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ABSTRACT 

Blum's machine-independent treatment of the complexity of partial 
recursive functions is extended to relative algorithms (as represented 
by Turing machines with oracles). We prove relativizations of several 
results of Blum complexity theory, such as the compression theorem. A 
recursive relatedness theorem is proved, showing that any two relative 
complexity measures are related by a fixed recursive function. This 
theorem allows us to obtain proofs of results for ,!!.!. measures from proofs 
for a particular measure. 

We study complexity-determined reducibilities, the parallel notion 
to complexity classes for the relativized case. Truth-table and primitive 
recursive reducibilities are reducibilities of this type, while other 
commonly-studied reducibilities are not. 

We formalize the concept of a set helping the computation of func
tion (by causing a saving in resource when used as an oracle in the 
computation of the function) • Basic properties of the "helping" relation 
are proved, including non-transitivity and bounds on the amount of help 
certain sets can provide. 

Several independence results (results about sets that don't help each 
other's computation) are proved; they are subrecursive analogs to degrees
of-unsolvability theorems, with similar proofs using diagonalization and 
priority arguments. In particular, we discuss the existence of a 
"universally-helped set," obtaining partial results in both directions. 
The deepest result is a finite-injury priority argument (without an 
apparent recursive bound 6n the number of injuries) which produces sets 
preserving an arbitrary lower bound on the complexity of a set. 

our methods of proof include proof for a simple measure (e.g. space) 
and appeal to recursive relatedness, diagonalization and priority techniques, 
and heavy use of arguments about the domain of convergence of partial 
recursive functions in order to define total recursive functions. 
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1. Introduction 

Blum fBl) introduces an axiomatic framework for discussing the 

complexity of partial recursive functions of integer variables. In 

this thesis, we use a parallel approach for the case of relative 

algorithms (i.e. partial recursive functions of one integer and one set 

variable, as represented by Turing machines with oracles rD) fRo l]:. 

Our extension of Blum's ideas allows us to discuss axiomatically 

several problems impossible to formulate from the original set of 

axioms. 

For example, we can formalize the idea that one function helps 

the computation of a second function; we can also give some meaning to 

"the complexity of a nonrecursive function." 

The axioms we give include as special cases the "natural" measures 

on relative computations, namely the time and space measures on oracle 

Turing machines. Thus, the axiomatic statements of our various 

theorems are also true when interpreted for the specific measures. If 

we were to state and prove our theorems directly for the time and 

space measure, the results would be more precise and the proofs more 

intuitive. However, the axiomatic proofs are much shorter and cleaner; 

therefore, our general policy in this thesis is to state and prove 

results axiomatically, giving intuitive remarks about time and space 

wherever possible. 

In Chapter 2, we present our axioms for relative complexity and 

prove some basic results suggested by theorems of non-relativized 

complexity theory. 
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The first important result is that any two measures satisfying 

the axioms are recursively related; the proof is by Konig's lemma. 

This theorem is important primarily because it provides an alternative 

method of proof of general-measure theorems. Certain types of theorems 

may be proved easily for a particular measure (usually space) and then 

the recursive relatedness between space and other measures can give 

the general result. We employ this method occasionally. 

We note that the standard results of complexity theory, such as 

speed-up, compression and gap theorems rHH] all have full relativiza

tions with proofs exactly like the usual proofs. Several partial 

relativizations are also true; we prove some which are of interest or 

will be of later use. In particular, we prove a relativization of 

the combining lemma fHH], which states that the complexity of a compu

tation is closely related to the complexity of its subcomputations. 

This will imply some later results; it is the first example of our use 

of a method of proof which we call the "domain-of-convergence" method, 

and which is used in axiomatic proofs throughout the thesis. 

In Chapters 3-6, we study questions natural to treatment within 

relative complexity theory. 

A notion which parallels that of a complexity class fMcC] fMcCMe] 

in the relativized theory is that of a "complexity-determined reduci

bility," which we study in Chapter 3. 

To any class C of functions corresponds: 

((A,B)jA is computable from B within measure equal to some function inC:'~ 

For certain classes C, this provides a reasonable reducibility. 
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Truth-table reducibility rRol] and the relation "primitive recursive 

in" rK] are examples of reducibilities of this type, while other 

commonly-studied reducibilities such as many-one and one-one reduci-

bilities rRol] are not. 

We show that neither truth-table reducibility nor primitive 

recursive reducibility can be completely specified by a single bound 

function (i.e. a singleton class C). However, each may be so specified 

on any countable class of oracle sets, as we show by a relativization 

of the Meyer-McCreight union theorem rMcCl rMcCMe). For example, 

there is a function t such that: 

(A s B 
tt A is computable from B within measure t) 

for all arithmetical sets A and B. 

By selecting special classes of functions L , we may define 

new complexity-determined reducibilities; for example, by letting: 

C = (A-recursive functions} 

for some set A, we define a reducibility somewhere between truth-table 

and Turing reducibility, which we call "A-reducibility." By 

considering all sets A, we arrive at a hierarchy of reducibilities. 

A relativization of the compression theorem shows that: 

(VA,B) r(A-reducibility B-reducibility) (A-recursive functions 

and B-recursive functions are the "same size")]. 

This fact reduces questions about the reducibility hierarchy to 

purely recursion-theoretic questions; we prove several results about 

this hierarchy, for example, that there exist Turing-incomparable 

sets determining the same reducibility. 
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In Chapter 4, we try to establish a formalism within which to 

discuss questions such as the following: 

(1) Which sets make the computation of a function easier than it 

would be without the help of these sets? 

(2) How much help (increase in speed) does an oracle for some 

set provide in a computation? 

We propose several possible definitions of "helping," each of 

which provides a reasonable way of discussing the concept. Briefly, 

we define helping of the computation of a function on either an infinite 

set of arguments or on "almost all" arguments. We also discuss helping 

in the sense of lowering the complexity of a function below a given 

lower bound function. 

We then present a series of basic results which can be formalized 

using the definitions. First, we show that any set whose complexity 

is small cannot give much help to the computation of any function. We 

then show that any recursive set has arbitrarily complex recursive 

sets (with their complexity closely determined) that do help its 

computation. 

As done by Trachtenbrot ("autoreducible sets") rTl), we formalize 

the idea of a set helping its own computation, by having values of 

its characteristic function at different arguments strongly inter

dependent. We then present a result of Paterson rPJ proving the 

existence of such sets, of complexity approximately equal to any given 

monotone running time. 
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Independence results (theorems that state that certain sets do 

.!!2!, help the computation of certain recursive functions) are analogous 

to theorems about functions having a certain lower bound on their 

complexity; diagonalization is the only tool. we have for proving them. 

We prove a version of the following statement: 

"'there exist pairs of complex recursive sets that don't 

help each other's computation." 

We use a diagonalization method in the proof, based on work by Meyer, 

M.J. Fischer and Trachtenbrot; priorities are used. We first construct 

a set with no interdependence between the values of its characteristic 

function at different arguments. We then split this set into two 

pieces and argue that neither piece can help the other's computation. 

"nl.is result illustrates proof techniques which will be used in a 

more complicated fashion in Chapter 6. It has several interesting 

corollaries, including the fact that "helping" is not a transitive 

relation. 

Since the independent sets are constructed by a diagonalization, 

it is difficult to understand much about them. A more interesting 

result would arise if we could arbitrarily fix one of the sets. 

Thus, in Chapters 5 and 6, we ask the following question:: 

Which is true? 

(1) ni.ere is a recursive set A whose computation is helped 

by all sufficiently complex recursive sets B (a "universally

helped set"), or 
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(2) For all recursive sets A, there exist arbitrarily 

complex recursive sets B that don't help the computation of A. 

We obtain some partial results in both directions, using different 

interpretations of "helping." 

In Chapter 5, we produce the strongest results we can to obtain 

the first answer. We note that the complexity axioms are sufficiently 

general to be satisfied by various "pathological" measures; specifically, 

that any recursive set will be a "universally-helped set" in some 

relative complexity measure. From here on, we use a mechanism for 

eliminating such trivial cases. 

We go on, in theorem 5.2, to construct sets which are not 

"universally-helped," but which are "almost universally-helped," in 

the sense that they are helped by all recursive sets whose complexity 

is "nicely determined." More specifically, for any recursive function 

h, we obtain a recursive set~ such that the computation of Ah's 

characteristic function is helped on infinitely many arguments by any 

recursive set whose complexity is (to within accuracy h) equal to a 

running time. This is the strongest result we have obtained in the 

direction of answer (1). 

In Chapter 6, we work in the opposite direction, beginning with 

a recursive set A and constructing sets B not helping A's computation. 

As before, we use diagonalization and priority techniques in obtaining 

our results. There are two major results in the chapter. 

The first theorem, theorem 6.2, states the following: 
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If we have a recursive set A and a recursive function tA 

with the property that every Turing machine computing A's characteristic 

function requires more than tA space on an infinite set of arguments, 

then there are arbitrarily complex recursive sets B such that every 

B-oracle Turing machine computing A's characteristic function still 

requires more than tA space on an infinite set of arguments. 

The proof idea is due to Machtey [Mal] and involves a diagonali

zation with simple priorities. 

The second theorem, theorem 6.3, states that, provided we 

restrict our attention to functions tA which are running times, we 

have a similar result to theorem 6.2 for a different type of lower 

bound tA. Namely, if we have a recursive set A and a total running 

time tA with the property that every Turing machine computing A's 

characteristic function requires more than tA space on almost all 

arguments, then there are arbitrarily complex recursive sets B such 

that every B-oracle Turing machine computing A's characteristic 

function still requires more than tA space on almost all arguments. 

This theorem is the deepest result in the thesis. The 

diagonalization required is considerably more complicated than that 

required for theorem 6.2, and involves a finite-injury priority 

argument in which there is no apparent recursive bound on the number 

of times a requirement may be injured. 

The independence results serve to demonstrate that there exist 

arbitrarily complex pairs of recursive sets which are recursive for 

"different reasons." 
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There is, of course, no conflict between the results of Chapters 

5 and 6, as we show. 

Open problems are interspersed throughout the thesis as they 

arise, and are collected in Chapter 7. Also, in Chapter 7, we present 

additional open problems and directions for further research. One 

particular direction mentioned is that studied by Symes in rsy], 

where he considers helping not only by oracle sets, but also by 

partial functions. In general, we would like to formalize other 

notions of "helping," specifically those which represent the way in 

which a subroutine "helps" the computation of a function computed 

by a computer program. 
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2. Notation, Axioms and Basic Result$ 

We assume familiarity with the notation used by Rogers fRol]. 

We use "(,x)" and "a.e. (x)" to mean "for all but a finite 

number of x." When no confusion is likely, we simply write "a.e." 

("almost everywhere"). 

Similarly, "(~x)" or "i.o. (x)" means "for infinitely many x," 

and we write "i. o." to mean "infinitely often." 

We write "a · b" to mean if a i!: b 

if a < b. 

The composition "g o t" where t is a function of one variable 

and g is a function of two variables, will indicate ~xrg(x,t(x))]. 

"R " represents the set of total recursive functions of n integer 
n 

variables. 

"R (A)" represents the set of total A-recursive functions of n 
n 

integer variables. 

"P " represents the set of partial recursive functions of n 
n 

integer variables. 

"P (A)., represents the set of partial A-recursive functions of n 
n 

integer variables. 

We write "t" for divergence and "i 11 for convergence of compu-

tations. 
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"Lk..I" represents the integer· part of k. 

(A) For any i, A, if qJi (x) t, we use the convention that 

qJ •(A) (x) 
1 

By convention, oo ~ oo, and n < oo for any n e N. 

The notions of "relative algorithm" and of an enumeration of 

relative algorithms {qJ/ )} are amply described in fRol, ~9.2]. 

Specifically, we use the following: 

Definition 2.1: A sequence {qJi ( )} of relative algorithms is called 

"acceptable" if: 

(1) (qJi ( )} includes all relative algorithms 

(2) Universal Property: 

(:B:t e {qJi ( )})(lfi,x,A) ft(A)(<i,x>) =~i (A)(x)] 

(3) s-m-n Property: 

t (A) (<i,x>)]. 

We discover by methods analogous to those used in fRo2] that: 

Lemma 2.2: Let {qJi ( )} and (~i ( )} be any two acceptable 

orderings of relative algorithms. Then there exists a recursive 

isomorphism r such that: 

("lfA.'i) l"q> (A) = ~i(A)]. 
~ r(i) 't' 

Lemma 2.2 will make our theory independent of the particular 

formalism chosen. We will generally refer to the development in 

fRol] or to the notion of an oracle Turing machine when precision 

is required. 

We now define a "relative complexity measure." 
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Definition 2.3: A relative complexity measure t< ) is a collection of 

partial functions from N to N, (t. (A)}, one for each (i,A), satisfying 
1 

the following two conditions: 

(1) (Vi,A) rdomain <'pi (A) =domain ti (A)] 

(2) There exists v< ) , a relative algorithm, such that: 

(Vi,x,y,A) V(A)(<i,x,y>) 
f 1 if ti (A) (x) = y 

lo otherwise 

We .abbr.eviate <'pi(¢) as <'pi' and ti(¢) as ti. The functions ti 

are often referred to informally as "running times." There is no 

confusion here with the usual G~del numbering notation, as {<'pi(¢)} 

is an acceptable GHdel numbering for the partial recursive functions 

rRo2). 

A note on our choice of axi()mS: axiom (1) is surely reasonable, 

but it may be thought that axiom (2) is stronger than we ought to 

assume. However, both axioms are satisfied by all natural measures 

on relative computations (i.e. time and space on oracle Turing machines). 

Also, axiom (2) is plausible in that it merely requires the 

existence of a single "unified description" of any measure. 

Thus, for the time measure, axiom (1) says that a computation 

takes a finite amount of time if and only if it converges, and axiom 

(2) says that we can effectively tell if a computation halts in a 

given number of steps. For the space measure, axiom (1) says that 

a computation uses a finite number of tape squares if and only if 

it converges, while axiom (2) says that we can effectively tell if a 

computation halts without exceeding a given amount of workspace. 
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Later in the chapter, we verify that these axioms hold for time and 

space measures. 

These axioms are extremely simple, and similar to Blum's axioms 

for partial recursive functions [Bl]. We will see in the following 

chapters that they are quite powerful. 

We refer to [Sy, Chapter 3] for some interesting results using 

these axioms. In particular, we shall use the fact that ~. (A)(x) is 
i 

a partial recursive function of x, uniformly in A and i, That is: 

(~)(VA,i,x) [~ (A)(<i,x>) 
a 

In spite of the theory's independence of the particular 

formalization of relative algorithm, enumeration and measure, it is 

desirable to keep in mind the natural measures (time and space on 

oracle Turing machines). The particular oracle Turing machine model 

we will use is as follows: 

Each Turing machine has four semi-infinite tapes: an input tape, 

an output tape, an oracle tape and a worktape. The first three are 

marked in binary, with the exception that the input tape has a marker 

to indicate the end of the input. The worktape has k possible symbols, 

for some number k which depends on the machine. We assume for 

definiteness that the input and output heads cannot move left. Also, 

the machine cannot write on its input tape or read from its output 

tape. There are otherwise no restrictions on the operation of the 

machine, other than the usual Turing machine constraints [Rol], 

This Turing machine is designed to be used in conjunction with an 
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"oracle" for any set. (An X-oracle is an unspecified agent having 

information about set X.) This is done as follows: 

In addition to its other states, the Turing machine may have a 

state called "INTERROGATE." When the machine enters this state, it 

asks the oracle whether the number currently written on the oracle 

tape is a member of the oracle set. The oracle gives its answer by 

causing the machine to enter either of two different states. The 

oracle tape is then automatically erased, the oracle tape .head reset 

to the first tape square, and the computation is allowed to continue. 

Each oracle Turing machine may be described by a flowchart or 

some other finite description. The machine's description is inde-

pendent of the particular oracle set used, so the same oracle machine 

may be used with any oracle. The finite descriptions may be 

enumerated in a natural way. 
( ) . th We identify ~ with the n machine 

n 

description in this enumeration; our enumeration is "acceptable," 

and so there is no notational inconsistency with usage in [Rol]. · 

We now define two measures on this machine model: 

T( )'time measure 

For any i, x, A, we define Ti(A)(x) to be the total number of steps 

executed in the computation ~i (A)(x). Here, each oracle interrogation 

counts as a single step. 

It is clear that the axioms for relative complexity are satisfied; 

for ins~ance, to discover if Ti(A)(x) = y, W(A)(<i,x,y>) must construct 

the machine~. (), then simulate~. (A)(x) for y steps to see if it 
i i 
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converges. 

S( ) , space measure 

For any i, x, A, we define S. (A)(x) to be the maximum of the 
l. 

number of worktape squares visited and the number of oracle tape 

squares visited during the computation~. (A)(x), provided that~. (A)(x)!. 
l. l. 

Otherwise, we let S. (A)(x) = oo, 
l. 

Axiom (1) is satisfied by definition, To see that axiom (2) is 

also satisfied, we note that for any i, x, y and A, if~- (A)(x) 
l. 

operates for (i)(iy)(y)(2y)(y)(log x) steps without exceeding space 

y, it must be in an infinite loop and hence will not converge. This 

bound arises since if the machine is ever twice in the same state, with 

the same worktape contents, the same worktape head position, the same 

oracle tape contents, the same oracle tape head position and the same 

input tape head position, it must be in an infinite loop. The six 

factors in the above expression represent bounds on the number of 

different possibilities for each of the six items. 

Thus, to see if S. (A)(x) = y, we 
l. 

need only simulate ~. (A)(x) for 
l. 

(i)(iy)(y)(2y)(y)(log x) steps to see if it converges. 

We note that our machine model has linear speed-up [HLS] for 

machines that don't use their oracle tapes. That is, given any € > 0 

and any such machine 

that for all sets A, 

~- ( ) , we 
l. 

€ • S. (A) 
l. 

can effectively find~.() 
J 

~ S (A) 
j 

a.e. 

such 

We also note that the space measure has the following property, 

sometimes called the "parallel computation property": [LR] 
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There exists a recursive function ~ such that for all i and j, 

C?.riCi,j)(x) = f'1(x) if Si(x) s: S/x) 

cpj (x) otherwise 

and sil(i' j) (x) = min(Si(x),Sj(x)). 

This property, which essentially allows us to re-use the same 

tape squares for different portions of a computation, often makes it 

very easy to prove theorems for the space measure. It also causes 

some results for space measure to be sharper than those for other 

measures. We will point out such cases where they occur. 

