
CAMBRIDGE 

MAC TR-IOI 

ON Tl-IE DESIGN AND SPECIFICATION 

OF A COMMON BASE LANGUAGE 

JACK 8. DENNIS 

JUNE 1972 

This research was supported in part 
by the National Science Foundation 
under research grant GJ-432, and in 
part by the Advanced Research Proj
ects Agency of the Department of De
fense under ARPA Order No. 433 
which was monitored by ONR under 
Contract No. N00014-70-A-0362-
0001. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

PROJECT MAC 

MASSACHUSETTS 02139 



This empty page was substih1ted for a 
blank page in the original document. 



* On the Design and Specification of a Common Base Language 

Jack B. Dennis 
t 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Abstract: This is a report on the work of the Computation Structures Group 
of Project MAC toward the design and specification of a corrnnon base language 
for programs and information structures. We envision that the meanings of 
programs expressed in practical source languages will be defined by rules of 
translation into the base language. The meanings of programs in the base 
language is fixed by rules of interpretation which constitute a transition 
system called the interpreter for the base language. We view the base lan
guage interpreter as the functional specification of a computer system in 
which emphasis is placed on programming generality ~ the ability of users 
to build complex programs by combining independently written program modules. 

Our concept of a common base language is similar to the abstract programs 
of the Vienna definition method ~ but a single class of abstract programs ap
plies to all source languages to be encompassed. The semantic constructs of 
the base language must be just those fundamental constructs necessary for the 
effective realization of the desired range of source languages. Thus we seek 
simplicity in the design of the interpreter at the expense of increased com
plexity of the translator from a source language to the base language. As an 
illustration of this philosophy, we present a rudimentary form of the base lan
guage in which nonlocal references are not permitted, and show how programs ex
pressed in a simple block structured language may be translated into this base 
language. 

The importance of representing concurrency within and among computations 
executed by the interpreter is discussed, and our approach toward incorporating 
concurrency of action in the base langauge is outlined. 

tComputation Structures Group, Project MAC, MIT. 

* The work discussed in this article was done at Project MAC, MIT, and was sup-
ported in part by the National Science Foundation under research grant GJ-432, 
and in part by the Advanced Research Projects Agency, Department of Defense, 
under Naval Research Contract N00014-70-A-0362-0001. 



-4-

ACKNOWLEDGMENT 

TI1e work discussed in this article was done at Project MAC, M. I. T., and 

was supported in part by the National Science Foundation under research 

grant GJ-432, and in part by the Advanced Research Projects Agency, 

Department of Defense, under Naval Research Contract N00014-70-A-0362-0001. 



Abstract 

Acknowledgment 

Table of Contents 

Introduction 

Formal Semantics 

-5-

TAGLE OF CONTENTS 

Interpretation l)f a Rudi_:nentarv 'lase Larn:;ual!;e 

Cycles and I11e ir 'Tevent:: cm 

Representatior~ oi :c~oncurTL"I'C'.' L.c t~1c '.)ase Ldn;;ua0:e 

Conclusion 

References 

j 

'+ 

5 

f) 

9 

17 

23 

41 

-+ J 

44 



-6-

INTRODUCTION 

llte Computation Structures Group of Project MAC is working toward the 

design and specification of a base language for programs and information 

structures. The base language is intended to serve as a common intermediate 

representation for programs expressed in a variety of source programming lan

guages. 

llte motivation for this work is the design of computer systems in which 

the creation of correct programs is as convenient and easy as possible. A 

major ingredient in the convenient synthesis of programs is the ability to 

build large programs by combining simpler procedures or program modules, 

written independently, and perhaps by different individuals using different 

source languages. This ability of a computer system to support modular pro

gramming we have called progranuning generality f3, 4). Programming gener

ality requires the communication of data among independently specified pro

cedures, and thus that the semantics of the languages in which these pro

cedures are expressed must be defined in terms of a common collection of data 

types and a common concept of data structure. 

We have observed that the achievement of progrmmning generality is vei:y 

difficult in conventional computer systems, primarily because of the variety 

of data reference and access methods that must be used for the implementation 

of large programs with acceptable efficiency. For example, data structures 

that vary in size and form during a computation are given different represen

tations from those that are static; data that reside in different storage 

media are accessed by different means of reference; clashes of identifiers 

appearing in different blocks or procedures are prevented by design in some 

source languages but similar consideration has not been given to the naming 

and referencing of cataloged files and procedures in the operating environ

ment of programs. These limitations on the degree of generality possible in 

computer systems of conventional architecture have led us to study new con

cepts of computer system organization through which these limitations on pro

gramming generality might be overcome. 



-7-

In this effort we are working at the same time on developing the 

base language and on concepts of computer architecture suited to the exe

cution of computations specified by base language programs. That is, we 

regard the base language we seek to define as a specification of the func

tional operation of a computer system. Thus our work on the base language 

is strongly influenced by hardware concepts derived from the requirements of 

programming generality [3]. 

In particular, the choice of trees with shared substructures as our 

universal representation for information structures is based in part on a 

conviction that there are attractive hardware realizations of memory systems 

for tree structured data. For example, Gertz [8] considers how such a memory 

system might be designed as a hierarchy of associative memories. Also, the 

base language is intended to represent the concurrency of parts of computa

tions in a way that permits their execution in parallel. One reason for em

phasizing concurrency is that it is essential to the description of certain 

computations ~ in particular, when a response is required to whichever one 

of several independent events is first to occur. An example is a program 

that nrust react to the first message received from either of two remote 

terminals. Furthermore, we believe that exploiting the potential concurrency 

in programs will be important in realizing efficient computer systems that 

offer progrannning generality. This is because concurrent execution of pro

gram parts increases the utilization of processing hardware by providing many 

activities that can be carried forward while other activities are blocked 

pending retrieval of information from slower parts of the computer system 

memory. 

Our proposal for the definition of a common base language may seem like 

a rebirth of the proposal to develop a Universal Computer Oriented Language 

[24]. Thus it is reasonable to inquire whether there is any better chance 

that the development suggested here will succeed whereas this earlier work 

did not result in a useful contribution to the art. Our confidence in 

eventual success rests on important trends in the computer field during the 

past ten years and fundamental differences in philosophy. The most important 

change is the increased importance of achieving greater programming gener

ality in future computer systems. The cost of acquiring and operating the 

hardware portion of computer systems has become dominated by the expense 



-8-

of creating and maintaining the system and application software. At present, 

there is great interest in the exchange of programs and data among computer 

installations, and in building complex procedures from components through 

the facilities of time-shared computers. Computer users are often pre

pared to forsake efficiency of programs to gain the ability to operate 

them in different enviromnents, and the ability to use the program in 

conjunction with other programs to accomplish a desired objective. 

Furthermore, the pace of programming language evolution has slowed. · It 

is rare that a fundamentally new concept for representing algorithms is in

troduced. Workers on programming language design have turned to refining 

the conceptual basis of program representation, providing more natural modes 

of expressing algorithms in different fields, and consolidating diverse ways 

of representing similar actions. Today, there is good reason Fo expect that 

a basic set of notions about data and control structures will be sufficient 

to encompass a usefully large class of practical programming languages and 

applications. In particular, the set of elementary data types used in com

putation has not changed significantly since the first years of the stored 

program computer -- they are the integers, representations for real numbers, 

the truth values true and false, strings of bits, and strings of symbols from 
===== 

an alphabet. Also, considerable attention is currently devoted to the de-

velopment of useful abstract models for information structures, and the pros

pects are good that these efforts will converge on a satisfactory general 

model. 

We are also encouraged by others who are striving toward similar goals. 

