COMPLEXITY MEASURES FOR LANGUAGE

RECOGNITION BY CANONIC SYSTEMS

Joseph P. Haggerty

October 1970

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE MASSACHUSETTS 02139

COMPLEXITY MEASURES FOR LANGUAGE
RECOGNITION BY CANONIC SYSTEMS

by

JOSEPH PATRICK HAGGERTY

Submitted to the Department of Electrical Engineering on January 20,
1969 in partial fulfillment of the requirements for the Degree of
Master of Science in Electrical Engineering.

ABSTRACT

A canonic system C 1s a specification of a recursively enumerable set,

such as a set of strings over a finite alphabet. From this description
C, it is possible to generate a system Cm’ called a proof measure func-

tion, which is an indication of the complexity of the language defined.
For certain simple but important classes of canonic systems, algebraic
bounds on these functions can be derived from the structure of the sys-

tem. Another transformation on C produces a system C-1 which character-
izes the recognition of strings generated by C. A relationship exists

between the measure functions of C and C-l, thus relating the complexity

of the recognition procedure to that of the language description.

Theéis Supervisor: John J. Donovan
Title: - Assistant Professor of Electrical Engineering

Acknowledgements

Perhaps the most vital ingredient in a successful thesis is a
generous dash of enthusiasm, both on the part of the student and his
supervisor. I feel fortunate in having encountered John Donovan,

whose Irish optimism encouraged this work from the very beginning.

To fellow graduate students Robert Mandl and Amitava Bagchi I

owe many technical discussions, some of them even relevant.

Finally, I wish to thank Lynn Foster, who assisted with the
typing.

Table of Contents

2

Abﬂtract -ln.a.ouo..-..n.'n‘..lo.ooo...Il.c.c..l.-.o.'-ooo.ooincoo-

AcknOWIngmentS .-oon.l‘oo.oorat'o.'ooll....o.!'...Q.n.ooooot.o.o-. 3

Chapter 1 - Review of Canonic Systems .eecesceccoccacconccccccccnce 5

Introduction
Hierarchy of Canonic Systems
Summary

Chapter 2 = Proof Measure Functions ..ceeecccasscccnccctannscccccns 11

Introduction

Properties of m(C, t)

An Alternative Function

A More Precise Function
Bounds on Measure Functions
Computation of L(k) and S(k)
Summary

Chapter 3 - Invel‘se Systems and Compiling se0en0eeERGSBROEOLIOERNRBROCRTSTS 22 “

Introduction -1

Construction of C from C

Measure Functions of Normal Systems
Inverses of Arbitrary Systems

Measure Functions of Inverse Systems
Inverse Systems as Recognizers

Recursive Sets and Programming Languages
Summary

Appendix I - Systemé’Describing Recursive Sets ceeeessccsscscssses 37

Introduction :

Canonlc Systems and Recursive Sets
The General Decision Problem
Summary

Appendix II - Equivalent SystEmS -.-o-o.oo.._--co-ooooocou-oo-..ooo 41

Introduction

Predicates of Degree k to Indicated Context
Relation to Post Systems

Reduction of Indicated Context to Cross Referencing
Summary '

46

References Q-n-l.......ll......'clt.l.t.‘lll.....ll.'t'.i....l..‘.

Chapter 1 - Review of Canonic Systems

Introduction

A canonic system is a recursive definition of the members of a set.
Instead of enumerating its elements, we specify a set G by first giving
a finite number of basic members, then rules of the form "If x is in G,
then f(x) is also in G." Canonic systems provide the framework for

expressing such a procedure in a formal way.

For example, let G = {akl k is an even integer} be a set of strings

over the alphabet {a}. Membership in G can be allowed thus:

1. aae G
2. 1f xe G, then xaa ¢ G
3. No other strings are in G.

A canonic system generating G could be written

l. |-aaG
2, xG + xaaG

where "}- aaG" is another form of the membership axiom "aa ¢ G,'" and
"<premise> } <conclusion>" is a contraction of the "If...then..."
statement, The fact that no other strings are to be allowed in G is
implicit in the way the canonic system is to be interpreted.

rd

Definition 1. A canonic system C is a 5-tuple

C= (s, N, P, R, C")
where

8 = an algebraic system (A, *1,...,*) consisting of a set A

k

and a collection of operations *1""’*k on A.

N = a finite set of variable symbols, usually {x, y,...,z}.

a finite set of predicates, each of which is assigned a

-]
I

unique positive integer called its degree.

R = a finite set of rules of inference, called canons, whose

form will be described in Definition 2.

c' a canonic system which defines the interpretation of the

rules of inference in C; its structure and significance

will be discussed in the next section.

Preﬁious formulations of canonic systems have tacitly assumed the
algebraic system S to'be the monoid (V*, *) of all finite strings over
an alphabet V under the operation of concatenation. By making the
algebraic system explicit, we are able to specify canonic syétema gen-
erating sets of integers, real numbers, and so on, as well as sets of

strings.

Definition 2. A canon is a rule of inference of the form

fl(xl,...,xn)_F_.1 A i A fm(xl,...,xn)_l_‘_.m = g(xl,...,xn)g

where F cees Fm’ and G are predicates in P; and fl’ ceey fm’ and g

1’

are functions on A formed from * ,...,*¥ by composition. This canon

1)
would be read:

If fl(xl""’xn) has the property Fl’ and ..., and
fm(xl,;..,xn) has the property Fm’ then g(xl,...}xn) has

the property G.

If'a is interpreted as the extension of a predicate,‘a = {xl Q(x)},

then the meaning of a canon may be defined as

G=1{ul] 3 zl,..‘.,zn € A [fl(zl""’zn) € F1 A ...

. ol ~ =
A fm(21’77e@“n1.9,Fm A g(zl,...,zn) ull}.

The quantity f(xl,...,xz)g is called a remark; the remarks

or kng.

fi(xl,...,xn)gi are the premises of thevcanon, and g(xl,...,xn)g is
its conclusion. A remark f(xl,...,xz) Q is said to be true iff there

exist zl,...,zz € A such that f(zl,...,zz) e Q.

*
For example, consider this canon over the algebraic system (V , °*),

where V is a finite alphabet and * is the concatenation operation:
XB | axaC .

This is interpreted as, "If x has the property B, then the string axa
has the property C." Formally, '

~ * ~
C={ul@zeV [2€B A u=azal}
= {axal x ¢ B} if B is s non-empty set of strings over V .

Another canon might be

xaD A yE | <x, ya> F
whose interpretation is

o~ * ~ ~ ’

F={<u v| 3x,yeV [xae D A ye E A<u, v =<x, ya}},
where the notation <u, v> denotes the ordered pair of u and v. Infor-
mally, we are searching'ﬁ for a string that ends in "a," then forming
an ordered pair from part of it and any string from E.

An axiom is a canon with no premises; it is therefore universally

true. If a function g(xl,...,xn) appears in an axiom, then Kyseoesk

must be allowed to range over all elements of A, Axioms might -be | 2N

Definition 3. A remark w G 1s immediately derived from a sequence

of remarks “131.""’ wbF, wy € A, iff

1. fl(xl""’xn)gl A oo A fm(xl,...,xn)gnik g(xl,...,xn)g

is a canon.