Theorems concerning the complexity of partial recursive functions 

[Bl] [RH) [Mee] all have straightforward full relativizations with 

proofs parallel to the original proofs. For example, from Blum's 

speed-up theorem [Bl] we obtain: 

Proposition 2.4: (relativized speed-up theorem) 

(VA)(Vs e R
2

(A))(ID: e Ri (A), f 0-1 valued)(Vi) 

[(cpi (A) = f) ~ (:[j)(cp/A) = f A s(x,t/A)(x)) s: t/A)(x) a.e.)J. 

(That is, for every program for f using an A-oracle, there is 

an a.e. much faster program also using an A-oracle.) 

The proof is exactly like the usual proof of the speed-up theorem, 

using a relativization of the recursion theorem in place of the 

recursion theorem itself. 

More interesting and useful are partial relativizations of the 

results on complexity of partial recursive functions. Following are 
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several examples. 

Our first theorem asserts that any two relative complexity mea-

sures are related by a fixed recursive function. Its usefulness 

lies in enabling us to draw conclusions about one relative measure 

from hypotheses about another relative measure,. as we do in some of 

the results following the theorem. 

Theorem 2.5: (recursive relatedness) 

If ~( ) and SC ) are two relative complexity measures on the 

same acceptable Godel numbering (~i( )}, then there exists re R2 

such that: 

(VA,i) [~.(A) ~ r o 
1-

t (A) a.e.] 
1-

and (VA, i) [ S. (A) 
1-

~ r o ~.(A) 
1-

a.e.]. 

Proof: We require a lemma which is a direct consequence of Konig's 

lemma ("Endlichkeitslemma," [Rol,Ex. 9-40]) and which will be used 

in several later theorems as well. 

Lemma 2.5.1: Suppose we have a recursive function f of k integer 

variables and one set variable. Suppose that f is total. 

Then f' e ~· 

Proof of lemma 2.5.1: The computation of f'(x1 , ••• ,~) may be carried 

out as follows: 

Generate a "computation tree" for the function f(x1 , ••• ,~,A) as 

A ranges over all subsets of N. Each branch of the tree must terminate, 
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since f(x1, ••• ,~,A) converges for all sets A. Therefore, the entire 

tree is finite and we will eventually finish generating it. We can 

then take the maximum of the outputs on all branches as the value of 

f 1 (x1 , .•• ,~). 

Proof of theorem 2.5, continued: By symmetry, it suffices to obtain 

r e R2 satisfying the first inequality. 

We define r(x,y) =max p(i,x,y), where 
i~x 

p(i,x,y) =max p'(i,x,y,A), and 
AQj 

{
wi <.Ao) (x) 

p ' ( i , x, y, A) = 
if t (~) (x) = y 

1 

otherwise. 

p' is a total recursive function of three integer variables and 

one set variable. Tilerefore, by lennna 2.5.1, p e R3• Tilus, r e R2• 

To see that r has the required properties, we consider a par-

ticular A and i. 

If ~i (A)(x) diverges, the inequality holds by convention. 

If ~ (A) (x) converges and x ";;?: i, then: 
i 

f'.. (A) t f'.. (A) 
r(x,~. (x)) ~ p (i,x,~. (x),A) 

1 1 

";;?: ~i (A) (x)' as required. 

Remark 2.5.2: The recursive isomorphism between any two acceptable 

QED 

enumerations of relative al~orithms (lennna 2.2) allows us to conclude 

the recursive relatedness of relative complexity measures on two 

different enumerations. Specifically, we obtain: 
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"If (cp. ( )} and (~. ( )} are any two acceptable enumerations of 
1 1 

( ) ~ ( ) relative algorithms, with relative complexity measures q> and ~ 

respectively, then there exists a recursive isomorphism f and a 

function r € R
2 

such that: 

(VA, i) rq> (A) ::;; r 0 $ (A) 
i f(i) a. e.] 

and (VA, i) r~ (A) ::;; r o q> (A) 
f (i) i 

a.e. ]." 

The proof is a simple modification of the proof of theorem 2.5, 

using the recursive isomorphism whose existence is given by lemma 2.2. 

Theorem 2.5 and remark 2.5.2 provide an alternate method to 

general axiomatic proof for certain types of theorems about relative 

complexity measures. The method is to prove the theorem for one 

specific measure, and then apply theorem 2.5 (or remark 2.5.2) to 

obtain the result for all measures. We will use this new proof 

method in some cases; as an example of its use, we give the following 

corollary to theorem 2.5 and remark 2.5.2. 

The result has two parts; in part (1) we see that (just as in the 

non-relativized case) there exist arbitrarily complex functions. 

However, in contrast to the non-relativized case, part (2) shows 

that inherently complex functions cannot be 0-1 valued. In fact, 

their complexity must result from the size of the function values. 

First, a definition: 

Definition 2.6: Assume B is a set, f € R1 and g is a total function 

of one variable. 
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"Comp (B) f > g i.o. (a.e.) 11 means 

(Vi) [c:p (B) = f ~ il 
(B) > g i.o. (a.e.)]. i 

"Comp(B) f s; g" means 

(:B:i) [q:> (B) = f 
i /\ i (B) 

i :s;g). 

"Comp (B) f s: g i. o. (a. e.)" means 

(B) (B)' 
(:B:i) fc:pi = f /\ ii s g i.o. (a.e.) ]. 

"Comp f > g i.o." means 

Comp(¢) f > g i.o., and similarly for the 

other abbreviations. 

If f = CA for some set A, we may write "Comp A" in place of 

"Comp f." 

We are now ready to state and prove the corollary: 

Corollary 2.5.3: Let i( ) be any relative complexity measure. Then: 

(1) (Vf, f total)(ag, g total)(VA) 

(A) [Comp g > f a.e.]. 

(2) (Vh, h total)(:B:f, f total)(Vg, g total) 

f(g sh a.e.) ~ (~A)(Comp(A)g sf a.e.)]. 

Proof: (1) Let r be the function obtained by applying theorem 2.5 

to i( ) and T( ) . We may assume without loss of generality that r is 

monotone nondecreasing in its second variable. 

Given f, let g(x) = 2r(x,f(x)) + 1. 

Ifcp/A) = g, then clearly (Vx)rT/A)(x) > r(x,f(x))], since it 

requires r(x,f(x)) + 1 steps merely to output the result in binary. 

But r(x,i (A)(x)) ~ T (A)(x) a.e., by theorem 2.5. 
j ' j ' 

Thus, r(x,i. (A)(x)) > r(x,f(x)) a.e. 
J 

i (A)(x) > 
j 

f(x) a.e., as required. 
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If the relative complexity measure ~( ) is on an enumeration 

of relative algorithms other than oracle Turing machines, we apply 

remark 2.5.2 in place of theorem 2.5 and obtain the same result. 

(2) Let r be the function obtained by applying theorem 2.5 to 

~( ) and SC ) , again chosen to be monotone nondecreasing in its 

second variable. 

Assume h is given. 

2 2 
Define f(x) = r(x,x + h (x)). 

Now consider any g with g ~ h a.e. 

Let A = {<x,g(x)>lx E: N}. 

It is straightforward to design a machine cp. ( ) such that 
J 

cp, (A) = g and for which S. (A)(x) ~ x2 + h 2 (x) a.e. For instance, 
J J 

the machine cp. (A) on argument x can operate by successively computing 
J 

<x,O>, <x,1>, <x,2>, •.• , and asking if each is in A. If so, the 

machine terminates with the appropriate output. 

2 2 
The bound x + h (x) results from the particular form of the 

pairing function used rRol, ~ 5. 3]. 

But then ~.(A)(x) 
J 

~ r(x,S. (A)(x)) a.e., by theorem 2.5. 
J 
2 2 

~ r(x,x + h (x)) a.e. 

f(x). 

So ~. (A)(x) ~ f(x) a.e., as required. 
J 

As in (1), if the relative complexity measure~( ) is on an 

enumeration of relative algorithms other than oracle Turing machines, 

we apply remark 2.5.2 in place of theorem 2.5 and obtain the same 

result. 

QED 
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Informally, corollary 2.5.2 shows that (1) functions must be 

as complex as their size, and (2) given the proper oracle, a function 

need be no more complex than its size. 

Henceforth, whenever we use this new method of proof, we will 

appeal to "recursive relatedness"; it will be understood that we 

intend this to mean we are applying theorem 2.5 or remark 2.5.2, 

whichever is appropriate, in a fashion similar to that used in the 

proof of corollary 2.5.3. 

The non-relativized compression theorem rBl] asserts the 

existence of a recursive "compression function" h such that whenever 

we are given any total running time~., we can obtain a 0-1 valued 
l. 

function not computable in measure~~., but computable in 
l. 

measure ~ h o ~ .• 
l. 

Lemma 2.7 is a relativization of this result; it asserts the 

existence of a recursive "compression function" h such that whenever 

we are given any total function g, we can obtain an oracle set B and 

a 0-1 valued function not computable from a B-oracle in measure g, 

but computable in measure h o g. 

This lemma will later be used to prove theorem 3.6. 

Lemma 2.7: Assume we are given a relative complexity measure~(). 

Then (ah e R2)(Vg, g total)(aB,A) 

(1) Comp(B)A > g i.o. 

and (2) Comp (B) A ~ h o g. 

Proof: Given g, we define B [<x,g(x)>lx 8 N}. 
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Define: 

{

l :. <:p (B) (x) 
TTl (x) 

0 

if~ (B)(x) ~ g(x)~ 
TT l (x) 

otherwise 

A is thus defined from B by a diagon,alization which insures that 

the first condition is satisfied. To verify the second condition, 

we must define h. 

First, define a relative algorithm~j ( ) as follows: 

0 

if (~z)(<:x,z> e X] and 

(X) 
i () (x) Sµz[<:x,z> E:X), 

TTl X 

if (~z)[<:x,z> E: X] and 

' ( (X)(x) > µz[<x,z> e X], 
TTl X) 

= otherwise. 

(A note on this definition: the existence of the relative 

algorithm t given by axio~ (2) of definition 2.3 immediately implies 

that the tests for inequality may be made effectively in x ahd X.) 

Now define h(x,y) =max h'(x,y,X), where 
x~ 

if <:x,y> € x, 
h' (x,y,X) "' 

otherwise. 

h' is total recursive in x, y and X, since: 

<x,y> e x ~ cp. (X) (xH 
J 

• ij (X)(x)i, by axiom (1). 

Therefore, he: R2, by lemma 2.5.1. 

For the particular g, A and B under consideration, we compare 
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the definition of CA with the definition of q>j ( ) and conclude that 

q> j (B) = CA• 

Also, since <x,g(x)> € B for all x, it follows that: 

h(x,g(x)) ~ h'(x,g(x),B) 

~ (B)(x) 
j 

for all x, as required. 

Remark: We note that the proof of lemma 2.7 actually provides a 

result considerably stronger than that stated. Namely, 

"(Vh1 e: R
2

)(:Hh
2 

e: R
2

) (Vg, 

fComp(B)g :s: h
1 

o g a.e. 

g total) ('fB) (!a:A) 

~ (1) Comp(B)A > g i.o., and 

(2) Comp (B)A ,. h2 a ] " "" o g • e. • 

To prove this result, we can either modify the given proof of lemma 

QED 

2.7, or note that the result holds for space measure and use recursive 

relatedness. 

The condition "Comp (B) g. :s: h1 o g a. e." is an example of an 

"honesty condition" - one which specifies that a function has a 

running time which is approximately equal to its size. Honest 

functions (a generalization of running times, as we will later show) 

are extensively studied in fMeMo]. 

Honesty conditions will turn out to be necessary hypotheses 

for many of our later theorems, particularly in chapters 5 and 6. 

There, for simplicity, we will usually require that a function be a 

running time, whereas a less restrictive honesty hypothesis would 

have been sufficient. 
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In lennna 2.7, the first conclusion may be sharpened to assert 

that Comp(B)A > g a.e., rather than merely i.o. This is done by 

introducing two additional tricks into the construction. 

The first is a sharper form of diagonalization in the construction 

of A which makes g an a.e. lower bound on A's complexity. The basic 

construction is due to Rabin and may be found in rIIB]. 

Rabin's method defines CA at successively larger values of x, in 

order. Thus, computing CA(x) for any x requires first computing 

g(O), g(l), .•. , g(x). In order to keep the complexity of A as small 

as possible, we introduce the second modification, due to Blum: we 

compute CA on arguments not in order of size of the arguments, but 

in order of size of the values of g. 

Since both of these ideas will be used in the succeeding chapters, 

we give the detailed construction: 

Theorem 2.8: Assume we are given a relative complexity measure P( ) 

Then: 

(~he R2)(Vg, g total and g ~ ~xrx])(~B,A) 

(1) Comp(B)A > g a.e., 

and (2) Comp(B)A ~ho g 

Proof: Given g, we define B as before. 

We define a relative algorithm y( ) as follows: 

For any X, y(X) will be defined in stages; thus, to compute 

y(X)(x), we begin executing stages in the definition of y(X) until 
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the value of y(X)(x) becmnes defined. At each stage, at most one 

additional integer is added to the domain of y(X). 

During the construction, an index i will become "cancelled" 

when we have i'hBured that y(X) ~ <;>
1 

(X). 

Stage n in the definition of y(X): 

Find the smallest integer y for which there exists an integer 

x s y such that y(X)(x) was not defined at an earlier stage and 

<x,y> € X, and for this y the smallest x. 

(It is possible that this search may not terminate. in which 

case y(X) will diverge at all arguments for which it has not already 

been defined.) 

When ~' y> has been found, we find the smallest uncancelled 

i ~ x such that Ii (X)(x) s y. 

If no such i exists, define y(X)(x) = 0. 

If i does exist, define y(X)(x) = 1 ~q:ii (X)(x) and cancel i. 

In either case, go on to stage n + 1. 

EM'.> or COR'3TR.tx:TION 

Verification: We let A be a set such that y(B) • CA. (This ia 

possible since y(B) is 0-1 valued and total.) 

We claim Comp(B)A > g a.e. 

For if not• then for some i, <;>
1 

(B) = CA and t
1 

(B) s g i.o. 
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But after some stage n in the construction of y(B) = CA' all the 

indices smaller than i which ever get cancelled have already been 

cancelled. But for some x such that CA(x) is defined after stage n, 

~. (B)(x) ~ g(x), 
l. 

so that we will define: 

1 .:. r.p. (B) (x), a contradi-ction. 
l. 

To verify the second conclusion, we choose j such that r.p. ( ) 
J 

define hand proceed exactly as in the proof of lennna 2.7. 

QED 

RemarK: As for lemma 2.7, the property of B that we actually require 

in this theorem is that B makes the function g honest (i.e. g can be 

computed from a B-oracle within measure approximately equal tog). 

We can thus obtain the more general result: 

II (\ihl E: R2) (:B:h2 E: R2) (\fg, 

rcomp (B) g ~ hl o g a. e. 

g total and~ ~xrx])(VB)(:B:~) 

~ (1) Comp(B)A > g a.e., and 

(2) Comp(B)A~h2 o g a.e.]" 

A formal proof of this remark uses techniques we have not yet 

developed, namely a method of proof we will call the "domain-of-

convergence method." In Chapters 4 through 6 we will discover 

ourselves repeatedly using this type of method to prove theorems. 

A restricted form of the idea of domain-of-convergence arguments 

may be stated in the form of a lennna, a relativization of the 

combining lennna rHH]. The statement of a lemma sufficiently general 

to imply all the later results is necessarily cumbersome; we will 

therefore present it in something less than its full generality. 
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In the form of lemma 2.9 below, the relativized combining 

lemma implies some of the later results (corollary 2.9.1, lenm1& 4.7, 

lemma 6.2 •. 1). Several others (theorems 4.8, 6.3) will use essen• 

tially similar methods. 

The lemma re1ates the complexity of a computation to the 

complexity of its subcomputations. As in raol, §s.6], we let Dk 

represent the finite set with canonical index k. 

Lemma 2.9: (combining 1emma) 

Assume we are given a relative complexity measure t< ) and a 

function c e: Rnri-
2 

such that: 

('711 , ••• ,im,jl,j 2 ,x,A) 

[(~i (A)(x)l A ••. A ~i (A)(x)i A ~j (Dj 2)(x)l) 
1 m 1 

~ (!'!) (A) (xH)1. 
c ( i 1 ' • • • ' 1m' j 1 ' j 2 ) · 

Then there exists g £ R2 such that for all A, 

(A) (A) (D ) 
g(x,max{li (x), ..• ,11 (x),tj J2 (x)}) 

1 m 1 

~ I (A)(x) 
c ( i 1' • • • 'im' j 1'j2) 

a.e. (x). 

Note: This proof is still valid if j and k are eliminated, or it c is 

also a function of additional parameters which don't affect the 

convergence implication. 
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t . (A)tx) if (Vk :Sin) 
c ( i 1 ' • • • , im ' j 1' j 2) 

[ f (A) $ y], 
ik 

and 

0 otherwise. 

It is easily seen that g" is total recursive in.m + 4 integer 

variables and 1 set variable. Therefore, by lemtna 2.5.1, g' ( 1\n.+.4• 
so that g £ R2• 

To see that .g has the desired properties, we note that if 

x ~max (i1, ••• ,im,jl,j 2), then: 

(A) (A) (D ) 
g(x,max(ti (x), ••• ,ti (x),tj J2 (x)}) ~ 

1 m 1 

g"(x,max(~i (A)(x), ••• ,t
1 

(A)(x),tj (Dj 2)(x)},i
1

, ••• , 
1 m 1 

i~,jl,j2,A) 

= as required. 

QED 

As a simple example of the use of lenma 2.9, we give the following 

corollary •. The result, a relativization of the compression theorem, 

is closely related to lemma.2.7. Here, however, we fix the oracle 

(B) 
set B in ad~ance and work with B~recursive functions ~i · , whereas 

in lennna 2.7 we work with any total function g and find a set which 

makes g honest. 

Honesty is relevant for this corollary as well. We begin with 
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any B-recursive function cpi OP, but we only ·obtain a set A with 

complexity approximately equal to t
1 

(B)(a B•honest function) rather 

than cpi (B). 

Corollary 2. 9.1: Assume we are given a relative complexity measure ~ ( ) • 

Th.en (:eh ( R2)(VB)(Vi, cpi (B) total) (:!IA) such that: • 

Comp(B)A > cpi (B) i.o. 

and Comp(B)A Sh o Ii (B) a.e. 

Proof: We define a relative algoritlnn y< ) as follows: 

For all i, x, B, 

0 

if cp {B)(x)l and 
i 

t (B)(x) s cp (B)(x) 
TI (x) i ' 

if cp (B)(x)l and 
i 

(B) (B) 1n (x) (x) > cpi (x), 
1 

if cpi (B) (x) t. 