Andrei Ershov is directing a group at the Novosibirsk Computing Center of the 

Soviet Union in the development of a conmon "internal language" for use in 

an optimizing compiler for three different languages -- PL/I, Algol 68, and 

Simula 67 £7). Tile internal language would be a representation common to 

the three source languages and is to serve as the representation in which 

transformations are performed for machine independent optimization. 

Tile "contour model" for program execution, as explained by Johnston [10) 

and Berry [l) provides a readily understood vehicle for explaining the 

i 



-9-

semantics of progrannning languages such as Algol 60, PL/I, and Algol 68 

in which programs have a nested block structure. It is easy to imagine 

how the contour model could be formalized and thus serve as a basis for 

specifying the formal semantics of progrannning languages. Tiie contour 

model may be considered as a proposal for a common base language and as a 

guide for the design of computer systems that implement block structured 

languages. 

John Iliffe has for some time recognized some of the fundamental im

plications of programming generality with respect to computer organization. 

His book Basic Machine Principles [9] is a good exposition of his ideas 

which are argued from the limitations of conventional computer hardware in 

executing general algorithms. Again, Iliffe's machine defines a scheme of 

program representation that could be thought of as a common base language. 

However, Iliffe has not discussed his ideas from this viewpoint. 

FORMAL SEMANTICS 

When the meaning of algorithms expressed in some progrannning language 

has been specified in precise terms, we say that a formal semantics for the 

language has been given. A formal semantics for a progrannning language gen

erally takes the form of two sets of rules ~ one set being a translator, 

and the second set being an interpreter. 'Tile translator specifies a trans

formation of any well formed program expressed in the source language (the 

concrete language) into an equivalent program expressed in a second 

language the abstract language of the definition. Tiie interpreter ex-

presses the meaning of programs in the abstract language by giving explicit 

directions for carrying out the computation of any well formed abstract pro

gram as a countable set of primitive steps. 

It would be possible to specify the formal semantics of a programming 

language by giving an interpreter for the concrete programs of the source 

language. Tiie translator is then the identity transformation. Yet the in

clusion of a translator in the definition scheme has important advantages. 

For one, the phrase structure of a progrannning language viewed as a set of 

strings on some alphabet usually does not correspond well with the semantic 



·- ;.,._ ~~"WA)h.@°'"j :k~Zf-4_~---~:?~-;~ 
~--

-10-

structure of programs. Tilus it is desirable to give the semantic rules 

of interpretation for a representation of the program that more naturally 

represents its semantic structure. Furthermore, many constructs present 

:---':: 

in source languages are provided for convenience rather than as fundamental 

linguistic features. By arranging the translator to replace occurrences of 

these constructs with more basic constructs, a simpler abstract language is 

possible, and its interpreter can be made more readily understandable and 

therefore more useful as a tool for the design and specification of computer 
! 

languages and systems. 

Tile abstract language that has received the most attention as a base 

for the formal semantics of programming languages is the lambda-calculus of 

Church. For several reasons we have found the lambda calculus unsuited to 

our work. 'Ille most serious problem is that the lambda calculus does not 

deal directly with structured data. 'Illus it is inconvenient to use the 

lambda calculus as a common target language for programs that make use of 

selection to reference components of information structures. It also rules 

out modeling of sharing in the form of two or more structures having the same 

substructure as a component. 

A second defect in terms of our goals is that the lambda calculus in

corporates the concept of free and bound variables characteristic of block 

structured programming languages. We prefer to exclude these concepts so 

the base language and its interpreter are simpler and more readily applied 

to the study of computer organization. Later in the paper we show how block 

structured programs may be translated into base language programs using the 

rudimentary version of the base language introduced below. Tilis translation 

of block structured programs into programs that are not block structured is 

an important example of how simplicity in the interpreter may be obtained 

by translating source language constructs into more primitive constructs. 

Our thoughts on the definition of programming languages in terms of a 

base language are closely related to the formal methods developed at the IBM 

Vienna Laboratory [17, 18}, and which derive from the ideas of McCarthy [19, 20] 

and Landin [13, 14}. For the formal semantics of programming languages a gen

eral model is required for the data on which programs act. We regard data as 

consisting of elementary objects and compound objects forn~d by combining 

elementary objects into data structures. 



-11-

Elementary objects are data items whose structure in terms of simpler 

objects is not relevant to the description of algorithms. For the purposes 

of this paper, the class E of elementary objects is 

E = Z U R U W 

where 

= the class of integers z 

R = a set of representations for real ntnnbers 

W the set of all strings on some alphabet 

Data structures are often represented by directed graphs in which 

elementary objects are associated with nodes, and each arc is labelled by 

a member of a set S of selectors. In the class of objects used by the Vienna 

group, the graphs are restricted to be trees, and elementary objects are as

sociated only with leaf nodes. We prefer a less restricted class so an ob

ject may have distinct component objects that share some third object as a 

common component. The reader will see that this possibility of sharing is 

essential to the formulation of the base language and interpreter presented 

here. Our class of objects is defined as follows: 

Let g be a class of elementary objects, and let S be a class of = 
selectors. An object is a directed acyclic graph having a single 

root node from which all other nodes may be reached over directed 

paths. Each arc is labelled with one selector in g, and an elemen

tary object in g may be associated with each leaf node. 

s z u ~ 

Figure 1 gives an example of an object. Leaf nodes having associated ele~ 

mentary objects are represented by circles with the element of E written 

inside; integers are represented by numerals, strings are enclosed in single 



-12-

I ,?, ' 'a' n 'f I 

t ,I I 
+ 

·~· I 
i 2 g 

, I, + ,I, 
c n 

0 1 't' 't' 9 
dv ~ ® i 2 

4 0 
Figure 1. An example of an object. 

concrete programs abstract programs 

translator 

states state 

' I ' ' I ' ' I ' text m m cont 

~~.--l-, 
abstract memory control 
program 

Figure 2. Language definition by the Vienna method. 



-13-

quotes, and reals have decimal points. Other nodes are represented by 

solid dots, with a horizontal bar if there is more than one emanating arc. 

The node of an object reached by traversing an arc emanating from its 

root node is itself the root node of an object called a component of the 

original object. The component object consists of all nodes and arcs that 

can be reached by directed paths from its root node. 

At present, we rule out directed cycles in the graphs of objects for 

several reasons: In the first place, the data structures of the most im

portant source languages are readily modelled as objects according to our 

definition. Also, it seems that realizing the maximal concurrency of com

putations on data structures will be difficult to do with a guarantee of 

determinism if objects are permitted to contain cycles. Finally, the pos

sibility of cycles invalidates the reference count technique of freeing 

storage for rlata items no longer accessible to computations, and some more 

general garbage collection scheme must be used. The general techniques do 

not seem attractive with regard to the concepts of computer organization we 

have been studying ~ especially when data items are distributed among sev

eral physical levels of memory. 

It is convenient to introduce our concept of a base language and its 

interpreter by comparison with the Vienna definition method as represented 

by the formal definitions of Algol 60 (15] and PL/I (18]. The Vienna method 

is outlined in Figure 2. The concrete programs of the progrannning language 

being defined are mapped into abstract programs by the translator. A con

crete program is a string of symbols that satisfies a concrete syntax usually 

expressed as a form of context free grammar. The interpreter is a nondeter

ministic state transition system defined by a relation that specifies all 

possible next states for any state of the interpreter. Abstract programs 

and the states of the interpreter are represented by objects (trees). 

Figure 2 shows the three major components of interpreter states. The 

'text'-component is the abstract program being interpreted. The 'mem'

component is an object that contains the values of variables in the abstract 

program, thus serving as a model of memory. The 'cont'-component of the 



-14-

state contains information about statements of the abstract pro~ram 

whose execution is in progress. 'llle interpreter is specified as a non

deterministic system so activities may be carried out concurrently where 

permitted by the language being defined. 

