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DESIGN STRATEGIES FOR FILE SYSTEMS* 

Abstract 

This thesis describes a methodology for the analysis and 
synthesis of modern general purpose file systems. The two 
basic concepts developed are (1) establishment of a uniform 
representation of a file's structure in the form of virtual 
memory or segmentation and (2) determination of a hierarchy 
of logical transofrmations within a file system. These con
cepts are used together to form a strictly hierarchical or
ganization (after Dijkstra) such that each transformation 
can be described as a function of its lower neighboring 
transformation. In a sense, the complex file system is 
built up by the composition of simple functional transfor
mations. To illustrate the sepcifics of the design process, 
a file system is synthesized for an environment including a 
multi-computer network, structured file directories, and re
movable volumes. 

*This report reproduces a thesis of the same title sub
mitted to the Alfred P. Sloan School of Management and 
the Department of Electrical Engineering, Massachusetts 
Institute of Technology, in partial fulfillment of the 
requirements for the degree of Master of Science, June 
1969. 
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EVOLUTION OP FILE SYSTEMS 1 

CHAPTER ONE 

Introduction 

!vol~!io~ Qf I~le ~12!&!2 

The evolution of general purpose file systems farallels 

very closely the evolution of operating systems. This is net 

surprising since the concept of file systems grew cut cf the 

embryonic input-output control (IOC) functions of early 

operating systems and now represents the most significant 

component of most modern operating systems. 

There has been very little attention formally directed 

to the specific problem of analyzing operating systems. In 

1967, Saul Bosen collected together material fer a beck, 

"Programming Systems and Languages"<Rosen 67>, which vas to 

be a distinctive selection of previously published and 

u npubl is bed re perts describing the most important 

programming languages and discussing many of the aost 

important operating system concepts. He was forced to 

conclude: 

"The paper on Operating Systems vas prepared for 
presentation at the University of Richigan 
Engineering Summer conference, June 18-29, 1962. 
It has had fairly vide circulation as Band Report 
P-2584. The materia 1 covered has been of vital 
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importance in the development of the "classical" 
operating system, yet it is difficult to find an 
adequate treatment outside of very long and 
usually dry system manuals. George ftealy was one 
of the few working experts in the field who took 
the time to write down some of the basic 
principles of operating systems and alsc cf 
assembly systems." 

!fr. Rosen•s observations imply that very little 

attention has been expended in the attempt to generali2e the 

functions of operating systems. File systems have alsc been 

severe 1 y neglected. 

In the early years of computing (roughly 1952-1962) , 

programmers slowly moved away f roa the practice of 

approaching a bare machine vi th card decks and sharpened 

pencils, fighting with the console for more or less eztended 

periods of time, and leaving triumphantly with final results 

or in defeat with a ream of machine dU•F<Bosin 69>. 

Operating systems have evolved, not so much as a blessing, 

but as a practical necessity. As computers bEca•e faster and 

more complex, it was no longer possible for an individual 

programmer to be an expert in every phase of the prograaming 

and machine usage; be now must rely on the operating staff 

and system programmers to provide the necessities of life. 

These operating systems vere often ill-designed and 

usually specialized around a single goal. One of the first 

trul1 successful operating systems vas FftS (FORTBAH Monitor 

System) for the IBM 709/7090/7094 family. Its name implies 

its specialization. As a result a large number of operating 
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systeas appeared, each with its own operating procedure and 

speciali~ation. These systems were typically very clcsely 

tied to a proqramming language (e.g. FORTRAN, COBOL, 

Assembler). 

Input output Control systems (IOCS) emerged as a part 

of the Operating System based on the siaple observation that 

all prO<Jrams perform soae amount of input and/or output. 

Therefore, rather than requiring each prograaaer to write a 

nev set of input/output routines for each prograa, a cc•mon 

and sUffic.iently flexible collection of routines were 

suppliEd with the Operating Systea. This situation became 

especially critical as coaputer 1/0 capabilities vere 

extended to include high-speed, buffered, asynchronous 

channels vbich required comple.z program logic to efficiently 

perf or• input-output. 

Proa the crude beginnings of IOCS, file syEteas 

followed a logical, though often slow, evolution. Once all 

physical input/output functions vere localized in the IOCS, 

many generalizations became possible. Usually, there is no 

import ant difference aaong the manJ tape dri Yes available at 

an installation, so that any arbitrary tape unit may be used 

for input or output to a p.rograa. Purtheraore, later runs at 

the same or different installations need not use the same 

unit as long as unique correspondences can be aaintained. It 

first it vas considered that the best practice in handling 

the choice of input-output units by the object progra• vas 
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to include unit assignments as an assembly parameter er to 

read in unit assignments as data and initialize the program 

appropriately. This practice worked well when it was 

followed, which was seldom. With the advent of the 

near-universal use of IOC s, a more foolproof and flexible 

manner of operating vas to establish the correspondences as 

part of the IOCS. The object programs dealt strictly in 

symbolic unit assignments. 

Since the object programs no longer interacted directly 

with the I/O units nor vere even aware of unit assignmentE, 

additional degrees of freedom became available to the 

operating system, providing a more efficient and convenient 

environment. For example, the system could determine unit 

assignments automatically and dynamically, based upon 

complex criteria such as availability and performance (e.g. 

I/O interference, bufferinq, etc.). The actual technique of 

I/O (unbuffered, sinqle-buffered, dou ble-huffered, etc.) 

could be removed from programmer concern .. 

