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ABSTRACT 

This thesis consists of essays on several aspects of the 

problem of algebraic simplification by computer. Since simpli

fication is at the core of most algebraic manipulations, effi

cient and effective simplification procedures are essential to 

building useful computer systems for non-numerical mathematics. 

Efficiency is attained through carefully designed and engineered 

algorithms, heuristics, and data types, while effectiveness Is 

assured through theoretical considerations. 

Chapter 1 is an Introduction to the field of algebraic ma

nipulation, and serves to place the following chapters in per

spective. 

Chapter 2 reports on an original design for, and program

ming implementation of, a pattern matching system intended to 

recognize non-obvious occurrences of patterns withl·n algebraic 

expressions. A user of such a system can "teach" the computer 

new simplification rules. 

Chapter 3 reports on new applications of standard mathema

tical algorithms used for canonical simpl iflcation of rational 

expressions. These appl icatlons, In combinations, al low a 

computer system to contain a fair amount of expertise in several 

areas of algebraic manipulation. 
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Chapter 4 reports on a new, practical, canonical simpli-

fication algorithm for radical expressions Ci .e. algebraic ex-

pressions including roots of polynomials). The effectiveness of 

the procedure is assured through proofs of appropriate properties 

of these simplified expressions. 

Chapter 5 is a brief summary and a discussion of potential 

research areas. 

Two appendices describe MACSYMA, a computer system for 

symbolic manipulation, an effort of some dozen researchers 

(including the author) which has served as the vehicle for this 
work. 
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PREFACE 

This thesis describes a number of contributions to the art 

and science of manipulating algebraic expressions hy computer. 

All the experiments were f)erformed using MACSYMA, a computer 

system for symbolic manipulation of algebraic expressions now 

under development at the Massachusetts Institute of Technology's 

Project MAC. The contributions to MACSYMA of some 12 people are 

detailed in (31). My contributions are ~s follows. 

I designed and programmed the rational function package, 

the radical simplifier, the semantic matching subsystem, "SOLVE", 

the rational "substitution" and "coefficient" routines, and 

po r t i on s of t he s u p e r v i so r and to p - l eve l s i mp l i f i e r • I a l so 

designed and implemented a major revision of the polynomial 

package incorporating the fast modular greatest common divisor 

algorithm (3). This revision makes possible the implementation of 

the much improved factorization algorithm now in progress (2). 

Previous theses which describe parts of MACSYMA or its 

logical predecessors ((3"), (35)) have included LISP (3)) 

listings of the programs used. At this point it is becoming 

impractical to include such listings, constituting several 

hundred printed pages. Furthermore, such publication is of 

doubtful usefulness since listings and an operational system will 

be available in the near future to a community of users through the ARPA 

computer network. The system presently occupies some 110,000 36-

bit computer words and will undoubtedly continue to grow. 
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Chapter 1 - Introduction 

Many persons who are not conversant with mathematical 
studies imagine that because the business of 
(Babbage's Analytical Engine] is to give its results 
in numerical notation, the nature of its processes 
must consequently be arithmetical and numerical, 
rather than algebraical and analytical. This is an 
error. lhe engine can arrange and combine its 
numerical quantities exactly as if they were letters 
or any other general symbols; and in fact it might 
bring out its results in algebraic notation, were 
provisions made accordingly. 

--Ada Augusta, Countess of Lovelace 
(1844) ((26), p. 1) 

During the past decade, developments in computer hardware 

and software have started to accomplish what Lady Lovelace 

envisioned over a century ago. By dealing with algebraic 

expressions, equations, and functions in terms of their symbolic 

representations, without reference to specific numerical values, 

computers are aiding working scientists and engineers facing a 

variety of non-numeric mathematical tasks. Some of the problems 

and potentials of algebraic manipulation by computer, and its 

most central process, simplification, are the topics of this 

thesis. 

1.1. Algebraic Manipulation 

To illustrate the difference between numeric and symbolic 

processing, consider a FORTRAI~ program which, given A, 8 and C, 

can apply the quadratic formula to approximate the roots of 
2 

Ax +Bx+C = O. A, B and C must, of course, have numerical values 
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at run-time. This is strictly numerical processing. If A had as 

its run-tir.1e value the expression "Q, 11 B had value 11 (-P*Q-l), 11 

ano C had value "P, 11 the FOtnRAt-l prograP1 would be useless. 

Nevertheless, by applying the quadratic formula symbolically, the 

two roots, 

2 2 
-(- P Q - 1) ~ SQRT(P Q + 2 P Q + 1 - 4 P Q) 

----------------------------------------------
2 Q 

can be represented. By further efforts, this expression can he 

reduced to 

(1 + p Q) ~ (1 - p Q) 

2 Q 

or the two values P and l/Q. Une computer system for algebraic 

manipulation system, MACSYMA, which is now under development at 

M.l.T's Project MAC (31) and is the test-bed for most of the work 

described in this thesis, can be coaxed Into performing this cal-

culatiun through the followin~ dialogue. The lines labelled Ci 

are typed by the user, those labelled Di and Ei by the MACSYMA 

system. (This, along with most of the other examples in this 

thesis consists of a file produced directly by t•1ACSYMA which was 

later merged with the remainder of the text.) 
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(Cl) EXP:Q•X••2-(l+P•U)•X+P=O@ 

2 
(Dl) Q X - (P Q + 1) X + P = 0 

(C2) SOLVE(EXP,X)@ 

SOLUTION 

(E2) 

(E3) 

(03) 

1 
x = 

Q 

x = p 

(E2,E3) 

It should be emphasized that all of the work described here 

is wedded to MACSYMA by convenience, not necessity. The tech-

niques which are considered are of interest because of their 

relevance to mathematical problem solving in general, and to 

algebraic manipulation by computer most particularly. Although 

details of implementation will differ, the algorithms presented 

here should be useful in a number of computer systems now under 

development (1). Since it serves as a concrete base for 

comparing our techniques with those of other systems, we will 

make frequent references to MACSYMA; however, the philosophy and 

al~orithms, rather than the programs themselves are really the 

topics of interest. Details of the implementation have been 

included when they serve to illustrate particular points In 

dealing with problems of algebraic manipulation. 
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1.2. Algebraic Manipulation by Computer: 
Prospects and Realities 

fully agree with R. H. Hamming that "the purpose of 

computing is insight, not numbers." ((38), p. viii). 

Mathematical analysis has traditionally been preferable to 

numerical approximation techniques because the resulting exact 

symbolic answers often represent a more direct path to insight 

than sets of approximate numbers. In the search for insight into 

mathematical and physical problems, difficult analytical and 

algebraic tasks should be delegated to computers just as diffi-

cult numerical tasks have been delegated in the past. believe 

that computers can serve an important function in analysis analo-

gous to the role they have come to serve both in bringing 

numerical analysis to its present state of refinement, and in 

producing answers to real problems. 

An algebraic manipulation system is able to rapidly and 

reliably "massage" expressions orders of magnitude larger than 

ones comfortably handled by humans. For example, computers have 

demonstrated their facility in handling numbers, hundreds of 

digits in length, and equations requiring several pages for 

display. 

These advantages are fairly obvious. Unfortunately, 

attempts to harness these advantages have often ignored a number 

of major problems (detailed below) which must be tackled in order 

to provide useful services to working mathematicians. Most of 

the early "systems" and "languages" for algebraic manipulation, 
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having failed to consider these problems, disappearerl shortly 

after their introduction. In many cases, the relevant problems 

were not yet recognized, much less solved. An unfortunately 

large number of newer efforts in algebraic manipulation systems 

have fallen into the same traps Ce. g., (32)) and have not recog

nized the significant contributions of many of the researchers of 

the past ten or so years. Some have taken the attitude that a 

slightly r.1ore flexible programming language is all that is needed 

~o suddenly open up the realm of algebraic manipulation capa

bilities. These researchers (most often programming language 

designers) should examine their clairns in the light of the 

Formula Algol {37> experience; namely, that language features 

alone, regardless of their variety, do not make a useful 

algebraic manipulation system. Algorithms {23) and data 

structures are most important, and unless these are carefully 

considered, researchers entering the field will continue to 

repeat the mistakes of others; they will stand on the feet, 

rather than the shoulders, of the earlier contributers. 

We do not wish to embark on a survey of algebraic 

manipulation systems since there are several easily accessible 

references. One is the exhaustive annotated bibliography of the 

field begun by Jean Sammet and continued by John l·Jyman ( 4 2). 

Since many of the listed papers are of historical interest only 

{even many recent ones, for the reasons given above), a more 

selective source on recent work is a better introduction to the 



- 14 -

field. VJ.A. Martin, in (30), critically surveys the progress in 

algebraic 1nanipulation systems up to 1967. Max Engel i, in (11), 

gives his views on achievements and problems in the field to 

1Y68. It is an indication of the rapidity of change in the field 

that some of the break-throughs mP.ntioned by Engel i have been 

eclipsed by more recent developments. (Specifically, calculating 

factorizations and greatest common divisors can now be done much 

faster than by using methods mentioned by Engel i.) Perhaps the 

most useful index to the field to this time is the "Proceedings 

of the Second Symposium on Symbolic and Algebraic Manipulation" 

(March, 1971) (1). It is a collection of tutorial and research 

papers describing important current work in most areas of the 

field. Chapters 2 and 3 of this thesis were presented at this 

symposium in slightly different forms (14) (31). 

1.3. Problems and Goals 

To some extent the major problems in algebraic manipulation 

depend on one's viewpoint. The broad view is to look at 

algebraic manipulation as a problem in artificial intelligence, 

the eventual goal being the construction of an expert 

mathematician (e.g. see (31)). The view taken here is much more 

limited, but can be considered as a preliminary to the broader 

problem. We wish to provide a tool capable of performing a wide 

range of services for a mathematician or engineer. These can 

perhaps best be envisioned as a spectrum of facilities ranging 
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from a fancy desk-calculator, to (in some specific areas) an 

expert problem solver. 

The system has facilities for indefinite precision integer 

and rational number arithmetic and finite field (modular (9)) 

arithmetic, in addition to the usual floating-point facilities of 

a modern digital computer. It has the ability to perform all 

elementary operations on multivariate polynomials and rational 

functions. It is capable of factoring polynomials, finding their 

greatest common divisors, calculating partial fraction 

expansions, derivatives and integrals of rational functions. It 

can perform routine substitutions, transpositions, etc. It 

incorporates the most efficient algorithms available, and may 

have several methods for performing a task, providing different 

types of efficiency, or efficiency over a wider domain than is 

possible with a single method. 

As we understand larger classes of functions and oper

ations, the practical power of the system will be expanded. 

Radical expressions (e.g. roots of polynomials) constitute one 

class which has been added to MACSYMA by this author. Recent 

additions include inequalities, polynomial arithmetic over finite 

fields, and power series generation and manipulation. 

Further along the spectrum toward an expert mathematician, 

we can envision an ideal system as follows. It understands 

scientific notations and can be taught special notations. It is 

clever at presenting results in easily readable form. It can 
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understand instructions (e.g. an algorithm presented as an Algol 

procedure) and follow them precisely. It can learn new methods 

for solving problems, but it already knows how to apply a large 

number of procedures (algorithmic and heuristic) which are useful 

for solving differential equations or sets of 1 inear e~uations, 

finding indefinite or (improper) definite integrals, 1 imits, etc. 

It has large amounts of data (e.g. tables, textbooks, simpli

fication rules) at its disposal, and can be told to modify them 

for particular purposes. It will (if required) save all its 

calculations, and keep track of generated data for future 

references. It will (if required) provide additional information 

(e.g. timing data, intermediate results, procedures used) about 

the methods applied to solve the problem. It will work 

interactively ~lith the user, or perform long calculations 

(correctly) in its "master's" absence. It understands enough 

about the problem domain to detect inconsistencies In its 

instructions and will balk at meaningless expressions or 

operations (e.g. divison by zero). It can numerically evaluate 

expressions and produce plots of functions. 

We do not pretend that this view is, in fact, a listing of 

sufficient components of a modern algebraic manipulation system, 

nor do we claim that any implementation of such features will 

model the internal structure of a mathematician. We do feel, 

however, that the facilities noted above are important goals for 

a system like MACSYMA. Furthermore, a reasonable number of these 
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goals have either been achieved, or nre being approached. 

MACSY~A is a large hierarchical computer system run in an 

interactive, time-shared environment. The real-time response of 

such a system is, we believe, necessary if a computer is to 

assume the role of a mathematical assistant. The user interacts 

with MACSYMA through its supervisor, a program which accepts 

character strings in a language resembling Algol-60. These 

character strings are parsed into LISP (33) s-expresslons and 

passed to the programming language evaluator. This, along with 

the general simplifier, forms the heart of the syste111. The 

supervisor calls upon the rest of the resources of the systP.m in 

carrying out the requests of the user. 

tios t commands invoke specific command programs which in 

turn draw upon the lower level routines to evaluate, process, 

sin1pl ify, and otherwise produce an answer, which is then returned 

to the supervisor. The supervisor displays the answer in a two

dimensional textbook-1 ike format, and waits for the next user 

command. Generally some side effects will also occur, corres-

ponding to the assignment of values to variables, the definition 

of programs, the setting of switches affecting future system 

behavior, etc. Other available side-effects include additional 

displays of expressions of interest and X-Y plots of numerical 

values. The cornmands draw on a ~vide range of facilities oriented 

about the several data types within MACSYMA. These facilities 

include algorithms for setting up and manipulating variable-
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dimensioned arrays of symbolic elements, algorithms for 

performing definite and indefinite integration, algorithms for 

calculating limits of functions of a real variable, algorithms 

for the efficient manipulation of power series, polynomials, and 

rational functions. Additionally, a subsystem for the intro

duction of pattern-directed transformations on algebraic expres

sions is included. Appendix I, The Language anci Commands of 

MACSYMA, offers specific examples of the forms in which these 

facilities are available. At present, the desk-calculator end of 

the spectrum is approximated by the facilities in MACSYMA while 

the more esoteric components are approximated only In some quite 

specific areas. Figure 1.1 Indicates, in basic outline, the 

present components of MACSYMA and their interdependencies. The 

rectangles indicate suhsystems which are still under development. 

1.4. Specific Goals of the Thesis 

This thesis is primarily a discussion of several 

facilities, designed and implemented by the author, which augment 

the abilities of MAC~YMA, and In several cases, provide capabil

ities unique among current algebraic manipulation systems. 

Chapters 2 and 3 are concerned with the engineering of better 

algebraic manipulation systems, while chapter 4 presents the 

theoretical basis for some of the algorithms. 

Chapter 2 discusses a user-level semantic matching 

capability, as implemented in MACSYMA. This subsystem consti-
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compiler. Through this facility a user can specify new infor-

rnation and algorithms to the system in a manner which is concise, 

general, and straightforward. By simple top-level commands to 

the semantic matching subsysten, new programs are compiled and 

adjoined to the basic structure of the system. 

~Y taking advantage of the semantic properties of algebraic 

expressions, diverse expressions are recognized as occurrences of 

the sane pattern. For example, a semantic pattern for "quadratic 

i n x" matches both 3 * x * * 2 + '• and ( x + 1) * ( x + 6 ) • 

Patterns are createrl by declaring variables to satisfy 

µredicates, and then composing, out of these variables, expres

sions which serve as templates for the pattern matching process. 

Efficiency is achieved by compiling programs corresponding to 

each pattern. 

Specific examples show how this recognition capability is 

used in augmenting simplification rules and in writing algorithms 

for the solution of differential equations. 

Other systems with related capabilities are compared with 

regard to their implementations and matching strategies. 

Chapter 3 is concerned \~Ith expanding the usefulness of 

algebraic manipulation systems by taking advantage of canonical 

simplification programs. In this case we refer specifically to 

the rational function and radical canonical forra facilities. 

First the data types and basic facilities are described, and then 

a number of new results are presented. The ~ase with v.;h i ch these 
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can be used is a result of a critical design decision that algo

rithms (regardless of their origin) should be able to interact 

easily with the special data types available in MACSYMA. The new 

facilities include a routine to solve for a variable in an 

equation which is more powerful (in a practical sense) than that 

of any other system; prograMs which are more sophisticated in 

their ability to substitute values for sub-expressions which 

occur implicitly in a larger expression; and programs, used 

extensively for pattern Matching, capable of finding "coef

ficients" (suitably defined) in an expression. 

Chapter 4 describes our radical canonical simplification 

algorithm. With this, many algorithms can be successfully applied 

to larger classes of expressions than had previously been 

possible. The theoretical results behind the approach are 

developed, and compared to the work of Caviness (5) and others. 

The simplification procedure itself is shown to be quite 

practical (in contrast to Caviness'), and for many purposes, at 

least as useful. Extensions to exponential and logarithmic 

situations are pointed out and those which can be implemented at 

reasonable cost have been added to the algorithm. 

Chapter 5 summarizes the current capabilities, both 

theoretical and practical, of computer aids to non-numerical 

mathematics, and then discusses research problems which appear at 

this moment to be both interesting and important from our point 

of view. 
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The two main appendices serve as documentation for parts of 

the MACSYMA system. They are not intended to be complete, since 

MACSYMA will be in a continual state of development for at least 

several years. Appendix I describes the outward view of some of 

the MACSYMA commands. Appendix I I describes the MACSYMA rational 

function package in sufficient detail to make its transfer to 

other LISP systems simple. The rational function package is of 

particular interest in that it is self-contained, and sufficient 

for many polynomial "crunching" tasks. It includes a number of 

particularly efficient algorithms, and may be of interest to 

mathematicians who prefer to dispense with the amenities provided 

by a total system in order to make more core storage available. 
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Chapter 2 

The User-Level Semantic Hatching Capability in MACSYMA 

2.0 Introduction and Overview 

When complex algorithms are coded in an algebraic manipula

tion language, it is sometimes advantageous to supplement the 

command language with a pattern recognition capability. In 

effect, a pattern recognition facility simulates the action of a 

human mathematician who, by examining the structure of a formula, 

decides on his next step. It is to our advantage to make this 

reco~nition capability relatively independent of the particular 

style in which the formula is expressed. In particular, such 

details as whether products are distributed over sums or not, 

should, in some cases, be irrelevant to the matching process. 

Consider the problem of solving linear differential equa

tions with constant coefficients. Before we can apply our 

knowledge in any generally useful manner, we must be able to 

recognize when a given expression is an equation, a differential 

equation, a linear differential equation, and al inear 

differential equation with constant coefficients. Because pattern 

matching can perform this type of decision-making which might 

otherwise require human intervention, it is an important adjunct 

to a computer-aided mathematical laboratory. Often, only when the 

computer can recognize a given pattern and its components, can it 

proceed to the next step in processing. Furthermore, pattern-
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matching capabilities are essential to building useful additions 

to a mathematical laboratory. Through pattern matching, new sim

plification rules can be described, non-standard transformations 

can be made, and algorithms extended. 

This chapter describes pattern matching facilities designed 

and impl e111ented by the author for 11ACSYMA. Cornpari sons with 

other systems with regard to both implementation and strategy are 

included, as are many examples. 

Patterns can be considered lexical entities, as in SNOBOL 

(12). Inside an algebraic manipulation system, such arbitrary 

strings of characters, e.g. /A+)(-X*, are rarely useful. The 

input-line editor of MACSYt·IA and the parser's lexical routines 

are the only portions of the system concerned with more-or-less 

arbitrary strings of characters. 

Patterns can be considered syntactic entities, as in FAt-10US 

(16) or AMBIT/S (8). Although syntactic correctness is necessary, 

it is not sufficient for algebraic expressions to be meaningful. 

For example, O**O (using FORTKAN notation) is syntactically 

correct, but semantically unclear. A syntactic pattern for 

"quadratic in x" would match expressions of the form 

a*X**2 + h*X + c, but might fail to match the expressions X**2 

and (x + l)*(x + 6), which are, however, quadratic functions of 

x. 
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Patterns can be considered semantic entities, given a 

suitable context. we will be concerned primarily wt th the context 

and semantics of algebraic expressions. A semantic pattern for 

"quadratic in x" should match 3*X**2 + 4 or (x + l)*(X + 13), but 

should not match a*X**2 + b*x + sin(x), which is not a quadratic 

function of x. 

The notion of using the semantics of an algebraic expres

sion requires explanation. Some properties of ordinnrY addition 

and multiplication can be usefully included in the design of a 

pro~ram intended to recognize algebraic expressions as instances 

of more general patterns. For example, knowledge of the fact 

that addition is commutative and has identity 0 and the fact that 

multiplication is commutative and has identity 1, clearly 

i1,1proves the probabi 1 i ty of finding a mapping between parts of a 

pattern and instances of that pattern in an expression. 

In addition to these elementary properties, it is particu

larly useful for us to work with the fact that for nnY poly

nomial, P, a unique form can be derived such that the coefficient 

of any variable in P to some integer power can be found. Over a 

larger class of expressions, a simplified form will often display 

this characteristic of having "obvious" coefflciP.nts with respect 

to sub-parts of the expression. 

We will refer to these, and similar properties of algebraic 

exprP.ssions as semantic properties. Uy the use of the semantic 
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notions already mentioned, a pattern A•X+B might be natched to 

the expression X, with A matching 1, and B matching o. 

Additional semantic notions become nore difficult to choose 

(and implement in a systenatic fashion). For example, interpre

tations involving exponents nust be carefully restricted to avoid 

conflict. Thus, if the pattern A**B is to P1atch the expression 

1, either A is 1 and R is unrleterr:1ined or Bis 0 and A is non

:.:::ero. Some (sornevJhat arbitrary) decisions concerning acceptable 

values for A and B are necessary. f,iACSYMA r11akes such a decision, 

which is described in the first appendix to this chapter. 

\le have chosen to implement the arithmetic interpretations 

of our 1·1atching programs using basically these semantic notions. 

A less elaborate interpretation would prevent us from 

matching a pattern A•X+~ to the expression X, with A natching 1 

and B natching O. 

A Llore expansive interpretation of the possibilities leads 

into difficulties: allowing the coefficient of X••3 in the 

exprP.ssion X**2 to be 1/X; allowing 2**n to match the expression 

O with n matching negative infinity, etc. 

The exact limits chosen for any 8iven implementation's 

ability to enlarge upon the elemental syntactic statP.ment of a 

pattern has been, and will, no doubt, continue to be largely 

prag111at i c. Furthermore, it is our belief that any attempt to 

produce a concise formalism for a pattern matching interpreter is 

bound to unnecessarily linit the power of the implementation. 
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Those matching formalisms cannot take advantage of the many 

useful, but non-systematic "tricks" \''1hich can be cleanly added to 

a pattern matching progra1n. Therefore we will continue to take a 

pragmatic approach to semantic pattern matching, and try to 

reveal the reasoning behind our design features, and the Methods 

used to implement them. 

He \vi 11 refer to those pattern r.iatch i ng programs with 

facilities which take into account at least the basic properties 

of addition and multiplication, as semantic. 

Historically, Slagle's SAINT (43) and 11oses' SlfJ (35) were 

the first demonstrations of a significant application of semantic 

pattern matching: laree classes of expressions were mapped into 

forms with known integrals. Other, more ~eneral applications, 

some of which are detailed below, range from adding new opera

tions and simplifications to an algebraic manipulation system, to 

recognizing and solving special cases of differential equations. 

The facilities used for pattern matching by Slagle and 

~loses were not user-oriented. By ~ontrast, the programs described 

here give the 1-·iACSYMA user a powerful and sophisticated semantic 

rnatching capability, and the tools by which he can introduce 

these capabilities into the command level of the system and into 

his own programs. Of the other algebraic manipulation systems 

currently in use, it appears that only Hearn's REDUCE (19) has a 

user-level matching facility. REDUCE gives the user (through the 

LET cor111~1and) a limited matching facility which is considerably 
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restricted in its power hy its emphasis on efficiency. For 

example, patterns which are sums are not permitted. FN~OUS (16) 

and Formula Algol (37), neither of which is currently in use, 

provided matching facilities, which (as we shall see in section 

8), were syntactic, rather than semantic in approach. 

In sections 1 to 4, methods for defining patterns in 

~ACSYMA are described, largely through examples. Section 5 

discusses MACSYMA's l·larkov algorithm-style (pattern-replacerCJent) 

prot;ramrning facility. Section 6 considers the probleri of 

introd11cing new simplification rules into MACSYMA efficiently and 

effectively. Section 7 demonstrates how these techniques can be 

used to introduce rules for non-commutative multiplication. Sec

tion 8 critically examines the pattern-matching facilities of 

SCHATCHEN, REDUCE, FAMOUS, and Formula Algol, and compares them 

to MACSYMA's facility. Questions of strategy and implementation 

are considered. Section 9 considers applications of pattern 

matching to solving differential equations. Section 10 suggests 

other areas of usefulness in mathematics and man-machine 

communication. These sections are supplemented by appendices .lQ. 

~chapter: Appendix I contains precise, extended definitions 

of the matching procedures; Appendix I I includes an example of a 

match program as compiled by the system; Appendix I I I considers 

the problem of defining classes of expressions over which 

matching procedures can be considered effective -- that is, under 

what circumstances a pattern match can determine membership in 

formally defined classes of algebraic expressions. 
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2.1. Predicates and Declarations 

An intuitive pattern for a quadratic in x is 

A*X**2 + B*x + C Hhere A, B, and Care pattern variahles which 

can match numbers or other expressions free uf the variable x. In 

addition, A must not match zero, otherwise linear expressions 

would be included in the dom~in of th~ pattern. 

Clearly we must be able to insist that variables In a pat

tern have certain characteristics (e.g. are nonzero or are free 

of x); that is ~ fil.Y.il .Q.e. ~ .tQ. ~ ..tb.g success .Q.f .a match 

dependent .Q.D. ~matched valyes satjsfyjng predicates. 

Predicates (for our purposes) are programs which return either 

TRUE or FALSE. In practice, we consider anything other than FALSE 

as TRUE. Patterns themselves are predicates since they return 

FALSE if applied to a non-matching expression. Predicates can 

take any number of arguments (usually at least one) and can be 

defined in LISP, (in which t·iACSYMA itself is written) or In the 

f·iACSYi·1A pro~ramr.iing language, which resembles Algol 60. 

FREEOF(X,Y) is a predicate with two arguments, X and Y, 

which answers the question, "Does the expression Y depend expl i

ci tly on the variable X?" Thus FREEOF(A,A**2+B) is FALSE; 

FREEOF(A,C+SIN(D)) is TRUE. TRUE(X) is a predicate which is 

always TRUE. This is useful because it is convenient to allow 

some variables to match anything. INT(X) is TRUE when X is an 

integer. 
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FREEOF, TRUE, and INT are already defined in the standard 

HAC~YMA sys tern. He might define tJONZERO by the program: 

NONZERO(X):= IF X=O THEN FALSE ELSE TRUE@. 

The function SIGNUN(X) returns -1, 0 or +l respectively if 

X < O, X = O, or X > o. SIGNUM, we should note, expanrts its 

argument using MACSYMA's rational function routines (see Chapter 

3). This produces a form which is canonical over rational func-

tions (up to the order of the variables) and allows us to 

uniquely deternine a sign for the coefficient of the highest 

power of the main variable (in the numerator). Thus it knows that 

the follO\'ling expressions are negative: -4, -X, -X - Y, -Cl+ X). 

~vhether X - Y is negative or not depends on which variable CX or 

Y) the rational function package has been told is the Main 

variable. It Hill choose a r.1ain variable itself ff necessary. 

The only expression whose SIGNUM is O is O. Using SIGNUM we 

can define: 

NEGATIVEPRED(X):= IF SIGNUM(X)=-1 THEN TRUE ELSE FALSE@. 

A few more predicates which are used in examples to follow 
a re: 

INRANGE(LO\J,Hl,VAR) := IF (LOH< VAR) AND (VAR< HI) THEN TRUE 
ELSE FALSE@ 

NONZERUANDFREEOF(X,Y) := IF NONZERO(Y) THEN FREEOF(X,Y) ELSE 
FALSE~. 