2. g Zysesesz € A such that’fi(zl,...,zn) =W, and

g(zl,...,zn) = W,

Definition 4. A proof of a remark r is a finite list of remarks

rl,...,rp such that

r1 is an axiom,
2. r, (1 < i1sx p) is either an axiom or a remark immediately

derivable from some subset of {rl,...;ri_l},

To illustrate these definitions, let us consider the system
*
¢ = (({a, b}, *), {x}, {A}, R, C'), where the canons in R are

- bA
XA |- axaA .

This system contains the single axiom |-bA, so it is trivially provable
that bA. A single application of the canon xA |- axaA yields the con-
clusion abaA. Continuing this process, we obtain the proof
bA, abaA, aabaa, ..., a"ba"A .
Thus A = {anban| n 2 0}, a context-free language.
We occasionally use the phrage '"'the language (or the set) generated
by the system C" to mean the set G defined by some predicate G in C,

Either the appropriate predicate will be obvious, or the selection of G
will depend upon the situation in which the result is applied.

Hierarchy of Canonic Systems

A proof in a formal system usually consists of a finite number of

repetitions of two operations:

1. Substituting elements of A for variables,

2. Inferring Y from X and X - Y.

These are operations which can be carried out by a mathematician with
paper and pencil. In order to be able to formalize the idea of a
proof, Moore and Donovan [3] allowed a canonic system C' to describe
the concept of a "proof™" in a system C. A hierarchy is thus formed,
since a proof in C' is, in turn, described by a system C". For some k,

C(k+1) = C(k), so that no new features will be found in'higher level

systems.

For example, consider the system
*
C = (({a, b} , «), {x}, {A}, R, C'), where R consists of the

canons
1. FbA
2. xA |-axaA,

X = {b, aba, aabaa, ...}. The second level system C' will generate the

proofs that each of these strings is defined by A. In other words, c'

will generate the set
{bA, bA;abaA, bA;abaA;aabaaaA, ...}
where we have used the semicolon only to avoid & collision of punctuation.

This set can be considered a set of strings over the alphabet
{b, A, ;}, and as such it may be generated by some canonic system.
Define C' to be that system. Its canons describe the effect on a proof

of applying each of the rules of C:

l. | A proof
2. g proof |~ ;bA proof
3. g proof A B;YA$ proof | y;ayaAs proof

*
Then C' = (({;, b, A} , +), {a B, ¥,5 }, {proof}, R, C'"). It is not
difficult to see how C' operates. First, for convenience, it defines

10

the null string as a proof. Then, if some proof g has already been
derived, @ followed by the symbols ';bA" is still a proof because kbA
is an axiom of C. Finally, if a proof « exists such that the pattern
";<some string y> A" appears within it, o followed by the symbols

", a<some string y>a A" is also a proof. This corresponds to applying
the canon %é I axaA in C.

This formulation of higher-level systems is considerably simpler
than their original description [_4]. Since we shall have occasion

to use such systems later, this transparency will be beneficial.

Summary

This chapter has been a review of the definitions and terminology
asgoclated with canonic systems. We have revised some of the formulations
so that they are applicable over arbitrary algebraic syétems; this will
allow us to write canons describing, for example, sets of integers, as

well as sets of strings.

Chapter 2 - Proof Measure Functions

Introduction

This section develops a measure of complexity for sets of strings
specified by a canonic systems. Such a measure is related to the time
it would take a generator operating from the canonic system to produce

an element of the language being described.

Definition 1. A proof of a theorem t in a system C is a finite

. o such that

1ist of remarks r K

10"

1. ry is an axiom
2. ri (1 <i < k) is either an axiom or a theorem
immediately derivable from some subset of {rl,...,ri_l}.
3.' T T t.
Recall that, in a given canonic system C, the meaning and derivation
of a proof is given in the next higher level system C'. Since C' is
capable of generating all possible proofs of theorems in C, we make the

following definition.

Definition 2. The proof measure function m(C, t) of a theorem t

in a canonic system C is the number of remarks in the shortest proof of
t. That is, if rl, T is the shortest proof of t in C, then
m(C, t) = k.

» I

g7t Ty

For example, in a system S containing the canons

1. DbA
2. %A | axaA

we would have the proof bA, abaA, aabaaé. Therefore m(S, aabaa) = 3

since there is precisely one proof for each string in,this system.

11

12

Properties of m(C, t)

We may now prove several properties of proof measure functions.
Theorem 1. If t is a theorem of C, then m(c, t) is computable.

Proof. If t is a theorem of C, then there exists a proof of
t in C: rl, rz,...,rk such that t = Ty This proof, considered as a
string of symbols, is a string derived by the next higher level system C'.
Modify C' into c, 8o that it keeps count of the length of the proof it

is constructing for t. Change the axiom
- N proof
into

| <», 0> proof & length.

In each canon of C' which places a remark in the prdof, replace the

predicate proof with a predicate over ordered pairs, proof & length.

Thus, if C' has the canon

Q proof A ... - asB proof,

let Cm have the canon

<, n> proof & length A... | <@ ,nt+l> proof & length.

Finally, let Cm have the canon

<i;B, n> proof & length |-<B, n> theorem & m t

to associate with each t the length of its proof. Then the canonic
system Cm computes m(C, t). QED

An Alternative Function

Given that t is a theorem of C, the function m(C, t) gives us a
measure of the difficulty of proving t in C. Unfortunately m is a
function of each possible theorem. It would be desirable to sacrifice

some of the exactness of m in favor of a more macroscopic quantity.

A

13

Definition 3. Let m'(C, n) = sup {m(c, t)| t is provable in
C and |t| = n}. ‘

The function m' looks at all proofs of theorems of length n in C
and takes the number of steps in the longest proof as its value. Thus,
given a theorem t of length n, we can, under certain conditions, say
that it may be proven in no more than m'{(C, n) steps. By definition,
m'(C, n) is the upper bound on the length of proof of a theorem of
length n. We now consider the conditions under which it is meaningful

to speak of m'.

Theorem 2. m'(p, n) is computable if and only if C generates a

recursive set.

Proof. Consider the system C to be over a terminal alphabet T.

Generate the set
*
Sn={we1‘|w=n],

the set of all possible formulas of lengkh n over T. For each g ¢ Sn’
we can determine whether or not it is a theorem in C since C generates

a recursive set. That is, generate
Sn"= fw e S | wis provable in C}..
Then, since m#(C,) is computable when w is known to be provable in C,

m'(C, n) = sup {m(C, w)|w ¢ S'n}.

If m'(C, n) is computable, then if any formula o is provable at
all, it is provable in no more than m'(C, |al) steps. Since C contains
a finite number of axioms and canons, it is possible to generate all
proofs of length 1 (the axioﬁs), length 2 (one canon applied to each
axiom), and so on. If the theorem o has not been proven after m'(C, |a]|)
steps, it will never be. Since the membership question is thus decidable,

C must generate a recursive set. QED

There is a property of m' which is. significant for its application
to complexity measures for programming languages.

Theorem 3. m'(C,n) is not necessarily monotonic increasing in n.
Proof. Consider the counterexample

- aad

¥A | xash

- aB

xB | xaap

XB | xA

which generates the proofs

1. aB, aA

2, aaA

3. aB, aaaB, aaaA
4, aaA, aaaaA.

