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ABSTRACT 

This thesis outlines a new way of presenting the theory of canonic 
systems, including a distinction (for methodic reasons) between simple 
canonic systems and general canoni~ systems, and proves a aeries of re
sults on hierarchies of canonic systems. After a brief sunmary of Doyle's 
results on a partial hierarchy of canonic syatelll8, a new :bie'l'srchy is 
developed (Chapter II) which relates the general canonic systems not only 
to all 4 types of formal gramners defined by Chomsky but also to eny class 
of formal granmars definable in teJ'IDS of productions. It is also shown 
(Chapter III) that all attempts to define a mathematical system which ex
actly corre•ponds to the recursive sets are necessarily fruitless. 
Doyle 1 s worlc on how to define "noncontracting canonic systems wf.th predi
cates of degree 2" (NCST) is continued, arriving at a workable definition 
which permits us to prove [NCST] •[Type 1) (Chtpter IV), a conjecture 
put forth at the IIId Princeton Conference on Information Sciences and 
Systems. This results transforms Doyle's hierarchy from "the union of 
two half-hierarchies and a dangling term (the NCST)" into a complete hi
erarchy of canonic systems (all 4 types represented). However, this hi
erarchy is heterogenous: canonic systems corresponding to·gra11Dars of 
types 3 and 2 use only predicates of degree 1, while canonic systems cor
responding to granmars of types 1 and 0 use .also predicates of degree 2; 
moreover, for all types of gra11m1rs except for context-sensitive grammars 
the canonic systems turned out to be simple. Schematically, the form 
of this hierarchy may be SU111D.arized as 

Sl Sl ·G2 S2 (for types 3, 2, 1, O) 
We first show (Chapter V) how to get a hierarchy of simple canonic syst!llll, 

Sl Sl S2 S2 
'using as base Doyle's hierarchy, and then transform it into 

Sl Sl S2 Sl 
Since this hierarchy does 
zation", we sh£11 use the 
of simple canonic systems 

Sl Sl 

not seem to lend itself to further "homogeni
hierarchy of ChEpter II to obtain ~ hiererchy 
with predicttes of degree 1: 
Sl Sl 

Several new classes of canonic systems (non·crossreferencing, non-insert
ing, and pure canonic systems) are introduced in Chapter VI, where their 
properties are explored, and a classification schema and several hierar
chies are developed. 



I wish to take this opportunity to express my thanks to 
Prof. John Donovan, who took the time from a busy schedule to 
supervise this thesis and whose init:!a1 work on 'canonic systems 
provided the mot~vation for this research. · 

I should like to 8Xpreaa my appreciati6n to Amitava Bagchi, 
who contributed siaxiificantly .t,o the lllCocea•f.~ ,c;;pmplet,ion of . 
this thesis by critically reading several sueceasiVe versions of 
my work on canonic syJ~ema. 

I wish to thank Prof. Malcolm Jones for helping me find 
the right sat of goal priorit·t• c:lm'tlli 11 v.rf :·bdlly auaaer. 

Finally, I aaa greteful to Project MAC, .which prO.Vided the 
facilities and support for this theais·-'and a ~t'imulating envi· 
J;'~mnent for fQ•l.J:••••i:ch._. 1 ,1~-r.:tic:~,l~,J;' .. ~llQ .. l<l·::to ,-·~everal· 
individu•la at PJ:"oject HAC,., up.•'!1-:\~ -to .1.f)~ )laggerty, 
Norman JC.ohn, and Boo-min Toong, for their :t'ntereat and coaaents 
during many discuasions on the thesis subject. 

Cambridge, Massachusetts 
August 1969 

Bo~xt Mand l 

3 



4 

TABLE OF OON'IENTS 

Page 

ABSTBAC'I • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 

A CKNOWLEOODIEN'l' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 

Chapter I : 

Chapter II : 

Chapter III 

Chapter IV : 

Chapter V : 

Chapter VI : 

REFERENCES 

Simple and general canonic ayatems •••••••••••••••••••• 5 

A hierarchy of genera~ canonic aystenw 23 

Subrecursive cla&1e1 of canonic 1-ystems .............. 35 

Canonic ayetema for contat ... aenaitive aeta ·• •••••••••• 39 

Further hierarchiea of canonic systems ............... 55 

Non-cro11referencing, simple, arid 'C'On-inserting cenonic 
syatema. Cla11 if ictlt ion of canontc ·ayttema • • • • 64 

80 

LIST OF DEFINITIONS ................................................ 82 

LIST OF THEOREMS ................................................... 83 

LIST OF FIGURES .................................................... 84' 



5 

QIAPTER I 

SIMPLI MID GIRIML CAlaUC 8TSTIMS 

This chapter pre•ents the difference• between the traditional defi

nitions and the ones we will use, and build•. the theory of canonic sys

tems accordin1 to the new specification•. It also includes the motiva

tion for the reorganization of'canonic aysteme, 

Canonic sy•tema were first defined in Donovan 1966 • The starting 
• ' • , < ,• •• 

point of our work ... the version pre•ented in Donovan and Doyle 1968, 

pp. 3-9. The' reader is assumed to be ~cquinted with this work, ~nd 

therefore we will not repeat that· detinitf.Oa but rather present the 
., 

modifications we have introduced and the argmmntl behind them, and then 
-------------
pre•ent only the DI04lifi'8d definition. 

A canon used to be defined as a 11.at of !f•t!l!fBf' followed by the 
., . ,;. ;.-r. ;·. 

sign ~ and then followed by a stet-·, "where 'a statement (tradition• 

ally called 'remark') ta camposed of e tem 'of sam8' de1ree followed by 

a predicate of the •mne de1ree. A term of degree n is an n-tuple of 

arbitrary concatenations of v1riable• and words on the given alphabet, 

the worde surrounding the variable• being referred to as the context 

of the variables. A particular ca•e va• singled out, the case when 

context is actually indicated, and the canonic syataaia aatiafying this 

condition, i.e. canonic •Y•ttllM which contain at least one canon in 

which there is an instance of variable• and symbols concatenated together 

in the .... term, were called c•nanic a-Ht_. Vt.th :'£acU.<>.c.ct context 
_________ , ___________________________ _ 

(CSwIC) [DoDOVan nicl_ Doyle 1968, p,.-.' 21;. ·~-1969,, p ... 41], but not 
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much was known about them beyond the observation that they appear to be 

rather powerful. Most classes of canonic •Yltem& encountered in the 

course of research were not "canonic systems with indicated context" in 

the sense of the old definition mentioned above.; aoreover; in all cases 

but one, constructive proofs for the existence of canonic systems with a 

certain property yielded canonic systems which were not "with indicated 
. ----- . 

context", and the same holds for Alsop's "canopic tr•nsla~or" [Alsop 

1967] • Because of these, and especially in view of Haggerty's recent 

result [Haggerty 1969] that contextual. indications can b~ dispeneed with, 

we have decided not to regard as a distinguished class th~ class of cano

' nic systems which do ~:!~!!! the option of indicat~g context, but rather 

to distinguish the class of canonic systems which have no sucb option 

available, and call them !!!f!!.~!~~~!~-!Z!~~ , while the unrestricted 

canonic systems will sometimes be referred to, for emphasis only, as 

[Therefore the new meaning of this term is that we have the 22~!2~ of in

dicating contextuaf conditions, and nothing more than the .C>Ption, in con

trast with the old meaning, which required us to exercise this option in 

at least one canon.] 

The situation is similar to that encountered in autOl89ta theory, in 

connection with the definition of nondeterministic autam ta. The old de-

finition of canonic syst._ with indicated context corresponds to the 

following ~lP~~!?!~!~!! definition of the concept 'nondeterministic Turing 

machine' [NTM] : "A NTM is a TM in which there is at least one state sa-

tisfying the condition that for at least one symbol of the tape alphabet 

there are two or more quadruples [or quintuples, if we work .witb quin-
----------- . 

tuples] in the specification of the TM'' • According to this definit·ion, 

deterministi.c TM were not particular cases of NTM but constituted a class 

..J.J_.:_.1_ ... .C-- ... ,_ __ , ___ -.C 'll."Tnft6 ,.,., ___ ., __ ..1...'LJ __ • __ _.1 __ 
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OLD NEW 

: ,~· ., 

CANONIC SYSTEMS CANONIC SYSTEMS = 
... GENERAL.cANONIC SYSTEMS -

= C.S. WITH INDICATED CONTEXT 

Figure 1 

Graphic representation of the changes in terminology 
-·--·------------------------------------------------The circles represent particular examples of canonic systems. 

would not be fortunate, and, in fact, this is not the definition of nondeter-

ministic Turing machines, as everybody knows; rather, the deterministic TMs 

were singled out (were distinguished} as a f!SS!e!l!! ... f!!! of NTMs. The new 

definittt>n of canonic systems with i.i,cUc.~ed con~ and the introduction· of 
"' :, ' 

the simple canonic systems were necessitated in order to "normalize" the 
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uaage in canonic ayat ... , to switch from a nomencleture correaponding to 

the hypothetical defintt$oa .. of tm1, in .~~•..,le, "ic:t""a"ia'OMilctit~ 

which correapond1 to the true d•finit:iea of lft"K. 

Similarly, instead of talld.ng of ~anonic ayatemt::m~ insertion, />r 
of canonic ayatema with cro•••ferencina, etc., •would ainjle out ttie •••• . _, ·, ,,_ :z· 

canonic syat-. ?!~~~ in1ertlon, or ?a!!!!t c~a~fei'eacing, etc •• :. 
' '-· ' 

These claH•• of canonic ay•t- w:l.U· be ~~ and atudied in 

<Jupt•r VI. 

The way in which we chose to "lmpl-.nt" this .ftorppie'ation :I.a by 
' ... ~· 

introducing P:'!P (~•• te.rmaf) and.tli9ir-u.,u· a)6ltr:,vtth 
•. · :·" - . ,[ I 

t•rma ·- their u.1te, and . ,...,,, •1~ ··~~~~~-,, ... ' i>'" •. 

rterm · ii an 11-tU}lle MC1I of wboae ~1Wt8 :I.a .• "pare" ~-caten4'• 

tion (contaiaiiag· .etther ucluaively yar:S.abl_. or a~ltsatMly sysdola) • 

. , ~is, incidentally, also e~lainates t,he tecura~n on t:m , ao ~hat 
· ,. .,,, ·~v'.··:-11~~·-..,'. . ~.,~r-'.•1}.~: :"'-!'-'- -!'·'"' 

it will no longer the caae thllt a 1ubatr1na of a tera t., automatically, 

itaelf a term. 

We are now ready to preeent the definition of atmple canonic ay1tema. 

!>!!!~H!~~-!. A dmple canonic ayatea. (of level i ) is a aeptuple 

where 

:I.a a finite set of f'lilD• 
is the alphllbet uaed t:1io~ the atrin~· generated, by ~. 

" 

(rules of inference); 



~~·,..,.,,.~_~,;<~·,, 

) 

S. i• a finite set of punctuation signs; 
l. 

I 

is a set of sentence predicates whose union will 
be defined to be the language specified by the 
canonic system. 

~ i-l is the "object" canonic system. 

This definition is not complete until ~e say what the canons, 

variables, predicates are and what we can do with them. 

However, since the reader is assumed to be familiar with these 

concepts, these will not be repeated here. Most of the differences 

have been outlined above, and a formal definition, using second-

level canonic syst819s, will. now be given. The reader is urged to 

compare it with the old definition of canonic systems [Donovan ind 
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Doyle 1968, pp. 10-18] , to get a complete and accurate image of the changes 

that were introduced. In order to facilitate the comparison, our 

exposition will also be given by way of an example, and will use the 

same example, a canonic system defining the set of numbers composed 

of the digits 1,2 and 3. Moreover, the drawing on page S of the 

above-mentioned work is presented below in a updated form as Figure 2 

to provide a quasi-pictorial representation of some of the changes 

introduced. g~~r!! canonic systems are defined similarly, but 

allowing arbitrary concatenations of variables and symbols not only in 

the conclusion but also in the premises. 
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~ 
1 

(Cl ' Vl ' Ml ' p 1 ' S 1 ' D 1 

where cl ~ 1 digit 

~ 2 digit 

t- 3 digit 

x digit t- x number 

x digit y number ~ yx number 

v { 1 " 3 } 
1 ' 

M { x ' y } 
1 

p { digit, number } 
1 

s = { 
' ' l- } 

1 

D { number } 
1 

bo ( i1' >1', .&, .ff' I3', -ff', ~ ) . 

The following parse of the fifth canon of this system illustrates 

the metalanguage used to describe canons. 



x 

I 
y•ifb\' 

digit y 

I · 
variable 

nmber f--

cone. of var. 

list of pnai•ea. 

of leg•l canon format 

Figure 2 

x 

I 
varliaJ>l• 

r •arUb:h or word 

coac.. of var. 11·worda 

.""' 
ccmc. of var~ & worda 

I 

11 

number 

predicate 



The second-level canonic system is a 7-tuple 

where 

c2 = { the canons listed on the following pages } 

v = { 1, 2, 3, dilit, llUllber, x, y, ; , f-} 
2 

M 
2 • { q, r, s, t' u, v, w } 

p = { predicates as defined in the canons } 
2 

52 = { ' , ,l==,...:::,:::>, < 
} 

02 = { legally defined s;ring } 

"1 is the first'-level.eanonic system 

The canons of the second level aust formally define the 

metalanguage and operations·of the first level; these canons are 

presented on the following pages with a brief discussion of the 

motivation and use of some of the canons. The pa.rticular manner 

in which we have constructed the second-level canons system 

allows this system to define other canonic systems with only 

slight modifications, which include, ••inly, canons which 

define the set of canons of the system being defined. 

