
Cambridge

AUTOMATIC CREATION OF A CODE GENERATOR
FROM A MACHINE DESCRIPTION

Perry L. Miller

May 1971

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Massachusetts 02139

ACKNOWLEDGEMENTS

Work reported herein was supported (in part) by

- ~roject MAC, an M.I .T. research program sponsored by the

Advanced Research Projects Agency, Department of Defence,

under Office Research Contract Number Nonr-4102(01).

I would also 1 Ike to express my appreciation to Prof.

Robert M. Graham who originally suggested this are? for

research and who helped me in getting started and directed

in my efforts, to Prof. Arthur Evans for his continued and

cheerful advice and supervision, and to Carla Vogt, Sterling

Eanes, and Robert Goldberg for their helpful criticism and

comments during the writing of this paper.

- 2 -

AUTOMATIC CREATION OF A CODE GENERATOR
FROM A MACHINE DESCRIPTION*

Abstract

This paper studies some of the problems involved in
attaining machine independence for a code generator, similar
to the language independence and the token independence at
tained by automatic parsing and au"tomatic lexical systems.
In particular, the paper examines the logic involved in two
areas of code generation: computation and data reference.
It presents models embodying the logic of each area and
demonstrates how the models can be filled out by descrip
tive information about a particular machine. The paper
also describes how the models can be incorporated into a
descriptive !!!.!£_ro code generating !)'Stem (DMACS) to be
used as a tool by a language implementer in creating a
machine independent code generator, which can be made
machine-directed by a suitable description of a particu-
lar machine.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the re
quirements for the degree of Electrical Engineer, March 1971.

- 3 -

CONTENTS

CHAPTER

1.1 INTRODUCTION
1.2 PREVIOUS WORK

6
8

10
11
14

1.3 BRIEF HISTORY OF CODE GENERATION
1. 4 DMACS: A DES CR I PTI VE MACRO ~YSTF.:M
1.5 OVERVIEW

CHAPTER II: A DESCRIPTION OF A CODE ~FNFRATOR

2.1 INTRODUCTION TO CODE ~ENERATION 17
2.2 INTERNAL TARLES 20
2.3 THE 1 GETRFn' ROUTINE' 23
2.4 SOME OUESTIONS TO RE ANSWFRED 24
2. 5 ASSUM PT I O~!S A ROUT Mft.rH I NE STRUrTIJRF 26
2. 6 ASSUM PT f ONS A ROUT VA LlJF.S 2 7
2.7 HOW VALUES ARF REPRES~NTEn ON THE MACHINE 28
2.8 LOAD/UPDATE ROUTINES 29
2.9 MACHINE DESCRIPTION 31

CHAPTER Ill: A ronE ~ENFRATOP AS A STATF M~rHINF

3.1 OVERVIEW
3.1.1 THE STATE MACHINE 33
3.1.2 THE STATE OF THE MACHINF.: 34

3.2 A SIMPLE EXAMPLE 35
3.3 MACHINE STPUrTURE

3.3.1 REGISTERS 39
3.3.2 SAMPLE REGISTER DESCRIPTION 41
3.3.3 THE 1 GETREG 1 ROUTINE 42

3.4 THE AUTOMATIC TRANSITION
3.4.1 INTRODUCTION TO THE TRftNSITION 43
3.4.2 SELECTING A TAR~ET STATE 45
3.4.3 SEOUENCING THE TRANSITION 46
3.4.4 ACCIDENTAL TRANSITIONS 49
3.4.5 A REVIEW OF SEOUENCIM~ 53
3.4.6 A GENERAL OVERVl~W OF SEOU~NrlN~ 56

3.5 PERFORMING A MACRO EXPANSION 58
3.6 A USEFUL FXTENSfON: OPERATIONS TO M~MOPY 61
3.7 SAMPLE MACHINE DESrRIPTIONS 63
3.8 SUMMARY: THE STATE MACHIME 65

- 4 -

- -------- ---- ~.

CHAPTER IV: DATA REFF.RENCF. MACROS

4.1 INTRODUCTION
4.1.1 OVERVIF.W 67
4.1.2 DATA RF.FERF.Nr.E 68

4.2 THE DATA DF.FIMITIOM FACILITY
4.2.1 DESCRIPTION OF DftTA 74
4.2.2 DATA DEFl~tTION 77
4.2.3 DEDUCTION OF PRIMITIVES FRmA

A MACHINE DESrRIPTION 78
4.2.4 COMPLEX LO.AD UPDATE ROUTINES 81

4.3 MACHINE INDEPENDENT MACROS
4.3.1 DATA MACRO LOrilr 84
4.3.2 THE CONVERT FUNCTION 87

4.4 SUMMARY 89

CHAPTER V: CONCLUSIONS AND FURTHER WORK

5.1 AREAS FOR FURTHER WORK
5.1.1 FURTHER ASPECTS OF conE fiENEP~TICH.l 92
5.1.2 EXTENDING THE MODF.LS 93

5.2 SUMMARY OF RESULTS 94

REFERENCES 97

-.5 -

CPAPTFR I

1.1 INTRODUCTION

The process of translating a high level language into

machine instructions is traditionally divirled into three

distinct problems: lexical analysis, syntactic analysis, and

code generation. The flow of data in such a translator is

outlined in Figure 1.1.

Source
Program

J
LEXICAL SYNTACTIC ~
ANALYSIS ~ ANALYSIS ~

CODE
GENERATION

~
Machine
Code

Figure 1.1: Simple Dia~ram of a roMpiler

The lexical analyzer accepts a string of characters and

groups these into identifiers and operators, etc., thus

creating a string of lexical 'tokens'. The parser analyzes

the underlying syntactic structure of this string of

tokens, outputting either a sequence of macro operations or

a parse tree. The code generator then translates the macros

(or the parse tree structure) into machine instructions for

- 6 -

a particular target machine.

Both lexical analysis and syntactic analysis have

been intensively sturlied. Johnson et al. (4) descrihe a

system which allows a lexical analyzer to be automatically

created from a series of regular expressions describing

possible input lexical tokens. Similarly, numerous parsing

schemes (1,2,3) have been developed w~ich allow parsers of

varying power to be created automatically from a

context-free BNF description of a language. Very little

work, however, has been done to similarly formalize and

automate code generation. The present research represents

an attempt to isolate some of the problems involved in code

generation and to show how a code generator can be

automatically created from a description of the computer

upon which the code is to be run.

The research does not attack all the problems that

such an automatic code generatf ng system would have to

handle. Rather, it deals with two subprohlems corresponding

to two common types of macro, namely:

1. computational macros, such as ADD, MULTIPLY, OR,

etc.;

2. data reference, such as subscriptin~ and structure

- 7 -

reference.

In this paper, we examine both types of macro In turn and

develop a model for the logic of such a macro. We then show

how a system can be set up to perform the machine dependent

part of such macro logic from machine descrf ptfve

lnformatfon.

The two models developed for the operation of the two

types of macro are different. As a result, the paper can be

considered to contain two relatfvely indepenrlent topics:

the ffrst dealing with computational macros, and the second

dealfng with data reference macros.

1.2 PREVIOUS WORK

Although little work has been done to formalize code

generation, a great deal of work ~ been done on the

related problem of language transferability. One approach

to this problem is that of the 'mobile pro?ramr.ilng system'

of Orgass and Waite. (5,6) In their system, the source

language Is translated Into a series of simple macros. Then

a user-written set of macro rlefinftions translates the

macros into machine code. The problem of generating code

for a new machf ne rerluces to the problem of recorlin~ the

- 8 -

macro definitions.

A second approach to language transferability ts that

of the UNCOL macro language (7,8). UNCOL CUNlversal

Computer Oriented Language) was developed In an attempt to

create a universal macro language Into which all high-level

languages could be translated and which Itself could be

translated Into any machine co~e. If sucessful, the UMCOL

system would have solved the problem of language

transferability, since only one translator would ever have

to be written for a language, and only one code ~enerator

for a machine. The Orgass and Waite system differs fro~ the

UNCOL approach Jn that their macro language was specifically

tailored to their source language. In practice, the

restriction Imposed by havJ~g only one Intermediate language

for all source languages and all machines has proven too

confining for a practical solution.

The two systems just described are similar in that

both attempted to solve the prohlem of language

transferability by letting the user specify information

about his machine in procedural form. Most of the

information about machine structure is buried implicitly in

the coding of the macros. Suer a procedural approach has

- 9 -

been used in all major puhlis~erl work on code ~eneration.

In contrast, the present work uses information about machine

structure given in explicit, descriptive form.

1.3 BRIEF HISTORY OF CODE GFNERATIOM

Early languages had very few data types. Fortran, for

example, had only two data types. Similarly, early machines

tended to have a small numher of special-purpose registers.

For such language-machine pairs, the process of generating

code tended to be straight forwarrl. A macro generally

consisted of a short, Independent section of lo~ic w~ich

performed a few simple tests and then output code. Thus a

very slmple procedural language could let the user define

these macros (12).

With the Introduction of more compllcated machines

and of languages with more data types, some of which (such

as bit-strings) may be more complicated, code ~eneration has

become a harder task (9,13). Separate modules have become

desirable to handle register manlpulatlon and to handle

data-dependent loRic for the varlous data types. Such a

modular approach allows a macro to he written fairly

compactly, calling these modules as suhroutines to locate

free registers and to return usahle representations of

- 10 -

operands (such as a displacement and registers containing a

base and an index).

In a traditional macro system, all of these modules

and macros must be written by the user using a procedural

language provided for the purpose. Due to the complexity of

modern languages and machines, such a macro langua~e can no

longer be a very simple one. Slmilarly, the job of writing

a code generator is much more complex.

1.4 DMACS: A QESCRIPTIVE MACRO ~YSTEM

This paper describes an automatic corle generating

system named DMACS. There are two steps in creating a

code-generator using DMACS. The first step is to define a

set of procedural macros in a machine lndependent, somewhat

skeletal form. The second step is to supply lnformation

describf ng the computer for which code is to be generated.

DMACS uses this lnformation to flesh out the macro

deflnitions. The two steps are quite lndependent, so that

once the first step is done for a language, the second step

can ~hen be done for a varlety of object machines.

Slmilarly, once a machine has been described, implementing a

second language requires little change to the machine

- 11 -

description.

The first step can be thought of as deffnlng the

semantics of the language using machine lndepenrlent

primitives. The second step can be thought of as defining

the structure of the target machine. Examples of the two

steps are discussed In Chapters 3 and 4. To facilitate

these two steps, DMACS provides two langua~es:

1. MIML- a procedural mac~ine independent macro

lan~uage, and

2. OMML- a declarative object machine macro lan~uap:e.

Programs written in the two languap:es are hound top-ether hy

the DMACS system.

Figure 1.2 outlines how the D~ACS system is used. As

can be seen, the traditional compile-time~. run-time

distinction has proliferated into four separate 'times' in

viewing DMACS as a whole.