By the relativized s-m-n theorem, there exists c f R1 such that 

y(B)(<i x>) - cp (B)(x) 
' - c(i) • 

Now it is clear that (Vi,x,B)[cpi (B)(x)l (B) 
~ cpc(i) (x)l]. 

We may now apply lemma 2.9 and assert that: 

(:B) 
We now fix i and B as in the hypotheses, and let CA = cpc(i) • 

(B) 
Tilis is possible since the hypotheses imply that cpc(i) is O•l 

valued and total. 
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ay the diagonal construction defining it, CA satisfies the 

fir.st concluiiJion; tne secoud conclusion follows from (*). 

QED 

Many of the interesting partial relati'\l'izations of the speed•up 

theorettl. [Bl] may be t!kpressed in terms of ''helping"; we discuss in 

these terms the ainount by .vhich possession of ·an oracle speeds up the 

computation of a function. This type of question forms the subject 

matter of Chapters 4, 5 and 6. 

A relativization of the union theorem (McC] will be given in 

Chapter 3, together with some interesting consequences. 
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3. Complexity-Determined Reducibilities 

Just as we study complexity classes within non-relativized 

complexity theory [McC] [McCMe], we may consider resource-bounded 

relative computation. A fixed resource bound defines a kind of 

"reducibility" as follows: 

Definition 3.1: For any relative complexity measure 1< >,any sets 

A and B, and any total function f of one variable, 

"A :S: B (I( ))" 
f means Comp(B)A :S: f a.e., where complexity 

is measured int<>. 

More generally, if e is any cla.ss of total functions of one 

variable, 

"A s:C B (I( » 11 means (:tlf (CHA :S:f B (I( »1 

We read this notation as "A is f-reducible to B" and "A is 

C-reducible to B," respectively. When no confusion is likely, we 

omit mention of the measure we are using, and write simply "A :S:f B11 

and "A s:C B. " 

Several connnonly-studied reducibilities usually defined via 

"natural" (i.e. non-complexity-theoretic) restrictions on the method 

of computation may be expressed as C-reducibilities for appropriate 

choices of the class c·, and thus may be regarded as coniplexity-

determined. In particular, truth-table reducibility [Roll and the 

relation "primitive recursive in" are complexity-determined 

reducibilities, while many-one and one-one reducibilities are not. 

We first consider primitive recursive reducibility. We write 

"A :S: B" to indicate that A is primitive recursive in B, and "£ :S: 811 

p p 
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to indicate that f is primitive recursive in B [K]. 

Theorem 3.2: Let C =[primitive recursive functions of one 

variable}. Then (VA,B)[A ~ B 
p 

Proof: We use the type of T-predicate used by Davis [D], modified 

slightly for our Turing machine model. 

As in [D], we see that: 

B 
(VB)[Az,x,y[T (z,x,y)] is primitive recursive in B]. 

An examination of the encoding used in the T-predicate shows 

that there exists f, a primitive recursive function of three variables, 

such that: 

(VB,w,x,y,z)[(T (B)(x) ~ x) ~ 
z 

B 
(~y ~ f(z,x,w))[T (z,x,y)]]. 

(That is, some code number for the computation is effectively bounded 

by a function of the number of steps in the computation, the input and 

the index of the machine.) 

We now define, for every set B, a function g of three variables 
B 

as follows: (Notation is from [ K].) 

r U(µy ~ 

l 
B 

f(z,x,w)[T (z,x,y)]) 

0 

if y exists 

otherwise 

(Intuitively, gB(z,x,w) represents the output of the computation 

~ (B)(x), provided T (B)(x) ~ w.) 
z z 

gB is obviously primitive recursive in B, for any set B. 

Now assume we have sets A, B with A~ B. This implies: c 
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(ai, ah a primitive recursive function of one variable) 

(lfx)[T. (B) (x) s: h(x)]]. 
l. 

Then the definition of gB shows that CA= A.x.fgB(i,x,h(x))], and 

the function on the right-hand side of this equation is primitive 

recursive in B. 

Thus, A s:e B ~ A s: B. 
p 

The converse is proved using the following lennna: 

Lemma 3.2.1: (VB)(Vf)r(f s: B) ~ (ap, a primitive recursive function) 
p 

(That is, any function primitive recursive in !BX. set is no larger than 

some primitive recursive function.) 

Proof of lemma 3.2.1: We carry out a straightforward proof by induction 

on the definition of the class of functions primitive recursive in B. 

In particular, CB s: t..x.rl], which is primitive recursive. The 

other base functions for the induction are themselves primitive recursive. 

The two induction steps (composition and recursion) follow without 

difficulty if we note that: 

(Vf, primitive recursive)(af 1
, primitive recursive) 

f (f' ~ f) /\ (~' is monotone increasing in each of its variables)] 

For example, we verify the recursion step: 

Assume that h is a function of k + 1 variables with h s: B. 
p 

Assume that g is a function of k - 1 variables with g ~ B. 
p 
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Assume h s:: ph and g s:: pg' where ph and pg are each primitive 

recursive and monotone increasing in each variable. 

Assume a function f is defined by primitive recursion from g and h: 

(We write "x" to indicate "x1 , ••• ,~.") 

f(O,x) = g(x) 

(Vy) f(y+l,x) = h(y,f(y,x),x) 

Now define pf as follows: 

It is easy to verify that pf is primitive recursive and f s:: pf' 

as required. 

Proof of theorem 3.2. continued: 

We again use induction on the class of functions primitive recursive 

in B. 

An oracle Turing machine with a B•oracle can obviously compute 

CB rapidly. In particular, 

(ai)(ap. a primi~i~e recursive function) f<G'i (B) =CB) A (T. (B) s;; p) ]. 
l. 

The other base functions are primitive recursive, and so are 

computable in primitive recursive time. (CJ 

The two induction steps are straightforward; we verify the 

primitive recursion step, leaving the composition step to the reader: 
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Assume we have f, g and has in the proof of lemma 3.2.l. As 

inductive hypothesis, we assume: 

(3:i) f (Cp i (B) = g) /\ (T (B) s: p )] 
i g 

and (3:j) f (Cp (B) 
j = h) /\ (T (B) 

j s: ph)] 

where p g and Ph are primitive recursive and monotone increasing in 

each variable. 

By lenlll8 3.2.l, there .exists f', a primitive recursive function 

such that f s: £'. 

We define a primitive recursive function pf as follows: 

= 

(lfy) = 

P (x) g 

+ ph(y,f'(y,x),x) 

We claim that the primitive recursive function pf+ x1 + •.• + ~ + Y 

is an upper bound for the time required to compute f. If further details 

on this induction step are desired, see re], fAl], rRD], fRRW] or rMeRD). 

Corollary 3.2.2: Theorem 3.2 is true for S() in place of T( ). 

Proof: s< ) and r< ) are related, in the sense of theorem 2.5, by a 

primitive recursive function, as we can show by an argument similar to 

the looping argument in the discussion of S( ) in Chapter 2. 

Remark: Theorem 3.2 is false for some pathological measures. 

We now consider truth-table reducibility rRol]. A result of 

McLaughlin rMcL] combined with theorem 2.5, gives the following 

complexity-determination result for truth-table reducibility: 
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Proposition 3.3: Fix any relative complexity measure. 

Let C = Rl" Then: 

(VA,B) rA s:tt B ~ A :s;e BJ. 

On the other hand, many-one and one-one reducibilities are not 

determined by a complexity restriction, in any relative complexity 

measure. The reason is that there are pairs of sets computable from 

each other in a very small amount of resource but which are not many-

one reducible to each other (for example, any nonrecursive recursively 

enumerable set and its complement). Thus, for natural measures, it is 

obvious that many-one and one-one reducibilities are not complexity-

determined. For general measures, however, a little work is required: 

Proposition 3.4: Fix any relative complexity measure. Let e be any 

class of total functions of one variable. Then it cannot be the case 

that: 

Proof: Assume the contrary: let C determine many-one reducibility 

for measure ~( ) • 

By consideration of T( ) and remark 2.5.2, we see that: 

<~ (K) s: s) l. 
i 

But K I- K, so that (Ve € C) fc(x) < s(x) i.o. ]. 
m 

To obtain a contradiction, it suffices to show that: 

(~A,B)((A S:m B) A (Comp(B)A > s a.e~] 

But this follows from the following lennna: 
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Lemma 3.4.l: Fix any relative complexity measure. Then: 

(Vs € R1)(VB recursive)(aA recursive) 

(B) fComp A > s a. e. ) • 

Proof of lemma 3.4.1: W'e note that 

satisfy the requirements for an acceptable·Godel numbering and a Blum 

complexity measure. 

Then the existence of arbitrarily cODtplex (a.e.) recursive sets 

in any Blum measure. fBl) gives us a set A such that: 

~i :::: CA ~ $i > s a.e. 

which translates into the desired result by the definitions of ~i and ei. 

Proof of proposition 3.4. continued: 

Now select any infinite, coinfinite recursive set B, and use 

lemma 3.4.1 to obtain an appropriate set A. We can easily obtain A 

infinite and coinfinite, and so A =1 B. But Comp(B)A > s a.e., giving 

the desired result. 

QED 

Corollary 3.4.2: Proposition 3.4 is true for one-one reducibility in 

place of many-one reducibility. 

R!:.2.21: Implicit in the proof above. 

bpen Que·stion: Is it true that: 

(Vs € R1) ('lfB infinite and coinfinite) (3:A •1 B) 

fComp(B)A > s a.e.] ? 
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Having shown that primitive recursive and truth-table reduci-

bilities are complexity-determined, we ask if it is possible to ex-

press them even more succinctly; for instance, is it possible to 

characterize each by a single resource bound function rather than a class 

of functions? 

This question immediately suggests that we would like an analog 

to the union theorem fMcC], and so we prove the following: 

Theorem 3.5: (relativized union theorem) 

Assume we have a sequence of total functions (t.}, with: 
}_ 

Let T be a set such that ~i,nrt.(n)] is recursive in T. 
}_ 

Also assume that we have a sequence (B.} of sets, and a set B 
}_ 

such that: ~i,nrcB (n)] 
i 

Then there exists a function f 

(v· ·)re"' CB.) < f ) <:=> i,J ~i J - a.e. 

is recursive in B. 

e R
1

(B join T) such that: 

(B:k)(Pi(Bj) s: tk a.e.)]. 

(This means that for any B., the class of functions computable 
J 

with oracle B. within measure f is exactly the union of the classes of 
J 

functions computable with oracle Bj within measure tk' the union being 

taken over all tk.) 

Proof: The construction of f is carried out in stages, with f(n) 

being defined at stage n. 

We define an auxiliary function g(i,j), whose values may be changed 

at successive stages. The significance of g(i,j) is as follows: 

We "guess" that Pi.(Bj)(x) s:; t (' .)(x) a.e. 
g }_' J 
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Stage n: (Define f(n).) 

For all (i,j) such that i + j = n, define g(i,j) = n. 

Let E = {(i,j)ji + j ~ n and t 1 (Bj)(n) > t (i .)(n)}. 
g 'J 

Define: t (n) if E = ¢ n 

f (n) == 
min t (n) otherwise. 

(1,j)'€E g(i,j) 

For all (i,j) € E, redefine g(i,j) = n. 

Go on to stage n + 1. 

END OF CO~TRUCTION 

Verification: 

Assume we have i, j, k and we know that ~i (Bj) ~ tk a.e. We would 

like to conclude that t
1 

(Bj) ~ f a.e.; it therefore suffices to show 

that (Vk)f~ ~ f a.e.]. 

If not, then for some k we have f(n) < ~(n) on infinitely many 

arguments n > k. 

At stage k, there can only be finitely many pairs (i,j) with 

g(i,j) < k. We let F be this finite set of pairs. After stage k, 

no pair (i,j) ever has g(i,j) become defined to be less than k. There• 

fore, if g(i,j) < k at some stage after stage k, we know that (i,j) e F. 

Now if f(n) < tk(n) on infinitely many arguments n > k, then for 

these n, f(n) is defined to equal tg(i,j)(n) for some (i,j) e F with 

g(i,j) < k. But then at stage n, g(i,j) is redefined to equal n. 
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Since F is a finite set, this can only occur finitely often 

before no pairs (i,j) remain with g(i,j) < k. 

Therefore, we have (Vi,j) 

r(~k)(!!ii (Bj) ~ ~ a.e.) ~ (~i (Bj) ~ f a.e.)] 

Conversely, assume we have (i,j) with (Vk) [!Iii (Bj) > tk i.o.]. 

Titen each time we define g(i,j), we will subsequently reach a stage n 

where: 
!Ii (Bj)(n) > t ( ) 

i g(i,j) n • 

At this stage n, (i,j) will be in set E, so the definition of 

f will insure that !Iii (Bj)(n) > f(n). We will also redefine g(itj). 

But it is easy to see that this must happen for infinitely many 

arguments n, so that: 

Thus, we have: 

!Ii. (B j) > f i. o. 
1 

( ~ (B.) > f i ] 
~ i J • o. • 

It is clear that f is recursive in B join T. 

QED 

We now apply theor.em 3. 5 to the cases of truth-table reducibility 

an.d primitive recursive reducibility. 

Corollary 3.5.1: Consider any countable collection of sets (Bi) with 

B as in·theorem 3.5. There exists f € R (B join K) such that: 
1 

(Vi,A)f A stt B1 .~ A ~f Bi]. 

Proof: We define a sequence (t.) as follows: 
1 



Let t. (x) 
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= fmax (~j (x) l~j (y) l l j~i 
0 

for all y :::: x} if this s·et is 

nonempty 

otherwise 

These ti have the properties required for theorem 3.5, with 

T = K. 

Also, (Vr e R1)(~j) [r:::: tj a.e.] 

(Vj)(:irr E: R1) [tj :::: r a.e.] 

Thus, by proposition 3.3, if C =(ti}' then 

(VA,B) rA ~tt B ~ A:::;~ B]. 

Application of theorem 3.5 now gives the desired result. 

Corollary 3.5.2: Assume we are working withs< ) or T( ). Consider 

Qli!D 

any countable collection of sets (Bi}'· with B as in theorem 3. 5. There 

exists f e R (B) such that: 
1 

Proof: Let (p1} be an enumeration of the primitive recursive functions 

such that ~i,x[pi(x)] 'is recursive. then define: 

t.(x) ~max pj(x). 
1. • .S:i 

J ' 

{ti} satisfies the required properties for theorem 3.5, with 

T = ¢. 

Clearly, (Vi)fp1 :::: ti a.e.], and 

(Vi)(aj)rt1 ~ pj a.e. ]. 
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Applying theorems 3.2 and 3.5 gives the desired result. 

QED 

Thus, we see that for any countable collection of oracle sets 

(e.g. recursive sets, arithmetical sets), truth-table reducibility 

is determined by a single resource bound function on any measure, and 

primitive recursive reducibility is determined by a single resource 

bound function on measures TC ) and SC ) . 

The next question we consider is whether any single function can 

determine either of these two reducibilities on all pairs of sets. 

This we show to be impossible; thus, the countability hypothesis in 

corollaries 3.5.l and 3.5.2 cannot be eliminated. 

Theorem 3.6: There is no function f of one variable such that: 

(VA,B recursive inf) r As B ~ As B]. 
tt f 

Proof: Assume such a function f exists. 

We claim that (Vr s R1) rf > r a.e. ]. 

For if not, then (~r 8 R1) [r ~ f i.o. ]. 

But then, by Rabin's diagonal method, there exists a recursive 

set A such that Comp A> r a.e. We have A stt ¢, since A is recursive, 

but clearly 1(A sf¢), a contradiction. 

Now consider the function h whose existence is asserted in lemma 2.7. 

We may assume without loss of generality that h is monotone increasing 

in both variables. 

Define a function g as follows: 
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{

max{ylh(x,y) ~ fC:x)} 
g(x) = . 

0 

if the set is nonempty 

otherwise 

We claim that ('fr e: R1) rg > r a.e.]. This is easily concluded 

from the facts that (Vr e: R
1

) r£ > r a.e.] and that his recursive. 

We now apply lemma 2.7 to obtain A and B such that: 

r(A ~hog B) /\ -i(A ~g B) )• 

But (A ~hog B) implies (A ~f B) since h o g .~ f a. e. 

""l(A ~g B) implies -i(A ~tt B), since g is almost everywhere 

greater than each recursive function. 

Thus, f does not determine truth-table reducibility on all pairs 

of sets. 

Theorem 3.7: Assume that lil'e are working with space measure on oracle 

Turing machines. There is no function f of one variable such that: 

(VA,B) fA ~ B ~ A~£ B]. . p 

Proof: The proof is analogous to that of theorem 3.6: 

We claim, if such an f exists, that: 

(Vr, primitive recursive in one variable) ff> r a.e.], 

Fo~ if not, then: 

(~r, primitive recursive in one variable) rf ~ r i.o.]. We may 

assume without loss of generality that r is monotone nondecreasing. 

QED 

But then,, by a Rabin diagonalization argument, there exists a recursive 

set A such that Comp A > r a.e. 
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However, by a result o~ Cobham (C] and an examination ,o:f the 

diagonalization, we see that: 

(3:i) (3:s, primitive recursive of one variable) ltP i = CA /\ Si :s;; s a. e. ] • 

We thus have A :s;P ¢, but -i(A s:f ¢). 

If we let~()= s<) in lennna 2.7, it is possible to obtain a 

function h satisfying the. conditions of the lermna which is primitive 

recursive. We construct Band A as iri lemma 2.7, and define gas in 

the proof of theorem 3.6. 

As b'efore, we obtain: 

('fr, primitive recursive in one variable) rs > r a.e.]. 

Thus, as before', A :s;; f B /\ 1(A :s;;p B). 

Therefore, f does not determine primitive recursive reducibility 

on all pairs of sets. 

Remark: An analogous proof also holds for T() in place of S( >. 

Open Question: Is theorem 3.7 true for all Blum measures? 

Open Question: Examine other natural reducibilities, such as bounded 

truth-table reducibility, or any of the others mentioned in fJlf, to 

see if any are complexity-determined. 

We have seen that some reducibilities with "natural" definitions 

QED 

may be alternatively described' by a complexity restriction. Conversely, 

it ispossible to define new reducibilities by a complexity restriction. 

In the remainder of this chapter, we give an example of such a definition, 
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and examine some properties of the resulting reducibilities. 

Definition 3.8: For any sets A, B, C, we say "A is c-reducible to B" 

(A s:C B) provided: 

A s:e_ B for C= R
1

(C). 

We write "C-reducibility" to indicate ( (A,B) IA s:c B}. 

Thus, any set C determines a new reducibility, namely, the 

collection of pairs of sets computable from each other in C-recursive 

measure. The reducibilities are clearly measure-invariant, by 

theorem 2.5 and remark 2.5.2. 

