

This blank page was inserted to presenie pagination.

MAC TR-105

'.~1/1!,YSIS OF SORTING NETWORKS

f\urton J. Smith

October 1972

:i:.H'rtJ'o in part by the National Science
·11d1 gnmt GJ34671, and in part by t~1p

· ·: ' ' ts Agency of the Department of
'' No. Lt33 which was monitored hy ONR

.. ,1 <\ f11h2-0001.

: T'.1 INSTITUTE OF TECHNOLOGY

P':C'JFCT MAC

2

t\~; ANALYSIS OF SORTING NETWORKS

ABSTRACT

·,· '' , ·,,·i1ich -;ort two numbers can be interconnected

... :,jc~. sort n numbers for any n. The input

' ... L<·ristics of comparator networks are

· I I r· · ~v~1al different points of view.

,. " ,,., n,;,rndllces a thesis of the same title submitted tc
]l ·' ··•\. ,~··f Electrical Engineering, Massachusetts Ins ti tu Le

··. , i.n partiol fulfillment of the requirements 1 01'.

:e '·' 1nctor of Science, Aagust 197 2.

3

ACKNOWLEDGEMENTS

Thanks are due e.nd most gratefully given to Fred Hennie
for his insights, help and understanding. I would also
like to thank Dave Liu and Peter Elias for the many hours
they spent with me on this problem, and Marsha Baker for
the many hours she spent making it all legible. Finally,
I would like to express my gratitude to my wife Dottie,
for bearing it all, and to my daughter Katherine, for
comic relief.

4

TABLE OF CONTENTS

TITLE PAGE • . . . • • • • . • • . . • • • . . • • . . . • • • 1

ABSTRACT. • • • . . . • . • . . • • • • • . • . • . 2

ACKNOWLEDGEMENTS. • • . • • . . . • • • . . • . . • . • • . • . 3

TABLE OF CONTENTS. • . • . • • • • . . . • • • 4

CHAPTER 1 - SORTING AND SORTING NETWORKS ••.••.............••..•...•••. 5

1.1 Sorting •....••.......••...•.•....•.•....••••..•....•• 5

1. 2 Sorting Networks..................................... 9

1.3 The Analysis Problem for Sorting Networks •...•••.•.•• 13

CHAPTER 2 - CRITERIA FOR DECIDING WHETHER A NETWORK SORTS •.•....•..•.• 16

2.1 Comparator Networks as Finite State Machines •••..•••• 16

2.2 The Zero-one Principle •...••........•....•••.....••.• 25

CHAPTER 3 - COMPARATOR NETWORK OUTPUT BEHAVIOR ••.•..•••..•...•.•••••.• 35

3.1 Output Characterizations ••....•.•...•..••.•••••••.•.• 35

3.2 Zero-one Valued Output Assignments ...••••••....•••.•• 39

3.3 Injective Output Assignments 51

3.4 The Lattice of Partial Orders 57

CHAPTER 4 - OUTPUTS CHARACTERIZED BY A PARTIAL ORDER .••..•.....••••••• 71

4.1 Sorting Injective Assignments with respect to a
Partial Order•.•.............. 71

4.2 Real-valued Assignments and Convexity •••..•..••...•.• 79

CHAPTER 5 - CONCLUSIONS •...•••...•.•...••...••.•.•....••.....••....••• 89

BIBLIOGRAPHY .•.......................•......••...•.••.••..••••.••••.•• 92

BIO GRAPHICAL NOTE. • . . . • . . . • . . • . . . • . . • • • . . . • • . • • . . • . • • • • • • . • • • . . • • 9 3

5

CHAPTER 1

SORTING AND SORTING NETWORKS

1.1 Sorting

The ability to sort a sequence of objects seems to be important in the

solution of many data processing problems. This thesis deals with a particu

lar kind of sorting algorithm called a sorting network; but before discussing

sorting networks, it will be appropriate to deal with sorting~~·

Intuitively, to sort is to rearrange a sequence of "values" or "numbers"

to conform to some order. There are always two orders involved in this

process; the order implicit in the sequence and the numerical order of the

values themselves. For example, if each of a sequence of locations in a

computer memory contains a number, we can talk about sorting the sequence

of numbers. This is done by changing the locations of the numbers so that

after the process is completed, the nrnnber in location x is less than or

equal to the number in location y whenever location x precedes location y.

Note that sorting affects neither the sequence of the locations nor the

values of the numbers. Rather, it changes the assignment of numbers to

locations. Definition 1.1.1 generalizes these intuitive notions to deal

with partially ordered sets.

Definition 1.1.1 If D and Rare sets partially ordered by P and~. respec

tively, and if f is a function from D to R, a permutation non D sorts f

(with respect to P) if

6

(Vx, yED)(TI(x)PTT(y) ~ f(x) ~ f(y))

or, equivalently,

The function f is called an assignment from the locations of D to the values

of R. If f is an assignment which is already sorted with respect to P, i.e.

if f satisfies the condition

(Vx, yED)(xPy ~ f(x) ~ f(y))

then f is consistent with P.
~~ -

Letting f•g denote the composition of the functions f and g, i.e. f·g(x)

g(f (x)) for all x in the inverse image of the domain of g, it is easy to

see that if TI sorts f with respect to P, then n- 1.f is consistent with P.

Example 1.1.2 If D and Rare the sets [a,b,c,d} and (0,1,2,3,4}, respec-

D

tively, with P and~ the obvious total orders, then the permutation (abd)(c)

sorts the assignment f defined by f(a) f(d) = 0, f(b) = 3, f(c) 2

-1 -1 -1
with respect to P because f(n (a)) = 0, f(n (b)) = 0, f(TI (c)) 2,

-1
and f(n (d)) = 3.

Of course, the most usual special case of sorting arises when D is

a finite set, Pis a total order, R is a set of numbers, and~ is the

familiar total order. If D is not finite or if ~ is not total, it may

not be possible to sort some kinds of assignments.

7

Example 1.1.3 Let D and R both be the set of positive integers, with P

and ~ the obvious total orderings. The assignment f defined by

f(n) = {:

if n is even

if n is odd

cannot be sorted because f(n) = 0 for infinitely many n, and therefore a

permutation n to sort f could not have n(n) finite for n odd. 0

Example 1.1.4 Let D and R both be finite sets, with P any partial order

on D and ~ the identity relation on R. Then no injective assignment f

can be sorted unless P is the identity relation on D, for if xPy with

-1 -1 x ~ y, f(n (x)) = f(n (y)) is false for every permutation n. 0

It is clear that if D is finite and P and ~ are a total orders, any

assignment from D to R can be sorted by an appropriate permutation.

In fact, P need not be a total order, as the next theorem shows.

Theorem 1.1.5 Let f be any assignment from a finite set D to a range

R, with P a partial order on D and ~ a total order on R. Then any

assignment f: D ~ R can be sorted with respect to P.

Proof: Let T be a total order on D such that P !:::: T, and let n sort f

with respect to T. Then

Since P ~ T, we have

8

(Vx, yED)(xPy ~ xTy)

and

so TI sorts f with respect to P. 0

It will be assumed in what follows that D is a finite set and ~ is a total

order. It will be useful to let R be some set of numbers, with ~the

familiar total ordering. R will be either a finite set of positive integers,

the set of all positive integers, or the set of real numbers; most often,

it will be unnecessary to state explicitly which of these sets R denotes.

The domain D will usually be a set of numbers, or a set of letters where

confusion might result from the use of numbers.

It will also be useful to talk about sets containing all of the sorted

assignments of a particular kind.

Definition 1.1.6 If Pis a partial order on the domain D, then the sets

AP, IP, and Zp are defined as follows:

AP (f: D 4 Rl(Vx, yED)(xPy ~ f(x) ~ f(y))

Ip [f: D 4 Rlf F AP A f is injective}

Zp [f: D ~ Rlf E AP A Range(f) = [0,1}}

That is, AP is the set of assignments consistent with P, Ip is the set of

injective (one-one) assignments consistent with P, and Zp is the set of

zero-one valued assignments consistent with P. The set of all assignmEuts

from D to R will be written A=; similarly, I denotes the set of all

9

injective assignments from D to R, and Z will denote the set of all

zero-one valued assignments from D to R. Thus Ip = AP n I= and Zp =

Ap n z . r

1.2 Sorting Networks

The familiar algorithms for sorting an assignment f make use of

two primitive operations: comparison and interchange. For any pair

of elements x and y in D, a comparison of x and y determines whether

or not f(x) ~ f(y), and an interchange of x and y transforms f into

-1
f' =TI ·f, where TI is the permutation (xy). These two primitive

operations are combined in the definition of a comparator which can be

viewed as a kind of sorting operation on a two element domain.

Specifically, a comparator on x and y performs an interchange of x

and y if and only if the assignment f has f(x) > f(y). Notice that

a comparator on x and y transforms an assignment f into an assignment

f' satisfying f' (x) ~ f' (y), so that f' (x) is the minimum of f(x)

and f(y) and f'(y) is the maximum of f(x) and f(y).

Definition 1.2.1 If x and y are elements of domain D, the comparator

<x,y> is that operation which transforms any assignment f into the

assignment f' = <x,y>(f) given by

f'
{

f

-1 TI .f

where TI is the permutation (xy).

if f(x) ~ f(y)

if f(x) >f(y)

n

10

A comparator <x,y> may be represented schematically by an arrow

from x to y, indicating that the larger of f(x) and f(y) will be

assigned to y and the smaller of f(x) and f(y) will be assigned to x.

A composition of comparators can be drawn as a network, with locations

in D represented by lines drawn from left to right and comparators

represented by arrows connecting the lines vertically. For example,

if Dis the domain (a,b,c,d}, then the composition of comparators

<a b> • «I c> ·<a d> •<b c> • <b d>
' ' ' ' '

can be represented by any of the networks depicted in Figure 1.2.l

(a)

_ _._--+-..------ b
__ __.. ______ d

(c)

Figure 1.2.1 Examples of comparator networks.

11

In Figure 1. 2 .1, the horizontal lines (often called "wires" by analogy

with electrical networks) are labeled with the elements of D that they

represent. For any labeled network, there is exactly one composition

of comparators that the network represents, and for any composition

of comparators, there is exactly one labeled network (as long as

rearranged versions of the same network do not count as distinct.)

Definition 1. 2. 2 A comparator network is a composition of comparators.

If f is an assignmeat and C is a comparator network, C(f) will denote

the assignment that f is transformed into by the composition of

comparators C. If A is a set of assigmnents, the image of A under a

comparator network C is written C(A) and defined to be the set

[C(f)!f EA}

Although a comparator network has been defined abstractly as a composition

of functions called comparators, it is possible to implement a comparator

as a finite state machine and thus to implement a comparator network as

a network of finite state machines. This implementation is discussed

more fully in Chapter 2.

Definition 1.2.3 If C(A=) =AP for some partial order Pon D, then C is

said to sort with respect to g. If T is a total order on D such that

C(A=) = ~· C is called a sorting network (with respect to .I). If C is

a sorting network with respect to T such that xTy for every comparator

0

<x,y> in the network C, then C is called a standard form sorting network. [l

12

For example, it can be shown that the comparator network described in

Figure 1. 2.1 is a sorting network; in fact, it is a standard form sorting

network with respect to g .
It is conventional to draw comparator networks with no wire crossings

and with the wire labeled x above the wire labeled y iff xTy. If this

is done for a standard form sorting network, all of the arrows will point

down, so that the arrowheads are redundant and may be omitted. Notice

that Figure 1.2.l(b) observes these conventions.

The next theorem is due to [Knuth].

Theorem 1.2.4. For any network C that sorts with respect to a total order

T, there exists a standard form network C' that sorts with respect to T

and contains the same nwnber of comparators as C. rJ

When there is an implicit total order T on the domain D, it will be

useful to extend the notion.of standard form sorting networks and

the conventions for drawing them to comparator networks in general

by omitting the arrowheads when xTy for every comparator <x,y> in the

network.

In what follows, the usual "higher is greater" convention for

ordering diagrams of partial orders is inverted to conform to the

conventions for drawing standard form networks. That is, xPy iff x is

connected to y by a path going downwards in the ordering diagram for

the partial order. P. This causes the top-to-bottom arrangement of

13

domain elements to be the same for either the ordering diagram of a

total order T or the wires of a standard form network that sorts with

respect to T.

Example 1.2.5 The standard form network

l
l

1

a

b

c

d

is a sorting network with respect to the total order

1.3 The Analysis Problem for Sorting Networks

It is often quite difficult to decide whether a comparator network

sorts. For example, it is difficult to verify by inspection that the

standard form network of Figure 1.3.1 is in fact a sorting network.

