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BOUNDS ON INFORMATION RETRIEVAL EFFICIENCY 
IN STATIC FILE STRUCTURES* 

Abstract 

This research addresses the problem of file organization for 
efficient information retrieval when each file item may be accessed 
through any one of a large number of identification keys. The em
phasis is on library problems, namely large, low-update, directory
oriented files, but other types of files are discussed. The model 
used introduces the concept of an ideal directory against which all 
imperfect real implementations (catalogs) can be compared. The use 
of an ideal reference point serves to separate language interpreta
tion problems from information organization problems, and permits 
concentration on the latter. The model includes a probabilistic 
description of file usage, developed to give precise definition to 
the range of user requirements. The analysis employs mathematical 
tools and techniques developed for information theory, such as the 
entropy measure and the concept of an ensemble of possible file items. 

The principal analysis variable is item relevance, the proba
bility that a file item accessed is actually useful, which is a 
measure of retrieval efficiency. An upper bound on average relevance 
is derived, and is found to give useful results in two areas. First, 
it shows that retrieval efficiency is determined primarily by catalog 
size (amount of information stored) and user question statistics, with 
only second-order effects due to type of catalog data and file struc
ture used. Second, it is used to evaluate various indexing procedures 
proposed for libraries and to suggest improved experimental procedures 
in this field. 

*This report reproduces a thesis of the same title submitted to the 
Dept. of Electrical Engineering, Massachusetts Institute of Technology, 
in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy, May 1971. 
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CHAPTER ONE 

INTRODUCTION 

1.1 INTENT 

This research arose from the conjecture that file access 

efficiency is not greatly affected by the methods of file organ

ization used. A wide range of library catalog construction tech

niques have been pro.(X>Sed in the literature (such as clustering, 

factor analysis, stemming, automatic indexing), and they all 

seem to reach about the same degree of effectiveness. However, 

there has been no way to compare these systems and test the 

conjecture. 

In essence, the research described here consisted of forming 

statistically-described data bases (files) on paper, and performing 

retrieval experiments using a variety of file organizations on the 

same data. 'these experiments were performed in equations rather 

than simulations, using the statistical tools of information theory. 

'!he use of conjectural data bases, in which correct results are 

known in advance, avoids the pitfalls of interpreting the sanantics 

of user questions, and permits concentration on the questions of 

organizing and representing the data. 

'Ibe results were as expected, showing that average relevance 

of retrieved file items (or equivalently, length of file search) 

was determined primarily by the absolute size of the file directory, 

measured in terms of the information it contained. The analysis 

also serves to indicate the second-order effects due to type of 
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which the user can name directly, but are rather poor at 

retrievinq facts irrespective of their location in 

specific doC\Uftents. 'l'he latter problem is the real 

challenge. 

4. Static files, with a low update rate. If questions of 

high change rates are introduced, further problems arise 

which are not really related to the analysis given here. 

5. 'l'heoretical systems, rather than specific hardware or 

software configurations. Specific details of implementa-

tion are ignored here because of the confusion they introduce. 

Rather, attention is concentrated on those design problems 

which are common to all file systems. 

1.3 THE IMPORTANCE OF INFORMATION RETRIEVAL RESEARCH 

The basis of need for the research follows from three generally 

accepted observations: 

A. Present means of access to library information are quite 

poor, especially for technical subject matter. 'l'he system 

works fairly well for document retrieval when the identity 

of the docmnent is well specified, but it works rather 

poorly for fact retrieval in which the identity of the 

docmnent is neither known nor important. 

B. Future increases in published information promise to be 

substantial, thus overburdening an already inadequate system. 

c. Computer technologies and techniques give promise of becoming 

economical enough to provide a means for breaking through 
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reasonable approach, the interpretation question looks uninteresting 

for further theoretical research at this time. 

The storage question is quite a different matter. Here the 

possibilities of quantitative analysis are good, and largely un

explored. In particular, the question of file organization will 

become a critical one as on-line retrieval is achieved. The bottle

neck in access to stored information will grow as the result of 

two effects: 1) Automation of libraries means the concentration 

of data into a single storaqe unit with very few access ports, as 

opposed to the parallel access of library stacks, and 2) the emphasis 

on on-line interaction increases the number of accesses to storage, 

as compared to batch retrieval where few accesses are possible. 

Thus the upcominq use of on-line computers will place a heavy load 

on the file access mechanism, and this will become the system 

parameter limitinq the number of users who can be served. 

'!!le interactive nature of coming systems will also change 

user operating procedures, and the file orqanization must chanqe 

to fit these new patterns. Batch retrieval systems have emphasized 

high recall at the expense of overloadinq the user with many 

irrelevant documents. When on-line, the user will desire very 

few documents at a time, particularly since his read-out device has 

limited bandwidth. Manual libraries provide very coarse indexing, 

because of cost. '!!le interactive user will require more precise and 

extensive indexinq information, so that he can narrow his requests 

down to a few documents, and computer costs will allow this. 'l!lus, 

file organizations must evolve to give greater efficiency in handling 
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more frequent requests, smaller requests, and bigger attribute sets. 

This will require improved knowledge of the effectiveness of various 

organizations, and may require the development of new techniques. 

'!he objectives of this research in files can be summarized in 

the form of three sets of questions: 

1. Parameters - What are the parameters by which to measure 

the performance of an information filing system? What are 

the variables that contribute to the cost of the system? 

What characteristics of the document collection are im

portant in influencing the difficulty of file organization? 

Past experimentation in information retrieval has been 

hampered at least partially because no one knows how to 

measure the value of a system to the user. 

2. File Organization - What techniques or file organizations 

are useful in organizing computer files? How effective 

is the technique of introducing redundancy into the file? 

How are directories best employed? 'l!lere exist many 

possibilities of new organizational techniques which show 

promise, but are difficult to evaluate without theoretical 

help. 

3. Classification - What strategy should be used in selecting 

index categories to give the most user flexibility at least 

cost? Should categories be disjoint or overlapping; large 

or small? When should categories be merged or separated? 

'!he set of index terms to be used is not an inherent property 

of a document set, as is often assumed, but is quite open 

to manipulation. 
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'Ihese three problem areas are considered to be approximately 

equal in importance. They are recognized to be strongly interrelated, 

so the answers cannot always be simple ones. 

The theoretical work to date in information filing techniques 

has fallen into two schools of thought, Classical and Statistical. 

Both schools are working in information retrieval using tools 

borrowed from other fields and both schools encounter trouble 

because the tools do not quite fit. 

'!he classical school has been concerned with adapting standard 

data-processing filing methods (e.g. hash-coding) to information 

retrieval, without developinq much of a theoretical framework for 

analysis of these methods. The major difficulty encountered in 

this approach is that most present filing algorithms depend on 

receiving the complete description of a requested item, while 

information retrieval faces the more difficult problem of user 

requests which are stated in terms of a small and unpredictable 

part of the total document description. As a result, the use of 

standard filing techniques produces a very expensive system, or 

more often an inadequate system. 

The statistical school has been concerned with classification 

procedures using statistical tools developed in psychological testing 

and refined in pattern recognition. This work has been larqely 

theoretical due to the lack of suitable data bases for experimentation. 

This approach has been disappointing, probably because of scale 

factors. That is, pattern recognition works with objects in the 

hundreds, while information retrieval works with hundreds of thousands. 
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Pattern recognition aspires to a 99\ or greater accuracy, while 

information retrieval is happy with SO\. The statistical classi

fication techniques concentrate on obtaining the correct class of 

a pattern, while retr1eval requires that a document be in a reason

able class. This confusion in objectives has caused retrieval 

statisticians difficulty in evaluating the worth of their classifi

cation algorithms, because they are measuring their results against 

inappropriate goals. 

The differences of emphasis which distinguish information 

retrieval from the related fields are really only apparent in an 

automated retrieval system. Previous organization and classification 

techniques were sufficient in manual systems because the volwne of 

data was relatively iight, and flexibility was very restricted. 

In large file systems with greatly expanded indexing, the unique 

aspects of information retrieval become maqnified, and it become• 

necessary to evaluate file systems under a new set of constraints. 

The appearance of this shift in goals exemplifies the rethinking 

which will be necessary as computers find their place in retrieval 

systems. 

1.4 OUTLINE 

An attempt has been made to make each of the chapters of this 

document self contained, so that individual sections can be read 

without having to understand all other sections. In particular, 

the mathematical derivations of Chapter Four may be skipped by the 

casual reader. 
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Chapter onto summarizes the entire work, with other chapters 

filling in the details. Chapter 'l'hree, showinq library applications 

of the mathematical results derived, preceeds the actual derivations 

in Chapter Four because knowledge of the applications makes the 

mathematics more meaningful. Even non-librarians would do well 

to browse through Chapter 'Ihree before attacking the mathematics 

following. 

Chapter Five enters into conjecture about the larger picture 

of file access, and cites some partial results as well as describing 

possible further research areas. An Appendix is attached which 

describes an alternate approach to file analysis which was somewhat 

less successful. However, it does provide two key results described 

in Chapter Five, and may be interesting to some researchers as a 

different conceptual tool. 
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CHAPTER TWO 

SEARCH LENGTHS IN FILE SYSTEMS WITH DIREC'lURIES 

'rtle quality of a directory (catalog) in a file system is 

measured by how well it narrows the average field of search in 

the main file for an ensemble of user questions. An ideal 

directory will pinpoint every relevant item in the file for every 

user question, while a less perfect directory will supply a longer 

list of items, including some irrelevant entries. A quantitative 

statement of expected search length for a given directory requires 

an estimate of two parameters: 

l) Size of the ideal directory, reflecting the number of 

file items and the statistics of the descriptive attri-

butes used to form questions, and 

2) Statistics of expected usage, namely the relative fre-

quency of all questions which might be asked and the 

expected recall level (completeness of search) desired 

by each user. 

\illen these parameters can be established, it can be shown that the 

following bound is applicable to a range of interesting file cases: 

- p log p > K•[H(F)-H(G)) 
n n -

(2 .1) 

where: K is a constant depending on question and file statis-

tics 

H(F) is a measure of the ideal directory size 

H(G) is a measure of the size of an imperfect actual 

catalog in use, measured in bits of storage. 
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pn is the relevance of each item retrieved (probability 

that the retrieved item actually fits the question 

asked by the user). 

This gives a lower bound on average -log pn as a function of directory 

size H(G). As directory size gets smaller, the bounding value gets 

larger, thus requiring smaller p (lower average relevance) to meet 
n 

the bound conditions. 

When the resulting numbers are analyzed, two conclusions appear: 

1) The first-order influence on average search length is 

simply the size of the directory~ directories with low 

information content will give poor average search times 

no matter how brilliantly they are organized. 

2) Variations in directory organization affect search length 

through a) more efficient utilization of the bits of H(G), 

and b) better matching the directory of the pattern of 

user requests, especially the level of recall specified. 

A third conclusion is that past experimental technique in the 

information retrieval field has been inadequate. In comparing 

this theory with previous experimental results, it was found that 

the experimenters failed to understand all the parameters they 

were faced with, and did not hold enough parameters constant to 

obtain meaningful results. 

The following pages elaborate on the above theme, describing 

the file model used, deriving some mathematical relationships, and 

applying the results to practical library organizations. 
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important feature of eliminating semantic interpretation as a 

variable in the analysis. It is assumed here that the user already 

understands the attribute meanings, and that the relation between 

attributes and items has already been correctly determined. This 

permits concentration on the organizational aspects of filing. 

Implementation (Real Directory). Actual library cataloqs contain 

much less information than an ideal directory. Typically, they 

will omit information for some attributes, or will store combinations 

of attributes where one description is used to represent all attri-

butes in a group (forced synonyms). The important parameter of 

a catalog is how many bits are used to store it; the means of best 

using these bits are discussed later. 

Directory Output. The directory supplies a search list of all 

items which possibly fit the user question. Each item in the list 

has a probability, p , of matching the question. For the ideal 
n 

directory, p = 1 or O, since accurate retrieval is assumed. The 
n 

sum of p over all items in the list gives a constant, because 
n 

the number of items in the file which fit the question is fixed 

regardless of what directory implementation is used. Good directories 

concentrate the sum of p in a few items, while poor directories 
n 

spread it out over a longer search list. The items in the search 

list are ordered according to decreasing p , so that the user can 
n 

search through the most likely items first and then progress through 

less likely items until his recall level is reached. 
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Ensemble of Files. To measure the complexity of the ideal directory, 

a key assumption must be made. It is that we are dealing with an 

ensemble of files, not just one configuration. The ensemble is 

the set of possible file configurations which the user might expect 

to appear in a given library. While only one such configuration 

actually does occur there, the user does not know which one that is 

until after that information is conveyed to him. 

Each possible file has an ideal directory. Not all directories 

are equally likely to occur, but the distribution of occurrence 

probabilities can be predicted from knowledge of attribute statis

tics and inter-attribute correlations. Information theory provides 

a handy measure of the variety of possible combinations, the entropy 

function, which happens to measure the minimum number of bits 

required on average to store the directory. 

'lbus for a file directory F, given a knowledge of the expected 

frequency of occurrence of the various configurations of F, the 

entropy H(F) can be calculated. Similarly, H(G) measures the 

configurations which an implementation G can take on, weighted by 

their frequency of occurrence. The exact value of H(F) for a real 

file is difficult to calculate or even guess at. Fortunately, the 

value of H(F) used need not be very precise, and in many cases it 

is not needed at all as long as H(F) is larger than H(G). H(G) 

is more easily measured, being the number of bits used to store the 

catalog (a design parameter). 
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2.2 MATHEMATICAL ANALYSIS 

For a limited number of file and question ensembles, a 

riqorous statement can be made about the average of log Pn· 

- p log p ~ K[H(F)-H(G)) 
n n 

where K depends on file and question statistics; and equality 

occurs under the conditions that: 

a) each item in F has a unique representation in G, 

meaning there is no ambiguity in the indexing process 

which creates the directory. 

b) the members of G can be described without correlations, 

which means that the information in G is not wasted 

describing inter-attribute mutual information. 

Implications. 'rtlis relation says that a given directory size, H(G), 

determines a lower bound on -log p averaged over all questions n 

and item configurations. As the bounding value goes up, the values 

of p (relevance) must get smaller to preserve the inequality. The 
n 

average value of p is thus set by H(G) alone, and file organization 
n 

can only serve to adjust the distribution of p values amongst n 

the items. 

For user questions desiring total-recall, the best distribution 

is to have all non-zero p be equal, which minimizes the number 
n 

of non-zero p 's (items which must be searched to achieve total 
n 

recall). The bound (2.1) can then be solved to show, for simple 

cases: 
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of the conditions causing inequality. None of these results would 

surprise an experienced librarian. 

File Ordering. An interesting result of this model and approach is 

the conclusion that the ordering of items in the file (shelf 

sequence) can be analyzed as part of the directory function. '!he 

information used to determine file ordering is indistinguishable 

from information stored in the directory, so H(G) is actually the 

sum of these two informations. 'thus all the trade-offs in deter-

mining p 's apply to the selection of criteria for file ordering 
n 

as well as to selecting attribute information for the directory. 

Exceptions. The above conclusions are based on a relation derived 

for a limited set of file cases: 

1) '!he derivation assumes that attributes are statistically 

independent in F and Q, and that each attribute is 

described by the same set of usage statistics. If corre-

lations or unequal usage occur, then the bound value is 

calculated with modified entropy functions: H(F')-H(G'). 

In H(G'), information is weighted differently for each 

attribute; information put into heavily weighted attributes 

is more effective than that put into attributes of lesser 

weight. 

2) 'rtle derivation assumes a particular type of implemen

tation strategy to minimize search times. This strategy 

seeks to minimize attribute correlations in the description 
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of G, which has the effect of minimizing the number of 

attribute ambiguities in G (this is better described 

in Chapter Four). I hypothesize that this strategy is 

optimal over all F's and Q's, but this has not been 

proven. No examples have been found which contradict 

this hypothesis, but if they were found, the relation 

2.1 would not apply as an inequality but only as an 

estimate. Any error in such a case would be second 

order for normal file statistics, and the general con

clusions drawn above remain intact (although some of 

the cataloging criteria of Chapter 'l'bree might be 

invalid). 

2.3 IMPLICATIONS FOR LIBRARIANS 

'!be above thinking processes put a somewhat different light 

on many of the problems which occupy researchers in information 

retrieval. '!be problem of how to build the best possible catalog 

actually becomes a problem in trying to figure out what the user 

really wants. 'Ibis is not easy in practice because users have been 

so well trained by inadequate present systems that they simply do 

not think to go to the library with most of their questions, and 

so these questions cannot be counted. 

As a sample of how library problems can now be viewed, consider 

three issues of interest: 
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1. Attribute Selection. Should attributes be broadly defined 

short terms (keywords) or more precise terms of less 

frequent usage (subject phrases)? Given that the same 

amount of catalog information is gathered under each 

system, the difference is only that: 

Short terms give a little information for a lot of 

items, minimizing the length of high-recall searches 

but not giving any preference to low recall searches. 

High precision terms serve a narrower field well, 

giving very good relevance in a few cases (benefiting 

low recall questions) at the expense of little help for 

total-recall questions. 

No particular attribute precision level is the right one 

for all systems, for user recall patterns must decide 

this issue. 

2. Clustering. Clustering usually takes the form of grouping 

ideal attributes into a set which can be represented by a 

single composite attribute (typically the union of the set). 

This is a useful form of information reduction which brings 

the amount of data down to the level that can be stored 

in the catalog. It serves to create lower-precision 

composite attributes so that high-recall searches are aided, 

at the expense of low-recall searches. It serves to com

bine correlated attributes so that directory entropy is 

used most efficiently. 'rtlese virtues, however, occur to a 

limited extent, and existing clusterinq algorithms probably 
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approach the theoretical limit of clustering effective-

ness. 

