
CAMBRIDGE

COMPLEXITY MEASURES FOR LANGUAGE

RECOGNITION BY CANONIC SYSTEMS

Joseph P. Haggerty

October 1970

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS 02139

COMPLEXITY MEASURES FOR LANGUAGE

RECOGNITION BY CANONIC SYSTEMS

by

JOSEPH PATRICK HAGGERrY

Submitted to the Department of Electrical Engineering on January 20,
1969 in partial fulfillment of the requirements for the Degree of
Master of Science in Electrical Engineering.

ABSTRACT

A canonic system C is a specification of a recursively enumerable set,
such as a set of strings over a finite alphabet. From this description
C, it is possible to generate a system C , called a proof measure func-

m
tion, which is an indication of the complexity of the language defined.
For certain simple but important classes of canonic systems, algebraic
bounds on these functions can be derived from the structure of the sys-

-1 tem. Another transformation on C produces a system C which character-
izes the recognition of strings generated by C. A relationship exists

-1 between the measure functions of C and C , thus relating the complexity
of the recognition procedure to that of the language description.

Thesis Supervisor: John J. Donovan
Title: As&istant Professor of Electrical Engineering

2·

Acknowledgements

Perhaps the most vital ingredient in a successful thesis is a

generous dash of enthu~dasm, both on the part of the student and his

supervisor. I feel fortunate in having encountered John Donovan,

whose Irish optimism encouraged this work from the very beginning.

To fellow graduate students :Robert MandJ and Amitava Bagchi I

owe many technical discussions, some of them even relevant.

Finally, I wish to thank Lynn Foster, who assisted with the

typing.

3

., ' ..

~,.t:!.r. ·'· " ~\

Table of Contents

Abstract••...•...••.•.••.•.•.••..•••...•.••..•.....•.... • •.•.. 2

Acknowledgments • . • • • • • • . . • • • •.• • • • • • • • . . • • . • • • . • • • • • • . • • • . • • . . • • . . • 3

Chapter 1 - Review of Canonic Systems ••••••••••••••••••••••••••••• 5

Introduction
Hierarchy of Canonic Systems
Sutmnary

Chapter 2 - Proof Measure Functions •••••••••••••••••••••••••••••• 11

Introduction
Properties of m(C, t)
An Alternative Function
A More Precise Function
Bounds on Measure Functions
Computation of L(k) and S(k)
Summary

Chapter 3 - Inverse Systems and Compiling•••••••••••••••••••••••• 22

Introduction _1 Construction of C from C
Measure Functions of Normal Systems
Inverses of Arbitrary Systems
Measure Functions of Inverse Systems
Inverse Systems as Recognizers
Recursive Sets and Programming Languages
Summary

Appendix I - Systems -Describing Recursive Sets ••••••••••••••••••• 37

Introduction
Canonic Systems and Recursive Sets
The Gener~l Decision Problem
Summary

Appendix II - Equivalent Systems ••••••••••••••••••••••••••••••••• 41

Introduction
Predicates of Degree k to Indicated Context
Relation to Post Systems
Reduction of Indicated Context to Cross Referencing
Summary

References • • • . • . • • • . • • • • • • • • . . • • • • • • . . • • • • • • • • • • • • . • • . 46

4

Chapter 1 - Review of Canonic Systems

Introduction

A canonic system is a recursive definition of the members of a set.

Instead of enumerating its elements, we specify a s~t G by first giving

a finite.number of basic members, then rules of the fonn "If xis in G,

then f (x) is also in G." Canonic systems provide the framework for

expressing such a procedure in a formal way.

For example, let G • {akl k is an even integer} be a set of strings

over the alphabet {a}. Membership in G can be allowed thus:

1. aa e G

2. If x e G, then xaa & G

3. No other st~ings are in G.

A canonic system generating G could be written

1. I- aaQ

2. xQ r xaaQ

where "l- aaQ" is another form of the membership axiom "aa e G," and

''<premise>\- <conclusion'>" is a contraction of the ''If ••• then ••• "

statement.· The fact that no other strings are to be allowed in G is

implicit in the way the canonic system is to be interpreted.

where

Definition l. A canonic system C is a 5-tuple

C • (S, N, P, R, C')

S =an algebraic system (A, *1 , ••• ,*k) consisting of a set A

and a collection of operations • 1 , ••• ,*k on A.

N =a finite set of variable symbols, usually {x, y, ••• ,z}.

- ··,1·---

5

P = a finite set of predicates, each of which is assigned a

unique positivE! integer called its degree.

R = a finite set of rules of inference, called canons, whose

form will be described in Definition 2.

C' = a canonic system which defines the interpre-tation of the

rules of inference in C; its structure and significance

will be discussed in the next section.

Previous formulaiions of canonic systems have tacitly assumed the
. * algebraic system S to be the monoid (V , •) of all finite strings over

an alphabet V under the operation of concatenation. By making the

algebraic system explicit, we are able to specify canonic systems gen

erating sets of integers, real numbers, and so on, as well as sets of

strings.

Definition 2. A canon is a rule of inference of the form

where F1, ••• ,Fm, and Gare predicates in P; and f 1 , ••• , fm, and g

are functions on A formed from *
1

, .•• ,*k by composition. This canon

would be read:

If f 1 (x1 , ••• ,xn) has the ptope,rty F
1

, and ••• , and

f (x1, ••• ,x) has the property F , then g(x
1

, ••• ~x) has
m n m n

the property G.

If Q is interpreted as the extension of a predicate, Q = (x I Q(x)J,

then the meaning of a canon may be defined as

G = (ul 3z1 , ••• ,zn e A [f1(z
1

, ... ,zn) e F1 /\
\,\

/\ f~(z 1,~11) e Fm/\ g(z1 , ... ,zn) = u]J.

The quantity f(x1, ••• ,xt)_g is called a remark; the remarks

6

fi(x1 , ••• ,xn)!i are the premises of the canon, and g(x1 , ••• ,xn)Q is

its conclusion. A remark /(x
1

, ••• ,xt) g is said to be~ iff there

exist z1 , ••• ,zt e A such that /(z1 , •.• ,zt) s Q.

* For example, consider this canon over the algebraic system (V , •),

where V is a finite alphabet and • is the concatenation operation:

xB I- axa.f.

This is interpreted as, "If x has the property B, then the string axa

has the property C." Formally,

C = [ul i z e v* [z s B /\ u • aza]}

* = [axal x e 'BJ if B is a non-empty set of strings over V •

Another canon might be

xaD /\ Y! I- <x, ya>!

whose interpretation is

F = [<u, v> I 3 x ,y e v* [xa s D /\ y s E /\ <u, v> = <x, ya>]},

where the notation <u, v> denotes the ordered pair of u and v. Infer-
,..,

mally, we are searching D for a string that ends in "a," then forming
,...,

an ordered pair from part of it and any string from E.

An axiom is a canon with no premises; it is therefore universally

true. If a function g(x1 , ••• ,xn) appears in an axiom, then x1 , ••• ,xn

must be allowed to range over all elements of A. Axioms might be 1-- 2~
2

or I- x !•

Definition 3. A remark w Q is iomediately derived from a sequence

of remarks w1l,1 , ••• , w~, wi e A, iff

1. fl (xl' • • • ,xn)!l /\ • ·' /\ fm(xl' • • • ,xn)!m I- g(xl' • • • ,xn)Q
is a canon.

