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COST ANALYSIS OF DEBUGGING SYSTEMS* 

Abstract 

A general method is presented for performing cost analysis 
of interactive debugging systems. The method is based on an ab­
stract model of program execution. This model is derived from the 
interpreter used in the Vienna method of semantic definition of 
PL/I. A brief discussion of the overall operation and significance 
of the Vienna interpreter is included, 

Four assumptions are made which allow execution times to be 
calculated for algorithms of the Vienna interpreter. A notion of 
absolute cost is developed which requires the use of these execu­
tion times for cost analysis of features of debugging systems. A 
set of eight interactive debugging operations is thoroughly analyzed 
using the method of cost analysis. Some overall -conclusions are 
drawn about the relative costs of various types of debugging opera­
tions and some suggestions are made for minimal cost debugging system 
design. 

*This report reproduces a thesis of the same title submitted to 
the Department of Electrical Engineering, Massachusetts Institute 
of Technology, in partial fulfillment of the requirements for the 
degrees of Bachelor of Science and Master of Science, January 1971. 
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I. Introduction 

One of the major problems in computer software design is the in­

ability to properly forecast the cost of various features. When init­

iating the design of a large software system, the progrannner is faced 

with a wide variety of possible features to include without any idea of 

the cost of these features. Ideally, he would like to weigh the degree 

of usefulness of each feature against its cost in order to choose a set 

of features for inclusion. From previous experience with the use of 

similar software systems, the programmer usually knows how useful the 

features are. But it is usually impossible to determine the cost of fea­

tures without actually implementing them. For example, a compiler de­

signer may have the option of including label variables in a language. 

However, he has no basis for a decision because of the lack of knowledge 

about the cost of label variables. (In this case, the "cost" of label 

variables would be the increased execution time, larger program storage, 

and increased compilation time.) 

Since the cost of features is never known in advance, the designer 

must use other criteria for choosing them. So most designers resort to 

such things as whether existing systems have these features and whether 

features "sound good" or are aesthetically pleasing. This of course 

leads to inclusion of extremely costly features that may be almost 

useless. Many times it becomes apparent during the actual coding that 
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certain features are highly costly. But more often, the entire software 

system must be completely implemented before inefficiencies are dis­

covered. By that time, it is difficult to determine which features are 

causing the inefficiency (i.e. which features cost the most); and it is 

also usually too late to remove these costly features. 

Of course, it is not completely true that nothing is known about 

the cost of various features of software systems. In some cases, ex­

perienced programmers and designers may have a good intuition for the 

cost. However, when designing languages like PL/I or operating systems 

like MULTICS, it is impossible for even the best of progranuners to vis­

ualize the entire software system in sufficient detail to do cost analy­

sis in advance. The tremendous problems encountered in designing these 

two software systems in particular clearly demonstrate the need for cost 

analysis in advance of implementation. It is the purpose of this thesis 

to make the first attempts at developing a method for performing this 

cost analysis. 

Software cost analysis is of course an extremely vast topic. This 

thesis is concerned with only a limited area of cost analysis ~ the cost 

of debugging features for higher level languages. A general method is 

presented for determining the cost of any language feature. This method 

is then applied to find the cost of a set of eight interactive debugging 
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features for a subset of PL/I. TI1e cost criterion used is the increased 

execution time of the program. 

The overall approach of the method for cost determination is to 

first specify a machine which executes the higher level language pro­

gram. The cost of a particular feature can then be expressed in terms 

of the requirements it places on this machine. The machine must be com­

plicated enough to implement the many complex features of the language 

but be simple enough to clearly and concisely express the algorithms 

used for these features. Although a conventional computer with a com­

piler is of sufficient complexity, it by no means satisfies the sim­

plicity requirement. This is the reason that software cost analysis is 

in such a primitive state. Currently, all cost determination is per­

formed using a conventional computer as the base machine. However, 

this thesis uses a gedanken machine that is derived from the Vienna 

method of semantic definition. 6 •
7

•
8 

The cost of debugging features is determined by analyzing the re-· 

quirements placed on the Vienna machine in order to implement these fea­

tures. The requirements on the machine are initially expressed as 

particular data bases and algorithmB needed by the machine. These re­

quirements are then translated into cost by examining how their 

presence effects the execution time of the program. For the specific 
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cost analysis presented in this thesis, a set of twelve parameters is 

derived that completely characterizes a program. 

Section II presents an overview of debugging systems in general 

followed by a discussion of the Vienna method in Section III. Section 

IV then outlines a method for estimating the execution time of the 

Vienna machine. Section Vis a general discussion of cost analysis; 

and Section VI performs the final cost analysis on the debugging fea­

tures deriving the twelve program parameters. 
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II. History of Debugging Systems 

The use of debugging aids for computer programs is as old as pro­

grannning itself. Even the first computers had accumulator lights and 

program counter indicators on the consoles to help debug programs. 

However, with the rapidly rising cost of software development, program 

debugging has received a great deal more attention lately. Most of 

the attention unfortunately has been in the area of implementation of 

specific debugging systems, and little theoretical work has been done. 

Due to the lack of a firm theoretical foundation, debugging system 

evolution has proceeded in a rather haphazard manner. Each new de­

bugging system was always similar to the existing ones except for pos­

sibly a few additional features. Not enough consideration has been 

given to the utility or cost of features. nte following discussion 

outlines the history of debugging systems. 

When the large batch processing systems of the late fifties and 

early sixties were popular, debugging aids consisted of TRACE type fa­

cilities. These TRACE facilities could be used to print the value of 

a certain variable every time it was referenced. This debugging aid 

characteristically produced voluminous quantities of computer output. 

Variations of TRACE allowed sets of variables to be considered. 
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The TRACE could be turned ON or OFF at different points in the program. 

Also, the progranuner could insert extra I/O statements in critical parts 

of the program to print the values of certain variables. Because of the 

lack of direct interaction with the computer, TRACE and extra I/O were 

the limits of the debugging aids in the batch environment. 

With the advent of time-sharing in the mid-sixties, much more so-

phisticated debugging aids became possible. At first, these debugging 

aids took on the character of the old computer console aids like ac-

cum.ulator values and program counters for assembly language programs. 

But with the increasing use of higher level languages and the unique 

quality of the time-sharing environment, a new type of debugging aid be-

gan to evolve. 3 Evans and Darley presented a good survey of this de-

velopment in their paper of 1966. 15 Ryan wrote a sunnnary of one such 

debugging aid at the same time. These new debugging aids are the ones 

with which most programmers are currently acquainted. They contain fea-

tures like breakpoints, displaying and setting variables, single-step 

execution of the program, and insertion and deletion of statements in 

the program text. The overall structure of this type of system is shown 

in Figure 1. 

The source program text may be edited in Stage 1. It must then be 

compiled and the object program passed to Stage 2. Stage 1 and Compila-

tion may be combined into an incremental compiler or they may be 

----------------------------~------- -
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replaced entirely by an interpreter in Stage 2 that executes the source 

program directly. Stage 2 is where the breakpoints are implemented. 

A breakpoint allows the user to stop execution at a specific statement, 

on reference to a certain variable, or upon entry to a particular sub-

routine, etc. After execution is temporarily halted by the breakpoint, 

the user may then go to Stage 3 where selected data variables may be 

examined or changed. Execution can then be continued in Stage 2 or con-

trol can be passed to Stage 1 where a bug can be fixed by patching the 

source program. The type of configuration shown in Figure 1 will be 

referred to in this thesis as a "debugging system". This type of de-

bugging aid is flexible and has proven extremely useful. Almost all 

current time-sharing systems use this type of debugging system. 

Recently, there has been some work in designing debugging systems 

that use graphic displays to conmunicate with the users. Many of these 

new debugging systems are similar in form to that shown in Figure 1 ex-

cept that the actual communication is done through the display rather 

2 than a teletype. Some systems have become more sophisticated like 

HELPERlO which combines a simulator and compiler into one large inter-

active runtime system. However, only one debugging system seems to 

have really taken full advantage of the graphic display medium -

EXDAMS. 1 EXDAMS is something of a breakthrough in debugging aid design. 

It allows the user to slowly run the progran forward or backward and 

display the values of selected variables on different parts of the 
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screen concurrent with execution. The result is a sort of "motion pic­

ture" of the executing program with variables constantly changing as a 

pointer moves from one statement to the next. 

Although the more recent debugging systems are much more sophis­

ticated and useful, they are also extremely costly. EXDAMS in particular 

requires that the entire execution history of the program be written on 

tape and used during debugging. When debugging systems begin to have 

such a high cost, there is some question as to whether the extra utility 

of these systems is really cost effective. The cost of EXDAMS is prob­

ably too high for most uses. So the designer of a debugging system has 

the problem of choosing some small set of useful debugging features that 

have a lower cost. However, in most cases, it is difficult to know in 

advance what the cost of a particular set of features will be. For ex­

ample, a designer may decide to allow breakpoints on procedure entry 

only to discover that every procedure call and return in the program 

must be interpreted causing slow execution. Also, he may not realize 

that as long as calls are already being interpreted, the new feature 

of reading the subroutine stack could be added at a low additional cost. 

Of course, the exact cost of the debugging system depends on the 

details of the particular implementation. Nevertheless, there defi­

nitely appears to be some implementation independent cost relationships 

between the various possible debugging features. There is so much 
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difference between the costs of different features, that even an order 

of magnitude type prediction of the cost would be extremely useful in 

the early stages of design. This thesis attempts to develop a method 

for implementation independent cost prediction which is hopefully much 

better than order of magnitude. 

A very limited set of debugging features has been chosen for de­

tailed analysis to illustrate the method. These features are derived 

from the type of debugging system shown in Figure 1. Features of de­

bugging systems will henceforth be referred to as debugging operations. 

A debugging operation is one particular action that a user may take 

while debugging his program. For example, setting a breakpoint is a 

debugging operation and displaying the value of a variable is a debugging 

operation. 

The next section gives an overview of the Vienna method. This is 

followed by a definition of the eight debugging operations and cost 

analysis in Section VI. See Appendix A for a summary of all debugging 

operations currently available in debugging systems. 



-14-

III. The Vienna Method of Semantic Definition 

The Vienna method of semantic definition has been successfully 

applied to create a complete formal definition of PL/I. 8 The method 

of definition has two aspects. The first is to specify an abstract 

form for the program using a group of "predicates". The second aspect 

is to specify an interpreter which executes this abstract program. 

This overall method has been called "semantic definition by interpre-

tation" as differentiated from semantic definition by translation. This 

section of the thesis describes the applicability of the Vienna method 

to defining debugging operations in part A. The actual Vienna method 

itself is surveyed in parts B, C, and D. Part D is the most important 

part since it is needed to understand the cost analysis of Section VI. 

It is strongly recommended that the reader study Part D carefully. 