3. 'Thesaurus. A 'Thesaurus is an additional means of putting 

information into a catalog, and one which is a convenient 

form of coding information from semantically similar attri

butes. It is useful to A) extend the range of attributes 

which were only partially indexed over the document set, 

and B) to give entry to attributes otherwise not appearing 

in the catalog. As an optional tool to use when reaching 

for high recall, it can only improve relevance. When 

building a system, however, the thesaurus must be compared 

against the alternate possibility where the same time 

and money is put into just adding more index information. 

Experimental Procedures. '!he experimental work performed to date 

in information retrieval research has not lived up to expectations, 

partially due to careless experimental technique (detailed in 

Chapter 'lhree). '!he parameters of the experiments have not been 

adequately defined, with the result that too many parameters are 

varied at once, and nothing is learned. '!he principal fault 

observed was where two indexing languages were compared in trials 

where the two directory sizes were unequal, and the language blessed 

with the larger directory is always found to be "the best". A 

second error mode is to compare two languages which give different 

relevance distributions (one favoring high-recall questions and the 
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other favoring low recall), and conclude that one is superior when 

in truth they are equal but adjusted tQ different user question 

ensembles. 

Library Strategy. The obvious conclusion of the bound derived 

here (2.1) is that libraries can be improved only by great additions 

of index information to catalogs. 'Ibis approach, however, has its 

drawbacks. First is the problem of search time through the expanded 

catalog. Second is the cost of indexing, which is probably pro

portional to H (G), and is prohibitively high. 'Ibe possible solution 

to both these problems lies in computers, through fast search of 

machine-language cataloqs, and through automatic indexing. It may 

be a while before this is an economical solution, however. 

'rtle advent of computers in retrieval will shift the emphasis 

in file organization. As interactive computer systems are better 

utilized to overcome the semantic problems of user question inter

pretation, the demands on the file will shift to lower-recall 

question distributions, requiring a different approach to attribute 

selection and utilization in the catalog. 
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CHAPTER THREE 

APPLICATION: LIBRARY ORGANIZATION 

'!be problem of the library is that it is effective for document 

retrieval but not fact retrieval. Most of the subject topics in 

the general literature do not fall into simple subject categories, 

are not confined to well-indexed reference books or collections, 

and are not described by a few source documents. For example, the 

topic 11 theory of file organization" is related not only to libraries, 

computers, and information theory, but also linguistics, matrix 

theory, and chemical abstracts. The user who needs information 

about such dispersed topics faces virtual exhaustive search of the 

library, so he takes his questions elsewhere or leaves them unasked. 

How do we provide users access to all the information in a 

library? How can a user find a fact in a document whose title does 

not describe or even imply the existence of that fact? What form 

of catalog or classification mechanism is necessary to provide 

flexibility in user specification of his information needs? 

Numerous workers in the field have suggested file organization 

or information classification procedures which purport to attack 

this problem. Virtually all these systems are untested, because 

there exists no convenient means to compare them or predict their 

usefulness in a real file. '!be resulting confusion is increased 

by the failure of the researchers to define the exact problem they 

are solving, and indeed no two of them seem to be working on quite 

the same problem. A prerequisite, then, for analysis of these various 
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organization methods is a careful understanding of the problem and 

its parameters. 

To this end, this chapter builds a model of a file and its 

access procedures, with emphasis on providing the user extensive 

flexibility in specifying questions. The subsequent mathematical 

analysis describes the trade-offs available in file organization. 

The results are used not only to compare the theoretical value of 

the various information organization schemes but also to criticize 

experimental work in the field. 

3.1 A DIRECTORY MODEL 

'Ihe following pages describe a model, which hopefully is more 

than a mere exercise in formalism. I claim that the following 

model is not only an adequate one, but that it precisely identifies 

the critical parameters of the file system. While some of the 

simplifications may seem arbitrary, they were necessarily chosen 

to achieve the best problem understanding with the least analytic 

complexity. 

The detailed discussions which justify specific decisions made 

in the model have been segregated to the end of the chapter, in 

Section 3.9. The reader is encouraged to refer to this material 

if some aspect of the model is unsatisfactory to him. If the 

decisions made do not seem unusual, then the page references given 

can be ignored. 

We view the library system as being a set of documents serviced 

by a catalog (called a directory). Each item has an identification 
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number (generally describing its physical location in the file), 

and the directory serves to suggest those items (identification 

numbers) which may satisfy a user question. Figure 3-1 illustrates 

this model. The user specifies a request, receives a list of 

suggested item numbers from the directory, and searches through 

the suggested items until his desired facts are found. The size 

and composition of the directory are the parameters of interest in 

the following discussion. 

User Questions (Input to the Directory). To calculate search times 

in the file, we must specify exactly what range of questions users 

will ask a particular library. Failure to make this specification 

is a common weakness in file organization research. 

A. Intersection Form - This model will be limited to questions 

formed by the loqical intersection of attribute values. 

That is, a file item is relevant to a question only if 

it matches all attribute values specified. This form of 

question seems to be representative of most question types, 

and it is more easily analyzed than the rest (see page 87 

for further discussion). 

B. Number of Attributes - The user will select from a range 

of r available attributes which describe the document set. 

This set of r attributes is assumed to be large enough to 

allow any user to accurately specify his question. The size 

of r determines the user flexibility in accessing the file, 

for as r increases so does the number of different questions 



31 

FIG.3-1 FILE MODEL 
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specifies attributes independently, where for each attri-

bute a. there are values P(a.•l) and P(a.=O), such that 
1 1 1 

P(a.=l)+P(a.•O)+P(a.=~)•l. '.l'he interesting point about 
1 1 1 

such assumptions of user statistics is that they suppose 

that all arbitrary combinations of attributes are used. 

'.l'his conflicts with the tendency in most library systems 

to view attributes in a hierarchical structure. 

F. Recall Level - Not all users wish to see all documents 

which relate to their questions. Indeed a large class of 

inquiries seeks only one document out of many acceptable 

possibilities. Each question, then, is assumed to specify 

a recall level, indicating how many or what percentage of 

the relevant items are desired. Some distribution of recall 

levels will be ass\Dlled, for example saying that each recall 

level is equally likely, or that low recall questions occur 

more frequently than high recall questions. This parameter 

is important because a low average recall makes file 

organization much easier. 

Search List (Directory Output). The response to a user question 

is a list of all items which are possibly relevant to the request. 

The user searches through these items in the file until his recall 

level is reached. Several parameters can be quantified in this 

process: 

A. Relevance Probability (Efficiency) - Each item, b , in the 
n 

list has a probability p , O~ <l, of actually being relevant n n-
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to the question. For example, a poor directory will pro-

duce a long list of items with low p 's, while a good 
n 

directory will produce a short list with higher p 's. 
n 

Most present catalogs do not supply this probability ex-

plicitly for the user, but he is often able to make rough 

calculations based on the attribute fit. The value p is 
n 

a direct measure of the efficiency of retrieving an item 

from the file. 

B. Item Sequence - Items in the search list are ordered by 

decreasing p , so that the most likely items are examined 
n 

first. 

C. Relevance Curve - If the various p 's are plotted for the 
n 

items in the search list, the resulting curve has two 

properties: 

a: It is monotone decreasing, by definition of the sequence 

ordering, 

b: The area under the curve equals the expected number of 

file items relevant to the question asked. For a given 

question and a given file (document collection) the 

area of the curve will be constant regardless of the 

directory used. 

This relevance curve is a principal analytic tool in the 

following discussion. It is not quite the same as, but 

very similar to, Salton's recall-precision graph. 
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D. Search Length - '!he nwnber of items in the search list 

with non-zero p is the full-recall search length, namely 
n 

the nwnber of items which must be searched by the user. 

This is the measure of the cost of accessing the main 

file. Average search lengths can also be calculated for 

partial recall question sets. 

Directory Contents. The directory is modelled at two levels: the 

ideal directory, and the actual implementation. 

A. Ideal Directory - If we had a perfect directory, it would 

contain the precise relationship between each of the s 

items in the file and the r attributes of the user questions. 

The search list produced 'W'OUld always have p 's equal to n 

exactly 1 or O, with no uncertainty about relevance. 

It is necessary to presume such a perfect directory as 

an analytic tool to differentiate filing errors from the 

semantic errors of attribute interpretation. These two 

sources of errors occur, and can be corrected, independently; 

.but they produce the same system performance degradations, 

so st>me artificial separation is necessary to reduce the 

complexity of the analysis (see page 89). 

B. Implementation - In a real library, the catalog used is a 

subset of the perfect directory, containing less infor-

mation. Consequently it gives uncertain answers where 

asked to relate some items to some questions. Typically 

the real catalog has less information than the perfect 

directory because: 
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1. Some attributes have been omitted, 

2. Some attributes have been substituted for others not 

exactly their equal, 

3. Relationship between certain attributes and items have 

been added or dropped to make the attributes easier to 

store, 

4. Some attributes have been clustered together and replaced 

by a composite attribute. 

Further illustrations of real catalogs occur in Section 3.3. 

c. Item Independence - In the perfect directory, it is assumed 

that the r attribute values of a given item are not correlated 

with the values of other items in the file, given that the 

statistical properties of the attributes are already known. 

'!'hat is, the existence of one item description in the file 

does not raise or lower the probability of any other item 

description being in the file. Equivalently, any new item 

added to the file cannot be better predicted by knowing 

the specific existing membership of the file than by knowing 

the statistics of the attribute occurrences of the file in 

general. 

This is not completely true in real situations, for it 

can sometimes be said that a library having item X will 

almost always have item Y as well as, for example, when 

X and Y are two volumes in a set. However, the extent 

of inter-item correlation is believed to be quite small, 

so the time required to perform a more exact analysis 
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would not be warranted. Further, it seems likely that the 

existence of inter-item correlation would not alter the 

general results derived herein (see page 87). 

D. Information in the Ideal Directory - We assume that the 

person using a file knows the statistics of attribute 

occurrence in the subject area, but does not know which 

particular items appear in the file. Then the ideal 

directory contains the information saying which items 

actually do appear, and this can be calculated as the sum 

of the informations needed to specify each item (since 

the items are assumed to appear independently). '!hat is: 

and 

s 
H(F) • l: 

n•l 
H(C ) 

n 

2r 
-H (C ) • 

n l: p(cm)log p(cm) 
m=l 

where H (F) • entropy in the file F 

H(C ) = entropy of the configurations of item b • n n 

p(cm) = probability of an item taking an attribute 

configuration c , where c m m 
r is one of the 2 

possible confiqurations in c. 

This entropy can be calculated on an attribute basis as well: 

H(F) < H (a.) 
l. 
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where -H(a.) = p(a.=l)log p(a.•l) + p(a
1
.=0)log p(a

1
.=0). 

l. l. l. 

The equality holds for H(F) if the attributes happen to be 

statistically independent in the file. 

'rtlis entropy, H (F), is the minimum number of bits needed, 

on average, to store the ideal directory. It gives an 

accurate measure of the difficulty of accessing the file, 

as will be demonstrated below. 

E. Information in the Implementation - The actual catalog used 

will, in general, be much smaller than the ideal directory. 

This implementation is called G, and has entropy: 

H(G) ~number of bits in catalog, 

with equality when the catalog bits are 

efficiently used, namely equally likely 

one or zero, and independently chosen. 

It is the measure of cost of building the catalog (see page 

90 ). 

In general, H(G) will be broken down on a per-item basis, 

similar to that of H (F): 

and 

s 
H (G) • 1: 

n•l 
H(E ) 

n 
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where H(G) .. entropy in implementation G. 

H(E ) .. entropy in the confiqurations representing b • 
n n 

p(ek) • probability that an item is represented by 

implementation confiquration ek. 

In summary, the most important aspect of this model is the 

definition of an ideal directory. 'Ibis serves to bypass semantic 

interpretation problems which also contribute to retrieval errors. 

However, no ideal directory of a real file is available for experi-

mentation. Therefore, we experiment with a range of hypothesized 

ideal directories, to study the effects of different implementations. 

3.2 A BOUND ON DIREC'IURY EFFICIENCY 

For the above model, the following result has been proven true 

for all questions and all files (see Chapter 4). For any item: 

-p log p = I(Q#;CjE) 
n n 

averaged over all questions q in Q and item 

configurations c in C, 

where # is the event that, for each q, the item 

b fits the question. 
n 

This relation takes a great deal of explanation. '!he left-hand 

side gives a restriction on relevance curves which affects the shape 

of these curves, and it is a measure of the retrieval error in the 

system. '!he right-hand side says this: If an item b is known to 
n 

fit a question q, how much more does this tell me about b than I 
n 

already knew from the directory? 
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While this relation is precise and general, it is not directly 

meaningful and must be further interpreted for special cases. For 

the case where: 

1) All attributes are described by the same statistics, both 

in the file and in user questions (i.e. pQ(ai=~) is constant 

over i, etc.), 

2) Each item configuration has a unique representation in E, 

H(Elc> = 0 (no ambiguity in the indexing process), and 

3a) No correlations exist in E (a desirable system design goal, 

described later), or 

3b) Questions are specified with attributes taking on values 1 

or 0 equally likely, and independently, 

the relation can be rewritten (details of derivation omitted here): 

-p log p • K(Q,F)[H(C)-H(E)] n n 

where K(Q,F) is a constant determined by question sta-

tistics and file statistics, but not implementation 

statistics; 

K(Q,F) is determined by: 

-p(#)log p(#) • K(Q,F)•H(C). 

File cases which do not fit the above restrictions can be viewed 

as variations on this basic case: 

1) If some attributes are accessed more frequently than 

others, or have different probabilities of taking 1 or O 
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values in Q or c, then the various attributes will be 

weighted differently in the computation of H(E). '!hat is, 

information put into the directory should be put in the 

most-used attributes first, etc. The H(C)-H(E) term is 

still valid in form, but information for some attributes 

is weighted more heavily than others. 

2) If items are not uniquely represented, then H(E) is in-

efficiently used, and the relation becomes an inequality 

giving a lower bound on -p log p • 
n n 

3) If E can have correlations, and Q is not synmetrical in 1 

and o, then a more complicated situation exists. Generally, 

both of the previous conditions occur, namely attributes 

become unevenly weighted and the relation becomes an in-

equality, lower bounding -pn log Pn· '!he inequality has 

not been proven rigorously, but appears true for all useful 

file situations (Chapter Four discusses this). Whether or 

not precisely true for all file situations, the inequality 

makes an excellent working tool, to be used throughout 

this chapter: 

-p log p > K(Q,F)[H(C) - H(E)] 
n n 

From this bound, several observations can be drawn. 'rt1e H(C) 

term is given by the user demands on the system, being defined by the 

set of attributes which the user would like to use. The H(E) 

term measures the effectiveness of the catalog in meeting the user 

needs, and should be made as large as possible as an objective in 

designing the catalog. TWo lines of analysis are provided by the bound: 
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1. The first-order measure of catalog effectiveness is purely 

in the relative size of H(C)-H(E), namely in the adequacy 

of the catalog in terms of its absolute size. All catalogs 

of the same size, and of reasonable construction, will 

produce about the same effectiveness in file access efficiency. 

2. '!he details of creating a catalog are concerned with 

approaching the lower limit of the bound as closely as 

possible, consistent with fitting the needs of the user. 

This is discussed at length below. 

To give more concrete details of what the bound demonstrates, a 

specific example will be examined at length. 

3.3 EXAMPLE OF A LIBRARY 

Presume a file system having: 

Documents: one thousand s -

Attributes: one thousand r"" 

Attributes per document: 250 
1 p=-
4 

Questions: All attribute combinations such that p(#lq> • .016. 

'rhat is, all questions used have an expected value of 16 items 

which will be retrieved. Each question will have 3 attributes 

specified to have value 1, with each of the r attributes appearing 

equally often: 

p(a.=l) • 3 x 10-3 
1 

p(a.•O) • 0 
1 

p(a.=~) = 1 - 3 x 10-3 
1 
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Explanation. This example was selected to approximate a real library 

situation, but with numbers chosen so that the resulting output 

curves are clear and meaningful. A real library would probably have 

more items, more attributes, and a smaller p. 

Assume that this is just a set of books, with a very extensive 

subject classification system. The attributes might also be author's 

names, journal names, etc. The books are assumed to have attribute 

r 
configurations chosen randomly and independently from the 2 con-

figurations permitted. 

'!he attributes of this example will be assumed to be uncorre-

lated. That is, all item configurations having exactly X l's will 

have the same probability of occurrence, regardless of which X 

attributes are involved. I apologize for this unrealistic assump-

tion, but the example can be made more illuminating under these con-

ditions. Variations on this example, showing more realistic con-

ditions, are discussed in section 3.4. 

The number of questions allowed is quite large, saying that 

each book can, on average, be distinguished from all others by 

250 . 6 al>Out ( 
3 

) different questions, or about 10 ways. This is necessary 

for successful access for the user. 

The specification that every qu~stion should have the same 

p(#lq> is a convenierit trick to provide clear results. If a ranqe 

of question precisions were permitted, the questions with larger 

p(#lq> would have a disproportionate influence on the search length 

averaqes, thus obscuring the results of the example. '!he results 

obtained for constant p(#lq> questions give useful insiqht for other 

question types as well. 
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Entropy of the Ideal Directory. If the r attributes are mutually 

independent as assumed, H(F) can be calculated as the sum of the 

entropies of every bit relating an attribute to an item. If 

correlations existed, H(F) would be smaller. 

H (F ) ~ r • s • H ( P ) 

where H(p) = -plogp - (1-p)log(l-p). 

