
Cambridge

INDUCTION IN PROOFS ABOUT PROGRZ\MS

Irene Gloria Greif

February 1972

PRCJECT FlAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Massachusetts 02139

- 3 -

INDUCTION IN PROOFS ABOUT PROGRAMS*

ABSTRACT

Four methods for proving equivalence of programs by induction are

described and compared. They are recursion induction, structural in-

duction, µ-rule induction, and truncation induction. McCarthy's for-

malism for conditional expressions as function definitions is used and

reinterpreted in view of Park's work on results in lattice theory as re-

lated to proofs about programs. The possible application of this work

to automatic program verification is commented upon.

*This report reproduces a thesis of the same title submitted to the
Department of Electrical Engineering, Massachusetts Institute of Tech
nology, in partial fulfillment of the requirements for the degree of
Master of Science, December 1971.

-4-

Table of Contents

Abstract

Acknowledgements

Table of Contents

2

3

4
- - -· -

Introduction

Chapter 1

1.1

1.2

1.3

1.4

1.5

1.6

Chapter 2.

2.1

2.2

2.3

2.4

2.5

5

6

Notation 6

Recursion Induction as Defined by McCarthy 10

Structural Induction as Defined by Burstall 12

Recursive Definitions as Mappings Between Lattices 15

The µ-rule 19

Truncation Induction as Defined by Morris 21

The Comparisons

Objectives

Structural Induction and Truncation

The µ-rule and Truncation Induction

Recursion Induction and Truncation

Recursion Induction and Structural

Induction

Induction

Induction

23

23

24

32

40

47

Chapter 3. Some Conments on Automatic Program Verification 50

Chapter 4. Conclusion 56

Appendix

References

58

60

-5-

Introduction

Work on compilers, code optimizers, language definitions, and de

bugging systems often requires some notion of correctness of a program

or of the equivalence of two programs. To determine the correctness of

a compiler it is necessary to prove that the compilation process pre

serves meaning of programs, so that executions of a source language pro

gram and of its corresponding object language program produce identical

results for all input. In optimizing a program it must be true that the

transformations made preserve the program meaning in the same sense.

Since there can be no general procedure for testing equivalence of pro

grams [9], we must try to find partial decision procedures for this prob

lem. For example, it can be shown that two programs are equivalent if a

corresponding statement of first order logic is a theorem [4]. Or, in

examining programs which operate on structured data, equivalence might be

proved by an inductive argument based on the degree of complexity of the

structured data [6].

Rules of this last type, i.e. rules with some induction step in them,

will be the subject of this thesis. Several such methods are now kno~.

Two of them, recursion induction and structural induction have been de

fined rather informally. Two others, application of a rule of inference,

the µ-rule, and truncation induction, are somewhat more formally defined.

All of these methods can be understood in terms of certain results of

lattice theory as described by Park [8]. By using this information and

by studying proofs by the various techniques we will explore and clarify

the relationships between these induction rules.

-6-

Chapter 1.

1.1. Notation

Our language for describing functions will be that of McCarthy [5].

The set of forms written in terms of the set of primitive functions and

predicates, ,1, will be denoted by c(1'). The forms in c(5') are:

if F is in j;, then F is in C(j')

if f and g are in c(1), then f 0 g is in c(J() [composition]

~ ~
if p and q are in C(J') then p /I. q, p V q, and 1P are in C(,ft)

if p,f and g are in C(~), (where p is a predicate), then the

form (if p then f else g) is in c(:t)

In general the function and predicate symbols will be uninterpreted, par

ticularly in definitions, but there will be examples of proofs for both in

terpreted and uninterpreted forms. Also, it is generally assumed that the

constant functions T,F EC(~) and that the primitive predicates and func

tions are total.

A function definition is a function name, say f, followed by = and

then some formC in the class C(~). The function name itself may appear

on the right hand side, in which case the definition is recursive. L(f)

represents a conditional form which contains the function name f. 'the

function name, f, can be considered to be a variable for which a substitu·

tion of another function name can be made. In general, script letters

CL-, ~' <.:,, •.• will be used for forms. Sometimes it is convenient to de

fine several functions at the same time, with references to each other, and

occasionally a function may be defined to be the restriction of another

function to a particular domain. The following are examples of function

definitions:

(1) f (x) = if Px then Fx else FFx

(2) f (x) - if Px then f(Fx) else FFx

(3) f(x) - if Px then g(Fx) else f (FFx)

g(x) - if Px then f(x) else x

-7-

(4) f (x) - if Px then if PFx then fFx else Fx

else f (FFx)

(5) f (x) = g (x, 1, 1)

where g(x,y,z) = if x =y then z else f(x,y + 1, z • y)

McCarthy [5] shows that the class of functions definable from forms in

C(succ, eq), where succ is the successor function and eq is the predicate

for equality, is the class of all computable functions on the natural num·

hers, proving that this is a sufficiently powerful language to be of inter

est to us.

There are axioms for manipulating conditional expressions which con

stitute a complete system for checking equality of any pair of uninter

preted conditional forms. Two forms are equal if under any interpretation

of function letters (except where a restriction is indicated) normal e~alua~

tion of either form results in the same value, where a conditional form, if

p then a else b, has the value of a if p is T and of b if p is F. These

axioms (again from McCarthy) are:

(Al) if p then a else a

is equal to a (if p is total)

(A2) if T then a else b

is equal to a

(A3) if F then a else b

is equal to b

(A4) If p then T else F

is equal to p

(AS) if p then (if p then a else b) else c

is equal to

if p then a else c

(A6) if p then a else (if p then b else c)

is equal to

if p then a else c

-8-

(A7) if (if p then q else r) then a else b

is equal to

if p then (if q then a else b)

else (if r then a else b)

(A8) if p then (if q then a else b) else (if q then c else a)

is equal to

if q then (if p then a else c) else (if p then b else d)

It is thus possible to test any two conditional expressions for equality.

However, when conditional expressions are used as right hand sides of func

tion definitions, the test for equality of any two function definitions 1is

complicated by the possibility of recursions. It is obvious that if

f = 0(f) and g = lJ (g) are defined so that the right hand sides of their

definitions can be shown to be identical forms by the axioms i.e. that

~(x) = KJ(x) then f and g are identical functions. However, there will be

functions where the right hand sides appear to differ, but the recursion

causes the results of computations to always be identical. For example,

consider the following two definitions (from Morris [7]).

(1) f(x,y) - if Px then y else Gf (Fx,y)

g(x,y) - if Px then y else g(Fx,Gy)

Comparison of these forms by the axioms does not tell us enough about the

functions f and g. To see how to compare these two function definitions

we must understand how to interpret these recursive definitions.

A recursive definition can be considered to be an algorithm for com

puting a function. So the definition

f(x) = if Px then fFx else x

means "to compute f(x) test Px, if Px false the answer is x, if Px true

then compute fFx." To compute fFx, we follow the same algorithm. Obviously,

for some legal function definitions, and some arguments, execution by the

algorithm can continue forever. Thus the functions defined by these condi

tional expressions may well be partial functions. With this interpretation

-9-

of the recursive definition, the following interpretation of the equiva

lence of two such definitions emerges. For any argument, following either

of the two algorithms must always lead to the same answer. For the ex

ample (1) above it is clear that for any argtUnent x, following the algo

rithm for f or for g leads to the same result. In one case~ G is applied

to y at each step in the computation and in the other case the appropri

ate ntUnber of applications of G are recorded to be carried out at the end

of execution. It becomes clear that some way of earrying out induction

over the ntUnber of appeals to the definition is needed i.e. induction on

the level of recursion. For this particular example, we would like to be

able to show that if-,Px, then Gf(Fx,y) == f(Fx,Gy). In other words, at

the next level of recursion, we can either apply G or save it for later.

If this is true then

and we see that a computation of f(x) can actually be done by following

the algorithm for g. Two definitions specifying functions which can be

computed by identical algorithms clearly specify the same functions.

We now begin a review of the existing techniques for proving equiva

lence of recursive functions.

-10-

1.2 Recursion tnduction as defined by McCarthy

In Mccarthy's formalism the right hand side of a definition is a

form which contains certain variable function names. For example, if

f (x) = if Px then fFx else x, then f = C(f) where {!_ represents the con

ditional form. Then g = [.,(g) defines exactly the same function. This

is true because for all x, g(x) is evaluated by following the same algo

rithm as is followed in evaluation of f(x). A proof of the equivalence

of two functions then would go as follows. Given two function definitions

f(x) = t 1

(f) (x)

g (x) - /:) (g) (x)

defines f

defines g

find a third function h(x) = Jf(h)(x) and show that

f (x) = jf(f) (x)

g(x) = Jt (g) (x)

Then we can say that f=g on the domain of h. If h(x) converges, then

f(x) and g(x) are defined and equal to h(x).

'nlere are a few difficulties in using this method. Very little is

said about how to transform the defining conditionals into the required

third form, or for that matter, about how to come up with the third form

in the first place. ~e can use the axioms about conditionals, and results

of any other proofs by recursion induction or any other valid proof tech

niques (proof by analysis of cases, etc.). Often several subproofs and

the generation of many intermediary "auxiliary functions" are required.

No insights are offered as to how proof by recursion induction could be

carried out mechanically. The generation of the third fonn is more often

related to knowledge of the algoritlun and alternatives to it, then to the

forms of the conditional expressions themselves.

Also, the fact that equivalence can be proved only over the domain

of a third function leaves the problem of analyzing the domains of the
:~~_ _, -

-11-

Example of Proof by Recursion Induction

Arithmetic example from McCarthy's paper

The primitive functions are succ and pred (successor and predecessor)

1. g(m,n) - succ(f(m,n))

2. h(m,n) - f(succ(m),n)

where f (m, n) = if n = 0 then m else f (succ (m), pred (n))

[f(m,n) = m + n; g(m,n) is the succ of (m + n) and h(m)

is the (succ of m) + n]

We will show g = h on the domain of i where

1.

