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ABSTRACT 

A canonic system C is a specification of a recursively enumerable set, 
such as a set of strings over a finite alphabet. From this description 
C, it is possible to generate a system C , called a proof measure func-

m 
tion, which is an indication of the complexity of the language defined. 
For certain simple but important classes of canonic systems, algebraic 
bounds on these functions can be derived from the structure of the sys-

-1 tem. Another transformation on C produces a system C which character-
izes the recognition of strings generated by C. A relationship exists 

-1 between the measure functions of C and C , thus relating the complexity 
of the recognition procedure to that of the language description. 
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Chapter 1 - Review of Canonic Systems 

Introduction 

A canonic system is a recursive definition of the members of a set. 

Instead of enumerating its elements, we specify a s~t G by first giving 

a finite.number of basic members, then rules of the fonn "If xis in G, 

then f (x) is also in G." Canonic systems provide the framework for 

expressing such a procedure in a formal way. 

For example, let G • {akl k is an even integer} be a set of strings 

over the alphabet {a}. Membership in G can be allowed thus: 

1. aa e G 

2. If x e G, then xaa & G 

3. No other st~ings are in G. 

A canonic system generating G could be written 

1. I- aaQ 

2. xQ r xaaQ 

where "l- aaQ" is another form of the membership axiom "aa e G," and 

''<premise>\- <conclusion'>" is a contraction of the ''If ••• then ••• " 

statement.· The fact that no other strings are to be allowed in G is 

implicit in the way the canonic system is to be interpreted. 

where 

Definition l. A canonic system C is a 5-tuple 

C • (S, N, P, R, C') 

S =an algebraic system (A, *1 , ••• ,*k) consisting of a set A 

and a collection of operations • 1 , ••• ,*k on A. 

N =a finite set of variable symbols, usually {x, y, ••• ,z}. 

- ··,1·---
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P = a finite set of predicates, each of which is assigned a 

unique positivE! integer called its degree. 

R = a finite set of rules of inference, called canons, whose 

form will be described in Definition 2. 

C' = a canonic system which defines the interpre-tation of the 

rules of inference in C; its structure and significance 

will be discussed in the next section. 

Previous formulaiions of canonic systems have tacitly assumed the 
. * algebraic system S to be the monoid (V , •) of all finite strings over 

an alphabet V under the operation of concatenation. By making the 

algebraic system explicit, we are able to specify canonic systems gen

erating sets of integers, real numbers, and so on, as well as sets of 

strings. 

Definition 2. A canon is a rule of inference of the form 

where F1, ••• ,Fm, and Gare predicates in P; and f 1 , ••• , fm, and g 

are functions on A formed from *
1

, .•• ,*k by composition. This canon 

would be read: 

If f 1 (x1 , ••• ,xn) has the ptope,rty F 
1

, and ••• , and 

f (x1, ••• ,x) has the property F , then g(x
1

, ••• ~x) has 
m n m n 

the property G. 

If Q is interpreted as the extension of a predicate, Q = (x I Q(x)J, 

then the meaning of a canon may be defined as 

G = (ul 3z1 , ••• ,zn e A [f1(z
1

, ... ,zn) e F1 /\ 
\,\ 

/\ f~(z 1,~11) e Fm/\ g(z1 , ... ,zn) = u]J. 

The quantity f(x1, ••• ,xt)_g is called a remark; the remarks 
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fi(x1 , ••• ,xn)!i are the premises of the canon, and g(x1 , ••• ,xn)Q is 

its conclusion. A remark /(x
1

, ••• ,xt) g is said to be~ iff there 

exist z1 , ••• ,zt e A such that /(z1 , •.• ,zt) s Q. 

* For example, consider this canon over the algebraic system (V , •), 

where V is a finite alphabet and • is the concatenation operation: 

xB I- axa.f. 

This is interpreted as, "If x has the property B, then the string axa 

has the property C." Formally, 

C = [ul i z e v* [z s B /\ u • aza]} 

* = [axal x e 'BJ if B is a non-empty set of strings over V • 

Another canon might be 

xaD /\ Y! I- <x, ya>! 

whose interpretation is 

F = [<u, v> I 3 x ,y e v* [ xa s D /\ y s E /\ <u, v> = <x, ya>]}, 

where the notation <u, v> denotes the ordered pair of u and v. Infer-
,.., 

mally, we are searching D for a string that ends in "a," then forming 
,..., 

an ordered pair from part of it and any string from E. 

An axiom is a canon with no premises; it is therefore universally 

true. If a function g(x1 , ••• ,xn) appears in an axiom, then x1 , ••• ,xn 

must be allowed to range over all elements of A. Axioms might be 1-- 2~ 
2 

or I- x !• 

Definition 3. A remark w Q is iomediately derived from a sequence 

of remarks w1l,1 , ••• , w~, wi e A, iff 

1. fl (xl' • • • ,xn)!l /\ • ·' /\ fm(xl' • • • ,xn)!m I- g(xl' • • • ,xn)Q 
is a canon. 
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2. ~ z1 , ••• ,zn e A such that'f1(z1 , ••• ,zn) = wi, and 

g(z1 , ••• ,zn) = w. 

Definition ,. A proof of a remark r is a finite list of remarks 

r 1 , ••• ,rp such that 

1. r 1 is an axiom, 

2. ri (1 < i::;; p) is either an axiom or a remark immediately 

derivable from some subset of [ r 1 , ••• , r i- lj , 

3. r = r. 
p 

To illustrate these definitions, let us consider the system 

* C = (([a, b}· , •), [x}, (A}, R, C'), where the canons in Rare 

This system contains the single axiom ~ bA, so it is trivially provable 

that b_!. A single application of the canon JC! ~ axa! yields the con

clusion abaA. Continuing this process, we obtain the proof 

n n b!, aba!, aabaa!, · ••• , a ba ! . 

Thus A= [anbanl n ~ O}, a cont8Xt-free language. 

We occasionally use the phrase "the language (or the set) generated 
,., 

by the system C" to mean the set G defined by some predicate G in c. 
Either the appropriate predicate will be obvious, or the selection of G 

will depend upon the situation in which the result is applied. 

Hierarchy of Canonic Systems 

A proof in a formal system usually consists of a finite nwnber of 

repetitions of two operations: 

1. Substituting elements of A for variables, 
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2. Inferring Y from X and X ~ Y. 

These are operations which can be carried out by a mathematician with 

paper and pencil. In order to be able to formalize the idea of a 

proof, Moore and Donovan [ 3 ] allowed a canonic system C' to describe 

the concept of a "proof" in a system C. A hierarchy is thus formed, 

since a proof in C' is, in turn, described by a system C.:". For,some k, 

c(k+l) = C(k), so that no new features will be found in'higher level 

systems. 

