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AUTOMATIC CREATION OF A CODE GENERATOR 
FROM A MACHINE DESCRIPTION* 

Abstract 

This paper studies some of the problems involved in 
attaining machine independence for a code generator, similar 
to the language independence and the token independence at
tained by automatic parsing and au"tomatic lexical systems. 
In particular, the paper examines the logic involved in two 
areas of code generation: computation and data reference. 
It presents models embodying the logic of each area and 
demonstrates how the models can be filled out by descrip
tive information about a particular machine. The paper 
also describes how the models can be incorporated into a 
descriptive !!!.!£_ro code generating !)'Stem (DMACS) to be 
used as a tool by a language implementer in creating a 
machine independent code generator, which can be made 
machine-directed by a suitable description of a particu-
lar machine. 

*This report reproduces a thesis of the same title submitted 
to the Department of Electrical Engineering, Massachusetts 
Institute of Technology, in partial fulfillment of the re
quirements for the degree of Electrical Engineer, March 1971. 
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CPAPTFR I 

1.1 INTRODUCTION 

The process of translating a high level language into 

machine instructions is traditionally divirled into three 

distinct problems: lexical analysis, syntactic analysis, and 

code generation. The flow of data in such a translator is 

outlined in Figure 1.1. 

Source 
Program 

J 
LEXICAL SYNTACTIC ~ 
ANALYSIS ~ ANALYSIS ~ 

CODE 
GENERATION 

~ 
Machine 
Code 

Figure 1.1: Simple Dia~ram of a roMpiler 

The lexical analyzer accepts a string of characters and 

groups these into identifiers and operators, etc., thus 

creating a string of lexical 'tokens'. The parser analyzes 

the underlying syntactic structure of this string of 

tokens, outputting either a sequence of macro operations or 

a parse tree. The code generator then translates the macros 

(or the parse tree structure) into machine instructions for 
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a particular target machine. 

Both lexical analysis and syntactic analysis have 

been intensively sturlied. Johnson et al. (4) descrihe a 

system which allows a lexical analyzer to be automatically 

created from a series of regular expressions describing 

possible input lexical tokens. Similarly, numerous parsing 

schemes (1,2,3) have been developed w~ich allow parsers of 

varying power to be created automatically from a 

context-free BNF description of a language. Very little 

work, however, has been done to similarly formalize and 

automate code generation. The present research represents 

an attempt to isolate some of the problems involved in code 

generation and to show how a code generator can be 

automatically created from a description of the computer 

upon which the code is to be run. 

The research does not attack all the problems that 

such an automatic code generatf ng system would have to 

handle. Rather, it deals with two subprohlems corresponding 

to two common types of macro, namely: 

1. computational macros, such as ADD, MULTIPLY, OR, 

etc.; 

2. data reference, such as subscriptin~ and structure 
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reference. 

In this paper, we examine both types of macro In turn and 

develop a model for the logic of such a macro. We then show 

how a system can be set up to perform the machine dependent 

part of such macro logic from machine descrf ptfve 

lnformatfon. 

The two models developed for the operation of the two 

types of macro are different. As a result, the paper can be 

considered to contain two relatfvely indepenrlent topics: 

the ffrst dealing with computational macros, and the second 

dealfng with data reference macros. 

1.2 PREVIOUS WORK 

Although little work has been done to formalize code 

generation, a great deal of work ~ been done on the 

related problem of language transferability. One approach 

to this problem is that of the 'mobile pro?ramr.ilng system' 

of Orgass and Waite. (5,6) In their system, the source 

language Is translated Into a series of simple macros. Then 

a user-written set of macro rlefinftions translates the 

macros into machine code. The problem of generating code 

for a new machf ne rerluces to the problem of recorlin~ the 
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macro definitions. 

A second approach to language transferability ts that 

of the UNCOL macro language (7,8). UNCOL CUNlversal 

Computer Oriented Language) was developed In an attempt to 

create a universal macro language Into which all high-level 

languages could be translated and which Itself could be 

translated Into any machine co~e. If sucessful, the UMCOL 

system would have solved the problem of language 

transferability, since only one translator would ever have 

to be written for a language, and only one code ~enerator 

for a machine. The Orgass and Waite system differs fro~ the 

UNCOL approach Jn that their macro language was specifically 

tailored to their source language. In practice, the 

restriction Imposed by havJ~g only one Intermediate language 

for all source languages and all machines has proven too 

confining for a practical solution. 

The two systems just described are similar in that 

both attempted to solve the prohlem of language 

transferability by letting the user specify information 

about his machine in procedural form. Most of the 

information about machine structure is buried implicitly in 

the coding of the macros. Suer a procedural approach has 
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been used in all major puhlis~erl work on code ~eneration. 

In contrast, the present work uses information about machine 

structure given in explicit, descriptive form. 

1.3 BRIEF HISTORY OF CODE GFNERATIOM 

Early languages had very few data types. Fortran, for 

example, had only two data types. Similarly, early machines 

tended to have a small numher of special-purpose registers. 

For such language-machine pairs, the process of generating 

code tended to be straight forwarrl. A macro generally 

consisted of a short, Independent section of lo~ic w~ich 

performed a few simple tests and then output code. Thus a 

very slmple procedural language could let the user define 

these macros (12). 

With the Introduction of more compllcated machines 

and of languages with more data types, some of which (such 

as bit-strings) may be more complicated, code ~eneration has 

become a harder task (9,13). Separate modules have become 

desirable to handle register manlpulatlon and to handle 

data-dependent loRic for the varlous data types. Such a 

modular approach allows a macro to he written fairly 

compactly, calling these modules as suhroutines to locate 

free registers and to return usahle representations of 
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operands (such as a displacement and registers containing a 

base and an index). 

In a traditional macro system, all of these modules 

and macros must be written by the user using a procedural 

language provided for the purpose. Due to the complexity of 

modern languages and machines, such a macro langua~e can no 

longer be a very simple one. Slmilarly, the job of writing 

a code generator is much more complex. 

1.4 DMACS: A QESCRIPTIVE MACRO ~YSTEM 

This paper describes an automatic corle generating 

system named DMACS. There are two steps in creating a 

code-generator using DMACS. The first step is to define a 

set of procedural macros in a machine lndependent, somewhat 

skeletal form. The second step is to supply lnformation 

describf ng the computer for which code is to be generated. 

DMACS uses this lnformation to flesh out the macro 

deflnitions. The two steps are quite lndependent, so that 

once the first step is done for a language, the second step 

can ~hen be done for a varlety of object machines. 

Slmilarly, once a machine has been described, implementing a 

second language requires little change to the machine 
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description. 

The first step can be thought of as deffnlng the 

semantics of the language using machine lndepenrlent 

primitives. The second step can be thought of as defining 

the structure of the target machine. Examples of the two 

steps are discussed In Chapters 3 and 4. To facilitate 

these two steps, DMACS provides two langua~es: 

1. MIML- a procedural mac~ine independent macro 

lan~uage, and 

2. OMML- a declarative object machine macro lan~uap:e. 

Programs written in the two languap:es are hound top-ether hy 

the DMACS system. 

Figure 1.2 outlines how the D~ACS system is used. As 

can be seen, the traditional compile-time~. run-time 

distinction has proliferated into four separate 'times' in 

viewing DMACS as a whole. 

1. Macro definition time- when a langua~e implementer 

presents his machine independent macros to D~Ars. 

2. Machine description time- when a machine specifier 

inputs a descriotion of his machine to fill out the 

machine independent macros. 
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1. Macro Oeftnttton Ttme: 

Clan~uage Implementer) 

MIML program ) 

2. Machine Oescrlptlon Time: 

(machine speclfter) 

..__o_P-A_A_c_s __.I -+ 

, , 
Machtne 

Machine 
tndependP.nt 
Code 
Generator 

Machtne 
tndependen~ ,..oriented 

OMML machtne descrlptton~ Code Code 
r,enerator Gen~rator 

/ , 
3. Language Compilation Ttme: / 

/ 
/ 

(prop:rammer) / 
/ 

Source program~ PA~S[~ / 

Machtne 
, , 

Oriented ~achtne 
Code ~ Code 
Generator Program 

, , 
4. Program Executton Time: 

, , , ,, 
Machine v' 

Input~ Code > outnut 
Program 

Using DMACS: 4 Users ~nd 4 'Ttmes' 

Figure 1. 2 
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3. Language compilation time- when a pro~ramMPr inputs 

his source program to the compiler as a whole. 

4. Program execution time- when that compiled pro~ram is 

actually executed. 

1.5 OVERVIFW 

The present research develops models of two types of 

macros: computation and data rP.ference macros. At the same 

time, the paper illustrates how these models can he huilt 

into DMACS as tools. These tools can be used by a langua~e 

implementer to create machine independent macros rlPfinin~ 

the semantics of his lan~uage which can be filled out from a 

machine description. 

Chapter 2 gives the rearler an overall introrluction to 

code generation and to the DMAr.S system. It also discusses 

some of the restrictions as to po~sihle machine structurP 

which are assumed in the following chapters. 

Chapter 3 presents a model of the logic of 

computational macros. The model pictures a code generator 

as a state machine whose state is determined by the location 

of the values used in generating code. In the model, each 
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computational macro has 'permitted' states for its operands, 

from which code can be emitted. For the IRM-360, for 

instance, the permitted states for integer addition would 

allow both operands in registers or one operand in a 

register and the other in a word of core memory. To 

generate code for such a macro, the code generator must make 

a transition into a permitted state and then emit an 

appropriate instruction sequence from that state. 

Using a procedural macro system, the ~ specifies 

how such state transitions are to be made. In a descriptive 

system such as OMACS, the transitions must be performed 

automatically from a description of the register and memory 

structure of a machine, and of the paths (load, store, 

register-register transfers) between core memory and 

registers. 

Chapter 4 turns to the prohlem of achieving the same 

machtne independence for data reference macros. To achieve 

this goal, a data definition facility is built into D~Ars. 

The language implementer writes hts data reference lo~ic in 

terms of the primitives of the facility. A machine 

specifter then descrihes his machine memory and how source 

data items are mapped into that memory. DMArs can then 
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characterize these source rlata f tems In terms of the 

primitives of the data definition facflfty. As a result, 

the macro lo~tc ts able to operate upon them. 

