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EVALUATION OF DEFINITE INTEGRALS
BY SYMBOLIC MANIPULATION*

Abstract

A heuristic computer program for the evaluation of real
definite integrals of elementary functions is described. This
program, called WANDERER (WANg's DEfinite integRal EvaluatoR),
evaluates many proper and improper integrals. The improper
integrals may have a finite or infinite range of integration.
Evaluation by contour integration and residue theory is among
the methods used. A program called DELIMITER (DEfinitive LIMIT
EvaluatoR) is used for the limit computations needed in evaluat-
ing some definite integrals. DELIMITER is a heuristic program
written for computing limits of real or complex analytic func-
tions. For real functions of a real variable, one-sided as well
as two-sided limits can be computed. WANDERER and DELIMITER have
been implemented in the MACSYMA system, a symbolic and algebraic
manipulation system being developed at Project MAC, MIT. A typi-
cal problem in applied mathematics, namely asymptotic analysis of
a definite integral, is solved using MACSYMA to demonstrate the
usefulness of such a system and the facilities provided by
WANDERER.

*This report reproduces a thesis of the same title submitted to
the Department of Mathematics, Massachusetts Institute of Tech-
nology, in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, August 1971,
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Integrals,

The 1imit concept Is basic to mathematical analysls,
Being able to compute 1imits automatlcally greatly lIncreases
the potentlal of a symbol manipulatlon system In doing
analytical mathematlics. |In fact the evaluation of definite
Integrals Is heavlly dependent on the limlt process, as Is
the expansion of functlons In power serles and many other
mathematical problems, Although the computation of llmits
has been studied previously to some extent [11, 13], we
describe a 1imit program called DELIMITER (DEfinltive LIMIT
EvaluatoR) which Is more powerful than previous programs.

It Is discussed In detall In chapter 2.

The problem of computing Indefinite Integrals
symbolically by computers has been Investigated rather
thoroughly., First among the computer programs developed for
this purpose was SAINT (Symbholic Automatic INTegrator) by
Slagle In 1961, A more powerful program named SIN
(Symbolic INtegrator) [28] was developed in 1967 hy Moses.
Theoretical work In thls area include Richardson's
undecidablility result for a certaln classes of Integrals
[22] and Risch's decision procedure for determining the
existence of the Indefinite Integral of a member In the

class of elementary functlions [23, 24, 25, 26]. There lIs a
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comprehenslve review by Moses on the progress durlng the
past ten years in thls particular area of symbol manipula-

tion [21] .

However, hardly any work has been done In the direction
of definite Integration. Reported here is a flrst definlite
Integration program called WANDERER (WANg's DEfinite
IntegRal EvaluatoR). Experiments with DELIMITER and
WANDERER are the princlpal subjects of thls thesls.

WANDERER has been Implemented in MACSYMA and makes use of
many faclilitles provided In it. Some of thase faclilitles
are: Input and two-dimensional output, simpllficatlion,
solution of polynomlal and systems of linear equations,
canonlcal rational functlon simplification and the SIN [20]

Integration program.

Evaluatlon of definite Integrals can sometimes be as
easy as computing the Indeflnite Integral of the given
Integrand then substituting In the 1Imits of Integratlon.
WANDERER computes integrals of this kind hy using those
parts of SIN that have belhg Implemented In MACSYMA.
However, many Interestlng definlte integrals are not
obtainable In thls manner. In some cases they may be
Improper integrals or thelr Indefinlte Integrals do not

exist., In other cases It Is easler to evaluate the definlte
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integral directly than to obtaln the Indefinite Integral

first.

A few 1imlt and Integration problems are llsted below
to glve an Indlication as to the scope of WANDERER and
DELIMITER. The results obtained by the programs can be

found In chapters 2, 4 and 5.

w 2 o 6
X + AX + B X dX
-------------- dx i )
2 , 2 15/2
“® X + 10X +9 © x + X+ 1)
@ SINCX) dX oo
----------------- -$ T 1/3
2 1 X 2 e X LOG(X) dX
~®° e (X + 1) o
L ax 4 dx
2 2 1/2
° X =3 3 x (x - 9)
2XK oo
2 1/2 2
CoS (X) = SIN(X) dX [ LOG (X)) dX/ X
o i
2 M 1/2 4 1/X
LIMIT X (4 X + 5) = 2X LIMIT CA X + 1)
X400 X==(
2 1/2 2
X (X + 1) X
LIMIT e - e

X—++00
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Integrals with an Infinlte range are discussed In
chapter 4, those with a finlte range In chapter 5.
Important routines and algorithms are collected In chapter

6.

An application of the MACSYMA system to an asymptotic
analysis problem Is lllustrated In chapter 7. The purpose
Is to show how such a symbol manipulation system can be used
to solve non-trivtal problems that may occur frequently ln
applled mathematics. This application demonstrates the
usefulness of the many facilitles provided by MACSYMA and
WANDERER,

A timing experiment has been conducted to check the
performance of WANDERER and DELIMITER, The results are
Included In appendix C. Because of the limited character
set of most computer consoles, some speclal symbols are
needed to denote the frequently used mathematical functlons,
constants and operators, For example, * and ** are used to
denote multiplication and exponentlation respectively.

Appendix D contalns a list of notations we shall use.

From Rlichardson's undeclidability results [22], we have

shown that the convergence of a class of Integrals of
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elementary functlons Is recurslively undecldable, The proof

Is In appendix E.

The remainder of thls chapter serves as an Introduction
to algebraic manipulation systems. |I|f the reader is
familiar with such systems he may proceed dlirectly to the

next chapter.

An algebralc manipulation system Is a collectlon of
computer programs deslgned to facilitate the solution of
mathematical problems. Such a system has the abllity to
handle both symbols and numbers. This capablliity to mani-
pulate symbols mathematically Is what differentiates these
systems from the various computer subroutines which

speciallze In numerical analysis.

In uslng symbol manipulation systems such as these, one
usually iInteracts with It In a time-sharlng environment via
a typewrliter-1llke console. Normally, data and commands are
typed In by the user. Results from the computer are sent
back to the console for dlsplay. This arrangement attempts
to provide a user the ease and flexibility of the pencil and
paper he Is so accustomed to, while permitting the computer
to assist him In his algebra and formal deductlion from one

step to the next. |If the mantpulations involved are non-
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trivial, so much the better. Some of the manipulatlions such
a system can provide are: GCD calculatlons, factoring, ra-
tlonal functlion arlithmetic, matrix manipulation, solution of
algebralc equatlons, solution of systems of linear equa-

tlons, indefinite Integration of elementary functlions,

Let us take a closer look at MACSYMA as a
representative model of other systems. MACSYMA recelves
inputs In the form of 1lnear character strings typed by the
user., FORTRAN-1lke notation s used for the Input. For

example,

The user types: Le(X*x2+X+1)/Y@

The @ slgn slignifles the end of a command string. As a
result of this command, a two dimenslional display Is

returned.

MACSYMA types: = ssscccccccce-«-

Inside MACSYMA, expressions are represented by list
structures In a prefix notatlon (common to many systems).
For example the expression above would be represented
Internally by something like

(TIMES &4 (PLUS 1 X (EXPT X 2)) (EXPT Y =-1))
Inside MACSYMA.
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Other forms of Internal representations are posslble.
The choice of Internal representatlion Is an Important aspect
of the design of a system. Of course more than one form of
Internal representation can be employed In a single
algebraic manipulation system. In fact MACSYMA has a
special Internal representation for ratlonal functlions which
Is used to galn efflclency during certain polynomial and ra-

tlonal functlion manipulatlions.

One simple application of MACSYMA Is factoring the

polynomial

3 2

P(X) =X + 4 X =-11 X - 30
A user who wants to factor P(X) using MACSYMA types:
FACTOR(X**3+L»X*%2-11%xX~-33)Q

This Input command causes the factorization of P(X) over the
Integers. The output Is

(X + 2) (X = 3) (X + 5)

While this problem may seem easy, factorization of
polynomials of higher degree can be very difficult to do by
hand. Indeed, algebraic manipulation systems can be most
helpful when one wants to manipulate complicated functions
and expressions, MACSYMA can carry out accurately with

great speed: summation over Indlces, expansion of products
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and powers, calculatlon of large determlnants, lInversion of
large matrlces.

Applicatlions In pure mathematics include computatlons
In: number theory, group theory, Lle algebras and set

theory.

Research In the field of symbol and algebralc manlipula-
tion has led to many new results. The fast GCD algorithm
[4] and the fInite fileld arithmetlc polynomlial factoring
algorithm [2] are two examples. Contlnued work In thls area
will, hopefully, result In computer systems which are

increasingly valuable to englneers and mathematiclans.
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CHAPTER 11
DELIMITER

0. Introductlon

The 1imit concept Is fundamental to mathematical analy-
sis, Baslc concepts such as the rules of differentlation
are derived from limiting processes. More complex problems
such as Improper Integratlon, convergence of serles, serles
expansion of functions and contour Integrals, to name a few,
also requlire the computation of limits In their solution

process.,

Therefore, one can expect that automatlc computation of
1imits would greatly Increase the capablility of a symbolic
mathematlics system In doing analytical mathematlics., The
programs described below provlde such a capability In the

MACSYMA system [16].

Automating the computation of limlits has been studied
previously to some extent. Fenlchel [11] discussed certaln
decldablllty problems of 1imits and provided, In the FAMOUS

system, some basic routines for computing two-sided 1imits.
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In his thesis, lturriaga [13] worked on both one and two-
sided 1imits. In additlon to L'Hospltal rule, he applied
asymptotlc analysis to quotients of polynomlals essentlally
by replacing those polynomials by thelr leading terms. This
can be done when the variable In the limit approaches Infl-
nity so that the leading term Is asymptotically equlvalent
to the original polynomial, Moreover, he dliscussed 1imlts

of sequences.

DELIMITER Is more powerful than elther Fenichel's or
lturrfaga's limit program. L'Hosplital's rule Is a basic
method used for Indetermlinate forms. In additlion, this pro-
gram employs a fast routine for limits of ratlonal func-
tions. It has an efflicltent algorithm for a class of expres-~
slons called RP-expresslions which Involve radlcals of poly-
nomials. It also applies the method of reducing compllicated
expresslons by replacing subexpressions with asymptotically
equivalent expressions. The method of comparing orders of
Infinlty of expressions and several other heurlstic methods
are used. In some cases, power serles expansions are employ=-

ed to obtain the 1imlts.

This chapter Is based on a paper by the author [29]
presented at The Second Symposlium on Symbolic and Algebralc

Manipulatlon, Los Angeles, March, 1971,
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1. Definltlions and Symbols

DELIMITER is deslgned for finding the 1imit of a
single-valued function f(X) of a real or complex variable X
as X approaches some 1Imit polnt. One-sided l1imits can be
computed If X and f(X) are real-valued. The classes of
functions allowed by this program Include rational, radical,
logarlthmic and exponential functlons, and also the trigono-
metric functlons SIN, COS and TAN, and the hyperbolic
functions SINH, COSH and TANH, The general form of a user

command ls

LIMIT(expression,variable,value,dlrection)@

with the fourth argument optlonal. PLUS as a fourth argu-
ment indlcates the one=-slded 1imit from above, MINUS from
below. The absence of the fourth argument Indicates no
restriction on the direction of approach., One-sided limits
are not allowed for complex-valued functions or limit

points,

If f(X) Is not contihuous at X=a, the two-sided limit,
LIMIT(F(X),X,a), does not exist, In such a case the symbol

UND is returned by the program as an answer.
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The following are some symbols used by this program.

ZERO+ 0+ ZERO~- 0-

UND undeflned

IND Indefinlite but bounded

INFINITY the polnt at Infinity In the complex plane

INF and MINF wkll continue to Indlcate respectively
positive and negative inflnlty. Here are some examples of

how these symbols are used internally.
LIMIT(COS(X),X,%P1) = -1+ ZERO+
LIMITCSINCX) ,X,INF) = IND
LIMITC1/SINCX), X, INF) = UND

LIMITCL/(X=%1),%X,2%1) = INFINITY
The direction from which a 1imit polnt Is approached is
Important. By use of ZERO+ and ZERO-, simpliflcatlon rules
such as
1/(-1 + ZERO+ + 1) ——» |INF

and
1/(=1 + ZERO=- + 1) —>» MINF

are possible in DELIMITER.,
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2. Baslc Rules and Outlline of Algorithm

Some of the rules used In this program are the so-call-
ed "trivial™ ones for limits of continuous functions,
namely, the limit of a sum Is the sum of the limits, etc.
There Is a limit routine for each of the functions SIN, COS,

TAN, SINH, COSH, TANH and LOG (base %E). For other func-

tions the rule

LIMITCFC(g(X)), X, L) = LIMITCECY),Y,LIMIT(g(X),X,L))

Is used,
For one-stded lImits where the varliable approaches a
polnt other than 0, a change of variable Is made to bring

the polnt to the origin. For example, the limit

LIMIT(F(X),X,a,PLUS)
Is converted to

LIMIT(f(a+Y),Y,ZERO+)

There Is, of course, a complete set of rules governlng
simplification of the new symbols. They are all of the fol-

lowing nature
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IND/INF = 0 -1/INF = ZERO=-

- ZERO+ = ZERO- - INF = MINF
1/INFINITY = 0 =1/INFINITY = 0
MINF#%2 = [NF (ZERO+)+ZERO- = 0

LOG(C+ZERO+) = LOG(C) + ZERO+
We wlill now brlefly outline the algorithm, and then go
Into the detalls of some of the component routines, Let us

cons lder

LIMIT (E(X),X,L)

where L Is any number or symbol Including INFINITY, INF,
ZERO+ and ZERO-, If L = MINF, It Is set to INF by a change
of variable Y==X., Upon receliving the arguments, namely
E(X), X and L, DELIMITER checks whether L=INFINITY or E(X)
Involves %1, |If elther or both Is true then a global
Indlcator CPLX Is set to the value TRUE which Indicates that
the glven 1imit Is to be evaluated over the field of complex
numbers. Otherwise CPLX Is set to the value FALSE which
signifies a 1Imit problem over the reals. |f CPLX=TRUE, all
use of INF and MINF are replaced by INFINITY and the notion
of approaching a limlt point from one side Is no longer

valtld,
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The following diagram is a simplified overview of

DELIMITER.
DELIMITER
SIMPLE LIM|Te—————>RETURN ANSWER
RATIOMAL FUMCTION-——>RETURN ANSWER
RP-TORMS—————-———>RETURN ANSWER
BASIC LIMIT L'HOSPITAL'S SERIES ORDER
RULES RULE EXPANS ION OF INFINITY

Fleg., 1

As indlicated In‘fig. 1, DELIMITER has four stages.
Results of simple limit problems are Immediately returned by
the first stage. Simple 1imits Include two cases: 1) E Is
Independent of X, 2) E(X) = X. In the second stage, a fast
algorithm Is used to obtain limits of rational functions.
The third stage employs an algorithm for 1imits of RP-forms.
If the first three stages do not produce an answer, the
glven 1imit problem enters the fourth stage which contains a

varlety of methods including the four principal ones shown
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In the flgure., |In thls stage the program will first try to
extract the numerator N(X) and the denominator D(X) of E(X)
so that E(X) = N(X)/D(X). |If both N(X) and D(X) are RP-
forms the 1imit Is computed by an algorlithm speclally for
these forms (see section 5 for definitlion and algorithm).

Otherwise the rule
Tim E(X) = 1im N(X) /11lm D(X)

Is applied. |[If both 1im N(X) and 1im D(X) are 0 or Infinite
we have an Indeterminate form. |In this case L'Hospital's
rule will be applied to E(X) with one exception: when L lIs
INF and 1im N(X) and 1Im D(X) are both Infinite and both
N(X) and D(X) contain exponential functlons of X which tend
to INF as X approaches L, |In this case the method of com=
paring orders of iInfinlty, to be described shortly, is ap-
plied, |If DELIMITER can not find an answer indlcation of

fallure will be returned.

Sometimes the program needs to know the value range of
a symbolic parameter In order to compute the 1imit. In such

cases, the program wlll query the user at his console.