I
1

I
Figure 1.3.l Sorting network.

0

14

This difficulty is reflected in the fact that S(n), the minimum numher

of comparators in any sorting network on an n-element domain, is unknown

2
for n > 8; asymptotically, S(n) is known to be at worst 0(nlog n), but

might be as small as o(nlogn) [Knuth]. Another manifestation of tlie

same problem is that it is very difficult to design networks which are

"good" in the sense that they contain as few comparators as possible;

the only systematic design techniques known are based on recursive merges,

2
and give rise to nlog n growth rates in the number of comparators required

[Vanvoorhis].

There are at least two possible avenues to a better understanding of

sorting networks. First, it would be useful to have better criteria for

determining whether a comparator network is or is not a sorting network.

In particular, a criterion which would lead to an improved upper or lower

bound on the number of comparators in a sorting network would of course

be very desirable. Second, better techniques for analyzing comparator

networks are needed, since a more complete understanding of the capa-

bilities and limitations of comparator networks in general would lead

to a better picture of what is going on within sorting networks.

This thesis explores these two avenues. Chapter 2 discusses two

criteria, one of them new, for deciding whether a comparator network

is a sorting network. Chapter 3 develops two related ways of charac-

terizing the "state of the sort" in terms of sets of assignments that

can appear as comparator network outputs. Chapter 4 explores the notion

15

of sorting with respect to a partial order. Finally, Chapter 5 contains

a discussion of the results of the previous chapters and recommendations

for further research in the area.

16

CHAPTER 2

CRITERIA FOR DECIDING WHETHER A NETWORK SORTS

2.1 Comparator Networks as Finite State Machines

This section discusses an implementation of the comparator operation

as a finite state machine. In this section, the term "comparator" will

refer to the finite state machine implementation rather than to the opera-

tion itself, and the term "comparator network" will refer to the imple-

mentation of a comparator network as a network of finite state machines.

The term "assignment" will refer to an assignment with wires as the

domain and sequences of binary digits as the range; each binary sequence

implements the binary representation of an integer with the understanding

that the most significant bit is first in the sequence.

The state table for a comparator is shown in Figure 2.1.1. The

starting state is E, and as long as the upper and lower input symbols x1

and x 2 agree, the machine remains in state E. As soon as x
1

differs

from x 2 , the machine enters state 1 or state G depending on which input

digit is 0 and which is 1. State 1 is entered if x1 is 0, indicating

xl
Compar-

x2 a tor

xl

x2

E

zl

1
z2

G

E,

1,

f-

G,

0

0

0
0

0
0

0
0

1,

1,

G,

0

1

0
1

0
1

1
0

G,

1,

G,

1

0

Figure 2.1.1. Comparator state table.

0
E,

1

1
1,

0

0
G,

1

1

1

1
1

1
1

1
1

17

that the integer represented on the upper input wire is less than the

integer represented on the lower. In state L, z1 = x
1

and z2 = x2 ,

thus leaving the assignment unchanged. State G is entered if x2 is 0,

indicating that the integer represented on the lower input wire is the

smaller of the two; in state G, z1 = x2 and z2 = x
1

so that the outputs

are the transposition of the inputs. If a new assigmnent is to be

input to the comparator, the comparator must be reset to state E.

Since a comparator network is a loop free interconnection of

finite state machines, it is itself a finite state machine. A network

k containing k comparators has 3 states, some of which may be equiva-

lent or unreachable from the starting state. It will be shown that

a comparator network is a sorting network only if it contains a certain

number of reachable states.

Definition 2.1.1. Let C be a finite state machine, let f be any assign-

ment, and suppose f takes the machine C from its starting state to

state s. Then Cf(g) will denote the output that results when the

assigmnent g is applied to C, starting in state s.

The notation of Definition 2.1.1 is consistent with that of Definition

1.2.2 under the convention that C(f) is just another way of writing

S-_(f), where~ denotes the input sequence of zero length. (Since~

leaves the machine C in its starting state, S-_(f) is the output that

results when f is applied to C in its starting state.)

Definition 2.1. 2

18

For any finite state machine C, let - denote the binary
c

relation on input sequences defined by

~ ("\fg) (Cf (g)
1

cf (g))
2

The relation = is an equivalence relation called the Nerode equivalence
c

relation of C. It is a well-known result in automata theory that the

blocks of the partition induced by ~con the set of all input sequences

are in one to one correspondence with the reachable state~ of any reduced

machine equivalent to C.

The following theorem is a variation of Bouricius's theorem

[Knuth].

Theorem 2. 1.3 Let f 1 and f 2 be assignments on domain D and let C be

any comparator network on D with C(f
1

) == fl and C(f2)

then

That is, if f 2 is an order-homomorph of f
1

then C(f 2) is an order-homomorph

Proof: The proof is by induction on the number of comparators in C.

Basis: If Chas no comparators, f
1 f2 so the statement

of the theorem is obviously true.

19

Induction step: Let the statement of the theorem be true for all networks

containing nor fewer comparators, and let C' be a network of n+l compara-

tors. C' can be viewed as the composition of a network C of n comparators

and a single comparator <a,b>. Let f
1

and f
2

be any two assignments on D

f2, and suppose that

Since Chas n comparators, the induction hypothesis guarantees that

Letting <a b>(f') = f" and <a b>(f') = f" it is clear that f
1
1 = f" and

' 1 1 ' 2 2' 1

f' = f" as long as f' () ~ f' (b) 2 2 1 a 1 ·

and f2(b) ~ f2(a), so that fl= n-
1
.fi and fz

permutation (ab). In any event,

n- 1.f 1 where TI is the
2

Corollary 2.1.4 If f 1 and f 2 are order-isomorphic assignments on D, i.e.

if

then for any comparator network C on D, f
1

and f 2 leave every comparator

of C in the same state.

0

20

Proof: For any comparator <a,b> in C, apply the theorem to the portion

of the network to the left of <a,b>. The assignments fl and f2 that

appear at the input of <a,b> when C is applied to f
1

and f
2

, respectively,

satisfy

It is easy to verify that

fi(a) < fi (b) ¢::> f2(a) < f2 (b)

fi(a) fi (b) ¢::> f2(a) = f2 (b)

fi(a) > fi(b) ~ f2(a) > f2 (b)

so that fi and f2 leave <a,b> in the same state.

Definition 2.1.5 Let= denote the binary relation on A_ defined by

That is, f 1 = f 2 iff f 1 and f
2

are order isomorphic.

The binary relation = is an equivalence relation on A= whose equivalence

classes (order isomorphism classes) form a partition of A • It will be

useful to represent each block of the partition by a particular element

of the block.

Definition 2.1.6 For every assignment f on the domain D the assignment

~ is defined as follows:

~(x) = !{ f(z) lf(z) < f(x)} I

0

That is, ~(x) is the number of values f(z) in the range of f that are less

than f(x). 0

21

Example 2,1,7 If f is the assigrunent on D = (a,b,c,d} defined by f(a) = 3,

f(b) = 4, and f(c) = f(d) = 1, then ~ is

I (1} I = 1, ~ (b) = I [1 , 3} I = 2 , and ~ (c)

/\
the assignment defined by f(a) =

=~Cd)= lc1! = o.

Theorem 2.1.8 For any assignment f in A , ~ - f.

Proof: Suppose f(x) ~ f (y). Then

[f(z) rf(z) < f (x) 1 \'.;;ff(z)!f(z) < f (y)}

n

/\ /\
so f(x) :<=: f(y). Now suppose f(x) ~ f(y) is false, so that f(x) > f(y); then

(f(z)lf(z) <f(y)} C [f(z)ff(z) < f (x) 1

/\
and f(x)

/\ /\ /\
> f(y), so f(x) ~ f(y) is false.

Theorem 2.1.9 For any two assignments f 1 and f 2 in A=, f
1

- f 2 ~ ~l = ~2 •

Proof: Let f 1 = f 2• Then for all x, f 1 (z) < f
1

(x) iff f 2 (z) < f 2 (x) and

f 1 (z) = f 1 (z') iff f 2 (z) = f 2 (z'), from which it follows that l[f1 (z)lf
1

(z)

< f
1

(x)} I= l[f 2 (z)lf2 (z) < f 2 (x)} land ~l ~2 . n

Theorems 2.1.8 and 2.1.9 imply that every block of the partition of

/\
A induced by = contains exactly one assignment of the form f. It will

now be argued that if C is a sorting network, = is the same equivalence
c

relation as -

22

Theorem 2.1.10 If C is a sorting network on an n-element domain D,

Proof: In view of Corollary 2.1.4, f
1 = f2 ~ fl

-c ~l and f 2

c f 2·
6

-c f 2' then since

/\
Since f

1

and f 2

implies f
1

= f 2 , it remains to show that ~l -c ~2 implies

~l = ~2'
n-11.

It will be convenient to let the domain D be the set [0,1,2, •..

/\
i

/\ /\ . i ~2 (i) Let fl f2' so that f
1

(i) for some i. The set

/\
~2(i)) '~1 (i) i ~2(i)} (min(f

1
(i),

is nonempty; let j be such that min(~l (j), ~2(j)) is the least element of

this set and f
1

(j) i f
2
(j); without loss of generality, let ~l(j) < ~2 (j).

Let k denote the number of locations i in D such that ~1 (i) < ~l (j), and

define the function gas follows:

Now consider c~ (g)
1

{

o if i = j

g(i)
i+l otherwise

= h1 and c~ (g) = h2.
2

and h2(k) i o. First, since there are k

~l(j), c (~l) = ~ 1

1
is an assignment with

It will be argued that h
1

(k) =

locations i with ~l (i) less than

~ 1 (k)
1

= ~l (j) because c is a

0

sorting network. Evicently, h
1

(k) is the smallest of the values g(i) such

that ~1 (i) ~l (j); since g(j) is the smallest possible such value, h
1

(k) =

g(j) = o.

23

Now consider h 2 (k). h 2 (k) = 0 only if there are exactly k locations

i with ~2 (i) < ~2 (j). But since ~l (i) = ~2 (i) for every i such that

f1 (i) < ~1 (j) by definition of j, there are exactly k locations i such

/\ /\
that f 2 (i) < f 1 (j). This implies that for no location i is it the case

that
6f

1
(J') _,.. /\.f

2
(i·) < 6f

2
(J'). I . 1 h b 1 . . ~ n particu ar, t ere can e no ocation i

/\ /\ /\
with f 2 (i) f 2 (j)-l. Since f 2 (j) is the number of elements in the set

[f2 (z)lf2 (z) < f 2 (j)}, this is a contradiction. Therefore h2 (k) # 0 and

c
f is false.

2
D

Example 2.1. 11 This example illustrates the proof of Theorem 2.1. 10. The

• /\.f /\. (6) assignments
1

, f 2 , C f
1 f/\, h d h . . h

2 , g,
1

, an 2 are given in t e

table below.

/\ f 2 (i) f1'(i) hl (i) ~2 (i) h2(i) i fl(i) g(i)

0 2 1 1 0 2 0 2

1 0 0 2 0 5 0 5

2 1 1 3 0 8 0 8

3 3 2 4 1 0 1 1

4 0 0 5 1 3 1 3

5 1 3 0 2 1 2 4

6 2 2 7 2 7 2 7

7 0 0 8 3 4 3 0

24

First, notice that the smallest element of [min(~1 (i),

6£2(~)}. 1 is ; since
/', /\
f

1
(5) = 1 and f 2 (5) = 3, set j = 5. (The function g

given in the table was chosen for this location j, although j = 0 would

have worked equally well.) /\ . "" Since f
1

(i) < f
1

(5) for i = 1,4, and 7,

set k = 3. Notice that h
1

(3) = 0 because g (5) = 0, but because ~2 (i) <

~2 (5) for 7 locations i and 7 is greater than 3, h2 (3) # O; in fact,

h2(7) = o.

Corollary 2. 1.12 No two reachable states in a sorting network C are

equivalent.

Proof: Suppose f
1

and f 2 leave C in equivalent states, so that

f 2 ; finally by Corollary 2.1.4, f 1 and

f 2 leave C in the same state.

Corollary 2.1. 13 A sorting network Con an n-element domain has

n
\""'

CT(n) / k! {~}

k=O

n
reachable states, where {k} denotes a Stirling number of the second kind.

Proof: It suffices to count the number of distinct functions of the form

"' /', . f for a domain of n elements. In fact, the number of functions f is

equal to the number of totally ordered partitions on an n element domain D.