In summary, the resP.arch is a step towards creating 

models of two aspects of the code ~eneratton process, and 

towards abstracting code generation from any particular 

machine. In this paper we show how these morlels can be 

Implemented as tools to be used by a language Implementer to 

create a machine Independent corle generator which can be 

filled out from a machine descrfptfon. Furthermore, ft fs 

seen that thfs approach to code generation, as a natural 

by-product, leads to a clean separ~tlon of the semanttr.s of 

a source langua~e from the structure of a partlr.ular target 

machine, a separation which ls often hard to isolate in a 

compiler with a code generator oriented tow~rrls a particular 

machine. 
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CHAPTER II 

A DESCRIPTION OF A CODE GENER~TOR 

2.1 INTRODUCTION TO CODE GENERATION 

Code generation is the last major task in the 

translation of a hi~h-level language into machine language. 

A code generator receives its input from tre syntactic 

analyzer (the parser). Although in some co~pilers the input 

is in the form of a parse tree, in this paoer it is assumed 

that the input is in the form of a linear sequence of macro 

operations. 

A = B + C * D; 

= 
/ ' A + 

/ ' B * 1 MUL C,D 
/ ' 2 ADD 1,B 

c D 3 ASSG A,2 

Parse Tree Macros 

This assumption is not a restriction, rowever, since a parse 

tree can readily be converted into such a sequence of 

macros. The task of the code generator is to convert the 

macros into machine instructions. 
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In a compiler for a complex language with many data 

types, the code generator is often allowed direct access to 

the symbol table constructed by the parser. The information 

in the symbol table can then be used directly to generate 

the correct code to access the different data items. The 

data flow in such a system is illustrated below. 

Source 
Program~ PARSER ~ Macros 

J ~ 

Symbol 
~ 

CODE 
~ 

Machine 
Table GENERATOR Code 

The parser converts the source pro~ram into m~cros, while 

simultaneously building the symbol table. The code 

generator then accepts both the macros and the symbol table 

as input for generating machine instructions. 

A macro line consists of a line number, an 

operation, and that operation's operands: ie. 1 ADD X,Y. In 

an actual compiler, the lfne number is usually implicft, and 

the operation and the operands can be thought of as 

pofnters. The operation is a pointer into a tdble of macro 

definitions. The operands are either pointers to th~ symbol 

table entries describing the values to be oper~ted upon, or 
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pointers to previous macro lines indicating the results of 

previous macro operations. 

The paper discusses two particular kinds of macros: 

computational macros and data reference macros. The 

following example illustrates both types of macros. 

A(l)=B+C(J)*D 

i 
i+l 
i+2 
i+3 
i+4 

SS 
MlJL 
ADD 
SS 
ASSG 

C,J 
i, D 
i + 1, B 
A, I 
1+3,i+2 

In this example, SS (subscript) Is a data reference macro, 

and MUL and ADD are computational macros. 

As an example of computational macro logic, consider 

Integer addition on the IBM 360. The 360 has two Adrl 

Instructions for inter.ers: 'A' which adrls a word of memory 

to a register, and 'AR' which adds two registers. In 

generating code for an AOD macro, the corle ~enerator must 

check the location of the values to be adrled to see if 

either of the instructions can be emitted directly. If not, 

the code generator must emit instructions to load one (or 

both) into registers. If, in the process of finding a 

register to load into, the code ?,enerator must cause the 
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previous contents of a register to be stored, the new 

location of the stored value must be recorded. Furthermore, 

ff one of the values to be added ts not directly accessable, 

Cle. a bit string value), the cone generator must emit load 

and shift Instructions to Isolate that value In a register. 

Finally, after emitting the appropriate adrl instruction, the 

code generator must recorrl the location of the macro's 

result. 

Similar examples of data reference lopic are ~iven in 

r.hapter 4. 

2.2 INTERNAL TARLES 

The symbol tahle contains information ahout all the 

values Cvariahles) declared by the progranmer. At some 

point before code generation core locations must be 

allocated for these variables. The core location 

information can be stored in the symbol table entry for each 

item. Exactly how core allocation mt~ht be done is 

discussed in Chapter 4. In addition to the values declared 

by the pro~rammer, the code generator must also recorrl the 

location of values which have been computerl by previous 

macro lines, hut not yet userl. In most ~achines, a 
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computation leaves Its rrsult Tn some reRister. Since the 

result can often later be used unmoverl, Tt is desirahle to 

leave it f n the register if possihle. If, howPver, an 

intervening macro requires that register for its 

computations, it fs necessary to store its contents in a 

'temporary' fn core and to rememher that this has been 

done. 

To keep track of the location of such previous macro 

results, three tahles are built Into the corle generator: a 

macro result table CMRT), a re~ister state tahl~ (RST), and 

a temporary table (TT). 

MRT: The macro result tahle recor~s the location of a 

macro's result(s) if any. The MRT has one entry for 

each macro line. Fach value recorrle.d in the entry 

consists of a pointer to the register or temporary where 

the value is located. 

RST: The register state tahle contains one entry for 

each register. Each entry indicates whether that 

register contains a computed value, or if it is free. 

Each entry recording a computed value contains a pointer 

to the MRT record representinR that value. Thus, when a 

register must be stored, the MPT entry can be easily 
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Macros 

~1----~ 
31---~ 
21------4 
lL-------' 

MACRO 
LOGIC 

Machine 
Code 

~ 
':i; 

2 
] 

~I 

~I 
CODE 

. . . 
MRT 

(Macro Result 
Table) 

RST 
(Register State 
Table) 

I I 1 
TT 

(Temporary 
Table) 

I I 
GENERATOR 

An Implementation 
of a Code Generator 
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changed to point to the temporary location where the 

value is to be stored. Each RST entry also contains 

fields which are used to fla~ a re~ister with 

information to be used in selecting a register to be 

stored. 

TT: A temporary tahle can be implemented in various 

ways. Fdr the purpose of this discussion, any 

implementation is acceptable. One strategy is to 

allocate a .!lfili temporary each time one is needed, ir 

which case all that need be remembered outsirle the MRT 

ts the number of the last temporary allocated. A more 

efficient strategy is to reuse temporaries after the 

results they hold are used, in which case the TT must 

have an entry for each temporary allocated. 

2.3 THE 'GETREG' ROUTl~E 

The internal tables descrihed in the preceding 

section allow co~puted values to be left in the registers 

where they are computed. If such tables are not used, every 

computed value must be immediately stored in a temporary, 

which ls clearly undesirable. If values are to be left in 

registers, however, a routine must be provided which locates 
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free registers available for use. The paper refers to that 

routine as the GETREG routine. 

The GF.TRF.G routine is passed the name of a register 

class as an argument. It cycles through that class looking 

for a free register. If none are found, the routine picks 

one of the registers and storP.s Its current contents in a 

temporary, updattngs the MP.T entry pointing to that value. 

The priorities used in selecting which register to store, if 

there is a choice, are discussed in Chapter 3. 

2.4 SOME OUESTIONS TO BF ANSWERFD 

The previous sections give a brief introduction to 

code generation in general. The remainder of the chapter 

attempts to use the introduction as a framework within which 

to outline exactly what aspects of code generation are to bP. 

dealt with in Chapters 3 and 4. Among the questions to he 

clarified are these: 

1. What different types of machine structure ro the models 

presented d~al with? Clearly there are many different types 

of machines, ranging from machines like the 7090 with 

special purpose registers, to machines l il~e the PDP-10 with 

general purpose registers, to stack machines, anrl to 
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microprogrammed machtnes capable of complicated runttme 

checks. Stmilarly, machines have dtffprfn~ adrlresstng 

mechanisms: byte-addressing, word-addrrsstn~, indexed or 

untndexed, based or not based, directly adrlressahle or pa~ed 

addressable (as in many small machtnes), etc. The models 

presented are not capable of handling all possihle machine 

structures. 

2. What kind of values do the models presented deal with? 

Possible values in a computer are integers of different 

preciston, booleans, bitstrtn~s, floati~g point numbers of 

different precision, decimal numbers, character strin~s, 

addresses, etc. The present research is not concerned with 

All. of these possible types of values. 

3. How are values allowed to map into the machine 

structure? For instance, are bitstring values to he allowed 

to cross word boundaries? How are different values assumed 

to be accessed? 

4. What is meant by 'machine description'? Intuitively, one 

might expect machine descrtption to entail somehow listing 

registers, core memory units and opcodes. On the other 

hand, might not a low-level code sequence, whtch 

accomplishes some primitive function such as subtraction or 
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loading a value, be considered to be a reasonable part of a 

'machine description'? This question is discussed in 

Section 2.9. 

2.5 ASSUMPTIONS AB0UT MACHINE STRUrTUR~ 

The present research makP.s several simplffyin~ 

assumptions about the structurP. of possible tar~et 

machines. The assumptions are spelled out in more detail in 

r.hapters 3 and 4. 

Registers: The machine is assumed to have a set of registers 

for manipulating values. These may be either special 

purpose or general purpose registers. The machine specifier 

describes the registers by naming them, groupin~ them into 

classes, and defining how they are used in manipulating 

data. Chapter 3 describes more precisely how this is done. 

Core Memory: The whole of core memory f s assumed to be 

directly addressable (as opposed to the paged adrlressahil ity 

found on some small machines). It is assumed that the 

addressing is done fn a machine instruction by either a 

displacement and an index, or by a displacement, an index, 

and a base. The machine specifier must Indicate which 

registers may be used as indices and bases. In generating 
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an address, DMACS creates an internal 'generated address' 

consisting of a displacement, index, and hase (the index or 

base may be nil). If both index and base are present in a 

generated address, however, and the particular target 

machine allows only an index, then DMACS generates cone to 

add the base and index together, thus transforming the 

'generated address' into a 'machine address' for that target 

machine. 

2.6 ASSU~PTIONS ABOUT VALUFS 

In a complex real-world compiler, many types of 

values can be used as operands. Elson and Rake (9) discuss 

some of the involved problems of writing macro definitions 

for a complicated langua~e CPL/I). The present work does 

not attempt to handle the complexity of such a langua~e; 

rather, it makes certain simplifying assumptions as to the 

types of values to be allowed as operands. The restrictions 

allow a reasonably simple model of code generation to be 

constructed which exposes some of the basic conceptual 

processes and problems involved, without hecomtng bogged 

down in a huge ad-hoc mess. 
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The model of a code generator presenterl in thfs paper 

fs set up to handle values which, fntultfvely, are of the 

fnteger (or fnteger bit-string) and floating point variety; 

values which are manipulated via regf sters and thus are no 

larger than the regfsters used on the particular target 

machf ne. Character-strfng and decimal values are not 

consf dered. 