H(F) < 1030 1030 .Bll = 8•105 bits 

The exact value of H(F) is not critical, as will be observed 

later, unless it is close to H(G) (rarely the case). 

Implementation Entro&· The entropy of the catalog is simply the 

number of bits we are willing to prepare and store in constructing 

the file system. In library catalogs this information may be stored 

in English, not binary, so a little interpretation will be required. 

It is a reasonable working approximation to say that a book 

can be identified uniquely within a library through about four fields 

of identifiers: title, publisher/date, shelf classification/author, 

and subject terms. If anything, this is being a little generous 

to present catalogs. using the numbers of the example, the 10
3 

books in the file require that 10 bits = log2103 of information be 

supplied to uniquely distinguish one book. Each book that can be 

distinguished on four fields thus has 40 bits of descriptive 

information in the catalog. That number does not make an interesting 

example, so I increase it by x5 to give: 

----------
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H(G) = s•200 = 2 x 105 bits. 

H (F) .., 4 • H (G) • 

This is the capacity of the catalog, not necessarily the useful 

information content. Poor use of the catalog information can always 

decrease retrieval efficiency. 

Error Bound. Having determined a file size and a catalog size, 

we can compute a retrieval error bound: 

for 

and 

then 

-p loq p > K(Q,F)[H(C)-H(E)] 
n n -

p(#) = .016 

H (C) = 811 bits 

H(E) • 200 bits 

-5 K(Q,F) =- 12 x 10 

-5 -p log p > 12 x 10 (811-200] = .072 
n n -

There are a large number of solutions which achieve equality 

in this bound. Sane of the extreme cases are shown here. The 

solutions are shown as. relevance curves, which qive the distribution 

of p 's over a full file. 
n 

Total-Recall Bound. Figure 3-2 shows a relevance curve which satis-

fies the p log p bound, and which gives the shortest possible 
n n 

average search length for 100\ recall questions. It says that 355 

items must be searched for each question, and there is no possible 
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catalog of the size specified which can give shorter average total-

recall searches. 

The logic behind that statement is this: 

355 items at p - .045 gives: 
n 

a) - p log p -n n .201, and .201 x .355 - .071 

b) expected nwaber of relevant items: 355 x .045 - 16 

Nop > .045 can fit these two conditions. If, for example, someone 
n 

proposed a catalog giving pn= .1 for 160 items, -pn log pn • .033 

being smaller than the -p log p bound guarantees that no such n n 

catalog could be built. 

'!be curve of Figure 3-2 cannot actually be achieved by any 

real implementation for this example, although a reasonable approxi-

mation is shown later. 

Limited Attributes. One sample implementation consists of a catalog 

consisting of 25\ of the attributes of the ideal catalog. When 

considering all questions asked of the file, this gives a family 

of relevance curves, shown in Figure 3-3. '!bat is, if all three 

attributes o.f the question fall within the 25\ of the attributes 

retained, then perfect access to the main file is possible. At the 

other extreme, if all requested attributes fall into the ignored 

75\ exhaustive search of the file is necessary. 

'!his form of implementation is used to do a good job of access 

for a few users at the cost of ignoring the majority. Those users 

who can formulate their questions in terms of the 25\ catalog attri-

butes will do so, and other users will qo elsewhere. 
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Checking the -p log p numbers: 
n n 

Pn - p log Pn ' number - pn log Pn n of items 
1 0 .016 16 0 

.25 .5 .142 64 .0045 

.064 • 254 .421 250 .027 

.016 .095 .421 1000 .040 

.0715 

-p log p • .0715 n n 

Randomly Selected Attributes. Another catalog approach is to list 

32 attributes for each book, randomly selected from the 250 attri-

butes in each case. Thus all attributes would appear in the catalog 

but would be related to only 12\ of their possible documents. '!his 

produces the relevance curve of Figure 3-4. This density p • 032 

requires 25\ of the bit storage that p "" .250 attributes require. 

This curve is well suited for questioners who seek only par-

tial recall on their questions, but seldom seek full recall 

(because that involves exhaustive search) • Randaa attribute 

selecting is quite easy in practice, for that is what happens 

when authors classify their own docwnents using a free vocabulary. 

Note, however, that random selection of attributes violates 

one of the conditions for approaching the bound in the p log p 

inequality, namely HCElc> = O. With random selection, there are 

many configurations (e's) which legally represent any one item, 

with a resulting loss of information. Indeed, for this example 
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-p log p • .085, indicating that about half of the directory n n 

information was inefficiently used. 

To achieve a smooth distribution of relevance curves without 

such loss of information requires a pseudo-random attribute selection 

system, where catalog information is taken from all attributes but 

in a predictable pattern. 'rtlere is little chance of this happening 

in a real library. 

Consolidated Attributes. Figure 3-5 shows the results of combining 

attributes into representative groups. '!hat is, each attribute in 

a group is represented in the catalog by the union (logical "or") 

of all attributes in that qroup. '!'his effect is similar to classi-

fication methods such as "clustering" and "stemming", which are just 

different methods for grouping attributes. For this example, 

attributes were qrouped randomly, since the discuasion of selective 

grouping is delayed until later in the chapter. 

In this example each composite attribute represents 4 attributes 

in union. 'l'he composite attribute has value zero the 32\ of the 

time that all 4 attributes it represents are zero, and it is one 

otherwise. 'rtlere are 250 such composite attributes, each with 

entropy .90 • H(.32), the total entropy of the system is 225 bits 

per item, 10\ more than specified. Each attribute specified by the 

user thus eliminates 32\ of the file items, and only the rest need 

be searched. 99\ of the time the user's three specified attri

butes fall into separate composites, so that only (.68) 3 • 33\ of 

the file is searched. l\ of the time, two of his attributes fall 
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2 
into the same composite group, narrowing his search to C .68) • 47\ 

of the file. With probability 10-5, he will have to search 68\ 

of the file when his three attributes fall into one group. 

Checking these results against the p loq p restriction, we 
n n 

calculate: 

-p log p • 70.0. n n 

This is about as predicted by the bound, adjusting for the 10\ 

larger directory. 

Small Library. Another approach is to ignore 75\ of the library 

items when constructing the directory. This gives perfect relevance 

for 25\ of the books, and exhaustive search on the other 75\. 

This is possibly a reasonable approach for partial-recall questions, 

but is poor for total recall questions. It is what happens when a 

small library is formed in a specific subject area, with a know-

ledgeable librarian Cthe ideal catalog) guiding all inquiries. 

Classification. Another approach to cataloging is to use attributes 

which are disjoint. That is, within a group of attributes each 

item belongs to one attribute or another but never two at a time. 

Such disjoint sets are created by overlooking overlaps in documents 

and picking one attribute only from each set. (The Dewey Decimal 

System is an example of one disjoint set of attributes.) 
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To achieve this format with the numbers of this example, the 

attributes have to be grouped in sets of 22: 

45 sets, 22 attributes per set, each attribute is related 

to 45 items (18\ of its true values). Retrieval for 

virtually all questions yields: 

For -p log p -pn log Pn n n 

6 items .215 .477 2.9 

129 items .046 .204 26.3 

5 items 0 0 0 

all other items .010 .066 56.8 

86 

This relevance curve is shown in Fig. 3~6. 

This p log p value comes out larger than the bound value because 

the approach violates the H(Ejc) • O condition of the bound. When 

an item could fit under several attributes of a single classification 

but may be listed under only one, there is ambiguity as to which 

one is to be selected. As a result, the directory information is 

only about half utilized, giving the resulting poor retrieval. 

Example Summary. The clear .implications of this example are: 

1) With only 25\ of the possible information in the catalog, 

typical search lengths involve one-third of the file. 

2) As a second-order effect, catalog information coding can 

be chosen to adapt the file to user recall needs, reducing 

search lengths for partial recall at the expense of lenqth-

ening searches for total recall. 
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An important observation to make is that the actual entropy 

figures are important for their order of magnitude, not their 

precision. Variations of up to a factor of two in calculation of 

H(E) or H(C) do not substantially decrease search lengths. It 

would only be if H(E) were very close in value to H(C) that search 

lengths would be short and precise calculations necessary. 

Equivalently, variations in directory organization do not 

give significant improvement in search length. The file improve-

ment techniques we must look for are those giving large increases 

in catalog information content, and this is not a problem of just 

information organization. 

3.4 VARIATIONS ON THE EXAMPLE 

Catalog Size. The best way to observe the influence of catal09 

size on search length is to calculate the total-recall search 

length lower bound. 

Minimum total-recall search• s·p(#lq>a 

where a 
H(E) 

=-H(C) 

For the numbers of the above example: 

a 

0 

.OS 

.1 

.25 

.s 

.8 

search length 

1000 items 

813 items 

661 items 

356 items 

126 items 

37 items 
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Real Library Statistics. Estimating the size of the ideal directory 

for a real library is risky, of course, because it depends on the 

level of user interests. Care must be taken not to be biased by 

the statistics of existing libraries, because users always adapt 

their needs to the resources available. No survey of library 

users will turn up statistics of the questions from people who did 

not bother going to the library because the response would be 

predictably poor. Any survey of present library users will always 

demonstrate the need for a cataloq just slightly larger than the 

present one, no matter how limited it is. 

Therefore, the imagination must be used. Presume that the 

library is indexed about as thoroughly as a book is by its index. 

'rtlat is, the typical index is taken to be the level of classifi-

cation which would approach an ideal directory. (It is not 

proposed that the book index be used directly, but only that the 

number of concepts in a book which should be identified is the 

same.) 

Presume then a library of 106 items, with 100 attributes 

related to each item. With full indexing each attribute might be 

related to l' of the items. 'rtlen: 

6 4 
s • 10 r • 10 p • .01 

H(F) • r·s·H(p) • 8 x 108 bits, or 800 bits per item. 

Calculating cataloq implementation entropy requires some 

imagination as well, because it is stored in English, not binary. 

It is reasonable to say that a book can be accessed through four 

independent fields of identifiers, as was discussed in the example 
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necessary to substantially improve file access (SO\ or greater 

reduction). 

More complicated correlations make a smaller contribution to 

entropy.reduction. For example suppose one attribute is correlated 

with four others by that fact that it may appear only when one of 

the other four appears. For example, some subject attributes 

appear only in four journals, and nowhere else. The entropy of 

such a restricted attribute in the library example is reduced from 

.oa bits to .04 bits. 

Correlations do appear in real libraries, but the information 

measure of their magnitude is perhaps smaller than one might think. 

An attribute must be restricted to a very narrow ran9e to reduce 

its entropy noticeable: an attribute of density p loses half its 

entropy only when it has been confined to JP of its ori9inal area. 

For example, for p•.01, if an attribute is known to appear in only 

.1 of the library, then it loses rou9hly half its entropy. Further, 

two attributes must be strongly correlated to achieve the same 

level of reduction. Based on these observations, I project that 

file entropy is seldom reduced more than SO\ by correlations, and 

that SO\ makes a CJOod working value. Even if this SO\ reduction 

in H(F) could be fully exploited by clever catalOCJ construction, 

general search len9ths would be lon9. 

Question Correlations. A weakness in present theory of files is 

the lack of a means for predictinCJ what questions a user will ask 

of a file. Users know about correlations between terms of their 
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subject field, and this clearly alters the kinds of questions asked. 

For example, if two attributes are disjoint (do not intersect, as 

for example two different dates of publication), the user will 

certainly not ask that both attributes be satisfied. 

If notable correlations exist in Q, then the values of p(#jc) 

will vary widely over the various configurations. This alters the 

strategy in implementation of the catalog. configurations with 

low p(#jc) are seldom accessed, and should have less catalog infor-

mation wasted on them. Likewise if Q is biased so that some attri-

butes are used more frequently than others, then catalog information 

is best spent on the most popular attributes. 

The previous bound 

-p log p > K(Q,F)[H(C)-H(E)] n n-

is applicable only to unbiased Q's. With uneven use of attributes, 

it is not a linear relation, but one where the first few bits in 

H(E) are more valuable than later bits. It is difficult to generalize 

further, for the correlations must be treated as special cases. 

Frequently library policy prevents concentration of all catalog 

information on the most frequently used attributes and documents. 

In such a case, it would be a reasonable approximation to model 

the file with no correlations in Q for calculation of search lengths. 

3.5 ORDERING BOOKS ON THE SHELF 

The discussion to this point has ignored the possibility that 

item identification numbers may be related to item content, as when 

the items have been ordered by content. The previous calculations 
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assumed randomly selected identifiers, such as when a librarian 

sorts books by acquisition numbers or some such thing. In fact, 

the ordering of books on the shelves of a library is an alternate 

form of storing directory information. 

For s items in a file, there are s! different shelf orderings. 

The entropy of these orderings is about s log s. The number of 

different implementations of a file is the product of the number 

of states of the catalog and the number of states of shelf ordering, 

so that the entropy of implementation is the sum of catalog entropy 

and ordering entropy. 'Ihe two sources of entropy are indistinguish

able except that the ordering entropy is limited to s log s bits. 

The previous calculations considered total implementation 

entropy for H(G), so the introduction of ordering serves simply 

to reduce the number of bits in the catalog by s log s. In par

ticular, search lengths based on ordering information alone may be 

obtained by setting the catalog to zero and calculating relevance 

curves for H(E) • log s. 

Techniques. Procedures for ordering items in the file are exactly 

the same as those for selecting information to construct a catalog. 

Sample possibilities are: 

1) Order items by a particular subset of attributes, as when 

ordering by author name, journal name, etc. This gives a 

family of relevance curves such that some questions are 

answered very well, and most questions not at all. 
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2) Cluster similar items into adjacent areas, such as the 

Dewey Decimal System does. This is equivalent to creating 

a set of composite attributes which are mutually disjoint 

(since a book can appear in only one place). '!his pro

duces a two-step average relevance curve: each question 

has relevant items in one or two clusters with some 

reasonable probability, and the other relevant items 

are spread throughout the rest of the file. This approach 

gives reasonable results for partial-recall questions, 

with no help for total-recall questions. 

3) Subdivision.into smaller libraries is nothing more than 

creating macro attributes corresponding to the various 

library names, and is just a coarser version of 2) above. 

It also benefits partial-recall questions at the expense 

of total recall. 

Ordering Strategy. In short, when we know how to select information 

for creating a catalog, we also know how to select information for 

ordering the file. The possible deviations to this rule are: 

1) Not all information coding techniques which work in a 

catalog are equally useful for ordering. For the conven

ience of the user's remembering the code scheme, a system 

of disjoint attributes is best for ordering. 

2) There is a different economic saving for having similar 

items adjacent on the shelves as opposed to having them 

adjacent in the card catalog. In general the time cost of 
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looking several places in the file is greater than the 

cost of looking several places in the card catalog, so 

shelf ordering should take place on the most frequently 

specified attributes, with the remainder put in the 

catalog. If all attributes are equally likely, there is 

nothing that can be done to take advantage of the cost 

difference. 

Another observation of interest is that since shelf ordering 

is just an extension of the catalog, it should not use the same 

information. If both systems use the same information, it is just 

wasted in one place. A good example of violation of this rule is 

the procedure used on library shelves or ordering books within 

subjects by author's name. 'l!lis duplicates card catalog infor

mation which is also by author's name, so if a user desires a 

particular author he can go through the catalog. It has in fact 

been my experience that the author-ordering of the shelves is 

uaeless for fact retrieval for this reason. A better alternative 

would be to order books within subject by date of publication, 

for this often is an important attribute not readily searched for 

elsewhere. 

A second comment of the same nature is that card catalog 

subject terms too often are quite similar to ordering classifi

cation categories, so the subject information of the card catalog 

is partially wasted. Card subject terms can probably be chosen to 

be independent of ordering subject terms without loss of meaning, 

and with an increase of scope. 
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The objectives in building a catalog are three: 

1) Coding efficiency - The information which appears in the 

catalog should be efficiently used. An objective in 

catalog construction is to maximize H(E) given the number 

of bits available for storage. '!1lis involves a) avoiding 

correlations between bits, b) using each bit equally 

likely l or O, and c) have the bits represent useful 

information (H(Ejc)30). Of course, these objectives must 

be tempered by constraints of practical usage, such as 

putting information into English so it can be read. 

2) Recall matching - '!1le principal criterion in selecting 

cataloging mechanisms is to fit the anticipated range of 

user recall requirements. For the discussion here, that 

consists of observing whether a particular coding method 

favors high-recall or low-recall questions. Unlike the 

efficiency question of 1), there is no right or wrong here, 

just a range of trade-offs. 

3) Indexing cost - A big cost factor in building a catalog 

is the human cost of extracting attribute relations from 

the books. I conjecture that this cost is directly 

proportional to the amount of information in the index 

data, H(E). '!1lis of course ignores practical considerations 

such as whose budget the indexing cost comes out of. Since 

indexing cost mirrors storage cost of the catalog, only the 

latter will be explicitly discussed, but this coding effi

ciency criterion should be understood to carry the weight 

of both costs. 
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In evaluating a range of cataloging methods using these cri-

teria, we will find conflicts, for the criteria are not always 

independent. For example, the achievement of a shortest search-

length for total recall often involves less than full utilization 

of catalog storage bits. 

There has long been disagreement over what forms of attributes 

are best used for cataloging books. Generally the argument has been 

over which forms carried the most information or moat closely 

approximated "natural" classifications of information. From the 

analysis above, it is clear that all attribute systems, implemented 

with equal care, contain about the same density of information. 

Differences between systems lies in second order considerations of 

relevance-curve shaping and coding efficiency. 