2.

i(m,n) :=if n = 0 then succ(m) else i(succ(m), pred.(n))

= J (i)(m,n).

g (tn, n) = succ(f(m,n))

= succ(if n = 0 then m else f(succ(m), pred(n)))

= if n = 0 then succ(m) else succ(f(succ(m), pred(n)))

= if n = 0 then succ(m) else g(succ(m), pred(n))

= J (g) (m,n)

h(m,n) = f(succ(m),n)

= if n = 0 then succ(m) else f(succ(succ(m)),pred(n))

= if n = 0 then succ(m) else h(succ(m), pred(n))

= J (h)(m,n)

:. h = g on the domain of i.

-12-

1.3 Structural Induction as Defined by Burstall

'lhis method for proving facts about programs applies to recursive

programs which operate on a recursively defined domain of structured

data. The data structure must be defined in such a way that a natural

ordering exists on the class as a whole. This ordering must be a par

tial ordering which satisfies the minimum condition, i.e. every non•empty

subset has a minimal element, where x is a minimal element of S if there

is no s < x in S. ('lhis means that there can be no infinite descending

chains.) 'lhe function definitions must be made in such a way that each

level of recursion involves operations on structures which are less com

plex, or lower in this ordering, than the structures of the next higher

level of recursion. By the minimum condition we know then that any such

computation beginnirtg on data in the class, must terminate. Proofs then

proceed by course of values induction on the complexity of the structure,

which means that to prove that a structure of arbitrary complexity has

property P one must prove that the minimally complex elements have P and

that if all structures of complexity i < j have P then a structure of
1 complexity j has P. For example, for a program, f, which operates on

list structures, to prove property P (where P might be that f(x) is equal

to g(x) for all x) it must be shown that f(x) has P assuming f(x') has P

for all x' sublists of x and that the null list has P. As long as a

partial ordering can be defined on the domain, structural induction can

be used even if it is not otherwise natural to consider the data to be

structured in the sense that lists are structured.

You will notice that it is only meaningful to talk about applying

structural induction, as described, to interpreted schema. An interpre

tation is needed to define either the domain and its ordering, or the

structure with primitive functions being interpreted as the appropriate

11he general schema of course-of-values induction on integers is:

;P(O;)~ yj(Yi((i':;<~r& i(i)) ·.=.-~j))

Vk P(k)

-13-

constructor, selector and predicate operations. Referring again to the

example of lists as the domain of definition, the primitive functions

used in function definitions must correspond to such list operators as

head-of-list, rest-of-list, concatenate and the primitive predicate might

be "is atom" or "equals null list."

Example of a :!;>roof by Structural Induction

We can prove the equivalence of g and h defined in the example of

proof by recursion induction by recognizing that the following ordering

on the ordered pairs on which the functions operate satisfies the minimum

condition:

where < is the usual relation "is strictly less than" for integers. Now

we have to prove two things:

1. g(x,O) = h(x,O) fdr any x

(the set ((x,O)jx a number) contains all the ordered pairs which

are "atoms" or minimally complex structures)

2. if g(x,i) = h{x,i) for any i < j

then g(x,j) = h(x,j)

1. g(x,O) - succ(f (x,O))

= succ (if 0 = 0 then x else f (succ(x), pred(O)))

= succ(x)

h(x,O) - f(succ(x),O)

= if 0 = 0 then succ(x) else f (succ(succ(x)),pred{O))

= succ(x)

-14-

2. g (x, j) = succ(f(x,j))

= succ(if j = 0 then x else f(succ(x),pred(j)))

~ if j == 0 then succ(x) else succ(f(succ(x),pred(j)))

= if j = 0 then succ(x) else g(succ(x),pted(j))

= if j = 0 then succ(x) else h(succ(x),pred(j))

(by induction)

h (x, j) = f(succ(x), j)

= if j = 0 then succ(x) else f(succ(succ(x)),pred(j))

= if j = 0 then succ (x) else h(succ(x),pred(j))

For structural induction to apply the functions must be total over

a particular well-defined domain. One method often used to prove total

ity of a function over a domain is to show that at each level of recur·

sion, the value of some variable associated with the cOniputation is de

creased and that this variable cannot decrease in value indefinitely

(Floyd [3)). Th.is proof is implicit in a proof by structural induction,

since the technique could not be applied at all unless such a variable

could be defined. In the example given the variable was the value of the

second argument in successive calls. In a sense equivalence is proved

only over the domain of a third function, this function being the defining

or testing function for the structure. It appears, then, that structural

induction is only a special case of recursion induction, recursion induc

tion applied only to programs meant to operate on structured data or on

partially ordered domains. Also, it may be expected that for many proofs

by recursion induction, no proof by structural induction exists. This

occurs in any case where no structure can be ascribed to the data for

which the function is defined, and in particular for uninterpreted

schemas.

-15-

1.4 Recursive Definitions as Mappings Between Lattices

Before discussing the next two induction principles it is necessary

to review some results of lattice theory (Park [8]) from which alterna

tive interpretations of the recursive definitions can be formulated. We

will not go into lattice theory in any depth, but will simply cite sev

eral definitions and theorems and show how they relate to the function

definitions.

A lattice is a set with a par!ial ordering such that every pair of

elements in the set has a least upper bound and a greatest lower bound. A

complete lattice is a lattice in which every subset of the lattice has a

least up~er bound and a greatest lower bound. To see the relation to-OU-r __ _
study we must realize that the algebra of subsets of a set is a complete

lattice and that functions mapping n-1 tuples into single values can be

viewed as n-ary relations. The set of all n·ary relations on a set D forms

a complete lattice with ~ (set containment) as the partial order and any

thing true for complete lattices will be true for this set. Recursive

definitions will be interpreted as mappings from the set of relations in

to itself. The function defined by such a definition will then correspond

to a fixpoint of this mapping.

Let us first consider an arbitrary lattice L. A mapping c:L ~ L is

monotonic if for all m1 ~ m2, c(~) ~ c(m2). We define now

(1) conv(c) = n (mlc(m) ~ m}.

and notice that

(2) c(m) ~ m ~ conv(c) ~ m

The fixpoint theorem of Knaster-Tarski states that for c monotone

(3) c(conv(c)) = conv(c)

conv(c) = n fmlc(m) :: mJ

or, in words, first. conv(c) is a f1xpoint of the map c, and second, that

conv(c) is the minimal fixpoint. (Proofs in appendix.)

' .~.

-16 -

One further definition leads to an even more illuminating repre

sentation of the fixpoint conv(c). A map c is continuous if whenever

then

c(U m.) = U c(m.).
i=O 1 i=O 1

When c is monotone and continuous

(4)
00

conv(c) = U
i=O

i
c (0).

Now let us see the operation of function definition as a mapping.

We use here an example from arithmetic. Let C'.(f) = ~x.if x = 0 then 1

else x*f(x-1). Then for any known relation f, ~(f) is another relation,

C
1

(f) = ((0,1), (l,l~"f(O)), (2,2~"f(l)), (3,3~"f(2)), }

For example, if f is the identity function, then

C (f) = ((O,l),(l,0),(2,2),(3,6), •.• }. If f is the factorial

((0 , 1) , (1, 1) , (2 , 2) , (3 , 6) , • • . } , then c (f) = ((0 , 1) , (1, 1) , (2 , 2) , (3 , 6) , ••• } ,

i.e. G(f) = f, the factorial function is a fixpoint of C. Also note that,

if for a moment the domain of interest is extended to the integers, then

if f = (••• ,(-3,0),(-2,0),(-l,O),(O,l),(l,1),(2,2),(3,6), ..• }, then again

Ccf) = f.
:7

When we write f = ~(f) our intention is that f represent the minimal

fixpoint of the definition (or mapping) r:,. From lattice theory, it is

known that aJl monotonic mappings have fixpoints. If this method of

writing definitions, i.e. using composition of functions and forming

conditional expressions, always leads to monotonic mappings then all such

recursive definitions are guaranteed to be meaningful in the sense that

each such definition specifies a unique function and that function is the

minimal fixpoint of the mapping associated with the form. By considering

the logical implications of conditional expressions it can be shown that

all such definitions are indeed monotonic (see Park [8}). By examining a

-17-

few conditional expressions for monotonicity, the reader should be able

to convince himself that monotonicity will hold for the class of defi

nitions we have been discussing. A rephrasing of the meaning of mono

tonicity may help. Say we are given a conditional expression C, and we

want to compute e(f) for a particular function f with infinite domain.

As we begin to specify f we can begin to compute t'(f). That is, acer

tain amount of information about f yields certain information about L(f).

Added knowledge about f can reveal further members of (:'..(f), but mono

tonicity guarantees that no new information will ever force a change in

the former characterization of l(f). If f and l~(f) are n-ary relations,

then when an n-tuple is found to be in ('(f) based on a finite number of

n-tuples known to be in f, then that n-tuple is in C'.(f) and no further

information about f will ever .show that (,(f) does not contain that n

tuple. In computer progrannning where programs often represent potentially

infinite computations, although only finite computations can be carried

out, it is good to know that results obtained in a finite amount of time

are reliable. That is the importance of the monotonicity of these defi

nitions.

Now, once we know that the definitions are meaningful, we would like

to understand how the minimal fixpoint of one of them can be found. Since

conditional expressions will always represent continuous mappings, there

is a technique. Continuity of a mapping,C, means that for a series of
co

functions f 1 ~ f
2
~ ••• such that U f. = f, the series of functions

i=l 1-

L(f l) ~ L(f2) ~ ••• has the property that .U ((fi) = L(f). The reader
i=l

will find that if he allows himself to use only the operations set out

above he can generate only continuous mappings (see appendix for a defi

nition which is not continuous). Then, as noted above (4), the fixpoint

of (' is U Ci (O). In the lattice of n-ary relations 0 is 0, the unde-
i=O

fined relation.

For example, we compute the fixpoint of the factorial function as

follows:

l''o (0)

['11(0)

e 2co)

c 3 (0)

00

f u
i=O

0

[(0' 1)}

[(0,1),

[(O, 1),

f.
l.