The proliferation of I/O device types, such as 

low-speed, •edium-speed, high-speed and hJper-tapes, as well 

as drums and disks of all shapes and si2es, resulted in the 

expansion of IOCS to include capabilities that are now 

called data management or file system facilities. The basic 

notion exploited is that just as the programmer had little 

concern as to what tapes were to be used, be really does not 

care what device is used nor what method of I/O is earlcyed 

~~~--------



EVCLUTION OF PILE SYSTEMS 

wit bin broad logical constraints. 

programmer wishes logically to treat 

column cards, the file system could 

5 

For example, if a 

his I/O data as 80 

physically utilize 

unit-record equipment, tapes, disks, drums, data cells, or a 

host of other devices in various manners logically to 

simulate the effect of input-output using 80 column cards. 

This trend became irreversible with the advent of 

multi-tasking operating systems, since the availability of 

devices was continuously and dynamically cban9ing. In such 

an environment, it becomes impractical and probably 

impossible to designate specific I/O uni ts statically and 

arbitrarily in the program. 

The importance of these data management and file 

systEms cannot be overly emphasized. Just as the assumftion 

that programs perform input-output vas a basic fact, it 

appears that the number and flexibility of I/O facilities 

demanded by programs are continuously increasing. 

A major factor in the rapid growth of file systems is 

the introduction of low cost, high capacity, high-speed, 

direct access devices such as disks, drums, and data cells. 

A description of direct access devices would emphasize the 

fa ct t 1'a t they have two degrees of frEedom rather than cnly 

one as with tape-like devices. Since these devices can be 

used for both sequential and direct access applications, the 

total amount of usage increases. Of course, the extra 

degrees of freedo• necessitate more complex I/O routines and 
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furtber tighten the reliance on file systems tc perform 

these functions. 

Direct access devices are usually as flexible as or 

aore flexible than tape devices. Card-iaage or printer-image 

fixed record data types can be hand led as well as 

variable-length or structured data foras. Although these 

capabilities could be perforaed by the object prcgra•, the 

vast majority of these functions have been subsu•ed as 

by-products of the file system. 

The second •a jor factor contributing to the rising 

importance of file systeas. as in early operating systeas, 

was necessity. This time it vas due to the "infor•ation 

explosion". As the number of users, uses, and sophistication 

of use increased. the aaount of information in the fcr•s of 

progra•s and data rose correspondingly. It vas nc lcuger 

convenient nor usually physically possible to haul the 

required boxes of progra •s and data to and froa the aachine. 

This information vas converted and aai.ntained in a aore 

compact but directly machine processible fora, such as 

aagnetic tape or disk pack. Not only vere the individual 

programs and data collections large, but the total nuaber of 

distinct and unique files (i.e. programs a.11d data 

collections) was very large. It is not uncoamon for a single 

programmer to have to use from 10 to 100 separate progra•s 

and a rouqh ly e qui val en t number of data collections. this 

situation became especially acute vith the increased use of 
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online systems. l user at a remote teletype terminal could 

not be expected to re-type and enter all his programs and 

data from the terminal. They must te permanently aaintained 

and stored at the central computer facility, althcugh 

accessable and alterable under remote terainal ccntrol. 

Quite obviously, it would be uneconomic and un1anageable to 

store each unique file on a separate tape or disk Eack. 

Robert Bosin highlights these developments in his recent 

survEy of superyisor and monitor systeas<Rosin 69>: 

"l file system is especially necessary in any 
system which purports to provide realistic 
time-sharing. Howewer, the advantages of this 
facility cannot be over looked in a acre 
conventional enYironaent". 

Thus, people were faced with the problem of using the 

I/O devices to store thousands of permanent files in 

addition to the traditional use for input, output and 

"scratch" storage. Direct access devices provide the 

capability of storing hundreds or thousands of unique files 

and accessing them in any order conveniently. This type of 

direct access device usage results in aany side effects. The 

first problea, of course. involves a coaplex storage 

organization facility to locate "empty" space on t.he deYice 

and a directory-like mechanism to keep track of the 

individual files. llany other facilities are usually 

required, such as a security system to prevent unauthorized 

access to restricted files, and procedures to recover fro• 

hard va re or software failures. Of course, each installation 
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or group develops 

capatilities to meet 

extensive flexibility. 

additional elegant 

special reguirements 

I. INTBODUCTION 

file 

or to 

system 

provide 

For the same reasons that programmers utilize and rely 

on the file system, the operating system uses the facilities 

of the file system. For example, user identif ica ti on (e.g. 

passwords, account numbers, etc.), accounting and charge 

information as well as system self-measurement data must be 

maintained dynamically using the facilities of the file 

system. The previously menticned directories of "empty" 

space on direct access devices and the syabclic file 

directory and access control information are usually handled 

as system files. The operating system uses the file system 

capabilities to store the various processing prograas (e.g. 

FORTRAN, COBOL, Assemblers, etc.) as well as many 

infrequently used supervisor routines. Furthermore, advanced 

operating systems perform "spooling", roll-in/roll-out, and 

paging in conjunction with the file system. It is not hard 

to realize that the file system is usually the. most 

important component of an operating system in terms of the 

manpower required to develop and implement, and the aacunt 

of instructions and space used by the file system. 

Whereas the early operating systems along vith their 

rudimentary file systems revolved around the need tc supFOl'.t 

miscellaneous l/O functions for programming languages, 

modern file systems are at the very center of the operating 

-------



EVOLUTION OF FILE SYSTR~S 9 

system. The supervisor, programming systems, and cbject 

prcgrams are totally rlerendent on the file system. 
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SC.Q.2~ !Dd .f.JlllQ§~ 

of 

The development of file systems 

the same problems as that of 

I. IN'IBODUC'IION 

has suffered frca 1any 

programming languages. 

Probably the single mcst important problem vas the excessive 

concern with efficiency. Of course efficiency is important, 

but in most current-day programming situations other 

factors, such as productivity and flexibility, are finally 

receiving their long-deserved attention. The question of 

efficiency can be put into proper perspective fro• recent 

studies of real programming groups, 

that the "best" programmer was 

where it has been fcund 

up 

"efficient" than the least proficient 

the function of this paper to get 

to 15 tiaes more 

programmer. It is not 

deeply involved in 

progra•ming language controversies, but to illustrate the 

trends and changing attitudes. For example, if the original 

designers of FOBTBAN had not felt that its acceptance 

depended on the utmost attention to efficiency and, 

therefore, had not defined the language in terms cf the 

hardware capabilities of a specific machine, IBPI 7C4, it is 

possible that the evolution of languages such as FORTRAN-IV, 

COBOL, ALGOL, and PL/I and generalized compiler techniques 

might have proceeded in a •ore organi2ed fashion. The entire 

field of generali2ed approaches tc programming languages and 

compiler techniques has only recently emerged as a major 

factor in the computing profession. 

---- ~-----
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File systems have followed a similar development. In 

the name of "efficiency", each nev file system was specially 

tailorEd to the original needs and environment of its 

intended use and very seldom could benefit from the 

experience or techniques of preceeding systems. As the 

demands on a given file system increased, nev features and 

facilities were added, often v it h a "crow bar". Each of these 

piece-seal file systems drove us further and further frc• an 

organized, generalized file system structure. 

Most literature in this area has appeared in one of tvo 

forms. The typical system manuals describe the Hclever" 

techniques used to implement a specific file system, but 

provide very little assistance for comparisons with ether 

current systems or in the design of new file systess. The 

other type of reference deals with discussions of desirable 

characteristics for future file systems, usually emphasizing 

user facilities, but adds little insight into the problems 

of dEsi9nin9 and isplementing such a system. 

To a certain extent, generalized approaches have begun 

to evolve in "time-sharin9" systems. In this pape:r such 

systems will be called conversational resource-sharing, 

since time is only one of many resources that are shared and 

it is the conversational or interactive nature of these 

systems that is most easily distinguished fro• 

batch-oriented operating systems. 

These generalized file systems for conversational 
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resource-sharing OFerating systems developed beth by design 

and necessity. In order to provide all the features required 

by user programs and the supervisor, a flexible design was 

essential. Furthermore, owing to the complexity of the 

environment and its dynamically changing aspects, it would 

be impossible to devise an "optimally efficient" strategy. 

The implementers were thus forced to abandon any attempt to 

make the system more efficient and were free to develcf a 

flexible system with a clear conscience. 

The goals of flexibility and efficiency need not be 

contradictory. In any multi-tasking system, which includes 

most modern, non-conversational, batch-oriented operating 

systems as well as conversational systems, I/O OF€raticns 

can be performed asynchronously by channels, and the central 

processor time can be utilized }}y executing other tasks 

while I/O is in progress. In this environment file system 

efficiency ceases to be of paramount concern. Fortheracre, 

individual user attempts to optimize performance could 

result in unnecessary inefficiencies due to conflicts vith 

other tasks, such as excessive I/O interference from 

overloading the channels. The file system, avare of the 

total requirements, could provide a strategy that results in 

a more harmonious arrangement, increasing system thrcughput 

far more than individual user optimization could. 

Even in single-task er application-oriented oferating 

there is definite value to an organized, 
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generalized file system. For 11ost large, complex user 

programs as well as compilers and assemblers, the program 

action including precise file system requirements cannct be 

statically determined since it is a dynamic functicn cf the 

input data supplied. Therefore, a dynamically flexible file 

system could often outperform a specialized, but inflexible, 

file system. 

It is the purpose of this paper to present a general 

file system design. It is extremely important to start with 

a flexible but precise model although this design will 

probably need to be modified and made more detailed fer any 

specific implementation. This issue was highlighted by 

Robert Rappaport in his thesis "Implementing Multi-Process 

Primitives in a Multiplexed Computer system"<Rapp 68> which 

describes the development of the Traffic Controller for the 

MIT Project MAC Multics system: 

"After having found acceptable solutions for 
the problems at hand, one asks oneself why it tcck 
so long to arrive at these solutions and was there 
any way to have done it more quickly? One might 
further ask if the arrived-at solutions are in any 
sense optimum? 

After being involved in designing a large 
system involving the work of many people, one gets 
the feeling that such problems as were encountered 
here are bound to crop up. The development cf any 
large system can only remain manageable if 
distinct parts of the system remain modular and 
independent. 

Without a theory of computing systems to fall 
back on, designing such complex systems becomes an 
art, rather than a science, in which it is 
impossible tc prove the degree to which working 
solutions to problems are in any sense optisum 
solutions. In much the same way as authors write 
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books, large coaputer systeas 90 through several 
drafts before they beqin to take shape. In the 
absence of a theory one can only cope vith the 
complexity of the situation by proceedinq in an 
order! y fashion to first produce an initial 
working model of the desited system. This part of 
the work represents the •ajor effort of the design 
and iapleaentation project. Once having arrived at 
this benchmark, aany of the probleas aay then be 
seen in a clearer light and revisions to the 
working model are i•pleaented auch aore quickly 
than were the original aodules. ls to the 
development of a theory, one gets the iapression 
t bat it vi 11 be a long tiae in coming. n 

Therefore, while ve await THE general theory of 

computer science, the file systea aodel presented in this 

paper will hopefully serve the need for an "initial voxking 

model" from which "problems aay be seen in a clearer light". 



UNIPCR~ BEPRESENTATION OF PILE STRUCTURE 15 

CRAP'!ER TiiO 

Motivation Behind file system Design 

There are t vo basic goals to be sa ti sf ied by the file 

system design. It is necessary to (1) establish a uniform 

representation of a file's structure and {2) deter1ine the 

hierarchy of logical transformations that occur in a file 

system. w. R. Henry's recent paper on hierarchical data 

management syste•s<Renry 69> discusses similar noticms cf 

separating logical and physical file control, but differs 

significantly fro• the approaches presented in this report 

in many fundamental ways. It should be a useful reference to 

a reader interested in other current research in this area. 

Q~if~.r!! BeQres~lli~tiill!, Q{ !il~ ~~gf1.Y.~~ 

A typical computer system is portrayed by Figure 2. 1. 

Such a configuration usually has a varied assortment of 

secondary storage devices in addition to the prisary 

storage. Programs and data must be in primary stcrage in 

order to be executed or operated upon, respectively. 

It is generally true that i! primary storage size was 

limitless and very inexpensive, there would be no need for 