Strictly speaking, anything we ca11 a "reducibility" ought to be 

reflexive and transitive, properties which do not hold for general 

classes C. • However, our c-reducibilities are reflexive and transitive: 

reflexivity is clear, for any c. We demonstrate transitivity: 

Lemma 3.9: For any sets A, B, C and D, 

[(A s;c B /\ B s;c D) ~ A s;c D]. 

Proof: By measure invariance of C-reducibility and closure of R1(C) 

under finite modification, we obtain: 

c:H) (:frc 1 
e: R (c)) re == cp. (B) /\ S (B) 

s; cl]' and 1 A - l. i 

(:frj )(:frc2 e: R cc>, re 1 · B 
= cp (D) 

j 
/\ S (D) 

j s; c2]. 

We describe an oracle Turing machine which computes CA using 

a D-oracle: 

The Turing machine computes CA according to procedurecpi (B), but 

the values about which we query the B-oracle get written on a second 
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track of the worktape instead of the oracle tape. Then, to decide 

their membership in B, we use~. (D), with our D-oracle. 
J 

How much space is required by this new machine? 

For input x, the machine uses S. (B)(x) to carry out the computation 
J_ 

In addition, the largest argument for which we might need 
(B) 

CB is 28i (x) so we might also require: 
(B) 

s.<D)(O), s.<D)(l), •.. ,s_<D)(2Si (x)). 

to compute 

J J J 

Thus, the space needed is bounded above by the maximum of: 

(B) 
s.(B)(x),s.(D)(O), ... ,s.CD)c28 i (x)), 

1 J J 

which is bounded above by the maximum of: 

c (x) 
c

1
(x),c 2 (0), ..• ,c2 (2 1 ·}. 

But this maximum is a function in R
1

(C). 

Thus, A :S:c D. 

We remark that results similar to theorems 3.6 and 3.7 may be 

obtained for these reducibilities as well. 

There are simple relationships between these reducibilities and 

others: 

Proposition 3.10: (a) For any set C, A :S:tt B ~ A :S: B ~ A ~ B. 
C T 

(b) If C is a recursive set, A ~C B ~ A::::; B. 
tt 

Proof: Immediate from proposition 3.3. 

QED 



51 

We would like to have a structural description of C-reducibility 

as an alternative to the complexity definition. We obtain the following 

partial result in this direction: 

Remark 3.11: Assume C sc B. Then (VA) 

A ~C B ~ (8f € R1 (C)) rx €A ~ tt-condition f(x) is satisfied by B] 

(For notation, see rRol]). 

(This says that, provided the oracle set has a sufficiently high 

degree of unsolvability, any reducibility of our type may be described 

by the ability to construct a truth table for the computation with the 

help of the appropriate oracle.) 

Proof: (~) Similar to McLaughlin's proof [McL]. The condition C sc B 

is not needed for the proof in this direction. 

(~) We assume that C sc B, specifically, that 

CC = cpi (B), <Pi (B) s g where g e R
1 

(C). 

We assume also that: 

rx €A ~ tt-condition f(x) is satisfied by B]. 

The We show that CA is computable from B in C-recursive time. 

procedure we will use for computing CA using a B-oracle is as follows: 

"Given input x, we compute f(x). f is recursive in C, so 

we simulate a machine computing f from C; we use cp. (B) to 
l.. 

obtain answers to questions about membership in C. 

Once we have the truth-table f(x), we then ask the B-oracle 

about membership of each argument in the truth table and use the 
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answers to find the value of CA(x) from the truth table." 

How much time is required by this procedure? 

If we assume that f = Q. (C), then we can obtain f(x) in time 
J 

approximately bounded by: ?T. (C)(x) 

T. (C)(x) + Li g(y), 
J y=O 

since the largest value y for which we might need to compute Q. (B)(y) 
i 

2
T; (C)(x) 

is ~ Clearly, this sum is bounded by a total C-recursive 

function. 

Once we have f(x), it is not difficult to show that the remaining 

time required to obtain CA(x) by asking the appropriate questions about 

membership in B is bounded by a C-recursive function. 

Thus, the total time is bounded by a C-recursive function, so 

A ~ B. c 

Each set determines a reducibility. We may obtain a "hierarchy 

of reducibilities" between truth-table and Turing reducibilities, 

ordered by a comparability relation. Using a relativization of the 

compression theorem, we conclude that comparability is exactly 

determined by size of functions: 

Theorem 3.11: Assume we are given two sets, C and D. Then 

Proof: ( ~) Obvious. 

QED 
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(-+) Assume (~f e: R
1 
(C» (ifg e: R

1 
(D» [g < f i.o.]. 

Then by a direct relativization of the compression theorem, 

(~A recursive in C)(ifi) rcpi (C) =CA ~ ~i (C) > f a.e. ]. 

It is easy to show that A sc C but 1(A sD C), a contradiction. 

Corollary 3.11.1: For ~ny sets C, D, 

(C =T D) ~ (C-reducibility = D-reducibility). 

In the remainder of this chapter, we ask about the converse of 

Corollary 3.11.1. That is, if sets determine the same reducibility, 

QJID 

need they be Turing equivalent? In certain cases, the answer is yes: 

Definition 3.12: A set A is weakly majoreducible if there exists 

f e: R (A) such that: 
1 

(ifg)[8 ~ f ~ A is recursive in g]. 

This definition is weaker than, although similar to, the definition 

of "majoreducible" used and studied ejttensively by Jockusch in rJ2]. 

Theorem 3.13: If sets C and Dare weakly majoreducible, then: 

(C-reducibility = D-reducibility) 

Proof: If c-reducibility = D-reducibility, then by theorem 3.11 and 

closure of R1(D) under finite ~dification, we have: 

('iff e: Rl (C))(~g e: R/0>) rs~ f]. 

By weak majoreducibility of C, C is recursive in g for the 

appropriate choice of f. 
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Therefore, C ~T D. 

Symmetrically, we have D ~T C. 

QED 

Corollary 3.13.1: If sets C and Dare recursively enumerable, then 

(C-reducibility = D-reducibility) ~ (C =TD). 

Proof: It follows immediately from W'ork of Jockusch in rJ2] that all 

recursively enumerable sets are majoreducible (his definition) and 

hence weakly majored~cible. The reason is as follows: 

Suppose C is a recursively enumerable set. If C is finite, f = 0 

satisfies definition 3.12. 

Otherwise, let ( ci} be an effective enumeration of C W'ithout 

repetitions. 

Define f(n) = µz[(Vy)(y > z ~ c > n)]. 
y 

It is easy to show that f e R
1 

(C). 

If g ~ f, we lllllY compute CC (n) by listing C for g(n) steps to see 

if n turns up. Thus, C is recursive in g, so is majoreducible. 

QED 

Note: Examination of the proofs above, combined with the Friedberg• 

Muchnik theorem [Rol, § 10. 2] shoW's that there exist pairs of recursively 

enumerable sets C and D determining incomparable reducibilities; that 

is, 

and 

. (:B:A,B) r (A ~c B) A ...,(A ~D B)] 

(:ii:A,B)[(A ~ B) A 1(A ~CB)]. 

We have thus shown that for a large collection of sets, if any pair 
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determines the same reducibility, the two sets must be Turing equivalent. 

However, this is not true in general. In fact: 

Proposition 3.14: Given any set c, there exist two sets A and B such 

that AIB and A-reducibility = B-reducibility = c-reducibility. 
T 

We omit a detailed proof because it is quite long and not very 

different from other proofs in the literature. There is a modified 

version [Mal] of Specter's splitting-tree construction of tninimal sets 

[Rol, ~13.5] which produces a nonrecursive set A '"1ich is "small" rather 

than minimal: that is, 

(Vf e Rl(A))(ag e Rl) [g ~ f]. 

In outline, in the proof of proposition 3.14 we simultaneously 

construct two "small" sets, A and B, by modified splitting-tree 

constructions, with t:li)'o added changes: 

(1) We encode C into both sets at the beginning-of the construction. 

(2) We alternate the splitting-tree construction with a straight· 

forward diagonalization making A and B Turing incomparable. 

The resulting sets A and B are such that: 

since C ~TA, 

and 

by the construction, 

and similarly for B. 

Thus, by theorem 3.11, A•reducibility = B-reducibility = 

c-reducibility. 

QED 
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Open Question: Given any nonrecursive set A, is it always possible to 

find a set B such that AIB but A-reducibility = B-reducibility? 
T 

Open Question: What are necessary and sufficient conditions on sets 

A and B for A-reducibility to equal B-reducibility? 

Although pairs of sets can have the same reducibility and still be 

Turing-incomparable, there do exist limits on what Turing-reducibility 

relationships sets can have and still determine the same reducibility. 

For example: 

Proposition 3.15: If C-reducibility D-reducibility, then we cannot 

have C' sT D. 

Proof: Assume C' s D. 
T 

Let g (n) = max {cp. (C) (n) J 0 :s: i s n 
l 

(C') 
g € Rl , so g € R 

(D) 
1 . 

But clearly ('ff E: Rl (C)) rg > f i.o.]. 

So by theorem 3.11, C-reducibility f D-reducibility. 

QED 

Open Question: In rJl], Jockusch develops the properties of various 

types of truth-table reducibilities, e.g. contaimnent properties of 

degrees. Explore the answers to these questions for C-reducibilities 

for various sets C. For example, does C-reducibility have any 

properties significantly different from truth-table reducibility? 
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4. Helping 

Intuitively, we have the idea that some sets B help to compute 

some functions f. That is, when we use B as an oracle, we can reduce 

the complexity of f below what it could have been without the oracle B. 

In this chapter, we try to formalize this idea. We use the word 

"helping" in informal discussions only, and give precise meanings to 

several interpretations. We also give several basic results about the 

existence of sets which help or don't help the computation of certain 

functions. 

Definition 4.1: Assume Bis a set, f € R1 and his a total function of 

two variables. 

"B h-improves f i.o." means: 

(tfi)(Vj) rep. (B) = f /\ rep. f ~ h(x,1. (B)(x))< 1.(x) i. o. l). 
l. J l. J 

"B h-improves f a.e." means: 

('.h)(Vj) rep. (B) f /\ rep • f ~ h(x,1. (B)(x))< 1.(x) a, e. ] ) . 
l. J l. J 

We remark that these definitions do not provide us with notions 

of helping that are transitive or symmetric. Appropriate counterexamples 

will be found as corollaries near the end of this chapter. 

An alternative way of measuring the amount of help given by a set 

B to a function f is to ask which lower bounds on the complexity of f 

are maintained after introduction of the B-oracle. To speak about 

this kind of "helping" we use the definitions of Comp(B)f and Comp f, 

etc., introduced as definition 2.6. 
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To place these definitions in some perspective, it is helpful to 

note a relationship between "A::;; B" and "B h-improves A": 
p 

Assume A is not primitive recursive. Then for any primitive 

recursive function p of one variable, we know that Comp A> p i.o. re] 

But if A ::;; B, then for some primitive recursive function q of 
p 

one variable, Comp(B)A::;; q a.e. Because the primitive recursive 

functions are closed under composition, h o q is primitive recursive 

and therefore Comp A > h o q i. o. 

(B) But since Comp A::;; q a.e., we know that B h-improves A. 

We note that the amount of help a recursive oracle B is able to 

give the computation of a function is restricted by the complexity 

of B. This is because any program using B as an oracle may be converted 

to one not using the B-oracle, by directly computing the answers to 

the oracle queries. The complexity of the new program is bounded as 

follows: 

Theorem 4.2: There exist g1, g2 e R3 with the following property: 

For all B, i, j, if CB= Qi' then there exists k such that: 

Qk = Q j (B) 

(B) ~ 
il?k(x)::;; g1(x,i!?j (x),max . (B)(x)) i(y)) a.e. (x). 

o::;;y::;;g
2 

(J ,x, ~ j 
and 

Proof: Although this proof does not exactly fit the statement of 

the combining lenuna, we note the essential similarity of the proofs; 

we call this type of argument a "domain-of-convergence" argument. 
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We use the following general lenna: 

Lenma 4.2.1: Fix any acceptable enumeration of relative algorithma (qJi ( )} 

and any relative complexity measure 1< >. Then: 

(~g € R3)(Vi,x,y)(VA,B) 

r(An (O, ••• ,g(i,x,y)J = Bn 

((i (A)(x) ~ y ~ i (B)(x) 
i i 

(O, ••• ,g(i,x,y))) ~ 

~ y) A (i (A)(x) ~ y ~ 
i 

(q}i (A) (x) == 'i'1 (B) (x))))) • 

Proof of lelllll8. 4.2.1: Let (Ti ( )) be the standard enumeration of oracle 

Turing machines. 

Axiom (2) for relative complexity measures will allow us to conclude 

the existence of a relative algorithm a< ) such that: 

if i (X)(x) ~ y, 
i 

if not. 

Therefore, by lea.na 2.2, there exists an oracle Turi-ng machine Tj ( ) 

such that: 

. if i (X)(x) ~ y, 
i 

if net. 

Now fix i, x and y. Let f be the recursive isomorphism (lemma 

2.2) betwe-en the two ~del numberings. 

Define g(i,x,y) =max g'(i,x,y,X), where g'(:i.,x,y,X) is defined 
X~N 

as follows: 
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g'(i,x,y,X) = 

and 

the largest number whose membership in X is 

questioned in oracle Turing machine compu

tation T. (X)(<i,x,y>) 
J 

the largest number whose membership in X is 

questioned in either computation 

Tj (X)(<i,x,y>) or computation Tf(i) (X)(x) 

Lemma 2.5.1 shows that g e R
3

• 

if Tj (X)(<i,x,y>) = O, 

if Tj (X)(<i,x,y>) = l. 

Now assume that An (O, ... ,g(i,x,y)} = B n (O, .•• ,g(i,x,y)}. 

Then by definition of g', we have that: 

Tj (A)(<i,x,y>) 

(Tj (A) (<i,x,y>) 

= T.(B)(<i,x,y>) 
J 

(A) = 1) = (Tf(i) (x) 
(B) 

= Tf(i) (x)). 

But by definition of T. and f, this implies the lemma. 
J 

Proof of theorem 4.2. continued: We let g2 =the function g from lennna 4.2.1. 

The s-m-n theorem allows us to define a partial recursive function 

cpa(a,·b) as follows: 

y if (:BA) cp (A) (x) = y, 
a 

(w e A ~ cpb (w) = 1) and 

= otherwise 

By the definition of gin lemma 4.2.1, the functioncpa(a,b) must 

be well-defined. It is easy to see that it is partial recursive. 
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Intuitively, for oraclecTuring machines, cpa(a,b) is simply the 

function computed by cpa (),where.we use the partial recursive function 

cpb in place of an oracle. 

We now define g1(x,y,z) =max g'(x,y,z,a,b,A), where: 
a,bS:x,AS::N 

tCl'(a,b)(x) if t (A)(x) = y, and 
a 

max (tb(w)} = z, and 
os:~2(a,x,y) 

g'(x,y,z,a,b,A) = 
(Vw s: g

2
(a,x,y)) 

(w e A = cpb(w) = 1) and 

(w t A = q.>b (w) = O) , 

0 otherwise. 

By the definition of epCl'(a,b), we see that the listed conditions 

are sufficient to insure the convergence of tCl'(a,b)(x), and so by 

lemma 2.5.1, 8l € R3• 

We now fix a= j, b ~ i. 

We claim Cl'(j,i) d~f k has the required properties: 

If x ~max (i,j), then: 

(B) 
81 (x,t. (x) ,max (B) ti (y)) ::2: 

J . OSySg2(j,x,tj . (x)) 

g'(x,t. (B)(x),max (B) ti(y),j,i,B) 
J os:ys:g2(j,x,tj (x)) 

~ tCl'(a, b) (x), since all the listed conditions 

in the definition of g' are satisfied. 

QED 
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Open Question: Can we obtain a version of theorem 4.2 for oracle sets 

B which are nonrecursive? That is, can we find any way to bound the 

amount of help a nonrecursive set B can give to the computation of a 

function (for example, relative to B's Turing-reducibility properties, 

or to B's complexity relative to some set)? 

We next show that for any sufficiently complex recursive set A, 

there exist arbitrarily complex recursive sets B that do help the 

computation of CA; in fact, which reduce it to triviality. 

We may further specify that the set B be "compressed" (i.e. 

B's complexity is very closely determined, to within a fixed amount 

h depending on the measure only). 

Theorem 4.3: Let ~( ) be any relative complexity measure. There is a 

function h € R
2 

with the following property: 

and 

Let t be any total, monotone nondecreasing running time. 

Let A be any recursive set such that Comp A ~ t a.e. 

Then there exists a recursive set B with: 

Comp B > t a. e. 

Comp B ~ h o t a. e. 

A ~ B. 
p 

(Note: As mentioned in the remark following lennna 2.7, this is an 

example of a theorem which uses an honesty hypothesis.) 

Proof: The proof is a domain-of-convergence argument. 

We carry out the construction in stages, using a Rabin diagonal 

construction with one modification: we introduce new programs into the 
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construction slowly, so most arguments are not needed for the 

diagonalization. We use the remaining arguments to encode A in a 

simple way. Tile idea is similar to that used by Paterson in 

theorem 4. 6. 

We define a function fas follows: 

f(O) = 0, f(n) = L~ - 1 for all n ~ 1. 

By the s-m-n theorem, we can define a partial recursive function 

cpa(a, b) (where a e: R2) according to the following construction in 

stages: 

Stage n: (Define cp a(a, b) (n)) 

Find the smallest uncancelled i ~ f(n) such that t 1(n) ~ tb(n). 

(We diverge if ib(n)t.) 

If no such i exists, define cp ( b) (n) = ep ( f (n)). a a, . a 

If i exists, definecpa(a,b)(n) 

Go on to stage n + 1. 

= 1 .:. cp. (n) and cancel i. 
1. 

END OF CONSTRUCTION 

Now assume we have A, t as in the hypotheses. If we choose a*, 

b* with ~b* = t and epa* =CA and ~a* ~t, then we claim that CB= ~c:x(a*,b*) 

has the desired properties: 

B is clearly a recursive set. 

As in the proof of theorem 2.8, we can show that Comp B > t a.e. 
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To show A :s: B, we note the following: 

p 

For any n, consider all x with (n + 1) 2 :s: x < (n + 2) 2. For all such 

x, f(x) = n. There are 2n + 3 such values of x. However, before stag~ 

2 (n + 2) ·, we only cancel indices :s: n. Thus, only n + 1 of the values 

of x may have CB(x) defined by a cancellation~ For the remaining 

n + 2 values of x, we have CB(x) = CA(n). 