2.7 HOW VALUES ARE REPRESENTED ON THE MACHINE 

There are three general classes of locations for 

values on a machine: a value can be In a re~ister, it can 

be simply accesslhle Jn core, or It can be in core but not 

simply accessible. A value Is simply accessihle If its 

address can be put directly Into a computational machine 

instruction, such an Add Instruction. (Thus a value may he 

addressable In a special load Instruction yet not simply 

accessible). For instance, a byte on the IBM-360, even 

though addressable, is not simply accessible for 

computation. It must first be isolated in a register. 

Let us examine how a value mi~ht fall into each of 

these classes. 
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Registers: The only values which may be in a register Cat 

the start of a macro expansion) are values computed hy 

previous macro lines. 

Simplv Acccessible: Simply accessible values inclu~e ~oth 

results of previous macro lines which have been stored in 

temporaries (which are assumed to be simply accessible 

locations), and values declared in the source pro~ram which 

have been mapped into simply accessible core memory units. 

Chapter 4 explains exactly how this mapping ls done. 

NQ.t Simply Accessible: This class is composed of values 

which cannot be directly operated upon by computational 

instructions. They must first be isolated in a register 

before they can be used. Such values inclurle individual 

bits, and bit-strings w~ich are not on wholely accessahle 

boundaries. 

2.8 LOAD/UPDATE ROUTINES 

The fact that not all values are slmply accessible 

gives rise to the concept of a load/update pair: a pair of 

routlnes to access and to update a value. The idea of 

characterizing a data item by a pair of load/update routines 

was first formulated by Strachey (11). A simple example of 
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such an unaccessible data Item is a bit-string ~ithin a 

word. Its location might be represented by an address 

(perhaps indexed and based) and a bit displacement within 

the addressed memory unit. Its load/update pair might 

consist to two routines which take the 'location' and 

generate code as follows: 

1. load Routine: 

a. load the memory unit Cle., word) into a register 

b. shift left to eliminate high-order bits 

c. shift right eliminating low order bits and 

right-adjusting the value in the rP.gister 

2. Update Routine: 

a. shift the new value to the correct tar~et position 

b. load the target word into a register 

c. use a bit mask to zero out the target byte 

d. OR the two words together 

e. store the result 

In practice such a value has two kinds of 'location' 

and correspondingly two load/update pairs: one for when the 

location of the string within the word is known at compile 

time, and one for when it is computed at run time. The 

routines are further complicated if a value extends across a 
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word boundary. 

The load/update prohlem arises from the fact that 

programmers are interested in values that do not map 

directly into accessible units. Generally only an address 

can be put into a machine instruction. If a computational 

machine instruction could accept an address, starting bit, 

and bit length, then the complexity of the load/update 

routines would disappear. An alternate approach might be to 

have special hardware load and store instructions to access 

bits of a word. This would retain the lond/updnte 

framework, but the routines would consist of only one 

instruction. 

2.9 MACHINE DESCRIPTION 

Using DMACS, a machine specifier can implement a 

langua~e by describing various features of his machine. In 

the next two chapters, the details of such a description are 

examined in more detail. 

Parts of the 'description' consist of listing names 

of registers and of core memory units and of rlescrih,ing how 

these relate to one another. Another part of this 

description, however, involves writing short low-level code 
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CHAPTER I I I 

A CODE GENERATOR AS A STATE Mft.CH lt!E 

3.1 OVERVIEW 

3.1.1 THE STATE MACHINE 

Chapter 3 presents a model of the logic of a 

computational macro. This morlel pictures a corle p.enerator 

as a state machine whose state is rletermlnerl by the location 

of the values used to generate corle. The location of a 

value may he an accessihle core location, a non-accessihle 

core location, or a register. In the model, each 

computational macro has one or more permltterl states for its 

operands from which corle can be emitted. To ~enerate corle 

for a macro, the code generator must make a transition into 

one of the permitted states and emit a particular code 

sequence from that state. 

In a procedural macro definition langua~e, the user 

explicitly specifies these transitions himself. In a 

descriptive system such as DMACS, logic to perform 

transitions is deduce~ automatically from machine

descriptive information. The cbapter shows how such an 

automatic mechanism is built into D~ACS to perform 

transitions given a machine description rlescri~inp. re~ister 
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structure, permitted states for computation, and cone 

sequences which perform these computations. Not 

surprisingly, the automatic mechanism makes certain 

restricting assumptions as to object machine structure. 

Thus, the model is a somewhat restricted one prPsented to 

isolate the basic ideas involved, and to provirle a basts 

upon which a more general system can be built. 

3.1. 2 THE STATE OF THE M/ICPH!F. 

In this chapter, the term 'state' is used in two 

contexts: the 'state' of the code ~enerator as a whole, and 

an tnput, output, or permitted 'state' of an Tndivinual 

macro. 

1. The state of the code generator is determined hy the 

locations of all the values which are to he used as 

operands to any macro. 

2. The input state of a macro is determined hy the 

location of the values passed to it as operands. 

3. A permitted state of a macro is a particular 

configuration of operand locations from which code can 

be emitted. 

4. An output state of a macro is determined by the 

location of the result of the conputatlon. 
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3.2 A SIMPLF EXAMPLF 

The following simplified example illustrRtes bow the 

state machine concept is used. The example concentrates on 

the integer addition for the IPM-360. 

1. Input States: For simplicity, let us restrict operands to 

two locations: 

1. registers of class 'R' (abhreviated 'R') 

2. accessible storage (abbreviated 's') 

Thus input states for two operands can be rlescrlherl hy the 

following pairs (s,s), Cs,R), CR,s), or CR,R). 

2. permitted States: The IRM-360 has two instructions which 

perform integer addition. Permitted states are (R,s), 

(s,R), and CR,R). From CR,s) and Cs,R) a 

storage-to-register Add instruction, 'A', ts emitted. From 

CR,R) a register-register Add instruction, '~R', is 

emitted. 

3. A Machine Independent Macro: If the source lanrua~e 

allowed both integer and floating point operanrls, the 

language implementer mirht write a machine lnrlependent ADn 

macro with logic as follows: 
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are discussed In Chapter 4. A more detailed description of 

the 360 1 s register structure is found In Section 3.7. 

Next, the machine specifier defines inte~er addition. 

IADD al,a2 (commutative) 
from R(al),R(a2) emit AR al,a2 
from R(al),S(a2) emit A al,a2 

result R(al) 
result R(al) 

This description defines two permitted states, code to he 

emitted from each state, and the location of the macro 

result. In the first state, both operands are In rP~istP.rs. 

From this state, an 'AR' instruction Ts to he emitte~. The 

result is to be recorded In the register containiny, the 

first operand. The declarations are used to fill out the 

MIML macro. The attrlhute 'commutative' Indicates that 

addition is commutative, and thu~ R(a2),S!al) wl11 be 

included as a permitted state without heinR declared 

explicitly. 

Notice that the declarations are essentially a 

description of IRM-360 integer addition. 

5. Advantages: Recause the state machine model is huilt 

into DMACS, both the lan~uar-e Implementer and the machine 

specifier find their tasks li~htened. The langua~e 

implementer can write a very simple source macro without 

worrying about machine structure. He need not perfor~ tests 
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to ascertain the state of the operands, nor transform the 

input operand state Tn any way. The machine speclf ier, in 

turn, Is able to implement the macros by descrihing rls 

machine without worrylng about the constructs of ths source 

language or the Internals of the compller. 

6. The Role Of DMACS: The machine specifier defines his 

register structure, the permitted states filling out each 

'primitive' (such as IAOD) in the machine independent 

macros, the code sequences to be emitted from each permitted 

state, and his data pathways includlng load and store 

instructions. From this descriptive lnformatTon, DMArs must 

deduce three things: how to select a tar~et permTtted state 

for a glven input state, how to reach that state, and how to 

obtain a free register of a given class when, In the process 

of making a transTtion, it needs to load a value. 

The remainder of this chapter deals with these topics 

in more detaTl and discusses the prohlems Tnvolved. 
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3.3 MACHINE STRUCTURF 

3.3.1 REGISTERS 

The code generator must he able to manipulate values 

in and out of registers to attain permitted states. In 

trying to incorporate automatic register handling loFic into 

DMACS, there are two conflicting goals. First, the user must 

be able to describe his registers flexihly enou~h to inclune 

a reasonably large class of machines. Second, there must be 

enough restrictions so that the lopic which attains 

permitted states can be generated from this description 

automatically. These two goals conflict since the more 

flexible the model is, the harrler it is to incorporate into 

an automatic system. The assumptfons as to register 

structure outlined in this section are restrfctive, but 

provide a base for later extension of the model. 

In attaining permitted states the system must he able 

to find a free register of a given class, to loan and store 

the contents of any register, and to transfer a value from 

one register to another. To allow this, the machine 

specifier defines the following: 

1. The Machine Registers: fR =(rl,r2, r3 ••• rn) 
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2. Classes of Registers: (Rl,R2, ••• Rn); Rf C Q 

The classes are defined so that every register is in at 

least one class, ff only by itself, and so that any two 

classes are either subsets, equal, or dfsjoJnt. There 

Ts no partial overlap. 

3. Pathways to Core: Each class of registers is assumed 

to have a direct path to and from core. There is no 

need to go through a seconrl rP.gfster ir. either loarlf ny, 

or storing. This Ts a simplffyfn?, assumption which 

might be relaxerl in a more powerful extension of the 

model. CA stack machine, for instance, rloes not conform 

to this assumption). The machine specifier must ~efine 

the load and store instructions used Jn these pathways. 

4. Paths between Registers: The machine specifier must 

define any availahle rep,fster to rer,fster transfers. 

5. Relationships between Registers: The machine 

specifier may define relationships hetween registers. 

These can be used for such register-register 

relationships as even-odrl pairs. He mi'!y also specify 

that In certain conditions the use of one register 

implies that a relaterl register must he made availahle 

as we 11 • 
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In this fashion, the user descrihes his register 

structure. Section 3.3.3 descrihes how this lnfornatfon Ts 

used by DMACS to construct the GETREG routine to o~taln a 

free register of a gfven class. 