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secondary storage (possible exceptions may be backup 

requirements and transfer of data). In the framework of this 

report, the file system will be defined as the sof tvare 

mechanism that extends the capacity of primary storage by 

handling and coordinating the transfer of infor11aticn tc and 

from the secondary storage devices. This def initicn is 

somewhat more restrictive than other common interpretations 

which include as fart of the file system the physical 

devices or the programs that operate upon the data. In this 

interpretation the file system merely stores and transfers 

information but does not operate upon it. 

---------



UNIFORM REPRESENTATION OF FILE STRUCTURE 17 

+--------------+ 
+--->I I/O DEVICE 1 I 
I +----------~--+ 
I 
1 

+---------+ +---------+ I +------------+ 
I PRIMARY J<=======>] CENTRAL J<---+--->I I/O DEVICE I 
I STORAGE I I PROCESSOR 1 I I 2 I 
+---------+ +---------+ J +------------+ 

I • 
I • 
J • 
I • 
J +-------- + 
I J I/O 1 
+--->I DEVICE I 

I n I 
+--------+ 

Figure 2. 1 
Physical computer Configuration 

---------------------------
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Early file systems were usually 

with specific applicaticn ~rograms. 

potentially a very large number of 

designed tc Cferate 

Since there are 

different secondary 

storage devices, many of which can be used in more than one 

way (e.g. sequential or random access, blocked or unblocked, 

etc.) each file system limited itself specifically to those 

devices and organizations that were appropriate fer its 

inte rded a pplica ti on. Figure 2. 2 depicts the re la ticnshi f s 

between the applications, the devices, and the file systems. 

This type of development produced chaotic situations. 

It is somewhat analogous to assembly language programming 

without any established standard calling sequences or 

communication conventions, which makes it difficult, if not 

impossible, to use arbitrary programs as sutrcutines. In 

particular, it was quite common to find that data files 

produced by the fayroll programs, using their private file 

system, could not be accessed by the file system used by the 

per:scnnel programs, and vice versa. As a result, there was 

much duplication of effort and confusion in the development 

and use of these early file systems. 



UNIPCRP. BEPRESERT!TION OP FIL! S'lRUCTORE 

A 
I 
1 
I 
I 
J 
J 

APPLICATIONS 

LO GICA l- PHYSICAL 
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DEVICES AND PHYSICAL DITA OBGUIIZlTl:OH 

Figure 2. 2 
Early Pile Systems 

(Analogous to Assembly Language Programming) 

19 
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More recently, the computer manufacturers and operating 

systEm desiqners realized that it is possible to select a 

s•all set of co••on logical file organizations {or access 

methods) that can satisfy the needs of most application 

programs. Furthermore, these access methods could be 

designed in a flexible aanner to operate on a variety of 

different devices and deyice organizations. This provided 

the user with a logically device-independent interface vith 

the file system. Figure 2. 3 illustrates this structure. 

This approach can be coapared •itb the eaergence cf 

Proble• Oriented Languages, such as COBOL for business 

applications and l"ORTR11' for scientific applications. The 

access methods file syste•s suffered the saae shortcomings 

as the programming lanquages: (1) despite claias, they vere 

not really device independent, (2} occasionally it vas 

necessary to resort to assembly language to overco•e er 

bypass a restriction,. and {3) it was not possible to 

inter-aix access methods (analo9y would be to i11termix 

FORTRAN and COBOL subroutines). 
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_.!_ 
A 

ACCESS METHODS 

f 
I 

PHYSICAL 
I 
I 

_.!_ 

DEVICES AND PHYSICAL DATA OBGANIZATION 

Figure 2.3 
Access ftethods File Systems 

(Analogous to Early Progra•ming Languages, 
such as FORTRAN and COBOL) 
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In order to overcome the weakness in the access methods 

approach, it is necessary to design a ~iagl~ unifor• file 

representation that can (1) be used for every application 

and { 2) be device independent. Th is idealistic goal is 

analogous to the search for "The" universal programming 

language, for which PL/I is 

attempt to date. 

It is reasonable to 

probably the most 

expect that such 

a•bitious 

a unif crm 

representation will be so atomic or primitive in fer• that 

it v ill be desirable tc construct more powerful specialized 

access methods for the convenience of the typical user. 

SincE the access methods are built upon the uniform 

representation, it is much easier to modify or implement new 

access methods or, if necessary, operate at the atomic level 

to bypass the restrictions of the access methods. This 

approach pushes the logical/physical sei;araticn of file 

system structure much further as indicated in Figure 2.4. 
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LOGICAL ACCESS llE'tHODS 

• J 
I 
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URIPORft BEPRESENTATiOM 

DEVICES AND PHYSiClL DATA OBGllUZATiON 

Figure 2.4 
Uniform Pile Representation 

(Analogous to Universal Progra••ing Language, 
PL/I ?) 
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The rationale behind the selection of a particular 

uniform representation is not trivial. Por exaafle, there 

are three broad classes of common uniform representaticns: 

1. Stream - every file is treated as a continuous 

sequential stream of information. It is possible 

to access only the current position in the stream 

or reposition to the beginning of the stream. This 

representation can be implemented conveniently on 

almost all secondary storage devices, although it 

does not provide the user vith very foverful or 

efficient features for many applications. 

2. Direct-Access every file is treated as an 

3. 

ordered collection of items. Each item is directly 

accessable by means of a unique identifier 

corresponding to its position in the ordering. 

This representation, vhich corresponds to primary 

more powerful than storage 

Stream, 

organization, 

but is very 

is 

difficult to i•pleaent on 

intrinsically serial devices, such as magnetic 

tape. 

Associative every file is treated as an 

unordered collection of items, each item is 

directly accessible by means of an identifier that 

has been "associated" vi th the i te JB • Th is is a 

very 

except 

flexible 

for a 

representation. 

small class of 

Unfortunately, 

sophisticated 
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secondary storage devices the implementation is 

very complex and inefficient. 

Irregardless of the specific uniform representaticn 

chosen, the i•portant concept is that all files can be 

viewed as being identical in structure independent of the 

particular physical device on which the file is recorded. 

This generalization is depicted in Figure 2.5, which should 

be compared with Pigure 2.1. 
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+---------+ 
+--->t UNIFCFM l 
I I FILE 1 I 
I +---------+ 
I 
I 

+---------+ +---------+ J +---------+ 
I PRIMAPY !<=~=====>) CENTRAL t<---+--->J UNIFOE~ I 
I STCFAGE I I PROCESSOR) I I FILE 2 I 
+---------+ +---------+ I +---------+ 

Figure 2.5 

I 
I 
I 
1 
I +---------+ 
+--->I UNIFORM I 

I FILE m I 
+--------- + 

Lcgical Comfuter Configuration 
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BieI:~rchy of Lo_gjca 1 Trgnsformati.Q.!!.§ 

Although a frecise description of a file system will 

not te presented until later sections, there are several 

general characteristics of most file systems. In 

particular, a user specifies his request, such as read or 

write, by designating a file and an element within the file. 

Most advanced file systems allow considerable flexibility in 

the mechanism used to specify a file, it is typically 

described by means of a symbolic file name. Furthermore, the 

element within the file is specified in terms of the logical 

representation of elements in the particular file system 

vhicb may or may not correspond to a precise fhysical 

specification cf hcv and where the element is stored. For 

example, a typical request might be of the form: 

"Read item 23 from file ALPHA into location 1564." 

Realizing that information must usually be stored on 

devices in somewhat obscure ways, there 111ust be some 

sequence of transformations required to ccnvert the u~er • s 

request into its final form that physically operates en the 

secondary storage device. 

viewed as a single 

Quite often the transformaticn is 

step 

oversimplification that hides the 

but that is a gross 

fundamental mechanisms in 

use. In Figure 2.6 the conversion process is illustrated in 

terms of a discrete sequence of logical transformations. 

Since the specifics of these transformations nay not be 
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£'.11~ SYST]~ !J!AL.QQ1 

READ IT El'! 23 PBOM 11 SEND LETTER TO 
FI lE A lPHA INTO I I JOHN DOE'S 
LOCATION 1564. JI HOME ADDBESS. 

11 

1 ' SYMBOLIC 1 I JOHN DOE 
FILE NAME J I I 

I 1 I I 
LFS I II I 

v II v 
NUMERIC II 030-34-1234 
FII.E IDENTIFIER I I I 

I I I I 
BFS ' II I 

v IJ v 
FILE DESCRIPTOR I I Birth date 

I II Office Address 
I J I Home address 
I I I etc. 
I I t J 

FOSM t I I I 
v II v 

LOGICAL II EXTBACT 
I/O COMMANDS I I BOME ADDRESS 

J I I 1 
DS" ' I I I 

v I I v 
PHYSICAL J I SEND TO 
I/O COMMANDS I I POST OFFICE 

I It J 
roes t II I 

v I t v 
I/O DEVICE 1 I POSTMAN DELIVERY 

II 

Figure 2. 6 
Logica 1 'Iransforma tions in Pile System 
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obvious until the more detailed sections 

analogy is presented in Figure 2.6 that 

the file system transformations. The 

intended to provide some insight into the 

each stage of the transformation. 

The process starts from the user's 

item 23 from the file ALPHA into location 

29 

later, a siirple 

loosely parallels 

analogy is only 

ration ale behind 

request to "read 

1564". The first 

step is to convert the symbolic file name into a unique 

numeric file identifier. In the analogy, this ccrresfcnds to 

lookin9 up John Dee's identifier which is a social security 

in this illustration. The purpose for using an identifier is 

basically the saae in both cases. It is usually more 

convenient to store information, manually or automatically, 

by means of a unique numeric "key" rather than a symbolic 

name which may. under certain circumstances, not even be 

unique (i.e. there may be more than one John Doe in which 

case other factors must be considered in order to uniquely 

identify the person under consideration). 

The file identifier can then be used 

access all the inf ormaticn knovn about 

to conveniently 

a file, this 

information collectively is known as the file's descriptor. 

In the analogy, this would correspond to requesting all 

information in the social security records of 030-34-1234. 

Now that everything is known about the file, it is 

necessary to consider the specific operation to be 

performed. Using the file descriptor, a sequence cf logical 



30 II. "OTIVATION BEEIND FILE SYSTEM DESIGN 

I/O commands can be produced. These are called logical I/O 

commands because they do not consider the physical 

characteristics of the secondary storage device to be used. 

This is analogous to putting an address on a letter which is 

usually done without considering the physical destination 

nor the route to be taken. 

In order to complete the transformation, the logical 

I/O commands must be converted into the appropriate sequence 

of physical I/O commands. This conversion aay be trivial or 

compleI depending upon the peculiarities of the device and 

I/O interfaces to the devices. In the analogy this precess 

is performed at the post office where the address is used to 

determine the physical routing needed to get the letter to 

its destination. 

The final step in the process is the physical transfer 

of information. This is usually performed by means of 

softwarejhardware interactions to activatE the apprcpriate 

device and confirm the successful completion of the request. 

Of course, in the analogy this transfer is accoaflisbed by 

the postman ("neither rain nor snow nor dark of night ••• ") 

assisted by trucks, planes, trains and other aato•ation. 
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CBAP'IER THREE 

Pile System Design Model 

l!g2.if ~Q_!!Cepts Q~ed !.!! f_ile S yst~_! De§.ig}! 

Two concepts are basic to the general file system model 

to be introduced. These conceFts have been described by the 

terms "hierarchical modularity" and "virtual memory". They 

will be discussed briefly below. 

Hierarchical Modularity 

The term "modularity" means many different things to 

different people. In the context of this paper we will be 

concerned vi th an organization similar to that proFosed by 

Dijkstra<Dijks 67><Dijks 68> and Randell<Rand 68>. The 

important aspect of this organization is that all activities 

are divided into sequential processes. A hierarchical 

structure of these sequential Frccesses results in a level 

or ring organization wherein each level only communicates 

with its immediately superior and inferior levels. 

The notions of "levels of ab ::traction" or "pierarchical 

modularity" can best be presented briefly by an example. 

Consider an aeronautical engineer using a matrix inve~sion 
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packagE to solve space flight problems. At his level of 

abstract ion, the computer is viewed as a matrix inverter 

that accepts the matrix and control information as input and 

provides the inverted matrix as output. The application 

programmer who wrote the matrix inversion package need not 

have had any knowledge of its intended usage (superior 

levels of abstraction). He might view the computer as a 

"FORTRAN machine", for example, at his level of abstraction. 

He need not have any specific knowledge of the internal 

operation of the FORTRAN system (inferior level of 

abstract ion), but only of the va y in which he can interact 

with it. Finally, the FORTRAN compiler implementer operates 

at a different (lover) level of abstraction. In the above 

examplE the interaction between the 3 levels of abstraction 

is static since after the ma tri:i. inversion program is 

completed, the engineer need not interact, even indirectly6 

with the applications programmer or compiler i1plementer. In 

the form of hierarchical modularity used in the file s1ste11 

design model, the aulti-level interaction is continual and 

basic to the file system operation. 

There are several advantages to 

organi 2a ti on. Possibly the most important 

completeness of each level. It is easier 

designers and 

such an modular 

is the logical 

for the system 

functions and implementers to understand the 

interactions of each level and thus the entire systea. This 

is cften a very difficult problem in very co•ilex file 
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Figure 3.1 
Hierarchical Levels 
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systems vith tens or hundreds of thousands of instructions 