For comparison, note that a separate class of abstract programs and 

interpreter are sepcified for each formal definition of a source language; 

that states of the interpreter model only the information structures re-1 

lated to execution of one abstract program; and that statements in the con

crete program retain their identity as distinct parts of the corresponding 

abstract program. 

Figure 3 is the corresponding outline showing how source languages 

would be defined in terms of a common base language. A single class of 

abstract programs constitutes the base language. Concrete programs in 

source languages (Ll and L2 in. the figure) are defined by translators into 

the base language -- the class of abstract programs serves as the conunon 

target representation for several source languages. For this to be effec

tively nossible, the base language should be the "least common denominator" 

of the set of source languages to be accommodated. nte structure of abstract 

programs cannot reflect the peculiarities of any particular source language, 

but must provide a set of fundamental linguistic constructs in terms of which 

the features of these source languages may be realized. The translators 

themselves should be specified in terms of the base language, probably by 

means of a specialized source language. Formally, abstract programs in the 

base language, and states of the interpreter are elements of our class of 

objects defined above. 

The structure of states of the interpreter for the base language is 

shown in Figure 4. Since we regard the interpreter for the base language 

as a complete specification for the functional operation of a computer sys

tem, a state of the interpreter represents the totality of programs, data, 

and control information present in a computer system. In Figure 4 the 



-15-

concrete programs In L.1 abstract proQrams in bc.se 
ianQuaoe 

Figure 3. Language definition in terms 
of a common base language. 

I 
I . I 1 

local structure 
1 I I I 

control 

data 
structure 

universe 

+ + I / \ I 
\ / \ 

\ I \ 
I p \ 
Tr- i L 

~ ~ 

I ' sites of 
act lvlty 

I i \ I \ 
/r---k\ t \ 

I instruction \ \ 

! 'j \. \J ""'" '--------~-~~~J 
procedure structure P local structure L 

Figure 4. Structure of objects representing states 
of the base language interpreter. 



-16-

universe is an object that represents all information present in the computer 

system when the system is idle ~ that is, when no computation is in progress. 

'flle universe has data structures and procedure structures as constituent 

objects. Any object is a legitimate data structure; for example, a data 

structure may have components that are procedure structures. A procedure 

structure is an object that represents a procedure expressed in the base 

language. It has components which are instructions of the base language, 

data structures, or other proce~ure structures. So that multiple activa

tions of procedures may be accomnodated, a procedure structure remains un

altered during its interpretation. 

The local structure of an interpreter state contains a local structure 

for each current activation of each base language procedure. Each local 

structure has as components the local structures of all procedure activa

tions initiated within it. Thus the hierarchy of local structures represents 

the dynamic relationship of procedure activations. One may think of the 

root local structure as the nucleus of an operating system that initiates 

independent, concurrent computations on behalf of system users as they re

quest activation of procedures from the system files (the universe). 

The local structure of a procedure activation has a component object 

for each variable of the base language procedure. The selector of each com

ponent is its identifier in the instructions of the procedure. These ob

jects may be elementary or compound objects and m~y be common with objects 

within the universe or within local structures of other procedure activations. 

The control component of an interpreter state is an unordered set of 

sites of activity. A typical site of activity is represented in Figure 4 

by an asterisk at an instruction of procedure P and an arrow to the local 

structure L for some activation of P. Tilis is analogous to the "instruction 

pointer/environment pointer" combination that represents a site of activity 

in Johnston's contour model [10]. Since several activations of a pro

cedure may exist concurrently, there may be two or more sites of activity 

involving the same instruction of some procedure, but designating different 

local structures. Also, within one activation of a procedure, several 



-17-

instructions may be active concurrently; thus asterisks on different in

structions of a procedure may have arrows to the same local structure. 

Each state transition of the interpreter executes one instruction for 

some procedure activation, at a site of activity selected arbitrarily from 

the control of the current state. Thus the interpreter is a nondeter

ministic transition system. In the state resulting from a transition, the 

chosen site of activity is replaced according to the sequencing rules of 

the base language. Replacement with two sites of activity designating two 

successor instructions would occur in interpretation of a fork instruction; 

deletion of the site of activity without replacement would occur in execu

tion of a quit or join instruction. 

INTERPRETATION OF A RUDIMENTARY BASE LANGUAGE 

Next we show how typical instructions of a rudimentary base language 

would be implemented by state transitions of an interpreter. This will put 

the concepts expressed above into more concrete form, and provide a basis 

for understanding the translation of block structured languages into the 

base language. Because consideration of concurrency in programs has led 

to concepts of program representation unfamiliar to most readers, and be

cause these concepts are not sufficiently advanced, we will use for illus

tration a base language employing conventional instruction sequencing. The 

instructions ofa procedure are objects selected by successive integers, 

with 0 being the selector of the initial instruction. 

The effect of representative instructions on the interpreter state is 

shown in Figures 5 through 11 in the form of before/after pictures of rele

vant state components. In these figures, P marks the root of the procedure 

structure containing an instruction under consideration as its i-component, 

and L(P) is the root of the local structure for the relevant activation of 

P. 



-18-

The add instruction is typical of instructions that apply binary -== 
operations to elementary objects. The instruction 

add I u I Iv I ' 'w I = ' 
is an object having as components the four elementary objects 'add', 'u', 

'v', and 'w'. These are interpreted as an operation code and three "address 

fields" used as selectors for operands and result in the local structure 

L(P). The state transition is shown in Figure 5. Note that the site of 

activity advances sequentially to the i + 1-component of P. 

Let us say that a procedure activation has direct access to a data 

structure if the data structure is the a-component of the local structure 

for some selector s. The instruction 

select 'p', 'n', 'q' 

is used to gain direct access to the 'n'-component of a data structure to 

which direct access exists. This instruction makes the object that is the 

'p'•'n'-component of L(P) also the 'q'-component of L(P) as shown by Figure 6. 

Literal values are retrieved from the procedure structure by const ===== 
instructions such as 

canst 1.5, 'x' ===== 

which makes the elementary object 1.5 the 'x'-component of L(P). Select and 

canst instructions may be used to build arbitrary data structures as illus-

trated in Figure 7. Note that execution of select 'p', 'n', 'x' implies 

creation of an 'n'-component of the object selected by 'p' if none already 

exists. 

Figure 8 shows how the instruction 

~ 'p', 'n', 'q' 

establishes an arc between two objects (the 'p'- and 'q'-components of L(P)) 

to which direct access exists. Execution of this instruction makes the 

'q'-component of L(P) also the 'p'•'n'-component of L(P). 



(a) 

f I 11 It • 1 

add u,v,w 
+ 

-19-

+L(P) 

I I 

\/ 

@@ 

(b) 

i • 
Figure 5. Intepretation of an instruction specifying a binary operacion. 

(a) ( b) 

np JL(P) 

I . 
I 

t * 

Ip n.?L(P) 
I I I 

i +I 
1p1 'q' 

+· 
'select 'p','n', 'q' 1 

I I 

n 

~ 
Figure 6. Interpretation of a select instruction. 

(a ) 

(c ) 

TP ;{}9L(P) 
I I I I 

I+! i +2 V' 'x' 

~£.n· 

Figure 7. Structure building using select and const instructions. 



-20-

The link instruction is the means for establishing sharing ~ making -one object a common component of two distinct objects. Unless some re-

striction is built into the base language or its interpreter, use of 

link instructions can introduce cycles into the interpreter state. At ===== 
present we do not know how use of link instructions should be limited so -introduction of cycles cannot occur. One way in which cycles can arise 

occurs in the interpretation of block structured programs by the scheme 

given in the next section of the paper. 

The instruction 

delete 'p 1 , 'n' 

erases the arc labelled 'n' emanating from the root of the 'p'-component 

of L(P). Any nodes and arcs that are unrooted after the erasure cease to 

be part of the interpreter state, as shown in Figure 9. 