-18-

fo

= f 1

(1, 1)} = f 2

(1,1), (2,2)} f3

n
Notice that in this case a pair added to the function at (!__ (0) represents

a computation which requires n levels of recursion.

f(3) = 3*f(2) = 3*2* f (l) = 3*2*l*f (0) = 3*2*1*1.

In a proof, induction on level of recursion is induction on the indexes

of these finite approximations to a function.

Before leaving this section we will remark on one more theorem, the

one which resulted immediately from the definition (1) of conv(c). It was

(2) c(x) ~ x ~ conv(c) ~ x. This is interpreted to be the rule for re

cursion induction, since it prescribes a very similar proof technique.

Given functions f and g defined by f = (! (f) and g = .:i(}'(g) (in other

words f = conv(Ch g = conv(l/) we can attempt to prove equality directly

by showing

1. f = b(f)

2. g

These results and the theorem (2) imply 1. f ~ g, and 2. g ~ f. There

fore f = g. When the third function h :=,_)f(h) is used as described by

McCarthy this theorem is involved twice to get the results h ~ f and

h ~ g. This says that f and g are equal over the domain of h.

-19-

1. 5 The µ-rule

In an unpublished paper Scott and deBakker build an algebraic

theory of programs. In it are the usual axioms for conditional expres

sions, and axioms which force a model for the theory to contain only

monotonic, continuous functions. There is one rule of inference, the

µ-rule. It is essentially a rule for simple induction on the level of

recursion. The rule is

Premises: '¥ (0) '¥ (X) _. '¥ (L~\X))

Consequent: '¥ (conv ([7))

where '¥ is the predicate (perhaps it is equivalence of two definitions).

If it can be shown that '¥ is true for the empty function, O, and that '¥

true for a function X implies that '¥ is true for e.(x), then we can as

sume 'f(conv(C:)). This is more meaningful if we recall that

conv(C) = 0 uc.,\o) u (__'?
2

(0) u By simple induction on i, 'f(l:i(O))

is established for all i. By definition of conv(C), this establishes

'f(conv(C)).

Facts to be proved are usually equivalences of two functions or

containment of one function by another, but as with the other methods, its

use can be extended to consider other predicates if suitable extensions

are made to the language. With the µ-rule some questions of domains of

functions seem to be taken care of more easily. If the programs "operate"

in similar ways, i.e. always testing the same predicates on the same argu

ments, the domain comparison is automatically done. However, we do not

find ourselves with an answer to the question of convergence (as we know

we could not). Often it can be proved that one function is contained in

another, but to prove equivalence would be to prove the totality of one

of the functions. While such a proof may be possible given facts about

the particular program (properties of numbers if a program involves

arithmetic) it will not fall out of a proof in this theory.

-20-

Example of Proof by µ-rule

Again, we use the same example.

We prove ~(f) = succ(f(m,n)) = f(succ(m),n)

where f is the minimal fixed point of the definition

i.e. f(m,n)= CCf)(m,n)=if n=O then m else f(succ(m),pred(n))

We need to prove

1. ~ (0)

2 • ~ (X) -+ ~ (e (X))

1. succ (0 (m, n)) = 0 (m,n)

0 (succ (m, n)) = 0 (m, n)

2. succ (C~ (X) (m, n)) succ(if n=O then m else X(succ(m),pred(n)))

if n = 0 then succ (m) else succ (X (succ (m), pred (n)))

= if n = 0 then succ (m) else X (succ (succ (m)), pred (n))

(by assumption that ~(X) holds)

= (_) (X) (succ (m), n)

Finally, note .that recursion induction, in the form attainable fuom lat

tice theory, i.e. CCx) ~ x -+ conv(C) ~ X is a theorem in this theory.

Recursion induction, then is clearly no stronger than the µ-rule on con

tinuous functions.

-21-

1.6 Truncation Induction as Defined by Morris

'lb.is method also depends heavily on the realization that we are

dealing only with continuous mappings. For any recursive definition

f = c;· (f) the truncations of f are the functions fo, fl' f2' ... where

f is f restricted to n levels of recursion
n

'lb.is means fo 0

fl = C' (fo)

f2 t (fl) C--2 (fo)

and as stated before

(1) f
ex> • ex>

u (2
1

(0) = u
i=O i=O

f.
l.

For a particular x, f(x) = y if and only if there is an i such that

f. (x) = y, since the ordered pair (x,y) is in f, as defined in (1), if
l.

and only if (x,y) is in f. for some i. 'Ib.erefore, a proof that for each
l.

i, the ordered pairs in f. satisfy some condition, is. a proof that this
l.

condition must also hold for the function f. For example, if for each i,

f. contains only ordered pairs of the form (x,O) then the ordered pairs
l.

in f can only be of that form. In comparing two functions, f and g, if it

can be shown that for all i, f. = g., then clearly f = g.
l. l.

To obtain results about f. proofs proceed by course-of-values induc
i

tion on the index of the truncations. From P(f0) and V.<. P(f.) ~ P(f.)
l. J l. J

we infer P(f).

The difference between truncation induction and the µ-rule is that

the latter method is restricted to the use of simple induction on these

truncations. Both methods are equally powerful, but whether course-of

values induction or simple induction is more convenient in dealing with

recursive function can still be questioned. Morris' main argument for

-22-

truncation induction is to compare it to McCarthy's recursion induction

and show that some of the convergence problems can be avoided. However,

with a looser interpretation of recursion induction, which we will see is

justified, as much can be said about convergence. And of course using

truncation induction still does not make it possible to directly prove

strong equivalence of a recursively defined function and a constant one.

Example of Proof by Truncation Induction

We want to prove succ(f(m,n)) = f(succ(m),n)

where f(m,n) = if n = 0 then m else f(succ(m), pred(n))

From this definition we define the truncations of f to be

fi(m,n) =if n = 0 then m else fi-l (succ(m),pred(n))

We must prove 1. succ(f
0

(m,n)) = f
0

(succ(m),n)

2. if Vi< j, succ(f. (m,n)) = f. (succ(m),n)
1 1

then succ(f.(m,n)) = f.(succ(m),n)
J J

1. succ(f0 (m,n)) = succ(O(m,n))

f 0 (succ(m),n) = O(succ(m),n)

0 (m, n)

n (m, n)

2. succ(f.(m,n)) = succ(if n = 0 then
J

= if n = 0 then succ(m) else

m else f.
1

(succ(m),pred(n)))
J-

succ(f. 1 (succ(m),pred(n)))
J-

if n = 0 then succ(m) else f. 1 (succ(succ(m)),pred(n))
J-

f. (succ (m), n)
J

(by induction)

U1
J _j~c~tiye_s

in 1- 11e fn]]-1wi ''-' ·-;"'-'' i'''"" -,,:;p wi l 1 J,:·ith ·1001•, lor similarities among

,.. f("Jr ::··pf-h)ds tirP\-i''"sh desr-rjiip-\, and illvPc;l·i.gate the nature of some

:1« j 1 rl ff {-rencp<.~ _ -"' wi.11 ;1,, this c< nnp<ir i ng proofs of identities

nf nro(• fs fr Pm one method to an

i ncon1p<<rab le we will show how

";c;,l)·•e 1 !''""'."' ::iho11t program definition, proofs

'«'li11p,J 'v «J. comhinat:ion of arguments.

-24-

2.2 Structural Induction and Truncation Induction

While structural induction and truncation induction depend on dif

ferent properties of functions, the former being induction on the com

plexity of a data structure, and the latter on the complexity of a com

putation structure, the restrictions on the form of function definition

as specified by Burstall make these differences insignificant. The fol

lowing comments on this restricted class of definitions will show that

complexity of data structure and level of recursion are so closely re

lated in these definitions, that they are interchangeable as indexes for

inductive proofs.

Structural Induction is a special case among the inductive methods.

It is the only one which is defined for interpreted programs, and only

for those which operate in a particular way on structured data types.

(i.e. We cannot use an arbitrary well-defined ordering on the domain for

induction. It must be an ordering such that each recursive call by the

function is guaranteed to be made with an argument which is lower in the

ordering.) On these programs, structural induction is quite simple to

use and to justify independent of facts about recursive functions. The

induction involved is induction on the complexity of an ordering on data,

a familiar type of induction not requiring the introduction of any new

knowledge or notations about functions. The recursion implicitly involved

in the function definition is not the interesting phenomenon. The proof

works because of properties of the data structure, rather than properties

of the recursive nature of the function. The actual proof is an examina

tion of the function in terms of calls on less structured data, rather

than in terms of calls requiring fewer and fewer nested calls, or calls

on less fully specified partial functions. No insight into fixpoints or

their constructions is necessary.

Structural induction could as easily be justified by considering the

structure of the recursive functions. In fact, if truncation induction

is used in a proof about functions defined in the specified way it would

be found that exactly the same inferences are made though supposedly for

different reasons. Let us examine the general pattern of a proof by

-25-

structural induction of the equality of two functions, f = j (f) and

g = ,~(g), on a domain of structured data. To prove '1;fxf(x) = g(x) we

prove first that f(x.) = g(x.) for all x. which are atoms or minimally
i i . i

complex structures. This part of the proof will necessarily be very

straightforward since evaluation of P(x.), (or g(x.)), x. atomic, cannot
i i i

involve recursive calls on f (or on g) since any recursive call on f

(or g) is made with an argument with less complex structure than that

of the original argument. When this original argument is already mini

mal, the final result must be directly obtainable from known functions.

This is clear from the definition of the function which in general takes

the form

(1) f(x) - if (x atomic) then t 1 (x) else L!2 (f) (x)

Therefore, by analysis by case (should there be more than one minimal ele

ment) this first part of the proof should be trivially true.

Next we must prove that for any x which is not minimal f(x) = g(x),

given that Vx' < x, f(x') = g(x'). Again, we refer to the restriction on

the formsof f and g. Since any occurrence of f on the right hand side of

the definition f(x) = ~(f)(x) represents an application off to a less

complex structured argument, the assumption f(x') = g(x') may as well be

restated as an assumption that Vx(f(x) = g(x)) for all subsequent calls

on f and g. To be sure that the induction hypothesis is used only when

valid, subscripts might be used to differentiate between the original use

of f and subsequent recursive calls.