1. Macro definition time- when a langua~e implementer

presents his machine independent macros to D~Ars.

2. Machine description time- when a machine specifier

inputs a descriotion of his machine to fill out the

machine independent macros.

- 12 -

1. Macro Oeftnttton Ttme:

Clan~uage Implementer)

MIML program)

2. Machine Oescrlptlon Time:

(machine speclfter)

..__o_P-A_A_c_s __.I -+

, ,
Machtne

Machine
tndependP.nt
Code
Generator

Machtne
tndependen~ ,..oriented

OMML machtne descrlptton~ Code Code
r,enerator Gen~rator

/ ,
3. Language Compilation Ttme: /

/
/

(prop:rammer) /
/

Source program~ PA~S[~ /

Machtne
, ,

Oriented ~achtne
Code ~ Code
Generator Program

, ,
4. Program Executton Time:

, , , ,,
Machine v'

Input~ Code > outnut
Program

Using DMACS: 4 Users ~nd 4 'Ttmes'

Figure 1. 2

- 13 -

3. Language compilation time- when a pro~ramMPr inputs

his source program to the compiler as a whole.

4. Program execution time- when that compiled pro~ram is

actually executed.

1.5 OVERVIFW

The present research develops models of two types of

macros: computation and data rP.ference macros. At the same

time, the paper illustrates how these models can he huilt

into DMACS as tools. These tools can be used by a langua~e

implementer to create machine independent macros rlPfinin~

the semantics of his lan~uage which can be filled out from a

machine description.

Chapter 2 gives the rearler an overall introrluction to

code generation and to the DMAr.S system. It also discusses

some of the restrictions as to po~sihle machine structurP

which are assumed in the following chapters.

Chapter 3 presents a model of the logic of

computational macros. The model pictures a code generator

as a state machine whose state is determined by the location

of the values used in generating code. In the model, each

- 14 -

computational macro has 'permitted' states for its operands,

from which code can be emitted. For the IRM-360, for

instance, the permitted states for integer addition would

allow both operands in registers or one operand in a

register and the other in a word of core memory. To

generate code for such a macro, the code generator must make

a transition into a permitted state and then emit an

appropriate instruction sequence from that state.

Using a procedural macro system, the ~ specifies

how such state transitions are to be made. In a descriptive

system such as OMACS, the transitions must be performed

automatically from a description of the register and memory

structure of a machine, and of the paths (load, store,

register-register transfers) between core memory and

registers.

Chapter 4 turns to the prohlem of achieving the same

machtne independence for data reference macros. To achieve

this goal, a data definition facility is built into D~Ars.

The language implementer writes hts data reference lo~ic in

terms of the primitives of the facility. A machine

specifter then descrihes his machine memory and how source

data items are mapped into that memory. DMArs can then

- 15 -

characterize these source rlata f tems In terms of the

primitives of the data definition facflfty. As a result,

the macro lo~tc ts able to operate upon them.

In summary, the resP.arch is a step towards creating

models of two aspects of the code ~eneratton process, and

towards abstracting code generation from any particular

machine. In this paper we show how these morlels can be

Implemented as tools to be used by a language Implementer to

create a machine Independent corle generator which can be

filled out from a machine descrfptfon. Furthermore, ft fs

seen that thfs approach to code generation, as a natural

by-product, leads to a clean separ~tlon of the semanttr.s of

a source langua~e from the structure of a partlr.ular target

machine, a separation which ls often hard to isolate in a

compiler with a code generator oriented tow~rrls a particular

machine.

- 16 -

CHAPTER II

A DESCRIPTION OF A CODE GENER~TOR

2.1 INTRODUCTION TO CODE GENERATION

Code generation is the last major task in the

translation of a hi~h-level language into machine language.

A code generator receives its input from tre syntactic

analyzer (the parser). Although in some co~pilers the input

is in the form of a parse tree, in this paoer it is assumed

that the input is in the form of a linear sequence of macro

operations.

A = B + C * D;

=
/ ' A +

/ ' B * 1 MUL C,D
/ ' 2 ADD 1,B

c D 3 ASSG A,2

Parse Tree Macros

This assumption is not a restriction, rowever, since a parse

tree can readily be converted into such a sequence of

macros. The task of the code generator is to convert the

macros into machine instructions.

- 17 -

In a compiler for a complex language with many data

types, the code generator is often allowed direct access to

the symbol table constructed by the parser. The information

in the symbol table can then be used directly to generate

the correct code to access the different data items. The

data flow in such a system is illustrated below.

Source
Program~ PARSER ~ Macros

J ~

Symbol
~

CODE
~

Machine
Table GENERATOR Code

The parser converts the source pro~ram into m~cros, while

simultaneously building the symbol table. The code

generator then accepts both the macros and the symbol table

as input for generating machine instructions.

A macro line consists of a line number, an

operation, and that operation's operands: ie. 1 ADD X,Y. In

an actual compiler, the lfne number is usually implicft, and

the operation and the operands can be thought of as

pofnters. The operation is a pointer into a tdble of macro

definitions. The operands are either pointers to th~ symbol

table entries describing the values to be oper~ted upon, or

- 18 -

pointers to previous macro lines indicating the results of

previous macro operations.

The paper discusses two particular kinds of macros:

computational macros and data reference macros. The

following example illustrates both types of macros.

A(l)=B+C(J)*D

i
i+l
i+2
i+3
i+4

SS
MlJL
ADD
SS
ASSG

C,J
i, D
i + 1, B
A, I
1+3,i+2

In this example, SS (subscript) Is a data reference macro,

and MUL and ADD are computational macros.

As an example of computational macro logic, consider

Integer addition on the IBM 360. The 360 has two Adrl

Instructions for inter.ers: 'A' which adrls a word of memory

to a register, and 'AR' which adds two registers. In

generating code for an AOD macro, the corle ~enerator must

check the location of the values to be adrled to see if

either of the instructions can be emitted directly. If not,

the code generator must emit instructions to load one (or

both) into registers. If, in the process of finding a

register to load into, the code ?,enerator must cause the

- 19 -

previous contents of a register to be stored, the new

location of the stored value must be recorded. Furthermore,

ff one of the values to be added ts not directly accessable,

Cle. a bit string value), the cone generator must emit load

and shift Instructions to Isolate that value In a register.

Finally, after emitting the appropriate adrl instruction, the

code generator must recorrl the location of the macro's

result.

Similar examples of data reference lopic are ~iven in

r.hapter 4.

2.2 INTERNAL TARLES

The symbol tahle contains information ahout all the

values Cvariahles) declared by the progranmer. At some

point before code generation core locations must be

allocated for these variables. The core location

information can be stored in the symbol table entry for each

item. Exactly how core allocation mt~ht be done is

discussed in Chapter 4. In addition to the values declared

by the pro~rammer, the code generator must also recorrl the

location of values which have been computerl by previous

macro lines, hut not yet userl. In most ~achines, a

- 20 -

computation leaves Its rrsult Tn some reRister. Since the

result can often later be used unmoverl, Tt is desirahle to

leave it f n the register if possihle. If, howPver, an

intervening macro requires that register for its

computations, it fs necessary to store its contents in a

'temporary' fn core and to rememher that this has been

done.

To keep track of the location of such previous macro

results, three tahles are built Into the corle generator: a

macro result table CMRT), a re~ister state tahl~ (RST), and

a temporary table (TT).

MRT: The macro result tahle recor~s the location of a

macro's result(s) if any. The MRT has one entry for

each macro line. Fach value recorrle.d in the entry

consists of a pointer to the register or temporary where

the value is located.

RST: The register state tahle contains one entry for

each register. Each entry indicates whether that

register contains a computed value, or if it is free.

Each entry recording a computed value contains a pointer

to the MRT record representinR that value. Thus, when a

register must be stored, the MPT entry can be easily

- 21 -

Macros

~1----~
31---~
21------4
lL-------'

MACRO
LOGIC

Machine
Code

~
':i;

2
]

~I

~I
CODE

. . .
MRT

(Macro Result
Table)

RST
(Register State
Table)

I I 1
TT

(Temporary
Table)

I I
GENERATOR

An Implementation
of a Code Generator

- 22 -

changed to point to the temporary location where the

value is to be stored. Each RST entry also contains

fields which are used to fla~ a re~ister with

information to be used in selecting a register to be

stored.

TT: A temporary tahle can be implemented in various

ways. Fdr the purpose of this discussion, any

implementation is acceptable. One strategy is to

allocate a .!lfili temporary each time one is needed, ir

which case all that need be remembered outsirle the MRT

ts the number of the last temporary allocated. A more

efficient strategy is to reuse temporaries after the

results they hold are used, in which case the TT must

have an entry for each temporary allocated.

2.3 THE 'GETREG' ROUTl~E

The internal tables descrihed in the preceding

section allow co~puted values to be left in the registers

where they are computed. If such tables are not used, every

computed value must be immediately stored in a temporary,

which ls clearly undesirable. If values are to be left in

registers, however, a routine must be provided which locates

- 23 -

free registers available for use. The paper refers to that

routine as the GETREG routine.

The GF.TRF.G routine is passed the name of a register

class as an argument. It cycles through that class looking

for a free register. If none are found, the routine picks

one of the registers and storP.s Its current contents in a

temporary, updattngs the MP.T entry pointing to that value.

The priorities used in selecting which register to store, if

there is a choice, are discussed in Chapter 3.

2.4 SOME OUESTIONS TO BF ANSWERFD

The previous sections give a brief introduction to

code generation in general. The remainder of the chapter

attempts to use the introduction as a framework within which

to outline exactly what aspects of code generation are to bP.

dealt with in Chapters 3 and 4. Among the questions to he

clarified are these:

1. What different types of machine structure ro the models

presented d~al with? Clearly there are many different types

of machines, ranging from machines like the 7090 with

special purpose registers, to machines l il~e the PDP-10 with

general purpose registers, to stack machines, anrl to

- 24 -

microprogrammed machtnes capable of complicated runttme

checks. Stmilarly, machines have dtffprfn~ adrlresstng

mechanisms: byte-addressing, word-addrrsstn~, indexed or

untndexed, based or not based, directly adrlressahle or pa~ed

addressable (as in many small machtnes), etc. The models

presented are not capable of handling all possihle machine

structures.

2. What kind of values do the models presented deal with?

Possible values in a computer are integers of different

preciston, booleans, bitstrtn~s, floati~g point numbers of

different precision, decimal numbers, character strin~s,

addresses, etc. The present research is not concerned with

All. of these possible types of values.

3. How are values allowed to map into the machine

structure? For instance, are bitstring values to he allowed

to cross word boundaries? How are different values assumed

to be accessed?

4. What is meant by 'machine description'? Intuitively, one

might expect machine descrtption to entail somehow listing

registers, core memory units and opcodes. On the other

hand, might not a low-level code sequence, whtch

accomplishes some primitive function such as subtraction or

- 25 -

loading a value, be considered to be a reasonable part of a

'machine description'? This question is discussed in

Section 2.9.