7

-- ~---~-----~. -. - .

2. ~ z1 , ••• ,zn e A such that'f1(z1 , ••• ,zn) = wi, and

g(z1 , ••• ,zn) = w.

Definition ,. A proof of a remark r is a finite list of remarks

r 1 , ••• ,rp such that

1. r 1 is an axiom,

2. ri (1 < i::;; p) is either an axiom or a remark immediately

derivable from some subset of [r 1 , ••• , r i- lj ,

3. r = r.
p

To illustrate these definitions, let us consider the system

* C = (([a, b}· , •), [x}, (A}, R, C'), where the canons in Rare

This system contains the single axiom ~ bA, so it is trivially provable

that b_!. A single application of the canon JC! ~ axa! yields the con

clusion abaA. Continuing this process, we obtain the proof

n n b!, aba!, aabaa!, · ••• , a ba ! .

Thus A= [anbanl n ~ O}, a cont8Xt-free language.

We occasionally use the phrase "the language (or the set) generated
,.,

by the system C" to mean the set G defined by some predicate G in c.
Either the appropriate predicate will be obvious, or the selection of G

will depend upon the situation in which the result is applied.

Hierarchy of Canonic Systems

A proof in a formal system usually consists of a finite nwnber of

repetitions of two operations:

1. Substituting elements of A for variables,

8

2. Inferring Y from X and X ~ Y.

These are operations which can be carried out by a mathematician with

paper and pencil. In order to be able to formalize the idea of a

proof, Moore and Donovan [3] allowed a canonic system C' to describe

the concept of a "proof" in a system C. A hierarchy is thus formed,

since a proof in C' is, in turn, described by a system C.:". For,some k,

c(k+l) = C(k), so that no new features will be found in'higher level

systems.

For example, consider the system

* C =(([a, bJ , •), [xJ, [AJ, R, C'), where R consists of the

canons

1. I- b!

2. ~ I-ax~.

'X = fb, aba, aabaa, ... J. The second level system C' will generate the

proofs that each of these strings is defined by A. In other words, C'

will generate the set

where we have used the semicolon only to avoid a collision of punctuation.

This set can be considered a .. set of strings over the alphabet

[b, !• ;J, and as such it may be generated by some canonic system.

Define C' to be that system. Its canons describe the effect on a proof

of applying each of the rules of C:

1. I-'>.. proof

2. a proof r a;b! proof

3. a proof /\ P ; y~ proof ~ a; ay~i proof

* Then C' = (((; , b, !} , •) , [a, 13, y, fi } , [proof J, R, C") . It is not

difficult to se~ how C' operates. First, for convenience, it defines

9

---------------------------~

the null string as a proof. Then~ if some proof ahas nlready been

derived, a followed by the symbols ";b~" is still a proof because 1-b~

is an axiom of C. Finally, if a proof a exists such that the pattern

";<Some string y> !" appears within it, a followed by the symbols

"; a<some string y>a !" is also a proof. This corresponds to applying

the canon xA I- axaA in C. ,.... -

This formulation of higher-level systems is considerably simpler

than their original description [4]. Since we shall have occasion

to use such systems later, this transparency will be beneficial.

Summary

This chapter has been a review of the definitions and terminology

associated with canonic systems. We have revised some of the formulations

so that they are applicable over arbitrary algebraic systems; this will

allow us to write canons describing, for example, sets of integers, as

well as sets of strings.

10

Chapter 2 - Proof Measure Functions

Introduction

This section d~velops a measure of complexity for sets of strings

specified by a canonic systems. Such a measure is related to the time

it would take a generator operating from the canonic system to produce

an element of the language being described.

Definition 1. A proof of a theorem t in a system C is a finite

list of remarks r
1

, ... ,rk such that

1. r 1 is an axiom

2. ri (1 < i ~ k) is either an axiom or a theorem

immediately derivable from some subset of [r
1

, ... ,ri_ 1J.
3. rk = t.

Recall that, in a given canonic system C, the meaning and derivation

of a proof is given in the next higher level system C'. Since C' is

capable of generating all possible proofs of theorems in C, we make the

following definition.

Definition 2. The proof measure function m(C, t) of a theorem t

in a canonic system C is the number of remarks in the shortest proof of

t. That is, if r 1 , r 2 , ... ,rk is the shortest proof oft in C, then

m(C, t) = k.

For example, in a system S containing the canons

1. I- I>!.
2. ~I- ax~

we would have the proof b!, ab~, aabaa!. Therefore m(S, aabaa) = 3

since there is precisely one proof for each string in this system.

11

12

Properties of m(C, t)

We may now prove several properties of proof measure functions.

Theorem 1. If t is a theorem of C, then m(c , t) is computable.

Proof. If t is a theorem of C, then there exists a proof of

tin C: r 1, r 2 , ... ,rk such that t = rk. This proof, considered as a

string of symbols, is a string derived by the next higher level system C'.

Modify C' into C so that it keep~ count of the leqgth of the proof it m ,
is constructing for t. Change the axiom

I- 'A proof

into

r. <A, 0> proof & length.

In each canon of C' which places a remark in the proof, replace the

predicate proof with a predicate over ordered pairs, proof & length.

Thus, if C' has the canon

a proof /\

let C have the canon
m

f-"- a ;p proof,

<a, n> proof & length /\ .•• ~ <a;P , n+l> proof & length.

Finally, let C have the canon
m

<n:;P, n> proof & length t- <13, n> theorem &; m(c, t)

to associate with each t the length of its prqof. Then the canonic

system C computes m(C, t). QED
m

An Alternative Function

Given that t i~ a theorem of C, the function m(C, t) gives us a

measure of the difficulty of proving t in C. Unfortunately m is a

function of each possible theorem. It would be desirable to sacrifice

some of the exactness of m in favor of a ~ore macroscopic quantity.

Definition 3. Let m' (C, n) = sup {m(c, t) I t i.s provable in

C and !ti = n}.

The function m' looks at all proofs of theorems of length n in C

and takes the number of steps in the longest proof as its value. Thus,

given a theorem t of length n, we can, under certain conditions, say

that it may be proven in no more than m' (C, n) steps. By definition,

m'(C, n) is the upper bound on the length of proof of a theorem of

length n. We now consider the conditions under which it is meaningful

to speak of m'.

Theorem 2. m'(c, n) is computable if and only if C generates a

recursive set.

Proof. Consider the system C to be over a terminal alphabet T.

Generate the set

* Sn= (w e T I w • nJ,

the set of all possible formulas of lengbh n over T. For each~ e S , n
we can determine whether or not it is a theorem in C since C generates

a recursive set. That is, generate

S ' = (w e S I w is provable in C} • n . n

Then, since mf(C, w) is computable when w is known to be provable in C,

m'(C, n) =sup {m(C, w)lw c S'
0
J.

If m'(C, n) is computable, then if any formula a is provable at

all, it is provable in no more than m'(C, lal) steps. Since C contains

13

a finite number of axioms and canons, it is possible to generate all

proofs of length 1 (the axioms), length 2 (one canon applied to each

axiom), and so on. If the theorem a has not been proven after m'(C, IOI)
steps, it will never be. Since the membership question is thus decidable,

C must generate a recursive set. ~

There is a property of m' which is.significant for its application

to complexity measµres for progranming languages.