It Is Important to note that these programs do not
store any table of limits Thus every limit obtalned Is a

result of computation.
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Uther methods available Include : change of variable,
discontinulty tests and analysis of the behavior of a func-
tion near a finite point. A flowchart In appendix A pre-

sents the flow of control Iin a more complete manner.
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If n=0, the answer ls c;

TRUE, answer is 0, but if

fl

If n < 0, then If CLPX
CPLX is FALSE then the answer is ZERO+ provided
the sign of cxlL**n Is + and ZERO- In case the sign
of cxlx*pn |5 =

otherwise, (n > 0) the answer 1Is INFINITY If
CPLX=TRUE, and the answer Is INF or MINF,

depending on the sign of c*xlLxxn, if CPLX=FALSE,
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L, The Limit of a Quotlent of RP-forms

An RP-form Is defined as an expression obtainable by
combining polynomlals and poslitive rational number powers of
polynomials using the operators +, -, *, Here are some
examples of RP-forms,

3 1/3
f(X) =SQRT(4 X + 5 X) + (X + 1) + X =+ C

2/3
g(x) = A X SQRT(X+1) + X

Note that the definition of RP=-forms does not allow
nested radicals of X. For instance the followlng Is not an
RP=form.

2/3
(X + SQRT(X))

Now consider the 1Imlit problem,

LIMITCECX), X, L), E(X) =N(X)/D(X)

where N(X) and D(X)#0 are RP-forms and at least one of them

Is frrational. Note that N(X) or D(X) can be a constant.

Let us deflne the operators EXPO and COEF by
EXPO(N(X))

=hfghest exponent of X tn N(X),
COEF(E,N(X))

=the coefflcient of E In N(X).
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For example,

EXPO(g(X)) =7/6,
COEF(X*%(3/2),f(X)) =2

EXPO Is obtained by a simple special purpose routine; COEF
Is computed by using the RATCOEF routine in the rational

functlon package of MACSYMA [16].

Now the limlt is computed by the following algortithm,

(1) If L =MINF, X Is replaced by =X, L by INF,

(2) If L =INF, the followlhg asymptotic analysls is

made.

1) compute a =EXPO(N(X)), b=EXPO(D(X)).

I1) Let N1(X) and D1(X) be N(X) and D(X) with
polynomtals under radicals replaced by thelr

leading terms, respectively. Compute

a'=EXPO(N1), b'=EXPO(D1),

1i1) If elther a#a' or b#b', then It Is usually

sufficlent to replace each radical In E(X) by
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D(X) before using L'Hospital's Rule.

If N(L)Y=0 and D(L)#0,
the answer Is 0 If CPLX=TRUE, otherwise the be-
havior of D(L)*N(X) at L Is examined to decide

whether 0, ZERO+ or ZERO-~ Is the answer,

If D(LY=0 and N(L)#0,

the answer Is INFINITY If CPLX =TRUE, otherwise
the behavior of N(L)*D(X) at L Is examined to
decide whether INF or MINF Is the answer.

Otherwlse, the answer 1Is E(L).

For large X the serles expanslon

2 1
SQRT(X + 1) = SQRT(-- + 1) X

[
>
~~
-
+
1
]
]
1
1
]
I
]
1
+

®
.
L
-

1 1

X + === = === 4

2 X 3
8 X

is convergent. It Is clear that this expanslion method can
be appllied to an arbitrary polynomial to a positive frac-
tional power. This fact establishes the validity of step

(2-111).
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5. Indeterminate Forms and L'Hospital's Rule

L'Hospital's rule is appllied to an Indeterminate form
E(X) of the form 0/0 or INFIMNITY/INFINITY. It first

calculates N'(X) and D'(X), then,

If D'(X)=0, L'Hospital's rule falls, otherwise, simplify

N'(X)/D'(X) and evaluate

LIMIT (N'(X)/D'(X),X,L).

The expression N'(X)/D'(X) can be more complex than
E(X) and successlive application of this rule may lead
nowhere., Therefore the number of times thils rule is called
successlvely Is counted and the relatlve complexlty of
N'(X)/D'(X) to E(X) Is tested to decide whether to contlnue
this approach. Our criterion of complexity Is based on the
number of distinct nonrational components of an expression,
If this number grows for three consecutive times, the ap-

plication of L'Hospital's rule Is halted.

The iIndeterminate form O*INFINITY Is transformed to
either 0/(1/INFINITY) or INFINITY/(1/0), depending on which
Is slmpler, before applying L'Hospital'’s rule. Other In-
determinate forms such as 1**[NFINITY, INF**0 and O0**0 are

handled by the logarithmic reduction :
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FOX)**G(X) = ZE**x(G(X)*LOG(F(X))),

Theoretlically the tndetermlnate form (INF - INF) can

always be reduced to 0/0 by rewriting It as

(1) (1/INF = 1/INF)/(1/INF*INF),

but thls method often makes the expresslon much more
complicated. It Is useful, though, for expressions

involving trigonometric functions as can be seen In

1 1
LIMIT(- = ====--,X,0,PLUS) = 0,
X SIN(X)

DELIMITER transforms the glven expression In thls example to

SIN(X)-X

X SINCX),
then applles L'Hospital's Rule to obtaln the answer 0.
Therefore, the method (1) Is used for expressions Involving
trigonometric functions. Other types of expressions can be

dealt with more readlly by comparing degrees of Infinity of

the subexpressions or by series expansion.
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6. On the Slgn of Inflinlty

If a function f(X) Is discontinuous at X=a, another
function g(f(X)) Is not necessarily dlscontlnuous at a.
For example

1/X A
LIMIT((A X + 1) ,X,0)= ZE

Therefore, discontinulty may be encountered In the course
of computing a 1imit of a continuous functlion. Conslider

1/E(X) with E(a)=0 and the 1imlt problem

LIMIT(1/7E(X) ,X,a),

If CPLX = TRUE, the answer Is INFINITY, Otherwise, a rou-
tine named BEHAVIOR Is used to analyze the bhehavior of E(X)
near X=a. |If E(X) approaches 0 from above or below as X ap-
proaches a, then the answer Is INF or MINF, respectively.

Otherwise, the answer Is INFINITY,

The BEHAVIOR routlne uses differentiation to analyze
the behavlior of a function near a point by Investigating its
slope or concavlty at the point. This routine Is also used
by other programs. One of these Is the program which com-
putes 1imits of the trigonometric function tangent. In case

the argument of TAN approaches %P1/2, say, it is Important
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to know the dlrection of approach.

7. Heurlstlcs for Comparing Orders of Infinlty

Let f(X) and g(X) be two real-valued functions which
become poslitively Infinlte as X approaches INF, We define

the symbol >> by
Definitlion : glX) > f(X) If
LIMIT(F(X) 7 g(X), X, INF) =0,

Using this symbol we can make the followlng brief
table.

cee ZERRZER*XDDZE*XD>X**nd>>log(X)>>log(log(X)) ...

Many limit problems with the varlable approaching INF
can be solved very efflclently by using this concept. Some
of these problems can be difficult to solve by other me-
thods. For example, L'Hospital rule falls to compute the

limit
LIMITCCZE+L)*aX*#x2/%E»%X X, INF),

while the answer Is obvlously INF, We Incorporate this con=-
cept by a routline, STRENGTH., It can classify the order of

infinity of the argument according to the followlng rules,
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STREMGTH(c)=(c)
STRENGTH(LOG(R(X)))= LOG
STREMGTH(A**B(X))= EXP
STRENGTH(P(X)**(m/n))= m=d/n

where ¢ Is independent of X, m and n are positive Integers,
d the degree of the polynomial P(X). Note the STRENGTH of a
constant Is denoted by that constant Inslide parentheslis and
the STRENGTH of a polynomial Is a constant. B(X) and R(X)
can be any functions In X, except those which can cause the
relevant argument of STRENGTH to be simplified iInto one of
the other three cases. lle can assume A to be %E for If A Is
any other expression It Is always possible to change the
base to %E. STRENGTH of a sum Is the maximum of the

strengths of the terms In the sum.

There Is a baslic comparison routine which knows the re-

lations between the strengths of functions,
EXP>>a>>L0G>>(b) and c¢c>>d If c>d
where a, b, ¢, and d are constants.
Let N(X) and D(X) be two products satlsfying

LIMIT(N(X),X, INF)=INF
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and

LIMIT(D(X),X,INF)=INF

and no factor In N(X) or D(X) Is a sum or a trligonometric
function. To compare the relative order of Infinlity of
N(X) and D(X), the followlng method Is used. The answer 1
indicates N(X)>>D(X), =1 Indicates D(X)>>N(X), 0 no

declslion.

Algorithm COMPARE(N(X),D(X)):

1) Remove from N(X) and D(X) any common factors.

2) Apply the STRENGTH routine to each factor of N{X)

and obtain the maximum strength SN,

3) Do the same to D(X) and obtaln lts maximum strength

SD.

4) If SN>>SD the answer is 1, If SD<KSN the answer Is =
1,

Otherwlise,

1) Let
N1(X)=product of all factors with strength SN In
N(X).

D1(X)=product of all factors wlith strength SD In
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D(X).

il) If SN=SD=some constant, set

SN=STRENGTH(N1) and SD=STRENGTH(D1).

If SN>>SD, the answer is 1, If SNCKSD the answer Is
-1, |If both N1(X) and D1(X) are polynomials In X,
the answer Is the leading coefflclent of the
polynomtal N1(X) - D1(X). Otherwise [If the varlable
INDICATOR has the value 1, this means each of N(X)
and D(X) Is an exponent of an exponent of an expo-
nential expressfon and they come as a result of
recursive calls to COMPARE., For example N(X) may
come from ZEx*ZExxN(X). In this case, the algorithm
goes as follows. Flrst INDICATOR Is set to 0 then
E=LIMIT(N(X)=-D(X),X,INF) Is computed and the answer
Is 1 If E>O, -1 If ECO, 0 otherwise,

I f SN=SD=EXP,

The exponents A(X) and B(X) of N1(X) and D1(X)
are computed, That Is NI(X) =%Ex*A(X) and D1(X)
=%E**B(X). |If both A(X) and B(X) are polynomials In
X, the answer Is the leading coefflcient of the
polynomlal A(X) = B(X) If this polynomial Is not a

constant, 0 If it Is. If A or B Is a sum, A Is set
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to LIMIT(A(X)-B(X),X,INF) and the answer Is 1 If
A=INF, =1 If A=MINF, 0 otherwise, In case nelither A
nor B Is a sum, if both A and B are of strength EXP,
set the varlable INDICATOR to 1. The answer Is ob-
tained by evaluating COMPARE(A1l(X),B1(X)), where

A(X) = %E=*Al(x) and B(x) = ZE*+B1(X),

I f SN=SD=LO0G,

-

If N1(X) Is LOG(f(X)) and D1(X) 1s LOG(g(X)) then
set SN to STRENGTH(f(X)), SD to STRENGTH(g(X)). Now
the answer Is 0 iIf both SM and SD are constants, 1

If SN>>SD, =1 If SNKXSD., The answer Is 0 otherwise,

We shall next dlscuss the indeterminate form (INF=INF)

and see how COMPARE can be used In such situations. Let

where

n
FEX)= ) £ (X)
i=4

LlMlT(fi(X),X,INF) =|NF or MINF

for 1=1,2,...n.

LIMIT(F(X),X,INF) becomes Indeterminate when there exists |

and j such that

and

INF

LlMlT(fi(X),X,INF)

LIMIT(% (X),X,INF) MINF
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The method of orders of Infinity can sometimes be ap-

plied to thls problem., The algorlthm used Is as follows.

The program forms two lists L1 and L2 of the fi's which
go tec INF and MINF respectively., Then from each of L1 and
L2 a member of maxlmum order of Infinity can be obtalned.
Let these be r{(X) in L1 and s(X) In L2, Now if r(X) >>s(X)
the answer Is INF, If s(X)>>r(X) the answer {s MINF, Other-
wise, the problem can be very difficult, However the pro-

gram trles to evaluate
INF=LIMIT(F(X)/s(X),X,INF),
which sometimes producés an answer.

Now we will follow the major steps of the solution of a
problem In a more detalled manner, Let

2
X*SQRT(X + 1)
%E
2
X
B(X) = %E

ACX)

Consider the problem LIMIT(A(X)=-B(X),X,INF). Flirst the
Indeterminate form (INF-INF) Is encountered through the fol-

lowlng steps.,

LIMITCACX)=-B(X), X, INF)
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LIMITCACX) , X, INF)=-LIMIT(B(X),X,INF)
LIMITCACX),X, INF) =%E+*INF =INF
LIMIT(B(X),X,INF) =%E++|NF =INF

INF=-INF
Then COMPARE 1s applied to A(X) and B(X), only to
arrlve at no conclusion about the relatlve order of Infinity

of A(X) and B(X).
COMPARE(A(X),B(X))
STRENGTH(A(X) )=EXP

STRENGTH(B(X))=EXP

2 2
COMPARE(X*SQRT(X + 1),X )

2
STRENGTH(X*SQRT(X + 1)) = 2

2
STRENGTH(X ) = 2

Now the problem Is converted to the following form and the

answer Is INF,
INF*(LIMITCACX)/B(X), X, INF)=1)

2 2
LIMITCX*SQRT(X + 1) - X ,X,INF) = 1/2
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INF*(%E*x(1/2)~1)

INF

8. Examples

A number of 1Imlt problems solved by DELIMITER are
included In this sectlon. They are presented In the form of
actual linputs and outputs of the MACSYMA system. Lines
labelled (Ci) are lnput or command lines and (Dl) output

lines or answers,

(C1) LIMIT(X**LOG(1/X), X, INF)@
(b1) 0
(C2) (COS(X)=1)/( ZE*»X++2 -1)Q@

CoS(X) - 1
(2)  mmemmeeeea-
2
X
56 - 1
(C3) LIMIT (D2,X,0)Q
1
(D3) - -
2
(Ch) (L+A*X)*=»(1/X)@
1/X
(D4) (A X + 1)
(C5) LIMIT(D4,X,0)@
A
(D5) %2E

(CE) Xww2x(haXnwh+5)xn(1/2)=2%X**L(




(C6)

(D6)
(c7)
(D7)
(c8)
(D8)
(C9)
(D9)
(C10)

(D10)
(C11)
(D11)
(C12)

(D12)

(C13)
(D13)
(C1h)
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Xow2n(LaXunlia5)en(1/2) =20 XxxlQ

2 b b
X SQRT(4 X + 5) - 2 X

LIMIT(D6,X,INF)@

1/X-1/SIN(X)@
1 1

X SIN(X)
LiMIT(D8,X,0,PLUS)@

0
SEwR(Xx (X*x2+1) %% (1/2))~ExrxX*»20Q
2 2

X SQRT(X + 1) X
2t - %E

SN

LIMIT(D1,X,INF)@
INF
(ZE**X+X*LOG(X))/(Ewx(X*x3+1) %%« (1/2)+LOG(X*+L+X+1))@

L SQRT(X + 1)
LOG(X + X + 1) + %E

LIMIT(DL, X, INF)@
0
1/ (X*x3-6¥X**2+11%X~-6)0@




(D14)

(D16

(C17)

(D17)

(C18)

(D18)

(c19)

(D19)

WO R M D WA M M SR Ma TS Mk Em Gm e M D T ke am S

LIMIT{D1L,X,2,MINUS) @

INF

(X*SQRT{X+5)+1) /(SQRT(L*X**3+1)+X)Q

A SQRT(X + 5) + 1

. R GE MR e SR MG M e RS mm mm am e e A e

SQRT(H X + 1) + X

LIMIT(D16,X, INF)@
1

2

TAN(X)/LOG(COS(X))@

TAN(X)

- G e s n e e ma =

LOG(COS(X))

LIMIT(D18,X,%P1/2,MINUS)@

MINF

bl



(C207

(D20)

(C21)

(D21)

AANDTERSN SN F ) g
L!r'k(l)l:FV‘A,:A{,.',‘L),Z;?{!*%Pi/z)@

- 2 %P
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CHAPTER 111

HANDERER=-AN INTRODUCTION AND OUTLINE

1. Introduction

The present chapter and the three subsequent ones are
devoted to a complete description of WANDERER, a heurlstlc

program for evaluating definite iIntegrals over a real range.

