
AUTONOl"lOUS, SYUCHRONOUS COUNTERS CONSTRUCTED 
ONLY OF J-K FLIP-FLOPS 

Cambridge 

FRANK MAIJlHNG 

MARCH 1972 

Sponsored by 
Advanced Research Projects Agency 

ARPA Order No. 433 

PROJECT HAC 

fi[}'l.SSACHUSETTS INSTITUTE OF TECHNOLOGY 

Massachusetts 02139 



- 2 -

AUTONOMOUS, SYNCHRONOUS COUNTERS CONSTRUCTED 

ONLY OF J-K FLIP-FLOPS 

ABSTRACT 

This report describes research into some properties of 

autonomous, synchronous counters constructed with only the 

simplest form of J-K Flip-Flop. 

The research revolved around a system with a special-purpose 

digital machine and a general-purpose computer. The special-

purpose machine searched through all the possible counters 

constructed of five or fewer J-K Flip-Flops for all counters 

with a period equal to that specified by the input to the 

system. The descriptions of the counters found were transmitted by the 

special-purpose machine to the computer. Software analyzed 

this output data for various attributes, such as counters 

that cycle the same way independent of their starting state. 

Useful information for designers fo digital machines, several 

proofs, and some insight into these counters resulted from 

this analysis. 

This report reproduces a thesis of the same title submitted to 
the Department of Electrical Engineering, Massachusetts Institute 
of Technology, in partial fulfillment of the requirements for 
the degree of Master of Science, Harch 1972. 



-3-

ACKNOWLEDGEMENTS 

I wish to thank Professor Edward Fredkin for his valuable guidance 

throughout the preparation of this report. I also thank Robert Fenichel 

and Professor Francis Lee for their useful suggestions about the direc

tion of this research. Many people helped me with specific aspects of 

my work. Chief among these were John Roe in logic design and Jeff 

Golden in programming. Other members of the AI Lab were also helpful. 

Two people deserve special thanks for their assistance in the prep

aration of the final version of this report. Madeleine Amyot helped in 

many ways, including editing. Anne Rubin did an excellent job as typist. 

Thanks for personal assistance and encouragement go first to my 

parents, Thomas and Mary Anne Boschert Manning, and also to my friend, 

Lynn Talbert. 

This research was supported in part by Project MAC, an M.I.T. re

search project sponsored by the Advanced Research Projects Agency, De· 

partment of Defense, under Office of Naval Research Contract Number 

N00014-70·A-0362-0001. 



Acknowledgements 

Abstract 

I. Introduction 

A. Overview 

B. Definition of Some 

c. Scope of Report 

D. Previous Work 

II. The Experiment 

A. Overview 

B. The System 

c. Runtime Statistics 

III. Experimental Results 

IV. Proofs 

-4-

TABLE OF CONTENTS 

Terms 

V. Suggestions for Further Research 

VI. Sunnnary 

VII. Appendices 

A. Specific Sequences of States 

B. Effectiveness of Permutational Redundancy Tester 

VIII. Abbreviation Table 

IX. Terminology 

X. References 

2 

3 

5 

5 

6 

12 

15 

18 

18 

29 

36 

37 

45 

54 

55 

56 

56 

59 

62 

63 

64 



-5-

I. INTRODUCTION 

A. Overview 

The two classes of logic elements found in computers and other 

digital machines are combinational logic and memory. In an ideal 

combinational logic element, the output is an instantaneous function 

of the inputs. In a memory element the output may depend on the 

value of some inputs at previous times; the element may "remember" 

something about earlier inputs. In physical combinational logic de

vices, information travels from the inputs to the output with a slight 

delay. In this sense these devices have a very short memory. 

Several memory devices can store the smallest unit of information, 

the bit, whose state corresponds to one of two possible conditions. 

Ferrite cores and semiconductors are commonly used for memory. Ferrite 

cores have many advantages, but they do not accept or provide information 

as quickly as some semiconductor memories. One fast, flexible, inexpen

sive memory element is the J-K Flip Flop. A study of an idealized ver• 

sion of this device appears in this report. 

Counters are used in digital machines for various reasons, such as 

the synchronization of processes. Our chief concern is with automonous 

synchronous counters with only one type of logic element, the J-K Flip

Flop. The specific nature of these counters is described in the next sec• 

tion. The work focused on finding some of the capabilities and limits of 

this restricted class of machine. All of these counters of up to five 

J-K Flip-Flops were examined for various attributes, such as periodicity. 

Results from this examination appear in the report. For instance, coun

ters with periods from one to thirty-one appear here. Each one is an 

interconnection of no more than five J-K Flip-Flops. Proofs and other 

insights into J-K Flip-Flop counters of arbitrary length also appear in 

the report. 



~~ 

-6-

B. Definition of some terms 

The counters studied here are constructed of only one type of logic 

element, the J-K Flip-Flop (JKFF)*. Several slightly different JKFFs are 

commercially available. In this report the JKFF is viewed as a two-state 

device with three inputs and two complementary outputs. 

INPUTS E DC Q J OUTPUTS 

IK Q 
THE JKFF 

The outputs Q and Q are constant until the input to C changes from a 

logical 0 to a 1 (CT). When CT occurs, the new value of Q, called 

Q(t + 1), is calculated from the values of Q, J, and K when CT occurred 

according to the equation 

Q(t + 1) = Q(t).K(t) + Q(t).J(t). 

Q is always the complement of Q. 

Q ( t + 1) = (Q ( t + 1) ) 

Thus we can partition the output history of each JKFF into discrete por

tions or time -- 1,2, t, t + 1 -- separated by the occurrence of CT. 

The equations for the JKFF imply that Q changes from a 0 to a 1 only if 

J is 1 when CT occurs. Q changes from a 1 to a 0 only if K is 1 when CT 

occurs. When Q is O, Q is 1. When Q is 1, Q is O. 

J{t} K{t} Q {t + l} Q {t + l} 

0 0 unchanged 
0 1 0 1 
1 0 1 0 
1 1 changed 

TR.ANSI TION RULES FOR THE JKFF 

The underline implies that the term underlined appears in the Terminology Sec-
tion, which points to the definition of the term. The parentheses in the prop
er context imply that the parenthesized term is an abbreviation for the pre
ceding expression; as such, it appears in the Abbreviation Table. 

-- --- --------~--



-7-

Other inputs are available in some commercial JKFFs. The most 

connnon of these are the "set" and "reset" inputs. Enabling the set input 

at any time forces a JKFF's Q to become a 1 almost instantaneously. 

Enabling the reset input similarly forces the JKFF's Q to become a 0. 

These inputs will not be considered further in this report. However, 

it is useful to note that proper use of the set and reset inputs of a 

collection of JKFFs can force them to assume any of their possible states. 

This method is often used to start a counter or other machine in a par

ticular state. 

We will use the symmetry property of the JKFF. 

A Jl Ql D A K2 Q2 D B J2 Q2 E 

Clock Cl Clock C2 Clock C2 

B Kl Ql E B J2 Q2 E A K2 Q2 D 

JKFFl TWO REPRESENTATIONS OF JKFF2 

JKFFl is functionally identical to JKFF2 for t ~ 1 if: 

1) Jl and K2 connect to the same source, 

2) Kl and J2 connect to the same source, 

3) Cl and C2 connect to the same source of timing pulses, 

4) Ql is compared to Q2, 

5) Ql is compared to Q2, and 

6) Ql(l) = Q2(1). 

For JKFFl: 

Ql(t + 1) Ql(t).i3 + Ql(t).A. 

For JKFF2: 

Q2(t + 1) = Q2(t).A + Qz(t).B. 

Complementing both sides of this equation: 

Q2(t + 1) = Q2(t).·B + Q2(t).A 





-9-

the ASJKC, or a Q of the ASJKC. The input source for each input of an 

ASJKC is indicated by a connection list (CL) in the form: 

no 
Kl 

Ql 

Ql I 

CL = (Jl Kl JZ KZ ... JN KN). 

---JZ 

CZ 

KZ 

QZ 

QZ 

0 Jl 

Kl 

Ql 

Ql 

ALTERNATE REPRESENTATIONS OF CL (0 QZ Ql 1) 

JZ QZ 

1 KZ z 

The ASJKC's state at time t is indicated by an ordered list of the 

states of the component JKFFs. 

S(t) = (Ql(t) QZ(t) QN(t)) 

Given the start-state S(l) and CL, we can calculate S(t) for all t ~ l; 

for we can find the input values J(t), K(t) and Q(t) for all JKtFs for 

t ~ 1. For a ASJKC of n JKFFs (n-ASJKC) there are Zn possible states. 

For example, two JKFFs imply the zZ = 4 possible states 

(0 0) (0 1) (1 0) (1 1). In Zn+ 1 successive states 

S(l), S(Z), S(Zn + 1) -- at least one state must occur twice. 

Assume that the first occurrence of this state was at t = i, the next at 

t = j. If j - i CTs took the ASJKC from state S through some path back 

to state S, the next j - i CTs must do the identical thing because S(t) 

and CL are the same at t = i and t = j. The same argument applies for 

S(j) and S(j + (j - i)), etc. Therefore, if P = j - i 

S(t) = S(t - P) t ~ j 

Pis called the period of the ASJKC. Because j - i ~ Zn, P ~ Zn. 

As we pointed out, an ASJKC begins its periodic behavior before t = Zn+l. 

The period associated with various ASJKCs is of central importance in 

this report. 



-10-

An ASJKC, like any other counter, may be minimal, safe, Gray, or 

binary. An ASJKC of period p composed of n JKFFs (n, P ASJKC) is 

minimal 
~~ 

if n = GI(log2 P) . The counter could not be realized with 

fewer logic elements. A counter is safe if it eventually cycles through 

the same states after being started in any of the 2n possible start 

states. A counter is Gray if only one bit changes for each CT that 

occurs during its count. A counter is binary if the following conditions 

are true. 

1) After it begins its count in S(l) = S, the lowest-order 

bit -- the one that changes state most often -- changes each 

time CT occurs. Each higher-order bit changes only when all 

lower-order bits are 1. 

2) Rule 1 applies at all times except at t = xP. When the counter 

leaves S(xP), the bits of the counter may change in any way 

that results in S(xP + 1) = S = S(l). 

A composite ASJKC is composed of two or more ASJKCs each with 

P ~ 2. These connect to the same source of timing pulses but do not 

connect to each other in any other way. The composite counter with a per

iod of six shown below is composed of two counters. JKFFl is a counter 

with a period of two. The combination of JKFF2 and JKFF3 forms a counter 

with a period of three that cycles through the states (O O), (O 1), (1 O), 
and then returns to (0 0). The (1 1) state goes to the (0 0) state, so 

the counter is safe. 

'{, 

n 1 

1 

Jl Ql 

Kl Ql 1 

J2 

K2 

Q2 

Q2 

A SAFE COMPOSITE ASJKC WITH P = 6 

J3 

1 K3 

Q3 

Q3 

GI stands for the "greatest-integer" function. This function rounds 
all numbers with a fractional part up to the nearest integer. 
GI(2.0) = 2, GI(2.l) = 3, GI(2.99) = 3. 



-11-

The period of a composite ASJKC is found from the period of its 

component ASJKCs in the following way: 

1) Factor the period of each of the component ASJKCs into prime factors. 

Pl= Fl X F2 X ... , P2 = F2 X F
4 

X ... ,etc. 

2) Associate with each factor F a number t equal to the maximum 

number of times F occurs in the factorization of any of the 

Ps. Fl -+ tl' F2-+ t2' F 3 -+ t3. 

3) The period of the composite ASJKC is the product 

t 
p = TI (F ) n. 

n 

For example, the period of a compos"ite ASJKC with component periods of 

12, 18, and 27 is found in the following way: 

1) 12 = 2 x 2 x 3, 18 = 2 x 3 x 3, 27 = 3 x 3 x 3. 

2) 2 occurs twice in the factorization of 12, and 3 occurs three 

times in the factorization of 27. 