The similarity to truncation induction is becoming more obvious now.

The induction step is virtually identical for proofs on this class of pro

grams. It is necessary to prove f.(x) = g. (x) assuming either that
i i

f. (x) = g. (x) for j < i or that for all recursive subcalls on f and g in
J J - - - -

the evaluation, f(x) = g(x). How does the basis for induction compare?

In truncation induction we show f
0

(x) = g
0

(x). Then from the induction

step it follows that f 1 (x) = g 1 (x). In terms of the definitions off

and g, this means Jr (0) (x) = A<o) (x). Referring back to the general

form (1) of functions for which it is meaningful to consider proof by

structural induction, this says that f and g agree for the atomic

-26-

structures. Thus the analogy is completed between structural induction

and truncation induction. When we prove f(x) = g(x) for x atomic we are

establishing f 1 (x) = g1 (x). This is then the basis of induction,

whether we consider it to be induction on the complexity of the data

or on the depth of recursion. 1

The validity of starting proofs from this basis seems questionable

in light of the construction of the minimal fixpoint. For most statements

provable by structural induction, it is true that the basis generally used

for truncation induction proof is true as well and in translating to a

trunction induction proof we could, in fact, write a valid proof with the

statement for i = 0 as the basis. Thus any two recursively defined func

tions known to be equivalent due to proof by structural induction, can gen

erally be shown to be strongly equivalent by truncation induction and

therefore equivalent on the domain of interest, confirming the results of

the structural induction proof. However, a structural induction proof may

be dependent on the implicit assumption that any function to be examined

is total on the domain of interest (this assumption can, in fact, be

proved as noted at the end of section 1.3). For an example, take a defi

nition f = :/(f) satisfying the criteria for structural induction and de

fining the function f, where f (x) is equal to the constant A for all x.

A structural induction proof that f(x) =A is easy to write. However,

by truncation induction alone, only the weaker statement f ~ ~x.A can be

proved. This is true because the strongest statement provable as a basis

for induction is f
0

~ ~x.A. The statement f
0

(x) = A is not true. The

1
The reader might note that structural induction as stated here seems a
bit redundant, in that the proof of equality of f (x) = g(x) for x atomic
is included in the proof of f(x) = g(x) for general x, since clearly
there must be a correspondence between the first then-clauses of both
definitions for the induction step to carry through, and this correspond
ence proves f(x) = g(x) for x atomic. This redundancy occurs here because
of the consistent use of McCarthy's notation writing the whole conditional
in each part of the proof. Burstall, in his paper [l], makes a few nota
tional changes and writes functions by case. Then using analysis of cases
in proof, the cases x atomic and x not atomic are separate and the two
parts of the proof do not overlap. In examples, where identity is clear,
unnecessary parts will be omitted.

-28-

1. succ(f(m,n)) _ succ(if n = 0 then m else f(succ(m),pred(n)))

if n 0 then succ(m) else succ(f(succ(m),pred(n)))

if n 0 then succ(m) else f(succ(succ(m)),pred(n))

(by induction)

2. f(succ(m),n) =if n = 0 then succ(m) else f(succ(succ(m)),pred(n))

The truncation induction proof of succ(f. (m,n)) = f. (succ(m),n) follows
i i

simply by combining the two parts of the structural induction proof with

subscripts added.

succ(f.(m,n)) _ succ(if n = 0 then m else f.(succ(m),pred(n)))
i i

if n 0 then succ(m) else succ(fi_ 1 (succ(m),pred(n)))

if n 0 then succ(m) else f. 1 (succ(succ(m)),pred(n))
i-

= f.(succ(m),n)
i

Example 2 (from Burstall [lJ)

(by induction)

lit(f,s,y) =if empty(s) then y else f(head(s),lit(f,rest(s),y))

[head(s), rest(s), concat(sl,s2) are primitive functions corresponding to

the obvious list operators]

We want to prove

lit(f,concat(sl,s2),y) = lit(f,sl,lit(f,s2,y))

The proof will be by structural induction on the list sl.

1. for sl = nil

lit(f, concat(sl,s2),y) = lit(f,s2,y)

lit(f,sl,lit(f,s2,y)) = lit(f,s2,y)

-29-

2. for sl # nil

lit(f,concat(sl,s2),y)=f(head(concat(sl,s2)),lit(f,rest(concat(sl,s2)),y))

= f(head(sl),lit(f,concat(rest(sl2,s2~,y)f

f(head(sl),lit(f,rest(sl),lit(f,s2,y)))

(by induction)

lit(f,sl,lit(f,s2,y)) - f(head(sl),lit(f,rest(sl),lit(f,s2,y))).

In this proof it is not obvious how the assumption about the domain

is used until we try to set up the induction hypothesis for a truncation

induction proof.

We want to prove lit.(f,concat(sl,s2),y) = lit.(f,sl,lit.(f,s2,y))
i i i

However, for i,sl,s2 such that i < length(concat(sl,s2)) but i ~ length(sl)

and i ~ length(s2) the left hand side is undefined while the right hand

side is defined.

We can therefore only prove

lit.(f,concat(sl,s2),y) ~lit. (f,sl,lit.(f,s2,y))
i i i

1. base

O(f,concat(sl,s2),y) = O(f,sl,O(f,s2,y))

2. lit.(f,concat(sl,s2),y) =if empty(concat(sl,s2)) then lit.(f,s2,y)
i i

else f(head(concat(sl,s2)),lit. 1 (f,rest(concat(sl,s2)),y))
i-

=if empty(concat(sl,s2)) then lit.(f,s2,y)
i

else f(head(sl),liti_ 1 (f,concat(rest(sl),s2),y))

~ if empty(concat(sl,s2)) then lit. (f,s2,y) else f(head(sl),lit. 1 (f,
i i-

rest(sl),liti_1 (f,s2,y)))

= lit.(f,sl,lit. (f,s2,y))
i i

Once the correct subscripting is decided on, all steps are just simple

transcriptions of the steps of the structural induction proof.

-30-

Example 3. Illustrating the case in which domain assumptions are involved

in a proof comparing a recursively defined function to a known function on

the natural numbers.

f(x) = if x = 0 then 1 else x*f(x-1)

we want to prove f(x) = x!

By structural induction:

for x = 0 f(x) = 1 and x! = 1

for x ~ 0 f (x) = x*f (x-1)

= x* (x-1) l (by induction)

= x!

f (x) = x!

To do a truncation induction proof we would want as our induction

hypothesis fi(n) = n!, however, this is not true for any i. !nstead we

will prove f.(x) s:: x!
l

1. f 0 (x) = O(x) s:: x!

2. f. (x) - if x = 0 then 1 else x * fi-l (x-1)]_

= if x = 0 then 1 else x * (x-1) !

= x!

f(x) s:: x !.

From the form of the computation (which performs successive reductions in

the initial integer argument) it is clear that f(n) converges for all

natural numbers. Therefore, f(x) = n! for n a natural number.

Notice that this sort of argument does not just allow one to ignore

the difference between containment and equality in cases outside the class

of programs for which structural induction can be used. For example, with

the following function:

-31-

f(x) = if x = 1 then 0 else if x even then f(x/2) else f(3x+l)

at present, only f ~ ~x.O can be proved since there is no known independent

way of describing an ordering on the integers such that a convergence argu

ment can be made showing f to be total over the natural numbers.

For completeness, note the fact that although truncation induction

has more general application it is consistent with structural induction

whenever applied to definitions in the class to which this method applies.

Therefore any fact proved by truncation induction about such a program

will clearly be provable by structural induction. Furthermore, a legiti

mate proof by structural induction can be written quite mechanically by

simply copying the truncation induction proof without the subscripts.

This gives us the induction step, the basis being easily extractable as

discussed above due to both the form of the definition and notational con

ventions.

-32-

2.3 µ-rule and Truncation Induction

The difference between µ-rule and truncation induction is essentially

the difference between simple and course-of-values induction. Both meth

ods are based on the same construction of fixed points, namely
co •

conv(t) = lJ <..!i(O). In comparing some pairs of functions you will find
i=O

that often the equality of the two functions for a particular argument

is based on their equality for other arguments found after some finite

number of recursive calls. Or, to put it another way, it may be that for

each x, if f(x) and g(x) are defined at stage i of the constructions of

f and of g, then they are equal if and only if f(x') = g(x') at some

stage j < i, j # i - 1. To prove equivalence by truncation induction is

simple, since the assumption is for all j < i. By µ-rule, a series of

proofs must be performed, establishing iden~~tiel? _a_~_s_tag~~-.

j, j+l, •.• , i-1 so that each proof requires looking back only one step

in the construction. That there is no real difference in proving power

between these two methods becomes clear by establishing procedures for

transforming one type of proof into the other.

That µ-rule induction is no more powerful than truncation induction

is clear, since a µ-rule proof can be interpreted as a truncation induction

proof directly, where all induction hypotheses happen only to be applied at

one level. If, on the other hand, an equality is established by truncation

induction, it will also be possible to prove it by µ-rule. Keeping in mind

that the only additional restriction is the limit of looking back one step

at a time in the construction, it can be seen that the µ-rule proof will

have to be a series of proofs, one for each level at which the induction

hypothesis is used. We will now go into more detail on these observations

and work out a few examples.

Truncation induction allows us to assume f = g for all occurrences of

fin the computation of ~(f)(x), while the µ-rule allows this assumption

only for the occurrences of f at the first level of recursion. This ex

plains the statement of the µ-rule induction step as being a proof that

-33-

P(X) ~ P(~ (X)). It is a notational convenience to help in av()idi~L t_~-- -~ __

temptation to expand j (f) (x) to _j c.:;t(f) ,x) and to possibly reuse the

induction hypothesis. It is, true that f =gin .~(f)(x) but it is no

longer true that, for this f, f = .,j(f). This f is a dummy variable about

which only P(f) is known. We will see though that this may not be such a

restricting condition, by showing how we can always find a µ-rule proof if

we already have a truncation induction proof.