To associate a pattern variable with a predicate, we have 

the DECLARE command. It has the form: 

Cn 2. 0) 



For example, 

DECLARE(A,FREEOF(X))~ 
DECLARE( A, I NRANGE(tJ,M)) Q 
DECLARE(A,TRUE)@ 
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Note that the last argument of each predicate is missing 

from the declaration. The value matching the declared variable 

will serve as the final actual argument. Thus if A were declared 

NONZERO and an attempt were made to m~tch A with X**2 + 3, then 

NUNZERO(X**2 + 3) would be evaluated. Since the result would be 

TRUE, the match would be successful, and A would be assigned the 

value X**2 + 3. 

The binding times of the arguments to DECLARE must be 

clarified. The first argument is not evaluated; thus 

DECLARECA, •• ) affects the declaration of A, even if the value of 

A is B + 2. The second (predicate) areument to DECLARE is 

treated as an undefined function: if we were to change the 

definition of INRANGE to some other function of three argunents, 

it would not be necessary to redeclare A. The extra argun1ents to 

the predicate C..9L,&
1

, ••• , .£.r.&n) are bound at the time the 

predicate is applied. Thus if A were declared to be FREEOFCX), 

and the value of X at some later time were Z, an attempt to match 

A current with that assignment would invoke a test to see if the 

potential r,1atch for A Here dependent on z. 
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2.2. t-:atch Definitions 

The DEFf.\ATCH cor.1r.1and defines a new program (a pn~d i cat~) 

which will succeed only if a particular semantic pattern is 

matched. The DEFMATCH conmand has the form: 

DEFMATCH(programname, pattern, patternvar
1

, ••• , patternvarn)@ 

(n 2. 0). 

For exa111ple, 

DEHIATCH(LINEAR, A*X + B , X)Q 
DEH\ATGHCF3, X+ 3 + F(X,Y,5), Y)@ 
OEFHATCH(COSSIMP, COS(N*PI) )@ 

These examples will have different interpretations 

depending on the declarations (or lack of declarations) for 

A,B,X,N, and F. The result in each case will be a prograr11 vJith 

name programname (e.g. LINEAR, F3, COSSIMP) which will test to 

see if the pattern pattern (i.e. A*X + B, etc.) can be applied to 

its first argument. The program will haven additional arguments, 

corresponding to the patternvars. 

During the execution of these resulting programs, 

undeclared variables (i.e., those variables not appearing as the 

first argument in a DECLARE command) in the pattern are lambda-

bound to the values in the program invocation if their names are 

among those variables 1 isted in the DEFMATCH cor.imand. Variables 

not listed ar.1ong the patternvar.'s are bound to their values in 
I 

the environment at execution time. At the successful conclusion 
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of a match, declared variables will be assigned the values that 

they match, and a list of the associations of variables and their 

values is returned. 

An extended example should clarify this. The lines labelled 

Ci are typed by the user, the 1 ines labelled Di are typed by the 

computer. Lines terminated by a $ suppress printing of the 

result. Lines terminated by an @ result in a computer generated 

display of the answer. 

(Cl) DECLARE(A,NONZEROANDFREEOF(X))$ 
(C2) DECLARE(B,FREEOF(X))$ 
(C3) DEFMATCH(LltJEAR,A*X+B,X)Q 
(D3) LI NEAR 

CC4) LINEAR(3*Y+4,Y)@ 
(04) CB = 4,A = 3,X = Y) 

(CS) LINEAR(Z*Y+4+X,Y)@ 
CDS) CB = X + 4,A = Z, X = Y) 

At this point the value of A is Z, the value of B is X + 4. 

If the value of X previous to line CS had been 4, the answer 

would have been CB= 8,A = Z, X = Y). 

The X on line D4 is a completely separate entity from the X 

on line CS, in that the first is like a formal parameter to a 

subroutine, and the latter is a global variable with the same 

name. This distinction should be apparent on line DS. 

The patternvar's may appear in the declarations also. 

Thus: 

(C6) DECLARE(A, INRAtlGECN,M))$ 
CC7) DEFMATCHCBETWEEN,A,N,N)@ 
A 
IS THE PATTEl{N 

(C8) BETWEEN(S,1,6)@ 
CD8) CA = S,N = 1,M = 6) 
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The message following line C7 is from the DEFMATCH 

compiler, indicating that it had evaluated A to see if µerhaps 

A's value was the intended pattern. In this case, the value of A 

was A, thus the message, "A IS THF. PATTERN" is printed. The 

pattern in the DEFMATCH command is generally not evaluated, since 

thi~ (with its substitution of values for variables) tends to 

make patterns disappear. However, if (as in this example) the 

pattern is an "atom," or single variable, then it ti evaluated. 

This allows a user to compose an elaborate pattern, say as a 

result of a computation, and then give its name to the DEFMATCH 

com~and, rather than having to type it in all at once. If A had 

had the value i3 + 4, the 1.1essage "B + 4 IS THE PATTERN" would 

have been printed. 

l~O\:J that He have shm-m how pattern programs are defined, we 

can clarify the use of the predicate TRUE. Recall that declaring 

A to be TRUE means that A in a pattern will match anything 

occupying the appropriate position in the expression. Thus 

(C9) uECLAKE(A,TRUE)$ 
(ClO) DECLARECB,TRUE)$ 
(Cll) DEFMATCH(G,A*X+B*Y)$ 
(Cl2) G(3•X+l•Y+J*X)U 
(Dl2) CB = l,A = J + 3) 

This illustrates another principle in matching patterns. 

J.f A~ undeclared ..£rui .D.Q.l ~pattern varjable, A ln ~pattern 

.tl.L1 r.iatch .2ll.l:i A'~ current value. (If A has no value, then 

MAC!::>Yl·iA provides "A" for the value of A. As a special case, 

constants match .QD..U ther1se 1 ves.) 
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2.3. Selectors 

sometimes it Is not sufficient to find out whether or not a 

predicate succeeds on a given argument. Sometimes we wish to not 

only test, but separate components of a pattern which in ordinary 

circumstances would remain lndlvlslble. We wish to permit a 

special form of predicate which (1) confirms that a subexpression 

satisfies a predicate, and then (2) hands back to the pattern 

program more Information than just "the predicate succeeded." He 

will call such programs, when used In the µlace of predicates, 

selectors. The selectors that are of the greatest interest to us 

here always "succeed" in one form or another, but In so doing, 

return a particular part of the expression which is being 

1~atched. Aiding us in this venture Is the convention that any 

result which is not "FALSE" is true. 

Consider the predicate INTEGER. It returns TRUE when 

applied to an Integer. A corresponding predefined selector, 

~JHOLE, returns only the integer part of a number. Another 

selector, FRACTIONPART, might be defined: 

FRACTIONPART(X) := X - WHOLE(X)$ 

It would then have to be designated a selector by: 

SELECTOR(FRACTIONPART)$. 

A dialogue would look like this: 

(Cl) FHACTIONPART(X) := X - ~JHOLE(X)$ 
(C2) SELECTOR(FRACTIONPART)$ 
CC3) DECLARECA,WHOLE)$ 
(C4) DECLARE(B,FRACTIONPART)$ 



(CS) DEFMATCH(SEPARATE, A + B)$ 
B 
MATCHES ALL IN 
B + A 

(C6)SEPARATE(S/2)Q 

COG) 
1 

(A = 2, B = - ) 
2 
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The message following line CS would normally indicate an 

error. Here it signifies that B's predicate (or selector) will be 

applied to what is left after A's predicate (or selector) is 

applied. Here, this is what is intended, but note that if both A 

and B had only predicates, SEPARATE would ~atch one of them to 0 

in every case. The fol lowing caution should be observed: if a 

selector is used, a complementary selector should generally be 

used with it, since, for example, 

(en DEFMATCH( F3, A)$ 
A 
IS THE PATTERtJ 

(C8) F3(S/2)@ 
(08) CA = 2) 

results. The "fractionpart" has (perhaps unintentionally) been 

discarded. 

Another selector provided by MACSYMA is NUMFACTOR, which 

selects the numerical factor from a product (or 1, otherwise). A 

complementary selector, OTHERFACTOR r.1ight be defined hy 

OTHERFACTOR(X) := X/NllMFACTOR(X)$ 

-------- ------·-· ··-----------



- 37 -

Other selectors provide facilities for picking out items in 

a sum or product one by one. The notion of "extractor" in Formula 

Algol is weaker than this, in that extractors can only he used to 

attach labels to syntactically distinguishable subexpressions. 

Thus the numerator of a fraction can be labelled through 

"extraction" but the "whole part" of a ratio of two numbers 

cannot be labelled through Formula Algol. 

2.4. More Match Details 

Patterns can be more complicated. For example, v-1i th A and B 

declared TRUE, the pattern 3**A + B**4 will match 

W**4 + 3**Z with A = z ' 
B = w 

W**4 + 1 \A/ith A = 0 
' 

B = w 
3**Z with A = z ,.., = 0 

' 
u 

3 with A = 1 ' 
B = 0 

1 with A = 0 
' 

B = o. 

The expression 10, (which is 3**2 + 1**4) will not match. 

The exact limitations of the exponentiation treatment are 

described in this chapter's Appendix I. 

~pattern, .Q.( .ruu:.t. .Qf ..a pattern, E. which il entirely .f..rll 

.Q.f variables which ..a.r..e. declared .arui .as,~ unmatched !iill match 

~expression .f ~ .t.ha.t {~ ..a.11 .fL.fil:. variables~ gjven 

their assigned values) .f - £ = ~. To some extent this type of 

match depends on what algorithm is used to sinplify the result of 

the subtraction. Ordinarily the MACSYtlA simplifier is used, but 
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rational si1~pl ification (see Chapter 3} is used when coefficients 

are being picked off, since expansion is often needed to produce 

proper results. We feel this is very important if we are to abide 

by our belief that the semantics of the expression, rather than 

the syntax, is the important aspect to r,1ociel in µattern ro1atching. 

Thus the following dialogue is possible: 

(Cl) UECLARE(A,NONZEROANDFREEOF(X)}$ 
(C2} DECLARE(B,FREEOF(X)}$ 
(C3) 0ECLARECC,FREEOF(X))$ 
(C4) DEFMATCHCQUAD,A*X**2 + B*X + C , X)$ 
(CS) QUAD((Z+l}*(Z+2},Z)Q 
(OS) (C = 2,B = 3,A = l,X = Z) 

Rational simplification must be used to compute (Z+l)*(Z+2) -

(Z**2•3*Z+2), to convince QUA[) that the r11atch has succeeded. This 

is the only effective method at our disposal if we wish to 

implement such matches as CS. The additional rational simpli-

fication is not particularly inefficient, since the coefficient 

routines described in Chapter 3 have already converted the 

expression to a canonical rational form. 

DEFMATCH has produced in QUAD a program which operates as 

follows. QUAD(E,X) 

a. Picks out the coefficient of X**2 in E, and if the coefficient 
is free of X and non-zero, assigns it to A, otherwise returns 
FAL5 E. 

b. 5ets E to E - A*X**2 

c. Picks out the coefficient of X in E, and if the coefficient is 
free of X, assigns it to H, otherwise returns FALSE. 

d. Sets E to E - B*X 

e. If E is free of X, assigns E to C and returns a list of the 
values A, G, and C, otherwise returns FALSE. 
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Implicit in this algorithm are several basic principles of 

ser11antic pattern matching. For example, 1 ine (CS) above demon-

strates that coeff jcients l.n .a.n expression should ~ extracted 

semantically (i.e. the coefficient of Z must be extracted using 

the semantics of the operators+ and•). 

(C6) QUAD(3*X**2+4,X)@ 
(D6) CC = 3,B = O,A = 3) 

Line (C6) demonstrates that summands l.n ~ pattern v~hich 

.a.r.g, missing l.n .till:. expression~ matched ltl.t.b. ..Q.. This is \'lhat 

happened to the term B*X in the QUAD pattern. Furthermore, il .a. 

prodyct .il matched l:'.tl.t.b. ..Q., ™ of l.ll factors .DJ.U.il match ..Q.. Thus 

for B•X to match O, B must match O. 

(C7) QUAD(X**2+3*X+4,X)Q 
(07) (C = 4,B = 3,A = 1) 

That is, factors 1.n ~ pattern whjch ~ rnjssing 1.n .,lli expres

sion~ matched w...t.b. .l. This assigns to A the value 1. 

Since DEFNATCH actually produces short programs (e.g. 

QUAD), the matching programs may be compiled by a LISP compiler 

into machine code for increased speed. The program, QUAD, pro

duced above, is shown in this chapter's Appendix I I. 

To help prevent the user from asking for ambiguous matches 

(where they can be detected), the match compiler used by DEFMATCH 

has a nunber of warning Messages. Generally they indicate points 

where there is a likelihood that the user has submitted a pattern 

which is ambiguous, or could be more suitably constructed for 



- 40 -

optimal matching. In general, patterns should be expanded so that 

the full freedom of commutative operators can be exploited. The 

pattern X**2-Y**2 will match a wider range of expressions than 

the pattern (x+y)*(x-y). The latter will match only expressions 

which are the product of two sums of the specific syntactic form 

used. This asym~etry with respect to patterns and expressions 

(the expressions X**L-Y**2 and (x+y)*(x-y) will be treated 

identically by most pattern programs) is a consequence of the 

fa ct t ha t i t i s fa r ea s i e r to 1 ,, u 1 t i p 1 y out s uril s an d p i c: k out 

coefficients, than it is to factor polynomials. ~Je allow either 

pattern however, since it is possible that the latter, strictly 

syntactic match (like those available in Forn1ula Algol or FAl·10US) 

might be of some use anyway. 

Since backing up (i.e., abandoning assignments of values 

and trying new ones) is not done in the matching process, the 

user should consider whether his intentions will be properly 

represented. ~ihi le a back-up algorithm could have been adopted, 

the potentially great increase in cost, combined with no 

assurance that the user would be happy anyway, make such an 

approach somewhat unattractive. (It should be said, however, 

that in cases where heuristics an<l back-up are part of the 

processing itself, as in early st~ges of SIN (35) it may be 

convenient to use the pattern matching program for the basis of 

heuristics.) There is the further argument that pattern-match 

problems can be easily constructed which are undecidable (in the 
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Turing-Church sense), so back-up will not solve all OtJr problems. 

SCHATCHEN uses back-up; back-up is expensive, and as is demon-

strated by the examples in this paper, the lack of back-up is 

often not even noticed. This is discussed further in section 8. 

An example which denonstrates how backing-up might be 

implied by a pattern follows: 

(Cl) DECLARECA,TRUE)$ 
(C2) DECLARECB,FREEOF(Y))$ 
(C3) DEFMATCH(NEEDBACKUP, SIN(A)+SIN(B))$ 
CC4) NEEDBACKUP(SIN(X)+SIN(Y))$ 

The final line may match with CA= Y, B = X); but, if A= X 

is tried first (succeeding), and then B = Y is attempted, the 

pattern will fail. 

One method of circumventing this difficulty Is as follows: 

CRETLIST returns its argument list as a sequence of equations, 

":" is the assignment operator, and[] is used to enclose a list 

consisting of local (i.e., "dummy") variables within a BLOCK.) 

(Cl) DECLARE(A,TRUE)$ 
CC2) DECLARE(B,TRUE)~ 
(C3) DEFMATCH(PAT,SIN(A)+SIN(B))$ 
(C4) DOESBACKUP(Z):=IF PAT(Z)=FALSE THEN FALSE 
ELSE IF FREEOF(Y,B) THEN RETLIST(A,B) 

ELSE BLOCK ([TEMP], 
TEMP: A, 
A:B, 
B:TEMP, 
RETLIST(A,B))$ 

The purpose of the fancy ELSF. clause in C4 is to reverse the 

assignment of values to A and B in the returned list. Thus, while 

a conscious design decision was made to prevent back-up, the 
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posslbll lty of simulating It, when necessary, is available. 

The fact that we insist on completely directed or 

"anchored" (12) searches in a pattern is both a strength and a 

weakness. Some patterns are inherently ambiguous, ~nd all 

possible types of matches must be explored. This is the case In 

sy1nbolic integration. If such ambiguous patterns are the rule, 

rather than the exception, we wo1Jld be seriously Inconvenienced 

by having to simulate back-up (as above), in every case. 

Arbitrary n-ary functions may be used in a pattern, as Is 

illustrated below: 

(Cl) OECLARE(F,TRUE)$ 
(C2) DECLARE(X,TRUE)~ 
(C3) DECLARECV,TRUE)$ 
(C4) DEFMATCH(F2,FCX,Y))$ 
(CS) F2(POINT(3,4))@ 
CDS) CY = 4,X = 3,F = POINT) 

It is also possible to execute 

CCG) F2(\'J+4)Q 
( D G) ( Y = ~J, X = 4, F = MP LU S) 

This gives a facility for explicitly matching operators, 

if, for example, F is declared to match only MPLUS. This facility 

could be used to simulate simpler styles of pattern matching 

which are completely syntax based. 

2.5. Markov Algorithms 

Users of a rnathernatical laboratory 111ay find that certain 

algorithms lend themselves to an organization based on the Markov 

algorithm for111alism: a list of rules, each consisting of a 
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pattern-replacement pair is applied to an expression. FAMOUS 

(16), PANON-IB (7), AMBIT/S (8), Formula Algol (37), and SNOBOL 

(12), among others, are based on such a formalism. In order to 

alloH MACSYMA algorithms to be written In such a style, a command 

to define rules, DEFKULE, is provided, along with sequencing 

algorithms. The form of the DEFRULE command is: 

DEFRULE(rulename,pattern,replacement)@. 

If the rule named rylename is applied to an expression (by 

one of the APPLY programs below), every subexpression matching 

the pattern will be replaced by the replacement. All variables in 

the replacement which have been assigned values by the pattern 

match are assigned those values in the replacement which is then 

simplified. The rules themselves can be treated as programs which 

will transform an expression by one operation of pattern-match 

and replacement. If the pattern fails, the value of the rule is 

FALSE. 

2.5.1 Applying Rules 

Each of the programs described in this section applies its 

rules to the expression indicated by its first argument, 

recursively on that expression and its subexpressions, from the 

top down. 

APPLYlC~,Li' L2 , ••• ,Ln> applies the first rule, L 1 , to the 

expression e until it fails, and then recursively applies the 

same rule to the subexpressions of that expression, left-to-
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right, until the first rule has failed on all subexpressions. 

Then the second rule is applied in the same fashion. When the 

final rule fails on the final subexpression, the application is 

finished. 

APPLY2(~, L1,L 2, ••• ,Ln) differs from APPLY! in that if the 

first rule, L fails on a given subexpression, then the second is 

applied, etc. Only if they all fail on a given subexpression is 

the whole set of rules applied to the next subexpression. If one 

of the rules succeeds, then the same subexpression is repro-

cessed, starting with the first rule. 

APPLY! corresponds to Formula Algol's (23), (37) one-by-one 

sequencing mode, and APPLY2 corresponds to its parallel 

sequencing mode (with the inessential difference that Formula 

Algol processes from right to left). 

Thus if Rl, R2, R3, and R4 are rules defined by DEFRULE, a 

µrogram might be written using them as follows: 

PROGRAM(X):=APPLY1CAPPLY2CX,R3,R4),Rl,R2)$ 

and the Markov-style algorithm represented by PROGRAM could be 

executed on the expression Y by 

Z:PROGRAM(Y)@ 

2.5.2 An Example 

Here is an example of using rules to alter an expression. 

The symbol S is used as an abbreviation for ez, RATSIMP (see 

Chapter 3) expands an expression into a ratio of polynomials and 

cancels common factors, and the symbol % always denotes the most 
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very useful. The chances are that he still wants the simplifier 

to work on most of the expression under consideration, but not on 

some particular part in some particular fashion. 

On the other hand, he may find that the SIMPLIFY program is 

just ignorant of functions of interest to him. For example, a 

user may wish to see SINH(O) replaced by 0 whenever tt occurs, 

especially if it occurs inside a calculation. He may also wish 

to tell the simplifier that X**N is O for N greater than some 

number M. This, in effect, allows one to truncate while doin~ 

arithmetic on power series. 

For these reasons, an adyising facility, similar in certain 

respects to Teitelman's ADVISE (44) has been implemented. There 

ar~ t\Jo co1;1uands to advise the simplifier: TELLSIMP, and 

TELLSIMPAFTER. They have the following forms: 

TELLSIMP(Battern, replacement)@ 

TELLSIMPAFTER(~attern, replacement)@ 

The arguments are similar to those of DEFRULE, but the 

pattern must conform to certain restrictions described below. 

TELLSIMP analyzes the pattern, and if It is either a sum, a 

product, or an atom (i.e. a single variable name or a number) it 

\"lill cornplain. Sums and products are excluded by TELLSIMP because 

of the interdependence of the simplifier and the matching pro

grams in this implementation. TELLSIMPAFTER, discussed at the 

end of this section, has no such restriction. 
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The exception for atomic variables is necessary because the 

advice is stored on the property list of operators, where 

SIMPLIFY looks for it. SIMPLIFY does not look on the property 

1 ist of variables for simplification advice. This restriction, 

however, is hardly important, since setting a variable to its 

"simplified" form will give the same effect. 

The simplification of sums and products should probably be 

attacked in ways other than through TELLS IMP .QL TELLSIMPAFTER. 

It is simple (but somewhat naive) to suggest that (sin x)**2 + 

(cos x)**2 ==> 1 be told to the simplifier as TELLSIMP 

(SIN(X)**2,1-COS(X)**2); what is really needed is a facility that 

demands the presence of both sines and cosines, and removes them 

in appropriate circumstances. All the above rule does is remove 

sines in favor of cosines, sometimes. 

TELLSIMPAFTER(SIN(X)**2+COS(X)**2,1), although a legal command, 

does far less that the user may think. For example, it leaves out 

the possibility of a third term in the sum (e.g., 

5+sin(y)**2+cos(y)**2), it does not back up (e.g., 

sin(y)**2+cos(2*Y)**2+sin(2*Y)*•2) and it does not detect 

instances of the pattern implicit In such constructions as 

sin(y)**4+2*sin(y)**2*cos(Y)**2+cos(y)**4. While patterns may be 

constructed for some of these expressions, it is our opinion that 

such substitutions as sin(x)**2+cos(x)**2 ==> 1 require much 

stronger methods than pattern matching. Methods for doing such 

simplifications effectively are available in the rational 
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substitution facility of MACSYMA described in chapter 3. In it 

the approach used by REDUCE to handle products (17, p. 8), is 

implemented, but is extended to deal with sums also. 

TELLSIMP piles new advice on top of old advice, but old 

advice is still accessible if the new advice is not appropriate 

(i.e. the pattern fails). This is exhibited in the following 

example. 

(Cl) COS(PI )@ 
(01) COS (PI) 

(C2) TELLSIMP(COS(Pl),-1)@ 
-1 
IS THE REPLACEMENT 
(02) cos 

( C3) COS (PI)@ 
(03) - 1 

( C 4) COS C - PI ) @ 
( L) 4) COS C - PI) 

(CS) MPRED(X):=IF (SIGNUH(X)=-l)THEN 
CC6) OECLARE(M,MPRE0)$ 
C C7) TELLSIMP(COS(M),COS(-M))$ 

CC8) COS (-PI)@ 
(D8) - 1 

CC9) COS(5•Pl)(9 
(09) coses PI ) 

C ClO) OECLARE(N,INTEGER)$ 
C Cll) TELLSIMP(COS(N*PI), C-l)**N)$ 
CC12) COS(5•PI )@ 
( 012) - 1 

CC13) COS(-6)@ 
(013) COS(6) 

TRUE ELSE FALSE$ 
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The dialogue above shows (01) that the simplifier (at that 

time) did not know the rules about pi (=3.1415+). If we tell it 

that the cosine of pi is -1, it can (03) simplify COS(PI) to -1. 

Line (D4) demonstrates that the simplifier did not know about 

cosine being symmetric about O. Lines (C5)-(C7) add this bit of 

information, as evidenced by line (08). Line (Cll), which makes 

superfluous the advice of (C2), but not of CC7), adds the capa

bilities shown in (012). (C13) sho\'IS that the old advice is still 

accessible. 

One of the s e r u 1 e s happens to co i n c i de \'Ii th a " bu i 1 t - i n" 

simplification COS{O) = 1, since N*PI for N=O Matches O; 

however, since the answer will be (-1)**0, the ordinary operation 

of the siMplifier underneath will not be affected. (System

defined siMpl ifications will be tried, but only if none of the 

advice is applicable. Note that if any of the advice is 

applicable, the replacement part of the advice will have already 

triggered a further simplication, if such is possible,) 

TELLSIMPAFTER is similar to TELLSIMP except that new rules 

are placed after old rules and "built-in" simplifications. 

Because of this, TELLSl~1PAFTER cannot be used to drastically 

alter the action of the siMplifer, whose "built-in" simplifica

tions take precedence. On the other hand, these restrictions Make 

it possible to apply TELLSIMPAFTER to sums and products. 

TELLSIMPAFTER should be used on "built-in" operators 

whenever possible, since such rules will be applied only if the 

---~ - --------
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same operator is still the lead operator after the previous sim-

plification has been performed. If the lead operator has been 

changed, all "after" rules are bypassed, producing faster opera-

ti on. 

2.7. !Jon-Commutative Multiplication 

At this time, a standard non-commutative multiplication 

simplification program is not generally included in MACSYMA • 
. 

There are several different programs available, but it may be the 

case that none of them does exactly what is required in a given 

problem area. This section describes how one might add a fairly 

extensive hand-tailored facility by using the TELLSIMP commands. 

The group operation, represented by a period (.), is allowed by 

the parser in anticipation of the time when an efficient non-

commutative multiplication scheme is programmed in LISP. (Since 

the same symbol is used to denote the decimal point of a floating 

point number, extra parentheses may sometimes be required to 

avoid misinterpretation.) 

Telling the simplifier about non-commutative multiplication 

requires a bit of knowledge of the internal representation. The 

input A.B is parsed to ((MCTIMES) $A $B), that is, a prefix 

representation (although with certain peculiarities of no 

importance to this discussion). The fact that MCTIMES is a binary 

operator rather than a "vari-ary" operator will complicate mat-

ters somewhat. We will abbreviate CCMCTIMES) $A $B) as C. AB). 
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The input A.B.C or CA.B).C Is parsed to(. C. AB) C), but 

A.{B.C) is parsed to(. AC. BC)). Clearly one of the first jobs 

of the "MCTIMES" simplifier is to transform the second structure 

into the first. To do this (in effect, telling the simplifier 

about the associative law), we 

DECLARECA,TRUE)$ 
DECLARE(B,TRUE)$ 
DECLARE(C,TRUE)$ 
TELLSIMP(A.(B.C),(A.B).C)$ 

As an example of how this operates, consider CA.B).(C.D). 

This is parsed to C. C. AB)(. CD)) which is then simplified to 

(.(.(. AB) C) D). Since the simplifier is recursive, any depth 

of forced nesting is untangled. 

Any time two identical elements are adjacent, we want to 

combine them. That is, A.A= A; more generally, A .A= A 

Since our pattern matcher is clever enough to recognize A as an 

occurrence of A , this one pattern would suffice, but for one 

difficulty: although A.A is parsed to C. A A), B.A.A is parsed to 

(. (. BA) A>. These two situations differ sufficiently with 

respect to adjacency of the A's so as to require the two patterns 

below. 