Then m'(C,1) = 2, m'(C,2) = 1, m"(C,3) = 3, m'(C,4) = 2, and so on.
QED |

This property is entirely expected, for some short theorems may

be much more difficult to prove than long ones.

A More Precise Function

The functions m and m' evolve naturally from a consideration of

the process of proof in a canonic system. They do provide an indication

of the difficulty of deriving a given theorem, but they make the

- gimplifying assumption that one canon is no different from another
since each extends the proof one step. But certain rules may contain
several premises, each of which must be examined before the conclusion
may be drawn. Let us define another function which takes this into

account.

Definition 4. The proof measure function n(C, t) of a theorem t

in a canonic system C is the total number of premises evaluated in the

shortest proof of t. That is, if r .,r, is the shortest proof of

1’k
t in C, and if the canons applied during this proof were

14

15

i AT A oA rm.kk Fore

: k
then n(C,t) = Z m,.
=1 1

Theorem 4. n(C, t) is computable i{ff t is provable in C.

Proof. The proof is almost identical to that of Theorem 1. Build
the canonic system C so that, at each step in the proof of t, a count

is kept of the number of premises which have been evaluated so far. QED

Definition 5. Let n'(C, g) = sup{n(C, t)| t is provable in
C and |t|= g}.

Theorem 5. n'(C, g) is computable iff C generates a recursive set,
Proof. Similar to that of Theorem 2, QED -

Theorem 6. If p is the number of axioms appearing in the shortest
proof of t in C, then n(C, t) 2 m(C,“t) - p.

Proof. 1If § axioms appear in the proof, then m(C, t) = p + x, where
x steps'are taken in ithe proof after the axioms are written down. The
number 6f premise remarks evaluated for each of the axioms is zero; for
the x remaining steps, y = x premises must be examined since each canon

has at least one premise. Thus n(C, t) = 0 + y. These three conditions
imply n(C, t) 2 m(C, .t) # p. QED

Theorem 7. 'If C is a canonic system possessing q axioms, then

a'(C, g) = m'(C, 4) - q. for all 4, ’

Proof. At worst, some theorem of length g may require the use of
all q axioms in its proof; in any case,'it requires at least onme. The

conclusion follows from this observation and Theorem 6. - QED

Bounds on Measure Functions

Consider a canonic system C generating sets of strings. We would
like to relate at least one of the proof measure functions to the
structure of the system C in such a way that we could avoid having the
function described by only another canonic system. Let

- D(k) = {x|x is provable in exactly k steps in C}.

Then, by definition, D(1) is the set of all the axioms of C, D(2) is the
set of all theorems provable by applying exactly one canon to the strings

in-D(1), and so on. Furthermore, let

L(k) = sup {x]| x ¢ D(K)},
S(k) = inf {x| x ¢ D(k)}.

That is, L(k) is the length of the longest theorem provable in k steps,
and S(k) is the length of the shortest.

Agsume that the canonic system C has the property that no canon
ever ''shortens'" a theorem. That is, if t is provable in k steps and t'
in k + 1, then ltﬂ‘ z |t|. Under these conditions, we can say that
L(k + 1) = L(k) and S(k + 1) = S(k) for all k. |

Recall that L(k) is the length of the longest string possible after
a derivation of k steps, Then the inverse function L-l(z) is the mini-
mum number of proof steps required to generate any theorem of length z;
all proofs of fewer steps yield strings shorter than z. Now the proof
measure function m'(C, z) is, by definition, the maximum number of proof

steps required to generate all theorems of length z. We therefore obtain
Lemma 1. L-l(z) s m'(C, z) if C is non-erasing.

A similar argument may be advanced for the S(k) function. Since
8'1(z) is the maximum number of proof steps required to generate all
theorems of length z, all longer proofs yield strings of length greater

than z. This observation produces

Lemma 2. m'(C, z) = S-l(z) if C is non-erasing.

16

17

and

Theorem 8. If C is a canonic system with the property that t
provable in k steps and t' in k + 1 implies |t'|2> |t], then
L-l(z) <m'(C, 2z) < Sﬁl(z) for all z.

Computation of L(k) and S(k)

Consider a system C generating strings over an alphabet V in
which each canon is either an axiom or a rule of the restricted form

XF |- wlxwzg

where Wis Wy € V*. Let zo be the length of the longest axiom in C

(zo = sup {‘w||f-w is an axiom of C}) and g be the maximum number of
symbols added to a derived string by the application of a single canon
(2 = sup {|w1w2|| XF |- W, XW,G6 is a canon of C}). Then we observe that

L(L) = g

L(2) = L(1) + ¢

L(k) = L{k-1) + 4
so that

L(k) = g + (c-1) .

Similarly, if 5, = inf {|wj “-w is an axiom of C} and
8 = inf {jw,w, | xF | W xwW,G is a canon of C} describe the shortest
starting string and the least number of symbolé'added by any canon, then

S(k) = 8y + (k-1)s.
The inverses are easily found to be

L) =z - g+ s
1 v

S "(z) =z - s, + 8
8

18

Noting that canons of the form used never ‘'shorten" a theorem, we may

combine these results with Theorem 8 to yield

Theorem 9. 1If C is a canonic system in which all canons are either

G, then

of the form|fw or xF |- W, X0,

z - Eo + 2 <m'(C, z) < zZ -8 +38
b/ s

defined previously.

, where go, 4, 8., 8 are as

The class of canonic systems yielding exactly the regular sets
requires canons of the form either |- aG or xP |- xaG, where a is a single
symbol from V. Thus L = L= so =8 =], and Theorem 2 produces

z <m'(C, z) < z. We have proven what may be cbvious:

Corollary 1. If C defines a regular set, then m'(C, z) = =z.

Now consider a system C generating strings over an alphabet V in

which each canon is either an axiom or a rule of the restricted form

X
X By A AXE F Yo, 1%L, et Yna1®g YnE
: 1 2 n.
® : '

where mi eV, xij e {xl,...,xn}, and n > 1.
Define

1. Toax - SYP {n| xlgl A xzzz A A xnzn F g(xl,.;.,xn)g

is a canon of C}
2. roin - inf {n| “151 A ngz Ao oA xngn F‘g(xl,...,xn)g

is a canon of C}

3. 4 = 8up {|w]|Fw is an axiom of C}

o
4. £ =8up {|ww, ... @l | X F; AeeAX E F
WX, WX, ... w X ©Gis a canon of c}
1 2 7 n
5. s = inf { |y | Fw ié_éh axiom of C}

6. 5 = j W, v
inf {|wo 1 w& , x121 Avee A ann F
WX, WX . wWw X WG is acanonof Candn=r }.
o i, 1 12 n-1"1 nm min

The definitions of Lor 4s Sy and g are similar to those given
in the case where each canon is allowed to have no more than one premise.
In addition, we desire to know r and r , the maximum and the
max min
minimum number of variables appearing in any canon. Again we desire
to find L(k) and S(k), the lengths of the longest and the shortest

string derivable after a proof of k steps.