To see this, let ~be such a partition, totally ordered by T, and for

/\
any element xED let f(x) be the number of blocks of ?"' that are T-less than

[',

25

the block containing x. It is not hard to verify that there is precisely

/\
one ordered partition corresponding to a given f and vice versa. Since

[~} is the number of unordered partitions of an n element set containing

k blocks, and since there are kl ways of ordering every such partition,

cr(n) is the number of totally ordered partitions on an n element domain

/I
and hence the number of functions of the form f.

It can also be shown that any comparator network that has cr(n)

reachable states has the property that the reachable submachine of

the network is isomorphic to the reachable submachine of a sorting

network with respect to state transitions.

2,2 The Zero-one Principle

Where as it might be thought that some comparator network could

successfully sort all zero-one valued assignments and yet fail to

sort a more "complex" assignment, this cannot in fact occur; Theorem

2.2.1 shows that a test to see if all zero-one valued assignments are

sorted by the network is conclusive. A proof may be found in [Knuth}.

Theorem 2,2.1 (zero-one principle) A comparator network sorts every

assignment in A= if it sorts every assignment in Z •

The zero one principle is very u~eful for deciding whether or not

a comparator network sorts,

D

26

It is the purpose of this section to explore the question "for

which subsets of z= do there exist comparator networks that sort

precisely the assignments in those subsets". For .example, it .is

possible for a comparator network to sort every zero-one valued

assignment but one? the answer is yes. To prove this, a lemma

will be needed. The proof is straightforward.

Legma 2.2.2 The network N depicted below sorts every element of Z

l

l

except-the aeaignment

Now for the theorem itself.

=
0
1
0
1

Theorem 2.2.3 If g is any assignment in Z= except the.constant zero

or constant one functions, there exists a comparator network which

sorts every element of Z except g with respect to.some total order T. =

Proof: Let the domain D be the set (O,l,2, ••• n-1), and let g be

an assignment on D of the form

0

27

m

locations
(0 to m-1)

·o

0
0
0
1
0

1 n-m-2 ~
l

locations ~
(m+2 to n-1) :

ll

where 0 ~ m ~ n-2. Now let g be applied to the standard form network C shown

below. The boxes marked "SORT" are sorting networks, and the boxes marked

"N" are networks of the kind shown in Lennna 2.2.2.

g=O

g=-1

g=o

g=

SORT

N

SORT -------i

SORT ------

N

SORT i-------

n iterations

-------0

SORT m-3

m-2

m-1

m
N m+l

m+2

m+3

SORT 1-------- m~

------- n-1

It is easy to verify that C(g) g is not sorted with respect to ~.

Now let h # g be any other assignment in Z • If h is applied to C, then

at least one of the following four things must be true:

28

1. There is at least one 1 on input wires 0 through m-1;

2. There is a 0 on input wire m·
'

3. There is a 1 on input wire m+l;

4. There is at least one 0 on input wires m-1-2 through n-1.

In any event, the leftmost pair of sorting networks in C transform h into

an assignment such that the leftmost N network in C does not receive the

pattern

0
1
0
1

at its inputs. It follows from Lennua 2.2.2 that whatever

this assigrunent may be, it is transformed by the leftmost N network

into an assignment which is sorted on the wires m-1, m, m+l, and m+2;

in particular, it cannot be the case that wires m and m+l are assigned

1 and 0, respectively, at the output of the leftmost N network. This

means chat

0
1
0
1

cannot appear at the inputs of the next N network in C,

or, inductively, at the input of any subsequent N network in C. In

fact, every N network in C could be replaced by a four input standard

form sorting network with no effect on the ultimate network output

C(h). After this has been done, it is not hard to see that C(h) is

sorted with respect to ~; just verify that each iteration of the form

SORT t----------

SORT

SORT ~-------

29

decreases the distance between the uppermost one and the lowermost zero

by at least one in propagating the assignment, and use the fact that

there are n such iterations in C. For the degenerate cases m 0 and

m = n-2, it will be necessary to remove the top (respectively bottom)

wire from every N network together with all comparators touching that wire.

Now let g' be an arbitrary nonconstant assignment in Z_, and let TI

be a permutation on D such that g = TI·g' is an assignment of the form

0

m
0 locations 0
0
1
0
1

n-m-2 1

locations
1

1

If C denotes the network that sorts every member of Z= except g, let C'

denote the network obtained by replacing every comparator <x,y> in C

by the comparator <'IT(x), n(y)>. Since g(x) ~ g(y) iff g' (TI(x)) ~ g' (n(y)),

C' sorts every assignment in Z with respect to the total order T that

satisfies

(nx, yiCD) (n(x)Tn(y) ~ x ~ y)

i.e. the tbtal order defined by

(Vu, v~D)(uTv ~ n- 1 (u) ~ n- 1 (v))

but fails to sort the assignment g'.

30

An example will be useful to clarify the construction of Theorem

2. 2. 3.

Example 2.2.4. It is desired to construct a network which sorts every

assigrunent but the assigrunent g' on D = [0,1,2,3,4} defined by

if x = 3
g' (x)

otherwise

Now the network C shown below

sorts every assigrunent but g, where g is defined by

if x 1
g(x)

otherwise

0

1

2

3

4

(Notice that since there is only one wire for which g(x) = 0, the top

wire of the network N has been removed together with all comparators

touching that wire.)

Since TI = (13) is a permutation such that g

shown below

TI•g', the network C'

31

~~~~-,..~~~~~--..~~~~~~~~~~~~~~~~~~..--~-0 

~..--.---.---+~~..--.--r---t~~-.--.---r---lf--~-.--.---r---lf--~~-..---.-~1--~-1 

~"'--+-_....~___,.--..._-+-_.___.~...--__.._--+-__.____,.__-r-__.._--+-__._---'.__-r--....._-+-__._---'.__..--2 

~~-t--~~--L-~-+~~~~-~-+-~~-L.~~~~~-'-~-+-~~--L~3 

~~~~~~~~~~~~~~~~~~~~---~~~~~......_~~~~-4 

sorts every element of Z except g' with respect to

Corollary 2.2.5

T

0

3

2

1

4

In verifying that an n-input comparator network sorts

by means of the zero-one principle, it is necessary to try 2n-2 inputs,

namely all the nonconstant zero-one valued assignments.

Theorem 2.2.3 could be modifed to deal with standard form networks,

which of course must sort at least those zero-one valued assignments

that are already sorted.

Among other things, Theorem 2.2.3 indicates that all nontrivial

statements of the form "any comparator network that sorts every element

of this set of zero-one valued assignments also sorts that zero-one

valued assignment" are false. The ilLAt theorem, analogously, denies

the possibility of similar statements about assignments not sorted.

32

Theorem 2.2,6 For any zero-one valued assignment g, there exists

a total order T and a comparator network C which sorts only that

assignment (and the two constant assignments) with respect to T.

Proof: Let g be an assignment on D = [0,1,2, ••• n-lJ of the form

0
0 m
0 locations

0
1
1

n-m 1
locations

1

where 0 ~ m ~ n. Now let g be applied to the network C shown below.

The boxes'marked "REV SORT" are sorting networks which sort in reverse,

i.e. with respect to the total order ~.

{ . g=O

(

g=l
)
)

. . .
'-

REV
SORT

REV
SORT

.

0

1
2

m-1
m

m+l
m+2

n-1

Clearly C{g) = g is sorted with respect to ~, as are the constant zero

and constant one assignments, but no other assignment in Z is sorted

with respect to ~ • Now let g' be any assignment in Z=, and let TT be a

33

permutation on D such that g = TI·g' is an assignment of the form

n•m

0
1
1
1

1

A transformation of the comparators in C analogous to that performed in

Theorem 2.2.3 establishes the theorem.

There are certainly some sets of zero-one valued assignments for

which there can be no comparator network sorting exactly the members

of that set.

Example 2.2.5 No comparator network containing one or more comparators

can sort each of the assignments.

0 0 0 1

0 0 0
0 0 1
o, 1, 1

• . . 1

without sorting some other assignment.

1
1

34

Proof: The leftmost comparator in the network will receive a zero at

one input and a one at the other for some assignment in the list.

The assignment which results in the opposite arrangement of the zero

and the one at the leftmost comparator input must also be sorted, but

it is not in the list because interchanging a zero and a one in any

assignment in the list will result in an assignment not in the list. D

35

CHAPTER 3

COMPARATOR NETWORK OUTPUT BEHAVIOR

3.1 Output Characterizations

The set of assignments that can appear at the output of a comparator

network is sufficient to determine which networks can be concatenated to

the network to make the combination a sorting network. Thus it is often

useful to know the assignments that can appear at the output of a given

comparator network. To the extent that sets of output assignments can be

represented succinctly and manipulated easily, the problems of designing

and analyzing sorting networks will become easier. In this chapter, two

different kinds of assignments will be considered: injective assignments

and zero-one valued assignments. These two kinds of assignments are related

by the notion of threshold.

Definition 3.1.1 If f is any assignment from D to R then 6(f), the set

of thresholds of f, is defined by

6(f) = (g:D __. (0,11 I (3:r E R)("\fx ED)

(g(x) = 1 iff r ~ f(x)}

If A is any set of assignments from D to R, then

ecA) ueco
fEA

is the set of thresholds of ~.

36

Example 3.1.2 The set of thresholds of the assignment f: [a,b,c,d} 4

(0,1,2,3} defined by f(a) = O, f(b) = f(c) = 1, f(d) = 2 is the set

(go, g1, g2' g3}, where the functions g. are given in the table below.
i

x f(x) go(x) gl(x) g2(x) g3(x)

a 0 1 0 0 0

b 1 1 1 0 0

c 1 1 1 0 0

d 2 1 1 1 0 n

Notice that an assignment f is sorted iff all of its thresholds are sorted.

The following theorem is a close relative of the zero-one principle.

Theorem 3.1.3 For any network C and any assignment f, C(9(f)) = 9(C(f)).

Proof: Let g' E C(S(f)), so that g' = C(g) for some g E S(f). Since

f(x) ~ f(y) ~ g(x) ~ g(y) for all x and y, Theorem 2.1.3 guarantees that

f' (x) ~ f' (y) ~ g'(x) ~ g'(y). If g'(x) = 0 for all x, certainly g' E 9(f');

otherwise, set

r' = min (f'(x)lg'(x) l}
xffi

and let z be any element of D for which f'(z) = r', hence for which g'(z) = 1.

Now for all x, if r' ~ f'(x), i.e. if f'(z) ~ f'(x), then 1 = g'(z) ~ g'(x)

and g'(x) = 1. Conversely, if g'(x) = 1, then r' ~ f'(x) by definition of r'.

It follows that g' E 9(f'), and so C(0ff)) ~ 0(C(f)). Now, every element g

in 9(f) is characterized uniquely by the number of elements in D mapped to

zero by g. Since C merely permutes the domain of each g E 9(f), !c(9(f))! =

10(f)I; since C applied to f just permutes the domain off, l0(C(f))! =

37

I e (f) I . Hence c (e (f)) 8(C(f)).

The following corollary illustrates the use of Theorem 3.1.3.

Corollary 3.1.4 For any two networks C and C', the following statements

are equivalent:

1. C' sorts every assignment in C(Z_), the set of zero-one valued assign-

ments that can appear at the output of C.

2. C concatenated with C' is a sorting network.

3. C' sorts every assigrunent in C(I=)' the set of injective assignments

that can appear at the output of C.

Proof: --- 1 implies 2 because of the zero-one principle, and 2 implies 3 by

virtue of the definition of a sorting network. It remains to show that

3 implies 1. Let g' be any zero-one valued assignment that can appear

at the output of C. Then g' = C(g) for some g. Now, g E 8(f) for some

injective assignment f; letting C(f) = f', g' E 8tf') by Theorem 3.1.3.

Since C' sorts every injective assignment in C(I_), C'(f') is sorted

and so is every element of 9(C'(f')). Since 9(C'(f')) = C' (8(f')), every

element of 9(f') (including g') is sorted by C'.

Corollary 3.1.4 guarantees that either the zero-one valued output

assignments C(Z_) or the injective C"~~ut assignments C(I_) adequately

38

characterize a network C for purposes of designing a network C' so that

C concatenated with C' is a sorting network. On the other hand, if the

network C' is given and it is desired to design a network C so that C

concatenated with C' is a sorting network, then the network C' is

characterized for this purpose by those assignments that it sorts.

In the light of Theorem 3.1.3, it is not surprising that the zero-one

valued assignments sorted by C' characterize the injective assignments

sorted by C'.