For a thorough understanding of this thesis, the reader must know 

more about the Vienna method than the overview contained in parts B, C, 

and D. The best reference for this is the Annual Review in Automatic 

Programming, Vol. 6, Part 3. 12 The entire document is only 75 pages 

long and contains an excellent presencation of the entire Vienna method. 
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A. Why the Vienna Method? 

In order to analyze debugging operations, it is necessary to some­

how represent or express these operations. Debugging operations have 

implementation dependent representations in existing debugging systems. 

The actual code of the debugging system completely defines and repre­

sents its debugging operations. However, this type of representation 

is extremely cumbersome and is not well suited to cost analysis. What 

is needed is a way of representing debugging operations which is closer 

to the way people think of them. A debugging operation that displays 

program variables should be represented in terms of objects like pro­

grams, identifiers, data types, etc. and not index registers and bits. 

The advantage of this type of represEmtation is that it represents de­

bugging operations with the same objects people use to represent them 

in their minds. 

The Vienna definition of PL/I specifies an interpreter which exe­

cutes PL/I programs in abstract form. This interpreter is just a 

''machine" and manipulates the objects with which the language deals. 

Since debugging operations are very similar to actual legal operations 

within the language, the Vienna machine can be used to represent de­

bugging operations. The Vienna machine is completely defined but is 

still implementation independent. It allows debugging operations to be 

expressed concisely and understa;:idably in a form well suited to cost 

analysis. 
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The fact that debugging operations can be expressed so well on the 

Vienna machine is of course no accident as shown by this quote from 

p. 126 of "On the Formal Description of PL/1 1112 : 

"The computation being a step by step process, the initial ques­

tion is how big the individual steps will be. Guidance is obtained 

he~e by considering the questions that can meaningfully be asked at 

any step of the computation. By a meaningful question we mean one which 

is posed in terms of the particular program being interpreted, i.e. a 

question which is an inquiry about an entity which has been named in the 

program, or an inquiry about relationships between such entities." 

A debugging operation is usually just a question about a named entity 

in the program. So it is no surprise that the Vienna machine is so well 

suited to represent debugging operations since it was designed to clearly 

show relationships and changes in these named entities. 

B. Abstract Syntax 

The first step in the Vienna method is the definition of the ab­

stract syntax of a program. The concrete syntax of a program is the 

actual source text and is translated into the abstract syntax via a 

translator. The abstract syntax is a tree structure so that no punctu­

ation marks are needed. Also, all default and implicit data declara­

tions are evaluated and combined with other declarations to form a 

declaration part for each block. An understandable and thorough dis-
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(note: * is used to denote functional composition of selectors) 

(1) s-b(t) = z 

(2) s-c * s-a(t) = X 

(3) if t' = s-a(t), then s-d(t') = Y 

The abstract syntax of a program is shown in Figure 2A. A pro­

gram consists of several procedure bodies each of which can be ac­

cessed by applying its name to the program. For example if the second 

procedure body is called SQRT and the program is a tree t, then 

SQRT(t) yields the body of the SQRT procedure. The structure of a 

procedure body is shown in Figure 2B. The declaration part contains 

explicit declarations for all labels, data variables, and internal pro­

cedures within the procedure body. The name ''n" is a unique name that 

is used to identify this procedure for debugging operations. This s­

name component is not part of the abstract syntax for PL/I. However, 

it has been added here for debugging purposes; it is the only addition 

made to the abstract syntax. Of course, the addition of this component 

is accounted for in the cost of debugging operations which use it. 

The statement list component of the procedure body contains the 

executable statements. A statement may be a simple statement like a 

GOTO, CALL, etc., it may be another statement list, or it may be a be­

gin block. Since begin blocks are encountered and entered as part of 

the stepwise flow from statement to statement, they must be part of the 
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body
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I 
s-decl-part 
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ca. Block 

Ch. Declaration Part 

Figure 2 - con't 
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I 
s-stg-cl 

I JTO I 

D. Sample Scalar Declaration 

I 
~ 

s-mode 

~ 
E. Sample Array Declaration 

Figure 2 - can't 

I 
s-da 

I 
s-da 

s-scale 

IFrLI 
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I 
s-label-list 

~ 
F. Statement 

I 
s-st 

I 
s-ref 

~ ~ 
G. Goto Statement 

Figure 2 - con't 
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elem(l) 

e~) e~) 
~ 

H. Basic Reference 

1. 
s-1d s-arJ_list 

arg-list 

I. Call Statement 

Figure 2 - con't 
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main statement list. A statement will be a whole new statement list in 

the case of DO groups in PL/I. The declaration part, name, and state­

ment list described so far are the same for a begin block as shown in 

Figure 2Ca. The procedure body differs only in the addition of the 

parameter list which lists the input arguments for the procedure. These 

input arguments are of course declared with scope PARAM in the declara­

tion part. 

The declaration part is organized as in Figure 2Cb with each 

identifier selecting its own declaration. The general form of declara­

tions is complicated so two examples are shown in Figure 2D and 2E. The 

scope of a scalar may be INT(internal), EXT(external), or PARAM 

(parameter). The subset of PL/I used in this thesis allows only AUTO 

(automatic) storage class. The s-da component is the data attribute 

and is used during execution to help access the variable from storage. 

The array of 2E is one dimensional, has a lower bound of 3, and a vari­

able upper bound of M+l. The current value of M when the block is en­

tered will determine this upper bound. Each element of the array is a 

scalar of mode INTG(integer) and scale FIXED(fixed point). 

A simple statement as seen in Figure 2F has a label and a proper 

statement. Two examples of this proper statement are shown in Figures 

2G and 2I. A basic reference is illustrated in Figure 2H. The identi­

fier list is a fully qualified structure name or a simple identifier 

-------------
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for a non-structure reference. The argument list contains the sub­

scripts needed for array reference. A reference to a simple scalar 

would have one element in s-id-list and a null s-arg-list part. 

C. The State of the Machine 

The data base of the Vienna machine is a tree structure called 

the state (S). The state contains the abstract program, block acti­

vation information, identifier associations, storage, etc. The state 

is the complete data base for the interpreter and all actions of the 

machine are described in terms of state transitions (changes in the 

state). The state has ten basic components. The complete abstract 

syntax of the state is defined in Appendix C. 

Dump Mechanism 

One of the major functions of the state is to help keep track of 

block and procedure activations. This is accomplished through the dump 

component s-d(S) = n. Each time a new block or procedure is entered, 

all the current identifier associations and the control information are 

saved in the dump. A new set of identifier associations and the new 

control are then installed. After the termination of the new block or 

procedure, the old information is reinstalled from the dump. Thus, as 

the program executes, the state takes on the appearance of a stack with 

one dump on top of the other. The stack grows and shrinks as blocks 

and procedures are activated and terminated. 
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are as follows: 

E = s-e(s) 

.£ = s-c(s) 

CI = s-ci(S) 

EI = s-ei (S) 
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components of the state need to be stacked. These 

environment 

control 

control information 

epilogue information 

The environment contains local identifier associations and so must be 

stacked. C and CI contain control information like the statement 

counter; and the epilogue information contains information for per­

forming the block epilogue at termination. For the subset of PL/I in 

this thesis, this consists of freeing the automatic variables and popping 

the dump. Figure 3A shows a typical dump configuration. 

Identifier Associations 

Another function of the state is to record the association of 

identifiers with data attributes and areas of storage. Five of the 

state components are used for this purpose. They are as follows: 

g = s-e (S) environment 

DN = s-dn(S) denotation directory 

AT = s-at(~) attribute directory 

AG = s-ag(S) aggregate directory 

§. = s-s (~) storage 

The branches of the environment are named with identifiers so that 

an identifier applied to the environment will yield a unique name that 
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I 1. I 
s-e s-e1 s-d 

~ dJ 
I . I 

~ c1 
·-d ·-r :T 
~ ~ 

I 1. 1. I 

~~ ~~ 
A. 1'he Dump 

Figure 3 
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I I 
id 

m 

(The n1 ,n2 , .•• ,nm are unique names. A unique name is an integer. A 

unique name counter is a state component and contains the highest 

integer used so far. If a new unique name is needed, the next highest 

number is used and the counter is incremented by one.) 

B. The Environment 

Figure 3 - con't 
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can be used to access the !fil. and AG. See Figure 3B for an environment 

with m local identifiers. The denotation directory entry depends on 

the type of identifier. For data variables, the DN contains another 

unique name which selects a component of the aggregate directory ~). 

The aggregate directory contains a pointer into the storage (~) and the 

evaluated data attributes. '!he entries of the aggregate directory are 

sufficient to access storage and retrieve the values of variables. 

Thus, to associate a data identifier with its pointer and eda(evaluated 

data attribute) the following application of selectors is required: 

id @) ~) (AG) = (pp , eda) 

This association can be represented in the following diagram: 

E 
id •n 

(value) 
A 
: s 

b ------1·~ (pp, eda) 

(attr,e) 

A discussion of the use of directories for identifiers can be found 

in pages 131-138 of "On the Formal Description of PL/I 11
•
12 

A more com-

plete description is contained in chapter 5 of Informal Introduction to 

the Abstract Syntax and Interpretation of PL/I. 7 
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D. The Interpreter 

The interpreter of the Vienna machine is specified using a LISP-

like notation called instruction schemata. An instruction schema is 

just a way of representing a series of transformations on the state of 

the machine. The theoretical foundation of instruction schemata is the 

"control tree." Control trees and their relation to instruction sche-

mata is discussed in pages lSLi.-164 c'f "On the Formal Description of 

PL/L" A more thorough presentatior. can be found in chapter 4 of 

Method and Notation for the Forn~J ___ ~_f_i:..1_1_t_tion of Progranuning Languages. 

Since instruction schemata are so similar to some conventional pro-

granuning languages, their meaning can be understood in a superficial 

t 
way without control trees. 

An instruction schema has the following basic format: 

... ' f ) n 

... 
1 

Instruction schemata are compared to programming languages in this 
thesis for purposes of simplicity. However, they are really quite 
different in meaning and character than conventional programming 
languages; and it would be a gross injustice to the Vienna method to 
assume they are just another progranrrning language. 

6 
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111.e meaning of this notation is similar to a function call in LISP. 

The f 1, f 2, ... , fn are dummy arguments and are used in the groups and 

props below. The prop
1

, prop
2

, ... , propm are propositions which yield 

true or false when evaluated. When the instruction is executed, the 

propositions are evaluated starting with prop
1 

and proceeding to propm 

until one yields true. If propi is the first one to evaluate to true, 

group. is then executed. 
1. 

A group may have two possible forms. It may be a call to another 

instruction schema as shown below: 

in1 (f1 , f 2 , ..• , fn) 

T-+ in2 (f1, f 2) 

In this case, the execution of in
1 

would cause in2 (f1, f 2) to be executed. 