DECLARECN, TRUE)$ 
DECLARECM,TRUE)$ 
TEL LS IM PC ( A**M) • CA** N), A** ( M+ N) ) $ 
TELLSIMPCB.(A**M).(A**N),B.A**(M+N))$ 

Let us denote the inverse of A by INV(A), and the identity 

by 1. We might then have 
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TELLSIMP(INV(l),1)$ 
TELLSIMPCINVCINV(A)),A)$ 
TELLSIMP(INV(A.B),INV(B).INV(A))$ 

Recall that these pieces of advice are placed on the pro-

perty 1 ist of the function INV, and so are independent of the 

previous bits of advice, which are on the property list of II II 
• • 

Another piece of advice which will be needed goes on the 

property list of 11 ** 11 
-- this time, after other simplifications 

have been made: 

TELLSIMPAFTER(INV(A)**N,INV(A**N))$ 

The major fact concerning inverses is their "cancellation" 

property. That is, A.INV(A) = INV(A).A = 1. To automate this, let 

n m j k 
us consider the more general situation, CA ).INV(A) =A *INVCA) 

where at least one of j or k is o. 
Let us define MONUSCN,M), which will compute j and k: 

HONUS(N,M):= IF N>M THEN N-M ELSE 0$ 

and INVPROGCA,N,M) which will compute the right hand side of the 

above reduction formula. 

INVPROG(A,N,M):= A**MONUS(N,M)•INV(A**MONUS(M,N))$ 

Thus: 

TELLSIMPC(A**N).INV(A**M),INVPROG(A,N,M))$ 
TELLSIMP(INV(A**M).(A**N),INVPROG(A,N,M))$ 
TELLSIMP(B.(A**N).INV(A**M),B.INVPROG(A,N,M))$ 
TELLSIMP(B.INV(A**M).(A••N),B.INVPROG(A,N,M))$ 

Finally, 

DECLARE(N,INTEGER)$ 
TELL51MPCN.A,N*A)$ 
TELLSIMP(A.N,N*A)$ 
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gives us such useful notions as left and right zeros, Identities, 

and r1ultiplication by scalars. It may appear that we have left 

out some items, for example, 

TELLSIMP(A**0,1)$ 
TELLSIMP(INV(A)**0,1)$ 
TELLSIMP(l.A,A)$ 

but this is not so. Since l.A will be converted to l*A, which 

will be simplified to A, the last rule is unnecessary. Since A**O 

will (unless we tell the simplifier otherwise) always result in 

1, the other two are also unneeded. 

As examples of how this new simplifier operates, 

X.INV(X)**2 is simplified to INV(X), and A.B.(B**3).C.INV(C) is 

simplified to A.B**4. This last example used about .7 seconds of 

machine time when the simplification rules were in uncompiled 

LISP (on a PDP-10 computer using 2.75 microsecond cycle time 

memory), and when compiled by the LISP compiler, about .05 sec. 

2.8. Comparisons with SCHATCHEN, FAMOUS, 
REDUCE, Formula Algol 

SCHATCHEN (35), Moses' rnatching program is similar to our 

matching program in many respects. However, there are significant 

differences, both in implementation and in philosophy, between 

the two systems. 

SCHATCHEN demands patterns in a form resembling the 

internal form for expressions. It uses controls (called nodes) on 

the pattern rnatch to direct its highly recursive matching pro-

cesses. Our "straight-line" matching programs preserve some, but 



- 54 -

not all, of the aspects of the mode facility. 

A SCHATCHEN pattern corresponding to the intuitive notion 

of "quadratic in x" discussed in section 4 is: 

(QUOTE 
(PLUS 

(COE FF PT 
(A 

(FUNCTION 
( LAMBDA ( Y ) ( AND ( FREE Y ( Q U 0 TE X ) ) 

(NOT (EQUAL Y 0)))))) 
CEXPT X 2)) 

(COE FF PT 
(B (FUNCTION (LAMBDA (Y) 

(FREE Y (QUOTE X))))) 
X) 

( COEF F P 
cc 

(FUNCTION (LAMBDA (Y) 
(FREE Y 

(QUOTE X)))))))) 

This is not in the best possible form for SCHATCHEN, but it 

serves to illustrate several points. First, the pattern is 

written as a LISPS-expression which, upon close examination, has 

most of the components of a prefix representation of the 

2 
algebraic expression AX +BX+C. Second, there are a number of 

extra notations in the pattern, some of which clearly depend on 

LISP's version of the lambda-calculus. A less obvious point is 

that the pattern implies an ordering on the subtasks required to 

match it to an expression. 

There are two modes, COEFFPT and COEFFP, used in this 

pattern. They stand for "coefficient in plus and times" and 

"coefficient in plus" respectively, and their uses are best 
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described through an example. 

Consider the quadratic, 
2 

Q = 2X 
2 

+ YX + 3 + Z. There are 

2 2 
two terms involving X • For the pattern AX + BX + C to match Q, 

A must match 2 + Y. This is indicated to SCHATCHEN by using the 

indicator COEFFPT. This modifies the action taken to match A by 

2 
causing SCHATCHEN to traverse Q looking for coefficients of X 

and assigning to A the simplified sum of those coefficients. 

Similarly, by matching B with mode COEFFPT, B is assigned the 

simplified sum of the coefficients of X (or is assigned zero if 

there are no coefficients, as is the case for Q). 

SCHATCHEN requires that C in the quadratic pattern be 

matched using the mode COEFFP (that is, "coefficient in plus") so 

that in Q, C will match Z + 3, and not just one term (e.g. Z or 

2 
3). Since AX and BX have been previously deleted from the ex-

pression by the matching procedure, C (by virtue of its being 

indicated a COEFFP) will match what is left in the sum, namely Z 

+ 3. 

SCHATCHEN also provides opportunities to apply predicates 

to A, B, and C; in this case they each are checked to make sure 

they are free of X. A is also checked to assure it is nonzero. 

Compared to the relatively casual definition of QUADRATIC 

in section 4, using these controls requires a high level of 

awareness on the part of the user, both of the representation of 

data, and the operation of SCHATCHEN. This burden of awareness is 
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considerable. However, SCHATCHEN matches differ from the rnatches 

done here in a more fundamental sense. We find a particular 

subexpression and apply a predicate. If the predicate fails, the 

match fails. In a similar situation, SCHATCHEN will try to find 

another subexpression which Matches the subpattern, which might 

satisfy the predicate. The match fails only if this exhaustive 

search fails to find any subexpression ~atching (and satisfying) 

the subpattern. 

This difference, which would seem to indicate that 

SCHATCHEN is more powerful, is somewhat deceptive. We use more 

powerful tools to find an appropriate place to apply a predicate, 

and then apply it only once. (The coefficient-finding routine we 

2 
use can find that the coefficient in (2x)(3x+l) of x is 6; 

SCHATCHEN would fail to notice this.) There is an increase in ef-

ficiency since the programs produced by the match compiler are 

"straight-line" code, and apply predicates (assuming success) 

only as many times as there are distinct variables in the pat

tern. In case the pattern fails, fewer predicates are applied. 

The number of times SCHATCHEN applies its predicates is much more 

deµendent on the expression. ~Jh i 1 e SCHATCHEN has certain types of 

iterative facilities vdthin a single pattern, the proeramming 

language facility in MACSYMA can supply sane of the same 

iterative machinery, as in section 5. 

There are some instar1ces where SCHATCHEN is undeniably more 

t ho rough C vii th i n the scope of a s i n g 1 e pat t e r n ) : i f the pat t e r n 
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B 
is A and the expression is 1, either B matching 0 QI. (B's 

predicate failing) A matching 1 will cause the pattern to 

succeed. ~~e insist that A match 1 and B match O. 

TELLS IMP gives essentially all the power of FAMOUS for 

flexibly altering an algebraic simplifier, yet allows one to have 

a quite competent "fall-back" facility. ~Jhile using TELLSIMP 

excessively on commonly used operators might make the system run 

as slowly as did FAMOUS, it is unlikely that that point will be 

reached either frequently or quickly. Using TELLSIMP on new func

tions (e.g. SINH) does not affect the speed of the simplifier on 

old functions. The technique of compiling rules achieves a modest 

level of efficiency; using the LISP compiler further speeds up 

processing. Of course, advice requiring much computation (e.g., 

reµlace INV(A) where A is a square matrix, by its computed 

inverse) will slow up the simplifier in direct proportion to the 

length of the computation, and how often it is done. Easy advice, 

in this user's experience, has not caused a noticeable change in 

system response. More precise measurements can be made, of 

course, but very 1 ittle unnecessary system degradation is 

introduced by the particular techniques used. (Some timing data 

appeared at the end of section 7). Furthermore, the TELLSIMPAFTER 

facility, potentially far more efficient than a last-in first-out 

rule organization, is available. 

It is clear that flexible pattern matching results in an 

enormous decrease in the number of rules required to achieve a 

--------
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given match. Consider the rules that would be required to define 

"quadratic in x" in a purely syntactic manner, as in FAMOUS or 

Formula Algol: 

X**2 
X**2 + X 
X**2 + b*X 
X**2 + C 
X**2 + X + C 

X**2 + b*X + C 

This also assumes 

a*X**2 
a*X**2 + X 
a*X**2 + b*X 
a*X**2 + C 
a*X**2 + X + C 
a*X**2 + b*X + C 

(1) + and* are commutative with respect to the match; 

(2) a, b, and c may be declared free of x; 

(3) a, b, and c may each match more than one term; 

and (4) the minus sign is not a separate operator. 

This is not meant to imply, however, that restricted styles 

of matching are never appropriate. By using restricted matches, 

Fenichel was able to justify his contention that arbitrary and 

precisely specified algorithms could be constructed in FAMOUS. 

ltturiaga (23) used similar techniques in Formula Algol to pro

duce somewhat more practical results, but the syntactic (rather 

than semantic) nature of Formula Algol pattern matching prevented 

the tackling of difficult problems in a natural fashion. FAMOUS 

and Formula Algol insist that expressions look very nearly like 

the pattern which is used to match against them. Fenichel 's 

"super-match" proposal, implemented in (32), changes each single 

pattern into a large number of similar patterns by trans-

formations of commutative operators (etc,). This is scarcely an 
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improvement in efficiency, and appears to be useful only as a 

shorthand in writing out long rule sets. By contrast, our 

semantic approach can match quadratics which do not resemble .fillY 

of the above twelve forms. 

Dependence on local syntactic transformations, another 

major thread in FAMOUS, has serious implications relative to ef

ficiency. For example, the _g_c;! h~ treatment of "logsum" ((16) 

page 42) was necessary because local information, in some cases, 

has to be propagated outside of its immediate vicinity. (The 

logsum device separated sums into logarithmic terms and non-

logarithmic terms. If the sum occurred in an exponent, the log 

(x+log(y)) x 
term became a coefficient of the base. Thus e ==>y e • 

If the sum was not in an exponent, a great deal of time 

has been wasted.) Waste of this sort is avoided by MACSYMA (and 

no doubt in other algebraic manipulation systems not tied down to 

local syntactic transformations) by considering such analyses in 

a top-down fashion. This provides sufficient global context to 

distinguish sums occurring in exponents from sums occurring 

outside exponents. 

To the concept of spatial or syntactic adjacency must be 

added the concept of adjacency along semantic dimensions. For 

example, if the properties of an exponent are adjacent to its 

base, then an efficient local "logsum" device might be 

constructed. In the expression f + g + h, it is clear that f and 

h should be considered just as adjacent as f and g. What is less 
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clear is how one might note that f and g, being integer-valued 

functions, make them adjacent along a semantic dimension. 

MAC~YMA allows information to be stored at operator nodes 

in the internal tree representation of expressions (e.g. "this 

expression and all its subexpressions are simplified") which has 

some aspects of this semantic dimension. "fhis "property list" of 

operators has turned out to be an extremely useful design 

decision, one with applications to many difficult i~plementation 

problems. The types of information stored on these nodes will no 

doubt oecome more varied as MACSYMA continues to grow, 

Another thread in FAMOUS is rel lance on the Markov 

algorithm formal ism. It is clear that some algorithms, (e.g. 

synthetic division of polynomials) are difficult to program in 

such a formal ism. These algorithms benefit not only from a 

different style of program organiz.atlon, but also from a 

radically different data representation. Fenichel, by not 

modeling any sophisticated polynomial manipulation capabil itles, 

implicitly recognized this 1 imitation. 

In summary, FAMOUS and Formula Algol cannot compete with 

MACSYMA with regard to efficiency or ease of use in algebraic 

manipulation on several grounds: 

(1) the lack of a competent base simplifier (FAMOUS assumes 
nothing about the characteristics of its data, and cannot assume, 
therefore, that any particular simpl ificatlons would always be 
valia; Formula Algol nas only trivial built-in sirnp.llfications.), 

(2) the inflexibility of the rules (a consequence of their 
syntactic, rather than semantic, nature), 

(3) inefficient rule-sequencing techniques (they have no 
equivalent to TELLSIMPAFTER). 
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FAMOUS has additional problems because of: 

(4) its requirement that the Markov algorithm formal ism, and 
dara types appropriate to it be used for all manipulations, 

(5) the absence of facilities for global communication. 

REDUCE has, in addition to objection (2) above, another 

problem. It considers the user-supplied rules only after it has 

done its own simplifications. Therefore a rule X**I ==> 0 for all 

I will not prevent X**O ==> 1, the action taken by the simpl i-

fier. Furthermore, ~EDUCE does not allow sums in rules at the 

top level. KEUUCt, although probably more efficient within its 

domain (19), would require considerable programming to extend it 

to the realm of non-rational functions, a domain treated 

routinely here. 

F i n a l l y, I t i s not c e r ta i n t hat a c l o s e r r.io de l of 

SCHATCHEN, including back-up, but (of necessity) closely tied to 

the internal representation, would greatly aid a user (except 

perhaps a system programmer), considering the burden it would 

impose. The benefits of our implementation are clear: we give a 

user error and warning messages, the selector facility, and easy-

to-use methods for declaring variables and defining patterns. For 

the most part, he can remain ignorant of the subtleties of LISP 

and the data representation (a sharp contrast with SCHATCHEN), 

and yet define powerful, flexible patterns. 
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2.9. Differential Equations 

The following example of a dialogue with MACSYMA 

illustrates the usefulness of pattern matching in cons~ructing 

more useful programs. We wish to progra~ the solution of ordinary 

linear first-order differential equations. i.e. 

DY 
F(X) (--) + G(X)*Y + H{X) = 0 

ux 

where F, G, and Hare functions of X, but not of Y. The solution 

can be written in terms of integrals, as demonstrated by the pro-

gram defined on line C6, below. (Details of the programming 

syntax are describea in Appendix I ~o this thesis.) Note that U~ 

is correct, although in a somewhat unusual form. 

(Cl) DECLARE(F,NUNlEROANDFREEOF(Y))$ 
(C2) DECLARE(G,FREEOF{Y))$ 
(CS) DECLARE(H,FREEOF(Y))$ 
(C4) P : F*DERIVATIVE(Y,X)+G*Y+H$ 
(CS) DEFMATCH(PAT,P,Y,X)@ 

DY 
F (--) + G Y + H 

DX 

IS THE PATTERN 
(DS) PAT 

(C6) LINDEP(EQ,Y,X) :=BLOCK((F,G,H,P,U.,SOL], 
IF PAT(EQ,Y,X)=FALSE THEN FALSE 

E L!::i E 
P: %E**(INTEGRATE(G/F,X)), 
Q : H/F, 
S 0 L :. Y * P+ I NT E GRAT E ( Q * P, X ) , 
EXPAND(SOLVE(SOL=CONST,Y)))~ 



(Cl) DERIVATIVE(Y,X)+3•Y+4~ 

DY 
( D7) 

DX 

(C8) LINDEPC%,Y,X)$ 

+ 3 y + 4 

CONST 4 
( D 8) y = -------

3 x 3 
%E 

- 63 -

The program on line C6 could easily be altered to account 

for other types of equations. If the PAT pattern fails, other 

patterns could be tried, each with its own method of solution. If 

none of the patterns succeed, other analytic or numerical methods 

could be tried. 

2.10. Other Applications 

One of the major problems of algebraic manipulation systems 

has been the lack of substantial tools to aid in human 

comprehension of large expressions. Hearn, in (20), explores this 

problem. He displays an expression with a large number of 

dependent variables, and by properly choosing substitutions of 

expressions for variables, produces a new expression reduced in 

size and complexity. This requires a high degree of human 

experimentation and interaction with the computer. In chapter 3 

we describe more sophisticated substitution methods which rel I eve 

the user of some of his headaches, but still require explicit 

"substitute A for B" type commands. By contrast, the Markov 
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algorithm processing of expressions, combined with semantic pat

tern matching, can lead to more general styles of substitution: 

e.g. For any Z, substitute Y(Z) for COS(w*t+Z). 

Another approach toward improving comprehension has been 

the automatic "breaking-up" of expressions at (computer-chosen) 

positions. The parts are then easier to display (30), or 

manipulate further (10), (20), (34). Unfortunately, except for 

special cases, the computer-chosen break points tend to obscure 

the underlying structure. By breaking an expression up at points 

suggested by user-supplied patterns, and renaming the pieces (say 

by allocating coefficients of certain types and locations to a 

matrix), inherently bulky expressions can be reduced to more 

tractaole sizes. AS a simple example, the pattern A+ B*%1, for 

A and B declared free of %1 serves to separate real and imaginary 

parts of an expression. 

2.11. Conclusions 

Although a pattern-directed interpreter (along the lines of 

SCHATCHEN or FAMOU~) could have been written to implement this 

algorithm, a compiler, which produces a LISP program from the 

pattern, was written instead. There are several advantages to 

this approach: 

1. Elaborate checking is done at compile-time, to help insure 

that patterns make sense. An interpreter can provide this only 

at considerable cost at execution time. This makes interpreta

tion unattractive to a user who needs as much error-checking 

as possible. 
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2. When the match compiler is no longer needed, it can be removed 

from core memory, and the space it occupies reclaimed. Only 

the pattern programs themselves are required at execution 

time. An interpreter must be present any time a pattern is 

matched. It is possible that a large number of pattern 

programs could collectively take more space than some other 

pattern represention, so that this aavantage is not clear cut. 

However, judging from the size of the match compiler, we 

suspect that an interpreter performing the same tasks is 

1 ikely to be sufficiently large so as to be more space 

consuming than perhaps 40 pattern programs. 

3. With the exception of calls to the simplifier, the coefficient 

routines, and calls to subroutines to find exponents, bases, 

and unknown functions, the program produced by the DEFMATCH 

(or DEFRULE, TELLSIMP, etc.) command is self-contained. The 

application of preaicates, the assignment of values, and 

sequencing ot operations is rapid and efficient. Furthermore, 

each pattern program can be compiled into machine language by 

a LISP compiler, which (on the PilP-10) decreases the bulk of 

the program and may increase the speed by a factor of ten. It 

may appear that this possibil i'ty is independent of the 

question of compiiation Js. interpretation, since the pattern

directed interpreter could also be compiled into machine code. 

This is not the polnt we are making. The patterns for the 

interpreter cannot be compiled since they are, of necessity, 

LISP data. On the other hand, the pattern programs of our 

system can be compiled completely into machine code. 
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The advantages of semantic (as opposed to syntactic) 

matching are clear. Semantic matching as implemented in MACSYMA 

allows the user to introduce new information relying on a wide 

range of previously developed information and simplification 

rules. Syntactic methods would require considerably more 

efforts (since all information would have to be encoded in syntax 

only) and result in a less powerful extension. 

Chapter 2 - Appendix I 

Detailed description of the MATCH processor. 

Up to this point we have tried to show mainly by examples, 

what kinds of patterns can be compiled. By describing the 

algorithm used to compile patterns into programs, this appendix 

explicates the nature of the semantic matching done by the 

resulting programs. Some details which are concerned only with 

"code optimization" are omitted -- as an example, the predicate 

"TRUE" is never actually called, since the result is known to the 

match compiler. However, the operation would be unaffected if a 

ca 11 to "TRUE" we re actua 11 y used. 

Definition: An unmatched variable in a pattern is a variable 

which is declared and for which no value has yet been assigned 

during this matching process. A variable may be assigned a value 

either by being in the list of patternvar's, or by being 

successfully compared to an expression. A pattern Q ~compared 

to an expression~ by attempting a match between Q and~. If the 
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match succeeds, all unmatched variables in Q will be assigned 

values. If the match fails, the value FALSE is 

returned. 

Qefinition: If a pattern Q has no unmatched variables in It, it 

is called a fixed pattern, or is said to be fjxed. 

Remark: Any number is a fixed pattern. Any undeclared "atomic" 

name is a fixed pattern. A sum, product, (etc.) of fixed patterns 

is a fixed pattern. 

Definition: A pattern is ~nchored if after all fixed parts have 

been subtracted, divided out, or otherwise removed from an 

expression instance of the pattern 

(1) The remaining pattern consists of an isolated unmatched 

variable not in a sum or product. 

or (2) There is at least one fixed subpart of the pattern 

such that any expression instance may be separated into at least 

two parts, each part, furthermore, corresponding to an anchored 

sub-pattern of the original pattern. 

The pattern compiler in MACSYMA seeks out anchors, and 

successively compiles program segments to remove those parts 

which can be unequivocally identified. If the remaining parts 

provide no anchor, or if several not distinct anchors are 

provided, the compiler will not be able to take advantage of its 

built-in knowledge. 

produced. 

In some cases, warning messages will be 
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One of the basic design decisions concerning the internal 

format of MACSYMA expressions pervades this algorithm. MACSYMA 

removes inessential operators such as division and negation: A/~ 

is represented internally by A*B**(-1), and -A is represented by 

(-l)*A. Reducing all arithmetic operators to+, *, and** has the 

disadvantage of causing a moderate increase in the size of 

internal representations, but has the overriding advantage of 

erasing small differences in appearance which might tend to 

complicate the matching process. (The MACSYMA input and output 

routines, in order to improve readability, reintroduce quotients, 

differences, and unary minuses.) Markov algorithms written in 

Formula Algol seem to be largely concerned with juggling these 

redundant internal notations, a confirmation of the suitability 

of our design decision. (see {23) pp. 172-174) 

The remainder of this appendix describes in detail the 

methods used to seek out anchors. These methods vary depending 

on the context, so that an anchor within a sum is different from 

an anchor within a product. Although we have tried to make this 

description as clear as possible, it is not our intention that a 

user of MACSYMA read this as a prerequisite to using the pattern 

matching system. A user should compose patterns in the inter

active MACSYMA environment, and by viewing the explicit actions 

of the patterns themselves, he should judge their suitability. 

This is similar to the philosophy of other parts of MACSYMA: a 

user will rarely know£ priori whether or not an integration can 
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be performed by the system, or whether an indicated command is 

powerful enough to accomplish his task. Although it is desirable 

to describe capabilities in a clear manner, it is unreasonable to 

restrict the capabilities to that which can be so described. 

With these preliminaries, we can define precisely what is 

meant when a pattern Q matches an expression ~. 

I. If a pattern Q is fixed, then it matches an expression~ if 

and only if Q - ..e_, when simplified, is O. Of the simplification 

routines in MACSYMA, the general ("advisable") one is usually 

used. When coefficients have been picked out of an expression in 

the previous step, canonical rational simplification, which 

expands expressions and combines similar terr.is, is used. Note 

the heavy dependence on the power of the simplifier. If the user 

has (presumably by mistake) told the simplifier to replace an 

expression A by a larger expression which has A as a 

subexpression, this definition may become circular. We assume 

that no such errors have been committed. 

I I. If Q is a sum, 2 a, then all fixed a are subtracted from 

e, and then the rest of the a are examined as follows: 
- i 

A . I f a i s a p rod u c t w i t h r.io re t ha n one u nm a t ch e d v a r i a b 1 e, 

it is ambiguous. Any of the variables might match the whole 

expression. Processing such a pattern will cause a warning to 

be printed, and the pattern will be treated as in E below, as 

---------------
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an occurrence of the specific function "MTIMES" with a fixed 

number of arguments. 

B. If a is a product of a declared variable y and a fixed 

pattern i then y's predicate is applied to the coefficient of 

f in.§.. (The definition of "coefficient" used here may be 

found in Chapter 3, in the description of the RATCOEF 

command.) If it fails, the match fails, otherwise it proceeds. 

(That is, y is compared to the coefficient of i in~.) 

C. If a is an unmatched variable, then it should be the only 

unmatched a, since it will match the rest of the expression. 
i 

If selectors are used, there might be more than one remaining 

a , in which case they might correctly separate out the rest 

of the expression into several parts. A warning is printed in 

this situation. 

D. If a is an exponentiation, one of three possibilities 

exists. Either the base is fixed, the exponent is fixed, or 

neither is fixed. (If both were fixed, a would be fixed, and 

thus be treated under I.) 

1. The base is fixed: A search is made for an exponential 

operator with the given base. If the search succeeds, the 

pattern for the exponent is compared to a 's exponent. 
i 

Here, as elsewhere, if the comparisons of subexpressions 
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fail, the match fails. If the search fails, the base may 

occur to the first power. If the base is found in~, then 

the pattern for the exponent is compared to the number 1. 

If the base is a sum itself, it is subtracted from ~, and 

the pattern for the exponent compared to 1. 

2. The exponent is fixed: A search is made for an 

exponential operator with the given exponent. If it 

succeeds, the pattern for the base is compared to a 's 

base. If the search fails and the exponent 1 s a negat Ive 

integer, 1 is subtracted from~ and the pattern for the 

base is compared with 1 (the case of a missing 

denominator). Otherwise, (the exponent ls not a negative 

integer) the pattern for the base is compared with 0. This 

means that the pattern a+l/b (with a and b declared TRUE) 

will match the expression X+l with a=X, b=l, and will match 

the expression X with a=X-1, b=l. The pattern a+b**2 will 

match the expression X with b=O, a=X. 

3. Neither is fixed: Any exponentiation is searched for. 

Exponentiation is treated as a two-argument function with 

name "MEXPT" as in E below. 

4. If an exponentiation being searched for in a sum is 

actually the only item left in the sum (e.g. Y**X +A after 

A has been matched and removed) then other special cases 

are considered. If the base B is fixed, then ~**E matches 1 

if B f 0 and E matches O. If the exponent E is fixed, then 
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C. If _g_ is not an exponentiation, .Q. is compared to 5:.**l. 

D. If _g_ ~an exponentiation, the respective bases and 

exponents of Q and _g_ are compared. 

V. If .Q. is some specific function, it is treated as follows: The 

function name in Q (e.g. SIN) must match the leading operator in 

&· The respective arguments of the pattern and expression are 

then compared and a check is made that the same number of 

arguments appears in the pattern and in the expression. If all 

the component matches succeed, the pattern succeeds. 

VI . If .Q. is an unspecified function whose name is unmatched, it 

is treated as in V, except that the unmatched function name of Q 

is compared to the leading operator of&· 

VII. If .Q. is an atomic unmatched variable, it is compared to _g. 

These operations may be nested to an arbitrary depth, since 

comparing a pattern and an expression may invoke comparisons of 

subexpressions. Furthermore, this algorithm is exhaustive, in the 

sense that given any syntactically val id MACSYMA expression, a 

pattern matching process will be defined for it. 

Appendix I I 

The fol lowing LISP 1 isting of QUAD uses several system conven

tions which can be briefly summarized as follows: 

All user variable-names have a dollar sign prefixed to 

them. The *KAR(ERRSET( •.• )) construction serves only to catch 

illegal operations or ERR() 'sand return NIL in such instances. 
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MATCOEFCX,Y) returns the coefficient of Y in X as found by the 

RATCUEF of chapter 3. MEVALCX) is the MACSYMA evaluator. It 

substitutes values for variables in the expression X, evaluates 

the resul!, and returns a simplified expression as an answer. 

RATSIMP(X) rationally simplifies X. RETLIST returns a list of its 

arguments and their values. 

The GOOn names are symbols produced to meet the need for 

unique new variable names. 