If Pis a conjuction P1 A •.. A Pk and we know P(X), then we

know P1 (X) A ••• A Pk(X). Then proving P(conv(j,)) for some function speci

fied by the definition f = j, (f) proves P 1 (conv (;1;)) and ••• and Pk (conv (c:i))

simultaneously. In a truncation induction proof there can only be a

finite number of inferences which follow from the definition f = .,j(f).
For each of these inferences which would be invalid in a proof by µ-rule

Pi can be defined to be the part of P which will allow us to make the

necessary inference. Let us do the conversion for one case before dis

cussing the general case any further.

Example 1.

prove f(x,y) = g(x,y) by truncation induction

f(x,y) - if Px then y else Gf (Fx,y)

g(x,y) - if Px then y else g(Fx,Gy)

1. fi (x,y) _

2.

3. (ind)

4. (def)

5.

6. (ind)

7. (def)

8. (ind)

9. (def)

if Px they else Gf. 1 (Fx,y)
].-

= if Px then y else Ggi-l (Fx,y)

if Px then y else G(if PFx then y else gi_ 2 (FFx,Gy))

if Px then y else if PFx then Gy else Ggi_ 2 (FFx,Gy)

= if Px then y else if PFx then Gy else Gf. 2 (FFx,Gy)
i-

if Px then y else fi_ 1 (Fx,Gy)

if Px then y else gi_ 1 (Fx,Gy)

gi c:X. Gy)

2.

3.

7.

s.

9.

Proof

3.

4.

5.

6.

7.

-35-

- if Px then y else GX(Fx,y)

(ind)
1 = if Px then y else GY(Fx,y)

(ind2) if Px then y else X(Fx, Gy)

(ind
1

) if Px then y else Y(Fx,Gy)

(def) j(X) (x,y)

of P2 (}(X),)J(Y))

G(,/j(Y) (Fx,y) :=

2 G(if PFx then y else Y(F x, Gy))

if PFx then Gy else GY(F2x,Gy)

= if PFx then Gy else GX(F2x,Gy)

= j(X)(Fx,Gy)

The reader may find that a shorter proof by µ-rule is possible if

P2 is formulated slightly differently, but the predicate as stated here

shows the exact correspondence between the two proofs and would be the

best choice in terms of a mechanical translation from one proof to the

other.

In the general case, a few more properties of the proof may have to be

taken into account in formulating some Pk. In the second level proof in ex

ample 1 the only facts used were the induction hypothesis and the fact that

G was distributive over the clauses of a conditional. However, the entire

subproof took place under the additional hypothesis that -,Px was true,

since all changes were in the else-clause of a conditional based on the

test Px. Actually P2 should have been -,Px-+ Gg(Fx,y) = f(Fx,Gy). It is

not difficult to find examples of proofs where facts about the arguments

implied by the result of a conditional test are necessary conditions for

further equivalences. It just happens that in this case it is true that

for all x,Gg(Fx,y) = f(Fx,Gy). Also, it may occasionally be necessary in

a proof by truncation induction to use as justification for one step the

result of some other proof by truncation induction. This result too can

be treated as a constituent of the predicate to be proved by the µ-rule,

-36-

and its proof will be found in the same manner.

A more general procedure

to a proof by µ-rule follows.

cation induction we will prove

for changing a proof by truncation induction

Given a proof ~t of Pt (f1 , ..• fn) by trun-

p (f1, ..• , f) where P P f\ P ••. f\ P f\
µ n µ t Y1 Yn

p f\
xl-zl

(1)

(2)

f\ P where xm-Zm
P is a predicate corresponding to the subproof yi
Yi

P is the predicate C ~ P.
xi-zi xi i

where P. is the predicate which would justify skipping the block of
i

lines x. toy. if x.+l follows from x. by an expansion by definition of
i i i i

a function (and x. I 1) and y. is the first line after x; in which all
i i

functions are again at level of recursion of line xi.

C. describes the conditions which hold for the clause of the condi
i

tional in which the fact that P. is true of the functions involved is used.
i

Once the proper predicate is formulated, proof is written by transcribing

of the lines of -~ into ~ in the obvious manner.

Example 2.

We will prove g (x,x) = h(x), by showing g. (x,x)

basis

1.

2.

3.

4.

5.

6.

i

f (x) = g (x,x)

g (x,y) = if Px then hy else g(Fx,y)

h(x) = if Px then x else hFx

g0 (x,x) = O (x,x) = 0 (x) = h0 (x)

g.(x,x) -
i

=

(subpr)

(ind)

(def)

if Px then hx else g. 1 (Fx, x)
i-

if Px then x else g. 1 (Fx,x)
i-

if Px then x else gi-l (Fx,Fx)

if Px then x else h. 1 (Fx)
i-

h. (x)
i

h. (x).
i

(Px => h (x) x)

-37-

Proof that for all i (Vx'\fy (-, Px ~ g. (y ,x)
l.

g. (y,Fx)))
l.

1.

2.

3.

4.

5.

g.(y,x)
l.

(ind)

(def)

if Py then hx else g. 1 (Fy,x)
i-

= if Py then hFx else g. 1 (Fy,x)
l. -

(--, Px ~ hx = hFx)

if Py then hFx else gi-l(Fy,Fx)

g. (y,Fx)
l.

From this proof by truncation induction we formulate the following proof

by µ-rule.

P (g,h) = g(x,x) µ = h (x) /\ --, Px ~ g (Fx, x) = g (Fx, Fx)

The induction part of the µ-rule proof will be:

1. A (X) (x,x)

2. =if Px then hx else X(Fx,x)

3. = if Px then x else X (Fx,x)

4. (ind2) = if Px then x else X(Fx, Fx)

5. (indl) if Px then x else Y(Fx)

6. (defn) =fl (Y) (x).

and

1. ,4 (X)(y,x)

2. - if Py then hx else X(Fy,x)

3. = if Py then hFx else X(Fy,x)

4. (ind2) = if Py then hFx else x (Fy' Fx)

5. (defn) = /) (X) (y, Fx)

-38-

At the beginning of this section we also suggested a way of finding

a truncation induction proof to correspond to a given µ-rule proof. The

simplest way is to note that a µ-rule proof is a truncation induction

proof in which only a restricted form of the induction hypothesis is

used. A substitution throughout the proof of fi for ~~(X) and of fi-l

for X will directly yield a truncation induction proof. If the µ-rule

proof is of a complex statement (i.e. a conjunction of statements) it is

simply necessary to use a corresponding conjunction for the truncation

induction proof.

Example 3

We want to pro~e f(x,y) = g(x,y) and will do this by the µ-rule by proving

f(x,y) = g(x,y) /\ Gg(Fx,y) = g(Fx,Gy)

1. 0 (x,y) = 0 (x,y)

2.

G(D(Fx,y))= O(Fx,Gy)

a. ~(X) (x,y) ~ if Px then y else GX(Fx,y)

= if Px then y else GY(Fx,y)

{by induction 1)

= if Px then y else Y(Fx,Gy)

(by induction 2)

= J (Y) (x,y)

b. G,.)/{Y)(fx,y) = G(if Px then y else Y(FFx,Gy))

= if Px then Gy else GY(FFx,Gy)

= if Px then Gy else Y(FFx,GGy)

(by induction 2)

= A<Y) (Fx, Gy).

-39-

A corresponding truncation induction proof is then:

We want to prove

f(x,y) = g(x,y) A Gg(Fx,y) = g(Fx,Gy)

and do so by proving by induction that

Vi(f.(x,y) = g. (x,y) A Gg. (Fx,y)
i i i

g (Fx, Gy))

2. assume f.(x,y)
J

g . (x, y) A Gg . (Fx, y) = g . (Fx, Gy)
J J J

for j < i

fi (x,y) = if Px then y else G fi-l(Fx,y)

= if Px: then y else G gi-1 (Fx,y)

(by induction 1)

= if Px: then y else g. 1 (Fx, Gy)
i-

(by induction 2)

= g. (Fx, Gy)
i

and Gg. (Fx,y) = G(if Px then y else gi-l (FFx,Gy))
i

=

--- - -------------

if Px: then Gy else G gi-l (FFx,Gy)

if Px: then Gy else gi-l (FFx, GGy)

(by induction 2)

g. (Fx,Gy)
i

-40-

2.4 Recursion Induction and Truncation Induction

The comparison between these two methods begins with ·show-ing -that

truncation induction can be used to prove any result proved by recursion

induction. The general principle behind the transformation of a recursion

induction proof into a truncation induction proof is quite simple. If

by recursion induction it can be proved that f = g, then it must be the

case that for some 4 = Jf (h)

and

g =.J.J- (g).

/,-,. H The truncations f. = -ef'(f. 1) and g. = r:J(g. 1)
1 1- . 1 . 1-

erally be expressed as fi =.Jl(fi_ 1)

of f and g can then gen-

8 i = },j(gi-1).

A proof by truncation induction is then just the combination of the two

parts of the recursion induction proof, as follows:

;J
f. E :-i(f. 1)

1 1-

= ~ (fi-1)

=J.J (gi-1)

=)/(gi-1)

(by the result of rec.ind. proof)

(by induction)

(by rec. ind.)

For simple recursion induction proofs, this transformation can be done

quite mechanically, based on this outline.

-41-

Example 1

We will prove that succ(f(m,n)) = f (succ(m),n) where f is defined as in

section 1.2.

Define h = \m.~n. if n = 0 then succ(m) else h(succ(m), pred(n))

1. succ(f(m,n)) = succ(if n = 0 then m else f(succ(m), pred(n)))

= if n = 0 then succ(m) else succ(f(succ(m), pred(n)))

= }J- (\.m,\n. succ(f(m,n))) (m,n)

2. f(succ(m,n)) 5 if n = 0 then succ(m) else f(succ(succ(m)), pred(n))

= .J.I (\m. ~n. f (succ (m), n)) (m, n)

Then the induction part of a truncation induction proof could be written:

succ(f.(m,n)) = succ(if n = 0 then m else f. 1 (succ(m), pred(n)))
1 1-

(ind)

= if n = 0 then succ(m) else succ(f. 1 (succ(m), pred(n)))
1-

= .J.f(\m.~n. (succ(f. 1 (m,n))) (m,n)
1-

_j./. (\m.\n,fi_1 (succ(m),n)) (m,n)

= if n = 0 then succ(m) else f. 1 (succ(succ(m)), pred(n))
1-

= fi (succ (m), n).