111.e second possible format of a group involves a value returning mech-

anism: 

PASS: 

.!.:.!!£1: 

s-sc -----r 

m-expr0 

m-expr 1 

m-expr 2 

m-exprr 

s-sc. are simple selectors on the state 
1. 

m-expri are expressions denoting trees 
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If a group of the above format is executed, m-expr0 is returned 

as the value of the instruction. At the same time a transformation 

takes place on the state of the machine. The transformation is speci-

fied by the s-sci and m-expri. The s-sci specifies which component of 

the state is replaced by the tree expressed by m-expr .. This replace-
1 

ment is done for all s-sc .• 
1 

Substitution and use of extra dunmty arguments is also allowed 

within a group as shown below: 

in1 (f1 , f 2 , .•. , fn) = 

T-+ in
2

(f
1

, f
2

, a, b); 

a: in
3 
(f

2
), 

b: in
4
(f1 , f 2) 

In the above schema, in
3 

and in
4 

are evaluated first. Their values are 

then transmitted through the dummies "a" and ''b" to argument positions 

The following is part of an instruction schema used in the Vienna 

interpreter to evaluate expressions: 



eval-expr(expr, e) = 

is-infix-expr(expr) ~ 
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eval-infix-expr(op-1, op-2, s-opr(expr)); 

op-1: eval-expr(s-op-l(expr), e), 

op-2: eval-expr(s-op-2(expr), e) 

is-ref(expr) ~ 

eval-ref(expr, e) 

is-const(expr) ~ 

eval-const(expr) 

The reader who is unfamiliar with the Vienna method would be well 

advised to carefully study the above schema until he understands its 

meaning. This schema evaluates infix expressions involving constants 

and variable references. If the expression is a simple reference or 

constant, the value is found using eval-ref and eval-const respectively. 

So the value of eval-expr(S, e) would be eval-const(5) or just 5. If 

the expression is an infix expression, the two operands are evaluated 

as op-1 and op-2 using eval-expr again. When op-1 and op-2 are finally 

evaluated and substituted into eval-infix-expr, they will be simple 

values. 

Another example of an instruction schema is the unstack instruction 

which pops the dump after a block termination and installs the old 
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environment, epilogue infonnation, etc. See Figure JA for the structure 

of the state (~) when unstack is called. 

unstack = 

PASS: 0 

!!.'.:£. : s-e (Q) 

s-ei: s-ei(Q) 

s-d : s-d(Q) 

s-ci: s-ci (Q) 

~ : s-c(Q) 

(note: Q= s-d(S) ) 

The effect of this instruction is to return a null value and replace 

the specified components of the state. 

Two primitive operators are used to build and change trees. These 

are µ and µ
0

• µ
0 

builds trees and µ replaces specified branches with 

new trees. 

Example: µ
0 

((s-a: A), (s-b: B)) - I 
s-a 

dJ 
I 

~ 
If t is the above two branch tree, then 

µ(t; (s-a: Z)) - I 
(£ 

1 

~ 



line more prc)pc1-t\ uf i11structiun schemata deserves mention here. 

ll1e fol ]m,1i11g f,lrrn may Lie used as a group: 

in (drg· List ) 
n n 

i'h1s form specifius a series o[ instcuctions that are to be execute,}. 

J"l1»1 <11-e evilluated Crnm liL)ttorn to Lop so that the value of the 1>rl1c"1le 

.'\re.up is tl1P value of the top instructiLlll (in
1 

in this case). 

lior the r<'111aincler of the thesis, the word "instruction" will 

Lie w1derstood to rnear1 i11struction schema). 
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IV. Execution Time for the Vienna Machine 

The cost measure used in this thesis is execution time. So the 

first step in cost analysis is to estimate the execution time of vari­

ous instructions. Even though the exact algorithms are specified by 

the instructions, the execution time can only be approximated because 

the Vienna machine has not been implemented. llie same problem would 

arise in estimating the execution time of an assembly language program 

without knowing which computer the language was implemented on. It 

would be difficult to decide how the execution times of different types 

of primitive instructions compared. For example, it would not be known 

whether it takes longer to load a register or execute a branch. Never­

theless, some good approximations could be made on the basis of the rel­

ative complexity of instructions. 

Since a multiply instruction is much more complex than an add, 

one might arbitrarily decide to assume a multiply takes three times as 

long as an add. With this sort of logic, it would be possible to get 

an implementation independent measure of the execution time of a sim­

ple assembly language program. Using a similar method, execution times 

in the implementation independent Vienna machine can be calculated. 

In the following paragraphs the primitive operations in the Vienna 



-37-

machine are identified and assigned relative execution time measures. 

These measures can then be used to estimate the execution time of in-

struction schemata. 

A. Tree Operations 

Since the entire data base of the Vienna machine is a tree struc-

ture, the most important primitive operations are those that operate on 

trees. There are four such operations -- µ, µ, , application of se­o 

lectors, and state transformations. The basis for calculating the rel-

ative cost of these operations is the following assumption: 

Assumption 1: For all branches emanating from a particular node, one 

unit of time is required to access a branch, change a branch, or create 

a branch. 

This assumption means that it takes equal time to read or write a 

branch in a tree independent of the form of the tree. Although this is 

a rather strong assumption, it is simple and corresponds to intuitive 

notions of relative read and write times in actual implementations. 

(Note: Once a node is accessed, Assumption 1 refers to all its branches. 

This does not mean that any branch in a tree can innnediately be ac-

cessed in one time unit. Access a branch is used here to mean access 

the node or elementary object at the lower end of the branch. Also, 

change a branch means change the object at the lower end.) 
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Using Assumption 1, execution times can be assigned to the following 

operations: 

Operation Execution Time 

simple selector 1 

composite selector 1 for each simple selector in composite 

1 for each argument 

µ 1 for each argument following the semi-colon 

+ time for application of selectors 

state transformation 1 for each component of state transformed 

The application of a simple selector is just an access of a branch. 

See the example in Section IIIB for an explanation of the application 

of a selector. In that example, (1) has an execution time of one and 

(2) has an execution time of two. The application of a composite se-

lector consists of a series of applications of simple selectors. 

A µ operation with n arguments will create a new tree with n 
0 

branches at the top level thus creating n branches. 

Example: µ operator - execution time = n 
0 

(sel : n 

1 
n new branches created 

sel1 

5J 

ob )) -
n 

I 
sel2 

~ 
I 

sel 

5J 



-39-

'Tile µ operator changes one branch for each argument following the semi-

colon. However, these branches may be deep in the tree structure and 

thus must be accessed using composite selectors. So the time needed 

to change the branch as well as access the node from which it emanates 

must be included. 

Example: µoperator - execution time= 5 

t = I I p - r I s-a 

~ ~ 
s-f 

I 
I 0 s!d a; rfu 

I I 
s-a s-b 

µ(t; (s-b: p), (s-a * s-c: A)) -

r-1---i ~ 
a; ~ cl; ~ 

'Tile application of s-b takes one time unit. 'Tile composite selector 

s-a * s-c takes two time units. And the two changes in branches made 

by µ take two time units. 

A state transformation is one of the basic actions of instruction 

schemata (see Section IIID). It involves changing one or more of the 

basic components of the state. Changing a basic state component is 

just changing the lower end of the branch containing that component. 

'Tilere are four other tree operations whose execution time is defined by 

Assumption 1. These are elem, head, length, and 6. 
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B. Propositions (predicates) 

The other major class of operations performed in instruction 

schemata is the evaluation of propositions. (A propositions is a 

logical expression involving predicates.) An estimate must be made 

about the relative execution times of tree operations and proposition 

evaluation. This estimate requires assumptions about simple predicates, 

complex predicates, and logical expressions. In all cases, the guiding 

principle used is to try and estimate what the execution time would be 

in a reasonable implementation. 

Since a simple predicate merely tests an elementary object, the 

following assumption can be made: 

Assumption 2: One time unit is required for the evaluation of a simple 

predicate. 

Example: Simple predicate - execution time 1 

t = 0 
is-A(t) True (time = 1) 

is-B (t) = False (time = 1) 

Complex predicates are used in the instruction schemata in order 

to clearly and precisely define the propositions. A complex predicate 

may be testing for the presence of a very highly structured and com­

plicated object like an entire procedure body. However, in the 
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instruction schema, this predicate might really only be differentiating 

between the two possibilities of a procedure body and a variable ref­

erence. A time consuming check of the structure of the entire pro­

cedure body is certainly not necessary to differentiate it from a vari­

able reference. 

The implementation of complex predicates is much less time con­

suming than might be expected since they are only used to differentiate 

between two or three different alternatives. For example, when an 

evaluated data attribute is passed a.s an argument, it must be tested 

to see if it is a scalar, array, or structure. This determination can 

be made with one branch access and one simple test. However, the com­

plex predicates appear to require the examination of the entire eval­

uated data attribute which would be a very time consuming task. Since 

it is always known that an argument is of a certain general type 

(i.e. data attribute, statement, etc.), any implementation would only 

have to choose between two or three possibilities within that general 

type. The following is a listing of the complex predicates according 

to which general type of objects they are applied to: 

is-scalar 

is-array 

is-structure 

is-proper-var 

is-entry 

is-scalar-eda 

is-array-eda 

is-structure-eda 

is-ref 

ts-const 

is-st 

is-st-list 

is-if-st 

is-gen 

is-integer 
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These are all the complex predicates required to define the de­

bugging operations in this thesis. One consequence of the above 

grouping is for example that when is-array is used, the only other 

possibilities are is-scalar and is-structure. The following assumption 

can now be made about complex predicates: 

Assumption 3: Two time units are required for the evaluation of a com­

plex predicate. 

This assumption is valid since the accessing and testing of only one 

critical branch is required to verify the truth or falseness of complex 

predicates. 

Logical expressions involving predicates are used to form the 

propositions of instruction schemata (see Section IIID for role of 

propositions in instruction schemata). These expressions involve the 

logical operators &(and) and V(or) and the arithmetic operators 

= (equal to), > (greater than), and < (less than). The following as­

sumption is made regarding these primitive operations: 

Assumption 4: One time unit is required for the evaluation of a logical 

or arithmetic operator in a proposition. 

Example: Proposition - evaluation time= 8 

expr, ql, da, are passed dunnny arguments 

is-( ) (ql) (is-( ) (sl) V sl=da) & i.s-ref(expr) 
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The simple selector is-() takes one time unit. The & and V logical 

operators take one time unit each, and the arithmetic operator = 

takes one unit. The complex predicate is-ref requires two time units. 

C. Implementation Dependencies 

This section is concerned with the implementation of the PL/I sub-

set and not the implementation of the Vienna machine as in some previ-

ous sections. The Vienna method formally defines a subset of PL/I. 