(DEFUN $QUAD 
(G0042 $X) 
(*KAR 

CERRSET CPROG (G0043 G0044) 
(SETQ G0043 

(MATCOEF G0042 
(MEVAL (QUOTE ((MEXPT SIMP) 

$X 
2))))) 

(COND ((MEVAL (QUOTE (($NONZEROANDFREEOF) 
$X 
G0043))) 

(SETQ $A G0043)) 
((ERR))) 

(SETQ G0042 CMEVAL (QUOTE (($RATS IMP) 
(CMPLUS) 
G0042 
((~HIMES) 
-1 
G0043 
((MEX PT SI MP) 

$X 
2))))))) 

(SETQ G0044 CMATCOEF G0042 $X)) 
(COND (($FREEOF $X G0044) (SETQ $8 G0044)) 

((ERR))) 
(SETQ G0042 CMEVAL (QUOTE (($RATS IMP) 

((MPLUS) 
G0042 
((MTIMES) 
-1 
G0044 
$X)))))) 

(COND (($FREEOF $X G0042) (SETQ $C G0042)) 
((ERR))) 

(RETURN CRETLIST $C $8 $A $X)))))) 
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Appendix I I I 

This appendix considers the question of pattern matching 

from a more theoretical standpoint. It answers some questions 

about the formal power of pattern matching in determining 

membership of an expression in a class, and the ability of the 

pattern match to uniquely determine the values of the variables 

in the pattern. Many of these results may seem trivial or 

obvious; nevertheless, they are not expressed elsewhere. Some 

especially trivial results are Cl) Any expressions E, synthesized 

by MACSYMA can be matched by a pattern, namely, the pattern E. 

and (2) Any expression in MACSYMA can be completely decomposed by 

some pattern: By using explicit matches for operators (as in 

section 4, line C6), every single component of any expression can 

be given a name. (Since we usually seek to define general 

patterns, such explicit matches are rarely of great use.) 

Qefinition: A pattern match program (PMP) is a program produced 

by the implementation of the algorithm described in Appendix 

I, given a val id MACSYMA expression. 

Theorem 2.1 I I .1. A PMP for a finite pattern is finite in speci

fication. 

Proof. A finite pattern, written as a tree, has a finite number 

of nodes. The algorithm of Appendix I traverses the tree 

once, emitting a finite number of finite steps at each node 

(in practice, fewer than 3 LISP "S-expressions" per node). 

The algorithm terminates when the tree has been traversed. (A 
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more rigorous proof is possible, but would require a detailed 

analysis of the correctness of our programming implemen

tation. This could be done by case analysis, as described in 

(28).) 

We will assume, for the remainder of this appendix that 

all PMPs are defined for finite patterns, and are therefore 

finite in size. 

Theorem 2. I I I .2. A PMP always terminates given finite expressions 

for each of its arguments if its predicates always terminate, and 

the evaluator (MEVAL) always terminates (with a finite result) on 

finite expressions. 

Proof. A PMP is a finite non-looping sequence of steps. Each step 

terminates, since it is either an application of a predicate, an 

evaluation of an expression, or the extraction of the ith 

argument of an n-ary function. The last of these clearly 

terminates since i and n are finite by hypothesis, and the first 

two terminate by hypothesis. 

Since patterns are themselves predicates, it is possible 

(and often useful) to use them recursively. In such cases 

termination will be difficult to guarantee by this theorem. 

Although this theorem states sufficient conditions for termina

tion, these conditions are not necessary, since, for example, 

non-terminating predicates may be present in a pattern, but may 

never be applied if the pattern fails first. 
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For the remainder of this appendix, all PMP's are assumed 

to be terminating. Thus a PMP divides the set of finite algebraic 

expressions into two classes, P, the expressions which satisfy 

the pattern, and N, those which do not. 

Now, a result which determines a theoretical limit (but not 

necessarily the best limit) on the power of pattern matching: 

Theorem 2.111.3. Unless Nor Pis empty, there is a MACSYMA ex

pression p in P which is functionally equivalent to a MACSYMA 

expression n in N. 

Proof. Let us assume for the moment that the MACSYMA simplifier 

is unaware of special angle simplifications, and let a PMP 

program pass only expressions which match zero (0). Neither P 

nor N is empty, so this theorem asserts there is an element 

in N equivalent to zero. We can show there are many. One of 

them is COS(Pl/2). To see if COS(Pl/2) matches O, (see the 

first line of the algorithm, Appendix I) we simplify 

COS(Pl/2)-0. The result, COS(Pl/2), is not identically the 

expression "O" and therefore is in N. 

One might blame the MACSYMA simplifier for this 

inadequacy, except for the fol lowing lemma, which proves that 

the simplifier cannot be made sufficiently adequate. 



- 78 -

Lemma. (Richardson, {36), see (6) also) Let R be the set of 
expressions generated by 

( i) the rational numbers, and the real numbers pi and 
log 2, 

(ii) the variable x, 

(iii) the sine, exponential and absolute value func
tions. 

Then if E is an expression in R, the predicate "E is 
equivalent to O" is recursively unsolvable. 

Since all of these operations and constants are permissible 

in MACSYMA, there is no computation which can exclude 0-

valued functions from N. Furthermore, since "O" can be added 

to any pattern whatsoever, the same analysis holds for any 

PMP. 

This concludes the proof of theorem 2.1 I I .3. 

Our only hope is that some sub-domains within R have less 

disastrous consequences for pattern matching. Such is the case. 

Let us use the convention that A1 , ••• ,Am are MACSYMA variables 

which have been declared TRUE, and X1 , ••• ,Xn are constants. {This 

convention may seem odd, but consider that AX+B as a pattern has 

variables A and B and constant X.) 

Since we are restricting the domain of expressions handed 

to PMP's, we will be affected by the power of the simplifier. 

Thus while E = X + COS(Pl/2)*SIN(X) does not look like a 

polynomial in X, a suitable simplifier will transform E into the 

equivalent expression X, which 1.§ a polynomial in X. All expres-

sions mapped into a domain D by a simplifier s, are members of 
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the class Os. No rigorous definition of Os's will be attempted, 

since the simplifier in MACSYMA defies simple analyses, and in 

any case, it can be altered by the user. 

Iheorem 2.1 I I .4. Let D be the domain of polynomials in any finite 

number of variables\Xil with integer or symbolic coef-

ficients. A pattern consisting of any (expanded) member of D 

with variable coefficients{Ai1 will match uniquely any 

member of Os. 

Proof. An expanded member of D will look like 

....;"' M1,i Mn i 
~Ai(X~) *···*(Xn)' 

A PMP for this pattern will consist of a finite set of calls 

to the coefficient-finding routine, which wi 11 assign to each 

A the coefficient of 
M . x 1,1 

1 X Mn,i 
*···* n • These coefficients 

can be extracted because this representation of polynomials 

is canonical, and the coefficients are obviously unique in 

any expression (regardless of its original form) which can be 

transformed into an equivalent polynomial in X1 , ••• ,Xn· 

Iheorem 2.111.5. Let D be the domain of rational expressions 

(i.e., ratios of polynomials as in theorem 4). A pattern 

consisting of the ratio of two expanded polynomials with 

variable coefficients will match uniquely any member of Ds. 
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Proof. The numerator is matched as in theorem 4, and the 

denominator, which appears as a polynomial raised to the -1 

power, is matched as in theorem 4. The absence of a 

denominator will cause the pattern for the denominator to be 

matched against 1. 

These results can be extended in various directions, but 

results become more specialized and less illuminating. For 

example, 

lheorem 2.111.6. Let f be an n-ary function with no simpl ifica-

tion rules in the simplifiers. Let Os be the Os of the 

previous theorem, and ~i1 elements of Os. Let Of be the set 

of expressions 

do*f(d1 ' ••• ,dn)+dn~1 . 

Then an expression in Of with variable coefficients will 

match uniquely any member of Ofs. 

Proof. The single occurrence of f can he found, and its "coef-

ficient" d0 and "constant term" d can be matched as in 
n~1 

theorem 5. 

Typical of statements which are true, but are of only 

limited interest is: 

and let {di) be in Os. 

Let Os be the Ofs of the previous theorem, 
d1 

Let E be the set of expressions d0 • The 

pattern matches uniquely any member of Es, but the uniqueness is 

imposed by the match algorithm. Thus 1 is a member of Es, as 

l**U, but the possibilities l**l or X**O are not considered. 



- 81 -

When we restrict ourselves to matching expressions composed 

over classes for which canonical forms exist, as in theorem 4, 

quite neat results can be obtained if the simplifier is able to 

compute these canonical forms. For many areas of interest, 

canonical form algorithms do not exist, yet being ab1e to 

recognize members of particu1ar classes within t.he confines of a 

simplifier can ~til1 be useful. For example, recognizing the 

parameters of a differential equation, even if it can be done 

only in some standard form, • .&= l 1s use u., even if some other, rarely 

encountered, but equivalent form is not recognized at all. 

In comparing various systems in this context, the principal 

point is that for the same domain D, the ability of the 

simplifier, s, to reduce an expression to essential components, 

strongly influences the size of the set Ds. MACSYMA's simplifiers 

(the "ordinary" one which can be modified by the user, the 

RATSIMP rational simplifier, and the RADCAN radical canonical 

simplifier of Chapters 3 and 5), provide a range of possibilities 

larger than that of any other existing system. While any system 

which is in theory equivalent to a Turing machine could in theory 

do as well (eventually) as MACSYMA, or even better, theorem 3 

provides a bound on their theoretical capabilities just the same. 
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Chapter 3 - Extending the Power of the Rational 
Function Facilities 

This chapter concerns the practical implications of what 

believe to be the most significant design decision in MACSYMA. 

MACSYMA was designed with the intention of .!lQ..t. necessarily 

restricting its components to the same data representation. The 

rational function package embodies the essentials of a special 

data type which, by suitable treatment, has yielded a number of 

new results. These results include particularly powerful tech-

niques for extracting coefficients (section 3.3), for substi-

tution (section 3.5), and for solving for a variable in an 

expression (section 3.6). 

Since a number of other current systems (e.g. REDUCE (19)) 

also include analogous special rational function representations, 

the new ideas and techniques discussed here could, no doubt, be 

implemented elsewhere with relative ease. 

By using the rational function representation (as opposed 

to the general representation), extremely fast processing is 

possible. For typical calculations which can be done either way, 

the rational function representation can easily reduce the time 

requirements by a factor of five or ten, becoming far more 

efficient as the problem increases in size. This in itself can be 

a significant asset. In order to make this point more concrete, 

and to demonstrate how MACSYMA compares to similar efforts else-

where, some timing information has been compiled. Only the 
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crudest efforts at making the cross-system comparisons truly 

comparable have been attempted; no doubt an extensive study could 

be conducted in balancing the differences of word-length, CPU 

cycle time, memory access time, size of storage, CPU instruction 

set, etc. The timings in table 3.1 are for the calculation of 

the first 10 polynomials in the "f and g" series, the details of 

which may be found in (11) or (31). The calculation is of two 

sets of polynomials in sigma, mu and epsilon, defined recursively 

in terms of each other and derivatives of lower order terms. The 

calculation can be indicated in MACSYMA's rational function 

representation through the following input: 

Xl: RAT(-SIGMA*(MU + 2*EPS))$ 
X2: RAT(EPS-2*SIGMA**2)$ 
X3: RAT(-3*MU*SIGMA)$ 
F [OJ : RAT ( 1) $ 
G [OJ : RAT ( 0) $ 
F[I] := -MU*G[l-1] + Xl*DIFFCF[l-1],EPS) 

+ X2*DIFFCF[l-1],SIGMA) 
+ X3*DIFF(F[l-1],MU)$ 

G [ I ] : = F [ I -1] + X 1 * D I FF ( G I I -11 , E PS) 
+ X2*DIFF(G[l-1],SIGMA) 

F[10](9 
G [ 1 OJ @ 

+ X3*DIFFCG[l-1],MU)$ 

Timings for systems other than MACSYMA are interpolated from (11) 

or from conversations with the authors of various systems 

presented at SYMSAM/2 (1). 
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Table 3.1 - A Cross-System Timing Comparison 

System Computer Time Adjusted Notes 
(sec) Time* 

Machine-Language Systems 

PM IBM 7094 4.4 18 

FORMAC IBM 7094 39.0 156 

SAC-I CDC 1604 25.8 26 

SYMBAL CDC 1604 5 2. 2 53 

SYMBAL CDC 6600 4.3 65 

CAMAL ATLAS-2 2. 0 4 ( 1) 

Systems Written in Higher-Level Languages 
using Special Rational Function Representations 

REDUCE2 IBM/360-67 4.5 45 ( 2) 

10. 100 ( 3) 

PDP-10 10.5 55 (4) 

IAM PDP-10 15 2. 760 ( 5) 

MACSYMA's rational 
function routines PD P-10 14.8 30 ( 6) 

Systems Written in Higher Level Languages 
using General (Tree) Representations 

Korsvold's System IBM 7094 119.0 475 

MACSYMA's general 
representation PD P-10 76. 152 ( 7) 



- 85 -

Notes for Table 3.1 

*For a direct comparison, we have used the following somewhat 

controversial speed factors: CDC 1604 = 1, PDP-10 (with 2.8 

microsecond memory) = 2, ATLAS-2 = 2, IBM 7094 = 4, PDP-10 (with 

1 microsecond memory) = 5, IBM 360/67 = 10, CDC 6600 = 15. In 

addition, the notes must be taken into account in computing the 

adjusted time. REDUCE2, Korsvold's System, and MACSYMA are all 

written in LISP, and are subject to variations depending on the 

efficiency of the underlying language implementation. 

(1) A particularly rough interpolation; the actual time was 7.4 
seconds for F and G to index 19. CAMAL uses a representation 
which packs a great deal of information in a single node; it thus 
uses less space, and less pointer-following time than the other 
systems listed here. 

(2) Using Stanford University LISP. 

(3) Using IBM's Scratchpad LISP which is slower than Stanford 
LISP, since it packs two addresses in a 32-bit word, thus 
requiring shifts to adjust the addresses. 

(4) Using 1 microsecond memory. 

(5) Using 1 microsecond memory. IAM is written in AMBIT/L, and 
is interpreted, rather than compiled. 

(6), (7) Using 2.8 microsecond memory. 

These times (and, no doubt, other LISP times) can be 

decreased by some 40 percent by methods unrelated to the 

algorithms: By using a larger core allocation, LISP garbage 

collection time can be reduced; also, a cleverer LISP arithmetic 

statement compiler (now being implemented) would reduce 

calculation time further. 
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3.0 An Introduction and a "Political" Digression 

Moses, in (34), describes a spectrum of attitudes towards 

algebraic manipulation ranging from the "radical" to the 

"conservative." According to this classification, a radical 

system will transform a user-supplied expression into an internal 

format which consists of an encoding of the expression in a 

special unique simplified form. This drastic transformation 

generally destroys superficial resemblances between the input and 

output. The only attribute necessarily preserved is the 

functional value of the expression. Polynomial and rational func

tion systems generally fall in the "radical" category. The 

contrasting "conservative" approach does almost nothing but that 

which is specified by the user; it keeps the internal form as 

nearly the same as the external form as is possible, and 

generally accepts a wide variety of expressions (wider than poly

nomials and rational functions). 

The top-level ("liberal" in Moses' terminology) "general" 

simplifier and evaluator in MACSYMA takes a stance in the middle. 

It has some built-in rules (e.g. concerning zero and one, 

collecting terms) and by ordering terms in sums and products, 

does a fair job of simplifying a large class of expressions. Its 

importance lies in the fact that it allows certain subsystems to 

explore the far reaches of the "political" spectrum. Because of 

the conjunction of different approaches, radical simplification 

algorithms can be applied to expressions which would not 
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ordinarily be considered proper inputs. For example, the ability 

2X X 
to manipulate e + 2e 

x 
+ 1 as a quadratic in e (and apply poly-

nomial "radical" processing) is quite useful, even though the ex-

pression is not quite fair game for ordinary polynomial systems. 

MACSYMA is capable of factoring the above expression into 

x 
(e +1) , and treating it as a polynomial for various purposes; 

however, it is also capable of noticing that eX can reduce to y 

when x;log{y). Polynomial or rational function systems are rarely 

aware of such possibilities in their data. 

This chapter discusses the "radical" data handling 

facilities of MACSYMA, and their relation to the MACSYMA command 

level. In one particular instance (the SOLVE command) we show how 

radical and conservative handling of different parts of the same 

expression can lead to an end result which could be produced with 

either approach alone only with great difficulty. Other commands 

where rational simplification or other radical approaches are 

essential to programming effective algorithms are also discussed. 

By an unfortunate coincidence in terminology, we wi 11 use 

the word "radical" in two senses. In one case, we will discuss a 

class con~isting of algebraic extensions adjoined to the field of 

rational functions. This class is generally called the class of 

radical expressions (in the sense that a square root is a 

radical). In the second case, our approach to simplifying 

radical expressions is, in Moses' terminology, radical (i.e. 

drastic). 



- 88 -

In this and later chapters, the algorithm and the command 

used for invoking the algorithm used to simplify radical expres-

sions will be referred to as RADCAN. RADCAN and the two commands 

to be described in section 3.1, RATSIMP and FULLRATSIMP are all 

classified as radical (i.e. drastic) simplifiers. 

3.1 Basic Rational Function Commands 

In order to clarify the discussion, it is necessary to dis-

tinguish between the two major internal forms for expressions in 

MACSYMA. Ordinary MACSYMA form is a delimiter prefix form which 

is typical of many list-processing implementations of algebraic 

manipulation systems. For example, 3x
2 

would be represented 

(glossing over inessential details) as (times 3 Cexpt x 2)), and 

x+y as (plus x y). By contrast, the canonical rational expression 

CCRE) form in MACSYMA is an internal form especially suitable for 

rapid manipulation of sparse polynomials and rational functions. 

2 
In CRE form, 3x is represented, (again, glossing over details) 

as Cx 2 3). The first element of the list is the variable, the 

second is its highest exponent, and the third, the coefficient of 

2 
the just preceeding exponent. Thus 6x +4 is represented as Cx 2 6 

0 4), and, allowing coefficients themselves to be polynomials, 

2 
x y+7xz is (x 2 (y 1 1) 1 (z 1 7)). Since (y 1 (x 2 1) 0 Cx 1 (z 

1 7))) is an equivalent CRE representation, it should be clear 

that the ordering of variables must be specified to insure that 
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equivalent CRE's are identical, that is, they are in canonical 

form. 

CRE's in general represent rational expressions, that is, 

ratios of polynomials, where the numerator and denominator have 

no common factors, and the denominator is positive. Thus a CRE 

has three essential parts: a variable list (VARLIST), specifying 

the ordering of the variables, and two polynomial parts. 

With these preliminaries, we can describe the actions of 

the rational function commands. 

RATVARS(a,b, •.• ) orders the variables listed in its argu

ment list on a global variable list CVARLIST) so that the 

rightmost element of the list a,b, ••• will be the main variable 

of future rational expressions in which it occurs, and the other 

variables will follow in sequence. If a variable is missing from 

the RATVARS list, it will be given lower priority than the 

leftmost element. If several variables are missing, they will be 

ordered by the MACSYMA function GREAT, which uses an implementa

tion of the ordering algorithm described in (34). The arguments 

to RATVARS can be either variables or non-rational functions 

(e.g. SIN(X)). 

RATSIMP(EXP) rationally simplifies the expression EXP. 

That is, EXP is converted into a single fraction, whose numerator 

and denominator are polynomials over the integers, with no common 

factors. EXP is written in a recursive form: a polynomial in the 

main variable whose coefficients are polynomials In the next-



- 90 -

higher-order variable, ..• ,whose coefficients are Integers. This 

is accomplished by converting EXP into CRE, and then converting 

back to ordinary MACSYMA form for display. 

For example: 

2 2 2 
(X - Y ) CZ + 2 Z) 

( D 1) 
W CY + X) 

(C2) RATSIMP(Dl)@ 
2 

ex - Y) z + c2 x - 2 Y) z 
(02) --------------------------

w 

(C3) RATVARS(X)$ 

(C4) RATSIMP(Dl)@ 
2 2 

X CZ + 2 Z) - Y Z - 2 Y Z 
(04) ---------------------------

w 

FACTORCEXP) factors the expression EXP into factors 

irreducible over the integers. If EXP is a rational expression 

(with a denominator not 1) both numerator and denominator are 

factored. If FACTORFLAG is set to TRUE, the integer multiplier, 

i f any, i s factored a 1 so • The a 1 go r i th m can be used to facto r 

polynomials in any number of variables. GFACTORCEXP) factors 

polynomials over the Gaussian integers. 

For example, 

(CS) FACTOR(X**6+1)@ 

2 4 2 
(DS) ex + 1) ex - x + 1) 
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SQFRCEXP) is similar to FACTOR except that the polynomial 

factors are "square-free" that is, have no multiple roots. This 

algorithm, which is also used by the first stage of FACTOR, 

utilizes the fact that a polynomial has in common with its nth 

derivative all its factors of degree> n. Thus by taking 

derivatives with respect to each variable in the polynomial, all 

factors of degree > 1 can be found. Several special cases are 

also factored, including the removal of polynomial contents. 

PARTFRAC(EXP,VAR) expands the expression EXP in partial 

fractions with respect to the main variable, VAR. The algorithm 

employed is based on the fact that the denominators of the 

partial fraction expansion (the factors of the original 

denominator) are relatively prime. The numerators can be written 

as linear combinations of denominators, and the expansion falls 

out. 

(C6) PARTFRAC(X/(X**2-l),X)@ 

1 1 
(06) ------- + -------

2 x - 2 2 x + 2 

3.2. Contagious CRE Commands 

The above commands represent no new capabilities; MATHLAB 

( 2 9 ) has a l mos t i den t i cal fa c i l i t i es, a l though i ts i n tern a l 

equivalent of our CRE's is less efficient for sparse polynomials. 

Other systems, by limiting their universe of discourse to 

canonical representations, make the explicit RATS IMP commands 

unecessary. Nevertheless, an algorithm equivalent to RATSIMP 
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must be present in order to maintain the canonical represen

tations during a computation. 

The commands in this and the following sections represent 

significant departures from the usual use of rational function 

routines. 

RAT(EXP) is indistinguishable on command level from 

RATSIMP; however, RAT leave~ its internal result in rational 

function (CRE) form, so that operations used by the rational 

function commands described here can be more rapidly performed on 

it. Furthermore, any time the user adds to or multiplies by a 

CRE, the result is a CRE. That is, the CRE form is "contagious." 

This enables a user to easily force his entire calculation to be 

done in CRE form by converting one of his inputs into CRE by 

simply multiplying by RAT(l). Some problems require excessive 

amounts of storage and/or time if intermediate results are 

converted back into prefix form at each step of the calculation. 

The RAT facility, by being integrated into the simplifier, 

permits a user to compose a program and try it out (without any 

changes) on ordinary prefix form arguments .QL on CRE arguments. 

In this manner it is simple to compare the timing of "general" 

versus CRE methods on the same task. This very often demonstrates 

that CRE methods, when appropriate, are much faster. 

RATDISREP(EXP), which appears to do nothing on the command 

level, changes its argument from rational function form (CRE) to 
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ordinary MACSYMA form. This is sometimes necessary in order to 

use some of the other MACSYMA commands. If RATDISREP is not 

given a CRE for an argument, it does nothing. 

3.3. The Rational Coefficent Program 

RATCOEF(EXP,PART) returns the coefficient, C, of the ex-

press ion PART in the expression EXP. C wi 11 be free (except 

possibly in a non-rational sense) of the variables in PART. If 

no coefficient of this type exists, zero will be returned. 

RATCOEF will give reasonable answers to reasonable requests, and 

will often produce reasonable answers to poorly stated requests. 

Generally, when PART includes a"+" or a 11 / 11 , results may seem 

odd. (see 1 ines 07, 08, 010, and 011 in the examples to follow). 

Since EXP is rationally simplified before it is examined, coef-

ficients may not appear quite the way they were envisioned. The 

effect of RATCOEF should be clarified by the following examples. 

( c 1) S:A*B*X**2+B*X+2wX+5@ 
2 

( 01) A B X + B X + 2 x + 5 

(C2) RATCOEF(S,X) 

(02) B + 2 

(C3) RATCOEF(S,A*B)@ 
2 

(03) x 
( c 4) RATCOEF(S,B)@ 

2 
(04) A x + x 

(CS) RATCOEF(S,2*X)@ 
B + 2 

(05) -----
2 



(C6) RATCOEF(S,B/2)@ 
2 

( 06) 2 A X + 2 X 

(C7) RATCOEF(A*X+B*X+C,A+B)@ 
( 07) x 

(C8) RATCOEF(3*A+2*B,A+B)@ 
(08) 2 

(C9) RATCOEF(S,-A)@ 

(09) 
2 

- B X 

(ClO) RATCOEF((A*B+C)/O, B/0)@ 
(010) A 
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(Cll) RATCOEF(3*A/O+A/0**2, A/0**2)@ 
(011) 0 

Let us first define RATCOEF(EXP,PART) where EXP is a 

k 
polynomial and PART has the form v for v a variable, k a number. 

This case is clear: we expand EXP as a CRE, and pick off the 

k k 
coefficent of v . If there is no occurrence of v , the 

coefficent is Q. If EXP is not a polynomial, but a ratio of 

polynomials, then we must make a decision about how to treat 

occurrences of v in the denominator. 

Let EXP =num/denom, where num = .Z.a v • If the coefficient 

of v , namely a , is zero or if a /denom depends on any variable 
i 

in the original PART, then the response is zero. Otherwise the 

response is a /denom. 
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RATCOEF of a product can be defined recursively as 

follows. Consider RATCOEF(EXP,PART). If PART= 

n 
1 

n 
2 

n 
k 

v *V *···*V ' then RATCOEF(EXP,PART) = 
1 2 k 

n 
k 

RATCOEF{RATCOEF{EXP,v 
k 

n 
1 

) 'v 
1 

n 
k-1 

k-1 
) . 

If PART= A/B then RATCOEF(EXP,PART) = RATCOEF{EXP*B,A). 

If PART= -A, RATCOEF{EXP,PART) ~ RATCOEF(-EXP,PART). 

If PART = L A {possibly after removing multipliers, as 

above), then EXP is divided by PART with respect to the main 

variable in PART. If the quotient depends on any variable in the 

original PART, the response is zero. Otherwise the answer is the 

quotient. 

The coefficient produced in this manner may depend, In the 

last case, on the ordering of the variables within EXP. For 

2 2 
example, the coefficient of (Y+Z)X in Z X +(Y+Z)X+A Is clearly 1. 

The similar problem of finding the coefficient of XZ+XY in 

2 2 2 2 
X Z +XZ+XY+A yields the answer O, since X Z +XY+XZ+A divided by 

2 
XZ+XY is XZ+l, with remainder -X YZ+A. The quotient depends on X, 

and thus the coefficient is taken to be zero. 

This illustrates both the ability of the user to ask for 

coefficients of sums, and the ability of RATCOEF to sometimes 
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answer correctly. We could have defined RATCOEF only for 

products, but it seems more in keeping with the spirit of an 

interactive system to avoid such restrictions on the user. Note 

that tf the user were disappointed with the answer Oto the above 

request, first executing RATVARS(X) would correct the situation. 

In summary, RATCOEF will find the coefficient of PART when 

PART is a factor of the expression, or of some part of the ex

pression such that the other factor has none of the same 

variables. 

The returned value is in CRE form. 

An alternative to RATCOEF is available in situations where 

its generality is not needed. The COEFF command can operate on 

CRE forms or on ordinary MACSYMA forms which have been expanded. 

COEFF(EXP,VAR,POWER) wil 1 extract the coefficient of VAR** POWER 

(where POWER may be 0) from EXP. COEFF returns a CRE form if and 

only if it is given a CRE form. 