Theorem 3. m'(C,n) is not necessarily monotonic increasing inn.

Proof. Consider the counterexample

.... ~
x! ~ xaaA

1--a!

xB I- xaaB

XB t- xA

which generates the proofs

1. aB, aA

2. aaA

3. a!, aaa!, aaaA

4. a~, aaaaA.

Then m'(C,l) = 2, m'(C,2) = 1, m'(C,3) • 3, m'(C,4) • 2, and so on.

QED

This property is entirely expected, for some short theorems may

be much more difficult to prove than long ones.

A More Precise Function

The functions m and m' evolve naturally from a consideration of

the process of proof in a canonic system. They do provide an indication

of the difficulty of deriving a given theorem, but they make the

simplifying assumption that one canon is no different from another

since each extends the proof one step. But certain. rules may contain

several premises, each of which must be examined before the conclusion

may be drawn. Let us define another function which takes this into

account.

Definition 4. The proof measure function n(C, t) of a theorem t

in a canonic system C is the total number of premises evaluated in the

shortest proof oft. That is, if r 1, ••• ,rk is the shortest proof of

t in C, and if the canons applied during this proof were

14

rn /\ r21 /\.··/\rm 1 I- rl
1

r 12 /\ r 22 /\. · · /\ r 2 I- r 2
~

rlk /\ r2k /\. · ./\ r°i<k ~ rk, '·

k
then n{C, t) = L mj.

j=l

Theorem 4. n{C, t) is computable iff t is provable in C.

Proof. The proof is alm9st identical to that of Theorem 1. Build

the canonic system C so that, at each step in the proof of t, a count
m

is kept of the number of premises which have been evaluated so far. QED

Definition 5. Let n'(C, J,) = sup{n{C, t) It is provable in

C and I ti= t}.

Theorem 5. n'(C, J,) is computable iff C generates a recursive set.

Proof. Similar to that of Theorem 2. QED ~

Theorem 6. If p is the number of axioms appearing in the shortest

proof of t in C, then n(C' 't) :t m{C, t) - p.

15

Proof. If p axioms appear in the proof, then m{C, t) s p + x, where

x steps are taken in '1the proof after the axioms are written down. The

number of premise remarks evaluated for each of the axioms is zero; for

the x remaining step~, y ~ x premises must be examined since each canon

has at least one premise. Thus n{C, t) = 0 + y. These three conditions

imply n(C, t) ~ m(C, .t) * p. QED

Theorem 7. If C is a canonic system possessing q axioms, then

n' (C, iJ ~ m' (C, J,) - q. for all "·

Proof. At worst, some theorem of length t may require the use of

all q axioms in its proof; in any case, it requires at least one. The

conclusion follows from this observation and Theorem 6. QED

JI.

Bounds on Measure Functions

Consider a canonic system C generating sets of strings. We would

like to relate at least one of the proof measure functions to the

structure of the system C in such a way that we could avoid having the

function described by only another canonic system. Let

D(k) = [x I x is provable in exactly k steps in CJ.

Then, by definition, D(l) is the set of all the axioms of C, D(2) is the

set of all theorems provable by applying exactly one canon to the strings

in D(l), and so on. Furthermore, let

L(k) =sup {xix c D(k)J,

S(k) =inf {xix e D(k)J.

That is, L(k) is the length of the longest theorem provable ink steps,

and S(k) is the length of the shortest.

Assume that the canonic system C has the property that no canon

ever "shortens" a theorem. That is, if t is provable ink steps and t'

in k + 1, then It 11 l: I ti . Under these conditions, we can say that

L(k + 1) ~ L(k) and S(k + l) ~ S(k) for all k.

Recall that L(k) is the length of the longest string possible after
-1 a derivation of k steps. Then the inverse function L (z) is the mini-

mum number of proof steps required to generate any theorem of length z;
all proofs of fewer steps yield strings shorter than z. Now the proof

measure function m'(C, z) is, by definition, the maximum number of proof

steps required to generate all theorems of length z. We therefore obtain

Lemma 1.
-1 L (z) ~ m'(C, z) if C is non-erasing.

A similar argument may be advanced for the S(k) function. Since
-1 S (z) is the maximum number of proof steps required to generate all

theorems of length z, all longer proofs yield strings of length greater

than z. This observation produces

Lemna 2. -1 m'(C, z) ~ S (z) if C is non-erasing.

16

and

Theorem8. If C is a canonic system with the property that t

provable in k steps and t' in k + 1 implies lt'I ~ ltl, then
-1 -1

L (z) ~ m'(C, z) ~ S (z) for all z.

Computation of L(k) and S(k)

Consider a system C generating strings over an alphabet V in

which each canon is either an axiom or a rule of the restricted form

* where w1, w2 e V . Let J,
0

be the length of the longest axiom in C

(J,
0

= sup [I w1 It- w is an axiom of CJ) and J, be the maxi.mum number of

symbols added to a derived string by the application of a single canon

Ct = sup [1w1w21 I xE ~ w1xw2g_ is a canon of C}). Then we observe that

L(l) = J,
0

L(2) = L(l) + J,

L(k) = L(k-1) + J,

so that

L (k) = J,
0

+ (k-1) J,.

Similarly, if s
0

• inf (1w1 U-w is an axiom of C} and

s • inf (1w1w21 I xl_ ~ w1xw2g_ is a canon of CJ, describe the shortest

starting string and the least number of symbols added by any canon, then

S(k) = s + (k-1) s.
0

The inverses are easily found to be

L- 1{z) =· z - J, + J,
0

J,

s- 1{z) = z - s + s
0

s

17

Noting that canons of the form used never "shorten" a theorem, we may

combine these re~ults with Theorem 8 to yield

Theorem 9. If C is a canonic system in which all canons are either

of the form~ w ar x!'., I- w
1
xw

2
g, then

z - J,o + J. m' (C, z' z - s + s L • n are as ~ / ~ ~----o ____ , wwere ~o' ~· s 0 , s
J. s

defined previously.

The class of canonic systems yielding exactly the regular sets

requires canons of the form either r aQ or xl ~ xaQ_, where a is a single

symbol from V. Thus J, = J. = s .. s • 1, and Theorem 2 produces
0 0

z :s: m'(C, z) ~ z. We have proven what may be obvious:

Corollary 1. If C defines a regular set, then m'(C, z) z.

Now consider a system C generating strings over an alphabet V in

which each canon is either an axiom or a rule of the restricted form

'It
where wi e v·, xij e {x1 , .•• ,xnJ, and n > 1.

Define

1. rmax •sup {nl Xl£'..l A x2!'.,2 A···A xn~ r g(x1, .•• ,xn)Q

is a canon of CJ

2.

3.

4.

r "" min

J. =
0

J, =

inf {nj x1!'.,1 A x2!'.,2 A···A Xn!'..a. r g(x1, ... ,xn)Q
is a canon of CJ

sup [1w1 j t- w is an axiom of CJ

sup [1wowl wnl I x1!'..1 A···A xn~ r
woxilwlxi2 w 1xi w C is a canon of CJ n- n-

n

5. s
0

= inf [lwl 11-w is ~n axiom of CJ

18

6. s = i.nf [1w
0
w

1
.

ll' x. w1xi
0 1.1 2

w n1 I xl[l /\. '· /\ xn~ 1-
w 1x. w G is a canon of C and n
n- i. rr-

n
r i J. mn

The definitions of J,
0

, J,, s
0

, and s are similar to those given

in the case where each canon is allowed to have no more than one premise.