Theorem 3.1.5 If I is the set of injective assignments sorted by the

network C' then for every injective f, 9(f) ~ 9(I) ~ f E I.

Proof: Let 9(f) ~ 9(I) with f ~I. Then f' = C'(f) is not sorted,

so there is a zero-one valued assignment g' ~ 9(f') which is not sorted.

Since g' E 9(C'(f)), g' E C'(9(f)) and so g' = C'(g) for some g E 9(f).

Since 9(f) ~ 9(I), there exists an injective h in I with g E 9(h). Since

h E I, C' (h) is sorted and therefore every element of 9(C' (h)) is sorted.

This implies g' E C'(9(h)) is sorted, a contradiction. 0

The example below shows that C' may in fact have to sort more injective

assignments than those in C(I=) if C concatenated with C' is to be a

sorting network.

Example 3.1.6 The network

I
I

---- -----------

39

transforms the set I of injective assignments with range [1,2,3,41

into the set

and transforms z

C(Z)

1 2 1

c (I)
2 1 2

3 3 4

4, 4, 3

into the set

0 0 0 0 0 1 1

0 0 0 0 1 0 1

0 0 1 1 1 1 1

o, 1, o, 1, 1, 1, 1

since a (~) ~ c (7.) and since any comparator network c' that sorts

every element of C(I_) must also sort every element of C(Z_), such a

2

network C' sorts
1
4
3

This example suggests that zero-one valued assignments may be more

useful than injective assignments for output representation. This

hypothesis will be reinforced by the results of section 3.4; the next

two sections will be devoted to a more detailed examination of the

properties of these two kinds of output assignments.

3.2 Zero-one valued output assignment

Any set Z of zero-one valued assignments can be described by its

characteristic function, which in turn can be described by a Boolean

40

expression. For convenience, let the domain of the assignments be

D = (O,l, ... n-11.

Definition 3.2,l If Z ~ Z is a set of zero-one valued assignments on

domain D [0,1, .•. n-l', then the characteristic function of Z is the

function k from Z to [0,11 defined by

k (g)
if g E z

if g rf- z

Since there are 2n assignments g in Z=' each of which is a function

from D to [0,11, it is possible to represent a characteristic function k

by a Karnaugh map or a Boolean expression in then variables x
0

, x
1

, ••.

xn-l' For example, the network

--.....-.....----0

-~----1

---.--~-~ 2

--'-----3

has the set of output assignments C(Z) described by the table below.

x

0 0 0 0 0 0 0 0 1

1 0 0 1 0 1 1 1 1

2 0 0 0 1 1 0 1 1

3 0 1 0 1 (1 1 1 1

The Karnaugh map for the characteristic function of C(Z) is

00

01

11

10

41

00 01 11 10

1 1 1 0

1 1 1 1

0 0 1 0

0 0 0 0

and this function can be described by the expression XOXl + xox~ + xo'x3

+ x
1
x2x3• In this fashion, a Boolean expression can describe any set of

zero-one valued assignments, and in particular, the set of zero-one

valued outputs C(Z=) of a comparator network C.

A comparator <i,j> concatenated to the output of a network C results

in a new network C' = c-<i,j>, a new set of zero-one valued output assign-

ments C'(Z=) and hence a new characteristic function described by a new

expression. The following definition will be useful in describing this

phenomenon.

Definition 3.2.2 If Eis a Boolean expression in the variables x0 ,x
1

, •••

xn-l' then E/() is the expression obtained by replacing every x. ,x.
l. J

occurence of xi in E by~ and every occurence of xj in E by xi.

The theorem below describes the effect of a comparator <i,j>

on a set Z of zero-one valued assignments. This is done by giving an

/\
expression E for the characteristic function of <i,j> (Z) in terms of i,j,

and any expression E for the characteristic function of Z.

0

42

Theorem 3.2.3 If Z is a set of zero-one valued assignments on the

domain D = [O,l, •.. n-1' and Eis a Boolean expression for the charac-

teristic function of z in the variables xo,x1,···,xn-l' then the

comparator <i,j> transforms Z into a set whose characteristic function

/\
is described by the expression E, where

Proof: Every

or g(i) = 1.

/\
E

assignment

Let z
0

and

zo

zl

Ex'+E/)x.
i (x. ,x. J

J. J

g E Z can be classified as to whether

zl partition Z according to g(i):

[g E= zlg(i) O}

[g E= zlg(i) 1l

g(i) 0

and let E0 be the expression Exi and E1 the expression Exi. E0 is an

expression for the characteristic function of z
0

because g E z
0

iff

g E Z and g(i) O; similarly, E1 is an expression for the characteristic

function of z1• Since Z = z0 U z1 , the expression EO + El is an expression

for the characteristic function of Z; moreover, the effect of the compara-

tor <i ,j> on Z can be determined by its effects on z
0

and z
1

• In parti

cular, the comparator has no effect on z0 , since g(i) = 0 for every

g E z0, but the comparator interchanges the values of g(i) and g(j) for

every g E z1 since g(i) = 1 for these g. It follows that

or

/\
E

/\
E

E +E/(,
0 1 ,Xi ,x j)

Ex'.
J_ + (Ex { I (x . ,x .)

J. J

43

is an expression for the characteristic function of the set <i,j> (Z).

Since convenient representations for sets of zero-one valued assignments

are desirable, let us explore representations for Boolean expressions.

The product of sums form for expressions seems to be most useful because

it provides a convenient way of representing the kinds of statements

used to describe consistency. First, a theorem about the form of any

product of sums expression for a set of output assignments.

Theorem 3.2.4 If C is any comparator network and E is any product of

sums expression for the characteristic function of C(Z=), then every

factor in E must contain at least one complemented variable and at

least one uncomplemented variable.

Proof: It is clear that C(Z=) must contain both the constant zero

assignment (the assignment that is zero for every location in D) and

the constant one assignment. Now suppose some factor in E contains

no complemented variable. Then the constant zero assignment could

not appear in C(Z=), a contradiction. Similarly, every factor in

E must contain an uncomplemented variable if the constant one assign-

ment is to appear in C(Z=). 0

Corollary 3.2.5 The set of zero-one valued output assignments C(Z=)

for any comparator network C has a c~~racteristic function which can

be described by an expression of the form

- ------ ----

44

m

TT1(IT \, + (
\

x.l l E X-i' J -
k=l iE'\ jEBk

I Proof: Write the kth factor in a product of sums form for E as xi
iE'\

xj; theorem 3.2.4 guarantees that the sets~ and Bk are nonempty.

j~ Bk

The result then follows from DeMorgan's law.

When the set C(Z=) of zero-one valued output assignments consists

precisely of those assignments consistent with a certain partial order

P, then a particularly simple form for E is possible, based on the

covering relation for P.

Definition 3.2.6 If P is a partial order on D, then the covering

relation for f is the relation P on D defined by

iPj ~ iPj A itj A (Vk)

((iPk A kPj) ~ (k=i V k=j))

The covering relation P for a partial order P is irreflexive,

antisynnnetric, and intransitive, and any irreflexive, antisynnnetric,

and intransitive relation P is the covering relation for some partial

order P (namely the reflexive transitive closure of P).

+

45

Theorem 3.2.7 Let C be a comparator network. The characteristic function

for C(Z) has an expression of the form

-

E
p IT

c i , j) t='P

(x ~ + x.)
]_ J

where P is irreflexive, antisynnnetric, and intransitive, if and only if

C(Z=) =Zp for some partial order P with P the covering relation for P.

Proof: It will be shown that for any partial order P, Ep is an expression

for the characteristic function of Zp; since every partial order has a

unique covering relation and every irreflexive, antisynnnetric, intransitive

relation is the covering relation for some partial order, this will

prove the theorem. So let P be a partial order on D, with P the covering

relation for P, and suppose gr:: zp. Then iPj ~ g(i) ~ g(j), and since

- -P ~ P, iPj ~ g(i) ~ g(j). This means that g(i) = 0 or g(j) = 1 for all

ordered pairs (i,j) r:: P, so that the expression EP evaluates to 1 (the

characteristic function evaluates to 1) for g. Now suppose E-p evaluates

to 1 for some g r:: z =' so that g(i) 0 or g(j) 1 for all (i 'j) E P.

This means that iPj ~ g(i) s g(j). Now let iPj. Since P is the reflexive

-
transitive closure of P, either i=j, and g(i) s g(j), or there exists a

- -
chain i = a0 ,a

1
,a2 , ... ar = j in P with a 0Pa1 , a 1Pa 2 , ... ar_ 1Par. In the

latter case it follows that g(a
0

) ~ g(a
1

) s g(a 2) s ... ~ g (a) , so
r

that g(i) s g(j). Having shown that iPj ~ g(i) s g(j), we conclude

that g r:: Z .
p

46

Theorem 3.2.8 provides a generalization of Theorem 3.2. 7.

Theorem 3.2.8 Let C be a comparator network on D, and let Rs;;; DXD be

a binary relation such that

(x'. + x.)
]_ J

(i, j) e-R

is an expression for the characteristic function of C(Z). Then there

-exists an irreflexive, antisymmetric, and intransitive relation R ~ R

such that

ER n
(i,jl:i

(x '. + x.)
]_ J

is also an expression for the characteristic function of C(Z).

Proof: It will be shown that R is antisymmetric. Given this fact, it

will be possible to show that R, the "irreflexive intransitive part" of

R, satisfies the conditions of the theorem. To show that R must be

antisymmetric, assume (x: + x.) and \x'. + x) both occur in ER, and
]_ J J i

consider an injective assignment f in C(I=). Because of the synnnetry

between x. and x. no generality is lost by letting f(i) < f(j); this
]_ J

implies the existence of a zero-one valued assignment g E 8(f) with

g(i) = 0 and g(j) = 1. Since g ~ 8(f), g E C(Z=) by Theorem 3.1.3.

But ER evaluates to 0 for g because x'. + X· evaluates to 0, a contra-
]]_

diction.

47

-Now let R be defined by

R [(i,j)ER! irfj A

(Vk)((iRk A kRj) ~ (k=i V k=j))}

R is irreflexive and intransitive by construction, and antisynnnetric

because R is antisynnnetric. The only factors in E that are not in
R

E-
R are either of the form (X'. +x.), which is equivalent to 1, or of

L 1-

the form (X~ + x.), with factors of the form (x.' + x) , (x'
1 J L a

1
a

1

(x '+ x.) all appearing in ER (and ER). In either case, it is easy
ar J

to see that omission of these factors from ER does not change the

characteristic function described by ER, so ER and ER describe the same

characteristic function.

There exist algorithms ([Miller] pplS0-175, for example) which

reduce an expression E to minimal product of sums (or sum of products)

form. Here "minimal" means that any other equivalent expression contains

at least as many literals as does the minimal one. Such a minimum

expression affords a fairly compact representation for the zero-one

valued outputs of a comparator network, especially when the conditions

of Theorem 3.2.7 are satisfied.

It is possible to replace any product of sums expression of the

form given in Corollary 3.2.5 by an equivalent expression in a form

which will be useful in Section 3.4.

48

Theorem 3.2.9 An expression of the form

(I xj) J
jEBk

with ~ and Bk subsets of D, describes the same characteristic functions

as the expression ~ given by

A
E = IT

RE(R (p,q)ER

where (R is the family of binary relations on D such that RE~ iff

R ~ (lJ ~) X (lJ Bk) and Rn(~ X Bk) is a singleton fork= 1,2, .•• m.
k=l k=l

Proof: Rewrite each factor of the form

= + (I x)
, jEBk j

in the product, duplicating terms as necessary to obtain a factor of the

form

(x •' +) x.
1 J

Then multiply all the resulting factors to yield

TT (x' + x)
p q

RE~ (p,q)ER

where ~ is the family of binary relations described in the statement of

the theorem.

49

Example 3.2.10 The expression

E = (x Q + x l + x 2) (x 2 + x 1 + x 3) (x J + x 1 + x 4)

is of the form

3 I(TT \
E TI' I\ I xi ,,

(\ \ "l

+ I
xj ' I

k=l iE~ . c13
J k

with Al = [0 , 1} , ~ = [2} , ~ = [3 i , Bl f 21 B ' , 2 [1, 3, , and B
3

'1,4 .