3.4. Simple Extensions to Rational Simplification 

FULLRATSIMP(EXP) is an expanded version of RATSIMP which 

is recursive on the arguments of non-rational functions. It also 

removes zero exponents, and converts forms 1 ike (X**Y)**Z to 

X**(Y*Z). Although these last two operations are generally 

performed by the simplification program, FULLRATSIMP must 

repeatedly simplify the results of such transformations until no 

more rational simplifications can be made. FULLRATSIMP is no more 
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time-consuming than RATSIMP if EXP is an algebraic expression 

with no non-rational functions. FULLRAT(EXP) is a program which 

operates similarly, but allows the user to specify a varlist 

as does RAT. 

A more extensive expansion of the concept of global simpl i

fication is embodied in RADCAN. While FULLRATSIMP does not apply 

any identities concerning logs, radicals, and non-numeric 

exponents, RADCAN does. 

RADCAN(EXP) converts the expression EXP into a form which 

is canonical over a large class of expressions and a given 

ordering of variables; that is, all functionally equivalent forms 

are mapped into a unique form. For a somewhat larger class of ex

pressions, RADCAN produces a normal form; that is, all forms 

equivalent to zero are mapped into zero. For purely rational ex

pressions, RADCAN is no more time-consuming than RATSIMP or 

FULLRATSIMP; however, for more general expressions including 

radicals, logs, and non-integer exponents, RADCAN can be quite 

expensive. This is the cost of exploring certain relationships 

among the components of the expression for simplifications based 

on factoring and partial-fraction expansions of exponents. 

A description of the method, and proofs of the canonical 

properties of the RADCAN algorithm are discussed in chapter 4. 

Examples should, however, give a rough feel for the capabilities 

of RADCAN. (% always refers to the just-previously displayed ex

pression, %Eis the base of the natural logarithms): 



(Cl) SQRT(98)@ 
( Dl) 

(C2) RADCAN(%)@ 
(02) 

SQRT(98) 

7 SQRT(2) 

(C3) (SQRT(X**2-1))/(SQRT(X-1))@ 
2 

(03) 

( C 4) RAD CAN ( % ) @ 
(04) 

SQRT(X - 1) 

SQRT(X - 1) 

SQRT( X + 1) 
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(CS) CLOG(A**(2*X)+2*A**X+l))/(LOG(A**X+l))@ 
2 x x 

LOG(A + 2 A + 1) 
( D 5) 

(C6) RADCANC%)@ 

x 
LOG(A + 1) 

(06) 2 

(C7) C%E**X-1)/(%E**(X/2)+1)@ 
x 

( D 7) 

(CB) RAD CAN(%)@ 

(08) 

%E - 1 
---------

X/2 
%E + 1 

X/2 
%E - 1 

3.5, The RATSUBST (rational substitution) Commands 

RATSUBST,' or RATSUBSTn(A,B,C) where n = 1, 2, 3, 4 is a set 

of similar commands to substitute A for each occurrence of B in 

the expression C. In those cases where it is clear where B 

occurs, the result will correspond to the intuitive notion of 

substitution. 
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If B is an atom, occurrences of B are obvious. The action 

taken is simply substitution followed by simplification. 

If B is a quotient, say b /b, then RATSUBSTn(A,B,C) is 
1 2 

entirely equivalent to RATSUBSTn(A*b ,b ,C). 
2 1 

If B is a product, all coefficients of powers of B can be 

detected in C by a technique similar to that used by RATCOEF. 

Hearn in (20) suggests this approach.) If B is a sum, we must 

define what we mean by an occurrence of an expression B in a 

polynomial expression C. (If C is not a polynomial, we can 

consider its numerator and denominator separately.) 

i 
If C = Zs B, then B is said to occur in C with coef-

f icient S 
1 

and exponent 1, coefficient S and exponent 2, 
2 

and remainder S • If B occurs in such a fashion we wish to 
0 

i 
replace C by Zs A. Unfortunately, finite power series 

expansions for an expression in terms of a non-atomic 

2 2 

... ' 

subexpression are not unique. For example, C = x +3xy+y has 

(among others) the following expansions in (x+y): 

2 
2. l*(x+y) 

1 
+ O*(x+y) 

1 
+ X*(x+y) 

1 
+ Y*(X+y) 

+ X*Y*(X+y) 

0 
- X *(X+y) 

c 
- Y *(x+y) 

0 
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What is needed is a set of restrictions on the coefficients 

S so that the expansion is unique and appropriate to the problem 

at hand. This is the basic problem in substitution for simpli-

fication, and this solution is based on a set of heuristics for 

achieving what appear to be, in some instances, more desirable 

results than have been possible in the past. We will separate out 

only the highest power of B, and discuss at each stage 

n 
(recursively on lower powers of B) the situation C SB + r, 

where r contains the lower order terms. 

As we have pointed out earlier in our discussion of 

RATCOEF, the ordering of variables is sometimes quite critical. 

"Sum"-hood, which is a property of a £.Q.rm, not of a function, 

sometimes depends on ordering. For example, xz+yx is a sum, but 

(z+y)x is (for purposes of RATSUBST) not a sum, but a product, 

although the two expressions are functionally equivalent. 

Let B be a polynomial containing variables v ,v , ... ,v , 
1 2 k 

where the highest power of each v ism. For all but condition 2 

below, the only restriction on r, the remainder consisting of 

lower order terms, is that it has lower degree than C does in 

some particular variable (namely, the most important on the 

varl ist that is also in B). The conditions below are embodied in 

the commands RATSUBSTl, 2, 3, and 4, respectively. Their effects 

can best be gauged by frequent reference to the examples in 
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figure 3.2 following. RATSUBST (without a number) is a quicker 

program than the numbered ones, which short-cuts many of the 

(rarely needed) conversions and re-conversions required for 

strictly following all the conditions. 

Conditions 

1. The highest power of some v in S that appears in B is less 

than the corresponding m . 

2. The highest power of each v in S that appears in B is less 

than the corresponding m , and the highest power of each v in r 
i 

that appears in B is less than the corresponding m . 

3. S is a polynomial. 

4. S contains no sum. 

The value of n ranges from the highest possible (the ratio 

of the highest coefficient of some v in C which is also present 

in B, to the corresponding maximum coefficient of that v in B, 

namely m) to the lowest possible (when some v in B is no longer 

present in C to a power as high as it is in B, or 1.). To avoid 

the possibility of looping, occurrences of B in Care replaced, 

as found, by a special dummy variable, which is subsequently 

replaced by A. Cases in which B occurs in A (probably an error on 

the user's part) or where simplification of C results in new 



Figure 3.2 Examples of RATSUBST (substitute argument 1 for argument 2 in argument 3) 

Argument 1 Argument 2 Argument 3 RATSUBST Versions RATSUBST(Argi,Arg2 ,Arg_3_) 

A 
2 X4Y8+X4Y3 1,2 X4Y3+A4 XY 

3,4 AX 3Y+A4 

1 s+c s 1,3,4 -C+l 

2 s 

A B(X+Y) 
2 

B +BX+BY+l 1,3,4 
2 

B +A+l 

2, with RATVARS (Y) 
2 

BY+BX+B +1 

2, with RATVARS(X) 
2 

BX+BY+B +1 

2, with RATVARS(B) 
2 

B +Atl 

A 
2 2 

1,2,3 x2
Y XY x y 

4, with RATVARS(X) A2/Y3 

4, with RATVARS(Y) 
2 x y 

A X+Y (X+Y) (Z+W) 1,2,3 (Z+W)A 

4 (Z+W)y+ (Z+W)X 

1 
2 4 1,2,3,4 2 I I +1 

t-' 
0 
N 
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occurrences of B can be treated with repeated calls to RATSUBST. 

This can be easily programmed in MACSYMA. 

If C contains non-rational functions, substitution proceeds 

on the arguments of the non-rational functions, recursively. Thus 

A, B, and C need not be rational expressions. 

x 
By noting when B has non-rational components Ce. g., e , or 

1/ 2 
x ), RADCAN can be called on Band C, and they can be left in a 

special expanded format, which tends to reflect more clearly the 

similarities of the two expressions. Thus 

RATSUBSTCA,E**X,E**(2•X)) is A**2. 

An example of an extension to the RATSUBST framework might 

serve to illustrate its generality. If there is a canonical 

ordering on all expressions submitted to RATSUBST, and on all 

intermediate expressions, then a RATSUBSTS could be programmed 

with the following condition: 

n n 
5. SA + r has a lower canonical order C"is simpler") than SB + 

r. 

By using the RATSUBST commands selectively, such substitu-
2 2 

tions as sin (x) + cos (x) --> 1 can be performed more nearly in 

the sense in which they are intended. If one RATSUBST command 

does not do the job, perhaps another will. 
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3.6. The SOLVE Program 

The SOLVE command in MACSYMA uses several techniques for 

solving for a given variable in an equation. Each of these 

techniques is open to extension in a straightforward manner. The 

roots and their multiplicities are available to other programs, 

and are used as building blocks for more complicated facilities, 

such as contour integration. 

The format of the SOLVE command is: 

SOLVE(equation, variable)@ 

where the equation may also be an expression (which is assumed to 

be set equal to zero), or a set of polynomial equations linear in 

some set of variables. This last case is a straight-forward 

problem in Gaussian elimination, and will not be discussed 

further here. 

SOLVECE,X) puts its first argument E, in radical canonical 

form, and attempts to factor it with respect to the variable X, 

and all non-rational functions in E containing X. Each factor is 

examined for being linear, quadratic, cubic, or biquadratic with 

respect to X and the non-rational functions containing it. If the 

factor is of degree five or more, then it is considered 

n 
unsolvable unless it is of the form a(F(X)) + b in which case 

the n nth roots of a/b are generated, and the n equations F(x)-

1/n 
(a/b) = Oare solved. Any remaining unsolved factors and their 

multiplicities are put on a list which is returned along with the 

roots. 
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Linear terms of the form F(X)-C are examined to see if C, 

the constant term, is actually free of elements containing X; if 

so, USOLVE is called. Otherwise the term is added to the list of 

unsolved factors. USOLVE knows the inverses of SIN, COS, ASIN, 

ACOS, TAN, ATAN, LOG, etc. and powers of e. It could be extended 

to other functions. Once the inverse has been applied, a new 

equation results. It may be of the form X = FINVERSE(C), in which 

case the term has been solved, or it may be of the form G(X) = 

FINVERSE(C), in which case SOLVE is called again. This recursive 

algorithm allows for solution of, for example, SIN(COS(X)) = 0 

for X. 

The quadratic (cubic, biquadratic) formula is applied to 

quadratic (etc.) factors, and the same sort of recursive 

treatment as described above is used if the equation is, for 

example, quadratic in SINCX) instead of X. 

The simplification done by the quadratic (etc.) routines is 

of some interest, in that the roots in the formulae are simpli

fied by a special program (SIMPNRT) which takes out perfect n*k 

powers of a kth root. (i.e. even powers in a square root, 

multiples-of-three powers in a cube root, etc.) Thus SQRT(8) is 

simplified to 2*SQRT(2). SIMPNRT calculates a square-free 

factorization of the radicand, and takes appropriate multiple 

factors, if any, outside the radical. 

The following examples illustrate the capabilities of 
SOLVE: 
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(Cl) SULVE(Y**(2*X)-3*Y**X+2=0,X)@ 
SULUT I UN 

(El) 

CEZ) 

(D2) 

(C3) A:X**2-12*X+3@ 

(03) 
2 

x = 0 

LOG(2) 
x = ------

LOG(Y) 

(El, E2) 

x - 12 x + 3 

(C4) SOLVE(SIN(A)**2-5*SIN(A)+3,X)Q 

SOLUTION 

5 SQRTC13) 
( E4) x = 6 - SQRTCARCSIN(- - --------) + 

2 2 

5 SQRT(l3) 
CES) x = SQRT( ARCS INC- - --------) + 33) 

2 2 

SQRT(13) 5 
(E6) x = 6 - SQRT(ARCSINC-------- + -) + 

2 2 

SQRT( 13) 5 
( E7) x = SQRT(ARCSINC-------- + -) + 33) 

2 2 

( 07) ( E4, ES, E6, E7) 

33) 

+ 6 

33) 

+ 6 
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(C8) SOLVE(ARCSIN(COS(3•X))*(F(X)-1),X)Q 

SOLUTION 

CE8) 

THE ROOTS OF 

(E9) 

' lJ 9) 

AHCCOS(O) 
x = ---------

3 

F(X) = 1 

CE8,E9) 

(ClO) SOLVE(5•*X=l25,X)@ 

(010) X=3 

Note th~t SOLVE has taken advantage of radical approaches 

but is still able to step back and treat fairly general expres-

sions. In order to use the "radical" polynomial factoring pro-

gram, it uses RADCAN to expand unlikely-looking expressions into 

2X X 
polynomials. Thus the expression Y -3Y +2 in Cl is expanded into 

x 
a polynomial in Z, where Z=Y 

Xlog(Y) 
(actually Z=e ), which is 

then factored into CZ-l)*(Z-2). By setting each of these factors 

equal to zero, the following sequence of steps is followed: 

Xlog(Y) 
e -1 = 0 is converted by USOLVE to 

Xlog(Y) = log(l) which the simplifier changes to 

X log ( Y) = 0. 

SOLVE is called recursively, and factors this; SOLVE 

throws out the log(Y) factor since it does not depend on X, and 
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the factor "X" Is recognized as a linear expression of the form 

aX+b where a=l and b=O, which has solution X=-a/b, or in this 

case, X=O. The other root is handled in an analogous fashion. 

3.7 Conclusions 

By using several distinct approaches to attack different 

phases of the same problem, particularly powerful algorithms can 

be obtained. Although .2.si ~procedures can, in some 

circumstances, yield similar results in other systems for alge

braic manipulation, MACSYMA's SOLVE, RATSUBST, RATCOEF, and FULL

RATSIMP commands provide a generality and power not available 

elsewhere. 

These foundation blocks allow the building of new 

facilities. SOLVE is used by programs which find limits, compute 

definite integrals, and expand functions in power series. 

RATCOEF is used by the semantic pattern matching subsystem. 

FULLRATSIMP is used by RADCAN, and RADCAN, in turn is used by 

SOLVE. RADCAN, furthermore, can be used as the basis for 

implementing the Risch C41) integration algorithm. 
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Chapter 4 - Simplification of Radical Expressions 

4.1. Introduction 

The simplification of algebraic expressions is a many-

faceted problem. On one hand, all of the work in simplification 

(and algebraic manipulation in general) is circumscribed by the 

work of Richardson (39), which shows that for a sufficiently 

large class of expressions the question of zero-equivalence is 

undecidable. Furthermore, some researchers (e.g. Fenichel (16), 

Moses (34), (35)) argue that (regardless of computability) the 

concept of simplicity has no generally acceptable meaning. On the 

other hand, Brown (3), Caviness (5), (6) and others show that 

within certain classes of expressions the rigorous notions of 

canonical forms and zero-equivalence tests can serve as useful 

measures of simplicity. For a survey of these and other atti-

t u de s and a ch i eve men ts i n a l g e b r a i c s i mp l i f i cat i on , see Moses 

( 3 4) . 

The importance of the simplification problem in algebraic 

manipulation is quite basic: A "simplified" expression generally 

exhibits its most significant properties in a systematic fashion. 

This can make mechanical (or human) processing of the expression 

much easier. 

This chapter discusses simplification algorithms for the 

class of radical expressions. These are, roughly speaking, ratios 

of multivariate polynomials, some of whose "variables" are nth 

roots of polynomials. These expressions commonly occur in 

----- -- --------------
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representing roots of algebraic equations in several variables, 

and are rarely treated adequately in algebraic manipulation 

systems. The only current alternative to the treatment we 

provide in MACSYMA (and describe here) is a computationally 

impractical procedure suggested by Caviness in (5). 

In the following sections we will proceed to define the 

problem of simplification of radical expressions in more exact 

terms and contrast our approach with that of others who have had 

s i mi la r goal s. In sections 4.2 and 4.3 we discuss basic concepts 

and define the class of radical expressions more precisely. In 

section 4.4 we survey previous algebraic approaches to radical 

simplification and a promising alternative, zero-equivalence 

testing. 

Sections 4.5 and 4.6 discuss the specific methods we 

developed for MACSYMA. Section 4.7 proves some properties of the 

simplified form; 4.8 discusses the canonical form implications of 

this work; 4.9 points to other related efforts in MACSYMA, and 

4.10 summarizes its usefulness. 

4.2. Basic Concepts 

Following Caviness (6), to be given a class of expressions 

e means to be given rules, such as a Backus-Naur Form (BNF) 

grammar, for determining the well-formed expressions in the 

class. The expressions must be formed from a finite set of 

atomic symbols, a subset of which must be designated as .Y.SL

iables. A member of e not containing any variables is a constant. 
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Expressions are interpreted as functions over the domain bof 

constants. 

If R and S are members of an expression class t, R is said 

to be identical to S if R and S are the same string of atomic 

symbols. This relation is denoted by R ~ S. Rand S are said to 

be functionally equivalent or simply equivalent, if for all 

assignments of values in~ to their variables for which they are 

defined, they are equal. This relation is denoted by R = S. Of 

course R ~ S implies R = S. 

One concept related to simplicity which is of particular 

usefulness is that of a canonical form. 

Definition 4.2-1 A canonical .f.Q.r.m algorithm f for a class of 

expressions~ is a mapping from t into e such that for all R, S 

in I!, 

(i) f(R) = R 

(ii) R = S ==> f(R) ~ f(S) 

Definition 4.2-2 A ~-equivalence~ algorithm f for a class 

of expressions~ is a function from l into~ such that for all R, 

S in t, 

f (R) - 0 <==> R = 0 

The constant problem consists of determining the zero-equivalence 

of an expression containing no variables. 
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Clearly if g contains e to some higher degree than d(9), 

reductions can be made to remove this condition. Any g E. ..J fits 

the implied "pattern" of a rational function (ratio of two poly-

nomials) because any expression is rational once a regular field 

description is found. Thus the vagueness of the normal form is 

removed. 

Section 4.8 returns to exponential and logarithmic 

monomials briefly, but for the bulk of this chapter we will be 

concerned only with the non-trivial algebraic extensions. 

A class of expressions is called a canonical (normal, 

regular) class or is said to possess a canonical (normal, 

regular) form if there exists a canonical (normal, regular) form 

algorithm for it. It is conventional to assume that if R = O, 

then f(R) - o. 

4.3. Radical Polynomials and Expressions 

Radical polynomials, P, are formed from 

(i) the integers 

(ii) the variables x, x, ... , x (collectively called X) 
1 2 N 

(iii) the operations of addition, subtraction, multiplication 

(iv) the un-nested operation of exponentiation to a 
positive rational number. 

Radical expressions f:Z, are formed from radical polynomials with 

the added operation of division. 
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Examples of radical expressions are 

1 
and 

1/3 5/4 
x + x 

1 2 

The expression 

1/2 1/2 
(x + 3 ) 

(-x 
1 

(x /2 
3 

1/ 2 
+ 4) 

2/5 
+ x ) 

4 

is not in the class R because of the nested exponents. 

This definition is a slight generalization of one given 

by Caviness (5) in that it allows more than one variable. 

The interpretation given to radical expressions is one 

which we believe corresponds, in its implications, to the most 

common val id usage. As does Caviness, we interpret radical ex

pressions as algebraic functions: For each expression EE P, 

there must exist an irreducible polynomial P(z,X) such that 

P(E,X) = O. Caviness notes the necessity of simplifying 

1/2 1/2 2 l/ 2 
(x+l) (x-1) (x - 1) to 0 in spite of the following 

situation: 

2 
If we let y be a root of y = x+ 1 

1 
2 

'I be a root of 'I = x-1 
2 

2 2 
'I be a root of y = x -1 

3 

2 1/ 2 
then y y - 'I can just as easily be ±.2 (x -1) as 0. Perhaps a 

1 2 3 
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complete answer would include all these possibilities. Any 

interpretation "consistent" (but unspecified by Caviness) should 

produce O, since admitting the other possibilities is tantamount 

to declaring all algebraic extensions transcendental over the 

base field (and therefore subject to no simplifications at all). 

Caviness requires that some branch of multiple valued roots be 

2 1/2 
chosen. Thus (x ) is either x or -x, depending on the 

branch of the square root chosen. We differ from Caviness on 

this point: a particular branch, the positive real branch, to be 

defined shortly, will be automatically chosen as the interpreta-

tion of the radical. 

In general, single-valued branches of radicals are not 

analytic everywhere, and hence their domains must be suitably 

restricted in either Caviness' .QL our interpretation. 

We now define the particular interpretation of radicals 

which we use. 

Definition 4.3-1 A polynomial p(X) is said to be positive if its 

leading (integer) coefficient is positive, when pis written in 

some canonical form. In such a case we shall write p LO. 

Definition 4.3-2 A polynomial or integer p is said to be square-, 

~ if it has no repeated factors (or roots). 

If p is a positive square-free polynomial and m is a 

l/m 
positive integer, then p has a positive _r_g_aJ_ interpretation 
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Now let us define interpretations for more complicated 

radicals. We can assume that any radicand is at worst a rational 

expression p(X)/q(X) where p(X) and q(X) are relatively prime 

polynomials in canonical form, and q(x) is positive and nonzero. 

n/m 
(p(X)/q(X)) is interpreted as the ratio of the interpre-

n/m 
tations of p(X) 

n/m 
and q(X) Thus all radicandscan be assumed 

to be polynomials. 
n/m 

I f p ( X ) i s not po s i t i v e , p ( X ) i s i n t e r pre t e d t hr o ugh the 

irr/m n 
use of a primitive root of unity w = e as (w ) times the 

2m 2m 
n/m 

interpretation of (-p(X)) Thus all radicands can be assumed 

to be positive. 

If p(X) is positive but not square-free, it is easy to 

prove that p(X) may be factored into positive square-free 

factors. Thus if 
k 

p(X) = 1T (p (X)) , 
i=l 

n/m 
the interpretation of p(X) is the product of the interpreta-

tions of 
in/m 

(p (X)) 

for i = 1, .•• , k. Thus al 1 radi cands can be assumed to be 

square-free. 

n/m 
If n L m, then for n = q m + r, for 0 ~ r < m, p(X) is 



- 118 -

q 
interpreted as the product of p(X) and the interpretation of 

r/m 
p(X) Thus we can assume n < m. 

If n/m is not in lowest terms, it can be converted to 

lowest terms. Thus we may assume the greatest common divisor of 

n and m is 1. 

n/m 
If n = O, p(X) is interpreted as 1. 

n/m 
If n > 1, p(X) is interpreted as the nth power of the 

l/m 
interpretation of p(X) Thus al 1 interpretations are based on 

definition 4.3-3. 
2 1/2 

Accord i n g to the PR I i n t er pre tat i on, ( x ) means x and 

1/2 1/2 
(20) means 2 5 , a positive number. We believe this 

corresponds to the most common usage. 

We should point out that some of the transformations used 

for the algorithms to follow are the basis for innumerable false 

"proofs" These proofs are generally based on inconsistent inter-

pretation of radicals, and will not occur in our usage. For 

example, using 

b b c c c c 
a = a a and (ab) = a b 

we can "prove" 

1 1/ 2 1/ 2 1/2 1/ 2 1/2 1/ 2 1/ 2 
1 = 1 = 1 1 = 1 (-1) (-1) = (-1) (-1) 

1 
= ( -1) = -1. 
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S i n c e MACS Y MA w i l l i mp o s e po s i t i v e re a l i n t e r p re ta t i on s on 

radicals, it will not factor 1 into (-1)(-1) and fallacies of 

this sort will not occur. 

It is interesting to compare our interpretation of radicals 

with one which is, some would argue, most common, namely, that 

2 1/2 
the expression (x ) means lxl. For example, the modulus of c = 

2 2 1/2 
a+bi is written as lcl = (a + b) ; if b = O, we are left with 

2 1/2 
the convention that lal =(a) Since this holds only when a 

assumes real values, and the square is computed before the square 

root, the usage is, in fact, consistent with a positive real 

1/2 1/2 
interpretation. In general x meaning Ix I is restricted to 

the domain of non-negative real x. 

In summary, there are (at least) three interpretations for 

radicals. 

1. Caviness', which does not choose a branch of the algebraic 

function; 

2. Ours, which chooses the PRI; 

3. The "common" square root which implies absolute value \vi th 

restricted domain. 

The last two are equivalent on a restricted domain, and the 

first two are equivalent up to the choice of a branch. 

Computationally, interpretation (2) has a distinct advantage over 

either of the others in that it is consistent over a larger 
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domain than (3), and does not unnecessarily involve arbitrary 

roots of unity as in (1). 

4.4. Comparisons with Previous Work on Radical Expressions 

4.4.1 Algebraic approaches 

Caviness proves in (5) that for an expression E e.,R, "E = 

O" is decidable. Unfortunately, the application of his 

constructive proof relies on an impractical (and largely 

unnecessary) computation. The problem lies in the difficult task 

of factoring over algebraic extensions of a polynomial ring. 

Caviness points out that the need for factoring is a result of 

the lack of irreducibility criteria for the radical expressions. 

He develops a few; we extend his results and show that satis

factory results can generally be obtained without any factoring. 

The results here appear to conform more closely to intu

itive notions of simplification than does Caviness'. More 

important, they are far more easily computable, since the only 

calculation needed is that of the greatest common divisor (gcd) 

of multivariate polynomials with integer coefficients. 

The difficulty in Caviness' approach, from a practical 

standpoint, is his interpretation of radicals as written in an 

expression. His approach can be most easily seen in Van der 

Waerden (47), section 36. Briefly, given any finite number of 

radicals, an algebraic extension to the field of rational 

expressions may be constructed to which all the radicals belong. 
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Each expression in this field will have a unique representation 

within the field. The construction of this field takes a finite 

number of steps. Given a radical expression E, it is only 

necessary to explicitly construct a suitable field which contains 

E, and find the unique representation of E in that field. This 

representation can always be found in a finite (but possibly 

large) number of steps. This does not produce a canonical form 

since there are an infinite number of fields which will contain 

E, and the representation of E in the different fields may 

differ. However, given two non-identical equivalent expressions, 

a field may be constructed which contains them both, and in which 

they are identically represented. 

An unpublished report by S. L. Kleiman (25) proposes a 

canonical form for rational expressions in several algebraically 

2 
dependent variables (e.g. f(x,y) where y +x=l). The procedures he 

suggests have never been implemented, nor would they be computa-

tionally efficient; nevertheless, his discussion of the 

problems involved is quite thorough. He avoids the question of 

interpretation of radicals by introducing new variables which 

satisfy certain polynomial equations. 

By contrast, our approach (by applying irreducibility 

criteria and simplifications) is to produce a field which allows 

all permissible simplification to be performed. Many, but not 

all expressions are mapped into canonical forms by this approach. 

Those not in canonical form are easily distinguishable from the 

others by the presence of roots of -1. 
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4.4.2 Zero-equivalence tests 

It has been shown by Richardson (39) and Johnson (24) that 

zero-equivalence tests for the class of expressions treated here 

(and other, larger classes) can be reduced to the "constant" 

problem; that is, all references to variables can be removed in 

determining zero-equivalence, assuming the expressions are 

totally defined over the domain of interest. The constant 

problem is non-trivial, since very little is known about such 

e 1/4 
specific constants as e+~ or e ; also if (-1) stands for a 

primitive fourth root of -1, for example, e 

(4.4.2-1) 
1/4 

(-1) 
3/4 

- ( -1) 
1/2 

2 

i rr I 4 

is a constant which is O, but not obviously so. The constant 

problem does not concern us here because it is decidable for 

radical constants by methods used by Caviness, while using our 

interpretation of radicals it only crops up with roots of -1. 