In addition, we desire to know r and r i , the maximum and the max m n
minimum number of variables appearing in any canon. Again we desire

to find L(k) and S(k), the lengths of the longest and the shortest

string derivable aft~r a proof of k steps.

By definition, L(l) = l
0

, the length of the longest axiom. Now

the longest string derivable by the application of a single canon would

be produced when the longest strings possible were assigned to

xl, ... ,xr
max

in the canon

and lw
0
w1 ... wr I = J,. Such a canon may or may not exist in C, but

max

no canon in C produces strings growing at a faster rate. Thus we observe

that

so that

L(l) = J,
0

1(2) = r 1(1) + J, max

L(k) = rmaxL(k-1) + J,

1(k)
k-1 k- 2 i

= lo (rmax) + J, L (rmax)
i=O

k-1
. k-1 ((rmax) - 1)
.. J,o (rmax) + J, r -1

max

·Solving this equation for k to produce the inverse function, we obtain

19

,-•.,

(
z(r - 1) + t)

L- 1(z) • 1 + log max .
rmax to

where r > 1. max

We now desire to find an expression for S(k), the length of the

shortest string derivable after k applications of canons of the form

x1!1 /\ •. • /\ xrJ.n I- woxil wlxi2 .• • • wn-1 xin wn Q •

In this canon, we must substitute strings for n variables. If the

length of the string produced as a conclusion is to be as short as

possible, each variable should be assigned the shortest possible string.

However, ~variable must refer to a string produced in the previous

proof step, or there would be no reason to have that step. This would

contradict our assumption that all proofs are of minimum length. We thus

produce the shortest permissible result when one string xp is assigned the

length S(k-1) and n•l have the shortest possible length, s • Once again,
0

there may or may not be 2 canon which allows this, but all other sub-

stitutions 'will produce longer conclusions.

In addition, we desire to use the canon with the least number of

variables in its conclusion. This canon, by definition, contains constant

strings of total length s. For sufficiently large string lengths, the

effect .of concatenating several long strings is greater than just adding

a constant number of symbols each time. Thus we expect this analysis of

S(k) to be valid for only large k.

The expression we have justified for S(k) is

S(k) = S(k-1) + s
0

(rmin -1) + s •

The solution of this equation is

S(k) = (k-l)(s r i + s) - (k-2)s , o m n o

whose inverse is

_1 z + s (r ~ - z) + s
S (z) = o m~n

s (r i - 1) + s o m n

20

Combining these results, we obtain

Theorem 10. If C is a canonic system in which all canons are either

of the form r- w or x1!,1 /\ ... /\ x F r- w xi w1 xi wn- l xi wn Q, then
xr-n ° 1 2 n

1 + log
r
max (

z(r 1) + J,) z + s (r . -2) + s max- o min s m'(C, z) s ~~---~~--~~~
J, s (r . -1) + s o o · min

for sufficiently large 7-, r > 1, and s
0

, s, J, , and J, as defined
max o

previously.

The class of canonic systems yielding exactly the context-free

languages requires canons of the form either I- a.Q or x! /\ y~ r- xy.Q, where

a is a single symbol from an alphabet V [4]. Then s = J, = 1, s = J, = 0,
0 0

and r . = r = 2 and Theorem 10 reduces to min max '

Corollary 2. If C defines a context-free language in standard form,

then 1 + log
2

z s m' (C, :~) s z.

Summary

We have defined four functions measuring the complexity of a

derivation in a canonic system. These functions were shown to have

certain properties, and relationships among them were derived. For

canons in which only the identity function appears in the premises, we

derived bounds on some of these functions in terms of the structure of

the structure of the system.

There is a question of interest which we have not settled: Given

a system C, is it possible to find a system C* such that C* is equivalent

to C, but m'(C*, J,) < m'(C, L) for all J,? In other words, is it possible

to "speed up" a canonic system in the same way that a Turing machine can

be speeded up? The answer to this question will determine the nature of

a lower bound on our measure functions.

21

Chapter 3 - Inverse Systems and Compilirig

Introduction

A canonic system C is a specification of the members of a set and,

as such, gives rules for generating successive elements of that set.

Because of its similarity to the parsing problem, the inverse process is

more interesting: given a string w, how could it have been generated by

C? The operation is one of analysis rather than synthesis.

An algorithm which ~ccepts a canonic-system description of a language

and analyzes an input string based on this description exists [l]. We go
-1 one step further and create from C a new canonic system C which exactly

describes the recognition procedure for strings generated by C.

For example, consider the language ~. ranban In ~OJ defined by the

system

I- b!

xA raxaA •
. -- -

A proof in this system C that aabaa! is

Consider the system

axa_!yif!
b_! t-I

where the conclusion I indicates an arbitrary terminating condition. When

this system is presented with an axiom ~ w such that w is provable in C, it

proceeds to decompose that string. For example, if we include the axiom

r aabaa_!, the system becomes

J- aabaa!

axaA J- x,!

bA f- I ,_

and generates the proof

22

"::'·

Apart from the end-of-proof indicator I, this is simply the proof in C
-1 written backwards. The system we have just presented is C , the inverse

of C.

-1 Construction of C From C

-1 The relationship between the proofa in C and C suggests a procedure
. -1

for obtaining the canons of C from those of C: interchange the premise

and the conclusion. Thus if C has the canon

x! r axa! '

c- 1 should have

This procedure fails if the original canon had multiple premises, for the

inversion of the general canon

f (x
1

, ••• ,x)F t- g(x
1

, ••• ,x)G
m n-m n-

would produce

f(x
1

, ••• ,x)F
m· . n -m

and we do not define the meaning of a canon with multiple conclusions.

(There is no way of indi9ating in a proof that several conclusions must

hold simultaneously.) Thus only systems C in which each canon has no

more than one premhe possess an inverse c- 1 by this construction. It is

the case, however, that any arbitrary syst8111 can be reduced to this form,

and this we now demonstrate.

Normal-Form Systems

Given an arbitrary system C, it is possible to derive a system CN such

that

1. Each canon in ~ has a single premise.

2. A remark t is provable in CN iff t is provable in C.

The general canon we must consider is

23

I\ ••• I\ f (x
1

, ••• ,x)F I- g(x
1

, ••• ,x)G
m n ~ n -

where

d
fi: An ... A i

since the canon is over the algebraic system (A, *1, ••• ,*k). We shall

call di the degree of fi; the result of applying fi is a d
1
-tuple of

elements from A, and Fi must be a predicate over di-tuples. For con

venience, let us abbreviate this canon as simply

A· •• A i F ~ s.Q • m-m

The following algorithm produces ~ from C:

1. If C has either the axiom ~ ~ or a canon f! ~ s.Q with a

single premise, then retain these rules in CN.

2. If Chas the canon

then let ~ have the canon

<f.1, ••• , f !J>]\ ••• F ... s.Q m .1.: UI

m
and the new pred~cate F1 ••• Fm of degree(~ di).

i•l

3. If ~ has the canons

<r1 , ••• ,r >Rt- uR'
p - -

<S l ' ... 's > s F vs I q - -

then let ~ also have the canon

and the new predicates RS of degree (degree R + degree S) and

R'S' of degree (degree R' +degree S'). Repeat step 3 for

each pair R'S' describing a predicate created by rules 2 and

3. Since C has only a finite nwnber of canons, this process

will terminate.