Rewriting the factors of E gives

Multiplying out, we get

which is an expression of the form

/\ \ TT E L x' + x)
p q

RC & (p,q)ER

where <R is the family of relations

[[(0,2), (2,1), (3,1)}, ((0,2), (2,1), (3,4)1,

f(0,2), (2,3), (3,1)', f(0,2), (2,3), (3,4)!,

r: (1, 2), (2, 1) , (3, 1)' ' {(1,2), (2, 1)' (3,4)i,

. (1, 2), (2 ,3)' (3,1)1' [(1,2), (2 '3) , (3 ,!4) i

50

By a construction similar to that used in Theorem 3.2.8, the

binary relations R in ~ can be replaced by irreflexive and intransi

tive relations R; this is because the ·~eflexive and transitive parts''

of R are redundant. Such a replacement will result in a reduction in

the size of the expression ~. It is not obvious that each R in ~

is antisynunetric, however; Theorem 3.2.8 does not apply because

the expressions ER do not individually describe the entire set of

output assignments. Moreover, a considerably smaller family of

relations could be constructed than that arising from the procedure

used in the proof; for example the proof procedure would rewrite

Cx{+x2+x
3

+x4) as the redundant expression

rather than the more compact expression

These two peculiarities of the theorem are related; Theorem 3.4.17

will demonstrate that the redundancy in the family ~will allow ~

to be reduced to a family of covering relations; the members of ~

whose reflexive transitive closure is not antisynunetric can be dis

carded. It will follow from this and other considerations in Section

3.4 that the set of zero-one valued assignments at the output of any

comparator network can be characterized by a family of partial orders.

51

3.3 Injective output assignments

In contrast to the zero-one valued case, it is easily shown that

C(I=),the set of injective assignments that can appear at the output

of a comparator network, can be characterized by a set of partial

orders.

Theorem 3.3.l For any comparator network C,

where P is a (finite) family of partial l!rrders P.

Proof: Let P = (P!(P is a total order on D) A (af E C(I=)) (fEIP)}

Since D is a finite set, Pis finite as well, and certainly

C(I) ~ u Ip
PEf>

Now let f' be an element of Ip for some P E P, so that for all x and

y in D, xPy ~ f I (X) :0::: f I (y) • Now P is in P by virtue of the existence

of an assignment f in C(I=) such that xPy ~ f(x) :-::: f(y). Since f is

injective and P is total, f(x) :-::: f(y) ~ xPy, so that f(x) :-::: f(y) ~

f' (x) :-::: f'(y). Finally, to show f' E C(I=)' let TI be a permutation on

D such that C(TI·f) = f; it is easily verified that C(TI·f') = f' using

Theorem 2.1.4.

Theorem 3.3.3 will show that it is in general unnecessary to require

that every member of P be total. It will be useful to prove the following

important theorem first.

52

Theorem 3.3.2 If P1 and P2 are partial orders, then P
1

~ P2 ~

Proof: (=>) if P1 ~ P2, then xP
1
y => xP2y for all x, y E D. By

definition of Ip , if f E 1p then xP2y => f (x) S: f (y) and therefore
2 2

xP
1

y => f(x) s; f(y), i.e. f E Ip • (~) Let P
1

1' P
2

, so that there
1

exist elements a and b in D with aP
1
b and 1 (aP

2
b). Let T be a total

order containing P2 such that bTa, i.e. any total order containing the

partial order obtained by taking the transitive closure of the set

P
2

U { (b , a) } • If f E IT then xP
2
y => xTy => f(x) s; f(y) and f E I ,

P2
but since bTa, f (b) s; f(a) and f ~ r because f is injective.

pl

Theorem 3.3.3 If I is a set of injective assignments satisfying

I I
p

for a family of partial orders P and if P' = n P, then I

every total order contain P' also contains some P E P.

I I iff
p

Proof: (=>) If I = Ip, and P' ~ T for some total order T, then

IT ~IP' by Theorem 3.3.2 and hence IT ~ I. If f is any element

of IT, f E I implies f E IP for some P, and for all x and y, xPy =>

f(x) s; f (y). Since f is injective and T is total, f(x) s; f(y) =>

xTy, so P ~ T.

(4fr:) Certainly I ~Ip, since P' ~ P for every P F P

then let T be the total order defined by f, i.e. the total order

with f E IT· It is easy to show that P' ~ T. But by hypothesis,

n

53

P ~ T for some P ~ P. This implies that f E IT ~ Ip ~ I and since f was

arbitrary, Ip•= I. 0

Theorem 3.3.3 states that some subsets of the family e of total orders

discussed in Theorem 3.3.1 may be describable by intersections over

those subsets, thereby giving a smaller family of partial orders.

It remains to consider the effect of a comparator on a set I of

injective assignments.

Theorem 3.3.4 For any partial order P the comparator <i,j> transforms

Ip into the set

where P
1

is the smallest partial order containing P and (i,j), P
2

is

h 11 i 1 d • . TT-1 p t e sma est part a or er containing •• TT and (i,j), and TT is

the permutation (ij).

Proof: Let D {O,l, ..• ,n-1} and let Ip= LP U GP' with

f(i) ~ f(j)}

f(i) ;;;: f(j)}

If jPi, then LP is empty; otherwise let P1 be the smallest partial order

containing P and (i,j). Since iP
1
j,

every f in Ip satisfies f(i) ~ f(j), so Ip ~LP. Now if f E ~ then
1 1

,,-----

with f c I~, p ~ T, and iTj. Since P1 is the
l

smallest partial order satisfying P c: r
1

and iPj, Pl r;:: T and f r IT - r .
pl

Therefore LP rp_· 1~e comparator <i,j> has no effect on any element
l

;)f LD, so that the imaf;C' of LP under the comparator is L = Tp
l . p 1

If iPj then Gp is

-· _,
containing" ·.p.- and

- ~·· l (' '.'\ow . ·-
p

empty; otherwise, let P
2

be the smallest order

(_i_ " l) • Certainly
~ __ -1 ~

p2 ~ • p. ,, ' so that

I
f ; CT• f ·- r;

p J_s prccisel:1.7 the same set as

f C- T ff(i_) < f(j)'
-1

because
T' -.p.--

f(-fi) . ' _ _, ;

[))

Since everv element. o: sati_siies f(i) < ,- ·~). TP
p~ '2

Select

,.,_ -1 d an t'--~ ·Gp, an •;P the total order wi t!i ~- IT.
-1 Now _,. • P • .,-- -;:; I

T

and iTj; since P) Lt:;,, s;•wllest c.oc·al r;rcler satisfying thi:•se cnnditions,

Tr ..

transforms evc:rv

under <i i> is T
' .J . i) . '

_-1 ,~,
• \.:r

-1

p

into -- --.f,

P,
The comparator <i,j>

so that the image of c p

Flitting tho twc1 1maP;c., cot:,ether, ~he comp2rator transforms Ip to

L, if iPj,
t-1

Ccrc l .l,:. ~-~\· J.
---~------~-

cor:1narator

T

'

[n i~ neither is true.
.[')

<" - J " !~0rr:1s the set of injective

! !

into the set

/\
I

55

where P
1

= (P
1

1 (~PE P)(P
1

is the smallest partial order containing P

and (i,j»J, P2 = (P21 (~P ~ P)(P2 is the smallest partial order con

-1 taining TI ·P·TI and (i,j))I, and TI is the permutation (ij).

An example is in order.

Example 3.3.6 Consider the comparator network <1,2> • <3,4> • <1,3> ·

<2,4> • <2,3>. The family of partial orders P with C(I) = U Ip
PEP

is given below for each stage in the network. For each comparator

in the network and for each P E Pi' the partial orders P1 and P2

are given, and the next family Pi+l is of course the set consisting

of all P
1

and P
2

arising from partial orders P in the preceding family

P. •
1.

p =
0

<1,2>

pl

<3,4>

1 2
• •

p

.. .
1 2

(11
2

I 11
2

3 ~} •

pl p2

• • ~I • • ~ I • •
3 4 3 4 3 4

. .
3 4}

p pl p2

• •
ll ~[~I :1 l 3 4
2

0

r:i
'2

<1,3>

r =
3

<2,4>

()4 =

<2, 3>:

\)

5

lj
2~

p

~l

!
l

~I·

- - I
I

3t
4

P ___ 1_

1

!\ 2(j>
4

i
l
i

56

r,

I lf!J
2 4

1 t j

i3
I ? . -
14

p
2

~~ I !3

y , -~ 4 ---- ---- 1 I -t~-+- none I Ju
p
:. '+

'·· l; -, I ~

3
4

57

Notice that there is no partial order P
1

arising from the partial

order l! and the comparator <2,3>, and that

cannot be expressed as IP' for any partial order P'. Also, the total

orders

l4
j2 occurring after comparator <2,4> could have been eliminated

via the criterion of Theorem 3.3.3 or merely by observing that

I I

D

In section 3.4, the notion of a lattice of partial orders on a set

will be introduced. This notion will help elucidate the connection

between zero-one valued assignments and injective assignments.

3.4 The lattice of partial orders

In sections 3.2 and 3.3, two techniques for characterizing network

outputs were developed which have many similar features. In both cases,

for example, the effect of a comparator on the output set is reflected

in the characterization by the formatlun of a union, and when certain

conditions are met the characterization can be reduced to a single

58

partial order. The lattice of partial orders on a domain is a convenient

vehicle for exploring this similarity further.

Definiton 3.4.1 Let OD denote the set of all partial orders on the set D

together with the relation DXD = n2
• D

The proof of the next theorem is straightforward.

Theorem 3.4.2 The set OD' ordered by ~, forms a lattice with respect to

the operations of set intersection and supremum, where the supremum

operation V is defined in the usual way:

P 1 v P 2 = n c P E on I P 1 ~ P A P 2 ~ P } o

Figure 3.4.1 depicts the lattice 0(0,l,2}' The lattice OD is not

modular, and therefore not distributive, for domains of more than two

elements. However OD is useful because of Theorem 3.3.2 and the

following result.

Theorem 3.4.3

zP •
1

Proof: (::)) Let P1
c;;; p with g F zp • Then (Vx, yED)(xP

1
y::) xP2y /\ 2

2
xP y ::) g(x) ~ g (y))' so g F Z and ZP c;;; z • (~) Let zp ~ z

2 pl 2 pl 2 pl

and suppose x and y are such that xP1y but -, (xP2y). Then let

the assignment g be defined by

g(w)

else

59

H H

~ '02 ~
V n lo \1

• • •
0 1 2

Figure 3.4. 1 The lattice 0 f 0,1,21

60

Now g(x) = 1 and g(y) = O, so g ~ Zp • Since Zp ~ Zp , g ~ Zp
1 2 1 2

implying that for some a and b in D, aP2b, g(a) = 1, and g(b) = O.

By definition of g, xP2a, so by transitivity of P2 , xP2b and g(b)

= 1, a contradiction.

Theorems 3.3.2 and 3.4.3 state that the assigmnent functions

I and Z are monotone decreasing functions from the lattice of

partial orders 0 to the power sets of the injective and zero-one
D

valued assigmnents respectively. (Setting I. 2
D

= dJ and Z = . 2
D

is consistent not only with the definitions but also

with these theorems.) The next theorem follows from Theorems

3.3.2 and 3.4.3.

Theorem 3.4.4

(a) Ip Vp = Ip n Ip ' and
1 2 1 2

(b) ZP Vp = zP n zP if pl v p2 f::
D2

1 2 1 2

Proof: (a) (injective case) Let P
3

be the set of pairs (x,y)

consistent with every assigmnent in both I 1 and I 2 ; more precisely,

let P3 = [(x,y) I (Vf E Ip n Ip) (f(x) :s: f(y))}.
1 2

It is readily

verified that P
3

is a partial order. Moreover, Ip n Ip ~ I ,
1 2 p3

for if f E IP n IP
1 2

and xPy, then f(x) :s: f (y) by definition of P3•

Now P
1
~ P

3
, for if xP

1
y, then by definition of I , f(x) :S: f(y)

pl

for every f E IP and hence for every f E IP n IP ; similarly,
1 1 2

n

61

p2 ~ P3. It follows that Ip ~ Ip and Ip ~ Ip ' so that Ip (;;; I
3 1 3 2 3 pl

n Ip and Ip = I n I • It remains only to show that p pl v p
pl p2 2

2 3 3
Since Pl ~ p3 and P2 ~ P

3
have already been proved, let P

4
be such that

Then Ip
4

(b) (zero-one case) Let P3 = [(x,y)l(Vf E Zp n Zp)(f(x)
1 2

Now P3 is certainly reflexive and transitive,with Z n Zp
pl 2

If P
3

is not antisynnnetric then for some x and y in D, x :/:y

~ f(y))}

but

f(x) = f(y) for all f in zp n zp •
1 2

This can only happen if xP1y and

2
event, P

1
V P2 = D • The remainder

of the proof parallels the proof for the injective case.