We discuss zero-equivalence tests in some detail because 

they serve, in some instances, as a potentially very powerful 

tool in simplification. In some cases decisions as to zero-

equivalence may be all that is needed. Secondly, given a zero-

equivalence test, we can produce a canonical form algorithm in 

the following way: Assume we wish to find a canonical form 

algorithm for a class of expressions but only have a zero-

equivalence test over that class. We can produce, in lexico-
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graphic order, all legal members of the class (say, in size 

place, up to and including the length of the expression f under 

consideration). The first generated expression g, such that f-g 

is O, is the canonical form. Although this is clearly unsatis-

factory as a practical computational approach, it does provide 

some theoretical unity to the concepts. Furthermore, research 

along the lines of the approach illustrated below promises to 

provide especially useful insight into the ways expressions can 

combine. This is particularly relevant for classes of expression 

much larger than R. 

Let us illwstrate the approach of Johnson's (24) zero-

B 
equivalence test. Let ff consist of expressions of the form A , A 

a rational function in one variable, x, and B a rational number. 

Let lJ consist of products of elements of~. Radical polynomials 

are sums of elements of Y. Define the function L(u) = (du/dx)/u 

for ue.~. Any element u ofJ;/ is called an eigenvector (of the 

derivative operator) whose eigenvalue is L(u). Eigenvalues are 

always rational functions of x, since 

LCA*B) = LCA) + L(B) 

L(A/B) = L(A) - L(B) 

B 
L(A ) = B*LCA) B a rational number 

L(x) = 1/x 

L(B) = 0 B a rational number 

L(A+B) = (dA/dx + dB/dx)/(A + B) A, B rational 
functions of x. 
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Since we can always decide whether or not a rational func-

tion of x is zero, we can always tell whether or not L(u) for 

u E: JJ is zero. The basis for the algorithm is the fact that for 

u equivalent to a constant, L(u) = O. 

Suppose we can decide if a constant is zero. Assume we 

have a set of eigenvectors u, i= 1, ... , n (and have calculated 
i 

their eigenvalues by the above rules). We may decide if 

n 
s = L:. u 

i=l 

is zero as follows: 

STEP 1: If n = 1 and L(u ) is not zero, S 'f O. Otherwise S is a 
1 

constant. By assumption we can decide if the constant is 
zero. Return. 

STEP 2: If n > 1 then consider 
n 

STEP 

STEP 

T = L u /u • 
i=l n 

T is a sum of eigenvectors (whose eigenvalues are known) and 
whose last term is 1. Test T for being equivalent to zero 
(see below). 

3: If T 'f O, s 'f o. Return. 

4: If T = O, then K - S/u i s a constant. By assumption we 
n 

can test i f a constant i s zero. If 
K = o, s = a. Return. 

We must now explain step 2. 

n-1 
T = L: u /u + 1 

i=l n 

If any of the eigenvalues of u /u , 
I n 

K 'f 0, then s 'f 0. If 

Consider 

= 1, ... / n-1 are zero, 
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delete them from T. (The eigenvalue of 1 is O, and so 1 is 

deleted.) If all the eigenvalues are zero, T = O. Otherwise 

T is a sum of at most n-1 eigenvectors (with known eigen-

values) so this algorithm can be applied recursively to 

determine whether or not T = O. 

An Example: 

Consider 

1/2 1/2 
S = 2 x - (4x) 

1/2 1/2 
The eigenvalues for 2 x and -(4x) are the same, namely 

1/(2x). In step 2 of the algorithm we set 

1/ 2 
2 x 

T = ------- + 1 
1/ 2 

(4 x) 
1/2 1/2 

The eigenvalue for (2 x )/(4x) is l/C2x) - 1/(2x) = O. This 

implies that T (and thus S/u ) is a constant. The particular 
n 

constant value of S/u must be determined by other means. Such 
n 

means should reveal that S/u is in fact O. 
n 

Several important facts should be noted. First, the 

problem of deciding when a constant is zero is not solved. 

Second, if an expression is nQ.1 zero, a "simplified" equivaluent 

expression is not generally produced. Third, the class of eigen-

A 
vectors can be extended to other expressions (e.g. e , for A 

rational in x). 
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Richardson's (39) scheme, which is somewhat more compl i-

cated, does, however, al low for composition of functions. His 

method has been extended to a large class of functions defined by 

first order non-1 inear differential equations by Moses, 

Rothschild, and Schroeppel (36). 

Zero-equivalence tests, although an area of theoretical 

importance, cannot at present be considered as useful as some 

other notions of simplification, especially canonical forms, 

within the context of algebraic manipulation systems. We are 

hopeful however, that research in this direction will produce 

useful information for algebraic manipulation system designs, and 

have for this reason included this section. 

4.5. Simplified Radical Polynomials 

In this section we present two closely related simplified 

forms for a radical polynomial. Each looks like a multivariate 

polynomial, some of whose variables are radicals. 

Let v, k = 1, ... , N be a set of radicals of the form 
k 

(4.5-1) v = (p ) 
k k 

l/m 
k 

Definition 4.5-1. In form (1), each m is an integer > 1 and each 
k 

p is a positive square-free integer or polynomial with no 
k 

(integer or polynomial) factors in common with any p, J F k. 
j 
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Oefinitjon 4.5-2. In form (2), the p are distinct positive prime 
k 

numbers or positive, primitive, irreducible Cover the integers) 

polynomials. Form (2) is a special case of form (1). 

With this definition of {v }, a simplified radical poly
k 

nomial has the form: 

m -1 
k 

(4.5-2) Q(v 
k 

= L i 
a v 
i' k k 

i=O 

where each a is an integer, a polynomial, or a simplified 
i I k 

radical polynomial in other radicals v , j < k. 

For example, 

1/ 2 
2 

1/4 1/2 
+ 3 + 6 

1/ 2 
+ ( x x ) 

1 2 

J 

can be represented as a form (1) simplified radical polynomial 

by: 
1/2 1/4 1/2 

2 + 3 + 2 
1/4 2 

(3 ) 
1/ 2 

+ ( x x ) 
1 2 

and as a form (2) simplified radical polynomial by: 

1/ 2 
2 

1/ 4 
+ 3 

1/ 2 
+ 2 

1/4 2 
( 3 ) 

1/2 1/2 
+ (x ) (x ) 

1 2 

There are some radical polynomials which cannot be 

represented in either of the above simplified forms, e.g. 
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4.6 Algorithms 

4.6.1 Removing quotients from radicals 

Let us first consider the radicands in a given radical 

expression, A radicand, if not already in the form of the ratio 

of two polynomials with integer coefficients whose gcd is 1 may 

be straightforwardly transformed into such a form by rational 

simplification. Chapter 3 describes how this can be done by the 

RATSIMP program. 

A and B below are relatively prime polynomials over X, with 

integer coefficients, and r is a rational number. 

If r > 1, say r = s + q, for 0 ~ q < 1, then 

r s q 
A A A 

(---) = 
B s q 

B B 
Otherwise, 

r r 
A A 

(---) t: ----
B r 

B 

4.6.2 Producing a ratio of radical polynomials 

To transform the expression into a ratio of radical 

polynomials requires one further step. The expression must be 

expanded over a common denominator into the ratio of two 

polynomials. RATSIMP can be used for this purpose. 

4.6.3 Simplifying radical polynomials 

The algorithm below produces a simplified form for the 

radical expression by treating its numerator and denominator as 
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radical polynomials. Strictly speaking, if the result includes 

powers of roots of unity, we do not consider it truly simplified. 

STEP 1: Make a list of all radicands in the expression {s \, 

i = 1, .•• , N. 

STEP 2: For i = 1, ..• , N, factor S into a product of positive 

prime numbers and a polynomial in canonical form (such as 

that produced by RATSIMP). If the polynomial has a negative 

leading coefficient, add -1 to the list of factors, and 

multiply the polynomial by -1. 

If form ( 2) is required, factor the polynomial into 

irreducible factors. 

If form (1) is required, factor the polynomial into 

square-free factors (the SQFR command of Chapter 3). This 

uses the operations of differentiation and polynomial GCD 

only, and is much faster than full factorization. 

STEP 3: Now for each g 
j I k 

= gcd(S ,S ) i > k such that 
k 

g "f 1, "factor" both S and S into g and another 
i I k k I I k 

factor which is computed by polynomial division. 

STEP 4: Reduce powers of a common base to powers of the base to 

the lowest common degree of the radical powers. That is, if 

2/ 12 
2 

1/ 2 
and 2 are the only occurrences of the base 2, 

1/6 
replace them by 2 

1/6 3 
and ( 2 ) respectively. For some 
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expressions, one of the bases wi 11 be "w" in order to 
n 

represent roots of -1 as powers of w. 

STEP 5: Rationally simplify the expression, considering each 

distinct radical as a "variable." Thus 

1/6 3 1/6 1/6 1/6 2 
( ( 2 ) + (2 ))/(2 ) would be simplified to (2 ) + 1. 

STEP 6: Simplify the resulting expression by the transformation 

b c be 1/6 7 
(a ) --> a for be 2. 1. Thus (2 ) would be simplified 

1/ 7 
to 2 2 

STEP 7: If step 6 has caused any changes, go to step 5. 

b c be 
STEP 8: Simplify (a ) to a , be a proper fraction in lowest 

terms: e. g. 
1/6 3 

( 2 ) 
1/ 2 

is simplified to 2 

STEP 9: (optional) Rationalize the denominator. (see section 

4.6.4 below) 

STEP 10: (optional) Combine products of radicals. E. g. 

1/3 
( 2 

2/3 1/3 
3 )--> (18) 

This algorithm terminates for any finite radical 

expression. Clearly all the individual steps can be done in a 

finite time. The only loop depends on step 6 causing a change in 

the expression. If we consider a recursive polynomial repre-
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sentation of either the numerator or denominator of the 

expression, step 6 can be applied once and only once for each of 

the different v in the polynomial. 
k 

Thus the loop of steps 5, 

6, and 7 will also terminate. 

4.6.4 Rationalizing denominators 

A radical polynomial, Q(v ), is a root of a polynomial S(z) 
k 

with rational (in fact, integral) coefficients. If w is a 
m 

primitive Cm )th root of unity, the other Cm - 1) conjugate roots 
k k 

of S are 

Q(w v ) , 
m k 

k 

. . . , Q( cw ) 
m 

k 

m -1 
k 

v ) • 
k 

The product of these other m - 1 roots, R , Is a rationalizing 
k k 

multiplier in that Q(v) R is free of the radical v. That is, 
k k k 

radicals involving roots of p have been eliminated. This proce
k 

du re can be repeated for each of the v , k = N, .•. , 1, and a 11 
k 

of the radicals can be eliminated. 

Multiplying the numerator by 

N 
R = TI R 

i=l 

completes the procedure in theory, but an additional task 

remains. A simple example illustrates the problem. Let us 
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rationalize the denominator of 

(4.6.4-2) 
2/3 

l/Q = l/(x 
1/3 

+ x ) • 

Proceeding as above, we see that there is just one radical, 

1/3 1/3 
namely x in the expression. Thus k = 1, and v = x Then 

the denominator, Q, in 

2 
Q(v ) = (v ) + v . The 

1 1 1 

terms of v has the 
1 

conjugate roots, l.J 
3 

1 

form 

v and 
1 

2 2 
w v ' 

3 1 
when 

substituted in Q, produce two other polynomials. R, the product 

3 
of these three polynomials (noting the simplification (W) = 1) 

3 
becomes: 

1/3 2 2/3 
(4.6.4-3) x x + (W + W ) x + x 

3 3 

This is not satisfactory because the fact that 

(4.6.4-4) w 
3 

2 
= -w - 1 

3 

must be used to effect a further simplification. Equation 

(4.6.4-4) can be deduced from the cyclotomic polynomial (see (47) 

p. 113): 

2 
(4.6.4-5) ~ (x) = x + x + 1 

3 

whose roots are cube roots of unity. 

We can generate any cyclotomic polynomial by a procedure 

described in (47) as follows. Define the "Mobius function" ),{(u) 

by 

----~-~ 
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{

1 if n = 1 
0 if Lfor some i n t e g e r p, rf I n 

(-1) if n = p 
1 

II 
dlh 

d 
(x 

.«(h/d) 
- 1) 

p 
L 

(i.e. n is square-free) 

~ (x) is easily calculated in MACSYMA. Now with the added step 
h 

of simplifying roots of unity in R according to the cyclotomic 

equation, and resimpl ifying the result, the procedure is almost 

complete. For even roots, there is an additional step of 

5 
e 1 i m i n at i n g s ymme t r i c v a 1 u es . ( e • g • ().) = - (-I)) A 1 though this does 

8 8 

not guarantee a canonical form for the numerator because of such 

relations as (4.4.2-1), it will result in the simplification of 

the denominator. In our example, we find that 

1/3 2/3 2 
R = x x-x+x and R Q = x + x. 

Thus 

1/3 2/3 
1 x x - x + x 

------------- = -----------------
2/3 1/3 2 

x + x x + x 

4.7 The Properties of the Simplified Form 

4.7.1 Overview and History 

Our object is to prove that any radical polynomial which 

may be written in form (2) is in canonical formo Let Z be the 

ring of integers. Basically we wish to show that sufficient 
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irreducibility criteria may be obtained to show that each v is 
k 

non-trivial algebraic over Z(X]Cv , ••• ,v ), and that we have a 
1 k-1 

regular form for radical polynomials. It is clear that roots of 

-1 will have to be dealt with in another manner. With suitable 

restrictions to the class of representatives of the extensions, 

the regular form can be strengthened to a canonical form. 

Caviness in (5) stated and proved several irreducibility 

criteria which, for his approach to the problem, seemed quite 

reasonable. That they are not strong enough is primarily due to 

his interpretation of radicals, which caused him to first extend 

the base field by a primitive nth root of unity. This is not 

necessary in many instances, and much stronger results can be 

obtained without this first extension. 

4.7.2 The theorem 

Theorem 4.7.2-1 

Let n > 1 be any integer, X = { x / ••• , x ) be a set of 
1 N 

indeterminates, and p, ••• , p be a set of (distinct) positive 
1 k 

prime numbers or primitive polynomials over X, irreducible over 

1/n 
the integers. Let~ denote the rationals, and p denote the 

positive (or any fixed) nth root of p • Then the field 

1/n l/n 
.Q.(X)(p I ••• , p ) is of degree n over .Q.CX). 

1 I{ 
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Equivalently, Let E = {et denote the set of n 
k 

elements 

m /n m /n 0 ~ m < n 
1 k h 

p * ... * p 
1 k 1 ~ h .{ k 

Then the set E i s linearly independent over .Q.(X). 
k 

k 

The p which are polynomials may be square-free and 

relatively prime in pairs instead of irreducible without altering 

the result. Also, n need not be fixed over the p : then then 

of the theorem can be the least common multiple of any number of 

distinct n's. (Thus if fifth and cube roots appear, we deal with 

fifteenth roots.) Note that roots of unity are rw..t included in 

this theorem; 1 is not a prime number. 

Proof 

STEP 1: Reduction to the case n is a power of a prime number. 

1/n l/n 
Let F = .Q.CX)(p , ••• , p ) for n = 1, ••• Clearly 

1 k 
k 

F ::> F and F . Hence i f F is of degree n and F is of degree 
mn n m n m 

k k 
the degree of F is divisible by Cmn) 

' 
hence equal to (mn) 

mn 

since it is obviously not greater. Thus it suffices to consider 

n a power of a prime number. 
1/n 

Let F = .Q.(X), F = F (p ), etc., so that F of the 
n,O n,1 n,O n 

k 
m 
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F Since p has real integer coefficients, complex roots of 
n,O 1 

n 
y - p = O would occur only in conjugate pairs, and real 

1 

(integer) roots cannot occur since p is irreducible over the 
1 

integers. Clf p is only square-free, any real roots could not 
1 

n 
be multiple.) Thus the polynomial y - p is irreducible over 

1 
F 

n,O 

The rest of the proof is by induction on i, the index of p, 

for = 2, ••• , k. 

Assume that previous polynomial extensions have been 

successfully adjoined. We must show the impossibility of 

q 2 4 
p = f ,ft, or -4 ft 

i +1 

where j3 i s in F , = 2, ... , k-1. 
n, i 

In fact, we will even allow fo to be in G 
n,i 

= F 
n, i 

((() ) v.,ii thout 
n 

changing the results. Clearly, if a polynomial is irreducible in 

2 
G, it is irreducible in the corresponding F. The proofs for~ 

4 
and -4fi 

q 
are essentially similar to the proof below for /3. 

= 
p,q 

Let us assume the falsity of the theorem. Then p r 
i + 1 

where p i s in G 
n, i 

Then we can express f3 in this form: 



i 
n 

(4.7.2-1) fi = L c e . j J 
j=l 

If all but one of the c . 
J 
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c E G 
J n, 0 

is zero, p 
i+l 

q q 
.. c . e which . . 

J J 

contradicts the hypothesis that p is irreducible over the 
i + 1 

integers. It even contradicts the weaker hypothesis that p is 
i + 1 

square-free and relatively prime to each of the other poly-

q 
nomials. The contradiction is obtained as follows: e must be . 

J 
q 

rational, since it is the ratio of p and c , both rational. 
i +l . 

J 

q q 
But then p has factors c and e • Even if c Is 1, p and 

i + 1 J 
. . 
J J 1+1 

q 
e must have a non-trivial GCD, since their ratio Is then 1. 

J 

Finally, the square-free condition on p eliminates the 
i + 1 

q 
possibility that e itself is (somehow) rational. 

J 

Assume there are at least two terms, c , c F O. By the 
j h 

induction hypothesis, the Galois group of G :G Is 
n,i n,i+l 

transitive, so there is an automorphism 1fl of G over G 
n,i n,i+l 

where Yee )/YCe ) ; e /e • For some set of integers { r }, this 
J h j h m 
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automorphism maps e 
rm 

into W e • Since pe. F ' the q qth roots 
m m n,O 

q ~ 
off all look like w #,and any automorphism\vill just inter-

change the roots. Applying 'f to equation (4.7.2-1) yields 

(4.7.2-2) 

Si nee W is in G , equations (4.7.2-1,2) contradict the assumed 
n, i 

linear independence of the e over G 
k n, i 

for F 
n, i 

2 
Since the argument for p and 

concludes the proof. 

4 
-4.fi 

4.8 Canonical Forms 

The same result holds 

is quite similar, this 

Recall that Caviness does not provide a canonical form for 

radical polynomials. Two equivalent expressions may be non

identical because each is expressed in a different algebraic 

extension of ~Cx). In our simplified form (2) we are dealing with 

the same field representatives so that we are always dealing with 

the same extensions for those expressions which can be put into 

form (2). Thus, except for minor points dealing with such 

questions as the ordering of terms in a sum or product, form (2) 

is a canonical form for that subset of P which can be represented 

in form (2). With suitable recombinations of square-free 

factors, form (1) can also be made canonical. 
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One of the consequences of this canonical form is that we 

can define a content and primitive part for a simplified radical 

polynomial. Let F = ZCX), where z is the ring of integers. Then 

E, a simplified member of P is in F[v , ... , v]. The content c 
1 k 

of E is a polynomial in G such that E = c·P where P, the 

primitive part, is a member of G whose coefficients in Gare 

relatively prime polynomials (or integers), This c is unique up 

to a unit multiple. (see, e.g. (27), p, 366) 

Now we may draw a few conclusions about the canonical 

properties of the radical expressions with rationalized 

denominators. Basically, we wish to show that the denominator 

is unique, regardless of the order In which the v are removed. 
I 

In fact, the value of the denominator is not unique, but it can 

be made unique. 

With the use of this concept of content, we can transform a 

radical expression with a rational denominator Into a reduced 

radical expression; one such that the content of the numerator 

has no factor in common \~ith the denominator. Any such expres-

sion can then be written as c·N/D where c and D are relatively 

prime polynomials, and N is a radical polynomial in simplified 

form. 

Theorem 4.8-1 

If P and P' are reduced radical expressions with numerators 

in form (2) such that P' = P, then P ~ P'. 

------
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proof 

Let P: c·N/D and P' ~ c'·N'/0 1 as above. Cross multiply 

to get c·N·D' : c'. N'· D. The primitive part of two equivalent 

radical polynomials must be the same, so N = N'. But then c/D 

and c'ID', both rational expressions, are clearly Identical also. 

4.9. Additional Radical Proposals 

An extension to variable exponents has been made in the 

simplification algorithm described in section 4.6. In order to 

x 
make more apparent the relationships between, for example, e and 

x/2 
e , non-numeric exponents of the base e are collected and 

examined for common factors. Bases different from e are con-

x x log(y) 
verted: y --> e ; the same convention of positivity 

defined in section 4.3 is used to choose a unique branch for the 

log. If common factors are discovered, they result in re-repre-

x/2 x 
sentation of the elements. Thus in the presence of e , e Is 

x/2 2 
represented by Ce ) • In the terminology of section 4.2, we 

wish to establish a regular field description for the expression 

in terms of monomials. One consequence of this would be that 

x x/2 x/2 
e + 2 e + 1 simplifies to e + l. 

Since the conditions requiring this form of processing are 

disjoint from those of the radical expressions (i.e. variable 
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exponents are not allowed in ), this aspect of simplification 

does not interfere with the algorithm of section 4.6: This part 

of the extended algorithm is completely bypassed unless there is 

a variable exponent. 

To outline some details of the algorithm, let p and q be 

q q log(p) 
polynomials. Then p is written as e , then as 

e 

(q 
1 

+ • • • • + q ) 1 og ( p 
n 1 

... p ) 
m 

q log(p ) . 
J 

and then as a product of terms of the form e 

I f q i s a rat i on a 1 ( r a the r than po 1 y n om i a 1) exp res s i on, i t 

can be written in a partial fraction expansion form (15) as a 

q log(p) 
sum. Some of these terms e 

q/k log(p) 
tiples of others, say e 

will be recognizable as mul-

They are rewritten to reflect 

this fact, and the expression is rationally simplified with 

respect to this new set of variables. Further efforts in this 

direction are described in (15). Exponentials are of particular 

interest because when extended to complex arguments, they can be 

used to express sines, cosines, etc. 

4.10. Conclusions 

A simplification procedure for radical expressions which 

involves only gcd calculations has been presented. While 

Caviness' version of a similar algorithm "is so encumbered by 
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combinatorial difficulties that it cannot be considered a 

practical routine," (p. 72 (5)) the algorithm presented here is 

easily applied. 

This result is an improvement of Caviness' results in 

several ways, although it is not as general as his approach. 

1. Factoring over arbitrary algebraic extensions of the 

rational field is unnecessary; in fact, only greatest common 

divisor calculations (of polynomials with Integer coefficients) 

i s required. 

2. I t demonstrates that the only cases requiring Caviness' 

approach are expressions vJh i ch contain roots of -1. 

3 • The inessential restriction to one variable is deleted. 

In terms of theoretical advances, the PRI formulation of 

the interpretation of radicals allows a new and more useful 

theorem (4.7.2-1) concerned with the canonical properties of this 

simplified form to be proved. 

Extensions of the algorithm of section 4.6 are discussed in 

terms of their usefulness and practicality: several seem useful 

enough to suggest that they be made available as programs in 

MACSYMA or similar systems. A description of several uses of Just 

such a simplification capability have been described In Chapter 

3. The RADCAN routine in MACSYMA uses the easily computed form 

1 1 of section 4.5, but does not ordinarily use the denominator 

rationalization technique. RADCAN also incorporates the addi

tional ideas in section 4.9, except for partial fraction decom

position of exponents. 
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One of the important consequences of this simplification 

approach is that new integration methods developed by Risch (40), 

(41) which rely on the regularity (in the sense of 4.2) of 

integrands, can be implemented with relative ease. 
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Chapter 5 - Summary and Prospects for the Future 

5.1 Summary 

In Chapter 2, The User-level Semantic Matching Facility in 

MACSYMA, we have described a project both in man-machine commu

nication, and in analyzing the concept of an occurrence of an 

instance of an algebraic pattern. While this pattern recognition 

capability has great appeal in the initial approach to solving a 

new problem, it often yields to more efficient methods when the 

problem is better formulated. Nevertheless, we feel it is an 

important tool to place in the hands of a user of an algebraic 

manipulation system: it gives a handle on problems difficult to 

formulate in other modes and allows a user to mold a system to 

conform to his set of expressions and operations. We tried to 

clarify what we feel to be important in terms of semantic ~attern 

recognition; merely syntactic patterns leave much to be desired 

in terms of ease of use and flexibility. We have demonstrated 

several types of applications of pattern matching extensions to 

MACSYMA: writing programs, writing Markov-algorithm rule-sets, 

and modifying the stmplifer. 

In Chapter 3, the rational function representation of 

MACSYMA serves as a vehicle for several algorithms which, we 

believe, correspond to notions often used informally and 

imprecisely in referring to operations on mathematical expres

sions. For example, the notion of coefficient, as embodied in 

RATCOEF allows a mathematician to "collect terms" in a single 
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command. This would be quite difficult to phrase in terms of 

traditional programming languages, or for that matter, formal 

mathematical definitions. This imprecision is even more apparent 

in the problem of substitution, where the most obvious aspect of 

the problem is its inherent ambiguity. By defining the RATSUBST 

algorithms for substitution, while drawing on the power of the 

rational function programs to perform global transformations on 

an expression, several varieties of .LLD.ambiguous substitutions may 

be performed. Another use of the rational function repre

sentation, in the SOLVE programs, has had consequences in many 

other parts of MACSYMA. Being able to solve for roots of poly

nomials (by factoring, or through radicals) while at the same 

time solving for transcendental roots (by inverting functions), 

has saved other programs considerable efforts. SOLVE forms an 

effective tool for finding poles and singularities, an important 

task for limit calculations, definite integration (using contour 

integration and residue calculation) and series expansions. 

In chapter 4 we have described new simplification 

algorithms for radical expressions, one of which uses only poly

nomial greatest-common-divisor operations for its effectiveness. 

The major consequence is that we can produce a canonical form 

over the class of radical expressions not requiring roots of -1. 

The importance of the simplification algorithm lies in two areas: 

in general, simplification to a canonical form Is valuable, 

especially if It is inexpensive; secondly, the Risch integration 

algorithm depends strongly on such results. 
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5.2 Prospects for the future 

The research described in this thesis, and similar work is 

directed toward the goal of making man more creative and 

computers more useful. No doubt many areas of computer science 

will benefit from a better understanding of how knowledge can be 

incorporated into a programming system for mathematics. 

The goal of a computer system for the future which 1) Is a 

drudge-work slave capable of doing massive calculations, 

correctly and rapidly, 2) Is a mathematical co-worker, capable 

of conversing in natural notations about many problems from a 

wide range of di sci pl ines; and 3) Is an encyclopedic mentor, 

being an organized collection of pertinent facts and algorithms 

drawn from all of mathematical analysis, is a tempting challenge. 

Reference 1, the proceedings of SYMSAM/2, is a detailed 

description of the present state of the art in algebraic manipu

lation. Of the papers in that volume, 11 are concerned with 

applications of computers to group theory, a branch of symbol 

manipulation which is of limited interest to us here. Some 7 

papers deal with applications of computers to problems of 

interest to workers in celestial mechanics, relativity, high

energy physics, and other areas where massive problems in algebra 

occur. Some 7 papers discuss the present state of new or revised 

computer systems for algebraic manipulation. About a dozen are 

concerned with basically peripheral issues: specifying the syntax 
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for a language for communicating with an on-line system for 

algebraic manipulation, hand-written input, transportability of 

such systems, etc. A significant number of papers (8) describe 

developments which may actually benefit all, or most, algebraic 

manipulation systems of the future, in that they introduce new 

algorithms for standard operations of mathematics. Often these 

algorithms represent improvements, In terms of computation time, 

of many orders of magnitude. Furthermore, the theoretical tools 

used for analyzing the times taken for execution of algorithms 

have been considerably refined. A major factor in the success of 

these algorithms has been the use of modular arithmetic. Four 

papers on simplification, and three on limits and integration 

completed the program. 