WANDERER cannot solve all deflnite Integratlon
problems, but It can certainly obtaln solutions to a large
number of Integrals. Many examples presented are actual
problems taken out of graduate text hbooks [1, 5]. The baslc
approach, In WANDERER, for evaluating an integral [s by com-
plex contour Integration and residue techniques. This Is a
very general method particularly useful In evaluation of
Infinite integrals. Some other methods avallable to
WANDERER are: substltution, Integration by parts, diffe-
rentiatlon with respect to a parameter, pattern recognltion
and table look-up, finlte-to-Infinlite conversion, Introduc-
tion of a parameter and partition and transformation of the

range of Integratlon.
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The user's command In MACSYMA for definite integration

Is the key word DEFINT, DEFINT takes four arguments as In
DEFINT(exp, var, a, b)

where exp Is the integrand, var the variable of integration,
a and b the lower and upper limits of Integration. There Is
no restriction as to what types of integrands are allowed as
input, as long as they remaln elementary functions.

However, WANDERER requlires the integrand to be finite In the

integratlion range except possibly at the end polnts a and b.

A few spectial symbols are used In WANDERER for some
branches of the logarithm function., They are listed In

appendix D.

2. Outlline of Approach

Before golng Into the detalls of methods and algorithms
for evaluatiomn of the many types of definite Integrals which
will be dlscussed in the next three chapters, a quick look
at the whole picture with emphasls on the flow of control Is

in order.

WANDERER Is a heurlistlic program which computes definite

integrals by trylng to apply one or more of the methods or
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algorithms built into It. The clues as to which of the
methods to apply are obtalned by examining the range of

Integration and the form of the integrand,.

Filg, 1 on the next page serves as a simple outline of

the flow of control in WANDERER,
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WANDERER
S=success
F=fallure
simple Integrals—return answer
F
1
normalization
of Integrand and
Integratlion range
methods for me thods for
Infinite Integrals, finite Integrals,
applled according to Including proper and
range of Integration improper Integrals

more general methods

return answer transformatlion, ——return answer
change of varliable

¥

divergence test

Filg, 1

As Indicated In filg. 1. WANDERER can be said to have
five stages. In the first stage simple Integrals are com-
puted which fnclude cases such as a constant Integrand, an

Integral with equal upper and lower limits of Integration
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and, if the varlable of Integratlon Is X, lIntegral with
integrands which are polynomials in X or %E**X, The
normalizatlion stage wlll make sure, by transformation {f
necessary, that (1) the lower limit Is less than the upper
1imit, and (2) constant factors, If any, In the Integrand
are removed to be multiplled Into the final answer of the

integral,

The third stage comprises most of the methods that will
be described in chapters 4 and 5 and Is the work-horse of
the whole program. Many methods In thlis stage are grouped
accordlng to the Integratlion range In which they are
appropriate. Finlte integrals of ratlonal functions are
transformed iInto infinlite Integrals which will be evaluated,
For other finite Integrals, an effort iIs first made to
determline whether they are Improper lntegrals. The absolute
divergence of a finlite Improper Integral s tested hefore
any attempt at evaluatlion. |[If the thlrd stage fails to
obtain any results, the given problem enters the fourth
stage which contains more general methods approprlate to
various types of Integrands. A transformation or change of
varlable Is often done In thls stage. \lhen WANDERER runs
out of methods, the convergence of the given integral will

be challenged., |In case It Is divergent, WANDERER will so
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Indicate in the output., Otherwise, Indlcation of failure
wlill be returned. |t may be argued that tests for
convergence should be conducted before evaluation, but this
is not necessary because WANDERER Is so designed that
whenever it produces an answer, the given Integral Is
convergent. That is to say each Individual method has its

own convergence and divergence conditions bullt In.

The 1imit program described In the previous chapter Is
used whenever a 1Imit computation Is needed in WANDERER. It
may often be required In changing the variable of Integra-
tfon, computing residues and testing for convergence or

divergence.

3. Outline of the Computation of Resldues

One of the most powerful methods In evaluation of
deflnite integrals Is the use of contour integration through
residue calculatlons, The Importance of contour Integration
and the residue theory In the sequel warrants a brief

summary of relevant facts from complex analysis [5].

(i) The Cauchy Integral Theorem: Let D be a simply
connected domain and let f(Z) be analytic In D, Let C be a

closed contour In D. Then




52

ff(Z) dz = 0
a

A sIimply connected domaln is Intulitively an open set of
polnts with no holes or cuts

the disk

In Its Interlor. For example

I1Z] < 0 ts simply connected while the annulus 1 ¢

1Z] € 2 Is not., The Cauchy integral theorem Is one of the

most Important tools In complex analysls., 1t Is by use of

this theorem that path of integration can be deformed.
precisely,

More
If Cl and C2 are two different curves In D lead-

Ing from the same starting point v to the same end polnt w,

as shown In flg. 2,

\

Fle, 2
and f(Z) lIs analytic In D, then

ff(Z) d2 ff(Z) dZ.
At ¢2

the contour Cl can be deformed into C2. The

Therefore,

above Is an Immediate consequence of Cauchy's Integral

theorem which glves




53

ff(Z) dz -ff(Z) dZ = 0
¢l ¢z

(i11) Definition of Residue: Let f(Z) be analytic In the
punctured nelghborhood of a point p. Let Cp be a small
positively orlented clrcle with center at p. Then the

resldue of f at p Is deflned as

1
---[‘F(Z) dZ
27}

Cp

The value of this Integral s the coefflclent of the
term
-1
(Zz - p)
In the Laurent expansion of f about the point p, so this

coefflclent can also be regarded as the residue of f at p.

(I11) The Resldue Theorem: Let C be a simple closed
positively orfented contour. Let D be a simply connected
domain contalning C and its Interior. Let Al, A2, . . ., An
be points Inside C. Except for lsolated slingularities at
Al, A2, . . ., An, let f(Z) be an analytic functlion iIn D.

Then
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n
ff(Z) dZ = 27t ). (Resldue of f at Aj)
¢ J=1

The algorithm for resldue computatton used In WANDERER
wlll be described briefly here. Detalled discussion of this

algorlthm can be found In sect, 6-1,

Let f(Z) be a function of a complex variahle Z,
analytic everywhere In a domaln D except for a number of
poles In D. Suppose F(Z) can be written In the form

f(Z) = U(zZ)/Vv(Z)
such that U(Z) ts analytic tn D, This means, that poles of
f(Z) are zeroes of V(Z)., Suppose p Is a pole of order m of

f(Z), the resldue of f(Z) at p Is computed by the following

algorithm,
RESIDUE ALGORITHM:

If m = 1, compute as answer
UCp)/V'(p)
otherwise, If V Is a polynomial,
(1) Set V to the quotient of V(Z)/(Z - p)**m
which Is computed by long dlivision,

(11) Return the result computed from

m=1
1 d u(z)
(m - 1)! (37’ v(Z)

Z=p
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otherwlise, (m > 1, V not a polynomlal) compute and
return as answer the limit

m-1

1 d m
Lim] —————— | (z - p) f(Z)
Z#pl (m - 1)! \dZ

DELIMITER Is used In obtaining such a limit. Methods
for infinlte Integrals are dliscussed In the next chapter.
Those for finlte Integrals are Included In chapter 5.
Important algorithms and algortithms common to many methods

are detailed In chapter 6.
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CHAPTER 1V
SYMBOLIC COMPUTATION
OF INFINITE INTEGRALS

0. Introductlion

The alm of this chapter Is to give a detalled account
of the methods employed by WANDERER for improper Integrals
with an infinite range. Contour Integration and residue
computation play a very Important role in many of the
methods. The algorithm for Integrals with ratlional
Integrands, which wlll be discussed flrst, is the most com-
Plete. Sectlons are formed according to the function types
of the Integrand and ordered roughly In Increasing com-
plexity., Qulte a few cxamples are Included, some of them

wlith references to books or Integral tables Indlcated.
l. Infinite Integral of a Ratlonal Function

In this sectlon methods for evaluating Infinlte Inte-
grals of a rational function wlll be presented., The range
of Integration Is from either 0 or minus Infinity to

Infinity. Other possible Infinlte ranges such as (a INF),
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(MINF a), where a is finltte, can be converted to (0 INF) by
a change of varlable In the Integral.,

First let us conslder

o
L i}r R(X) dX, R(X) = P(X)/Q(X)
-00

where P(X) and Q(X) are polynomlals In X over the fleld of

complex humbers.

WANDERER requlres deg(Q(X))-deg(P(X)) = 2 to Insure the
convergence of the given Integral, If R(Z) has no real

poles, then The integral L can be computed by evaluating the

J =f R(Z) dZ
c

around a famlliar semi-circular contour in the upper complex

contour Integral

Z-plane (flg. 1). One can easily prove that L = J as T

tends to infinity.
y
b
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Therefore

(1) L =2 %P1 %1( Z:Res(R) over poles of R Inside C)

The residue subroutine outlined in the previous chapter Is
used to compute the residues needed In this formula. |If
R(Z) has poles on the real axis then L s divergent.
However, If the real poles of R are all simple then the
Cauchy Princlpal Value of the Integral L exlists, and can be
obtalned by Indenting the contour C at these singular points
on the real axls. For such Integrands WANDERER will compute

this principal value, which ts given by

(2) (P)L

2 %3Pl %1( E: Res(R) over poles of R Inside C)
+ 2Pl %1( Res(R) over simple real poles of R),

as an answer to the Integral L. (P)L stands for the
principal value of L. Whenever the answer Is a principal

value, the message PRINCIPAL will be sent to the user first.

Here Is an example solved by WANDERER
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(C1l) (X**2+AwX+B)/(X*%L4+10*X*%2+9)Q@

(D1) = emeemceceae-e-

(D2) = mescmemasa—a-

The expression D1 has four simple poles: X = %I, -%I,
3 %1 and -3 %l1. Usling formula (1), only residues at X=%I
and X=3 %! need be computed. The residues are
at X=%I (B=1+A %1)/(16%1)
at X=3 3l -(B=9+3 A %1)/(48 %1)

These values are computed by the residue algorithm given In

the previous chapter,

The full algorlthm depends on finding the poles of R,

How this Is done wlll be discussed in detall after consider-

®
K=[R(X) dX
o

I f R(Z) has no real pole which Is positlive or zero,

ing the next Integral.

this integral can be evaluated by Integrating the following

contour Integral [30]
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J =j f(Z) dz, f(Z) = PLOG(-Z) R(Z)
¢

where PLOG denotes the principal branch of the LOG functlon,
l.e., the imaginary part of LOG(-Z) lies between %Pl and -

%Pl. The contour C consists of clircular arcs of radll a, b,
and two straight llnes jolning thelr end-points as shown In

filg., 2.
>,

¢r

Ce

One can verify that contributlons from the two clircular

arcs of C vanfshes In the 1Imlt, Thus,

© o 2 3PI %I
J =f PLOG(=X) R(X) dX + f PLOG(-X %E ) R(X) dX
° (2]

oo

o ©
=f PLOG(X) R(X) dX -fPLOG(X) R(X) dX - 2 %PI ZI[ R(X) dX
o ) o
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Hence the value of the Integral K Is given by

(3) K = -(2: Res(f) over poles of R Inside .C)

Therefore, the value of K Is -1 times the sum of
residues of LOG(=Z)R(Z) In the complex Z-plane cut along the

positive real axls,

It may be of some interest here to mention that a
theorem in [30] gives a value for the Integral K which

differs from the correct formula (3) by a sign.

Now suppose R(Z) has poles which are real and positlve,
then the Integral K is divergent. But Its Cauchy principal
value exlsts If every such pole Is of order 1. This value
is given by =1 times the sum of residues of LOG(-Z)R(Z) In

the entire Z-plane punctured at Z=0, as glven In
() (P)K = =( ) Res(f) over poles of R).
K diverges if R(Z) has a pole at 2=0. The following

examples were computed by WANDERER, For ease of reference,

expresslion (D1) 1ls repeated here
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(1) = eececccccccaaa

(C3) DEFINT(D1,X,0,INF)Q
2 2P1 B + 6 LOG(3) A + 6 %Pl
(D3) = emeccecccacamccccccccscaccca-
The answer In (D3) s obtained by locating the four

simple poles of (D1l) and applyling formula (3).

(CL)L/(X**2+X+1)@
1

(by)y  eeseeccecce---

2

(X + X+ 1)
(C5)DEFINT(D6,X,0,INF)@
2 %P1
3 SQRT(3)

Now let us turn to the problem of finding the poles of
R(Z). The SOLVE [16] program in MACSYMA knows how to solve
a number of types of equations., This routine Is used In
obtaining the locatlons and multipliclities of the zeros of
Q(x), the denominator of R(X). The SOLVE program does this
by factoring Q(X) over the Integers and applying formulas to

each lrreduclble factor of degree less than 5. For factors
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of higher degree only those of the form aX**n+b will be
solved. This facllity can be augmented by Including more
special cases for polynomials of higher degree. |If the
integrand Is not ratlional, the problem of finding poles can
be much more difficult, although SOLVE can find some of
these also. In any event, the method of residues can be

successful only If all relevant poles can be located.

Let p be a root of Q(X) = 0 of multiplicity m which is
obtalned employing SOLVE, It Is not necessarily true that p
is a pole of R(Z) of order m. This Is hecause the rational
function package [10] in MACSYMA does GCD cancellations only
over the integers while R(Z) is a rational function over the
complex numbers. Therefore p may not be a pole of R(Z) or p
may be a pole of R(Z) of order less than m, Fortunately
WANDERER can pretend that p Is really a pole of order m and
proceed with the algorithm for computing residues which will
produce a 0, if p Is not a pole, and the correct residue, In
case p Is a pole of order less than m. More discussion on

the computation of residues can be found In Sect. 6-1.

Thus, as the reader can easily verify, (D2) of example
(C2), in page 59, Is valld even if A=0 and B=1 (or A=0 and
B=9). As another example, correct answers were obtained in

the following integrals even If %i, the square root of -1,
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Is treated as a simple pole of the Integrand.

(D6) = eemececcccecccccacca-

(X = 2 %1)(x + 1)

(C7) DEFINT(D6,X,MINF,INF)

(7 aaaa-

(C8) DEFINT(D6,X,0,INF)

(D8) = emmcmeccccacccca-

A speclial case check Is provided as an auxiliary to the

above algorithm.

@ X dx
N M
© (A X + B)
P/N - P/N + M =1 3P
= (B/A) | | emeeececcaccecca--
M=-1 M

B N SIN(ZPI P/N)

for M, N, P positive Integers, M > P/N, P not divisible by N
and AB > 0,
For the case M=1, AB<0, the following Cauchy principal

value s used.
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A 1-P/N %Pl %P1 P
-(- =) (=-=) COT(=wmm=- )
B AN N
This special case Is not necessary for the algorithm
but it Is very helpful as far as program effliclency Is

concerned, especially for large M or N,

Sometimes substantial computing time can be saved by
application of differentiation techniques In Integratlon

problems, Consider the iInfinite Integral

@® dx
(5) Jd = | mecmcacacccaaa- .
| 2 10

® (X 4+ X +K)
If the algorithm for rational functions were used straight-
forwardly, differentlation would have to be carried out 18
times to obtain the sum of reslidues In case both poles lle

above the real axis. But since

it Is only necessary to differentlate a quadratlc expression

once to obtain the sum of residues to evaluate the Integral
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© dx
2
- 00 x

+ X + K
After thls Is obtained, 9 more differentiations with respect

to a parameter K are needed. It means a saving of at least

8 differenttatlions.

In fact, whenever the denominator Q(X) of the Integrand

Is of the form
v(X)*xn
with v(X) a polynomial and n 2 2, this method of diffe-

rentiattion may be applicable If the degree of Q(X) Is large

compared to that of the numerator P(X).