However, this formal definition makes use of a set of storage primi-

tives which are implementation dependent. These primitives are as fol-

lows: 

el-assign write value into storage 

el-ref read value from storage 

alloc-space allocate an area of storage 

el-free free an area of storage 

map selects subparts of areas of storage 

value convert a value representation into a value 

represent convert a value into a particular type of representa-

tion 

For a discussion of these primitives see p. 151-161 of "On the Formal 

12 Description of PL/I" or Chapter 2, 6, 8 of Abstract Syntax and Inter-

8 pretation of PL/I. The Vienna definition states certain properties of 

these primitives but allows their complete definition to be implemen-

tation dependent. In order to estimate the execution time properly, 
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these details should be known. So the execution time of these storage 

primitives is implementation dependent. However, for the examples 

used in this thesis, it is sufficient to assume these primitives re­

quire one time unit each. 

With assumptions 1-4 it is possible to calculate the execution 

time of instruction schemata. It is important to note at this point 

that these particular assumptions are not required for the remainder 

of this thesis. All that is required is that some set of assumptions 

be made about the relative execution times of primitive operations in 

instruction schemata. Assumptions 1-4 represent such a set but any 

other set could be substituted and used for the remainder of the 

thesis. 

D. Parameterization of Algorithms 

Knowing the execution times of the primitives does not solve all 

the problems of determining the total execution times of instruction 

schemata. In fact many people would argue that it solves none of the 

problems. It is extremely difficult to estimate the ex~cution time of 

an assembly language program even if the exact execution time of every 

instruction is known. The reason for this is of course the dependency 

of execution time on input data. The execution time must be given as 

some function of the input data. For a complicated program with a 

large volume of input data this is usually impossible. 



-45-

So merely knowing the execution time for primitive does not 

necessarily allow calculation of the execution time for arbitrary al­

gorithms expressed with these primitives. What is really needed is an 

understanding of the nature of the algorithm itself so that it can be 

parameterized according to certain properties of the input data. It is 

not really necessary to find an equation for the execution time in terms 

of the input values. All that is needed is an expression of execution 

time using parameters that people understand. An example of this might 

be an information retrieval program. Since there are thousands of in­

put values to this program, an equation involving the input variables 

is out of the question. However, someone with a thorough understanding 

of the algorithm might be able to state that the execution time if the 

number of items retrieved times the logarithm of the density of the 

stored data base. This parameterized expression of execution time is 

valid and extremely useful. 

The real advantage of the Vienna machine now becomes apparent. 

The algorithms used in the Vienna machine are so concisely and under­

standably expressed that parameterization is relatively easy. A com­

piler and a real computer also form a machine that defines PL/I pro­

grams. But the algorithms in this machine are impossible to parame­

terize because they are expressed with assembly language. The Vienna 

machine was designed to make it perfectly clear how the named entities 

of a PL/I program are manipulated. So the execution time of algorithms 
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1n the Vienna machine can be expressed in terms of simple parameters 

involving these named entities. The following section gives an ex­

ample of this par;imc,ter iza tion. 

E. Examples 

The ;:.,;iuul :'.nformation (s-ci(S) = CI) component of the state is 

shown in Figure 4. The text component (s-tx) holds the current state­

i11ent list st-list. The s-sc cnmoonent contains a statement counter sc 

which specifies the member of st-list currently being executed. The 

control dump (s-cJ) is needed because of neste1 statement lists. Each 

time a new statement list is started, the entire control information 

and the control (f) are stacked and a new control information is cre­

ated. This new fl contains only the text of the new statement list 

and an initial statement counter of C. st-list is the innermost state­

ment list and the one currently being executed. st-list
1 

is the com­

plete statement list for the entire block. TI1e statement counter list 

sc,scn,scn-l' ... , sc
1 

can be used to specify which statement in the 

block is currently being executed. This is not quite true because it 

would not be known which branch of an IF statement was chosen. How­

ever, this can be solved by the use of T or F as a statement counter 

in the list. 
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I 
r1 I . s-c1 

I 
.L 
~ I . s-c1 

I 
I 

s-sc 

~ 
I . 

.s-c1 

I 
I 

s-sc 

~ 

Figure 4 CI) 
f rmation (_ 1 In o The Cont.r .. o=-=---

I 
s-cd 

I 
I 

I 
s-cd 
~ 

I 
I 

s-c 

~ I 
s-cd 
I 

I 
I 

~ I 
s-cd 

I I 

c1 
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The instruction int-st-list is used to initialize a new statement 

in the control information. The new statement list becomes the text 

component. The statement counter is initialized to O, and the old con-

trol information and control are put into the control dump. 

(tis the new statement list.) 

int-st-list(t) = 

s-ci: µ ((s-tx: t), 
0 

(s-sc: 0), 

(s-cd: µ ((s-ci: 
0 

CI), 

(s-c: .Q)) )) 

s-c: int-next-st 

Execution Time for int-st-list 

Operation Execution Time 

outer µo with 3 arguments 3 

inner µo with 2 arguments 2 

application of simple selector s-ci t 1 

application of simple selector s-c 1 

state transformation on two components (s-c and s-ci) 2 

Total execution time for int-st-list = 9 units 

t 
(Note: CI is only an abbreviation for s-ci(~) so this simple selector 

must be included in the time. The same is true for .Q.) 
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The instruction int-next-st is used to iterate from one statement 

to the next in a statement list. If the end of the statement list has 

not yet been reached, sc is incremented by one and the interpretation 

of the new statement is started with a call to int-st. If the end of 

the current list is reached, the control dump is popped. 

(Note: length is a tree primitive to determine the number of branches 

at the root node.) 

int-next-st 

s-sc(CI) < length * s-tx(CI) 4 

T4 

s-ci: µ(CI; (s-sc: s-sc (CI) + 1)) 

s-c: int-next-st; 

int-st(elem(s-sc(CI) + l,s-tx(CI))) 

s-ci: s-ci * s-cd (..Q!) 

s-c : s-c * s-cd(CI) 

Execution Time for int-next-st 

Operation Execution Time 

application of simple selector s-sc 1 

application of simple selector s-ci 1 

evaluation of < operator 1 

application of length primitive 1 

application of composite selector s-tx * s-ci 2 

Time for evaluation of proposition= 6 units 
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11 with one argument 1 

application of composite select,Jr s-sc * s-ci 2 

evaluation of arithmetic operation + 1 

application of elem primitive 1 

application of composite selector s-tx * s-ci 2 

state transition for 2 components (s-ci and s-c) 2 

Execution time for first alternative = 9 

application of composite selector s-ci •': s-cd •': s-ci 3 

application of composite selector s-c * s-cd * s-ci 3 

state transition for 2 components (s-ci and s-c) 2 

Execution time for second alternative = 8 

units 

units 

Assumptions 1-4 can easily be applied as above to calculate the 

execution time for the parts of int-next-st. However, in order to 

express the total execution time in closed form, it is necessary to 

parameterize the algorithm. The first alternative is chosen once 

for each statement in a particular statement list. The total execu­

tion time for the first alternative is the evaluation time of the 

proposition (6) plus the execution time of the alternative itself (9) 

yielding 15. Thus, there is an execution time of 15 for each state­

ment in the list. At the end of the list when the first proposition is 

no longer true, the second alternative is chosen. Since the first 

proposition must be evaluated in order to know that it is false, the 
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execution time for the second alternative is the evaluation time of 

the proposition (6) plus the execution time of the second alternative 

(8) yielding 14. This action occurs only once for a particular state­

ment list. So the execution time of int-next-st can now be stated as 

follows: 

Execution time of int-next-st for statement list t 

15m + 14 

where: m = length of statement list t 

If the time to initialize the particular list is to be included, 

int-st-list must be added. 'lllis instruction is executed only once for 

a particular statement list. So the total execution time required to 

initialize a statement list and iterate from one statement to the next 

is as follows: 

Time = Time for int-st-list + Time for int-next-st 

9 + 15m + 14 

15m + 23 

Thus, the time required for the mechanism in the Vienna machine that 

initializes and steps through a statement list is 15m + 23. 

Another example of execution time estimation is given in 

Appendix D along with listings, discussions, and execution time for 

all instruction schemata needed in Section VI. Following is a s\.U111118ry 
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of the execution times developed above and in Appendix D. The execu­

tion times for many of the instruction schemata are not listed but 

instead are included in the total times of instructions that use them. 

Sununary of Execution Times for Instruction Schemata 

Instruction schema 

int-st-list (t) 

int-next-st 

where: m 

int-block(t) 

int-call (body, e, 

int-return-st (t) 

return 

unstack 

int-assign-st(t) 

eval-ref-gen(ref, 

length of statement list 

arg-list) 

e) 

9 

15m + 14 

22 

23 

3 

8 for BLOCK, 4 for PROC 

11 

19 

36+47q+49a 

where: (these parameters refer to the reference ref) 

q = length of qualifier list (= length of id-list - 1) 

a = length of subscript list 
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goto-search(id} 

where: (these parameters refer to search for id) 

n = total number of statements searched 

s = total number of statement lists searched 

lln + 4s +12b + 7c 

b = total number of blocks terminated during search 

c = total number of control dumps unstacked during search 

goto-jump(scl) 

where: 

t = length of statement counter list (scl) 

15t 

(Note: The execution times for eval-ref-gen, goto-search, and goto-jump 

are abbreviated here. For completely parameterized times see Appendix 

D.) 
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the system will require if the feature is included. Although in some 

situations incremental cost can be very useful, it has two fundamental 

problems. The first is that it is generally extremely difficult to 

determine. If a redesign of parts of the system is required to add a 

new feature, it is hard to predict how this will affect the efficiency 

of the overall system. In addition, an alternate implementation of the 

feature might be achieved by a different set of redesigns that are less 

inefficient. It is difficult to find the minimal cost implementation 

of a feature as well as estimate the cost once an implementation is 

chosen. 

The second and most important problem with incremental cost is 

that it does not properly measure the real cost of a feature. For ex­

ample, if another similar feature is already in the system, then the 

cost of a new feature may appear to be misleadingly low. If a soft­

ware system contains a set of features that all use the same mech­

anisms within the system, the incremental cost of any one of these 

features will actually be zero. In some cases, it may be desirable 

to use incremental cost. An example is when an existing system is 

being slightly redesigned or a few marginally useful features are being 

added to a set of crucial features. However, in general it seems as 

though a better method of cost analysis should be used. 
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The alternative to incremental cost is absolute cost. Absolute 

cost attempts to measure the inherent or total cost of a particular 

feature rather than the additional cost. The absolute cost for a fea­

ture is calculated by examining the complete mechanism in the system 

needed to execute this feature. It does not assume that the existing 

mechanisms are free and so does not underestimate the true cost of a 

feature. The use of absolute cost seems to solve the two problems en­

countered in incremental cost. Absolute cost is easier to measure be­

cause no alternate designs need be considered. The absolute cost of 

a feature of a complete system can be calculated by analyzing the 

mechanisms the feature actually uses. Also, absolute cost does not 

consider any parts of the system to be free and so does not under­

estimate the cost of a feature. 

Of course, absolute cost also has some problems. The only way 

absolute cost can be measured is through a complete software system. 