Precision. Should attributes be short "keywords" appearing in 

many items (say a density of p<l0-2) or long phrases of more limited 

appearance (say a density of P•l0-3 or 10-4)? This subject has 

been mentioned in passing by most authors, and studied deeply by 

a few (5, 8). The answer, of course, is that it does not make 

much difference so long as the same amount of information is used 

in each system. Some differences are: 

1) Precise terms are more conveniently coded in English, though 

there is less difference in a machine-language catalog. 

In pure information-theory coding terms, sparse terms are 

best coded by simply identifying them when they occur. 

Frequently-occurring terms (P- .!.) are best coded as a 
2 
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binary yes or no for each item, but this is more difficult 

for the user to interpret and remember. 

2) Greater precision terms come in greater quantity for a 

given total information, so that the system has more names 

to keep track of and recognize. This is an unknown cost 

factor. 

3) Precise terms require a more complicated format of user 

questions. I.ow-precision terms can usually be just inter

sected to form user questions, but with hiqh precision 

terms this yields too few combinations with which to specify 

a qiven document. With high-precision terms the user 

requires questions which are more powerful Boolean con

ditions of attributes, such as unions of intersections, 

or best m out of n match, etc. Only with this added 

flexibility does he get as much access flexibility as 

with simple intersections of low-precision terms. 

4) Lower precision terms carry a higher portion of their 

information in the zero condition. Thus if users ask 

questions with negative attributes (ask for books which 

do not contain a specified attribute), low precision 

terms are better. However, semantic aspects seem to cause 

users to specify only positive associations, so hiqh

precision terms have a slight advantage. 

5) Lower precision terms tend to produce flatter relevance 

curves, which favor hiqh-recall questions. Conversely, 

hiqh precision terms are specified less often but with 
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orderinq is considered to be a separate attribute. This 

just affects the complexity of the searchinq procedure. 

3) Ordered attributes are achieved by iqnorinq certain docu

ment relationships which conflict with the partitioninq. 

'l'bus they do not improve search lenqth for total recall, 

as do most systems which spread a given information over a 

larqer number of attributes. Rather, they qive a relevance 

curve with less variance. That is, unordered attributes, 

fewer in number, answer some questions well and others 

poorly, qivinq a family of relevance curves of widely 

varyinq shapes. Orderinq the attributes maintains the 

same shape relevance curve, but reduces the variation, 

so that all questions tend to be answered equally poorly. 

4) Ordered attributes make a qood system for arranqinq items 

on a shelf, which is an advantaqe in some cues, but also 

is a source of bias because some librarians feel this 

makes them inherently better for all applications. 

Correlations. Should attributes be selected which are statistically 

and semantically independent, or should correlations between attributes 

be tolerated? In theory correlated attributes are as useful as 

uncorrelated ones, but in practice there are some difficulties in 

efficiently codinq the information, especially if it is for human 

consumption. For example, at SO\ correlation between two attributes, 

the way to store them is to represent one attribute conventionally 

by listinq its occurrences, and addinq one bit which says whether 
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or not the second attribute occurs also; when the second attribute 

occurs alone, it is listed directly. '!his system is efficient, 

but would take some explanation for users of a card catalog. In 

general, a catalog is more easily implemented if the attributes 

selected for it are mutually independent. 

Relevance Threshold. Should attributes be considered as related 

to A) those items which are clearly strongly related to the concept 

of the attribute, or B) all those items which even hint they are 

related to the concept? Where is the threshold of attribute rele

vance? 'lbere is no absolute answer, of course, for this is a 

design parameter of the system. 

For a given size catalog there will be room for fewer low

threshold attributes (those which count weak relevance) than hiqh

threshold attributes (those which count only strong relevance). 

Low-threshold attributes produce a flatter relevance curve, which 

benefits high-recall questions. '!hey also give greater variance 

among questions, because fewer attributes can be handled, although 

it is possible that this latter effect will be small (due to corre

lations which generally occur). Conversely, high-threshold attri

butes obviously give better relevance for low-recall questions. 

3.7 TECHNIQUES OF DIRECTORY CONSTRUCTION 

Many researchers have proposed various schemes of creating 

library access tools, and it is difficult to compare them. '!be 

general conclusions of the analysis here are that all such schemes 
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will be roughly equivalent, under equal conditions of information 

storage, etc. Second-order variations occur, however, and are 

discussed here. An important parameter in these systems is their 

effectiveness in coding correlated information. 

Automatic Indexing. Computer extracted attribute relationships 

seem to give potential help in breaking the high costs of indexing. 

However, computer programs are unable to comprehend the full context 

of a word's usage as well as a human does, so automatic indexing 

is less accurate. 'Ibis can be interpreted to mean that a computer

generated catalog must contain more raw information to contain as 

much useful information as a human-generated catalog, but that is 

reasonable on a cost basis. '!bus the machine-generated catalog 

will contain more attributes with less information about each one. 

This has the previously described effect of smoothing out the 

variance in the relevance curve, answering all questions equally 

poorly rather than a few questions well and many questions badly. 

As to how much extra attribute information is needed in an 

automatic system, that is the interesting question. This is beyond 

the scope of this research, but the informational terms given earlier 

seem to give a theoretical basis from which to pursue an answer. 

It is clear, however, that it may be difficult to come up with a 

fair comparison experiment, since the relevance curves resulting from 

machine generated attributes will be of different shape than those 

from manual indexed systems. 



72 

Fixed Vocabulary. Should indexers work within a fixed vocabulary 

of acceptable attributes, or should they be free to construct terms 

that best describe an item? This is virtually the same question 

as the high-threshold versus low-threshold one discussed above. 

Free indexing produces more attributes with stronger relevance 

(higher threshold), and thus gives less variable relevance curves 

which favor low recall questions. 

Stemming. Stemming is one of a number of ways of forming a union 

composite attribute from several less frequent attributes (14). 

(It consists of reducing English words to the root stems, thus 

equating, say, computer, computation, and computable.) It serves 

to increase attribute coverage with consequent reduction in the 

variance of relevance curves and improvement of high-recall per

formance at the expense of low-recall performance. It is an inter

esting way, further, to handle correlations between attributes which 

appear as linguistic similarities, and thus it gives a partial 

solution to coding of correlations. 

'.ttlesaurus. A thesaurus is a set of equivalencies between attributes, 

so that near synonyms can be used to augment a user request (3). 

The thesaurus can be used in two ways: Selectively on high-recall 

questions only, or Non-selectively on all requests. 

The Non-selectively approach is just an information reduction 

process whereby several attributes are unioned into a single com

posite attribute. It may not be stored quite that way, but that is 
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the effect. If the number of attributes per equivalence class is 

not large, then little information is saved this way, assuming 

that 1) the composite attribute appears in less than 10\ of all 

items, and 2) the original attributes were uncorrelated. If the 

original attributes were statistically correlated in the data 

gathered (regardless of meaning), then the storage cost savings 

may be significant. If the original attributes were semantically 

correlated (regardless of statistics), information is actually 

added to the system in that the bits stored will be better 

interpreted, giving a better approximation to the real system. 

This latter effect is most likely when the thesaurus is generated 

from outside information, such as by an expert in the field, in 

which case it represents a true addition of knowledge to the file. 

Using the theory developed here, it is possible to calculate 

what level of semantic correlation is necessary to justify includ-

ing an attribute pairing in a thesaurus. For a pair of attributes 

-3 of p • 10 , they need be only about 30\ correlated semantically, 

assuming no statistical correlation, to justify combining them for 

a net gain in information. As the size of the equivalence class 

increases, each new attribute must maintain about the same corre-

lation level to the entire previous class. For attributes with 

larger p's, greater correlation is required. Since 30\ to 40\ 

correlations are probably frequently encountered in subject attri-

butes in technical fields, this implies that a thesaurus is worth-

while. 
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The effect of a thesaurus on a relevance curve is a flattening, 

with greater help given to high-recall questions at the expense of 

low-recall questions. Salton has compared systems with and without 

thesaurus, and shows relative precision-recall curves on page 130 

of his book (3) demonstrating exactly this effect. (His curves 

are sufficiently similar to my relevance curves that the general 

patterns appear the same for both.) Calculating p log p from n n 

his numbers, his thesaurus was not able to capture a high enough 

correlation level to achieve an effective increase in useful infor-

mation, for the two results were effectively equal. Thus his 

thesaurus approach 'hows how to reshape a relevance curve without 

change of system performance level. 

If the thesaurus is generated statistically from the attribute 

data gathered for the catalog, it represents no new outside data. 

It still can have a net positive effect on the useful information 

of the catalog, but only if 1) attributes which are semantically 

independent also appear as statistically independent in the data, 

and 2) attributes which are semantically correlated also appear 

statistically correlated in the data. This is a very difficult 

set of conditions to identify quantitatively, but it looks like a 

tenuous justification for a non-selective thesaurus. 

A selective thesaurus is another matter. In this system, 

equivalent attributes are employed only when the user-specified 

attributes fail to achieve the desired recall. This system is an 

addition to the information already in the catalog and cannot fail 

to improve retrieval. Even a statistically generated "thesa.urus" 
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derived from statistically independent data will only serve to 

cause an eXhaustive search over a different ordering of the items 

(exhaustive search being what has to be done to achieve high recall 

in the first place). '!he extent of information improvement with a 

thesaurus depends on semantic correlation levels (see example 

of correlation savings in Section 3.4). For example a 50\ semantic 

correlation correction by a thesaurus augments the useful catalog 

information by about JO\, less any statistical correlation already 

found. 

In general, it becomes clear that the thesaurus is a useful 

tool, and that with the correlation levels cOlllllOn in subject attri

butes, I would guess it offers savings/gain of perhaps 20-40\ over 

the simple catalog. 

Clustering. A number of researchers (10-18) have outlined proposals 

for statistical "clustering" methods which serve to determine 

correlations between attributes (or between items). Mathematically 

this is just an implementation method for creating the thesaurus 

described above. Such methods are used 1) Non-selectively to 

reduce data by creating classification categories having fewer 

attributes than the original data, or 2) Selectively upon retrieval 

to expand a user question to achieve fuller recall. 'lhus the value 

of clustering is covered above. 

But there are many algorithms for clustering because the full 

problem is too big and must be solved by an approximate iterative 

procedure. Unfortunately, no one has found a method to evaluate 
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2) If raw data can be expanded, then clusters should be 

increased and new attributes added so long as the new data 

is no more unreliable than the original. 

3) If no exact sizes are set (the most likely case), then 

clusters on n attributes are best when 

1 "" c, where p • density of attribute relations n log np 

to documents, 

and C = percentage correlation of 

new attributes to previous 

members of a cluster. 

At this value of n, new attributes added to a cluster cause 

more error in interpreting the previous attributes than they add 

new information. In most practical cases (correlations of around 

30\, say), this occurs when the union of documents related to the 

attributes in a cluster (i.e. the number of items related to any 

attribute in the cluster) reaches between .1 and .s of the total 

document set (when the composite union attribute reaches a p of 

.1 to .5). 

What density weighting factor should be used to measure cluster 

optimality? I have not yet found a student of clustering who recog-

nizes this weighting factor, but it is one of the few interesting 

parameters in clustering. For example, consider attribute cluster-

ing: it is desirable to have each document appear (be relevant to an 

attribute) in as few clusters as possible. Consider an example: 
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Bibliographic Attributes. The source of attribute information is 

not a subject which can be analyzed statistically. It appears that 

information from any one source is as good as from any other source 

provided it is consistant, reliable, and understood by the user. 

A number of researchers have suggested bibliographic citations as 

an attribute set to aid in identifying subject matter (7,16,17). 

This seems certainly to be a useful data source to supplement subject 

terms, but not to replace them. 

In considering various sources of attribute data, the following 

statistical properties might be observed: 

1) Does the data source provide a capability to vary attribute 

density (p) in order to shift the level of recall emphasis? 

Citations, for example, have some difficulties here because 

book biblioqraphies have fixed lengths, with few inherent 

means to expand or abridge them. If citations are used, 

certainly clustering methods, such as Ivie's (17), must 

be avaliable to adjust p. 

2) Does the data source contain correlations which make it 

inefficient to store? Before adopting a data source, 

some idea of the extent of correlations must be gained to 

indicate whether the data is worthwhile storing directly, 

or if it needs compaction to reduce correlation and make 

it economical. For citations, it is difficult to say 

intuitively whether or· not biblioqraphic lists will tend 

to duplicate one another or have other correlations. 
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mechanical in nature, requiring no judgment on the part of the 

indexer. '!'his is more easily said than done, but it is an 

interesting way to restate the goals of catalog construction. 

Correlations in the Description of an Implementation. When com

posite attributes are used in an implementation, the zero condition 

of such an attribute says not only that the original attributes 

were all zero, but that they were zero together. '!'his fine point 

turns out to cost upward to 30\ in efficiency of utilization of 

the catalog bits. '!'he problem is that catalog information about 

combinations of information is not useful because user questions 

tend to ask single attributes alone. '!'his effect seems to appear 

to some degree whenever relevance curves are shaped for total 

recall, and is just an inefficiency which must be accepted whenever 

flat relevance curves are desired. 

'!he principal affect on the librarian from this obscure effect 

is the perhaps obvious advice that when two attributes are corre

lated in the file, the implementation often should be chosen to 

break up the correlation. This is done by putting one attribute 

in the catalog but not the other. '!hen the one which is cataloged 

can serve to aid in accessing the other, due to the correlation 

between them. 

Coding Efficiency. Librarians and programmers are probably all 

aware of the basic methods for efficient coding of directories. 

Little can be added except to note that, given the present system 
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of listing attribute names directly under each item, maximum coding 

efficiency is reached for attributes with lowest p (fewest items 

per attribute). 'Ibis is because no efficient coding method has 

been found for moderate density <t > p > 10-3) attributes which also 

permits easy access to the attribute values. Communication 'Iheory's 

answer to this problem, difference coding ( run-length coding ) 

does not appear applicable. 

Likewise, the coding techniques for reducing correlated infor

mation (various clustering schemes) seem adequate, given the tools 

available. 

A disappointment, however, is the seeming failure of librarians 

to recognize shelf ordering of books as an extension of the catalog. 

'Ibis ordering is the lowest cost source of access information for 

the user, and should be exploited fully. Suggestions of possible 

change to better fit this philosophy are: 

1. As mentioned above, books within decimal classification• 

should be ordered on something besides author name, ••Y 

date of publication. 

2. The decimal classification needs better explanation to the 

user, such as better advertising of the category definitions, 

or such as an in-stack thesaurus which tells the user to 

"see-also" other semantically adjacent categories. 

3. The filing of periodicals alphabetically is a waste of 

ordering information, being ambiquous as well as generally 

useless. (Does the Journal of the Association for Computin9 

Machinery come under: "Computing", "Association of", 
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"Association for", "Journal of", or "Journal for"? It 

takes me five minutes to find it in any good-sized 

library.) Grouping periodicals by subject matter would 

extend their usefulness. In fact, inteqration of period

icals into the book shelf ordering would seldom slow down 

the specific access of either, and would certainly help 

the browser. 

Frequency of Utilization. some books are accessed more often than 

others, and some attributes more often than others. Clearly age is 

the biggest factor in decreased usage, with quality of material 

being a smaller effect only because it is more difficult to measure. 

In the bound derived above, frequency of use shows up primarily in 

terms of the weighting on different attributes in H (E) • Unfor

tunately the theory of what to do here is weak. 

Mathematically, H(E) is best utilized when all available infor

mation is put entirely into those attributes and documents which 

are most heavily used, with all others being iqnored. 'Ibis would 

produce characteristics of high relevance for some low-recall ques

tions, but low relevance for other low-recall questions and all 

high-recall questions. It minimizes average search length for 

low-recall questions, even though doing some poorly. An extreme 

application of this policy contradicts library policy of some access 

to all documents. Further, since age is a principal factor in 

usage, and because indexing labor is the main cost item in cataloging, 

the poliey of concentration on most-used books implies throwing out 

old index cards, which actually saves nothing. In short, theory cannot 

add much to present practice in this area. 
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Non-Interactive Questions. '!he model assumes the user asks a ques

tion and gets an answer to that question. '!he results are measured 

relative to the question asked, and not to what the user really had 

in mind. The user does not interact with the catalog during its 

operation. 

'!his is a two level assumption, related to both statistics and 

semantics. '!be user cannot improve the catalog performance without 

supplying extra information augmenting his original question. '!bat 

is, a user cannot improve access for a given question through inter

action. Simply put, the file search length is determined by the 

state of the catalog, compared to the number of states available 

in the catalog, and the user cannot affect this relationship. 

Semantically, interaction can be quite valuable, in that the 

response to his original question allows the user to add more infor

mation and narrow the search. Holltever, this semantic improvement 

is exactly the effect we wish to avoid in this file-organization 

analysis, for we must separate the statistical and semantic effects 

to understand each. 'Ibis model studies the case of file perfor

mance within each step of an iterative session, where the user input 

is constant for the duration of the step. 

Fixed Attribute Set. '!be model assumes that items are described by 

their relation to a set of attributes. This bothers two types of 

people: 

1) Some people think that items should be described by their 

relation to each other. But observe that relationship to 
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another item could be considered an attribute for describing 

items, so this is not a different system. 

2) Some people feel that fixed vocabularies cannot describe a 

library, because each new item will require new attributes 

to describe it. Again this is no contradiction, for the 

set of attributes is described only for items in the system, 

and indeed as items are added so also new attributes would 

be expected. The ideal catalog would simply have to include 

every attribute related to all its items. 

In short, this aspect of the model does not cost generality. 

Binary Attributes. The model assumed binary attributes for the 

ideal directory, with each attribute either relevant or not relevant 

to an item. The true case in real implementations is that two 

states exist but they are: 1) relevant, and 2) probably not 

relevant. Observe that real systems are just approximations of 

the ideal, and the 1,0 restriction on the ideal case causes no 

restriction on implementations. 