3.3.2 SAMPLE REGISTER OESrRIPTION: IRM-360 

rclass REG:r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll 

rclass ODDREG:r3,r5,r7,r9,rll 

relation EPAIR (storerl:0DDR~~) 
r3:r2 
r5:r4 
r7:r6 
r9:r8 
rll:rlO 

rpath WORD->REr: L RFG,WORD 
rpath REG->WORD: ST RFG,WOPD 
rpath REG->ODDREG: LR ODOPFr.,RFr 

These declarations deff ne two register classes. For 

each member of the class ODDREn, a related EPAIR register is 

declared. The attribute (stored:ODDREG) means that when an 

ODDREG register is called for, its related F.PAIP reyister 

must be made available as well. 
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3. 3. 3 THF I GETRF.f: I R0UT I ~~E 

The GETRF<~ routine is called by m~fl.rS when in 

performing a transition a free register of a ~iven class is 

needed. The routine must be adjusted by DMArS using t~e 

machine specifier's description of his register structure, 

so that it operates correctly for the particular mac~ine 

registers and re~ister classes involved. 

The GETRF.G routine cycles through the register class 

it receives as an argument attempting to find an empty 

register. If none are empty, the routine must croose a 

register to store based on the 1 fla?.s 1 attatched to the 

registers. The flags are used to protect values in 

registers so t~at they will not he stored unless necessary. 

The mechanism for flagging is complicated hy the fact that a 

macro can be called as a suhroutine during a given macro 

expansion. The priorities used in protecting reglsters are 

discussed in more detail in Section 3.5. The net effect of 

the priorities Is that the most recently set registers are 

stored last. The GETREG routine also must hanrlle situations 

when related registers must be freed at the sane time. 
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3.4 THE AUTOMATIC TRANSITION 

3.4.1 INTRODUCTION TO THE TRANSITION 

Performinr, a transition involves transforming any 

possible input state of a macro into one of that macro's 

permitted states. The input state of a macro is determinerl 

by the location of the values passed to it as operands. 

These operands can he classed as follows: 

1. s - in an accessible stora~e location in core memory 

2. Ri - in a register of register class Ri 

3. Rjf - in a non accessihle core location, requiring a 

code generating load function which will isolate the 

value in a register of class Rj. (The concept of having 

to apply a function to an operand could apply to rnorle 

conversions as well as to loading non-accessihle 

values. Thus, although this paper deals only with Rjf 

values in a limited context, the concept involved is a 

more general one.) 

For the sake of simplicity, this section deals only 

with two-operand macros, (such as Arn X,Y). For a two 

operand macro, input states are taken from 

(s U Ri U Rif} X (s U Ri U Rif) 

Permitted states are taken from 
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Cs U Rf) X Cs URI) 

On a machine that has one class of registers (say R), 

Input states are Cs,s), Cs,R), Cs,Rf), etc. Permitted 

states for an arbitrary macro might be Cs,R) and CR,R). 

Thus a reasonable transition to make from Input state CR,s) 

Is to permitted state CR,R). 

Performing the transition involves choosln~ a tar~et 

permitted state to aim for and a path to reach that state. 

In the remainder of the chapter, we assume that tbe task of 

performing a transition can he seen as two distinct 

problems: 

1. Selection of a tar~et permitted state for each Jnput 

state, based on the cost of transforming each operand 

location. 

2. Given an input state and its target state, 

determinfng Jn what sequence changes are to be made. 

These two steps are closely related. On some machines, the 

two steps can not be performed independently. For Jnstance, 

on a stack machine one can not consider the cost of 

transforming the location of each operand indfvirlually 

wf thout considerin~ the sequence of transformations. On a 

machf ne that conforms to the assumptions that we have made 
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about regf ster structure, however, the separatTon of these 

two steps is possTble. 

3.4.2 SELECTINn A TAR~ET STAT~ 

The selectTon of a target state for each possthle 

input state of a macro is the first step Tn settTn~ up the 

automatlc transition. If there is only one permitted state, 

this selection is trtvfal. Otherwise a target for each 

input state must be selected from among several permTtted 

states. Clearly, some criteria is needed for measurTn~ the 

cost of changlng states. For each input state, the permitted 

state yielding the lowest such cost can then he selected as 

a target. The cost criteria used in this section is the 

number of instructtons require~ (not countfng inadvertent 

storing of values since these are not predictahle in 

advance)~ Since we assumed in section 2.3 that each 

register has a direct path to and from core, the maxiMum 

cost of changing the location of one operand is 2 (storing 

the value from one register, and then loadlng it into a 

second). Rif values, which require a function to load them 

into a re~ister, are treated as if they were already in that 

register since the function is to ~e applted in all cases 

and is thus a constant cost. 
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Example: Assuming two register classes, R an0 R', anrl a 

register-register transfer, sample costs are: 

(input 
( s, s) 
( s, R) 
( s, R) 
Cs, R) 
Cs, Rf) 
(Rf,Rf) 

state)(permltted state)(cost) 
( s, R) 1 
( s, R) 0 
CR,s) 2 
Cs,R') 1 
( R, R) 1 
(R,R) 0 

Figure 3.1: Sample Transition Costs 

(comment) 
1 oacl 

store, load 
transff'r 
load 

An alternate cost criteria might be instruction 

execution times. In either case, the target selection 

algorithm simply selects for each input state that permitted 

state which can be reached at lowest cost. The selection of 

a target state for each input state need not he performed 

every time the macro Ts called. It can he compiled into a 

table at machine description time. 

3.4.3 SFQUENCIN~ THE TRANSITION 

Once a target state has been selected for each lrput 

state, there remains the prohlem of deciding the order in 

which changes are to be made. This chapter first outlines a 

general strategy which accomplishes sequencing for all 

possible machine structures. The general strategy is called 

'blind' sequencing for reasons that become apparent. The 
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Algorithm to select a target permitted state 
for an input state of a macro 

I n pu t s ta t e : i = C i 1, t 2 ) 

Permitted states: pJ = (pJ1,pJ2) J = 1,n 

j = 1 
target= nil 
mincost =OO 

total cost= 
costCl1,pjl)+costCi2,pj2) 

target = J 
mincost = 

total cost 

NO 

NO j =j +1 

The function cost(i,p) determines the number of instructions 
required to change i to p. 
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chapter later dfscusses a second strategy called 

'predictive' sequencing which, when posslhle, ml~ht he more 

efficient. The following discussion concentrates on 'blind' 

sequencing, since blind sequencing always works and Is a 

good vehicle for outlining the problem lnvolverl. 

To Illustrate the problem, let us consf~er the 

transition from input state Cs,s) to target state CR,R). 

There are two possfble paths, as this graph indicates: 

R,R 

In the graph, each node represents a state, square norles 

represent permitted states, and paths from one state to 

another are represented by arcs. The arcs are labelerl to 

indicate what operatfon is being performed to whfch operand. 

Thus 11 indfcates that the first operand fs befng loaded 

when that arc is followed. 

In the graph, there are two paths from Cs,s) to 

CR,R). In this particular example, the paths are equally 

efficient and either can be selected. An Important thing to 

notice Tn this example Ts that every arc connects one 
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posslble lnput state to another. This Is true because we 

have taken all possible comblnatlons of locations as 

possible lnput states. Since each arc must lead to another 

possible Input state, each state can be examlned tn turn and 

one labeled arc can be drawn from Tts node. Drawing this 

one arc for each state completes the graph. A decisfon 

procedure for determining whtch arc to draw for a ~tven 

state Is glven In Figure 3.2. 

3.4.4 ACCIDENTAL TRANSITIONS 

There ts one complication to be const~ererl in 

performing the sequencing. It Is Illustrated below: 

Figure 3.2: Sample Sequencing Graph 

In input state (R,Rf), the first operand is already in a 

register. A code generating function is to be applied to 

load the second operand. The function can ?enerate cone 

using registers, and even might call macros as suhroutines 

to perform runtime computation. For instance, to load a hit 
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Algorithm For Blind Sequencfng 

Problem: Gfven an input state and a target state, determfne 
what operand to transform first. (Making this decision for 
each possible Input state completes the graph). 

Each operand can be expressed as one of the following: 

Input Target 
s s 
R R 
Rf R' CR' f. R) 

The first operation to be performed to a glyen operanrl can 
be expressed as follows: 

Target 
Input s R R' 

1=' load' 
s n i 1 1 1 st='store' 
R st n i 1 t t='transfer' 
Rf fl f 2 f 3 ff ='apply 

function 

These operations can be given priorities: 

st > fl > f3 > f2 > t > 1 

The effect of the priorities Is to give highest precedencP 
to storing values, next highest to applying functions, then 
to register transfers, and finally to simple loads. 

Sequencfng Is done by labelling each operand of each input 
state by st, fl, f2, f3, t, 1; and then drawing the arc 
corresponding to the operatfon with the highest priority. 
If both have equal priority, then either can be picked. 

Ft gure 3 •. '3 
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value extending across a worrl boundary it is necessary on 

the 360 to load a register pair and perform double worrl 

shifts to isolate the value. Thus, the function may rrquire 

the register containing the first operand to he stored. If 

this happens, a transition to Cs,R) occurs, rather than to 

CR,R). This is called an accidental transition from an 

unstable state to an alternate state. To accomodate such 

unexpected but unavoidable transitions, the graph is 

augmented to include dotted arcs from such unstable states 

to the appropriate alternate state. 

G 
' R,R 

Figure 3.4: An 'Unstable' State 

The graph fn Figure 3.4 indicates that applying f2 to the 

Input state CR,Rf) should lead to CR,R) but mipht lead to 

(s,R). Full examples of such graphs are given in Figures 

3.5 and 3.6. 

Let us consider for a moment how such acctrlental 

transtttons can be implemented Jn DMArs. In the performance 

of the transition CR,Rf)->CR,R), the register containing the 
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f 1 

input states: Cs U RU Rf) X Cs U RU Rf) 
permitted states: CR,s), CR,R) 

' ~---

Figure 3.5 

input states: Cs U RU R' U Rf) X Cs U RU R' U Rf) 
permitted states: CR',s), CR',R) R()R' = 0 

Figure 3.6 

Blind Sequencing Graphs 
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first operand should not be stored unless necessary. This 

can be assured by flagging that reglster's entry in the RST 

(register state table). When storing any reglster, the 

GETREG routine must attempt to respect these reglster 

flags. After the function has been completerl, the corle 

generator must check to see ff the first operand is still ir 

a register. If not it must follow the dotted arc to reach 

its next state. 