Then for any n, (n+-2)
2
-1 

rl if l 2 

CA (n) 
x=(n+l) = lo otherwise. 

Therefore, A :s: B. 
p 

CB(x). ~ n + 2, 

It remains to show Comp B :s: h o t a. e.; to do this, we must first 

define h: 

Let h(x,y) =max h'(x,y,a,b), where: 
a,b:s:x 

{

t b (x) 
h'(x,y,a,b) = a(a~) 

otherwise. 

t (w) s: y], 
a 

The conditions on the right in the definition of h' are sufficient 

to insure thatq>a(a,b)(x)i, so that h' .E: a4 and thus he R2. 

• NOw if we fix a =a* and b = b*, we see that for x ~ max(a*,b*), 

h(x,t(x)) ~ h'(x,tb*(x),a*,b*) 

= 'a(a*,b*)(x) a.e., as required. 

QED 
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Remark: If we do not require the compression of set B, a much simpler 

construction suffices: 

Definition 4.4: For any X, Y, we define X E9 Y as follows: 

(Vx) f (x E: X E9 Y) ~ ( (x e: X /\ x f, Y) V (x e Y /\ x f. X)) ] • 

Then if we take sufficiently large t' e: Kl relative to t, we can 

obtain C recursive with Comp C > t' a.e., and 1et B = C join (A E9 C). 

This set B has two properties: 

and 

A s: B 
p 

Comp B > t a.e. 

This second property is easily shown for space measure, using the 

parallel computation property, and recursive relatedness gives the result 

for general measures. 

Results in this chapter have so far been rather intuitive and 

natural; less so are results stating "independence" of sets (for 

example, demonstrating the existence of pairs of recursive sets which 

do not help each other's computation). 

Solutions to problems of this latter type turn out to be analogous 

to work on degrees of unsolvability rsa] fRol, ~10.2, Chapter 13) in the 

following sense: 

Independence proofs proceed by a diagonalization (the only general 

tool we have thus far for proving such results). The diagonalizations 

require a countable sequence of conditions, or perhaps two different 

countable sequences of conditions, to be satisfied. Satisfaction of 

' 

these various conditions may cause conflict. To insure that each condition 
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gets satisfied, we establish before the construction a "priority 

ordering" of conditions; in our theorems, this is a simple numerical 

ordering. 

We allow the satisfaction of a condition to be interrupted only 

by switching to an attempt to satisfy a higher-priority condition. 

It follows that once we begin trying to satisfy some condition, we must 

thereafter succeed in satisfying either that condition or one of higher 

priority; thus, all conditions will eventually become satisfied. 

Our arguments use priority more complex that the "initial segment" 

priority constructions in rRol, Chapter 13]; we do construct our sets 

by determining values first on initial segments, but we also carry 

with us "tentative commitments" to definition of the set at arguments 

a finite distance beyond the defined initial segment. It is only a 

finite distance beyond, so we are not using the full power of splitting-

tree arguments, for example. 

Our constructions differ from those in rsa] and fRol), however, 

since we are constructing recursive sets. Our constructions are always 

effective, and we insure definition of the functions we construct at 

all arguments. 

After a degree-of-unsolvability priority construction, argume~ts are 

usually presented showing what oracles are used in the construction, 

and thereby placing the constructed set in its proper Turing degree. 

We are working with a subrecursive analog of these constructions; we 

are generally interested in the complexity of the resulting set. Thus, 

we generally follow our constructions with arguments showing what 
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subcomputations were used in the computation constructing our set, 

thereby placing the constructed set in its proper complexity class. 

We now aim to prove an independence theorem. In order to make 

the proof as compact as possible, we first introduce definitions 

designed to allow us to discuss the independence of the values of a 

0-1 valued function at its different arguments. In theorem 4.6, we 

give an example of a simple theorem using this definition. Lemma 4.7 

shows the existence of a 0-1 valued recursive function whose values 

at its different arguments are independent, while theorem 4.8 shows 

how to split this type of set into two sets which don't help each other's 

computation, thus giving a complexity-theoretic analog to the Friedberg-

Muchnik theorem fRol, ::--10.2]. 

Definition 4.5: Assume A is a recursive set and g is a total function 

of one variable. Then: 

rA] 
"Comp' A> g a.e." means: 

c vi) r r (If x) (cp . CA- ( x} ) c x) 
l 

CA (x))] 

rA] 
"Comp As g a.e." means: 

(H) r f(lfx) (cp. (A-(x}) (x) 
]_ 

CA(x))] /\ 

(<:i. (A-(x}) (x) > g(x) a. e.)]. 
]_ 

(<1?.(A-(x})(x) s g(x) a.e.)]. 
]_ 

The following theorem, due to Paterson fP], shows the abundance 

of 0-1 valued functions whose values at different arguments are 

strongly dependent. This settles a question raised by Trachtenbrot rTl]. 

Theorem 4.6: There exist r s R1 , h s R2 with the following property: 

Whenever t is a monotone increasing running time, there exists a 

recursive set A such that: 
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Comp A > t a.e. 

Comp A s;; h 0 t a.e. 

and rAJ Comp A :::; r a.e. 

Proof: We define the set A, depending on t; we indicate how to 

construct r and h afterwards. 

We define A by a construction in stages. As we do so, we cancel 

indices i such that we know Qi# CA. 

y_ 
Let f(y) L4J. 

Stage x: (Define CA (x)) 

1. 

2. 

See if there exists uncancelled is;; f(x) such that P.(x) :s: t(x). 
1. 

If so, define CA (x) 1 .:. Q. (x). 
1. 

Cancel i. 

Go on to stage x + 1. 

If no such i exists, 

2. 1. If I CY! Y < x and y s A} I is even, we define CA(x) 0. 

Go on to stage x + 1. 

2.2. Otherwise, define CA(x) 1. 

Go on to stage x + 1. 

END OF CONSTRUCTION 

A is clearly recursive. We leave the reader to verify that 

substage 1. insures Comp A > t a.e. 

Verification of the second claim depends on the construction of 

the proper h, which may be done by a domain-of-convergence argument. 
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To verify the third claim, we use the following procedure for 

obtaining CA(x) from CA on other arguments; 

For all x, B, define: 

cp. (B)(x) 
1 

0 if there are more arguments y, x+l ~ y ~ 2x for which 

l<co, ... ,y} 

l<eo, ..• ,y} 

1 otherwise. 

(x}) n Bl is even than for which 

(x}) n Bl is odd, 

That is, we use the fact that most arguments y with x + 1 ~ y ~ 2x 

were used not to cancel indices, but to maintain parity. 

From this procedure, it is easy to construct the function r for 

the time or space measure. Recursive relatedness then gives the result 

for general measures. 

QED 

Open Question: Is theorem 4.6 true without the monotonicity restriction? 

Having some familiarity with the way a function's values at differet1: 

arguments may interrelate, we now go on to produce a set A whose values 

at different arguments are independent. This result in announced by 

Trachtenbrot in rT2]. He gives no proof, however; the proof here is 

due to Meyer. 

Lemma 4.7: (Trachtenbrot): There exists g € R2 with the following 

property: 

For any sufficiently large total running time t, there exists a 

recursive set A with: 
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Comp A ~ g o t a. e. , 

and rA] 
Comp A> t a.e. 

Proof: We would like to insure: 

(Yi) r (1i. (A-(x}) (x) ~ t(x) i.o.) 
]_ 

(3:x) (cp i (A-( x}) (x) -; CA (x))]. 

As before, we use cancellation; we cancel an index i when we've 

insured that: 

(3:x) (cp i (A-( x}) (x) -; CA (x)). 

In addition, at any time during the construction, a single index 

may be "tentatively cancelled." If an index i is tentatively cancelled, 

it means that we are in the process of attempting to cancel i by 

defining A according to an appropriate "tentative commitment." If we 

succeed in defining A in this way, we will then cancel i; otherwise, 

the tentative cancellation of i will be removed. 

We will use the s-m-n theorem to define a partial recursive 

functioncpa(a)' according to a construction in stages. For § 
a 

t, 

the function cp a(a) will turn out to be the CA of our theorem. We use 

the parameter a to allow us later to obtain the desired recursive 

function g by a domain-of-convergence argument. 

We will have stages numbered 0, 1, 2, ..• , where at stage n, we 

will define cpa(a)(n). The stages are not executed in consecutive 

order, however. The order in which the stages are executed is deter-

mined as follows: 

At any time when we are ready to decide which stage is next to be 

executed, the next stage will be stage n if and only if: 



71 

1. Stage n has not yet been executed, 

2. ~ (n) ~, a 

3. For any m for which stage m is not yet executed, 

iP (n) s: iP (m), a a 

and 4. If ~a(n) = ~ (m) for any m for which stage m is not yet 
a 

executed, then n s: m. 

(That is, stages are executed in order of size of values of t .) a 

This trick is similar to that used in theorem 2.8. 

We now describe stage n of the construction: 

Stage n: (Define cp ( ) (n)) . a .a 

Find the smallest i s: n that is not yet cancelled and such that: 

(a) if some index j is tentatively cancelled, then i < j, and 

(b) there exists E such that: 

(bl) (Vxlstage x has already been executed)[x € E cpa(a)(x) = 1], 

(b2) E ~(xix~ h(i,n,ta(n))}, where his the function whose existence 

is asserted by lemma 4.2.1, 

(b3) n f, E, 

and (b4) ~.(E)(n) s: ~ (n). 
l. a 

1. If such an i, E exist, remove any previous tentative cancellation and 

tentative cottnnitment. 

Define cpa(a)(n) = 1:. cpi (E)(n). 

1.1. If (Vx s: h(i,n,~ (n))) rstage x has already been executed], then 
. a 

cancel i and go on to the next stage. 
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1.2. Otherwise, tentatively cancel i and make a "tentative com-

mitment to define cpa(a) so that: 

(vxJx ~ h(i,n,P (n)) a 
/\ 

Go on to the next stage. 

2. If no such i exists, 

x 1 n) rep a(a) (x) 

2.1. If some index j is tentatively cancelled, consider E from its 

tentative connnitment. 

Define cpa(a) (n) 

2.1.1. If for a, n arising from j's tentative commitment, 

we have (Vx ~ h(j,n,P (n))) rstage x has already been 
a 

executed], then remove j's tentative connnitment. Change 

j's tentative cancellation to a cancellation. 

Go on to the next stage. 

2. 1.2. Otherwise, just go on to the next stage. 

2.2. If no index j is tentatively cancelled, just define cpa(a)(n) 

Go on to the next stage. 

END OF CONSTRUCTION 

Now assume we have t as in the hypotheses. If we choose a~< with 

Pa,'<= t, then we claim that CA =cpa(a''<) has the desired properties: 

A is a recursive set: 

If we assume that t ~ ~xrx], then we may easily show that after 

each stage, the next stage may be chosen effectively. Also, the search 

for E in substage (b) of each stage will terminate. With these facts, 

o. 
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the execution of successive stages is an effective process. 

rA] Comp · A > t a. e. : 

We make an important observation about cancellations: 

I!£!: If an integer k is tentatively cancelled at some stage, then at 

that stage or later, some integer ~ k will become cancelled. 

Proof of fact: By induction on k. 

Now for any index i, suppose that (Yx) [q)i (A-(x}) (x) = CA (x) J. 

Then it is not difficult to show that i is never cancelled. 

For if i were cancelled, i-t llleans that at some stage x we set up a • 

tentative cOll'llllitment for i which was eventually fulfilled, ·so that 

for some x, E as in substage (b), we defined: 

CA (x) :I q>i (E) (x) 

But by lemma 4.2.1 and the definition of E, we can conclude that: 

q> i (E) (x) = q> i (A-( x}) (x)' 

so that CA (x) :I q>/A-(x}) (x). 

Thus,-i·can never be cancelled. 

There is some stage in the construction such that all cancellations 

of indices smaller than i that will ever occur have already occurred 

by that stage. By the fact above, it follows that at subsequent stages, 

condition (b) must fail to be satisfied for index i. But then lemma 

4 2 1 li h ~i(A-{x})(x) > ( ) • • imp es t at ~ t x a.e. 

Comp A ~ g o t a. e. : 
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We see that (V"a,x) [(f)
8

(xP ~ <+'a(a)(xp]. 

'Ihus, by the combining leml'll&, an appropriate function g exists. 

Q~D 

Remark: '!he following related result has been obtained by Meyer using 

similar methods (It has also been announced by Trachtenbrot in fT2], 

but without proof.): 

"For any g e: R2 , there exists a recursive set A such that: 

(V"i) [(('Vx)((f)i (A-(x)) (x) = CA (x))) ~ ((rl!j)((f)j = CA /\ 

g(x,iP.(x)) s= ~ (A-(x})(x) a.e.))]." 
J i 

In other words, the values of CA at its different ar8uments are 

independent in the sense that, for any procedure for CA which uses 

information about CA on other arguments, there is a faster procedure 

for CA which does not use any such information. 

As a result of lemma 4.7, we n<n!I' obtain the desired independence 

result: 

'Iheorem 4.8: '!here exists h e: R2 with the following property: 

For any sufficiently large total running times tB and tc, there 

exist recursive sets B and C with: 

and 

Proof: 

Comp B s= h o tB a. e. , 

Comp c s= h o tc a. e., 

Comp(C)B > tB a.e., 

Comp(B)c > t a.e. c 
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We use the following lemma: 

Lemma 4.8.1: There exists k e R
2 

with the following property: 

(Vti)(:B:Sj) [ Sj ~ ~i a.e. and Sj ~ k o ~i a.e.]. 

(That is, for any measure function, there exists a larger "space 

function" which is not much larger.) 

Proof of lennna 4.8.1: By recursive relatedness, there exists a 

function r relating s< ) and ~( ) • Without loss of generality, we 

may assume that A<K:,y>[r(x,y)] is a space function and r is monotone 

nondecreasing in both variables. 
; 

Assume f is the recursive isomorphism between the Godel numberings 

of the two measures. 

Then r o Sf(i) is easily sho'Wll. to be a space function, and if we 

let k • A.x,y[r(x,r(x,y))], then recursive relatedness gives the 

required properties. 

Proof of theorem 4.8, continued: Lemma 4.8.1 shows that if we prove 

the theorem for space measure on oracle Turing machines, recursive 

relatedness will give the general result. 

It remains to prove the theorem for s< ) . 

Definition 4.8.2: If f and g are any functions, we define "f join g" 

by: (Vx) f join g (2x) = f(x) 

f join g (2x + 1) = g(x). 

If t~ and tc are space functions, then tB join tc may also easily 
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be shown to be a space function. We may apply lemma 4.7 to 

tB join tc and obtain a recursive set A with: 

Comp A~ g o(tB join tC) a.e., 

and Comp[A]A > tB join tc a.e. 

We write A = B join C, and claim that B llnd C have the required 

properties: 

Comp(C)B > t 
B 

a. e.: 

But then we can convert q>i() to a program which computes CA 

fast on infinitely many arguments, namely: 

[ - (A- {x)) 
(:3j) (Vx)(q>j co (x) • CA (x))' and 

('.ifx)(Sj (A-fx))(x) ~ tB join t 0 (x))]. 

But .this contradicts Comp(A]A > tB join tc a.e. 

Comp(B)C> t - e a. e.: 

By symmetry. 

Comp B_ ~ h. o tB a.e •.• and Comp C ~h o tc a.e .• : 

Define h(x,y) = g(2x,y) + g(2x+l 1 y' 1 where g is the function 

arising from lemma 4.7. We claim this function h has the required 

properties: 

Comp A ~ g o (tB join tc) a.e. implies that: 

(~i)[qi1 =CA and s1 ~.go (tB joia t 0) a.e.]. 

But_ then qi1 may be easily converted to 4 progra~ for CB which 

on argument x, requires space g o (tB join t 0) (2x) 
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= g(2x,tB join tc(2x)) 

= g(2x, tB (x)) 

= h(x,tB(x)), as required. 

The other case is symmetric, 

QED 

The earliest independence result in the literature which can be 

stated in terms of existence of two recursive sets not helping each 

other is due to Axt [A2]. Axt states the existence of recursive sets 

A and B such that neither is primitive recursive in the other. His 

proof does not use the complexity formulation of "primitive recursive 

in"; it is an initial segment diagonal construction similar to theorem 

IV in rRol, Chapter 13). With the complexity formulation (theorem 3.2) 

we may obtain Axt's result as a corollary to our theorem 4.8. 

We now use theorem 4.8 to obtain counterexamples to transitivity 

and symmetry of helping. 

Corollary 4.8.3: For sufficiently large functions k, the relations 

"k-improvement a.e." and "k-improvement i,o." are neither transitive 

nor symmetric. 

Proof: We will describe three sets which provide a counterexample to 

all four properties. 

We choose running times tB and tc with tB much larger than tc· 

By theorem 4.8, we may obtain B, C and. h. We then consider the 

three sets B, B join (B $ C), and c. We note the following relation

ships between the sets: 
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1. 1(B k-improves c i. o.) 

2. 1(C k-improves B i. o.) 

3. B k-improves B join (B EB C) a. e. 

4. B join (B EB C) k-improves B a.e. 

5. B join (B EB C) k-improves c a.e. 

6. 1(C k-improves B join (B EB C) i. o.) 

1. and 2. are clear by theorem 4.8, if k > h. 

3. is true because a B-oracle reduces the complexity of B join (B EB C) 

on even arguments to triviality and on odd arguments to the complexity 

of C. Since tB is much larger than tc, this is a large reduction in 

the complexity of B join (B EB C) a.e. To formalize this argument, we 

can use a proof for the space measure and recursive relatedness. 

4. is trivial. 

5. is true since: 

(\fx) rec (x) CB join (B EB C)( 2x) EB CB join (B EB C)(Zx + l)]. 

6. If Ck-improves B join (B EB C) i.o., then either Ck-improves 

B join (B EB C) on infinitely many even arguments or infinitely many 

odd arguments. However, the independence of B and C obtained from 

theorem 4.8 shows that improvement cannot occur on infinitely many 

even arguments. Thus, C k-improves B join (B EB C) on infinitely many 

odd arguments. 

It then follows that C k'-improves (B EB C) i.o., for some k' which 

is only slightly smaller than k. We show that this is impossible: 
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Consider the space measure. By definition of k'-improvement, 

and rep j = CB EB C ~ 

k'(x,S.(C)(x)) s S.(x) i.o.)). 
l_ J 

By the parallel-computation property of S( ) , 

Combining the two facts, 

C:h ) rc+i • Cc ) = c 
i BE9C 

and k'(x,S. (C)(x)) sh o t (x) i.o. ]. 
i B 

We can use Ci\ (C) and a program c+i 1 for CC with s
1 

s ho tc a.e., 

and thereby obtain a programcp (C) = C with k' o S (C) sh o tB i.o. 
m B m 

But for k' sufficiently large, this contradicts the hypothesized 

independence of B and C. 