Wle have Included this technique In WANDERER, Let

n = deg(P(X)),
s = deg(v(X)),

QIX) = v(X)»xwem,

Here Is a brief description of the algorlthm.

If 2 2 mrs=-n, thls algorithm Is not applicable,

otherwise (m*s-n > 2)

(1) Set r to the least Integer = (n+2)/s
(t1) tfm>>r

(a) cdompute the origlnal Integral with m
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replaced by r and v(X) replaced by v(X) + ZP
where ZP Is a new parameter Introduced Into the
problem. Let the answer thus obtained be
ANS(ZP).

(b) Return the followlng as the answer

m=r

ANS(ZP)
p

m=-r (r=-1)! d
(-1)

(m=-1)! dZ ZpP=0

(in) otherwise (m=r), the algorithm Is not necessary

and thus wlll not be appliled,.

The parameter ZP used In this algorlithm makes the
symbollc differentiation In step (i1-b) possible at all
times. The flnal answer Is obtalned by setting ZP to zero.
Such a parameter wlll be used agalin later and will be

referred to as the zero parameter,

For example,

1
(b9) = emmessssccce--
2 3
(X + X + 1)
(C10)DEFINT(D9,X,0,INF)@
L %P1 1

9 SQRT(3) 2

In this example, we have n=0, m=3 and s=2. Thus r=1




and the value

£

is computed

o F
1

firse.,

S A A Py

68
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2. Inflnite Integrals Involving Algebralc lrrational Func~-

tlons
2.1 Evaluation by Resldues
Let R(X) be a rational function. Conslder

©
D ijr X##K*R(X) dX, =1<¢ K <1
o

LIMIT(X=*(K+1) R(X), X, 0, PLUS) = 0,
LIMIT(X**(K+1) R(X), X, INF) = 0,
and R(X) has no poles of order greater than one on the
posltive real axls, then D can be evaluated by applying

residue theory to the contour Integral

j( f(Z) dz, f(Z) = (=Z)*»K R(Z)
e

around the contour C shown In fig. 2. The 1Imit conditions
glven above are convergence tests for D, They are computed
by DELIMITER. In computlng these Integrals, the Integration
program wlll flrst obtain two sums of residues S1 and S2 of

the functlon f(Z) by executing the following two steps.

If R(Z) has poles off the positive real axls, set Sl

to ) Res(f(Z)) at these poles, otherwlse set Sl to
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0.
If R(Z) has simple posltive poles, set $2 to

E:Res(f(Z)) at these poles, otherwise set S2 to 0.

Now the answer to the iIntegral D Is given by

---------------- - %P1 COT(%P! (K + 1)) S2
SINCZPI (K + 1))

For example, MACSYMA produced the following result.

(C1) 1/((1+X)eX*%(1/2))@

1
(D1)  eececaccaeccea-
SQRT(X) (X + 1)
(C2) DEFINT(%,X,0,INF)@ [3]
(D2) 5Pl

2.2 Integrals Related to the Beta Functlon

From the definition of heta function
{
BETA(K,S) ijr Xew(K=1) (1-X)**(S-1) dX,
0

where K > 0 and S > 0, One can deduce the followling rela-

tion
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(CX+D) c
where CD > 0 and S > K > 0.

By a further change of vartable In thls formula, the

following very useful relatlion Is obtalned.
@ X BETA(A,B)
(ad | mmeemee- dX = ==ccemce=- ’ r> o0
r S

where A = K/r > 0, and B = S-A > 0.

This rather general formula covers many lInteresting
infinite Integrals Involving algebralc lrrational functions.
This is built Into the programs by using special purpose
pattern recognlitlion routines (see chapter 6) to examine
whether the integrand Is of the particular form (a). A
simplification routine for Beta function was also needed to

put the results In a simpler and better looking form,

(3  emee-

(C4) DEFINT(D3,X,0,INF)@ [12]

IS THE EXPRESSION
K+ 1
POSITIVE, NEGATIVE, OR ZERO
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POSITIVEQ

IS THE EXPRESSION

PBSTTIVE, NEGATIVE, OR ZERO
POSITIVER

K
(D4) 3 BETA(K + 1, = K)

2.3 Evaluatlon by Trlgonometric Substitution
If R(X,Y) Is a ratlional functions In the two variables
X and Y, then an Integral of the form

@
U =‘/—R(X, SQRT(X*w2-Ax»2)) dX
o

can be transformed to an iInfinite Integral of a rational
function which has been discussed in Sect. 4-1, The trans=

formation below Is easy to verify.

Let
2 2
SART(X = A )
Y = cmecccnmenaa- )
X + A
U becomes
2
j’i A(Y +1)2AY Y dy
uA R( ---------- T ) ------------ .
2 2 2 2
Q
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How let Z = Y/(1 - Y) In the above Integral, 1t can be shown

that U Is equivalent to

2
P A(2Z +2Z+1)2AZ( +1) Z (Z + 1)dZ
(1) &4 A R(
]

Although the above Is all that Is needed for the glven
Integral U, it Is sometimes more efficient to transform U
into a finlte Integral of a rational function of the trigo-

nometrlic functions. That Is, by setting COS(t) = A/X In U,

ohe may deduce that

w2 A SINCt)
(11) U=aA Y — LA TANCE)) (===-=-- ) dt
cos(t) 2

Both of these methods (1) and (1i) have been !ncluded

in the programs. Our heuristic rule for applylng these

transformations Is as follows.
Apply (11) If it transforms the given Integrand Into

the form

COS(t)**m SINCt)*#n,

otherwise apply (i).

For example,
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(DS5) = emecccscaccccce-
X SQRT(X = A )
(C6)DEFINT(DS,X,0,INF)@

(D6) --

2.4 Differentlation with Respect to a Parameter

We have Included two formulas In WANDERER for Infinlte
Integrals Involving algebraic irrational functlons, They

are

t dX 1
................. 2 mememccmececase=a~---== = |J(A,B,C),
2 3/2  SQRT(C) (B/2+SQRT(AC))
® (A% + B X +C)

with A20, C > 0, and B > -SQRT(AC), and
® X dX 1
----------------- S emascmscecmscoosaecsaese = V(A,B,C)
2 3/2 SQRT(A) (B/2+SQRT(AC))
° (AX + B X +C)

where A > 0, C 20 and B > = SQRT(AC),

They are Included because any Integral of the form
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@ X dXx
(it J[- ...................
2 N+3/2
0 (AX + B X +C)

can be computed from these known results, Our tool in dolng
this 1s differentliation with respect to an appropriate

parameter. Let Z1, 22 and Z3 be three zero parameters and

N SQRT(%PI)/2
H = ("1) ---------- [

GAMMA(= + N)
2

The algorithm Is as follows.

Upon declding that the !ntegrand Is as given In (111),
WANDERER has obtained the values of M, N, A, B and C. The
answer to the given Integral Is then computed using the
simple procedure:

If M =0 and N

0, return U,

I1f M =1 and N 0, return Vv,
If 2N+2 s M, the given Integral Is divergent,

If N2 M, return

H{ =====mmmnn- UCA,B+Z2,C+Z3)




If M = N+1, return

dz2
If 2(N+1) > M > N+1, then

(1) If M Is even set r
N
d
H ------------
N-r r
dzZ3 dz1
(k1) if M Is odd, set r
N
d
H ____________
N=-r r
dZ3 dz1
A simple example lIs
6
X
(D7) = eemmcacaccaaaa
15
2 2
(X + X + 1)

(C8) DEFINT(D7,X,0,INF)@

(D8)

6567561
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N
d
H [---4 Vv(A,B+z2,0),

= M/2, return the answer

U(A+Z1,B,C+Z3)

’

= (M=-1)/2 and return

V(A+Z1,B,C+Z3)
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3. Infinlte Integrals Involving Trigonometric Functions,
3.1 Integrals from Minus Infinity to Infinity

Let R(X) be a ratlonal function which has no real poles

and
LIMIT(R(X),X,INF) = 0.

The Integral

@ (%21 m X)
L = %E R(X) dX, m»> 0

Is convergent., Its value can be obtained by evaluating the

contour Integral

(31 m Z)
J = %E R(Z) dz
¢

around the contour C given In flg. 1.

Let Cr be a circular arc wlith center at Z 0, radlus r
and argument t, tl < t < t2. Jordan's Lemma [7] shows that

If f(Z) approaches 0 uniformly on Cr as r approaches INF,

(21 m 2)
LIMIT %E f(zZ) dz=0, for t1 =20, t2 & 3%P!
T+ +00 c

r

and that




78

(=21 m 2)
LIMIT 2E f(Z) dZi=0, for t1 = %P, t2 = 2%Pl,
¥ —+00 dr

Therefore L = J as r tends to Infinlty and the method
of residues can be applied., Moreover, for m < 0 one may
use the same method by using a contour similar to C In the

lower half complex Z=-plane,

For realm, n and p, let T(X) be SIN(mX), COS(nX),
9Exx(%1 p X) or a function Involving sums and/or products of
these functlons. In complex exponential form T(X) Is a sum
of constant multiples of functions of the form %E*=(%l k X),
k real.

Therefore

oo
‘]PT(X) R(X) dX
~00

can be Integrated uslng complex contour integral. |In doing
such a problem, terms In the integrand are sorted into two
parts. One part requlires a contour in the upper-half Z-

plane, the other a contour In the lower-half,

Before discusslion of additional methods, let us see a

few examples computed using methods discussed so far.
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coS(X)
(b1  mmesa-
2
X +1
(C2) DEFINT(D1,X,MINF,INF)Q (12])
%P1
(D2) -——-
%E
(C3) X*SIN(X)/(X*x*x2+1)@
X SINCX)
(b3  =ee==a=-
2
X +1
(C4) DEFINT(D3,X,MINF,INF)@Q [(12)
%P1
(Dh) -———
3E
(C5)X*COS(X)/(X**2+1)@
X COS(X)
(s  mmeme==-
2
X +1
(C6) DEFINT(D5,X,MINF,INF)Q@
(D6) 0
(C7) X*COS(X)/(X*%2+4X+1)Q
X COS(X)
¢ton e==ece=cee-
2
X + X+ 1

(C8) DEFINT(D7,X,MINF,INF)@




(D8)

1 (SQRT(3) =~ %1)/2
(%2P1/72) ((= =m=eca- - %1) 3%E
SQRT(3)
1 (- SQRT(3)- %1)/2
+ (2] = emmcmea ) %E )
SQRT(3)

(C9) 1/(ZEx»(%l=xX)w(X*x2+1))0Q

1
(D9)  eeeccccceee--- -
21 X 2
3E (x + 1)
(C10) DEFINT (D9,X,MINF,INF)@
2P1
(D10) -
%E
(C1l1) SIN(X)»D9@
SIN(X)
(D11) eeeecceeccaaca-
21 X 2
%E (X + 1)
(C12) DEFINT(D11,X,MINF,INF)P
2Pl
(D12) -
%E
(C13) D11w(%Ex*x(=2%1%X))
SIN(X)
(D13)  eemeacccmamacaa--
2 21 X 2
%E (x + 1)

(C14) DEFINT(D13,X,MINF,INF)@
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%P1
(D14) ———
2

3.2 Integrals from 0 to Infinlty

Let us now dlscuss some integrals involving trigonome-
tric functlons over the range (0 INF), Flrst consider the

integrals

® n
11 i]’ Cos(k X ) dX

Q

@ n
and 12 =f SINCK X ) dX

o

where k a nonzero real constant and n > 1.

Here again, the resldue theory can be appllied to
evaluate the Integrals. Thls time the shape of the contour
Is slightly different. The contour Is a sector of a circle
consisting of a portion of a clrcular arc with center at the
origln and two stralght 1lnes jolning the end polnts to the
origin, (fig. 3) The sector angle depends on n and lIs

%P1/(2n),

Without loss of generallty, let us assume that k > 0.







Therefore, taklng real and Imaglinary parts of the above

relation, we have

11 = COS(%P1/2n) G

and 12 = SIN(ZPI/2n) G.

For example

7/3
(D15) €0S(9 X )
(C16) DEFINT(D15,X,0,INF)Q
3 3 3Pl
3 GAMMA(=) COS(=-===- )
7 14
(D16) =  mesmecseccceccmecec-cceces
3/7
7%9
(C17) SIN(O*X**x(7/3))@
7/3
(D17) SIN(9 X )
(C18) DEFINT(D17,X,0,INF)@
3 3 %Pl
3 GAMMA(=) SIN(====-= )
7 14
(D18) e bbbl deded
3/7
7%9

Incldentally, if n= 1, Il and |2 do not converge.

83
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A more general Integral than |1 and 12 s

mm n
J =] X EXP(%l k X ) dX
o

where n >-0, R1(m) > =1, k real and nonzero and n=R1(m) > 1.
We shall consider the case k < 0. The case k > 0 Is

entirely analogous., Let us take a sector-shaped contour In

the fourth quadrant as shown In fig. 4.

By Cauchy Iintegral theorem,

n

m (21 k Z2)
Z 3%E dZ = 0
¢}

which Implles that

0
m n
J = EXP(=%PI %l(m+1)/(2n){/— R EXP(k R ) dR
o




= EXP(=%PI %1(m+1)/(2n)) GAMMA(======- )

where s = (m+l)/n.

Let us look at an example.

(2 %31 + 3)
X
(D19) = eececcccacaaa-
3
(%1 X /7 2)
%2E
(C20) DEFINT(D19,X,0,INF)Q
2 31 + 4
GAMMA(======== )
3

(D20) = emecsmccaccecccccccccce--

(2 31 +4) / 3
3 (31 /7 2)

A similar result for k > 0 Is given by
J = EXP(%P! %1 (m+1)/(2n)) GAMMA(=====m====- ),

The followlng Integrals can be obtalned readlly from

the above relatton.

@ 0
n m n m
[COS(k X)X dX  and fSIN(k X ) X dx
(<]
o

For Instance,
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@ r ~s rF(e=-1) (@ r-2 -(s-2)
SIN (X) X dX = ====mcee-- SIN (X) X dX
o (s=1)(s=-2) Jo

r @ ¥ -(s-2)
$ ermmmmanae SlN (X) X dxl
(s=1)(s-2)Jo

where r > (s=1) > 1. As one can see, repeated application
of this relation will reduce U to a sum of Integrals of the
same form as U but with N = 1 or 2. For N=1, AUDITOR uses

the following formula

© X2
p -1 p-1
SIN (X) X dX = SIN (X) dx, p > 0 odd.
o o

The integral on the right hand side can be evaluated easlly.
Integrals of thls type are considered In Sect. 5-2.2. For

N=2, we have

q -2 2Pl [q-3/2
SIN (X) X dX = =-=-
pe) 2 q-l

where q Is an Integer =2, For example

SIN(R X)
4} S I G




(C2) DEFIN

%P1
(D23 -
2
(C3) SHNi =X )wx2/{X*%2)0
2
SIN (Q X)
(o3 memmee—ee-
2
X
(CL) DEFINT(%,X,0,INF)Q
2P Q

(Db)

T{%, 4,0, 1NF)Q

88
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4, Infinite Integral Involving Logarlthm Functlons
4L,1 Evaluation by Recursion and Contour Integration

Let R(X) be a rational function which Is even In X.