3) Therefore the period of the composite ASJKC is P 

p = 2
2 x 3

3 = 4 x 27 = 108. 

No composite ASJKC can be Gray or usefully binary. Because each 

component has P ~ 2, at least one bit of each component must change 

each time. Because there are at least two components, at least two bits 

must change each time. Because a Gray counter changes only one bit each 

time, a composite ASJKC can't be Gray. In a binary counter the lowest

order bit changes each time the counter is not returning to the start

state. If P > 2, there must be a time when the lowest-order bit is 

zero and the counter is not returning to the start-state. When this is 

true, none of the higher-order bits of the counter may change. Since a 

composite ASJKC changes at least two bits each time, the maximum period 

of a composite binary ASJKC is two. Since one JKFF can provide identical 

behavior, a composite binary ASJKC is useless. 

A composite ASJKC is safe if and only if its component ASJKCs are 

safe. 



-12-

C. Scope of Report 

This report describes research into some properties of ASJKCs. The 

research revolved around a system in which hardware searched through all 

n-ASJKCs with n ~ 5 for all ASJKCs with a period equal to that specified 

by the input to the machine. Descriptions of the ASJKC found were passed 

to the PDP-10 general-purpose computer. Software analyzed the output data 

for various things, such as safe counters. This interaction of hardware 

and software led to interesting experimental data. For instance, if 

five or fewer JKFFs are needed to synthesize a safe or at least unsafe 

ASJKC with a particular period, an ASJKC with the fewest number of 

JKFFs needed to provide that behavior is given in Section III. A method 

for using these ASJKCs to build composite ASJKCs is also presented in 

that section. The proof in Section IV that shows limits on ASJKCs 

arose from the experiments. A general method of synthesizing an 

autonomous, synchronous machine made only J-K Flip Flops that runs 

through a particular sequence of states is presented in Section VII. 

Insights into ASJKCs and the problems associated with studying them 

appear throughout the report. 

The work is significant in three main ways. First, the results may 

be useful to the designer of digital machines. Second, some interesting 

proofs are presented and conjectures that may lead to proofs are offered. 

Third, a good solution of a problem is offered in which the interaction 

of a special-purpose digital machine and a general-purpose computer is 

far superior to the exclusive use of either. 

Synchronous counters are used in most digital machines. Any 

counter of period P needs at least GI(log2 P) bits of memory, and the 

JKFF is a commonly used memory element. A synchronous counter that uses 

this memory element and no other logic element is attractive for several 

reasons. Given the choice of a particular commercial JKFF, the ASJKC 

allows a very high rate of timing pulses. 



-13-

------· .. -- ·~ 0 
~l 

Combinational La. ,,-
Logic !+--·---

l.t_ 

·-
[; 

' 

Jl _3o. Jl Ql -.."] 

'I IL(tJ-_ __ ------·~ Cl 
_ ... -
I Kl Ql 

" 
__.. J2 Q2 
'1 
~ C2 ,. 

~ -
'l K2 Q2 

AN AUTONOMOUS SYNCHRONOUS COUNTER 

This is true because there are no logic gates to introduce delays as 

information about the state of the counter travels to the inputs. 

When an ASJKC is minimal, no functionally identical JKFF counter 

using fewer logic elements is possible. Even when an ASJKC is not mini

mal there is a possible economy in using only one logic element. Thus 

Section III, in which we present a table of ASJKCs with instructions 

telling how to use it to build composite ASJKCs, may be a useful guide 

to the designer of digital machines. The implications of some of the 

proofs mentioned below may also interest him. 

·{( 

Proofs of the following statements appear in Section IV. 

1) There is no minimal binary n-ASJKC with n > 3. 

2) Any Gray ASJKC which uses all its JKFFs is equivalent to a 
~'( 

switch-tailed shift-register and therefore has a period P = 2n. 

Our definition of a Gray ASJKC implies that all JKFFs of the ASJKC parti-
cipate in the count. Our proof does not apply to n-ASJKCs in which 
fewer than n JKFFs may count in Gray Code. 



-14-

3) Any n, 2n - 1 ASJKC with n > 2 is unsafe. 

4) The constant 1 is useless as an input for n, P ASJKCs with odd 
n-1 period P > 1.5 x 2 . 

Other less interesting proofs and mathematical analyses occur throughout 

the report. The report also notes trends in experimental data which lead 

to conjectures. 

·~ 
--,=---. . 

Jl Ql J2 Q2 J Qn n 

Kl Ql; K2 Q2 - l 
K Q 

J! . J1 ----· .. :n.. 

GENERAL SWITCH-TAILED SHIFT REGISTER 

The report presents a good solution using the interaction of a 

special-purpose machine (SPM) and a general-purpose computer in a 

problem domain where the exclusive use of either is unfeasible. As 

Section II-A shows, the amount of computation necessary is impracti

cally time-constlllling for a general-purpose computer. This implies the 

need for a SPM. However, the large amount of output information re-

quires the tnemory and computational facilities of a general-purpose 

computer, The interaction of a SPM and the PDP-10 general-purpose 

computer facilitated by an Execuport 300 terminal resolves this conflict. 



-15-

D. Previous Work 

It appears that past study of ASJKCs has taken one of two di

rections. Francis Lee and his associates wrote a computer program which 

searched for one minimal n, P ASJKC, with n ~ 4 for each P s: 16. Robert 

Fenichel and his associates took a different approach. They built a 

digital machine which searched through all n-ASJKCs with n s: 3 for all 

ASJKCs with a period equal to the input period. The advantage of Lee's 

approach was that it took little human effort. The advantage of 

Fenichel's approach was that it provided complete information about 

the limited problem area. 

Because an exhaustive search by a computer program through all 

possible 3-ASJKCs and 4-ASJKCs would take too long, Lee tried to find 

only one token ASJKC for each period. His program tested ASJKCs pro

posed in an orderly way. When it found an ASJKC with a period that 

hadn't been found earlier, it output the description of the ASJKC and 

its period. The search continued until ASJKCs for all periods of 

interest had been found or too much time had elapsed. This method did 

not find an ASJKC for P = 13 or P = 16. However, because the computer's 

search was not an exhaustive one, the conclusion could not be made from 

this search that no 4,13 ASJKC or 4,16 ASJKC exists. 

Fenichel's approach answered all the questions mentioned in 

Section I-C for n-ASJKCs with n s: 3. He designed a digital machine 

to search through all 3-ASJKCs for ASJKCs with the same period as the 

number input to the machine, P s: 8. Each time such an ASJKC was found, 

the machine stopped and displayed the CL and start-state of the 

winning ASJKC on a bank of lights. The operator of the machine re

corded this information on paper and signalled to the machine to contin

ue its search. Slight modification of this machine allowed a similar 

search through 2-ASJKCs. ASJKCs found in these searches were examined 

for the properties of being Gray, binary, or safe. Analysis of this 

data and the data from the experiment described later in this report 

led to many conjectures about ASJKCs. Three of the proofs in Section IV 

resulted from these conjectures. 



-16-

Because Fenichel's machine is similar to the one described later in 

this report, it's interesting to note its structure. Once the On-off switch 

Multiplexer 

CL and State 
Pre poser 

Output Light Bank 

Test 
JKFFs 

T!:~r ~Finish 
controller ____ f-1 

Light 

4 period 
Input 

Switches 

-u -
1 t 

On- Continue 
off Button 
Switch 

FENICHEL'S MACHINE 

is turned on, the Timer and Controller synchronizes the proposal and subsequent 

test of ASJKCs. The CL and State Proposer is a counter. Each count 

corresponds to a particular CL and start-state. When the test of a 

CL and start-state begins, the Test JKFFs are forced into one of their 

eight possible states according to the command of the State Proposer. 

The CL Proposer's input to the multiplexer determines whether each input 

is connected to a logical O, a logical 1, or one of the outputs of the 

test JKFFs. After the Test JKFFs are connected appropriately and forced 

ihto a start-state they receive timing pulses from the Timer and Con

troller. The Timer and Controller monitors the response of the Test 

JKFFs to determine whether they cycle with period P. If the latter 

does not occur, the CL and State Proposer receives a pulse which signals 



it f'.:"J pt (>f:·\"S~__. ·1 :1· I. 1· 

d C C V C l f' <;; i l : I cl': 

}11e. 1.·r; a11<i c~t;"~1 I,''' 11 

1lut put Lig11l :'.:-: ·1· ~: l {· 'j '} 

.-j ,', 

:1,· 



-18-

II THE EXPERIMENT 

A. Overview 

A system was designed to test all possible n-ASJKCs with n = 4 and 

5 for a periodicity specified by the input to the system. A particular 

n,P ASJKCtestwas run if either a safe or an unsafe x,P ASJKC was not 

found for x<n. For example, there was a search for 4, 9ASJKCs because 

this search could yield minimal period~9 ASJKCs. There was no search 

for 5, 9 ASJKCs because minimal safe and unsafe 4, 9 ASJKCs were found. 

The major steps taken by the system in looking for all n, P ASJKCs 

are below. 

1) Propose all possible Connection Lists (CLs) for n-ASJKCs. 

2) Eliminate each proposed CL that is easily shown to be equiva

lent to a CL that is definitely tested. 

3) Determine whether the ASJKC implied by the combination of a CL 

that isn't eliminated because of redundancy and the all-zero atart

state (00 •.. 0) returns to the all-zero state from that state iri 

P units of time. As we'll see, this results in an exhaustive 

search through all possible n-ASJKCs. 

4) Output each winning CL into a PDP-10 file for n, P ASJKCs. 

If the file contains 2047 winning CLs, stop output to the 

PDP-10 and simply count the number of winning CLs. This 

saves time and computer resources. 

Some of the steps occur simultaneously for different CLs. 

The n, P ASJKC PDP-10 file is later analyzed by software. All 

files are checked for safe ASJKCs, and some files are examined more ex

tensively. 

Exhaustive search was used in searching for ASJKCs with the prop

erties of interest for two reasons. First, if any ASJKC with five or 

fewer JKFFs had one of the properties of interest, our system found that 

ASJKC. This thorough information assures that each entry in the table 

of ASJKCs for 2 ~ P ~ 32 represents the minimum number of JKFFs needed 



-19-

to realize that ASJKC. This information was also a valuable guide in 

formulating the proofs of Section IV. For instance, the experimental 

fact that there is no n, 2n - 1 ASJKC with 3 ~ n ~ 5 led to the proof 

that this was the case for all n, 2n - 1 ASJKCs with n '2! 3. The second 

reason for using the exhaustive search was that it necessitated the 

interesting job of finding techniques to speed up Fenichel's implemen

tation of this approach. 

The technique of exhaustive search that Fenichel used was adequate 

in searching 3-ASJKCs but would have been inadequate in searching 

5-ASJKCs. Three general observations led to drastic reductions in the 

amount of computation and output necessary for search. First, testing 

all CLs with all 2n starting-states is equivalent to testing all CLs with 

the all-zero start-state (S(l) = (OO ..• 0)). Second, only 2n - 1 of the 
''( 

2n + 2 possible sources of input to a JKFF in a ASJKC are useful. This 
2n . 2n means that only (2n - 1) instead of (2n + 2) CLs need be proposed. 

(
2n-l) 2n 1 . For n = 5, Zn+Z Ill 18 • Third, because many CLs result in equivalent 

ASJKCs some redundant ones need not be tested. This observation led to 

a further reduction in tests to about 1/45 of those that would have been 

necessary in searching 5-ASJKCs. 

Testing each CL with the all-zero start-state is equivalent to 

testing each CL with all 2n possible start-states. Consider a counter 

started in some state other than the all-zero start-state. Because of 

the symmetry property discussed in Section I-B we can relabel all 

JKFFs ~hose start-state is a 1. 

Q -+ Q, Q -+ Q, J -+ K, K -+ J. 

If we start this new synunetrically equivalent counter in the all-zero 

start-state it cycles with the same period as the first counter. Be

cause each counter specified by a CL and a start-state cycles in the 

* The last proof in Section IV shows that for odd periods with 
P > 1.5 x zn-1 only 2n-2 possible sources of input are useful. 