and hundreds of inter-dependent routines. 

Another by-product of this structure is "debugging" 

assistance. Por eza•ple, when an error occurs it can usually 

be localized at a level and identified easily. The co•plete 

verification (reliability checkout) of a file system is 

usually an impossible task since it would require tests 

using all possible data input and system requests occuring 

in each potential "system state". In order to construct a 

finite set of relevant tests• it is necessary to consider 

the internal structure of the mechanism to be tested. 

Therefore, an important goal is to design the internal 

structure so that at each level, the number of test cases is 

sufficiently s•all that they can all be tried without 

overlooking an i•fortant situation. Io theory, level 0 would 

be checked-out and verified, then level 1, level 2, etc., 

each level being more poverf ul, but because of the 

abstractions introduced, the number of "special cases" 

re ma ins vi thin bounds. 

Virtual l!emory 

There are four very impo~tant and difficult file system 

objectives: (1) a flexible and versatile format, (2) as much 

of the mechanism as possible should be invisible, (3) a 

degree of machine and device independence, and (4) dynamic 

and automatic allocation of secondary storage. There have 
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been several techniques developed to satisfy these 

objectives in an organized manner; the concept exploited in 

this generalized file system has been called 

"segmentation"<Denn 65> or "named virtual •emory"<Daley 68>. 

Under this system each file is treated as an ordered 

sequence of addressable elements, where each ele•ent is 

normally the sa•e size unit as the main storage, a byte or 

word. Therefore, each individual file has the form of a 

"virtual" core mesory, froa whence the name of the technique 

came. The size of each file is allowed to be arbitrary and 

can dynamically grow and shrink. There is no explicit data 

format associated vith the file: the basic operations of 

the file system move a specified number of ele•ents between 

designated addresses in "real" aeaory and the "virtual" 

memory of the file system. 

There are several reasons for choosing such a file 

concept. In some systems the si•ilarity between files and 

main storage is used to establish a single mechanism that 

serves as both a file system for static data and program 

storage and a paging system<Lett 68><Daley 68><Denn 68><Salt 

68> for dynamic storage management. "Virtual memory" 

provides a Yery flexible and versatile format. When 

specific for matting is desired, it can he accomplished by 

the outermost file systea leYel or by the user prcgram. For 

example, if a file is to be treated as a collection of 

card-image records, it is aerely necessary to establish a 
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routine to access 80 characters at a time starting at byte 

locations O, so. 160, •••• Alaost all other possible 

formats can be realized by similar procedures. 

Except for the formatting modules, the entire file 

system mechanism, including allocations, buffering, and 

physical location, is completely hidden and invisible tc the 

user. This relates closely to the objective of device 

independence. In aany file systems the user must specify 

which device should be used, its record size (if it is a 

hardware formatable device), blocking and buffering factors, 

and sometimes even the physical addt:esses. Although the 

parameters and algorithms chosen might, in soae sense, be 

optimal, many changes 11 ight be necessary if the program is 

required to run with a different configuration or 

environment. This strategy does not prevent the user from 

providing additional information, such as how often the file 

will bE used and in what manner. The important factor is 

that this information is not necessary and its significance 

is determined by the file system rather than the user. 

There are very serious questions of efficiency raised 

by this file system strategy. Most of these fears can be 

eased by the 

to be used 

following considerations. First, if a file is 

very seldom (as in program developsent), 

efficiency is not of paramount importance; if, on the ether 

band, it is for Ieng-term use (as in a commercial production 

program), the device-independence and flexibility for change 
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and upkeep will be very iaportant. Second, by relieTing the 

programmer of the co•plexities of the formats, devices, and 

allocations, he is able to utilize his energy acr:e 

construe tively and crea ti vel y to deYelop clever algor:ith•s 

relatin9 to the logical structuring of his proble• rather 

than clever "tricks" to overcoae the shortcomings or 

peculiarities of the file systea. Third, in Yiev of the 

co11ple2ity of current direct-access devices, it is quite 

possible that the file syste• will be better able to 

coordinate the files than the average user atteapting to 

specify critical parameters. 
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<l!.~~!.i~ Of Fil~ system J!llill l!..ggel 

The file system design model 

paper can be viewed as a hierarchy 

to be presented in this 

of seven levels. In a 

specific implementation certain levels may be further 

sub-divided or combined as required. A recent study of 

several modern file systems, which will be puhlished in a 

separate report, attempts to analyze the syste•s in the 

framework of this basic model. In general all of the systems 

studied fit into the model, although certain levels in the 

model are occasicnally reduced to trivial form or are 

incorporated into other parts of the operating system. 

The seven hierarchical levels are: 

1. Input/Output Control system •IOCS) 

2. Device Strategy ftodu les (DSll) 

3. Allocation Strategy llodules fA SPI) 

4. File Organization Strategy llodules (POSH) 

5. Basic File system (BP~ 

6. Logical File System (LFS) 

7. Access llethods and User Interface 

The hierarchical organization can be described from the 

"top" down or from the "bottom" up. The file system wculd 

ordinarily be implemented hy starting at the lowest level, 

the Input/Output Control system, and working up. It appears 

more meaningful, however, to present the file systea 

organization starting at the most abstract level, the access 
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routines, and removing the abstractions as the levels are 

"peeled a way". 

In the f olloving pres en tat ion the terms "file name", 

"file identifier", and "file descriptor" vill be introduced. 

DetailEd explanations cannot be provided until later 

sections. the following analogy .15~ be used for the reader's 

assistance. A person• s name (file name)• due to the somewhat 

haphazard process of assignment, is not necessarily unique 

or manageable for computer processing. A unique identifier 

(file identifier) is usually assigned to each person, such 

as a Social Security number. This identifier can then be 

used to locate efficiently the information (file descriptor) 

known about that person. 

Access l1etb.ods {AM) 

This level consists of the set of routines that 

superimpose a f oraat on the file. In general there will 

probably be routines to simulate sequential fixed-length 

record files, sequential variable-length record files, and 

direct-access fixed-length record files, for exaaple. Many 

aore elaborate and specialized format routines, also called 

access methods or data management, can be supplied as part 

of the file system. Obviously, a user may write bis own 

access methods to augment this level. 
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Logical Pile System (LPS) 

Routines above this level of abstraction associate a 

symbolic name with a file. It is the function of the Logical 

Pile System to use the symbolic file name to find the 

corresponding unique "file identifier". Below this level the 

symbolic file name abstraction is eliminated. 

Basic Pile system (BPS) 

The Basic Pile System must convert the file identifier 

into a file descriptor. ID an abstract sense, the file 

descriptor provides all inforaation needed to physically 

locate t.he file, such as the •length" and "location" of the 

file. The file descriptor is also used to verify access 

rights (read-only, write-only, etc.), check read/write 

interlocks, and set up syste11-vide data bases. The Basic 

Pile System performs many of the functions ordinarily 

associated with "opening" or "closing" a file. finally, 

based upon the file descriptor, the appropriate FOSft for the 

file is selected. 

Pile organization strategy Bod ules (POS!) 

Direct-access devices physically do not resemble a 

virtual 

physical 

memory. A 

records. 

file must be split into many separate 

Each 

associated with it. The 

record has a 

Pile Organization 

onigue address 

strategy Mcdule 

maps a logical virtual memory address into the corresponding 
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physical record address and offset within the record. 

To read or write a portion of a file, it is necessary 

for the POSPI to translate the logically contiguous virtual 

memory area into the correct collection of physical reccrds 

or pcrtion thereof. If necessary, new records are allocated 

by the ASft. The list of records to be physically processed 

is passed on to the appropriate DSft. 

Although not necessary, the POSM is often designed to 

allocate "hidden" file buffers in order to minimize 

redundant or unnecessary I/O. If the requested portion of 

virtual memory is contained in a currently buffered reccrd, 

the data can be transferred to the designated user aain 

storage area without interYening 1/0. Conversely output t~ 

the file may be buffered. If a sufficiently large number of 

bu ff er areas are allocated to a file, it is possible that 

all read and write requests can be performed by merely 

moving data in and out of the buffers. When a file is 

"closed", the buffers are emptied by updating the physical 

records on the secondary storage device and released fer use 

by other files. Buffers are only allocated to files that are 

t . 1 i (. " ") ac ive y n use 1.e. open • 

Allocation Strategy Plodules (A Sl'I) 

The Allocation Strategy ftodules keep track of the 

available records on a device. They are responsible for 

a lloca ting records for a file that is being created or 
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expanded, and deallocating records for a file that is being 

erased or truncated. The FOSM requests that a record be 

allocated when needed, the ASM actually selects the record. 

Quite frequently, the ASM functions are incorporated 

into either the FOSM or DSM. In this paper these functions 

will be kept as separate as possible by explicitly 

recognizing the separate ASM level. 

Device Strategy Mcdules (DSM) 

When a large portion of a file is to be read or 

written, many records must be processed. The Device Strategy 

Module considers the device characteristics such as latency 

and access time to produce an optimal I/O sequence frcm the 

FOSM and ASM requests. 

Input/Output Central System (IOCS) 

The Input/Output Control system coordinates all 

physical I/O on the computer. Status of all outstanding I/D 

in process is maintained, new I/O requests are issued 

directly if the device and channel are available, cther~ise 

the request is queued and automatically issued as seen as 

possible. Automatic error recovery is attemFted when 

possible. InterruFts from devices and unrecoverable error 

conditions are directed to the appropriate routine. Almost 

all modern operating systems have an roes. 
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File Systems versus Data Management Sjstems 

In the literature there is of ten confusion between 

systems as described above, which this pa per calls "file 

systems" and systems which will te called "data management 

systems", such as DM-1<Dixon 67>, GIK-1<Nel 67>, and 

TDMS<Blei 67>. The confusion is 

types of systems contain all 

to te expected since beth 

of the functional levels 

described above. The systems differ primarily en the 

emphasis placed on certain levels. 

In general file systems, the file is ccnsidered the 

most important iteff and emphasis is flaced on the directory 

organization (Lcgical File system) and the lower 

hierarchical levels. It is exp€cted that specialized access 

methods will be written by users or srpplied with the system 

as needed. 

In most data management systems, the individual data 

items are considered the most important aspect, therefore 

emphasis is placed on elaborate access methods with minimal 

emphasis on the lower levels of abstraction. Because of the 

heavy emphasis en a single level, data management systems 

tend tc appear less hierarchical than file systems since the 

lower levels are often absorbed into the access methods. 
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!£.£~§§ 11 et hods 

The virtual memory interface provided by the Logical 

File System allows for very flexible user applications and 

access methods. In a PL/1-like notation, calls to the 

Logical File System are of the form: 

lFS_Read/Wri te (Filename, Addr 1, Addr2, Number); 

where Addr1 is the main storage address, Addr2 is the file 

virtual memory address, and Number is the number of elements 

to be moved. 

In this paper elements will be assumed 

bytes. For example, a request to read 100 

to be 

bytes 

8-bit 

fro• 

location 200 within the file named ALPHA into main storage 

location 1234 could be expressed: 

LFS_Bead( 1 ALPHA', 1234, 200, 100); 

sequential 

variable-length 

records are 

fixed-length records, 

records, and direct-access 

common access methods. All 

sequential 

fixed-length 

cf these 

organizations and aany 

virtual memory. Note 

more can be realized using a file's 

that the records processed by the 

access methods are "software" records and have no relation 

to the physical/logica 1 records processed by the FOSM and 

DSft. 

--------------
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Sequential and Direct-Access Fixed-Length Record Access 

!! et hods 

To simulate these access methods, the file's virtual 

memory is treated as a sequence of records of the desired 

length, l. 

To access these records sequentially, a Fositicn 

counter, PC, is set aside that starts at 0 and is 

incremented by L after each read or write. The position 

counter therefore finds the location of the next sequential 

record. The routine could be written as: 

LFS_Read(Filename, Location, PC, L); 

PC = PC + L; 

To access these records by direct-access there is no 

need for a position counter since the desired record, r, can 

be found at location (r-1)*L in the file's virtual memory. 

This routine could be written as: 

LPS_Read (Filename, Location, (r-1 )*t, l); 

Sequential Variable-Length Record Access ftethod 

The Sequential Variable-Length Record Access Method 

treats the file as an ordered sequence of records, each 

record may be a different lenqth. This method can be 

i•plemented by preceedin9 each .record vit:h a "hidden" length 

field. 

These records can be accessed using a variation cf the 