For general measures Q( ) , we obtain the same result if we require 

k to be much larger than the measure-invariance function r obtained 

by applying theorem 2.5 or remark 2.5.2 to~() and S( ). 

The following diagram summarizes our results: 

?k-improves 

no k-improvement 

a.e.~ a.e. k-improves 
'\,( 

B B join (B EB C) c 

~ k-improves a.e. 
'\_ 

no k-improvemen~ 
no k-improvement 

Checking the diagram, we see that we have a counterexample to all 

four properties. 

QED 
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5. Universally-Helped Sets 

In this and the next chapter, we ask if it is possible to improve 

on theorem 4.8. Specifically, theorem 4.8 proves the existence of two 

independent recursive sets by a diagonalization. This leaves open the 

possibility that independent sets are pathological; we would like to 

know if we can obtain a stronger result which allows us to fix one of 

the two sets arbitrarily. 

We are thus led to ask the following (informal) question: 

Which is true? 

(1) There is a recursive set A whose computation is helped by 

all sufficiently complex recursive sets B (a "universally-helped set"), 

or, 

(2) For any recursive set A, there exist arbitrarily complex 

recursive sets B that don't help the computation of A. 

Remark 5.1: We first note that any recursive set will be universally-

helped in an appropriate measure: Fix any k € R2 , monotone increasing 

in both variables. Let our model for computation be oracle Turing 

machines. Define a measure~( ) as follows: 

if (3:y ::;; x) fy € A), 

otherwise. 

Now consider a "strongly k-compressed" set A; in other words, 

assume that there exists a total function t with: 

('1 i) rep • 
1 

S. > t a.e.], 
1 
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and (:3: i) rep i = CA /\ Si s: k o t a. e. ] • 

We claim that in measure ~( ) , A is k-improved by any set B /. ¢. 

The reason is as follows:. 

S. s: k o t a. e. ] . 
l. 

Let cpj ( ) be the Turing machine that acts exactly like cpi but 

never asks any questions of its oracle. Then: 

(VX) [cp. (X) 
J 

S.(X) = S. s; ko t a.e.]. 
J l. 

Consider any set B /. ¢. Then cpj (B) = CA. 

Also, ~. 
(B) 

= sj 
(B) = s a.e. 

J i 

Thus, ~. 
(B) 

:5: k 0 t a.e. 
J 

However, ('\fl) [cpl = CA ~ ~l k o k o s1 

~ ~l = k o k o t a.e.]. 

Therefore, Bk-improves A a.e. 

QED 

Pathological measures such as those above show why we will require 

a "simulation overhead .function" g in the various theorems of Chapter 6. 

In the remainder of Chapter 5, we work within an arbitrary 

complexity measure and produce a recursive set A whose computation is 

helped by oracles for all sets whos.e complexity may be compressed 

between "honest" bounds (bound functions whose running times are closely 

related to their sizes.) We refer back to the remark following lemma 2.7. 
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Further discussion of honesty may be found in fMcC] fMcCMe] and fMeMo]. 

We note that theorem 4.3 has already given us that every recursive 

set A is helped by arbitrarily complex recursive sets B. These sets B, 

however, were constructed in a very special way, to encode A. In the 

next result, the sets B are not encodings of A, but may be described 

by a restriction (more-or-less) independent of A. 

The function g in theorem 5.2, as well as in the theorems in 

Chapter 6, will depend only on the relative complexity measure ~( ) we 

are considering, and will represent a fixed amount of extra resource 

needed to carry out certain simulations. For measures like space, 

we may often think of g as any function which majorizes (is greater 

than) linear functions; for other measures, we may still regard it as 

small relative to the other functions we are considering. 

First, we require a definition: 

Definition 5.2.1: For any h 8 R2 define a recursive set~ as follows: 

c~ (x) = 
0 

(The use of the 11
.:.

11 

if ~xl (x2) ~ h(x2 ,x3), 

otherwise. 

is only to keep C~ 0-1 valued.) 

Theorem 5.2: (universally-helped set) 

There exists g 8 R2 with the following property: 

For all k, h 8 R2, k(x,y) ~ y, and all total running times t, 

any set B with: 

Camp B > g o k o g o t i . o. 
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and Comp B s; h o t a.e. 

k-improves ~ i.o. 

Proof: We give three lemmas definil18 functions gl' g2 and g3 which 

represent extra resource required to cOlnbine certain processes in the 

proof. The g in the statement of the theorem 'Will be a combination of 

g1, 82 and g3 . We use domain-of-convergence arguments. 

Lemma 5.2.2: There exists g1 € R2 such that whenever ~i is total, 

there exists q>j = 91
1 

with: 

g1 (x,q> j (x)) :<!: t. (x) a. e. 
J 

(Note: This says that running times are honest. See the remark 

following lemma 2.7.) 

Proof of lemma 5.2.2: By the axioms for relative complexity measures 

and the relativized s-m-n theorem, it is easy to see that there exists 

a recursive function a such that: 

(B) (B) 
(1fi,B,x) [ti (x) = q>Cl'(i) (x)]. 

We define g1 (x,y) =max g'(x,y,a), where: 
as:x 

fta (x) 
g'(x,y,a) = L (~) if y = t (x), a 

otherwise. 

The second ,lemma gives an uppe~ bound on the.amount of resource 

needed, with a B-()racle,, to compute C~: 

Lemma 5.2.3: There exists g2 € R2 with the following property: 

For any h € R
2

, any set B and any total running time t for which: 

(:lri)[(qi1 =CB) A (t1 s:ho ta.e.)], 



84 

it must be true that: 

(:E:j)[(cpj(B) = C'\) A (~j(B)(<i,x,t(x)>) s: g
2 

o t(x) a.e.)]. 

Proof of lemma 5. 2. 3: We let ( F 1} be a c~nonical enumeration of all 

functions defined on a finite domain. That is, we assume that 

A.i,x[F1 (x)] is partial recursive and A.i,x[Cdomain Fi (x).] is total 

recursive. 

Using the relativized s-m-n theorem, we define: 

(X) 
cpa(a b c d) (x) = 

' ' ' 

cp (x) 
c 

if x e: domain F , a 

if x ~domain Fa and x1 = b and 

cp d(X2) = X3' 

otherwise. 

Now define g2(x,y) =max g2(x,y,a,b,c,d), where: 
· · a,b,c,dS:x 

g2(x,y,a,b,c,d) =max g2(x,y,a,b,c,d,X), and: 
x~ 

l (X)(~,x,cp (x)>) 
g"(x y a b c d X) == a(a,b,c,d.) d 2 ,,,,,, 

0 otherwise. 

Lemma 2.5.1 is used to show that g2 is recursive. 

We now fix a,b,c,d,X as follows: 

Let Fa be a finite function giving values of C'\ on all 

arguments of the form <i,x, t(x)> for which ii (x) > h o t(x). 

Let'b = i, the given index for CB. 

Let c = an index for a program for C'\. 
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Let d be an index for t with the property that id(x) 

s: g1(x,t(x)) a.e. (by lemma 5.2.2). 

Let X = B. 

It is now easy to verify that cp~(a,b,c,d) (X) = C~. 

Also, if x ~ max(a,b,c,d), then: 

g2(x,t(x)) ~ g2(x,t(x),a,b,c,d,B) 

(B) 
= ia(a,b,c,d) (<b,x,cpd(x)>) a.e., as required. 

The third le11111a provides us with an upper bound for the amount 

of resource needed to convert a program for C~ into a progrAm for CB: 

Lemma 5.2.4: There exists g3 e: R2 having the following property: 

For any he R2, any set B,any total running time t, and any i, j, 1 

for which: 

and 

[(cpi =CB)/\ (ii S: hot a.e.)], 

cpj = c~, 

it must be true that: 

Proof of leimna 5.2.4: We use the s-m-n theorem to define: 

cp (x) = [Fa (x) 

a(a,b,c,d) ~c(<b,x,cpd(x)>) 

if x e: domain F , a 

otherwise. 

Now define g3(x,y) =max g'(x,y,a,b,c,d), where 
a,b,c,dsx 

g'(x,y,a,b,c,d) 

otherwise. 
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Now fix a, b, c and d as follows: 

Let F
8 

be a finite function giving values of CB on all 

arguments x such that ~i(x) >ho t(x). 

Let b = i. 

Let c = j. 

Let d = an index for t with the property that ~d s: go t a.e. 

(by lemma 5.2.2). 

It is easy to see that cp ( b d) = CB. ex a, ,c, 

Now if x ~ max(a,b,c,d), then: 

g3 (x,max(g 1 (x,t(x)),~j(<i,x,t(x)>))) ~ 

g'(x,max(g1 (x,t(x)),~j(<i,x,t(x)>)),a,b,c,d) 

= ~ ( b d)(x) a.e.(x), as required. ex a, ,c, 

Proof of theorem 5.2. continued: 

Let cpi = CB with ~i s: ho t a.e. 

Then by lemma 

(tr j) f (cp • (B) = C ) 
J 1\ 

5.2.3, 

A (~. (B)(<i,x,t(x)>) 
J 

But lemma 5.2.4 implies: 

s: g o t(x) a. e.)]. 

(Vj) f (cpj = Ci\) ~ (~ j.(<i,x, t(x)>) > k o g o t(x) i. o.)], 

since otherwise, we obtain a contradiction to the lower bound on B's 
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complexity. 

But this clearly shows that i k-improves ~ i.o. 

QED 

We have thus described an interesting situation: we have sets 

which are helped by all sets whose complexities are compressed between 

honest bounds, and the extent to which they help depends on how 

tightly compressed their complexities are. 

Nevertheless, there are many sets whose complexities are not so 

compressed; sets with speed-up are one example. 

Open Question: Are there recursive sets which are h-compressed, but 

not between honest bounds? Specifically, is it ttue that: 

For all g~ h € R2, there exist sets A and functions t € R1 such 

that Comp A > t a. e. and Comp A s= g o t a. e., but such that for no 

total running time t' is it true that [Comp A> t' a.e. and 

Comp A s: h o t' a. e. ] ? 

We can ask si1lli.lar questions for Comp A > t i.o. and Comp A> t 1 i.o. 
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6. Sets That Don't Help 

In this chapter, we present ·two theorems which have the opposite 

intuitive interpretation to the main result of Chapter 5. Both 

theorems begin with a recursive set A and a lower bound on the com

plexity o'f A, and conclude the existence of arbitrarily complex sets 

B that "preserve" the lower bound on A's complexity. 

In both theorems in this chapter, a function g is used, representing · 

a minimal amount of helping which the set B is allowed to give to A's 

computation. The functions g are necessary because of the existence of 

pathological measures such as those given in remark 5.1. As before, 

each function g will depend on the measure only and may therefore .be 

considered to be very small compared to the other functions we are 

considering. 

We begin with a definition: 

Definition 6.1: We say that a property holds "for arbitrarily complex 

recursive sets" if: 

(Vr e R1)(~B recursive)[Comp B > r a.e. and B has the desired property]. 

In the first theorem, we consider an i.o. lower bound. Intuitively, 

theorem 6.2 makes the following statement: 

"For any recursive set A whose complexity exceeds a known lower 

bound i.o., there exist arbitrarily complex sets B such that the 

complexity of A with a B-oracle still exceeds the lower bound i.o." 

The method of proof is similar to that used by Machtey [Ma2, theorem 



89 

4.9] in his proof of the result: 

"If £ and g are recursive functions with f not primitive recursive, 

then there exists a recursive set C such that £ is not primitive 

recursive in C." 

We remark that for the sets B of our construction, it is still 

possible that B may greatly help A i.o. 

Theorem 6.2: There exists g € R2 with the following property: 

For any tA € R1, and any recursive set A with: 

Comp A > g o tA i. o., 

there exist arbitrarily complex recursive sets B with: 

Comp(B)A > tA 1.o. 

Proof: We obtain g from the following lemma: 

Lemma 6.2.1: There exists 8 € R2 with the following property: 

Whenever A is a finite set, r e R1, and ~i (A) = r a.e., 

there exists j such that: 

~ = r (on all arguments), 
j 

and ~js:goli(A) a.e. 

Proof of lemma 6.2.1: Follows from the combining lemma. 

Without loss of generality, we may assume that g is monotone 

increasing in both variables. 

Proof of theorem 6.2, continued: 

We choose tB e R1 arbitrarily. tB will be a lower bound on B's 

complexity. 
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We will define B in stages, with CB(x) being defined at stage x. 

During the construction, we cancel indices of programs we know to 

differ from CB. In the course of the construction, integers a, b and 

c will be defined and changed from stage to stage, where: 

a keeps count of how many conditions of a certain type we have 

so far succeeded in satisfying, 

b (= n 1(a)) indicates which B-oracle program we are currently 

examining, and 

c keeps track of a tentative connnitment to an extension of the 

already-defined initial segment of B. 

We let B 
x 

{y ~ xly 8 B}. 

We start with a = b = 0, c undefined. (That is, we have not 

yet satisfied any of the conditions we would like to satisfy, we are 

examining ~O (B), and we have no tentative connnitment to an extension 

of the already-defined initial segment of B.) 

Stage x: 

See if there exists i < a such that i is not yet cancelled and 

1. If so, consider the smallest such i. 

Let CB(x) = 1 ~ ~i(x), and cancel i. 

Let c become undefined. 

Go on to stage x + 1. 

2. If no such i exists, define CB(x) O. 
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See if c is defined. 

2.1. If so, see if c = x. 

2.1.1. If c = x, redefine a= a+ 1, 

b = T\(a), 

c = undefitted, 

and go on to stage x + 1. 

2.1.2. If c ~ x, just go on to stage x + 1. 

2.2. If c is not defined, see if there exists an argument y such that 

a ~ y ~ x and either 

2!'.. (ib (Bx)(y) ~ tA(y) and 

2.2.1. If so, let h be the function whose existeDCe is asserted 

in lemma 4.2.1 and eonsider h(b.,y,tA(y)). 

2.2.1.1. If h(b,y~tA(y)) is~ x, then redefine: 

a = a + 1, 

b = rr1(a), 

c = undefined. 

Go on to stage x + 1. 

2.2.1.2. If h(b,y,tA(y)) > x, then define c = h(b,y,tA(y)). 

Go on to stage x + 1. 

2.2.2. If no such argument y exists, just retain the values of 

a and b and go on to stage x + 1. 

END OF CONS'tRUCTION 
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Verification of the construction: 

The key claim is that the variable a in the construction must 

increase without bound. Suppose it does not. 

This would mean that eventually a would reach a stable value, say 

a 0 . Thereafter, neither 2.1.1 nor 2.2.1.1 will be executed. 

Eventually, we will reach a stage high enough so that 1. can no 

longer be executed (since there are only finitely many i <a). There-

after, 2. must always be executed. 

Subsequently, if c is ever defined, then there is no way for c to 

become undefined. Thus, we would be forced to execute 2.1 at every 

stage until we are compelled to execute 2.1.1, a contradiction. Thus, 

c is subsequently never defined. 

But this implies that 2.2. must be executed at every stage from 

some point on. However, 2.2.1.1. cannot be executed, and 2.2.1.2. cannot 

be executed since c cannot become defined. Therefore, from some stage on, 

no argument y satisfying the conditions in 2.2. will ever be found. 

But this means that for b
0 

= n 1 (a0): 

(2x)(vy ~ a
0

) r(~b (Bx)(y) = CA(y)) A (~b (Bx)(y) ~ tA(y))]. 
0 0 

But then lenrrna 6.2.1 gives a program~. such that: 
J 

and ~ j ~ g o tA a. e., 

contradicting the hypotheses of the theorem. 

Thus, we see that a must increase without bound. 
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Comp B > tB a.e.: 

For any index i, if ti~ tB i.o., then clause 1. will eventually 

become executed for i, insuring that,;pi ; CB. 

Assume the contrary: (~i) [ 1mi(B) -- CA) /\ (~ (B) 't a e )] a ~ ~i ~ A " " . 

Then there exists some least integer a0 such that n1(a0) = i and 

(Vy~ a0) rwi (B)(y) ~ tA(y)]. When a is first set equal to a
0 

at some 

stage, c is undefined, by 2.1.1. or 2.2.1.1. 

Since a grows without bound, it follows that eventually 2.2.1. must 

get executed at some stage x when a = a
0

. 

But this implies that: 

(~y,a0 sys x) r(ti (Bx)(y) > tA(y)) V 

[(ii (Bx)(y) s tA(y)) /\ (!Pi (Bx)(y) :/ CA(y))]. 

Moreover, eventually thereafter, either 2.2.1.1. or 2.1.1. must get 

executed, unless prior to their execution, clause 1. is executed. But 

if this happens, then c again becomes undefined so 2.2.1. must again 

get executed. 1. can only intervene finitely many times, since there are 

only finitely many indices less than a0• Thus, we can assume without loss 

of generality that 1. does not intervene. 

But in this case, we insure that: 

(~y ~ ao)r(!lii(B)(y) > tA(y)) v r(wi(B)(y) s tA(y)) /\ (q:>i(B)(y) "'CA(y))]], 

by lemma 4.2.1., which is a contradiction. 

QED 



94 

Remark 6.2.2: We note that, for the space measure S( ) , the function 

~x,yryJ will suffice to satisfy lemma 6.2.1 and hence theorem 6.2, 

provided that tA is nontrivial (i.e. tA ~ ~rx]). The method for 

showing this is not the method of the given proof of the lemma, but 

rather a direct proof by analysis of oracle Turing machine space 

measure; information about A and about the finitely-many exceptions to 

'tp. (A) :::: r" may be stored in the Turing machine's finite control. 
1 

In fact, if we are interested only in the space measure, it is not 

only possible to sharpen our result, but to simplify its proof as well. 

This is because of the following fact about S( ) , not true for general 

measures: 

Fact 6.2.3: (VA, i, Vt E: R1 with t ~ ~xfx]) 

If S. (A) :5: t (A) is total, then: a.e. and ep. 
1 1 

(:B: j) r (ep /A) :::: ep /A)) /\ ( S. (A) :5: t everywhere)]. 
J 

Fact 6.2.3 implies that for S( ) , we need only insure: 

(Vi) (:Ry) fep. (B) :::: c ~ S. (B)(y) > tA(y)], 
1 A 1 

rather than: 
co 

(Vi)(:B:y) [ep. (B) :::: c ~ S.(B)(y) > tA(y)]. 
1 A 1 

This eliminates the need to consider each B-oracle program infinitely 

often during the construction; we need only consider it once. Thus, the 

need for variable b is eliminated. 