By definition, L(1) = Ly the length of the longest axiom. Now
the longest string derivable by the application of a single canon would

be produced when the longest strings possible were assigned to

LITRERFL in the canon
max
X E) ARy Aeeax, B fougx WXy Ypa1¥y 9 &
max —max 1 2 T max
: max
and |wow1 vee Wy | = 4. Such a canon may or may not exist in C, but
max

no canon in C produces strings growing at a faster rate., Thus we observe

that
L(1) = g, |
L(2) =xr L)+ 4
L(k) = rmaxL(k-l) + g
so that

k-1 S i
L(k) = g (x_)" " + z‘i;)(rm)

k-1
(r) -1
)k—l + z(max —)
X

= r
20 (max r

ma

"Solving this equation for k to produce the inverse function, we obtain

19

| 20
e Dt

4
o

-1 z(rm > 1
L (z) =1+ 1°gr where T ax .
max

We now desire to find an expression for S(k), the length of the
shortest string derivable after k applications of canons of the form

x,F

1 AR an-n - WXy WXy ceee W Xy W G .

1 2 n n-

In this canon, we must substitute strings for n variables. If the

1

length of the string produced as a conclusion is to be as short as
possible, each variable should be assigned the shortest possible string.
However, some variable must refer to a string produced in the previous
proof step,'or there would be no reason to have that step. This would
contradict our assumption that all proofs are of minimum length. We thus
produce the'shortest perm?ssible result when one string xp is assigned the
length S(k-1) and n~1 have the shortest possible length, 8,° Once again,
there may or may not be 2 canon which allows this, but all other sub-

stitutions will produce longer conclusions.

In addition, we desire to use the canon with the least number of
variables in its conclusion. This canon, by definition, containg constant
strings of total length s. For sufficiently large string lengths, the
effect of concatenating several long strings is greatér than just adding
a constant number of symbols each time. Thus we expect this analysis of

S(k) to be valid for only large k.
The expression we have justified for S(k) is
S(k) = S(k~1) + so(rmin -1y +s8 ,
The solution‘of this equation is

S(k) = (k=-1)(s + g) - (k-2)so .

r
o min

" whose inverse is

z+ s - 2) + 8

o(rmin‘
1) + s

s”1(z) =

so(rmin-

Combining these results, we obtain

Theorem 10. If C 1s a canonic system in which all canons are either

of the form Fw or x. F. A ... A x F - WX, WX, e wn-lxinwn G, then

1=1 1 2

z+ s (r

< m'(C, z) < o mi
s (r ., =1) +s
o min

z(r ax-l) + 4

1+ logr m
max J)
o

n-2) + s

for sufficiently large =z, r > 1, and s , s, £ , and L as defined
max o o

previously.

The class of canonic systems yielding exactly the context-free
languages requires canons of the form either |-aG or xA A yB |- xyG, where
a is a single symbol from an alphabet V [4]. Then s, = Lo =1, s =4 =0,

and r , =r = 2, and Theorem 10 reduces to
min max

Corollary 2. If C defines a context-free language in standard form,
then 1 + 1og2 z<m'(C, z) £ z.

Summary

We have defined four functions measuring the complexity of a
derivation in a canonic system. These functions were shown to have
certain properties, and relationships among them were derived. For
canons in which only the identity function appears in the premises, we
derived bounds on some of these functions in terms of the structure of

the structure of the system.

There is a question of interest which we have not settled: Given
a system C, is it possible to find a system C* such that C* is equivalent
to C, but m'(C*, L) < m'(C, ﬁ) for all £? 1In other words, is it possible
to "speed up" a canonic system in the same way that a Turing machine can
be speeded up? The answer to this question will determine the nature of

a lower bound on our measure functions.

21

22

Chapter 3 - Inverse Systems and Compiling

Introduction

A canonic system C is a specification of the members of a set and,
as such, gives rules for generating successive elements of that set.
Because of its similarity to the parsing problem, the inverse process is
‘more interesting: given a string w, how could it have been generated by

C? The operation is one of analysis rather than synthesis.

An algorithm which accepts a canonic-system description of a language
and analyzes an input string based on this description exists [1l]. We go
one step further and create from C a new canonic system C'1 which exactly

describes the recognition procedure for strings generated by C.

For example, consider the language A = {anban| n 2 0} defined by the

system
F bA
xA |-axah .

A proof iIn this system C that aabaai is
bA, abah, aabaah .
Consider the system

axalA *%é

bARI -
where the conclusion I indicates an arbitrary terminating condition. When
this system is presented with an axiom Fw such that w is provable in C, it

proceeds to decompose that string. For example, 1f we include the axiom

|- aabaaA, the system becomes

|- aabaaA
axal }- xA
bA kI

and generates the proof

aabaaA, abaA, bA, I .

23

Apart from the end-of-proof indicator I, this is simply the proof in C
written backwards. The system we have just presénted is C_l, the inverse
of C.

Construction of C.1 From C

The relationship between the proofs in C-1 and C suggests a procedure
for obtaining the canons of C'1 from those of C: interchange the premise

and the conclusion, Thus if C has the canon
XA |- axah ,

~1

C should have
axaA |- xA .

This procedure fails if the original canon had multiple premises, for the

inversioh of the general canon

fl(xl,...,xn)_F_1 AveoA fm(xl,...,xn)gm}- g(xl,...,xn)g
wodld produce

g(xl,...,xn)g F fl(xl""’xn)zl A oA fm(xlf""xn)zm .

and we do not define the meaning of a canon with multiple conclusions.
(There is no way of indicating in a proof that several conclusions must
hold simultaneously.) Thus only systems C in which each canon has no
more than one premise possess an inverse C-l by this construction, It is
the case, however, that any arbitrary systeﬁ can be reduced to this form,

and this we now demonstrate.

Normal-Form Systems

Given an arbitrary system C, it is possible to derive a system CN such

that

1. Each canon in CN has a single premise.

2. A remark t is provable in Cy iff t is provable in C.'

The general canon we must consider is

fl(xl,...,xn)g_1 AeeeA fm(xl,...,xn)E‘.u - g(xl,...,xn)g

where

f

gt

d
An - A i

since the canon is over the algebtaic system (A, *1""’*k)' We shall

call di the degree of fi; the result of applying fi is a di-tuple of

elements from A, and Fi must be a predicate over di-tuples. For con-

venience, let us abbreviate this canon as simply

£.F

L Aeen ZE b ogG -

The following algorithm produces CN from C:

1.

If C has either the axiom |- wG or a canon fF | gG with a

single premise, then retain these rules in CN'
If C has the canon
fl"'F'l A..lA fm_F_ml"Kg 3
then let CN have the canon
dlgooc,fm>zllooF }- &g
m
and the new predicate F....F of degree (:E: d,).
: 1 m Ciml i
If CN has the canons

J
»<r1,...,rp>_l_1 - uR'

24

<31s'°¢:8q>_s_‘|"v§_'_ ’
then let CN also have the canon

<TyseessT 38 5000,8 > RS b «u, v> R'S!

P q

and the new predicates RS of degree (degree R + degree S) and
R'S' of degree (degree R' + degree S'). Repeat step 3 for
each pair R'S' describing a predicate created by rules 2 and
3. Since C has only a finite number of canons, this process

will temminate.