For example, consider the system 

* C =(([a, bJ , •), [xJ, [AJ, R, C'), where R consists of the 

canons 

1. I- b! 

2. ~ I-ax~. 

'X = fb, aba, aabaa, ... J. The second level system C' will generate the 

proofs that each of these strings is defined by A. In other words, C' 

will generate the set 

where we have used the semicolon only to avoid a collision of punctuation. 

This set can be considered a .. set of strings over the alphabet 

[b, !• ;J, and as such it may be generated by some canonic system. 

Define C' to be that system. Its canons describe the effect on a proof 

of applying each of the rules of C: 

1. I-'>.. proof 

2. a proof r a;b! proof 

3. a proof /\ P ; y~ proof ~ a; ay~i proof 

* Then C' = ( ((; , b, !} , •) , [a, 13, y, fi } , [proof J, R, C") . It is not 

difficult to se~ how C' operates. First, for convenience, it defines 
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the null string as a proof. Then~ if some proof ahas nlready been 

derived, a followed by the symbols ";b~" is still a proof because 1-b~ 

is an axiom of C. Finally, if a proof a exists such that the pattern 

";<Some string y> !" appears within it, a followed by the symbols 

"; a<some string y>a !" is also a proof. This corresponds to applying 

the canon xA I- axaA in C. ,.... -

This formulation of higher-level systems is considerably simpler 

than their original description [ 4 ]. Since we shall have occasion 

to use such systems later, this transparency will be beneficial. 

Summary 

This chapter has been a review of the definitions and terminology 

associated with canonic systems. We have revised some of the formulations 

so that they are applicable over arbitrary algebraic systems; this will 

allow us to write canons describing, for example, sets of integers, as 

well as sets of strings. 
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Chapter 2 - Proof Measure Functions 

Introduction 

This section d~velops a measure of complexity for sets of strings 

specified by a canonic systems. Such a measure is related to the time 

it would take a generator operating from the canonic system to produce 

an element of the language being described. 

Definition 1. A proof of a theorem t in a system C is a finite 

list of remarks r
1

, ... ,rk such that 

1. r 1 is an axiom 

2. ri (1 < i ~ k) is either an axiom or a theorem 

immediately derivable from some subset of [r
1

, ... ,ri_ 1J. 
3. rk = t. 

Recall that, in a given canonic system C, the meaning and derivation 

of a proof is given in the next higher level system C'. Since C' is 

capable of generating all possible proofs of theorems in C, we make the 

following definition. 

Definition 2. The proof measure function m(C, t) of a theorem t 

in a canonic system C is the number of remarks in the shortest proof of 

t. That is, if r 1 , r 2 , ... ,rk is the shortest proof oft in C, then 

m(C, t) = k. 

For example, in a system S containing the canons 

1. I- I>!. 
2. ~I- ax~ 

we would have the proof b!, ab~, aabaa!. Therefore m(S, aabaa) = 3 

since there is precisely one proof for each string in this system. 
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Properties of m(C, t) 

We may now prove several properties of proof measure functions. 

Theorem 1. If t is a theorem of C, then m(c , t) is computable. 

Proof. If t is a theorem of C, then there exists a proof of 

tin C: r 1, r 2 , ... ,rk such that t = rk. This proof, considered as a 

string of symbols, is a string derived by the next higher level system C'. 

Modify C' into C so that it keep~ count of the leqgth of the proof it m , 
is constructing for t. Change the axiom 

I- 'A proof 

into 

r. <A, 0> proof & length. 

In each canon of C' which places a remark in the proof, replace the 

predicate proof with a predicate over ordered pairs, proof & length. 

Thus, if C' has the canon 

a proof /\ 

let C have the canon 
m 

f-"- a ;p proof, 

<a, n> proof & length /\ .•• ~ <a;P , n+l> proof & length. 

Finally, let C have the canon 
m 

<n:;P, n> proof & length t- <13, n> theorem &; m(c, t) 

to associate with each t the length of its prqof. Then the canonic 

system C computes m(C, t). QED 
m 

An Alternative Function 

Given that t i~ a theorem of C, the function m(C, t) gives us a 

measure of the difficulty of proving t in C. Unfortunately m is a 

function of each possible theorem. It would be desirable to sacrifice 

some of the exactness of m in favor of a ~ore macroscopic quantity. 



Definition 3. Let m' (C, n) = sup {m(c, t) I t i.s provable in 

C and !ti = n}. 

The function m' looks at all proofs of theorems of length n in C 

and takes the number of steps in the longest proof as its value. Thus, 

given a theorem t of length n, we can, under certain conditions, say 

that it may be proven in no more than m' (C, n) steps. By definition, 

m'(C, n) is the upper bound on the length of proof of a theorem of 

length n. We now consider the conditions under which it is meaningful 

to speak of m'. 

Theorem 2. m'(c, n) is computable if and only if C generates a 

recursive set. 

Proof. Consider the system C to be over a terminal alphabet T. 

Generate the set 

* Sn= (w e T I w • nJ, 

the set of all possible formulas of lengbh n over T. For each~ e S , n 
we can determine whether or not it is a theorem in C since C generates 

a recursive set. That is, generate 

S ' = (w e S I w is provable in C} • n . n 

Then, since mf(C, w) is computable when w is known to be provable in C, 

m'(C, n) =sup {m(C, w)lw c S'
0
J. 

If m'(C, n) is computable, then if any formula a is provable at 

all, it is provable in no more than m'(C, lal) steps. Since C contains 

13 

a finite number of axioms and canons, it is possible to generate all 

proofs of length 1 (the axioms), length 2 (one canon applied to each 

axiom), and so on. If the theorem a has not been proven after m'(C, IOI ) 
steps, it will never be. Since the membership question is thus decidable, 

C must generate a recursive set. ~ 

There is a property of m' which is.significant for its application 

to complexity measµres for progranming languages. 



Theorem 3. m'(C,n) is not necessarily monotonic increasing inn. 

Proof. Consider the counterexample 

.... ~ 
x! ~ xaaA 

1--a! 

xB I- xaaB 

XB t- xA 

which generates the proofs 

1. aB, aA 

2. aaA 

3. a!, aaa!, aaaA 

4. a~, aaaaA. 

Then m'(C,l) = 2, m'(C,2) = 1, m'(C,3) • 3, m'(C,4) • 2, and so on. 

QED 

This property is entirely expected, for some short theorems may 

be much more difficult to prove than long ones. 

A More Precise Function 

The functions m and m' evolve naturally from a consideration of 

the process of proof in a canonic system. They do provide an indication 

of the difficulty of deriving a given theorem, but they make the 

simplifying assumption that one canon is no different from another 

since each extends the proof one step. But certain. rules may contain 

several premises, each of which must be examined before the conclusion 

may be drawn. Let us define another function which takes this into 

account. 