There will be cases where this rule will not be directly applicable.

Proofs in which the recursion induction principle is used less directly

(for example in a subproof contained in one of the clauses of the defining

conditional), or in which it is unclear how we are using the definitions

or to what depth of recursion we have descended will require some examina

tion to determine at just what point this "combination of proofs" will go

through to produce a proof by truncation induction.

Some further examples should illustrate the types of considerations

to be made before applying the rule.

------------ -- - --------

-42-

Example 2

We will prove another identity involving the same f of example 1.

f(f(m,n),p) = f(f(m,p),n).

First we define h=A.m.A.n,A.p. if p=O then f(m,n) else h(succ(m),n,pred(p))

1. f(f(m,n),p) = if p = 0 then f(m,n) else f(succ(f(m,n)),pred(p))

= if p = 0 then f(m,n) else f(f(succ(m),n),pred(p))

(by proof ex. 1)

=)J..(Am. A.n. A.p.f(f(m,n,p)))(m,n,p)

2. f(f(m,p),n) = f (if p = 0 then m else f(succ(m),pred(p)),n)

= if p = 0 then f(m,n) else f(f (succ(m),pred(p)),n)

= J.J-<A.m. A.n. A.p. f (f (m, p), n)) (m, n, p)

Notice that in part 1 the first occurrence of f is expanded by definition,

while in part 2 we expanded the second occurrence. In neither part did

we have to expand both occurrences of f. This fact is important in deter

mining exactly which indexes will be involved in the induction of the trun

cation proof. While a proof by truncation induction of

fi(fi(m,n),p) = fi(fi(m,p),n) is possible it is not the proof most closely

related to the recursion induction proof. The goal should be one for

which the identities already proven by recursion induction can be used to

generate mechanically a truncation induction proof. To that end, consid

ering the manner in which recursion induction was used to achieve the de

sired results, a goal in terms of truncations can be found which will en

able us to do this.

From this proof we get

f.(f(m,n),p) = f(f.(m,p),n)
i i

and the following proof, with subscripting the on.ly revision necessary

(i.e. no new steps need be added)

-43-

fi(f(m,n),p) =if p = 0 then f(m,n) else fi-l (succ(f(m,n)),pred(p))

if p = 0 then f(m,n) else f. 1 (f(succ(m),n),pred(p))
l. -

')i(~m.~n.~p. fi_ 1(f(m,n),p))(m,n,p)

= _Jf- (~m.~n.~p. f(fi-l (m,p) ,n)) (m,n,p)

= if p 0 then f(m,n) else f(fi-l (succ(m),pred(p)),n)

f(if p = 0 then m else fi-l (succ(m),pred(p)),n)

f(f. (m,p),n).
l.

Example 3

f (x) = g (x,x)

g(x,y) = if Px then hx else g(Gx,y)

h(x) = if Px then x else hFx

proof that f(x) ~ h(x) (by showing f = J./(f))

1. f(x) = g(x,x) = if Px then hx else g(Fx,x)

= if Px then hx else g(Fx,Fx)

if Px then hx else fFx

=)f-(f) (x)

2. w.t.p. -,Px~g(y,x) = g(y,Fx)

Define i = ~y.~x. if Py then hFx else i(Fy,x)

a. g(y,x) _ if Py then hx else g(Fy,x)

= if Py then hFx else g(Fy,x)

(since ..., Px~ hx = hFx)

=) (~ y. ~x • g (y, x)) (y , x)

b. g(y,Fx) = if Py then hFx else g(Fy,Fx)

= 3J ~y.~x. g(y,Fx)) (y,x)

See second part of proof

-44-

The truncation induction proof follows:

f. (x) = g. (x,x) =if Px then hx else g. 1 (Fx,x)
i i i-

if Px then hx else gi-l (Fx,Fx)

=if Px then hx else fi_ 1 (Fx)

= J* (f. l)(x)
i-

(see next proof)

(definition)

=)J..(h.
1

) (x)
i-

(by induction)

= h. (:it).
i

w.t.p, Px~ gi (y,x) = gi (y,Fx)

gi(y,x) =if Py then hx else gi_ 1 (Fy,x)

=if Py then hFx else gi-l(Fy,x)

= ..9 0y.A.x. gi-l (y,x))(y,x)

= .j(t.y.A.x. gi-l(y,Fx))(y,x)

=if Py then hFx else gi_1 (Fy,Fx)

= g. (y~Fx).
i

Conversely, given a truncation induction proof, some of the informa

tion in the proof can be used towards the writing of a recursion induction

proof. If the truncation induction proofs in this section are examined,

the reader will notice that the ste?S in which the conunon form is ex

plicitly written out are superfluous, the exact same induction could have

been performed directly on the expanded form. In an ordinary truncation

induction proof, at the places where the induction hypothesis is used it

should be possible to extract forms for the third function used in a re

cursion induction proof. As a matter of fact, informal performance of

proof by truncation induction is probably the most often used technique

for deciding what the third function should look like. One starts at both

ends, expanding by the definitions the forms which are being compared un

til a connnon form is found.

-45-

There will be complications in applying this procedure to arbitrary

truncation induction proofs, generally of the sorts investigated in the

previous section on µ-rule and truncation induction. That is, in proofs

with several successive steps by induction or definition at levels below

i-1, the proof must be broken up into one step proofs, since recursion in

duction generally works on less depth of recursion than does truncation in

duction. Also in recursion induction, levels of recursion are not part

of the function definition. This means certain of the arguments used in

a µ-rule proof could not be used. For instance, for a proof of

Pl (f) A P2 (f) in which Pl (j;(X)) is proved using only P2 (X) and P2 (j.(X))

is proved using only P1 (X), the corresponding reasoning would appear cir

cular by recursion induction, where we would be saying that we can prove

P1 (f) if P2 (f) is true while P2 (f) is true if P
1

(f) is true. When a trun

cation induction proof is carried back several levels of induction this

kind of reasoning results. If, in extracting subproofs as

was done in trying to get a µ-rule proof, these sequences of lines are

examined for common forms across one or more induction call~means can be

found for getting around this. For example, looking back to Example 1 of

section 2.3, by calling lines 3 to line 8 the subproof we will find line 5

to describe the third form desired. In short, the change from truncation

induction to recursion induction takes the same sort of recognition of

useful third forms as does the original proof by recursion induction.

A proof of f(x,y) = g(x,y) by recursion induction would actually take

two parts f ~ g, g ~ f. One corresponds to showing g = ~-(g) the other

off =~(f). These in turn correspond to making a subproof about lines

3 - 8 or lines 2 - 7 of the truncation induction proof, respectively.

We will do g(x,y) ~ f(x,y).

Therefore we want to prove f =~(f)

Proof l

f(x,y) c if Px: tht'n y else r:f<Fx,y)

= if f'x then v e 1 se f (Fx:, Cij)

(by proof 2)

g (x' y) if Px then y else g(fx,Gy)

Proo [2

We want to prove Gf(Fx,y) = f(Fx,r.~y)

define h = A.x.A.y. if Px then Gy else Gh(Fx,y)

Gf(Fx,y) = G(if Px then y else Gf(FFx,y))

= if Px then Gy else GGf (FFx,y)

= }f--(A.x,/1.y. Gf(Fx,y)) (x,y)

f (Fx, Gy) if PFx then Gy else Gf(FFX,G)')

=)tf(\x,\.y. f(Fx,Gy))(x,y)

-47-

2.5 Recursion Induction and Structural Induction

Since, as seen in section 2.2, structural induction and truncation

induction are so similar, the relation between recursion induction artd

structural induction should not be very different from that between re

cursion induction and truncation induction with respect to the appropri

ate class of programs. There are a few additional observations which can

be made, however, about Burstall's treatment of these methods in his

paper.

Burstall defines structural induction first as induction on complex

ity of data structures for which there are constructor functions, se

lectors and decidable predicates. He then explains that in its full gen

erality structural induction actually applies to programs on any domain

which satisfies the minimum condition and for which the computations pro

ceed in accordance with the decreasing order of arguments. We have used

these definitions in this general sense in many of our examples. Burstall

does not, however, really explore structural induction in its fullest gen

erality in his paper. Every one of his examples is of the type (corre

sponding to those of section 2.4) which translates simply into a recur

sion induction proof. The induction is always simple, taking advantage

of only one stage in the fixpoint construction (or in the structural or

dering). It seems that his conception of structural induction was really

quite a bit narrower than his own definitions indicate, as he only makes

use of one level of recursion in each proof. 'Ihis would explain why, as

Burstall mentions without details at the start of his paper, McCarthy

was able to give a very simple and convincing argument that structural
•

induction is just a special case of recursion induction. As Burstall

uses it, that is exactly what it is, a straightforward rewriting of the

proof being enough to change from proof by one method to the other.

While the transformation is possible, in general it is not a mechanical

process, but depends heavily on the extent to which the structural induc

tion proof was restricted to forms closely compatible with recursion in

duction. By the parallels drawn between structural induction and trunca

tion induction we know that a structural induction proof can depend on

,,..-~,

-48-

application of the inductive hypothesis at lower levels of recursion

and that some stuµy may be required to draw out the computational struc

ture and associated conditional forms relevant to a recursion induction

proof.