3.4.5 A REVIEW OF SEOUENCING 

The sequencing strate~y descrihed in the previous 

sections is called 'blind' sequencing because it involves 

applying load functions without lookiny ahead to see how 

these functions behave. Consirler the followin~ situntion: 

f 1 

R,R 

Figure 3.7: Sequencing roraph 

'Blind' sequencing arbitrarily selects one of these paths. 

If it is possible to determine in advance whether a r,iven 

function can be applied without disturbing a value alrearly 
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in a register, then a more effective strategy can he used. 

The second strategy is called 'predictive' sequencing. 

Predictive seouencin~ is not so ~eneral as hlinrl sequencin~ 

since for an arbitrary machine with register-register 

relations like even-odrl pairs, the exact neerls of an 

arbitrary function (even if quite simple) may he very 

difficult to predict and control. 

This chapter concentrates on the blinrl seauencing 

approach. Predictive sequencing is mentioned primarily to 

put the problem in perspective. The main argument aRainst 

developing a general predictive sequencing strategy for an 

arbitrary machine is that it would be very difficult to 

design, and would run the risk of using more instructions at 

compile time t~an were ever saved at runtime. In code 

generation, it is generally true that if elaborate 

optimization is to be done, it is most profitahly done on a 

fairly global basis, such as allocating registers over 

loops, removing invariance fron loops, consoli~atin~ co~mon 

subexpressions, etc. Rlind sequencing has the arlvantape of 

affording a degree of local optimization (compared to a 

system which stores all registers hefor~ callinp a function) 

without any really ela~orate machinery. 
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This concludes the introduction to sequencing. Let us 

step back for a moment and evaluate briefly what these hlfnd 

sequencing graphs imply. A blind sequencing graph is 

compiled at machine description time by DMA~S. Any 

particular graph applies to a particular machine, hut the 

concept of such a ~raph is a general fornal ism anrl is 

a pp l i e d to a l l mac h i n es • 

Figure 3.8: Sample Sequencing r.raph 

To understand the si~nifigance of this fact, let us consiner 

what factors govern how frequently the accidental transition 

is followed from CR,Rf) in Figure 3.8. The frequency 

depends both on the source program and on the tar~et 

machine. If the source program uses data-types which 

require simple accessing functions, then the dotted arc will 

tend to be followed less often than if more complex 

data-types are used. Similarly, if the machine !--as many 

available registers, the dotterl arc will tend to be followed 

less often than if the machine has few of them. 
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Notice, however, that neither the pro~rammer nor the 

machine specif ler need even know that the pronlem exists. 

For that matter, neither need the language lrnplementer. 

Only one person need ever worry about ft- the DMACS desf gner 

who does all the worrying for everyone. 

3.4.6 A GENERAL OVERVIEW OF A TRANSITION 

The automatic transition mechanism looks at the type 

of a macro's operands, looks at the permitted states, and 

then Initiates one or more transformations to attain one. 

This process can be described in general terrns: 

1. A system Is in a given state (certain values ar~ f n 

certain locatfons). 

2. It fs desfred to transform the system to a new state 

wf th certain properties (particular values in particular 

locations). 

3. Functfons are avaf lable which can effect a desired 

local change to J2.9L1 of the system, but with possihly 

unpredictable side-effects. CA load function applfed to 

an Rif value might store an arbitrary value from a 

register). 

4. It is desfred to make a sequence of such local 

changes and still have the resulting gloral state 
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well-defined. 

To accomplish this goal, the mechanism that generates 

permitted states must be able to detect when one function Tt 

applies stores a register that it expected to be loaded, and 

either reload that value or else pick an alternate permitted 

state. Two potential problems in a system of this sort are 

deadlock and thrashing. 

1. Deadlock: Deadlock occurs if a value ts irrevocably 

locked into a register by the flagging mechanism, so that it 

can not he stored. If this were possihle, it is easy to 

imagine a situation where a macro called as a suhroutine 

might be unable to obtain the registers it required. Such a 

deadlock can not occur in the system outlined here, since 

the regis~er flags are only interpreten as requests that a 

register not be stored unless necessary. 

2. Thrashing: In section 3.4.4, accinental transitions were 

described. In such transitions, an attempt to reach one 

state results in an inadvertent transition to an alternate 

state. One might wonder whether such inadvertent 

transitions could be repeated indefinitely. If so, then a 

thrashing situation might result, in which each sucessive 

attempt to reach a permitted state is thwarted. Fortunately, 

- 57 -





of a load function may result in macros being called as 

subroutines, each macro invocation is numbered 

sequentially. That number is userl to flag registers. In 

obtaining a register, the GETREG routine uses the following 

priorities: 

1. an empty register 

2. an unflagged register 

3. a register with the lowest flay (ie least recently 

set) 

Thus the most recently computed values are the most 

securely protected. As a result, if a regJster is 

loaded and no arbitrary functions are called it can he 

relied upon to remain in its register. 

The process of macro expansion involves performing 

the fo 11 owing steps, I, I I, and I I I in sequence: 

I. Protect Values Already in Registers: FJrst any values to 

be used by the macro which are alrearly in the correct 

registers are flagged. Such values include operanrl values 

as well as values to be used as indices or bases to obtain 

an operand value. If a value in a register requires that a 

related register be stored, then make sure that register is 

stored and flag it as well. 
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determine 
Input 
node 

done 

apply 
ope rat ion 
to operand 
as indicated 
by arc 
from node 

has an 
accidental 
transition 
occurred ? 

y 

fo 11 ow 
no r01a 1 
arc to 
next 
node 

follow dotted arc 
to next node i--~~~~ 

Figure 3.9: Performing a Transition 

II. Perform the transition to a Permitted State: Motice 

that it is in the process of following the sequencin~ arcs 

that the load functions and the GETR~r. routine are callerl as 

subroutines. Load functions are called when a load is 

applied to an Rif value. The GETRF~ routine is called when 

a load or transfer arc is traversed. 

I II. Perform Emission and Bookkeepin~: 

1. For each operand In storage, loarl any index or h~se 

values which are not already loaded. 

2. Erase all RST flar-s set by this macro. 

3. Emit the code sequence associated with the per~itterl 
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node attained uslng the sequencJng graph. The corle sequence 

was specified by the machine specifier when rlefTnJng 

permitted states. 

4. Erase the operands from the MRT and RST 

5. Record macro result, if any, in the RST anrl MPT 

3.6 AN EXTENSION: OPERATIONS TO MEMORY 

A useful extension to the state machine concept, as 

outlined, is to incorporate 'operation-to-memory' 

instructions, such as 'arlrl-to-storage'. It is simple to 

Tnclude this common class of instructions hy allowing the 

user to specify alternate dPstinations for a macro rPsult. 

Example: For the PDP-10, whlch has such iPstructions, an 

OMML definition for IADD {defined in sectlon 2.1.2) can he: 

IADD al,a2 
from REro{al),Rfr,{a2) emit IADr al,~2 
from REr,(al),WnRnCa2) emit tAnD al,a2 

or emit IAnDM al,a2 

result pi=r(al) 
result RFr(al) 
result worn.Ca2) 

(The !ADD and 1Af11"H·1 instructlons being emitted arP Pl1P-10 

opcodes.) The second state declaration indicates that if al 

is in a register, and a2 is in core, then an !ADD 

instruction yields a result in the register, and an l~rrm 

instruction yields a result in core. 
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To take arlvantage of such information, only four 

modifications neerl be made to the logic outltne~ ir. this 

chapter: 

1. When emitting corle: If such a choice exists ~nrl the 

core location is a temporary, then def~r emitting the 

instruction, and fla~ the Register in the RST, 

indicating the two instructions and the core location. 

2. In the GETREri logic: emit an operation-to-memory 

instruction in preference to explicitly storing a 

value. 

3. In selecting a permitted target state: If there is a 

choice of input states due to deferral of such an 

instruction, then evaluate hoth possihle input states 

and select that one whose target has least cost. If the 

selection requires emission of an operation-to-register 

instruction, continue to ~efe.r its emission until it is 

clear that the value need not he storerl. 

4. After sequencing and prior to corle emission: First 

emit any necessary op-to-register instructions for input 

operands which have been defered. 
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Although these sirnple modifications to the DM~rs loric 

certainly lead to no dramatic gains in efficiency, they do 

represent a useful extension to the state machine concept. 

3. 7 SAMPLE M/\CH I t!F: JlF.SrR I PT I OMS 

This section outlines the loric of two simple 

machine independent macros whfcr mir:ht he written in MP~!. 

Then OMML descriptions of the ll~r~-360 flnrl of the PflP-10 

which fill out the macros are given. 

Machine Independent Macro Lo~ic: 

macro MUL X,Y 
if the types of X and Y are inte~er 

then IMUL X,Y 
else if the types of X and Y are floating 

then F~UL X,Y 
else error 

macro SUR X,Y 
if the types of X anrl Y are integer 

the I SUR X, Y 
else if the types of X and Y are floatin~ 

then FSUR X,Y 
else error 

OMML Machine Description of the IRM-360: 

The IRM-360 has one set of registers for inte~er 
arithmetic and another set for floatin~ point arithmetic, 
and therefore has separate pathways to and from these 
registers. For multiplication and division of inte~er 
operands, even-odd pairs of re~isters are used. 
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rclass REG:r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll 
rclass ODDREG:r3,r5,r7,r9,rll 
rclass FREG:fr0,fr2,fr4,fr6. 
relation EPAIR (stored:ODDRF.G) 

r3:r2,r5:r4,r7:r6,r9:r8,rll:10 

rpath WORD->REG: l REG,WORD 
rpath REG->WORD: ST REG,WORD 
rpath FREG->WORD: LE FREG,WORD 
rpath WORD->FREG: STE FREG,WORD 

IMUL ml,M2 (comMutatfve) 
from ODDREG(ml),REG(m2) emf t MR EPAIR(ml),M2 
from ODDREG(ml),WORD(m2) emit M EPAIP(ml),m2 

result ODDRFG(ml) 
result ODDPFG(ml) 

(On the IRM-360, multfplfcatfon requires one operand in an 
'odd' register. The multiply fnstructfon must refer to its 
even pair.) 