Definition 4. The proof measure function n(C, t) of a theorem t 

in a canonic system C is the total number of premises evaluated in the 

shortest proof oft. That is, if r 1, ••• ,rk is the shortest proof of 

t in C, and if the canons applied during this proof were 
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rn /\ r21 /\.··/\rm 1 I- rl 
1 

r 12 /\ r 22 /\. · · /\ r 2 I- r 2 
~ 

rlk /\ r2k /\. · ./\ r°i<k ~ rk, '· 

k 
then n{C, t) = L mj. 

j=l 

Theorem 4. n{C, t) is computable iff t is provable in C. 

Proof. The proof is alm9st identical to that of Theorem 1. Build 

the canonic system C so that, at each step in the proof of t, a count 
m 

is kept of the number of premises which have been evaluated so far. QED 

Definition 5. Let n'(C, J,) = sup{n{C, t) It is provable in 

C and I ti= t}. 

Theorem 5. n'(C, J,) is computable iff C generates a recursive set. 

Proof. Similar to that of Theorem 2. QED ~ 

Theorem 6. If p is the number of axioms appearing in the shortest 

proof of t in C, then n(C' 't) :t m{C, t) - p. 

15 

Proof. If p axioms appear in the proof, then m{C, t) s p + x, where 

x steps are taken in '1the proof after the axioms are written down. The 

number of premise remarks evaluated for each of the axioms is zero; for 

the x remaining step~, y ~ x premises must be examined since each canon 

has at least one premise. Thus n{C, t) = 0 + y. These three conditions 

imply n(C, t) ~ m(C, .t) * p. QED 

Theorem 7. If C is a canonic system possessing q axioms, then 

n' (C, iJ ~ m' (C, J,) - q. for all "· 

Proof. At worst, some theorem of length t may require the use of 

all q axioms in its proof; in any case, it requires at least one. The 

conclusion follows from this observation and Theorem 6. QED 

JI. 



Bounds on Measure Functions 

Consider a canonic system C generating sets of strings. We would 

like to relate at least one of the proof measure functions to the 

structure of the system C in such a way that we could avoid having the 

function described by only another canonic system. Let 

D(k) = [x I x is provable in exactly k steps in CJ. 

Then, by definition, D(l) is the set of all the axioms of C, D(2) is the 

set of all theorems provable by applying exactly one canon to the strings 

in D(l), and so on. Furthermore, let 

L(k) =sup {xix c D(k)J, 

S(k) =inf {xix e D(k)J. 

That is, L(k) is the length of the longest theorem provable ink steps, 

and S(k) is the length of the shortest. 

Assume that the canonic system C has the property that no canon 

ever "shortens" a theorem. That is, if t is provable ink steps and t' 

in k + 1, then It 11 l: I ti . Under these conditions, we can say that 

L(k + 1) ~ L(k) and S(k + l) ~ S(k) for all k. 

Recall that L(k) is the length of the longest string possible after 
-1 a derivation of k steps. Then the inverse function L (z) is the mini-

mum number of proof steps required to generate any theorem of length z; 
all proofs of fewer steps yield strings shorter than z. Now the proof 

measure function m'(C, z) is, by definition, the maximum number of proof 

steps required to generate all theorems of length z. We therefore obtain 

Lemma 1. 
-1 L (z) ~ m'(C, z) if C is non-erasing. 

A similar argument may be advanced for the S(k) function. Since 
-1 S (z) is the maximum number of proof steps required to generate all 

theorems of length z, all longer proofs yield strings of length greater 

than z. This observation produces 

Lemna 2. -1 m'(C, z) ~ S (z) if C is non-erasing. 
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and 

Theorem8. If C is a canonic system with the property that t 

provable in k steps and t' in k + 1 implies lt'I ~ ltl, then 
-1 -1 

L (z) ~ m'(C, z) ~ S (z) for all z. 

Computation of L(k) and S(k) 

Consider a system C generating strings over an alphabet V in 

which each canon is either an axiom or a rule of the restricted form 

* where w1, w2 e V . Let J,
0 

be the length of the longest axiom in C 

(J,
0 

= sup [I w1 It- w is an axiom of CJ) and J, be the maxi.mum number of 

symbols added to a derived string by the application of a single canon 

Ct = sup [ 1w1w21 I xE ~ w1xw2g_ is a canon of C}). Then we observe that 

L(l) = J,
0 

L(2) = L(l) + J, 

L(k) = L(k-1) + J, 

so that 

L (k) = J,
0 

+ (k-1) J,. 

Similarly, if s
0 

• inf (1w1 U-w is an axiom of C} and 

s • inf ( 1w1w21 I xl_ ~ w1xw2g_ is a canon of CJ, describe the shortest 

starting string and the least number of symbols added by any canon, then 

S(k) = s + (k-1) s. 
0 

The inverses are easily found to be 

L- 1{z) =· z - J, + J, 
0 

J, 

s- 1{z) = z - s + s 
0 

s 
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Noting that canons of the form used never "shorten" a theorem, we may 

combine these re~ults with Theorem 8 to yield 

Theorem 9. If C is a canonic system in which all canons are either 

of the form~ w ar x!'., I- w
1
xw

2
g, then 

z - J,o + J. .... m' (C, z' .... z - s + s L • n are as ~ / ~ ~----o ____ , wwere ~o' ~· s 0 , s 
J. s 

defined previously. 

The class of canonic systems yielding exactly the regular sets 

requires canons of the form either r aQ or xl ~ xaQ_, where a is a single 

symbol from V. Thus J, = J. = s .. s • 1, and Theorem 2 produces 
0 0 

z :s: m'(C, z) ~ z. We have proven what may be obvious: 

Corollary 1. If C defines a regular set, then m'(C, z) z. 

Now consider a system C generating strings over an alphabet V in 

which each canon is either an axiom or a rule of the restricted form 

'It 
where wi e v·, xij e {x1 , .•• ,xnJ, and n > 1. 

Define 

1. rmax •sup {nl Xl£'..l A x2!'.,2 A···A xn~ r g(x1, .•• ,xn)Q 

is a canon of CJ 

2. 

3. 

4. 

r "" min 

J. = 
0 

J, = 

inf {nj x1!'.,1 A x2!'.,2 A···A Xn!'..a. r g(x1, ... ,xn)Q 
is a canon of CJ 

sup [ 1w1 j t- w is an axiom of CJ 

sup [ 1wowl wnl I x1!'..1 A···A xn~ r 
woxilwlxi2 w 1xi w C is a canon of CJ n- n-

n 

5. s
0 

= inf [ lwl 11-w is ~n axiom of CJ 
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6. s = i.nf [1w
0
w

1
. 

ll' x. w1xi 
0 1.1 2 

w n1 I xl[l /\. '· /\ xn~ 1-
w 1x. w G is a canon of C and n 
n- i. rr-

n 
r i J. mn 

The definitions of J,
0

, J,, s
0

, and s are similar to those given 

in the case where each canon is allowed to have no more than one premise. 