2.5 ASSUMPTIONS AB0UT MACHINE STRUrTUR~

The present research makP.s several simplffyin~

assumptions about the structurP. of possible tar~et

machines. The assumptions are spelled out in more detail in

r.hapters 3 and 4.

Registers: The machine is assumed to have a set of registers

for manipulating values. These may be either special

purpose or general purpose registers. The machine specifier

describes the registers by naming them, groupin~ them into

classes, and defining how they are used in manipulating

data. Chapter 3 describes more precisely how this is done.

Core Memory: The whole of core memory f s assumed to be

directly addressable (as opposed to the paged adrlressahil ity

found on some small machines). It is assumed that the

addressing is done fn a machine instruction by either a

displacement and an index, or by a displacement, an index,

and a base. The machine specifier must Indicate which

registers may be used as indices and bases. In generating

- 26 -

an address, DMACS creates an internal 'generated address'

consisting of a displacement, index, and hase (the index or

base may be nil). If both index and base are present in a

generated address, however, and the particular target

machine allows only an index, then DMACS generates cone to

add the base and index together, thus transforming the

'generated address' into a 'machine address' for that target

machine.

2.6 ASSU~PTIONS ABOUT VALUFS

In a complex real-world compiler, many types of

values can be used as operands. Elson and Rake (9) discuss

some of the involved problems of writing macro definitions

for a complicated langua~e CPL/I). The present work does

not attempt to handle the complexity of such a langua~e;

rather, it makes certain simplifying assumptions as to the

types of values to be allowed as operands. The restrictions

allow a reasonably simple model of code generation to be

constructed which exposes some of the basic conceptual

processes and problems involved, without hecomtng bogged

down in a huge ad-hoc mess.

- 27 -

The model of a code generator presenterl in thfs paper

fs set up to handle values which, fntultfvely, are of the

fnteger (or fnteger bit-string) and floating point variety;

values which are manipulated via regf sters and thus are no

larger than the regfsters used on the particular target

machf ne. Character-strfng and decimal values are not

consf dered.

2.7 HOW VALUES ARE REPRESENTED ON THE MACHINE

There are three general classes of locations for

values on a machine: a value can be In a re~ister, it can

be simply accesslhle Jn core, or It can be in core but not

simply accessible. A value Is simply accessihle If its

address can be put directly Into a computational machine

instruction, such an Add Instruction. (Thus a value may he

addressable In a special load Instruction yet not simply

accessible). For instance, a byte on the IBM-360, even

though addressable, is not simply accessible for

computation. It must first be isolated in a register.

Let us examine how a value mi~ht fall into each of

these classes.

- 28 -

Registers: The only values which may be in a register Cat

the start of a macro expansion) are values computed hy

previous macro lines.

Simplv Acccessible: Simply accessible values inclu~e ~oth

results of previous macro lines which have been stored in

temporaries (which are assumed to be simply accessible

locations), and values declared in the source pro~ram which

have been mapped into simply accessible core memory units.

Chapter 4 explains exactly how this mapping ls done.

NQ.t Simply Accessible: This class is composed of values

which cannot be directly operated upon by computational

instructions. They must first be isolated in a register

before they can be used. Such values inclurle individual

bits, and bit-strings w~ich are not on wholely accessahle

boundaries.

2.8 LOAD/UPDATE ROUTINES

The fact that not all values are slmply accessible

gives rise to the concept of a load/update pair: a pair of

routlnes to access and to update a value. The idea of

characterizing a data item by a pair of load/update routines

was first formulated by Strachey (11). A simple example of

- 29 -

such an unaccessible data Item is a bit-string ~ithin a

word. Its location might be represented by an address

(perhaps indexed and based) and a bit displacement within

the addressed memory unit. Its load/update pair might

consist to two routines which take the 'location' and

generate code as follows:

1. load Routine:

a. load the memory unit Cle., word) into a register

b. shift left to eliminate high-order bits

c. shift right eliminating low order bits and

right-adjusting the value in the rP.gister

2. Update Routine:

a. shift the new value to the correct tar~et position

b. load the target word into a register

c. use a bit mask to zero out the target byte

d. OR the two words together

e. store the result

In practice such a value has two kinds of 'location'

and correspondingly two load/update pairs: one for when the

location of the string within the word is known at compile

time, and one for when it is computed at run time. The

routines are further complicated if a value extends across a

- 30 -

word boundary.

The load/update prohlem arises from the fact that

programmers are interested in values that do not map

directly into accessible units. Generally only an address

can be put into a machine instruction. If a computational

machine instruction could accept an address, starting bit,

and bit length, then the complexity of the load/update

routines would disappear. An alternate approach might be to

have special hardware load and store instructions to access

bits of a word. This would retain the lond/updnte

framework, but the routines would consist of only one

instruction.

2.9 MACHINE DESCRIPTION

Using DMACS, a machine specifier can implement a

langua~e by describing various features of his machine. In

the next two chapters, the details of such a description are

examined in more detail.

Parts of the 'description' consist of listing names

of registers and of core memory units and of rlescrih,ing how

these relate to one another. Another part of this

description, however, involves writing short low-level code

- 31 -

CHAPTER I I I

A CODE GENERATOR AS A STATE Mft.CH lt!E

3.1 OVERVIEW

3.1.1 THE STATE MACHINE

Chapter 3 presents a model of the logic of a

computational macro. This morlel pictures a corle p.enerator

as a state machine whose state is rletermlnerl by the location

of the values used to generate corle. The location of a

value may he an accessihle core location, a non-accessihle

core location, or a register. In the model, each

computational macro has one or more permltterl states for its

operands from which corle can be emitted. To ~enerate corle

for a macro, the code generator must make a transition into

one of the permitted states and emit a particular code

sequence from that state.

In a procedural macro definition langua~e, the user

explicitly specifies these transitions himself. In a

descriptive system such as DMACS, logic to perform

transitions is deduce~ automatically from machine

descriptive information. The cbapter shows how such an

automatic mechanism is built into D~ACS to perform

transitions given a machine description rlescri~inp. re~ister

- 33 -

structure, permitted states for computation, and cone

sequences which perform these computations. Not

surprisingly, the automatic mechanism makes certain

restricting assumptions as to object machine structure.

Thus, the model is a somewhat restricted one prPsented to

isolate the basic ideas involved, and to provirle a basts

upon which a more general system can be built.

3.1. 2 THE STATE OF THE M/ICPH!F.

In this chapter, the term 'state' is used in two

contexts: the 'state' of the code ~enerator as a whole, and

an tnput, output, or permitted 'state' of an Tndivinual

macro.

1. The state of the code generator is determined hy the

locations of all the values which are to he used as

operands to any macro.

2. The input state of a macro is determined hy the

location of the values passed to it as operands.

3. A permitted state of a macro is a particular

configuration of operand locations from which code can

be emitted.

4. An output state of a macro is determined by the

location of the result of the conputatlon.

- 34 -

3.2 A SIMPLF EXAMPLF

The following simplified example illustrRtes bow the

state machine concept is used. The example concentrates on

the integer addition for the IPM-360.

1. Input States: For simplicity, let us restrict operands to

two locations:

1. registers of class 'R' (abhreviated 'R')

2. accessible storage (abbreviated 's')

Thus input states for two operands can be rlescrlherl hy the

following pairs (s,s), Cs,R), CR,s), or CR,R).

2. permitted States: The IRM-360 has two instructions which

perform integer addition. Permitted states are (R,s),

(s,R), and CR,R). From CR,s) and Cs,R) a

storage-to-register Add instruction, 'A', ts emitted. From

CR,R) a register-register Add instruction, '~R', is

emitted.

3. A Machine Independent Macro: If the source lanrua~e

allowed both integer and floating point operanrls, the

language implementer mirht write a machine lnrlependent ADn

macro with logic as follows:

- 35 -

are discussed In Chapter 4. A more detailed description of

the 360 1 s register structure is found In Section 3.7.

Next, the machine specifier defines inte~er addition.

IADD al,a2 (commutative)
from R(al),R(a2) emit AR al,a2
from R(al),S(a2) emit A al,a2

result R(al)
result R(al)

This description defines two permitted states, code to he

emitted from each state, and the location of the macro

result. In the first state, both operands are In rP~istP.rs.

From this state, an 'AR' instruction Ts to he emitte~. The

result is to be recorded In the register containiny, the

first operand. The declarations are used to fill out the

MIML macro. The attrlhute 'commutative' Indicates that

addition is commutative, and thu~ R(a2),S!al) wl11 be

included as a permitted state without heinR declared

explicitly.

Notice that the declarations are essentially a

description of IRM-360 integer addition.

5. Advantages: Recause the state machine model is huilt

into DMACS, both the lan~uar-e Implementer and the machine

specifier find their tasks li~htened. The langua~e

implementer can write a very simple source macro without

worrying about machine structure. He need not perfor~ tests

- 37 -

to ascertain the state of the operands, nor transform the

input operand state Tn any way. The machine speclf ier, in

turn, Is able to implement the macros by descrihing rls

machine without worrylng about the constructs of ths source

language or the Internals of the compller.

6. The Role Of DMACS: The machine specifier defines his

register structure, the permitted states filling out each

'primitive' (such as IAOD) in the machine independent

macros, the code sequences to be emitted from each permitted

state, and his data pathways includlng load and store

instructions. From this descriptive lnformatTon, DMArs must

deduce three things: how to select a tar~et permTtted state

for a glven input state, how to reach that state, and how to

obtain a free register of a given class when, In the process

of making a transTtion, it needs to load a value.

The remainder of this chapter deals with these topics

in more detaTl and discusses the prohlems Tnvolved.

- 38 -

3.3 MACHINE STRUCTURF

3.3.1 REGISTERS

The code generator must he able to manipulate values

in and out of registers to attain permitted states. In

trying to incorporate automatic register handling loFic into

DMACS, there are two conflicting goals. First, the user must

be able to describe his registers flexihly enou~h to inclune

a reasonably large class of machines. Second, there must be

enough restrictions so that the lopic which attains

permitted states can be generated from this description

automatically. These two goals conflict since the more

flexible the model is, the harrler it is to incorporate into

an automatic system. The assumptfons as to register

structure outlined in this section are restrfctive, but

provide a base for later extension of the model.

In attaining permitted states the system must he able

to find a free register of a given class, to loan and store

the contents of any register, and to transfer a value from

one register to another. To allow this, the machine

specifier defines the following:

1. The Machine Registers: fR =(rl,r2, r3 ••• rn)

- 39 -

2. Classes of Registers: (Rl,R2, ••• Rn); Rf C Q

The classes are defined so that every register is in at

least one class, ff only by itself, and so that any two

classes are either subsets, equal, or dfsjoJnt. There

Ts no partial overlap.