The Integral
@ N

V(N) LOG (X) R(X) dX, R(X) = P(X)/Q(X),

with deg(Q(X))-deg(P(X)) = 2, can be evaluated by applyling
residue theory In a recursive manner. Recall that LOG s an
abbreviatlion of PLOG when the argument !s real and positive.
Conslder the contour integral

N
JIN) ijr F(Z) dz, F(Z) = PLOG (Z) R(Z)
¢

where C Is the Indented contour In flg. 5. As 7y approaches

4

- X
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1) Declare each of AV and AJ to be an 1 X N array
2) Set | to 0 then go to step &

3) Set AJ(i) to J(I1)/2

4) If I = N, return the answer V(N)

5) Set AV(1) to V(I)

6) Set | to i+l then go to step 3
Computation of V(I):

If 1 = 0, return the value of the Integral

@
[R(X) dX,
o

(storing away Information about poles and
correspondling residues of R(Z) for computation of J),

otherwise, compute from the formula

1 1 K K
V(i) = AJ(l) - - }Z;( ) $PI %1 AV(I - K),
2 K
K=

Computatlion of J(1)/2 :
Using existing Informatlon of poles and residues of

R(Z) compute by re8idue theory from the formula

2Pl %1¢( Z:Res(F) over poles of R Inslide C),

For example,
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2
LOG (X)
(p1)  memm=e=-
2
X + 1
(C2) DEFINT(D1,X,0,INF)@ (1]
3
%P |
(D2) ———-
8

L.2 Method of Differentiating and Introducing Parameters

A very useful method for Integrands involving LOG(X) is

differentiation., Consider an Integral of the form

[ »]
K
A(K) ifp R(X) X LOG(X) dX, K# 0 and -1 < K <1,
o

where R(X) Is ratlional In X and k Is a parameter which

occurs nowhere else in the Integrand. I|f the lntegral

@D K
f ROX) X dX
o

Is convergent and can be evaluated, then A(K) s given by

B(K)

This method of differentiation is valid because B(K) is
convergent and A(K) 1Is uniformly convergent for every closed

interval contained In the set of polints (K | K#0 and -{<K<1),
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For example

K
X LOG(X)
(D3)  ccamaaaan
X + 3
(C4) DEFINT(D3,X,0,INF)@ [12]
K K D
(D4) LOG(3) 3 BETA(K+1l,- K) + 3 (=--BETA(r, - K)
' Dr ra(1+K)
D
- ==BETA(K + 1,r) )
Dr p==K

In the foregoing dliscussion, K has been assumed
symbollc., Yet, In solvlng'actual problems K may very well
be a number. This difficulty can be overcome by Introducling
a zero parameter ZP, We flrst replace X**k by X**(k+ZP) In
f(X). This permits us to proceed as above and then diffe-
rentlate with respect to ZP, After differentiation the

result Is then evaluated at ZP = 0.

The property of the logarithm functlion
-LOG(X) = LOG(1/X)

can sometimes be used In evaluating Integrals of the form
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b
J =j’ LOG(g(X)) f(X) dX
a

Is convergent, then

b 2 utx)g' (x) dx
J o= L0G(g(X)) UCK)| =] (emmmZaifiait ).
aJa g(X)

The SIN integration program [20] iIn MACSYMA s used to

compute the Indeflinite Integral U(X)., WANDERER uses thlis

method to evaluate Integrals of the form

@ L a
X LOG(1l + X ) dX, a+l > L > 1,
Q

Here Is an Integral evaluated by the method of integra-

tion by parts.

(D7) = eeecammccne--

(08)  mmemme—aa--
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5. Infinlte Integrals Involving Exponential Functlions
5.1 Method of Substltutlon

Integrals with Integrands which are ratlional functlons
of ZExx(K*X), K real and non-zero, are relatlvely easy to
compute, Wlithout loss of generality, let us assume K > 0

and conslder

@
(1) J[.R(%E**(K*X)> dX,

o

I f one makes a change of varlable

(2) Y = %E*«(K*X),

@
(1/K)[ RCY)/Y dY.
0o

This integral converges If (1) does, That Is to say

then (1) becomes

R(Y) has Y as a factor If (1) converges. For the Integral
@
(3) fR(%E**(K*X)) dX
o

one can make a simllar change of varlable
(u) S + 1 = %Ex%(K«X)

which glves
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@
(5) ‘/”R(S+1)/(S+1) ds.
o

Integrals of the form of (3) and (5) can be evaluated
by contour Integral and resldue theory as Indicated In sect.

1. The methods (2) and (4) can In general be applied to any

b
J[-f(g(x)) dX
a

and the resulting integral may be much simpler. For

Integral of the form

Instance
1
(D1) = cmccccscccccacee=
X/3 5
3E (momm= + 7)
X/3
%E
(C2) DEFINT(D1,X,0,INF)Q
7
3 LOG(=-=)
12
(b2) - mmcememas
5
X/h
%E
(D3) = caececsae-.
X/2
9 %E + i

(C4) DEFINT(D3,X,MINF,INF)Q
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(D) ---

5.2 Use of Contour Integration

A somewhat more Iinteresting Integral lIs

o
! i]ﬁ R(%ZEw»X) P(X) dX
-0

where P(X) is a polynomial and R(X) a rational function with
complex coefficients such that
LIMIT(R(ZE**X),X,INF) = 0
and
LIMITCR(ZE*=»X) ,X,MINF) = 0.
Let us flrst determine a polynomial Q(Z) with complex
coefficients such that
(6) Q(X) = Q(x + 2 %Pl %1) = P(X).
Q(Z) exlsts and can be computed by the method of

undetermined coefflclents, Now consider a contour Integral

J =f R(%E»wZ) Q(Z) dZ
j ¢

taken around a rectangular contour as shown In fig. 6.
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A
. c
{ )
- 5 > X
h;.s

As the absolute value of X approaches Infintty,
contributlons from the vertical segments of the rectangular

contour vanish. Hence,

¢o o
J ijr R(ZE**X) Q(X) dX ijr ROZE*+X) Q(X+2 %P( %1) dX,

o0 a

It follows from (6) that I=J, Mow the problem of evaluating
the integral | has been reduced to finding the residues of
R(%E**Z)Q(Z) for 0 =< Im(Z) < 2 %P1. To do thils, the poles
of R(Z) are obtalned flrst. If w Is such a pole then
GLOG(w)

where GLOG stands for the branch of LOG with imaginary part
between 0 and 2*%Pl, 1s a pole of the same order for
R(%ZE*»Z)*Q(Z) iInslide the closed contour, All such poles can

be obtalned In this manner. One example Is

(D)  eceaccacmna-
SINH(X) =~ %I

(C6) DEFINT(D5,X,MINF,INF)@
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(D6) %P1

Note that the Integrand (D5) has a pole of order two at

Z = 3Pl %1/2.
5.3 The GAMMA Function and Related Integrals

A very lImportant functlon closely related to the
evaluation of infinite integrals Involving exponentials lIs

the GAMMA functlion generally defined as

oo

GAMMA(Z) er %Ewxx(=t) t*x(Z-1) dt, R1(Z) > 0.
o

Also of use Is Its logarithmic derivatlive, the PSI

functlon
d
PSI1(Z) =(-- GAMMA(Z))/GAMMA(Z).
dz
A simplificatlion routlne for GAMMA functlon has been

written to make use of the many propertles of this function.

From the definition of the GAMMA functlion, one can

derive the followling very useful relatlon

D C-AX GAMMA(a) %E
X 3E dX = memmm———— ,
o

a
A B
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where a = (D + 1)/B, RI(A) > 0, RI(D) > -1 and RI1(B)
nonzero.

WANDERER has programs deslgned to recognize thls form
and return the result, Of course these programs have to
examine the sligns of the relevant quantitlies carefully

before generatlng an answer.
For example:

2
-X
(D7) %E
(C8) DEFINT(D7,X,0,INF)@

SQRT(%P1)
(p8)  meeeece--
5.4 Integral Related to the Laplace Transform

Let f(t) be a functlion of a real vartable t, then Its

Laplace transform L(f(t)) s defined as

@
(-t s)
LCFCE)) = F(s) = 32E f(t) dt,
(-]

Many of such Integrals can be evaluated by the pro-

grams. Here are some examples produced by WANDERER,
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CHAPTER V
INTEGRALS OVER A FINITE RANGE

0. Introduction

Many finlte Integrals are proper Integrals whose
IndeflInite Integrals exist in closed form and can be com-
puted rather easily. For such an Integral, the evaluation
method Is very stralght-forward. WANDERER simply obtalns
the corresponding Indefinite Integrals and then substitutes
the 1imlts of Integration., The antlderivatlives are computed

by use of SIN. Thls method will be referred to as the anti-

derivatlve method.

A finlte Integral

b
[f(X) dX
2

Is Improper if f(X) becomes Infinlte at some polnt c,

b=c =a. In order to avold having to spend computation
time lookling for an unknown number of slingularlitles of f
between a and b, WANDERER will assume that integrands of

finite Integrals, with the exception of rational Integrands,
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can become Infinlte only at the end points of the range of
Integration., This Is not a severe restriction and does not
decrease the number of integrals It can handle. This Is
true In the sense that any glven range can be subdivided to
conform to the above conventlion. This convention makes It
easy to determine whether a given finlte Integral Is
improper. WANDERER simply checks the value of the Integrand
at the limits of Integration., If the glven Integral Is
Improper, its divergence Is tested before any attempt at
evaluatlon. WANDERER uses a limlt test for absolute
divergence which Is discussed In Scet. 6-6. If the given
Integral diverges, WANDERER will so Indicate In the output.
If the antiderivatlve can be computed, then the answer lIs
sometimes obtalned by employing a 1imiting process when

substlituting the upper and lower limlts of Integratlon,

In thls chapter, attentlon will be focused on the
definlte Integrals whose corresponding Indefinlte Integrals

are difficult to compute or do not exist.

1. Finlte Integrals of Ratlonal Functlions.

For Integrals such as

b
u =j- R(X) dX
2
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where R(X) Is rational In X, a and b are finite, WANDERER
computes U by transforming It Into an Infinlte Integral by a

change of varlable,

Let us wrlte

(X - a) (a + Y)
(1) Y @ wecenes ’ X =& meccne- ’
(b - X) (1 +Y)
(b - a) dY
dX = ==ccecwn--
2
(1 +Y)

This Integral can be integrated readily by methods of con-

tour integration and other means discussed In sect, 4-1.

As an example let R(X) be the expression (D1l)

(ony eee=e-
X -3
The Indefinlite Integral of R(X) from 0 to 1 computed by
the substltution method above is given by

(C2) DEFINT(D1,X,0,1)Q
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LOG(2 - SQRT(3))
(D2 emecmecscececcese-
2 SQRT(3)
One knows that the indefinlte Integral of (D1l) exlsts,
In fact the following has been obtalned using the command

INTEGRATE In MACSYMA
(C3) INTEGRATE(D1,X)@

(D3) (LOG(2 X = 2 SQRT(3)) =- LOG(2 X + 2 SQRT(3)))
/(2 SQRT(3))
The reader may easily obtain a result equivalent to

(D2) by Substituting in (D3) the limits of Integration,

2. Ratlonal Functlons of Trigonometric Functions
2.1 A Typical Applicatlion of Contour Integration

If R(X,Y) Is a rational functlion In two vartables X and
Y, an integral In the form

2X
u =.]-R(COS(X),SIN(X)) dX
o

is easlly transformed to an integral around a closed con=-
tour. By setting

2 2
z +1 z -1
COS(X) = ===-==- , SIN(X) = =====-- ,
2z 2 31 2
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dz
and dX = ====,
3! Z

the given integral U becomes

2 2
1 Z+1 72 -1 dzZ
- F(emmew= g mm———— ) -~
¥y 21 2 312 2

where Cl is the positively orlentated unit circle with
center at Z = 0. Thils contour Integral can then be

evaluated by finding the sum of resldues Inside the circle.

Actually this transformation can be applied iIn general

to any Integral In the form
22X
-/.R(ZE**(ZI X)) dXx
(-]
where R Is ratlonal, by the change of varlable
Z = %Exw (2%l X)

The transformation process lIs simple. The key polnt In
this algorithm Is the determination of whether the Integrand

Is Iin fact a rational functlon of ZE=*(%1 X).

In calculating the sum of the residues, only poles
Iinslde the contour contribute., SlImple poles on the unit
circle, i.e. those with absolute value 1, cause the

principal value to be computed. The Integral s dlvergent
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I1f poles of order greater than 1 happen to be on the clircle.
Examples:
(CL) COS(X)»#2-SIN(X)Q

2
(D4) COS (X) = SIN(X)

(C5) DEFINT(D4,X,0,2*3%P1)0@
(D5) 2Pl

(C6) ZE=#*(2xZ1xX)/(%E**(%1*X)+3)Q
(06)  mmemeee-

(C7) DEFINT(D6,X,0,2*%P1)Q
(D7) 2 %P1

2.2 Utilization of the Perlodiclty of the Trlgonometric

Functions

In this section Integrals of functlons Involving trigono=
metric functlions over a variety of ranges will be

cons ldered,
Let T be a functlon of X defined by

M N
T(X) = COS (X) SIN (X)
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where R1(M) > =1 and RI(N) > -1, The following formula can
be deduced from the definitlon of Beta function. (Sect, L=
2.2)

7(/2 GAMMA( """ ) GAMMA( """ )
2 2
(1) T(X) dX =2 =m=ceccccemcccccnceccca--
° 2 GAMMAC(N + M + 2)/2)
A simple example Is
1/3 1/2
(D8) COS(X) SIN (X)
(C9) DEFINT(DS8,X,0,%P1/2)Q
2 3
6 GAMMA(=) GAMMA(-)
3 b
(Dg) ------------------- .
5 GAMMA(==)
12
The usefulness of (1) Is Increased by the fact that it
Is possible to express definite Integrals of T(X) over a
varlety of ranges In terms of that of T(X) over (0 %P1/2).
For Instance, the following relations are true for any func-

tion f.
T
f f(SIN(X),COS(X)) dX =
o

/2
.[’(f(SIN(X),COS(X)) + F(SIN(X),-CO0S(X))) dX;

o
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/2

‘/ﬁf(SlN(X),COS(X)) dX =
()

7 /2
[f(SIN(X),COS(X)) dx+[ F(-SIN(X),-COS(X)) dX,
o] ]

More generally, let f(X) be a periodic function of X
with period 2%Pl. That Is
f(xX + 2%P1) = f£(X),

An integral of f(X) over some range (a b),

b
S = I f(X) dX,
a

can always be wrltten as a sum of Integrals In the form

2R

c d
(2) nf £0X) dX +f FX) dX -f £X) dX
(-] o

o

for some integer n and 2%P1l > ¢, d =2 0. This Is true for

there exist Integers p and q such that

[+Y]
4]

2 p %P1l + d,

and b

2 q %P1 + c.

Then S Is equivalent to the sum (2) with n = (q - p).

Programs have been wrlitten to perform thils reduction
and they are applied when the Integrand has a period 2%Pl

and the difference (a - b) has %Pl as a factor. some




112

examples computed by WANDERER are
1/3 2
(D10) CoS(X) SIN (X)
(C11) DEFINT(D1l0,X,~-3%P1/2,%P1/2)@
. 2
18 SQRT(%P1) GAMMA(=-)
3
(D11) e L Y L LT LT s
1
7 GAMMA(=)
6
(C12) COS(X)*%»3*SIN(X)»»2Q

3 2
(D12) COsS (X) SIN (X)

(C13) DEFINT(D12,X,3*%P1/2,3*2P1)@
2
(D13) -
15
3. Finlte Integrals of Algebralc lrrational Functions

3.1 Ratlionallzing the Integrand

If R(X,Y) Is a ratlonal functlion In X and Y, the Inte-

zral

< 2 2
(1) K =f R(SQRT(A = X ),X) dX,
b

where A =c¢ > b 2 ~-A, can be rationallzed.
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Let us write
2 2
A - SQRT(A - X )
(2) Y 2 wceemccacacance—aa— = v(X),
X

which glves

(3) X = =mm=m-

Substituting (3) for X, (1) becomes

2 2
["“’ ACL-Y) 2AY (1-Y) dY
U

b 2 2 2 2
¢ 1+ Y 1+ Y (1 +Y)

which Is an integral of a rational function. Integrals of

this type have been discussed in Sect. 1.