A more serious problem is that multi-valued attributes must be 

considered. These might be quantitative attributes such as dates 

or book size, or attributes listed in various degrees of related

ness. The binary assumption was made for simplicity, both of 

derivations and examples. 

The multi-valued attributed can always be recoded in binary, 

however, by simply representing each state of the original attribute 

by one binary attribute: if the original attribute had Y states it 

----------------------------------------------------------
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would be replaced by Y binary attributes, somewhat intercorrelated. 

Further, I have seen no indication that any statistical argument 

used here could not be applied equally well to multi-valued attri

butes (with perhaps a little more complexity involved). While 

the assumption of binary attributes looks quite unrealistic, yet 

it seems to cause no loss of generality. 

Intersection Question 'l'ypes. The assumption that questions may 

consist of only attribute intersections is a necessary one, but 

does cause loss of generality. Better question types will have 

unions of intersections of attributes, or possibly best m out of 

n matchings. 

The intersection case was studied only as a typical case, 

not an all-inclusive one. There is reasonable basis for hope that 

the results of the intersection-type analysis will apply equally 

well, with scale factors, for more complicated questions. The 

findings of Chapter Five give support for the indication that the 

intersection questions and best m of n type questions have very 

similar search problems. 

Item Independence. The assumption that items occur independently 

in a file is not true in real cases, but probably is only slightly 

off. The analysis performed here could be extended to handle 

inter-item correlations, I think, with no change in results. The 

resulting arguments would be complicated to the point that they do 

not warrant the effort to correct a small approximation error. 
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'!his is somewhat similar to the question of coding subject terms 

on catalog cards. There is a fixed small set of possible subject 

terms used, so the terms applicable to each document could be 

identified by only a few characters of information. '!he user, · 

however, must interpret these terms relative to all attributes 

which miqht reasonably appear on a card. 'lherefore, the catalog 

card lists the terms in English, using much more information than 

the few characters "minimum". '!'he difference is just that the 

user is coming from a more general framework without previous 

knowledge of specific configurations in the file. 

Ideal Directory. '!'he concept of an ideal directory is a figment of 

our imagination which can never be constructed and perhaps cannot 

even be described with real numbers. It is used here only as as 

analysis tool, to permit conceptualization of otherwise difficult 

ideas. It is similar to a reference point used in surveying. 

'!'he exact location of the reference point is not very interesting, 

but it acts as a tool to show the relative locations of all other 

points one to another. It would be nice to produce absolute sta

tistics describing the ideal directory, but not necessary. 

Breadth of Questions. '!'he major variation in this model from some 

used previously is the flexibility of questions allowed the user, 

namely arbitrary combinations from a large number of attributes. 

This is based on the consideration that an ideal directory can allow 

nothing less. More limited sets of allowable questions are the result 
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Likewise, disjoint attribute sets (classifications) are easier 

to index than a similar number of overlapping attributes, just as 

the information content is lower. Further, it seems reasonable to 

say that the difficulty of assigning an item a spot in a classification 

grows as the log of the number of classes to be ch9sen from. 

Of course these are guesses, and it would be interesting to 

see experiments which measure the cost of indexing documents into 

various attribute sets of the same information content. It would 

also be interesting to see how machine indexing costs canpare with 

·the reliability of the results they produce. 

Performance Parameter - Search Length. The claim here is that 

search length, for various recall levels, is an effective single 

parameter measuring performance. Other parameters can be derived 

from this one, and will reflect conditions local to a particular 

implementation. 

Search time, for example, is always proportional to search 

length, but has scale factors depending on the storage mechanism 

holding the file. Search time would have to include factors 

relating to data transfer rates, file bucket sizes, extent of 

parallel access, etc. 

Response time, the time it takes to find an an•wer for a user, 

must reflect search time as well as the relationship between system 

demand and capacity. Queueing for resources is a principal component 

of response time, which is determined by availability of unused system 
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capacity, but reflects very little on directory construction except 

through search length. 

Computation cost as a performance parameter has been ignored 

here, for two reasons: First, it is difficult to measure meaningfully. 

Second, it is not important in most retrieval systems. The latter 

condition arises because very little computation is performed in 

retrieval systems relative to the amount of storage machinery and 

relative to the economics of computers. The big cost item is the 

access mechanism in the storage device and the data channel connected 

to it. 

3.10 CONCLUSIONS 

We have performed a set of experiments with hypothetical data 

bases and exhaustive question sets. This form of experimentation 

permits a variation and isolation of file parameters not possible 

in mechanized experiments. '!11.e experiments have served to show the 

relatively small importance of some parameters, such as style of 

indexing, and the greater importance of such ignored parameters 

as catalog size and question set statistics. 

The results of this work are typical of information theoretic 

work, being negative conclusions. We can say that certain bounds 

can never be exceeded, and can usually point out methods which will 

not approach the bounds, but cannot prove that some one technique 

is better than all else. 

These results take the form of saying how not to carry out 

retrieval experiments, and that the retrieval problem will not be 
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solved by some simple answer. Sometimes this type of information 

is the most valuable. 

Experimental Procedures 

Much of the experimental work performed in the past has been of 

little value because the experiments have failed to hold enough 

variables fixed to learn anything. A good experiment must vary 

only a single parameter and observe the effects quantitatively. 

'Ibis has proved hard to do in retrieval experiments because many 

parameters were apparently unrecognized. 

Catalog Size. Comparison of two different catalog philosophies 

is ineffective if the information in the catalog is allowed to 

vary as well. '!he worst example of this is the researcher who 

adds new data to the catalog (e.g. a thesaurus) and then finds 

that retrieval results are improved. '!he question of interest is 

not whether retrieval is improved or not, for it certainly will be, 

but whether such improvement is greater than if the same added 

information were used other ways, (e.g. more through indexing 

on the existing attribute set). To be effective, an experiment 

must show: 

a) improved retrieval for a fixed size catalog, or 

b) constant retrieval efficiency for a decreased catalog. 
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Question Set Size. Probably an even less noticed experimental 

parameter is the nature of the question set available to the user. 

If the catalog is augmented by additional attributes, the user 

question set is potentially enlarged, introducing some difficult 

experimental decisions. 

1) If the user includes more information (additional attribute 

specifications) in his questions, this makes retrieval 

easier, regardless of whether the new attributes are better 

or worse than the old (as occurs in (16) ) • 

2) If the user specifies the same number of attributes as 

before, bu~ taken from a larger selection, retrieval will 

be more difficult despite the addition of directory infor-

mation; but user flexibility is increased as well. 

3) If the user specifies fewer attributes from a larger 

selection, his flexibility can be kept constant but the 

questions are easier for him to ask (less information 

required) and the answers will include more items (pre-

sumably at a loss of semantic relevance). 

No one cont>ination is best for all experiments. 'me important point 

is that the experimenter must know what parameters are varying, and 

must hold as many constant as possible. 

Relevance Variations. Most experiments in directory construction 

will consist of comparing two systems having different relevance 

curve shapes. Comparing the results of the two approaches is incon-

elusive unless one system is clearly superior. The p log p measure 
n n 
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provides a means of comparison since it will show which system is 

making most efficient use of its information, measured on a common 

basis. 

A second problem with relevance variations occurs in variation 

between questions within a given system. It is possible to build a 

low-information catalog which gives good results for a small set 

of questions, and this system will look like a winner in limited 

testing (a consideration in evaluating the Cranfield results (5) ). 

An important experimental rule is to find out how many questions 

receive high-relevance responses, and use the p log p measure to n n 

compare such a system against one which yields lower relevance for 

a much broader range of questions. Experimentally that may be 

difficult, so the best useful alternative is to chose a question 

set which represents a true cross section of the capabilities of 

both systems. It is difficult to prescribe a good general approach 

to circumvent this form of relevance variance, but certainly it 

should not be ignored as has been the custom to date. 

Scaling. A most important aspect of retrieval experiments is the 

possibility of performing small experiments to gain information 

about big systems. What is the reliability of data gained from a 

small data base as extended to a large data base? 

1) Statistical Variance - Of course the small data set is more 

likely to have extreme combinations of data which give 

unreliable results. Any experimenter working with limited 
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data must make careful statistical checks of his reliability, 

or must edit his data to exclude extreme conditions. 

2) Attribute Set - As a set of documents grows, its decribing 

attribute set will grow as well, but probably not linearly. 

Catalog methods which are sensitive to the size of the 

attribute set must be viewed with suspicion unless well 

analyzed. For example, attribute clustering algorithms 

may be presumed to require computation time growing with 

the square of number of attributes. Other systems which 

store combinations of attributes will find square-law 

growth of storage requirements (i.e. combinatorial schemes 

(9) ) • It is probably true that a thesaurus or other 

inter-attribute linkage system would have to grow at least 

linearly and sometimes as the square of attribute numbers. 

3) Questioner Needs - The questioner will need to supply more 

information if he is to keep his search length constant 

as document set grows. Thus question sets will change, 

altering the statistics of retrieval. Any system which is 

geared to a given question precision will have difficulties 

being scaled, (again a problem in (9) ). The amount of 

information needed to form a question grows as log2s, so 

perhaps the full attribute set will grow at this same rate. 

If user questions are constrained to stay constant as 

the library grows, then user recall levels must drop or 

larger searches encountered (which the user presumably pays 
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for in some way). 'Ibis factor is often overlooked by measure-

ment techniques which give relevance and recall only (3), 

while hiding the physically important parameter of search 

length. 

Cranfield Project Results 

The Cranfield Research Project (5) is worth criticizing specifically 

because, in general, it was a well thought-out and executed set of 

experiments. However, when the criteria of this paper are considered, 

the Cranfield work is seen to have still a few weaknesses which cast 

doubt on the results. 

'!be principal problem is that catalog size was not held con-

stant. Details of catalog sizes are not available in the published 

reports, but estimates can be made in places. A principal conclusion 

of the report is that "simple concept" terms (language II) are 

consistently inferior to "single word" terms (language I). 'rtle 

former are multi-word terms having greater precision (lower p). 

It seems, however, that fewer "simple concept" terms were used than 

"single word" terms, whereas the reverse would be necessary to main-

tain constant catalog size. I estimate that language I had 50% 

more information in its directory, so of course it did better. Other 

similar comparisons between languages having differing catalog 

sizes always showed the results we would expect. 

Other criticisms are of style rather than technique. '!be 

final language rating system used, "normalised recall", is seen to 

be a weighted average p with higher weights for low recall levels. 
n 
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This rather arbitrary measure seems to assume a linear distribution 

of user recall levels. No notice is taken of the fact that other 

recall distributions might be JllOre likely in real situations. It is 

not that I do not like the measure used; it is that I object to it 

being considered superior to all other schemes of arbitrarily 

weighting recall levels. 

Likewise, the recall-precision curves used here (and by Salton) 

are sometimes misleading in their presentation of data because they 

smooth out important fluctuations. If these curves were differen-

tiated with respect to recall, they would show "precision" (p ) for 
n 

the added items needed to achieve the next level of recall. For 

example, in many of the curves shown, the increment from 80\ to 

90\ recall was done at essentially exhaustive search (i.e. picking 

items at random would do as well), but this is not easily seen as 

presented. They also give undue visual weight to the relevance 

of the first few documents retrieved; if the first document retrieved 

is irrelevant, it affects the whole slope of the curve. 

On another point, it was observed that the Cranfield invest! .. 

gators thought it interesting that relevance ("precision") decreased 

with increasing recall, on average. It should be obvious that there 

is no other possibility. If the search system has some information 

about the relative p 's of the documents it must search, the most 
n 

probable will be accessed first. If no p information is available, 
n 

documents will be accessed randomly, giving a flat precision-recall 

curve. Nothing can possibly give a precision-recall curve with 

positive slope. 
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'!hese factors, plus the fact that many of the interestinq 

experiments were run on a small data base, lead me to distrust the 

Cranfield results. Their approach and execution were good quality, 

but the problem is a difficult one. 

In general, the important aspect of experimental work is in 

defining the parameters of the system and their relative importance. 

'Ihe theoretical work done here provides a tool for analysis of the 

experiments, but more important it shows exactly which parameters 

affect search length. 'Ibis identification seems overdue in the 

retrieval field. 

Strategy for Library Construction 

'Ihe basic result of this work is that library effectiveness 

is related to the amount of information in the cataloq first, and 

all other aspects a distant second. If the library is to bec:a11e 

an effective source of information, then, all that is needed is 

to have huge catalogs. 'Ihere are perhaps a few objections to this 

approach, however: 

1) Catalog Search Time - A8 the catalog approaches having 

as much information as the main file, the problem of 

accessing the cataloq will become as qreat as accessing 

the file originally. 'lb overcome this, deliberate re

dundancy must be introduced into the catalog so that all 

varieties of questions can be responded to with low search 

times. However, this implies a cataloq whose size far 
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Catering to low-recall questions is the only way a library can use 

limited catalog resources to satisfy a wide range of questions. 

Indeed, in an interactive library, response to low-recall 

questions must be emphasized because interaction will encourage 

users to explore system semantics through numerous investigative 

questions. Perhaps 95\ of all questions will be low-recall in 

such systems. '!his implies the need for a very large number of 

low-density attributes, probably generated by authors. 
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CHAPTER 4 

MATHEMATICAL ANALYSIS OF FILE DIRECTORIES 

'!his mathematical analysis of directories employs two con

ceptual tools of some interest. First, it defines an ideal 

directory against which all real implementations can be compared. 

Second, it defines an ensemble of directories, reflecting the various 

configurations of file data which a file user might expect to 

encounter. '!'hen various directory construction schemes can be 

compared as they perform on a given ensemble. 

A general lower bound on search lengths is constructed, based 

on the difference between the information in the ideal directory 

and the information in a real implementation. 'ftle interpretation 

of this bound serves as a guide in constructing directories and 

in measuring their performance. 

4.1 DIRECTORY SYSTEM MODEL 

An ideal directory f is defined as a binary matrix having: 

r attributes (columns) 

s items (rows) 

a binary relationship 

a 
r 

bl ••• bn bs 

f(ai bn) • 1 or O • 

A question ensemble Q is a set of 3r questions q, each composed of: 

an r-bit vector of attribute values, each specified to 

be 1, O, or~ (don't care). 

a probability of occurrence pQ(q). 
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Together, Q and f define a file, where an item b is said to n 

be relevant to a question q iff for every ai: 

f (a. b ) 
1 n - 1 

& q(ai) - 1 or ~ 

or f(a. b ) - 0 & q(ai) - 0 or ~ . 
1 n 

Notes. This is the intersection form of question, where an item 

must fit all specified attribute values of q to be considered 

relevant, and where both 1 and 0 in f fit a ~ in q. 

'1'1e directory is ideal in the sense that the user agrees with 

the evaluations of relevance so defined (which assumes that all 

semantic problems have been overcome). 

'1'1e use of f is that whenever an item b is found relevant 
n 

to a user question q, the item identifier n is returned to the 

user to identify the relevant item in the main file. 

'1'1e ordering of rows of f is determined by the main file, 

and this is assumed to be not correlated with the attribute 

information. 

One restrictive assumption is made here, namely that the items 

of a file are statistically independent of each other. '1'1is permits 

an item by item analysis, which reduces the notational complexity 

in the followinq analysis. '1'1is assumption does not affect 

generality of the results, for the derivations could have been 

carried out without it, with a loss of clarity. 

Item Configurations. An item can take on a binary configuration c 

with probability pc(c). 'rhis defines the ensemble of configurations 
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C, which has 2r members. These probabilities are defined by the 

user's knowledge of possible file contents, not by a particular 

file. The user's uncertainty about an item's configuration is 

measured by: 

* H(C) = - E p (c) log pc(c) 
c c 

(4 .1) 

The maximum value of H(C) is r, which occurs when attributes take 

on values 1 and 0 equally probably and independently within c. 

When the attributes have known correlations or unequal 1, 0 

probabilities, H(C) < r results. 

The ideal directory is justs samples from H(C), so this 

defines an ensemble F of directories (files), and an entropy: 

H(F) - s•H(C) < r•s (4. 2) 

Implementation. An ideal item configuration c is represented in 

the real world by a representation e. There exists an ensemble 

E of these e's with each member having a probability of occurrence 

pE(e). Thus an entropy H(E) is defined (as in 4.1), which in 

general will be smaller than H (C). The probability of occurrence 

pE(e) is based on the probabilities of occurrence of the e's it 

represents. In some cases, several e's may be alternate repre-

sentations for one c, so exact statements about H(E) must await 

the study of special cases. 

* Throughout this paper, except where noted, log x means log2x. 
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'rtle representation of an f is defined to be a g, which with its 

probability pG(g) is a member of the ensemble G; H(G) • s•H(E). 

'rtle physical meaning of H(G) is straightforward, beinq the number 

of bits of information used to construct the file directory. If 

the directory is a table of values, this bit count is obvious. 

If it is a hash-code algorithm, the number of bits in the stored 

program (which determines how many different algorithms could be 

used) is H (G). 

Whenever a particular representation e occurs, this means 

that one of the e's it represents would have occurred had the 

implementation been an ideal directory. For each such e, a con-

ditional probability p(cle> is therefore meaningful. Then H(cle> 

is the entropy of these e's, and: 

H(C,E) • H{E) + r p{e) H(cle> • H(E) + H(CIE) 
E 

4.2 TOTAL-RECALL EXAMPLE 

(4 .3) 

To illustrate the nature and meaning of the derivations con-

structed in this chapter, a simple example is examined first. It 

has restrictions on the question set and on implementation tech-

niques allowed, to simplify the mathematics. While the restrictions 

may seem harsh, the model does actually fit a number of interesting 

situations. 