Activation of a new procedure is accomplished by the instruction 

~ 'f', 'a' 

where the '£'-component of L(P) is the procedure structure F of the pro

cedure to be activated, and the 'a'-component of L(P) is an object (an 

argument structure) that contains as components all data required by the 

procedure (e.g., actual parameter values) to perform its function. Execu

tion of the apply instruction causes the state transition illustrated in 

Figure 10: A root node L(F) is created for the local structure of the new 

activation; the argument structure is made the A-component of L(F); a new 

site of activity is denoted by an asterisk on the 0-component of F and an 

arrow to L(F); and the original site of activity is advanced to the 

i+l-instruction of P and made dormant as indicated by the parentheses. 

A procedure activation is terminated by the instruction 

return 

which causes the state transition displayed in Figure 11. The root node 

L(F) is erased, deleting all parts of the local structure of F that are not 

linked to the argument structure; the site of activity at the return in

struction disappears; and the dormant site of activity in the activating 

procedure is activated. Note that the entire effect of executing procedure 

F is conveyed to the activation of P by way of the argument structure. 



(a) 

I I r k I I I I I I ..!.!!_ p,n,q 

-21-

( b) 

Ip n?L{P) 
I I I 

I I I I 

i+1 p q 

' *" 

Figure 8. Insertion of an arc by a link instruction. 
--

{a) lb) 

, 1, , I, 
q 

I 

i 1
0

1 'b' 1c1 

Q 

Figure 9. The effect of executing a delete instruction. 



-22-

(a) I p ____________... 1 L { p) 

t~i ,I, ,I, 
I l+i f a 

+ + +F + 1 
apply 't','a11 11nstructlorl 1procedure1 1 argument' 
- structure structure 

{ b) I p ?L(P) 

--·i-----,-i ... i--~ ~ 
+ +<*>/ IF ~) 

1

apply 't';a' 
1 1

instruc11..\ ~,___...._r-.._ 

instruction oro u mant 
structure 

Figure 10. Initiation of a procedure activation 
by an ~ instruction. 

'b > I 
j 

+ 1
apply 't','a'1 

Figure 11. 

j 
j +1 

' * 1
instruct iorl 

I return argument 
structure 

ll(P) 

I I, 
a 

+ I I 
aroument 

I I 
procedure 
structure structure 

Termination of a procedure activation by 
a return instruction. 



-23-

To apply a procedure, its procedure structure must be a component 

of the local structure of the current procedure activation. If the pro

cedure to be activated is the 'g'-component of the procedure structure P 

in execution, execution of the instruction 

move 'g', 'f' 

will make it directly accessible by identifying the 'f'-component of L(P) 

with the 'g'-component of P. 

'IRANSLATION OF BLOCK STRUCTURED LANGUAGES 

Many important programming languages for practical computation are 

block structured; the texts of blocks and procedures are nested, and identi

fiers in one text may refer to variables defined in other texts. Since we 

do not plan to include in the base language provision for directly repre

senting references by a procedure to external objects, we must show how the 

execution of block structured programs may be simulated through translation 

into the base language and execution by the base language interpreter. The 

following discussion gives one way in which this may be accomplished -- a 

way that seems attractive in relation to the concepts of computer organiza

tion we are investigating. This discussion also serves as a good example of 

how complexity in a source language may be represented in the rules of trans

lation rather than in the rules of interpretation of a formal definition. 

For this discussion we will use an elementary block structured language. 

Identifiers are declared by the lines 

integer x or proced x 

to denote simple variables or procedures. Basic statement types include: 

Assignment statements such as 

x := g(u, v) 

where x, u, and v are simple variable identifiers, and g denotes an un

specified function; procedure applications of the form 



-24-

apply f(x, y) or z := apply f(x, y) 

where f is a procedure identifier, the second form being used for a value 

returning procedure; and conditional statements like 

if p(x) then Sl else S2 --
and iteration statements like 

while p (x) do Sl 

where p denotes an unspecified predicate and Sl and S2 are basic statements 

or a sequence of statements delimited by begin, end. 

A procedure variable f may be assigned a value by a declaration state-

ment having the form 

f .- procedure (x, .... ' y) 

end 

where x, ... ,y are the formal parameters. A statement 

return z 

snecifies the result of a value returninc procedure. The lines between begin 

and end, tog-ether wi t>1 the list of formal parameters, make up the text of the 

procedure. 

A program in this language has the form of a nested set of procedure 

declarations. Except for the text of the outermost declaration, each text 

is enclosed by the text within which its declaration appears. As in Algol 60, 

each identifier is local to the text in which it is declared, and the meaning 

of a nonlocal appearance of an identifier is defined to be the same as its 

meaning in the enclosing text. The formal parameters of a procedure are 

local identifiers of the text being declared. 



-25-

The meaning of block structured programs can be expressed in terms 

of a tree of symbol tables as has been explained by Weizenbaum [26], or 

in terms of the contour model. The interested reader should study the 

work of Berry [2] and Lucas [16] for other discussions of formal implemen

tations of block structured programs and their equivalence. 

To simulate the execution of a block structured program by a base 

language program, we need a scheme for implementing the nonlocal ref

erences of the source program. Our method is to augment the argument 

structure associated with a procedure activation in the base language in

terpreter so that all external objects to which reference is required by 

the block structured procedure are accessed as components of the argument 

structure. 

To make matters precise, it is convenient to adopt some notation. Sup

pose T is the text of a procedure declaration. We write B(T) to denote the 

set of identifiers declared within T (local to T). The set X(T) of external 

identifiers associated with text Tis defined as follows: We write T' < T 

if text T' is nested within text T, that is, if there is a sequence of 

texts T0 , T1 , ... , Tk such that T = T0 , T' = Tk, and Ti encloses Ti+l for 

i = 0, ... , k - 1. Then X(T) contains each identifier x that has a nonlocal 

appearance in some text T 1
, T' s; T, and is not local to any text T", 

TI < T" s; T. 

In these terms we can describe the formats of the local structures and 

argument structures to be used in simulation of block structure in the base 

language. Corresponding to the activation record for an activation of pro

cedure text T, a local structure CL-structure) is formed by the base lan

guage program. The L-structure has the format shown in Figure 12a. It has 

an E-component in which a value is associated with each identifier in 

B(T) U X(T), that is, each local and each external identifier of T. The L

structure also includes components for temporary values required by the base 

language instructions that interpret the text T. 

The argument structure (A-structure) for an activation of procedure 

text T will have one component for each formal parameter of the text T, and 

in addition, an E-cornponent that conveys access to objects referenced by 

the external identifiers of T, as shown in Figure 12b. 

A procedure identifier is given a value by a procedure declaration 



-26-

(a) L-structure (b) A-structure ( c) C-struc tu re 

IL (T) i A(T) i C(T) 

I 
I I I 

E E 1 2 ··· n E T 
I l l l ~ ~ t temporaries f I 
I I text T 

x ... 
1(m X1 xk x~ xk 11 • • • • • • 

~{x1}=8(T)UX(T) U {x1} = X(T) U { Xj } = X(T) 
I I 

Figure 12. Formats of local, argument, and closure 
structures for the interpretation of block 
structured programs. 



-27-

statement including a text T. Because procedure values may be assigned 

to nonlocal identifiers, and may be passed to the calling activation by a 

value returning procedure, activations of the text T may occur in situations 

where there is no clear meaning for the external identifiers of T. The usual 

solution to this problem is to let a procedure value be an object .called a 

closure of the text T (a ~-structure) having two components as in Figure 12c. 

The T-component of a closure is the text itself. The E-component (environment) 

includes an x-component for each x in X(T), and gives an activation of the 

text access to objects referenced by its external identifiers. 