-20-

same way as some counter specified by a CL with an all-zero start-state, 

testing all CLs with the all-zero start-state results in an exhaustive 

search . 

. ' 

Lo--

1 -
Jl Ql J2 Q2 

- -
Kl Ql K2 Q2 

s (1) = (0 1) 

CL = (Q2 1 Ql Ql) 

Jl 

1--- 1 Kl 

Ql i---1 K2 

Ql ·---IJ2 

s (1) (0 0) 

Q2 

Q2 

CL (Q2 1 Ql Ql) 

SYMMETRICALLY EQUIVALENT COUNTERS 

The connection of one of the inputs of a JKFF to either of its 

outputs or 0 is useless. 

When J connects to the constant 0, 

Q(t+l) = Q(t).K(t)+Q(t).O Q(t).K(t). 

This implies that if Q ever becomes a 0 it remains a 0. Consequently 

the Q is either a constant 1 or a constant 0 after the ASJKC begins 

its periodic behavior. Because it duplicates the function of constants 

already available, a Q with its J connected to 0 is useless. Because 

of the symmetry property, connecting K to 0 is similarly useless -- as 

soon as Q is 0 it stays O. 

When J and Q of the same JKFF are connected, 

Q(t+l) = Q(t).K(t) + Q(t).Q(t) = Q(t)K(t). 

This is equivalent to connecting J to O, which is useless. Because of 

symmetry, connecting K to Q is similarly useless. 



-21-

When J and Q of the same JKFF are connected, 

QCt+l) = Q(t).K(t) + Q(t).Q(t) = K(t) + Q(t). 

When J connects to the constant 1, 

QCt+l) = Q(t).K(t) + Q(t).l K(t) + Q(t). 

Because connecting a JKFF's J to its Q is equivalent to connecting its 

J to 1, the connection of J to Q is redundant and therefore useless. 

By synnnetry, connection of a JKFF's K to its Q is similarly useless. 

Jl 

Kl 

Ql J2 Q2 

Ql r----1K2 Q2 

s (1) (0 0) 

CL = (Q2" Q2 Ql QT) 

Jl 

Kl 

Ql J2 

Ql K2 

S (1) = (0 O) 

Q2 

Q2 

CL = (Q2 Q2" QT Ql) 

PERMUTATIONALLY EQUIVALENT COUNTERS 

Because all the ideal JKFFs we consider are functionally identical, 

different Connection Lists (CLs) with the all-zero start-state may specify 

equivalent counters, as in the case above. Two ASJKCs are permutationally 

equivalent if some renumbering of the JKFFs in one counter implies a CL 

and S(l) for that counter identical to the CL and S(l) of the other coun

ter. CLs are permutationally equivalent if their counters are permuta

tionally equivalent. For instance, the x-counters and CLs above are 

permutationally equivalent. Relabelling the ASJKC on the left, 

JKFFl ~ JKFF2, JKFF2 ~ JKFFl results in CL = (Q2 Q2 Ql Ql) and 

S(l) = (00). This is identical to the combination for the ASJKC on the 

right. Permutationally equivalent ASJKCs obviously cycle with the same 

period. In fact, if the proper outputs are compared they behave identi

cally. 

For an n-ASJKC there are at most n! different but permutationally 

equivalent CLs corresponding to all possible relabellings of n JKFFs. 



-22-

There are fewer permutationally equivalent CLs when some different 

labellings result in identical CLs, as in the case below. 

Jl 

Kl 

Ql 

Ql 

s (1) 

CL 

J2 Q2 

i----iK2 

(O 0) 

(Q2 Q! Ql QT) 

J2 

--==--] 
Q2 +-----+ Jl Ql 

K2 Q2 +----1 Kl Ql 

s (1) 

CL 

(0 O) 

(Q2 Q2 Ql QI) 

EFFECT OF RELABELLING ONE ASJKC 

A way was needed for using the fact of permutationally equivalent 

CLs to reduce the number of CLs tested. Because the technique was 

a;plied to (2n-1) 2n CLs (~3.5 x 109 CLs for 5-ASJKCs), it had to 

take a short time. It also had to be inexpensive and easy to implement. 

Consider the following partition of all possible inputs to a JKFF 

in a 5-ASJKC. 

J 

1 

1 

1 

Q 

Q 

Q 

Q 

Q 

Q 
-
Q 

Q 
-Q 

Q 

·'k 

K Fraction of Times Proposed Arbitrarily Assigned Priority 

1 1/81 1 

Q 4/81 2 

Q 4/81 3 

1 4/81 4 
~~ 

Q(S) 4/81 5 

Q (S) 4/81 6 

Q cs) 12/81 7 

Q (s) 12/81 8 

1 4/81 9 

Q (S) 4/81 10 

Q (S) 4/81 ll 

Q cs) 12/81 12 

Q (s) 12/81 13 

"S" means "of the same JKFF that J connects to". S means "of a different 
JKFF from the one J connects to". For instance, the entry for 
J =Q, K =Q(S) indicates that four out of eighty-one times Jl connects to 
a Q and Kl connects to the Q of the same JKFF. 



-23-

The assignment of each JKFF of a 5-ASJKC to one of the thirteen 

categories does not depend on the renumbering of any of the JKFFs in 

that ASJKC. Each 5-ASJKC implies a five-digit, base-thirteen partition 

number (PN) corresponding to the input category of each of the five 

JKFFs. For instance, CL= (Q5 Q3 Ql 1 1 Q2 1 1 1 Q4) implies 

PN = 12 9 3 1 2. The PN is trivially found from the CL. Permutation

ally equivalent CLs result in PNs with identical digits in corre

spondingly permuted positions. 

This partitioning is used by the system to eliminate most re

dundant CLs from testing. The PN is treated by the system as a base

thirteen number with its most significant digit (corresponding to the 

input category of JKFFl) on the left. Only when the PN's digits cannot 

be permuted to yield a higher number. is the corresponding CL tested. This 

is equivalent to saying that each digit of the PN must be greater than or 

equal to the digit to its right for a CL to be tested. For instance, 

only the upper of the two permutationally equivalent CLs below would be 

tested by our system. 

Jl Ql J2 Q2 1 J3 Q3 i- J4 Q4 1 J5 Q5 

Kl Ql 1 K2 Q2 K3 Q3 0 Q4 1 K5 Q5 

S(l) (0 0 0 0 O) 

CL = (Q4 Q3 Ql 1 1 Q2 1 Q5 1 1) 
PN = 12 9 3 2 1 ... TESTED 

Jl Ql J2 Q2 1 J3 Q3 1 J4 Q4 1 J5 Q5 

-Kl Ql 1 K2 Q2 K3 Q3 1 K4 Q4 K5 Q5 

s (1) (O 0 0 0 O) 
CL = (Q5 Q3 Ql 1 1 Q2 1 1 1 Q4) 
PN = 12 9 3 1 2 ... NOT TESTED 

TWO PERMUTATIQNALLY EQUIVALENT CLs 



•24-

The fact that the digits of the PN of the lower counter can be per

muted to yield the higher PN reflects the fact that the two CLs are permu· 

tational~y _equivalent. The system would test only the upper, higher CL. 

This partitioning technique is remarkably good at eliminating 

permutationally redundant CLs. As Appendix B shows, for 5-ASJKCs only 

1/45 of the proposed CLs result in testing., For 6-ASJKCs, on1y 1/141 

of the proposed CLs would be tested. Compare this to a technique that 

eliminates all redundancies for n·ASJKC CLs by forming an n-digit, base 

(2n - 1)
2 number frotn the CL. Because permutationally equivalent CLs 

do not result in PNs with a simple relationship, it's hard to use a 

PN formed in this way to look for redundancie~. 

The problem with this method is best illustrated by an example. 

Consider the partition of inputs to a JKFF in a 3~ASJKC shown on the 

next page. 



-25-

J K Fraction of Times Proposed Arbitrarily Assigned 

1 1 1/25 1 

1 Q (L) ;'c' 1/25 2 

1 Q(L) 1/25 3 

1 Q(R) 1/25 4 

1 Q(R) 1/25 5 

Q(L) 1 1/25 6 

Q (L) Q (L) 1/25 7 

Q (L) Q (L) 1/25 8 

Q (L) Q (R) 1/25 9 

Q (L) Q(R) 1/25 10 

Q (L) 1 1/25 11 

Q(L) Q(L) 1/25 12 

Q(L) Q(L) 1/25 13 

Q (L) Q (R) 1/25 14 

Q(L) Q (R) 1/25 15 

Q(R) 1 1/25 16 

Q(R) Q (L) 1/25 17 

Q (R) Q(L) 1/25 18 

Q(R) Q(R) 1/25 19 

Q(R) Q (R) 1/25 20 

Q(R) 1 1/25 21 

Q(R) Q (L) 1/25 22 

Q(R) Q (L) 1/25 23 

Q (R) Q(R) 1/25 24 

Q (R) Q (R) 1/25 25 

A PARTITION OF INPUTS IN A 3-ASJKC 

;'( 

"L" means the leftmost JKFF that the input could connect to. 
"R" means "the rightmost ... ". For instance, Q(L) for Jl is Q2; 
Q(L) for J2 is Ql; Q(L) for J3 is Ql. 

Priority 



-26-

This partitioning scheme results in the following PNs for two 

permutationally equivalent CLs. 

1 Jl Ql 

Kl Ql 

Jl Ql 

Kl Ql 

J2 Q2 

K2 Q2 

S (1) = (O 0 0) 
CL = (1 Q3 Ql Ql Ql Q2) 
PN = 5 7 10 

J2 Q2 1 

K2 Q2 

S(l) (O 0 0) 

CL = (Q3 Q2 Q3 Q3 1 Ql) 

PN 18 19 3 

J3 Q3 

K3 Q3 

J3 Q3 ·. 
'I 
' _, 

K3 Q3 

TWO COUNTERS WITH PERMUTATIONALLY EQUIVALENT CLs 

Although these counters result from permutationally equivalent CLs, 

their PNs are not related in a simple way. Consequently with this 

partitioning scheme the elimination of redundancies is complex and 

. Th" h . l" . f h 1 3 1 
expensive. is sc eme imp ies testing o more t an 120 = 8 X 45 
of the CLs proposed. This improvement is not significant enough to 

warrant choice of this scheme over the simpler, less costly one. 

We now have enough information to estimate the time it would take 

a special-purpose machine using the base~l3 PN to search through all 

5-ASJKCs or 6-ASJKCs for ASJKCs of a particular period. Make the fol

lowing reasonable assumptions: 



-27-

1) The timing portion of the machine cycles once every 165 nsec. 

This is true for our conservatively designed system. 

2) Until the machine finds a CL to test, it proposes and tests 

for redundancy one new CL each timing cycle. When it finds 

a CL to test, the proposer portion stops proposing until 

completion of that test. 

3) The average test of a nonredundant CL takes 2n-l timing 

cycles. The average test is actually higher for higher periods. 
n-1 However, the average for all periods is about 2 . 

4) The time taken to output winning CLs is negligible. Only CL 

proposal and CL testing take time. 

If these assumptions are true the runtime of the machine equals the 

sum of the CL-proposal time and the CL-test time. CL-proposal time is 

(2n-1)
2
n x 165 nsec. CL-test time depends on the fraction of proposed 

CLs that are tested. For n 5 this fraction F = 1/45, and for n = 6 
2n n-1 F = 1/141. CL-test time is F x (2n - 1) x 2 x 165 nsec. Therefore, 

the total time for a test is about 780 seconds for n = 5 and 177 hours 

for n = 6. The time to test 6-ASJKCs is long but not impossibly long. 

We chose not to spend the extra time and effort to test 6-ASJKCs. The 

time to test 5, 25 ASJKCs actually took 815 seconds and took a neg

ligible amount of time to output 91 winning CLs. This deviation from 

the prediction is small and results from the fact that the assumptions 

above are not precise, as we will see. 