In addition, we desire to know r and r i , the maximum and the max m n 
minimum number of variables appearing in any canon. Again we desire 

to find L(k) and S(k), the lengths of the longest and the shortest 

string derivable aft~r a proof of k steps. 

By definition, L(l) = l
0

, the length of the longest axiom. Now 

the longest string derivable by the application of a single canon would 

be produced when the longest strings possible were assigned to 

xl, ... ,xr 
max 

in the canon 

and lw
0
w1 ... wr I = J,. Such a canon may or may not exist in C, but 

max 

no canon in C produces strings growing at a faster rate. Thus we observe 

that 

so that 

L(l) = J,
0 

1(2) = r 1(1) + J, max 

L(k) = rmaxL(k-1) + J, 

1(k) 
k-1 k- 2 i 

= lo (rmax) + J, L (rmax) 
i=O 

k-1 
. k-1 ((rmax) - 1) 
.. J,o (rmax) + J, r -1 

max 

·Solving this equation for k to produce the inverse function, we obtain 
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,-•., 

( 
z( r - 1) + t) 

L- 1(z) • 1 + log max . 
rmax to 

where r > 1. max 

We now desire to find an expression for S(k), the length of the 

shortest string derivable after k applications of canons of the form 

x1!1 /\ •. • /\ xrJ.n I- woxil wlxi2 .• • • wn-1 xin wn Q • 

In this canon, we must substitute strings for n variables. If the 

length of the string produced as a conclusion is to be as short as 

possible, each variable should be assigned the shortest possible string. 

However, ~variable must refer to a string produced in the previous 

proof step, or there would be no reason to have that step. This would 

contradict our assumption that all proofs are of minimum length. We thus 

produce the shortest permissible result when one string xp is assigned the 

length S(k-1) and n•l have the shortest possible length, s • Once again, 
0 

there may or may not be 2 canon which allows this, but all other sub-

stitutions 'will produce longer conclusions. 

In addition, we desire to use the canon with the least number of 

variables in its conclusion. This canon, by definition, contains constant 

strings of total length s. For sufficiently large string lengths, the 

effect .of concatenating several long strings is greater than just adding 

a constant number of symbols each time. Thus we expect this analysis of 

S(k) to be valid for only large k. 

The expression we have justified for S(k) is 

S(k) = S(k-1) + s
0

(rmin -1) + s • 

The solution of this equation is 

S(k) = (k-l)(s r i + s) - (k-2)s , o m n o 

whose inverse is 

_1 z + s (r ~ - z) + s 
S (z) = o m~n 

s (r i - 1) + s o m n 
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Combining these results, we obtain 

Theorem 10. If C is a canonic system in which all canons are either 

of the form r- w or x1!,1 /\ ... /\ x F r- w xi w1 xi wn- l xi wn Q, then 
xr-n ° 1 2 n 

1 + log 
r 
max (

z(r 1) + J,) z + s (r . -2) + s max- o min s m'(C, z) s ~~---~~--~~~ 
J, s ( r . -1) + s o o · min 

for sufficiently large 7-, r > 1, and s
0

, s, J, , and J, as defined 
max o 

previously. 

The class of canonic systems yielding exactly the context-free 

languages requires canons of the form either I- a.Q or x! /\ y~ r- xy.Q, where 

a is a single symbol from an alphabet V [4]. Then s = J, = 1, s = J, = 0, 
0 0 

and r . = r = 2 and Theorem 10 reduces to min max ' 

Corollary 2. If C defines a context-free language in standard form, 

then 1 + log
2 

z s m' (C, :~) s z. 

Summary 

We have defined four functions measuring the complexity of a 

derivation in a canonic system. These functions were shown to have 

certain properties, and relationships among them were derived. For 

canons in which only the identity function appears in the premises, we 

derived bounds on some of these functions in terms of the structure of 

the structure of the system. 

There is a question of interest which we have not settled: Given 

a system C, is it possible to find a system C* such that C* is equivalent 

to C, but m'(C*, J,) < m'(C, L) for all J,? In other words, is it possible 

to "speed up" a canonic system in the same way that a Turing machine can 

be speeded up? The answer to this question will determine the nature of 

a lower bound on our measure functions. 
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Chapter 3 - Inverse Systems and Compilirig 

Introduction 

A canonic system C is a specification of the members of a set and, 

as such, gives rules for generating successive elements of that set. 

Because of its similarity to the parsing problem, the inverse process is 

more interesting: given a string w, how could it have been generated by 

C? The operation is one of analysis rather than synthesis. 

An algorithm which ~ccepts a canonic-system description of a language 

and analyzes an input string based on this description exists [ l]. We go 
-1 one step further and create from C a new canonic system C which exactly 

describes the recognition procedure for strings generated by C. 

For example, consider the language ~. ranban In ~OJ defined by the 

system 

I- b! 

xA raxaA • 
. -- -

A proof in this system C that aabaa! is 

Consider the system 

axa_!yif! 
b_! t-I 

where the conclusion I indicates an arbitrary terminating condition. When 

this system is presented with an axiom ~ w such that w is provable in C, it 

proceeds to decompose that string. For example, if we include the axiom 

r aabaa_!, the system becomes 

J- aabaa! 

axaA J- x,! 

bA f- I ,_ 

and generates the proof 
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Apart from the end-of-proof indicator I, this is simply the proof in C 
-1 written backwards. The system we have just presented is C , the inverse 

of C. 

-1 Construction of C From C 

-1 The relationship between the proofa in C and C suggests a procedure 
. -1 

for obtaining the canons of C from those of C: interchange the premise 

and the conclusion. Thus if C has the canon 

x! r axa! ' 

c- 1 should have 

This procedure fails if the original canon had multiple premises, for the 

inversion of the general canon 

f (x
1

, ••• ,x )F t- g(x
1

, ••• ,x )G 
m n-m n-

would produce 

f(x
1

, ••• ,x)F 
m· . n -m 

and we do not define the meaning of a canon with multiple conclusions. 

(There is no way of indi9ating in a proof that several conclusions must 

hold simultaneously.) Thus only systems C in which each canon has no 

more than one premhe possess an inverse c- 1 by this construction. It is 

the case, however, that any arbitrary syst8111 can be reduced to this form, 

and this we now demonstrate. 