But the algorithms of a complete system are designed to acconunodate 

all the features of the system. So the absolute cost of one feature 

may be overestimated because it shares a mechanism with another fea­

ture. If one particular feature requires that a certain type of al­

gorithm perform inefficiently, other features that use this algorithm 

will appear to have a high absolute cost. For example, in a pro­

grannning language, block entry may appear to have a high absolute cost 

because the non-local goto feature requires that the old environment 

be explicitly stacked on block entry. Any attempt to try and calculate 

--------- ----
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the cost of block entry ignoring non-local gotos begins to run into the 

problems of incremental cost. The following discussion of cost analy­

sis of debugging systems should help clarify the uses and differentia­

tion of incremental and absolute cost. 

B. Debugging Systems 

Debugging system design is an area where cost analysis is essential. 

Without thorough investigation, it is usually difficult to estimate the 

cost of a feature in a debugging system. The simplest of debugging 

features that intuitively appear cheap often are the most costly. The 

cost of a debugging system is measured in terms of the execution time 

and storage requirements of the program being debugged. If a particular 

debugging feature causes the program to run more slowly or take more 

space, this feature has some positive cost associated with it. 

Oftentimes, incremental cost analysis is desirable for debugging 

systems. When debugging features are being added to a language, they 

are usually added in the context of a particular compiler and run-time 

system. Since the existing compiler or interpreter is needed to exe­

cute the progr~m already, it is in some sense cost free. Thus, the 

addition of single debugging features can be viewed in terms of their 

incremental cost. If a debugging feature can be added to a particular 

interpreter without causing any inefficiency, then the feature ac­

tually is cost free. So in practical debugger design, incremental cost 
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implementation that differs significantly from the model. However, it 

seems that certain features are inherently more costly than others; 

and no matter how these features are implemented this cost must somehow 

be paid. For some debugging systems, the cost may be.buried in the al­

gorithms of the compiler or runtime library routines. But the inherent 

complexity and cost of features must be accounted for somewhere in the 

total system. 

The question of exactly how to determine absolute cost from a gen­

eral model is not answered in this section. The details of how to cal­

culate absolute cost depends on the particular type of software system 

being considered and the specific form of the general model of that 

system. The following section will calculate absolute cost for a few 

simple debugging operations as a representative method for cost analy­

sis using the Vienna machine. 

C. The Principle of Cost Analysis 

The following two statements give a general philosophy that can 

be used for cost analysis of software systems. They are rather vague 

and require a thorough explanation before they can be applied. How­

ever, they do sunnnarize two of the major points of this thesis and 

represent a new approach to cost analysis: 
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Principle of Cost Analysis 

l. Cost is measured in terms of the relative efficiency with which a 

system performs its designated function. 

2. The cost of a feature is determined by examining the mechanisms 

that implement this feature in the system, 
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VI. Cost Analysis of Debugging Operations 

A. The Debugging Operations 

As demonstrated in Appendix A, there are a wide variety of po­

tential features for any higher level language debugging system. 

'Tilis section chooses eight of these debugging features (operations) 

and performs cost analysis using the results of Section IV and V. 

The debugging operations used are intended to be representative of 

the different types of debugging operations available. They are also 

primitive in the sense that they can be combined to form many more 

debugging operations. 'Tile eight operations presented here form some­

thing of a basis for larger expanded systems because of their primitive 

and independent nature. The cost analysis in this section has two dis­

tinct purposes. The first is to serve as an example of a general meth­

od for cost analysis of software systems. The overall philosophy of 

the method is outlined in Section V, but this section is needed to 

clarify and illustrate the method. 

The second purpose of this section is to serve as a guide to de­

bugging system designers. From a thorough examination of the state-of­

the-art of debugging system design, it is apparent that not enough con­

sideration has been given to the cost vs. the utility of various opera­

tions. Many relatively useless but costly features are included in 

new debuggers because other debuggers already have these features. 



-- ------~-- ------ ---------~-~-- ----- ----- - ------------~---·------

-62-

Some cost analysis of the "standard" features of debugging systems 

would probably result in the replacement of some of the costly features 

with cheaper and possibly more useful features. 'nle set of debugging 

operations used here is representative of quite a ntllllber of existing 

debugging systems so the results should have some relevance to prac­

tical debugger design. 

One of the most important features useful for debugging is to be 

able to examine and alter data variables of the program. The operation 

Display Variable is used to examine the value of a data variable. It 

requires one argument which is a reference to the variable. Recall 

that a reference consists of an identifier list and an argument list. 

The identifier list is used to qualify structure names, and the argu­

ment list is a subscript list for arrays. Thus, any scalar or member 

of an array or structure may be examined using Display Variable. 

Another useful debugging feature is the ability to restart execu­

tion at an arbitrary statement. This type of feature is offered by 

the Goto operation which takes a label as an argument and transfers 

control to the statement with that label. 

At times during debugging it is helpful to know the current sub­

routine name or the specific statement about to be executed. This 

information can be gathered by the Read Block or Procedure Name 
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(abbreviated Read Block) operation or the Read Statement Counter List 

operation (abbreviated Read Statement). lhe Read Block operation is 

used to determine the current subroutine or block name. This opera­

tion in combination with the Read Statement operation is sufficient 

to completely identify the current statement. These two operations 

are good examples of the way pri.tnitive operations can be combined to 

form other features. The successive application of Read Block and 

Read Statement can be used to read the subroutine stack. (This point 

is clarified in the cost analysis below.) 

Of course, it is implicitly assumed in the above explanation 

that it is possible to stop execution temporarily. This ability is 

one of the key features of any debugging system. All debugging op­

erations are used to monitor the execution of the program to locate 

bugs. The type of execution halting features available determines 

when and how often this execution can be monitored. Since the Display, 

Set, and Read operations discussed above can only be applied after 

execution is temporarily halted, they actually become more powerful as 

more sophisticated trigger operations are added. 

A trigger operation is something that temporarily stops program 

execution so that other debugging operations can then be applied before 

execution is continued. These operations are sometimes called con­

ditional breakpoints (see Appendix A). There are three basic trigger 
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operations allowed: Trigger on Variable Reference, Trigger on Block 

or Procedure Activation, Trigger on Statement. The Trigger on Ref­

erence operation takes a reference as an argument. Any time this 

reference is used in the program, execution is stopped temporarily. 

Notice that this operation can onlybeused to trigger on reference 

to a specific named data variable. The trigger is not associated 

with the storage area used for the variable but the name of the vari­

able. Thus, if sharing of storage exists it is possible to change the 

value of the data variable without the trigger going off. The fea­

ture of triggering on reference to storage is a completely different 

and incidentally much more costly operation. 

Recall from Section IIIB that every procedure and block has a 

unique name associated with it. So it is possible to identify a par­

ticular block or procedure for the Trigger on Entry operation (same as 

Trigger on Activation). Since statement lists are local to a block or 

procedure, it is necessary to include both the unique name and the 

statement counter list for Trigger on Statement. This operation is in­

tended to provide the ability to put a trigger on a specific statement 

in the program. Because of nested statement lists, a statement counter 

list is needed to localize a statement within a block (see Section IVE 

for explanation of statement counter lists). 

Following is a summary of the eight interactive debugging operations: 



Operation 

Display Variable 

Set Variable 

Goto 

Read Block or Procedure Name 

Read Statement Counter List 

Trigger on Variable Reference 
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Trigger on Block or Procedure Activation 

Trigger on Statement 

B. Cost Analysis 

Arguments 

reference 

reference, expression 

label 

reference 

unique name 

unique name, statement 

counter list 

The Principle of Cost Analysis stated in Section V can now be used 

to find the cost of these debugging operations. The designated func­

tion of any debugging system is ultimately to execute the program. So 

the cost can be measured in terms of the relative efficiency with 

which the debugging system executes the program. Some people would say 

that the designated function of a debugging system is to perform de­

bugging operations on the program. With this assumption, a different 

set of costs would be calculated than the ones in this thesis. How­

ever, the decision has been made here to define cost in terms of pro­

gram execution. So the cost of a debugging operation can be calculated 

by finding how its availability affects the execution time (and storage) 

of the program. Although there is some storage cost associated with 
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debugging operations, the really important component of cost is the 

execution time. 

It is an extremely important property of the Vienna machine 

that, except for a few insignificant changes, its algorithms and op­

erations are sufficient to directly implement debugging operations. 

This means that for the Vienna machine, the incremental cost of the 

debugging operations is zero. However, the cost analysis performed 

here is in terms of absolute cost. The Vienna machine is used as a 

general model of a debugging system and absolute cost can be calculated 

by examining the mechanisms of the machine that are required by each 

debugging operation. 

The mechanisms of the Vienna machine are of course the instruction 

schemata. So it must be determined which instructions are required by 

each of the eight debugging operations. This is done below. Once the 

instructions for an operation have been chosen, it is relatively 

straightforward to estimate the absolute cost. Since the cost is 

measured by program execution time, the absolute cost of a debugging 

operation is calculated by finding how its instruction schemata affect 

the execution time of the program. This absolute cost is just the 

total amount of execution time used by these instructions for a par­

ticular program. The total execution time required by all the in­

structions of an operation is the cost because absolute cost assumes 

nothing is cost free. 
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The one remaining task is to decide which instructions are 

utilized or required for each debugging operation. The eight de­

bugging operations can be divided into three general classes for this 

purpose. The classes can be generally described as follows: 

Class 1 - operations that use the instructions of the machine 

directly 

Class 2 - operations that use the data base of the machine 

directly 

Class 3 - trigger operations 

The first class contains Display, Set, and Goto. These operations per­

form functions so similar to actual operations in the Vienna machine 

that certain instruction schemata can be used directly to execute these 

operations. For this class of operations, the instruction schemata re­

quired are just those instructions that are used directly to apply the 

operations. 

The second class of operations is Read Block and Read Statement. 

These operations do not use any particular instructions but require 

parts of the data base of the machine. However, certain instructions 

are required to update and maintain these parts of the data base. 

These instructions are therefore the ones required by the debugging 

operations Read Block and Read Statement. 
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Trigger operations comprise the third class of debugging opera­

tions. These operations depend on the detection of certain events 

within the Vienna machine. The instructions required by these opera­

tions are the ones that directly cause the events to occur. All in­

structions are somewhat indirectly used to cause these events. But 

the absolute cost of a trigger operation is estimated from the execu­

tion times of only those instructions that directly cause the events. 

The rules for choosing the instruction schemata required by debugging 

operations can be summarized as follows: 

Rule l - For class 1 operations, the instructions that are used 

directly to execute the operation. 

Rule 1 - For class 2 operations, the instructions that are used directly 

to update and maintain the data needed by the operation. 

Rule l - For class 3 operations, the instructions that may directly 

cause the event (or events) to occur. 