(1.1) 

(1. 2) 

(1.3) 

(2.1) 

J-1 snaJ>ol 

f-2 sYlbol 

t-3 Symbol 

t-;~ 

12 



(2.2) 

(3.1) 

(3.2) 

(4.1) 

(4. 2) 

(4.3) 

(5 .1) 

(5. 2) 

(6.1) 

(6. 2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6. 8) 

(6.9) 

(7.1) 

(7.2) 

(8.1) 

(8. 2) 

(8. 3) 

13 

x variable 

y variable 

digit predicate 

nuaber pre4ic1te 

l word ( A is the null string) -
U symbol ; ; V ~ t- UV .ISWl, 

u yarifble t- u soncat. of yar. 

u consat. of v1r. •• v iariable i=' uv concat. of yar. 

u coniat. of vv. rs= u p-tem 

u !2'4 t- u e-term 

u variable ~u concat. pf yar. § words 

u !SW!, I- u c9nc1t. of Vlf. § words 

u concat. of vu. § words ; ; v yyiable ~ uv concat. 

of var• & md! 

U ConC&t. of Vtr, § !Oids , , V !2I2, t- UV concat . 

of yv. § words 

u cgnsat • of var, § wodf j.r u term 

t p-tm ; ; u predicate t-: ti1 premise 

t !.Sa ; ; u presfisatef- tu stateent 

A list of premises 

u list of premise! .. v premise \.uv; list of prem. ,. ( 

A list of stat!19nts 
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(8.4) u list of nateaent;r , • v statatpt \--uv; list of 

statements 

For efficiency's sake, one might add 

(7.0) 

(8 .0) 

u wemise t- u stlimnt 

u list of preN.111 t-u list ofratafpepts 

Not~ especially the intuitive meaning of p-tepn : a p-term is 

either a concatenation of variables or a single ,mS. (in V*). A 

~ is an arbitrary concatenation of words and vari&bles. The 

difference between pr9ise and stataent I'S that praise does not 

allow concatenations of variables and symbols (hence it is i•context-free") 

while statement allows them. One and the S-Sllle variable may occur 

several times in the hypothesis and the conclusion of a canon. 

(This is an instance of ktQ!!t~f~r~n~ing.) 

(9.1) 

(9. 2) 

(9.3) 

(9.4) 

(10.1) 

(10.2) 

u word f- u cgpstant 

u predicate J-- u const¥t 

u J.i.&!!. r= u cwstaut 

U Gonst1Pt ; ; V cgnstegt 

differ 

uv constant 

differ \= < v < u > differ 

The following canons define a set or ordered quadruples named 

substitution. They specify the substitution of constants for 

variables in canons. Thus each canon of the first-level canonic 

system, if it contains any variables at all, gives rise to a class of 
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specific instances of canons. These instances are obtained when 

any terminal string is substituted for the variables in the canon. 

Substitution is defined by a 4-tuple < w < v < s < t > 

The first element, w , is a word; the second element, v is a 

variable; the third element is the original nonempty string s ; and the 

fourth element is the string t which results when the word is 

substituted for each occurrence of the variable in the original 

string. 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

w word ,, v variable f=.< w < v < v < w > substitution 

w ~ ,, s variable ,, v variable ,, < v < s > 

differ r-< w < v < s < s > substitution 

w word ;; v variable ;; s constant ~<w < v < s < s > 

substitution 

< w < v < s < q substitution ;; <w < v < x < t ~ 
< w < v < sx < qt > substitution 

Canon 11.1 defines the substitution of a word for a variable 

in a string consisting of only that variable. Canon 11.2 defines 

the substitution of a word for a variable in a string which does 

not include that variabl~; this substitution has no effect. Canon 

11.3 defines the substitution of a word for a variable in a constant 

string; this substitution has no effect. Canon 11.4 defines substi-

tution in general. 

Canons 12.1 - 12.S list the canons of the first-level canonic 

system. 
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(12.1) ~ r-1 di&it cenon 

(12.2) ~ l-2 di&it canon 

(12.3) t= l-3 di&,!t canon 

(12.4) f== x di1it f- x numb8l' cpon 

(12.5) ~ x di&it ; y number . .,.. yx nuaber .oanon 

In order to make sure that indeed the canons are of the 

required format, we add: 

(13.0) v etrt:any I== r v . of l•el;;lna2 forut. 
(13.1) u; list of' wepises ; ; v stataent fcu ... v 2f 

legal canon fomt 

(13. 2) u canon ; ; u of leg! sansm forat I- u instance 

of legal canon 

_ (Canon 13. 3 defines the set of canons in which constants have 

been substituted for sane or all of the variables.) 

(13. 3) u instapce of lsgl canon ; ; v yviable ; ; 

w !Sill. ; ; < w ~ v < u < t > suLwtitution 

t ·instance ef legal EF91\ 

Canon 13.4 defines a subset of the canons; this subset is the 

set of all canons which contain only constants. Derivations will be 

generated from "canons with constants." 

(13.4) u ins£aese gf ltgl cppn ; ; u sqytgt r 
u instaoce wi\h constaots 
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Canons 14, 15.1 and 15.2 define the sets named constituent of 

and occurrence ; these sets are used in defining derivation. It 

has been stated that a statement can be derived as the conclusion 

of a canon by showing that all of the statements in the premise 

have been derived; i.e., the premise occurs in the derivation. 

Thus, the meaning of the "occurrence" of a statement in a list of 

statements must be defined. The concept "occurrence" must be 

generalized to show that all of the statements in the premise have 

already occurred in the derivation; this generalization is the 

set constituent of. 

(14 ) 

(15.1) 

(15.2) 

(16.1) 

(16. 2) 

v statement ;; r list of statements ;; t 

list of statements l-<v -c rv;t> occurrence 

u list of statements~~ < u> constituent of 

u list of statements ;; v list of statements ;; 

<u <v> constituent of;;< w <v> occurrence f= 
<uw< v >constituent of 

A. derivation 

t derivation ,, w list of statements ,, 

u statement 

; ; wf-u instance with constants ; ;<w <t > 

constituent of r= tu; derivation * 

* The canon (16.2), which also occurs in the definition of general 
canonic systems, is not itself admissible in a simple canonic system. 
In other words, the higher-level canonic systems that we construct 
here are not themselves §i~~l~ , whether or not they describe simple 
canonic systems. However, it will shortly be evident, using a result 
of Haggerty, that they can be SQ~Y~!!~~ to simple canonic systems. 
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The final set to be defined is the set of strings derived 

by derivations; each of these strings is siaply the last statement 

in some derivation. 

(17) tu; d!tiyation ; ; u st1t•ent 

u legally deriyed string. 

Canons 16 and 17 are of particular interest since they define 

the essence of a Pt22f (derivation) and a 1•1 (legally derived 

string) in all mathematical systems. 

This completes the construction of the canons of the second-level 

canonic system. In this example the first-level canonic system had 

only predicates and terms of degree l; modification to the second

level system may be made to handle predicates and terms of higher 

order in the first-level canonic system [Bonovan and Doyle 1968) • 

The metalanguage describing the second-level canonic system 

(canon, substitution, derivation, etc.) has not been defined; a 

third level system would be needed to define it formally. The form 

of the third-level canonic system is almost identical to that of 

the second-level system with appropriate changes in notation, i.e. 

predicates are underlined three times and the punctuation signs 

are ' ; ; ; ' and ' Im- ' . We now outline briefly a formation of a 

third-level canonic system for this particular second-level system . 