Theorem 6.2 provides the following corollary about primitive recursive 

reducibility: 
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Corollary 6.2.4: If A is any recursive set which is not primitive 

recursive, then there exist (in any measure) arbitrarily complex sets B 

such that A i B and B i A. 
p p 

(Recall thats;; means "primitive recursive in.") 
p 

Proof: We show the result for the space measure; clearly, recursive 

relatedness gives the general-measure result. 

Since (Vh) fh is primitive recursive ~ h s::: ¢], the proof of 
p 

corollary 3.5.2, with each B. = ¢, shows how to obtain a recursive 
l 

function f such that: 

(Vh) fh is primitive recursive ~ Comp h s::: f a.e. ]. 

Thus, Comp A> f i.o. 

By theorem 6.2 for tA = f and space measure (where g = ~x,yryJ, 

as in remark 6.2.2), we obtain arbitrarily complex sets B such that 

Comp(B)A > f i.o. 

We claim that f is greater than or equal to each primitive recursive 

function of one variable, a.e. For if not, then: 

(1h, a primitive recursive function of one variable) fh > f i.o. ]. 

The time and space measures on oracle Turing machines may be shown to 

be recursively related (in the sense of theorem 2.5) by a primitive 

recursive function r. 
r o h 

Then the function 2 is clearly primitive 

recursive. However, it requires time ~ r o h to compute the function 

on all arguments, since it requires that much time just to output the 

answer. Therefore, it requires space ~ h to compute this function on 

almost all arguments, by recursive relatedness. Therefore, 
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Comp 2r 
0 

h > f i. o., a contradiction. Thus, f must be greater than 

or equal to each primitive recursive function of one variable a.e. 

But then Comp(B)A > f i.o. implies that A cannot be computed using 

a B-oracle in primitive recursive space, so A~ B by theorem 3.2. 
P. 

By making B sufficiently complex, theorem 4.2 shows that we can 

obtain Comp(A)B > f i.o. Thus, by theorem 3.2, B ~ A. 
p 

QED 

We would like to compare theorem 5.2 with theorem 6.2 to demonstrate 

that there is no conflict between them. We note that theorem 5.2 

produces sets ~ which are helped infinitely often by all sets B whose 

complexities are "compressed" around running times. Theorem 6.2 does 

not produce sets B with such a restriction on their complexities. For 

proper comparison, we would therefore like a stronger, "compressed" 

version of theorem 6.2. 

We may obtain such a strengthened version of the theorem if we are 

willing to allow some additional assumptions: namely, we assume that 

tB is a running time, and that tB is monotone and much larger than the 

complexity of tA and the complexity of A. 

New Assumptions: 

The new statement of the theorem is as follows: 

Proposition 6.2.5: 

There exists g e R2 with the following property: 
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Whenever we have tA' tB s R1, A a recursive set, Comp A > g o tA i.o., 

and the New Assumptions satisfied, then there exists a recursive set B 

such that: 

and 

Comp B > tB a.e., 

Comp B ~ g o tB a. e. , 

(B) 
Comp A > tA i.o. 

Proof: Uses the construction in theorem 6.2, and a domain-of-convergence 

argument to estimate the complexity of B. We omit the details. 

We require one further lerrrrna before making our comparison: 

Lerrrrna 6.2.6: In any measure ~( ) , there exist arbitrarily large 

monotone increasing running times. 

Proof: Let us fix any t s R
1

. 

We use the recursion theorem rRol] to define: 

0 if x = 0, 

c:p.(x) 
1 

or if r(cp.(x - l)t) a·Jtd (~.(x) > m<J.x(t(x),~.(x - l)))] 
1 1 1 

co otherwise. 

It is easy to show that c:p. must be total and P. has the required 
1 1 

properties. 

We now note the following: 

Let us use the function g found in proposition 6.2.5. 

2 
Define g E R2 as ~x,yrg(x,g(x,y))]. Then we may obtain, by theorem 

5.2, a set A , which is i.o. g
2
-improved by all recursive sets B whose 

g 
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complexity is weakly g-compressed around a running time. (That is, 

there exists a total running time tB such that Comp B > tB i.o. and 

Comp B :::;; g o tB a. e.) 

Now we claim that there exists a recursive function tA which is 

a "good" i.o. lower bound for A , 's complexity, in the sense that CA 
g g' 

can be computed a.e. in measure not much greater than tA. (This is 

true provided g' is honest, an assumption we may make without loss of 

generality. An examination of the proof of theorem 5.2 shows that: 

A<i,x,y>[g'(x,y)] 

approximates an i.o. lower bound for the complexity of A ,, and that 
g 

CA can actually be computed a.e. in measure not much greater than 
g' 

this function.) 

Using lennna 6.2.6. to obtain the appropriate function tB, we 

may apply proposition 6.2.5 to the function tA and obtain a set B. 

What is B's relationship to A,? 
g 

2 B must g -improve A 1 i.o., by theorem 5.2. On the other hand, 
g 

since B preserves the i.o. lower bound tA (at least to within amount g), 

it is impossible that B g
2

-improve Ag' a.e. Intuitively, B g
2

-improves 

A , i.o. and B fails to g2-improve A , i.o. There is, of course, no 
g g 

conflict here. 

We note that theorem 6.2 has a real relationship to "improvement" 

only in the case where tA is actually a "good" lower bound for A's 

complexity (i.e. CA can be computed a.e. in measure not much more than 

tA) In the case of sets A having such "good" lower bounds, theorem 
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6.2 allows us to conclude (for sufficiently large k) the existence 

of sets B for which it is false that Bk-improves A a.e. 

However, not all recursive sets have such "good" i. o. lower 

bounds. For example, sets whose characteristic functions have sufficient 

speed-up cannot have good i.o. lower bounds. For this type of set, 

theorem 6.2 gives us no information about improvement. 

Open Question: Can we obtain a more symmetrical version of theorem 6.2, 

in which A also preserves a lower bound on B's complexity? 

This question may be precisely formulated in several different 

ways. One example is as follows: Is it true that: 

There exists g e R
2 

with the following property: 

Whenever we have tA' tB e R1, A a recursive set, Comp A > go tA i.o. 

and the New Assumptions satisfied, then there exists a recursive set B 

such that: 

Comp B s: g o tB a. e. , 

and C (B)A > t . omp A 1.0. 

Open Question: For any recursive set A, we have managed to find sets B 

which preserve any single i.o. lower bound tA on A's complexity. Can we 

find, for each A, a single set B which preserves all i.o. lower bounds 

which happen to be total running times)? Further discussion of this 

question will appear in Chapter 7. 

The next theorem, theorem 6.3, is similar to theorem 6.2, but the 

kind of lower bound we are considering is an a.e. lower bound instead 
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of an i.o. lower bound. Theorem 6.3 is almost a companion theorem to 

theorem 6.2; it does require the additional assumptions that tA is a 

running time, and that tA is sufficiently large, however. 

A note on the type of priority construction used for this theorem: 

the proof is a finite-injury priority argument with no apparent recursive 

bound on the number of injuries of each condition. 

Theorem 6.3: There exists g e R
2 

with the following property: 

For any total running time tA such that tA ~ ~xrxl, and any recursive 

set A with: 
Comp A> go tA a.e., 

there exist arbitrarily complex recursive sets B with: 

a.e. 

We choose a function tB to be an a.e. lower bound on B's complexity. 

Without loss of generality (as we see from lemma 6.2.6 above) we may 

assume that tB is a monotone increasing running time. 

We describe a construction which will give us the required set B, 

working from tA, tB and A. We use the s-m-n theorem. The parameters 

a, b and c in the construction are to be thought of as follows: 

~b will be tB' 

Qc will be CA. 

Definition of Q (which will turn out to be CB for a, b, c as above) 
§(a.b.c) 

Q~(a,b,c) will be defined in stages, with Q~(a,b,c)(n) being 
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defined at stage n. 

During the construction, we keep track of two types of cancellation, 

which we call I-cancellation and 2-cancellation. We I-cancel an index i 

when we have succeeded in defining cp ~(a, b,c) in such a way that: 

(:B:x,y)(VC) rccclfo, ... ,y} = cpMa,b,c) lfo, •.. ,y}) ~ (cp/C)(x) f CA(x))]. 

These I-cancellations will be used to insure Comp(B)A > tA a.e. 

We 2-cancel an index i when we have insured that cp. I cpl:l.( b ) . 
1 I' a, ,c 

Indices i get 2-cancelled when ~i is less than tB sufficiently many 

times. This will insure Comp B > tB a.e. 

Once an index is I-cancelled or 2-cancelled, it remains so at all 

later stages. 

Also, at any particular time during the construction, we may have 

some "tentatively 1-canceiled" indices. If an index i is tentatively 

I-cancelled, a pair of integers (x.,y.) will be defined such that if 
1 1 

we ever discover that CA(xi) I yi' then i will become I-cancelled. If 

yi, then the tentative 1-cancellation will 

be removed. 

The same index may become tentatively I-cancelled and lose its 

tentative I-cancellation repeatedly, the values of (x.,y.) changing 
1 1 

with each tentative I-cancellation, but we will see that (in the cases 

in which we are interested) may index can only become tentatively 

1-cancelled finitely often. 

Finally, at any time during the construction we may have a 

"tentative commitment for (an index) . " 1 • A tentative commitment for 
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i is a quadruple (i,x.,y.,z.), where z. is the canonical index of a 0-1 
1 1 1 1 

valued function F with finite domain such that: 
z. 

and F 
z. 

1 

1 

(VC) rccCjdomain Fz. 
1 

is an extension of the 

F ) ~ (cp.(C)(x.) = yi.)], 
z. 1 1 

1 

finite portion of cp~(a, b,c) defined at the 

time of the tentative cormnitment to i. The tentative cormnitment is 

designed to allow us to subsequently tentatively 1-cancel i, if possible 

We will eventually fulfill the tentative cormnitment for i, at 

which time i becomes tentatively I-cancelled, unless we are interrupted 

by the 2-cancellation of an index smaller than (i.e. of higher priority 

than) i, or by a new tentative cormnitment for an index smaller than i. 

In both the following constructions, we will speak of the "first" 

members of certain collections of finite sets; it is to be understood 

that the ordering we are using is lexicographic. 

At the beginning of Stage 0, there are no 1-cancellations, tentative 

1-cancellations, or 2-cancellations, or tentative cormnitments. 

Stage n: (Define cp§(a,b,c)(n)) 

1. Compute ~b(n) and ~b(n - 1). 

(If either diverges, then cp~(a, b,c) will diverge.) 

Let X = (x $ ~b(n) l~b(n - l) < ~a(x) $ ~b(n)}. 

See if either of the following, (a) or (b), holds: 

(a) There exist i, x, E such that: 

(al) i $ n, i is neither 1-cancelled nor tentatively 1-cancelled, 

and if there is a tentative cormnitment for some j, then i < j, 
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(a2) x 8 X, 

(a3) E ~ (yjy ~ h(i,x,~ (x))} (where h is the function whose 
a 

existence is asserted in lemma 4.2.1), and: 

(Vy~ n - 1) ry 8 E ~ Qp(a,b,c)(y) l], 

and (a4) ~. (E)(x) ~ ~ (x). 
1 a 

(b) There exists i ~ n, where i is not 2-cancelled, and if ther~ is a 

current tentative commitment for some j, then i < j, and: 

1.1. If neither (a) nor (b) holds, 

1.1.1. If there is no current tentative connnitment, define 

~p(a,b,c)(n) = 0 and go on to substage 2. 

1 1.2. If there is a tentative connnitment (i,x.,y.,z.), let 
- J J J 

~a( b )(n) = F (n). Go on to substage 2. 
~ a, ,c z. 

J 

1.2. If either (a) or (b) does hold, fix i to be the smallest index 

for which either (a) or (b) is true. 

1.2.1. If i arises from (a), choose the x such that~ (x) is a 

smallest (if two are equal, choose the smaller x), and 

for this x choose the first set E such that (i,x,E) 

satisfy (a), Remove any previous tentative connnitment, 

and make a new tentative commitment for !, 

(i,x,Q. (E)(x),z.), 
1 1 

where z. is the canonical index of the function: 
1 

Fz. cEICYIY ~ max(n,h(i,x,~a(x)))}. 
1 
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Define Q~( b )(n) = F (n), and go on to substage 2. 
P a, ,c z. 

1 

1 2.2. Ir i arises from (b) but not from (a), define: 

Q~(a,b,c)(n) = 1 ~ Qi(n), 

and ~-cancel .!.· Remove any previous tentative commitment 

and go on to substage 2. 

2. See if there is a current tentative commitment (i,x.,y.,z.) such that 
1 1 1 

n ~max (domain F ). 
zi 

2.1. If so, tentatively l-cancel .!_,associating (x1 ,y1) with the 

tentative 1-cancellation. 

Remove the tentative commitment and go on to substage 3. 

2.2. If not, then just go on to substage 3. 

3. For each tentatively 1-cancelled index i with an associated pair of 

3.1. If not, then make no change. 

3.2. If so, then: 

3.2.l. If Qc(x1) = yi, remove i's tentative 1-cancellation. 

3.2.2. If Q (x.) I yi, remove i's tentative 1-cancellation and c 1 

l-cancel i. 

Go on to stage n + 1. 

END OF CONSTRUCTION 

It is easy to verify that if ~b is total, then for any a, c € N, 
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Ql3(a,b,c) e R1 and cpl3(a,b,c) is 0-1 valued. 

Now choose a*, b* and c* such that ~a*= tA' ~b* = tB and Qc* ~CA. 

def 
Let CB = cp 13(a*' b*' c*). 

We claim that this set B has the required properties. The key 

step. in the proof is the claim that no index gets 1-cancelled i. o. 1f we 

assume this for the moment, the rest of the proof is straightforward: 

It is easy to see that Comp B > tB a.e., as in earlier proofs: if 

~is: tB i.o., then i will be 2-cancelled once all the finitely-many 

higher priority indices which are ever going to be 2-cancelled are .so 

cancelled, and once all the (finitely many) tentative I-cancellations of 

higher priority indices have been made. When i is 2-cancelled, clause 

1. 2. 2. guarantees that cp i f. CB. 

We now claim that Comp(B)A > tA a.e. 

For if not, then there is an index i such that cp (B) 
i 

~ (B) :S: t i 
i A .o. 

Such an i could never be 1-cancelled during the cons·truction of B, 

for this would mean that for some finite set E and some argument x, 

f. cp. (E) (x) 
1 

by the 1-cancellation, 

= cp. (B) (x) 
1 

by lemma 4.2.1, and clauses 1.2.1. and 2.1. 

Therefore, each tentative 1-cancellation of i will eventually be 

removed by clause 3.2.1. 

We will e~entually reach some stage e in the construction of B such 
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that after stage e, no j < i becomes tentatively 1-cancelled or 

2-cancelled. Beyond stage e, clauses (a1 (b) and 1.2 insure that no 

index smaller than i can prevent a tentative corrnnitment for i from being 

made, nor can an index smaller than i interrupt such a tentative corn-

mitment for i. 

Thus, whenever i satisfies clause (a) at some stage n > e, and i is 

not already tentatively 1-cancelled at stage n, i will become tentatively 

1-cancelled at stage n. 

But by lerrnna 4.2.1, ~i (B)(x) ~ tA(x) implies the existence of a set E 

such that (i,x,E) satisfies clause (a). Since ~i (B)(x) ~ tA(x) i.o., i 

will satisfy clause (a) i.o., and so must become tentatively I-cancelled 

i.o. 

But we have assumed that no index i is tentatively 1-cencelled i.o. 

Thus, Comp(B)A > tA a.e. 

It remains to show that no index can become tentatively 1-cancelled 

infinitely often. In order to do this, we construct (by the s-m-n theorem) 

a function with five parameters,~ ( b d )' ya, ,c, ,e 

The parameters are to be thought of as follows: 

~ 
a 

d = the first index which becomes tentatively 1-cancelled infinitely 

many times, and 
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e = the number of a stage beyond which no index smaller than d ever 

becomes tentatively 1-cancelled or 2-cancelled. We assume e > d. 

Then~ ( b d ) will represent a program for CA requiring measure y a, ,c, ,e 

~go tA (for an appropriate function g). We will let this be the g in 

the hypothesis of the theorem, so that we here obtain a contradiction 

to"CompA>go tAa.e." 

Definition of ~ ( b d ) : y a, ,c, ,e 

To compute~ ( b d )(x), we proceed as follows: y a, ,c, ,e 

If~ (x)t or (Vn) r~ (x) > ~b(n)], then~ ( b d )(x)t. a a y a, , c, , e 

Otherwise, let n = µmr~a(x) ~ ~b(m)]. 

1. If n ~ e, let ~ ( b d ) (x) = ~ (x). y a, ,c, ,e c 

2. If n > e, then perform stages 0 through n - 1 in the construction 

of~~(a,b,c)' At the point innnediately after completing stage 

n - 1, see if either there is a tentative connnitment (d,xd,yd,zd) 

or d is tentatively 1-cancelled. 

2.1. If either condition is true, let~ ( b d )(x) = ~ (x). y a, ,c, ,e c 

2.2. Otherwise, see if some tentative connnitment (d,x',y,z), for 

x Ix' would be made at clause 1.2.1. of stage n in the 

construction of ~Ma,b,c). That is, see if: 

(~x· ~ ~ (x)) rr(~b(n - 1) < ~ (x') < ~ (x)) a a a 

(~ (x) = ~ (x') and x' < x)) 
a a 

~ {YIY ~ h(d,x',~ (x'))}) r(Vy ~ n - 1)( a 

v 

/\ 

y e E 
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cp ~(a, b,c) (y) 1) /\ (iJi (E)(x') s:; iJi (x'))l]]. 
d a 

2.2.1. If so, letlp ( b d )(x) =lp (x). 
y a, ,c, ,e c 

2.2.2. If not, then see if (~E ~ fYlY s:; h(d,x,ili (x))}) 
a 

r(tfy s:: n - l)(y t: E ~ cp~(a,b,c)(y) = 1) 

(iJi (E) (x) S:: iJi (x)) l. 
d a 

/\ 

(We are checking to see if at stage n in the con-

(E) 
struction of B, a tentative commitment (d,x,lpd (x) ,z) 

was made.) 