The three rules outlined above for choosing instructions are 

utilized along with the execution times from the end of Section IV to 

calculate a parametric cost estimate for each debugging operation. 

1. Display Variable 

The function performed by this operation is to translate a refer­

ence into a value by reading its storage pointer and data attributes 
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from the aggregate directory and accessing the proper area of storage. 

This operation is performed by the instruction schema eval-ref-gen. 

Since Display is a class 1 operation as discussed above, the required 

instruction is just eval-ref-gen. So the cost of the Display Variable 

debugging feature is the total execution time required for eval-ref-gen 

during program execution. 

The summary at the end of Section IV shows that the characteris­

tics of the particular variable reference determine the execution time 

for the instruction. In order to find the total execution time for an 

entire progran, it is necessary to characterize the set of all ref­

erences used in the program. This can be done with three parameters 

one which specifies the total number of data references and two which 

specify the average characteristics of the references. 

Cost of Display Variable = v (36 + 47q + 49a) 

where: v = total number of variable references during program 

execution 

q = average length of the qualifier list for all these 

references 

a = average length of the subscript list for these 

references 

The estimate of these parameters is something of an unsolved prob­

lem itself. However, this problem is not the concern of this thesis. 



-70-

It is important only that the cost can be expressed in terms of a 

reasonable set of well-understood program parameters. 

2. Set Variable 

The Set Variable operation is exactly the same as an assignment 

statement. It requires that references be converted to values from 

storage just as Display. Thus, eval-ref-gen is needed by Set Variable. 

The additional mechanism of assigning a value to a data reference is 

also required. This type of function is performed by int-assign-st. 

The cost of Set Variable has two parts, the cost of evaluating a ref­

erence (eval-ref-gen) and the cost of assigning a value to a data ref­

erence (int-assign-st). 

The total execution time for eval-ref-gen is shown above. The 

execution time for an individual application of int-assign-st is 19 

(see summary at end of Section IV). The total execution time of this 

instruction for the whole program is 19 times the number of assignment 

statements executed. 

Cost of Set Variable = 19w + v (36 + 47q + 49a) 

where: w = total number of assignments during program execution 

v, q, a are defined above 



- 71-

It is interesting to note the sharing of eval-ref-gen by Display 

Variable and Set Variable. 

3. Goto 

'Ihe Goto operation is the last of the class 1 operations. It is 

exactly the same as a goto statement in the program and so requires 

the use of goto-search and goto-jump. The goto-search instruction 

searches the text component of the control information for the speci­

fied statement label and records a statement counter list. 1~is state-

ment counter list is used by goto-jump to transfer control to the state­

ment. Since these operations are used by all program gotos, their exe­

cution time is characterized by parameters involving these gotos. 

Cost of Goto lln + 4s + 12e + le + 15t 

where: n =total number of statements searched during all pro­

gram gotos 

s = total number of statement lists searched during all 

program gotos 

e = total number of blocks terminated during all program 

gotos 

c total number of control dumps unstacked during all 

program gotos 

t total length of statement counter lists used during 

all program gotos 
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The cost shown above is merely the total time used by all goto 

statements during program execution. It must be emphasized at this 

point that these parameters characterize a particular run or execution 

of the program. It is not important how many goto statements are con­

tained in a program but how many are executed. 

4. Read Statement Counter List 

Since this is a class 2 operation, it must be decided which in­

instructions directly maintain the statement counter list. The two 

basic instructions that maintain this list are int-st-list and 

int-next-st. One of these instructions (int-st-list) initializes a 

new statement list and sets the statement counter to zero. The other 

(int-next-st) increases the statement counter as successive statements 

are executed. The two together form the mechanism for building the 

statement counter list. One additional instruction sometimes updates 

the list ~ goto-jump. In order to transfer control to a statement, 

goto-jump usually has to build up part of the statement counter list. 

The execution time of int-st-list depends on only the number of 

statement lists; but int-next-st depends on the length of each state­

ment list. Since a member of a statement list may be either a state­

ment or a statement list, the time for int-next-st is affected by both 

the nt.llllber of statements and the number of statement lists. 
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Cost of Read Statement Counter List = 15 (m + k) + 23k + 15t 

where: m total number of statements executed 

k total number of statement lists executed 

t total length of statement counter lists used in 

all gotos 

5. Read Block or Procedure Name 

Read Block is a class 2 operation. Tile data base for this opera­

tion is part of the epilogue information. 'lbe block-activation type 

component of the epilogue information contains the unique name and 

type (BLOCK or PROC) for that part of the state. The instructions 

that create the epilogue information are int-block and int-call. The 

epilogue information is also changed by the termination of a block or 

procedure activation. For a procedure termination the instructions 

used are int-return-st, return, and unstack. 

A block may be terminated by a return or by executing the last 

statement of the block. The instructions used depend on how the 

termination comes about. If a return causes termination, the instruc­

tions unstack and return are needed. In the other case, only unstack 

is heeded. 

Cost of Read Block or Procedure Name 33b + Br + 41p 

-------- ---- ------------------
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The result is that the absolute cost of Display is misleadingly high. 

Thus, as stated previously, absolute cost must be used in the context 

of additional infonnation in order to be interpreted properly. 

7. Trigger on Block or Procedure Activation 

The event Block entry is always caused by int-block and the 

event Procedure entry by int-call. It may seem at first that the re­

quirements of this operation should be the same as for Read Block or 

Procedure Name. However, the Read Block operation needs both block 

entry and block exit information and so includes some additional in­

structions. 

Cost of Trigger on Block or Procedure Activation = 22b + 23p 

where: b = total nwnber of block activations 

p total nwnber of procedure activations 

8. Trigger on Statement 

The Trigger on Statement operation is more complex than the other 

two class 3 operations since it involves two events. For this opera­

tion it makes more sense to refer to "conditions" rather than events. 

Trigger on Statement is used to halt execution at a specific state­

ment. This statement is specified by a unique name identifying the 

block and a statement counter list localizing the statement within the 

block. The first condition is that the specific block be currently 

active. This condition can be caused by activation which uses 
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instructions int-block and int-call. It can also be caused by 

termination since this changes the currently active block. Termina­

tion requires the instructions int-return-st, return, and unstack. 

The second condition is the occurrence of a specific statement 

counter list. A statement counter list may be altered by the instruc­

tions int-st-list, int-next-st, and goto-jump. Any of these instruc­

tions could cause a certain statement counter list to appear. The 

goto-jump instruction may also initiate block termination and so is 

required for both conditions. (A statement counter list is the s-sc 

components of all the control dumps in a certain control information.) 

It is important to differentiate Trigger on Statement from Trigger 

on Block and understand why the former requires block termination in­

structions where the latter does not. 

Cost of Trigger on Statement = 33b +Br+ 4lp + 15(m + k + t) + 23k 

where: b total number of block activations 

p total number of procedure activations 

r = total number of block activations terminated via return 

m = total number of statements executed 

k total number of statement lists executed 

t total length of statement counter lists used in all gotos 
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Summary of Cost of Debugging Operations 

Operation 

1. Display Variable 

2. Set Variable 

3. Goto 

4. Read Statement 
Counter List 

5. Read Block or 
Procedure Name 

6. Trigger on Variable 
Reference 

7. Trigger on Block or 
Procedure Activation 

8. Trigger on Statement 

where: 

v(36i47q+49a) 

19w+v(36+47q+49a) 

lln+4s+l2e+7c+l5t 

15m+38k+l5t 

33b+8r+4lp 

v(36i4 7q+49a) 

22b+33p 

33b+8r+41p+ 
15m+38k+l5 t 

Instructions Required 

eval-ref-gen 

int-assign-st,eval-ref-gen 

goto-search, goto-jump 

int-st-list, int-next-st 
goto-jump 

int-block,int-call,unstack 
int-return-st,return 

eval-ref-gen 

int-block,int-call 

int-block,int-call,unstack 
int-return-st,return, 
int-st-list, int-next-st, 
goto-jump 

a = average length of subscript list for all variable references 

b = total number of block activations 

c = total number of control dumps unstacked during all goto 

statements 

e = total number of blocks terminated during all goto statements 

k = total number of statement lists executed 

m = total number of statements executed 





Primitive Operation 

Variable Reference 

Block Activation 

Block Termination 
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Statement Counter List Maintenance 

Instruction Schemata 

eval-ref-gen 

int-block, int-call 

unstack, int-return-st, return 

int-st-list, int-next-st, 

goto-jump 

The use of each of these primitives for several debugging opera­

tions causes sharing of cost between the operations. Display Variable, 

Set Variable, and Trigger on Variable Reference all require the primi­

tive for variable reference and so share this cost. This cost is that 

associated with the complete interpretation of all variable references 

in the Vienna machine. The block activation primitive is used by Read 

Block, Trigger on Block, and Trigger on Statement. Since Trigger on 

Block uses only the block activation primitive, it is a proper cost 

subset of Read Block and Trigger on Statement. The block termination 

primitive is part of Read Block and Trigger on Statement. In addition, 

Read Statement and Trigger on Statement both require the statement counter 

maintenance primitive. 

Some interesting results can be seen from these combinations of 

primitives. The Trigger on Statement debugging operation is a highly 
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costly operation since it contains all the primitives needed for Read 

Statement, Read Block, and Trigger on Block. These four debugging 

operations form a simple cost heirarchy as shown below: 

Read Block 

Trigg1 on Block 

(Trigger on Block) < (Read Block) 

Statement 

(Read Block) + (Read Statement) = (Trigger on Statement) 

Another result is that Display Variable, Set Variable, and 

Trigger on Variable Reference are all of approximately equal cost. 

This fact is true because of the one central mechanism in the Vienna 

machine that is used to interpret variable references. 

Any further conclusions about the relative cost of debugging op-

erations must be based on some assumptions about the parameters of the 

cost equations. It is noteworthy that a program can be completely 

characterized for cost analysis with twelve parameters. These param-

eters are only valid for one particular execution of the program. In 

general for an arbitrary program, it might be difficult to estimate 

these parameters since they depend on the input data. One approach to 
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this problem might be to specify the twelve program parameters with 

probability distributions. The cost of the debugging operations as 

expressed above would then be a probabilistic cost which could be 

very useful in practical terms. 

By making some order of magnitude type estimates of some typical 

program parameters, it is possible to directly compare the relative 

costs of the debugging operations. For an execution of an average 

PL/I program, the following parameter values are reasonable: 

a = .1 p 20 

b = 20 q .1 

c = 10 r = 10 

e 5 s = 20 

k 100 t 100 

m 1000 v = 2000 

n 200 w = 200 

These values state that during execution there are a total of 

1000 statements and 100 statement lists executed. Within these 1000 

statements there are 2000 variable references and 200 assignment 

statements. There are 20 begin block activations, 10 of which are 

terminated by a return statement and 5 of which are terminated by GO'IO 

statements. During execution, 20 procedure calls are made. The 

average length of the subscript list for variable references is .1 
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meaning that 1 out of 10 references has a subscript. Also, 1 out of 

10 references has a structure qualifier. Although these values will 

vary greatly from program to program, this particular sample set can 

be used as a representative average set for a wide class of programs. 