. We remark first that when we specified the second-level canonic 

system, we set up a· standard frame, independent 0£ ~l Cc.anons 

S,6,7,8,9,10.2,11,13,14,15,16,17) to which ~1-~IDt 'IDODJ 



~~~;~;z~~.-~~~:.~_:;-,~~':-!f,·'.~;;.:~.,·~~~\.~~~~P';~i~~~~';~~~:r~~~c~.4,~~}~!~.~~~-··~·'.!':·\J.Pf:~·~:,,1~.f.~~~~~?,~~t.~~~1s+-t~~~:{~A!l).&;!.ti~>'!.~;<f:,*f"' 
. . 

were added: 1,-2, 3, 6, 10.1, 12. The same precedure will 

be followed here.. J The third-level ( {i+llth -lctvel, i~2 ) 

canonic system may be constructed.from the second-level 

(ith_level) canonic system by the follpwing algorithm: 

1. To obtain the ~2-independent (~i-independent) 
canons, use the standard frame, but make the appropriate changes 
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in notation, i.e. underline the predicates one additional time and add 

one more semicolon wherever the sign ';;' (;i) occurs. 

2. To obtain the '2~dependentc ( Oi .. dep~mdent) canons, 

use the members of these sets listed in the definition of the second

level (ith_level) canonic system·as the terms of the appropriate 

canons of the second-level canonic system and underline the 

predicates one additional time. 

Thus, the (i+l)th_level canonic system can be constructed 

from the ith-1evel canonic system with-a minimum of effort. Thus, 

it can be seen that all higher-level canonic systems have the same 

basic form. Since no level defines its own operations, each level 

is logically consistent. 

For purposes of discussion, at some level the metalanguage of the 

level must be defined informally. It appears that the second level 

would be an appropriate level to do this. Recall that, for a 
gjven problem, the first-level canonic system defines the problem; 

the second-level canonic system defines the operation of the 

first-level canonic system. All higher-level systems define the 



operation of previous~level systems. Thus, by selecting the 

second-level to informally define the metalanguage, the first 

level canonic system (which defines the problein) is precisely 

defined and logically consistent. 

For the case when the "object" canonic system t 1 is not 

a simple canonic system, the following changes will have to 

be made in the second-level canonic system . G2 formally 

specifying "the anatomy and physiology" of t'.1: 

1) 6.1-6.4 7.1 8.1 8.2 are unnecessary 

( 6.5-6.9 7.2 8.3 8.4 alone will do in this case); 

2) 13.1-13.2 should be replaced by 

20 

(13.1) u; list of stateents ;; v 1tat5entf-ut-v 

of legal canon lot!ft 

(13. 2) u canon ; ; u of legal &eon fQfJ'ff r
u accepted canon 

3) Obviously, all the ~1-dependent canons of 1:2 will 

be chosen so as to reflect the Pl~ti"1llt components of 

~l· 
Suitable changes may be made to allow for predicates of 

higher degrees. Examples of canons allowed in general canonic systems 

are: 

xA f--axA 

axby ~ ~xy ! 

xby ~ ~ xcyd ! 



21 

x number; ©x , book descriptor r x year of copyright 

(x,y EM; '©', 'a', 'b·• , and ', ' are in V) 

The sentence symbol (predicate) will be denoted by 'sentence' 

instead of' L' (D ={sentence}). 

The alert reader has undoubtedly noticed another departure from 

the traditional terminology: our avoidance of the term "t~rmina.l 

alphabet•. The set V has been called just plain "alphabet". The 

reason is that this set does IlQt necessarily correspond to the 

terminal alphabet of a formal grammar; it may in.elude auxiliary 

* symbols. In this connection, see also Chapter VI. 

Before we study the different hierarchies of canonic systems, 

we wish to mention several results of Haggerty and to point out one 

of their implications. 

Ih!Qr~-B~!· Any canonic system can be reduced to one in which no ----=------p red i cat e has degree greater than 1 • ["Reduced" means that a state-
ment is provable in the second canonic system iff it is provable in 
the first one.] 

* In constructing canonic systems to correspond to regular or to 
context-free grammars, Doyle took the terminal alphabet of 
the grammar to serve as alphabet of the canonic system, an~ the 
nonterminal alphabet to serve as set of predicates. When, however, 
he considered grammars of type 0 or 1, using a completely different 
approach, he correctly ~~:d, in fa.~t. the union of the terminal 
alphabet and the nonterminal alphabet of the grammar to be the 
alphabet of the resulting canonic system, but he sa.i4 he included 
only the terminals. If in his construction the alphabet is to 
include only the terminal symbols of the grammar, then his construction 
would not yield a canonic system at all, since some of the "canons" 
included are of the form J-- A nonterminal, where A is neither 
a symbol nor a variable. Whenever we shall hereafter mention these 
constructions, we shall assume that the appropriate correction has 
been made. 
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[Proof by replacing n-tuples < s1 c ~2 c ••• c • > by terms of the form 
sila;l ••• $sn , where $ ia a new lyml>Ol, to benuaed aa a separator.] 

~r5 ~. Any canon using indicated collt,at •Y be reduced to a 
canon tilOUthdicated context (in other tlll:m!a, any Ca'Do'nic ayatem can 
be reduced to a simple canonic system). · 

[Proof. Each conetant word will be replaced by a variable whoae value is 
specllied (by an additional premise) to be in an [•cl•q•at•lY defined] 
singleton set.] 

Ib!2!!1!LB::.2· Any canonic system can be reduced to one in which each 
canon has-;-1ID1le preadee. 

[The 2!2~! uses the following basic idea: a canon like 

term1 pred1 ; te~ pred2 ; • • • ; temn predn ~term pred 

is replaced by 

< term.. term.. • • • term > 1:£!!1 2 t- term pred 
l c- ~ c c n , , ••• ,n 

where pred 1,2, •.• ,n 
is a new predicate whose degree is the sum of the 

degrees of ~ , and then 
newly-created p~icat ... ] 

additional canons are introduc8d for the 

We remark that, as a consequence of Theorem R-2, !2!-~!!!!-~!-!!!'P!! 

:!~~~!:_!l!E!!t!_!!_~~-!!!!-~!!!!~!-E~!~-E~!-:!!!!-~!-1!~!!!!_:!~~~!~ 

!l!!!!'! .• Knowing this, one might wonder why bother to defined 1 imp le ca-

nonic ayatema if the class of aets definable by th .. 1- not different 

from the clasa of sets defined by the moat general canonic •Y••-. 
However, the real significance of this theorem is quite different: we 

!~~~!~ study simple canonic ay.tw, IDIMll:L.•MM! they form a res

tricted clau of simpler canonic aystema nioh etill realities the aame 

computational pQWer. An additional argument ta th•t A1aop' a "canonic 

translator" [ Aleop 1967) uaee only "simple unona". Moreover, there is 

nothing to guarantee us that if we apply a certain reatr~ction on the 

claH of all canonic aystema and on the claea of a~l.e canonic ayatems, ---
the resulting claa••• have the same computational ~r, or that ~he 

image of the first restricted cla11 under the transformation of Theorem 

H-2 ia included in the second restricted cla••· 
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A HIERABCBY OF GENERAL CAHOlfIC SXSTIMS 

Canonic systems were first used in specifying the syntax of simulation 

languages [Donovan 1966], includin1 the features wtlich cannot be expressed 

in Backus-Naur Fonn. Since canonic systems, white designed to be more po

werful than BNP', were too powerful when firet defined (having the full com

putational power of Turing machines and thus being able to define non-re-

cursive sets), it wms felt that restrictions have to be applied so as to 

render the resulting classes of canonic syst8118 incapable of defining non-

recursive sets yet powerful enough to specify the syntax of any progranming 

language.(Experience and intuition have indicated to us that for most pro

granming languages the set of legal progr81118 is recursive and it ii only 

specialized features of languages such •• those found in PL/l which have 

enabled us to prove that the aet of legal 'PL/l proarau is not recursive 

[Kandl 1969a].) This was the motivation for studying hierarchies of cano-
--------------------

Doyle, in his Master's thesis, picked up this line of re-

search and defined a partial hierarchy of canonic systems, trying to in-

elude in it correspondents for ChOllUlky's 4 types of formal granmars. 

Doyle's hierarchy has two distinct pa~ts. The first part includes two 

classes of canonic systems, one equivalent in strong generative power to 

regular gr11111D1rs and the other equivalent in strong generative power to 

context-free grammars: 

• l'ia2'11 R-3 [ 11311 for ''Type 311
]. The class of right-linear canonic 

systems and the class of regular gr81mlars are streagly equivelent. 

Ibl2'!!!.A:l· The class of norml-fonn two-premise canonic systems 
and the cr...-of context-free grnmnara are strongly equivalent. 

There was a clear correspondence between the two fonnal systems, to each 
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production in the grammar corresponding a canon in the canonic system, and 

vice-versa. All the predicates occurring in the canonic system were of 

degree 1 (sets of strings), and the canonic systems turned out to be, 

in our tenninology, simple canonic systems. In the second part of his 

hierarchy, Doyle allows predicates of degree 2 to occur (sets of pairs 

of strings) but no predicates of higher degrees, and obtains a class of 

canonic systems equipotent to Turing machines: for any grammar of Type 0 

there is a canonic system which generates the same language. In other 

words, 

Theorem D-0. The class of canonic systems with predicates of degree =========== 
2 is weakly equivalent to the class of Thue semisystems (grammars of 

Type O). 

From the EE~~! of this theorem we also have: 

Theorem D-Os. The class of simple canonic systems with predicates ============ 
of degree 2 is weakly equivalent to the class of Thue semisystems. 

Doyle also mentions "noncontracting canonic systems with predicates 

of degree 2", and states that these canonic systems generate only recur-

sive sets and that for any given context-sensitive grammar one can find 

a "noncontracting canonic system with predicates of degree 211 weakly 

equivalent to it. We have not listed this as a theorem since the defi-

nit ion of "noncontracting" is entirely inadequate, especially when pre-

dicates of degrees 2 (and higher) are included, and therefore the 

above-mentioned class cannot be considered to be defined. In this con-

nection, see also Chapter V. 

This completes the second part of the hierarchy. The one-to-one 
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correspondence between the productions of the fot'IDlll graaurs and the 

canons of the corresponding c•nonic syst._. while p1:1 ... nt in the firat 

part of the hierarchy, could not be eatablished in the second part, 

owing to the inherent difference between canons of these classes of 

canonic systems and the productions of Tl or TO. gr-..,rs. If we direct 

our attention to canonic systems which do take context into consideration 

(canonic system with indicated context, which are. h~re .called 'general 

canonic systems'), a natural solution presents itself which not only 

fills in the above-mentioned gaps but actuall' brings •Jx>ut strong equi

valences with all 4,types of formal gr811111ars considered by ChOID9ky !~~ 

with any type of gr11111U1r definable in te~ ~f pi'Odu~tions, thU8 !!1~!~!!!.I 

!~!-!!?!~!1.2!_!2!'!1!!-1!~!~.;.!~~2 ... !!!~Lf! .. ~!!2!!!:~~i,!~!!'!. This sU.U.lation 

of formal gr...,.ra by appropriately reatricted canonic syst._ with indi-

cated context is the object of the present chapter. 

The following definitions are analogous to Chomsky.'s: 

Definition 2. 
------·-----

if each of its canons •. except for five of them, ia of one of the forms 

(1) 

(2) 

(3) 

where 

9riv1ole 

A nonterminal 

a terminal 

(a) 

(b) A ie a DODtendaal (i.e:. the.-e M • •OJ'r•JM>11ci.rJ.DI ~.-oia of,· 

the form (2) ); and 

(c) for every symbol from the alphabet there is !!!~!! a canon of 
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form (2), or a canon of fom (3) (but not both) , 

the ft»e other canons being 

(4) \-- L. derivable (~EV) 

(5) \-- ~ terminal strins 

(6) x terminal )-x terminal strins ( x ' y £M) * 
(7) x teminal y terminal string f-xy tenninal string 

(8) x derivable ; x terminal strin& ,_ x sentence 

We may dispense with the predicate 'nonterminal' altogether, and 

replace the present requirement (c) with a new one, (c'): 

(c') Any symbol in the position of A in a canon of form (1) ** 
must not appear in a canon of fom (3) • 

Since this modification will simplify the proof of the main equivalence 

theorem, we shall adopt it. 

* The effect of applying Canon (6) in a derivation can be achieved 
by applying Canons (5) and (7). Canon (6) was retained in order to pre
serve the correctness of future references by fW>"*'lla nuilllber• 

** There a re two ways in which a canon 1 Ute 

xABCy derivable t-xABACy derivable 

may be interpreted as a canon of form (1): 

1) 

2) 

'f • A ; t= C ; 

'f = AB ; f = ~ ; 
w = BA the expanded letter is B 

w = AC the expanded letter is C 

(Of course, this is just one canon, not two, and the two interpretations 
have no influence on the use of this canon ift dertivations .) ·:In .1uch a 
case, only one of the symbols that may be considered as being "the expanded 
letter" is requied to be a nonterminal (i.e. to be miH'Wg f~om the Clnons 
of fom (3) ) • 



Q~f!~!!!Q~-~· A canonic system is called a £!~2~!£_!l!!~_2f 

!lP!_! or £2n!!!!:!!~!!!!Y~_£!n2ni£_!l!!!I! (CSCS) if it is a canonic 

system of type O satisfying the additional condition that in all its 

canons of the form (1) the string w is non-null. 
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Definition 4. A canonic system is cal led a _£a~o11_i£ _:;y~tem _Ef _JYJ>~ . .£_ 

or context-free canonic system (CFCS) if it is a CSCS satisfying the addi-

tional condition that in all its canons of form (1) the strings~,, are null. 

Definition S. A canonic system is . called a .£!l~nj.c:....:c;,l!.!!!I _Qf_TIJ>e_ ~-

or r~&ll1!r_f!PQP!~-1Y§!~ if it is a CFCS satisfying the additional condition 

that in all its canons of form (1) the string w contains just two 

symbols, one terminal and one nonterminal (one for which there eKists a 

canon of the form (3) and one for which there is no such canon), always in 

the same order. If the order is "nonterminal - terminal", the regular 

canonic system is also called a ieft-linear canonic system. 

~~g~~P~i!!, etc., gr~r! can be similarly imitated, and so we can speak 

~~~~~!~ ~~~!~~~· Obviously, all results obtained for these types of 

grammars hold also for the corresponding types of canonic systems. 

!!_!_!lP~-!-&I!!P!!!-~hi£h.&~U!t!!!!_!Q!.!!1!!!.!!D~'!&!~-~~q-~q~~!t!!!I~-1~ 

2!h!I_!Qig!~_!h~_£!!!!.2!.Tn!!.i.&t!l!!l!l!!!.!!.!q~!~!!!~t-tq_!q!_~!~!! 

2!.!lP!.!.£!n2n!s.!r!!~!.!2t_!_:_Q~.!~-~~-~~ 

We shall s.how how one can pass from grammars to canonic systems and 

from canonic systems to grammars. Let there be given a grammar G = N, T, P, t) 

of Type i (i = 0, 1, 2, 3). The associated canonic system has the canons (4), 
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(5), (6), (7), (8), one canon of the form (3) for each element of T. and for 

each production + one canon of the form (1). The resulting 

canonic system is, by construction, a canonic system of Type i (i = 0, 1, 2, 

3); the strings cp. w may be empty. Suppose now a canonic system of Type 

i is given; the corresponding grammar is defined in.the following manner. 

The set T includes all symbols for which there is a canon of type (3); 

N will include all other symbols and for each production there will 

be a canon of form (1). It is obvious that the resulting grammar is 

by construction of the same type as the canonic system from which it was 

derived. 

Before we show how derivations are simulated, we should clarify 

what is meant by a derivation in fonnal grammars. Two definitions are in 

use in the theory of formal grammars, and our construct~on below works 

with either of them. According to the first definition, any sequence of 

applications of productions constitutes a derivation of the string obtained ----------
at the last application; ~. string is accepted iff: 

a) it has a derivation; 

b) it contains only terminal symbols. 

According to the second definition, a sequence of applications of productions 

constitute a g~r!Y!!!~~ only if no further applications of productions are 

possible. The grammar is usually required to have for each nonterminal 

symbol, at least one production expanding it, in which case a derivation 

produces automatically a string of terminals (if there were a nonterminal 

in the string, the sequence could be continued and therefore does not 

constitute a derivation); a string is accepted iff it has a derivation. 

We shall use the first definition, but we remark that if the grammar 

is required to have for each nonterminal symbol at least one production 



expanding it, a derivation in the first sense (according to the first 

definition) is also a derivation in the second sense (i.e. cannot be 

continued) iff its last string contains only terainal sytnbo.ls, and S() 

the two concepts of acceptance coincide. 
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Let us consider a derivation in the canonic system. We shall 

simulate the derivation in the canonic syst,., ina step-by-step manner, by 

a derivation in the formal p-8l1111Ulr. Without loss of generality, we may assU11e 

that the derivation in the canonic system st~rts wit,~ the c~mon (4). The 

derivation in the formal g;rammar simulating it will start with the one.,. 

character string I: • Any canon of the form (1) will be simulated by means 

of the corresponding production; canon,s of. other. fo~ .. s will be disregarded 

for t.he moment. We have thus obtained a deri vati.on in the formal gr~r simu

lating step-by-step the given derivation in the canonic system. If, the 

last string obtained is not only derivable but also a sentence, then this 

string has been obtained by applications .of cano~s ,(5), (6), (7), with a 

final application of canon (8). Th41_applicability of canon (8) proves 

that the second condition for acceptance in foral artuqlllars (condition 'b)' 

of the first definition of derivation) is fulfilled, and therefore the 

string is accepted by the formal grammar. 

Therefore we have shown that for every deriv~tion in the canonic 

system there is a derivation in the grammar. The converse result is proved 

similarly. This completes the proof. It is easily seen that what we have 

proved amounts to strong equivalence. We can therefore assert: 
-------------------

(strong form of the general equivalence theorem) 

Th.eorea 1' Tile cl.QI· of 'l'vNt t ~- 'i:' st~•lY. .Mi+valent to the 
--------- -------------~•z.:--~.-:-.::;;:; ....... :.:.:11:~.:~-=--------------

class- of -r-e t canontc s~t.s tc t • n· 1 f·2 '!. · The Classes of ·Jmear 
---------~·.&'.;-------------~-----:.i.---------~-~-:.t-------------------~------J 
nne ... s·Med. I4'near •tatbioar •!!!!!th.1 etc~ )!lilrlliat"s· are strondv· Atlllivalent 
·----~=----~---~----------~---~~-~------ ~---..------------·-~-~_.. _______ J 
.resnecti'Velv. to th.e cias-Hj,.t'if ttneai- one:...,.ffea' t!~ear metaJJua.r ... ' 
--·-------~--------------------------~-----------------J-----

1!'Arl'1'14ft+.;,., ~+- -----.:- _ ..... -•-.--
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§~~ii!_t;n?~~-2f-~2nt~~t=~~n1itiY~-~!DQUi~-~Yit~~ 

Q~fiDitiQILZ A canonic system· is called a l~ft:~ODt~lt=~~DdtiY~L~IDQDi~ 

~Y~t~ID (lCSCS) if it is context-sensitive and in all its canons of type (1) 

the right context (the string ~) is empty. r And similarly for rtscs. ] 

These definitions are the natural counterparts of the definitions for left-

1context-sensitive, [ right-.context-sensitiv4 grammars. One-sided context

sensitive grammars have been studied but with no significant results to date. 

