢ and j¢N. So o€ [(Q,e]. If there exists q, 1=q<k-1

such that In(ch) n UC'I%QS and In(a/Q) n Lc'1=¢ , then In(x)N UN(q) #¢ and

In()L ® . Since c¢(N) <k, we have o€ [Q,e].

N(q) =

Definition: Define the pairs-automaton
L=<sxP(k],Z, M, <so,¢>, Q'> where for s€5, NS [k], a€Z,

M'(<s,N>,a)={ <<u N'>,<u1,N'>>l<u u, > CM(s,a) and N'=NU(j|s€Li]}.

0’ 0’71
. . e f ‘s a
Fact 3For x€ T, sES, if r is a run of ‘j;<s 6> on tx’ then plr 1,5

run of U?_S on ty, and if TrCTxis a path, then by lemma 9,

rITTE Q] e p1r|ﬁ€ [Q,e].

(Recall that t€D(r). )
It would be nice if t€D(&). For then, since <& is of order

k-empty, we would have that tET(fU"{?.) and an accepting run of UJI?{ on
ok

t would clearly yield an accepting run of mn{ on t. It is not however

necessarily true that t¢D(.f ). But what if we had a set

» STX (SXP([k])) such that t#_, _ _ED(F) 7.

<A,So> :SO
With this approach in mind we define a (possibly trans-finite)
&
sequence of pairwise disjoint subsets of Tx$S, {H |6 <y} for some

ordinal y, as follows:

Let HO=¢ . Assume that H5 has been defined for § <B. Define

{ for all rERn((FLS,t;(), either

8
}{B= <x,s > |therc exists a path TCT such that r|ﬂ€ [Q,e] or -—-6L<JBH .
Z there exists y>x such that <y,r(y)> € 6L<JBH§'

8

Let y be the least ordinmal >0 such that H'=9, Let H=lJH
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Lenma 10: <A,SO>EH.

Proof g_f; Lemma 10: Assume that </\,s0>¢H. We will construct by

induction a rur r of ¢L on t such that for all paths WCT, r]TTQ[Q],
contradicting the fact that t €D{(u1).
As in the proof of Lemma 8, if YCT is a set of (pairwise)

incomparable points, define TY-—-{z € Tlfor all y€Y, z#y}.

Stage 0: let Y0={A} and define r(A)=sO. Clearly Y, is a set of

incomparable nodes and for yEYO, <y,r(y) > ¢H.

Stage i+l: Assume that YiCT is a set of incomparable nodes and that
r has been defined on TYi such that if y EYi, then <y,r(y)>¢ H.

Let yEYi, r(y)=u. Since <y,u>¢H, there exists 4
ry €RN(S ;¢ ) such that for all paths mCT, ry|n¢ [, €] and such that
for x>y, <x,ry(x)>€H . Let
I) x>y

II) for all j, 1=<j=<k, there exists z, y<z<x, such that

jr( ) j

III) x is a minimal (under <) node satisfying I) and II) )

Clearly Gy is a set of incomparable points.

t = . [ I3 * » )
Let Y. . yLCJY.GY Clearly Y. , is a set of incomparable points
1

and TYi+l 2

Y. Y4 i .
T'i, Let z€T i+l TYl. There exists a unique y&Yi such that y <z,

Define r(z)=ry(z). So if xEYi+ <x,r(x)>¢H.

1’
This completes the definition of r. Since for all i, every

member of Y]. is of length at least i, r is defined on all of T.

Clearly r is a run of ¢1 on t. Let MCT be a path. Let Y= éJ Y, -
: &0
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Case 1: c(rliY)=w.
| Then if 1 €w there exists vy GYi such that yiETT, and
Y0<y1<. .. . So for cvery i Cw and every j, 1<j<k, we have
DL #£3. So for every j, 1=j<Kk, In(r_’ﬁ)ﬂlj 4%, So

r|m¢ 0],

Case 2: 1mNY is finite.

Let y= maximum(T1Y). Let 7 =w(1T . Then rlﬂ’:r l'ﬁ . Also, it
under = y y y vy
must be the case that for some j, 1<j<k, r (7 }N1.,=¢. But r, vas

y ¥ ]
chosen so that r |7 ¢ [Z,e]l. Sor lm ¢10]. so r|m 7[0].
y ¥ y ¥

Contradiction. 0

~ .0 . .
Definition: For § <Y, and <x,s>C 1, define Ho o o® ! HB; Jet

}‘%<X,S>={<y, <u,N>>€Tx (SXp([k])) | <y,urCH_ 0.

3

By the definition of H, <x,s>CH implies that for all
rGRn(ms,tX) either there exists a path mCT such that r’ﬂE [,el,

Therefore, by Fact 3,

or there exists y>x such that <y,r(y)>€H<X’S>-

we know that if <x,s> €H, then txH<X’S>€D(.$’<S,@>>' By the
hypothesis of Theorem 6, D<£<s,@>) CT(UF%<S,¢> .

So let Réx,s> be an accepting run of 9’5?%<S,¢> on tx)%<x,s> for <x,s>€H.

We would like RZ to have the following property: Yor all yETX,

s>

3

, . - ~ ! Ny ¢
c€{0,1}, £, q, if <uq, Ny > pl(R<X’S>(y, > and

< > 51 o3 /"\(, 31 - 1 - e
Uy Np7=py (R oo (v7°0,@)) and 2Ep,(RL - (y*0,q)), then

N2:N1U {qulCLj}. If this property does not hold we could remove £

from pZ(R'/ q\(y-cr,q)) and what we'd have left would still be an
K, 87
) n i _
arcepting run of M- ont 3. . So for <x,s>C1, assume
i "<S , \:‘)> x <X s g~

without Joss of generality that Rl has this property.