24

4. No other canons are in ~·

This algorithm reduces several premises to a function of higher

degree. Rule 1 retains all those canons which already have only a single

premise or none at all. Rule 2 reduces a canon with several premises to

the desired fonn by combining the di results of each function fi (1 :!i: i :S: m)
m

into one(~ di)-tuple. When an n-tuple is evaluated, all components must
i=l

be shown true, so the effect of requiring the proof of all the original

premise remarks is achieved. When canons are combined in this way, new

predicates are created in the premises, and lule 3 provides the canons to

describe these. This rule provides for the interaction between objects

described by several canons.

For example, let C be the system

t- a_!

I- b,!!

r- cc
xA .I- ale!
x,!! t- bx,!!

x.Q t- ex,£

x,! /\ Y,!! t- xyJl

xf /\ Y,!! t- YKY!

which generates if = {anbmcka~m I n,m,k ~ l}. By Rule 1 of the algorithm,

~ contains the canons

~·!
I- b.!!
t-cf
X! ~ax_!
x,!! I- bX;,!

xC l- ex£ •

By Rule 2, ~ contains

<x , y> ,!!! l- xy,!!

~ ' Y> .21! t- yxy !

25

corresponding to the two canons with multiple premises. Rule 3 provides

definitions for the sets AB and CD; applying it to the canons in Cn

which define! and! separately produces the setofrulea-

<X, y>AB I- ~x, by:::i.AB

~ I- <ax, b:>AB

Y! r- <a, by:;:AB

I- <a, b~

The definition of ~ generates the canons

<X, y, z~ I- <CZ, xy>CD

<X, y:::i.AB 1-- <C , xy>C~

A new predicate, ~, has been generated, and it must be defined by

applying Rule 3 again:

<K, y, z~ r <ax, by, cz:>ABC

<y, z:>BC I- <a, by, c z ::-AB Cc

<X, y~ I- <ax, by, c:>ABC

<:X, z~C I- <ax, b, CZ~

xA I- <ax, b, c~

Y! I- <a, by, c:::-ABC

zC t- <:8' b, c~C

The predicates BC and AC must be defined, again by Rule 3:

<K, y~ I- <Kb, yc>BC

X! t- <:Kb, c~
ye I- <b, ye>!£

<.b, c>BC

<X, y:>A_£ I- coca, yc>A.C

xA t- <Ka, c:>AC

y£ I- <B, yc:>AC

I- <:*, c:>AC

No new predicates were created in this step, so the generation of CN is

complete.

26

Consider the proof of aabbbcaabbb! in the original sys.tem C:

b,!, a!, bb,!, ~, bbb,!, cf., aabbb!!,, aabbbcaabbb! •

'!be system ~ simulates this derivation as:

b,!, <:a, bb> ~'<a.a, bbb> ~' <e, aabbb>~, aabbbcaabbbE •

We now show that ~ generates the same sets as C.

'lbeorem 1. A remark t is provable in ~ iff t is provable in C.

Furthermore, the proof in ~ is effectively obtainable from that in C,

and conversely.

Proof. To show that t provable in C implies t provable in ~· we

will use induction on the length of the proof in c.

Basis: If t is provable in one step in C, then t, being an axiom,

is also provable in one step in ~· Similarly, if t is provable in two

steps in C, it is the result of applying a single-premise canon to.an

axiom in c. By Rule 1 forming ~ from C, these operations may also be

performed in CN.

Induction: Assume all theorems provable in leas than or equal to

k steps in C are also provable in ~· A proof of length lc+-1 of a theorem

tin C is a list of remarks r 1, •.. ,rlc+-l such that

1. r
1

is an axiom.

2. r i (1 < i :s: k+l) is either an axi9m or a remark

inaediately derivable from some subset of {r1, .•. ,ri_1J.

3. rlc+-1 "' t.

t is not an axiom of C since it is assumed to be provable in no less

than k+l steps. 'lberefore rk+l is imnediately derived from some subset

{w1£:.1, •.• ,wm!,J of {r1, ••• ,rkJ by the application of a canon

f 1(x1 , ••• ,x)F1 A ••• A f (x
1

, ••• ,x)F I- g(x
1

, ••• ,x)G n- m n-m · n-

where there exist z1 , .•• ,zn e A such that fi(z1, ••• ,z
0

) = wi and

g(z1, ••. ,zn)Q. = rlc+-l" Furthermore, each w1!i is provable in· less than

or equal to k steps.

27

From these facts about the proof in C, it is possible to con

struct the proof in CN. When C derives rk+l by applying the canon

<£
1

, ••. ,f>F
1

••• F t- g(x1 , .•• ,x)G
m --m n -

generated by Rule 2 forming ~ from C. Each component of the m-tuple

is provable in less than or equal to k steps in C; by the inductive

assumption, each is therefore also provable in ~, as is the entire

m-tuple. Then, as long as the predicate r
1
.•. Fm appears in the con

clusion of some canon, rk+l may also be proven in ~· But Rule 3 of

the construction algorithm insures that all predicates appearing in

premises appear on the right-hand side of .!.2!!!! canon, so rk+l is

indeed provable in ~·

Thus the existence of a proof of arbitrary length of t in C

implies the existence of a proof of t in ~.

It is now necessary to show that t provable in ~ implies t

provable inc. The proof oft in·~ is a list of ~emarks s 1 , ... ,st

such that

1.

2.

3.

s
1

is an axiom.

si (1 < i ~ t) is immediately derivable from si-l'

SJ,= t.

The following procedure reconstruct~ the proof of t in C. Con

sider, with no loss of generality, each remark si to be of the form

In the construction of CN from C, multiple premises in canons are

reduced to components of one n-tuple. If we know the predicates in C,

we can look at such a remark in the proof in CN and decompose the one

term into several. That is, the remark

28

in CN becomes the set of remarks

in C, where each Qi may be a predicate of arbitrary degree. Continuing

this procedure on each remark in the proof s
1

, ... ,st oft in CN produces

the proof of t in C. Therefore t provable in CN implies t provable in

C. QED

Measure Functions of Normal Systems

Theorem 2. n(CN, t) = m(CN' t) for all t provable in CN, and

n'(CN, t) = m'{CN, t) for all t·

Proof. These are trivially true since each step in a derivation

in CN requires the evaluation of exactly one premise. QED

Theorem 3. If v is the maximum number of premises per canon in C,
m{CN, t)

then m(CN, t) s; m(C, t) s; v - 1 for all t provable in C.
v - 1

Proof. Figures 1 and 2 illustrate the correspondence between

derivations in CN and C. We observe that each node in the CN tree

e~pands into at least one and at most v nodes in the C tree. Both

trees have the same number of levels (the number of nodes in the CN

tree is equal to the length of the longest path in the C tree), so

that if the top level in CN expands into v nodes, the next lower level
2 could contain as many as V•v = v , and so on. Thus

m{C, t) ~ m(CN, t)

:!! ~N' t)-1 i m(C, t) v
i=O

so that

m(CN, t)
1 m(CN, t) s; m(C, t) s; v -

v· - 1

QED

29

rk+l

wlE:_l w F
nr-m

/~
sl~l s2~2 s~3

Figun 1 - Derivation in System C

rk+l

<w l , .•• , w > Fl ... F
m -~

Figure 2 - Derivation in System CN

30

Inverses of Arbitrary Systems

Recall th.at normal-form systems were introduced to show that any

canonic system C can be reduced to another system CN in wh:i.ch each canon

has only one premise. The difficulty in constructing the tnverse system

C-l from an arbitrary C arose exactly in the consideration of canons with

multiple premises. The normal-form theorem resolves this problem by

always providing an equivalent system of the required form. We may now

formally define an inverse system.