About all that is known is that they ~!U generate nori-CF languages (and cannot 

generate non-context-sensitive languages). It is conjectured that they 

cannot generate all context-sensitive languages. 

Another type of formal languages (left.:ltontext-sensitiv• have 

been defi11.ed in Mandl 1968 and shown to be wealcly equivalent in generative 

power to context-sensitive granunars. This gives rise to a new type of 

canonic systema,strongly equivalent to lef~context-sensitiv~ grammars. 

These granunars seem to be new and interesting and therefore we will 

discuss these further here. 

The definition below was suggested by Booth's definition of 

context-sensitive grammars [Booth 1967] as a phrase-strticture grannnar all 

of whose productions of any of the following three forms: 

(9) r;;l A r;;2 + r;; 
1 r;;2 w 

(10) r;;l A r;;2 +w r;;l r;;2 

(11) r;;l A 1;2 + r;;l w r,;2 

He further remarks that productions of the forms (9) and (10) are not really 

necessary (since they can be obtained by.adding a few rules of the form (11) 
- . 

and by adding a few new nonterminal symbols) but they make his exposition 

easier to follow. Suppose now that the right con~exts are null in all 

these rules (and similarly for left contexts). Then the rul~s have the form 
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l,;1 A + t1 w 

t1 A w t1 

z;l A + t1 w 

where the first and the third are left-Fontext-sensitivei rules and the 

second is not. This second form of production will be the only form 

allowed in the gramaars we are going to define. 

Definition 8. A !~!!:!€2~~!!~:!!~!!l!!!L.l!!!!!I is a phrase-structure 
------------

grammar all of whose productions except perhaps for a rule r + A 

are noncontracting productions of the form 

(12) fw , A e: N, cpe: V* • (N LJ T) *, w ~ A. 

(Similarly for right-*context-sensitive grammars] It may be remarked 

that this type of production is not a particular case of the general 

production <pA lP + 'fW lP as the left-pontext-sensitiv~ rules were. 

Likewise, the corresponding type of canon is not a particular case of 

(1), and so we cannot (yet) define left-*1=ontext-sensitiv~ systems as 

a special case of Tl (or Type 0, for that matter) canonic systems (see 

footnote). We shall use instead a definition which is similar to 

Definition 11. 

J'!l_f_i,.n_i_tJ!J.!1_J. A }~_f_t:°!.J~~~!-:~~!1~-i}}:!~.J-:~~~~!:-~2~!-!!1- is a 

canonic system which includea the particular cenona (4), (5), (6). (7), 

(8), a finite number of canons of the fonn 

( 14) x<pAY derivable f-- xWfY derivable 

and one canon of form (3) for each symbol >.· occurring in some canon 

(14). [Similarly for right-*,context-aemitive 1 canonic aya.tema; (14) 

is replaced by (15) xA~y derivtl>lt J-- X'f'WY deriv&ble • ] 
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Theorem 2. --=--··---
!!!!:j;~~!:!!;~!~~!!'!!!!!!~~;_J!_!!i~~==~~~!!~!;~!~!!E!Y~~~2-i~~!!!~!~& 

;~~-~!!1:-~!:i~!!.~~-~E!!!~!~!!_!:~~-!~!-~:!1!~!-~~!-~r.!.~~!f~!!l!r 

!!!!~E!~!-P!~=~~~::~ __ J!!t!-~~~Y~!!~-!~!~!S.!!.Sr!~!!l~l 
Proof. 1be proof will make use of certain reductions [Muroda 1964] 

but it will be evident how to start the proof should one wish not to use 

the reductions. Definition [ 1Quroda1 A context-sensitive grammar is 

of order n if there appears no string of leng~h greater than n in any 

rule of the grammar. Lemma 1 [Kuroda] For any context-sensitive grammar 

of order n (n > 3) there exists a context-sensitive grammar ef 

order n-1 generating the same language. 

(By repeated use of Lemma 1:) 

Lemma 2. ·[Kuroda) For any context-sensitive grammar there is a grammar 

of order 2 equivalent to it. 

Let G be the given grammar. By introducing new terminal symbols, 

we can convert it to an equivalent grammar in which terminal symbols appear 

only in rules of the form A + a ("terminal .rules"). 

Remark. [Kuroda) 1be original grammar might have been given in an 

apparently more general form* in which there might be ~ production which 

rewrites more than one symbol: 

(16) + lw I 1 

e: 

< lw21 ) 
(TUN)* • N(TUN)* 

• 

*We can thus define two new types of 
with canons (4), (5), (6), (7), (8), 
canons of the form 

canonic systems (''Types 1' and d ") , 
canons of tho form (3) (and (2)) and 

(17) xw1y derivable derivable 

where w1 includes at least one nonterminal, witb or witbovt the restriction 
lw11 ~ lw2!'. Using Kuroda's remark and our general equivalence theorem, we 
can concliide that these types of canonic systems are weakly equivalent, 
respectively, to Tl and TO canonic systems. At this stale we could redefine 
left-*context-sensitive canonic systems as a certain special case of 
Tl' (context-sensitive) ·~~anonic systems. 



Using the general equivalence- the~rem, we have: 

IU~~-~- !~:-~l-S!!!~_!!!E:~~~E~E:!!~!!E!!!-.l!~!!_E~!!!_!! 

!_!:!E:~~~E!!E:!!~!!E!!!--~~~~!~_!l!E!!l_!!!~~l!l_!9~!!!!!~E-E~-!E!-~~ 

~~~!!!!!!l:. __ '.!!!!-~!!!!-~!_!!!E:~~~~E!~!:!!~!!E!!!~l!!!'!!!!_!!_!E!~~l!l 

!9~!Y!!!~E-E~-E~!-~!!!!-~!_!!!E:~~~~==~E:!!e!!E!!!~~!~2~!~_!l!E~!:. 

Itleo!'' ~- !2:-~l-8!!~-~~~E!!E:!!~!!£!!!.I!!'!:'!!!.~~~~~!~ 

!I!E!~l-E~!:!_!!:!_!!!E:~€2~E!!E:!!~!!E!Y!~~~2~!~.!l!E!l!-~l!!'!B!!!l_~!~~ 

S!~!!!E!!_E~!-!~!.!~P-!l!!-~~-~2~!!!!!!l:.--~=-~!!!!_2!.~~~E~E: 

!!~!!E!!!.S!!!'!!!!-~~~2~!~-!l!E!!!l.!!.!!~!l.!~!!!!!~E-E~-E~!-~!!!! 

~!-!!!E:~~2~E!!E:!!~!!E!!!·-~~~~!~_!l!E!l!!-~l!!'!'!!!!!l:. . 

Similar theorems hold for right-*~ontext-sensitive, canonic 

systems and grammars. -A further application of the general equivalence 

theorem yields: 

I1'1~2t~-~· !~!-~l-1!!!~-~~~E~E:!!~!!E!!!.~~2~!~_!l!E~-E~!!!_!! 

!_!!!E:~€2~E!~E:!!~!!E!!!~~~~~!~_!l!E~-!~!l_!9~!!!!!~E-E~_!E:. .. ~'.!!!! 

~~~!!!!!_!!.E!!!!!!:.l 
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Most of the equivalence theorems of this chapter are sununarized 

in Figure 3. For completeness' sake, we also included several trivial 

results. 
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CHAPTER III 

Both these hierarchies of canonic systems, as well as the hierarchy 

of formal grammars, have no class of system to correspond to the class of 

recursive sets. ("Noncontracting canonic systen with predicates of 

degree 2" were claimed to be situated somewhere between context-

sensiti ve sets and recursive sets, both inclusions being in the weak 

sense.) 

We state here in what sense(s) would a class of .canonic systems 

(formal grammars, etc.) correspond to recursive sets and elucidate 

why no class of system has been found equivalent to recursive sets. 

· It is well-known that there can be no procedure for deciding 

whether an arbitrary recursively enumerable set is a member of a 

given non-empty collection of recursively enumerable sets, except 

in the trivial case when all the recursively enumerable sets are 

members of the collection. This is Rice's theorem; see, e.g., 

Rogers { 1967 , p. 324 (Th. 14-XIV (a) )). Consequently, it is clear 

that we cannot hope to find a class of canonic systems which (a) defines 

all recursive sets, and only recursive sets, and (b) the class includes 

all the canonic systems which define recursive sets. 

* [Mat~dl 1969b] 



We might hope that t.here exists a "small" class of canonic 

systems which define all and only recursive sets however realizing 

that the Clas~ cannot include all canonic SySteaS whichdefine 

recursive sets. Or, stated in another way, it might be the case 

that a certain class of canonic systems (characterized by a finite 

set of properties, and such that is is decidable whether a given 

canonic system meets those properties), would correspond to the 

recursive sets in the sense that 

-only recursive sets are generated by canonic systems of 

(a 
that class (the class is "subrecursive"); 

-------------
for every recursive set, there is among the canonic systems 

of that class at least one canonic system defining the 
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given recursive set (and there may be such canonic systems 2Yt1io~ 

the considered class). 

We shall prove that such a class cannot exist, Le. if a class 

of canonic systems defines only recursive sets, then it cannot define all 

recursive sets, P.ven if it does not have a monopoly in defining recursive 

sets. This result can be restated succinctly as: "Subrecursive classes 

of canonic systems are ~!!!~!11 subrecursive." 

!_o_~} __ SJ_!_t_~s.! __ f_o_r__t_~t.!!-... ~.e!)..,.c..':1 •• c .. o.i:..e .. ~-n..'!.~9..'X!:.C.t..1J.,.~i-'!. .. t..~e ... s.e_'!,5 .. ~ .. "..f.. 
C})_!-_b_o'!.e] __ t_o __ t!!-_e __ c_l!_s_s __ o_f_!_e_c}:l!_s_i_v_e __ s_e_t_s_._ __ 1!1 .. 1!'!.t}.c.u_l!-! , lH~ST ] ~ 

*The reader may have noticed a similar stateaent, without F®f, in Donovan 
and Doyle, 1968, p. 46t '"I'luis, a noncontractina canonic system can only define 
a recursive set. However, it cannot define all recursive sets; some 
recursive sets can be aenerated only to a TO P' f'r,N. An earlier work 
clailled to have proved this by exhibitina a concrete example, but the 
proof was eliminated when the ..... 1. ~urned out to be a context-sensitive set. 



l?tQOf (based on an idea of Hopcroft and Ullman (1969 , §s. 3 ] ) • 

Since canonic systems are finitely specified, we can canonically 

enumerate all canonic systems, the. canonical index encoding the 

whole description of the canonic systeia {"Godelization" of-canonic 

systems.) Likewise, we can canonically !Ulllb&r (encode) all the words 

over the denumerably infinite list of potential symbols; let 

wt be the kth work in this numbering. · Since it is assumed decidable 
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whether a certain canonic system is of this type or not, we can strike 

out all the canonic syst.ems o0t_af.tl14,$-tXPt. tlteretiy eff;<:tively 

enumerating all the canonic systems of the type co~~~ered: 

By the. ~)'P9theais, all these canonic 

systems define recursive languages ~l• L.2• ;t3 . . . Consider 

the set 

It is different from all .r_i• i = 1, 2, ; yet it is recursive. 

Therefore no type o~ canonic systems can define all and only recursive sets. 

Remark. A recursion-theoretic argument yields Theorem 7 as an immediate 

consequence of the known theorem that the class (set) of all recursive 

sets [ while recursively enumerable as a class of r.e. sets (Blum 1965; 

Suzuki 1959]]is not characteristically enumerable. rtoof_of_tb~-t~4V~tiOD· 

For all subrecursive classes of canonic systems the proof of the subrecursive-

ness has been done by exhibiting a decision procedure. In other words, 

if we have a finite description of a canonic system, we can interpret 

it not only as giving a procedure for en1.m1erating a set but also as giving 
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a procedure for computing the characteristic function of the set, i.e. 

that we can find not only an r.e. index of the generated set but also 

a characteristic index thereof. Therefore [a description for] ~ 
--------------------

canonic_s~stem_belonging_to_a_subrecursiye_class_is_akin_to_a_cbaracteristic_ 

ing~~-f2t_tb~-t~~Yt~iY~-~~t-4~fin~4-br_tbat_~1nonik-~YStt~~ 

*The elucidation of this point owes much to a discussion with Professor 

Patrick Fischer and Professor Juris Hartmanis at the Third Princeton 

Conference on InforIPAtion Sciences and Systems in March 1969. 
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CHAPIER IV 

CANONIC SYSTEMS FOR CONTEXT-SENSITIVE SETS 

In Chapter II we mentioned Doyle's work on a hierarchy of canonic sys-

terns, where, inter alia, it was stated that the NCST were situated some-

where between context-sensitive sets and recursive sets. Let us now take 

a closer look at the definition of NCST. It reads ("Definition 2.13"): 

·~ noncontracting canonic system (NCCS) is a canonic sys
tem in-which each application-of a canon.results in the length
ening of the string denoted by the predicate defined in the 
canon. That is, if AfP and WEA and to prove w~A it 
was first necessary t~ prove 13 •.!! 7 then /wl~ 113( • That is, 
in a derivation, if we have 

... ,pB; ... ;wA; ... 
then lwl~l31. ( .!! may denote the same predicate as ~ ) 

A noncontracting canonic system with predicates of degree 
!WO (NCST) can be co;structed to describe the language gener
ated by a Tl grammar; this canonic system has the same basic 
structure as the canonic system equivalent ot a TO grammar 
with the additional length restriction." 