2 . 2 . 2 . 1. I f no t , 1 et cp ( b d ) ( x) = cp ( x) . 
ya, ,c, ,e c 

2.2.2.2. If so, consider the first such E and let: 

cp (x) = cpd (E) (x). 
y(a,b,c,d,e) 

END OF CONSTRUCTION 

We now assume (as indicated briefly before the construction of 

cp that a 0'<, b 0'<, c 0'<, do'< and e 0'< are fixed as follows: 
y(a,b,c,d,e) 

cpc 0'< CA' 

d 0'< = the first index which becomes tentatively 1-cancelled infinitely 

many times during the construction of cp ~(a">'<, bo'<, c;'<), and 

the number of a stage in the construction of cp~(ao'<,bo'<,co'<) after 

which no index smaller than d 0'< ever becomes tentatively 

1-cancel led or 2-cancel led. We assume e 0'< > d 0'< 

We claim cp 
Y( a* b* c* d* e*) ' ' ' ' 
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For all clauses except 2.2.2.2., cpy(a>'<,b>'<,c>'<,d>'<,e>'<) =Qc>'< =CA. 

We must check what happens if clause 2. 2. 2. 2. defines cpy(a>'< b>'< c>'< d>'< e>'<) (x) 
' ' ' ' (E) 

to be cpd>'< (x). 

If 2.2.2.2. is executed indefining somecp ( ... b·'· ... d·'· -'·)(x), ya,-, --,c--, --,e" 

then it means that there is a stage n > e* in the construction of 

Q~(a>'<,b>'<,c>'<) at which d>'<, x and some set E satisfy the conditions 

1. (a) of that construction. 

in 

d>'< must be the smallest index for which either (a) or (b) is satisfied 

because we are already past stage e*. 

Thus, in stage n of the construction of Q~(a*,b*,c*)' clause 1.2.1. 

must be executed for i = d* 

But since clause 2. 2. 1. of the construction of cp ( _,_ b·'· ... d·'· ·'·) (x) ya", --,c--, --,e--

was not executed, it must be the case that no other argument x' could 

interfere with a tentative commitment (d>'<,x,yd>'<'zd>'<) being made at stage 

n in the definition ofQ~(a>'<,b>'<,c>'<)' 

(d*,x,Qd*(E)(x),zd*) will be made. 

and so some tentative commitment 

Eventually, this tentative commitment for d>'< will cause d>'< to 

become tentatively 1-cancelled, since n > e>'<. When d>'< becomes 

tentatively 1-cancelled, it will be associated with the pair of integers 

(E) 
(x,cp d>'< (x)). 

Since d>'< becomes tentatively 1-cancelled infinitely often during 

the construction of cp~(a>'<,b>'<,c>'<)' this tentative cancellation must 

eventually be removed. This can only happen because of clause 3.2. 1. 

at some stage m > n in the construction of cp~(a*,b*,c*)' but 3,2.1. gets 
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executed only if: 

CA(x) = cpd*(E) (x) - cp (x) - y(a*,b*,c~,d*,e*) · 

This establishes the claim that CA= cpy(a*,b*,c*,d*,e*)' 

Next, we would like to show that: 

To do this, we must first define g. 

Let g(x,y) =max g'(x,y,a,b,c,d,e), where we will define 
a,b,c,d,es:x 

g' below. The idea behind the definition of g' is the following: we 

list enough conditions, each recursive assuming the preceding ones are 

satisfied, to insure that cp ( b d )(x), and hence~ ( b d )(x), y a, ,c, , e y a, ,c, , e 

converges. On the other hand, we don't put in so many restrictions that 

we exclude any of the cases we're interested in (i.e. we only list 

properties actually satisfied by a*, b*, c*, d* and e*). 

Here~ we basically follow the construction of l:p ( b d ) (x) and y a, ,c, , e 

select which of the conditions on a*, b*, c*, d* and e* were needed for 

the convergence of cp y(a*, b* ,c*, d*, e*) (x) • 

We define g'(x,y,a,b,c,d,e) = ~ (x) provided all the y(a,b,c,d,e) 

following conditions are satisfied: 

1. e > d, 
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4. Let n = µmri!ia(x) ~ Pb(m)l. Then: 

4. l. n > e, 

4.2. Innnediately after performing stage n - 1 in the construction 

of Q~(a,b,c)' there is no tentative connnitment (d,xd,yd,zd)' 

and d is not tentatively 1-cancelled, 

(Note: This is an effective test since we know that for any 

m < n, Pb(m) < Pa(x), so that Qb(m)!. This suffices to 

insure that Q~(a,b,c)(m)!.) 

4.3. There is no x' satisfying clause 2.2. of the construction of 

Q (x). Precisely, y(a,b,c,d,e) 

1(3:x 1 ~ i!ia(x))rr(i!ib(n - 1) < i!i (x') <iii (x)) V (i!i (x) 
a a a 

iji (x') 
a 

and x' < x) 1 A r(B.E c;;;; Czl z s h(d,x' ,iii (x'))}) r(lfz ~ n -1) 
a 

(z E.: E ~ Q~(a,b,c)(z) = l) A (P/E)(x') s Pa(x'))]l]. 

4.4. (3:E c;;;; Czlz s h(d,x,i!i (x))I) 
a -

r (If z ~ n - 1) ( z E.: E P (x))]. 
a 

If one of the conditions fails to be satisfied, we define: 

g'(x,y,a,b,c,d,e) 0. 

Now by definition, 

g( x iii (x)) ~ g'(x iii (x) a* b* c* d* e*) a.e. 
' a"' ' a"' ' ' ' ' ' 

ijiy(a* b* c* d* e*)(x) 
' ' ' ' 

for all x such that 

a tentative connnitment (d 0'',x,yd,.,'zd,.) is made at some stage after stage 

e* in the construction of B. 

But since we have assumed that d>'c gets tentatively 1-cancelled 



112 

infinitely often, this latter equality must occur for infinitely many x. 

Thus, we have ~y(a*,b*,c*,d*,e*) S go ~a* i.o. 

But since Qy(a* b>'< c"' d>'< e"') = CA' this contradicts the hypothesis: 
' ' ' ' 

Comp A > g o tA a. e. Therefore, our assumption that d>'< was tentatively 

I-cancelled infinitely often was wrong, and so we conclude that no 

index gets tentatively I-cancelled infinitely often in the construction 

QED 

Remark: Part of the difficulty of the preceding proof arises from the 

fact that there is no evident effective way to estimate how many 

tentative corrnnitments for an index may be removed. The resemblance to 

finite injury priority arguments without recursive bounds on the number 

of injuries is readily apparent. 

We now wish to discuss the relationship between theorems 6.3 and 

5.2. As in the parallel discussion for theorem 6.2, we require a 

"compressed" version of the theorem: 

We obtain: 

Proposition 6.3.3: There exists g 8 R
2 

with the following property: 

Whenever we have total running times tA and tB with tB monotone 

increasing, and a recursive set A with Comp A> go tA a.e., and if 

tA ~ ~xrx 1 , then there exists a recursive set B such that: 

Comp B > tB a.e. 

Comp B s g 0 tB a. e., 

and Comp(B)A > t 
A 

a.e. 
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Proof: It is easy to verify that (Vx,a,b,c) rx € domainQ~(a,b,c) 

whenever {0,1, ... ,x) ~domain Pb]. 

Thus, by a simple domain-of-convergence argument, we may find a 

function g' € R
2 

such that: 

P~(a,b,c) :::;; g' o Pb a.e. 

whenever Pb is monotone increasing, and the proposition follows 

innnediately from theorem 6.3. 

QED 

Having this stronger version of theorem 6.3, we may now note the 

following: 

Let us use the function g found in proposition 6,3.3. 

2 
As before, define g € R2 to be ~x,yrg(x,g(x,y)]. Then we obtain, 

by theorem 5.2, a set A , which is i.o. g
2

-improved by all recursive 
g 

sets B whose complexity is weakly g-compressed around a running time. 

(That is, there exists a total running time tB such that Comp B > tB i.o. 

and Comp B:::;; go tB a.e.) 

Now assume that there exists a recursive function tA which is a 

"good" a. e. lower bound for A , is complexity, in the sense that 
g 

can actually be computed a.e. in measure not much greater than 

If such a function tA exists, we may apply proposition 6.3.3. to 

tA and an appropriate tB and obtain a set B What is B's relationship to 

A,? 
g 

B 2 . A must g -improve , 
g 

i.o., by theorem 5.2. On the other hand, 

since B preserves the a.e. lower bound tA (at least to within amount g), 
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2 it is impossible that B g -improve A · i.o. But this is a contradicg' 

ti on. 

Hence, we see that the assqmed existence of the "good" a.e. lower 

bound was false, so A , can have no "good" a.e. lower bound on its 
g 

complexity. 

Open Question: Can we obtain a more symmetrical version of theorem 

6.3, in which A also preserves a lower bound on B's complexity? (This 

is stronger than theorem 4.8 because the set A may be fixed arbitrarily.) 

One way of formulating this is the following: 

Is this true: 

"There exists g E: R2 with the following property: 

Whenever we have total running times tA and tB with tB monotone 

increasing, and a recursive set A with Comp A> go tA a.e., then there 

exists a recursive set B with: 

and 

Comp(A)B > tB a.e. 

CompB~go tBa.e. 

Comp(B)A > t a.e." ? 
A 

Open Question: For any recursive set A, we have found sets B which 

preserve any single a.e. lower bound tA on A's complexity, provided tA 

-is a running time. Can we find, for each A, a single set B which 

preserves all running time a.e. lower bounds? Further discussion of 

this question will appear in Chapter 7. 

Open Question: In theorem 6.3, can the hypothesis that tA is a running 

time be.eliminated? 
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7. Suggestions for Further Study: 

In this chapter, we collect open problems from Chapters 3-6 and 

make further suggestions for additional work. 

7. 1. In theorem 6. 3, can the "running time" hypothesis on tA be eli

minated? That is, can we prove the following theorem: 

"There exists g E: R2 with the following property: 

For any tA E: R1 (with tA ~ ~xrxl), and any recursive set A 

with Comp A> go tA a.e., 

there exist arbitrarily complex recursive sets B such that: 

Comp(B)A > tA a.e." ? 

7.2. Can we strengthen theorem 5.2 to omit or weaken the complexity 

restrictions on B? 

For example, can we prove: 

"For all k E: R2, there exist sets A and functions t E: R1 such 

that: 

(ifB) fComp B > r a.e. => B k-improves A i.o. 1" ? 

There are other possible formulations of the same (intuitive) 

question. 

7.3. Part of the intention of introducing the notion of "helping" was 

to give a formal interpretation of the way in which a subroutine 

helps the computation of a function. (The oracle set plays the 

role of a subroutine). Intuitively, it appears that a definition 

of "helping" which accurately reflects this situation should be 

transitive, contrary to corollary 4.8.5. We see that the difficulty 
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arises because the "helping sets" we consider in the counterexample 

are in fact unlike subroutines because they encode the entire function 

whose computation they are supposed to help 

(B EB C) helps the computation of C). 

(i.e., we say B join 

We would like some way of eliminating this difficulty. Can 

we make some suitable restriction on the kinds of sets allowed as 

oracles (e.g. restrict their complexity relative to that of the 

function being helped) to make our notion of helping a transitive 

GJne? 

If we intend, as above, to give a formal interpretation of 

the way in which a subroutine helps the computation of a function, 

then we should not restrict our attention to set oracles, but 

rather we should have a model for computation which allows help 

from arbitrary partial recursive functions. 

Some work in this direction has already been done by Symes in 

his thesis rsyi. Symes has defined an acceptable ordering of 

"subroutine operators" which work not in conjunction with an 

arbitrary set oracle (as do relative algorithms), but rather in 

conjunction with a partial recursive function. Complexity axioms 

in the style of Blum are then developed for these operators. 

7.4. Consideration of the kind of complexity restrictions needed on B in 

theorem 5.2, and elsewhere in the thesis, leads us to inquire about 

the relationships between the different types of complexity 

restrictions. 
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For example, we ask which of the following statements are true: 

7.4.1. (8g € R
2

)(Vh € R
2

)(3:A,8t € R
1

) 

Comp A> t a.e. and Comp A :S:: go t a.e., 

but such that for no total running time t' is it true that: 

Comp A> t' a.e. and Comp A :S:: ho t' a.e. 

("A is strongly compressed but not between honest bounds.") 

7.4.2. (3:g € R
2

)(Vh € R
2

)(3:A,3:t € R
1

) 

Comp A> t i.o. and Comp A :S:: go t a.e., 

but such that for no total running time t' is it true that: 

Comp A> t' i.o. and Comp A :S:: ho t' a.e. 

("A is weakly compressed but not between honest bounds.") 

7.5. Can we obtain a version of theorem 4.2 for oracle sets B which are 

nonrecursive? That is, can we find any way to bound the amount of 

help a nonrecursive set B can give the computation of a function (for 

example, relative to B's Turing-reducibility properties, or to B's 

complexity relative to some oracle set)? 

7.6. For any recursive set A, theorem 6.2 gives sets B which preserve any 

single i.o. lower bound tA on A's complexity. Can we find, for each 

A, a single recursive set B which preserves all i.o. lower bounds 

on A's complexity (or, more restrictively, all i.o. lower bounds 

which happen to be running times)? This would imply that B failed 

to help A, in a somewhat more natural sense than theorem 6.2. 

For example, it might be possible to somehow take into account 

all i.o. lower bounds on A's complexity, and hence construct B by 
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working from all the i.o. lower bounds rather than a single one. 

7.7. For any recursive set A, we have found sets B which preserve any 

single running time a.e. lower bound on A's complexity. Can we 

find, for each A, a single set B which preserves all a.e. lower 

bounds, (or all running time a.e. lower bounds)? 

A serious drawback to the idea of taking into account all a.e. 

lower bounds on A's complexity is the following claim of Meyer rMel: 

"There exists a recursive set A such that no sequence of 

total functions [p.} satisfies the following properties: 
l. 

(a) ~i,xrp.(x)] is recursive, 
l. 

(b) (Vi) rcomp A> p. a.e.] 
l. 

(c) (Vr € R
1

) r(comp A> r a.e.) (3: j) ( p. > r a. e. ) l" 
J 

We do not know whether a similar result holds for i.o. lower bounds. 

7.8. In Chapter 6, the sets B which don't help A, fail to help it in that 

they preserve a given lower bound on A's complexity. It would be nice 

to be able to sharpen theorems 6.2 and 6.3 to involve k-improvement, 

by applying them to a single "best possible" lower bound on A's 

complexity. 

Unfortunately, Blum's speed-up theorem rBl] tells us that for 

some recursive functions, no lower bound is close enough to the 

actual running time of a program for that function to insure that 

the resulting set B does not k-improve A. That is, some recursive 

functions do not have their complexities well-described by a single 

lower bound function. 
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However, it can be shown rMeFl that the complexity of any recursive 

function may be described by a sequence of recursive functions 

{pi} called a "complexity sequence," having some nice properties: 

(a) ~i,xrp.(x) l is recursive, 
:L 

(b) Each p. is a total running time, 
:L 

(for some h depending on the 

measure only). 

Using the concept of a "complexity sequence," Meyer has 

obtained a version of theorem 4.8 in which neither of the sets B 

or C k-improves the other for any nontrivial k. 

In the hope that this method will extend to other problems 

(notably the questions in Chapter 6), it would be nice to better 

understand how the complexity of recursive functions can be character-

ized in terms of complexity sequences. 

For example, two specific questions: 

7.8.1. Does every recursive function f have a 0-1 valued recursive 

function g with "approximately" the same complexity sequence? 

This means that there exists a function h S R2 depending on 

the measure only, for which: 

(3: [ f.} ' a complexity sequence for f)' and 
:L 

(3: [ gi} , a complexity sequence for g) 

r (tr f.) (2g.) (h o f. ;::: g. a. e.) /\ (tr g . ) (3: f. ) (h 0 g. ;::: f. a. e.)]. 
:L J :L J :L J :L J 

7.8.2. Give necessary and sufficient conditions on a sequence of 

functions that it be a complexity sequence. 
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For example, in rLl, we have two sets of sufficient condi

tions, where each set of conditions includes a synchroni

zation condition (i.e. infinitely many of the functions in 

the sequence are large and small at the same arguments). 

However, we can show that synchronization conditions are 

not necessary in the following strong sense: we can obtain 

functions f with effective i.o. speed-up rB2) such that no 

complexity sequence for f can be synchronized. 

7.9. Many other questions about helping besides those in Chapters 4-6 

may be asked, some of which are probably answerable by methods 

similar to those used in Chapters 4-6. There are different for-

malizations of the same intuitive questions, but some examples are: 

7.9.1. Does there exist a "universally-helping set"? 

Specifically, is it true that: 

(Vh s R2 )(~A, a recursive set)(vt, total running times)(vB) 

r (Comp B > t a. e. and Comp B s h o t a. e.) ~ (A h-improves B) l ? 

7.9.2. Can a set always be helped in a "controlled" way? 

Specifically, is it true that: 

(Vh s R
2
)(v total running times t, t' with t > t')(~ recursive 

sets A,B) 

r(comp A> t a.e.) A (Comp A::; ho t a.e.) A (Comp(B)A > t' a.e.) 

A (Comp(B)A:Sho t' a.e.)]? 

7.10. Is theorem 4.6 true without the monotonicity restriction? Namely, 

is it true that: 

"There exist r s R
1

, h s R2 with the following property: 
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Whenever t is a running time, there exists a recursive set 

A with: 

Comp A > t a.e., 

Comp A s: h 0 t a.e., 

and rA] 
Comp A s: r a.e." ? 

7.11. Can we obtain more symmetrical versions of theorems 6.2 and 6.3, 

in which A also preserves a lower bound on B's complexity? 

One example of a precise formulation of this question for 

theorem 6.2 is the following: Is it true that: 

"There exists g €: R
2 

with the following property: 

Whenever we have tA, tB e: R1, A a recursive set, Comp A 

> g o tA i. o., there exists a recursive set B such that: 

and 

Comp(A)B > tB i.o. 

Comp B s: g o tB a.e. 

Comp(B)A > t i.o." ? 
A 

7.12. This thesis deals almost exclusively with results about functions 

in R and R (A) 
n n It would be interesting to consider similar 

results in P and P (A). For example, questions 7.4 and 7.8 may 
n n 

be rephrased for partial functions. 

We may use Symes' definitions rsyl for programs with partial 

recursive functions in place of oracles, and reformulate our 

questions about helping in these terms. 

7.13. Is is possible to strengthen proposition 3.14 in the following way: 

"Given any nonrecursive set A, it is always possible to find a 
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set B such that: 

A!B and A-reducibility = B-reducibility!' ? 
T 

7.14. Is bounded truth-table reducibility, or any of the other redu-

cibilities mentioned by Jockusch in his thesis r111 complexity-

determined? 

7.15. In his thesis, Jockusch develops the properties of various types 

of truth-table reducibilities, such as containment properties of 

degrees. Explore the answers to these questions for C-reducibili-

ties for various sets C. For example, does c-reducibility have 

any properties significantly different from truth-table reducibility? 
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