All software schemes which were considered take too much computer 

time and consequently cost too much. This is due to the slower cycle 

time and lower parallel processing capability of the machines we could 

use. Consequently we chose to search for winning CLs with a special

purpose machine incorporating ideas presented in this section. 

The special-purpose machine would have been inadequate as an out

put device. For any test we wanted to output all winning CLs less than 



-28-

some large number which we later chose to be 2048. A scheme such as 

Fenichel's, in which paper marked by a human serves as a memory device 

for winning CLs, would have been too slow to handle the large amount of 

output expected. The choice of the PDP-10 as an available general

purpose computer to handle output was a natural one. It served as a 

memory for the output information and enabled simple, quick software 

analysis of that output information. An Execuport 300 terminal facili

tated the linking of the special-purpose machine and the PDP-10. The 

Execuport 300 accepted data from its operator-controlled keyboard and 

the special-purpose machine. It passed this data over a phone line to 

the PDP-10. 



-29-

B. The System 

In the system designed a special-purpose machine (SPM) searches 

for n-ASJKCs of a specified period P with n = 4 or 5, 1 ~ P ~ 32. 

Winning CLs are output to the PDP-10 as 5-character words. As was 

mentioned, the SPM was chosen because of its speed and economy in 

computation. The PDP-10 was chosen because as an available general

purpose computer it provided large storage and software facilities for 

output data. The SPM and PDP-10 interface through an Execuport 300, a 

terminal with a keyboard and facilities for connection to the SPM. The 

Execuport conununicates with the PDP-10 through a standard telephone. 

A human operator opens a PDP-10 file, initiates the exhaustive search, 

and closes and names the file when the search is over. 

SPM 

a 
a.'\aaaa 
a 

a 

Input Cormnands 

Output Information 

aaaaaa Timing Pulses 

EXECUPORT 

0 
·o 

00000.~ 
0 

0 
x 
~ xxxxx 
x 

'----.-~-----vx-----" x 
x 

x xx xx x 
x~ 

HUMAN 
OPERATOR 

000000 Information From SPM and Operator 

xxxxxx Echo of 000000 

SYSTEM FOR FINDING AND FILING ASJKCs 

PDP-10 



-30-

In the search for a particular n,P ASJKC the following steps occur. 

1) The operator turns the SPM's On-off Switch to Off. 

He sets the SPM's input switches to the period P. 

2) The operator uses the Execuport to type commands to the 

PDP-10 which prepare it to file information. 

3) The operator turns the SPM's On-off Switch to On. 'Th.is 

initiates the exhaustive search. When successful CLs are 

found, they are transmitted as 5-character words through the 

Execuport to the PDP-10 file. If there are more than 2047 

winning CLs, only the first 2047 are entered into the file. 

The SPM displays a count of the number of winning CLs found. 

4) When the SPM signals that its search is over by turning on a 

Finish Light, the operator types conunands which close and 

name the file. This file is later examined by software. 

Below is a description of each component of the system other than 

the operator. 

Execuport: This transmits information from the operator and the SPM 

to the PDP-10. A 300 bit/second clock in the Execuport determines the 

rate of transmission of this information. The ease of communication 

between the components of the system that the Execuport allows offsets 

the disadvantage of its low information rate. All information sent to 

the PDP-10 from the Execuport is echoed by the PDP-10. The Execuport 

prints this echoed information, which the operator uses to monitor the 

run. 

SPM: The SPM's input is a 6-bit code specifying in binary the input 

period P with 1 ~ P ~ 32. When the On-off Switch is turned On, the SPM 

is initialized and the search begins. When a successful CL is found, 

it is transmitted to the PDP-10 as a 5-character word. The SPM counts 



-31-

all winning CLs and transmits the first 2047 found. When the SPM com

pletes its exhaustive search, it turns on its Finish Light. 

The SPMwas designed to handle 5,P ASJKC tests. A trivial modi

fication -- moving a few wires and stopping the machine after it pro

posed 1/81 of the CLs proposed for the 5,P ASJKC tests -- allowed 4,P 

ASJKC tests. 

Redun
dancy 
Tester 

Winning 
CL 

Counter 
Lights 

CL 
Proposer 

CL 
Memory 

Timer and 
Controller 

Period On-off 

i--~ Multi
plexer 

Coder 

Test 
JKFFs 

To Execuport 
Switches Switch ish 

Light Clock From Execuport 

THE SPM 
~'( 

As the SPM diagram indicates, there is a great deal of connnunica

tion between components of the SPM. A description of each component and 

its relationship to the other component for 5,P ASJKC tests follows. 

10 This proposes each of the (9) CLs to the Re-

dundancy Tester. The CL Proposer is realized as a synchronous 

counter which counts in base-9 from 0000000000 to 8888888888. 

Each digit determines the input source for one of the ten in

puts. The leftmost digit applies to Jl, the next to Kl, the next 

to J2, etc. The connection implied by an input digit for one of 

the input digits of JKFFN is found in the following way. 

•/( 

The SPM was designed, built, and debugged by the author. 



-32-

1) Eliminate QN and QN from the list 
- -

(Ql Ql Q2 Q2 Q3 Q3 Q4 Q4 Q5 Q5 1). 

2) An input digit value of X implies the connection of the 

input to the (X + l)th member of the new list. 

For instance, for the inputs to JKFFl: 0 ~ Q2, 2 ~ Q3, 8 ~ 1. 

For the inputs to JKFF2, 0 ~ Ql, 2 ~ Q3, 8 ~ 1. The Timer and 

Controller provides the timing pulses for the CL Proposer. 

~eQugd~n£Y_T~s!e!.: This examines the proposed CL for permuta

tional redundancy by partitioning the possible inputs to each 

JKFF into thirteen classes as previously described. The Re

dundancy Tester is realized with combinational logic. This 

logic tells the Timer and Controller whether a CL is redundant 

about 100 nsec. after the CL is proposed. The system con

servatively allows 165 nsec. to pass between proposals of CLs. 

fL_~mQry: This stores a CL if it passes the redundancy test. 

The stored CL controls the interconnection of the Test JKFFs 

through the Multiplexer. The CL Memory allows the testing of 

one CL while the CL Proposer searches for the next CL to be 

tested. This inessential time-saver should not have been in

cluded in the SPM because it does not save much time and it 

obscures interesting runtime statistics. Without the CL 

Memory the total time for proposal and test for period P 

of CLs is the sum of the proposal time and the test time. For 
. 10 ( Ntest) 5-ASJKCs this equals (9) x 165 nsec.x 1 + '"4s-"" , where Ntest 

is the average number of 165 nsec. machine cycles needed to test 

a nonredundant CL for period P. If the CL Memory is used, the 

most time is saved if each nonredundant CL is followed by 44 

redundant ones. The total time for proposal and test then just 

equals the time for proposal, which equals (9)
10 x 165 nsec. 



-33-

The percentage of time saved by using the CL Memory is there
(Ntest x 100) 

fore at most (45 + N ) Since the average Ntest for the 
test 

5,P ASJKCs tested is approximately 16, the CL Memory reduces the 

time for proposal and testing by at most about 26%. We guessed 

earlier that the average time for proposal and testing of CLs 

is about 780 seconds. There were 20 searches through 5-ASJKCs, 

as the input period ranged from 13 to 32. The time to test 4-

ASJKCs is negligible. Therefore the CL Memory saved at most 

about .26 x 20 x 780 seconds<AI 4060 seconds. Considering the 

time needed to wire in the CL Memory, this saving of runtime 

was not worthwhile. Another disadvantage of the CL Memory is 

that in allowing the times for proposal and testing of CLs to 

overlap it makes it difficult to determine experimentally the 

precise value of N for different input periods. 
test 

tlultiple~e~: This logically connects each input of the Test 

JKFFs to its proper source as determined by the CL Memory. 

Ie~t_J!ffs~ For each test of a nonredundant CL, these are 

connected in a way determined by the CL Memory and started in 

the all-zero start-state. The Timer and Controller then pro

vides timing pulses and monitors the response. 

Ri£ning ~L_C£U£t£r~ This starts with a count of 0 and advances 

the count by 1 each time a CL is found that results in the re

turn of the test JKFFs to the all-zero state from the all-zero 

state in P units of time. After 2047 winning CLs are found the 

Counter signals the Timer and Controller to discontinue output 

of winning CLs to the PDP-10. 



-34-

foQe£: Information must be sent through the Execuport to the 

PDP-10 packed in the form 

start bit - 7 bits of information - parity bit - stop bit. 

The Coder converts the 10-digit base-9 number in the CL Memory 

into five 7-bit numbers. Each 7-bit number is passed to the 

Outputter, surrounded by the proper bits, and transmitted as a 

print-character that corresponds to one of the eighty-one 

possible connections of the inputs of a JKFF. 

Qutp~tte£: At a signal from the Timer and Controller, this trans

mits coded winning CLs through the Execuport to the PDP-10. A 

300 bit/second clock from the Execuport insures synchronization 

of transmission and reception of this data. The Outputter sur

rounds each 7-bit package of infonnation with start, parity, and 

stop bits. The Outputter separates each 10-bit pack of informa

tion by at least five "pause bits". This pause insures that the 

PDP-10 input facilities are ready to handle each transmitted 

character. 

1i~e£ ~nQ fo~t£oll~r~ This coordinates the processes of the SPM. 

When the On-off Switch is turned On, it initializes the CL Pro

poser and Winning CL Counter. It then regulates searching and 

outputting. When the search is over, it turns the Finish Light 

on. 

During the search, the Timer and Controller regulates sev

eral parallel processes. The CL Proposer proposes CLs until it 

finds a nonredundant one that the CL Memory cannot accept be

cause of a CL test in progress. When this test is finished the 

new CL is transferred to the CL Memory and the CL Proposer con

tinues. Test of a CL begins with the transfer of a new CL to 

the CL Memory and the setting of the Test JKFFs to the all-zero 

start-state. The Test JKFFs receive timing pulses until one 

of two conditions occurs. 



-35-

1) The number of timing pulses sent to the Test JKFFs 

equals the input period. 

2) The Test JKFFs return to the all-zero state. 

If both (1) and (2) are true, a winning CL has been found. The 

Winning CL Counter is advanced. If its count is less than 2048 

and the Outputter is ready, the coded CL is sent to the Outputter 

for transmission to the PDP-10. If the Outputter is busy trans

mitting a winning CL the new winning CL remains in the CL Memory 

until the Outputter is ready for it. The maximum slowing of 

SPM runtime by output would occur if the first 2047 CLs proposed 

were winners. Runtime with the resultant output would exceed 

the runtime of the same search with no output by 
1 

2047 x 4 second 9$ 512 seconds. If only one of conditions (1) 

and (2) above is true, the tested CL is a loser. The test is 

discontinued and the CL Memory waits for the next nonredundant 

CL. 

When the CL Proposer reaches the count 8800000000, the Timer 

and Controller discontinues the searching and turns the Finish 

Light on. Counting from 8800000000 to 8888888888 is unnecessary 

because the only nonredundant CL in this range is 8888888888, 

which corresponds to a connection of all inputs to a constant 1. 

PDP-10: This stores the winning CLs. When a run is finished the 

winning CLs are filed on a disk and given a mnemonic name. Software 

later examines this file, and outputs for each CL data in the form 

(Period Safe? CL) • 

The "period" entry allows a check of all CLs in the file. This was al

ways the same as the one predicted by the input to the SPM. The "safe 11 

entry tells whether the CL results in a safe ASJKC. Following this entry 

is the CL in its uncoded form. Software also makes other tests that we 

will describe of some files. 



-36-

C. Runtime Statistics 

Variations in runtime for different 5,P ASJKC tests are due to 

variations in the time to test nonredundant CLs and the time to output 

winning CLs. The statistics below demonstrate this fact. 

Period 

18 

25 

32 

Runtime Number of Winning CLs Output 

1140 seconds 2047 

815 

880 

II 

II 

91 

0 

Runtime is slowed when a winning CL must wait in the CL Memory for 

another winning CL to be output. This occurs when winning CLs are found 

by the SPM within t second of each other. This high density of winning 

CLs occurred for P = 18 and resulted in its long runtime compared to 

P = 25 or 32. For the P = 18 case, the last of the first 2047 winning 

CLs was output after .44 of the total CLs proposed had been proposed. 