Similarly for the Integral

é

2 2

J -—.f R(X,SQRT(X = A )) dX
b

where ¢ > b =2 A > 0, the change of variable

can be made to convert J to
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2
W e s 2aA t dt
oA R(mmmmmmme PR ) mmmmmma———ea
uch 1

which Is also an Integral of a ratlonal functlon. Here are

two such Integrals evaluated by WANDERER,

1
(p1)y  esececccccaa.-
2

X SQRT(X = 9)

(C2) DEFINT(D1,X,3,4)@ [12]
-5 3 + %1 SQRT(7)
(D2) === PLOG(========o=omx r)
3 4

(C3) 1/C(X+1)*(L-X*#x2)*x(1/2))@

(D3) = eeececececcccccccca-
(X + 1) SQRT(4 - X )

(CL) DEFINT(D3,X,0,2)@

LOG(2 + SQRT(3))
(D) emecccccceaccae-
SQRT(3)
Another method Is to try to transform the given Inte=-

gral to an Infinite integral by the change of variable glven

In (1) of Sect. 1. For Instance the Integral

B
‘/—R(X,SQRT((X - A)(B - X))) dX
A
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can be converted to

The method of ratlionalization can also be applied to

b
-}rR(X, (CX + D)»=(1/Q)) dX

a

where Q Is an Integer, C and D are constants.and the range

of integration needs not be finite.

For integrals of this type the substitution

1/Q
Y = (C X + D) ’

will convert the glven Integral into that of a rational

functlion in Y.
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The principal task In thls converslon method Is to
recognize that the given Integrand s of the partlcular form
and to obtaln the integer Q. In essence, the algorithm for

doing thls Is

(1) Obtaln a 11st L of all distinct lrratlional
parts In the glven Integrand,

(i1) If elements In L are fractlonal powers of an
identical linear polynomlal In X, the pattern Is
matched and Q Is set to the 1cm of the denomlnators
of all the exponents of the linear polynomial,

otherwise the pattern Is not matched.

3.2 Integrals Related to the BETA Functlon

The BETA functlon Is deflined by the Integral

1 k-1 L -1
BETA(K,L) = X (1 - X)) dX

(/]
for R1(K) > 0 and R1(R) > 0. From this definltion one may

readily deduce the relatlion

' j‘|< -1 CL-1 1 K
(3) X (1 - X)) dX = = BETA(-,L),
° c c

WANDERER applles thls formula by recognizing the form

of the given Integrand. 1In chapter 6 some technlques and




programs for pattern recognition are discussed.,

grals In the form

B
K =1 c cL=-1
(X - A) (B =X dX,
A

a simply substltution,

Y = (X - A)/B,

wlill transform it Into (3).

For

117

inte-
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4L, Finite Integrals Involving Logarithm Functlions

When the Integrand ls a functlion of LOG(X), a given
Integral may, In many cases, be evaluated by transforming It

into one which involves exponentlal functions. Consider

b
U =[ f(LOG(X)) dX, b >a=0,
a
the substlitution
-Y
(1) X = %E for 1 > a,
or
Y
(11) X = %E for a =1,
converts U to
s -Y
Jrf(-Y) ZE  dY, r= -L0G(b), s= -LOG(a),
r
or
5 Y
‘[f(Y) %E dY, r=10G(a), s= LOG(b),
r

respectively. In case a = 0 and b = 1 (or INF), the use of
(1) or (i1) wlll result in an Infinite Integral which can
often be evaluated readlly using methods provided in

WANDERER, For Instance by use of (1) the Integral

i q
fLOG(X ) dX
o
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becomes

Q0
q -Y
f(-Y) %E dy,
o

which Is an Infinite Integral already studied (Sect. 4-5.3),

The method (1) or (1i) can also be applied to Integrals of

b
,
[x f(LOG(X)) dX,
a

i -2
S1 R S -RY -1
LOG (-) X dX = Y %E dy.
o X o

For Integrands tnvolving LOG(f(X)), It may sometimes be

the form

as In

possible to simplify the given Integral by the substitution
Y = f(X), X = g(Y)
where the functlon g Is the Inverse function of f. A very

simple application of this method Is conversion of

o0
f x2L0G(SQRT(X)+a) dX
a

2
e 2
z[ (Y-a) LOG(Y) dY.
o

Techniques of dlfferentiation with respect to a

to the integral

parameter, as detalled In Sect. 4-4.,2, can be employed for

finite Integrals with a factor




K
X LOG(X),

In the integrand.,

(D1)
(C2)

(D2)

(C3)

(D3)

(ch4)

(Dl)

(C5)

(D5)

(c6)

(D6)

Examples :

K
LOG (X)

DEFINT(D1,X,0,1)0Q
K
(-1) GAMMA(K + 1)
LOG(X)**(1/2)/(X**2)@
SQRT(LOG(X))

DEFINT(D3,X,1,INF)@
SQRT(%PI)

- WA N D ) S LS L N Y AR RO N WS w R W D w

SQRT(-1) SQRT(LOG(X))

DEFINT(D5,X,0,1)@
SQRT(%P1)

R1(K) # 0,
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(12]

[12]




(C7) LOGIX =i {i~u
(D7)

(C8) DEFINTLO, -, .
(D3)

SORT(1
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sw UL 20/ Xy xx {17200

- SQRT(X) ) LOG(X)

4 e am v e . e RS ow SR B e ma T T R e e e NS am

D 501
y {=-BETAL(r,=))
Dr 2 r=1
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(1) Set V to the quotlent of V(Z)/(Z = p)**m
which iIs computed by long division.
(ii) Return the result computed from

m-1
1 g_) u(z)

(m - 1)!

dZ Z=p

otherwlse, (m > 1, V not a polynomial) compute and
return as answer the limlt

m-1

1 d m
Lim ———————— (—ﬂ (Zz - p) f(Z)
Z#p (m - 1)! |d

1.2 Evaluatlon of Contour Integrals by Resldue Theory

In order to evaluate an Integral of f(Z) around a
closed contour C by residue theory, it Is necessary to
locate all poles of f Inside C., After this Is done, the
remaining problem Is to compute the sum of residues of f at
these polnts efficlently., The difflcult part Is flnding
poles. WANDERER employs the SOLVE routine In MACSYMA to

solve V(Z)=0,

For V(Z) a polynomlal In Z, SOLVE finds lts zeros by
factoring over the Integers and applying formulas to each
factor of degree less than 5. For factors of higher degree

only those of the form a*Z#»*n+b will be solved. The problem
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of factoring large arbitrary polynomlals Is non-trivlal, to
say the least., The development of a more powerful factoring
algorithm which will factor polynomlials over a larger ring
than the integers would certainly be helpful to SOLVE and
WANDERER. The locatlion of zeros Is usually more difficult If
V(Z) Is not a polynomial In Z but some more compllicated
functlon., In such a case, WANDERER usually uses methods
other than the residue theory. An exception Is when V(Z) is

a polynomlal In %E+*Z which has been discussed In Sect. L-

5.2,

Thus within the limitations of SOLVE, V(Z) wlll be
solved and Its zeros sorted Into a list of palrs. Each palr
contalning a zero and its multipllicity, such as

L= ( (Z1,ml) , (Z2,m2) , (Z3,m3) , ...

L Is then sorted Into two lists L1 and L2, dlscarding

poles outslde the closed contour C, such that

L1

a list of all simple poles

L2

a list of other poles palred with thelr

multlipliclitles.

At this point, we can apply the RESIDUE ALGORITHM to
obtaln the deslired sum. To avoid repeated calculation of

v'(z), the program checks whether L1 Is empty. If L1 Is not
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an empty 11st, V'(Z) will be computed and stored for

possibly repeated reference later In the computation.

Note that it has been assumed from the beginning of
thls section that a pole of f(Z) would be a zero of V(Z).
This assumption Is quite reasonable for almost all of the
applications In evaluation of definite Integrals of
elementary functlons. However a zero of V(Z) need not be a

pole of f(Z)., For instance Z = %! is a zero of

but not a pole of

(z + %1)

A e ————————

4
(z - 1)

For each zero p of V(Z) we may check the value of U(p)
to see If p Is really a pole of f(z). Although It Is not
clear what can be done If U(p) = 0, since p may still be a
pole of lower order. A better method Is to Ignore the fact
that If V(p) = 0, U(p) may also be 0 and pretend that p lIs
an actual pole of f(Z). This Is valld because a residue at
any removable singular point will turn out to be 0.

Furthermore, the residue obtained at a pole of order m Is
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2., Obtaining Real and Imaginary Parts

In the course of evaluating a definite Integral by com-
plex contour Integratlon, the need to take the real or the
imaglnary part of an expression often arise. For Instance,
to see whether a pole, p, lles above or below the real axis
the slgn of Im(p), the imaginary part of p, Is examined. To
determine If p lles Instde the unit circle at Z=0, it Is
needed to compute ABS(p) which Involves taking the real and

Imaginary parts of p.

The algorithm for obtaining R1(p) Is presented as a

representative of similar procedures used.
Algorlthm REALPART(p) :

1) 1f p Is %l return 0, If p Is a number or any

other atomlic symbol, return p.

2) If pis a sum, (p =i‘ pj) then return
;:REALPART(pj) "

3) If ;'Is a product (p = pl#*p2) then return
REALPART(pl)=REALPART(p2)
- IMPART(pl)*IMPART(p2)

L) If p = %E%x*pl return

%E**REALPART(pl)*COS(IMPART(pl))
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5) If p = pl**p2, convert p to %E**(p2*L0G(pl)) then
go to step 4,
6) If p = LOG(pl), return LOG(ABS(pl))

7) Otherwlise, return the form R1(p).

3. A Heurlstlic Pattern Recognitlon Program

It Is often the case that some pattern recognltion lIs
needed, at one stage or another during the evaluation of an
integral, Although many Integrals can be evaluated without
any pattern recognition, this capabillity remains Important
to WANDERER. One speciflc patterr shall be discussed as a
representative of such methods in WAMDERER. Consider the
pattern

N M
P(X) = (B X + A)

where B, N, A and M are free of X (l.e. do not (nvolve X)
and all except A must be non-zero. Thls pattern should
match, for example, every one of the expresslons
1/2 -1/3
X, 2 X +1, (X + 21)
p q 2
x -1, and X +2 X + 1,

The last expresslion Is the expansion of
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2
(X + 1) .

Expresslons In expanded form present some trouble for
the recognlitlon algorithm, This difflculty Is overcome by
the use of differentiatlon and ratlonal simplification,

That Is if an expression E(X) s equivalent to an expression

matchling the pattern P(X), we can compute

E'(X) /7 E(X) = U(X) / V(X),
cancellling all common factors In the numerator U(X) and
denomlnator V(X). Then V(X) should match p(X) with M = 1,
As a result of thls match, some values are assigned to the
variables A and B, By use of these values the correct value
of i1 and N can be recovered from U(X), The values for A and
B thus obtained may differ from the true values by a
constant factor, Thls happens whenever these true values
have common factors. The real values of A and B can be
determined by comparing A**M to E(0), Thls procedure was

suggested by Moses.

The full algorithm used for matching P(X) will he
described. Let 1t be called PM, PM uses another routine PMN

which recognlizes the pattern

N
P(X) = (B X + A)

As one can sce In the following algorithm, the values






1/m 1/m
A= Ar and B = B r,

then P(X) s matched.

Algorithm PNCE(X),X)

1) tf E Is free of X, the pattern not matched.
2) Match A to E(0) and set E to E - A,

3) If E Is of the form r*X*+*s, the pattern Is
matched (B to r, N to s). Otherwise there Is no

match.,

131
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4, A Procedure for Change of Varlables

Substitution of a new varlable Y for a subexpression,
say g(X), of the Integrand In a glven Integral ls a

frequently used method In Integration. Let the given Inte-

b
J =.[. f(X) dX,
3

then the transformed Integral would be In the form

d
J =f FC(Y) dY
C

where F(Y) might be considerably simpler than f(X). F(Y), ¢

gral be

and d are computed by a procedure which Is called whenever a
change of varlable Is needed. It makes use of two other

modules of MACSYMA, namely SOLVE and DELIMITER.

1) Use SOLVE to solve for X In Y = g(X), obtalning
X = h(Y), the Inverse function of g.

11) If h can not be obtalned, return Indicatlon of
fallure,

11i) Compute, using the DELIMITER, ¢ and d as In
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LIMIT(g(X), X, a, PLUS),

(2]
n

[~ 8
]

LIMIT(g(X), X, b, MINUS),

Iv) Obtain f(Y) by assigning It a value computed
from

f(h(Y)) h'(y),

5. Solving Systems of Llnear Algebraic Equations

In sect. 4=5,2 the need to compute a polynomial Q(X)

from a glven one P(X) satisfylng a given relation

(1) Q(X)=Q(X + 2 %P1 %1) = P(X)

has been mentioned.

The method of undetermined coefficlents Is used to
determine Q(X)., Let Q(X) be a polynomial In X with degree
one higher than P(X) and unknown coefflclents C0, Cl, ... ,
Cn. That Is

n+l n
QlXx) = X +Ch X +, .., +Cl X+ CO.
Equation (1) will glve n llnear relatlons among these
coeffliclents. Therefore the value of these C's can be

obtalned by solving the system of llnear equatlions they must
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satlsfy.

For the purpose of solving systems of linear algebralc
equatlons, A method known as the "Two-step fractlon-free
Gausslan elimination" [1l4] has been Implemented. Thls
method Is an Improvement over a correspondling one-step
method and features a procedure that keeps the size of the
Intermediate expressions In the course of the reductlion down
by dividing them by a common factor which the procedure can
predlct. The advantage of thls method over a more

efficlent and elaborate scheme [18] s Its simplicity.
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6. Convergence of Integrals

There are many methods to determine the convergence or
divergence of a glven Improper Integral. Some are limit
tests, others comparison tests etc. Some test for absolute
convergence, others conditlonal or uniform convergence, |t
Is a possible area for future work., There Is no real need
to have such elaborate schemes In WANDERER, for after all it

is the value of the glven Integral that Is desired.

b
J =jf f(X) dX.
2

If f(X) Is a rational functlion of X, WANDERER combines

Conslider

convergence tests with evaluation algorithms as explalned In
chapters 4 and 5. If f Is not ratlonal, then It s not
allowed to become Infinlite except at a and b, This Is a
conventlon on Inputs used by WANDERER, Thus, J Is a proper
integral If a, b, f(a) and f(b) are finite, If J Is

Improper, WANDERER has a test for absolute divergence.

Test for absolute divergence:

(1) If a and b are finlte and b > a, then J Is

absolutely divergent If
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LIMIT((b=-X)f(X),X,b,MINUS) # O,
or
LIMIT((X=-2)F(X),X,a,PLUS) # 0.
(2) If ais Infinite, then J is absolutely divergent If

LIMIT(X*f(X),X,a) # O.

(3) If b is Infinite, then J Is absolutely dlivergent if
LIMIT(X*f(X),X,b) # O,
If a functlion G(X) exlIsts such that G'(X) = f(X), then
the method of antiderlivatlive can be used. That Is to com-

pute J by evaluating
LIMIT(G(X),X,b,MINUS) - LIMIT(G{X),X,a,PLUS).

If this value Is finite, It Is the value of the given

Improper Integral. |If It does not exist, then J diverges.
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CHAPTER VII
AN APPLICATION OF MACSYMA
AND WANDERER

0. Introduction

The usefulness of a general purpose algebraic manipula-
tlon system such as MACSYMA In facllitatlng the solution of
mathematical problems has been demonstrated. Using his
"Symbollc Mathematical Laboratory" [15], Martin demonstrated
solutions to three demanding problems In applied
mathematlcs., These examples emphasize the fact that routine
algebraic computatlon can be done by computer programs not
only without error but rmuch faster than by hand, The value
of such a system ls especlially appreclated when the expres-
sions involved are large and complicated. By employing
such a computer facllity the human problem solver may be
freed from the tedlous and uninspiring manlipulations to
think more about the profound aspects of his problem. But
this Is not all such a system can do, Moses's SIN [20], a
program for Indefinlite Integration, provides a good example

of successful mechanization of a mathematlcal process which
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Is far from routlne or straight-forward. The Introduction
of SIN broadened the scope of algebralc manipulation systems

significantly.