Theorem 3.4.4 suggests that sets of partial orders exhibiting

closure properties under supremum may be useful.

Definition 3.4.5 A subset F of OD is a filter of OD if, for all P E F

and all Q E OD' P V Q ~ F. Alternatively, F is a filter if, whenever

P is in F and P ~ Q, then Q is in F.

Example 3.4.6 The sets

H.

0

62

iYa2

't\1 'H. H. IL (0,1,2)
2

}

~ 1: \/2 /,\ \/1 r r r r r (0,1,2)
2

] •l 1 2 1 0 2
0' 1 2, 2' o, 1, 2, 2, o,

are all filters of .the lattice 0 shown in Figure 3.4.1
[0,1,21

Definition 3.4.7 If I is a set of injective assignments, F(I)

(PE oDI Ip~ I1; if Z is a set of zero-one valued assignments,

F(Z) =(PE oDlzp ~ Z}.

Theorem 3.4.8 For any set of injective assignments I, F(I) is

a filter. Similarly, for any set of zero-one valued assignments

z, F(Z) is a filter.

Proof: Let P E F(I) and Q E OD. Since P ~ P V Q, IPVQ ~ Ip ~ I

so P V Q E F(I). The proof for Z is similar.

The set of generators of a filter is merely its set of minimal

elements.

Definition 3.4.9 The set of generators of a filter F is the set

G(F) =[PE Fl (Vq ~ F)(Q ~ P ~ Q = P)}.

If G(F) is a singleton (P}, then F is said to be principal.

The principal filter generated by P is written (P).

0

0

0

0

63

The connection will now be made between filters and sets of out~ut

assignments. It will be shown that for any comparator network C on D,

C(I) =

C (Z)

lJ Ip
PEF(C(I))

U zP

PEF(C(Z))

The injective case is easily resolved; Theorem 3.3.1 guarantees that

C(I_)

for some family of partial orders P. Certainly P ~ F(C(I=)' and since

C(I) \) Ip

PEF(C(I))

The situation for zero-one valued assignments is not so simple.

First note that the set of zero-one valued assignments C(Z=) that

can appear at the output of a comparator network C can be described

in terms of C(I=). This is by virtue of Theorem 3.1.3 and because

the set of all zero-one valued assignments on D is just the set of

thresholds of the set of all injective assignments on D. Hence

9(C(I))

for some family of partial orders P. The next theorem relates Ip and

z
1:' •

64

Theorem 3.4.10 If Pis a partial order, 0(Ip) = Zp.

Proof: Let g E 9(IP)' so that g E 9(f) for some f E IP. If f(x) ~

f(y) then g(x) ~ g(y); since f E IP' xPy ~ f(x) ~ f(y) and g E zp.

Conversely, let g E Zp, and without loss of generality let the range

of the assignments in Ip be the integers. Certainly Ip contains some

assigrunent f with range (0,1,2, ••• n-l} (where D has n elements) so let

h be the assigrunent defined by h(x) = f (x) + n.g(x). Now h is injective,

for if h(x) = h(y) then h(x) = h(y) (mod n) so f(x) = f(y), implying

x = y. Moreover, h is an element of IP' since xPy ~ f(x) ~ f(y) A g(x)

~ g(y). Since g(x) = 1 iff h(x) ~ n, g E 9(h) ~ 9(Ip). Therefore

g E 9 (IP) ~ g E ZP' so 9(IP) = ZP.

Theorem 3.4.10 and the remarks preceding it imply that

C(Z)

C(Z) = l ! z / p

PE=F (C (Z))

The foregoing discussion is recapitulated in the following theorem.

Theorem 3.4.11 For any comparator network C,

and

C(I) U Ip

C(Z)

PEF(C(I))

eccCI)) =\I zP

PEF (C(Z=))

0

D

65

The next theorem deals with the cases I

Theorem 3.4.12 F(Ip) = F(ZP) = (P)

Proof: Let Q E F(Ip); then IQ ~ Ip and P ~ Q, so Q E (P). If Q E (P),

The proof for zp is entirely similar.

As an innnediate consequence of Theorems 3.4.11 and 3.4.12, we have

Corollary 3.4.13. For any partial order P,

F(C(I))

F(C(Z))

(P) ~ C(I)

(P) ~ C(Z)

Theorems 3.4.10 and 3.4.11 and Corollary 3.4.13 provide the raw

material for Theorem 3.4.14.

Theorem 3.4.14. For any comparator network C, if F(C(I=))

some partial order P, then F(C(Z=)) = (P) as well.

(P) for

Proof: If F(C(I)) = (P), then C(I) Ip and C(Z) 9(C(I))

ZP' so that F(C(Z)) = (P).

The converse of this theorem is false, and the example below demonstrates.

Example 3.4.15. For the network of Example 3.1.6, namely

~---r----.l..-- b

~1.--'---'.____ c
__ __.______ d

0

D

66

the corresJPlOnding filter F(C(I)) is

}}..d

This filter is not principal; it is generated by the last two elements

listed. F(8(C(I_))), on the other hand, is principal and is generated by

In general, then, F(C(I=)) and F(8(C(I=))) are different filters

with different generating sets. They are not totally unrelated; the

filter F(8(C(I=))) always contains the filter F(C(I=)).

Theorem 3.4.16 F(I) G F(8(I)) for any set of injective assignments I.

Proof: If P E F(I) then Ip G I, implying Zp

P E F(8(I)).

When F(C(I=)) is principal, this fact can be determined by applying

Theorem 3.3.3 to any family of partial orders P such that

C(I) = U Ip

p~

[1

0

67

If F(C(I=)) is not principal, it is not clear how to obtain the

generators of the filter without first constructing the entire

filter. The generators of F(C(Z=)) may be obtained in an easier

fashion from any product of swns expression for z.

Theorem 3.4.17 Let Ebe a product of swns expressions for the

characteristic function of C(Z=) in the form specified by Corollary

3.2.5, so that

E = TTm !(IT x.} + (\
if'.'.A. 1 ' . B k=l -K J~ k

x.ll
J -

/\
Let E be the equivalent expression defined in Theorem 3.2.9, so that

/\
E

\

l
RE~

n
(p,q)ffi

(X I + X)
p q

where~ is a family of binary relations R with R n(~ X Bk) a singleton

fork= 1,2, ••• m. Then every member of F(C(Z=) contains some R ~ ~.

Proof: Let P be a member of F(C(Z=)), so that ZP ~ C(Z=). Then any

expression describing the characteristic function for Zp, and in parti-

cular the expression EP given by

Ep = IT (X I + X)
p q

(p,q)EP

implies ~; that is, if Ep evaluates to 1, so does ~- It will be shown

68

that P n (~XBk) is nonempty fork= 1,2, ••• m, implying R ~ P

for some R E ~. Suppose P n (~ XBk) is empty for some k. Let g

be the assigrunent

g (l,J)
if (~a E ~) (aBil)

else

First, g E Zp; if this were not so, there would exist x and y such

that xPy, g(x) = 1, and g(y) = O. But if g(x) = 1, aPx for some a E ~;

by transitivity of P, aPy and g(y) l,a contradiction. g(a) 1

for every a E ~ by definition of g, but g(b) = 0 for every b ~ Bk;

if this were not so, then P n ~X~ would be nonempty. Now Ep evalu-

d . 1 1 . . kth . A ate at g is c ear y zero, since its term is zero, so E

at g is zero, a contradiction of the fact that Ep implies ~

R ~ P for some R E tR .

evaluated

Hence

The statement of the theorem is much more cumbersome than its

application in practice.

Example 3.4.18 Consider the network shown below.

0

69

One expression for the characteristic function of the zero-one valued

outputs C(Z=) is

E = (x'+xb)(x'+xd)(x'+x)(xd'+x.+x) a a a e o e

According to Theorem 3.4.16, any partial order in F(C(Z=)) must contain (a,b),

(a,d),(a,e),(b,f),(c,f),(e,f) and one element from each of the sets

[(d,b),(d,e)} and [(b,c),(e,c)l. That is, any partial order in F(C(Z=)) must

contain one of the four partial orders

b e
b e

b e

f

Since none of these partial orders is contained in any other, they are

the generators of F(C(Z=)).

Note that if there is no partial order containing a relation

RE ~ then that R may be discarded for purposes of finding the

generators of F(C(Z=)). This will occur if the expressions for

C(Z=) gives rise to relations R whose transitive closure is not

antisynnnetric. An example is the expression

E = (x'+x.)(x.'+x +x)(x'+x) a o o a c a c

IIba which describes the outputs of the sorting network ===r===
c

e

0

70

albeit not minimally. It also may happen that for some Rand R' in

the smallest partial order containing R also contains R'; in this event

R may be discarded.

The results of this chapter indicate two things: first, that

zero-one valued assignments are usually more convenient than injective

assignments as a tool for characterizing output behavior; and second,

that sets of assignments described by single partial orders are parti

cularly simple to work with. Chapter 4 explores further the properties

of sets of assignments described by single partial orders.

71

CHAPTER 4

OUTPUTS CHARACTERIZED BY A PARTIAL ORDER

4.1 Sorting Injective Assignments with respect to a Partial Order

It is easy to show that for any partial order P on a finite domain

there exists a comparator network such that all possible injective

outputs of the network are sorted with respect to P; sorting with

respect to any total order containing P will suffice. Perhaps not

so obvious is the fact that for any partial order P there exists a

comparator network such that C(I=)' the set of possible injective

outputs of the network, consists of exactly those assignments that

are sorted with respect to P. A lenma will be useful for establishing

this result.

Lemma 4.1.1 Let P be a partial order on D with x and y elements of D

such that -, (xPy) and -, (yPx). Let the set X be

X =(a E nlaPx /\-, (aPy)1

Now, X is nonempty since x E X, so let a be a P-least element of X. Next

let the set Y be defined by

y = (b E n!yPb /\-, (aPb)}

Y is nonempty because y E Y, so let ~be a P-greatest element of Y. Then

P
1

, the smallest partial order containing P and the ordered pair (a,~),

is contained in both

72

-1
the smallest partial order containing TI .p.n and (a,p),

where n is the permutation (a,p), and

P
3

, the smallest partial order containing P and (x,y).

For example, if P is the partial order

0

1

3

with x 1, then ('(2, p 1,

P,, is

and P
3

Ls

Cl

4
1
3
'i

73

(remember the ''higher is smaller" convention for partial orders.)

Proof: To show P
1

~ P
2

it suffices to show P ~ P2• Let aPb.

Case 1. a = a. Now b F ~. because ap~ contradicts ~ E Y. Therefore

~P2b, and since ap2 ~, ap2b, i.e. aP2b.

Case 2. a = ~- Now b F a, because if ~Pa, then aPx and yP~ would imply

yPx. Since ~ is a greatest element of Y, either b = ~ or aPb. In either

event ~P2b, i.e. aP2b.

Case 3. a F a, a ~ ~. b = a. Then since a is a least element of X, aPy;

and since yP~, aP~ and aP2a, i.e. aP2b.

Case 5. a F a, a ~ ~. b ~ a, b ~ ~. Then aPb implies aP2b.

To show P1 ~ P3 , it suffices to show that aP3 ~. But since aPx and yP~,

aP3x and yP3 ~; since xP3y, aP3 ~.

Note that aP1 ~ but-, (aP~); in fact, it is not difficult to show

that P1 =PU [(a,~)}, so that P1 contains exactly one more ordered

pair than does P.

From this construction it is easy to see how to obtain any set of injec

tive assignments of the form Ip as the set of outputs C(I=) of some

comparator network; in fact, it is possible to construct a network

that transforms any Ip into IQ' as long as Ip contains IQ.

0

74

Theorem 4. 1. 2 If P and Q nre partial orders with P ,- Q then there

exists a comparator network which transforms Ip into IQ.

Proof: The pr:Jof is by induction on the number of ordered pairs in Q-P.

Basis: Tf Q- P is empty, then Q Ip, and a vacuous network

suffices.

Induction Step: Suppose a comparator network exists to transfom Tp to

IQ as long as Q-P contains n or fewer ordered pairs, and suppose Q-P

contains n+l ordered pai.rs, one of which is (x ,y). Apply the comparator

<a,p> determined by Lemma 4,1.l to bv Theorem J.3.4, this comparator

transfon1s Ip into Tp ;_· 1
1
, , where P

1
is the srna1 lest partial order

1)
containing P and ,S), and P., is the smallest partial order containing

(ap) • P· (np) a;:id

is transformed hv Since (x,y) is a member of Q and P r::: Q,

Q contains I'" ' j
sr.-1a 11.._:s t ~.:iartial order containing P and (x,y).