C-l is constructed from a system C in normal form by the following

algorithm:

1.
-1 If C has the axiom 1-w.Q, then let C have the canon

wG r I, where I is an arbitrary end-of-proof indication.

2. If C has the canon f(x 1 , ••• ,xn)! ~ g(x1 , ••• ,xn)Q, then let
-1

C have the canon g(x1 , ••• ,xn)Q ~ f(x
1

, ••• ,xn)!>

Let C u (a} denote the system C with the added canon a. The inverse

system has the following property.

-1
Theorem 4. t is provable in C iff I is provable in C U (I- t}.

-1 Furthermore, the proof in C is effectively obtainable from that in C,

and conversely.

Proof. If tis provable in C, then there exists a proof r 1, ••• ,rk

of t in ~ such that

1. r 1 is an axiom.

2. ri (1 < i :s; k) is immediately derivable from ri-l"

3. rk = t.

-1 If the axiom I- t is given to C , the only proof possible must begin t, •••

since C-l has no other axioms. In the proof of t is CN, t = rk is

derived from rk-l by applying a canoQ

f(x
1

, ••• ,x)Ff- g(x1 , •• ·.,x)G
n -. n -

where ther~ exist z1, ••• ,zn e A such that f(z 1, ••• , zn)! • rk-l and

. .i: 31

-1 By the construction of C from CN' the inverse canon

g(x1 , ••• ~x)G I- f(x1, ••• ,x)F n- n-

-1 1 is available in C , so the proof inc· can continue: t, rk_ 1, •••• This

process may be repeated until the axiom r 1 is reached: t, rk_ 1, ••• ,r1•

Then, since the canon r 1 I- I exists in the inverae system if I- r 1 was an

axiom in CN' the proof terminates t,rk_ 1, ••• ,r1,I , proving I.

If I is provable in c· l U {I- t} , then there exists a proof

t,s1, ••• ,sk_ 1,I in that system. The last canon applied must have been

sk-l I- I, since these are the only canons which generate I. By the con-
-1

struction of C from CN, f- sk-l must have been an axiom of ~· At each

step in the proof where si+l is deduced from si by the application of

a canon

g(x1, ••• ,x) G I- f (x1 , ••• ,x)F , n- n-

the inverse rule

f(x1, ••• ,x)F I- g(x1, ••• ,x)G n- n-

exists in ~ and may be applied. After k-1 steps, we arrive at a proof

sk_ 1, ••• ,s1 in~· A final application of the inverse.of the canon which

produced t from s 1 produces the desired proof. QED

Measure Functions of Inverse sxstems
'

The proof of Theorem 4 can be extended to indicate the relationship

between the length of the proof in c·l and that in CN.
. ..

Theorem 5. m(C-l U { 1- t}, I) = m(~, t) + 1 for all t provable in ~·

Proo·f. The result follows immediately from a consideration of the

construction of Theorem 4. The proof in the inverse system is simply the

reverse, remark by remark, of the proof in ~, plus the end-of-proof signal

I. QED

Corollary 1. m' (C- l U {I- t}, III) = m' (~, It I) + 1 for all t provable

in ~·

...

TT --------- ----~

32

:~ ''• ... -· ~ ' ' .

Proof. Immediate.

An interpretation of these results is beneficial at this poiµt. The

corollary states that if t is known to be provable in CN in no more than
-1 k = m'(~, !ti) steps, then the inverse system C , given the single axiom

I- t, can reproduce the proof in no more than k+l steps.

Theorem 3 of this chapter states that m'(~, t) ~ m'(C, t) for all t.

This fact and Corollary l produce

Corollary 2. m' (C-l U [I- t}, I I j) ~ m' (C, It I> + l for all t provable

in C.

Proof. Immediate.

Inverse Systems As Recognizers

Suppose the canonic. system C describes a programming l.anguage. The

system c·l behaves like an analyzer for that language since> given any

string derivable in C, c·l can produce a parse of that string. The set

of all strings derivable in C is simply the set of all legal programs in

the language described by c. Once the m' function is known for C, it is

possible to characterize the recognition process of a -legal program in

that language by applying Corollary 2.

While m'(C, t) + 1 is an upper bound on the number of steps in the
-1 -1 parse in C , nothing we have said helps construct this parse. C , like

any canonic system, is a non-detellllinistic statement of transformations

which may be applied at any step in a proof. In general, more than one

canon may be applicable, and the correct rule to choose may not be im

mediately obvious.;

Recursive Sets And Programming Languages

Canon:i.c systems in their most general form define recursively

enumerable sets. Given a particular string wand system C, it is not

possible~tg,_determine in general whether w could eventually be generated
c

by C. A recognizer based on a recursively enumerable language may never

halt for some input strings, and this situation is undesirable for

33

practical computing systems.

One solution is to allow only language definitions which define

recursive sets. It is undecidable, however, whether an arbitrary canonic

system has that property (Appendix I). Another approach is to restrict

the form of the system so that its language is known to be recursive.

The correspondence with Chomsky's grammars does this, but the forms pro

duced do not resemble the definitions of programming languages.

Let us examine the question from a different point of view: we are

trying to insure that a compiler presented with an invalid program will

not loop endlessly. In theory, a machine capable of examining any

arbitrary string and deciding acceptance or rejection must be based on

a recursive language. In practice, compilers are not usually asked to

process completely arbitrary inputs. A source program may be correct

except for the duplication of a statement label or a missing declaration.

It is possible then to write the language description :in such a way

that common errors are detected. In effect, we are defining a new language,

similar to the desired one except for well-defined errors. We still cannot

guarantee our compiler will halt for arbitrary inputs, but "almost cor

rect" programs will not cause infinite looping.

For example, consider generating DO loops in Fortran of the simplified

form

DO <label> <integer variable> = <constant>, <constant>

<label> CONTINUE

Most Fortran systems impose the restriction that the value of the DO

index may not be changed within the loop; that is,

DO 5 J = 1, 10

J = 20

5 CONTINUE

is illegal. Assl.lllle we have defined in a canonic system the predicate

34

not in such that <x, y> not in is true iff the element x is not contained

in the set y, and <x, Y> _!!!. if it is. A specification for a legal DO

loop is:

<x, i> set of Fortran statements with assigned variables

A z integer variable A <z, i> not in A w statement label

A i integer constant A j integer constant

DO w z = i, j

x legal DO loop

w CONT'JNUE

To detect the case of a program redefining the value of the index, we

might write:

<x, i> set of Fortran statements with assigned variables

A z integer variable A <z, i> in A w statement label

A i integer constant A j integer constant

DO w z = i, j

I- x program attempting to redefine DO index

w OONTINUE

Thus a program with a syntactic error is recognized as such, and

we may be assured that the compiler will not loop on receiving an incor

rect DO loop •. The lan~uage defined by the entire canonic system may not

be recursive in the formal sense, yet we may be able to determine member

ship in~ set for most input strings we are likely to encounter. The

language description might be called "almost recursive," and a recognizer

based on that description woµld halt for "almost all" inputs.