To illustrate let's look at two proofs of f(x,y) = g(x,y) by

structural induction where f and g are the following interpreted ver

sions of our familiar example.

f (x,y) - if x = 0 then y else f(x-1,y) + 1

g(x,y) - if x = 0 then y else g(x-1,y+l)

The ordering on the domain is (x1,y1) (3) (x2,y2) iff x1 < x2
The first proof is by structural induction with preference for style of

recursion induction

f(x,y) = if x = 0 then y else f (x-1,y) + 1

= if x = 0 then y else g(x-1,y) + 1

(by induction)

g(x,y) - if x = 0 then y else g(x-1,y+l)

= if x = 0 then y else g(x-1,y) + 1

(by proof of g(x,y) + 1 = g(x,y+l)

g(x,y) + 1 = if x = 0 then y + 1 else g(x-1,y+l) + l

= if x = 0 then y + 1 else g(x-l,y+2)

(induction)

g(x,y+l) = if x = 0 then y + 1 else g(x-l,y+2)

This second proof of f(x,y) = g(x,y) is carried out just as in the uninter

preted case by truncation induction

f (x,y) =if x = 0 then y else f(x-1,y) + 1

= if x 0 then y else g (x-1,y) + 1

= if x 0 then y else if x - 1 = 0 then y + 1

else g(x-2,y+l) + l

-49-

= if x = 0 then y else if x - 1 = 0 then y + 1 else

f (x-2 ,y+l) + 1

if x = 0 then y else f (x-1,y+l)

= if x 0 then y else g (x-1,y+l)

= g (x,y)

This proof uses the induction hypothesis f(x',y') = g(x',y') for all

(x',y') (3) (x,y) more generally than the previous proof did. The first

proof clearly le~ds itself more easily to reinterpretation as a recursion

induction proof.

As we said before, no proof of Burstall's in illustration of his

definitions uses the induction hypothesis more than once. It seems that

if he had to describe his conception of recursion it would be more like

a µ-rule theory explanation than like a truncation induction one. The

reason why he still needs to define his rule with course-of-values type

induction rather than simple induction is that his only requirement of

the computation with respect to the structure is that successive calls have

less complex arguments, but this decrease in complexity is not restricted

to comply with some notion of one stage in structure composition. So al

though Burstall probably didn't envisage uses of induction at more than

one computation level, he did see the need for course-of-values induction

due to the kind of programs he was concerned with.

-so-

Chapter 3. Some Conunents on Program Verification

An automatic program verifier is a system for proving correctness

of programs. Assuming that the progranuner has use of a language for in

dicating the intended~meaning of his program, the proof of correctness

will consist of a proof that the program does indeed realize this inten

tion. If this statement of intention is viewed as a second program, then

the proof is in fact a proof of the equivalence of this program and the

original one. Thus it is very likely that the techniques developed for

proving equivalence of functions will be useful in work on program veri

fication.

A program verifier will have to draw on several sources for its power.

It is a theorem prover, the theorems it proves being in the form of equal

ities between a function definition and certain input-output specifica

tions. To prove these theorems, the verifier must have a store of

facts -- axioms and induction rules, perhaps some previously proved

theorems -- to work with. These facts will be roughly of two sorts, some

about the subject matter of the program's computations, and others about

the abstract structure of computations. For example, a program verifier

for geometry programs will be capable of proving theorems in geometry,

while a verifier for arithmetic programs will be capable of proving the

orems about numbers. But regardless of interpretation of the programs,

if a program involves recursion, or iteration, in its computations the

verifier will have to encompass a theory of computation with some rule of

inference for dealing with the recursive computation structure. It is the

need to get a handle on this part of the verifying process which has led

to the study of uninterpreted schemas and which justifies their abstrac

tion from the more concrete interpreted programs. If you look again at

any of the interpreted function definitions which we have used for exam

ples, you will see the obvious distinction between the steps justified by

a theory of recursive schemas and those justified by the theory of the field

of interpretation. An automatic verifier would have to handle both types

of inferences to complete a proof.

-51-

Only the theories of computational structure as implied by certain

rules of inference are being examined here. Since one of the chief goals

of the theory of computation is finding means for automatic program veri

fication, along with means of analysis or debugging aids to correct pro

grams which are found to be incorrect, it is of interest to evaluate the

methods we have been studying in terms of their applicability to the

achievement of this goal. Some of the qualities desirable in a proof

technique can be formulated now, though it is still a matter of specula

tion as to which will be most significant in determining final choices.

To maximize the information gained from verification, the structure of the

proof should reflect the structure of the computation. Should the proof

fail to go through, it would be helpful to be able to identify the partic

ular part of the function definition which diverged from the intention.

And, of course, it must be possible to carry out the proof mechanically,

or with some limited amount of help from the progrannner. It is interesting

at this point to see how the language and techniques defined in previous

chapters hold up in light of these criteria.

First some thought must be given to how to write programs and cor

rectness conditions. Progrannning style will undoubtably be influenced by

decisions about how a program verifier is to be constructed. For example,

if a progrannner has written a long program which is supposed to compute a

known mathematical function he might give the verifier his program and the

function as stated concisely in the notation of mathematics. However, the

verifier may need some help in understanding how the various sections of the

program actually contribute to the computation of the function, Rather than

expecting to find grounds for comparison between a function definition ac

an indivisible unit and a concise formulation of the intention, it will be

more reasonable to try to indicate conditions for sections of the program.

These sections will be shown to satisfy their subconditions and then

by considering the interaction of these sections, which are already known

to be correct, the entire program will be proved correct. This type of

commenting on the program will most likely coincide with the writer's own

-52-

understanding of the program. While in many cases the programmer could

state some concise relation between input and output representing his

intentions for the operation of the program, in a program of any length

or complexity he will understand the program as an interaction of sub

programs each satisfying a condition necessary for meeting his final in

tention. These expressions of his intuitions into the workings of a com

putation by the program will then serve not only as justifications of the

entire program but of all its parts. It will also make it easier to prove

correctness of a slightly modified version of the program, since now it

is sufficient to combine proof of correctness of a small part with the

known correctness of the original program.

It may be necessary, given information about solvability of equiv

lence problems for different classes of programs, for a programmer to

learn to think differently about programs, molding his approach to solving

problems to the form of the language in which he will eventually state the

solution. For example, the use of goto statements is known to make proof

of equivalence of programs more difficult. However there are no programs

written using goto statements, which cannot be rewritten without them. The

program writing language used throughout this thesis, namely conditional

statements, is powerful enough to express any program which could be

written with goto expressions (even more powerful [10]). Many people orig

inally learn to program in Fortran, or some such language, using goto's,

and consequently feel that the goto is too useful to sacrifice. Yet those

who learn to use a language like Lisp, find that they very quickly adopt

a new approach to solving problems as the most natural. It is likely that

as the prospects for having automatic program verifiers become better,

through greater facility with proof techniques, the cost of this sort of

restriction of programming style will begin to seem small as compared to

the possible advantages to be had if a program verifier could be imple

mented.

We can find in the examples worked in previous chapters some cases

illustrating the degree to which a proof may or may not reflect the more

-53-

obvious intuitive arguments for equivalence of definition. Clearest is

the comparison of the several proofs of equivalence of

f(x,y) - if Px then y else Gf(Fx,y)

g(x,y) - if Px then y else g(Fx,Gy)

As noted earlier, the equivalence of f and g is most simply explained by

the fact that in one case Gy is computed at each step in the evaluation

and in the other the number of such computations is counted and all of

them are done at the end. This explanation forms the basis for a recur

sion induction proof (and seems to be the most obvious choice for

proceeding by µ-rule), but is completely lost in the truncation induction

proof given in Morris [7J (Example 1 of section 2.3). For the purposes of

following the wrJt~r's reasoning as closely as possible, allowing his com

ments to aid in proof, and of breaking up the proof into more manageable

subproofs (examination of the proofs will reveal that this is another re

sulting difference in form), the former methods seem preferable.

It is possible, however, that efforts to mechanize this process will

show reason to favor truncation induction. It may not be reasonable to

expect to reflect human understanding directly in a computer system. 'rti.en

a system which works blindly to the same end may be the only choice. The

fact that with truncation induction a proof of the equivalence of f and g

can be obtained without any real understanding of the functions may turn

out to be a very good reason for choosing truncation induction over other

methods. A basis for mechanical proof might be some generalization of the

following simple non-deterministic algorithm by which the reader should

be able to show the equivalence of f and g as defined above and as proved

in section 2.3.

o. Defn. 1. f. (x,y) - :';(£. 1) (x,y)
]_]_ -

Defn. 2. gi (x,y) /J.Cgi-1) (x,y)

1. To prQve f.(x,y) = g. (x,y)
]_]_

assume f.(x,y) = g.(x,y) for all j < i
J J

Start with f. (x,y) ~ X
]_

-54-

2. If X = g. (x,y) go to End else go to 3a, 3b, 3c, 3d, 3e, or 3f.
1 ,{

If X contains ~(fj)(x,y) for j < i, substitute fj+l (x,y). 3a.

Go to 2.

3b. If X contains ./J(gj(x,y)) for j < i substitute gj+l (x,y).

Go to 2.

3c. J, If X contains f. substitute :J'(f. 1)(x,y).
J J-

Go to 2.

3d. If X contains g. substitute)/(g.
1

)(x,y).
J J-

Go to 2.

3e. If X contains f. j < i substitute gj.
J

Go to 2.

3f. If X contains gj j < i substitute f ..
J

Go to 2.

Assuming that by pattern matching the test for containment of a certain

form in the arbitrary form X can be performed (distribution of functions

over conditions, and such operations would have to be included), this al

gorithm will go through all possible sequences of valid inferences until

it finds the desired identity. The sequence

0, 1, 2, 3c, 2, 3e, 2, 3d, 2, 3f, 2, 3a, 2, 3e, 2, 3b, 2, End.

corresponds to the proof of section 2.3.

If our programs are meant to operate on structured data, then struc

tural induction will be a very natural tool to use. Probably anyone

writing a program with a structure in mind is thinking in terms of per

forming operations on successive substructures -- this is the kind of

thinking which develops with a language like Lisp. Also, in practice, a

prograrmner will not want to write a program which might run forever for

some input. If he is not sure that he is performing a calculation guaran

teed to halt, then he will impose some artificial constraint on the pro

gram forcing halting in all cases. Therefore, any real program will have

an ordering on its input, forcing convergence on a known domain. We

could then say that for all practical purposes it is only necessary to

-55-

handle total functions, and perhaps then structural induction will turn

out to be most useful.