!SUB sl,s2 
from REG(sl),REG(s2) emit SR sl,s2 
from REG(sl),WORD(s2) emit S sl,s2 

FMUL ml,m2 (commutative) 

result RFr.Csl) 
result RH~Cs2) 

from FREG(ml),FREG(m2) emft MER ml,m2 result FRFr.(ml) 
from FREG(ml),WORD(m2) emf t ME ml,m2 result FRFr.(ml) 

FSUB sl,s2 
from FREG(sl),FREG(s2) emit SER sl,s2 result FRFr-(sl) 
from FREG(sl),WORDCs2) emit SE sl,s2 result FREr,(sl) 
from FREG(s2),WORD(sl) emft LNER s2,s2;AE s2,sl result FRF.G(s2) 

(Notice that since ~ 'complement regfster' Instruction, 
LNER, exists for floatfng point, a state can be specified 
with s2 Jn a register and sl in core). 

OMML Machf ne Descrf ption of the PDP-10: 

The PDP-10 has one set of registers for both integer 
and floating pofnt arithmetic. Since the PDP-10 has 
operation-to-memory Instructions, all memory-register state 
declarations Include two alternate destinations. 

rclass REG:a,b,c,d,e,f,p.:,h, l,j,k, 1,m,n 
rpath REG->WORD: MOVEM REG,WORn 
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rpath WORD->REG: MOVE RFG,WORD 

IMUL 
from 
from 

ISUB 
from 
from 

FMUL 
from 
from 

FSUB 
from 
from 

ml,m2 (commutative) 
REG(ml),RFG(m2) emit IMUl ml,m2 result REG(ml) 
REG(ml),WORD(m2) emit lt1UL ml,m2 result RFn(ml) 

or emit IMULM ml,m2 result WORD(m2) 

sl,s2 
REGCsl),REGCs2) emit ISUR sl,s2 result REnCsl) 
REG(sl),WORD(s2) emit ISUR sl,s2 result REG(sl) 

or emit ISURM sl,s2 result WORD(s2) 

ml,m2 (commutative) 
REG(ml),REG(m2) emit FMPR ml,m2 result RE~(ml) 
REG(ml),WORD(m2) emit FMPR ml,m2 result RFG(ml) 

or emit FMPRM ml,m2 result WORD(m2) 

sl,s2 
REG(sl),REG(s2) emit FSBR ml,m2 result RErCsl) 
REG(sl),WORD(s2) emit FSBR ml,m2 result REn(ml) 

or emit FSRPM ml,m2 result WORO(m2) 

3.8 SUMMARY: THE STATE MArHINE 

The chapter outlines how a code ~ener~tor performing 

computations can be pictured as a state machine. Then it 

shows how the state machine can be formalized and 

incorporated into DMACS, a system for building machine 

independent code generators. 

Once the state machine model is incorporated into 

DMACS, it becomes a tool that a languar,e implementer can 

use. It is a convenient tool since it frees the language 

implementer from worrying about machine structure, from 
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havin?. to perform tests to determine input states to hfs 

macros, and from having to implement transitions to 

permitted states. Thus, the macro lo?ic that the languaRe 

implementer specifies need only deal with particular 

semantic features of his source language. Therefore the 

semantics of the source langua~e are logically divorced from 

any one target machfne's structure. As a result, these 

macros become much sfmpler to wrf te. Also, once these 

machine independent macros are written, they can be 

fmplemented for a varf ety of machines from a machine 

description. 
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CHAPTER IV 

DATA REFERENCE MACROS 

4.1 INTRODUCTION 

4.1.l OVERVIEW 

Chapter 3 described a state machine model which is 

built into DMACS and used as a tool to create machine 

independent macros which can he filled out from a machine 

description. The state machine is useful to help model 

computational macros. 

Chapter 4 turns to the problem of achieving the same 

machine independence for data reference macros. To achiPve 

this goal, a data definition facility is built into Dr-1/\rs. 

Target 
Machine 
Description 

Source 
Data 
Declaration 

DMACS 

! 
Source Data 
Described 
For Target 
Machine 

- 67 -



A machine specifier describes his machfne memory structure 

and describes how source data Items are mapped Into that 

memory. From this description OMArs characterizes source 

data Items In terms of the primitives of the rlata definition 

facility. The languar-e designer writes his data reference 

logic In terms of the primitives of the facility using two 

built-in functions, called the INCREMENT and CONVERT 

functions. These functions operate on the primitives of the 

data definition facility. In effect, these two functions 

represent a machine inrlepenrlent model of data reference 

logic. A langua~e implementer can write rlata reference 

macros in terms of these built-In functions without 

worrying about how the data Items of his lan~ua~e map Into 

the core memory of a particular machine. 

Chapter 4 is not an extension of r.hapter 3. It 

pursues a similar goal in a new area: machine independence 

for data reference macros similar to that acheived in 

Chapter 3 for computational macros. 

4.1.2 DATA REFERENCE 

This section introduces the reader to the term 'rlata 

reference' as userl in this chapter, and gives a simple 

example of data reference macros in action. The data 
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reference constructs rlealt wfth fn thfs chapter arP 

subscrlpterl structures as found fn PL/I. Pl/I Ts cliosen 

both because Tt is a well known langua~e and also hecausP it 

has powerful data referencing constructs. For simplicity 

the chapter deals only with structures whose size is static 

and known at compile time. This restriction Pli~inates some 

of the messiness of Pl/l's structure implementation and lets 

us concentrate on the basic problems of mokin~ such 

references machine independent. If we allow dynamically 

varying structure sizes, then we must worry about w~at loplc 

can be peTformed at compile time and w~at logic must be 

performed at run time by p;enerated corle. Restrictinp. our 

attention to static structures frees us to concentr~te more 

fully and more clearly on machine independence of datn 

reference, rather than on the details of implernentin~ 

dynamic structures for PL/1. The restrictions still allow 

useful and flexihle data referencing constructs. 

A sample structure is the following: 

declare 1 A (10) fixed, 
2 X, 
2 B (10), 

2 Q (2); 

3 y (3), 
3 r. (10), 
3 Z, 

This declaration defines a subscripted structure. The 
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A( 1) 

. 
A(lO) 

x 
B ( 1) 

. 
R(lO) 

Q( 1) 
Q(2) 

x 
B( 1) 

B ( 2) 

8(10) 

QC 1) 
Q(2) 

y (1) 
y ( 2) 

Y(3) 
cc 1) 
c ( 2) 

. 
C(lO) 
z [1) 

Lz 

[ 
[ 

[ 

Sa~~le Structure Lnyout 
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i :S3 '5 A, I 
l+l SUR ST I I B 
1+2 SS I +2, J 
f +3 SUR ST I +2, c 
1+4 SS I+ 3, K 

This approach can handle any structure referPnce in a 

simple, general fashion. 

Having df scussed the data refer~nce. macros to he 

dealt with, we now present a simple example of how corlP 

mlght be generated for the macros outlined above. This 

simple example assumes that the Items all represent full 

words of data on some particular machine. Later we shall 

extend this sfmpllfied situatfon to allow more complicated 

data items. 

Each structure item is characterized by two numhers: 

1. an offset from the beginnin~ of its su~structure 
element 
2. an element len~th 

The structure item B, for fnstance, has an offset of 1, and 

an element length of 14. 

In gerreratfng cocie for the macros ahove, two runninsr. 

totals can be kept: compf le time worrls- CW, and runtiMe 

words- RW. The running total represents a rllsplacement Tntn 

the structure. At the end of the set of macros, the 
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displacement points to the correct terminal data Ttem. 

The following logic Illustrates how the macros might be 

expanded. In the Interest of clarity and strnpltclty, the 

code generated is not as optimal as Tt mt~ht be. 

SS A,I records the offset of A, which Is O, In CW, and 
generates code to multiply the element length of A (143) 
by 1-1. The result of the multiplication becomes RW. 
Cl-1 ts used tn the multiplication on the assumption 
that the first (zeroth) element Is defined as A{l).) 

SUBST 1,8 adds at compile time the offset of B, which is 
1, to CW. 

SS i+l,J generates code to multiply the element length 
of B, 14, by J-1 and add the result to RW. 

SUBST i+2,C adds at compile time the offset of C, 3, to 
CW~ 

SS i+3,K generates code to add K-1 to RW. {no 
multiplication is necessary since the element length of 
C is 1). 

The result of all the computation ts a pair of values 

{CW, RW) which represent a compile time displacement and a 

runtime index pointing to the desired data item. On a 

machine like the IBM-360, this pair can be put rlirectly into 

a machine instruction {ie. Load, Add) to access that data 

item. 

The above example illustrates the general operation of 

data reference macros. It is shown later that an expanded, 

but similarly clean, franework can be used to handle data 
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more complicated than the full worrl items of this example. 

When data items are bytes and bitstrir~s, the lopic of the 

macros is somewhat more complicated, and the eventual result 

is not a simple full word pointer, but rather a 'location' 

that can be input to a load/update routine which accesses 

the data-item pointed to. 

The most important point to notice in the example is 

that each structure item is characterized hy an offset and 

an element length ~nd that .Q!1 different machines, these 

offsets and lengths might be different. A terminal data 

item is also characterized by two arlditional parameters, a 

load/update pair to access the item, and a rlata lenr,th which 

need not be the same as the element length (For instance, an 

array of 5-blt bitstrings alliy.ned on word boundaries would 

have a data length of 5 bits, but an element length of one 

word.) These too could vary for different machines. 

4.2 THE DATA DEFINITION FACILITY 

4.2.1 DESCRIPTION OF DATA 

The previous section examined a simple example of data 

reference. This section presents a more precise framework 

for describing the type of data with which the chapter is 

concerned. A data item can he characterized hy a 4-tuple 
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(OF,EL,DL,LU) describing how it ts Implemented on a 

particular machine. 

OF- the offset of the data item from the origin of the 
structure element to which it belongs 

EL- the element length of the structure element wbtch 
that data item defines 

DL- the data length- the length of the piece of data 
which the data item represents 

LU- the load/update pair which accesses the data item. 

OF and EL can characterize any data item. DL and LU apply 

only to terminal data items. 

The following example illustrates how data items 

declared tn a particular source program mt~ht he implemented 

differently on two different machines, the IR~-360 and the 

PDP-10: 

declare 1 A packed, 
2 B fixed, 
2 C char (2), 
2 D char; 

The PDP-10 is a word addressed machine with 36 bits/wor~. 

Assume a data item of type 'fixed' to be defined as a word 

item, and a character to be defined as a nine bit item. The 

IBM-360 is a byte addressed machine with 8 hits/byte. 