Si nc e Lemr:in !• • 1 . 1 ;_; ls c (7' '·1r·>nf·Aes p ~: p '[CJ (1')
(' "' ~' ~ c - l - 3 ' l. ., • Now since ap

1
p but

(:tPp), Q-P
1

has ' ur fei.;er elements, so that hy the induction hypothesis,

can ~e transformed tn I b·y· some comparator network. Q . H follows that

<G., j3> concatenat:ecl with

Repeated application 01 the induction step in the theorem will give

transforms T
0

into I and that contains
[Q

as many comparators as there are ordered pairs in Q-P. In particular,

D

75

if P is the identity relation on D and Q is a total order, the resulting

network will be a sorting network containing (~) comparators. Such a

network is inefficient, but it has the interesting property that at any

stage, the injective assignments that can appear (and, because of Theorem

3.4.14, the zero-one valued assignments that can appear) are characterized

by a single partial order.

Example 4.1. 3 The sorting network

I
I

a

b

c

d

conforms to the inductive construction of Theorem 4.1.2 for the sequence

of partial orders

• • • •
a b c d Ia • c • d /\a A\.

b , /b \c •d , .-b' !c'\d ,

~d

Lemma 4.1.1 and Theorem 4.1.2 are not the only ways to guarantee a

single partial order at each stage; a lemma dual to lemma 4.1.1 can be

established which guarantees that the partial orders P1 and P2 described

in Theorem 3.3.4 satisfy P2 ~ P
1

• An inductive argument similar to

76

Theorem 4.1.2 but employing either lemma in the induction step would

give rise to a broader class of networks than those derivable from

Theorem 4.1. 2.

It is sometimes possible to transform Ip into IQ by sorting Ip

with respect to a partial order S.

Theorem 4.1.4 Let P and S be partial orders on D, and let C be a

comparator network so that

1. C(I) = I s

2. (iff E IS) (C(f) = f)

3. C(Ip) ~ Ip

Then C(IP) = Ip n Is = Ipvs·

Proof: By statement 3, C maps Ip into a subset of Ip; by statement 1,

C maps Ip into a subset of IS. On the other hand, C maps Ip n IS onto

Ip n IS by statement 2. Hence C maps Ip onto Ip n IS' which is equal

to IPVS by Theorem 3.4.4.

[Gale and Karp] have developed a necessary and sufficient condition

for statement 3 to hold when S is a partial order whose maximal chains

are disjoint and C is a standard form network that sorts according to

the maximal chains of S. Before stating Gale and Karp's result, a

definition will be useful.

Definition 4.1.5 Let P be a partial order on domain D. For any

element x of D, the sets xP and Px are defined as follows:

xP (y E nlxPy}

Px

0

0

77

Theorem 4.1. 6 [Gale and Karp] Let C be a standard form comparator

network such that C(I_) = IS' where S is a partial order on D with

maximal chains disjoint. Further, let P be a partial order on D.

Then C transforms every element of Ip into an element of Ip iff

1. S U P is antisymmetric;

2. If xPy then for every set B ~ yS U Sy with !Bl = jsyl there

exists a set A ~ xS U Sx with !Al = lsxl such that every

element of A is P-less than some element of B.

[Liu] has extended this result by showing that if C is a

comparator network satisfying the hypothesis of the theorem and if

condition 1 of the theorem is satisfied, then C(Ip) is a set I such

that Q, the largest partial order satisfying I ~ IQ, is equal to

S VP', where P' is the partial order consisting of all those ordered

pairs (x,y) from P that satisfy condition 2 of the theorem. It is

readily shown that the largest partial order Q such that I ~ IQ

is just n(F(I», the intersection of all of the partial orders in

the filter F(I). The key fact that makes this construction possible

is the fact that S has disjoint maximal chains; if this were not

the case, then there might exist two networks which have a different

effect on Ip even though both networks sort with respect to the

same partial order.

0

/ ,:)