3. Pathways to Core: Each class of registers is assumed

to have a direct path to and from core. There is no

need to go through a seconrl rP.gfster ir. either loarlf ny,

or storing. This Ts a simplffyfn?, assumption which

might be relaxerl in a more powerful extension of the

model. CA stack machine, for instance, rloes not conform

to this assumption). The machine specifier must ~efine

the load and store instructions used Jn these pathways.

4. Paths between Registers: The machine specifier must

define any availahle rep,fster to rer,fster transfers.

5. Relationships between Registers: The machine

specifier may define relationships hetween registers.

These can be used for such register-register

relationships as even-odrl pairs. He mi'!y also specify

that In certain conditions the use of one register

implies that a relaterl register must he made availahle

as we 11 •

- 40 -

In this fashion, the user descrihes his register

structure. Section 3.3.3 descrihes how this lnfornatfon Ts

used by DMACS to construct the GETREG routine to o~taln a

free register of a gfven class.

3.3.2 SAMPLE REGISTER OESrRIPTION: IRM-360

rclass REG:r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll

rclass ODDREG:r3,r5,r7,r9,rll

relation EPAIR (storerl:0DDR~~)
r3:r2
r5:r4
r7:r6
r9:r8
rll:rlO

rpath WORD->REr: L RFG,WORD
rpath REG->WORD: ST RFG,WOPD
rpath REG->ODDREG: LR ODOPFr.,RFr

These declarations deff ne two register classes. For

each member of the class ODDREn, a related EPAIR register is

declared. The attribute (stored:ODDREG) means that when an

ODDREG register is called for, its related F.PAIP reyister

must be made available as well.

- 41 -

3. 3. 3 THF I GETRF.f: I R0UT I ~~E

The GETRF<~ routine is called by m~fl.rS when in

performing a transition a free register of a ~iven class is

needed. The routine must be adjusted by DMArS using t~e

machine specifier's description of his register structure,

so that it operates correctly for the particular mac~ine

registers and re~ister classes involved.

The GETRF.G routine cycles through the register class

it receives as an argument attempting to find an empty

register. If none are empty, the routine must croose a

register to store based on the 1 fla?.s 1 attatched to the

registers. The flags are used to protect values in

registers so t~at they will not he stored unless necessary.

The mechanism for flagging is complicated hy the fact that a

macro can be called as a suhroutine during a given macro

expansion. The priorities used in protecting reglsters are

discussed in more detail in Section 3.5. The net effect of

the priorities Is that the most recently set registers are

stored last. The GETREG routine also must hanrlle situations

when related registers must be freed at the sane time.

- 42 -

3.4 THE AUTOMATIC TRANSITION

3.4.1 INTRODUCTION TO THE TRANSITION

Performinr, a transition involves transforming any

possible input state of a macro into one of that macro's

permitted states. The input state of a macro is determinerl

by the location of the values passed to it as operands.

These operands can he classed as follows:

1. s - in an accessible stora~e location in core memory

2. Ri - in a register of register class Ri

3. Rjf - in a non accessihle core location, requiring a

code generating load function which will isolate the

value in a register of class Rj. (The concept of having

to apply a function to an operand could apply to rnorle

conversions as well as to loading non-accessihle

values. Thus, although this paper deals only with Rjf

values in a limited context, the concept involved is a

more general one.)

For the sake of simplicity, this section deals only

with two-operand macros, (such as Arn X,Y). For a two

operand macro, input states are taken from

(s U Ri U Rif} X (s U Ri U Rif)

Permitted states are taken from

- 43 -

Cs U Rf) X Cs URI)

On a machine that has one class of registers (say R),

Input states are Cs,s), Cs,R), Cs,Rf), etc. Permitted

states for an arbitrary macro might be Cs,R) and CR,R).

Thus a reasonable transition to make from Input state CR,s)

Is to permitted state CR,R).

Performing the transition involves choosln~ a tar~et

permitted state to aim for and a path to reach that state.

In the remainder of the chapter, we assume that tbe task of

performing a transition can he seen as two distinct

problems:

1. Selection of a tar~et permitted state for each Jnput

state, based on the cost of transforming each operand

location.

2. Given an input state and its target state,

determinfng Jn what sequence changes are to be made.

These two steps are closely related. On some machines, the

two steps can not be performed independently. For Jnstance,

on a stack machine one can not consider the cost of

transforming the location of each operand indfvirlually

wf thout considerin~ the sequence of transformations. On a

machf ne that conforms to the assumptions that we have made

- 44 -

about regf ster structure, however, the separatTon of these

two steps is possTble.

3.4.2 SELECTINn A TAR~ET STAT~

The selectTon of a target state for each possthle

input state of a macro is the first step Tn settTn~ up the

automatlc transition. If there is only one permitted state,

this selection is trtvfal. Otherwise a target for each

input state must be selected from among several permTtted

states. Clearly, some criteria is needed for measurTn~ the

cost of changlng states. For each input state, the permitted

state yielding the lowest such cost can then he selected as

a target. The cost criteria used in this section is the

number of instructtons require~ (not countfng inadvertent

storing of values since these are not predictahle in

advance)~ Since we assumed in section 2.3 that each

register has a direct path to and from core, the maxiMum

cost of changing the location of one operand is 2 (storing

the value from one register, and then loadlng it into a

second). Rif values, which require a function to load them

into a re~ister, are treated as if they were already in that

register since the function is to ~e applted in all cases

and is thus a constant cost.

- 45 -

Example: Assuming two register classes, R an0 R', anrl a

register-register transfer, sample costs are:

(input
(s, s)
(s, R)
(s, R)
Cs, R)
Cs, Rf)
(Rf,Rf)

state)(permltted state)(cost)
(s, R) 1
(s, R) 0
CR,s) 2
Cs,R') 1
(R, R) 1
(R,R) 0

Figure 3.1: Sample Transition Costs

(comment)
1 oacl

store, load
transff'r
load

An alternate cost criteria might be instruction

execution times. In either case, the target selection

algorithm simply selects for each input state that permitted

state which can be reached at lowest cost. The selection of

a target state for each input state need not he performed

every time the macro Ts called. It can he compiled into a

table at machine description time.

3.4.3 SFQUENCIN~ THE TRANSITION

Once a target state has been selected for each lrput

state, there remains the prohlem of deciding the order in

which changes are to be made. This chapter first outlines a

general strategy which accomplishes sequencing for all

possible machine structures. The general strategy is called

'blind' sequencing for reasons that become apparent. The

- 46 -

Algorithm to select a target permitted state
for an input state of a macro

I n pu t s ta t e : i = C i 1, t 2)

Permitted states: pJ = (pJ1,pJ2) J = 1,n

j = 1
target= nil
mincost =OO

total cost=
costCl1,pjl)+costCi2,pj2)

target = J
mincost =

total cost

NO

NO j =j +1

The function cost(i,p) determines the number of instructions
required to change i to p.

- 47 -

chapter later dfscusses a second strategy called

'predictive' sequencing which, when posslhle, ml~ht he more

efficient. The following discussion concentrates on 'blind'

sequencing, since blind sequencing always works and Is a

good vehicle for outlining the problem lnvolverl.

To Illustrate the problem, let us consf~er the

transition from input state Cs,s) to target state CR,R).

There are two possfble paths, as this graph indicates:

R,R

In the graph, each node represents a state, square norles

represent permitted states, and paths from one state to

another are represented by arcs. The arcs are labelerl to

indicate what operatfon is being performed to whfch operand.

Thus 11 indfcates that the first operand fs befng loaded

when that arc is followed.

In the graph, there are two paths from Cs,s) to

CR,R). In this particular example, the paths are equally

efficient and either can be selected. An Important thing to

notice Tn this example Ts that every arc connects one

- 48 -

posslble lnput state to another. This Is true because we

have taken all possible comblnatlons of locations as

possible lnput states. Since each arc must lead to another

possible Input state, each state can be examlned tn turn and

one labeled arc can be drawn from Tts node. Drawing this

one arc for each state completes the graph. A decisfon

procedure for determining whtch arc to draw for a ~tven

state Is glven In Figure 3.2.

3.4.4 ACCIDENTAL TRANSITIONS

There ts one complication to be const~ererl in

performing the sequencing. It Is Illustrated below:

Figure 3.2: Sample Sequencing Graph

In input state (R,Rf), the first operand is already in a

register. A code generating function is to be applied to

load the second operand. The function can ?enerate cone

using registers, and even might call macros as suhroutines

to perform runtime computation. For instance, to load a hit

- 49 -

Algorithm For Blind Sequencfng

Problem: Gfven an input state and a target state, determfne
what operand to transform first. (Making this decision for
each possible Input state completes the graph).

Each operand can be expressed as one of the following:

Input Target
s s
R R
Rf R' CR' f. R)

The first operation to be performed to a glyen operanrl can
be expressed as follows:

Target
Input s R R'

1=' load'
s n i 1 1 1 st='store'
R st n i 1 t t='transfer'
Rf fl f 2 f 3 ff ='apply

function

These operations can be given priorities:

st > fl > f3 > f2 > t > 1

The effect of the priorities Is to give highest precedencP
to storing values, next highest to applying functions, then
to register transfers, and finally to simple loads.

Sequencfng Is done by labelling each operand of each input
state by st, fl, f2, f3, t, 1; and then drawing the arc
corresponding to the operatfon with the highest priority.
If both have equal priority, then either can be picked.

Ft gure 3 •. '3

- 50 -

f'

value extending across a worrl boundary it is necessary on

the 360 to load a register pair and perform double worrl

shifts to isolate the value. Thus, the function may rrquire

the register containing the first operand to he stored. If

this happens, a transition to Cs,R) occurs, rather than to

CR,R). This is called an accidental transition from an

unstable state to an alternate state. To accomodate such

unexpected but unavoidable transitions, the graph is

augmented to include dotted arcs from such unstable states

to the appropriate alternate state.

G
' R,R

Figure 3.4: An 'Unstable' State

The graph fn Figure 3.4 indicates that applying f2 to the

Input state CR,Rf) should lead to CR,R) but mipht lead to

(s,R). Full examples of such graphs are given in Figures

3.5 and 3.6.

Let us consider for a moment how such acctrlental

transtttons can be implemented Jn DMArs. In the performance

of the transition CR,Rf)->CR,R), the register containing the

- 51 -

f 1

input states: Cs U RU Rf) X Cs U RU Rf)
permitted states: CR,s), CR,R)

' ~---

Figure 3.5

input states: Cs U RU R' U Rf) X Cs U RU R' U Rf)
permitted states: CR',s), CR',R) R()R' = 0

Figure 3.6

Blind Sequencing Graphs

- 52 -

first operand should not be stored unless necessary. This

can be assured by flagging that reglster's entry in the RST

(register state table). When storing any reglster, the

GETREG routine must attempt to respect these reglster

flags. After the function has been completerl, the corle

generator must check to see ff the first operand is still ir

a register. If not it must follow the dotted arc to reach

its next state.