-

25

4, No other canons are in CN'

This algorithm reduces several premises to a function of higher
degree. Rule 1 retains all those canons which already have only a single
premise or none at all. Rule 2 reduces a canon with several premises to
the desired form by combining the di results of each function fi (1< 1i%< m
m
into one (:E: di)-tuple. When an n-tuple 1s evaluated, all components must

i=1 ,
be shown true, so the effect of requiring the proof of all the original

premise remarks is achlieved. When canons are combined in this way, new
predicates are created in the premises, and Rule 3 provides the camons to
describe these. This rule provides for the interaction between objects

described by several canons.

For examplé, let C be the system

- aA

- bB

bk eC

XA |- axA

XB |- bxB

XC |- cxC

xA A YB | xyD
X¥C A YD | yxyE

which generétes'ﬁ = {anbmckanbm In,m,kzk 1}. By Rule 1 of the algorithm,

Cy contains the canons

Y

- bB

kg

XA | axA
xB |- bxB
XC |-cxC .

By Rule 2, CN containg

<x, y>AB | xyD
X, ¥>CD | yxy E

26

corresponding to the two canons with multiple premises. Rule 3 provides

definitions for the sets AB and CD; applying it to the canons in Cn

which define A and B séparately produces the set of rules-

<k, y»AB |-

xA

¥B

-

a@x, by>AB
<ax, b>AB
<a, by>AB
<a, b>AB

The definition of CD generates the canons

<X, ¥, Z>A__§_Q }' <z, xY>_@_
<X, y>é§. <, xy>§2

A new predicate, ABC, has been generated, and it must be defined by

applying Rule 3 again:

<X, y, z>ABC | «<ax, by, cz>ABC
<y, z>BC | «<a, by, cz>ABC
<, y>AB | <ax, by, c>A__B;(_:_
<, z>AC |- <ax, b, cz>ABC

XA | <@x, b, c>ABC

yB |- <a, by, c>ABC

C | <a, b, c>ABC

The predicates BC and AC must be defined, again by Rule 3:

<x, y>BC
xB
y€

-

T T T T

<xb, yc>BC
<xb, c>BC
<b, ye>BC

b, cBC

<xa, yc>AC
<xa, c>AC
<a, yc>AC
<a, c>AC

No new predicates were created in this step, so the generation of C_ 1is

complete,

N

Consider the proof of aabbbcaabbbE in the original system C:
bB, aA, bbB, aaA, bbbB, cC, aabbbD, aabbbcaabbbE .
The system Cy stmulate; this derivation as:
bB, <a, bb> AB, <aa, bbb> AB, «c, aabbb> CD, aabbbcaabbbE .
We now show that Cy generates the same sets as C.

Theorem 1. A remark t is provable in CN iff t is provable in C.
Furthermore the proof in Cyq is effectively obtainable from that in C,

and conversely.

Proof. To show that t provable in C implies t pfovable in CN’ we
will use induction on the length of the proof in C.

Basis: If t is provable in one step in C, themn t, being an axiom,
is also provable in one step in CN' Similarly, if t is provable in two
steps in C, it is the result of applying a single-premise canon to an
axiom in C. By Rule 1 forming CN from C, these operations may also be
performed in C

Induction: Assume all theorems provable in less than or equal to

k steps in C are also provable in CN' A proof of length k+l of a theorem

tinC ié a list of_;emarks rl,...,rk+1 such that

1. rl is an axiom.

2, r, (1 <i < k+l) is either an axiom or a remark
immediately derivable from some subset of {rl""’ri-l}'

1‘k+1 = t.

t is not an axiom of C since it is assumed to be provable in no less

‘than k+l steps. Therefore r is immediately derived from some subset

k+l
{”131""’“agu3 of {rl,...,rk] by the application of a canon

f.l(xl,...,xn).]_i‘_1 /\ ax A fm(xl,...,xn)z‘n - 8(81,...,xn)_G_

where there exist ZyseeesZ € A such that f (zl,...,zn) =, and

| g(zl,...,zn)g = Tel Furthermore, each w,F, is provable in less than

-1
or equal to k steps.

27

TR

From these facts about the proof in C, it is possible to con-

gtruct the proof in C When C derives r by applying the canon

N* k+l

fl(xl,...,xn)_lj‘_1 A oo A fm(xl""’xn)zux}’ g(xl,...,xn)g R
C,. uses
<f1”f"fm? gl...Fnlr- g(xl,...,xn)g

generated by Rule 2 forming CN from C. Each component of the m-tuple
is provahle in less than or equal to k steps in C; by the inductive
assumption, each is therefore also provable in CN’ as is the entire
m-tuple. Then, as long as the predicate Fl"'Fm appears in the con-
clusion of some canom, rle+1 may also be proven in CN' But Rule 3 of
the construction algorithm insures that all predicates appearing in

premises appear on the right-hand side of some canon, 8o Tl is

indeedﬁprovable in CN

Thus the existence of a proof of arbitrary length of t in C
implies the existence of a proof of t in cN

It is now necessary to show that t provable in Cy implies t
provable in C. The proof of t in-cN is a 1list of xem@rks 81500038
such that

b/

1. s, is an axiom.

1
2. 8y (1 «i < g) is immediately derivable from 8.1
. = t.
3 s:‘c

The following procedﬁre reconstructs the proof of t in C. Con-

sider, with no loss of generality, each remark 8, to be of the form

<q1,...,qp> gl...g where p = 1.

In the construction of CN from C, multiple premises in canons are
reduced to components of ome n-tuple. If we know the predicates in C,
we can look at such a remark in the proof in C, and decompose the one

N
term into several. That is, the remark

. <q1:- ")qp> 9.1-_:Rp

in C_ becomes the set of remarks

N
985 -+ 9,

in ¢, where each Q1 may be a predicate of arbitrary degree. Continuing
this procedure on each remark in the proof sl,...,sz of t in CN produces

_ the:proof of t in C. Therefore t provable in CN implies t provable in

c. QED

Measure Functions of Normal Systems

Theorem 2. n(CN, t

) = m(CN, t) for all t provable in CN’ and
n'(CN, L = m'(CN, 2) for all g.

Proof. These are trivially true since each step in a derivation

in CN requires the evaluation of exactly one premise. QED

Theorem 3. If y i{s the maximum number of premises per canon in C,

m(CN, t)_ R

v -1

for all t provable in C.

then m(Cy, t) < m(C, t) < hJ

Proof. Figures 1 and 2 illustrate the correspondence between

derivations in CNvand C. We observe that each node in the CN tree

expands into at least one and at most v nodes in the C tree. Both
trees have the same number of levels (the number of nodes in the CN
tree is equal to the length of the longest path in the C tree), so

that if the top level in C_ expands into v nodes, the next lower level

N
2
could contain as many as Vey = v , and so on. Thus

m(C, t) = LG t)
m CN’ t)-1
m(C, t) = : v
i=0

i

so that

m(CN, t) < m(C, t) <

Trt1
“1Ey - L
s,S s,.S N s

1-1 2=2

Figure 1 - Derivation in System C

k+1

W, yeee, 0> F o .F
m

1’ —1-——m

- S

v 548

< .
sl,sz,.. , S 1

2...53

Figure 2 - Derivation in System CN

30

£31

Inverses of Arbitrary Systems

Recall that normal-form systems were introduced to show that any
canonic system C can be reduced to another system CN in which each canon
has only one premise. The difficulty in constructing the inverse system
C-1 from an arbitrary C arose exactly in the consideration of canons with
multiple premises. The normal-form theorem resolves this problem by
always providing an equivalent system of the required form. We may now

formally define an inverse system.