Kxamn 1 e !+. 1. 7

a
L_ __ b

~~~~~ c 

d 

/ 

" . 

~1~~s the right-hand 

'J 

'~ . ~-. . i ,- ~ 

'·.1• 

t- J!( 

to :~. 



79 

4.2 Real-valued Assignments and Convexity 

In this section, we will consider assignments whose range is 

the set of real numbers. It will be appropriate to refer to such 

assignments as vectors in real n-dimensional coordinate space Rn. 

One reason this is convenient is that if a comparator <i,j> on 

the domain D = (O,l, ••• n-1} is applied to a vector in Rn, then 

the effect of the comparator can be described by means of a hyper

plane in Rn. 

Definition 4.2.1. For any two distinct elements i and j in [1,2, ••• n}, 

let Hij be defined by 

H .. = [ vERnlv .-v. = O} 
1J . J 1 

H .. is certainly a hyperplane (i.e., an n-1 dimensional subspace) of 
1J 

Rn. By the projection theorem, any element u of Rn can be written 

uniquely as a sum u = v + w, where v is an element of the hyperplane 

H .. and w is an element of 
1J 

.l.. 
H ..• 

1J 
(Recall that if H is a subspace 

of vector space V, H...L is the set of vectors of V such that the inner 

product of any element of H and any element of H is zero). From the 

..L definition of H .. , H •. 
1J 1J 

.1.. 
H •. 

1J 

is the subspace 

[w E Rn !w. + w. = 0 A (Vk) 
1 J 

(k = i V k = j V wk = O} 

Now, an element u in Rn lies on the positive side of H .. (u.-u. ~ O) 
1J J 1 

or on the negative side of H .. (u.-u. ~ O) or possibly both; the side 
1J J 1 

of the hyperplane on which u resides is determined by the sign of 

0 



u .-u .. 
J ]_ 

Notice also tha':: if '1.-11. ito potoLtivc, the comparator, <'i,f> 
1 ]_ 

has no effect on u, whcreds if u.-u. is negative, 
J l 

<i , j > int er ch an g e s u . 
L 

m1d u .• 
.J 

and w 
J_ 

i::: 11 •. 
1-J 

, then clearly v, 
.L 

u -u _i_i 
2 

w. 
J 

If u is 1-rritten u 

u.+u. 
vi "" __ l __ J and 

_, 2 

u -u 
_i__i 

2 

the comparator 

v+w wi th v r: I l . . 
lj 

If u lies on the positive side of H .. , t11e conmarator 
1. J ' 

transforms u = v~~ 

into u' V~·l; i~ u lies 

transforms u \l-f-vl i n to ti 

vat ions. 

'J""'T..V. 

H .. ' 
l_J 

TI ·-::. ' ,-, ! .u1eor<.:m '+. ~. ~ sums 

the comparator 

up these obser-

Theorem :+. 2. '.'. r '· i,_1 > ic, ·~ cor:1parator on the domain rl,2, ... n· 

and u is 2ny vect<.ff i:1 \-Ji t 11 u .c v-J-w, 

<i, j > trans forms u into 

t_J 

v ~ H .. , 
lJ 

_L 
and w ~ H .. 

]_ J 
then 

Th<' tran.sfornwtion i'CYLoetn<::·d <1 comparator i:::; r1ori11.cear. In essence, 

the comparator ::"i,j, "rc<lecc:';" every vector u to the positive side of 

H ..• 
]_ J 

It would seem ;Jlausihle that a comparatc~r 11et1,•ork would at least 

transfonn the set ~\n L1t,1 a ~·rn1vex .sc·c; the It~;:1ainJer of this section 

will consist of a D!'.'(HJf tL~t t11i.s is tn1-,, if :11,,l onlv if the comparator 

network maps 

order. 

n 
" ., some partial 



81 

Theorem 4.2.3 The set A of real vectors that can appear at the output 

of a comparator network C is convex iff A = AP for some partial order P. 

Proof: C-4==-) if A= AP for some partial order P, i.e. if 

A= (u E Rn!(lf:J.,j)(iPj ~ ui ~ uj)} 

then for any two elements u and u' in A and for any~, 0 ~ ~ ~ 1, the 

vector ~u + (1-~) u' is in A, since if iPj, then u. ~ u and u' ~ u'· 
J. j i j' 

since both~ and 1-A are positive, Au. ~ ~u. and (1-A)u' ~ (1-~)u'.. 
J. J i J 

This means that Au.+ (1-A)ui' ~Au.+ (1-A)u'., so Au+ (1-A)u' 
J. J J 

is an element of A. 

(~)Let A be a convex set, and let P be the set ( (i,j)l(Vu E A)(u.-u. ~ O)}. 
J J. 

P is obviously reflexive; P is antisynunetric because A contains 

injective assigrunents. P is transitive because if u.-u. ~ 0 and 
J J. 

Thus P is a partial order. Now A ~AP' since 

iPj implies ui ~ uj for every u E A, so it remains to show that AP = A. 

Now AP and A are surely nonempty since A is the set of possible 

vectors at the output of C. In fact, A contains injective assignments; 

according to Theorem 3.3.1, the set I of injective assigrunents of A can 

be written 

where each T is a total order. It is also true that IP, the set of 

injective assignments in AP' can be written 



82 

and since A C AP' I c:;: T p' Moreover, since IT c I for all T E ~, 

IT 
c;:; 

Ip and p c;:; T for every T c: g;t, It will be shown that p c; T =; 

T E":;;/; this will imply 1 -p I, zr z, and finally AP = A. 

Let p c;:; T with l \1~ and let u be an assigrunent vector in 

IT 
i;::; I -I with every component u, a distinct power of 2. In particular p 1_ 

let the 
.th 

smallest component of be 2J j 1,2, .•• n. Select J u 
' 

--- any 

total order T' ,::~,and letv be an assignment vector in IT, c;:; I 

_r,n h h .th with every component v. a distinct power of'· , so t at t e J 
]_ 

smallest 

f . ,-Jn . . 7 component o vis ,_- , J = 1,.-, ... n. 

By construction, u ,_· ,\p-A and v ~ A; since AP is convex, every 

vector w = A.u + (1->.)v belongs to AP for all\ in the interval 0::;; A. ~ 1 

but w belongs to .4 on1Y L·ii: certain values ol r-.. Since A is convex, 

the collection oi these . lornis a;1 interv.Jl 0 s: >-.---: \.
0 

or 0 ~/I. ~ A.
0 

for some A.
0

• x .
0

u ·-, (l-.. 
0

.lv is not i.nject:ive; if it were, then 

letting T denote ~-; ;(; t::Jt:a ! urdc·r 

some sr:ic.111 neighbc;·llooL; 

every vector within 

i 
lrri" Since this small 

neighborhood wo•ilcl Lnch:ci b;.)i: 1
1 vu:tot".' in T and vectors in Ip-I hy 

definition of ·-.
0

, ' 1-1oul' '-T 'k <.' subset of !Joth J and IP-I' a contradiction. 

Therefore x. ~ x. fer s orne ~ , , . ;_ .~ l i _! .• It will be argued that 
]_ J 

this cannot occ11y ~-·:)r n10;·,. __ . t h:in on~~ st1ch (;air. 

Suppose x. = z. and 
l I 

..::.. r'· .. 

;/, 
wi.th l : , !<: f. J, and ; i, J : 



83 

(v. -v. ) 
1 l 

\.0 (v.-v.)-(u.-u.) 
J l J 1. 

(v -v )-(u -u ) 
2, k 2 k 

or 

1 -

whence 

(u.-u,) 
.L 

(v.-v.) 
J ]_ 

(u.-u.) 
l 

1 -
(u,e-uk) 

(v -v ) 
f k 

(v -v ) 
-- ~-_i_ 
- (v 2-vk) 

(u.-u.) 
Now either 

1 ]_ 

(u ~-u1 ) 
< 1, '>1 that 

or 

l < 
·in " L ..... L. 

2
2
-2 

n 
2 -2 

)0 ,( 

(u.-u. ! 
~ J__l 

<u -u T-
' 2 k 

it remains to be shown that 

- ') 

< 
2'1-2"-

2n -! 

/'._'.c'. 
-··· 

2 
') ) 

~::. l 

li2s outside these intervals. 

First, consider tho cise in wLi.:hmax (v.,v.) '"max (v,q,,v
1

). In this 
J 1. \. 

case, it can be shui;vr1 tti<lt: 



Since 

2 2 
2

n _
2

n -n 

2 
2n -2n 

·7 
2n-2L 

2n_7 

2 
2n -2r: 

'· \'. -v.) 
_] __ __.:!:.__ 

'\,' .. -v ') 
' 

------
') ,1 

"n -n 

2n -·~1i ~-n 

'.! 

84 

2 ') 

2
n _

7
n -n 

Ln-.') 

2 2 
r:. .-.n -n 

and from the bounds prPviously found, 

(u.-u.) 
l 

Then it can bte ,;b c .,,,,,,, 1· '1" ! 

or 

1<v.-vi) 

I (v 0-v ) 
~ k 

(v.-v.) 
] 

< ,v. 
1_ 

if 1;;,1x ('.', . . r, ) 



Since 

2 2 
2
n _

2
n -n 

2 
2n -n_ 2n 

2 • 

is greater than 1 for n ~ 3, 

< 

and once again 

I 
(v. -v.) I :f 1 1. 

(v_e,-vk) 

so that 

85 

2 2 
2
n _

2
n -n 

2 
2n -n_ 2n 

The foregoing argument establishes that x lies on exactly one hyperplane 

Hij" As a result, there exists an E-neighborhood N~(x) of x such that for all 

y in this neighborhood, y is in A if the signs of yj-yi and vj-vi agree, and 

y is in AP-A if not. Without loss of generality, let vj-vi < 0, so that for 

ally E N~(x), y EA if y. < y, and y E AP-A if 
1. J 

Since there 

exist vectors y satisfying this latter condition, iPj is false; by definition 

of P, there exists a z E A so that z. > z .• 
1. J 

A diagram of the situation is 

shown in Figure 4.2.1 



86 

l! 

! 

Figure i+.:!.' r•' u!ti'!'i fron; the ass.1mption 

Tl •. 
lJ 

1 - I lo "' 
p 

A so 

that some pointy' cm thv }i;ic• sc;~rn,,nt joi.nin; v 2nd;;: lhrough x does 

not lie in A. Since.'\ i.~; con,1 c~x, thi.s ·fco. ir1p,1ssi 1;le. so the selection 

of u was impossible dnrl P p TL· remains 

only to find y 01wi y . 



87 

Let a denote the distance between x and z, i.e. 

a 11 x- z II 
I n I ,--

1 i=l 
L 

(x.-~.) 
l l 

2 l 1n 

and let 
c --

(1 + 2"a )x ( 
t: 

y = + 2a 
Now 

11 x-y JI II ·-
( )x = - ')'"Y 

L~ 

so y E Nc(x). Since x.=x. 

hand, 

y' (1 -

satisfies 

II x-y' II 

T 

r 
t: 

2n 

c 

II 
I! 

J 

) " .-. 

)-, . '· 

c p c 
+ ( )z 

\_ 

2a ~2Cl 

and 7, '> 
?: • ' 

v < 
]_ J 0 i 

c 
-

' + ( 
20: 

)Z 

x. ar1d 7 
~"_.,, ,. 

J ' 

c 
y' (1- 2n )x -+ 7,u 

\-, 
/ /, . ' 

c 
(1 - ):'Y) ,_ . 

E 
'.l - --) 

2c:: 
y + --·-----r--

c 
( 1 ·"-- -;~~-) 

::_ ..... '-

c 

'" c v + 
(1 + ::a (1 . .L - ) . 2CJ 

!I 7-x II 

y. and y 
J 

I! x-z II 
2CX 

" 
I ·--:."'.> '\i 

_i ' J 
L 

\.: 

2Cf 
z + 

c 
=2 

c 

' 
J 

( 

A. 

c 
- 2 

and 

( 

2a 

On 

y ' 

\"' I/, 

the other 

t= A -A But p • 



88 

and y' is a convex combination of y and z, contradicting the convexity 

of A. 

It has been shown that if A is convex, I= Ip. By Theorems 3.4.11 

and 3.4.10, Z = 9(1) = 9(Ip) = Zp, and it remains to show AP~ A. 

first that for any real number r, the vector r[n], defined by r~n] 
l. 

Note 

= r 

for i = 1,2, .•. n, belongs to A. Also, A is closed under positive com-

bination; that is, for any vectors u, v EA and any positive real 

numbers r and s, w = ru + sv E A. This result is based on the fact that 

1 ( - )w 
r+s 

is in A by convexity, and since r+s > 0, 

Theorem 2.1.3 guarantees w EA. Now let x E AP. Clearly 9(x) ~ ZP' so 

9(x) ~ A. w can be written 

w 

+ 

[n] 
[min[w. li=l,2, •.. n)] 

l. 

' j z • [min(w. lz.=11-rnax(w. lz.=0}] 
J..' l. l. l. 1. 

zEw 

zf.On,ln 

[n] 
Now [min[w. Ii = 1,2, ••. n}] ('.'.A. Also min{w. jz.=l} > max(w. lz.=0} 

l. l. l. l. l. 

because z E 9(w). Since w has been written as a positive combination 

of elements of A, w E A and AP ~ A. Therefore AP = A. 0 



89 

CHAPTER 5 

CONCLUSIONS 

The analysis of sorting networks appears to be a complex and difficult 

subject. The results of this thesis reflect the kinds of complexity 

that occur; most often, the problem is one of succinct characterization 

of the phenomenon to be studied. For example, the Boolean expressions 

of Section 3.2 are quite compact in contrast to the partial order 

theoretic characterizations of output behavior found in Section 3.3, 

but in fact these expressions are not nearly as economical as one might 

desire for a domain of eight elements, say. 

Another source of difficulty is the seeming lack of algebraic 

structure on the objects of interest: compositions of comparators, 

sets of assignments, and so forth. There is at least one significant 

exception to this generalization, however. When the set of injective 

assignments that can appear at the output of a comparator network is 

precisely the set of injective assignments consistent with a single 

partial order, then many structural regularities occur. For example, 

it can be shown that the number of injective assignments consistent 

with a partial order P is a multiple of the number of symmetries of P -

-1 
i.e., the number of permutations non D such that TI •P.n = P. Other 

examples of structural regularity arising from the single partial order 

case may be found in Section 3.4 and in Chapter 4. 



90 

Aside from the difficulties, there are two interesting phenomena 

that deserve mention. The first is that as a tool for network design, 

the Boolean expression characterization for sets of zero-one valued 

output assignments is much more satisfactory than the partial order 

theoretic characterization for injective output assignments. The 

manipulations required are simpler to perform, and it is easier to 

determine a minimal Boolean expression for a particular set of zero

one valued assignments than to determine a minimal family of partial 

orders by means of Theorem 3.3.3 in the injective case. Also, 

Theorem 3.4.14 and Example 3.4.15 indicate that sets of zero-one 

valued network output assignments are characterized by single partial 

orders more frequently than the injective output assignments are. 

The other phenomenon is that in establishing properties of 

sorting networks, it is often useful to go back and forth from in

jective assignments to zero-one valued assignments. This kind of 

interplay occurs in Section 3.4 and especially in the proof of 

Theorem 4.2.3. This phenomenon is probably due to the fact that 

for any injective assignment there is a unique total order with 

which it is consistent, so that the relationship between a zero-one 

valued assignment and a partial order with which it is consistent 

is sometimes best explored by finding an injective assignment which 

has the zero-one valued assignment as a threshold. 

Insofar as directions for future research are concerned, it is 

probably fair to say that no direction seems particularly promising 



91 

for a resolution of the outstanding open problem about sorting networks, 

namely, how many comparators suffice to construct one. It would be 

desirable to know more about the kinds of sets of assignments that can 

occur as network outputs and the kinds of sets of assignments that 

can be assignments that are sorted by a network, but it is likely 

that a successful resolution of the question of the number of 

comparators will be based on considerations as yet unexplored. 

The possibility of new techniques that will be useful for designing 

good networks for particular domain sizes is somewhat more hopeful. 

The results of Section 3.2 provide a way of exploring this area in 

an efficient manner. The idea is to start with the set Z and apply 

comparators in sequence to obtain sets of zero-one valued assignments 

that are progressively "closer" to a sorted set of zero-one valued 

assignments. At each stage in the construction, the degree of "closeness" 

t9 the sorted set could be evaluated by the number of assignments in 

the set, the form of the partial orders that generate its filter, and 

so forth. It would probably be desirable to use product of sums 

expressions for an evaluation of the "state of the sort" and sum of 

products expressions for evaluating the effect of a comparator on the 

current set of assignments because of Theorem 3.2.3. 



92 

BIBLIOGRAPHY 

Ga.le, David and Richard M. Karp, A Phenomenon in the Theory of Sorting, 
IEEE Conference Record of 1970 Eleventh Annual Symposium on 
Switching and Automata Theory, pp 51-59, October 1970. 

Knuth, Donald E., The Art of Computer Programming, Volume 3, (Addison
Wesley, Reading, Mass.), (to be published). 

Liu, C. L., Construction of Sorting Plans, Theory of Machines and 
Computations, pp 87-98, Edited by z. Kohavi and A. Paz,(Academic 
Press, New York) 1971. 

Miller, Raymond E., Switching Theory, Vol. 1, Combinational Circuits, 
(John Wiley and Sons, Inc., New York) 1965. 

Vanvoorhis, David C., A Lower Bound for Sorting Networks that use the 
Divide-Sort-Merge Strategy, Stanford Digital Systems Laboratory, 
Technical Report No. 17,(Stanford University, Stanford Calif) 
August 1971. 



93 

BIOGRAPHICAL NOTE 

Burton J. Smith was born in Chapel Hill, North Carolina on March 21, 1941. 

He attended Highland High School in Albuquerque, New Mexico and the Cate School 

in Carpinteria, California, graduating from the latter in 1968. He spent 

one year at Pomona College and one year at the University of New Mexico; 

in June, 1960 he enlisted in the United States Navy. He served aboard the 

U.S.S. Triton and was honorably discharged with the rank of Connnunications 

Technician Second Class in June. 1964. He returned to the University of 

New Mexico and received the degree of Bachelor of Science in Electrical 

Engineering· (Summa Cum Laude) in June 1967. 

The author began studies in the Electrical Engineering Department 

at the Massachusetts Institute of Technology in 1967 and received the 

Master of Science degree in June 1968 and the Electrical Engineer degree 

in June 1969. He was a National Science Foundation Graduate Fellow in 

1968 and a National Science Foundation Sununer Trainee in 1969. In 1970 

he was appointed an Instructor in the Electrical Engineering Department; 

he received the Carlton E. Tucker teaching award in May 1971. He is a 

member of Sigma Xi and Eta Kappa Nu. 

In December 1966, he married the former Dorothy Nan Duncan of 

Nashville, Tennessee. They have a daughter, Katherine Page, born 

September 12, 1971. 

He has accepted an appointment as Assistant Professor of Electrical 

Engineering at the University of Colorado, Denver, Colorado beginning 

September 1972. 



This empty page was substih1ted for a 
blank page in the original document. 



CS-TR Scanning Project 
Document Control Form 

Report# l-G s ~TR,,~ I OS 

Date: ~ IS' Jj{_ 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
J2! Laboratory for Computer Science (LCS) 

Document Type: 

~. Technical Report (TR) D Technical Memo (TM) 

D Other: -----------
Document Information Number of pages: ~¥{§9-imAc;:Fs) 

- Not to include DOD forms, printer lntstructions, etc ... original pages only. 

Originals are: Intended to be printed as : 

D Single-sided or D Single-sided or 

~Double-sided "P( Double-sided 

Print type: 
D Typewrler D LaasPrint 

D Ink.Jet Printer 

D on.etPrasa 

(2(. Unknown D Other:~. ~~~~~~ 

Check each if included with document: 

D DODForm 

D Spine 

D Funding Agent Form 

D Printers Notes 

D CoverPage 

D Photo negatives 

D Other: ------------
Page Data: 

Blank PageslbYPllll9.........,: fo LLov-.JS Ui-sl f fa[;f: ('l 1) 

Photographs/Tonal Material (by1111119 numbel): ________ _ 

Other ,.,.... dwiit*Wo'Plllle numbel): 
Description : Page Number: 

-::L mACK fn~f; {I~ 9~_ ) &,,N:p-JJft:> Tm.f ff{;fJ ~ - ~~A}ftBlArJI<..-' 
( 'ls~ qcz J.r~.JHv'"'NT!\QLJ co v§"C:\,JB£Isf3) 

Scanning Agent Signoff: 

Date Received: _O:::l.J.ltU Date Scanned: d...J~9 l'K_ Date Returned: _l_iL1J£ 

Scanning Agent Signature: ___ <}t_,__~ .... · .................... !+--'fv ..... · ___ ;...;;;~=--



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I.T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgLwpw Rev. 9194 