Normal-Form Systems 

Given an arbitrary system C, it is possible to derive a system CN such 

that 

1. Each canon in ~ has a single premise. 

2. A remark t is provable in CN iff t is provable in C. 

The general canon we must consider is 
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I\ ••• I\ f (x
1

, ••• ,x )F I- g(x
1

, ••• ,x )G 
m n ~ n -

where 

d 
fi: An ... A i 

since the canon is over the algebraic system (A, *1, ••• ,*k). We shall 

call di the degree of fi; the result of applying fi is a d
1
-tuple of 

elements from A, and Fi must be a predicate over di-tuples. For con

venience, let us abbreviate this canon as simply 

A· •• A i F ~ s.Q • m-m 

The following algorithm produces ~ from C: 

1. If C has either the axiom ~ ~ or a canon f! ~ s.Q with a 

single premise, then retain these rules in CN. 

2. If Chas the canon 

then let ~ have the canon 

<f.1, ••• , f !J> ]\ ••• F ... s.Q m .1.: UI 

m 
and the new pred~cate F1 ••• Fm of degree(~ di). 

i•l 

3. If ~ has the canons 

<r1 , ••• ,r >Rt- uR' 
p - -

<S l ' ... 's > s F vs I q - -

then let ~ also have the canon 

and the new predicates RS of degree (degree R + degree S) and 

R'S' of degree (degree R' +degree S'). Repeat step 3 for 

each pair R'S' describing a predicate created by rules 2 and 

3. Since C has only a finite nwnber of canons, this process 

will terminate. 
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4. No other canons are in ~· 

This algorithm reduces several premises to a function of higher 

degree. Rule 1 retains all those canons which already have only a single 

premise or none at all. Rule 2 reduces a canon with several premises to 

the desired fonn by combining the di results of each function fi (1 :!i: i :S: m) 
m 

into one(~ di)-tuple. When an n-tuple is evaluated, all components must 
i=l 

be shown true, so the effect of requiring the proof of all the original 

premise remarks is achieved. When canons are combined in this way, new 

predicates are created in the premises, and lule 3 provides the canons to 

describe these. This rule provides for the interaction between objects 

described by several canons. 

For example, let C be the system 

t- a_! 

I- b,!! 

r- cc 
xA .I- ale! 
x,!! t- bx,!! 

x.Q t- ex,£ 

x,! /\ Y,!! t- xyJl 

xf /\ Y,!! t- YKY! 

which generates if = {anbmcka~m I n,m,k ~ l}. By Rule 1 of the algorithm, 

~ contains the canons 

~·! 
I- b.!! 
t-cf 
X! ~ax_! 
x,!! I- bX;,! 

xC l- ex£ • 

By Rule 2, ~ contains 

<x , y> ,!!! l- xy,!! 

~ ' Y> .21! t- yxy ! 
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corresponding to the two canons with multiple premises. Rule 3 provides 

definitions for the sets AB and CD; applying it to the canons in Cn 

which define! and! separately produces the setofrulea-

<X, y>AB I- ~x, by:::i.AB 

~ I- <ax, b:>AB 

Y! r- <a, by:;:AB 

I- <a, b~ 

The definition of ~ generates the canons 

<X, y, z~ I- <CZ, xy>CD 

<X, y:::i.AB 1-- <C , xy>C~ 

A new predicate, ~, has been generated, and it must be defined by 

applying Rule 3 again: 

<K, y, z~ r <ax, by, cz:>ABC 

<y, z:>BC I- <a, by, c z ::-AB Cc 

<X, y~ I- <ax, by, c:>ABC 

<:X, z~C I- <ax, b, CZ~ 

xA I- <ax, b, c~ 

Y! I- <a, by, c:::-ABC 

zC t- <:8' b, c~C 

The predicates BC and AC must be defined, again by Rule 3: 

<K, y~ I- <Kb, yc>BC 

X! t- <:Kb, c~ 
ye I- <b, ye>!£ 

<.b, c>BC 

<X, y:>A_£ I- coca, yc>A.C 

xA t- <Ka, c:>AC 

y£ I- <B, yc:>AC 

I- <:*, c:>AC 

No new predicates were created in this step, so the generation of CN is 

complete. 
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Consider the proof of aabbbcaabbb! in the original sys.tem C: 

b,!, a!, bb,!, ~, bbb,!, cf., aabbb!!,, aabbbcaabbb! • 

'!be system ~ simulates this derivation as: 

b,!, <:a, bb> ~'<a.a, bbb> ~' <e, aabbb>~, aabbbcaabbbE • 

We now show that ~ generates the same sets as C. 

'lbeorem 1. A remark t is provable in ~ iff t is provable in C. 

Furthermore, the proof in ~ is effectively obtainable from that in C, 

and conversely. 

Proof. To show that t provable in C implies t provable in ~· we 

will use induction on the length of the proof in c. 

Basis: If t is provable in one step in C, then t, being an axiom, 

is also provable in one step in ~· Similarly, if t is provable in two 

steps in C, it is the result of applying a single-premise canon to.an 

axiom in c. By Rule 1 forming ~ from C, these operations may also be 

performed in CN. 

Induction: Assume all theorems provable in leas than or equal to 

k steps in C are also provable in ~· A proof of length lc+-1 of a theorem 

tin C is a list of remarks r 1, •.. ,rlc+-l such that 

1. r 
1 

is an axiom. 

2. r i (1 < i :s: k+l) is either an axi9m or a remark 

inaediately derivable from some subset of {r1, .•. ,ri_1J. 

3. rlc+-1 "' t. 

t is not an axiom of C since it is assumed to be provable in no less 

than k+l steps. 'lberefore rk+l is imnediately derived from some subset 

{w1£:.1, •.• ,wm!,J of {r1, ••• ,rkJ by the application of a canon 

f 1(x1 , ••• ,x )F1 A ••• A f (x
1

, ••• ,x )F I- g(x
1

, ••• ,x )G n- m n-m · n-

where there exist z1 , .•• ,zn e A such that fi(z1, ••• ,z
0

) = wi and 

g(z1, ••. ,zn)Q. = rlc+-l" Furthermore, each w1!i is provable in· less than 

or equal to k steps. 
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From these facts about the proof in C, it is possible to con

struct the proof in CN. When C derives rk+l by applying the canon 

<£
1

, ••. ,f>F
1 

••• F t- g(x1 , .•• ,x)G 
m --m n -

generated by Rule 2 forming ~ from C. Each component of the m-tuple 

is provable in less than or equal to k steps in C; by the inductive 

assumption, each is therefore also provable in ~, as is the entire 

m-tuple. Then, as long as the predicate r
1 
.•. Fm appears in the con

clusion of some canon, rk+l may also be proven in ~· But Rule 3 of 

the construction algorithm insures that all predicates appearing in 

premises appear on the right-hand side of .!.2!!!! canon, so rk+l is 

indeed provable in ~· 

Thus the existence of a proof of arbitrary length of t in C 

implies the existence of a proof of t in ~. 