X, 8>
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T2
:T+S,. as follows: if yGTX,

<x,s> ine :
For x,8>€H, define R<X o> T o

b

' 1 - 3 < 4§ < t 5
let R<x’s>(y) be the same length as R<x,s><y)’ if 1<i 1ength(R<X’S>(y)),

define pZ(R<X,s>(y,i))=p2(Réx’S>(y,i)) aknd define pl(R<x,s>(y?l)):
. n2
PP (RY, (1)), So R ERn(TF e H, ). Let MCT bea

path; let B be a thread of (R and let @ be the S-sequence

<x, s>-lTT)w

associated with B for (R<x,s>ln)w' Then B is a thread of (Réx,s>lﬂ)w’
and the S-sequence associated with B for (Réx,s>lﬂ)w is, by the above

Q .
property, @ . We know, since R is an accepting run of i1 R
’ <x,8~ Ty, o>
3

Q
that @ € [Q']. So by Lemma 9, o€ [Q,e], so o€ [Q].

By the above paragraph and Lemma 7, we can finally conclude
k

that for <x,s>¢H, there exists a well-formed accepting run of 533;-12 on
S

t H Denote it by R

X <x,s>’ <x,8>"

k
m}}?‘ on t.

We now proceed to construct R, a well-formed run of
We first define a total ordering, <H’ on H as follows: Let <x,s>€H
and <y,u>EHB ; then we put <y,u><H<x,s> if B<6, or if B=6 and
<y,u> < <x,s> where < is a fixed well-ordering of TX S as in Section
3. Clearly <H is a well-ordering of H. Denote by <H the obvious strict
well-ordering determined by <_ . It is important to note that if

H
<y,u> €H<X o then <y,u><H<x,s>.

,
At the same time as we define R we will define a function
£: (<N, 1>} U (T-(A}) X [mn2k]) +H. As before, we carry along the
following induction hypothesis: If R(x) is defined and 1< £ <length(R(x)),
then f(x,£) is defined; if f(x,£)=<y,u> and Py (R(x,4))=s, thén
a) ysx and

b) if y=x then u=s and

< .
c) x,s > ¢ 1I<y’u>
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¢>. ret f{i,1)=<h,s_ >. Clearly the above

Let R(A)=<s 0

O)
hypothesis holds so far.
Assume now that R(x) and [ have been defined so that the above

hypothesis holds. For £, 1S4 <lenzth{R(x)), define

L if pl(f(x,ﬁ))zx
g(x, )=

£if py(£(x,0))7%

k
Let 0 € ({0,1}. Define R(x*0) to be of length mn2 such that for all g,
1f;q55nn2k, pl(R(x'C,q))zsi where i=the greatest integer less than —L%
i n?

and such that p7(R(x-o,q)):
(L] £(x,%) is defined and g6, ) Cpy(Ry oy (600,00

We now define f. Let s:pl(R(x'd,q)). If <x*T,s>¢Y, define

f(x*0,q)=minimum {f(x,ﬂ)l£€fp2(R(x'0,q))}. If <x'0,s>C"H, define

under <
H

f(x*a,q)=minimwm ({ <x°0,s>} U{f(x,£>l£€ipZ(R(X’U,q))}>. Clearly

under N
a) aud b) arc preserved. To sce that c) is true at x*0, observe

that if <x*o0,s> CH then <x°*o;s>€1H and ‘<X'U,S><Hf<X'UsQ):

f(x20,q)
contradicting the definition of f(x*'C,q).
k

a2
This completes the definition of R and f. That RéfRn(iaL , )

follows exactly as in the previous section. It remains to show that R

ie accepting. So let T&T be a path, ﬁz[xo;xl,...}

i€w, Let ﬂo,ﬁl,. . . be a thread of (Rl”)m~ Now for all 1i€w,

where %, <x, for all
i i+1

£(

x z < f(x.,%. ). So, since <_ well-orders H, there exists an
11 i) T FO ) > sEnee Ty ’
i such that j=1i implies that f(xj,ﬂj):f(xi,ﬁi). Therefore the proof

that R is accepting is identical to that in Case 2) at the end of

Section 3. E]
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Proof of Theorem 3:

(kA1)
(=)
Notation: For k a nonnegative integer, let n(k)=2 . Note that

2 ) = (ke 1)

Let our induction hypothesis at stage at stage K be that if

T .

Ul is a pairs-automaton of order K, then D{¢1) & 1T(
The hypothesis is true at K=0 by Theovem 4, Assume it is true

Y
(23

for ¥K=k. We wish to show it for K=k+l. By Theorem 5, if.5 4

[¢]

. 5 1(k
pailrs-automaton of order kt+l-empty, then D(&) & '1‘(?.73‘?_4‘ )). Therefore,

n(lk+1)

by Theorem 6, «f Ot is of order ki1, DL ST ).

This together with Lemma 6 completes the proof. I3
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every automaton on infinite trees,&l , there exists another one, o¢', such
that &' accepts precisely the complement of the set accepted by&U. Rabin's
construction of ' and the proof that it works is an involved induction. -
In this paper we present a fairly simple description of a complement machine
ov', given ¢x, such that it is very plausible that Ot.' works in the sense
that T(oC')=T(@1). The proof that our construction works, however, is
difficult and very similar in complexity to Rabin's proof in [6] that his
(more difficult) construction works.
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