3.4.5 A REVIEW OF SEOUENCING

The sequencing strate~y descrihed in the previous

sections is called 'blind' sequencing because it involves

applying load functions without lookiny ahead to see how

these functions behave. Consirler the followin~ situntion:

f 1

R,R

Figure 3.7: Sequencing roraph

'Blind' sequencing arbitrarily selects one of these paths.

If it is possible to determine in advance whether a r,iven

function can be applied without disturbing a value alrearly

- 53 -

in a register, then a more effective strategy can he used.

The second strategy is called 'predictive' sequencing.

Predictive seouencin~ is not so ~eneral as hlinrl sequencin~

since for an arbitrary machine with register-register

relations like even-odrl pairs, the exact neerls of an

arbitrary function (even if quite simple) may he very

difficult to predict and control.

This chapter concentrates on the blinrl seauencing

approach. Predictive sequencing is mentioned primarily to

put the problem in perspective. The main argument aRainst

developing a general predictive sequencing strategy for an

arbitrary machine is that it would be very difficult to

design, and would run the risk of using more instructions at

compile time t~an were ever saved at runtime. In code

generation, it is generally true that if elaborate

optimization is to be done, it is most profitahly done on a

fairly global basis, such as allocating registers over

loops, removing invariance fron loops, consoli~atin~ co~mon

subexpressions, etc. Rlind sequencing has the arlvantape of

affording a degree of local optimization (compared to a

system which stores all registers hefor~ callinp a function)

without any really ela~orate machinery.

- 54 -

This concludes the introduction to sequencing. Let us

step back for a moment and evaluate briefly what these hlfnd

sequencing graphs imply. A blind sequencing graph is

compiled at machine description time by DMA~S. Any

particular graph applies to a particular machine, hut the

concept of such a ~raph is a general fornal ism anrl is

a pp l i e d to a l l mac h i n es •

Figure 3.8: Sample Sequencing r.raph

To understand the si~nifigance of this fact, let us consiner

what factors govern how frequently the accidental transition

is followed from CR,Rf) in Figure 3.8. The frequency

depends both on the source program and on the tar~et

machine. If the source program uses data-types which

require simple accessing functions, then the dotted arc will

tend to be followed less often than if more complex

data-types are used. Similarly, if the machine !--as many

available registers, the dotterl arc will tend to be followed

less often than if the machine has few of them.

- 55 -

Notice, however, that neither the pro~rammer nor the

machine specif ler need even know that the pronlem exists.

For that matter, neither need the language lrnplementer.

Only one person need ever worry about ft- the DMACS desf gner

who does all the worrying for everyone.

3.4.6 A GENERAL OVERVIEW OF A TRANSITION

The automatic transition mechanism looks at the type

of a macro's operands, looks at the permitted states, and

then Initiates one or more transformations to attain one.

This process can be described in general terrns:

1. A system Is in a given state (certain values ar~ f n

certain locatfons).

2. It fs desfred to transform the system to a new state

wf th certain properties (particular values in particular

locations).

3. Functfons are avaf lable which can effect a desired

local change to J2.9L1 of the system, but with possihly

unpredictable side-effects. CA load function applfed to

an Rif value might store an arbitrary value from a

register).

4. It is desfred to make a sequence of such local

changes and still have the resulting gloral state

- 56 -

well-defined.

To accomplish this goal, the mechanism that generates

permitted states must be able to detect when one function Tt

applies stores a register that it expected to be loaded, and

either reload that value or else pick an alternate permitted

state. Two potential problems in a system of this sort are

deadlock and thrashing.

1. Deadlock: Deadlock occurs if a value ts irrevocably

locked into a register by the flagging mechanism, so that it

can not he stored. If this were possihle, it is easy to

imagine a situation where a macro called as a suhroutine

might be unable to obtain the registers it required. Such a

deadlock can not occur in the system outlined here, since

the regis~er flags are only interpreten as requests that a

register not be stored unless necessary.

2. Thrashing: In section 3.4.4, accinental transitions were

described. In such transitions, an attempt to reach one

state results in an inadvertent transition to an alternate

state. One might wonder whether such inadvertent

transitions could be repeated indefinitely. If so, then a

thrashing situation might result, in which each sucessive

attempt to reach a permitted state is thwarted. Fortunately,

- 57 -

of a load function may result in macros being called as

subroutines, each macro invocation is numbered

sequentially. That number is userl to flag registers. In

obtaining a register, the GETREG routine uses the following

priorities:

1. an empty register

2. an unflagged register

3. a register with the lowest flay (ie least recently

set)

Thus the most recently computed values are the most

securely protected. As a result, if a regJster is

loaded and no arbitrary functions are called it can he

relied upon to remain in its register.

The process of macro expansion involves performing

the fo 11 owing steps, I, I I, and I I I in sequence:

I. Protect Values Already in Registers: FJrst any values to

be used by the macro which are alrearly in the correct

registers are flagged. Such values include operanrl values

as well as values to be used as indices or bases to obtain

an operand value. If a value in a register requires that a

related register be stored, then make sure that register is

stored and flag it as well.

- 59 -

determine
Input
node

done

apply
ope rat ion
to operand
as indicated
by arc
from node

has an
accidental
transition
occurred ?

y

fo 11 ow
no r01a 1
arc to
next
node

follow dotted arc
to next node i--~~~~

Figure 3.9: Performing a Transition

II. Perform the transition to a Permitted State: Motice

that it is in the process of following the sequencin~ arcs

that the load functions and the GETR~r. routine are callerl as

subroutines. Load functions are called when a load is

applied to an Rif value. The GETRF~ routine is called when

a load or transfer arc is traversed.

I II. Perform Emission and Bookkeepin~:

1. For each operand In storage, loarl any index or h~se

values which are not already loaded.

2. Erase all RST flar-s set by this macro.

3. Emit the code sequence associated with the per~itterl

- 60 -

node attained uslng the sequencJng graph. The corle sequence

was specified by the machine specifier when rlefTnJng

permitted states.

4. Erase the operands from the MRT and RST

5. Record macro result, if any, in the RST anrl MPT

3.6 AN EXTENSION: OPERATIONS TO MEMORY

A useful extension to the state machine concept, as

outlined, is to incorporate 'operation-to-memory'

instructions, such as 'arlrl-to-storage'. It is simple to

Tnclude this common class of instructions hy allowing the

user to specify alternate dPstinations for a macro rPsult.

Example: For the PDP-10, whlch has such iPstructions, an

OMML definition for IADD {defined in sectlon 2.1.2) can he:

IADD al,a2
from REro{al),Rfr,{a2) emit IADr al,~2
from REr,(al),WnRnCa2) emit tAnD al,a2

or emit IAnDM al,a2

result pi=r(al)
result RFr(al)
result worn.Ca2)

(The !ADD and 1Af11"H·1 instructlons being emitted arP Pl1P-10

opcodes.) The second state declaration indicates that if al

is in a register, and a2 is in core, then an !ADD

instruction yields a result in the register, and an l~rrm

instruction yields a result in core.

- 61 -

To take arlvantage of such information, only four

modifications neerl be made to the logic outltne~ ir. this

chapter:

1. When emitting corle: If such a choice exists ~nrl the

core location is a temporary, then def~r emitting the

instruction, and fla~ the Register in the RST,

indicating the two instructions and the core location.

2. In the GETREri logic: emit an operation-to-memory

instruction in preference to explicitly storing a

value.

3. In selecting a permitted target state: If there is a

choice of input states due to deferral of such an

instruction, then evaluate hoth possihle input states

and select that one whose target has least cost. If the

selection requires emission of an operation-to-register

instruction, continue to ~efe.r its emission until it is

clear that the value need not he storerl.

4. After sequencing and prior to corle emission: First

emit any necessary op-to-register instructions for input

operands which have been defered.

- 62 -

Although these sirnple modifications to the DM~rs loric

certainly lead to no dramatic gains in efficiency, they do

represent a useful extension to the state machine concept.

3. 7 SAMPLE M/\CH I t!F: JlF.SrR I PT I OMS

This section outlines the loric of two simple

machine independent macros whfcr mir:ht he written in MP~!.

Then OMML descriptions of the ll~r~-360 flnrl of the PflP-10

which fill out the macros are given.

Machine Independent Macro Lo~ic:

macro MUL X,Y
if the types of X and Y are inte~er

then IMUL X,Y
else if the types of X and Y are floating

then F~UL X,Y
else error

macro SUR X,Y
if the types of X anrl Y are integer

the I SUR X, Y
else if the types of X and Y are floatin~

then FSUR X,Y
else error

OMML Machine Description of the IRM-360:

The IRM-360 has one set of registers for inte~er
arithmetic and another set for floatin~ point arithmetic,
and therefore has separate pathways to and from these
registers. For multiplication and division of inte~er
operands, even-odd pairs of re~isters are used.

- 63 -

rclass REG:r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll
rclass ODDREG:r3,r5,r7,r9,rll
rclass FREG:fr0,fr2,fr4,fr6.
relation EPAIR (stored:ODDRF.G)

r3:r2,r5:r4,r7:r6,r9:r8,rll:10

rpath WORD->REG: l REG,WORD
rpath REG->WORD: ST REG,WORD
rpath FREG->WORD: LE FREG,WORD
rpath WORD->FREG: STE FREG,WORD

IMUL ml,M2 (comMutatfve)
from ODDREG(ml),REG(m2) emf t MR EPAIR(ml),M2
from ODDREG(ml),WORD(m2) emit M EPAIP(ml),m2

result ODDRFG(ml)
result ODDPFG(ml)

(On the IRM-360, multfplfcatfon requires one operand in an
'odd' register. The multiply fnstructfon must refer to its
even pair.)

!SUB sl,s2
from REG(sl),REG(s2) emit SR sl,s2
from REG(sl),WORD(s2) emit S sl,s2

FMUL ml,m2 (commutative)

result RFr.Csl)
result RH~Cs2)

from FREG(ml),FREG(m2) emft MER ml,m2 result FRFr.(ml)
from FREG(ml),WORD(m2) emf t ME ml,m2 result FRFr.(ml)

FSUB sl,s2
from FREG(sl),FREG(s2) emit SER sl,s2 result FRFr-(sl)
from FREG(sl),WORDCs2) emit SE sl,s2 result FREr,(sl)
from FREG(s2),WORD(sl) emft LNER s2,s2;AE s2,sl result FRF.G(s2)

(Notice that since ~ 'complement regfster' Instruction,
LNER, exists for floatfng point, a state can be specified
with s2 Jn a register and sl in core).