Many of these techniques and manipulatory algorithms 

described at SYMSAM/2 are present, or are being implemented in 

MACSYMA, and for that matter, in several other current algebraic 

manipulation systems. By joining together as many of these 

advances as possible, in forms which are easier to approach than 

the original implementations, we hope to produce a system which 

is useful both in applications, and in exploring the problems of 

algebraic manipulation in general. 

During the development of MACSYMA, a number of applications 

came to our attention through colleagues at M.I .T. and Harvard. 

As a rule, we have avoided the so-called "naive user," but have 

attempted to attack problems with a combination team of a pro-
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grammer familiar with MACSYMA (the author) and an application 

specialist. This approach has sufficed to explore several 

problems. With Prof. Eytan Barouch of M.I .T's Department of 

Applied Mathematics, several problems arising in statistical 

mechanics were attempted, with only moderate success: each 

problem was reduced to a solvable one whose answer was, in 

retrospect, not sufficiently accurate to be interesting; the full 

problem was Cat least without new insights) demonstrated to be 

beyond present machine capacity. With Mr. Francis Heile, an 

M.I .T physics graduate student, a masters' thesis (25) 

calculation was completed; the hand calculation of the same 

result had been abandoned because of its complexity. This 

involved the computation of traces, utilizing symmetry properties 

for simplification. 

With Mr. Henry Mok, another M.I .T. graduate student, the 

arithmetic statements in a large computational program for use in 

plasma physics research, were checked (and an error found in the 

previous hand calculations). 

Other members of the programming group have tried MACSYMA 

on problems that have come to their attention; that few produce 

directly publishable results is not surprising -- the ratio of 

good ideas to bad in mathematics is probably quite small, 

although the bad ideas often require just as Much investigation 

as the good. It appears that systems such as MACSYMA can perform 

a useful service if they only weed out untenable computational 
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approaches more rapidly than hand computations. They are only 

occasionally called upon to solve problems to completion by long 

and complex computation. 

Where can we go from here? In the first place, the study 

of particular applications is a necessity. In this way, further 

developments of systems like MACSYMA can proceed in the most 

useful direction, rather than towards the unnecessarl ly overgrown 

syntactical and semantic prospects that seem to threaten 

developing algebraic manipulation systems. 

Of course, since applications are presumably the 

justification for all this work, efforts in making such systems 

more readily available for applications may be of major 

importance. These efforts should include hardware development 

(especially well-designed terminals, cheaper, faster, list

processing computers, larger memories), and sYstem development 

(especially systems for management of large programs and data

bases, the sharing of resources, and the facilitation of man

machine interaction). 

There is clearly more work to be done Jn understanding the 

methods of mathematical analysis, and studying alternative 

algorithms for common tasks. Large strides in this direction 

have already been taken, but more is needed in understanding such 

"simple" questions as "What is the fastest method for raising a 

polynomial to an integer power?" (recent work by L. Heindel, (22) 

and separately, W. M. Gentleman (17) draw some conclusions; my 

own work in this area may be found in (13)) 
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will continue to have important implications in our understanding 

of mathematical algorithms, the nature of computation and 

artificial intelligence, programming languages and systems, and 

problems of man-machine communication. 
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Appendix I 

MACSYMA Users' Manual 

Commands to MACSYMA are strings of characters representing 
mathematical expressions, equations, arrays, functions, and pro
grams. Extra spaces and carriage returns are lgnoredo Commands 
are terminated by @ or $. @ causes the command to be evaluated 
and the result displayed. $ causes the command to be evaluated 
but the display of the result is suppressed. When typing com
mands, "rubout" or "delete" deletes (and echoes back at the 
console) the previous character; ?? deletes the whole command; 
and causes the line number to be redisplayed. 

A potential user who is interested primarily in the 
"commands" available should peruse the following page, 
summarizing the input syntax of MACSYMA, and then may skip ahead 
to sect ion I • 7 o 
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Figure A.1 Syntax of MACSYMA Expressions. Examples of the legal 
input expressions and their meanings are shown below. W, X, Y, 
a~d Z stand for any expressions; U and V far variables. Some of 
these forms can be extended to take an arbitrary nLmber of 
arguments in the obvi~us manner. 

AB 
'AB 
1 
1. 2 

INPUT 

F [ X, YJ 
F(X,Y) 
F [ x I Y] ( w I z) 
X! 
X**Y 1Jr XtY 
X/Y 
-x 
X+Y 
X-Y 
X*Y 
X=Y 
X<Y, X>Y, X>=Y, 

X<=Y 
X AND Y 
X OR Y 
I X 
[X, Y] 
IF X THEN Y 
IF X THEN Y ELSE W 
FOR I : 1 STEP 1 

UNT I L I> 3 DO X 
A:X 
v:: x 
A(V):=X 
A(V):Y FOR ALL W 
X.Y 
A FOR INTEGER 3<X<lO 
A FOR 3<X<lO 
BLOCKCX,Y,Z) 
X,Y,Z 

MEANING 

variable 
quoted variable 
integer 
floating point number 
subscripted variable 
function invocation 
subscripted function invocation 
factorial 
exponentiation 
quotient 
negation 
sum 
difference 
product 
equality predicate or equation 
1 ess than, greater than, less than or equal to, 

greater than or equal to predicate or inequality 
logical AND or Boolean operator 
logical OR or Boolean operator 
quoted expression 
1 ist of expressions 
conditional 
conditional 
DO loop 

assign the value of X to A 
assign the value of X to the value of V 
define function A(V) 
define function A(V) 
non-commutative product 
indexed set 
real 1 ine segment 
program block CX,Y,Z are statements) 
EV(X,Y,Z): X is an expression, 

Y,Z specify environment 
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I .1 The Input Stream Editor 

At any point while he is inputting a comand, the MACSYMA 
user can enter the input-stream editor by typing #. The editor 
is given the string of characters typed so far in the current 
command. In the case of a detected syntax error, the entire 
previous command string will be given to the editor. 

All the commands to the editor reference a cursor (an 
underscore or back-arrow, depending on the console) which is dis
played within (or at either end of) the string of characters 
under edit. In the description to follow, n stands for a 
positive or negative integer. The default value of n is +1. If n 
is positive, the commands operate toward the right of the cursor; 
if n is negative, they operate toward the left. 

nC moves the cursor n characters. 
nR moves the cursor n characters in the reverse 

di rection(nR=-nC). 
J (also T) moves the cursor to head (top) of string. 
nl moves the cursor to the right of the nth carriage return 

C e • g • L move s to the n ex t l i n e ) 
Sstring# moves the cursor to the right of the first occurrence of 

the string of characters "string" searching toward the 
right. C-S implies left) 

nD deletes n characters. 
nK deletes all the characters through the nth carriage 

return. (e. g., K deletes the remainder of this line) 
!string# inserts the characters "string" 
# leaves the editor and returns to inputting from the 

user's console. 

I .2 System Control 

Lines are consecutively numbered, except that the input 
line Ci will be following by an output line (if one is generated) 
named Di. The next input-output pair will be labelled C(i+l) and 
D(i+l), respectively. If one command produces several lines of 
output, the labels will begin with an E, and the line number will 
be incremented for each additional line. A user can refer to any 
command or expression by its line label. The most recently 
computed expression may be referred to as "%". 

The system can be set to automatically write old expres
sions onto secondary storage. The process is controlled by the 
fol lowing variables which can be set by the user. (e.g. 
Fl LESIZE:10$, would set Fl LESIZE, or by the OPTIONS commando) 

----------- -- --



- 157 -

variable default value purpose 

DSKUSE FALSE 

FILESIZE 10 

RETAINNUM 8 

Fl LENAME username 

INCHAR c 

OUTCHAR D 

LINECHAR E 

If set to T, then expressions are 
automatically filed away. 
Expressions are written out with 
Fl LESIZE expressions In each file. 
When the number of expressions in core 
reaches Fl LESIZE + RETAINNUM, a file is 
written. 
The first name of the file written out. 
The second names (our filing system 
requires two names for a file) are 
1, 2, .... 
The pref ix character for inputted l i ne 
numbers. 
The prefix character for outputted 1 i ne 
numbers. 
The prefix character for intermediate-
output l i ne numbers. 

When an expression is written out, the name of the file 
containing it is attached to the expression name in core. Thus 
when the expression is referenced in a later step, it can be 
automatically retrieved from the file. 

At the end of the session, the secondary storage files can 
be deleted by the command FINISH(). The command FINISH(TRUE) 
allows the user to retain some or all of the expressions on his 
file. In order to specify the form and contents of the retained 
file, he must answer a series of questions: 

question response meaning 

OUTPUT DEVICE?(file 

EDIT? N 

y 

INTERNAL? Y 

N 

SAVE? y 

N 

spec) The name of the file on which the 
output will be saved. 
Save the files as they are. This 
response will cut off further questions. 
Read the files back into memory, one ex
pression at a time, so that selected ex
pressions can be saved on the previously 
specified file. 
Save the expressions in machine readable 
form. In this form they may be read 
back into a fresh system using RESUME. 
Save only the two dimensional display 
forms. 
(This is asked for each expression.) 
Include the expression currently dis
played. 
Do not include it. 
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RESUME(file specification) reads a file previously 
outputted through FINISH, displaying the commands and recomputing 
the results. 

BATCH(file specification) reads an input text from the 
designated file, command by command. When the end of the file is 
reached, further commands may be supplied by the user at his 
console. DEMONSTRATE is like BATCH except it pauses waiting for 
the user to type a space between commands. Any other character 
causes a return to the user console for further input. Addi
tional arguments may be supplied to cause some of the Input lines 
to be skipped. 

I .3 Rules for Expression Evaluation 

We have attempted to define a philosophy of expression 
evaluation in MACSYMA so as to lead to the most natural 
mathematical usage. In so doing, we necessarily become involved 
in a complicated set of rules to (in part) replace explicit 
quoting mechanisms, such as that in LISP, If we have been 
successful, a mathematician should rarely, If ever, have to refer 
to the rules concerned with noun and verb forms, below. 

A:X assigns A the value of X. This is the way a user would 
typically assign a value to a variable. Values are also assigned 
when the variables are used as labels for expressions on input 
an d o u t p u t • Th i s a s s i g n me n t i s an a l o go us to t he F 0 RT RAN " = 11 

, o r 
the LISP SETQ. 

A variable which does not have a value stands for itself. 
Numbers always stand for themselves. 

A built-in or user-defined function is either a noun
function or a verb-function. A verb-function is one which 
attempts to effect an appl icaton of the function to its arguments 
and thereby remove itself from the expression. For example, 
INTEGRATE is a verb-function, and ordinarily will attempt to 
perform an integration. On the other hand, SIN Is a noun
function, and will not attempt to evaluate itself, although it 
will evaluate its arguments. The EV command can be used to 
evaluate an expression in a context which says that (for example) 
all SINs should be numerically evaluated. That is, selected noun 
forms can be converted to verb forms. Similarly, if a normally 
verb-type function is desired to operate as a noun-type function, 
it may be so declared via the function NOUN. Thus INTEGRATE, 
when declared a noun, would normally return an Integral, even if 
the integration could be performed. If the function F is a verb, 
'F can be used as the noun form for F. If F is a noun, ''F (not 
"F) can be used as the verb form. If a verb-function cannot be 
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evaluated, as, for example, an integral which cannot be computed, 
it is simply returned as though it were a noun-function. If F is 
al ready a noun, 'F is the same as F. 

Transcendental functions are nouns. Other defined functions 
are verbs unless their names are quoted. The arguments of 
undefined functiohs are evaluated, but, obviously, the function 
itself cannot be evaluated, and so ls treated as a noun. As an 
expression is evaluated, it is also simplified. 

If a name is subscripted Ca subscript is enclosed in square 
brackets on input), then its value is stored in an array. The 
size of an array may be declared by the command ARRAYSIZE 
(name,~)$. An array need not have its dimensions declared, 
but if it has been declared, it will be permitted to have only 
numerical subscripts. At the first attempt to store a value in 
an undeclared array, a mechanism will be set up to describe the 
entries and their values in terms of a hash-coded list. The hash 
code can be computed from the subscripts whether or not they are 
numerical. If an array is subsequently declared, the values in 
the hash table are transferred to the new (true array) 
organization. The value of an array entry can be a number, ex
pression, equation (etc.) regardless of whether it is a hash 
array or a true array, A hashed array is organized as follows: 
It is initially allocated a hash table with four entries. Each 
table entry contains a list of subscripts and values which hashes 
into that entry. Whenever the number of entries with values is 
equal to the size of the hash table, the size of the hash table 
is doubled. Whenever the operation":" is executed, a check is 
made to see if the name is subscripted. If so, the appropriate 
array entry is set. 

A: :X assigns the value of A the value of X. The value of A 
must be a variable in this situation. This is analogous to a 
LISP SET. 

I .4 Function Definitions and Arrays 

MACSYMA incorporates a programming syntax resembling Algol-
60 for use on the top (command) level and in function defini
tions. The parser is entirely syntax directed, so that 
modifications to the grammar can be easily included; also, an 
exact definition of the acceptable forms (and their 
interpretations in terms of LISP and MACSYMA functions) can (but 
will not) be given. The syntax is illustrated in figure 1.3. 
Each of these constructions has fairly conventional interpreta
tion, except when symbolic and traditional numeric notions con
flict. One such instance is in inequalities, and is discussed in 
the next section in more detail. 
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The first argument to":=" (the function definition 
operator) may take one of three forms: f(x), f[i] or f[iJCx). 
Let the second argument to ":=" (that is, the right hand side) 
bey. In the first case, the variable f denotes a function, 
with value lambda(x)y, In the second case, a function definition 
is being associated with an array, The name f is denoted an 
AEXPR with value lambda(i)y. An AEXPR is used as follows, If a 
particular value of an undeclared array (it is an array if the 
variable is subscripted or if the name has previously been 
subscripted and assigned a value) is not present in the 
associated hash table, a check is made to see If the name also 
denotes an AEXPR, If so, this function is evaluated and the 
resulting value is stored in the hash table and also returned. 
If no value is present and no AEXPR is present, the expression is 
handled as though it were an undefined function. 

If the first argument of":=" is f[i](x), the third case, 
then f is denoted an AEXPR as above, but this AEXPR evaluates to 
a function of x. For example, given f[i](x):=X**i, evaluating 
f[3J(5) would cause the AEXPR to be evaluated to lambda(x)X**3 
and this value would be stored as the value of f[3] and also 
applied to 5 to yield 5**3. A subsequent evaluation of f[3] (7) 
would cause the value lambda(x)X**3 of fI3J to be retrieved and 
a pp l i ed to 7, 

The second argument to := (the right hand side, or 
procedure body) is ordinarily left unevaluated. This may be 
altered by the use of the double quote ("), which causes 
immediate evaluation. Thus F(X):="%@ uses the most recently 
computed expression as the procedure body, 

If several expressions or commands are included in the 
procedure body, and dummy variables are needed, the correct form 
is, for example, 

F(X):=BLOCK([Y], Y:l, A, IF(Y>X) THEI~ RETURN(Y) ELSE 
DISPLAY(Y), Y:Y+l, GO(A)) 

This is equivalent to 

F(X):=FOR Y:l STEP 1 UNTIL Y>X DO DISPLAY(Y) 

I .5 Predicates and Conditionals 

The comparison operators">","<", and"=" are not evaluated 
in ordinary contexts; that is, they are nouns. However, these 
operators, along with AND and OR are evaluated when they are in 
the predicate position of the IF-THEN-ELSE construction; that is, 
they are transformed into verbs. If the predicate evaluates to 
FALSE, the ELSE clause is evaluated and returned. Otherwise the 
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THEN clause is evaluated and returned. 

1.6 Special Constants 

There are a great many special constants and functions in 
mathematics which, if given their common names, would pre-empt 
many of the letters of the alphabet. To avoid various types of 
misunderstandings, we have chosen the symbol "%" as an "escape" 
character for special symbols. Thus the base of the natural 
logarithms, e, is typed into MACSYMA (and displayed by MACSYMA) 
as %E. Other symbols in this category include %Pl (the ratio of 
the circumference to the diameter of a circle), and %1, the 
square root of -1. 

I .7 General Purpose Commands 

INTEGRATE(~,Y.a.r.) integrates 1UU2. with respect to .Y.ar. or returns 
an integral expression if it cannot perform the integration. 
INTEGRATE(.e1SJ2,.Y.a.r.,.10:'.l,.b1.&.b.) finds the definite integral of 

filS.Q with respect to ..Y'..Q..L from lQ.w. to hl&.b.. Several methods 
are used, including direct substitution in the indefinite 
integral and contour integration. Improper integrals may use 
the names INF for positive infinity and MINF for negative 
i n f i n i t y • I f an i n t e gr al "form" i s des i red for man i p u 1 at i on 
(for example, an integral which cannot be computed until some 
numbers are substituted for some parameters), the noun form 
1 INTEGRATE may be used. 

DIFF{~,y_g_rj_,.o.1, ••• ,.Y.£.Lls.,nk) differentiates~ with respect to 
vari .nj_ times. If k=l and .o.l=l, nl may be omitted: 
DIFF(~,.Y5LJ:). If the derivative "forms" are required (as, 
for example, when writing a differential equation), 'DIFF 
should be used. 

DEPENDENCIES(.£.l, ••. ,f .. o.) declares functional dependencies used by 
DIFF. Each .il Ci=l,n) has the format f(..Y...l, .•• ,vm) where each 
yj_ (j=l,m) is a variable on which f depends. Thus DIFF{Y,X) 
is O, initially, Executing DEPENDENCIES{Y(X))$ causes future 
differentiations of Y with respect to X to be displayed as 

DY 

DX 

GRADEFC.fJ.li, .•• ,.~.n.),gl(xl), ... ,gn(xo)) defines the derivatives of 
the function f with respect to its n arguments. That is, 
df I dtl = g 1 C x 1 ) , e t c • 
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LIMIT(~,var,y_gj_,dir) finds the 1 imit of~ as the real 
variable~ approaches the value ygJ_ from the direction dir • 
.D..Lr. may have the value PLUS for a 1 imit from above, MINUS for 
a 1 imit from below, or may be omitted (implying a two-sided 
limit is to be computed). LIMIT uses the following special 
symbols: INF (positive infinity) and MINF (negative 
infinity). On output it may also use UNO (undefined) and IND 
(indefinite but bounded). 'LIMIT may be used to simply 
create a limit noun form. 

RESIDUE(~,var,Y.£1_,order) computes the orderth residue in the 
complex plane of the expression~ when the variable .Y.£.r. 
assumes the value Y.£1. 

SUBSTITUTE(~,Q,£) substitutes a for Qin~· Q must be an atom or 
a function with arguments, rather than a function with only 
some of its arguments. When Q does not have these charac
teristics, one may sometimes use SUBSTPART or RATSUBST. 
SUBSTITUTE(~1 ..eltQ) or SUBSTITUTE([~, ••• ,~],~) are 
other permissible forms. The~ are equations indicating 
substitutions to be made. For each equation, the right side 
will be substituted for the left in the expression~ (if 
the left side is non-atomic, and the right side is, the 
equation will be "flipped") 

EXPAND(..eKQ) will cause an expansion of the argument. The MACSYMA 
variables MAXNEGEX and MAXPOSEX (originally set to 6) control 
the maximum negative and positive exponents, respectively, 
which will expand. EXPAND(..eAQ.,Q,n) expands .ru.u2_1 but uses Q 
for MAXPOSEX and n for MAXNEGEX. 

SIMPLIFY(..e2$.Q) simplifies its argument, thus overriding the value 
of the MACSYMA variable SIMP which if set. to FALSE stops sim
P 1 if i cation. 

PART(.exQ,lll., ••• ,nk) obtains a subexpression of .§lill. which is 
specified by the indices .n.l. The index .n1. which (1 ike all 
the indices is a non-negative integer) selects the argument 
of the top level operator of ..eJSQ corresponding to its value. 
Thus PARTCZ+Y,2) yields Y. The index .D1. (if specified) 
picks up an argument of the result of PART(.§lill.,.n.l). Thus 
PARTCZ+2wY,2,1) yields 2. The operator is considered to be 
argument o. 

In exponentiation, the base is considered argument 1, 
and the exponent argument 2. In a quotient, the numerator is 
argument 1, and the denominator is argument 2. A minus sign 
appearing in the display is considered as an operator. For 
example 
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(Cl) X+Y/Z**2@ 
y 

(Dl) + x 
2 

z 
CC2) PART(Dl,1,2,2)@ 

(02) 2 

DPART(.e.A.Q,fil, ••• ,..!lk) selects the same subexpression as PART, but 
instead of just returning that subexpression as its value, it 
returns the whole expression with the selected subexpression 
displayed inside a box. The variable %PART is given the 
value of the selected portion. Thus in the example above, 

(C2) DPART(Dl,1,2,1)@ 

(02) 
y 

2 
***** 
* z * 
***** 

+ x 

SUBSTPART(K,~,.oJ.., .•• ,nk) substitutes K for the subexpression 
picked out by the rest of the arguments. It returns the new 
value of .§K.Q. 

Kl LL C..a.L&.l., •.. ,.2..!::lill.) eliminates its arguments from the MACSYMA 
system. If argi is a variable, a function name, or an array 
name, the designated item is removed from core and the 
storage it occupies is reclaimed • .s.r:.gj_ = "HISTORY" 
eliminates all input and output lines to date (but not other 
named items) • .9L.&l =a number, n, deletes the last n lines. 

STOREC..ar.&1, ••• ,.§L&.O.) is similar to KILL in that it reclaims core 
storage (but not quite as much). The values of the arguments 
to STORE are removed from core and saved on a secondary stor
age device. Special indicators left in core allow MACSYMA to 
read back these items whenever referenced. The arguments can 
be variables, function names, or array references. Numbers or 
"HISTORY" are not acceptable, since storage of the Input and 
output lines is automatic and controlled by RETAINNUM. 

SAVE (..§L&.l, ••• ,.QL&..O.) simply backs up expressions on disk, but 
leaves them in core as well. 

COEFF(~,.YAr.,n) obtains the coefficient of .Y.a.r.**n In~· For 
best results, ..elU2 should be expanded. ~must be an integer 
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or a rational number. Coefficients of var**n which are 
functions of var are ignored. This command is less powerful 
than RATCOEF, but is sometimes convenient in interactive 
situations. 

(C2) COEFF(Y+X*%E**X+l,X,0)@ 
(D2) y + 1 

SUM(~, ind,J..Q,.bJJ performs a summation of the values of ..e.AQ as 
the index ind varies from.l_Q to_bj_. If the summation cannot 
be performed, or if 'SUM is used, the value is a sum noun 
form which is a representation of the sigma notation used in 
mathematics. 

(C3) SUM(l**2,l,1,4)@ 
(D3) 

PRODUCT (analogous to SUM above). 

30 

EV(..eAQ,.fil:.&.l,. o.,..QL.&..Q.) causes the expression .filU2. to be evaluated 
and simplified with switches set according to the values of 
the .9.L.&.l. 

EVAL reevaluates the expression so that variables in it 
which have values will be evaluated. 

SIMP overrides the setting of the SIMP switch. 
EXPAND causes expansion. EXPANDCn,m) set the values of 

MAXPOSEX and MAXNEGEX. 
DIFF causes all differentiations indicated to be 

performed. DIFF(.Y.aLl,., ..• ,vark) causes only differentiations 
with respect to the indicated variables. 

NUMER causes SIN, COS, LOG, and "**"with numerical 
arguments to be evaluated. 

y=..e.AQ causes the substitution of ..§AQ for y. 
Any other function names Ce.go SUM) cause evaluation of 

occurrences of those names as though they were verbs. 
The arguments following the first (.eJU2) may be given in 

any order. It should be understood that EV performs a single 
evaluation and simplification. Thus all of the functions are 
performed in one scan. This is possible because the simpl i
fier is used to perform expansions, differentiation, and 
numerical evaluations by the setting of switches. For 
example: 

(C4) SIN(X)+COS(Y)+(W+l)**2+ 1 DIFF{SIN(W),W)@ 
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D 2 
(D4) COS(Y) + SIN(X) + --SIN(W) + (W + 1) 

DW 

(CS) EV(%,NUMER,EXPAND,DIFF,X=2,Y=l)@ 

2 
(D5) COS(W) + W + 2 W + 1.425324 

An alternate syntax has been provided for EV, whereby one may 
j us t type i n i t s a r g u men t s, w i thou t t he EV ( ) • That i s , one 
may write simply .§AQ,..a...r_g_l, ••• ,.9...r.,gJl. 

WHEN conditional DO identifier =expression e.g., WHEN 1=2 DO 
K=%@. The value of the identifier is determined by 
evaluating the conditional. If it evaluates to TRUE, then 
the expression is evaluated and used for the value of that 
use of the identifier. If the conditional evaluates to 
FALSE, then the identifier's value is itself. In effect, the 
identifier becomes a function of no arguments which evaluates 
the conditional, and if TRUE, returns the expression as its 
value. Thus WHEN TRUE DO EXPAND=EXPAND{%)@ makes the atom 
EXPAND always evaluate to the last computed expression, 
expanded. 

SOLVE(~,var) solves the algebraic equation ..e.AQ. for the variable 
var. If~ is not an equation, it is assumed to be an 
expression to be set equal to zero • .:Lat: may be a function 
(e.g. F(X)), or other non-atomic expression except a sum or 
product. It may be omitted if~ contains only one variable . 
..EJs.Q. may be a rational function, and may contain trigonometric 
functions, exponentials, etc. Its success may depend partly 
on switches set by the user. (see OPTIONS) 
SOLVE<Ll.b...sJ., ... ,l.hs.n],[.Y.l, ... ,vn)) solves a system of linear 
algebraic equations. It takes two 1 ists as arguments. The 
first list (l.b.~ .. L i=l,n) represents the equations to be 
solved; the second 1 ist is a list of the unknowns to be 
determined. If the total number of variables in the 
equations is equal to the number of equations, the second 
argument-1 ist may be omitted. If the given equations are not 
compatible, the message INCONSISTENT will be displayed. If 
no unique solution exists, SINGULAR will be displayed. The 
solutions are exact, asuming the user has not used floating
point numbers in his input, and may involve symbolic 
variables. The solution set consists of a 1 ist of numbered 
equations and an index to the 1 ist. 

DISPLAY(..elS...Pl, .•. ,.e.x.p_n) prints equations whose left-hand-side is 
the~, and whose right-hand-side is the value of the 
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expression. The value of DISPLAY is a list of the labels of 
the equations displayed. 

(C7) DISPLAYCD3,I)@ 
(E7) D3 = X + Y 
CE8) I = 5 
(D9) [E7,E8) 

PLOT(..eKQ.) produces an asterisk-plot of the expression~ • .E1u2 
may be of the form F(X) FOR l<X<lO, or F(X) FOR INTEGER 
l<X<lO, or [yl, .•• ,yn) or F(X,Y,Z). In this last case, the 
user will be asked to define the dependent and independent 
variables, set the extra variables to constants, and provide 
the domain for the independent variable. If the list of Y
values is provided, the user wll l be asked for a list of the 
corresponding X-values. 

GRAPHCxvals,yvals,xlabel,ylabeJ) graphs the two sets of data 
points, and labels the axes as indicated. The data points 
can be lists or indexed sets. The height and width of the 
display is affected by the parameters of the user-terminal, 
or can be altered by the use of OPTIONS. 

APPEND(K,~) appends the two 1 ists Kand~ and returns a single 
list of the elements of K followed by the elements of y. 

CONS(K,y) returns a new 1 ist constructed of the element K as its 
first element, followed by the elements of y. 