In some cases, it may be necessary for the theorem prover for the

field of interpretation to check that this ordering is indeed one which

satisfies the minimum condition, a consideration outside the range of

uninterpreted schematology. In a practical debugging system, however,

we would want to check for the possibility that the prograrrnner had erred

in writing in a way which might allow infinite computation for some argu

ments. For this reason it might be advisable to carefully separate proof

of equivalence where defined and proof of convergence, making a proof

technique which assumes nothing about convergence the more desirable.

We are not prepared here to judge which will be the overriding cri

teria for the choice of method of automatic program verification, but hope

we have indicated some of the possible bases for judging these methods,

perhaps some justification for the independent study of program schema,

and areas for future work.

-56-

Chapter 4. Conclusion

Of the four methods, recursion induction alone imposes any real re

strictions on the kinds of steps we can take in proofs. This is due to the

fact that the view of function definition taken by the user of this

method (whether he knows it or not) is that a definition is a monotonic

mapping, but may or may not be continuous. Therefore, he ignores some

of the information that could be used to compare these functions, partic

ularly the alternative definition of fixpoint, available for monotonic,

continuous functions. The intermediary goals to be set up for performing

a proof will be in the forms both of desired subproofs and in the dis

covery of alternative conditional forms which represent the conunon compu

tation structure of the functions being compared. After finding a valid

proof some unsettled questions about domains of function might be left

when they could have been avoided with other techniques.

As for the three other methods, we have seen that while all three

make identical claims about functions, they do so from such varying points

of view as to effectively become different techniques. For someone working

with structured data, structural induction provides proof justifiable on

the basis of facts about the data apparently requiring no insight into the

computation of recursively defined functions. The user of the µ-rule is

more likely to break down his proofs into subproofs which make explicit

all the identities he is actually proving, while the user of truncation

induction, who presumably understands what the fixed point of a recursive

definition looks like, will probably carry on a chain of expansions by

definition and calls on the induction hypothesis, losing sight of sub

goals as he proves the primary hypothesis.

We find ourselves then, with four seemingly different techniques -

and they are different in the following sense: For any particular problem

one of these views will probably seem more natural or illuminating than

the others and will facilitate a proof by induction. This proof, however,

could in principle be carried out by any one of these methods.

-57-

Once a thorough understanding of the available methods of proof is

obtained, the programmer will find it to his advantage to plan ahead for

times when he may need to prove facts about his programs. The way he

originally writes a program may affect his choice of proof techniques

later. The development of mechanical program verifiers will require re

strictions on the style of programming to fit the method of verification.

In the preceding chapters it was seen both how the choice of method can

eventually influence a programmer's conception of recursion and how the

interpretation of recursive definitions, or of the domains of recursive

programs, may influence his choice of proof technique. Future work in

program verification may further influence and be influenced by these

choices.

-58-

Appendix

A. Theorem: If c monotone

then

1. c(conv(c)) = conv(c)

2. conv(c) = n fmlc(m) = m}.

Proof:

1. a. Suppose c(m)~ m, then conv(c) ~ m (section 1.4 (2)).

c(conv(c)) ~ c(m) since c monotone, but c(m) ~ m by

hypothesis, so c(conv(c)) ~ m. This holds for all

m E fmlc(m) !=: m}

2.

:. c(conv(c)) ~ n (mlc(m) ~ m}

= conv(c).

b. From a, c(conv(c)) ~ conv(c)

c(c(conv(c))) ~ c(conv(c))

since c monotone

so conv(c) ~ c(conv(c)) (by 1.4 (2)).

a. From defn conv(c) = n (m!c(m) ~ m} ~ u (mlc(m) = m}

b. From 1 conv(c) = c(conv(c))

conv(c) E fmlc(m) = m} so conv(c) ~ n fmlc(m) ~ m}

B. 'llle following, suggested by Paterson, is a definition outside the class

C(~)·. as an example of a non-conti_nuous function.

(!_ (f) = 7'.x. if x = 1 then if f defined for all even numbers then 1

else undefined

else undefined

so (!. (f) is. a function g, undefined everywhere except possibly at x == 1

and ~(f)(l) = 1 iff f(x) defined for all ~ven x.

Let us try to apply the test for continuity that for all

i , , 1 I ' ,:~ f f () f' ;.:.; (-' r) f'_• '.'.°; n f l_:-1 J Tl C. r· i () r ~ q

i(i 1) ' f(O,ll,C'.Z,ll,(l,l)} c; ••.

i I , l ! ;

•• '1 11-· (' (f

-60-

References

[lJ Burstall, R., Proving Properties of Programs .Qy_ Structural Induc

tion. Computer Journal 12, 1, pp 41-48.

[2J deBakker, J. W. and Scott, D., ! Theory of Programs. IBM Seminar,

Vienna, August 1969.

[3J Floyd, R. W., Assigning Meaning.!:.£ Programs. Proc. Symp. in Ap

plied Math., 19, Math. Aspects of Comp. Sci.

[4J

(ed. Schwartz), Amer.Math. Soc., Providence, R. I.,

pp. 19-32.

Manna, Z., and Pnueli, A., Formalization .Qi Properties of Re

cursively Defined Functions. ACM Symposium on Theory

of Computing, Marina Del Rey, May 5-7, 1969.

[5] McCarthy, J., ! Basis £2!:. .!. Mathematical Theory 2f Computation.

Computer Programming and Formal Systems, North

Holland, Amsterdam, pp 33-70.

[6] McCarthy, J., and Painter, J., Correctness .Qi.!. COmpil!r £2!:. Arith

metic Expressions. Stanford Artificial Intelligence

Project Memo 40.

[7] Morris, J., Anosher Recursion Induction Principle, CACM 14, 5.

[8] Park, D., Fixpoint Induction !ill!. Proofs of Progrfl!l Properties.

Machine Intelligence 5, pp 59-78.

[9] Paterson, M. S., Equivalence Problems .!!1 .!. Model of Computation.

Dissertation at Cambridge.

[10] Paterson, M. S., and Hewitt, C., Comparative Schematology:.

Record of the Project MAC Conference on Concurrent

Systems and Parallel Computation, June 2-5, 1970.

CS-TR Scanning Project
Document Control Form

Report# lc.s:rR- C\]

Date : _l_1_JJ_1 ~f.

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
):?{_Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other: -----------
Document Information Number of pages: bO((;.s-if()AVF5)

- Not to include DOD fonns, printer intstruetions, etc ... original pages only.

Originals are:

~ Single-sided or

D Double-sided

Print type:
~ Typewriter 0 Offset Press D Laser Print

Intended to be printed as:

~ Single-sided or

D Double-sided

0 InkJet Printer 0 Unknown D other: ______ _

Check each if included with document:

~ DODFonn

D Spine

D Funding Agent Form

D Printers Notes

D CoverPage

D Photo negatives

D Other: -----------------------
Page Data:

Blank Pages(by.-sienumbel): ______________ _

Photographs/Tonal Material (by.-sie numbef): _________ _

Other cnom deKI~ number):

Description : Page Number:

@:tfneG"E tht;a6?! (/- 60) ivv1fk TiTL.£~E"JJ.-bO
(6 I - ~ S) S .c.AAA:.ot\2ID.Q S Do DJ :tsGY'>:i (5' ")

@ A NltmBflP or P~G£5 ~if cu....-rq..r~m /NtJBDS lzlJ£)

0 (\ S liNJfFNc,t;S ,

Scanning Agent Signoff:

Date Received: _L1;;}_1:1.f_ Date Scanned: _j_1J.61?' Date Returned: _/_1JS 11f..

Scanning Agent Signature=---~----' _._ A....,/..._lfu _J d ;;.___

UNCLASSIFIED
Security Classification

DOCUMENT COHTROL DATA R&D
(Secutlty cl•••lllcatlon ol 1111•, body ol abotrect -d lndolllnl -lallon mu•t l>o onl•t•d wll•n th• over.II teport i• clo••lll•d)

·-~·

I. ORIGINATING ACTIVITY (COlfPOroto -tltot) a.. REl"ORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 11>. GROUI"

NONE
3. R&:l"OlllT TITLE

Induction in Proofs About Programs

4. DESCRll"TIVE NOTES (7YP• al'""°'' end lncluelH dolH)

s. M. Thesis, Department of Electrical Engineering, Decelt}ber 1971
s. AUTHORISI (Lo•I n-e, llret nMlo, lnltllll)

Greif, Irene G.

6. REl"ORT DATE 7•. TOTAL HO. 01" l"AGES 171>. HO. O{o REl"S

February 1972 60

••• CONTRACT OR GRANT NO • • •• OIUGIHATOR'S REl"ORT NUMBERCll

N00014-70-A-0362-0001 MAC TR,...93 (THESIS)
"· l"ROJl!:CT NO.

"· '"· OTHIER IU!l"ORT NOCll (Any other,. ,. lhot may l>o

~ ... ,,...d ""• "'"""''
d.

10. AVAILABILITY/ LIMITATION HOTICEI

Distribution ot this document is unli.1llited.

11. SUl"l"L£MIEHTARY NOTES 11. ll"ONIOllUNO MILITARY ACTIVITY

None Adv&rl04ki Research Projects A9ency
30-200 hatt"°n
washi.Jl9ton, I> .. c. 20301

ta. AHTRACT
-~ ------~:------ ,-

! _.:..:-""~ --~

Four methods for proving equivalence ot progra:as by induction are
described and compared. They are recursion inttuotion, struQtural
induction, µ-rule induction, and truncation induction. McCarthy's
f orrnalism for conditional expressions as function definitions is
used and reinterpreted in view of Park's work on results in lattice
theory as related to proofs abevt. programs. The possible application
of this work to automatic proqram verification is commented upon.

'

14. KIEY WORDI

/

Recursion Induction
Proofs About Programs

DD .~~.1473 (M.l.T.)
I

Security Classification

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgLwpw Rev. 9/94