1. "E~~-~E!!~Ei denoted by the predicate defined in the canon" • The 

conclusion of a canon has only one statement , and therefore it involves 

exactly one predicate. However, this predicate is not necessarily of 

degree 1 , so we cannot refer to "E~~ string". 

2. "lengthening" That unspecified string is longer than something. 

Longer than what? The hypothesis of a canon may include many strings and 

many n-tuples (tuples) of strings. 

3. II If w and are tuples, their ~~~Ei!~ is unde-

fined. If they are strings, then something has to be said about tuples, 

or at leastabout pairs, since predicates of degree 2 have to be allowed 

in order for Doyle's proof of [Type lJ~ [NCST) to work. 
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4. [Concerning ·the derivation] Although on p. 18 of that paper it 

was said "In this paper, a derivation will consist of a sequence of canons 

instead of the sequence of conclusions of these canons", here we have to 

revert to the original definition of derivation (as sequence of conclu-

sions). When we do so, we see that an axion may appear a~ere in this 

sequence, and it is not necessarily .longer than all its predecessors (or 

aborter than other strings that may follow). Moreover, not only strings 

appear in a derivation but also tuples. 

5. "( ! may denote the same predicate as ! )" .. ! does not ~!!12E! 

a predicate; rather, it is a predicate. Formally, predicates are and 

remain elements of P ; and when we write P • \ ! , .!} we also mean that 

A and ! are different elements of P • ,-We could have introduced meta

variables ranging on predicates, Vj , ir., , ... , in much the smne way in 

which we tacitly introduced p ., w , 'fl , 'fl to stand for particular 

strings, and in that case we could have written 

••• ; p ~ ; . . . . ' w lfs. ; ... 
and said that the meta-variables 1"f and l1'~ may ~!P2~! either two 

distinct predicates ! , ! or one and the same predicate ! . $ince we 

have not introduced such "predicate-variables", and since ! , by defini-

tion, is not the same as J , one should have said 

II if we have 
or we have 
then f c.>( ~f pf • " 

p ! 
p ! ... w A 

w ! 

We therefore see that, at this stage, there ia no such thing as non-----
~~!1~!!~!!!11-~!!12!1!~_!l!~~-!!E~-!!!~!~!!!!-~!.2!1!!! •• ~-· Coi:respo11dingly, 

this chapter will be devoted not to proving something about the [undefined] 

NCST but rather to !!~~!21.!-2!!!~!!!2!1 which will be i,ntuitively acceptable 

and will be such that 

1] Doyle's claims will hold for it ([Type l)C[new clasa]GQtec] ); 
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As it very often happens in such cases, the real problem is not to 

F!~! but to "l~!!:_~~-E~-E!'~! (and to "improve a bad guess" by ~rial , 

and error). 

We cannot define 'noncontracting' [nc] as "such that the sum of the 

lengths of all strings in the hypothesis (whether appearing isolated or as 

elements of tuples) is at most as large as the sum of the lengths of all 

the strings in the conclusion" , since then a canon like 

x A x ! f- x C 

would not be noncontracting, which is not only counter-intuitive but also 

does not allow us to salvage the proof for "[Type 1) s; [NCST] ". For 

the particular case when no predicat• of degree 2 appear in the conclu-

sions of the canons, one could try 

"the string in the conclusion is no shorter than any of the 

strings appearing in the hypothesis, whether they constitute 

terms of degree 1 or are elements of higher-degree terms• • 

We shall reconsider this suggestion later on (in a modified form); at 

the moment we have to abandon it because we plan to use as much as pos-

sible of the existing proof [Donovan&: Doyle 1968, pp. 43•44], and the 

canonic systems constructed in this proof are, as we llOted in Chapter II, 

l!~!!!L~!!?2~!~_!l!~!!!-!!~!?-f!'!~!~!~!!-~!-~!I!'!!-~ (also in the conclu

sions of the canons). 

Since the real problem here was the fin41ng ~f of a good definition, 

we think it would be more instructive for the student of canonic systems 

if we try to present how the definition was arr'tved at, instead of just 
---------·-----------------~----~ 

exhibiting it and showing that it works. 

Doyle's proof of the recursiveness used a multitape Turing machine; 

the idea was to show that this machine always halts, thus deciding mem

bership in L( t ) · We intend to prove more, viz. that the set L(' ) 
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defined by the canonic system is context-sensitive. For this, it will 

be enough to show that the multitape Turing machine which decides whether 

never uses more than f~I squares on any of its tapes. 

As our first step, we modify Doyle's Turing machine to have, in 

addition to one tape for each predicate of degree 1 , also k tapes 

for each predicate 'of ~egree k , fo+ k = 2, 3, ••• (all the tapes are 

distinct). In Doyle's construction, the Turing machine exhaustively ge

nerated all strings of length 'lwl in the language defined by the ca

nonic system.and checked for the occurrence of w on the tape assigned 

to the sentence predicate. Naturally, all strings, on all tapes, had to 

be placed one beside the other (separated by special characters), and so 

the storage space for far from being linear. One could achieve linearity 

if each string !~f!!~~! the contents of the tape on which it is placed, 

instead of being appended (with a separator) to the current end of the 

tape. However, each string has to sta~ availab-le indefinitely, for later 

use in derivations (Fig. 4). 

I 
I 

I 

I 

, 
I 

I 

' _ .. -
: r'' 

¢ 
\ " ' , .... ...c. .. , 

._ __ __J 

[Other com
putations] 

Figure 4 
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More exactly, it has to st•y indefU,~tely available in all caaa EXCEPT 

when each canon has at most one premise (if 0 premiaes, the canon is an 

!~!~), in which caae (see Fig. 5 ) , 

.,., 
.,.,., 

[
-_..~, 

/\ .J 

/ ' 
/ ' r-"-i ~ 

._ __ _J [_.J 

Figure 5 

' r- -~ -, 
' '-----J 

eaeh statement on a computation path 1• used once t.aa.diately after being 

obtained and never needed again. Thia will be the .. in idea of our proof. 

In order to achieve th:f" situation we h•• to reduce our given cano-

nic system • ("of Type X'') to one ~ in whieh canona have at moat one 

premise and which is also''of Type X" • Forgettieg for the moment of the 

"Type X" restriction, we notice that •ueh ·a reduction is always possible: 

this is one of Haggerty's result• (Theorem H-3, here). There are exactly 

3 ways in which the canons of ,., are constructed: 

1) they may be inherited from ' · , if t·hey have at moat one premise; 
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2) they may have been included in b., to replace some canon 

genera 1 form: 

( t 1 c t 2 4 ••• ctn) pred 1pr~d2 ••• predn r- t
0 
~ 

where the degree of the newly introduced predicate is the sum of the de-

grees of the n predicates in the hypothesis of the old canon; 

3) they may have been required by canons already in ~ .. : 

if ~ has canons 

< tl ••• ct ~ R I- t R' 
~ m 0 

< ti c ••• ct~') s r- t' S' o- , and ~ is already in ~ 
1 

then it will also have the canon 

< t 1 c •• • .,,.t m c ti c • • • c t ~ > 1- <t t'> o< o 
R'S' 

where deg(RS) = deg(!!) + deg(.§) , deg(R'S') = deg(.!r_) + deg(~) . 

From here we get the final hint as to how to choose "Property X" 

if we are to use the method of proof sketched above, "Property X" has to 

'3)' suggests the following: 

PROPERrY x
1 

• In each canon of the canonic system: 

If the predicate in the conclusion is of degree k , then in each premise, 

separately, the tuple can be decomposed *into k parts (possibly empty), 

which are contiguous, mutually disjoint, and collectively exhaustive; and 

there is a permutation of these k parts such that, for every i ,~Ck , 

each element in the ith part ** always represents a string which is 

no longer than that represented by the ith element of the term [of order 

k ] in the conclusion of the canon. 

* It is understood that no element of any tuple is to be cut in the 

middle by the decomposition. 

** The part which became the after the application of the per-



Examples: < x c Y>! l-40t2 c yl> M, 
< x c Y> ! . f-..,.3 • X2> .!! . 

As a particular case, we have: 
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PR>PERTY x2 • [Same as x1 , but only one of the elements in the 

conclusion is. compared with those in the bypothu!s: there ia ati .. in_teg!'r m , 

th 
m~ k , such that the m element of the conclusioii alwajs represents a 

string longer than those represented by any ~l-nt"~tn ft)·y term in the 

hypothesis.] 

Example: <xc Y)' ! \- cxy., 5>t ! 

We shall now clarify what we~~.' by the expression 'always repre-

aents a shorter stritlg' • When a canon is used in a derivation it does 

not appear in its geaeral fonn but as a particular canon instance, in ·------·-··----
wh.ich all the variables are replaced by particular strings. What Pro-

perties Xi ( i • 1 , 2 ) require is that for each canon there be a 

decomposition of the kind specified above and such that for all the 

~!~2!!~-!l!~!! * the above-mentioned decomposition yield particular 

strings which satisfy the length relatf.Onehips aped.fled in the defini• 

tion. 

* For example, if a canonic syatein contai~s only the canons 

,_ 3 digit 

,_ 5 digit 

x digit J-. x number 

x di&it y maber 1-- xy n9ber 

then '535 dlgit f- 535 ~umber' is a legitimate instance of one of the 

above canons, but can never appear in a derivation. We shall be concerned 

here with canons like 

< x .. Y> 1reater in lensth ; y veg log 1tripg J- x yerv J.Qna •tdna 
which are so decomnoeable. because anv rannar@n~lvl nffpndino ina~~nrp 
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Thus in order to ascertain whether a certain c.s ft has Property Xi we 

have to make sure not only that the canons have certain forms but also that 

an infinity of canon instances satisfy cart.a!n restrictions. When we talk 

of classes of canonic systems we usually require that membership in the 

class be deterlld.ned on the basis of a finite set.of canons, not on the basis 

of an infinite set of canon instances; therefore we nC>W proceed to define 

properties similar to Properties x
1 

but such that they involve the canons 

themselves rather than an infinity of canon instances. 

Let us consider first a term of degree 1 , e.g. xaby , where a , b 

are symbols and x , y are va:dables. Whatever the strings J;"epresentff ·by 

x , y may be, the resulting string is always longer than the string repre-

seated by xxyabb • We shall write: 

yx 4 xaby ' xxyabb 

Other examples: 

x~ xx 

x " 
xy 

x4 xb 

xx3y~yx 

We have to make one m.ore preparatory digression before we formally define 

the relation ~ • Since we want to use Doyle's construction of a c.s. for 

a given context-sensitive grm11D1r, let us have a closer look at that cons

truction. (We want to make sure that tbe definit:ion of 9"· Will be chosen in 

such a way that the c.s. conetructed will have Property x1 .) Its "most im-

<abc • defg> greater in length ; defg yery leg egryg f-_ abc very lon1 strinl 
•• • J • -: :. :'!9';~' ; 

, while legitimate as an instance, can never a,pear in a d•rt"lfation in a c. s • 

which define• 'c • Y> areater in length' to mean " x 18 longer than y ". 

* "c.s." • "canonic system" • 
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portant canon", and the ·only one which is likely to cauae problems, ia 

( 1) wxz derived string ; C'X 4 Y> production ; <Y c x~sreater in length r 
wya derived atrins 

The problem is that we need wxz ~wyz , where x , y are not com.parable 

(being two distinct variables). All we ,,.nt is that always the string re-

presented by y be at least as long as that represented by x , and this 

is ensured by the premise <YcX> greater in lenth ( ldilslxl). The defi

nition will include also this case, thua "legalizing" canon (1) • The pre-

dicate greater in lenath used above is defined thus: 

(2) x terminal I- x symbol 

(3) x nonterminal t- x symbol 

(4) I-<>.. cl> len1Sb 

(5) <x, Y> lenath ; z 1m,bol \- <xs c yl> 1•1gth 

(6) <Xe Y> len&th ; < z 4 yl"> lenath 1-- .CZ c Z> 1reat1r in lefgth 

(7) <X cY> greater in length ;<y c z> sreater in lenath l- G c Z> grea-

ter in length 

(8) <X<Y> length ; <Z c y> length t-<x~ Z> greater in length 

Canonic systems which include the canons (2) ••• (8) will be called 

!~~IE~=~~!E~!!~i-~!~!~.!l!E!!!· We remark for later use that these ca

nons satisfy themselves the requirements placed upon canons of canonic sys-

tems satisfying Properties x1, x2 (i.e. they are deoompoeable in the pre

scribed manner). 

* It is because of this canon thet the c.s. which include canons (2) •.. 

(8) are not aimple. The 1ecoad element of a pair.in. length represents 

* 

the length of the first el ... nt expre1aed in l•aiy '°tation: 0•'1', 3•'1111', etc 
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~!!~!E!~~-!Q· ·(Definition of ~ (with respect to a particular canon 

in a particular canonic system)) 

• la. For any words 0: ' p 
}\. ~ 0: ( }\. is the empty word) 

0:" p ·*· lo:ls:lpl 
.lb. If x is a variable, then 

~ 4' x 

x "' x 

.le. If a premise of the form <v.,,u> areater in length is 

included in the canon, where u ' v are variables, then 

u" v (in that canon) 

If t 1 , t 2 , t 3 , t 4 represent concatenations of ve:rj,ablea and words, 

.2a • [Transitivity] 

• 2b~ [Side-by-side concatenation of inequalitie1} 

.3. No relationship t
1 

4 t 2 is valid unless it is deduced from 

a finite nlDD.ber of instances of .la. , .lb. , .le. by means of a finite 

number of applications of .2a. , .2b. 