Usually, the meaning of the external identifiers of a closure of T is 

fixed at the time the closure is created by execution of the declaration of 

T. Each x E X(T) is given the same meaning as the current meaning of x in 

the text T' that encloses the declaration statement. 

The way in which block structured programs.may be simulated by the base 

language interpreter is best introduced by an example. The following pro

gram is adapted from Weizenbaum's paper [26]: 

program l: 

p. 

p := procedure 

begin proced f, q, r; integer u, v, z 

F 

end 

f :=procedure (x); integer x 

begin proced g 

end --
q .-
r .-
u .-
v .-
z := 

g :=procedure (y); integer y 

G begin integer t 

t := (x + y) t 2 

return t 

end 

return g 

apply f(l) 

apply f(2) 

apply q (3) 

apply r (5) 

u + v 



-28-

'nle program consists of three procedure texts P, F and G having local and 

external identifiers as follows: 

B(P) (f, q, r, u, v, z} 

X(P) = '/J 

B (F) = (x, g} 

X (F) = f/J 

B(G)=(t,y} 

X(G) = {x} 

Following Weizenbaum and Johnston, we display the progress of a compu

tation by giving a series of snapshots of the interpreter state, chosen to 

illustrate points about the execution mechanism. For procedure P, the· 

initial state of the interpreter (Snapshot 1, Figure 13) includes the text 

of P in the form of a procedure structure. This procedure structure is in 

fact a tree of procedure structures; for each text T ~ P, the procedure 

structure for T has as a component a procedure structure for each text en

closed by T. We will not describe further the coding of procedure texts as 

sets of instructions, as the required instruction sequences will be cleat 

from the discussion of the state transitions seen in the series of snapshots. 

Tiie initial state also includes a local structure L(P) that will serve as the 

activation record for procedure P; it is empty except for the argt.nnent struc

ture A(P), which consists of an empty E-component. 

For clarity, the arcs that make each argument structure a component of 

the local structures of the calling and called procedures are omitted from 

the snapshots. Also, we will not include the procedure structure for Pin 

subsequent snapshots, its presence being understood throughout the computation. 

The first step performed by instructions of the base language represen

tation of P is to create an E-component of its L-structure, and an E• 'x'

component for each identifier x in B(P) U X(P) = (f, q,r, u,v, z}. Execution 

of the declaration of text F yields snapshot 2. The E• 'f'·C-component of L(P) 

is now a closure of F represented by a C-structure. Its T-component is the 

text of F and is shared with the text of P, its E-component is empty because 

X(F) = f/J. 

The first step in the execution of 

q := apply f(l) 

is to form an appropriate argtnnent structure A(Fl). Its 1-component is the 

actual parameter value, and its E-component is-empty, again because X(F) = f/J. 



Snapshot 1 p r-rp' ~- r:) 
'text P I A I 

I I ! 
\ ) 

'f' 

1 text FI 

i text G 

Sr.apshot 3 

? L( P) i A(F1) TL(Fi) 

E ~ E 

t i Erl 
·r u·x· 'g' 
c l 
+ 1 

± ~ 
'text F 1 

-29-

Snapshot 2 

p 

text P 

I 
'f'' T 

y 
1 text F' 

Snapshot 4 

9 L(P) 
E 

+ I I I I I I 
'f' 'q' 'r' 'u' 1 v1 'z' 
+ • • • • • 
c • I 

E • 

~ L (P) TA (Fi) 9 L (Fi) 

J_r+Ri 
1

f
1 

• Cx' 'g' 

' ~ i r-L 
T E 
t • 

'text F' 

Figure 13. Interpretation of a block structured program ~ 
formation of a closure of text G. 

' A (P) 
E • 



_4 _/'"-

-30-

Activation of the procedure structure for F creates an L-structure L(Fl). 

The first action by instructions of F is to associate actual parameters 

with identifiers in B(F). Thus the E•'x'-component of L(Fl) is linked to 

the 1-component of A(Fl) as in snapshot 3. 

Snapshot 4 shows the effect of interpreting the declaration of G. Ibis 

adds a closure of Gas the E•'g'•C-component of L(Fl). The meaning of iden

tifier x, which is an external identifier of G, is fixed in the closure by 

making the E•'x'-component of the closure identical with the E•'x'-component 

of the current L-structure. Snapshot 4 also shows the effect of the state

ment return g which links the E•'g'-component of L(Fl) as the R-component 

(result value) of the argument structure A(Fl). This action completes execu

tion of the instructions of F, hence L{Fl) is deleted and execution of in

structions of P is resumed. To complete interpretation of the statement 

q := ~ f(l), the R-component of A(Fl) is made the E• 1q 1 -component of L(P), an 

A(Fl) is deleted. The result is shown in snapshot 5 (Figure 14), which also 

shows the effect of interpreting r := ~ f (2) by a similar sequence of events 

The progress of this computation through snapshot 5 illustrates how 

values required to interpret external references may be conveyed to a pro

cedure activation via the argument structure, and how closures of a text may 

be formed to fix the meaning of the external (free) identifiers in a pro

cedure declaration ~ all without going outside the base language features 

we have introduced. The remaining snapshots show what is involved in ap

plying a closure with a nonempty E-compone~t. 

Interpretation of the statement u := ~ q(3) begins with formation of an 

argument structure A(Gl) as in snapshot 6, Figure 14. Here, since X(G) = {x), 

an E•'x'-component of A(Gl) is created and made identical with the E•'x'

cornponent of the closure value of q in L(P). Then the initial instructions 

of G identify the E•'y'-cornponent of L(Gl) with the 1-component of A(Gl), 

and, since x E X(G), identify the E•'x'-component of L(Gl) with the E•'x'

component of A(Gl). Instructions corresponding to the body of G compute the 

value t = (1 + 3) t 2 = 16 which is returned as the R-component of A(Gl). 

The result is snapshot 7 which includes the effect of interpreting the state

ments v := ~ r(5) and z := u + v. 



Snapshot 5: 

f 
I I. 
Q • A ~ T E • rL text F1 

'g' 

text G 
Snapshot 6: 

T 

'tetc 1 

f L(P) 

t 
I j I 

+ 
~ 

Snapshot 7: 

•I' f 

+ c 
t 

I 
E • 

I 
T 

, I, 
Q 

+ c 

' 
text G 

.+. x 

cb 

I 
E 

.t. x 

© 

-31-

' L(P) 
E 

' 
I 

T 

I 
I I 

r • c 

' 

I I I 
r 
+ c 
t 

I 
E 

·'· x 

® 

' I T E 

·'· ® 

I I I 
u 

l 
I I, 
v 

l 

?LCGi) 
E 
+ 

I 1, 

z 

l 

Figure 14. Interpretation of a block structured 
program -- application of closures. 



-32-

With the above example as a guide, we can formulate a general set of 

rules governing the simulation of block structured programs by the base 

language interpreter. 

1. Formation of an argument structure for application of a closure 

of text T: 

a. The i th actual parameter for application of text T is made 

the i-component of A(T). 

b. For each identifier x in X(T), the E• 'x'-component of the 

closure of T to be applied is made the E• 'x'-component of 

A (T). 

2. Initialization of the local structure L(T): 

a. For each x E X(T), the E•'x'-component of A(T) is made the 

E• 'x'-component of L(T). 

b. For each x C: B(T), an empty E• 'x'-component is appended to 

L (T). 

c. Each actual parameter value Ci-component of A(T)) is made the 

E • 'x '-component of L(T), where x is the identifier of the i th 

formal parameter. 

3. Return of value: 

a. Interpretation of the statement return x makes the R-compunent 

of A(·: 1 identical with the I>'x'-component of L(T). 

b. Interpretation of z := applv f( , ... , ) in text Tis completed 

by making the E• 'z '-component of L(T) identical with the R

component of the argument structure for application of the 

closure f. 

c. The argument structure is deleted from L(T). 