1. Questions: 

a) Total Recall - every user question is assumed to require 

total recall, so every item which might possibly fit 

the question is retrieved. 
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b) Attribute Values - every attribute has the same fixed 

probability of being specified 1 or O, and all attri-

bute values are specified independently, so: 

1 
p Ca •l) • p Ca •O) • - p 

Q i Q i 2 a 

(4.4) 

2 • Implementations 

a) Partition - Only implementations are considered which 

partition the set F, so that any one c is always 

represented by the same e, and 

HCCIE> - o. (4. 5) 

b) Representation - only those implementations are con-

sidered which can be represented by an r by s matrix 

whose elements are l's, O's, and fl's. 

For examples of implementation which fit these restrictions, con-

sider two r-2 ilnplementations: 

A. One attribute can be just iqnored (with an obvious saving 

of storage space), so that, say c 2•10 and c 3•11 are stored 

as lfl-e1, and c0•00 and c1•0l are stored as Ofl-e2• 

B. The two attributes can be combined, such as: 

co -00 is stored as 00 - el 

c -1 01 is stored as 01 - e2 

c -2 
10 and c3 • 11 are stored as lfl • e 3 

(three configurations are cheaper to store than four). 
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Items are retrieved whenever the question fits the representation 

e, with a ~ in e being interpreted to fit both a 1 and O in q. In 

example B immediately above, if q • 11 is asked of a file represented 

by e
3

, the item involved will be retrieved whether its true identify 

is 11 or 10. 

Now we consider the probability of relevance of a particular 

item b when it is retrieved through a particular representation e. 
n 

'!'he probability of relevance, pn' is the probability that the item, 

When retrieved, actually fits the question asked, averaged over 

all questions and all configurations: 

If e contains no ~·s, p • 1 (or else it is not retrieved) 
n 

If e contains one ,a, in attribute ai' 

p • 1 if a. (q) • i n l. 

Pn • Pc(ai•l) if ai(q) • 1 

pn • pc(ai•O) if ai(q) • o 
1 

Avg.(pn) • l·p~ + pa[2pc(ai•l) 
1 + - p (a •O)) 
2 c i 

1 1 •p +-p •1--p 
~ 2 a 2 a 

If e contains x ~·s, 

1 x 
Avg.(pn) • (1 - 2Pa) 

It is more convenient to deal with log pn' so if e has x ~·s: 

log pn(e) • x log (1 - ; pa) (4.6) 

But now observe that x ~ H(cle>, because with x -·sine there are 

x at most 2 e's represented by e1 if these are equally probable, then 

H(cle> • x, but if they are unevenly distributed H(Cje) < x 

(because log z ~log z). '.l'herefore, from 4.6: 
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'Ibis qives a definite upper bound on p • It also helps describe 
n 

the trade-offs available in deciding how to allocate directory 

information among attributes and items. A principal result here is 

that the error level in the directory performance is linear with 

the difference between H (F) and H (G). Further discussion of this 

relation appears later in this chapter and Chapter 'Ibree. 

In summary, the derivation consists of 

1) Observing how many file configurations are represented 

by a single implementation state; 

2) Observing that an item must be considered for 

retrieval if any of these possible configurations 

would fit a given question, 

3) Calculating how often the item is erroneously retrieved 

because the question fit one configuration under the 

specified representation, but another had actually 

occurred. 

'lbe latter calculations are very dependent on the statistics of the 

question ensemble, Q, especially to the extent that Q distinquiahea 

the various configurations (e's) represented by a single implemen-

tation state (e). 'lbe above line of reasoning is developed below 

with greater generality. 

4. 3 GENERAL BOUND DERIVATION 

For the general directory analysis, we are given: 

Q, a question ensemble; q £ Q 

c, an item configuration ensemble; c £ C 

E, an item representation ensemble; e £ E. 
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Definitions: 

# is the symbol for the event that the configuration c fits 

q, the question at hand. (# is pronounced "fit".) 

pn is the probability that item bn is actually relevant to q, 

within a given implementation: 

p = n p(#,q,e) - r p(#jq,c)p(cleJ, 
c 

where p(#lq,c) • 1 or o. 

Measure to be Evaluated: 

'l'he average of log p : 
n 

p log p • r r p(q) pCe> p 109 p 
n n QE n n 

(4.10) 

(4 .11) 

(4.12) 

'Ibis measure is not picked for reasons of any hidden significance 

but rather because 1) it can be evaluated mathematically, and 2) it 

gives interesting results. Other weightings of p might prove more 
n 

interesting, but probably are much harder to evaluate. 

'rtleorem: 

- p log p • I(Q#;CjE) 
n n 

(4 .13) 

('rtle information term is defined by 

I(X;Y) • H(X) - H(X,Y), (4.14) 

and is just a short form for expressing differences in entropies.) 

Proof: The strategy of the proof is straightforward, in just 

expanding p and reducing terms when possible. 'rtle tactics are a 
n 

little trickier. 
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To evaluate p log p , we note that 
n n 

(4.15) 

using the identity p(x,y) • p(x)•p<ylx> (4.16) 

It is an assumption of this model that question statistics are fixed, 

and not adjusted by the user to reflect knowledge of ~he actual 

implementation. By this assumpqion: 

p(qle> • p(q) • (4.17) 

'lben using 4.17 to restate 4.15, and averaging o~er Q and E: 

(4 .18) 

Now this expression is also valid when E • c, because C is one 

possible implementation. 'l'hel'l 4.18 interpreted for C can be sub-

tracted from the original 4.18, and the p(q) terms cancel out: 

p log p - p (c) log p (c) - l: l: r p(qec#)loq ......,,;-....i..-....-
n n n n 

But p (c) • 1 or 0 by 4.11, so 
n 

Q EC 
(4.19) 

(4 .20) 

so this term vanishes from 4.19. By the definition of the entropy 

function, used on both log terms of 4.19: 

- p log p • H(Q#IE> - HCQ#lc> n n 
(4. 21) 

But HCQ#lc> • H(Q#IEC> because the Qt values are dependent on c and 

independent of E. 'lben 4.21 can be reduced by 4.14 to 4.13. 

QED 
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4.4 A WORKIM; APPROXIMATION (RIGHT•HAND SIDE) 

As it stands, the right-hand side of 4.12 is intelligible only 

to information theorists. For many file cases, it is quite diffi-

cult to obtain an exact expression for I(Q#~CjE) because correlations 

between the terms cause severe complications. However, a general 

form can be developed which gives insight into most cases. This 

shows in essence: 

- p log p > K[H (C) - H (E)) , 
n n -

(4.22) 

where K is a constant not dependent on E, and equality occurs when: 

HCE!c> = o , and 

H(CjE) = ~ Hc(ailE> 
l. 

(a restriction on the correlation between attributes in E). 

To show this : 

I(Q#1CIE> - H(C,E) - H(CIEQ#) by 4.13 

(4. 23) 

(4. 24) 

(4. 25) 

(4. 26) 

'!his deco~position is based on simple probability manipulations, 

as in Gallager (19), page 22. We compare the two expressions term 

by term. As an example consider the second term of 4.26, expanded 

on the possible conditions of a 2 in Q: 
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(4. 27) 

where 

(4. 28) 

The first two terms of 4.27 are zero because a
2 

in c must have the 

same value as a
2 

in q if c fits q. 'Ihus, for example, when q is 

known to have a 2 = 1, and c is known to fit q, then a 2 • 1 in c, 

and there is no entropy. 

Th~ third term requires deeper analysis. To this end, a 

notational simplification is introduced: 

(4. 29) 

That is, H describes an entropy within the e's represented by e. 
e 

'!hen 4.27 can be rewritten: 

I -1 I HECa2 #Qa1 ) = ;p(e)[N2 (e)J pQ(a 2·~)He(a2 a1i,Q with a2=~) • 

(4 .30) 

Now this entropy term can be bounded: 

(4 .31) 

('rtlis follows from the inequality HCXIY> < H(X), which is a con-

sequence of log x ~log x.) 



114 

Equality in 4.31 occurs when H(a2 la1#q) is the same for every 

q havinq a2•,,, 'Ihis condition can be reached by making a1a 2 

independent of the remaining attributes. For a demonstration of 

this, consider the relation of a1a 2 to a3: 

(4.32) 

then fot the question q1 having a 1 for a3 and l's elsewhere: 

(4.33) 

Extending this reasoning to other q's shows that independence 

between a1a 2 and the other attributes in e produces for every q 

having a 2•J: 

(4 .34) 

'Ihus, the independence condition is sufficient for equality 

in 4.31. Full independence between the attributes in e i• not 

necessary for equality, however, if Q is so badly correlated as to 

not teat aome attribute combinations, but these degenerate Q's 

are not of interest here. 'Ihe conditions of 4.34 also occur, reqard

lesa of E, when p2 Cai•O) • pQ(ai•l) for all ai. 

It is not correct to substitute 4.34 into 4.31, so a firm 

oound on 4.30 is not directly available this way. However, the 

reasoning involved indicates that attribute independence within e 

is a desirable design goal. 

For all other conditions, 4.30 is difficult to analyze, so that 

the strategy used here is to complete the analysis using attribute 

independence in e, and then discuss possible variations. 
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Under the conditions of 4.34, 4.27 reduces to: 

(4.35) 

Now the N2 (e) terms provide a little trouble because it is 

necessary to averaqe their reciprocals. As seen by their definition, 

4.28, these terms are essentially independent of e under two 

conditions: 

1) if pQ(a•~) is close to 1, it determines N, 

2) if pQ(a•l) • pQ(a•O), then N is fixed. 

In virtually all file conditions of interest, one or both of these 

conditions is true, and the variation in N
2 

(e) from the averaqe N2 

is quite small. In general, variability in N
2

(e) does not inter

fere with the inequality, but the demonstration of this is not 

worth the difficulty. Ignoring the variation in N2, 4.35 reduces 

to (usinq 4. 29) : 

(4.37) 

Returninq to 4.26, and performinq the same process on each term: 

(4 .38) 

If the statistics of pQ are the same for all attributes, then the Ni 

are constant over i, as are the pQ(ai•~). '!hen usinq 4.25: 

I(Q#;CIE> > Ni - pQ(ai•~) H(C,E), from 4.24. 
N. 

1 

(4.39) 

(4.40) 
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are necessary, of the form: 

H (CI) < l:W. H(ai in C) 
• 1 
1 

where the w. are weights for the various attributes. 
1 

(4 .44) 

When H (C') and H (E') are thus defined and substituted into 4 .42, the 

bound holds for the more general case. For discussion purposes, 

the normal H(C) is used below, but H(C') should be substituted 

for cases where it makes a difference. 

Now the theorem 4.13 can be used to arrive at: 

(4.45) - p log p > K•[H(C) - H(E)) 
n n 

The constant K can be easily evaluated by the observation that if 

H(E) • O, pn • p(#jq): 

- t p(#jq) log p(#jq) > K•H(C) 
Q 

(4.46) 

The bound can be restated in alternate form (equally useful) 

by summing over all items: 

s 
- l: p log p > K[H(F) - H(G)), 

n n 
(4 .47) 

n 

This is the working version used for the application discussions. 

Interp;etations. The principal value of this bound is its quanti-

fication of file access efficiency relative to directory size. 

In addition, several second-order effects, due to assumptions and 

inequalities used, indicate methods which should be used to minimize 

the size of the access error. These aspects of selecting E are 

discussed here: 
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3) Unequal Usage of Attributes. The conditions which caused 

introduction of the weighted entropies H(C') and H(E') 

cause some attributes to be more important than others. 

To minimize H(c'IE') for a fixed HCCIE), the information 

in H(E) should be concentrated in the more heavily weighted 

attributes. 

4.5 RETRIEVAL BOUNDS (LEFT HAND SIDE) 

For a given library system, when we have determined an infor-

mation level for the bounding relation, 4.47, retrieval performance 

can be bounded by the p log p term. The bound says that 
n n 

-p log p must be larger than the information level determined 
n n 

by the design parameter of directory size. Large values of 

-p loq p can be achieved only by making individual p 's smaller. n n n 

'l!lus, a smaller directory (smaller H(G)) causes a larger I(Q#1CIE), 

causing smaller p 's, which means that relevance for each file 
n 

access is reduced. However, there is some latitude in the form 

in which this decreased relevance appears. 

'l!le critical parameter is how the relevance error is dis-

tributed amongst the various items, b 's. First observe that: 
n 

t t p(e) p •constant• s•p(#lq> (4.59) 
n E n 

since p • p(#lqe) 
n 

'!'hat is, the number of items in the file which fit q is the 

same regardless of how the file is organized. Due to file organi-

zation, the various p 's may be adjusted, reflecting uncertainty 
n 
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about the exact identity of the relevant items, but the sununed 

p must always give the same expected value. The strategies 
n 

for dividing up p(#lq> are analyzed here according to desired 

retrieval performance characteristics. 

Total Recall. If every question requires total recall, then every 

item with non-zero p must be accessed. To achieve maximum 
n 

-p log p with fewest non-zero p 's, all non-zero p 's should n n n n 

have the same value (equivalent to choosing a message ensemble of 

fewest messages for fixed 

items in the file with p 
n 

entropy). 

- s•p(#lq> 
x 

'!bat is, there would be X 

, and s-X items with p z o. 
n 

While this distribution is difficult to achieve in practice, it 

gives a rigid lower bound on full-recall search length. 

Note that when H(E) = O, K•H(C) = -p(#)log p(#), so 

-pn log pn ~ p(#)log p(#). '!be only solution to this is p • p(#), 
n 

and X • s, indicating exhaustive search of the file is required, 

as we would expect. 

To achieve a flat p distribution, the information in the 
n 

catalog G must be evenly taken from all attributes in F. This 

means that every question asked gets about the same amount of infor-

mation from G. Further, the information must be evenly related to 

all items, so that no items are left to access by chance. All of 

this is achieved if the information reduction by which G is pro-

duced from Fis achieved by unioning F's attributes into new 

composite attributes in G. That is, G will be implemented with many 
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Mixed Recall. For many applications, especially libraries, users 

do not always want all file items related to their question, but 

want "one good book", or a few references, etc. The question 

ensemble must include, then, some description of the recall levels 

prescribed by the users. For example, each level of recall 

might be equally likely, so that a file system must be prepared 

to serve a full range of recalls. 

For mixed recall, the p(#jq) can be redistributed among the p 
n 

such that some p are not too small, while many p are quite small. n n 

The items with large p get accessed for short-recall questions, 
n 

giving very short se,arches in those cases. However, total recall 

searches are extended, sometimes to exhaustive search of the file. 

This form of directory is best accomplished by creating G with a 

random (or pseudo-random) sampling of data from F. Thus, for any 

one question, there will be a few items which are completely described 

(relative to that question), and give very good p 's. Most items 
n 

will have fewer descriptive bits relative to q in the catalog, 

yielding poor p 's. Exact analysis of resulting average search 
n 

lengths has not been attempted, but the results would still not give 

short search lengths. 

Favored Questions. A third approach is to give very accurate 

answers for a few select questions, at the cost of very poor search 

lengths for most questions. In systems of this sort, users who 

wish to ask the questions for which poor response will be obtained 

just take their questions elsewhere, and this greatly reduces average 

search lengths. 
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This selective responsiveness is achieved by having G contain 

just a subset of the attributes of F. Thus, questions which are 

stated in terms of the selected at~ibutes will get very good 

service, and other questions will fare less well. Unfortunately, 

for H(G) less than half H(F), the number of well-served questions 

is quite small, often on the order of a few percent. 

The above three variations on p distributions summarize all 
n 

options available. Indexing and coding schemes used in practice 

yield some combination of these three effects. 

The most important aspect of this discussion of coding tech-

niques is that generally the variations achievable in average 

search length are second order ones. The first order effect in 

reducing search length is the size of H (G) relative to H (F). 

Search lengths can get qui,te small only when G contains nearly 

as much information as F. 

4.6 ORDERING 

All the previous derivations assumed that the main file was 

ordered (had addresses assigned) by some criterion other than 

attribute values. If the file can be arbitrarily reordered, then 

for any single state in the directory, there can be s ! different 

states in the file. Thus for each bit configuration of the directory, 

there are s! g's in G. Then 

H(G) ~ logs!+ H(directory), 

where equality is reached if the information in the directory is 

uncorrelated with the ordering information. 
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Equivalently, it can be observed that in a file ordered on 

attributes, any particular file location b will take on about 
n 

l/s as many item confiqurations as before orderinq, so 

HCCIE> ~ HCCIE unordered) - loq2s. 

'!he conclusion of this is that ordering is part of the imple

mentation, and H(G) includes ordering information. 'lhus the 

criteria for selecting information to be stored in the directory 

apply as well to selecting orderinq algorithms. 
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CHAPTER FIVE 

COMMENTS ON FILES IN GENERAL 

The previous analysis has assumed a directory-type system with 

the main file stored on an item-by-item basis. Are there other 

methods of file storage which give shorter searches for equal 

storage costs? For specific cases yes, but in general no. But 

that remains to be shown. 

5.1 THE GENERAL FILE SEARCH LENGTH PROBLEM 

Given a file F of s items and r attributes, and a question 

ensemble Q, what is the minimum average number of bits which must 

be examined in any implementation to find the items of F which fit 

each question? 

This is an open problem. The best that has been done to date 

is some limited bounds on special cases. The information available 

from special cases strongly supports the conjecture that presently

used simple file organizations give near minimum search lengths. 

I feel that a theory can be developed analyzing the limits 

of usefulness of each bit of an implementation, thereby bounding 

the number of bits necessarily examined for each question. This 

might be done by the observations: 

1) Each bit must be equally likely 1 or O for efficient catalog 

construction; it can be shown that alternatives always give 

longer searches. 
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2) The 1 condition must represent the occurrence of a set of 

x attribute configurations for a set of y documents: if x 

is large, then y is small, and vice versa. 