With the help of the relation 4 we are now in a position to define 

Pl()PERI'IES Y
1 

, Y2 , for length-monitoring canon:LC systems.These properties 

are defined in a similar manner to that in which we defined Properties x
1 

, 

x2 ' but: 

1) the expression 'element ~l always represents a string which is 

no longer than that represented by t ' 2 
is rep la cad by ·•t..tt '· 1... 2 , 

2) the canons (2) ••• (8) , present in any length-monitoring c.s., 
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are not required to be "decompos•ble" • [Notice the formal change in the 

concept of "decomposability".] (We shall later consider other types of iength

monitoring c.s., in which case '2)' w.111 refer to the canons there used for 
monitoring length.] 

We note that Property Yi implies Property Xi ( i • 1, 2), and that 

one can ilnulediately1 tell, by inspectipn, whether a c.s. has Property Yi 

( i = 1, 2 ) or not (this was not the case for Property x
1 

, Property x
2 

) . 

This latter fact justifies the following definition: 

_!?!!!~!!!~2-!!· A length-monitoring canonic system is ~!_!~!_!1 (res

pectively Y
2 

) if it has the Property Y
1 

(respectively Y2 ) • [The name 

'type' is reserved for properties detectable by inspection.} 

Theorem 6. =·-··-=-·· 
a) g!!!~-!2l-=~~~~E:!!2!!E!Y!-1!!!'.!.l!!l-~~!-:!~-~~!!~!!1!Z_!!!!=E!!!!i 

=~~!E~:E_!_!!~IE~:~~!E~!!~l-:!~~!:_!l!E!!.~!-!lf! __ !1--~-!2-~--~!!!~!~1 

E~!-!!!1!~!!~1~1!~ 

b) !2!_!!1l-!!~SE~:!~~!~~!!~i.:!E~~!£-!l!E!!l~~!.!11?! .. !1 •• i.!2.i-l_Eh! 

!!~1~1!-~!!!~!~-~l-!E_!!.~2!~!!E:!!~!!!!!!_i!~~!-!~£!~!!~i!!!'!!!.=!~-~ 

=~~!S~~!!~.!~.!-~!!~!!!l.!!!!~S!!!.!!~~!!2: 

!!~~· Since Type Y
2 

implies Type Yt , it is enough to prove 'a)' 

for Y2 and 'b)' for Y1 : 

["the class of languages for which there is granmar of Type l is iDc:luded 

in the class of 18nguiges defined by c.s. of Type Y2 , which •• !', etc.}. 

a) All we have to shO\l' is that the length-monitoring c.s. constructed 

in Donovan & Doyle 1968 pp. 43-44 always satisfies Property ~ , and this 
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is ensured by the manner in which we chose our definitions. 

[ Bmnarke. There is no need to first reduce the< sr._.r to one of order 2; 

- the alphabet of the c.s. includes not only the terminals but also 

the nonterminals, and E is included among the latter; 

- there is no need !e!_!~!-~!~e~!~-!Z!!~!!!!!!.~e-~!,!!~! the con

cept 'string', since this concept is part of the definition 

of canonic systems in general; 

- for formal reasons, the canon 

[ y string ;) <1:.if> production <y., l> gre1ter in length 

\-- y derived string 

is replaced by the two canons J-E initial 1tring and 

x initial string; <x•y> production; <ycP greater in 

lena~h r- y derived atring 

where initial string is a new, 1ingleton preaicate. J 

b) Applying Theorem H-3 * , we reduce the given c.s. of Type Y1 to 

one in which no canon baa more than one premtte •. Since the original c.s. 

bad Property x 1 , and since this property ia 1watlated by the construction 

in Theorem H-3, the resulting c.s. also has Property x1 •. We shall now 

construct (in a uniformly effective way) a nondeterministic multitape LBA 

which recognizes the language defined by the reduced c.s. (which i• the ••me 
aa that defined by the original one). For each predi9ate of degree k ( k • 

1 , 2 , ••• ), the LBA will have k tapes. Since each hypot~eaia has only 

one canon, the derivations have a certain ''Markovian" character (see Fig. 5). 

Each statement obtained in the derivation is used in lhe flaeol&tely fotlcndng 

step and never needed again, and therefore can allow -oura .. lvee"to overwrite 
. ---------

* I • grateful to AJaitava' Bagchi fo:r the •uggeetion to ..,.. Theorem 

H-3 in this proof. 
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the tapes corresponding.to a predicate when thia predicate reappears in a de-

rivation. The LBA will simulate nondeterministically the derivation and will 

halt when a sentence is derived; if a string w is a sentence then there 

is a computation path af the LBA which halts with w displayed on the 

sentence tape, and conversely. The last step in the derivation of w is 

of the form 

< a c Pc •. •cµ > AB., .M f- w eentence 

by Property x1 we have 

• • • 

Tracing back our.derivation, we see that. in view of the Property x1 , 

w is at least 118 long as !~1 string in the derivation, and therefore lwl 

is an upper bound, on each tape separately, on. the amount of space necessary 

for recognition. 

The proof will now be concluded by replacinJ the multitape LBA by a 

["multitrack"] one-tape LBA and noting that each step in the chain of cons-

tructions 

is uniformly effective. 

c.s. with 1 i ,,_ ~ 1111.\!"" tape ~ Ln• one-prem.-e --, ......,.. .,_., .D.ft 

canons 

context-
1 

sensitive 
graumar 

As an illustration to this proof, we now show how the multitape LBA 

would handle the canonic system which tMs chosen by Haggerty to illustrate 

his procedure. 
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< :x: y -r z> !!£ l--· < a:x: <by c cz> ABC 
< -
< y z> BC l-< 8 by c. CZ } !!£ • - • 

< :x: Y> AB \-- < a:x: c by «r c ..., ABC 
c -

< :x: c z> AC f- < a:x: '"' b c CZ> ABC -
x A f- < a:x: c b c. c "> ~ 

y B J-< 8 < by < c '7' !!£ 

z c ~<· b c- CZ,.. ABC 
c -

<x 
~ Y> BC l- <xb c ye"> BC - -

x B l- <xb 
~ 

c ..,. !£ 

y c f- <b c ye> !£ 

~ <b < c ~ !£ 

< x Y'-;, !£ ~<xa ye...,. !£ ... 'C' 

x A J-<x~ • cf> !£ 

y c ~ <• ye> .!£ < 

i- <a < c /" !£ 

Derivation for 'aabbbcaabbb' : b B < a bb > AB < aa bbb >AB 

< c aabbb > ~ aabbbcaabbb ! 

The multitape LBA has 16 tapes (•5•1+4•2+1•3) • The following figure . 
(Figure 6) shows the contents of theae tape• at aucceasive atages of the 

timulated derivation. 
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f- a_! ,_... b B 

t- c .£ 

x_! I- ax A 

x! I- bx B 
x c f- ex C 

x A Y! J- xy B 
x c YB t- yxy ! 

Derivation for 'aabbbcaabbb' a! bb ! ; 88 ! bbb B -
aabbb D aabbbcaabbb ! 

f-
\-

a A -
b B 

{The decompoaitions are shown by 

sutitabla underli.ntng) 

< 

X! 

x B 

x c 

<x< Y~!! 

<X Y>CD 
'< -

X or Y > AB -
x A 

Y! 

t 
I 

-
~ c c 

l- ax A -
\-- bx B 

\- ~x C 

\-- xy B 
\--yxy ! 

1--<ax c by> ·~ 

t-·- ~ b > !! 
f-ca <by>!! 

t-<• < b > !! 
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CHAPTER V 

FURrHER HIERAICHI!S OF CANONIC SYSTEMS 

The purpose of this chapter is to apply the main result of Chapter IV 

toward the development of improved hierarchies of canonic systems. 

Let us consider Doyle's hierarchy again. Thia hierarchy h•s two se

parate parts, one part comprising clasaea of canonic ayatema strongly 

equivalent to the class of regular granmars and the class of context-

free granmars, and the other part comprising a class of canonic systems 

weakly equivalent to the class of unrestricted rewriting sy1tems (Thue 

semisystems). The hierarchy was claimed to include another class of ca

nonic systems, situated somewhere between context-sensitive gr811111U1rs and 

recursive sets, but we have aeen in Chapter IV that this claa• was not 

completely defined. In the same chapter, two claaaee of canonic systems, 

the !!~1Eh:~e!~2!!~1~~~~2~!~.!l!~~-~!-!l!! __ !1 •• !!22 , were proved to 

be weakly equivalent to the class of context-sensitive languages. There-

fore if we add any of them to the two parts of Doyle's hierarchy we obtain 

a ~~!!!!_h!!!!!~hl.2~-~!~~~!~.!l!!!!!' where by "complete" we mean only 

that all 4 types of grammars are represented. (The hierarchy pre1ented in 

Chapter II had correspondents not only for the 4 classic types of formal 

grammars but also for !~l class definable in terms of productions.) 

While completeness is certainly a very deairable property, we cannot 

consider ourselves satisfied with it and ignore the fact that this com

bined hierarchy is quite heterogenous: for Types 3 and 2 it provides 



simple canonic systems with predicates of degree 1 for Type 0 

simple canonic systems with predicates of degree 2 and for Type 1 

the canonic systems are not even simple. The form of the hierarchy may 

be schematically summarized as 

Sl Sl 
(for Types: 3 2 

G2 
1 

S2 
0 ) 

Our first step toward "homogenization" will be to reduce the third 

class from G2 to S2 • Clearly, we can always reduce a general c.s. 

to a simple one by using Theorem H-2 , but we need a ~!~~~ of simple 

c.s., weakly equivalent to context-sensitive grammars, and the property 

'obtainable from class A by eliminating contextua 1 references' is not 
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a good criterion for class membership, since a criterion should refer to 

the !~!1.E- of the new system, irrespective of how the c.s. was obtained. 

We have seen that the length-monitoring c.s. cannot be simple, by defi-

nition, since they all include the offending canon 

<xcy> length ;<z~yl>length J-<'z,x> greater in length 

If we modify IV.(2) ••• (8) by replacing this canon by the canons 

1<xc Y> length ; <z • Yll'> length; u unit t-<Z. x> 
(1 J- 1 unit [singleton predicate] 

greater in length 

and call the canonic systems which include (1) and IV.(2) .•• (5);(7) ••• 

similar to that of Chapter IV. 

Definition 12. A simple a-monitoring canonic system is of !l~~--!l 

(respectively Y2 ) if it has Property Y1 ( Y2 ). Property Y1 ( Y2 ) 
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for a-length-monitoring canonic systems ia defined in a similar .. nner as 

for length-monitoring canonic systems, but the condition '2) 1 in that de-

finition will now exempt from the decompoaability requirement the ~!!!~ 

canons used here for monitoring leng~h. 

Theorem 7. ---------
a} g!Y!~-!~Z-~2~!!!!:!!~!!!!!!.l!!!!'!!.t.2!!.~!~-~~!!2!!!I_!!!!!E!Y!!I 

=~~!!:~:!_!_!!!'2!!_!:!!~1!~:~~!!2!!~1-~!~~~!:.!1!~!!-2!-!lP!--!1--S-!2-2 

~!!!~!~1-!~!.!!!!.!!~F.:!!I!: 

b} !~!-!~l-!!!'2!!_!:!!~1!~=~~!!2:!~•-~!~2~!~_!1!!!!!'_e!_!lP!--!1 

~-!2-2-i-~~!.!!~~l!.~!!~~-~Z-!!.!!.~2~~!!~:!!~!!!~!!~~!~~-2~!-:!~ 
~~!!~!!!l_!!!!!:!!!!!l_!!~.!-1!'!1!'!!!-!2! ... !!2: 

Proof. a} The only contextual referencing in the c•nonic syatems of 

Theorem 6a was in Canon IV.(6) • If we replace that canon by (1) we 

get a canonic system which is simple, a-length-monitoring, of Type Y2 

(and therefore also Y1 ) , and define• the smne language. 

b} Completely similar to the proof of Theorem 6b • [Theorem 7b is 

not a particular case of Theorem 6b since •-length-monitoring c.s. are, 

formally, not the same ae length-monitoring c.s.] 

We have thus obtained a hieran:hy of the form 

Sl Sl 82 S2 

. i.e. a hierarchy of !~!! canonic systems (of which the last class 

contains all the simple c.s. with oredicatea of degree 2}, and we shall 

try to reduce it to the form 

Sl Sl Sl Sl 
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The last class can easily be so reduced. Fo.r any r.e. s.e.t there is 

a simple c.s. wiith predic•tes of degree 2 which .def.i~ the given set, 

and this c.s. may be reduced to one with predic•tea .~f degree . 1 (by The

orem H-1) while remaining simple; and the converse.result is certainly 

true, since sets defined by canonic systems are always recursively enu-

merable. 

The hierarchy has now the form 

Sl Sl 82 Sl 

Unfortunately, Theorem H-1 appears to be of no further use in reducing the 
~ , ' ~ 

form of the hierarchy, since none of the 4 classes mentioned in this 

"'"" . 
chapter as being weakly equivalentto context-sen,itive grammar• 

(length-monitoring canonic systems of Type Y1 

simple s-length-1DQ1litoring c~s. of Type ~l . 
~ 

of Type Y
2 

of T~e Y2 
) 

is invariant under the transformation involv.-:1 in the pro.of of, Theorem 

H-1. 