It is now necessary to show that t provable in ~ implies t 

provable inc. The proof oft in·~ is a list of ~emarks s 1 , ... ,st 

such that 

1. 

2. 

3. 

s
1 

is an axiom. 

si (1 < i ~ t) is immediately derivable from si-l' 

SJ,= t. 

The following procedure reconstruct~ the proof of t in C. Con

sider, with no loss of generality, each remark si to be of the form 

In the construction of CN from C, multiple premises in canons are 

reduced to components of one n-tuple. If we know the predicates in C, 

we can look at such a remark in the proof in CN and decompose the one 

term into several. That is, the remark 
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in CN becomes the set of remarks 

in C, where each Qi may be a predicate of arbitrary degree. Continuing 

this procedure on each remark in the proof s
1

, ... ,st oft in CN produces 

the proof of t in C. Therefore t provable in CN implies t provable in 

C. QED 

Measure Functions of Normal Systems 

Theorem 2. n(CN, t) = m(CN' t) for all t provable in CN, and 

n'(CN, t) = m'{CN, t) for all t· 

Proof. These are trivially true since each step in a derivation 

in CN requires the evaluation of exactly one premise. QED 

Theorem 3. If v is the maximum number of premises per canon in C, 
m{CN, t) 

then m(CN, t) s; m(C, t) s; v - 1 for all t provable in C. 
v - 1 

Proof. Figures 1 and 2 illustrate the correspondence between 

derivations in CN and C. We observe that each node in the CN tree 

e~pands into at least one and at most v nodes in the C tree. Both 

trees have the same number of levels (the number of nodes in the CN 

tree is equal to the length of the longest path in the C tree), so 

that if the top level in CN expands into v nodes, the next lower level 
2 could contain as many as V•v = v , and so on. Thus 

m{C, t) ~ m(CN, t) 

:!! ~N' t)-1 i m(C, t) v 
i=O 

so that 

m(CN, t) 
1 m(CN, t) s; m(C, t) s; v -

v· - 1 

QED 
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rk+l 

wlE:_l w F 
nr-m 

/~ 
sl~l s2~2 s~3 

Figun 1 - Derivation in System C 

rk+l 

<w l , .•• , w > Fl ... F 
m -~ 

Figure 2 - Derivation in System CN 
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Inverses of Arbitrary Systems 

Recall th.at normal-form systems were introduced to show that any 

canonic system C can be reduced to another system CN in wh:i.ch each canon 

has only one premise. The difficulty in constructing the tnverse system 

C-l from an arbitrary C arose exactly in the consideration of canons with 

multiple premises. The normal-form theorem resolves this problem by 

always providing an equivalent system of the required form. We may now 

formally define an inverse system. 

C-l is constructed from a system C in normal form by the following 

algorithm: 

1. 
-1 If C has the axiom 1-w.Q, then let C have the canon 

wG r I, where I is an arbitrary end-of-proof indication. 

2. If C has the canon f(x 1 , ••• ,xn)! ~ g(x1 , ••• ,xn)Q, then let 
-1 

C have the canon g(x1 , ••• ,xn)Q ~ f(x
1

, ••• ,xn)!> 

Let C u (a} denote the system C with the added canon a. The inverse 

system has the following property. 

-1 
Theorem 4. t is provable in C iff I is provable in C U (I- t}. 

-1 Furthermore, the proof in C is effectively obtainable from that in C, 

and conversely. 

Proof. If tis provable in C, then there exists a proof r 1, ••• ,rk 

of t in ~ such that 

1. r 1 is an axiom. 

2. ri (1 < i :s; k) is immediately derivable from ri-l" 

3. rk = t. 

-1 If the axiom I- t is given to C , the only proof possible must begin t, ••• 

since C-l has no other axioms. In the proof of t is CN, t = rk is 

derived from rk-l by applying a canoQ 

f(x
1

, ••• ,x )Ff- g(x1 , •• ·.,x )G 
n -. n -

where ther~ exist z1, ••• ,zn e A such that f(z 1, ••• , zn)! • rk-l and 
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-1 By the construction of C from CN' the inverse canon 

g(x1 , ••• ~x )G I- f(x1, ••• ,x )F n- n-

-1 1 is available in C , so the proof inc· can continue: t, rk_ 1, •••• This 

process may be repeated until the axiom r 1 is reached: t, rk_ 1, ••• ,r1• 

Then, since the canon r 1 I- I exists in the inverae system if I- r 1 was an 

axiom in CN' the proof terminates t,rk_ 1, ••• ,r1,I , proving I. 

If I is provable in c· l U {I- t} , then there exists a proof 

t,s1, ••• ,sk_ 1,I in that system. The last canon applied must have been 

sk-l I- I, since these are the only canons which generate I. By the con-
-1 

struction of C from CN, f- sk-l must have been an axiom of ~· At each 

step in the proof where si+l is deduced from si by the application of 

a canon 

g(x1, ••• ,x ) G I- f (x1 , ••• ,x )F , n- n-

the inverse rule 

f(x1, ••• ,x )F I- g(x1, ••• ,x )G n- n-

exists in ~ and may be applied. After k-1 steps, we arrive at a proof 

sk_ 1, ••• ,s1 in~· A final application of the inverse.of the canon which 

produced t from s 1 produces the desired proof. QED 

Measure Functions of Inverse sxstems 
' 

The proof of Theorem 4 can be extended to indicate the relationship 

between the length of the proof in c·l and that in CN. 
. .. 

Theorem 5. m(C-l U { 1- t}, I) = m(~, t) + 1 for all t provable in ~· 

Proo·f. The result follows immediately from a consideration of the 

construction of Theorem 4. The proof in the inverse system is simply the 

reverse, remark by remark, of the proof in ~, plus the end-of-proof signal 

I. QED 

Corollary 1. m' (C- l U {I- t}, III) = m' (~, It I) + 1 for all t provable 

in ~· 

... 

TT --------- ----~ 
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:~ .... ''• ... -· ~ ' ' . 

Proof. Immediate. 

An interpretation of these results is beneficial at this poiµt. The 

corollary states that if t is known to be provable in CN in no more than 
-1 k = m'(~, !ti) steps, then the inverse system C , given the single axiom 

I- t, can reproduce the proof in no more than k+l steps. 

Theorem 3 of this chapter states that m'(~, t) ~ m'(C, t) for all t. 

This fact and Corollary l produce 

Corollary 2. m' (C-l U [I- t}, I I j) ~ m' (C, It I> + l for all t provable 

in C. 

Proof. Immediate. 