3) For each 1 occurrence, further information must be examined 

to identify which document within the set of y is being 

described, and which configuration within the set of x has 

occurred. 

4) Due to the logrithmic cost of state storage, it is better 

to work at the extreme values: one configuration over many 

documents or many configurations for one document. 'Itlus, 

most efficient storage occurs for conventional item-by-item 

storage, or inverted files, but not in between. 

A few holes exist in this argument so a proof cannot be claimed, 

but a few clever insights will probably produce a proof of this 

nature someday. 

Presuming the argument is correct in objective, then it suffices 

to study only item-oriented files or inverted files. All present 

evidence indicates that if one example is to be studied, the item

by-item organization is the best such example. 

No-Directory Analysis. '!he Appendix deve~ops a combinatorial analysis 

of directoryless item files. It gives a lower bound on search 

length regardless of the ordering of the items. It gives a means 

of predicting full-recall search lengths as attribute set size (r) 

varies. It also provides a tool for exploring the effects of storage 

redundancy on file access. 
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If this combinatorial analysis is compared with the previous 

entropy analysis, for the case where H(G) • s log s, it is found 

that the entropy analysis gives a much tighter bound on search 

lengths. 'Ibis is because of the very poor approximations made 

for distribution of pair-distances in buckets in the combinatorial 

analysis of search length for arbitrary organization. 

Despite its looseness, the combinatorial bound does show that 

search lengths approach the full file length as r becomes large with 

respect to t (t • number of attributes specified in a typical ques

tion). Both systems thus agree that as the user demands increased 

flexibility in accessinq a file, his average search length must 

increase. 

Redundancy. 'l'he most important use of the combinatorial approach 

in the Appendix is in analysis of file redundancy. 'l'bat is, if 

items are repeated in appearance in the file, how does this improve 

search lengths? 'Ibis question is difficult to investigate by 

any means other than the combinatorial one. 

'!hat analysis says that the lower bound on search length 

decreases linearly with redundancy. '!'bat is, if each book in a 

library appears twice, search length is halved. Further, the error 

in the combinatorial lower bound appears to be roughly constant over 

various levels of redundancy, so that the theoretical linear inverse 

relationship should carry over into practical cases. '!'be simple 

examples which can be calculated tend to confirm this. 
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The combinatorial analysis, however, was performed for a very 

limited set of conditions, namely p = ~ attributes and no correla

tions in either questions or attributes. There is no reason to 

expect the results to differ in general for other systems, but 

the possibility exists. 

'l11e strong implication of the above reasoning is that there 

is no way to store information efficiently in a file to give short 

search lengths for large r. Further, redundant coding in the file 

gives only linear improvement in search lengths, which is little 

help when these lengths were very long initially. The only possi

bility left is that a directory might be of benefit if it is made 

big enough. 

5.2 DIRECTORY FUNCTIONS 

'!he problem with a directory is that it is a file and it too 

must be accessed. If it is as large as the original file, then 

certainly the directory search problem is no smaller than the 

original file search problem. There are two reasons to believe 

that putting information into a directory serves only to shift 

the search problem from the main file to the directory: 

1) The bound derived in Chapter Four shows a linearity in the 

utilization of H(G), provided all the bits of H(F) are used 

equally often. That means that no one bit in H (G) is 

more important than any other bit, so there is no infor

mational advantage for putting the bits in the directory. 
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2) The vaguely defined line of proof in Section 5.1 would be 

applicable to bit patterns no matter how they are organized, 

so information in a directory is seen as just a recoding 

of file data. But such recoding cannot reduce the number 

of bits which must be accessed. 

A confusing aspect of directory analysis is the role of item 

ordering in the main file. If the items are ordered according to 

attribute information, this serves to reduce the demands on the 

directory by log s! bits. That analysis leaves open the question 

of whether or not directories can be cascaded, with each level of 

a directory to a directory gaining log s ! bits. 

No such gain is possible. '!he previous analysis neglected to 

point out that when H(F) was unordered, the catalog was required 

to store file addresses in addition to attribute information. 

'!he ideal directory then theoretically must store H(F) + logs! 

bits, but this was ignored because the directory can itself be 

ordered to reduce the storage requirements by log s ! bi ts • Then 

when the main file is ordered, the gain of log s ! in the directory 

occurs only if the directory remains ordered itself. But this 

means that the directory order is fixed and no flexibility is left 

to effect another log s! savings. 

So the directory does not really play a role in utilizing 

the ordering information, but it has other practical uses. 

----- ---------
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~V~A_g_!..~!- Directories. 

1) Redundancy - Generally, information in a directory augments 

file information rather than replacinq it as it miqht 

theoretically do. 'Ihus a directory is a form of redundancy 

which does indeed reduce search lenqths. But search 

lengths are at best linearly reduced with redundancy, ao 

for a substantial reduction in searches a lot of directories 

are required. 

2) Coding - 'Ihe directory will often contain its information 

coded in a form much more convenient for searchinq than 

the data of the file. '!his is particularly true in a 

library, where the relationship between a book and aa 

attribute may be spread acrosa several chapter• of text, 

but can be defined in a few words on a cataloq card. '!!\is 

effect ia what makes the redundancy of the previo\la point 

effective. Further levels of redundancy would be achieved 

by finding additional codinqa of the same inforaation. 

l) Speed of Acee•• - Since the directory ia amaller, in 

general, it can be stored in a storaqe device which has 

faster acceaa times than that of the main file. For 

example, a card cataloq is more easily aearched than a 

shelf of books, and core memories are much faster than ·th• 

disk files they hold directories tor. This effect ia small, 

averaqed over all questions, since the amount of faat

access information is smal 1 comprtred to the size of the 

file. 'Ihe exception to that i1:1 when file tlccess is effectivt'ly 
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limited only to those questions which can use the directory 

information, in which case the speed difference is of 

course significant. 

4) File Position Pointers - When a file is ordered on usable 

information, a system of pointers is necessary to guide 

access to various entry points in the ordering sequence. 

For example, this function is served by 1) the range 

indicators on the front of each tray of a card catalog, 

2) column headings on a page of a dictionary, or 3) a 

hash code algorithm of a computer file. This pointer 

information is quite small compared to the size of the 

file, but serves a vital role in utilizing the orderinq 

information of the file. This pointer data is distinct 

from the other uses of a directory, and require• a differ-

ent analysis. 

Perhaps a little theory will explain this position information 

* a little better. If s items are put in order, there are a! waya 

of ordering them, so that one ordering represents log2s: bits of 

information. By Stirling& approximation: 

* 

~ s(log s - 1.44). 

'Ibis approach was developed by Prof. P. Elias, who is preparing a 
paper showing further results in this area. 
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'.Ihus a set of r-bit items can be represented, when ordered, by 

about r-log
2
s + 1.44 bits. '.rhis theoretical minimum can actually 

be approached by difference coding, whereby the items are ordered 

by increasing value, and each item is coded as the difference in 

its value over the previous item. While this coding is compact, 

search lengths are quite bad because finding an item in the middle 

of the file requires adding up all the differences from the 

beginning. As slight redundancy is added, search lengths can be 

reduced, as in this scheme: 

1) Order the items by increasing value, and store only the 

r-log2s least significant bits. 

2) Create a directory which gives the value of the high-order 

log
2
s bits for each item by using a unary difference code: 

If the log s bits of item b have value x qreater than that 
n 

of b 1 , this is coded as x l's and a 0; the zero beinq a n-

marker to separate codes. '!'his costs at most 2s bits in 

the directory: s l's ands O's. 

3) Searching requires an exhaustive search of the directory 

(2s bits), and a single access to the main file (occasionally 

more than one) for each configuration present and accessed. 

This scheme requires 2 bits per item above the r-log s bits, rather 

than the 1.44 bit theoretical minimum. However, it gives fairly 

short searches which begin to approach the theoretical minimum. 

Further redundancy yields shorter searches yet, but not by such big 

margins. 

In short, a little position information in a directory is 

necessary to utilize the ordering of the main file, but the amount 
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of directory information is quite small for this function. Beyond 

that, additional information in the directory yields only slight 

help in total search length for general cases. 

5.3 OTHER FILE ORGANIZATION T~HNIQUES 

The preceding discussions failed to mention a number of standard 

filing techniques. 'Ibis is because of the previous assumptions 

that the file is static (or has many more references than updates) 

and that question sets were of the partial match type. Alternatives 

are discussed her~. 

Hash Coding. In some systems, a mathematical algorithm is u•ed to 

calculate a file address from the information supplied by the user. 

This is used when: 

a) '!be user supplies the full key describing the data, rather 

than a partial specification, and 

b) Not all keys are equally likely, but rather there are "hot 

spots" in the key field such that some key areas are 

more densely used (for example, in zipcodes the city areas 

get more mail of some types than country areas); this still 

assumes a large selection of keys for the items used, 

r 2 >>s. 

The normal file method when b) is not a problem (keys are 

equally likely), is to: 

1) Order the file by key values, 

2) When searching, estimate from the specified key where in the 

file it will appear, by its value relative to the largest 

and smallest key, 
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3) After the first access, compare the specified key with 

the retrieved key, create a new estimate of item location 

by interpolation, and repeat this step until the item is 

found. 

When the key values are unevenly used, however, the above procedure 

takes longer than it does on random keys. To offset this, the hash 

code procedure is used to map the original keys into a new set 

which are evenly used (i.e. the hashing algorithm is selected to 

break up the correlations in the key field). 

'!his procedUfe always takes adjacent key values and distributes 

them randomly over the new key field, for that is how correlations 

are broken up. '!his has real troubles with incompletely specified 

questions, however, because searches for such questions depend on 

adjacencies of similar keys to reduce search lengths. 'lhat ia, 

the hash code effect of scattering items with similar keys is 

exactly the wrong thing to do when dealing with partially specified 

keys. Hash codes therefore appear in only a limited range of 

computer file problems, and are not really applicable to large 

files. 

An alternative (and sometimes augmentation) to hash coding 

is the use of redundancy in memory. If memory has more slots 

than items, the items can be distributed according to a linear 

distribution of keys rather than the uneven real distribution. 'rtle 

more redundancy available, the more even the distribution will be, 

and the faster the searches. 'lhis problem has not been fully 

analyzed to date. 
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List Structures. One system which is frequently considered for 

files having several access paths to each item is list structuring. 

Here each item having a particular attribute also contains a pointer 

to another item containing that attribute. Access to the attribute 

then consists of following a chain of these pointers from item to 

item through the file. Frequently items are ordered in the chain 

by some other attribute value. 

'!be list system can be seen to be nothing more than a directory 

system where the directory is scattered throughout the file. '!bat 

is, the pointers of the list system are the same as directory entries; 

only stored differently. '!he difference between the systems lies 

in memory allocation in rapidly changing files. 

List structures store their pointers along with the data, so 

as the file shrinks or expands, in total or in parts, the memory 

allocation of pointers is handled automatically with allocation 

for the data. Further, the algorithm for accessing the pointers 

does not change as their quantity changes. If the pointers were 

segregated into a separate portion of memory, that portion would 

have to be expanded and contracted to meet changing file needs, 

and would have to be continually restructured as various portions 

of the file become larger (''hot spots" in the file) • 

'Ibe directory system has the advantage that with segregated 

pointers, the pointers can be searched without having to access 

the items of the file. This is an advantage in all systems where 

the file is in a storage facility which is not fully random access 

(and very few large files can be put in a true random access facility). 
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The directory is especially superior if it can be seored in a faster 

access mechanism. 

'Ibis is the typical trade-off between speed of up-date and 

speed of access. For files where new data is added more frequently 

than old data is accessed, list structures offer very easy addition 

of new items at the cost of slower access during retrieval. For 

files with more frequent accesses, directories permit location of 

items with fewer memory accesses, but require more effort to up-date. 

Note that the search-length analysis for list systems is the 

same as for a directory system, with equivalent trade-offs between 

recall and relevance, etc. 

lnverted Files. A common problem in file storage is whether to 

store data: 

a) Item-oriented, where each item is coded explicitly with a 

list of its related attribute values; the items being 

ordered according to some attribute values, so that some 

of the attribute information can be omitted and replaced 

by the item address. 

b) Attribute-oriented (inverted), where each attribute is 

coded explicitly with a list of related items; a multi

attribute search requires a logical intersection of the 

item lists under the specified attributes; the attributes 

can be arranged in order so that some item occurrences 

can be predicted by attribute address, and these item 

identifiers can be omitted from the attribute lists. 
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In storage costs, these two systems are theoretically identical, 

but practically it is usually better to organize on the set having 

the greatest number of elements. 'that is, for r attributes and s 

items, the inverted file is better if r>s, for two reasons of coding 

efficiency: 

1) For an attribute-item occurrence of density p, each occurrence 

should cost log p bits in theory, but that requires 

difference coding for the normal case of small p. For 

convenient retrieval the full coding is used, so the cost 

is log r bits in an item file and log s bits in an inverted 

file. 'thus if the file is organized on the larger of r 

or s, then the inefficiency is minimized. 

2) 'theoretical minimum storage requires ordering on both 

dimensions: Attributes within an item-file can be ordered 

so that the first log r items have predictable attribute 
Plogp 

patterns, and need not be stored explicitly1 likewise in 

an inverted file item ordering can reduce the number of 

attributes actually stored. 'Ibis saving is seldom 

achieved because it is small relative to the additional 

complexity of search algorithm which results. 'the loss 

of efficiency in not ordering is minimized if the file 

is organized on the larger of r or s. '!his factor does 

not apply if the file is not ordered at all, even in its 

main dimension of orqanization, for in that case both 

organizations are equally inefficient. 
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In search length costs, the size of the user question is impor

tant. If the user tends to specify numerous attributes yieldinq 

a small response, the item file is best. Conversely, a few attri

butes and a long consequent response are best handled by the inverted 

file. In-between cases are dependent on the physical configuration 

of equipment available. Inverted files require substantial short

term memory to hold item lists during the process of intersection 

of the lists from several attributes. Further, inverted files do 

not have a complete description of an item anywhere, so they are at 

a strong disadvantage where users require the full item description 

as output. Item files, however, tend to require searching a greater 

percentage of the file bits, especially when the number of attributes 

is large. Inverted files give approximately the same search lengths 

for all questions, while item files will give a large variance in 

search lengths, depending on the number of specified attributes 

llftlich fall into the set on which the items are ordered. 

In short, the trade-off between item files and inverted files 

is decided on factors local to each implementation. It is inter

esting to note, however, that all analysis to date indicates that 

any in-between organization (organized partly on items and partly 

on attributes) is always less efficient than one or the other 

extreme case. 

5.4 ARFAS OF FURTHER RESEARCH 

There are a number of very interesting topics in file organi

zation which deserve further research. 'rtley have been mentioned at 
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various points in this docwnent, but deserve more specialized 

attention. 'Ihese are problems for which solutions are quite 

possible, I believe, if the right theory is found. 

1) Find a tight lower bound on search length for partial match 

questions, regardless of file organization. 

2) Find a decent bound or estimate for search length in redun-

dant files, for large redundancies (say a factor of s). 

3) Develop a theory which predicts an "optimum" user question 

ensemble based on file statistics (especially inter-

attribute correlations); this involves figuring out what 

the user objectives are in asking questions of the file, 

and assumes that users adopt their questions to fit the 

information available. 

4) Find a means to better analyze the problems of file acceea 

with fully-specified keys, namely: A) the effects of small 

redundancies on search length, and B) the trade-offs between 

retrieval speed and update speed. 

5) Find methods to extend the p log p analysis to give more n - n 

detailed answers for partial-recall questions, such as a 

search length bound for questions with all recall levels 

equally likely. 

I will be happy to hear from or talk with anyone with interest or 

results in these areas. 
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APPENDIX 

A C~BINA'IURIAL ANALYSIS OF THE BUCKETING PROBLEM 

A partitioning problem which appears in several forms in 

computer-related topics is discussed hare, in its guise as a file 

organization problem. It is the question of how to allocate file 

information into memory "buckets" so as to minimize the average 

number of buckets which must be searched to answer user requests. 

The approach used is a combinatorial one, in essence counting those 

attribute combinations which occur most frequently in the user 

requests. One result is a rigorous lower bound on search lengths 

for partial-match and near-match types of requests, within certain 

file orqanizations and with simplified file statistics. A second 

result is a measure of improvement of search length as file storage 

redundancy is introduced (items repeated in the file). 

A.l THE BUCKETING PROBL:D! 

Given: An r-dimension binary space, called "key-apace". 

A set of s items, which appear as marked point• in 

key-space; r s<<2 • 

An ensemble of user questions, each question being 

a sub-volume of key-space. 

A set of B buckets, each of which is to "cover" 

a fixed size sub-volume of key-space. 

Objective: Partition key-space (i.e. divide key-space points 

into bucket assignments) so as to minimize the 

average number of buckets required to cover user 

questions (average search length) • 
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Specifically, the file problem consists of s items in a file, 

each of them having a key which is one of the 2r binary keys in 

key-space. When a user asks a question, (e.g.) "Which file items 

have keys whose first three bits have value one?", he is specifying 

a sub-space of key-space which is to be searched. 'rtle file response 

to this question is a list of all marked points (file items) which 

appear within the user-selected sub-space. Each file bucket con

tains some subject category or other sub-set of the key-space, 

and the objective of file organization is to select bucket •ub-sets 

which minimize search length. 