sequential Pixed-Length scheme. For exa•ple: 
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I I O 
I Record 1 J 
+---------+ 
I I L 
I Record 21 
+---------+ 
I I 21 
I Record 31 
+---------+ 
I I 3 L 
I Record 4) 
J_ _______ i__ 

41 

Figure 3 .6 
Layout of Virtual Memory For Fix€d-Length 

Record Access ~ethods 
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L 1 I 0 
+---------+ 
l I 4 
I Record 11 
+---------+ 

12 I 11+4 
+---------+ 
I I L 1 +8 
I Record 21 
+---------+ 

L3 1 L 1+L2+8 
+---------+ 
I 1 L 1+12+12 
I Record 3 J 
L _______ L_ 

L 1 + L2 + 13 + 1 2 

Figure 3. 7 
Layout of Virtual Memory for Variable-Length 

Record Access Method 

51 



52 III. FilE SYSTEM DESIGN MODEL 

LFS_Read (Filename. L. Pc. '0 ; 

length */ 

/* Get 4 byte 

LFS_Read (Filename. Location. PC+4, 1); /* Get 

data * / 
PC = PC + t + 4; /* Update position counter */ 

Other Access Methods 

The above examples were presented to illustrate the 

ease with which conventional access methods can be supported 

under this file system design. The real importance of the 

virtual memory ccncept is not its ability to provide 

traditional access methods, but the ease and flexibility 

with which problem-oriented access methods can be developed. 

The programmer is able to design access methods based en the 

needs of his problem rather than forcing his problem 

solution to be ccnstrained by a small set of limited access 

methods. For exa•ple, Nelson<Nel 65> discusses some flexible 

and complex file structures that can be used "as an adjunct 

to creativity". 

The power of a computer reaches its peak when it is 

capable of amplifying the creativity of the programmer. A 

system that restricts the programmer's ability to express 

his ideas provides him questionable servicE. 
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~Qgif~1 Pile ~!§!~~ 

A user's program references each file by means of a 

unique symbolic name. It is the function of the Logical file 

System to convert the symbolic name reference into its 

corresponding unique file identifier. The Logical File 

System performs the mapping using a "file directory 

orga niza ti on"· 

In the simplest case the file directory is entirely 

stored in main storage as a two-entry table. The two entries 

are the symbolic file name and its corresponding file 

identifier. A look-up routine is all that is needed to serve 

the function of the .Logical File System. This approach is 

used by several file systems because of its simplicity and 

efficiency. Unfortunately, the number of files that are 

allowed in the file system is restricted by the amount of 

main storage available for the file directory. 

To remove the above li•itation, many file systeas keep 

the file directory on secondary storage. The file directory 

can te treated as a standard file if its file descriptor is 

always known. This allows the file directory to be 

processed, expanded, and truncated using the normal file 

system mechanisms. The Logical File system mapping still 

involves a table look-up, only this time the table is 

contained in a file's virtual memory rather than aain 

storagE. The calls tc the Basic File system are essentially 
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the same as the calls to the 

file identifier is specified 

name. 

III. FILE SYSTE! DESIGN ftODEl 

toqical File System, only a 

rather than a symbolic file 

A fev of the adYanced tile systems have introduced the 

concept of the hierarchical file 

point of Yiev, a file directory 

serves a similar purpose to a 

directory. Proa a siaple 

hierarchy resembles and 

PL/1 data structure. In 

practice, certain files are classified as "directories" in 

addition to their normal attributes. The earlier aodel of 

the Logical File System implied that there was only one 

directory file. !his file contained tlle file identifiers for 

all the other files, called "data files". This .has been 

extended to allow the base directory, o~en called the •root 

directory•, to contain file identifers for directory files 

as well as data files. Bach subsequent directory file can 

contain file i<lentifers for other directory files as well as 

data files. 

Figure 3.8 illustrates a file directory hierarchy. The 

files A, B, c, and D are directory files, all the others are 

data files. The data files, as well as directory files. do 

not necessarily haYe unique sy•bolic na•es. There are 3 data 

files in Piqure 3.8 na•ed •1•. as in PL/1 this a•biguity is 

solYed by nsinq qualified names such as •1.1•, •1.B.D.X", 

and "l.C. X". 

The file diEectory hierarchy serYes many portoses in 

addition to providing flexible and versatile facilities for 
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programaer usage. "File sharing" and "controlled access" 

among users are very closely tied to the hierarchical 

directories. Certain of these features are discussed in the 

paper by Daley and lfeuaann<Daley 65>. 1 •ore detailed 

treatment of this topic will be presented in a subseguent 

paper by this author. 

The i•pleaentation of the Logical Pile Systea for a 

file directory hierarchy is a siaple eztension of the single 

directory technique. lfter finding the correct file 

identifier in the root directory, it is either the data file 

desired or, if a secondary directory file, is used in 

exactly the saae manner as the root directory identifier to 

advance one more level in the hierarchy. 
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~~§!f !!le Syst~! 

As explained in the Overview section, a file is 

physically located on secondary storage as an ordered 

collection of distinct records. The information that 

describes a file's size, access rights, device address or 

addresses, and the mapping algorithm must be maintained by 

the file sy ste •· 

In a siaple file system this information can be 

incorporated into the file directory as long as there is a 

unique one-to-one mapping of file name onto file. In a 

sophisticated file system vith features such as (1) 

hierarchical file directory, (2) aliases that allow a single 

file to be referenced by different names, (3) links that 

allow a file to be referenced from various directories in 

the file hierarchy or from different users, and (4) 

removable or detachable "volumes" or devices, the unique 

mapping cannot be guaranteed. 

To produce an unambiguous file system, the file 

directory information is divided into three parts, the file 

name, identifier and the descriptor. The file name 

directories are the mappings between a syabolic file naae 

and the correspondinq iden tifer. 

the file descriptors can 

The precise locations of 

differ for different 

implementations, but uniquely defined 

fact, since the file descriptors 

by the identifer. 

usually need not 

In 

be 
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searched, they need not be contiguous. Usually they are 

collected in either (1) a special system wide file, (2) a 

collection of 

volume, or 

directories. 

files, each located 

(3) hidden vi thin 

on a separate 

the symbolic 

device or 

file name 

Although it is usually not possible to keep the 

symbolic file directories in main storage, the number of 

files actively in use is sufficiently small that the 

corresponding file descriptors can be placed in a 

core-resident table called the Active File Directory or Open 

File Directory. 

It is the function of the Basic File System to use the 

unique file identifier to locate the file descriptor and 

place it in the Active Pile Directory unless it has already 

been "opened". The Basic File System also checks that the 

action re guested upon the file such as read, vr ite, er 

delete does not violate the restrictions specified in the 

file descriptor. 

A ft er verifying 

File system passes 

Organization Strategy 

descriptor entry. 

legal access 

control to 

Module as 

to the file, the 

the appropriate 

specified in the 

Basic 

File 

file 
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~il~ O[g.!Jliza~iQ.!! ~!~at~gI ~9g~le§ 

The primary function of the File Organization Strategy 

"odule is to map a file's virtual memory address onto a 

corresponding physical record number. There are at least 

three common physical file organization strategies: 

sequential, linked, and indexed. 

Sequential File Or:ganiza tion Strategy 

The Sequential File organization Strategy is used by 

most of the older, simpler, and non-dynamic file systems. 

Under this technique logically consecutive records are 

physically consecutive. For example, if each record is 1000 

bytes long, virtual address 3214 would be located in the 

fourth logical record. If the first logical record (i.e., 

the one containing virtual 

120, the record containing 

physical record 123. 

address 0) is physical record 

virtual address 3214 would be 

There are two notable adv an ta ges claimed for this 

technique. Firstly, the mapping is very siaple and 

efficient. The only information needed is the fixed record 

size and the address of the first record. Secondly, if the 

file is to be processed in a sequential manner, the 

consEcutive organization allows for minimizing device 

latency and access time. 

Although the first point is indisputable, the second 
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claimed advantage is open to question. If there is •ore 

than one .file on the same device that is actiYely in use, as 

is coa•on in a •ulti-tasking ervironaent, then 

read/vrite positioninq will be switching rapidly 

the device 

aaonq the 

acti Ye files, defeating the assumed sequential accessing. 

The aajor disadvantage of this sequential organization 

is that the maximum size of the file must be assumed 

statically before creating the file. BJ specifying too 

small a size, the task will be forced to terainate if •ore 

space is needed. If too large a size is assuaed, as is 

common, there is •uch wasted space and fragaentatioa. 

This technique aay be reccaaended for single-tasking 

systems with few permanent files and yery fev files 

simultaneously in use. It aight be useful for a large 

inf oraation utility systea which is based on a large number 

of independent, lov cost, lov usage, kigh capacity devices 

such as data cells where wasted space is not a significant 

problem. 

Linked Pile organization Strategy 

The Linked and Indexed File Organization 

allow for files to d}'l'laaically 9rov and shrink. 

strategies 

The linked 

technique was probably deYeloped first since it is siapler 

and eaphasizes sequential characteristics which were 

primarily used in early file syste•s. 

The linked organization i:eqaires each record of a file 
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to specify the location of the next loqical record, 

analogous to the "links" on a chain. The file descriptor 

specifies only the location of the first record. It tells 

nothing about the locations of the other records. ls the 

file grows, new records are dynamically allocated and linked 

onto the file. 

For sequentially processed files, the linked technique 

provides a very siaple and efficient aechanism. A few bytes 

are used in each record to record the link, and since record 

sizes are usually in the range of 1000 bytes the overhead is 

ainiaal. Unfortunately, randoa or direct-access file usage 

poses serious proble•s. If, for exaaple, the last access 

was to a data area in loqical record 5, a reference to an 

area in logical record 15 will require 9 interaediate I/O 

accesses to find the links before reaching the desired 

record. The Linked Pile Organization Strategy has been used 

satisfactorily on systeas where the vast •ajority of files 

are accessed sequentially. 

In de :red File organization Strategy 

The Indexed Pile Organization Strategy is a 

siqnif icant variation to the linked technique. Records are 

dynaeically allocated as needed, but rather than 

distributing the record addresses throughout the file as 

links, they are collected together as a table. The logical 

record naaber is used as an "inde~" in the table to find the 



62 III. PILE SYSTEM DESIGN ftODEL 

corrEsponding physical record number. 

If files are limited to s•all or medium sizes, the 

index table can be stored as part of the file descriptor. 

If files are allowed to be arbitrarily large, the index 

table must itself be treated as a file and is broken into 

separate records. In the former case, sequential and random 

access processing proceed easily and efficiently. In the 

latter case, sequential processing is very efficient, except 

for intermittent accesses for the next portion of the index 

tablE. Bandom precessing may te very efficient if localized 

to a simple index table block; in any case it will never 

exceed a small number of intermediate accesses, usually one 

or two, for totally random processing. 

The Indexed File Organization strategy has the 

advantage of allowing the concept of a "sparsely filled" 

file. If we assume that each physical record is 1000 bytes 

and each index {record number) is 4 bytes, then the index 

table for a file that is 250,000 bytes long would require 

250 indexes or 1000 bytes. By designating a special cede, 

such as O, to indicate an index for a non-allocated record, 

a file can be created with specific contents at locations 

10,000, 40,000, and 247,000 but with unspecified contents 

elsewhere. By convention, unspecified contents are usuallJ 

initiali7ed as zero by the file system. The above sparse 

file would only require four physical records, three records 

for the specifiea portions of the file and one record for 
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the index table. As •ore information is written intc a 

sparse file, aore physical i:ecords vill be allocated as 

needed. 

The indexed orqani%ation provides a si•ple and 

efficient vay to use programming techniques, such as "hash 

coding" or "rando• entry" tables, that require a large 

though sparse virtoal memory. 

Many of the aost recent file systeas have adopted 

techniques siailar to the Inde2ed Pile Organizaticn. 
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!l!gsati.2.!! ll~atesu Modules 

When the FOSM maps a walid 11rite request onto a logical 

record for which a physical record has not been allocated, 

the ASft is called to find an available record for use. There 

are two 

records. 

common techniques used 

The first technique 

to keep track of available 

links all available records 

together. This •ethod is often used in conjunction vitb a 

Linked Pile Organization Strategy ftodule. The second 

technique uses a "bit aap" for each device. A bit aap is a 

function which operates on a bit string and describes the 

relationship between a bit position and a physical record on 

the device. For exaaple a convenient bit map might be: bit 

0 corresponds to physical record O, bit 1 to physical record 

1, etc. If a bit is set to 0, the corresponding recoi:d is 

available for allocation, otherwise it has already been 

allocated to a file. The bit aap provides a vei:y coapact 

representation of the allocation information. 7he 

allocation states of a device with a capacity of 8,0CC,000 

bytes divided into 8000 1000-byte records can be stored in a 