Inverse Systems As Recognizers 

Suppose the canonic. system C describes a programming l.anguage. The 

system c·l behaves like an analyzer for that language since> given any 

string derivable in C, c·l can produce a parse of that string. The set 

of all strings derivable in C is simply the set of all legal programs in 

the language described by c. Once the m' function is known for C, it is 

possible to characterize the recognition process of a -legal program in 

that language by applying Corollary 2. 

While m'(C, t) + 1 is an upper bound on the number of steps in the 
-1 -1 parse in C , nothing we have said helps construct this parse. C , like 

any canonic system, is a non-detellllinistic statement of transformations 

which may be applied at any step in a proof. In general, more than one 

canon may be applicable, and the correct rule to choose may not be im

mediately obvious.; 

Recursive Sets And Programming Languages 

Canon:i.c systems in their most general form define recursively 

enumerable sets. Given a particular string wand system C, it is not 

possible~tg,_determine in general whether w could eventually be generated 
c 

by C. A recognizer based on a recursively enumerable language may never 

halt for some input strings, and this situation is undesirable for 
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practical computing systems. 

One solution is to allow only language definitions which define 

recursive sets. It is undecidable, however, whether an arbitrary canonic 

system has that property (Appendix I). Another approach is to restrict 

the form of the system so that its language is known to be recursive. 

The correspondence with Chomsky's grammars does this, but the forms pro

duced do not resemble the definitions of programming languages. 

Let us examine the question from a different point of view: we are 

trying to insure that a compiler presented with an invalid program will 

not loop endlessly. In theory, a machine capable of examining any 

arbitrary string and deciding acceptance or rejection must be based on 

a recursive language. In practice, compilers are not usually asked to 

process completely arbitrary inputs. A source program may be correct 

except for the duplication of a statement label or a missing declaration. 

It is possible then to write the language description :in such a way 

that common errors are detected. In effect, we are defining a new language, 

similar to the desired one except for well-defined errors. We still cannot 

guarantee our compiler will halt for arbitrary inputs, but "almost cor

rect" programs will not cause infinite looping. 

For example, consider generating DO loops in Fortran of the simplified 

form 

DO <label> <integer variable> = <constant>, <constant> 

<label> CONTINUE 

Most Fortran systems impose the restriction that the value of the DO 

index may not be changed within the loop; that is, 

DO 5 J = 1, 10 

J = 20 

5 CONTINUE 

is illegal. Assl.lllle we have defined in a canonic system the predicate 
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not in such that <x, y> not in is true iff the element x is not contained 

in the set y, and <x, Y> _!!!. if it is. A specification for a legal DO 

loop is: 

<x, i> set of Fortran statements with assigned variables 

A z integer variable A <z, i> not in A w statement label 

A i integer constant A j integer constant 

DO w z = i, j 

x legal DO loop 

w CONT'JNUE 

To detect the case of a program redefining the value of the index, we 

might write: 

<x, i> set of Fortran statements with assigned variables 

A z integer variable A <z, i> in A w statement label 

A i integer constant A j integer constant 

DO w z = i, j 

I- x program attempting to redefine DO index 

w OONTINUE 

Thus a program with a syntactic error is recognized as such, and 

we may be assured that the compiler will not loop on receiving an incor

rect DO loop •. The lan~uage defined by the entire canonic system may not 

be recursive in the formal sense, yet we may be able to determine member

ship in~ set for most input strings we are likely to encounter. The 

language description might be called "almost recursive," and a recognizer 

based on that description woµld halt for "almost all" inputs. 

Sunnnary 

This chapter has presented two main results. First, we showed how 

an arbitrary canonic system C could be reduced to an equivalent system ~ 

which contained only single•premise canons. From this normal form, we 

developed the idea of an inverse system C-l which characterized the 

recognition of strings generated by C. In addition, we computed the 
-1 measure functions of both ~ and C and showed the relationship between 

--------------~------- ----
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them. Finally, we developed a technique for developing 'almost recursive" 

language descriptions so that recognizers would not be l:kely to loop on 

most inputs. 

Inverse systems as we have defined them do not specify parsing 

a lgorithmns for the Lmguages they recognize. An open qu~stion is whether 

inverse systems can bE so extended, and under what conditcons. 
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Appendix I - Systems Describing Recursive Sets 

Introduction 

A canonic system can specify the elements of any recursively 

enumerable set, However, from at least a theoretical point of view, it 

is desirable to know under which conditions the set generated is also 

recursive. Doyle [ 4] demonstrated equivalences between canonic systems 

generating sets of strings and the formal languages of Chomsky [ 2 ]. 

Since type 1, 2, and 3 languages are recursive sets, the related 

canonic systems also generate recursive sets. 

In this section we consider canonic systems generating set of 

natural numbers. It is difficult to describe functions of
1

strings, 

but any operation on natural numbers can be characterized by some 

partial recursive function. First, recall three definitions. 

A set Q is recursively enumerable if and only if it is the range 

of some total recursive function. Equivalently, there exi1ts some 

Turing machine which will generate all members of Q in som~ order. 

The characteristic function CQ(x) of a set Q is def inf d to be 

{: :l..f xe-Q 

CQ(x) = 
if x)Q. 

A set Q is recursive if and only if its characteristic function is 

total recursive. In other words, there exists a Turing machine which, 

given any x, will decide either xeQ or xJQ. A set is recursive if and 

only if both it and its complement' are recursively enumerable. 

Canonic Systems and Recursive Sets 

Let N be the set of natural numbers, and consider canons over the 

algebraic system (N, +). We now prove two theorems relating canonic 

systems and recursive sets of natural numbers. 
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Theorem 1. If a set Q ~ N is recursive, then it can be generated 
I 

by a canonic system in which the only canon describing Q is of the form 

f(x)K I- xg, 

where /(x) is a total recursive function. 

Proof. Since Q is recursive, its characteristic fimction 

if xeQ 

is total recursive. Let f(x) = CQ(x), and include the axiom 1-·1K. 

the conclusion xg, in the canon 

Then 

is provable if and only if xeN and CQ(x) = 1, since only then is the 

second premise CQ(x)~ satisfied. Therefore xg, is provable if and only 

if xeQ, as desired. The entire canqnic system generating ~ is then 

The converse of this theorem is true, but a stronger result is 

possible. 

Theorem 2. Let the set fr be defined only by canons of the form 

f 1(x 1 , ... ,x )F1 /\···/\ f (x1 , ..• ,x )F I- g(x1 , ... ,x )G. 
· n- m n-m. n-

Then ~ is recursive if 

1. 

2. 

3. 

4. 

-1 
g exists and is a total function 

f 1 , ... ,fm are total 

11 , ... ,E"m are recursive sets 

g(x1 , ... ,xn) depends on each variable xi in a non-trivial 

way. 
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Proof. Assume, with no loss of generality, that the range of g 

is the set of k-tuples z = <.Z 1, ... ,zk>. To show that fr is recursive, 

we show how to determine whether zee' or z/G for an arbitrary z. 