OMML Machf ne Descrf ption of the PDP-10:

The PDP-10 has one set of registers for both integer
and floating pofnt arithmetic. Since the PDP-10 has
operation-to-memory Instructions, all memory-register state
declarations Include two alternate destinations.

rclass REG:a,b,c,d,e,f,p.:,h, l,j,k, 1,m,n
rpath REG->WORD: MOVEM REG,WORn

- 64 -

rpath WORD->REG: MOVE RFG,WORD

IMUL
from
from

ISUB
from
from

FMUL
from
from

FSUB
from
from

ml,m2 (commutative)
REG(ml),RFG(m2) emit IMUl ml,m2 result REG(ml)
REG(ml),WORD(m2) emit lt1UL ml,m2 result RFn(ml)

or emit IMULM ml,m2 result WORD(m2)

sl,s2
REGCsl),REGCs2) emit ISUR sl,s2 result REnCsl)
REG(sl),WORD(s2) emit ISUR sl,s2 result REG(sl)

or emit ISURM sl,s2 result WORD(s2)

ml,m2 (commutative)
REG(ml),REG(m2) emit FMPR ml,m2 result RE~(ml)
REG(ml),WORD(m2) emit FMPR ml,m2 result RFG(ml)

or emit FMPRM ml,m2 result WORD(m2)

sl,s2
REG(sl),REG(s2) emit FSBR ml,m2 result RErCsl)
REG(sl),WORD(s2) emit FSBR ml,m2 result REn(ml)

or emit FSRPM ml,m2 result WORO(m2)

3.8 SUMMARY: THE STATE MArHINE

The chapter outlines how a code ~ener~tor performing

computations can be pictured as a state machine. Then it

shows how the state machine can be formalized and

incorporated into DMACS, a system for building machine

independent code generators.

Once the state machine model is incorporated into

DMACS, it becomes a tool that a languar,e implementer can

use. It is a convenient tool since it frees the language

implementer from worrying about machine structure, from

- ~5 -

havin?. to perform tests to determine input states to hfs

macros, and from having to implement transitions to

permitted states. Thus, the macro lo?ic that the languaRe

implementer specifies need only deal with particular

semantic features of his source language. Therefore the

semantics of the source langua~e are logically divorced from

any one target machfne's structure. As a result, these

macros become much sfmpler to wrf te. Also, once these

machine independent macros are written, they can be

fmplemented for a varf ety of machines from a machine

description.

- 66 -

CHAPTER IV

DATA REFERENCE MACROS

4.1 INTRODUCTION

4.1.l OVERVIEW

Chapter 3 described a state machine model which is

built into DMACS and used as a tool to create machine

independent macros which can he filled out from a machine

description. The state machine is useful to help model

computational macros.

Chapter 4 turns to the problem of achieving the same

machine independence for data reference macros. To achiPve

this goal, a data definition facility is built into Dr-1/\rs.

Target
Machine
Description

Source
Data
Declaration

DMACS

!
Source Data
Described
For Target
Machine

- 67 -

A machine specifier describes his machfne memory structure

and describes how source data Items are mapped Into that

memory. From this description OMArs characterizes source

data Items In terms of the primitives of the rlata definition

facility. The languar-e designer writes his data reference

logic In terms of the primitives of the facility using two

built-in functions, called the INCREMENT and CONVERT

functions. These functions operate on the primitives of the

data definition facility. In effect, these two functions

represent a machine inrlepenrlent model of data reference

logic. A langua~e implementer can write rlata reference

macros in terms of these built-In functions without

worrying about how the data Items of his lan~ua~e map Into

the core memory of a particular machine.

Chapter 4 is not an extension of r.hapter 3. It

pursues a similar goal in a new area: machine independence

for data reference macros similar to that acheived in

Chapter 3 for computational macros.

4.1.2 DATA REFERENCE

This section introduces the reader to the term 'rlata

reference' as userl in this chapter, and gives a simple

example of data reference macros in action. The data

- 68 -

reference constructs rlealt wfth fn thfs chapter arP

subscrlpterl structures as found fn PL/I. Pl/I Ts cliosen

both because Tt is a well known langua~e and also hecausP it

has powerful data referencing constructs. For simplicity

the chapter deals only with structures whose size is static

and known at compile time. This restriction Pli~inates some

of the messiness of Pl/l's structure implementation and lets

us concentrate on the basic problems of mokin~ such

references machine independent. If we allow dynamically

varying structure sizes, then we must worry about w~at loplc

can be peTformed at compile time and w~at logic must be

performed at run time by p;enerated corle. Restrictinp. our

attention to static structures frees us to concentr~te more

fully and more clearly on machine independence of datn

reference, rather than on the details of implernentin~

dynamic structures for PL/1. The restrictions still allow

useful and flexihle data referencing constructs.

A sample structure is the following:

declare 1 A (10) fixed,
2 X,
2 B (10),

2 Q (2);

3 y (3),
3 r. (10),
3 Z,

This declaration defines a subscripted structure. The

- 69 -

A(1)

.
A(lO)

x
B (1)

.
R(lO)

Q(1)
Q(2)

x
B(1)

B (2)

8(10)

QC 1)
Q(2)

y (1)
y (2)

Y(3)
cc 1)
c (2)

.
C(lO)
z [1)

Lz

[
[

[

Sa~~le Structure Lnyout

- 71 -

i :S3 '5 A, I
l+l SUR ST I I B
1+2 SS I +2, J
f +3 SUR ST I +2, c
1+4 SS I+ 3, K

This approach can handle any structure referPnce in a

simple, general fashion.

Having df scussed the data refer~nce. macros to he

dealt with, we now present a simple example of how corlP

mlght be generated for the macros outlined above. This

simple example assumes that the Items all represent full

words of data on some particular machine. Later we shall

extend this sfmpllfied situatfon to allow more complicated

data items.

Each structure item is characterized by two numhers:

1. an offset from the beginnin~ of its su~structure
element
2. an element len~th

The structure item B, for fnstance, has an offset of 1, and

an element length of 14.

In gerreratfng cocie for the macros ahove, two runninsr.

totals can be kept: compf le time worrls- CW, and runtiMe

words- RW. The running total represents a rllsplacement Tntn

the structure. At the end of the set of macros, the

- 72 -

displacement points to the correct terminal data Ttem.

The following logic Illustrates how the macros might be

expanded. In the Interest of clarity and strnpltclty, the

code generated is not as optimal as Tt mt~ht be.

SS A,I records the offset of A, which Is O, In CW, and
generates code to multiply the element length of A (143)
by 1-1. The result of the multiplication becomes RW.
Cl-1 ts used tn the multiplication on the assumption
that the first (zeroth) element Is defined as A{l).)

SUBST 1,8 adds at compile time the offset of B, which is
1, to CW.

SS i+l,J generates code to multiply the element length
of B, 14, by J-1 and add the result to RW.

SUBST i+2,C adds at compile time the offset of C, 3, to
CW~

SS i+3,K generates code to add K-1 to RW. {no
multiplication is necessary since the element length of
C is 1).

The result of all the computation ts a pair of values

{CW, RW) which represent a compile time displacement and a

runtime index pointing to the desired data item. On a

machine like the IBM-360, this pair can be put rlirectly into

a machine instruction {ie. Load, Add) to access that data

item.

The above example illustrates the general operation of

data reference macros. It is shown later that an expanded,

but similarly clean, franework can be used to handle data

- 73 -

more complicated than the full worrl items of this example.

When data items are bytes and bitstrir~s, the lopic of the

macros is somewhat more complicated, and the eventual result

is not a simple full word pointer, but rather a 'location'

that can be input to a load/update routine which accesses

the data-item pointed to.

The most important point to notice in the example is

that each structure item is characterized hy an offset and

an element length ~nd that .Q!1 different machines, these

offsets and lengths might be different. A terminal data

item is also characterized by two arlditional parameters, a

load/update pair to access the item, and a rlata lenr,th which

need not be the same as the element length (For instance, an

array of 5-blt bitstrings alliy.ned on word boundaries would

have a data length of 5 bits, but an element length of one

word.) These too could vary for different machines.

4.2 THE DATA DEFINITION FACILITY

4.2.1 DESCRIPTION OF DATA

The previous section examined a simple example of data

reference. This section presents a more precise framework

for describing the type of data with which the chapter is

concerned. A data item can he characterized hy a 4-tuple

- 74 -

(OF,EL,DL,LU) describing how it ts Implemented on a

particular machine.

OF- the offset of the data item from the origin of the
structure element to which it belongs

EL- the element length of the structure element wbtch
that data item defines

DL- the data length- the length of the piece of data
which the data item represents

LU- the load/update pair which accesses the data item.

OF and EL can characterize any data item. DL and LU apply

only to terminal data items.

The following example illustrates how data items

declared tn a particular source program mt~ht he implemented

differently on two different machines, the IR~-360 and the

PDP-10:

declare 1 A packed,
2 B fixed,
2 C char (2),
2 D char;

The PDP-10 is a word addressed machine with 36 bits/wor~.

Assume a data item of type 'fixed' to be defined as a word

item, and a character to be defined as a nine bit item. The

IBM-360 is a byte addressed machine with 8 hits/byte.

Assume a fixed data item to be defined as a word (four byte)

item, and a character to be defined as a byte. Section

- 75 -

4.2.3 describes how such deftnitton ts none. r,ranting these

assumptions, the storage layout for structure A is as

follows:

PDP- 10:

A

B c ID I

< \'/Ord x word >
IBM- 360:

A B c -+ +--- H

[I lo]
< >

\... byte

Thus the data item 'A.D' is described as follows on the two

machines:

1. on the POP-10

OF- 1 word, 18 hits
EL- 9 bits
nL- 9 bits
LU- tre loadupdate routine for bitstrings

(Notice, as an aside, that if one wanted to pack 5
seven-bit characters into a wor<l, then instead of an
element len~th, this item would have two num~ers
associated with it, 36 and 5, Any index into an array of
such characters would be multiplied by 36 and divined by
5 to yield a bit displacement.)

2. on the IRM-360

OF- 6 bytes
EL- 1 byte
DL- 1 byte
LU- the load update routine for ~ytes.

- 76 -

4.2.2 DATA OEFINITION

To allow data reference macros to operate over rlata

which can be described differently for different machines,

certain prohlerns must be solved.

1. Suitahle prlMTtives must he founrl, flexihle enouph to

describe offsets and len~ths of rlata for a numher of

machines.

2. An algorithm must be written w~ich ta~es a structure

declaration and a machine rlescription anrl coMputes

offsets and lengths descrihing that rlata for that

machine, expressed in terms of these primitives.

3. Data reference ~acres must be written in terms of

these primitives, so that these macros will he machine

independent.

OMACS solves these thre~ prohlerns hy usin~ a huilt ir

data definition facility. The primitives of the rlata

definition facility are arldressahle units and hits. All

data Ts ultimately descrirerl in these terMs.

The remainder of the chapter first outlines how these

primitives can be dPduced froM information supplied hy a

- 77 -

machine specifier. The chapter then illustrates how D~~rs

can .h.!Ll....12. a languap.;e implementer write rlata reference mncros

in terms of these primitives.