Assume a fixed data item to be defined as a word (four byte) 

item, and a character to be defined as a byte. Section 
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4.2.3 describes how such deftnitton ts none. r,ranting these 

assumptions, the storage layout for structure A is as 

follows: 

PDP- 10: 

A 

B c ID I 

< \'/Ord x word > 
IBM- 360: 

A B c -+ +--- H 

[ I lo ] 
< > 

\... byte 

Thus the data item 'A.D' is described as follows on the two 

machines: 

1. on the POP-10 

OF- 1 word, 18 hits 
EL- 9 bits 
nL- 9 bits 
LU- tre loadupdate routine for bitstrings 

(Notice, as an aside, that if one wanted to pack 5 
seven-bit characters into a wor<l, then instead of an 
element len~th, this item would have two num~ers 
associated with it, 36 and 5, Any index into an array of 
such characters would be multiplied by 36 and divined by 
5 to yield a bit displacement.) 

2. on the IRM-360 

OF- 6 bytes 
EL- 1 byte 
DL- 1 byte 
LU- the load update routine for ~ytes. 
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4.2.2 DATA OEFINITION 

To allow data reference macros to operate over rlata 

which can be described differently for different machines, 

certain prohlerns must be solved. 

1. Suitahle prlMTtives must he founrl, flexihle enouph to 

describe offsets and len~ths of rlata for a numher of 

machines. 

2. An algorithm must be written w~ich ta~es a structure 

declaration and a machine rlescription anrl coMputes 

offsets and lengths descrihing that rlata for that 

machine, expressed in terms of these primitives. 

3. Data reference ~acres must be written in terms of 

these primitives, so that these macros will he machine 

independent. 

OMACS solves these thre~ prohlerns hy usin~ a huilt ir 

data definition facility. The primitives of the rlata 

definition facility are arldressahle units and hits. All 

data Ts ultimately descrirerl in these terMs. 

The remainder of the chapter first outlines how these 

primitives can be dPduced froM information supplied hy a 
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machine specifier. The chapter then illustrates how D~~rs 

can .h.!Ll....12. a languap.;e implementer write rlata reference mncros 

in terms of these primitives. 

4.2.3 DEDUCTION OF PRIMITIVES FROM A MACHl~F nEsrRIPTION 

DMACS characterizes data for any machine in terMs of 

addressable units and bits. Information to Make this 

characterization must he deduced from the machinP. 

description which specifies the followin~: 

1. core memory units: The machiPe specifier rlefines his core 

memory units (such as hits, bytes, worrls, double worrls, 

etc.), how these map into each other, and wrich is 

addressable. 

A sample declaration for the IBM 360 follows: 

mem BIT 
mem BYTE (8 BIT, addressable) 
mem WORD (4 BYTE, boundary 4) 
mem DWORD (8 BYTE, boundary 8) 

The attribute 'boundary 4 1 indicates that an 
element with stora~e class WORD has an address 
congruent to zero, modulo 4. 

2. Source data types: The machine specifier must indicate 

which storage unit each source data type Ts to he mapped 

into. It is here that a character data item mT~ht he rlefinerl 
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as a byte on the IRM-360 ~nd ·as a hitstrinR on the POP-10. 

For a languaRe where data can he packed or alli~ne~, hoth 

storaRe units are indicated. DMArS uses this information 

together with the core memory unit information to deter~ine 

the offsets and len~ths of data items fro~ a source 

program. 

map fixed to WORn 
map char to BYTE 
map bit unalli~ned to BIT 
map bit alligned to RIT alliRn WORn 

The last declaration indicates that when a 'hit' 

data item has been declared to he 'allipned', it 

is to be alli~ned on a WOPD boundary. 

3. Load/Update routines: For each of the memory units, the 

machine specifier must define a load/update routine to 

access source data items mapped hy the specifier into that 

memory unit. 

Some storaRe classes may hhave slrnple routlnes: 

mpath WORO->RFG: l RFG,WORO 
mpath REn->WORn: ST RF~,WORn 
mpath BYTE->RFr,: SR RFC,,RFr,;tr PFCi,RYTF 

(etc.) 

Other load/update routines are more complicated, 

and are discussed in section 4.2.4. 
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When a lan~uage data declaratlon ls processed, 

Information from such a machine descrf otlon must ~e used to 

compute offsets and lengths for each data item. The offsets 

and lengths can each be descrihed by a 2-tuple (arlrlressable 

units, bits>. The tuple (4,2), for Instance, stanrls for 4 

addressable units and 2 bits. 

As a simple example, consider the following 

structure: 

declare 1 Z, 
2 A fixed, 
2 B bit (12), 
2 c bit (3), 
2 D 2 hit alligned; 

The following table indicates how the structure mipht he 

described for the IRM-360 and the PDP-10: 

(data) 
A 
B 
c 
D 

(offset)( 1 en,!!: th) 
(0,0) (4,0) 
(4,0) (0,12) 
( 5 , Ii ) ( 0 , 3 ) 
(8,0) (0,2) 

IBM-360 

(offset) C 1 Pngtr) 
(0,0) (1,0) 
(1,0) (0,12) 

(1,12) (0,3) 
(2,0) (0,2) 

PnP-10 

Each tuple represents addressable units anrl hits. A is a 

fixed data item which is mapped into a full worrl on roth 

machines (and hence 4 addressable units on the 360), and B, 

C, and D are mapped into hits. The flowchart cf a general 

algorithm which will take a structure and descri~e it using 

these brimltives is given In Ff P-:ure 4.1. 
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This algorithm illustrates how offsets and element 

lengths can be cQmputed for rlata items. Two stacks are 

used: DISP and STACK. 

DISP i t==t==1 
o~ STACK s 

The stacks are pushed each time a new structure level is 

encountered, and are popped each time a level ends. F.ach 

entry of DISP has two fields, one for addressable units and 

one for bits, which record displacement from the he~innlng 

of the current structure level. STACK ls used to store the 

name of the current data item at each level. For each data 

item an offset (OP)and an element length {EL) ls computed. 

4. 2. 4 COMPLEX LOAD/ UPDATE ROUT lt!ES 

The previous section pave examples of simple 

load/update routines for addressable data lteMs. 

Load/update routines for non-adrlressahle items Cie. hit 

strings) are more complicated for several reasons. 

1. They take as input an address, a ~lt rlispl~cement, 

and a bit length. 

2. Bit displacements can be runtime QL. compile tiMe 

values. 
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N 

is CURR 
a terminal 
element 

OF of CURR 

is CURR 
subscripte 

y 

item 

N 

= DISP(i) 

is 

increment 
EMP appro 
riately 

EL of CURR= 
Temp-DISP(i); 

DISP(i)=EL* 
subscript rang 
of CURR 

is DISPCi+l 
alligned 
correct 1 y 

y 

DI SP 

CURR 
this 

N 
increment 
DI SP 
appropriatel 

the last item 
level 

y 

CURR=STACK(i) 
EL of CURR=DISP(i 
i = i-1 

Dis p C i ) =Di s p C i ) + 
Disp(i+l)* 
subscriptrange 

done 

Figure 4.1 

- 82 -



3. Bitstrings can run across word houndarf Ps. 

Two possible solutions are available to handle this 

problem. The easiest solution is to require that the 

machine specifier provirle a subroutine w~ich makes the 

appropriate checks, and executes the correct loarl and shift 

Instructions for the rlifferPnt situations. The seconrl 

solution is to allow the machTne specifier to rlPfine oren 

code sequences to be generaten, at least for the simpler 

cases (for instance, when hit rlf splaceMent is known at 

compile time, and hence it can be determinerl that the item 

does not cross a word boundary). 

A sample load routine for the IRM 360 might appear 

somewhat as follows: 

mpath BIT->RFG: l REG,WORn 
SLL RFG,DISP 
SRL RFG,32-LFN 

The whole problem of exactly how to allow a machine 

spP.cifter to define open sequences of thTs sort is a 

difficult one. It ts to a large degrPe an implementation 

problem for a DMACS builder, rather than a conceptual 

problem of machine independence. It ts thereforP left 

somewhat open in this chapter. 
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4.3 MACHINE INnEPENnENT MACROS 

4.3.1 DATA MACRO LOGIC 

The previous sections have illustr~ted how data Items 

on any machine can be characterized in terms of the 

primitives of a data definition facility. This section 

describes how machine lndepenrlent data macros can he written 

In terms of the primitives of the facility in a clean, 

stmple fashton. 

As outlined in section 4.1.2, the operatton of a n~ta 

macro conststs of incremPntln~ a pointer into a rlata hase, a 

pointer consistin~ of both runtime and compile time values. 

In the machtne independent macros whtch a lan~uage 

implementer writes, all offsets and len~ths ar~ expr~ssed in 

addressable units and bits. Thus the pointer betnp, 

incremented can be seen as a 4-tuple: (rA,RA,CR,RR). 

CA- compile time addressahle units 
RA- run time addressable units 
CR- comptle time bits 
RB- run time bits 

Any element may be nil: ie. if CA is nil, the pointer ras 

not been incremented by any compile tine adrlressahle untts. 

The process of incrementinp, the potnter can he expressed ~Y 

the fol lowiny, t?:raph, cal leri the n1 crcnn1T function: 
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ca/Add-c(CA,ca) ra/Add-r(RA,ra) 

rb/nit 

cb/Add-c(CB,cb) rb/AddrrCRB, rb) 

This graph contains four pnirs of states. ~ac~ Pnir is a 

state machine recorrlinR the presence or ahsence of one 

element of the 4-tuple. Hence, Jf the pointer has no 

runtime bits, the third pafr is in the state 'nil'. Fach 

pair starts in the state 'ni 1 '. Input is represented hy 

'ca', 'cb', 'ra', and 'rb'. Actions to be taken are eitrer 

Add-c, representinF. addition at conpile tine, or Ad~-r, 

representing addition at run time, or nil. When the pointer 

is incremented by a new value, the appropriate state machine 

makes a transition. If this is the first transition fnr 

that machine, then there is a chan~e of state wTth no action 
# 

performer!. If this is not the first trnnsitinn, tren either 

a compile time 'Adrl-c' is performed, nr corlP is ~en~raterl to 
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to perform a run time 'Add-r'. 

The graph is a macbine independent Morlel of the 

operation of a rata reference macro. It is machine 

independent because it operates on the primitives of a rlata 

definition facility in which rlata for a variety of machines 

can be automatically expressed. 