This first portion of the SPM run took twelve minutes, and the rest of 

the run took seven minutes. 

When output does not cause a bottleneck, variations in runtime are 

caused by variations in the time to test nonredundant CLs. Because one 

of the two conditions for ending one of these tests is that the Test 

JKFFs receive P timing pulses, tests take longer for higher P. This is 

demonstrated by the fact that the runtime for 5,25 ASJKCs was less than 

that for 5,32 ASJKCs. It's difficult to predict the precise effect of 

varying P because the proposal and testing times overlap. If the maxi

mum overlap had occurred in which each nonredundant CL was followed by 

44 redundant ones, no variation in runtime would have occurred for 

P ~ 25 and 32. This maximum overlap obviously did not occur. 



-37-

III EXPERIMENTAL RESULTS 

This section discusses data resulting from the experiment de

scribed in the previous section and earlier work by Robert Fenichel. 

There is too much data to make presentation of all of it feasible or 

worthwhile. Instead the most important aspects of the data are pre

sented. 

The following table shows the number of winning CLs found for 

each 5,P ASJKC test for 13 ~ P ~ 32. Because the proportion of equiva

lent counters varies for each period, this table only gives a rough idea 

of the relative number of non-equivalent counters. As we've seen, an 

n-ASJKC corresponding to a particular CL may be started in any one of 2n 

start-states. Each could result in different behavior. Therefore each 

one or its equivalent should be tested. However in cycling with period 

P, an ASJKC enters P different states with the same CL. Each of these 

P combinations of CL and state is equivalent to the combination of some 

CL with the all-zero start-state. Two combinations of CL and state may 

be equivalent to the same CL with the all-zero state. This is true for 

CL= (Q2 Q2 Ql Ql), S(l) = (O 0) or S(l) = (1 1). This equivalence 

usually does not occur. If all the all-zero start-state CLs are differ

ent, the 5,P ASJKC search will find P winning CLs equivalent to the same 

CL in P different start-states. Each of these CLs may have permuta

tionally redundant CLs which are not eliminated by the redundancy test 

artd which therefore appear as winning CLs. Therefore there is not an 

exact correspondence between the number of winning CLs found and the 

number of different CLs with at least P start-states leading to 

periodicity P. In fact, one would expect a smaller proportion of dif

ferent CLs in tests for higher P. This biasing of the count could have 

been eliminated by software for files with fewer than 2048 winning CLs. 

We only used this approach for four files because we were not interested 

enough in the precise data to make extensive use of software analysis of 

files worth the effort. 



-38-

Period Number of Winning CLs 

13 18,222 

14 41, 938 

15 22,999 

16 12,020 

17 1, 775 

18 4, 763 

19 479 

20 3,569 

21 1,395 

22 432 

23 468 

24 508 

25 91 

26 176 

27 159 

28 594 

29 90 

30 1,388 

31 968 

32 0 

Total 112,034 

NUMBER OF WINNING CLs FOR 5,P ASJKC SEARCHES 

This data suggests certain general statements. There are more 

winning CLs for low periods than for high periods. When a period has 

some winning CLs which correspond to composite ASJKCs with components 

of three or fewer JKFFs, that period has more winning CLs than the per

iods neat it. This is true for P = 14, 15, 18, 20, 21, 24, 28, and 30. 



-39-

There is a large number of winning CLs for P = 31 and no winning CLs 

for P = 32. 

Software analysis indicates the effect of the fact that P differ

ent start-states of a winning CL result in periodicity P. Software 

analyzed the files for P = 25, 26, 27, and 29 -- the four smallest files 

with some CLs. The table below shows the different counters for these 

periods by showing a CL which results in one of the counters when asso

ciated with the all-zero start-state. 

Number of Number of 
Winning CLs Different 

Period Output Counters Different Counters 

-- ---
25 91 1 (Q5 Q4 Ql Ql Q2 Q2 Q3 Q2 Q4 Q4) 

-- - ---26 176 2 (Q5 Q4 Ql Ql Q2 Q2 Q3 Q3 Q4 Q4) 

(Q5 Q4 Ql Ql Q2 Q2 Q3 Q2 Q4 Q4) 

27 159 2 (Q5 Q4 Ql Ql Q2 Q2 Q3 Q2 Q4 Q4) 

(Q5 Q3 Ql Ql Q2 Q2 Q3 Q3 Q4 Q4) 

29 90 l· (Q5 Q4 Ql Ql Q2 Q2 Q3 Q3 Q4 Q4) 

516 6 

ASJKCs FOR P = 25, 26, 27' 29 

The CLs in the table above are remarkably similar. Six inputs 

(Jl, J2, K2, J3, J5, K5) have the same connection in all six CLs. Two 

inputs (K3, J4) each have one of two connections. Two inputs (Kl, K4) 

each have one of three connections. Software examined all 

(2 x 2 x 3 x 3 = 36) possible connections of K3 to Q2 or Q2, J4 to Q3 

or Q3, Kl to Q3 or Q4 or Q4, K4 to Q2 or Q2 or Q3, and the other inputs 

to the same outputs as in the table above. Twelve CLs resulted in ASJKCs 



-40-

that did not return to the all-zero state from the all-zero state. We 

did not examine the periodicity of these ASJKCs. The other twenty-four 

did return to the all-zero state with periods of 4, 7, 8, 9, 10, 13, 16, 

18, 19, 20, 21, 24, 25, 26, 27, and 29. It would be interesting to study 

generalizations of this ASJKC. For instance, what is the effect of in

sertion of shift-registers of varying length between the first and sec

ond JKFFs of this ASJKC. This implies a CL of the form 

(~ W Ql Ql Q2 Q~ .. Qn_4 Qn_4 Qn_3 X Y Z Qn-l Qn-l), where W is 

Qn-2 or Qn-1 or Qn-l'~s Qn-3 or Qn-3' y is Qn-2 or Qn-2' and 

z is Qn_ 3 or Qn_ 3 or Qn- 2 . 

Jl 

Kl 

Ql 

Ql 

shift register of 
variable length 

n-2 Qn-2 

n-1 Qn-1 

n-1 Qn-1 

FIXED CONNECTIONS FOR A GENERAL ASJKC 

The files for P = 25, 26, 27 and 29 represent 160 

J n 

K 
n 

(= 25 + (2 x 26) + (2 x 27) + 29) different combinations of CL and state. 

If we make the reasonable assumption that no two of these combinations 

are equivalent to the same CL with the all-zero start-state, then the 

average number of permutationally equivalent winning CLs found for 

these files was 516/160 = 3.2. This is close to the estimated average 

of all permutationally equivalent CLs which are tested, which an inter

pretation of Appendix B shows is about 2.7 if the approximation is 

made that every proposed CL is permutationally equivalent to 119 differ

ent CLs. 



-41-

The table on the following page can be a useful guide to the logic de

signer. The entry in the ''Minimum ASJKC" column gives the CL of what our 

exhaustive search proves is the n,P ASJKC with the smallest n. If there 

is a safe minimum ASJKC it appears in the "Minimum ASJKC" colt.nun, and 

a +- in the "Minimum Safe ASJKC" column indicates this. If the mini

mum ASJKC is not safe, an unsafe one is entered in the ''Minimum ASJKC" 

column and a safe x,P ASJKC with the smallest x is entered in the 

"Minimum Safe ASJKC" column. CLs are in the form (Jl Kl .... JN KN) 

and all CLs give appropriate behavior when started in the all-zero 

start-state. To the right of each CL is an entry which indicates 

whether that CL corresponds to a minimal ASJKC. For P = 7 the minimum 

ASJKC is minimal and unsafe. Because it is unsafe the minimum safe 

ASJKC appears in the appropriate column. This minimum safe ASJKC is 

not minimal. When a (ax bx ... z) appears before a CL, that CL repre

sents a composite ASJKC with components of period a, b, ... z. For in

stance, for P = 6 the minimum ASJKC shown is a composite ASJKC with 

components of period 2 and 3. A "?" indicates that a particular entry 

is unknown. No example of that entry exists for n ~ 5. 



Period A Minimum ASJKC Minimal ? A Minimlllll Safe ASJKC Minimal ? 

2 (1 l)_ Yes +- Yes 
3 (Q2 1 Ql 1) Yes +- Yes 
4 Q_l QlQlL Yes +- Yes 
5 (Q2 1 Q3 1 Ql 1 ) Yes +- Yes 
6 (2 x 3) (1 1 Q3 1 QZ 1 ) Yes +- Yes 
7 (Q3 Q3-ql Ql Q2 ~) Yes (1 Q4 1 Q3 1 Ql Q2 Ql) No 
8 (Q3 Q3 Q3 QI Q2 Q2) Yes +- Yes 
9 (Q3 Q4 Ql Ql Q2 Ql Q3 Ql) Yes +- Yes 

10 (2 x 5 )(1 1 QJ l Q4 1 Q2 1 ) Yes +- Yes 
11 (1 Q2 Ql Q4 Q2 Q2 Q3 1 ) Yes +- Yes 
12 (3 x 4 )(Q2 _!__QI 1 1 .!_ Q3 Q1) - Yes +- Yes 
13 (Q3 Q3 Ql Ql Q2 Q4 Q2 QS Q4 Q2) No +- No 
14 (2x7)(1 1 Q49iQ2Q2Q3Q3) Yes (2 x 7) (1 1 1 QS 1 Q4 1 Q2 Q3 Q2) No 
15 (Q4 Q4 Ql Ql Q2 Q2 Q3 Q3) Yes (3 x 5 )(Q2 1 Ql 1 Q4 1 QS 1 Q3 1 ) No 
16 (1 1 1 Q31 QSQ3Q3Q2Ql) No +- No I 

.p.. 
17 (1 Q2 Q3 Q5 Ql Q4 Q3 g! Q2 Ql) Yes +- Yes N 

I 
18 (2 x 9)(1 1 Q4 9.2..~~Ql Q2 ~ Q2) Yes +- Yes 
19 (Q3 Q4 Q5 Ql Q4 Q4 Q5 Q2 ~ Ql) Yes +- Yes 
20 (4 x 5 )(1 1 Ql Ql Q4 1 Q5 1 Q3 1 ) Yes +- Yes 
21 (3 x 7) (Q2 1 QI 1 Q5 Q5 Q3 Q3 Q4 Q4) Yes (3x7)(Q21 Qll 1 Q61 Q51 Q3Q4Q3) No 
22 (2 x 11)(1 1 1 Q3 Q2 Q5 Q3 Q3 Q4 1 ) Yes +- Yes 
23 (Q51 QlQlQ2Q2Q3Q3Q41) Yes ? No 
24 (3x8)(Q21 Qll QSQ5QSQ3Q4Q4) Yes +- Yes 
25 (Q5 Q4 Ql g! Q2 ~ Q3 ~~Qi) Yes _]_ - - - No 
26 (Q5 Q4·Ql Ql Q2 Q2 Q3 Q3 Q4 Q4) Yes (2 x 13) (1 1 Q4 Q4 Q2 Q2 Q3 Q5 Q3 Q6 Q5 Q3) No 
27 (Q5" Q3 Ql QI Q2 Q2 Q3 Q3 Q4 Q4) Yes ? No 
28 (4 x 7) (1 1 Ql Ql Q5 Q5 tp" Q3 Q4 ~) Yes (4x7)(1 1 QlQll Q61 Q51 Q3Q4Q3) No 
29 (Q5"Q4 Ql QIQ2 QZQ3 Q3Q4Q4) Yes ? No 
30 (2 x 15) (1 1 Q5 Q5 Q2 ~ Q3 ~ Q4 Q4) Yes (2 x 3 x 5 )(1 1 Q3 1 QZ 1 Q3" 1 Q6 1 Q4 1) No 
31 (Q5" Q5 Ql Ql Q2 Q2 Q3 Q3 Q4 Q4) Yes ? No 
32 ? No ? No 

MINIMUM SAFE AND UNSAFE ASJKCs FOR 2 :-::;; P :-::;; 3 2 



-43-

The table indicates that there is no safe or unsafe minimal 

ASJKC for p 13' 16, 32. The absence n ASJKC for = or of an n,2 

4 and 5 the conjecture that there 
n for n = suggests is no n,2 ASJKC 

n ~ 4. We have not been able to prove that this is true. The table 

also shows that there is no minimal, safe ASJKC for 

P = 7, 13, 14, 15, 16, 21, 23, 25, 26, 27, 28, 29, 30, 31, or 32. 