The following absolute costs result from the above parameters: 

(Costs are rounded to the nearest thousand.) 

Debugging Operation 

Display Variable 

Set Variable 

Goto 

Read Statement Counter List 

Read Block or Procedure Name 

Trigger on Variable Reference 

Absolute Cost (thousands) 

92 

96 

4 

20 

1.6 

92 

Trigger on Block or Procedure Activation 1 

Trigger on Statement 22 

Some simple conclusions are innnediately apparent from these fig­

ures. There seem to be three levels of costs. The relatively cheap­

est operations are Trigger on Block, Read Block, and Goto. These op­

erations can be said to form a minimal low cost debugging system. 

The next level of costs is an order of magnitude higher. This level 

contains Read Statement and Trigger on Statement. These operations 
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are so costly as to ma~e the lower level operations insignificant. So 

these two debugging operations in combination with the three at the low 

cost level form an intermediate cost debugging system. Of course, the 

extremely high cost operations are those associated with the interpre­

tation of variable references: Display Variable, Set Variable, and 

Trigger on Variable Reference. 

Additional insight can be gained by computing the absolute costs 

of the four primitive operations discussed above: 

Primitive 

Variable Reference 

Block and Procedure Activation 

Block and Procedure Termination 

Statement Counter List Maintenance 

Absolute Cost (thousands) 

92 

1 

. 6 

20 

Thus, the primitives form a definite cost heirarchy which under­

lies the cost relationships of the debugging operations. One very 

striking conclusion that can be drawn from the above costs is that 

debugging operations involving block and procedure activation and 

termination are extremely inexpensive. This conclusion has definite 

implications for practical debugger design. Debugging operations like 

Read Block or Procedure Name and Trigger on Block should be included 



-84-

in all debugging systems because of their low cost. (Operations to 

read the subroutine stack are also in this class.) Anyone who has 

implemented a debugging system will confirm the low cost of these op­

erations. However, these low cost operations are not included in many 

current debugging systems whereas the much higher cost operation of 

Trigger on Statement is included in almost every system. This fact il­

lustrates the need for more absolute cost analysis of debugging sys­

tems. This practical and useful conclusion also verifies the asser-

tion that absolute cost analysis can be a useful tool in cost prediction. 
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VII. Conclusions 

The purpose of this thesis has been to develop a general method 

for cost analysis of software systems. The overall philosophy of the 

method is given by the Principle of Cost Analysis in Section V. This 

philosophy has been used to perform cost analysis on debugging sys­

tems as a specific example of the method. It would be premature to 

claim that this thesis presents a scientific method for cost analysis. 

Rather the foundations for the art of cost analysis have been built. 

Even though a well-defined and exact algorithm for estimating cost 

would be desirable, an art in the hands of a skilled artist could prove 

extremely useful. 

There has been little or no theoretical work in the area of prac­

tical cost analysis. So this thesis represents a first attempt at 

something that is badly needed for computer software design. 'llte cost 

figures for debugging operations calculated in Section VI could be of 

some usefulness in the early stages of debugging system design. Also, 

the general art of cost analysis could hopefully be applied with simi­

lar success to other software systems. However, the main contribution 

to this thesis seems to be that it has demonstrated that cost analysis 

is possible on a general theoretical level. The thesis should serve 

as a stimulation to researchers ~ho might eventually develop a science 
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in cost analysis. This is the field of "alternate machines". In or­

der to perform accurate cost analysis it is necessary to consider 

alternate ways of implementing the same operation. To estimate the 

cost of a particular feature, it is really necessary to determine how 

the software system could be redesigned if this feature were not pres­

ent. Thus, alternate machines (i.e. alternate implementations) must be 

considered. This type of cost analysis is of course incremental cost 

analysis. Absolute cost can be a help in the early stages of design. 

But the real question that people usually want to answer is how much 

will it cost in terms of efficiency to add a particular feature. This 

question can be accurately answered only by incremental cost analysis 

which requires a consideration of alternate machines. 
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Appendix A 

List of Debugging Operations 

Debugging operations can be divided into four categories: break­

points, data display, history, and editing. Breakpoints are of the 

form - execute until a certain event occurs. Data display is just 

changing and displaying data variables. History is a record of the 

past execution of the program. It can be a complete history as in 

EXDAMS
1

, or it can just contain a few previous values of certain vari­

ables as in HELPER. lO Editing is sometimes called incremental com­

piling and refers to making changes in the source program. After a 

thorough study of interactive debugging systems, the following list 

has been gathered of possible operations: 

I. Breakpoints 

Execute program until 

1. Certain variable is referenced 

2. Certain statement is reached 

3. Certain variable is changed 

4. Certain variable takes on some specific value 

5. A transfer statement is executed. 

6. Certain subroutine is entered 

7. One of a set of variables is referenced or changed 
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II. Data Display 

1. Display variable 

2. Set a variable to a specific value 

I II. History 

A. Audit (summary of events) 

1. How many times was a particular subroutine entered 

B. 

2. Which portions of the program were never executed 

3. Which variables were never set 

4. Where are all the places that changed a certain 

variable 

Execution History 

1. Where did a variable take on its current value 

2. Read the subroutine stack 

3. When was the last time a variable was referenced 

4. When was the last time a variable was changed 

5. When was the last time a certain statement was executed 
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Appendix B 

Abstract Syntax of Program 

The method of predicates used for abstract syntax is simple and 

can be clarified by an example shown below: 

Predicate 

is-proper-var ((s-scope: is-scope), 

(s-stg-cl: is-AUTO), 

(s-da: is-da)) 

Tree representation 

I I I 
proper-var -

J; ·~ 
s-da 

AUTO cb 
The following is the complete abstract syntax of the subset of 

PL/I used in this thesis. The notation is formally described in pages 

115-119 of "On the Formal Description of PL/1 11
•
12 
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Abstract syntax of a program 

Programs and Blocks 

is-program= ([(id: is-body) II is-id(id))) 

is-body = (is-block; (s-param-list: is-id-list)) 

is-block= ((s-decl-part: is-decl-part), (s-name: is-n), 

(s-st-list: is-st-list)) 

Declarations 

is-decl-part =({(id: is-decl) II is-id(id))) 

is-decl = is-proper-var v is-entry V is-LABEL 

is-proper-var = ((s-scope: is-scope), 

(s-stg-cl: is-stg-cl V is-0), 

(s-da: is-da)) 

is-scope = is-INT V is-EXT V is-PARAM 

is-stg-cl = is-AUTO 

is-entry = ((s-scope: is-scope), 

(s-den: is-body V is-n V is-0)) 

is-da = is-array V is-struct V is-scalar 

is-array = ((s-lbd: is-expr), 

(s-ubd: is-expr), 

(s-elem: is-da)) 

is-struct = is-succ-list 

is-succ = ((s-id: is-id), 

(s-da: is-da)) 
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is-scalar ((s-mode: is-mode), 

(s-scale: is-scale)) 

is-mode = is-REAL V is-INTG 

is-scale = is-FLOAT V is-FIXED 

Statements 

in-st = ((s-label-list: is-id-list), 

(s-proper-st: is-proper-st)) 

is-proper-st = is-block V is-call-st V is-assign-st V is-while-group 

V is-if-st V is-goto-st V is-return-st V is-null-st 

V is-st-list 

is-call-st ((s-id: is-id), 

(s-arg-list: is-expr-list)) 

is-assign-st = ((s-lp: is-ref), 

(s-rp: is-expr)) 

is-goto-st ((s-st: is-GOTO), 

(s-ref: is-ref)) 

is-return-st = is-RETURN 

is-if-st = ((s-expr: is-expr), 

(s-then-st: is-st), 

(s-else-st: is-else-st)) 

is-else-st = is-st V is-0 

is-while-group= ((s-while-expr: is-expr), 

(s-st-list: is-st-list)) 



is-null-st l j 

is-expr - r c · 

is-ref -

-; - ,1 r. 1s-arg-expr-list 

is-arg-expr 
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Appendix C 

Abstract Syntax of the State of the Machine 

is-state ((s-s: is-stg), 

§. = s-s <s> 

UN s-un(S) 

DN s-dn(s) 

AT s-at (S) 

AG s-ag (S) 

E = s-e (S) 

EI = s-ei(S) 

.Q = s-d (s) 

CI = s-ci(S) 

c = s-c(s) 

(s-un: is-un), 

(s-dn: is-dn), 

(s-at: is-at), 

<s-ag: is -ag), 

<s-e: is-e), 

(s-ei: is-ei V is-0), 

(s-d: is-d), 

(s-ci: is-ci), 

(s-c: is-c)) 

storage 

unique name counter 

denotation directory 

attribute directory 

aggregate directory 

environment 

epilogue information 

dump 

control information 

control 
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Local State Components 

is-d is-0 V ((s-e: is-e), 

(s-ei: is-ei), 

(s-d: is-d), 

(s-ci: is-ci), 

(s-c: is-c)) 

is-e = (((is: is-n)ll is-id(id)}) 

is-ei = ((s-block-act: is-block-name), 

(s-free-set: is-n-set), (s-main: is-0 V is-ON)) 

is-block-name = ((s-type: is-BLOCK V is-PROC), 

( s-name: is-n)) 

is-ci is-0 V ((s-tx: is-st-list v is-if-st), 

(s-sc: is-integer), 

(s-cd: is-cd)) 

is-cd = ((s-ci: is-ci), 

(s-c: is-c)) 

is-c see discussion of control trees in "On the Formal Description of 

PL/1 1112 

is-n the set of unique names n
0

, n1 , ... which are elementary objects 
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Global State Components 

Ls-dn = ((fn: is-den'>\J is-n(n)}) 

is-den = is-n v is-entry-den 

is-entry-den= (ts-body: is-body), 

(s-e: is-e)) 

is-ag 

is-pp 

(<s-pp: is-pp), 

(s-eda: is-eda)) 

is-ptr v is-pp-list 

is-ptr = see discussion of storage in "On the Formal Description of 

PL/1 1112 - ptr identifies area of storage 

is-at ([ (n: (ts-attr: is-attr), 

(s-e: is-e))) \J is-n(n)}) 

is-attr is-proper-var V is-entry 
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Appendix D 

Execution Time for Interpreter 

When a new block is activated by int-block there are several ac-

tions that must be taken. The epilogue information (EI) must be 

initialized with ''block-ei", and the old state must be stacked with 

"stack". Notice that block-ei and stack are not instruction schemata 

but only notational conveniences so their execution time is part of 

int-block. 

for a block t 

int-block (t) = 

s-ei: block-ei (t) 

s-d : stack(S) 