C 1 is constructed from a system C in normal form by the following

algorithm:

1. If C has the axiom | wG, then let C-; have the canon
WG + I, where I is an arbitrary end-of-proof indication.

2, If C has the canon f(xl,...,xn)g }— g(xl,...,xn)g, then let
C-1 have the canon g(xl,...,xn)g - f(xl,...,xn)g.

Let Cy {a} denote the system C with the added canon a@. The inverse

system has the following property.

Theorem 4. t is provable in C iff I is provable in C-1 u{Ft}.
Furthermore, the proof in C-1 is effectively obtainable from that in C,

and conversely.

Proof. If t is provable in C, then there exists a proof Tisesesly
of t in CN such that

1. r1 is an axiom.

2. r, (1< 1< k) is immediately derivable from ro1
3. rk = t. '

If the axiom }~t is given to C-l, the only proof possible must begin t,...

since C—1 has no other axioms. In the proof of t is C_, t = r, is

derived from r by applying a canon

k-1
f(xl,o..’xn)_r; }" g(xl,ou'o.,xn)g)

where there exist Zyseeesz € A such»that f(zl,...,zn)z = rk_l»and

g(zl,...,zn)g = rk. By the construction of C-1 from CN’ the inverse canon

g(xl,...,xn)g - f(xl,...,xn)g

is available in q-l, go the proof in C-1 can continue: ¢t, rk-l"" . This
process may be repeated until the axiom r1 is reached: t, rk-l""’rl'
Then, since the canon rll— I exists in the inverse system 1f }-rl wasg an

axiom in Cy, the proof temminates t,rk_l,...;rl,I , proving I.

If I is provable in clu {Ft}, then there exists a proof
t,sl,...,sk_l,I in that system. The last éanon applied must have been
8p-1 FF I, since these are the only canons which generate I. By the con-
struction of C"1 from CN’ F'sk-l must have been an axiom of CN. At each

step in the proof where s is deduced from 8, by the application of

i+1
a canon

8(xysee05x)G b £(x)5.00,x JF
the inverse ‘rule
f(xl,...,xn)g - g(xl,...,xn)g

exists in CN and may be applied. After k-1 steps, we arrive at a proof
Spa1? 28] in CN‘ A final application of the inverse of the canon which
produced t from 8, produces the desired proof. QED

Measure Functions of Inverse Systems

The proof of Theorem 4 can be extended to indicate the relationship
between the length of the proof in'C"1 and that in CNw

Rl

Theorem 5. m(C-1 U{lt}, 1) = m(Cy, t) + 1 for all t provable in Cy-

Proof. The result follows immediately from a consideration of the
construction of Theorem 4. The proof in the inverse system is simply the

reverse, remark by remark, of the proof in CN’ plhs the end-of-proof signal

I. QED

Corollary 1. m'(C-1 U{Ft}, JI]) = m' (Cy> |t]) + 1 for all t provable

in CN.

32

Proof. Immediate.

An interpretation of these results is beneficial at this point. The
corollary states that if t is known to be provable in CN in no more than
k = m'(CN, |t]) steps, then the inverse system C-l, given the single axiom

I t, can reproduce the proof in no more than k+l steps.

Theorem 3 of this chapter states that m'(CN, 4) = m'(C, £4) for all &.
This fact and Corollary 1 produce

Corollary 2. m'(C-1 UfFt}, {I]) < m'(C, [t]) + 1 for all t provable

in C.

Proof. Immediate.

Inverse Systems As Recognizers

Suppose the canonic system C describes a programming language. The
system C-1 behaves like an analyzer for that language since, given any
string derivable in G, C-1 can produce a parse of that string., The set
of all strings derivable in C is simply the set of all legal programs in
the language described by C. Once the m' function is known for C, it is
possible to characterize the recognition process of a-legal program in
that language by applying Corollary 2.

While m'(C, £) + 1 is an upper bound on the number of steps in the
parse in ¢ i, nothing we have said helps comstruct this parse. ¢!, tike
any canonic system, is a non-deterministic statement of transformations
which may be applied at any step in a proof. 1In general, more than one

canon may be applicable, and the correct rule to choose may not be im-

mediately obvious.

Recursive Sets And Prdgramming,Languages

IQCanonic systems in their most general form define recursively
enumerable sets. Given a particular string w and system C, it is not
possibliﬁ;gwdatermine in general whether w could eventually be generated
by C. A recognizer based on a recursively enumerable language may never

halt for some input strings, and this situation is undesirable for

33

34
practical computing systems.

One solution is to allow only language definitions which define
recursive sets. It is undecidable, however, whether an arbitrary canonic
system has that property (Appendix I). Another approach is to restrict
the form of the system so that its language is known to be recursive.

The correspondence with Chomsky's grammars does this, but the forms pro-

duced do not resemble the definitions of programming languages.

Let us examine the question from a different point of view: we are
trying to insure that a compiler presented with an invalid program will
not loop endlessly. In theory, a machine capable of examining any
arbitrary string and deciding acceptance or rejection must be based on
a recursive language. In practice, compilers are not usually asked to
process completely arbitrary inputs. A source program may be correct

except for the duplication of a statement label or a missing declaration.

It is possible then to write the language description in such a way
that common errors are detected., In effect, we are defining a new language,
similar to the desired one except for well-defined errors. We still cannot
guarantee our compiler will hait for arbitrary inputs, but "almost cor-

rect" programs will not cause infinite looping.

For example, consider generating DO loops in Fortran of the simplified

form

DO <label> <integer variable> = <constant>, <constant>

<label> CONTINUE

Most Fortran systems impose the restriction that the value of the DO

index may not be changed within the loop; that is,

D0O5J3=1, 10
J =20
5 CONTINUE

is illegal. Assume we have defined in a canonic system the predicate

35

not in such that <x, ¥ not in is true 1iff the element x is not contained
in the set y, and <x, y> in if it is. A specification for a legal DO
loop is:

<x, y> set of Fortran statements with agsigned variables

A z integer variable A <z, y> not in A w statement label

A 1 integer constant A j integer constant

DOwz=1, j
P— X legal DO loop .
w CONTINUE

To detect the case of a program redefining the value of the index, we

might write:

<x, y> set of Fortran statements with assigned variables

A 'z integer variable A <z, y> in A w statement label

A i integer constant A j integer constant

DO wz-= i, j
- X program attempting to redefine DO index .
w CONTINUE

Thus a program with a syntactic error is recognized as such, and
we may be assured that the compiler will not loop on receiving an incor-
rect DO loop. The language defined by the entire canonic system may not
be recursive iﬁ the formal sense, yet we may be able to determine member-
ship in some set for most input strings we are likely to encounter. The
language description might be called "almost recursive," and a recognizer

based on that description would halt for "almost all" inputs.