As one proof in Section IV shows, there is no safe n, 2n-l ASJKC for 

n ~ 3. 

A composite ASJKC of period P may be formed from component ASJKCs 

in the table in the following way. 

1) Factor P into prime factors and associate with each prime factor 

F a number t equal to the number of times F occurs. 

t t t 
p = (F ) 1 x (F ) 2 x ... (F ) 2 

1 2 2 

2) The composite ASJKC may be realized by any set of component 
t ASJKCs such that each (F) is a facttor of at least one com-

ponent's period and each component's period P is of the form 
c 

Xl X2 X2 
Pc= (F 1) x (F2) x .•. x (F2) with 0 :5: xn ~ tn and l<Pc<P. 

There may be no set of component ASJKCs that satisfies these conditions, 

there may be one set, or there may be more than one set. When there is 

more than one set, choice of a particular set depends on other considera

tions. For instance, a set with the fewest JKFFs or one that results in 

a safe ASJKC may be chosen. For example, consider forming a composite 

ASJKC with P = 60. 

1) 60 ~ (2)
2 x 3 x 5 

2) Possible sets of composite ASJKCs are (4 x 15), (5 x 12), 

(3 x 20). The unsafe (4 x 15) ASJKC uses fewer JKFFs than the 

(5 x 12) or the (3 x 20), so it might be the most desirable 

choice for a particular application. The table on the next 

page shows some composite ASJKCs for 33 ~ P :5: 64. 



Pt r l C' t_''. l i ,, !L !' ,, (' !. : 

n 
i·~ 

.,, 
") 

1 (; 

:: 7 
,,, 
J·l \ 

i'l ! : 

~ () I 

' i 

ft} ?!1 

1+4 (>I l I ! l r:; 1 

I+') 

t'~ b l I. 

l;. 
..., 

I 7 q ) i 

'.+8 ;, I I 

. '~ 



-45-

IV PROOFS 

Inquiry into questions rising from this study led to the proofs 

presented in this section. These proofs use a mathematical approach 

very different from the experimental approach of the last two sections. 

All of the proofs use the specification of the particular ASJKC dis

cussed to make conclusions about the necessary inputs to the JKFFs. 

The fact that each input to a JKFF may only be provided by the constant 

1 or one of the outputs of the other JKFFs in the ASJKC helps lead to 

the conclusion reached. 

Two of the proofs use the fact that if the output of a JKFF in a 

ASJKC is constant x times, and then changes, there must be at least x 

JKFFs in the ASJKC. If QA = 0 from t = 1 to t = x and then QA = 1 at 

t = x + 1, JA 0 from t 1 to t = x - 1 and then JA = 1 at t = x. If 

QA = 1 from t 1 to t = x and then QA = 0 at t = x + 1, KA 0 from 

t = 1 to t = x - 1 and then KA = 1 at t = x. For x ~ 2, one of the out

puts of another JKFFB is necessary to provide this input. But this 

needs one of its inputs 0 from t = 1 to t = x - 2, then 1 at t = x - 1. 

This line of reasoning continues demanding more JKFFs until we get to a 

JKFF that has an output that changes from t = 1 to t = 2. This implies 

one of its inputs is 1 at t = 1, and this requirement can be fulfilled by 

any of the JKFFs in the ASJKC or the constant 1. This argument implies 

that if a JKFF is constant x times in a row and then changes, there must 

be at least x JKFFs in the ASJKC to provide necessary inputs. 

Some proofs also use the fact that synnnetrically equivalent ASJKCs 

cycle with the same period. The proofs are much clearer when we assume 

a relabelling of the JKFFs of an ASJKC that results in behavior that 

includes or excludes a particular state. 



-46-

Assertion. There is no minimal binary n-ASJKC with n > 3. 

Proof: Assume there is such a counter. Because it is minimal, 

2n-l + 1 ~ P ~ Zn. Because it is binary, the highest-order 

bit changes only if one of two conditions occurs. 

1) All the lower-order bits are 1. This occurs at 

most two times during one cycle = P successive states. 

2) The final state changes to the start state. This 

occurs once each cycle and may or may not imply the 

change of the highest-order bit. 

Two mutually exclusive, collectively exhaustive possi

bilities for the binary counter of period P are shown below. 

start state 

Highest-order 
Bit 

A 

A 

A 

A 

A 

A 

Other 
Bits 

11----1 

00----0 

00----01 

w states 

n-1 
w+x=P~2 +l 

x states 

CASE A: Highest-order bit different in start state, final 

state. 



start state 

-47-

Highest-order 
Bit 

A 

A 

A 

A 

A 

A 

A 

A 

Other 
Bits 

11---- 1 

00---- 0 

00----01 

11---- 1 

00---- 0 

n-1 2 states 

CASE B: Highest-order bit same in start state, final state. 

'IWO POSSIBILITIES FOR A MINIMAL BINARY ASJKC 

Let g equal the greatest number of times in a row that the 

highest-order bit is constant during one cycle. For Case A, 
n-2 

g~2 +1. For Case B, g = 2 n-1 For n > 3, 
n-1 n-2 

2 > 2 

Therefore for n> 3, 
n-2 

g~2 +1. Because the highest-order 

bit is constant g times in a row and then changes, the ASJKC 

must have at least g JKFFs. Therefore n ~ g ~ 2n- 2 + 1, 

+ 

n > 3. Because this statement is never true, a minimal binary 

n-ASJKC with n > 3 is logically contradictory. It can't 

exist. 

1. 



-48-

Appendix A shows how w JKFFs can cycle with a period P through 

any sequence of their 2w possible states if they are part of a 

(P X w) 1 P ASJKC. In particular, some of the JKFFs of a large 

enough ASJKC can cycle through any binary or Gray sequence of states 

we can name. Fewer than (P x w) JKFFs are often adequate to realize 

a certain behavior. The necessary JKFFs can be found if one can find 

the necessary inputs to each of thew JKFFs. Appendix A explains this 

further. 

The proof about Gray ASJKCs presented below is broken into two 

parts. The first part of the proof is for Gray n-ASJKCs with n ~ 2. 

It is shown that any such ASJKC that uses all its JKFFs is symmetrically 

equivalent to a switch-tailed shift-register or one of its permutational 

equivalents. The statement that the ASJKC must use all its JKFFs dis

allows ASJKCs in which some of the JKFFs never change state. The second 

part of the proof shows that any Gray counter with just 1 JKFF is equiva

lent to a switch-tailed shift-register. 

Assertion: Any Gray ASJKC which uses all its JKFFs is equivalent to a 

switch-tailed shift-register and therefore has a period 

P = 2n. 

Proof: The statement above is true if it is true for n-ASJKCs with 

n ~ 2 and n = 1. 

fa£t_l_A~s~r~i£n~ Any Gray n-ASJKC with n ~ 2 is symmetrically 

equivalent to a switch-tailed shift-register or one of its 

permutational equivalents and has a period P = 2n. 

RaEt_l_PEO£f~ Assume a Gray n-ASJKC with n ~ 2. Because of the 

symmetry property its JKFFs can be labelled so that the Gray 

ASJKC starts in the all-zero state. This does not affect the 

Grayness or period of the counter. Since by definition only 

one JKFF can change at a time, the last JKFF to change --

Qn -- is 0 at least from t = 1 to t = n. ~ must change at 

some time to be useful. In fact, it must change at t = n + 1. 



-49-

If Q is 0 x times in a row and then 1, there must be at least 
n 

x JKFFs in the ASJKC. Since there are only n JKFFs, ~must 

change to 1 at t = n + 1. If we label the ASJKC so that Ql 

changes first, Q2 changes second, etc., then this necessarily 

implies the sequence of states and partial ASJKC shown below. 

Time Qn Qn-1 Qn-2 Q3 Q2 Ql 

t 1 0 0 0 0 0 0 

t 2 0 0 0 0 0 1 

0 0 0 0 1 1 

1 

0 0 1 1 1 1 

t = n 0 1 1 1 1 1 

t=n+l 1 1 1 1 1 1 

l;J t-
J2 Q2 J Qn n 

1 K2 Q2 K Qn n 

Only this counter or a permutationally equivalent one could 

result in the proven behavior of Q (t) for 1 ~ t ~ n + 1. 
n 

Because Ql(t) = 1 for 2 ~ t ~ n + 1, Kl(t) = 0 for 

2 ~ t ~ n. For n ~ 2, this implies that Kl connects to Q . n 
Similarly because K2 must be low from t = 3 to t = n + 1, it 

must connect to Ql. This argument applies for all x ~ 2, so 

that K connects to Q 1 . 
x n-

We've now specified the sequence 

of states and partial counter shown on the next page. 



Time 

t = 1 

t z 

t=n+l 

t=n+Z 

t=n+3 

Jl 

.... Kl 

Qn -

0 

0 

0 

1 

1 

1 

1 

Ql 

-
Ql 

Q 
n-1 ____,. .. 

0 

0 

0 

1 

1 

1 

0 

J2 

KZ 

-50-

Qn-2 
.~ 

Q2 

-
Q2 

0 

0 

0 

1 

1 

1 

0 

1-- -

t-- -

--!Jn-1 Qn-1 
-

IKn-1 Qn-1 - -

QZ 

J 

K 

0 

0 

1 

1 

1 

0 

0 

n 

n 

Ql 

0 

1 

1 

1 

0 

0 

0 

Qo n 
-
Qn 

Because Ql(t) = 0 for n + 2 ~ t ~ 2n + 1 and because 

n ~ Z, Jl(t) = 0 for n + 2 ~ t ~ Zn. Therefore Jl connects 

to Q . Therefore the ASJKC is a switch-tailed shift-register. n 
Any Gray n-ASJKC with n ~ 2 that uses all its bits is there-

fore syrmnetrically equivalent to a switch-tailed shift

register or one of its permutational equivalents. We've also 

shown that this implies P = Zn. 

fa£t_2_A~s~r!i£n~ Any Gray 1-ASJKC is equivalent to a switch-tailed 

shift-register and has a period P = 2. 

fa£t_Z_l'!_o£f~ For the one JKFF to count in Gray Code, it must change 

state each time. Therefore J connects to 1 or Q, and K 

connects to 1 or Q. Section II-A shows that connection of 
-J to 1 is equivalent to connection of J to Q and connection 



Assertion: 

-51-

of K to 1 is equivalent to connection of K to Q. Therefore 

the Gray 1-ASJKC is equivalent to a switch-tailed shift

register. It has a period of 2 x 1 = 2. 

Because the major assertion is true for n = 1 and true 

for n ~ 2, it is true for all n. A corollary of this proof 

is that there is no minimal Gray n-ASJKC for n ~ 4. 

n 
Any n, 2 - 1 ASJKC with n > 2 is unsafe. 

Proof: n Assume a n, 2 -1 ASJKC. During its cycle through 2n - 1 states 

there is one state it doesn't reach. For clarity use the 

symmetry property to label the JKFFs of the ASJKC to make 

this the all-zero state. This does not affect the period or 
n-1 

safety of the counter. 
n-1 

Q = 1 2 times. 

Then for all x, Qx = 0 2 - 1 times, 

x 
If Q = 1, K determines its next state. x x When ~ = 1, 

there are two mutually exclusive, collectively exhaustive 

connections of K that we'll consider. 