The purpose of this chapter s to show how MACSYMA and
WANDERER can be used to help solve complicated problems that
are of practical importance. One such problem Is the asymp-
totic evaluatlion of certaln contour integrals arising In
mathematical physlcs. Usually one starts with one or a set
of differential equations describing a physical problem.
Solving these equatlons by one method or another, most often
by integral transforms, one will arrlve at a solution In the
form of a definite Integral which is often difficult, If not
Impossible, to evaluate exactly. Frequently, one Is not so
Iinterested In the exact solution but the behavior of the
system when one parameter becomes very large or small. This

is where asymptotic analysis s needed,

MACSYMA s used to obtain the asymptotlc solution of an
infinite Integral. Many faclilitlies provided In such an
algebralc manipulatlon system can be ll1lustrated through
this appllication. It Is also possible to show how the
definite Integration capabhllity provided by WANDERER Is

needed for the successful computation of the results.
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1. An Asymptotic Analysls Problem and an Outline of the

Method of Steepest Descent

Consider the Infinite integral

P ¢ H(t)
J(C) = 2E dt, c>0
-
4
t
where H(t) = = == = 2] ¢t
M

While Integrating J exactly may be impossible, its
asymptotic behavior as C becomes very large can be
Investigated. To obtaln the asymptotic expansion of J, the
method of steepest descent [5,7] will be emploved.
Baslcally, the method of steepest descent consists In
deforming the contour of Integration In such a way that the
major contribution to the Integral arises from a small por-
tlon of the new path of Integration. The contribution will
become more and more dominant as the parameter of Interest

grows, Thls parameter here Is C,

The flrst step In thls method is to flnd the new path
of Integration, On a glven contour, larger contributlons

comes from portions where the Integrand is larger In
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absolute value and less oscillatory. Hence the requirements
for a desirable path are: (a) the absolute value of the
integrand becomes maximum at a point, tl say, on the path.
(b) The argument of the Integrand ls constant on the path
near tl. The first requlrement is obvious. The second Is
essential, for if the phase angle changes even slightly near
tl, thls change will be magnified by the very large factor C
resulting in rapld oscillatlons of the lIntegrand and
therefore negatlng any possible contribution from the polint
tl., Let UCtl,t2)= RI(H(tl+%1 t2)) and V(tl,t2) = Im(H(tl+%!

t2))., Let p be a polnt where

du du dv dv

mmms = mmeem meee = ee- = 0,

d tl d t2 d tl d t2

Then p Is certalnly a candidate for tl required In (a) and
(b). Such a point is called a saddle point, The cholice of
the name saddle polnt will be made clearer later, The
Cauchy-Rieman condltions Imply that criterion for such a
point Is H'(t)=0., There may be more than one such polnt in
the complex t=-plane. There are an Infinite number of diffe-
rent curves which pass through a saddle point and satisfy
(a) and (b). Among them the path along which the integrand
decrease in size most traplidly is the best, for the integral

J, this means a curve on which U decreases most rapldly.
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Let H'(b) = 0. It can be shown by use of properties of
analytic functions that U varies most rapidly on curves
Im(H(t))=const. (usually called level curves). |If H''(b)#0,
two level curves will pass through the point b, Intersecting

at right angle, as shown In fig. 1.

flg. 1

On one of these two curves, say curve A, RI1(H(t)) Is minimum
at b and increases as t moves along A away from b. On the
other hand, RI(H(t)) Is maximum at t=b on the curve D and
decreases as t moves away from b on D, Curve A Is called
the steepest ascent path and D the steepest descent path,
The polnt b ls usually referred to as a saddle point. |If
H''(b)#0, b Is a saddle polnt of order 1, If H''(b)=0 and
H'''(b)#0 of order 2, etc. If the orlginal contour can be
defdrmed onto one or a combination of such steepest descent
paths, then the asymptotic expansion of the given Integral

can be obtained by a rather routine procedure which
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involves: change of varlable of lntegration, Inversion of
truncated power serles at the saddle points and term by term

integration.

Let us outline the steps of the solutlon procedure as
follows.
1) Locate and determine the order of saddle polnts
of H(T).
2) Compute U(tl,t2) and V(tl,t2) such that
H(tl + %1 t2) = u(tl,t2) + %1 v(tl,t2),

3) Obtain Vv(tl,t2) = const., curves whlich pass
through the relevant saddle points,
k) Examlne the V(tl,t2) = const. curves to
determine whether deformatlon of contour can be made
to curves through the saddle polints.
5) Change the varlable of Integration.
6) Express t as a truncated serles In the new
variable about each relevant saddle point.
7) Determine the coefficients In the above serles.
8) Apply Watson's lemma to obtalin the first few
terms of the asymptotlc expanslon by Integrating

term by term.
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2. Solutlion Steps

Presented here are the solution steps of the asymptotic
expanslion of J(C) In the exact sequence as they have heen
carried out using MACSYMA., The lines labelled (Cl) are
Input commands., A command line ends with either a @ sign or
a $ slgn. The @ slgn causes results obtained by executing
the command 1lne to be displayed In a subsequent line
labelled (D1). A (C!) line together with a corresponding (Di)
line will be referred to as step I. The § as an end of
command lline character suppresses display of results for
that line. Explanatory texts wlll be Inserted between
llnes. To avoid becomlng a user's manual for MACSYMA,
explanation for the commands used In the solution will be
made quite brief, For a more detalled look at MACSYMA the

reader s referred to [16].

(C1) P:8%

P Is a parameter which Is set depending on the number
of terms desired In the asymptotlic expansion. By settling P
to 8, we shall obtaln the first 4 terms. The reason will

become evident later.

(C2) H(T):==Tadh/L4-%1*TQ
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L

T
(D2) H(T):= = == = 21 T

L

definlng the functlon H(T)
(C3) DIFF(H(T),T)=0@
3

(D3) -T =21 =0

creatlng an equatlon H'(T)=0

(C4) SOLVE(%,T)@

SOLUTION
SQRT(3) - %!
(EL) T = erccccencca=-
2
(ES) T = %I
- SQRT(3) - %!
(EG) T = ceccccccmanan=-
2
(D6) (E4,ES5,EB)

The % sign used In (C4) stands for the last (D3), In
general a % slgn represents the last expresslon labelled
(D1)., SOLVE In (C4) Is an Invocatlon of the MACSYMA SOLVE
program (see [10] for Its capabllities and limltations),
The roots of H'(T)=0 give three flrst order saddle polnts,
Passling through each of these polints there will be one
steepest ascent and one steepest descent level curve

(Im (H(t))= const. curves). The saddle points In (El) and
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(E6) are the polints B and A respectively shown In fig. 2.
The value of H at these three saddle polnts will now be

computed.

(C7) HB:RATSIMP(H(PART(EL,2)))@
- 3 %1 SQRT(3) - 3
(o7 emeesmeccccaccowo-

What has been done In step 7 Is the computation and
simplification of H(B). The command RATSIMP causes ratlonal
simplificatlion which Is essentlally putting expresslions to
be simplified Into the form of one numerator.and one
denominator and perform all possible GCD cancellatlions. The
.command PART allows a user to obtaln subexpressions of an
expression. PART(EL,2) returns the second part of the
equation E4 which Is Its right-hand side. Note that

- commands can be nested.

(C8) HC:RATSIMP(H(PART(ES,2)))@

(D8) -
(C9) HA:RATSIMP(H(PART(EG,2)))@

3 %1 SQRT(3) = 3
(p9)  eessaesccccccea-

.The point T=%| turns out to be irrelevant because the
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new path which will be determined does not pass through It.
The next goal Is to obtaln curves passing through the saddle
points (SQRT(3)/2, -1/2) and (=-SQRT(3)/2, =-1/2) along which
the Imaglinary part of H(T) Is constant and the real part of

H(T) varles most rapidly, i.e. the steepest paths through

the saddle points.

(C10) EXP:EXPAND(H(T1+%I*T2))Q

4 2 2
T2 3 3Tl T2
(D10) = === + %! T1 T2 4 =mmcmem--
4 2
4
3 T1
=%l T1 T2 + T2 = === =31 T1
4
(C11) V(T1,T2):="COEFF(D10,31)@
3 3
(D11) V(T1,T2):= T1 T2 =-T1 T2 - T1

By steps 10 and 11, the imaglnary part of H(T1l+ %I T2)
Is found and given a functlon name V(T1,T2). The command
COEFF(exp,var,n) computes the coefficlent of var**n In exp.
In thls case, the coefflclient of %l In (D10) Is exactly the

imaginary part of (D10).

(C12) U(T1,T2):="COEFF(EXP,%!,0)@
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4 2 2 b
T2 3T1 T2 T1

(D12) UWTL,T2)t= = —== 4 =mm-ceee. + T2 - ---
4 2 4

U(T1,T2) Is defined to be the real part of
H(T1 + %1 T2).

(C13)V(T1,T2)=V(SQRT(3)/2, -1/2)@

3 3 3 SQRT(3)
(D13) TLT2 =Tl T2 =Tl = = =me-e-a--

Obtalned In (D13) Is the equation of a curve,V =
constant, which passes through the saddle polint B,

(SQRT(3)/2, =1/2). This curve wlll be referred to as CR.

(C18)V(T1,T2)=V(-SQRT(3)/2, =-1/2)@

3 3 3 SQRT(3)
(D14) T1 T2 =T1 T2 = T1 = ===-- ———

(D14) 1s the equation of a curve, V=constant, passing
through the saddle point A, (-SQRT(3)/2, -1/2). Let thls
curve be CL. The curves GL and CR have to be examlned
carefully by the human problem solver to determlng the new
path of Integration. The manner In which they extend to
Infinity Is often Important In deformlng the contour.

Asymptotes to these curves can be found easily. For an
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It can be seen in flg., 2 that by use of Cauchy's
Integral theorem, the original contour can be deformed to
the contour Ca+Ch, For the purpose of change of path of
Integration a new variable R Is Introduced which will be the

parameter of our steepest descent paths.

(C17) -R»*2=H(T)-H(T0)@Q

4
2 T 1
(D17) “-R =% T0 === =31 T+ =
I 4

T0 stands for elther of the two saddle polints A or B,
Indeed if T0=A, R Is real if and only If T Is a polint on Ca,
for Im(H(T)-H(A))=0 and 0 = (H(T)-H(A)) only for polints on
Ca. The same can be sald about T0=B., T has to be expressed
In terms of R In order to perform the change of variable.
Solving for T as a function of R exactly In (D17) is not
necessary. What Is needed Is the first few terms of a power
serles expansion of T In terms of R about the point T=TO

(the saddle point).

(C18)T=T0+DOSUM(J,1,P,B[J]*R%*J)@

8 1 6 5 [
(D18)T = T0O + B R +B R +B R +B R +8B R
8 7 6 5 4




151

T Is set to a truncated power series In R, The unknown
coefficlients Bl will be solved for by use of (D17),.
(C19) E:SUBSTITUTE(D18, R**2+PART(D17,2))@

8 7 6 5 )
(p19) - (T0O +B R +B R +B R +B R +B R

+B R +B R +B R)/4 - % (TO+B R +B R
3 2 1 8 7

6 5 [ 3 2
+B R +B R +B R +B R +B R +B R)

2 1
+ %1 TO + R + =
L
The expression (D19) has been given a name E, Before E
Is expanded In order to collect terms, a few simplification
rules are deflned so as to discard powers of R higher than 8
In the expansion process. Thls greatly reduces the

intermediate expression bulge which would otherwise occur,

(C20) DECLARE (N,NPRED)S

(C21) NPRED(X):=1F X > P THEN TRUE ELSE FALSES$
(C22) TELLSIMP (R=xN,0)$

?S THE REPLACEMENT

A simplificatlon rule has been set up so that any R¥#*n

s replaced by 0 if N > p which Is 8,
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(C23) TELLSIMP(TO=*=x3,-%1)¢

An addlitional simplificatlon rule iIs defined so that

TO**3 shail bhe replaced by -%1 automatically.

(C2L)Y RATVARS{(R)S
R shall bhe the main varlabhle In subsequent rational

simplificatlions,

(C25) E:PART(RAT(E),L1)@
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(D25)
8 2 2
R((=-128 B -128B B -12B B =~-68 ) T0
1 7 2 6 3 5 L
2 2
+ (- 12 B B -24B B B + (~-24B B -12B ) B
1 6 1 2 5 1 3 2 b
2 3 2 2 2
-128B B ) T0 -4 8B B =-12 8B B B ~-628 B
2 3 1 5 1 2 4 1 3
2 b
- 128 B B -8B )
1 2 3 2
7 2
+R ((-12B B =-128 B =-128B B ) T0
1 6 2 5 3 4
2 2 2
+ (-12 8 B -24B B B -128B B - 12 B B)TO
1 5 1 2 4 1 3 2 3
3 2 3
- 4L B B -12 8B B B -48B B )
1 L 1 2 3 1 2
6 2 2
+R ((-128B B8 -128 B -68B ) TO
1 5 2 4 3
2 3
+ (-12 8B B -2 8B B B -4 B ) TO
1 L 1 2 3 2
3 2 2
-4 B B -68 B )
1 3 1 2
5 2

+R ((-128 B =128 B ) TO
1 4 2 3
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2 2 3
+ (-128 B -128B B )T0 -4 B B )
1 3 1 2 1 2
L 2 2 2 b
+R ((-128 B -68B )T1T0 =~-128 B T0O -8B )
1 3 2 1 2 1
3 2 3 2 2 2
+R (=-12B B T0 -4 8B T0) + R (4 - 6B T0 )
1 2 1 1

E Is set to the huge expression above which Is the
numerator of a truncated expanslon of E; the denomlinator Is

a constant,

(C26)FOR J:1 STEP 1 UNTIL J > (P-1)
DO BLOCK (EQ[J]:COEFF(E,R,J+1)=0,DISPLAY(EQ[J]))$

This do loop s used to generated the coefficlents of
the varlious powers of R In E and store them In the form of
equatlions in an array RL, Each EQ[J] will be displayed

after It Is set.

2 2

L - 6 B T0 =10
1
2 3

-128 B T0 -4 B T0 = 0
1 2 1
2 2 2 L
(-128 B -68 )70 -128B B TO - B =0




+

12

B

B

B

1
B =-12 B
- 24 B
6 1
) TO - 4 B

- 12 B

2
B ) TO
3
2 3
- 12 B y TO - 4 B
1 2 1
2 2
B =6 ) TO
[ 3
3
24 B B B -4 B )Y TO
1 2 2
3 2
L B B -6 8B B =
1 3 1
B -12B B ) TO
) 4
2
B8 B -12 B B - 12 B
2 4 1 3
2
- 12 B B B -4 B
1 2 3 1
B =-12B B =60B )
6 5
B B + ( - 24 B
2 5 1 3
3 2
B - 12 B B
1 5 1 2 4

B

0
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Belng consclous of the lack of storage space left for
subsequent manlpulat!ohs, we get rid of the computation
history to create some space.

(C27) KILL(HISTORY)@
(C1) SOLVE(EQ[1],B[1])@
SQRT(6)

(El) : B 2 mmamew-.
1 3 70
SQRT(6)
(E2) B " e meem—a-
1 370
(D2) : (E1,E2)

The choice of the value for Bl here affects only the
sense with which the'steepest decent paths are traversed.
Thus If we choose (E1), R would vary from INF to MINF on Ca
and from MINF to INF on Cb, ‘

(C3) B[11:PART(E1,2)$ |

A do loop Is used In (Ch) to solve for the remalning
B's (B2 through B7).
(C4) FOR J:2 STEP 1 UNTIL J > (P=1)
DO BLOCK (SOL:EV(SOLVE(EQ[J],B[J]),EVAL),
B[J]:PART(SOL,2),DISPLAY(SOL))$_

The EV command, with EVAL as the third argument, causes







158

The unknown coefficients Bl have bheen determined, The
next goal Is to compute

@ 2 dT
EXP(=-C R ) =-- dR
B dRr

oe)

dT
for T0=A and T0=8, 0dd terms of R In =-- do not contribute.
dR
Therefore only 4 terms need be Integrated. These terms are
even In R, thus the range of integration can be changed to

(0 INFJ). A functlon FM(X) will be defined for carryling out

this term-by~term integration at a variable polnt T0=X,

(C5) FN(CX):=BLOCK(ANS:C, FOR J:1 STEP 2 UNTIL J > (P=1)
DO ANS:ANS+J*RATSIMP(EV(B|J],TO=X))*
DEFINT(ZE**(~-C*R*%2)*Rx*x(J~-1),R,0, INF),RETURN(ANS))S
(C6) FN(-SORT(3)/2-51/2)0
IS THE EXPRESSION
PBS?T!VE, NEGATIVE, OR ZERO
NEGATIVEQ
For the purpose of integration, VWANDERER askes the user
about the sign of €, The contributlon from saddie polnt A

Is given in the next result.