4. Formation of a closure of text T as the value of identifier f in 

an activation of text T': 

a. TI1e new C-structure is the E• 'f'·C-component of L (T'). 

h. TI1e text T is made the T-component of the C-structure. 

c. For each x E X (T), the E• 'x'-component of L(T I) is made the 

E • 'x '-component of the C-structure. 



-33-

5. Interpretation of a procedure assignment statement £ .- g in 

text T: 

a. The E· 'g'·C-component of L(T) is made the E· 'f'·C-component 

of L(T), a previously existing C-arc from procedure node 

E·'f' being deleted. 

CYCLES AND THEIR PREVENTION 

The method of simulating block structured programs presented above has 

a major defect in terms of our objectives for the base language: Interpreta

tion of programs can lead to interpreter states for which the graph of the 

state has directed cycles and is not an object according to our definition. 

The simplest case is the following program: 

program l: 

p 

p := procedure (u) 

begin 

f .- procedure 

begin 

(x); integer x 

F if x = 0 then return --
x .- g(x) 

z .- apply f (x) 

return z 

end 

apply f(u) 

end 
= 

1 

The snapshot in Figure 15a shows the situation just after interpretation of 

the declaration of text F. The cycle arises because of the free occurrence 

of f within text F, where the value off is a closure of F. 

To understand in general the conditions under which cycles are introduced, 

it is instructive to use diagrams showing all nonlocal references to the pro

cedure variables of programs being studied. A procedure variable is uniquely 

specified by a pair (x, T) where x is a procedure identifier and T is a text 

in which x is declared, that is, x E B(T). We write R(x, T) to represent 



(a) 

I 
If I 

? L (P) 

E 

+ 

-34-

(b) 

"i 
I 

T E 
t t 

lfl 
I I 
text F 

t 
c 

Figure 15. Interpreter state for program 2 
showing the cycle introduced, and 
the corresponding procvar diagram. 

Figure 16. Procvar diagram for program 1 
showing absence of necessary con
ditions for the occurrence of cycles. 



-35-

the range of a procedure variable; R(x, T) is a set containing each text T' 

such that the variable (x, T) could be assigned a closure of T' as its value 

during program execution. 'Il1e range of a procedure variable may be deter

mined by tracing references to, and assigmnents of, the closures defined by 

procedure declarations. We suspect that, unless a program has redundant or 

unproductive statements, there will be some interpretation for its function 

and predicate symbols such that each element of the range of a procedure 

variable occurs as its value in some computation by the program. 

To construct the procedure variable diagram (procvar diagram for short) 

of a block structured program, represent the texts of the program by closed 

contours nested in the same way as the texts. The area inside the contour 

for T but outside contours for texts enclosed by T is the locality of T. 

Let (x, T) be a procedure variable of the program, and represent it by a 

solid dot labelled x and placed in the locality of T. Place a small open 

circle in the locality of T' for each text T' with T' < T in which 

identifier x refers to the procedure variable (x, T). Join each of these 

circles to the solid dot denoting (x, T) by arcs without arrows. For each 

text T' in the range of variable (x, T), draw an a~row from the solid dot 

representing (x, T) to the contour for T'. Repeat these steps for each pro

cedure variable of the program. 

The procvar diagram for program 2 is shown in Figure 15b, and the diagram 

for program 1 appears in Figure 16. 

Next we formulate a necessary condition for a block structured program 

to generate cycles when interpreted according to our rules of simulation. 

First consider the forms a cycle must have in an interpreter state. There 

are nine kinds of nodes involved in the interpretation of block structured 

programs: 

L: root nodes of L-structures 

L•E: environment nodes of L-structures 

A: root nodes of A-structures 

A•E: environment nodes of A-structures 

S: simple variable nodes 

P: procedure variable nodes 

C: root nodes of C-structures 

C•T: text nodes of C-structures 

C•E: enviromnent nodes of C-structures 



-36-

Of these, types L and A cannot occur in cycles because no action by the 

interpreter creates any arcs terminating on L-nodes or A-nodes (aside from 

the implicit links we have omitted from the diagrams). Further, arcs 

terminating on L•E- or A·E-nodes can only emanate from L- and A-nodes, 

respectively. Hence these node types cannot occur in cycles. No arcs 

emanate from S-nodes, and no arcs from procedure structures terminate on 

nodes of L-structures; therefore S-nodes and T-nodes cannot occur in 

cycles. These considerations leave just three kinds of arcs that can be 

members of any cycle (xis some procedure identifier): 

c C•E p 

r r T 
E x c 
l i L 

C•E p c 

Thus a cycle in an interpreter state consists of a series of triplets, each 

triplet having one of each kind of arc, in the order shown above. From this 

reasoning, we deduce that a cycle arises from interpretation of a block str-..:2-

tured program only if there is a finite sequence of texts T
1

, T
2

, ••• , Tk, 

and a corresponding sequence of identifiers x
1

, x
2

, ... , xk that meet these 

conditions: 

l. Lach x. is an external procedure identifier of T.: x. E X(T.:. 
l l 1 l 

Let (x., T'.) be the procedure variable denoted by x
1
. in text -

l 1 

:fote that 1. 
l 

<......_ 'T1' ..Li. 

2. For each i and with j 

(x., T'.). 
l l 

(i mod k) + 1, T. is in the range of 
J 

111ese conditions imnly that the procvar diagram of a program has a 

cycle of arrows such that each arrow terminates on the contour of a text ~-~ - --- ,,:::... -
contains an external reference to the procedure variable from which the nE::-:: 

arrow emanates. For program 2, Figure 15b shows a cycle that involves ju~: 

one procedure variable (f, F). 

Program 3 below is a nest of procedures activated recursively. 



program 3: 

-37-

Ir : = procedure ( ) 

I ~egin 

pl· tr : = procedure ( 

" i b . cl egin 

I I 
I 
I 
! 

> 

[end 
I 

/ g : = proced11re 

c--1b 1 t-( L egin apn '.' 

I 

I 

applv f( ) 

I 
l!nd 

) .•. end 

The procvar diagram for this program is shown in Figure 17a, and Figure 17b 

illustrates the interpreter state resulting from simulation through the first 

activation of text G. Still the cycle only involves procedure variable (f, P) 

because the only external reference is the appearance of f in text G. 

The sort of program that leads to more complex cycles is illustrated by 



-38-

(a) (b) y L(P) T A(Ft) l L(F1) 'A(G1)yLCG1) 

E E E E 

t t ~ f t .,. lfl lfl IOI lfl If I 

;±_, J_, 
T E T E 

1te!t F1 t 1teltG1 t .,. 't' 

Figure 17. Procvar diagram and interpreter state for program 3. 

(a) (b) 

I If I 

~ 
t 

T 

~ 
text F 

I I 

0 

<? L(P) 
E 
+ 

0 

~ 
T E 

6t 
't' 

l __ _ 

Figure 18. Procvar diagram and interpreter state for program 4. 



program 4: 

p 

-39-

p := procedure ( ) 

begin 

end 
= 

ff := procedure ( ) 

F~gin ..• apply g( 

{ 

:= procedure ( 

G . 1 f( egrn app y 

) 

apply f( ) 

) ... end 

) ... end 

Figure 18 gives the procvar diagram for program 4 and shows the state of the 

interpreter after the declarations of F and G have been executed. The cycle 

involves procedure variables (f, P) and (g, P). 