1) 

2) 

x 

K connects to a Q or Q. 
x 

Because the all-zero state 

is the only one not entered during a cycle, in one 

cycle 

K (t) = 0, Q (t) 
x x 

K (t) 
x = 1, ~ (t) 

K connects to 1. 
x 

1 -+ Q (t + 1) x 
1 

= 1 -+ Q (t + 1) = 0 x 

During one cycle 

K (t) = 1, Q (t) = 1 -+ Q (t + 1) = 0 x x x 

n-2 
2 times, 

n-2 2 times. 

n-1 2 times. 

If Q = 0, K determines its next state. 
x x When ~ = 0 

there are three mutually exclusive, collectively exhaustive 

connections of J that we'll consider. 

1) 

x 

J connects to a Q. 
x 

J (t) 
x 0' Q (t) x 

J (t) 
x 

1, Q (t) 
x 

During one cycle 

0 -+ Q (t + 1) 
x 

0 -+ Q (t + 1) x 

0 

1 

2
n-2 _ 

1 

n-2 
2 

times, 

times. 



-52-

2) J connects to a Q. During one cycle 
x 

J (t) Q (t) o .... q (t+l) 0 
n-2 times, o, = 2 

x x x 

J (t) 1, Q (t),= 0 .... Q (t+l) 1 
n-2 1 times. 2 -x x x 

3) J connects to 1. During one cycle 
x 

J (t) = 1, Q (t) = o .... q (t+l) = 1 
n-1 

1 times. 2 -x x x 

There are six possible combinations of the categories above. 

1) 1, 1 ... Q (t + 1) 0 
n-1 times; K = J 2 

x x x 

2) 1, Q ... Q (t + 1) 
n-1 n-2 1 times; K J 0 2 + 2 -x x x 

3) 1, Q ... Q (t + 1) 
n-1 n-2 times; K J 0 2 + 2 

x x x 

4) K I= 1, J 1 ... Q (t + 1) 0 2n-2 times; 
x x x 

5) I= 1, Q (t + 1) 
n-2 n-2 - 1 times; K J = Q ... 0 2 + 2 

x x x 

6) I= 1, Q (t + 1) 
n-2 n-2 times. K J Q ... 0 2 + 2 

x x x 

Because the all-zero state is avoided during each cycle, 

Q (t + 1) = 0 2n-l - 1 times each cycle. Therefore the six 
x 

categories above imply the six equations below. 

Categori Eguation Occurs When? 

1) n-1 
2 - 1 2 n-1 Never 

2) n-1 1 
n-1 n-2 1 Never 2 - 2 + 2 -

3) 
n-1 1 n-1 n-2 2 - 2 + 2 Never 

4) n-1 1 n-2 2 2 - 2 n = 

5) 
n-1 1 n-2 n-2 1 All n 2 - 2 + 2 -

6) 
n-1 1 n-2 n-2 Never 2 - = 2 + 2 



JKFF 

-53-

These equations show that in a n, 2n - 1 ASJKC with 

n > 2 each J must connect to a Q. Therefore the ASJKC 

remains in the all-zero state after starting there. This 

proves that a n, 2n - 1 ASJKC with n > 2 is unsafe. 

The proof below reduces by one the number of useful inputs to any 
n-1 in a n, P ASJKC with odd period P > 1.5 X 2 • This fact could be 

used to reduce the size of searches for these ASJKCs by a machine like 

ours. 

Assertion: The constant 1 is useless as an input for n, P ASJKCs 
n-1 

with odd period P > 1.5 x 2 • 

Proof: Consider a ASJKC in which the J of one ASJKC connects to the 

constant 1. There are two mutually exclusive, collectively 

exhaustive connections of KA that we'll consider. 

1) KA connects to the constant 1. Then JKFFA changes 

state each time. Therefore the ASJKC must have an 

even period. 

2) KA connects to one of the outputs of one of the other 

JKFFs. Because JA = 1, each time QA = 0 it changes to 

QA = 1 at the next instant of time. Therefore QA only 

becomes 0 after QA = 1, KA 1. Because K connects to 
n-2 . one of the outputs, this can occur at most 2 times 

during one cycle. Therefore during one cycle QA= 0 
n-2 at most 2 times. P equals the number of times 

QA = 0 during a cycle plus the number of times QA = 1 

during a cycle. Therefore P ~ (2n- 2 + 2n-l = 1.5 x 2n-l). 

Because the period of the ASJKC is either even with 
n-1 JA = KA = 1 or less than 1.5 x 2 for JA = 1, KA f 1, 

JA can't connect to the constant P if the period is odd and 
n-1 greater than 1.5 x 2 Because of the symmetry property, 

this is also true for KA. Therefore our proof is complete. 



-54-

V SUGGESTIONS FOR FURTHER RESEARCH 

The three basic approaches described in this report -- hardware

oriented collection of data, software-aided analysis of data, and 

mathematical analysis can be extended for further study of ASJKCs. 

Exhaustive study of 6, P ASJKCs for thirty-six of the periods in 

the range 21 ~ P ~ 64 could lead to discovery of "minimum safe 11 or 

''minimum unsafe 11 entries for these periods. These entries are already 

known for the other periods in this range. If this study occurred in 

the near future it would have to use a SPM. Section II-A contains an 

approximation of the runtime of a machine with a basic cycle time of 

165 nsec and no CL Memory. The estimated time to search all 6-ASJKCs 

for a particular period is 177 hours. Faster logic and less conserva

tive design could cut this time to below 100 hours. The SPM could also 

use the fact that the constant 1 is useless for odd periods P > 48 to 

shorten tests for these periods. The SPM would have to run less than a 

total of 150 days to test all 36 periods. This is a long time but it 

isn't prohibitively long. The SPM is inexpensive and it can run un

attended after it is started. 

Lee's software approach might find a few unknown entries for n

ASJKCs with n > 5. The huge space to be searched and the sparseness of 

output for several periods for n < 5 suggests that this approach would 

miss many existing counters of interest. 

Software could also help study generalizations of ASJKCs found 

during this research. For instance, the configuration mentioned in 

Section IV could be studied. Some useful ASJKCs or proofs about these 

general configurations might result from this approach. 

Mathematical analysis of ASJKCs is an interesting approach that can 

be extended. This has taken the form of proofs concerning the limits of 

ASJKCs. This work could be continued. For instance, a proof proving 
n 

or disproving the validity of the conjecture that there is no n,2 ASJKC 

for n ~ 4 would be interesting and also helpful to the experimenter 

tempted to search for such a counter. Proofs showing how to synthesize 

certain types of ASJKCs would also be worthwhile. 



-55-

VI SUMMARY 

The report described research into some properties of autonomous, 

synchronous counters constructed with only the simplest form of J-K Flip

Flop. The study used a system in which a special-purpose digital machine 

and a PDP-10 general-purpose computer interacted. This system searched 

through all the counters of up to five J-K Flip-Flops for properties of 

interest. Description of some of the relevant design issues appears 

in the report. 

Other information for the designer appears here. Useful counters 

of up to five J-K Flip-Flops are presented with techniques of using these 

for synthesis of other counters. A general method is given for syn

thesizing an autonomous, synchronous machine, made only of J-K Flip Flops, 

that moves through a specific sequence of states. Proofs show some con

straints on a designer of these counters. 

The four proofs resulted from analysis guided by the experimental 

results. 

1) There is no minimal binary n-ASJKC with n > 3. 

2) Any Gray ASJKC which uses all its JKFFs is equivalent to a 

switch-tailed shift-register and therefore has a period P = 2n. 

3) Any n, 2n - 1 ASJKC with n > 2 is unsafe. 

4) The constant 1 is useless as an input for n, P ASJKCs with 
n-1 

p > 1.5 x 2 . 



-56-

VII APPENDICES 

A. Specific Sequences of States 

A specific sequence of states for each JKFF of a counter implies 

knowledge of what input values are required for those JKFFs. Sometimes 

these inputs can be provided by the constant 1 or the outputs of the 

JKFFs of the counter. This is true for a minimal ASJKC. On the other 

hand, sometimes new JKFFs must be added to the ASJKC to provide inputs. 

These in turn may require new JKFFs to provide inputs for them. The 

number of new JKFFs needed depends on the particular sequence of 

states, but the maximum number needed can be calculated for certain 

general categories of operation. 

Knowledge of the state of w JKFFs from t = 1 to t = y determines 

the input value at each time from t = 1 to t = y - 1 for one of the two 

inputs -- J or K -- for each JKFF. The input whose value is determined 

may change for each JKFF during this time. The rules for determining the 

inputs to a JKFF are 

Q (t) o, Q(t + 1) = 0 ... J (t) = O; 

Q (t) = o, Q (t + 1) 1 ... J (t) = l · ' 
Q (t) 1, Q(t+l) = 0 ... K(t) = l · ' 
Q(t) = 1, Q (t + 1) = 1 ... K(t) o. 

Sometimes the proper inputs to a JKFF can be supplied by one of the w 

JKFFs or the constant 1. When this isn't the case, use of only JKFFs 

demands the introduction of new JKFFs to supply appropriate inputs. 

For instance, consider the following sequence of five states for two 

JKFFs and the associated necessary inputs. 

t Ql ~ Jl Kl J2 K2 

1 0 0 1 0 or 1 0 0 or 1 

2 1 0 0 or 1 0 0 0 or 1 

3 1 0 0 or 1 1 1 0 or 1 

4 0 1 1 0 or 1 0 or 1 0 

5 1 1 



-57-

Jl can be supplied by the constant 1 and K2 can be supplied by Ql. 

There is no available input for Kl or J2 with the proper behavior. 

Therefore a new JKFF must be introduced if we insist on using only 

JKFFs in the counter. The new JKFF3 can provide the correct inputs 

for Kl and J2 if Q3(1) = 0, Q3(2) = O, Q3(3) = 1, and Kl and J2 

connect to Q3. If J3 connects to Ql and K3 connects to anything, 

Q3 will behave properly. The counter below would therefore realize 

the appropriate behavior of Ql and Q2 for t = 1 to t = 5. 

1 -I Jl Ql ...__, J2 Q2 J3 Q3J 
- - -

Kl Ql K2 Q2 l--! K3 Q3 

S (1) = (O 0 O) 

EFFICIENT WAY TO DRIVE JKFFl AND JKFF2 

Whenever w JKFFs are required to go through some specific sequence 

of y states, a w(y - 1)-ASJKC in which w JKFFs are observed is always 

sufficient to realize the proper behavior. At worst a properly 

initialized (y - 2)-bit shift-register could provide the proper inputs 

for each of the w JKFFs from t = 1 to t = y - 1. The diagram below 

illustrates this general method for the sequence of five states of Ql 

and Q2 already considered. 

1 ---1 JB QB 

-
0 _, KB QB 

J7 Q7 J6 Q6 

- -
K7 Q7 K6 Q6 

s (1) = (o o 1 I o ·o o 1) 

GENERAL METHOD FOR PROVIDING INPUTS 

J2 Q2 IJ 
-

K2 Q2 



-58-

When w JKFFs cycle with a period P through P specific states 

either of the two methods already described can be used to provide 

inputs. One can carefully introduce new JKFFs only when they are 

determined to be necessary for providing inputs. On the other hand, 

at worst each of the w JKFFs can have its inputs provided by a properly 

initialized P-bit shift-register with its last bit inputting to its 

first bit. Therefore at worst a properly initialized P x w - ASJKC 

is sufficient to realize any periodic behavior with period P of w JKFFs. 

The two diagrams below indicate two realizations of two JKFFs cycling 

with period 5 through the five states of the preceding example. 