Having thus arrived at an •pparent ''.4•~.d end'' ill our endeavors to 

develop an9 simplify Doyle's hierarchy, we: now.cot1J1ic:Je:r: th~ other basic 

hierarchy, the hierarchy of general c.s. with ,predi~.,t.es of degree 1 

(of the form Gl Gl Gl Gl 

which was introduced in. Chapter II, and apply to it Theorem H-~. 

It is easiily seen that we obtain inde~ 4. ty-pes of c;~ni<: Jys~ems, 

i.e. valid criteria can be stated {depending only on the form of the 

) 

transformed canonic system) for membership of a ~.s. in a type. These 

types of c .s. may also be introduced independently/ The following de

finitions are analogous to Definitions 2 ••• 5 • 



--------------
A simple canonic system is Definition 13. 

of its canons, except for 4 of them, ia of one of the forms 

(2) 

(3) 

(4) 

where 

xuy derivable u .!! v .Y f-- rvy derivable 

f- µ !! (x, y, u, v are variablee) 

f- a terminal 

(a) µ (a ~~!·variable) stands for a P!!~!~~!!! string; 

if each 

(b) for any predicate appearing in a canon of form (2) , except 

for the canon derivable , there i1 exactly one canon of form (3) , 

i. e • .!! , .Y , !! a re ! !!1!!~2! p red ica tea ; 

59 

(c) if .Y , V (in thil order) are two singleton predicates appear-

ing in a canon of form (2) , and if µ , " are the corresponding strings, 

then µ and '1 can jointly be put in the form 

where 't> , 'ti , w are [meta-variables standing for] particular strings, 

po1&ibly empty, and A does not appear in a canon of form (4) ---
the 4 other canons being: 

(5) 

(6) 

(7) 

(8) 

f-J: derivable 

f-- A ~!!!l!!!!.!E!!!i 
x terminal ; y terminal strin1 I- xy terminal string 

x derivable ; x terminal string f-x sentence 
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Definition 14. if it is 

of Type O(s) and satisfies the additional condition that for each canon 

of form (2) the corresponding string w {defined in (c) ) is non-null. 

Def in it ion 15. A simple canonic system is ~!.'.!~--~~~~ if it is 

of Type 1 (s) and satisfies the additional condition that for each canon 

of form (2) the corresponding strings ", , {defined in (c) ) are 

null. 

Definition 16. A simple canonic system is ~!-!?'P!--~~~~ if it is 

of Type 2(s) and satisfies the additional condition that for each canon 

of form (2) the corresponding string w contains just two symbols, 

one terminal and one nonterminal (one for which there is a canon of form 

(4) and one for which there is no such canon), always in the same order. 

The definitions of !!~!!!' ~~!:!!~!~_!!~!!!' !!~!!!~!!!' !!9~!~~!!!' 

!!E~:.1~~~~!!~:!!~!!~!Y!1 , etc., ~!!!'!!!! may be similarly imitated, and 

so we may speak (Definition 17) of linear, one .. aided linear, metalinear, 
------------- ------ ----·----------- ----------

I~sgimv..§ [Analogous to Theorem 1) • !2!_!~l-!!!1E!!-~!~2~!~_!l!~!!1 

2! .. !~--!~~~--~-!_:_Qi_!i-~i-~-l .. E!?!!! .. !!_!_l!!!!!!_~!..!ri?! __ ! __ ~!~!? 

Proof. Similar to that of Theorem 1. 

The second part of Theorem 8 (the converse result) can be proved 
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more easily f.f w ue Theorem 1 and the following obvious Lemma: 

L8D1118. The result of applying the· procedure of Theorem H-2 upon 

a canonic system of Type i ( i • 0, 1, 2, 3) is a aimple canonic sys

tem of Type i(s) • 

Theorem 8 provides us with a hierarchy of simple canonic systems 

with predicates of degree 1, that is a hierarchy of the fotm. 

Sl Sl Sl Sl 

and the goal of the present chapter is thereby completely achieved. 

Before concluding this chpter, however, we should like to point out an 

interesting fact which provides a link between the two basic hierarchies 
tiltlllll••• 

developed in this chapter (the one of the fotm. Sl Sl G2 S2 

-- baaed on Doyle's -- and the.other of the form Gl Gl Gl Gl 

introduced in Chapter II). When we wantacl to reduce the first baaic 

hierarchy to one composed exclusively of simple canonic systems and no-

ticed that its third class, the length-monitoring c.e. of Type Y1 , failed 

to be simple only becauae one of the canons used in monitoring string 

lengths included contextual referencing, we just replaced the offending 

canon. But there is absolutely no need for a canonic system to monitor 

itself "the leniths of the strings. A context-sensitive granmar does not 

monitor the lengths of its strings, and it is no leas noncontracting be-

cause of this; strings grow in length not because the grammar monitors 

their lengths (which it doea not) but just because the productions .,are 

noncontracting. When we examine the graanar "from the outside" (by 

using a meta-system) we can p~~ that the strings are bound to grow; 

but there is no need to duplicate this proof inside the object system (the -·----
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or the canonic system). We therefcme, eliminate ,the canons 

IV. (2) ••• (8):. and the canonic system bec91R*a now !.!!12!!. It at ill con-

tains canons of the form 

r ~ f'A 'f' c 'fWCf') production 

(one for each production ~A~'f ; Donovan & Doyle 1968, p. 43), 

and we just !!1~!' that in each s"uch canon" lwf~1 · This, however, does 

not yet solve our problem. We have to redeftfte the concept ic.s. of Type 

Y
1

' , or, more exactly, to redefine the relation 1' ; and this relation 

has to hold, sometimes, between two different variables, a~ for example, 

in 

(9) wxz derived string ;<x.»-production;<yca>.lfeate5 iy ltn&th f-wyz ~ 
:dved string 

where we ought to be able to prove that Xl!lY •. ·For leng~h-1110t1itoring 

c. s. we could aay that x 'y because ~he pr•ise < y c XllldSJ!'eater. in length 

is present (Definition 10.lc), but we do not have the pr4Miicate gr~ater 

in length any more, and we are still under .the obligation to ascertain, 

by merely !!l!P!~!!~I the canons, whether or not the canonic aystem if a 

member of the class we define. One ny to aolve the ,pJ;oblem ,of eliminat-

ing length-monitoring and still beina able to ,clefine 4 is to !~!!!~,;,~~! 

need to ever compare (in·length) two distinct veriables. Tbe"'would be-

come an absolute relation, not de~endent oa the canonic aystem, and defined 

by • la. lb.2a.2b.3. of Definition 10 (i.e. 11ith®t • le. ) • To achieve 

this end we have to replace canon (9) by aemaoy canons as tl\ere are p:i;o-

ductions, each new canon being the, result of "plqg~pg .in'' a partic;ular 

production in the canon (9) : 

(10) w .. A. z derived string J-- w'f«'>rz derived string 
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The class of canonic systems of Type Y
1 

(from the first basic hierar-

chy) is thereby transformed into a class which is, essentially, no 

different from the class of canonic systems of Type 1 (from the second 

basic hierarchy; Definition 3), and from here the whole second basic 

hierarchy is just one small step away. 
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CHAPrER VI 

NON-CR>SSBEP'ERENCING, SDIPLE, ANDJQ! .. DIE!tll@ &WfO!lC·. SYSTme. 

CLASSIP'ICt\TION 01 CANONIC SYS'flMS 

In this chapter we pursue an idea mentioned in Chapter I that 

one should not distinguish (and name) the subclass of canonic systems 

!!~~ contextual referencing, !!~~ insertions, with croasreferencing, 

but one should rather consider the subclaBSes of canonic syst·ems without -------
the respective options. Canonic systems without contextual referencing 

(!!!if!! c.s.) were extensively studied in Chapters I and V; we shall now 

formally introduce the other two classes and investigate their computa-

tional power. 

Crossreferencing was defined [Donovan &:.Doyle 1968, p. 27) as con-

sisting of the use of one and the same variable more than once in the 

term of the conclusion or the use of one and the same variable in more 

than one premise in the hypothesis. The possibility of a variable being 

used in exactly one premise of the hypothesis but occurring several times 

in that premise is· not included in this definition. On the other hand, 

there is a fundamental difference between multiple occurrences in the 

hypothesis part of the canon and multiple occurrences in the conclusion. 

The applicability of a canon in a particular situation has to be esta-' . 

blished before the canon could be used, and the applicabili~y depends 

only on the hypothesis of the canon; if the hypothesis contains two 

occurrences of a variable, we have to check that the strings matched by 
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the two occurrences are identical strings (aubetrinp), and this checking 

is not an elementary action. Multiple occurrencea in the conclusion, 

however, have no influence on the applicability of the canon. This argu-

ment suggests that we should specifically exclude from the definition of 

c:roaarefereacing multiple occurrences in the cO..c-lwtion, ancl indude 

multiple occurrences of a variable within one premlae of the hypothesis. 
, ---~--

The same point of view is taken by Turing (in connection with Turing 

machines) and by Minsky (in connection with Poat'• canonical systems). 

Quoting from Turing 1936 [p. 137 in Davia'• collectionl: 

"If, on the other hand, [the squares] are marked by a se
quence of symbols, we cannot reg.'N t" pi'Oceet of recognition 
as a simple proceaa. This is a fund-.ta"l point and should 
be illustrated. In most uth-tical'",.peft the equations and 
theorems are numbered •••• But if the paper wa1 very long, we 
might reach Theoftln 157767733443477; tlle"n, further on in the 
paper, we might find ' ••• bnce (applyiug Theorem 1577677334-
3!+77) we have ••• ' • Iil _.,rd•r:·i~ #It: .... wfiieh was the re
levant theorem we should have to campt1re the two numbers figure 
by f:f.gure, possibly ttekina t'he ftaurtie of_f tn pncil tc> •ke. 
sure of their not being counted twice." . 

Minsky (1967, p. 231) r&llJ8rks that he could have allowed DlUltiple occur-

rences of variables within any premise, but chose not to: 

"Poat' 1 most gener.al fonml.a.tion allowed eaeh 9roduction to 
have several antecedents. • • • Aleo··· in Poat' s most general for
mulation, he al10W3~two of tu$•• tn lh• utecident ee be the 
same. This •ant that the rule of inference·voti1a-apply only 
to a string (theor•) in Vhf.ch then _..,, .. nact! rep•U.tion 
of some (variable) suU'atring in two placea in the antecedent. 
We prefer to prohibit antecedents of thia form, not because we 
want to reatrict the ge~rality of tbe •J•tema, but bec;:a111e it 
would run counter to our intuitive picture of what ought to be 
permitted as elementary, unitary operatiotJ•·". 

With this motivation (and backtna) we change the definition,of 'crosarefa-

rencing' to read: 
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~!!!~!!!~~-!~· A canon is said to :2~!!!~-~!~!!!!!!!!e~!~i if at least 

one of the variables involved in it occurs more than once in the hypothesis 

of the canon, whether these occurrences are within one premise or are in 

different premises. 

Definition 19. A canonic system is non-crossreferencing if none of 
__ .. __________ _ 

its canons contains crossreferencing. 

Let us consider now the phenomenon of insertion, whose definition is 
~-.-----·-

implicit in the traditional definition of :!~!~.!I!~!!1!.!!!h_!~!!!E!2~ 

as canonic systems in which terminal symbols are inserted between the 

variables of one string to form a new string. Since we are interested in 

canonic systems without insertions, we tentatively define canons without 

insertion as canons in whose conclusion no B)'lllbola appear, i.e. whose 

conclusions contain coa~tenaSio2s of ~·~tables rather than concatenations 

of v11riables and wo1ds. The fol'IDlll modifications requir•d in the defining 

second-level canonic system are not difficult to figure out, but the defi-

nition would be forbiddingly restrictive: the axioms would be totally 

useless. In fact, we never defined axioms formally, but just referred by 

this name to any canon whose U.st of. e~!f•! was empty, and therefore any 

restriction on the canons is automatically a r.atriction on the axioms. 

This suggests the following definition: 

Definition 20. A canonic system is ~~~:!E!!!!!~I it it has the pro-

perty that in all its canons, except for the axioms, the term in the 

conclusfon of.the canon has only "p.ure" el_.nta, i.e. each element is 

either a concatenation of variables or a concatenation of symbols. 

The following canonic systems will be used as examples: 
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,. 

1. Langusge: set of balanced (wen.-forined). strings of 
parentheses 

v ={<,> l 
/-- 0 theorem 

x theorem /-- (1t) theorem 

x theo%'em 1-- xx· theorem 

x() y theorem f- xy theorem 

[Minsky p. 230] 

one- predicate· (Post) 
: nort•ct'onre.ferencing 

l'. Same langwige, same alphabet. [Minsky p. 230] 

f-- O thetrrem 

xy theorem r--x()y theorem 

· simple 
ope"."predicate 
non<-crossreferencfng 

2. Language: palindromes over a , b , c • {Minsky p. 228] 

I- a A 

f- b ! 
I- c A 

~ aa A 

J- l>b A 

l- cc A 

x A f- axa A 

x A I- bxb A 

x ! J- cxc A 

2 I• . Same language. 

r-- a A 

I- b A 

I- c ! 
x A I- axa ! 
x A. f-- bxb ! 
x A I- cxc A 

x ! f-- xx A 

[Minsky p. 228] 

simple 
o°" "Ired icate 

··n0n•ctosfnf•rencing 

simple 
one-predicate 
non- cr08'8 referenc in·g 
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3. Language: all true atat ... ta about a4diiag 1-ary poeitive integera 

[Mina~y p. 229] ( 3 • 1 111' , etc.) 

v-{1,+,•} 

f-1+1•1 add -
x+y-z ~ f- xl+y-zl ~ 
x+y-z !dd I- x+yl•zl add 

[or: x+y-z ~ f- Y"f"Z•z ~ ] 

one-predicate 
DOn•croaareferencing 

inserting 
not aimple 

4. Language: all true atatemeate about multipl7in1 1-ary poaitive 

integers [Minsky p. 229] 

v - { 1 t • t - Jl 
l-1 • l•l !!!!ll. 