Sunnnary

This chapter has presented two main results. First, we showed how

an arbitrary canonic system C could be reduced to an equivalent system ~

which contained only single•premise canons. From this normal form, we

developed the idea of an inverse system C-l which characterized the

recognition of strings generated by C. In addition, we computed the
-1 measure functions of both ~ and C and showed the relationship between

--------------~------- ----

35

them. Finally, we developed a technique for developing 'almost recursive"

language descriptions so that recognizers would not be l:kely to loop on

most inputs.

Inverse systems as we have defined them do not specify parsing

a lgorithmns for the Lmguages they recognize. An open qu~stion is whether

inverse systems can bE so extended, and under what conditcons.

36

Appendix I - Systems Describing Recursive Sets

Introduction

A canonic system can specify the elements of any recursively

enumerable set, However, from at least a theoretical point of view, it

is desirable to know under which conditions the set generated is also

recursive. Doyle [4] demonstrated equivalences between canonic systems

generating sets of strings and the formal languages of Chomsky [2].

Since type 1, 2, and 3 languages are recursive sets, the related

canonic systems also generate recursive sets.

In this section we consider canonic systems generating set of

natural numbers. It is difficult to describe functions of
1

strings,

but any operation on natural numbers can be characterized by some

partial recursive function. First, recall three definitions.

A set Q is recursively enumerable if and only if it is the range

of some total recursive function. Equivalently, there exi1ts some

Turing machine which will generate all members of Q in som~ order.

The characteristic function CQ(x) of a set Q is def inf d to be

{: :l..f xe-Q

CQ(x) =
if x)Q.

A set Q is recursive if and only if its characteristic function is

total recursive. In other words, there exists a Turing machine which,

given any x, will decide either xeQ or xJQ. A set is recursive if and

only if both it and its complement' are recursively enumerable.

Canonic Systems and Recursive Sets

Let N be the set of natural numbers, and consider canons over the

algebraic system (N, +). We now prove two theorems relating canonic

systems and recursive sets of natural numbers.

37

Theorem 1. If a set Q ~ N is recursive, then it can be generated
I

by a canonic system in which the only canon describing Q is of the form

f(x)K I- xg,

where /(x) is a total recursive function.

Proof. Since Q is recursive, its characteristic fimction

if xeQ

is total recursive. Let f(x) = CQ(x), and include the axiom 1-·1K.

the conclusion xg, in the canon

Then

is provable if and only if xeN and CQ(x) = 1, since only then is the

second premise CQ(x)~ satisfied. Therefore xg, is provable if and only

if xeQ, as desired. The entire canqnic system generating ~ is then

The converse of this theorem is true, but a stronger result is

possible.

Theorem 2. Let the set fr be defined only by canons of the form

f 1(x 1 , ... ,x)F1 /\···/\ f (x1 , ..• ,x)F I- g(x1 , ... ,x)G.
· n- m n-m. n-

Then ~ is recursive if

1.

2.

3.

4.

-1
g exists and is a total function

f 1 , ... ,fm are total

11 , ... ,E"m are recursive sets

g(x1 , ... ,xn) depends on each variable xi in a non-trivial

way.

38

Proof. Assume, with no loss of generality, that the range of g

is the set of k-tuples z = <.Z 1, ... ,zk>. To show that fr is recursive,

we show how to determine whether zee' or z/G for an arbitrary z.

If g-l exists and is total, for an arpitrary k-tuple z = <"Z 1 , ... ,zk>
-1

we can compute g (z 1 , ... ,zk) =_~1 , ... ,xn>· Every variable that appears

in the premises is some xj in g (z) = <:x
1

, ... ,xn> since g is assumed to

depend upon all the variables non-trivially. Then, for each function

f 1 , ... ,fm' we can compute fi(x
1

, ... ,xn) since each fi is total. Then,

knowing the values of f. (x
1

, ... ,x) , we can determine membership in
i n

rl'''''irm since these are recursive sets.

Formally, the characteristic function of C' is computable for all

z as

~l
where g (z) = <:xl'''''xn> and crl·····crm

functions of the recursive sets rl, ... ,r'm.

recursive, ~ is a recursive set. QED

The General Decision Problem

are the characteristic

Since Ccr(z) is total

Theorems 1 and 2 relate certain canonic systems and recursive

sets. This is not to say that recursive sets can only be described by

systems of those forms, nor that any system with canons of another form

can not generate a recursive set. We wish to sketch two results of

Mandl [5] which explain the apparent inadequacy of our structure

theorems.

Theorem 3. It is undecidable whether an arbitrary canonic system

generates a recursive set.

Proof. A canonic system defines, in general, a recursively

enmnerable set, and it is undecidable whether an arbitrary recursively

enmnerable set is also recursive. QED

39

Theorem 4. There is no class of canonic systems such that

1. Every system in the class generates a recursive set.

2. Every recursive set is generated by some member of the

class.

Proof. The proof requires a diagonalization argument which we

do not wish to reproduce here.

Summary

For canonic systems generating sets of natural numbers, we have

derived restricted forms of canons which guarantee that the system will

generate a recursive set. The general question of deciding whether an

arbitrary system generates a recursive set has already been shown un

decidable.

41

Appendix II - Equivalent Systems

Introduction

In previous papers on canonic systems, only canons describing functions

of strings have been considered. That is, the algebraic system has been

assumed to be the monoid (V*, •) of all finite strings over an alphabet V

under the operation of concatenation. Under these conditions, the

functions involved in the definition of a canon take on .3. particularly

simple form.

We desire the most general function f(x
1

, ... ,xn) from n-tuples of

strings into k-tuples. Since concatenation of variables and constants is

the only operation available, that function is

where zije [x1 , ... ,xn} and wije V*. For example, a function over

[a, b, cJ* from ordered pairs into ordered pairs might be

f(x, y) = <abcxy, axbycx>.

Other authors have defined restricted forms of this general function,

such as one in which each variable x
1

, ..• ,xn is used exactly once. We

desire to investigate some of these forms and show the relationship

between them. The effect of this is to allow us to rewrite a system in

an equivalent form which may be easier to manipulate in a particular

instance.

Predicates of Degree k to Indicated Context

Definition 1. A canon with indicated context is a canon in which

at least one function f.(x
1

, ... ,x) in the premises contains a concatenation
1 n

of a constant string and a variable. That is,

f.(x
1

, ... ,x) =
1 n

where z .. e [x1 , ... ,x 1, w .. e V*, and at least one w .. is not the empty
1J n' J..J 1J

string.

This designaticn arises because the canon may be applied only if

the context is matched. For example, the canon xa~ A Y!! I- <X, y>f!_

requires that a string ending in "a" be in A.

Theorem 1. Any predicate of degree k > 1 can be reduced to a

predicate of degree l and indicated context.