1 Jl Ql 

Kl Ql 

'- J6 Q6 

-
[ K6 Q6 

[ JlO QlO 

[ 
KlO QIO 

Q2 

Q2 

J3 

1 K3 

S (1) = (O 0 0 O) 

Q3 

Q3 

EFFICIENT WAY TO DRIVE JKFFl AND JKFF2 

JS Q5 J4 Q4 J3 

- -
K5 Q5 K4 Q4 K3 

J9 Q9 J8 QB J7 

-K9 Q9 K8 Q8 J7 

S(l) = (0 0 1 1 0 1 0 0 1 1) 

GENERAL METHOD FOR PROVIDING INPUTS 

J4 Q4 

'-----1 K4 Q4 

Q3 Jl Qli-11 

- -Q3 Kl Ql I-

Q7 J2 Q2 _L 
-Q7 ~2 QlQ 



-59-

B. Effectiveness of Permutational Redundancy Tester 

Combinatorial mathematics can be used to determine how many 

proposed CLs for a n-ASJKC are tested when the 13-category redundancy 

test described in Section II-A is used. During proposal of the 

(2n - 1)
2

n possible CLs the base-13 PN sometimes has digits that are 

the same. The number of digits that are the same determine what frac

tion of CLs that result in PNs in a certain "sameness category" are 

tested. For instance, for 5-ASJKCs only 1/120 of the CLs with PNs in 

which all digits are different are tested, because only one of the 120 

possible permutations of these digits results in a PN with each digit 

except the lowest-order one greater than or equal to the closest lower

order digit. On the other hand, all CLs with PNs in which all digits 

are the same are tested. The sum of the number of CLs in each "sameness 

category" times the corresponding fraction of times the members of that 

category are tested gives the total number of proposed CLs that are 

tested. 

A slight modification of the procedure above simplifies the calcu

lation. We calculate the fraction of proposed CLs tested if the 1,1 

·Category is dropped. This fraction times the total number of proposed 

CLs-(2n-1) 2n-gives an estimate of the number of tested CLs. The 1,1 

category only occurs l/(2n - 1) 2 of the time for each JKFF. Calculation 

of the fraction of proposed CLs tested when there are 12 categories 

covering (2n - 1) 2 - 1 possible inputs for each JKFF is therefore al

most equivalent to considering 13 categories with (2n - 1)
2 

possible 

inputs. Because this simplification eliminates the least probable 

category and increases the probability of digits being the same, 

slightly fewer CLs than the number we'll calculate are actually tested. 

The table below shows all possible "sameness categories" for 

n = 5 and 6. The number of times each category occurs, the fraction of 

this number that are tested, and the resultant number that are tested are 

shown. The number of times a "sameness category" occurs is determined 

by applying combinatorial arguments to the eight categories of size 



-60-

(n - 1) and four categories of size (n - 1) x (n - Z) for each JKFF. 

For instance, the number of times out of (80)5 that a 5-digit PN with 

four digits the same and one digit different occurs is equal to the 

number of times the four identical digits are in the category of size 4 

plus the number of times they are in the category of size lZ. The num

ber equals 3Zx4x4x4x76x5+48x1Zx1Zx1Zx68x5 = 28,979,200. 

n = 5: 
Number of Fraction 

Categories Occurrences Tested 

all different (d) 932,904,960 1/120 

Z same (s), 3d 1,598,668,800 Z/120 

Zs, Zs, ld 366,059,5ZO 4/120 

3s, 2d 306,954,Z40 6/lZO 

3s, 2s 42,229,760 12/lZO 

4s, ld 28,979,200 24/120 

5s 1,003,520 120/120 

Total 3,276,800,000 = (80)5 

Fraction tested = 72,990,720/3,Z76,800,000 ~ 1/45 

Number tested out of (81)5 

Total 
Tested 

7' 774, Z08 

Z6,644,480 

12,201,984 

15 '34 7' 712 

4,222,976 

5,795,840 

1,003,520 

72, 990, 720 

~(((81) 5 x 72,990,720)/3,276,800,000) ~ 7.8 x 10
7 



-61-

Number of Fraction Total 
n = 6: Categories Occurrences Tested Tested 

6d 327,915,000,000 1/720 455 ,43 7, 500 

2s, 4d 1,144,935,000,000 2/720 3,180,375,000 

2s, 2s, 2d 703,181,250,000 4/720 3,906,562,500 

2s, 2s, 2s 42,918,750,000 8/720 476,875,000 

3s, 3d 422,685,000,000 6/720 3,522,375,000 

3s, 2s, ld 231, 0 7 5 '000' 000 12/720 3,851,250,000 

3s, 3s 8,328,750,000 36/720 416,437,500 

4s, 2d 83,418,750,000 24/720 2,780,625,000 

4s, 2s 13' 5 73' 125 '000 48/720 904,875,000 

5s, ld 7,697,250,000 120/720 1,282,875,000 

6s 256,125,000 720/720 256,125,000 

Total 2,985,984,000,000 = (120) 6 21,033,812,500 

Fraction tested = 21,033,812,500/2,985,984,000,000 ~ 1/141 

Number tested out of (121) 6 

6 10 
~((121) x 21,033,812,500)/2,985,984,000,000~2.2x10 

EFFECT OF REDUNDANCY TEST FOR n = 5, 6 



-62-

VIII ABBREVIATION TABLE 

ASJKC: Autonomous, synchronous counter constructed only of 

J-K Flip-Flops. An x-ASJKC has x JKFFs. An x,y ASJKC 

has x JKFFs and cycles with a period of y. 

CL: Connection list. 

CT: Clock transition. This denotes the transition 0 4 1 of 

the source of timing pulses to one or more JKFFs. This 

signals the recalculation of state for those JKFFs. 

GI: Greatest-integer function. This rounds all numbers with 

a fractional part up to the nearest integer 

GI(2.0) = 2, GI(2.0l) 3, GI(2.99) = 3. 

JKFF: J-K Flip-Flop 

P: Period 

PDP-10: The general-purpose computer used in our experiment. 

PN: Partition number. Each of the input categories of a JKFF 

is assigned a different PN. 

SPM: Special-purpose digital machine. 



IX '.rJ!:RJilNOLOGY 

411-zero state: see page 

autonomous: see page 8 

binary: see page 10 

composite ASJKC: see page 

connection list: see page 
counter: see page 8 

Gray: see page 10 

J•K Flip Flop: see page 6 

minimal: see page 10 

period: see page 9 

-63-

18 

10 

9 

permutationally equivalent CLs, counters: see page 21 

safe: see page 10 

start-state: see page 9 

s~itch-tailed shift-register: see page 14 

symmetrically equivalent counters: see page 19 

symmetry property: see page 7 

synchronous counter: see page 8 



-64-

X REFERENCES 

Rennie, Frederick C., Finite-state Models for Logical Machines, 

John Wiley and Sons, Inc., New York, London, and Sydney, 1968. 

Scientific American, Information, w. H. Freeman and Company, 

San J;'rancisco, 1966. 

Caldwell, Samuel H., Switching Circuits and Logical Design, 

John Wiley and Sons, Inc., New York, 1958. 

Duryee, P. S., "Counter Designs Swing Without Gates," 

Electronic Design, December 6, 1967. 

Langdon, Glen G., "A Survey of Counter Design Techniques, 11 

Compute( Design, October, 1970. 

Richards, R. K., Digital Design, John Wiley and Sons, 1971, 

pp 120-154. 



CS-TR ScanninguProject 
Document Control Form 

Report# Lc..s -Ta - CJ ( 

Date : _j_/ J.J / 'i' 

Each of the following should be identified by a checkmark: 
Originating Department: 

'8 Artificial lntellegence Laboratory (Al) 
~ Laboratory for Computer Science (LCS) 

Document Type: 

fl( Technical Report (TR) D Technical Memo (TM) 

D Other: 
~----------

Document Information Number of pages: 65(70-;mflc.~:5) 
- Not to Include DOD forms, printer lnt&tructlons, etc ... original pages only. 

Originals are: 

~ Single-sided or 

D Double-sided 

Print type: 
0 Typewiler 0 Offset Press 

Intended to be printed as: 

D Single-sided or 

}( Double-sided 

D Laser Print 

D InkJet Printer ~ Unknown D Other: ______ _ 

Check each if included with document: 

Ji( DOD Fonn ().) D Funding Agent Form D CoverPage 

D Spine D Printers Notes D Photo negatives 

D Other: ------------
Page Data: 

Blank Pages(by,..number): __________ _ 

PhotographsfT onal Material (bypsige number): ________ _ 

Other <.,. c1w1ip1; .... ,,. number): 

Description : Page Number: 

::r:MA(;J( /nAf ~ (T- b5' J w~ #""
1
FD TiTL.f' ftJv() )- w( 'f 

Scanning Agent Signoff: 

Date Received: _l_1J.J /~6 Date Scanned: J.., 1_J_1 ~{; Date Returned: J...18-... 11£ 

Scanning Agent Signature: _ __.._~-·---"'-...._~ __ .. -~......_........,. __ 



QNCLASSIFIED 
Secul'itt c la esl i~@.tioli 

,, DOCUMENT CONTROL DAT A . R & D 
(Security claasll/c11tlon of title, body of 11batract and lndelflniz annotation must be ent-d when th• overall report Is daulfled) 

1. ORIGINATING ACTIVITY (Cotporat• author) 211. REPORT SECURITY CLASSIFICATION 

Project AAC l)nclassified 

Massachusetts Institute of Technology 2b. GPIOUP 

N/A 
3. REPOPIT TITLE 

AUTONOMOUS, SYNCHRONOUS COUNTERS CONSTRUCTED ONLY OF J-K FLIP FLOPS 

4. DESCRIPTIVE NOTES (Type of report and lnclue/ve d11t11a) 

ll· AU THOR<SI (FIHt name, mTifdle /nlt/111, 111111 name) 

FRANK MANNING 

5. REPORT OATE 111, TOTAL NO. OF PAGES Tb, N:· OF PIEF9 

May 1972 64 
811. CONTRACT OR GRANT NO. Ila. ORIGINATOR'S REPORT NUMl!IERiSI 

NOOOl.,-70-A-0362-0001 
b. PROJECT NO. N/A MAC-TR-96 

c. N/A llb. OTHER REPORT NO(SI (Any other nwnb•H tll11t may b• a••ll,n•d 
thl • report) 

d. N/A NONE 
10. OISTRIBUTION STATEMENT 

Distribution of this document is unlimited 

11· SUPPLEMENTARY NOTES 12. SPONSORING MILITAPIY ACTIVITY 

NONE Office of Naval Research 

Ill. ABSTRACT This report describes research into some properties of autonomous, 
synchronous counters constructed with only the simplest form of J-K Flip-Flop. 
The research revolved around a system with a special-purpose digital machine and a 
general-purpose computer. The special-purpose machine searched through all the 
possible counters constructed of five or fewer J-K Flip-Flops for all counters with 
a period equal to that specified by the input to the systems. The descriptions of 
the counters found were transmitted by the special-purpose machine to the computer. 
Software analyzed this output data .for various attributes·; such as counters that 
cycle the same way independent of their starting-state. 

Useful information for designers of digital machines, several proofs , and 
some insight into counters constructed only of J-K Flip-F~ops resulted from this 
analysis. An example of the useful information is a table which gives synchronous 
counters using the minimum number of J-K Flip Flops with no other logic to realize 
periodic behavior with P~ 31. One proof shows that any synchronous counter that 
uses only n J-K Flip-Flops and cycles with a period P = 2n - 1 must have a trap state. 
Many other topics and proofs appear in the report. 

The work is significant in three main ways. First, the results may be useful 
to designers of digital machines. Second, some interesting proofs are presented 
and conjectures that may lead to proofs areoffered. Third, a good solution of a 
problem is offered in which the interaction of a special-purpose digital machine 
and a general-purpose computer is far superior to the exclusive use of either. 

DD i''N°o
1!' 1111 14 73 (PAGE 1) 

SiN 6102·014·6600 cu fy Tasslfication 



UNCLASSIFIED 
hc:urity cr ... tncatlon 

14. 
KIEV wo .. 01 

J-K Flip Flops 

Computer-Aided Design 

Synchronous Counters 

Exhaustive Search 

Logic Design 

'. 

DD ,·'!": •• 14 73 (BACK) 

(PAGE 2) 

1..·INK A 1..INt< • LINK C 

llio 1..1:· WT .. OLE WT AOl..IE WT 

IJNCLASSIFTEQ . 
Security cl .. amcatlon 



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgtwpw Rev. 9/94 

----- --- --- ----------