We have found that many block structured programs can be rewritten so 

they accomplish the original computation but no longer satisfy the necessary 

condition for the creation of cycles. The principle is to convey closures 

to and from a procedure activation by passing them as parameters or results 

rather than by external references. In this way, the three example programs 

may be rewritten as the three transformed programs given below. In each case 

the texts of the transformed programs do not contain any external references 

to procedure variables and therefore cannot lead to cycles when performed by 

the interpreter we have described. 

program~: 

p 

p := procedure (u) 
begin-

f := procedure 

begin 

F if x 

x := 

z := 

(h, x) :eroced 

= 0 then return = 
g(x) 

a:e:ely h(h, x) 

return z 

end 
= 

a:e:ely f (f' u) 

end = 

h, integer x 

1 



program 3': 

nro~.:ram 6.' · 

p 

-40-

p := procedure ( ) 

begin 

f := procedure (h, 

F begin 

); proced h 

I 
iend 
1= 

{ 

:= procedure 
G . 1 egin app y 

apnly g(h, 

applv f(f, ) 

>' := procedure 

r-~besin , __ _ 

enc! 

if := oroced:ire (h, k, 
F--i 

!begin ... app1\• k(:1, k, ,___ ---

I c5, • = nrocedure 1li le 
I '-- t \ ' ~ ' C--i 
lber·in 
I ~ h (h, k' 
L 

ilPDlV f(f, i;, 

(k, 

k (k, 

); proced k 

) ... end 

end 

) . . . end 



-41-

Several interesting questions are unresolved at this writing. We do 

not know in what sense, if any, the necessary condition formulated above 

is a sufficient condition for the formation of cycles during interpretation 

according to the scheme outlined. Also, we do not know a general method 

for rewriting block structured programs so that cycles will not arise 

during execution. 

REPRESENTATION OF CONCURRENCY IN THE BASE LANGUAGE 

A subject of major importance in the design of the base language is the 

representation of concurrent activities. In the introduction we noted that 

some computations inherently involve concurrent processes and cannot be 

simulated by sequential programs ~ also, that a high degree of concurrency 

within computations may prove essential to the practical realization of com

puter systems with progrannning generality. To these motivations we may add 

that some contemporary source languages, notably PL/I, have explicit pro

vision for progrannning concurrent processes. 

We regard the state transitions of the interpreter as representing the 

progress of all activities in a computer system that is executing many 

programs simultaneously. The basic requirements for representing concurrent 

actions in the interpreter are met by providing for many sites of activity 

in the control component of the state (Figure 3), and by organizing the 

local structures of procedure activations as a tree so a procedure may 

spawn independent, concurrent activations of component procedures. Multiple 

sites of activity may represent many actions required to accomplish different 

parts of one computation as well as parallel execution of many independent 

computations. 

Consideration of concurrent computation brings in the issue of 

nondeterminacy ~ the possibility that computed results will depend on the 

relative timing with which the concurrent activities are carried forward. 

The work of Van Horn (27], Rodriguez [22] and others has shown that computer 

systems can be designed so that parallelism in computations may be realized 

while determinacy is guaranteed for any program written for the system. The 



-42-

ability of a computer user to direct the system to carry out computations 

with a guarantee of determinacy is very important. Most programs are in

tended to implement a functional dependence of results on inputs, and 

determinism is essential to the verification of their correctness. 

There are two ways of providing a guarantee of determinacy to the user 

of a computer system. The distinction is whether the class of abstract or 

base language programs is constrained by the design of the interpreter to 

describe only determinate computations. If this is the case, then any 

abstract program resulting from compilation will be determinate in execution. 

Furthermore, if the compiler is itself a determinate procedure, then each 

translatable source program represents a determinate procedure. On the 

other hand, if the design of the interpreter does not guarantee determinacy 

of abstract programs, determinacy of source programs, when desired, must be 

ensured by the translator. 

In the base language, it is necessary to provide for computations that 

are inherently nondeterminate, such as the example of a process awaiting the 

first response from either of two terminals. We want to include in the base 

language primitive features for representing essential forms of nondeterminacy. 

In principle, we wish to guarantee that any (base language) procedure that 

does not use these features will be determinate in its operation. Further

more, use of base language primitives for the construction of nondeterminate 

procedures is intended to be such that the choice among alternative out-

comes always originates from the source intended by the program author, and 

never from timing relationships unrelated to his computation. 

Our current thoughts regarding representation of base language procedures 

so as to guarantee determinacy are based on data flow representations for pro

grams in which each operation is activated by the arrival of its operands, 

and each result is transmitted, as soon as it is ready, to those operations 

requiring its use. Rodriguez [22] has formulated a data flow model that 

applies to programs involving assignment, conditional, and iteration state

ments, and data represented by simple variables. Procedures represented by 

Rodriguez program graphs are naturally parallel and the rules for their exe

cution guarantee determinacy. In [3], Dennis has given a similar program 

graph model for procedures that transform data structures, but do not involve 



-43-

conditional or iteration steps. Determinacy is guaranteed for these program 

graphs if they satisfy a readily testable condition. 

We hope to be successful in combining and extending these two models 

to obtain a satisfactory data flow model for all determinate procedures. 

If this objective can be achieved, we expect to use program graphs as the 

nucleus of the base language. On the basis of improved understanding of 

parallel programs obtained by recent research on program schemes by Karp 

and Miller [11], Paterson [21], Slutz [23], and Keller [12], we are opti

mistic about finding an inherently determinate scheme for representing the 

concurrency present in most algorithms. 

CONCLUSION 

This article has been an introduction to the goals, philosophy and 

methods of our current work on the design of a base language. The material 

presented is an "instantaneous description" of an activity that still has 

far to go many issues need to be satisfactorily resolved before we will 

be pleased with our effort. In addition to the representation of concurrency, 

the base language nrust encompass certain concepts and capabilities beyond 

those normally provided in contemporary source languages. Four aspects of 

this kind are: 1. Generation and transformation of information structures 

that share component structures; 2. Concurrent processes that, in pairs, 

have producer-consumer relationships; 3. Progranuning systems that are able 

to generate base language programs and monitor their execution; and 

4. Provision for controlling and sharing access to procedures and data struc

tures among users of a computer system. We are continuing investigation of 

how these capabilities should be incorporated in the base language. Some 

ideas on interconununicating processes have been reported briefly [5]. Some 

thoughts on program monitoring and controlled sharing of information are 

given by Dennis and Van Horn [6], and by Vanderbilt [25]. 



-44-

REFERENCES 

1. D. M. Berry, Introduction to Oregano. Proceedings of~ Symposium.£!!~ 

Structures in Programming Languages, SIGPLAN Notices Vol. 6, No. 2, ACM, 

February 1971, pp 171-190. 

2. D. M. Berry, Block structure: retention or deletion? Proceedings of 

Third Annual ACM Symposium~ Theory ?f Computing, May, 1971, pp 86-100. 

3. J. B. Dennis, Programming generality, parallelism and computer architecture. 

Information Processing 68, North-Holland, Amsterdam 1969, pp 484-492. 

4. J. B. Dennis, Future trends in time sharing systems. Time-Sharing Innovation 

for Operations Research ~nd Decision-Making. Washington Operations Research 

Council 1969, pp 229-235. 

5. J. B. Dennis, Coroutines and parallel computation. Princeton Conference on 

Information Sciences and Systems, Princeton, New Jersey, March 1971. 

6. J. B. Dennis and E. C. Van Horn, Progrannning semantics for multiprogrammed 

computations. Comm. of the ACM, Vol. 9, No. 3 (March 1966), pp 143-155. 

7. A. P. Ershov, Private conununication. 

8. J. L. Gertz, Hierarchical Associative Memories for Parallel Computation. 

Report MAC-TR-69, Project MAC, M.I.T., Cambridge, Mass., June 1970. 