OPTIONS(.ar,g) is a tree-structured collection of option-describing 
and option setting programs. The options concern the setting 
of switches for disk usage, display, simplification, the 
SOLVE program, etc. OPTIONSCCATEGORIES) lets the user In at 
the top level. See figure A.2 below. 
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Figure A.2 OPTIONS 

CATEGORIES 
A LIST OF CATEGORY NAMES EACH FOLLOWED BY THE OPTIONS IN THAT 

CATEGORY 

CURRENT VALUE IS 

[BOOKKEEPING, 
[DSKUSE,FI LESIZE,RETAINNUM,FI LENAME,DEV,UNAME, INCHAR, 
OUTCHAR,LINECHAR,TIME,CATEGORIES,RSET,NOUUO], 

SIMPLIFY, 
[SIMP,MAXPOSEX,MAXNEGEX,%EMODE,TRIGSIGN,SUBSTFLAG,%ETOLOGFLAG], 

DIS PLAY, 
[NOSTAR,DERIVATIVEABREV,LINEL,SCOPEHEIGHT,SQRTFLAG, 
EX PTO IS PF LAG] , 

RATIONAL, 

SOLVE, 

[FULLFLAG,NOREPEAT,INVERTFLAG,FACTORFLAG,RADSUBST,MODULUS, 
BERLEFACT,GCDSWITCH,GCDOFF,RATEPSILON) 

[SOLVEFACTORS,SOLVERADCAN,SOLVEHEURS]] 

***BOOKKEEPING*** 

DS KUSE 
IF TRUE CAUSES OUTPUT FILE TO BE OPENED 
CURRENT VALUE IS FALSE 

FI LES I Z E 
THE NUMBER OF EXPRESSIONS WRITTEN TO SECONDARY STORAGE IN EACH 

FILE 
CURRENT VALUE IS 10 

RETAINNUM 
THE NUMBER OF EXPRESSIONS IN MEMORY JUST AFTER A SECONDARY 

STORAGE Fl LE IS WRITTEN 
CURRENT VALUE IS 8 

FILENAME 
THE FIRST NAME OF FILES OF EXPRESSIONS WRITTEN TO SECONDARY 

STORAGE 
CURRENT VALUE IS usrxyz 
(where USERNAME begins with usr, and where xyz is a random 

number) 

DEV 
THE DEVICE USED FOR FILING 
CURRENT VALUE IS OSK 
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UN AME 
THE USERNAME USED FOR FILING 
CURRENT VALUE IS usr 

INCHAR 
THE FIRST LETTER OF THE NAMES OF EXPRESSIONS TYPED BY THE USER 
CURRENT VALUE IS C 

OUTCHAR 
THE FIRST LETTER OF THE NAMES OF THE VALUES OF OUTPUT 

EXPRESSIONS 
CURRENT VALUE IS D 

LINECHAR THE FIRST LETTER OF THE NAMES OF THE VALUES OF 
INTERMEDIATE DISPLAY EXPRESSIONS 
CURRENT VALUE IS E 

TIME 
IF TRUE CAUSES THE TIME REQUIRED TO EVALUATE EACH INPUT COMMAND 

(EXCLUDING DISPLAY TIME) TO BE PRINTED 
CURRENT VALUE IS FALSE 

RSET 
IF TRUE INTRODUCES A SPECIAL DEBUGGING MODE 
CURRENT VALUE IS FALSE 

NOUUO 
IF TRUE INHIBITS MODIFICATION OF CALL INSTRUCTIONS, A DEBUGGING 

AID 
CURRENT VALUE IS FALSE 

***SIMPLIFY*** 

SIMP 
IF TRUE CAUSES AUTOMATIC SIMPLIFICATION OF EVALUATED EXPRESSIONS 
CURRENT VALUE IS TRUE 

***DISPLAY*** 

NOST AR 
IF TRUE CAUSES MULTIPLICATION TO BE DISPLAYED AS A SPACE 
CURRENT VALUE IS TRUE 

DERIVATIVEABREV 
IF TRUE CAUSES DERIVATIVES TO BE DISPLAYED AS SUBSCRIPTS 
CURRENT VALUE IS FALSE 

LINEL 
THE LINELENGTH USED FOR OUTPUT AND DISPLAY 
CURRENT VALUE IS 68 
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SCOPEHE I GHT 
THE NUMBER OF LINES USED FOR PLOTTING 
CURRENT VALUE IS 25 

SQRTFLAG 
IF TRUE, DISPLAYS SQRT AS SQRT. IF FALSE, DISPLAYS SQRT AS 

EXPONENT 1/2. 
CURRENT VALUE IS TRUE 

EXPTDISPFLAG 
IF TRUE, DISPLAYS EXPRESSIONS WITH NEG. EXPONENTS USING 

QUOTIENTS. 
CURRENT VALUE IS TRUE 

***RATIONAL*** 

FU LLF LAG 
IF TRUE CAUSES RATSIMP TO MULTIPLY THROUGH AND REDUCE TO LOWEST 

TERMS FORMS LIKE (AfB)jC 
CURRENT VALUE IS FALSE 

NORE PEAT 
IF TRUE NO GCDS ARE PERFORMED WHEN RE-RATIONALLY REPRESENTING AN 

EXPRESSION 
CURRENT VALUE IS TRUE 

INVERTFLAG 
IF TRUE CAUSES RATS IMP TO REPRESENT Al (-B) AS CAIB)I (-1) THEREBY 

FACILITATING SUBSTITUTIONS 
CURRENT VALUE IS FALSE 

FACTORFLAG 
IF TRUE CAUSES INTEGERS TO BE FACTORED BY FACTOR COMMAND 
CURRENT VALUE IS TRUE 

RADSUBST 
IF TRUE ALLOWS RADCAN TO BE CALLED BY RATSUBST 
CURRENT VALUE IS FALSE 

MODULUS 
IF MODULUS IS A POSITIVE INTEGER PALL ARITHMETIC IN THE 

RATIONAL FUNCTION SYSTEM WI LL BE DONE MOD P 
CURRENT VALUE IS FALSE 

BERLEFACT 
IF TRUE THE BERLEKAMP FACTORING ALGORITHM WI LL BE USED OTHERWISE 

THE KRONECKER ALGORITHM 
CURRENT VALUE IS TRUE 

-------- ---~-------- ------
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GCDSWITCH 
IF TRUE THE MODULAR GCD ALGORITHM IS USED OTHERWISE THE COLLINS 

REDUCED PRS 
CURRENT VALUE IS FALSE 

GCDOFF 
IF TRUE ALL GCDS ARE 1 
CURRENT VALUE IS FALSE 

RATE PS I LON 
VALUE OF ACCEPTABLE ERROR IN CONVERTING FLOATING POINT NUMBERS 

TO RATIONAL NUMB~RS IN RAT 
CURRENT VALUE ~S l.OE-9 

***SOLVE*** 

SOLVEFACTORS 
IF TRUE SOLVE TRIES TO FACTOR GIVEN EXPRESSIONRUE 
CURRENT VALUE IS TRUE 

SOLVERADCAN 
IF TRUE SOLVE SIMPLIFIES GIVEN EXPRESSION WITH RADCAN 
CURRENT VALUE IS FALSE 

SOLVEHEURS 
IF TRUE SOLVE TRIES VARIOUS HEURISTICS 
CURRENT VALUE IS FALSE 
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Rational Function Commands 

RATVARS(varl, ... ,varn) provides a method for specifying the 
ordering of variables in CRE form. The most main variable 
will be varn, the least ("most constant") will be .Y..£Ll. 

RAT(A,Y.a..!'.J.., ••• ,Y..SU:.n.) converts the expression K to CRE form. The 
optional .Y'..Sl.L.l serve as an ordering (as in RATVARS) but only 
within the scope of the single RAT command. 

RATDISREP(K) converts a CREA to a normal prefix expression. 

RATSIMP(K,.Y..a.r:l., ••• ,varn), FULLRATSIMP(A,Y..aLl, ..• ,Y.9..!:.Q), and 
RADCAN(K) are slmpl ifiers. Currently, FULLRATSIMP and 
RATSIMP are identical. 

FACTOR(x) factors a polynomial or rational function K (numerator 
and denominator). 

SQFR(K) computes a square-free factorization of the expression K· 
A number of special checks for content with respect to 
several main variables occasionally factors polynomials even 
though the factors occur singly. 

PARTFRAC(K,Y...£.rJ expands a rational function K in partial 
fractions with main variable Y...a.r.· 

RATCOEF(~,K) picks out the coefficient of K (which may be a 
power, product, sum, quotient, etc.) in ..e.AQ.. 

RATSUBST(g,£,c) substitutes~ for Q in~. ~may be a sum, 
product, power, etc. 

GCD(K1 ~) computes the greatest common divisor of K and~· 

DIVIDECK,~,var) computes the quotient and remainder of K divided 
by~' as rational functions in a main polynomial variable, 
Y...a.r.· 

RESULTANT(x,~1 .Y,gL) computes the resultant of the two polynomials 
Kand~' and eliminates the variable Y.fil:· 

MOD(K) converts the polynomial x to a modular representation (mod 
MODULUS). X must be in only one variable. 

GFACTOR(x) factors the polynomial Kover the Gaussian integers 
Ci. e. with SQRT(-1) = %1 adjoined) 
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The Matching Subsystem 

DECLARE(.Y.a.r.,QL.e£D declares~ to match only expressions 
satisfying the predicate .Q..Le..Q., when var is used in a pattern. 

DEFMATCH(name,.e2ill_,.Y.ar.l, ..• ,vark) defines a pattern matching 
program with name~· 

DEFRULE(name,.§2U2.,~) defines a transformation rule with name 
name which matches the pattern ..e.AQ. and transforms it to the 
replacement L.e.Ql. 

APPLYl(gxQ,L.l, •.• ,J:..ls.) (and similarly for APPLY2) applies the 
rules LJ.,".,_r_k to the expression gxQ, and returns the 
transformed expression, The difference between APPLYl and 
APPLY2 is in the sequencing through the expression and rules. 

TELLSIMP (..Q..2.1,.r..ru;?...lJ (and similarly for TELLSIMPAFTER) changes the 
simplifier, so that in all subsequently simplified 
expressions, an occurrence of the pattern ..12...a.t will be 
replaced by the expression Dill.l_. 

Several·additional predicates and testing programs are 
provided for use in constructing patterns and their predicates. 
SIGNUM(K) returns -1,0, or +l, depending on whether the sign of X 
is negative, zero, or positiveo If K is a number, this question 
is simple. If xis not a number, its signum is computed from the 
coefficient of the leading term in a rationally simplified 
expression equivalent to A• FREEOF(K,~) returns TRUE if~ does 
not depend explicitly on K· This is accomplished by searching 
through~ for an occurrence of K, and assumes that K Is not, for 
example, used as a dummy variable of integration. INT(K) returns 
TRUE if K is an integer. CONSTANT(K) returns TRUE if K is a 
constant. REALNUM(K) returns TRUE if K is a floating point 
number. RATNUM(K) returns TRUE if K is a rational number or an 
integer. NUMBER(K) returns TRUE if K is an integer or a floating 
point Creal) number. 

The Matrix Subsystem 

The matrix subsystem currently is not completely integrated 
into MACSYMA, since matrix data types are not automatically 
handled by the simplifier. Furthermore, the ARRAY facility, 
which allows more general data types (e.g. hash-coded indices 
need not be integers), is a separate facility. This will, we 
hope, be remedied shortly. 

For the moment, however, the following commands provide a 
fairly thorough set of primitive operations on matrices. 
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MATRIX (J:::..Q.\:'.:l.1, ••• ,J:.Q.Yin) defines a rectangular matrix with the 
indicated rows. Each row has the form of a list of 
expressions, e.g. [a, X**2, y, OJ is a list of 4 elements. 

ENTERMATRIX(ill,n) allows one to enter a matrix element by element 
with the computer asking for values for each of them by n 
entries. 

EMATRIXCill1Il1K1l,i) returns an ill by n matrix with all entries zero 
except for the Cl,l) entry, which is Kc 

DIAGMATRIX(n,x) returns a diagonal matrix of size n by n with the 
diagonal elements all K· An identity matrix is created by 
DIAGMATRIX(n,1), or one may use the next command. 

IDENT(n) produces an n by n identity matrix. 

SETELMX(K,l,l,ill) creates a new matrix which is identical to the 
matrix ill except that its Cl,l) element is K· 

ROWX(m,l) creates a new matrix which is the lth row of the matrix 
ill· 

COLXCill,l) creates a new matrix which is the lth column of the 
matrix ill· 

TIMEX(ml, ••• ,mn) multiplies two or more matrices (or scalars and 
matrices). 

ADDX(ml, •.• ,mn) adds two or more matrices. 

DIFFERENCEX(.ml,m2) computes ml - m2. 

POWERX(m,l) computes the lth power of the matrix ill 

I NV ER X ( m) i n v e rt s the ma t r i x ill. 

TRANSX(ill) produces the transpose of ill· 

ECHELON(ill) produces the echelon form of ill· 

MINORX(ill,l,l) computes the l,l minor of the matrix ill 

DETERMINANT(ill) computes the determinant of ill· 

CHARPOLX(ill,Y.a.r.) computes the characteristic polynomial for ill· 
That is, DETERMINANT(DIFFERENCEX(ill,DIAGMATRIX(Y..5tr..,size of 
m)) • 
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SUBMATRIX(ml, ••• ,mn, .M, nJ.., ..• ,nn) creates a new matrix composed 
of the matrix M with its ml rows deleted, and its nl columns 
deleted. 

The Power Series Subsystem 

The power series subsystem is divided into two parts. 
The first handles truncated power series, and the second 
manipulates summations in their general form. The code is 
still being changed to accomodate different needs as they 
appear in applications, so that the following description is 
liable to need revision. This subsystem is not, at the 
moment, particularly well integrated into the MACSYMA system, 
in the sense that there are no calls from the simplifier to 
these programs. 

TAYLOR(.§AQ,Y.£.[,Q.t,pow) expands the expression ..exo. in a truncated 
Taylor series in the variable Y..aL around the point .P..t.. The 
terms through (Y.£L-J2..t)**..Q.Qrl. are generated. 

PS(..§A.Q,.Y.£r.,.P..t,pow) resembles TAYLOR, except that the internal 
form of the expression is a special form especially suitable 
for manipulation as a truncated expression. Such expressions 
can be manipulated with the programs PSPLUS, PSMINUS, 
PSTIMES, PSEXPT, and PSDERIV (for adding, negating, multi
plying, raising to a power, and differentiating, 
respectively). 

POWERSERIES(..e.AQ,Y...aJ:.,Q.t) attempts to generate the general form of 
the power series expansion for~ in the variable y_gr about 
the point .P..t (which may be INF, for infinity). 

A large table of general expansions is now on a MACSYM disk 
file, including hyberbolic, hypergeometric, and various other 
special functions. 

Miscellaneous Utility Commands 

This section includes a few miscellaneous controls that the 
user has over the MACSYMA system. Some of these are not commands 
in the strict sense, since they do not require a"@" to take 
effect. 

Control-B (written B) "seizes" the lineprinter, if it is 
available, and outputs future lines (in tandem with the console) 
on the lineprinter. t releases the lineprinter. ~prints on the 
next line the contents of the input buffer. This is useful when 
several characters have been deleted, to clarify current input 
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line. L, on Cathode Ray Tube consoles, clears the screen and 
resumes printing on the first 1 lne (as in~). 

MACSYMA is loaded into a LISP system. In the course of 
running programs, it is occassionally useful to call some LISP 
program directly. In order to read and evaluate one LISP s
expression, one has the command EVAL(). One may "quit" out of a 
loop and return to the supervisor by typing~. H has the 
effect of "breaking" at a point in execution, and allowing a user 
to examine the depth of program nesting, the values of internal 
variables, etc. $P <space> resumes execution. 

~ causes an exit from MACSYMA to LISP. The LISP expression 
(CONTINUE) returns to the MACSYMA supervisor. 

When within MACSYMA, it is sometimes handy to read in files 
of LISP programs. (Note that BATCH handles only MACSYMA input, 
not LISP files) The following command help one to do this. 

LOADFILE(fnl,..f.o..2.,device,ysername) loads a file as described by 
its arguments. 

The next few commands help file away MACSYMA results. 

WRITEFILECdevice,username) opens a file for writing. 

CLOSEFILE(fnl,fn2) closes the fileo 

PLAYBACK() "plays back" all the input and output lines since 
(Cl). PLAYBACK(n) plays back the last n expressions (Ci, Di, 
and Ei count as 1 each). Ordinarily this would be done 
between a WRITEFILE and CLOSEFILE to store a neat set of 
commands and responses or to refresh one's memory as to what 
he has already done (especially at a CRT console). 

Comments are welcome, and should be directed to Richard Fateman. 
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Appendix I I 

The Polynomial and Rational Function Package In MACSYMA 

11.1. Introduction 

This appendix describes a series of LISP routines for ma
nipulating sparse polynomials and rational functions In several 
variables. This description is Intended as a detailed guide to 
the implementation and assumes some familiarity with LISP and the 
concept of rational expressions. A user-oriented view of these 
facilities may be found In the previous appendix. 

The polynomial programs were originally written by W. A. 
Martin. They were debugged, and in some cases, rewritten, by R. 
Fateman; the rational function and conversion programs, the 
modular greatest-common-divisor (gcd) algorithm (4), and the 
lower level modular arithmetic routines were programmed by R. 
Fateman. The Berlekamp factoring algorithm (2) was Implemented 
by L. Rothschild. 

Because these routines are written entirely in LISP 
they can be exported to other LISP systems very simply. If they 

are to interface with another LISP-based algebraic manipulation 
system, the only programs that need to be altered are those which 
convert to and from rational expression form. The programs are 
written so as to allow complete symbolic algorithms to be 
composed entirely within the rational function package. 

It is well known that any rational function can be written 
as the ratio of two polynomials with Integer coefficients and 
with no common polynomial divisors. With the added provisions 
that the denominator be positive and that the polynomials be rep
resented in a canonical form (such as recursive in the variables 
in some fixed order), we can produce a canonical form for any 
rational expression. MACSYMA has a special internal repre
sentation for canonical rational expressions CCREs) which has 
many useful properties, the most important of which Is that this 
representation will map any set of functionally equivalent 
rational expressions into a unique (canonical) representation. 

I I .2. Representation of Canonical Rational Expressions 

A rational function in canonical rational expression (CRE) 
form is represented at the top C"MEVAL") level of MACSYMA by the 
form 

CCMRAT SIMP varl ist assocl ist) polyforml • polyform2). 



- 177 -

Each polyform is a list of the form Cmainvariable, highest
exponent, coefficient, next-highest exponent, coefficient, ••• ). 
Polyforml is the numerator, polyform2 Is the denominator. 

When the coefficient of a term is zero, the exponent-coef
ficient pair is omitted. This makes the representation attrac
tive for sparse polynomials. The coefficients may themselves be 
polyforms in variables with a lower order, or may be numbers. 
This recursive property makes this representation suitable for 
polynomials in any number of variables, and makes programming 
particularly simple in LISP. The leading coefficient in 
polyform2 is positive, and the greatest common divisor of poly
forml and polyform2 is 1. The ordering of variables on VARLIST 
determines which is the main variable, and which (recursively) 
are main variables of the coefficients of the main variable. 

By altering the definitions of CPLUS, CMINUS, CTIMES, 
CEXPT, CQUOTIENT, CDIFFERENCE, CFACTOR, CDERIVATIVE, CGCD, and 
PCOEFP, the non-polyform coefficient arithmetic can be 
reimplemented with a number of different domains. Currently, the 
coefficient arithmetic is the domain of arbitrary precision 
integers. 

If the global variable MODULUS is set to a positive prime 
number R, rather than Its default value of NIL, all coefficient 
arithmetic is performed modulo R. In such a case, the repre
sentatives of the field have values between -R/2 and R/2. 

Alternate coefficient routines have been Implemented by R. 
Zippel which (along with minor changes In the rest of the 
programs) allow the coefficients to be rational numbers, or 
rational functions. Additionally, he has written programs which 
automatically truncate their results. 

A set of special coefficient routines which have "counters" 
in them is also available. This is convenient for examining the 
number of coefficient operations required for execution of a 
program. 

Among these coefficient routines, the only one whose 
purpose is not obvious is PCOEFP. PCOEFP Is a predicate which 
returns T when applied to a member of the coefficient domain 
(presently, LISP integers), NIL for a member of the polynomial 
domain Ci.e. polyforms). 

Zero could consistently be treated as an empty polynomial 
or as a zero coefficient. For our purposes it is most convenient 
to express zero by O. 
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PPLUS(X,Y) adds two polyforms to yield a polyform. 

PTIMESCX,Y) multiples two polyforms to yield a polyform. 

PQUOTIENTCX,Y) divides X by Y to yield a polyform; signals an 
ERROR if the remainder is not zero. 

PDIVIDECX,Y) yields a list of two RATforms: the quotient and the 
remainder, with respect to the main variable of X, of X 
divided by Y. 

PDIFFERENCE(X,Y) yields the value of X-Y. 

PDERIVATIVECX,VAR) yields the polyform equal to the formal deriv
ative of X with respect to the variable VAR, which need not 
be the main variable of X. 

PEXPTCX,N) raises the polyform X to the power N, which must be a 
non-negative LISP integer. It uses a modified multinomial 
expansion technique which is generally superior to other 
methods (13). 

OLDGCDCX,Y) yields the polynomial greatest common divisor of X 
and Y. Collins' reduced PRS algorithm, described in (27), p. 
372 is used. 

OLDCONTENT(X) yields a list of the (positive) content of X and 
the primitive part of X. X is considered to be a polynomial 
in one variable with coefficients that are polynomials In the 
other variables. Thus the content of xyz+xy with x the main 
variable is gcd(yz,y) or y, while the primitive part is xz+x. 
This definition is used for the Collins algorithm. 

PGCDCX,Y) yields the polynomial greatest common divisor of X and 
Y. The modular algorithm described by Brown In (4) Is used. 
It calls PGCDM, PGCDP, and PGCDU corresponding to algorithms 
M, P, and U in C 4) • 

PCONTENT(X) yields a list of the (positive) content of X and the 
primitive part of X. X is considered to be a polynomial in 
many variables with integer coefficients. The content is 
always an integer. Thus the content of xyz+xy is 1, with 
primitive part xyz+xy. This definition is used for the 
modular GCD algorithm (PGCD). 

PMODCONTENT(X) is a peculiar type of content calculation required 
by the multvariate modular gcd. X is considered to be a 
polynomial whose coefficients are polynomials with modular 
coefficients in one variable (the main variable in X). Thus 
the content of xyz+xy for main variable x, is x, with primi-
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tive part yz+y. 

PMINUS(X) yields -X, 0 if X is O. 

PMINUSP(X) yields T if the leading coefficient of X Is negative, 
otherwise, NIL. 

PINTERPOLATECL,VAR) finds an Interpolation polynomial given a set 
of points. L is a list of n values (integers or poly
nomials) of a polynomial P to be found by interpolation at 
the points 0, 1, ••• , n. VAR ls the main variables of P. 
PINTERPOLATE returns P only if P has integer coefficients, 
and signals an ERROR otherwise. PINTERPOLATE Is used by 
PFACTOR. 

PCSUBST(X,VAL,VAR) substitutes the number VAL for the variable 
VAR in the polyform X. 

PFACTOR(X) returns a list of items consisting of positive (except 
possibly -1) primitive, irreducible (over integers) factors 
of X, followed in each case by the degree (multiplicity) of 
that factor. Berlekamp's algorithm (2) Is used. PFACTOR will 
not factor with respect to variables whose generated symbol 
is on the list $DONTFACTOR. If $FACTORFLAG is set to NIL, 
the integer part will not be factored. For example, with 
$FACTORFLAG set to T: 

PFACTOR ((X 4 2)) = (2 1 ex 1 1) 4) 

PFACTOR ( 0) = C 0 1) 

PFACTOR (1) = (1 1) 

PFACTOR C-3) = (-1 1 3 1) 

PFACTOR C-1) = C-1 1) 

PFACTOR CCX 4 CY 4 6))) = (3 1 2 1 (X 1 1) 4 CY 1 1) 4). 

PSQFRCX) is the same as PFACTOR except the polynomials are not 
necessarily irreducible, just squarefree (22, p. 381). 

PMOD(X) returns the polynomial X with its coefficients reduced 
mod MODULUS. If MODULUS is NIL, X is returned unchanged. 

11.4. Rational Functions 

Here X and Y denote ratforms. A ratform is a dotted pair 
of polyforms, that is, the CDR of an MEVAL-level CRE. All 
results are in lowest terms. The denominator is always positive. 
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Division by zero will cause a LISP ERROR. 

RATPLUSCX,Y) performs addition: X + Y. 

RATTIMESCX,Y,SW) performs multiplication: X*Y. If SW Is NIL, it 
will be assumed that if X=a/b and Y=c/d, that the ereatest 
common divisor of a*c and b*d is 1. In situations where an 
expression is repeatedly converted to CRE form, a consi
derable amount of time can be saved hy not repeating the 
g.c.d. calculations. 

RATQUOTIENT(X,Y) performs division: X/Y. 

RATINVERT(X) inverts X: l/X. 

RATMINUS(X) performs negation: -X. 

RATDIFCX,Y) performs subtraction: X-Y. 

RATEXPT(X,N) raises X to the Nth power, where N is a (possibly 
negative) LISP integer. 

RATREDUCE(P,Q) takes two J:Q.b1.forms P and Q and reduces them to 
lowest terms. RATREDUCE is used when needed by the other 
rational functions, except as noted in RATTIMES. RATREDUCE 
returns P/Q as a ratform. 

RATFACT(X) factors the numerator and denominator of the ratform 
X, and returns a list similar to that returned by PFACTOR, 
except that the factors of the denominator will have negative 
mu 1 tip 1 i c i ti es. 

RATABS(X) returns the absolute value of the ratform X. 

RATDERIV(X,VAR) returns the formal derivative of the ratform X 
with respect to VAR. 

RATGCM(X,Y) returns the greatest common multiple of X and Y. If 
X = a/b and Y = c/d, then gcm(X,Y) = gcd(a,c) * 
gcd(b,d)/(b*d). 

I I .5. Conversion Functions 

$RAT(M) uses NEWVAR, described below, to put non-rational 
subepressions of Mon a variable-list (VARLIST), and then 
calls RATREPCM,VARLIST) as described below. Floating point 
numbers are converted to rational numbers (within a relative 
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its non-rational expressions. 

$RESULTANTCX) computes the resultant of the polynomial X, using a 
polynomial remainder sequence technique. 

$GCO(X,Y) computes the greatest common divisor of the two 
polynomials X and Y. 

$DIVIDECX,Y,V) calls PDIVIDE on the two polynomials X and Y, 
whose main variable is v. 

$FACTOR(X) factors the numerator and denominator of the rational 
function X over the integers. 

$GFACTOR(X) factors the polynomial X over the Gaussian integers 
(with sqrt(-1) = %1 adjoined). 

$MOD(X) converts the single-variable polynomial X to modular 
representation, accessing the value of t10DULUS set globally. 

I I .7. Other Notes 

Efficiency can be considerably improved if the knowledge 
that a quotient is in lowest terms can be pres~rved. If the 
global flag NOREPEAT is set to T, then any MQUOTIENT or MTIMES 
with a RATSIMP flag (placed there by $RATDISREP) will not be 
RATREDUCE'd as it is being converted to CRE form by RATREP. It 
may occasionally be useful to set NOREPEAT to NIL, since E = Cx-
1)/(z+l) is reduced, but if z = x •/ 2

, E can be reduced further on 
a second pass by treating it as (z 2 -l)/(z+l). 

Setting $GCDSWITCH to NIL replaces the modular GCD 
algorithm with the reduced PRS algorithm. Setting $GCDOFF 
disables the gcd routines entirely Call gcds are 1). Setting 
$BERLEFACT to NIL replaces the Berlekamp factoring algorithm with 
the less efficient Kronecker algorithm. 

Listings of these functions and their subroutines are are 
available from the author. 
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