Summary

This chapter has presented two main results. First, we showed how
an arbitrary canonic system C could be reduced to an equivalent system CN
which contained only single~premise canons. From this normal form, we
developed the idea of an inverse system C-1 which characterized the
recognition of strings generated by C. In addition, we computed the

measure functions of both CN and C"1 and showed the relationship between

them. Finally, we developed a technique for developing 'almost recursive'
language descriptions so that recognizers would not be l:ikely to loop on

most inputs.

Inverse systems as we have defined them do not specify parsing
algorithmns for the lunguages they recognize. An open quastion is whether

inverse systems can be so extended, and under what condit.ons.

36

Appendix I - Systems Describing Recursive Sets

Introduction

A canonic system can specify the elements of any recursively
enumerable set. However, from at least a theoretical point of view, it
is desirable to know under which conditions the set generated is also
recursive. Doyle [4] demonstrated equivalences between canonic systems
generating sets of strings and the formal languages of Chomsky [2].
Since type 1, 2, and 3 languages are recursive sets, the related

canonic systems also generate recursive sets.

In this section we consider canonic systems generating set of
natural numbers. It is difficult to describe functions of‘strings,
but any operation on natural numbers can be characterized by some

partial recursive function. First, recall three definitions.

A set Q is recursively enumerable if and only if it is the range

of some total recursive function. Equivalently, there exi?ts some

Turing machine which willvgenerate all members of Q in some order.

The characteristic function CQ(x) of a set Q is defined to be

1 if xef
€ =
0 if gAQ.

A set Q is recursive if and only if its characteristic function is
total recursive. In other words, there exists a Turing machine which,
glven any x, will decide either x¢Q or x}Q:‘ A get is recursive if and

only if both it and its complement are recursively enumerable.

Canonic Systems and Recursive Sets

Let N be the set of natural numbers, and consider canons over the
algebraic system (N, +). We now prove two theorems relating canonic

systems and recursive sets of natural numbers.

37

Theorem 1. If a set Q = N is recursive, then it can be generated

by a canonic system in which the only canon describing Q 1g of the form
fGOE F xQ
where f(x) is a total recursive function.
Proof. Since Q is recursive, its characteristic function

1 if xeQ
0 if x£Q

is total recursive. Let f(x) = CQ(x), and include the axiom k 1P. Then

the conclusion xQ in the canon

Cq)P + xQ

is provable if and only if xeN and CQ(x) = 1, since only then is the
second premise CQ(x)g satisfied. Therefore xQ is provable if and only

if xe¢Q, as desired. The entire cangnic system generating P is then

F1p
CQ(x)_Il F xQ

QED

The converse of this theorem is true, but a stronger result is

possible.

Theorem 2. Let the set & be defined only by canons of the form

fl(xl""’xn)gl Ave A fm(xl,...,xn)gm = g(xl,...,xn)g.

Then @ is recursive if

1 g exists and is a total function
2. f.,...,f are total
1 m
3. ?1,...,?; are recursive sets
4 g(xl,...,xn) depends on each variable X, in a non-trivial

way.

38

39

Proof. Assume, with no loss of generality, that the range of g

is the set of k-tuples z = @yseerz > To show that § is recursive,

we show how to determine whether zgl or zgﬁ'for an arbitrary z.

-1
If g exists and is total, for an arbitrary k-tuple z = <zl,...,zk>
we can compute g-l(zl,...,zk) = <xl,...,xn>. Every variable that appears
in the premises is some xj‘in g—l(z) = KpseeaX > since g is assumed to

depend upon all the variables non-trivially. Then, for each function
fl”.
knowing the values of fi(xl,...,xn), we can determine membership in

A

‘e : - i i al. The
’fm’ we can compute fi(xl, ,xn) since each fi is total. Then,

..,Fg since these are recursive sets.

Formally, the characteristic function of & is computable for all

z as

Co(z) = Cﬁ,.l(fl(xli,...,xn))- -C?,m(fm(xl,--~,xn))

where gqi(z) = <x1,...,xn> and C? ""’CF are the characteristic
1 m

functions of the recursive sets ?&,...,F&. Since Cg(z) is total
recursive, G is a recursive set. QED '
i

The General Decision Probleh

Theorems 1 and 2 relate certain canonic systems and recursive
sets. This is not to say that recursive sets can only be described by
systems of those forms, nor that any system with canons of another form
can not generate a recursive set. We wish to sketch two results of
Mandl [5] which explain the apparent inadequacy of our structure

theorems.

Theorem 3. It is undecidable whether an arbitrary canonic system

generates a recursive set.

Proof. A canonic system defines, in general, a recursively
enumerable set, and it is undecidable whether an arbitrary recursively

enumerable set is also recursive. QED

~ Theorem 4. There is no class of canonic systems such that

1. Every system in the class generates a recursive set.
2. Every recursive set is generated by some member of the

class.

Proof. The preof requires a diagonalization argument which we

do not wish to reproduce here.

Summary

For canonic systems generating sets of natural numbers, we have
derived restricted forms of canons which guarantee that the system will
generate a recursive set. The general question of deciding whether an
arbitrary system generates a recursive set has already been shown un-
decidable. ‘

41

Appendix II - Equivalent Systems

Introduction

In previous papers on canonic systems, only canons describing functions
of strings have been considered. That is, the algebraic system has been '
assumed to be the monoid (V¥,.) of all finite strings over an alphabet V
under the operation of concatenation. Under these conditions, the
functions involved in the definition of a canon take on a particularly

simple form.

We desire the most general function f£(x .,xn) from n-tuples of

10
strings into k-tuples. Since concatenation of variables and constants is

the only operation available, that function is

F(x,,. 05X) = <. .2, W ...2 w s eee W Z W L. 2 w >
1 n 0171111 nll nll 0k 1k 1k nkk nkk

where zije {xl,...,xn} and wije V*. TFor example, a function over

{a, b, c}* from ordered pairs into ordered pairs might be
f(x, y) = <abcxy, axbycx>.

Other authors have defined restricted forms of this general function,

such as one in which each variable x ...,xn is used exactly once. We

1)
desire to investigate some of these forms and show the relationship
between them. The effect of this is to allow us to rewrite a system in
an equivalent form which may be easier to manipulate in a particular

instance,

Predicates of Degree k to Indicated Context

Definition 1. A canon with indicated context is a canon in which

at least one function fi(xl""’xn) in the premises contains a concatenation

of a constant string and a variable. That is,

fi(xl,...,xn) = <w01z11w11...zn11wn11, . ’kazlkwlk"'znkkwnkk>

where z, | e , W, . * i
1€ {xl, ,xn}_ 1€ V*, and at least one wij is not the empty

string.

This designaticn arises because the canon may be applied only if
the context is matched. For example, the canon xaA A yB |- <x, y>C

requires that a string ending in "a" be in X,

Theorem 1. Any predicate of degree k > 1 can be reduced to a

predicate of degree | and indicated context.

Proof. A remark involving a predicate of degree k > 1 is of the

* *
form <813 Syy-eesS >P, where the range of each s;° w)n -+ V 1is a single

k
string. Choose a symbol X not in V, and create a predicate Q of degree

1 which contains the information in P in the form s1Xs2...Xst. Wherever
the quantity <s

»$, >P appears, replace it by s1st...Xskg, which

17897+ 28
is of degree 1 and uses indicated context. QED

Corollary 1. Any canonic system can be reduced to one in which no

predicate is of degree greater than one, if indicated context is allowed.