4.2.3 DEDUCTION OF PRIMITIVES FROM A MACHl~F nEsrRIPTION

DMACS characterizes data for any machine in terMs of

addressable units and bits. Information to Make this

characterization must he deduced from the machinP.

description which specifies the followin~:

1. core memory units: The machiPe specifier rlefines his core

memory units (such as hits, bytes, worrls, double worrls,

etc.), how these map into each other, and wrich is

addressable.

A sample declaration for the IBM 360 follows:

mem BIT
mem BYTE (8 BIT, addressable)
mem WORD (4 BYTE, boundary 4)
mem DWORD (8 BYTE, boundary 8)

The attribute 'boundary 4 1 indicates that an
element with stora~e class WORD has an address
congruent to zero, modulo 4.

2. Source data types: The machine specifier must indicate

which storage unit each source data type Ts to he mapped

into. It is here that a character data item mT~ht he rlefinerl

- 78 -

as a byte on the IRM-360 ~nd ·as a hitstrinR on the POP-10.

For a languaRe where data can he packed or alli~ne~, hoth

storaRe units are indicated. DMArS uses this information

together with the core memory unit information to deter~ine

the offsets and len~ths of data items fro~ a source

program.

map fixed to WORn
map char to BYTE
map bit unalli~ned to BIT
map bit alligned to RIT alliRn WORn

The last declaration indicates that when a 'hit'

data item has been declared to he 'allipned', it

is to be alli~ned on a WOPD boundary.

3. Load/Update routines: For each of the memory units, the

machine specifier must define a load/update routine to

access source data items mapped hy the specifier into that

memory unit.

Some storaRe classes may hhave slrnple routlnes:

mpath WORO->RFG: l RFG,WORO
mpath REn->WORn: ST RF~,WORn
mpath BYTE->RFr,: SR RFC,,RFr,;tr PFCi,RYTF

(etc.)

Other load/update routines are more complicated,

and are discussed in section 4.2.4.

- 79 -

When a lan~uage data declaratlon ls processed,

Information from such a machine descrf otlon must ~e used to

compute offsets and lengths for each data item. The offsets

and lengths can each be descrihed by a 2-tuple (arlrlressable

units, bits>. The tuple (4,2), for Instance, stanrls for 4

addressable units and 2 bits.

As a simple example, consider the following

structure:

declare 1 Z,
2 A fixed,
2 B bit (12),
2 c bit (3),
2 D 2 hit alligned;

The following table indicates how the structure mipht he

described for the IRM-360 and the PDP-10:

(data)
A
B
c
D

(offset)(1 en,!!: th)
(0,0) (4,0)
(4,0) (0,12)
(5 , Ii) (0 , 3)
(8,0) (0,2)

IBM-360

(offset) C 1 Pngtr)
(0,0) (1,0)
(1,0) (0,12)

(1,12) (0,3)
(2,0) (0,2)

PnP-10

Each tuple represents addressable units anrl hits. A is a

fixed data item which is mapped into a full worrl on roth

machines (and hence 4 addressable units on the 360), and B,

C, and D are mapped into hits. The flowchart cf a general

algorithm which will take a structure and descri~e it using

these brimltives is given In Ff P-:ure 4.1.

- 80 -

This algorithm illustrates how offsets and element

lengths can be cQmputed for rlata items. Two stacks are

used: DISP and STACK.

DISP i t==t==1
o~ STACK s

The stacks are pushed each time a new structure level is

encountered, and are popped each time a level ends. F.ach

entry of DISP has two fields, one for addressable units and

one for bits, which record displacement from the he~innlng

of the current structure level. STACK ls used to store the

name of the current data item at each level. For each data

item an offset (OP)and an element length {EL) ls computed.

4. 2. 4 COMPLEX LOAD/ UPDATE ROUT lt!ES

The previous section pave examples of simple

load/update routines for addressable data lteMs.

Load/update routines for non-adrlressahle items Cie. hit

strings) are more complicated for several reasons.

1. They take as input an address, a ~lt rlispl~cement,

and a bit length.

2. Bit displacements can be runtime QL. compile tiMe

values.

- 81 -

N

is CURR
a terminal
element

OF of CURR

is CURR
subscripte

y

item

N

= DISP(i)

is

increment
EMP appro
riately

EL of CURR=
Temp-DISP(i);

DISP(i)=EL*
subscript rang
of CURR

is DISPCi+l
alligned
correct 1 y

y

DI SP

CURR
this

N
increment
DI SP
appropriatel

the last item
level

y

CURR=STACK(i)
EL of CURR=DISP(i
i = i-1

Dis p C i) =Di s p C i) +
Disp(i+l)*
subscriptrange

done

Figure 4.1

- 82 -

3. Bitstrings can run across word houndarf Ps.

Two possible solutions are available to handle this

problem. The easiest solution is to require that the

machine specifier provirle a subroutine w~ich makes the

appropriate checks, and executes the correct loarl and shift

Instructions for the rlifferPnt situations. The seconrl

solution is to allow the machTne specifier to rlPfine oren

code sequences to be generaten, at least for the simpler

cases (for instance, when hit rlf splaceMent is known at

compile time, and hence it can be determinerl that the item

does not cross a word boundary).

A sample load routine for the IRM 360 might appear

somewhat as follows:

mpath BIT->RFG: l REG,WORn
SLL RFG,DISP
SRL RFG,32-LFN

The whole problem of exactly how to allow a machine

spP.cifter to define open sequences of thTs sort is a

difficult one. It ts to a large degrPe an implementation

problem for a DMACS builder, rather than a conceptual

problem of machine independence. It ts thereforP left

somewhat open in this chapter.

- 83 -

4.3 MACHINE INnEPENnENT MACROS

4.3.1 DATA MACRO LOGIC

The previous sections have illustr~ted how data Items

on any machine can be characterized in terms of the

primitives of a data definition facility. This section

describes how machine lndepenrlent data macros can he written

In terms of the primitives of the facility in a clean,

stmple fashton.

As outlined in section 4.1.2, the operatton of a n~ta

macro conststs of incremPntln~ a pointer into a rlata hase, a

pointer consistin~ of both runtime and compile time values.

In the machtne independent macros whtch a lan~uage

implementer writes, all offsets and len~ths ar~ expr~ssed in

addressable units and bits. Thus the pointer betnp,

incremented can be seen as a 4-tuple: (rA,RA,CR,RR).

CA- compile time addressahle units
RA- run time addressable units
CR- comptle time bits
RB- run time bits

Any element may be nil: ie. if CA is nil, the pointer ras

not been incremented by any compile tine adrlressahle untts.

The process of incrementinp, the potnter can he expressed ~Y

the fol lowiny, t?:raph, cal leri the n1 crcnn1T function:

- 84 -

ca/Add-c(CA,ca) ra/Add-r(RA,ra)

rb/nit

cb/Add-c(CB,cb) rb/AddrrCRB, rb)

This graph contains four pnirs of states. ~ac~ Pnir is a

state machine recorrlinR the presence or ahsence of one

element of the 4-tuple. Hence, Jf the pointer has no

runtime bits, the third pafr is in the state 'nil'. Fach

pair starts in the state 'ni 1 '. Input is represented hy

'ca', 'cb', 'ra', and 'rb'. Actions to be taken are eitrer

Add-c, representinF. addition at conpile tine, or Ad~-r,

representing addition at run time, or nil. When the pointer

is incremented by a new value, the appropriate state machine

makes a transition. If this is the first transition fnr

that machine, then there is a chan~e of state wTth no action

performer!. If this is not the first trnnsitinn, tren either

a compile time 'Adrl-c' is performed, nr corlP is ~en~raterl to

- 85 -

to perform a run time 'Add-r'.

The graph is a macbine independent Morlel of the

operation of a rata reference macro. It is machine

independent because it operates on the primitives of a rlata

definition facility in which rlata for a variety of machines

can be automatically expressed.

Since the f NrREMENT function is machine independent

it is built into DMACS. Usin~ this function, the langua,e

designer can write his macros without worryin, ahout how

different data items map into core. In a similar manner, a

CONVERT function to convert the pointer into a data item

'location' (to be input to a load /uprlate routine) is built

into DMACS. The lopic for thts routine is discusser! Tn the

next section.

Using· these two built in routines, a langua~e

designer can write a subscript macro with the followin~

logic:

sussr,RIPT X,I
1. subtract 1 from I yielding Value(l-1).
2. if the element length of Xis (1,0) or (0,1)

then INCREMENT X by Value(l-1)
else multiply Value(l-1) by the element length of X

and INCREMFNT X by the result
3. if X Ts a termtnal data item

then apply CONVERT to the pointer computed above.

- 86 -

(When incrementing X with a valuP, the units of the element
length of X determines which component of the pointer is
incremented. If I is a compile timP v;:ilue, the sul--tr;icti0n
and multiplication can he rlone at cnMpile time. Otherwise
code must be p:eneraterl to perforrn the sf' operr1t ions at run
ti me.)

The macro is completely frf'e of machine rlepenrlf'nt

detail. Using the two functions huilt into DMArs, the

language implementer is able to write a macro rlealing only

with the semantics of his source lanpuape. For instance,

such a macro mi~ht include lopic to handle suhscript hounds

or to handle special types of subscriptin~ such as for

triangular matrices, but need pay no concern to machine

structure at all.

4.3.2 THE roNVF.PT FUNrTION

The CONVF.RT function takes a pointer in the form of

a 4-tuple (CA,RA,CR,RR) as rliscusserl ir the previous

section, and converts it into a form suitahle for use 1--y a

load/update routine. When the pointer is expressed Ir

addressable units and references a simply accessahle item,

conversion is not necessary. When the pointer inclurles

bits, however, the hit elements of the pointer must he

normalized to yield a number of adrlressahle units, and a

local bit displacement within the memory unit pointed to hy

- 87 -

the addressable elements RA and CA.

First we discuss the problem of normalization, and

then how it fits into the crNVFRT loric as a w~ole.

NORMALIZATION: Consider the pro~lem of accessfng a

bltstrlng on the PDP-10 and on the IRM-360 Riven t~e hase

address of a data area and a bit lndP.x into Tt. On the

POP-10, the Index should bP dlvlrled by 36 (hits/worrl),

yielding a full-word Tndex as the quotient, and the bit

displacement as remalnder. On the 360, assuMlng the

load/update routine uses full word load Instructions, the

address of a full-word boundary is wanted, topether with a

bit dlsplacement to within that worrl. Therefore, the index

should be divided by 32 (bits/word), yielding a bit

displacement as remainder. Multiplying the quotient hy 4

would then yield an inrlex tn addressable units. Thus a rl~ta

type may have the following attrlbutes w~en implemented on a

particular machine: Nd- a number to divirle a bit polnter hy,

to yield a 'local' bit pointer as a remalnrler, Na- a numher

to multiply the result of that dfvisfon hy to yiPld

addressable units.

When the bit pointer ts a compf le time value, this

normalization is performed at compile time. Otherwise, code

- 88 -

must be generated to perform the normalization at run time.