1000 byte bit map. In a file system with a large number of 

high-capacity direct-access devices, it may be impossible to 

keep all the bit maps in main storage. The bit •ap aay be 

subdivided into sections, such as a separate bit •aF for 

each group of 800 records. Only one section of the bit aap 

for a device is kept in main storage at a tiae, the 
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remaining sections are left stored on the device. 

Since sequential processing is a very common file 

usage, the ASft aay atteapt to allocate records to take 

advantage of this fact. Of course, any specific File 

Organization Strategy Module and Device Strategy Bcdule 

grouF are expected to be cooperative with the Allocation 

Strategy !odules to optimize overall performance. The 

precise nature cf meaningful cooperation would be too 

detailed to discuss in this paper. 
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~~Yif~ 2tra!~I ~~g~les 

In addition to the obvious "read" and "vrite" 

functions, direct access devices often require additional 

I/O commands, such as "seek" and "search", for proper 

positioning. The POSM and ASM deal only with the logical act 

of of reading and writing. They transfer a set of requests 

to the DSM of the form: "read record 24 into location 5400, 

read record 49 into location 6400, and write reccrd 27 from 

location 9324 "· The DSM must translate these requests into 

the obscure I/O list format required for the particular 

device. 

Furthermore, due to the de vice chat·act.eristics such as 

latency and access time, the order in which the requests are 

performed affects the total amount of time that the device 

is kept "busy". For example, if records 24 and 27 are 

"closer", in some sense, to each other than record 49, it 

might be more efficient to read record 24, write record 27, 

and then position to read record 49. 
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IDJ!!!!Lf.!!il.!!! Control Sys_!ll 

The Input/Output Control System coordinates all the 

physical I/O on the computer. on most modern computers there 

are complex interdependencies among the physically 

independent I/O devices. Usually this dependency occurs due 

to the dedicated nature of "selector" channels and device 

control units that can switch to any device but can cnly 

service one device at a time. For very hi9h-speed devices, 

such as drums, the main storage access time can be an 

important factor. If toe many simultaneous memory requests 

occur, "overrun" can occur resulting in erroneous data 

transmission. The IOCS keeps track of the status of all 

devices, control units, and channels. When an I/O operation 

is requested, the IOCS checks to insure a clear path to the 

device through the channels and control units and that no 

I/O capacity liai ts will be exceeded. If it is not EOssible 

to issue the requested I/O operation, the IOCS stores the 

request on a queue. The I/O vill be issued at a later time 

when all conditions are satisfied. Since the I/O 

interdependencies aay exist among all devices, every I/O 

operation whether for the file system or dedicated special 

purpose device must be funnelled through the IOCS. 

Although most modern I/O devices are very reliable, 

spurious errors do occur. Usually the retry er recovery 

procedure is very simple, in such a case the IOCS will 
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attempt corrective measures. 

The caller to the IOCS is infor•ed of the status of his 

I/O request, for exaaple (1) successful coapletion, (2) 

unrecoverable error condition, or (3) asynchronous 

interrupt. 

The sophistication and scope of the IOCS depends upon 

the deTices to be handled and the goals of the file syste• 

and operating systea. 
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CHAPTER FOUB 

8ulti-Coaputer Network Enwironaent 

~ac.ks~~ 

l general file systea design aodel aust, of course, be 

modified and elaborated to satisfy the needs of any specific 

desired file systea environaent. To illustrate the 

refineaent process, a unique file systea design will be 

presented for a multi-coaputer network. 

ftolti-computer networks are becoaing an increasingly 

important area of coaputer technoloqy<!ad 68>. There are 

several significant reasons behind the growth of 

aulti-computer networks: 

1. To increase the pover of a coaputer installation 

in a modular aanner, especially if (a) it is not 

possible to acquire a larger processor, (b) 

reliability is iaportant, or (c) there are 

real-tiae or time-sharing constraints. 

2. To serve the co-ordination requirements of a 

network of regional coapu~er centers. 

3. To support the accessibility to a nation-wide data 

base. 
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An example of the environment to be considered for this 

paper can be illustrated in Figure 4.1. This type of 

multi-computer network has been in limited use for several 

years in many configurations. 

Direct-Coupled System<Rosen 69> was 

The IB! 

prol:ably 

7094/7044 

cne of the 

earliest practical examples of such an inter-connected 

arra ngu1ent. 

There are several implicit constraints imposed upcn the 

multi-computer system illustrated in Figure 4.1: 

1. Independence of Central Processors. 

Each of the central Frocessors operate independently 

such that there are no direct processor-to-processor 

data transfer nor signaling, and further1cre there 

is no "master" processor. 

2. Bon-shared eemory. 

Each central processor has its own main storage 

unit. These units are not shared with nor accessed 

by another central Erocessor. 

3. Inter- locked Device C cntrollers. 

The device controllers act as "traffic cops" to the 

actual I/O direct access devices. They control the 

traffic between a computer's I/O channel and a 

selected I/O device. A single device ccntrcller will 

only accept requests from one channel at a tiae and 

will only select one I/O device (among those under 

its control) at a time. Once a device controller 
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+----------+ +----------+ +----------+ 
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Example of ~ulti-coaputer File System Network 
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connects a channel with a device, the connection 

remains intact until the channel releases the device 

or an I/O error occurs. 

The environaent described above, although well within 

the boundaries of current technoloqy, has not been the 

subject of much investigation. such configurations are 

presently very expensive and, therefore, chosen only for 

very specialized situations. !Yen then there are only tvo or 

three processors and very specialized software and 

operational factors. A discussion of the CP-67/CftS Time 

Sharing system <IB! 68a><Sea 68> will serve to establish the 

relevance of t•e aulti-coaputer network eavironaent. 

The CP-67/C!S Time Sharin9 Systea uses the special 

hard 11are features of a single IB!! Systea/360 aodel 67 

processor augmented by software to produce au apparant 

environment corresponding to the •ulti-coaputer network 

illustrated in l'igure 4.1, with many independent central 

processors, device controllers, and direct access I/O 

devices. In practice a typical single processor 360/67 

configuration vould produce the affect of about 30 active 

procEssors ("virtual" systea/360 aodel 65 processors each 

with a 256,000 byte aeaory) and 50 active device 

controllers. Bore detailed descriptions of the CP-67/C~S 

system can be found in the Beferences. In the traditional 

sense of time-sharing, each user of the CP-67/C!S System is 

provided vi th a •virtual" coaputer operated fro a a si•ulated 
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(actually an augmentEd remotE terminal). operatcr console 

Most importantly, 

opEratEs logically 

computErs except 

each "virtual" computer (i.e. user) 

independent.! y of all other "virtual" 

for the specified inter-connected I/O 

devices ana device ccntrcllers. 
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Probl~~ Arisi_g_q !1! l!ulti-Computer ~two,!~§ 

There are •any problems associated vi th the 

multi-computer file system network. Some of these problems 

are unique to this environment. Other probleas have been 

solved in traditional file systeas<Corb 62><Salt 65><Scie 

68>, but the solutions require major revisions due to the 

peculiarities of the environment. The most significant 

problems are listed briefly below. 

1. No shared me•ory. 

Usually file systems co-ordinate the status of the 

files and devices by using main storage accessable 

tables and data areas that describe file status, 

access rights, interlocks, and allocation. There is 

no such common communication area in 

that can be accessed by all the 

processors. 

2. No inter-computer communication. 

main storage 

independent 

!ulti-computer configurations usually provide a 

mechanism for sending signals or data transfers 

between the separate processors. With this 

capability the non-shared memory problem cculd be 

solved by either (a) electing one processor tc be 

the "•ast~r" processor that coordinates the ether 

processors, or (b) supply all the processors with 

enough infcrmation such that each processor knows 
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vhat all the other processors are doing. The concept 

of a "•aster" processor opposes the intemded 

homogeneous, independent processor assumption. The 

possibility of sui;plying stat us information to all 

other processors, although reasonable for a three or 

four processor confiquration, was not considered a 

feasible solution for a system with hundreds of 

processors and devices and thousands of files. For 

these reasons, inter-computer coamunication, 

although an aYailable capability, vas not included 

as a required capability of the •ulti-computer 

environment described above. 

3. No pre-arranged allocations. 

For small specialized multi-computer file networks, 

each processor can be "assigned" a specific area of 

a device or set of devices that can be used to write 

new files, all ether processors can only read fro• 

this area by co:nvention. This prevents the danger of 

tvo independent processors writing files at the same 

place. sncb an •arrangeaent" is not practical for a 

large, flexible multi-computer file network since 

the static assignment of secondary storage SFace 

does not take account of the dyna•ic and 

unpredictable requirements of the independent 

processors. 

4. Extendable device and file allocation. 
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The number of devices and sizes of devices as well 

as the nusber and sizes of files are, within reason, 

unlimited. For e%ample, a specific a•ount cf 

secondary storage equivalent to 100, 000 card images 

could be used to hold 10 files of 10,000 card each 

or 1,000 files of 100 cards each. This consideration 

discourages techniques that result in a strong 

efficiency or main storage capacity dependency on 

the "size and shape" of the file system. Of course, 

the magnitude of the file system size will affect 

the operation, but arbitrary restrictions such as 

"no more than 64 files on a device" vculd be 

discouraged unless essential. 

5. Removable volumes. 

It has become com•on to differentiate between the 

I/O mechanism used to record or read information, 

called a "device", and the 

the information is stored, 

physical medium on which 

called a 0 voluae". For 

most drums and many disk units, the device and 

volume are inseparable. But, for magnetic tape units 

and many of the smaller disk units the volume, 

magnetic tape reel and disk pack respectively, are 

removable. It is intended that the file system 

include files that are on unmounted volumes 

(disconnected from an I/O device) as vell as mounted 

volumes. Therefore, a confi9uration that consists of 
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ten disk units may 

encompasses hundreds 

have a file system that 

of volumes, only ten of which 

may be actively in use at a time. Since removing and 

mounting a volume takes several minutes of manual 

effort, it will be assumed that the "working set" of 

volumes (volumes that contain files that are 

actively in use) remains static for reascnable 

periods of time and is less than or egual tc the 

number of devices available. The fact that volumes 

are removable and interchangeable (i.e. aay be 

mounted on different devices at different times) 

does affect the organization of the file system. For 

example, a scheme that involYed linking files 

together by means of pointers (chained addressing) 

could require mounting volumes just to continue the 

path of the chain even though little or no "logical" 

information was reguested froa files on that volume. 

In the worst case, it might be necessary to mount 

and unmount all the volumes of the file system to 

locate a desired file. Such a situation should 

definitely be avoided if not totally eliminated by 

the file system. 

6. Structured file directories and file sharing. 

In a traditional file system, the mapping between 

the symbolic file name and the corresponding file 

was acco•plished by means of a single Kaster File 
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Directory. For modern file systems with thousands of 

files scattered over hundreds of volumes, it became 

desirable, if not necessary, to form grcufings of 

files by means of Secondary File Directories<Daley 

65>. These groupings are often used by the systea to 

associate users with files they own (User File 

Directories). This capability is also available to 

the user to arrange his files into further 

sub-groups (libraries) or into separate 

project-related groupings. Occasionally it becomes 

necessary for a file to be included in tvc er more 

groupings (e.g. accessible by more than cne User 

File Directory) with potentially different access 

privileges (protection) associated with each 

grouping. Many of these features that are relatively 

easy to implement in a traditional file 

complicated by the introduction of 

processors and removable volumes. 

7. Fail-safe operation. 

system are 

i nde pendent 

Reliable operation is a 1ery important reguireaent 

of a general fUrpose file system. There are many 

known techniques for I/O error and systematic backup 

and salvage procedures that are applicable to this 

environment. The important problem associated with 

the multi-computer network is that potential error 

conditions exist that are not normally fcund in 
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traditional single computer file systems. For a 

single computer system, a processor error (including 

unexpected processor disconnection, i.e. "turning 

off") is a rare occurrence. Such a situation is 

remedied by repairing whatever physical bardvare is 

necessary and then running a special "salvager" 

program tc bring the file system into a well-defined 

operational state. In the environment of a 

multi-computer network, processors may be connected 

or disconnected at any time without any awareness by 

the other processors. To prevent any inconsistent 

file system operation by the other processors and 