Since the f NrREMENT function is machine independent 

it is built into DMACS. Usin~ this function, the langua,e 

designer can write his macros without worryin, ahout how 

different data items map into core. In a similar manner, a 

CONVERT function to convert the pointer into a data item 

'location' (to be input to a load /uprlate routine) is built 

into DMACS. The lopic for thts routine is discusser! Tn the 

next section. 

Using· these two built in routines, a langua~e 

designer can write a subscript macro with the followin~ 

logic: 

sussr,RIPT X,I 
1. subtract 1 from I yielding Value(l-1). 
2. if the element length of Xis (1,0) or (0,1) 

then INCREMENT X by Value(l-1) 
else multiply Value(l-1) by the element length of X 

and INCREMFNT X by the result 
3. if X Ts a termtnal data item 

then apply CONVERT to the pointer computed above. 
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(When incrementing X with a valuP, the units of the element 
length of X determines which component of the pointer is 
incremented. If I is a compile timP v;:ilue, the sul--tr;icti0n 
and multiplication can he rlone at cnMpile time. Otherwise 
code must be p:eneraterl to perforrn the sf' operr1t ions at run 
ti me. ) 

The macro is completely frf'e of machine rlepenrlf'nt 

detail. Using the two functions huilt into DMArs, the 

language implementer is able to write a macro rlealing only 

with the semantics of his source lanpuape. For instance, 

such a macro mi~ht include lopic to handle suhscript hounds 

or to handle special types of subscriptin~ such as for 

triangular matrices, but need pay no concern to machine 

structure at all. 

4.3.2 THE roNVF.PT FUNrTION 

The CONVF.RT function takes a pointer in the form of 

a 4-tuple (CA,RA,CR,RR) as rliscusserl ir the previous 

section, and converts it into a form suitahle for use 1--y a 

load/update routine. When the pointer is expressed Ir 

addressable units and references a simply accessahle item, 

conversion is not necessary. When the pointer inclurles 

bits, however, the hit elements of the pointer must he 

normalized to yield a number of adrlressahle units, and a 

local bit displacement within the memory unit pointed to hy 
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the addressable elements RA and CA. 

First we discuss the problem of normalization, and 

then how it fits into the crNVFRT loric as a w~ole. 

NORMALIZATION: Consider the pro~lem of accessfng a 

bltstrlng on the PDP-10 and on the IRM-360 Riven t~e hase 

address of a data area and a bit lndP.x into Tt. On the 

POP-10, the Index should bP dlvlrled by 36 (hits/worrl), 

yielding a full-word Tndex as the quotient, and the bit 

displacement as remalnder. On the 360, assuMlng the 

load/update routine uses full word load Instructions, the 

address of a full-word boundary is wanted, topether with a 

bit dlsplacement to within that worrl. Therefore, the index 

should be divided by 32 (bits/word), yielding a bit 

displacement as remainder. Multiplying the quotient hy 4 

would then yield an inrlex tn addressable units. Thus a rl~ta 

type may have the following attrlbutes w~en implemented on a 

particular machine: Nd- a number to divirle a bit polnter hy, 

to yield a 'local' bit pointer as a remalnrler, Na- a numher 

to multiply the result of that dfvisfon hy to yiPld 

addressable units. 

When the bit pointer ts a compf le time value, this 

normalization is performed at compile time. Otherwise, code 
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must be generated to perform the normalization at run time. 

CONVERT: The convert function takes a pointer 

P=CCA,RA,CB,RR) and converts it to a location L=CrA,RA,cbl) 

or L=CCA,RA,rbl), where chl anrl rhl are local hit 

displacements into a memory unit. The lop,ic of this 

function is: 
1. ff CR=nil and RB=nil, then normalize rR at compile 
time yfelrlfng ca anrl cbl. Then IMr.PFt~nn P by ca 

2. If RR/:nil then do 
C a. if CB'*' nil then 

(generate code to arlrl RP and rR yielrlinF RP) 
b. generate code to normalize RR yielrlinp rn and 
rbl 
c • I N r REM HIT p w i t h r a ) 

This function yields an expressfon which can he input 

to a load/update pair. This function operates on the 

primitives of a data-definition facility and is ther~fore 

machine-independent. 

4.4 SUMMARY 

The chapter describes how a rlata rlefinition facility 

is built into DMArS to facilitate the writin~ of mnchine 

independent macros. Then it discusses how this facility is 

used: how the machine specifler rlescrihes his mnchlne 

memory, accessing functions, anrl the mappinr, of source rlata 

types into core; anrl how nM~rs then uses the information to 
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compute the primitives whfch descrihe a source program's 

data. The chapter then discusses how machine independent 

macros are written in terms of two machine independent 

functions (INCREMFNT and CONVERT), operatfng over these 

primitfves. These two functions embody the su~stance of the 

machine related part of data reference macros. They are 

buf lt into DMACS to be used as a tool by the langua~e 

i mp 1 eme n t e r • 

The basic concept set forth in this chapter fs the 

use of a data definitional facflity. The rPst of the 

chapter is built aroun~ this irlea. It is fnstructive to ask 

how much more flexibility the rleffnitional facility afforrls 

over a code generator for a single tar~et machine. At first 

glance, it might appear that the deffnitional facility 

merely lets DMACS describe data with different numhers on 

different machines, but perform the same manipulatfons with 

those numbers in al 1 cases. This is not true. The 

deffnftional facility gfves the language implementer the 

ability to handle a given source data referenee with 

different sections of hfs lop,ic on different machines. Thus 

an array of characters can be handled for the IRM-360 as an 

array of addressahle unfts wf th element length of 1, whereas 

on the PDP-10, ft would be handled as an array of hitstrings 
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of length 9. The operations performed on these element 

lengths coulrl be different, and the load update routines 

used to access the items coulrl be different. 

Thus the definitional facil tty of DMACS provirles a 

flexible interface between machine structure and macro 

logic. At the same time, it is an interface that is almost 

invisible to both the machine specifier and the language 

implementer. The language implementer is able to think 

primarily In terms of the semantics of his languaRe 

irrespective of machine structure, and the machlne 

specifier merely ~ives a descriptlon of his machine. DMArs 

takes care of binding the macros anrl the machlne rlescriptlon 

together. 
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CHAPTER V 

CONCLU~IONS AND FURTHFR WOPK 

5.1 AREAS FOR FURTHER WORll'. 

5.1.1 FURTHER ASPECTS OF rODF rFNFR~TIOM 

The scope of the present research ls lfMfterl since it 

does not address the task of making an entlre compller 

machlne Independent. Only two classes of macros arP 

studled, and only a llmlterl set of posslhle opernnd types 

are allowed. Also, many machTne Jrliosyncrasies, such as 

Tnterrupt handling, are J~nored. 

The problem of maklng a powerful compiler mnchine 

independent Is a difficult an<l a messy one. The prohlem is 

somewhat softened by the fact that many machine 

ldiosyncracles can properly he handled by subroutines, and 

thus may not prove to he insurmount~hle stumhlinp blocks. 

One si~niflgant area not dealt with is the class of 

control macros, such as subroutine calls, entry and return 

macros, etc. These macros may not, however, rPquirP any 

elaborate mechanTsms to allow machlne indepenrlrnce. In 

general, such control macros are JmplemPnterl very similarly 

on different machines and may he descrihahle merPly hy 

appropriate code sequences. One minor prohlem is to assure 
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that the stack is allocated in the correct units. 

Types of operands not consirlered inclurle character 

strings and decimal operands such as those found on the 

IBM-360. Both of these types of operands are generi'!lly not 

manipulated via registers, hut rather by su~routine or by 

special memory-memory instructions. The morlel of 

computation in Chapter 3 is orienter! primi'lrily towarrls 

manipulating values using registers. More work is also 

needed to determine exactly how load/update routines can 

best be defined to fit Into a machine independent 

framework. 

5.1.2 EXTENDING THE MOOFLS 

The models presented in this paper are set forth 

primarily to Isolate some basic lrleas involved in con~ 

generation, and to provide a basis for More general 

extensions which coulrl include a broader spectrum of machine 

structure. 

In particular, one ml~ht relax soMe of the 

constraints imposed on register stru~ture in Charter 3, 

(perhaps to inclurle such machines as a stack machine), anrl 

develop an automatic mechanism for attainin~ perMitted 
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states in this less constrained system. By relaxing 

constraints in this fashion, it mi~ht he possirle to ortain 

a number of different automatic mechanisms, to~ether with 

classes of machine structures which can he handled by each 

mechanism. 

In a similar vein, one mipht consirlPr rlifferent 

possible addressing structures, and determine how the 

machine independent data reference lo~ic can he monified to 

accomodate them. In particular, it mi~ht he useful to look 

at addressing on small machines, such as the POP-8, which 

tend to have anomalous addressing strate~ies rlue to hit 

conserving design considerations. In fact, such machines 

might be practical candidates for a descriptive system liKe 

DMACS, since they tenrl to be reasonably similar, and since 

they tend to be unsuitable for sustainfn~ compilers 

themselves. 

5.2 SUMMARY OF RESULTS 

The present research has examf nerl the two most common 

types of macro used for hanrlling arithmetic values: 

computation macros, and data reference macros. For each of 

the two types of macro, the paper develops a mnchfne 

independent formalism which morlels the machinP dependent 
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aspects of the macro's lo~ic: a state machine for 

computation macros; and the INCRFMENT and COt'VERT functions 

for data reference macros. 

Chapters 3 and 4 show how the models can ~e 

incorporated into DMA~S, a descriptive macro system. A 

language implementer can use the models as tools, writing 

his macros in terms of machine indeperdent primitives which 

invoke the model. A machine specifier can then rlescrihe his 

machine, and descriptively fill out the primitives as they 

apply to his machine. 

Thus the research has several purposes: 

1. The research is a first attempt to formalize some of the 

logic involved in generating code for hi~h level languA~es. 

2. The research is an attempt to see wrat is involved in . 
attaining machine independence in a code generator, similar 

to the languar-e independence and the token independence 

acheived by automatic parsing and automatic lexical 

systems. 

3. Towards this end, this paper explores the question of 

just what might reasonably constitute a 'description' of a 

machine. 
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4. The research helps makP clearPr thP rlistinctlor hetwren 

the seriantics of a hl~h level LrnFuar:e anrl t,_,e stn1cturr nf 

a target riachine, a rlistinctlon that is often unclrar in a 

compiler oriented towarrls a sinp:lP ~~c,..,ine. 
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