Proof. A remark involving a predicate of degree k > 1 is of the
* n * form <S

1
, s

2
, ... ,sk>f, where the range of each si: (V) ~ V is a single

string. Choose a symbol X not in V, and create a predicate Q of degree

1 which contains the information in Pin the form s 1xs 2 ... Xsk~· Wherever

the quantity <s 1 ,s2 , ... ,sk>~ appears, replace it by s 1xs 2 ... Xsk~' which

is of degree 1 and uses indicated context. QED

Corollary 1. Any canonic system can be reduced to one in which no

predicate is of degree greater than one, if indicated context is allowed.

Proof. Apply the theorem to all predicates of degree greater than

one.

42

The converse of Theorem 1 is true, but the resulting predicate of

degree k may still require indicated context. (A trivial proof just

changes every predicate of degree one into degree two and makes the

information in each coordinate indentical.) The question to ask is whether

the iridicated context can be replaced by a simpler operation. This does

not appear to be possible, as an example will show. Consider the canon

xayA I- xay!!, which has the effect of placing in B all those strings in

A which contain an "a" anywhere. If we attempt to remove the indicated

context and write something like .:::x, a, y~, we have lost the ability to

search for the "a" within the string xay. As a matter of fact, it

becomes necessary to allow terms of the form xy, where the division of

a string into its x- and its y-component becomes completely arbitrary.

For example, to simulate a premise remark of xay~ A ... , we must write

xA I- <.X ' A.' A.~

<WX, y, z~ f- ~. xy, z>§_

~, xy. Z>! j- ~, X, YZ>!i

<:>e , a , Y~ /\ • • •

where B is a temporary predicate introduced only to allow the searching

from left to right. Since we feel such a canonic system is no simpler

than one allowing indicated context, we shall not attempt to state a

converse to the theorem.

Relation to Post Systems

At this point, we wish to demonstrate the equivalence between

canonic systems and Post systems. Although canonic systems

evolved from Post systems, an exposition of the process has never been

made.

A Post system is a set of rewriting rules of the form

where ai and ~i are constant strings over a finite alphabet V, and

Y 1 e {x1, .•. ,xn}. For example, the rule

xlly ... x22yy

would change the string 333114 to 3332244, if x. • 333·and y .. 4. The

left-hand part of a rule is called the antecedent, and the right the

conseguen t.

The distinguishing feature between Post and canonic systems is that

a Post system allows only one workspace. All its rules refer to the

~ame string, while a canonic system allows many such workspaces - one

corresponding to each predicate. For example, the Post system geperating

all strings of ~'s of even length is:

axiom·: aa

rule x aax

The analagous canonic system becomes

43

~~- '' . .

No more computing power can be added to a Post system. It is Sill).ply

often more convenient to specify a process using the notation of canonic

systems.

Theorem 2. Any Post system oan be simulated ay a canonic system

using predicates of degree one.

Proof. If the Post system has the axiom w, let the canonic system

have the rule ~ ~· If the Post system has the production

let the canonic system have the rule

,.J

Then the set W describes exactly the strings th.e Post system generates.

QED

Observe that, in general, canons with indicat.ed context will be

required. The equivalence in the opposite direction is of interest

only to show the construction required.

Theorem 3. ~ny canonic system can be simulated by a Post system.

Proof. We will only indicate the procedure involved in the

simulation, since the details are tedious. We let the Post system

build up a proof in much the same way that higher level systems do

(Chapter 1). Markers mus~ be left in the workspace to separate each

remark in the proof, and non-determinism must be allowed so that any

canon can "reach" arbitrarily far back for remarks proven previously.

Reduction of Indicated Context to Cross Referencing

Definition 2. A canon

f 1(x
1

, ••• ,x)F
1

/\ ••• /\ f (x
1

, ••• ,x)F t- g(x
1

, ••• ,x)G
n- m n-m n-

44

...

where

fi(xl, •.• ,xn) • <wOlzllwll 000 zn
1

wn
1

' ••• , wOkzlkwlk"""znkkwnk~

and zij e {x1 , ••• ,xn}' wij e v* is said to contain cross referencing if

not all the. zij are distinct variables; that is, zp • zq does not imply

that p = q for all p and q.

Theorem J. Any canon using indicated context may be reduced to a

rule without indicated context if cross referencing is allowed.

Proof. Consider a premise term of the general form

where the wi are constant strings indicating contest, and the zi are

variables. Form the t+l new canons

1-w A r-r

where the Ai are new, distinct predicates. The intent of the original

premise term can be s:l.uiulated by

,..,
Since each Ai contains exactly one ele.ment by construction, the effect

45

of evaluating these premises is identical to that of applying the original.

QED

Summary

We have shown that successive reductions from predicates of degree

k to indicated context and from indicated context to cross referencing

are possible. These manipulations indicate some of the relationships

between canons of various types.

~ f' ' . . .~

i ·.·

"'!

References

1. Alsop, J. W. A canonic translator. MAC-TR-46 (THESIS),
Project MAC, Massachusetts Institute of Technology, November 1967.

2. Chomsky, N. On certain properties of granmars. Information and
Control 2, September 1960, 137-167.

3. Donovan, J. J. Investigations in simulation and simulation
languages. Doctoral dissertation, Yale University, January 1967.

4. Doyle, J. T. Issues of undecidability in canonic systems. S.M.
thesis, Department of Electrical Engineering, Massachusetts
Institute of Technology, January 1968.

5 • Mand 1, R. Canonic systems and recursive sets. Project MAC,
Mauachusetts Institute of Technology, November 1968 (unpublished) •.

The following paper, not referenced in the text, also concerns canonic
systems.

6. Donovan, J. J. and H. F. Ledgard. Canonic systems and their
applica.tion to prograaming languages. MAC·M-347, Project MAC,
Massachusetts Institute of Technology, April 1967.

\

46

CS-TR Scanning Project
Document Control Form

Report# Lcs-TR~77

Date : 3 I IS I~ (

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
)2(Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR)

D Other:

D Technical Memo (TM)

~----------

Number of pages: i/-b(sf-irr.fl~5)
Not to inctude DOD forms, printer lntstructions, etc ... original pages only.

Document Information

Originals are:

~ Single-sided or

D Double-sided

Print type:
D Laser Print

Intended to be printed as :
D Single-sided or

~ D~uble-sided

~ Typewriter 0 Offset Press

0 Ink.Jet Printer 0 Unknown D other: ______ _

Check each if included with document:

Jg(DOD Form

D Spine

0 Funding Agent Form

D Printers Notes

D CoverPage

D Photo negatives

D Other: ------------
Page Data:

Blank Pages(byP11119number): __________ _

Photographsrr onal Material (byP11119 llUl\'lbet): ________ _

Other cna1a~number):
Description : Page Number.

@::;:;tnl'.?°K mfj6"{ {! · 1./-l ~ ~ 'to Ti\U ~~ -'t_t
_ (~)- s1 J ___ cJ0Ras..,1> __ ~Ys(3),

Scanning Agent Signoff:

Date Received: _]_1 I) I Cf.(Date Scanned: _}_13..11.J..f. Date Returned: .l.Jd--119-'

Scanning Agent Signature:. ___ ?vv_L--'-"""~ ~_.....A-1r_CJN_.,_c;,vL,...=---
Rev IMl4 DSILCS Document Conlrol Form Clllrform.vsd

tilt;'/•••« OA OftANT ·····-···(01) ;·' ''. - ~ .
,1 .

c.

. 4'i;AQ.Aat\.tT'l"ILIMtTATtoN NOTIGH

,,
.</~··!\CY··

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 91')4