eliminate the need for usually time-ccnsuming 

salvage techniques, it is necessary to keeF the file 

system in a well-defined consistent state at all 

times. 
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! Fi!g ~.I§te~ Qg2ig~ 

The purpose of the remainder of this paper is tc afFlY 

the er ga uiza ti on rresented 

section to sclve the 

in the File System Design Medel 

Frcblems associated with a 

multi-computer file system network. Discussion of the Access 

Methods and Input/Output Comtrol System will be omitted. 

This is necessitated for brevity and consideration of the 

facts that the Access Methods are highly application 

oriented, as discussed in a previous section, and that the 

Input/Output Control System is usually a basic and ccmmcn 

component of all Operating Systems. The Frincipal 

contribution of this model lies in the structure of the five 

other levels. 

~Qg!fg1 !!le ~!.§tea 

To present the goals and requirements of the logical 

File System in a brief and demonstrative manner, an example 

vill bE used. The reader should refer to Figure 4.2 for the 

following discussion. It is important that the peculiarities 

of the example, such as the choice cf file names (e.g. 

"FILE6" and "DIR4"), not be confused with the general 

characteristics of the Logical File system. 

In Figure 4.2, there are 12 files 

Associated with each file is an identifier 

"VOL1 (3)". The usage of this identifier 

illustrated. 

of the form 

will not be 
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VOLUME "VOL 1" VOLU.f!IE "VOL2" VOtUl!E "V OI.3 11 

(User 1) 
+---------+ 
lflCIJJ1l/ I 
+---------+ +-----------------------------------+ 
I FILE3 f---+ (User 2) I 
+---------+ +---------+ I 

' OIR2 1----->ILVOL2.Jll/1 <---+ (User 3) I 
+--------- + +---------+ I +---------+ I 

+------J FILE2 1 DIR3 J----t-> lflOLJ.~l/~ I 
I +---------+ +--------+ I +--------- + 1 
I +---1 FILE4 +----1 FILES +--1 DIR4 I I 
I I +--------- + I +---------+ +---------+ ) 

I I +--1 PILE1 t I +--1 FILE6 +--1 DIR3 J 
I I I +--------- + I 1 +---------+ I +---------+ 1 
I J I 1 I J I FILES 1--+ I 
1 J 1 1 J 1 +---------+ 1 I 
I I J +---------+ 1 I +---------+ I I I 
J J +-> JLVCL1Jll11 I +->ILVOL2J!!l/1 I I I 
I I l/////////1 I I /////////I 1 +---------+ I J 
I I +---------+ t +--------- + +-> JL!OlJill/ I I J 
I I I +--------- + I J 
I J 1 +------J FII.E6 I I 
I J +---------+ 1 +--------- + I +--------- + I I 
I +---> 1L! OL11§.ll I +--->IL!OL~~l/1 I +----1 FILE2 ' I 1 
I )/////////1 1 I I I I 111111 I I +---------+ I J 
I +---------+ +---------+) J +--J PILE7 J I 
I J I I +---------+ I J 
I I I I 1 I 
I +--------- + I I I I I 
+----->JL!OL1j~l/I I J I +--------- + J I 

1/////////1 I I +->JL!OLjj!l/J<-1<+ 
+---------+ I I 1/////////1 

J I +--------- + 
I I 

+--------- + 1 I 
IL!.Q1112l/1<----------------+ I +--------+ 
1/////////1 +-->JL!QL3J1l/ I 
+---------+ 1/////////1 

+--------+ 

Figure 4.2 
Example of Pile Directory Structure (to LFS) 

-----------
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discussed until later, in the meanwhile notice that each 

file •s identifier is unique. The 12 files are divided into 2 

types, directory files (i.e. 10L1 (3), VOL2(3), VOt3{2), and 

VOL3(5)), and data files (i.e. V011 (2), VOt1 (6), VOI.1 (4), 

VOL1 (5). V012 (4)" VOL2 (2). VOL] (4). and VOL] (3)). The 

distinction between directory files and data files is 2.!llY a 

matter of usage, the Access Methods .!.!~ operate upon a 

directory file in the same •anner as a data file, 

furt heraore, a 11 lever levels (e.g. Basic File systea) treat 

all files as data files. This factor will be elaborated 

shortly. 

It is the stated function of the toqical File system to 

aap a file name reference into 

This mapping is a function of 

(symbolic file name path) ~!J 

a unique file identifier. 

the requested file name 

a starting point (base 

directory) in the file directory structure. In .Figure 4.2, 

three exaaple base directories are illustrated by 

associating VOL1(3) with user 1, V012(3) with user 2, and 

VOL 3 ( 2) vi th user 3. Therefore, user 1 references to the 

file name FitE2 yields the file VOL 1 (4). 

A more complex example can be illustrated by 

considering the file VOL3(4). User 3 can refer to this file 

under the name FILR8. Alternatively, it can be referenc~d by 

the naae DIR3. PILE7. The file DIR3, which is associated with 

VOL3(5) from user 3's base directory, is interpreted as a 

lover level directory. Then from file V013(5), the file name 
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FILE? is mapped into VOt3(4) as intended. The file VOL3(4) 

can be referenced from user 2's base directory as DIR3.FILE8 

or DI 93. DIR3. FILB7, for example. Prom user 1' s base 

directory, the file VOL3(4) can be referenced as FILE3, 

DIR2.DIR3.FILE8, DIR2.DIR3.DIR3.FILE7, or even 

DIR 2. DIR 3. DIR4. DIR3 .DIR 3 .FILE7. 

Two important side affects of the base file directory 

and file name path facilities are that (1) a specific file 

may be referenced by many different names, and (2) the same 

name may be used to reference many different files. 

The headings VOLUME "VOL1", VOLUME "VOL2", and VOLUME 

"VOL3" are intended to indicate that the 12 files are 

scattered over 3 separately detachable volumes: VOL 1 

(containing VOL1(2}, VOL1(3), VOL1(4), VOL1(5), and 

VOL 1 (6)), VOL 2 (containing VOI.2 ( 2) , VOL2( 3) , and VCL2 (4)) , 

and VOL 3 (containing VOL3 (2) , VOI3 ( 3) , VOL3 (4) , and 

VOL3(5l). If volume VOL2 were detached from the system, user 

1 could still reference VOL1 ~) as FILE4 and VOL3(4} as 

FILE3, but could not reference VOl3(4) as DIB2.DIB3.FILE8 

nor VCL1(5) as DIB2.DIB3.tIR3.FlL!6 since the path vould 

logically require passing through volume VOL2. Purtheraore, 

user 3 is allowed to erase (i.e. remove from file system 

structure) the file VOL3(4) under the name FILES, assuming 

appropriate pro tee ti on pri viledges, .!~et]!~ Q!: !!2! volume 

VOL1 is mounted in spite of user 1's reference to file 

VOL3(4) under the name FILE3. 
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The Logical File Syste• could be extremely cc•Flex if 

it had to specifically consider the physical addresses of 

volumes, the device characteristics, and the location of 

file directories 011 volumes, in addition to its obvious 

requirement of searching file directories. These problems 

are eliminated by introducing the file identifier amd the 

interface with the Basic Pile Systea. 

The Basic Pile System processes requests that SFecify a 

file in teras of a file identifier consisting of a vcluae 

name and index, such as (YOL3,4), rather than a file name. A 

sample call from the Logical File System to the Basic File 

System, in PL/I-like notation, is: 

CALL BFS_RElD(VOLUftE,IIDEX,COBE_.ADDB,FXtE_lDDB,COUBT); 

where VOLUPIE is the name of the volu•e containing the file, 

INDEX is the corresponding unique index of the file, 

COBE_ADDB is the main storage address into which data is to 

be read, PILB_lDDB is the file virtual memory address fro• 

which the data is to be read, and COUBT is the nu•ber of 

bytes to be transmitted. Using these features, the hear! of 

the logical File System (ignoring opening and closing files, 

file access protection, illegal file names, etc.) reduces to 

the PL/I-like code presented in Figure q.3. It is assu•ed 

that the file name has been broken 

path ele•ent nawes (e.g. if name is 

PlTH(1)= 1 DIR2', PATH(2)= 1 DIR3 1 , 

down intc an array of 

DIR2.DIB3.FILE8, then 

PATH(3)= 1 PILB8 1 , and 

PATH_LENGTH=3), that BlSE_VOLUBE and BASB_.INDEX initially 
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specify the (VOLUME,Il'fDEI) identifier of the base directcry, 

and that each entry in a file directory is N bytes long and 

formatted as indicated in the FIL!_ ENTRY declaration. 

For efficiency, the names of all files that are 

actively in use (usually a small fraction of all files in 

the system) are kept in main storage in an Active Bame 

Directory (AND). The AND is searched before accessing the 

file directories en secondary storage. Entries are deleted 

from the AND when the corresponding file is "closed" or 

"deleted". 

Of course, the handling of access (protection) rights, 

errors, and other responsibilities vill make the Logical 

File System much more coaplex, but it is important to note 

that the design and implementation of the Logical File 

systEm escapes all physical file organi2ation and device 

characteristic considerations and complexities. 
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DECLARE 1 PitB_EllTBY, 

2 PllEtlUIE CHARlCT ER (8), 

2 VOLUME 

2 INDEI 

• • • 

• • • 

CHlBACTEB (8), 

PIXED BINARY, 

DO I = 1 TO PlTH_LENGTH; 

DO J = 0 BY N WHILE (PILE_ERTRY.PilEll!E .,: PlTH{I)); 

CALL BFS_READ (BASE_ YOLUllE ,BASE_I llDEX,PILE_EITllY,J•B,N); 

END; 

BASE_VOLUKE = PILE_ENTBI.lOLU!E; 

BASE_INDEX = FILE_EllTRY.INDEX; 

BND; 

• • • 

• • • 

Piqure 4. 3 

Example Procedure to Perfor• Logical Pile System Search 
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Basj~ lile ~!2!~! 

The Basic File System must convert the file identifier 

supplied from the Logical File System into a file descriptor 

than can be processed by the File Organization Strategy 

Module. A file descriptor contains information such as the 

volume name, physical location of the file on the volume, 

and the length cf the file. Every file must have an 

associated file descriptor, but since the number of passive 

files (i.e. not actively in use) might be very large, the 

file dEscriptors are maintained on secondary storage until 

needed (i.e. file is "opened")• In organizing the secondary 

storage maintenance of the file descriptors there are 

several important considerations: 

1. There must be a unique file descriptor fer each 

file regardless cf hov often the file apfears in 

2. 

file directories or vhat 

This is required 

symbolic names 

to maintain 

interpretation of a file's status. 

are used. 

consistent 

The file descriptor information 

reside on the same volume as the 

for a file must 

file. This is 

reasonable since the file Q.~ its 

descriptor is not accessable at some time by the 

system (i.e. unmounted) the file cannot be used, 

this possibility is minimized by placing them on the 

sa me v o 1 u 11e. 
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3. In the same manner that the logical File System 

vas simplified by using the facilities of the lover 

hierarchical level, the file descriptors should be 

maintained in a manner that allows the File 

Organizaticn Strategy Module to process thea as 

normal files. 

These problems are solved by the use of the Volume File 

Descriptor Directory (VFDD). There is a single VFDD for each 

volume. it contains the file descriptors for all files 

residing on the volume. ~he filE descriptors a.re cf fixed 

length and are located within the VFDD positionally 

according to the corresponding file identifier's index. In 

order to exploit the facilities provided by the File 

Organization Strategy Module, the VPDD can be processed by 

the lover levels as a normal file. It is assigned an unique 

file identifier consisting of the volume name and an index 

of 1, in fact the file descriptor for a VFDD is stored {when 

not in use) as its own first entry. Figure 4.4 presents 

diagrammatically the logical file structure of Figure 4.2 

with the added detail of the Volume File Descriptor 

Directories and Pile Directory formats. 

Por efficiency, the descriptor's of all files that are 

actively in use are stored in an Active File Directory 

(APD). The lFD is searched before accessing the Volume Pile 

Descriptor Directcry. 

---- - ----------
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+----------------+ 
I +---------+ I +---------+ +-------------------+ 
+-->I L!OL 1J1l/ I 1 +-> tLVOL 1(11./1 +-> I L!illfll/ 

+---------+ I I 1/////////1 I +-------------------+ 
VOL1 (1) I >>>>>>> 1--+ I +---------+ l J PILE3 J VOL3 {4) I 

.---------+ J I +---------+---------+ 
VOL 1 (2) I >>>>>>> t----+ l I DIR 2 (D) I VOL2 {3) I 

+---------+ 1 +---------+---------+ 
VOL 1 ( 3) I >>>>>>> 1-------------------+ I FILE2 I VOL 1 (4) I 

+---------+ +---------+---------+ 
VOL 1 ( 4) ) >>>>>>> )--------------------+ I PILE4 I VOL 1 (6) I 

+---------+ 1 +---------+---------+ 
VOL 1 ( '5) I >>>>>>> J----+ +---------+ ) I PILE1 I VOL 1 (2) I 

+---------+ +->JLJg11J~l/I I +---------+---------+ 
VOL1(~ 1 >>>>>>> J--+ 1/////////1 I 

+---------+ I +---------+ I 
VFDD for "VOL 1" J I 

I +---------+ I +---------+ 
+--->I /V01JJ§l/1 +->I L!OL 1J.!!l/ I 

111///////J 1/////////1 
+---------+ +--------- + 

+----------------+ 
I +---------+ +---------+ +-------------------+ 
+--> ILVOL2ill/1 +->JL!OL.fj]l/t +->J L.!OLl.111/ 

+---------+ I J 1/////////1 I +-------------------+ 
VOL2( 1) I >>>>>>> J--+ J +---------+ I J DIB3 (D) I VOL3 (2) I 

+---------+ I I +---------+---------+ 
VOL 2 ( 2) I >>>>>>> J----+ I I FILES J VOL2 (2) I 

+---------+ I +---------+---------+ 
VOL 2 ( 3) I >>>>>>> 1-------------------+ J FILE6 J VOL2 {4) J 

+---------+ +---------+---------+ 
VOL 2 ( 4) ) >>>>>>> J----+ +---------+ 

+---------+ +->1L!OL£j!U,/I 
VFDD for "V012" )/////////) 

+---------+ 
+----------------+ 
I +---------+ I +-------------------+ 
+-->JL!Q!!lJ.11/I I +----------------->I L!gL3J2l/ 

+---------+ I 1 +-------------------+ 
VOL3 (1) 1 >>>>>>> J--+ I I DIR 4 (D} I VOL2 (3) I 

+---------+ I +---------+---------+ 
VOL3 (2) J >>>>>>> f----+ I DIR3 (D) f VOL3 (5) I 

+---------+ +---------+ 
VOL3(3)1 >>>>>>> J------>IL1QL3Jll.ll 

+---------+ J/////////I 
VOL 3 ( 4) I >>>>>>> J----+ +---------+ 

+---------+ I 
VOL 3 ( ~) I >>>>>>> J--+ I 

+---------+ 1 I 
VFDD for "VOL3" I I +---------+ 

I +->JLVOL.JJ!!l/I 
I 1/////////1 
I +---------+ 
I 
I 

+---------+---------+ 
I FILES I VOL3 (4) I 
+----~---+---------+ 

+-------------------+ 
+->J L!CL312ll 
I +-------------------+ 
I I PILE6 I VOL1 (5) I 
I •---------+---------+ 
I I FILE2 I VOL3 (3) I 
I +---------+---------+ 
J I FILE7 I VOL3 (4) ) 

+-----------------+ +---------+---------+ 
Figure 4 .4 

Example of File Directory structure (to BFS) 
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The File Organization Strategy l!Odule processes 

requests that specify a file in terms of a file descriptor 

(the entry extracted from the VFDD) rather than a file name 

or file identifier. A sample call from the Basic File system 

to the File Organization Strategy Module, in PL/I-like 

notation, is: 

CAlt FOSM_READ(DESCRIPTOR,CORE_AtDR,FILE_ADDB,COUNT); 

where CORE_ADDR, FILE_ADDR, and COUNT have the same 

interpretation as discussed above. 

The primary function of the Basic File system reduces 

to the single request: 

CALL POSM_READ(Vl'DD_DESCRIP'lOR,DESCRIPTOR,I!* (INDEX-1) ,!!) ; 

where VPDD_DESCBIPTOR is the descriptcr cf the VFDD 

associated with the volume name supplied by the Logical File 

System as part of the file identifier, INDEX is from the 

specified file identifier, M is the standard length of a 

VFDD entry, and DESCRIPTOR is the desired file descriptor. 

The Basic File System performs several other tasks, 

such as protection validation and maintenance of the 

core-resident Active Pile Directory that enables efficient 

association between a file's identifier and descriptor for 