SQRT(6) SQRTL(%PI)

{3 SORT(3) + 3 %1) SQRT(C)
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3 SQRT(%P1) (3 SQRT(3) + 23 %1)

4 SQRT(6) (27 %! SQRT(3) + 27) C
5 SQRT(%P1) (25 SQRT(3) + 247 %1)

5/2
5184 SQRT(6) C

- (35 SQRT(%P!) (SQRT(6) (672 SQRT(3) + 1816 %1)
3582 SQRT(3) 13077 %I 7/2

. ———mm = mmmma——— ))/(839808 C )
SQRT(6) SQRT(6)

(C7) FN(SQRT(3)/2-%1/2)@

IS THE EXPRESSION

PBS?TIVE, NEGATIVE, OR ZERO
NEGATIVE@

SQRT(6) SQRT(%PI1)
(3 SQRT(3) - 3 %1) SQRT(C)
3 SQRT(%PI) (3 SQRT(3) - 23 %1)

4L SQRT(6) (27 %! SQRT(3) - 27) C
5 SQRT(%P1) (25 SQRT(3) - 247 %1)

5184 SQRT(6) C

+ (35 SQRT(%P!1) (SQRT(6) (672 SQRT(3) =~ 1816 2%I)

3582 SQRT(3) 13077 3l 7/2
R i ))/(839808 C )

SQRT(6) SQRT(6)
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The above Is the contribution from saddle point B, Now
the final result Is obtained by computing the following
(-3 /3 %1-3)/8 (3 /3 %1-3)/8
2 (%E D7 - 2 %E D6)
where D6 and D7 are as given above. This expression is, by
Inspection, equivalent to

(-3 V3 %1-3)/8 (3 /3 %1-3)/8 __
2 (%E D7 + %E D7)

where D7 is the complex conjugate of D7. Therefore,

(C8) L+RL(ZE»+HA*D7)@
3 SQRT(3) %I - 3

(D8) & RL(3E (=mmmmmmmemmmcammmmmcmecam
(3 SQRT(3) = 3 %1) SQRT(C)

3 SQRT(%ZP1) (3 SQRT(3) - 23 3%!1)

3/2
4 SQRT(6) (27 %I SQRT(3) - 27) C.

5 SQRT(%P1) (25 SQRT(3) - 247 %1)
5184 SQRT(6) C

+ (35 SQRT(%PI) (SQRT(6) (672 SQRT(3) - 1816 %I)

3582 SQRT(3) 13077 %I 7/2
$ mmmmmmmmecee e aceeeaas ))/(839808 C )

SQRT(6) SQRT(6)




161

This Is the flrst four terms of the desired asymptotic
expansion, RL Is not a command of MACSYMA., It is used here

to denote the real part of an expression.
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CHAPTER VI 11
CONCLUSIONS AND SUGGEST!OMS FOR FURTHER WORK

The evaluation of definite Integrals Is a classlical
problem in mathematics. Great Ingenulty Is frequently
required, with many integrals demanding speclal devices.

The lack of a sufficliently general theory makes evaluation
of definlte Integrals very difficult, It Is doubtful that a
theory, comparable In generality to the Rlsch integratlon
algorithm [26] for iIndefinite Integrals, can be developed In
the near future. We have shown that the convergence of a
class of Integrals of elementary functions s recursively
undeclidable. The proof Is In appendix E, The WANDERER pro-
gram presented here lIs a prototype heurlstic computer pro-
gram for the symbolic evaluation of definite Integrals, It
contains both general methods such as contour {ntegration,
residue theory and differentiation with respect to a
parameter, In addition to quite a few speclal methods for
speciflc types of Integrals. Clues as to which method to
use for a gliven problem are obtalned from the Integration
range and the form of the Integrand. Although many types of

definite Integrals can be evaluated by WANDERER, It, as
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almost any other heuristlc computer program, has its limita-
tions., Foremost among these is the fact that It Is a pro-
gram for the evaluation of real definite Integrals of

elementary functlions.

It Is hoped that the work reported here may provide a
starting point for new approaches to the evaluation of
definite lntegrals from the viewpoint of symbol manipula-
tlon. The advantage of thls approach Is twofold: (1) A com-
puter can use Integration methods that are too lengthy or
complicated to be carried out by hand; (2) Such a computer
program contains a collection of powerful methods that can
Interact wlth one another and can produce answers to [nte-
grals not present In any finite table. For thls reason, a
good definlte integration program together with other .
facilitles provided In an algebralc manipulation system can

be very useful to applied mathematliclans.

DELIMITER is a rather sophisticated program for comput=
Ing 1imits of elementary functions. Such a program has been
shown to be a very useful tool in an algebralc manipulation
system. The method of comparing orders of Infinity used In
DELIMITER Is an Important concept which Is useful In places

other than the computatlion of limits.
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A baslc assumption of DELIMITER Is that the operator
LIMIT Is distributive over the operators +, =, *, and #**,
l.e., rules such as the limit of a sum Is the sum of the
1imits hold., These rules are valld only If the subproblems
thus generated produce answers which do not lead to an
indeterminate form. Of course there is L'Hospital's rule
whlch can be applled to some Indeterminate forms, but
generally only those involving only the operator * or =»,
Although many aspects of the Indetermlnate form (INF=-INF)
have been conslidered. In chapter 2, the algorithm for its
determination Is not complete. A powerful serles expansion
program would be helpful In some cases, Yet, such a pro-
gram can not solve all problems. Consider for Instance, the
1imit problem

2 2
LIMIT(SIN X + COS X,X,INF),

To obtaln such limits, an algebralc manipulation system
must be able to detect all constant ldentities, This Is not
possible for the set of all expressions [22]., It may be
possible for a proper subset of all expressions. Ffor
example, many trlgonometrical ldentitlies disappear If alil
trigonometric functlons are radlically transformed Into sums

of complex exponentials., Thls Is a basic problem of great
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practical and theoretical Interest [6]. Such simplification

capabilities would be of use to many other programs as well,

DELIMITER can be augmented by lncreasing the types of
functlions It can handle which may Include functions defined
by integrals, Another possible area of research is the

automatic determination of superlior and Inferlor limits.

The fact that WANDERER can evaluate many non-trivial
definite integrals does not mean that It can compete with an
expert human Integrator yet. For one thing, a mathematiclian
can usually construct a functlion of a complex varlable and a
suitable contour for evaluating different integrals,
WANDERER cannot form a contour based on analysis of a glven
real Integral. It simply selects from the cases known to
ft. WANDERER would be much more powerful If It could
determine, for a glven integral, whether the method of con-
tour integration and resldue theory were appllicable, and, if
it were, evaluate the Integral by forming a suitable Inte-

gral around a closed contour.

The evaluation of contour integrals by residue theory
usually requlres the solution of algebralc or transcendental
equations, WANDERER uses the SOLVE program of MACSYMA for

this purpose. SOLVE has its limitatlions and Its improvement
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is also a posslible area for further work,

Suppose one wants to evaluate a closed contour Integral
by residus theory. An iInterestling general qguestion Is: what
knowledge about the Integrand or the functions used in form-
ing 1t Is necessary. We think the following are essential:
(1) evaluation;

{2) differentiability and derivatives;
(3) singularitles;

(4) asymptotic behaviour,

A natural extenslon of the work here Is Integration
over arbitrary user-specifled contours., Thls should not be
difficult to do, except for the lack of notation.
Specifically, we must speclfy an arbitrary contour to a com-
puter and devise a general data structure for use In
representing contours, For iInstance, consider the

specification of the following Indented contour,
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One obvlous way Is to specify a contour plecewlse.
Each piece of curve has a parametric form and a startling and
ending value for the parameter. There may be other

approaches.

Further work In thls area of symbol manipulation might
Include:
(1) Design of computer algorithms for testlng convergence
and dlivergence of Integrals,
(2) Summatlion of Infinite serles by residue computations,
(3) Investlgatlion of algorithms for definlte. Integration of
_speclal functlons.
(4) Evaluation of multiple deflinlte Integrals,
(5) Application of definlite Integration programs In solution

of differentlal equatlons.
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APPENDIX A
A FLOWCHART OF DELIMITER

A flowchart Is presented In the next page which detalls
the flow of control of DELIMITER, Llstlngs of the programs,
written In the LISP programming language, may be obtalned

from the author.

The routine LIM, appearing In the flowchart, Is a
program which applles the 'trivlal' 1limlt rules, makes use
of subroutlnes to compute 1Imits of sums, products, powers,
and the functions SIN, C0S, TAN, LOG, SINH, COSH, TANH., It
calls LIMIT recursively and makes use of L'Hospital's rule

and other routines when needed.




LIMITCE(X),X,L)

START

[E. x, 1]

¢

F

[E INDEPENDENT

OF x?

E RATIONAL
'4 I x 2 J]

llll;lll
RETURN E] &

T
4
RAT IONAL
FUNCTION
ROUTINE

N~NUMERATOR
OF E
D-DENOMINATOR
OF E

RETURN

FAILED?
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L'HOSPITAL'S RULEF—=RETURN ANSWER]

“\

—{L'"HOSPITAL'S RULE]

COMPARE ORDERS
OF INFINITY OF
N_AND D
1

F T
N AND D CONTAIN
FUMCTIONS IN THE

FORM ex*R(X)
WHICH TEND TO INF?

LIM(N)

[RETURNM %IM(NL/QLJ
[3

Y UFCAND DL= NFINITYZ]

e
NL=INF OR MINF

T

1

AND ?
DL=INF OR MINF
3

F
bL=0?—=®

F

N AND D ARE F
RP-FORMS?
T

1

RP-FORM ROUTINE|

NL=0 AND DL=07

NL-LIMIT(N, X, L)
DL—LIMIT(D,X,L)

!

[RETURN INF]

1
]| [RETURN MINFF—=e—

LIRETURN _INFINITY]
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APPENDIX B
A PROOF

Infinite Integrals of
n
I kZ m
f(Z) = %E Z
where n > 0, k # 0 real, R1(m) > -1, and n - RI(m) > 1,

have been discused In chapter 4-3.2. Some results derived

there depends on the proof of (1) and (2) below.

The objective here is to supply the proof of

1) llmltjr f(Z) dz = 0,
&> 0+ C‘

and

2) lfmltjf f(Z) dz = 0.
CR

k-’--’“

where CR and C are the clrcular contours glven below.

3 Y

Ce _
a/2n
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Let
le
Z=re and m=a+ Ib,
then
lff(Z) dz =
¢
m+l nian 1 e
I r EXP(l kre +i(m+ 1)) de
)
at+l n/2N n
) s r EXP( = k SINCh ®) r = b o) de = M
o .

For 0 se < %P1/(2 n) we have

n
EXP( - k SIN(h @) r ) S 1.

x/2N
a+l 2 ~be
M=sr e de
o

Since a + 1 > 0, this completes the proof of (1),

Thus

Now from equation (1) we have

a+l
r /2 n b e

EXP( - k SIN(e) r = —) de




in

The fact > 0 completes the proof of (2).
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%P1 b

))
2 n
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APPENDIX C

PERFORMANCE OF WANDERER
AND DELIMITER

As a measure of the performance of WANDERER and the
limlt programs, selected problems have been timed. The time
sharing system used Is the ITS of the Artificial
Intelligence Laboratory at MIT which uses a PDP-10 computer
with a memory cycle time of about 2,75 mlcroseconds. Tlme
used for parsing the Input string and display of the
computed result has been excluded in order to obtaln an
approximation to the time actually spent Inside WANDERER or
DELIMITER. Garbage collectlon tn the LISP [17] system In
which MACSYMA is written may take place during a
computation. Although garbage collection Is a slow
procedure, It Is only falr to regard it as part of the
computation process belng carrled out. Therefore, the time
it required has been Included in the timing experliments,

The results are put in the form of two tables. An * 1s used
in the tables to Indicate computation requiring LISP garbage

collectlion.
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TABLE

PEOFORMANCE OF DHUIDITER

Limit Pronte s cnputed Resulit Time in
cquivalent to sec,
by
LiMET x 1 0.8z
A—+(+

LIMIT (Llei/ns oF 1,42
A= +00

FaG(X) o+ ZE

)

—
-
G
i
i
o\
I

PHF 15.18

LIMIT  wemeenea - | MNF

1,15
. 2
A= 2= 3 '
Ty
7 - . * 11 A “E
i - gt«;




o1

PT !

'

7
i




TABLE I1

PERFORMANCE OF WANDERER

Integral computed

Result
equivalent to

0 (princlpal)

LOG(2)

3 A LOG(3) + (B +.3)%PI

20 SIN(%ZP1/20)

176

Time In
Sec,

2.02

7.42

11.32

1.67

1.08
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@

3 D =5 SQRT(X) D

X °E dX (201G %E ) / 78125 0.95
o

o 2

CO0S (X)

_______ dx apP1/28 1.39
o 2

X + 49

™ dX

----------------- %P1 /SOQRT(2) 0.81

SQRT(X) (2 X + 1)
o

© 1/3

X dX

------------------ DIVERGENT 6.62
R 3/2
(L SQRT(X) + 3)
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APPENDIX E

AN UNDECIDABILITY RESULT

Let S1 = {P(Xl,XZ,...,Xn)} be a set of polynomlals with
integral coefficients In X1, ... , Xn and S2 a set of

functions F of the form

F(Xl, ao» ¢ Xn)
2 2 n 2 2
= (n+1) (P (X1, ... , Xn) + 3 (SINZXjIK] (X1, ... , Xn))-1,
)1
where Kj Is the domlnating function |6] for
d 2

-—‘Po

dXj
Richardson has shown }22,6| that

Lemma 1. For F in S2 the predlcate "there exlists an n-tuple
B of real numbers such that F(B) < 0" Is recurslvely

undecidable,

Lemma 2. If F(B) < 0 for some n=tuple B real numbers then
there exists an n-tuple A of nonnegative Iintegers such that

P(A)=0 and therefore F(A) = =1,
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Lemma 3. Let
3
R(X) = X SIN(X) and g(X) = X SIN(X )
Then for any real numbers Al, .o » An and any 0 ¢ € < 1

there exists b > 0 such that

th(b)-Al|<€, |hig(b))-A2]|<E,

By use of these Lemmas we

Corollary. For any G in a set

G(X) = F(h(X),h(g(X)), ... ,

the predicate

0" is recursively undecidable,

Proof: Suppose the predicate

we have
1)

real numbers Al, ... , An such

2) If there exist real numbers

FCAL, ... , An) < 0 then (by

nonnegative integers B1l, ... ,

F(B1, ... , Bn)==1, Thus,
that G(c) < 0, Since G(X) can be
G(X) Is continuous, this

2 8. ’

"there exists a real

Is recursively decidable,

there exists a real

lh(g(,..g(b).,..))=An|<KE,

can show

of functlions of the form

h(gloo o (g(X))au))) + 1/2,

number t such that G(t) =

then

If there exists a t such that G(t)=0 then there exist

that F(Al, ... , An) < 0;

Al, ... , An such that

lemma 2) there exist

Bn such that
number ¢ such

large and positive and

Implies that there exist a t such
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that G(t)=0,

This contradlcts lemma 1.

From the definition of the Functlon F, one can see G is
always =1/2 and G Is large and poslitive except at the

vicinity of a finlte number of points where G }s negative.

Theorem: The convergence of a set of integrals of the form

@ dX
J( 2 2
-0 (X +1)G (X)

Is recursively undecidable.

Proof: Thils Integral Is convergent If and only If G(X) has

no real zero.
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