~ epilogue; 

int-st-list(s-st-list(t)); 

update-dn(s-decl-part(t)); 

update-at(s-decl-part(t)); 

update-env(s-decl-part(t)) 

block-ei(t) = 

µ(EI; ((s-block-act: µ ((s-type: BLOCK), 
0 

(s-free-set: 0)) 

where: nt = s-name(t) 



stack(S) = 

µ ((s-e: s-e(s)), 
0 

(s-ei: s-ei(s)), 

(s-d: s-d(s)), 

(s-ci: s-ci(s)), 

< s-c: s-c <s» > 

Execution time for stack 

Operation 

µ
0 

with 5 arguments 
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simple selectors s-e, s-ei, s-d, s-ci, s-c 

Execution time for block-ei 

Operation 

µ with 2 arguments 

simple selector s-ei 

µ
0 

with 2 arguments 

simple selector s-name 

Execution Time 

5 

..2. 
10 units 

Execution Time 

2 

1 

2 

1 

6 units 



--~----------------
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Execution time for int-block 

Operation Execution Time 

block-ei 6 

stack 10 

selector s-st-list 1 

selector s-decl-part 1 

state transformation for 4 state components ~ 

Total Execution Time for int-block = 22 units 

Observing the control component (s-c) of the block activation, 

one notices that first the new environment is created. Then the at-

tribute and denotation directories are updated followed by the inter­

pretation of the statements of the block. The last action performed 

is the epilogue which frees the local variables and unstacks the dump. 

epilogue = 

free-local 

unstack = 

~ : s-e(Q) 

s-ei: s-ei(Q) 

s-d : s-d (Q) 

s-ci: s-ci (Q) 

~ s-c(Q) 



Instruction schema 

unstack 

epilogue 
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Execution Time 

11 

0 

The execution time for free-local is not needed for this thesis; 

however, the reader can find this instruction schema and many others 

in section 7 of "On the Formal Description of PL/I 11
•
12 

When a procedure call is interpreted, actions are taken that are 

similar to those upon block activation. The initial environment is the 

environment that existed when the procedure was declared. int-call sets 

up the new epilogue information with "proc-ei" and stacks the local state 

components with "stack". Notice the similarity between int-call and 

int-block. 

int-call(body, e, arg-list) 

~: e 

s-ei: proc-ei(body) 

s-d: stack(s) 

s-ci: 0 

~: epilogue; 

int-st-list(s-st-list(body)); 

update-dn(s-decl-part(body)); 

install-arg-list(arg-list, s-param-list(body), 

s-decl-part(body)); 
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update-at(s-decl-part(body)); 

update-env(s-decl-part(body}) 

proc-ei (body) = 

µ ((s-block-act: µ ((s-type: PROC), 
0 0 

(s-name: ~))), 

(s-free-set: O)) 

where: nb = s-name(body) 

Instruction schema Execution Time 

int-call 23 

A procedure or block activation may be terminated by a return 

statement. If s-main (EI) is set this is the outermost procedure and 

the entire program is terminated. Otherwise, return is called 

successively to terminate nested block activations until the current 

procedure is terminated. 

int-return-st = 

is-0* s-main (EI) ~ return 

T~~: 0 

return = 

is-BLOCK * s-type * s-block-act(.§1) ~ 

s-d: µQl; (s-c: return)) 

~: epilogue 



-103-

is-PROC * s-type * s-block-act(EI) ~ 

epilogue 

Instruction schema 

int-return-st 

return 

Execution Time 

3 

8 for BLOCK, 4 for PROC 

A Goto statement is interpreted by searching the text components 

for the statement with the indicated label. The search is performed 

by first searching the current statement list and then successive 

statement lists in the control dumps (s-cd) of the control informa­

tion (CI). If the label is not found in the current block activation, 

the block is terminated and the next block searched. The actual search 

of statement lists is performed by "search". If the search is success­

ful, the result is a statement counter list that localizes the state­

ment with the current statement list. 

goto-search(id) = 

-, is -0 * search(id, s-tx(CI)) ~ 

go to- jump (search (id, s- tx (fl))) 

-, is -0 (g) ~ 

s-ci: s-ci * s-cd(g) 

!.::..£ goto-search(id) 

-, is -0 * s-crn) & is-BLOCK * s-type ~~ s-block-act(EI) ~ 

s-d µ(R; (s-c: goto-search(id))) 

s-c: epilogue 
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search(id, t) = 

is-st(t) & (8i)(id = elem(i, s-label-list(t))) 4 ( ) 

is-st(t) 4 search(id, s-proper-st(t)) 

is-st-list(t) 4 search-l(id, t, 1) 

is-if-st(t) & -iis-0 * search(id, s-then~st(t)) 4 

(T)~earch(id, s-then-st(t)) 

is-if-st(t) & --, is-0 * search(id, s-else-st(t)) 4 

-(F) search(id, s-else-st(t)) 

T40 

search-l(id, t, i) 

i > length(t) 4 

-..,is-0 * search(id, elem(i, t)) 4 (i)"'search(id, elem(i, t)) 

T 4 search-l(id, t, i+l) 

Once the label is located, the sc-list is used by goto-jump to build 

up the control dump stack until the proper statement is reached. 

goto-jump(scl) = 

is-integer * head(scl) & length(scl) 1 4 

s-ci: 

~= 

ci 
s 

int-next-st; 

int-st(st ) 
s 

is-integer * head(scl) 4 

s-ci: µ ((s-tx: s-proper-st(st )), 
0 s 

(s-cd: µ ((s-ci: ci ), 
0 s 

(s-c: int-next-st)))) 
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s-c: goto-jump(tail(scl)) 

length(scl) = 1 ~ 

s-ci: s-ci ~~ s-cd (CI) 

~: int-next-st; 

T~ 

s-ci: 

s-c: 

where: ci 
s 

int-st(st ) 
s 

µ(fl; (s-tx: s-proper-st(st ))) s 

goto-jump(tail(scl)) 

µ(CI; (s-sc: head(scl))) 

st (is-integer * head(scl) ~ elem(head(scl), s-tx(CI)), 
s 

head(scl) ~ s-then-st * s-tx(CI), 

T ~ s-then-st * s-tx(CI)) 

The execution time for a Goto is extremely complicated and depends 

on the properties of statement lists searched. Eight parameters are re-

quired to characterize this execution time. 

Instruction schema Execution time 

goto-search lln + 4s + Bf - 3e + 12b + 7c 

goto-jump 151 - St 

where: (The following parameters refer to the text that is 

searched before the statement is found) 

n = total number of statements 

s = total number of statement lists 
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f = total number of IF-statements 

e = total number of single statement then or else clauses 

b = total number of block levels unstacked 

c = total number of control dump levels unstacked 

(the following parameters refer to the statement 

that localizes the statement for the Goto) 

1 = length of statement counter list 

t =number of T or F's in list 

counter list 

The parameter n is the total number of statements encountered in 

the entire search. The parameter e refers to all then or else clauses 

which are not statement lists but single statements. The parameter b 

is the number of blocks terminated during the sear~h. The parameter c 

refers to the total of all control dumps unstacked during the entire 

search. Although these parameters seem complex, they can be easily found 

for any particular Goto in a program. All that is needed is a know­

ledge of the search method 0£ the algorithm. First the current state­

ment list is searched, then the list containing the current list, etc. 

If the label is not found in the current block, the containing block 

is searched and so on. By counting the statements, statement lists, 

IF-statements, and blocks terminated, the parameters can be calculated. 
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An assignment statement requires the evaluation of the variable 

reference with eval-ref-gen and the evaluation of the expression with 

eval-expr. The actual assignment is performed by convert-assign. 

int-assign-st(st) = 

convert-assign(gen, op); 

op: eval-expr(s-rp(st), g), 

gen: eval-ref-gen(s-lp(st), g) 

convert-assign(gen, op) 

assign(gen, op-1); 

op-1: convert(s-da(gen), op) 

assign(gen, op) = 

is-scalar * s-da(gen) ~ 

s-s: el-ass(s-pp(gen), s-vr(op)) 

convert(da, op) = 

mk~op(da, vr); 

vr: represent(da, v) 

v: value(s-da(op), s-vr(op)) 

represent(da, v) is an implementation defined primitive that gets a 

value representation with a data attribute da from the value v. 

value(da, vr) is an implementation defined primitive that extracts a 

value from a value representation vr with a data attribute da. 



Instruction schema 

value 

represent 

mk-op 

convert 

assign 

convert-assign 

int-assign-st 
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Execution time 

1 

1 

1 

2 

7 

1 

4 

The total execution time of all these instructions can be included 

in int-assign-st since their individual identity is not important. 

The time for eval-expr must also be added to get a total time of 19 

for int-assign-st. 

For simplicity, the only form of expressions allowed in the PL/I 

subset is a simple reference or a constant. In eval-expr the instruc­

tion eval-ref-gen is used to find a pointer into storage and a data 

attribute for the variable reference. pass-gen-op is used to access 

the storage and create an operand (op), an internal form used for 

transferring values. 

eval-expr(expr, e) = 

is-ref (expr) _. 

pass-gen-op(gen, !l 

gen: eval-ref-gen(ref, e) 

is-const(expr) _.PASS: expr 
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Instruction schema Execution time 

eval-expr 3 for reference, 2 for constant 

The instruction eval-ref-gen is completely listed in section 7 

of "On the Formal Description of PL/I 1112 • It is essentially the same 

as the eval-ref-gen needed for this thesis. The only difference is the 

instruction eval-gen because the PL/I subset in this thesis does not 

allow controlled or pointer variables. The execution time for all 

instructions used by eval-ref-gen is included in the total shown below. 

eval-gen(ref, e) = 

is-proper-var(attrr) & is-ref(ref) & is-gen(genr) ~ 

PASS: 

T ~ error 

where: n 
r 

gen 
r 

head* s-id-list(ref)(e) 

attr = s-attr ~'( n (AT) r r ~ 

Instruction schema 

eval-ref-gen(ref, e) 

Execution time 

36 + q(39 + 4t) + 49a+s(5c+l3) 

(Recall that a reference (ref) consists of an id-list of qualifiers for 

structure reference and an argument list of subscripts for array ref-

erence. A subscript may be a * in which case the entire crossection 

of the array is used.) 
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where: 

q length of qualifier list (= length of id-list - 1) 

a = length of subscript list (not including ~:IS) 

s = number of ,,.., s in subscript list 

c = crossection size of array at each -k 

t number of structure parts at each qualifier 

The parameters c and t are clarified below. 

Example: 

Dimension A(l0,7,25) 

If subscript list for A is (x, y, *) where 1 s x s 10 

and 1 sys 7, then c = 25. 

Declare X, 

1 A, 

2B, 

2C, 

2D, 

1 E, 

2 F 

level 

If id-list is X.A. C., then the qualifier list is A. C and t = 2 + 3 = 5. 

At qualifier level A there are 2 structure parts, and at qualifier 

level C there are 3 structure parts. 
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