X•Y-Z Ell. rxl•y-zy ~ 
x • y-z !!!:ill, f- y • x•z !!!!ll. . 

{am.. n
8

m. n 
5. Language: D D 

l-• ! 
'-b ! 

x ! f-ax_! 

x B \-bx! 
x A ; y ! J-xyxy aentence 

5'. Same language. 

f- a A 
f- b ! 

x A ; y ,! I- xy ! 
:x ! ; y ! l-:xy ! 
x ! ; y ! f- xyxy aentence 

one-predicate 
non-croaareferencing 

inaerting 
not aimple 

l m , n natural nmabera} 

aimpl• 
non-crosareferencing 

inaerting 

simple 
non-ineerting 
non-croaereferencing 



6. Language: squares in 1-ary. · 

Alphabet - { 1 ' *} 

t- l* ! non-cross referencing 
Py A t- xll*yx A 

Py A I- y sguare not simple 
inserting. 

6'. Same language. 

[Mentioned here for completeness; will be introdu~ed later.] 

S''. Language: same as S • 

x A • 
' 

x B • - ' 

x A 

x A 

x ABA 

f-a ! 
.... b B 

y !f-xy ! 
Y ! f-xy ! 

y B 

y A 

x 

z 

z 

- .!!! 

B ~ xyxz ~ 
.B 
~ xzyz .!!! 

I- x sentence 

5'". Same language. 

f- a ! 
x A ~ ax A 

f- b B 

x B t- bx B 

~ 

.!!! 
as above 

x~ x .!!! I- x sentence 

simple 
non-inserting 

cross referencing 

simple 

inserting 
cross referencing 
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51111 • Language: 

The first 6 canons of 511 • 

Last canon replaced by · 

ax ABA x BAB x sentence 

5v. s 1 ame anguage. 

The first 4 canons of 5 1 • 

Last canon replaced by 

x A . _, y B xyxy ABAB 

ax ABAB x sentence 

m , n natural numbers 

non-inserting 

not simple 
cross referencing 

non-inserting 
non-cross referencing 

not simple 
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Of the classes of canonic systems considered until now, only the 

two classes which correspond~ in the first basic hierarchy, to regular 

granmars and to context-free graumars are non-croesreferencing. Since 

they are also simple and non-inserting, this implies that non-inserting 
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c.s., non-crossreferencing c.s., and simple noa-croasr~ferencing non-insert

ing c.s. are all powerful enough to define atty context•free language. 

The following figure shows the new classes of canonic systems (the numbers 

refer to our examples): 

Q 

Figure 7. 
Classification 
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Q • non-cro81referencin1 c.1. 
R • non- f.naert ing c. 1 • 

S • 11mple c.a. 

QI • Q" ll 
QT. • Q ' Jl etc. 

Qd' • (Q" .,,~ 

[ QIS] i;> [er) . 

[QR] ~ [er] 

CQSJ ~ (er] 

(aince (S') define• a non-, contu:t
fna, .. lnpap ) 

A• before, (claaa of c.a.] • claH of 
lanpagu cN~luble by the cteaac~f. 

['81 ~ [.finite interaecttana of:cr laquage1] 

CQJ ~ tcrJ 

(aitiltt "'97 , ca11, be obtained by C'rOH
refennciq; .•.. not• that th•· 181-
guage of (5') ~»4ztclu4ed iD thia 
olua) .if 

( R] 2 t finit• interaectMIM of G!J] [ IMult imprOl'V'ed 
- . beloiw] 

[S) ,.. '{r.e.) • 

Since a c.1. :ln QBS can be triviallJ modified 10 •• to belong to 

~ or Qls or QB:I' , w a lao have 

Simibrly, 

[Qd'J .. (Cl'] 

[ Qls] tiD [Cl'] 

finite 
[lftll iit [ illt•r•ectiom of C1J 
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[ Q~) 'if [CF] 

We shall now show that the non-inserting c.a •. are powerful enough· 

to define any r.e. set: [ R) • .[ r.e.J • As .for .the non"."~roaaJ"e,feren-

cing c.s., we have not been able to improve the result stated above 

( [ Q) if [CF] ) • It is known that non-croasreferencitng c .s. with .2!!!. 

predicate of order 1 ~!~~~~ define the aet of aqu.area in 1-ary (see 

[Minsky 1967, p. 235)). 

IDwa.J {analogous to Theorem R-2 (of Bagge tty) 1 . !~l-~.:!.:-~!'!! 

!!~£.: Any wo~ (sequence of symbols) in the conclusion is replaced 

by a varable whose value is specified (by an additional premise) to be 

in an (adequately defined) singleton prec:Jicate. This implies that the 

desired reduction is possible. 

Remark. This procedure invariatea the class of non-crossreferencing -------
canonic systems; it is recalled that the elimination of words from the 

~~~~!!!! of a canon ~~!~~~!~ croaareferencing. 

We shall now develop a complete hierarchy of non-inserting c.s •• 

Since the first two classes :~om the first baste hierarchy (of the form 

Sl Sl G2 82 ) are already non•tnserting, we shall retain them and 

adapt the last two to our purpoaes. 

The most general non-inserting c.a. obviously genetates an r.e. set; 

and we have seen that for any r .e. set there ia a non;. b1sert ing c. s • de-

fining it (by Theorem. 9). This gives us a class corresponding to Type O. 
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As for Type 1 , we have a result completely s:lallar to Theorem 7 (Ch. V). 

Before stating it, we need a few definition•·· We would like to talk 

about non-inserting length-monitoring c.s.; but all length-monitoring 

c.s. (•• pnvioualy defined) include the { iuerting) canon 

[A a:lmilar situation Wll8 encountered just before Definition 12.] By re-

placing this canon by 

< x., Y> leyth ; 

l-1 ~ 
z !Y'!lffi91 ; u .!!!!.!!. l-•• c yu> lepath 

[singleton predicate] 

ln the definition of 'length-monitoring' we arrive at the definition 

of !:!!!l~!?-!12!!~~!!!1-~:!: (similar to a-length-monitoring c.e.). 

Similarly, if we perform this replacement in the definition of 

'•·length-monitoring' , we arrive at the definition of !!:!!!1!!?:!2!!!2!!!!.I 

canonic svat ... 
__________ .. ~ 

a) Given any context-•ensitive grammar, one can uniformly effectively 
------------------------------------------------------------------

b) For any non-inserting r-length•1D011itoring c:.a:.; of Type Y ( Y ) .. -------------------.. -------·------~--------~--·------------1----·-2--
the language defined by it is context-sensitive. (and one can uniformly 
-~-------------·-------------------------------------~--------·--------

* Definition similar to Def. 12. 
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Proof. Analogous to that of Theorem 7. 

We have thus obtained a hierarchy of non-inserting canonic systems. 
,-

The form of thia hierarchy may be described as 

Rl Rl R2 R2 • Rl 

(More exactly, RSl 181 BG2 1\91 .) 

Definition 21. A canonic system is aaid to be P~!! if it is simple 

and non-ins.rting. ("pure" since all c:Oncatenatione contain either 

exclusively symbols or exclusively variable•.] 

A complete ~!!!!!:~I-~!.P~!! .. ::!: , of the form 

RSl RSl RS2 RS2 • RSl 

~an be easily obtained, in a 11Y1nner entirely similar to that in which 

the hierarchy of non-inserting c.s. waa obtained. However, we prefer to 

present another hierarchy, based on the second baaic hierarchy (form: 

Gl Gl Gl Gl ). At the end of Chapter IV, we foand a hierarchy of 

simple c.s. with predicates of degree 1 Sl Sl Sl Sl 

(Cf. Def. 13, 14, 15, 16 and Theorem 8.) By inepecting the definitions 

of the classes of simple c.s. involved, it 11 eaeily seen th1t these 

canonic systems are also non-inserting. Therefore we have obtained: 
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Sl Sl Sl Sl 

RSl RSl RSl RSl 

The next logical step would be to look for a hierarchy of the form 

QRSl QRSl QRSl QRSl • We suspect that such a result is impossible to 

obtain, and, more precisely, that the non~ct'Os~fet.'9*ci1'8 c.s. are not 

sufficiently powerful to define any language of Type 0 or 1 • We shall 

now introduce a modific•tibn in their d~finit~1'• ."94~iqat;ion which will 

enable us to obtain a compl~te hierarchy. Fol,lo,wing, Minsky' .i [ 1967, p. 
> ,,,, ' . . 

235] definition for Post systems, we shall calJ ~fBS!!f-!l!f!!.!.!E~.!2-!f• 

Definition 22. 
!.!!..rr .. !!Pf!!>!E a fpl1Sl81 •nt_., siia4,lar to ordinary 

c.s. but in which a subset T of the alphabet V is 

singled out (and called E!!!!~!.!!2!!!~!), :am foi'·which' the language it 

defines is 

rather than 

T*n u L(', ! ) 
I I a•• . 
)II L(' , ! ) . The set V'T is call~ ~J!!!Z.!!2!?!f!E· 

T • V may be identified with orditta~ C~®ntc syst'°'8 •. Systems with 

The difference between canor~~ systems with aqxiliary alphabet and 

ordinary canonic systems becomes significant only iQ the case of 
--:-- • ·, ' ~ ; > 

non-crossreferencing canonic systems. For all other cal\onlc; systems we 

could define a predicate terminal strins and then achieve the des ired 
• •• /"'(" < 

effect by adding a canon like 
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x sentential form x terminal striaa r x sentence 

Example. The set of squares in 1 .. ary. 

6' • v={l,*) 
T-= { 1) 

Canons: I- 1* A 
x*y ! I- xll*yx A 

x*Y!f-Y A 

non-cross referencing 
one-predicate 
wrrit Au.th.. ALPHABET 

aot aitlple 
inserting 

Examples 6 and 6' show that a set may be undefinable by Post 

systems (canonic systems with one predicate of degree 1 and no auxili-

ary alphabet) but become definable Jf we !!~~!! allow one more predi

cate ~! allow an auxiliary symbol. Thia "trade-off" between additional 

predicates and additional (auxiliary) s,.bols is, in fact, an instance 

of a general result: 

more than one predicate 
[ (w. l.o.g.) of degree l] 

CANONIC SYSTEMS 

(B) 

(A): Trivial. 

(A) 

one predicate of 
higher degree. 

(B)(C) : [Haggerty 1969, p. 44] * 

Poot r·r 
one predicate of degree 1 
auxil~ry symbols 

(C) 

* Theorem 3. However, the statement of this theorem, "Any canonic 
system can be simulated by a Post-system:", must be supplemented by the 
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(B) may also be proved by usiug Theorem B-3 •nd the p~oot of Theorem 6b. 

[The number of the: predicate• will be the n111ber of t'lpea of the LB.A.] 

(C): Proved by introducing separators acting aa auxiliary symbols. 
A -result similar to (B) (C) has been aDDOUDCed- ~ ll. Kohn [ 1969);; it in
volves variables 111hiorange on all but one of the symbols in the alphabet. 

Having defined and exemplified canonic ayat8111JB with auxiliary alpha-

bet, we are now ready to derive a hierarchy of non-crossreferencing ca-

nonic systems with aQZiliary alphabet. 

Theorem 12. --------

!!~!· Obviously, it is sufficient to prove 'b)' • 

The only canon with croaareferencing in the canonic sy1teme from the 

above-mentioned hierarchy (qhapter II) is 

x de~lvable ; x terminal string ·l-- x sentence 

By eliminating it from a given c.s. (together with the canons.which deftne 

the predicate terminal 8E£ing ) and by replaf}n8 the axioms of the form 

~a terminal 

qualification " ••• which is a canonical extension [in Minsky's sense] of 
the given canonic system.", since there are formulas which are. theorem.a 
in the Poat system without being theorems in the given canonic system, 
and all such formllaa contain auxiliary a,...ls ,noi..~~ the .~l,phabet o.f 
the given canonic system. The canonic ayat... 6 and 6' above are 
examples of ayst- which can not be aimllated uatu• w··attow canonieal 
extena ions • 



by a declaration 

T•(a, •.. } 

we obtain a canonic eyatem equivalent' to tne given one. The theorem 

now folloW8. 

OPEN PR:>BLEMS: 

1. "[ QRS] "" ? " Find the computational power of the class of 

simple, non-:arosareferencing, non•inaertiug canonic avatema (no auxi-

liary alphabet, any number of predicates). J 
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2. " [ Q] = ? " Find the computational poweT of the claaa of 

non•croasreferencing canonic systems (no •uxiliary alphabet, any number 

of predicates). '[Includes all finite interaec~ions of c;ontnt-free 

sets.] 

3. " [Q
1

] • ? " Find the ecmputatitmal power of [unextended] 

Post systems (non-croasreferencing, no auziU."aTy alphabet, one predicate 

(necessarily of degree 1 ) ) • 
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