9. J. K. Iliffe, Basic Machine Principles. American Elsevier, New York 1968. 

10. J. B. Johnston, The contour model of block structured processes. Proceedings 

of~ Symposium~ Data Structures in Programming Languages, SIGPLAN Notices 

Vol. 6, No. 2, ACM, February 1971, pp 55-82. 

11. R. M. Karp and R. E. Miller, Parallel program schemata. J. of Computer and 

System Sciences, Vol. 3, No. 2 (May 1969), pp 147-195 

12. R. M. Keller, On maximally parallel schemata. IEEE Conference Record. 

Eleventh Annual Svmposium on Switching and Automata Theory, October 1970, 

pp 32-50. 

13. P. J. Landin, The mechanical evaluation of expressions. The Computer Journal, 

Vol. 6, No. 4 (January 1964), pp 308-320. 



-45-

14. P. J. Landin, Correspondence between Algol 60 and Church's lambda-notation 

(Parts I and II). Part I: Corrnn. of the ACM, Vol. 8, No. 2 (February 1965), 

pp 89-101. Part II: Connn. of the ACM, Vol. 8, No. 3 (March 1965), 

pp 158-165. 

15. P. Lauer, Formal Definition of Algol 60. Technical Report TR 25.088, 

IBM Laboratory, Vienna, December 1968. 

16. P. Lucas, Two Constructive Realizations of the Block Concept and Their 

Equivalence. Technical Report 1R 25.085, IBM Laboratory, Vienna, June 1968. 

17. P. Lucas, P. Lauer and H. Stigleitner, Method and Notation for the Formal 

Definition of Prograrrnning Languages. Technical Report TR 25.087, IBM Lab

oratory, Vienna, June 1968. 

18. P. Lucas and K. Walk, On the formal description of PL/I. Annual Review in 

Automatic Programming, Vol. 6, Part 3, Pergamon Press 1969, pp 105-182. 

19. J. McCarthy, Towards a mathematical science of computation. Information 

Processing 62, North-Holland, Amsterdam 1963, pp 21-28. 

20. J. Mccarthy, A formal description of a subset of Algol. Formal Language 

Description Languages for Computer Prograrrnning, North-Holland, Amsterdam 1966, 

pp 1-12. 

21. M. S. Paterson, Program schemata. Machine Intelligence, Vol. 3, 

American Elsevier, New York 1968, pp 19-31. 

22. J. E. Rodriguez, A Graph Model for Parallel Computations. Report MAC-TR-64, 

Project MAC, M.I.T., Cambridge, Mass., September 1969. 

23. D. R. Slutz, The Flow Graph Schemata Model of Parallel Computation. 

Report MAC-TR-53, Project MAC, M.I.T., Cambridge, Mass., September 1968. 

24. T. B. Steel, Jr., UNCOL: The myth and the fact. Annual Review in Automatic 

Prograrrnning, Vol. 2, Pergamon Press 1961, pp 325-344. 

25. D. H. Vanderbilt, Controlled Infonnation Sharing in~ Computer Utility. 

Report MAC-TR-67, Project MAC, M.I.T., Gambridge, Mass., October 1969. 



-46-

I 

26. J. Weizenbaum, The Funarg Problem Explained. Unpublished memorandum, 

March 1968. 

27. E. C. Van Horn, Computer Design for Asynchronously Reproducible Multi

processing, Report MAC-TR-34, Project MAC, M.I.T., Cambridge, Mass., 

November 1966. 



CS-TR Scanning Project 
Document Control Form 

Report# LC.5-~-/o ( 

Date: 1-1~ l.1L 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence laboratory (Al) 
~laboratory for Computer Science (lCS) 

Document Type: 

~Technical Report (TR) D Technical Memo (TM) 

D Other: -----------
Document Information Number of pages: ~' ( S-.l.-1 ml()FS) 

- Not to include DOD forms, printer lntstructlons, etc ... original pages only. 

Originals are: 

;g( Single-sided or 

D Double-sided 

Print type: 
D Laser Print 

Intended to be printed as : 

D Single-sided or 

~Double-sided 

~Typewriter 0 Offset Press 

D InkJet Printer 0 Unknown D Other:.~----~-----
Check each if included with document: 

':K(, DOD Fonn( l..) D Funding Agent Form 0 CoverPage 

0 Spine 0 Printers Notes D Photo negatives 

D Other: --------------------
Page Data: 

Blank Pages!bvs-eenumberl: FoLLoY.-'s l,,TL( IEP€C 

Photographs/Tonal Material !bvP9118 nuinbetl: ________ _ 

Other <noi. c1escripCioli1.-oe numbel): 

Description : Page Number. 

® ::+£>,,G, tnBf: (I- 'f £,) 4"4t~b T·,7u-o--B~/J Jc_ etavrs/- ~~ 
C'll-S-d--) S:srN'=.OHT&L po P(.t) Tf\GT '5 C{\ 

<!lJ 1Al hJ 3 T~ o v..\\ :A A.~ wrJO tr o G)f"
5
, J J 

Scanning Agent Signoff: 

Date Received: ):_ 1J..J 19C Date Scanned: .1_1JJ::J?£ Date Returned: J I Jl/ I ? .( 

n~ !Jv.r-. n 
Scanning Agent Signature:_----'. /!'-~--..;;;;..+-----~....;;...u=---



/ UN CLASS I PIED 
Security Classi icahon 

DOCUMENT CONTROL DAT A - R & D 
(Security classification of tltlo, body of abstraC't and indexin~ annotation must be entered when tlie overall report is C'lasslfled) 

.. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION 

Project MAC Unclassified 
Massachusetts Institute of Technology 2b, GROUP 

N/A 
3. REPORT TITLE 

ON THE DESIGN AND SPECIFICATION OF A COMMON BASE LANGUAGE 

4. DESCRIPTIVE NOTES (Type of report and inclusive dates) 

s. AU THOR(SI (First name, middle Initial, last name) 

Jack B. Dennis 

6° REPORT DATE 7a. TOTAL NO. OF PAGES l?b, NO. OF REFS 

May 1972 46 27 
Ba. CONTRACT OR GRANT NO. !la. ORIGINATOR'S REF'ORT NUMBER($) 

N00014-70-A-03.62-0001 
b. PROJECT NO. N/A 

MAC TR-101 
-- - -----

c. N/A !lb. OTHER AEPORT NO(S) (Any other nlllnbers that may be aas//lfted 
th/a tttport) 

d. N/A NONE 

10. DISTRIBUTION STATEMENT 

Distribution of this document is unlimited. 

11. SUF'PLEMENTAAY NOTES 12. SF'ONSOAING MILITARY ACTIVITY 
NONE 

Office of Naval Research 

13. ABSTRACT 

The design and specification of a common base language for procedures and 
information structures is discussed. We envision that the meanings of programs 
expressed in practical source languages will be defined by rules of translation 
into the base language. The meanings of programs in the base language are speci-
fied by a transition system that is an interpreter for the base language. The 
base language interpreter serves as the functional specification of a computer 
system with emphasis on programming generality -- the ability of users to build 
complex programs by combining independently written program modules. A rudimentary 
version of the base language is presented, and the problem of translating 
block-structured programs into base language programs is discussed. 

(PAGE 1) 
UNCLASSIFIED 

SIN 0102-014-6600 • Security Classification 

I 



UNCLASSIFIED 
Lcurlty ClaHllication 

"'· Kl:Y WOl'IDS 

a. base language 

b. formal semantics 

c. information structures 

d. interpreters 

e. block-structured programs 

f. modular programming 

DD ;'!: .. 1473 (BACK) 

(PAGE 2) 

~- - - ..... l 

LINK A LINK • 1-'INK C:: 

l'IOLE WT ROLE WT AOL. E WT 

I 

QNCLA5SIFIED 
Security Classification 

• • 
II 



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-Jl029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I.T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 