CONVERT: The convert function takes a pointer

P=CCA,RA,CB,RR) and converts it to a location L=CrA,RA,cbl)

or L=CCA,RA,rbl), where chl anrl rhl are local hit

displacements into a memory unit. The lop,ic of this

function is:
1. ff CR=nil and RB=nil, then normalize rR at compile
time yfelrlfng ca anrl cbl. Then IMr.PFt~nn P by ca

2. If RR/:nil then do
C a. if CB'*' nil then

(generate code to arlrl RP and rR yielrlinF RP)
b. generate code to normalize RR yielrlinp rn and
rbl
c • I N r REM HIT p w i t h r a)

This function yields an expressfon which can he input

to a load/update pair. This function operates on the

primitives of a data-definition facility and is ther~fore

machine-independent.

4.4 SUMMARY

The chapter describes how a rlata rlefinition facility

is built into DMArS to facilitate the writin~ of mnchine

independent macros. Then it discusses how this facility is

used: how the machine specifler rlescrihes his mnchlne

memory, accessing functions, anrl the mappinr, of source rlata

types into core; anrl how nM~rs then uses the information to

- 89 -

compute the primitives whfch descrihe a source program's

data. The chapter then discusses how machine independent

macros are written in terms of two machine independent

functions (INCREMFNT and CONVERT), operatfng over these

primitfves. These two functions embody the su~stance of the

machine related part of data reference macros. They are

buf lt into DMACS to be used as a tool by the langua~e

i mp 1 eme n t e r •

The basic concept set forth in this chapter fs the

use of a data definitional facflity. The rPst of the

chapter is built aroun~ this irlea. It is fnstructive to ask

how much more flexibility the rleffnitional facility afforrls

over a code generator for a single tar~et machine. At first

glance, it might appear that the deffnitional facility

merely lets DMACS describe data with different numhers on

different machines, but perform the same manipulatfons with

those numbers in al 1 cases. This is not true. The

deffnftional facility gfves the language implementer the

ability to handle a given source data referenee with

different sections of hfs lop,ic on different machines. Thus

an array of characters can be handled for the IRM-360 as an

array of addressahle unfts wf th element length of 1, whereas

on the PDP-10, ft would be handled as an array of hitstrings

- 90 -

of length 9. The operations performed on these element

lengths coulrl be different, and the load update routines

used to access the items coulrl be different.

Thus the definitional facil tty of DMACS provirles a

flexible interface between machine structure and macro

logic. At the same time, it is an interface that is almost

invisible to both the machine specifier and the language

implementer. The language implementer is able to think

primarily In terms of the semantics of his languaRe

irrespective of machine structure, and the machlne

specifier merely ~ives a descriptlon of his machine. DMArs

takes care of binding the macros anrl the machlne rlescriptlon

together.

- 91 -

CHAPTER V

CONCLU~IONS AND FURTHFR WOPK

5.1 AREAS FOR FURTHER WORll'.

5.1.1 FURTHER ASPECTS OF rODF rFNFR~TIOM

The scope of the present research ls lfMfterl since it

does not address the task of making an entlre compller

machlne Independent. Only two classes of macros arP

studled, and only a llmlterl set of posslhle opernnd types

are allowed. Also, many machTne Jrliosyncrasies, such as

Tnterrupt handling, are J~nored.

The problem of maklng a powerful compiler mnchine

independent Is a difficult an<l a messy one. The prohlem is

somewhat softened by the fact that many machine

ldiosyncracles can properly he handled by subroutines, and

thus may not prove to he insurmount~hle stumhlinp blocks.

One si~niflgant area not dealt with is the class of

control macros, such as subroutine calls, entry and return

macros, etc. These macros may not, however, rPquirP any

elaborate mechanTsms to allow machlne indepenrlrnce. In

general, such control macros are JmplemPnterl very similarly

on different machines and may he descrihahle merPly hy

appropriate code sequences. One minor prohlem is to assure

- 92 -

that the stack is allocated in the correct units.

Types of operands not consirlered inclurle character

strings and decimal operands such as those found on the

IBM-360. Both of these types of operands are generi'!lly not

manipulated via registers, hut rather by su~routine or by

special memory-memory instructions. The morlel of

computation in Chapter 3 is orienter! primi'lrily towarrls

manipulating values using registers. More work is also

needed to determine exactly how load/update routines can

best be defined to fit Into a machine independent

framework.

5.1.2 EXTENDING THE MOOFLS

The models presented in this paper are set forth

primarily to Isolate some basic lrleas involved in con~

generation, and to provide a basis for More general

extensions which coulrl include a broader spectrum of machine

structure.

In particular, one ml~ht relax soMe of the

constraints imposed on register stru~ture in Charter 3,

(perhaps to inclurle such machines as a stack machine), anrl

develop an automatic mechanism for attainin~ perMitted

- 93 -

states in this less constrained system. By relaxing

constraints in this fashion, it mi~ht he possirle to ortain

a number of different automatic mechanisms, to~ether with

classes of machine structures which can he handled by each

mechanism.

In a similar vein, one mipht consirlPr rlifferent

possible addressing structures, and determine how the

machine independent data reference lo~ic can he monified to

accomodate them. In particular, it mi~ht he useful to look

at addressing on small machines, such as the POP-8, which

tend to have anomalous addressing strate~ies rlue to hit

conserving design considerations. In fact, such machines

might be practical candidates for a descriptive system liKe

DMACS, since they tenrl to be reasonably similar, and since

they tend to be unsuitable for sustainfn~ compilers

themselves.

5.2 SUMMARY OF RESULTS

The present research has examf nerl the two most common

types of macro used for hanrlling arithmetic values:

computation macros, and data reference macros. For each of

the two types of macro, the paper develops a mnchfne

independent formalism which morlels the machinP dependent

- 94 -

aspects of the macro's lo~ic: a state machine for

computation macros; and the INCRFMENT and COt'VERT functions

for data reference macros.

Chapters 3 and 4 show how the models can ~e

incorporated into DMA~S, a descriptive macro system. A

language implementer can use the models as tools, writing

his macros in terms of machine indeperdent primitives which

invoke the model. A machine specifier can then rlescrihe his

machine, and descriptively fill out the primitives as they

apply to his machine.

Thus the research has several purposes:

1. The research is a first attempt to formalize some of the

logic involved in generating code for hi~h level languA~es.

2. The research is an attempt to see wrat is involved in .
attaining machine independence in a code generator, similar

to the languar-e independence and the token independence

acheived by automatic parsing and automatic lexical

systems.

3. Towards this end, this paper explores the question of

just what might reasonably constitute a 'description' of a

machine.

- 95 -

4. The research helps makP clearPr thP rlistinctlor hetwren

the seriantics of a hl~h level LrnFuar:e anrl t,_,e stn1cturr nf

a target riachine, a rlistinctlon that is often unclrar in a

compiler oriented towarrls a sinp:lP ~~c,..,ine.

- '1 G -

REFERFNr,Es

1. Feldman, J., and rirtes, D., "Translator Writing

Systems", CAl'".M, Feh. 1968

2 • Cr e s p i - Reg h T z z i , S t e p ha no, "The ~1 e ch an i ca 1 Ac o u i z i t i on

of Precedence Grammars", UCLA-n1r,-7054, June, 1970. School

of Engineering and Applied Science, University of

California, Los Anp.;eles.

3. DeRemer, F.L., "Practical Translators for LR(k)

Languages", MAC-TR-65, Oct. 1969, Project MA<~, M. I. T.,

Cambridge, Ma.

4. Johnson, W.L., et al., "Automatic Generation of

Efficient Lexical Processors Using Finite State Techniques",

CACM, Dec. 1968

5. Orgass, R. J., and Waite, W.H., "A Base for a MObile

Programming System", CAC~~, Sept. 1969

6. Waite, W.M., "Ruilding a Mohile Prop-rc:imrnin~ System",

Report No. 69-2, Computing Center, University of Colorado,

June 1969

7. Stronp.;, J., et al., "The Prohlem of Prop:rciP1flling

Communication with Changing Machines: A Proposed Solution",

- 97 -

CACM, Aug. 1958

8. Steel, T.B. Jr., "A First Version of U~!COL", Proceedings

WJCC 1961, pp. 371-378.

9. Elson, M., and Rake, S.T., "rorle-Generation Technioue

for Large Lan~ua~e Compilers", IBM Syst. J., No. 3, 1970

10. Cheatham, T., "Course Notes on Compilinp;", AppliPd Math

295, Harvard University, 1969

11. Strachey, C., "Funciamental Concepts in Prop-ramming

Languages," Prop:ramming Research Group, Oxforrl University,

England.

12. Graham, R.M., "Programming Systems" (to be puhlished)

13. Graham, R.M., et al., "LPS- A Langual!:e Processing

system", Progling Memo No. 1, Project MAC, M. I. T.,

Cambridge, Ma., 1969

- 98 -

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security c/aeelllcatlon of title, body of ab•lract and lndexinlil annotation muat be entered when the overall report ia claasltled)

I. ORIGINATING ACTIVITY (Corporate author) za. REPORT o~'C'I..'i{ss 1<tt~~FICATION
Massachusetts Institute of Technology
Project MAC 2b. GROUP

None
3. REPORT TITLE

Automatic Creation of a Code Generator from a Machine Description

4. DESCRIPTIVE NOTES (Type of report and lnclu•lve dalea)

Thesis, EE Degree, Department of Electrical El"!..9_ineerin...9..i_ March 1971
5. AUTHOR(SI (Lasl name, llr•I nmne, initial)

Miller, Perry L.

6. REPORT DATE 7a. TOTAL NO. OF PAGES
rb.

NO. OF REFS

May 1971 98 13
8a. CONTRACT OR GRANT NO. !la. ORIGINATOR'S REPORT NUMBER!Sl

Nonr-4102(01)
MAC TR-85 (THESIS) b. PROJECT NO.

!lb. OTHER REPORT NOIS) (Any other numbers that may be
c.

•••ililned Ihle report)

d.

10. AV Al LA Bl LI TY I LIMITATION NOTICES

Distribution of this document is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

None 3D-200 Pentagon
Washington, D. C. 20301

13. ABSTRACT

This paper studies some of the problems involved in attaining machine independence
for a code generator, similar to the language independence and the token independence
attained by automatic pa rs i ng and automatic lexical systems. In pa rt i cul a r, the
paper examines the logic involved in two areas of code generation: computation and
data reference. It presents models embodying the logic of each area and demonstrates
how the models can be filled out by descriptive information about a particular
machine. The paper also describes how the models can be incorporated into a descrip-
tive macro code generating system (DMACS) to be used as a tool by a language lmple-
menter in creating a machine independent code generator, which can be made machine-
directed by a suitable description of a particular machine.

14. KEY WORDS

Comp i 1 ers Translator Writing Systems Machine Code Generation
Prograrrming Languages

DD FORM
1 NOV H 1473 (M.l.T.) UNCLASSIFIED

Security Classification