A key characteristic of the analysis here is that the key 

information describing each file item is much greater than sufficient 

to just distinguish the s items. That is, r»log
2
s. The user may 

identify a single item through many different descriptions, each 

one giving only part of the key information. 'rtlis flexibility of 

access for the user is what makesfile organization difficult, and 

files where r-log
2
s are not interesting. Of course bucketing is 

only one of several ways to organize such a file, but meaningful 

answers derived for this special case will give needed insight 

into file storage in general. 

To further simplify the mathematics of this analysis, the 

following assumptions are made: 

1) The s marked points occur independently and equally likely 

throughout key-space, or equivalently, all key-space points 

are equally likely to appear in the file (thus each bucket 

can be assigned an equal chunk of key-space, without need 

to compensate for correlations). 
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2) '!he uneven distribution of marked points in buckets can be 

tolerated (proper use of a directory can compensate for such 

unevenness). While each of the B buckets will have the 

same expected number of s/B items in it, the actual number 

will vary due to the random process of selecting file 

points. We assume this causes no trouble, but the resulting 

analysis is therefore not fully descriptive for files with 

tight memory packing or high update rates. 

User Qµestion Statis;ics. For the sake of discussion here, two 

forms of user question ensemble are studied. 'Ibese are unrealistically 

simplified, of course, but yield good insight into the more compli-

cated real situations. 

Partial Match Requests: '!be user specifies a 1 or 0 value for 

any t of the r attributes, and he wants items which exactly 

fit all those t values. t r '!be 2 (t) such questions are 

equally likely to be asked. Each question specifies 2r-t 

-t 
points in key-space, which will contain on average s2 

file items. 

Near Match Requests: The user specifies a full r-bit key, 

giving a one or zero for each bit, and he wants those items 

which fall within Hamming distance d of the specified point 

in key space (i.e. all points which come near the specified 

point). '!be 2r such questions are equally likely. Each 
d d 

question specifies r (r) keys, containing r (r)s2-r 
x=O x x-0 x 

file items on average. 
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Exan\ple A-1: A File for Partial-Match Requests 

The user specifies t of the r attribute bits, and he wants all 

items falling within the intersection of those t attribute values. 

11 11 11 
Presume r = 15, s = 2 , B = 2 , and t = 11. Thus the 2 buckets 

will contain on average one item each. Presume that each bucket 

will cover those points having the same first 11 bit values. For 

example, the 16 keys described by 10101010101~~~~ will all be 

assigned to one bucket. This is the conventional ordered-file 

method of organization. 

When a question is received, its first 11 bits are used to 

compute bucket addresses, with each ~ replaced alternately by 1 and 

O. For example, the question ~~~01010101~111 specifies eight of 

the first eleven bits with three missing, so that 23 = B buckets 

must be accessed to examine all points covered by the question. 

Of the 211 <1s, 
11 different user questions: 

24\ have 4 of the first 11 bits missing, requiring 16 accesses 

48\ I I 3 11 I I I I I I I I I I 11 8 I I 

24\ I I 2 11 I I I I I I I I I I I I 4 I I 

4\ I I l 11 I I I I I I I I I I I I 2 I I 

.07\ I I 0 11 I I 11 I I I I 11 I I l I I 

Thus, searching in this example requires 8.77 bucket accesses on 

average. 
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Strategy of Analysis. The problem parameter of interest, average 

search length, is very difficult to compute directly for most cases 

of file organizations and question ensembles. The first step of 

analysis is the derivation of a search length bound which is simplier 

to compute. Some examples are given to indicate the tightness of 

the bound. Then this bound is used to examine the effect on search 

length of 1) file size, 2) type of question asked, 3) type of 

organization uaed, and 4) use of redundant file implementations. 

As a goal of the analysis, three particular results are primary: 

1) Proof that average search length must continually increase 

a• key-apace size (r) is increased, regardless of file 

organization uaed. 

2) A demonstration that file storage redundancy (repetition of 

itm• at various points in the file) improve• search lenqtha, 

but not rapidly. 

3) An indication that partial-match and near-match que•tion• 

offer the same order-of-magnitude difficulty in ace•••· 

A.2 SEARCH LENGTH BOUND 

Definition: TQ is the number of questions in Q. Thu• Q is 

compoaad of question• qi, l<i<T , all equally likely. --Q 

Definition: P is a partition on keyspace, being a particular 

assignment of key point• to buckets (a file orqan-

ization). 

Definition: L is a search length for a P and Q, namely the 

average number of buckets accessed for questions in Q. 
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where the inequality on average reciprocal search length follows 

from (l/x) ~ l/x, with equality when all i. are the same. 
l. 

Part 2. 

To define the function W(Q,P), an intermediate definition is 

useful: 

Definition: A Question-Point-Pair (QPP) is a counting unit 

which occurs whenever two points in a bucket 

occur together in the same question. 

Definition: Wb(Q,P) is the number of QPP's in a bucket b of P 

under the question ensemble Q. 

'lbat is, W(Q,P) gives a count of the number of times a pair of 

points which share a bucket also share a question. A pair of points 

which fall together under m questions produce a value of m QPP'• 

in their bucket total. A question which covers nj points in a 

bucket will produce (~j) QPP's. 

Consider now a specific bucket, b, and all those questions which 

access it. Each such q. covers n. of the points in the bucket. It 
J J 

is not important how many such questions there are, so we do not 

bother to assiqn bounds to j. Nb will be defined as the averaqe of 

useful points accessed for this bucket: 

or equivalently, 

average (nj) • Nb , 

~ nj • I: ~ • 
J j 

(A.4) 

(A.5) 

To calculate W(Q,P), first re-express n. in terms of its deviation 
J 

from average: 

(A.6) 
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Merger of Parts 1 and 2. 

Since N is the average of useful points in all bucket accesses, 

there must be at least one bucket whose average Nb is as large as N. 

'Iherefore there must be at least one bucket in the file such that: 

V(Q)/L ~Nb. (A.13) 

For the files of interest in this paper, W(Q,P) is the same for 

all buckets, so this proves the theorem. QED 

A.3 EXAMPLES OF BOUND CALCULATIONS 

Example A-1 continued: 

For the partial-match example described above, we count QPP's 

as follows: 'nio points which are distance-one apart may co-occur 

r-1 
in ( t ) different questions, since the t specified attribute 

values may appear in any of the r-1 attribute values the points have 

in CODIDOn. Of the (;6
)•120 point pairings in the bucket assignment 

of the example, 32 are distance-one pairings. Extendinq this to 

hiqher distances: 

pair number of x 
distance such pairs 

per bucket 

1 32 

2 48 

3 32 

4 8 

120 

questions 
in COll'allOn 

(14) 
11 - 364 

(13) 
11 

.. 78 

(12, 
11 

.. 12 

(11) 
11 = 1 

= QPP'a 

11,648 

3,744 

384 

8 

15, 764 
=W(Q,P) 
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For the partial-match questions we have already found these 

values: 

V(Q) = points per question = 2t = 24 = 16 

= number of questions 

= 211 . 

211 -1365 

'lben using the theorem (A.l): 

24/L < + l + 2•15,764 = 2_44 16•1365 

L ~ 16/2.44 = 6.5 bucket accesses. 

This compares with the actual value of L = 8.77 accesses calculated 

previously. The difference comes because the various questions in 

Q access the buckets with unequal efficiency. 

Example A-3: A Different File Organization 

For comparison, suppose the file organization of example two 

were used with the file problem of example one. That is, points 

will be assigned to buckets in d=l spheres, for use with partial-

match questions. The QPP's of this organization are: 

pair number (r-d) QPP's 
distance of pairs 

. t 

l r - 15 364 5,460 

2 (r) 
2 = 105 78 8,190 

120 13,650 

For this case, N < l.25 + l = 2.25 points per access, so that 

L > 7.l bucket accesses. 
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'!his implies that the sphere-packing of example two is an inferior 

organization for the partial-match question. Direct search length 

calculations for this case are a bit tricky, but can be carried out 

to show a real value of L • 12. 

Example A-3 shows the principal weakness of the estimator. 

It was derived assuming an equal distribution of accessed-points 

over bucket accesses, namely that all n. are equal. In Example A-3, 
l. 

due to the peculiar geometry of the organization, each bucket 

access yields one point or five points, nothing in-between. '!his 

produces a wide variance around the mean of two, so the bound is 

not very close to the real value of L. 

Large r Examples 

Figure A-1 shows the conditions of Example A-1 extended over 

a range of r values, giving a comparison of real and estimated 

search lengths. Figure A-2 shows the same information for a larger 

file system, with one million buckets. 

'lhese figures indicate that the bound tends to understate narch 

length by a factor of 2 to 3 for large r. Calculations for other 

examples confirm this as a typical error, although the error may 

get notably larger for poor organizations (such as in Example A-3). 

A.4 COMPARISON OF FILE SYSTEMS 

One application of the search length bound is to compare the 

relative difficulties in accessing files of various types. How do 

near-match questions compare to partial-match questions in access 

difficulty? What is the best geometry of organization for each 

question type? 
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1000--------------------------------..,------..... --. 

100 

10 

B = 2 11 

211 s = 
t = 11 
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- - - ESTIMATED LENGTH 
PARTIAL MATCH QUESTIONS 
ORDERED FILE 
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NEAR MATCH QUESTIONS 
SPHERICAL FILE 
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r - NUMBER OF ATTRIBUTES (dimension of key·spoce) 

FIG. A.l SEARCH LENGTHS ON 2000 ITEMS 
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Figures l and 2 compare partial-match and near-match question 

types, with each using the file organization matching its geometry. 

For these curves, the number of buckets and questions is held con-

stant as key-space size is increased. For the near-match questions, 

this means that the Hamming distance d of the question must increase. 

For example, at B = 220 
and r = 100, each question covers all 

points within distance 26 of the specified center point. Actually, 

these sphere distances are not integers, and approximations must be 

used to handle the fractional parts. 

'.lbe clear implication of these curves is tha~ near-match 

questions are more easily handled for large key-spaces, but only 

by a factor of two or three at most. Intuitively, this is jW1ti-

fied by the observation that some partial-match questions require 

an exhaustive search of the file (i.e. access all buckets), while 

that does not occur with the near-match questions. This advanta9e 

for near-match questions must be balanced against two other factors: 

User Flexibility: The number of questions that a user can ask 

which cover a given point in key-space indicates his flex-

ibility in specifying a file item. When all questions cover 

2r-t points, this is proportional to TQ. 

Partial Match: TQp = (~)2t 

Near Match: TQn = 2r 

For small r, with fixed t, TQp > TQn, and significantly so 

in many cases. However, the values are equal around r • 4t, 

and near-match questions offer the greater flexibility for 

larger r. 
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User Information: '!he aDK>unt of information a user must specify 

in posing a question is: 

Partial Match: t bits 

Near Match: r bits. 

As r gets large, this becomes a very significant difference, 

which will rule out near-match questions for most applications. 

In the balance, it appears that partial-match questions have 

the advantage for all values of r, but the advantage is small in 

many cases. '!he outstanding exception to this rule would be an 

application where r>>4t and the cost of user-supplied information 

can be kept low without reducing flexibility. I cannot think of 

an example of such an application. 

When considering the question of what bucketing system to use 

with a particular question type, the bounding procedure permits 

two observations to be made: 

1. '!he QPP calculations weight low~istance point-pairs much 

more heavily than high-distance pairs; therefore, bucket 

assignments should emphasize the preservation of low-

distance pairings within buckets. 'lhe two organization 

systems discussed above appear to do this better than any 

other possible partitioning. 

2. Equality in the bound is best approached when each bucket 

accessed tends to yield the same number of useful points 

(all n. are equal). '!his condition appears to be very diffi-
1 

cult to approach in practice, but perhaps is a good thinking 

tool. 
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Partial-Match Questions. A simple analysis, similar to the preced-

ing near-match one, assumes a bucket geometry whose pair distances 

are one-half distance-1 and one-half distance-2 (the best ratio 

possible). '1'1e details are omitted here, but the result is: 

L > (A.15) 

For the values of Example 1, r • 15, t = 11, this says that 

L > 4.44 accesses regardless of file organization. 

This bound could be improved somewhat with more complicated argu-

r ments, but it remains weak for larger values of r (when 2 /B>>r). 

For a large bucket analysis, assume that a bucket is optimumly 

packed with respect to every point it holds. '1'1at is, for a qiven 

point, all of its d = 1, 2, 3, ••• x neiqhbors are in the bucket, 

up to the point that bucket capacity is reached. '1'1is assumes 

that the bucket holds points for a sphere of radius x, where x 

is fixed by: 

since the point has (r) distance-d 
d 

neighbors. 

'1'1is optimum packing gives an upper bound on the number of QPP's 

possible in a bucket: 

QPP's < 
r-1 -1 

2 B 
x 
r 

d=l 

(A.16) 
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'!'1en, substituting A.16 into A.l: 

or, 

~ 
L 

-1 < 

YJ.21 < 
L 

x 
r. 

d=O 

-r+l r-1 -1 
2 •B•2 B 

x 
r. 

d=l = 

where x is determined by 

x 
r. 

d=l 

x 
r. 

d=O 
(r) 2r1 d = B. 

(A.18) 

solving this relation requires several tedious steps which will 

be omitted here. Using the Vandermonde Convolution Formula and 

numerous variable changes, it was determined that: 

x 
(r-t) < 

x 
(r) 2-t + r. r. 

d d 
d=O 

Using A.19, and 

(z) < 
y 

YJ.21 < 
L 

r-t 
_2 __ < 

L 

d=O 

Stirling's Bound: 

z < 2z Hr; (z/2) 'll'Z 

1 
L > 

B-1+~ 
J~ 

r-t t 
<x-t/4) ·2 

e l/12z 

(A .19) 

(A. 20) 
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As r becomes very large, the radical term goes to zero, and L 

approaches B. 'rtlat is, as r becomes big with t fixed, file access 

approaches an exhaustive search no matter how the file is organized. 

A.6 REDUNDANCY 

'rtle above analysis assumed that every file space point was 

covered by only one bucket, so that any question referring to that 

point had to access that bucket. Now we permit a point to appear 

some number of times, M, in different buckets. For each question, 

then, there is a choice of M buckets in which to inspect the point. 

In this system the file implementation takes M times as much memory 

as the minimum configuration. How does this redundancy help to 

reduce search time? 

The number of questions accessing a given point remains con-

stant, but they are now divided over M occurrences of the point. 

Equivalently, the number of buckets B in the system is increased 

by M, but the size of each bucket is unchanged so the W(Q,P) 

values remain the same. Evaluating the basic bound, A.l, then 

shows that L decreases proportionally with M: 

L (1) 
L(M) • C C'M+l 

where c and C' are constants, and L(l) is 

the non-redundant search length. 

The constant c• is virtually always larger than one, so L(M) is 

just inversely proportional to M. 
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'rhere is one flaw in this analysis, due to the error in the 

search length estimator. If the non-redundant system has long 

search lengths due to uneven distribution of points in buckets 

(Example A.3), redundancy can permit a more even distribution and 

consequent reduction in inefficiency. '!hat is, the real search 

length will come much closer to the lower bound in a redundant 

system. 'rhe extent of this effect is not known, but is probably 

limited to small M. It generally can produce at most a factor of 

2 or 3 improvement in L, for that was the degree of error in the 

original bound. 

Actual search times in a redundant system are very difficult 

to compute. TWo examples of limited range are given here: 

Assume Partial-Match questions and ordered file organizations, 

with M copies of the file organized on disjoint sets of attributes. 

Case l. 

M 

1 

2 

3 

4 

Case 2. 

l 

2 

3 

4 

5 

r = 100 

'lheoretical 
Bound 

L ~ 33,557 

L ~ 16, 778 

L ~ 11,186 

L > 8,195 

r = 66 

L > 408 

L > 204 -
L > 136 -
L > 102 -
L > 82 

B .,. 220 

B = 211 

t = 20 

Real Search 
Length 

L = 115,381 accesses 

L '"' 48,211 

L ,. 30,427 

L = 22,496 

t = 11 

L = 758 

L = 445 

L = 329 

L = 269 

L = 230 
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This analysis of the effects of item repetition is the only 

treatment I have found which is useful on the redundancy question. 

Though flawed by some looseness for small M, it is a rigorous lower 

bound which cannot be surpassed. It provides a firm conclusion 

that storage redundancy cannot give remarkable decreases in search 

length. 

A.7 CONCLUSIONS AND CONJECTURE 

The above derivation has provided a rigorous lower bound on 

file search length. While the bound is not particularly tight, it 

is much easier to calculate than real search lengths in some organi

zations. Further, it becomes possible to calculate search length 

bounds irrespective of file organization used, and to extend the 

results to large key-spaces. 

The conclusions reached for the model used were: 

1) File search length grows with increased flexibility avail

able to the user; as the number of attributes available to 

the user grows larger, the search length approaches exhaustive 

search, regardless of what file organization technique is 

employed. 

2) Redundancy in file implementation can only linerly decrease 

search lengths, with some exceptions for small redundancies; 

if each file item appears M times in the implementation, 

this reduces search length only to l/M its non-redundant value. 

3) Partial-match and near-match question types fall into the 

same range of difficulty for file access; this implies that 
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other question types (such as BoOlean sums of products of 

attributes) will tend to cause equivalent search lengths. 

For mathematical convenience we have taken a file problem 

with specialized statistical properties as the subject of this 

discussion. Real library problems are of course different in these 

aspects: 1) Not all questions will be equally likely (e.g. real 

users tend to specify more l's than O's as attribute values), 

2) not all file keys are equally likely (attributes will be corre

lated), and 3) only a limited range of file organization techniques 

was allowed here (e.g. directory techniques were not discussed). 

Despite these limitations on the model used, I feel that the 

results obtained are generally indicative of what would be found in 

the more complicated cases if we could analyze them. 
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