files that are in use (i.e. "open"). But, as in the Logical 

File System, the domain of the Basic Pile System is 

sufficiently small and narrow that it remains a conceptually 

simple level in the hierarchJ. 
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lile ~,Igani~at!Q~ 2i£at~gy ~QdUle§. 

The Logical File System and Basic Pile Syste• are, to a 

great extent, application and device independent. The File 

Organization Strategy Modules are usually the most critical 

area of the file system in terms of overall per.fcrmance, for 

this reason it is expected that more than one strategy may 

be used in a large system. Only one strategy will be 

discussed in this section, the reader may refer to the 

papers listed in the References<Corb 62><Mad 68b><Salt 

65><Scie 68> for other possible alternatives. 

The FOS" must map the logical file address ontc a 

physical record address or hidden buffer based upon the 

supplied file descriptor information. In the simplest case, 

the mapping could be performed by including a two-part table 

in the file descriptor. The first part of each entry would 

indicate a contiguous range of virtual file addresses, the 

second part of each entry would designate the corresponding 

physical record address. It has been assumed, however, that 

all file descriptors have a specific length, whereas the 

mapping table is a function of the file's length and is 

potentially quite large. Therefore, it 

include the entire mapping table as 

descriptor. One of the most powerful 

is not 

part 

feasible to 

of the file 

strategies utilizes 

an arrangement. 

file maps, Figure q.s 
file organization 

illustrates such 

----~--------
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0 
+---------+ +---------+ 
I t>>>>J--->1 
I +----1 +---------+ 
I I f • I 
+---------+ I • J 
Descriptor 1 • I 

+---------+ 
999 J 

+---------+ 
0 

+---------+ +---------+ +---------+ 
I J>>>>1--->1 >>>>>>> 1------------------>1 
1 +----} +---------+ +---------+ 
I I I • I 499,000 I • I 
+--------+ I • I +---------+ I • I 
Descriptor I • I +->1 1 • J 

+---------+ I +---------+ +---------+ 
I >>>>>>> 1-+ I • I 9991 
+---------+ I • I +----~---+ 

+---------+ 
499,9991 

+---------+ +---------+ +---------+ +---------+ 
I 1>>>>1--->1 >>>>>>> 1------------------>J >>>>>>> J--+ 
I +----1 +---------+ +---------+ I 
I I • I +---------+ I • I I 
+---------+ • I +->1 >>>>>>> I I • I J 
Descriptor • J I +--------- + I • I J 

+--------+ I I • I +---------+ I 
t >>>>>>> J-+ I • I I >>>>>>> J I 
+---------+ I • I +---------+ I +---------+ I 

I >>>>>>> J-+ I 
+---------+ I I 

J I 
+--------------+ I 
I I 
I +---------------+ 
J 249,999,000 I o 
I +---------+ I +---------+ 
+->J +->1 

+--------- + +---------+ 
I 
J 

• 
• 

t 
I 

I 
I 

• 
• 

I 
I 

+---------+ +---------+ 
249,999,9991 9991 

+---------+ +---------+ 

Pigure 4.5 
Example of File Orqani2ation Strategy 
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In this example it is assumed that each file is divided 

into 1000 byte physical records. A file can be in cne of 

several states depending upon its current length. If the 

file's length is in the range 1 to 999 bytes, the file 

descriptor contains the address of the corres~onding 

physical record. If the file is bet ween 1000 and 499,999 

bytes long, the file descriptor specifies the address of a 

file map located on secondary storage. Each entry of the 

file map (assumed to require 2 bytes) designates the 

physical address of a block of the file (blocks are ordered 

by virtual file addresses: 0-999, 1000-1999, 2000-2999, 

etc.) • Purther11ore, for files greater than 500 ,000 bytes, 

but less than 250,000,000 bytes, there are 2 levels of file 

maps as illustrated. 

This strategy has several advantages. Under the worst 

conditions of rando11 access file processing only frcm one to 

three I/O operations need to be performed. By utili2ing 

several hidden buffers for blocks of the file as well as 

file maps, the number of I/0 operations required for file 

accesses can be drastically reduced. 
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!!!2f!!ion s tra t~.9.I Modules 

The function of allocation and deallocation of blocks 

involves several separate factors. Before describing the 

implementation of the mechanisms, it is vise to review the 

desired characteristics: 

1. A file is allowed to grow in size, the FOSM will 

request additional blocks from the ASM for the 

data portions of a file or its index tables, as 

needed. 

2. Common direct access devices contain from 8000 to 

32000 separately allocatable bl<JCks, thus it is 

not feasible to store all allocation infcraation 

in main storage. 

3. Since twc independent processors may be writing 

new files on the same volume at the same time, it 

is necessary to provide interlocks such that they 

do not accidently allocate the same block to more 

than one file, yet not require one ~rocessor to 

vai t until the other processor finishes. 

These problems can be solved by use of a special Volume 

Allocation Table {VAT) on each volume. In this scheme, a 

volume must be subdivided into arbitrar1 contiguous areas. 

For direct access devices with movable read/write heads, 

each discrete position (known as a "cylinder") covers an 

area of about 40 to 160 blocks. A cylinder is a reasonable 
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unit of subdivision. Por each cylinder on the volume, there 

is a corresponding entry in the VAT. Each entry contains a 

"bit map" that indicates vhich blocks on that cylinder have 

not teen allocated. For example, if a cylinder consists of 

40 blocks, the bit map in the corresponding VAT entry would 

be 40 bits long. If the first bit is a "0", the first block 

has not been allocated; if the bit is a "1", the block has 

already been allocated. Likewise for the second, third, and 

remaining bi ts. 

When the FOS p, first requests allocation of a bl eek en a 

volume, the ASM selects a cylinder and requests that the DSK 

read the corresponding VAT entry into main storage. An 

available block, indicated by a "0" bit, is located and then 

marked as allocated. As long as the volume remains in use, 

the VAT entry will be kept in main storage and blocks will 

be allocated on that cylinder. ihen all the blocks on that 

cylinder have been allocated, the updated VAT entry is 

written out and a new cylinder selected. With this technigue 

the amount of main storage required for allocation 

information is kept to a minimum (about 40 to 160 bits per 

volume), at the same time the number of extra I/O Oferations 

is minimized (abcut one per 40 to 160 blocks of allocation). 

The problem of interlocking the independent processors 

still remains. As long as the processors are allocating 

blocks on different cylinders using separate VAT entries, 

they may both proceed uninterrupted. This condition can be 
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accomplished by utilizing a hardware feature kncvn as "keyed 

records" available on several computers including the IBP! 

system/360. Each of the VAT entries is a separate record 

consisting of a physical key area and a data area. The data 

area contains the allocaticn information described above. 

The key area is divided into two parts: the identification 

number of the processor currently allocating blocks on that 

cylinder and an indication if all blocks on that cylinder 

have been allocated. A VAT entry with a key of all zerces 

would identify a cylinder that was not currently in use and 

had blocks available for allocation. 

There are I/O instructions that can be used by the DSPI 

that vill automatically search for a record with a specified 

key, such as zerc. Since the device controller will not 

switch processors in the midst of a continuous stream of I/O 

operations from a processor (i.e. "chained I/C commands"), 

it is possible to generate an uninterroptible sequence of 

I/O commands that will (1) find an available cylinder by 

searching the VAT for a entry with a key of zero and (2) 

change the key to indicate the cylinder is in use. This thus 

solves the multi-processor allocation interlock prcble11. 
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Q~y~f~ §tr~~~3Y "cdules 

The Device Strategy Modules convert "logical I/O 

requests" from the File Organi2ation Strategy Modules and 

Allocation Strategy Modules into actual computer I/O command 

sequences that are forwarded to the Input/Output Control 

System for execution. 

When a request to transfer a large portion cf a file 

(10,000 hytes for example) is issued, it is unlikely that a 

significant amount cf the needed blocks are in hidden 

buffers. It will, therefore, be necessary to request I/O 

transfer for several blocks (e.g. about 10 blocks if each 

block 1000 bytes long). The FOS" will generate logical I/O 

requests of the 

read block 211 

form: "read block 227 into location 12930, 

into location 13930, etc." The DSM must 

consider the physical characteristics of the device such as 

rotational delay and "seek" position for movable heads. It 

then decides upon an optimal sequence to read the blocks and 

qenera te the necessary physical 1/0 command sequence 

including positioning commands. The Input/Output Central 

system actually issues the physical l/O request, error 

retry, and ether housekeeping as discussed earlier. The 

detailed strategy for choosing the optimal I/O sequence is, 

of course, very device dependent and will not be elaborated 

here. 
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Q!he~ Consid~tioq§ 

The preceeding sections have hiqhlighted the framework 

of a file system. There are, of course, many other iaportant 

decisions to be made in such a system, such as the format 

and organization of tables, error conditions<Lock 68>, 

measurement and accounting mechanisms, etc. Cne of the 

subtle points will be discussed in this section. 

The .Basic File System is intended to deal with files 

represented by unique identifiers. In the specific system 

presented, the identifier is designated as the tuFle, 

<volume, index in VFDD>. This representation resulted in a 

very efficient mechanism for accessing a file's descriFtor 

that avoided much of the time-consuming table lock-up. 

Unfortunately, this representation is not temporally unique. 

It has been assumed that when a file is deleted, the VFDD 

index position used for that 

for use by new files that may 

file's descriptor is available 

be created. This would not be 

a problem if all instances of the deleted file's identifier 

were removed from the system at the same time, but there •ay 

be more than one path to the file due to links frcm ether 

symbolic file directcries. The strategy used by the Basic 

File System did net provide any convenient means tc lccate 

all references (i.e. li n.ks} to a specific file. Furthermore, 

even if such a mechanism existed, it would not solve the 

problem since the reference may e rist in a file directory 
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that is located on a volume that is not physically mcunted 

or accessable by the system at the time of deleticn. 

Therefore, in such an environment, it is possible to have 

links in directories that identify files that have been 

deleted. The danger exists that the following sequence of 

events may occur: (1) a file is created and assigned 

identifier, <ALPHA,5>, (2} a link is made to that file, (3) 

the file is deleted by its creator, (4) a new file is 

created and coincidently assigned the identifier <ALPHA,5>, 

and (5) the link previously created is used not realizing 

that the intended file has been deleted and replaced by some 

other arbitrary file! 

Portunately, this dilemna is not irrevocable, there is 

a multitude of solutions. Two simple variations would be (1) 

never re use VFDD entries hut allow t be file to con ti nuall y 

grow but become "sparse" or (2) maintain ccunt of the number 

of links to a file and reuse the VFDD entry only when all 

links have been removed. A better solution can be formulated 

by attacking the original goal of generating truly unique 

file identifiers. The Multics Operating system has similar 

requirements, it forms unigue identifiers 

the central frocessor 1 s 

chronolog clock time 

unique serial 

with accuracy in 

by concatenating 

number with the 

the range of 

microseconds. A much simpler scheme can be incorporated into 

the file system by associating a separate counter with each 

volume. Whenever a new file is created on a vclume and 

------------ ----~-~ 
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assigned a VPDD entry, the value of the corresponding 

counter is incremented by one. For the fUrpose cf the file 

system, the tuple, <volume, counter value>, is a unigue 

identification of a file. 

The counter value, which monotonically increases, 

cannot be efficiently used as a direct index into a finite 

size file descriptor directory. A minor modification to the 

Basic File Syste• design can incorporate the ideas of the 

above discussion. The file identifier can be constructed 

from the triple, <volume, VPDD index, ccunter value>. In 

this context the counter value will be called a nkey", since 

its sole purpose is to verify that the accessed VPDD entry 

is correct by attempting to "unlock" the entry (i.e. 

comparing the key from the VPDD entry vitb the key from the 

symbolic file directory which was copied from the VFDD when 

the link was initially established). 

The above problems are typical of the factors that must 

be considered by file system designers. The general file 

system model will very seldom be a complete description of a 

specific implementation and it certainly will net replace 

the need for systems analysts. but it can save many acnths 

of the initial design! 
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CONCLUDING COft!ENTS 

Tc a large extent file systems are currently developed 

and implemented in much the same manner as early "horse-less 

carriages", that is, each totally unique and "hand-aade" 

rather than "mass produced". Compilers, 

were once developed in this primative 

such as lOB'l'BAH, 

manner; but due to 

careful analysis of operation (e.g., lexical, syntax, and 

semantic analysis, etc.), compilers are sufficiently well 

understood that certain software companies actually cffer 

"d a-it-yourself POBTRAN kits"· Since modern file syste 11s 

often outweigh all other operating system components such as 

compilers, loaders, and supervisors, 

effort and number of instructions, 

generally applicable methodology be 

development. 

in terms of programmer 

it is important that a 

found for file system 

This paper presents a modular approach to the design of 

general purpose file systems. Its scope is broad enough to 

encompass most present file systems of advanced design and 

file systems presently planned, yet basic enough to be 

applicable tc more modest file systems. 

The file system strategy presented is intended to serve 

tvo purposes: ( 1) to assist in the design of nev file 

systems and (2) to proYide a structure by which existing 

file systems may be analyzed and compared. 
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