Proof. Apply the theorem to all predicates of degree greater than

one,

The converse of Theorem 1 is true, but the resulting predicate of
degree k may still require indicated context. (A trivial proof just

changes every predicate of degree one into degree two and makes the

42

information in each coordinate indentical.) The question to ask is whether

the indicated context can be replaced by a simpler operation. This does
not appear to be possible, as an example will show. Consider the canon
xayA | xayB, which has the effect of placing in B all those strings in
A which contain an "a'" anywhere. If we attempt to remove the indicated
context and write something like <«x, a, y>A, we have lost the ability to
search for the "a" within the string xay. As a matter of fact, it
becomes necessary to allow terms of the form xy, where the division of

a string into its x- and its y-component becomes completely arbitrary.

For example, to simulate a premise remark of xayA A ..., we must write

x_A_"" <X, N, >">_B;
<Wwx, ¥y, z>B | <, XY, z>B

43

<w, xy, z>B |- <w, X, yz>B
<, a, y>B A ...

where B is a temporary predicate introduced only to allow the searching
from left to right. Since we feel such a canonic system is no simpler
than one allowing indicated context, we shall not attempt to state a

converse to the theorem.

Relation to Post Systems

At this point, we wish to demonstrate the equivalence between
canonic systems and Post systems. Although canonic systems
evolved from Post systems, an exposition of the process has never been

made.

A Post gystem is a set of rewriting rules of the form
¥ X10%p XXt ~ P1Y1PoYs Py P

wherea1 and Bi are constant strings over a finite alphabet V, and

yye {xl,;..,xn}. For example, the rule
X1lly - x22yy

‘would change the string 333114 to 3332244, if x = 333 and y = 4. The
left-hand part of a rule is called the antecedent, and the right the

conseguent.

The distinguishing feature between Post and canonic systems is that
a Post system allows only one workspace. All its rules refer to the
same string, while a canonic system allows many such workspaces - one
corresponding to each predicate. For example, the Post system geperating

all strings of a's of even length is:

axiom-: aa

rule : x -+ aax

The analagous canonic system becomes

44

|- aaA
XA |- aaxA

No more computing power can be added to a Post system. It is simply
often more convenient to specify a process using tlie notation of canonic

systems.

Theorem 2. Any Post system oan be simulated by a canonic system
using predicates of degree one.

Proof. 1If the Post system has the‘axiom~w,‘1et the canonic system
have the rule |- WW. If the Post system has the production

QX Qg¥oe - X O 1y = BYBaYo B VP

let the canonic system have the rule

Gy X UpX,y - AL B15'1‘325’2 B Py 1¥-

Then the set W describes exactly the strings the Post system generates.

QED

ObserVe that, in general, canons with indicated context will be
required. The equivalence in the opposite direction is of interest

only to show the construction required.
Theorem 3. Any canonic system can be simulated by a Post system.

Proof. We will only indicate the procedure involved in the
simulation, since the details are tedious. We let the Post system
build up a proof in much the same way that higher level systems do
(Chapter 1). Markers musf be left in the workspace to separate each
remark in the proof, and non-determinism must be allowed so that any

canon can ''reach" arbitrarily far back for remarks proven previously.

Reduction of Indiéated Context to Cross Referencing

Definition 2. A canon

fl(xl’.“’xn)gl A sen A fm(xl,...,xn).i‘_'m " g(xl,...,xn)g

45

where

fi(xl""’xn) = <w01z11w11...zn1wn1, sees kazlkwlk"‘znkankf>

and zij € {xl,...,xn}, wij € V* is said to contain cross referencing if

not all the zij
that p = q for all p and q.

are distinct variables; that is, zp = zq does not imply

Theorem 3. Any canon using indicated context may be reduced to a

rule without indicated context if cross referencing is allowed.
Proof. Comsider a premise term of the general form

w_ G

celd_ L Z
T rel®rr =

(DO lelzz

where the wy are constant strings indicating contest, and the zy are

variables. Form the r+l new canons

gl

Fw A,y

Fud

where the A, are new, distinct predicates. The intent of the original

premise term can be simulated by

G .

x.A. AN x_ A z_ X
- r-1"r'r —

oo 1 AN oo A xrér A x021x122"°x

1
Since e'ach?{:L contains exactly one element by construction, the effect

of evaluating these premises is identical to that of applying the original.

QED

Summary

We have shown that successive reductions from predicates of degree
k to indicated context and from indicated context to cross referencing
are possible. These manipulations indicate some of the relationships

between canons of various types.

i s e AR ek A

1.

3.

References

Alsop, J. W. A canonic translator. MAC-TR-46 (THESIS),
Project MAC, Massachusetts Institute of Technology, November 1967.

‘Chomsky, N. On certain properties of grammars. Information and
Control 2, September 1960, 137-167.

Donovan, J. J. Investigations in simulation and simulation
languages. Doctoral dissertation, Yale University, January 1967.

Doyle, J. T. 1Issues of undecidability in canonic systems. S.M.
thesis, Department of Electrical Engineering, Massachusetts
Institute of Technology, January 1968.

Mandl R. Canonic systems and recursive sets. Project MAC,

Massachusetts Institute of Technology, November 1968 (unpublished)t

The following paper, not referenced in the text, also concerns canonic
systems.

6.

Donovaen, J. J. and H. F. Ledgard. Canonic systems and their
application to programming languages. MAC~M-347, Project MAC,
Massachusetts Institute of Technology, April 1967.

46

CS-TR Scanning Project :
Document Control Form Date: 3 /15 19C

Report # L S-TR-77

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
JX Laboratory for Computer Science (LCS)

Document Type:

E(Technical Report (TR) O Technical Memo (TM)
O other:

Document Information Number of pages: Ye(51-impexs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
ﬂ Single-sided or O Single-sided or
O Double-sided 4, Double-sided
Print type:
Typewriter [] offsetPress [] Laser Print
[0 InkJetPrinter [] Unknown [other

Check each if included with document:

K DOD Form [0 Funding Agent Form O coverPage
O spine [0 Printers Notes O Photo negatives
O other

Page Data:

Blank Pages vy page numbes:

Photographs/Tonal Material mypage numben:

Other (ot sescription/page numben):
Description : Page Number:

D zmack mae? (1 - Y€) wit'so THTLE PACE, -4
(47-57) Scans RIS, DoDJ 77‘7\‘6’7')57?)\
(B sophe_ STAVWsS oF CERTAN PAGRS,

Scanning Agent Signoff:
Date Received: 3 / IS/ 9 Date Scanned: 3 121/ 96 Date Retumned: _J /! / §%

;
Scanning Agent Signature: w\ - @—o—& Rev orod DSILCS Fom wd

L 8 BEFORT TITLE

mtmamo ACTIVITY fmm '

j . tts tmituu of Teghnology
i }geg WAC

@wluity Measures for Lm Wf&iﬁn 3’? ;

B e ..,mm?wt NOTES (Type of report an¥ incloatve dites)

mﬂ;y, Joseph P.

T WERORT DATE j%. wo.oF axrs

u. 'MWAN OR GRANT NG,

(01) ’

FLENENTARY NOTES

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