If g-l exists and is total, for an arpitrary k-tuple z = <"Z 1 , ... ,zk> 
-1 

we can compute g (z 1 , ... ,zk) =_~1 , ... ,xn>· Every variable that appears 

in the premises is some xj in g (z) = <:x
1

, ... ,xn> since g is assumed to 

depend upon all the variables non-trivially. Then, for each function 

f 1 , ... ,fm' we can compute fi(x
1

, ... ,xn) since each fi is total. Then, 

knowing the values of f. (x
1

, ... ,x ) , we can determine membership in 
i n 

rl'''''irm since these are recursive sets. 

Formally, the characteristic function of C' is computable for all 

z as 

~l 
where g (z) = <:xl'''''xn> and crl·····crm 

functions of the recursive sets rl, ... ,r'm. 

recursive, ~ is a recursive set. QED 

The General Decision Problem 

are the characteristic 

Since Ccr(z) is total 

Theorems 1 and 2 relate certain canonic systems and recursive 

sets. This is not to say that recursive sets can only be described by 

systems of those forms, nor that any system with canons of another form 

can not generate a recursive set. We wish to sketch two results of 

Mandl [ 5 ] which explain the apparent inadequacy of our structure 

theorems. 

Theorem 3. It is undecidable whether an arbitrary canonic system 

generates a recursive set. 

Proof. A canonic system defines, in general, a recursively 

enmnerable set, and it is undecidable whether an arbitrary recursively 

enmnerable set is also recursive. QED 
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Theorem 4. There is no class of canonic systems such that 

1. Every system in the class generates a recursive set. 

2. Every recursive set is generated by some member of the 

class. 

Proof. The proof requires a diagonalization argument which we 

do not wish to reproduce here. 

Summary 

For canonic systems generating sets of natural numbers, we have 

derived restricted forms of canons which guarantee that the system will 

generate a recursive set. The general question of deciding whether an 

arbitrary system generates a recursive set has already been shown un

decidable. 
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Appendix II - Equivalent Systems 

Introduction 

In previous papers on canonic systems, only canons describing functions 

of strings have been considered. That is, the algebraic system has been 

assumed to be the monoid (V*, •) of all finite strings over an alphabet V 

under the operation of concatenation. Under these conditions, the 

functions involved in the definition of a canon take on .3. particularly 

simple form. 

We desire the most general function f(x
1

, ... ,xn) from n-tuples of 

strings into k-tuples. Since concatenation of variables and constants is 

the only operation available, that function is 

where zije [x1 , ... ,xn} and wije V*. For example, a function over 

[a, b, cJ* from ordered pairs into ordered pairs might be 

f(x, y) = <abcxy, axbycx>. 

Other authors have defined restricted forms of this general function, 

such as one in which each variable x
1

, ..• ,xn is used exactly once. We 

desire to investigate some of these forms and show the relationship 

between them. The effect of this is to allow us to rewrite a system in 

an equivalent form which may be easier to manipulate in a particular 

instance. 

Predicates of Degree k to Indicated Context 

Definition 1. A canon with indicated context is a canon in which 

at least one function f.(x
1

, ... ,x) in the premises contains a concatenation 
1 n 

of a constant string and a variable. That is, 

f.(x
1

, ... ,x) = 
1 n 

where z .. e [x1 , ... ,x 1, w .. e V*, and at least one w .. is not the empty 
1J n' J..J 1J 



string. 

This designaticn arises because the canon may be applied only if 

the context is matched. For example, the canon xa~ A Y!! I- <X, y>f!_ 

requires that a string ending in "a" be in A. 

Theorem 1. Any predicate of degree k > 1 can be reduced to a 

predicate of degree l and indicated context. 

Proof. A remark involving a predicate of degree k > 1 is of the 
* n * form <S

1
, s

2
, ... ,sk>f, where the range of each si: (V) ~ V is a single 

string. Choose a symbol X not in V, and create a predicate Q of degree 

1 which contains the information in Pin the form s 1xs 2 ... Xsk~· Wherever 

the quantity <s 1 ,s2 , ... ,sk>~ appears, replace it by s 1xs 2 ... Xsk~' which 

is of degree 1 and uses indicated context. QED 

Corollary 1. Any canonic system can be reduced to one in which no 

predicate is of degree greater than one, if indicated context is allowed. 

Proof. Apply the theorem to all predicates of degree greater than 

one. 
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The converse of Theorem 1 is true, but the resulting predicate of 

degree k may still require indicated context. (A trivial proof just 

changes every predicate of degree one into degree two and makes the 

information in each coordinate indentical.) The question to ask is whether 

the iridicated context can be replaced by a simpler operation. This does 

not appear to be possible, as an example will show. Consider the canon 

xayA I- xay!!, which has the effect of placing in B all those strings in 

A which contain an "a" anywhere. If we attempt to remove the indicated 

context and write something like .:::x, a, y~, we have lost the ability to 

search for the "a" within the string xay. As a matter of fact, it 

becomes necessary to allow terms of the form xy, where the division of 

a string into its x- and its y-component becomes completely arbitrary. 

For example, to simulate a premise remark of xay~ A ... , we must write 

xA I- <.X ' A.' A.~ 

<WX, y, z~ f- ~. xy, z>§_ 



~, xy. Z>! j- ~, X, YZ>!i 

<:>e , a , Y~ /\ • • • 

where B is a temporary predicate introduced only to allow the searching 

from left to right. Since we feel such a canonic system is no simpler 

than one allowing indicated context, we shall not attempt to state a 

converse to the theorem. 

Relation to Post Systems 

At this point, we wish to demonstrate the equivalence between 

canonic systems and Post systems. Although canonic systems 

evolved from Post systems, an exposition of the process has never been 

made. 

A Post system is a set of rewriting rules of the form 

where ai and ~i are constant strings over a finite alphabet V, and 

Y 1 e {x1, .•. ,xn}. For example, the rule 

xlly ... x22yy 

would change the string 333114 to 3332244, if x. • 333·and y .. 4. The 

left-hand part of a rule is called the antecedent, and the right the 

conseguen t. 

The distinguishing feature between Post and canonic systems is that 

a Post system allows only one workspace. All its rules refer to the 

~ame string, while a canonic system allows many such workspaces - one 

corresponding to each predicate. For example, the Post system geperating 

all strings of ~'s of even length is: 

axiom·: aa 

rule x .... aax 

The analagous canonic system becomes 
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No more computing power can be added to a Post system. It is Sill).ply 

often more convenient to specify a process using the notation of canonic 

systems. 

Theorem 2. Any Post system oan be simulated ay a canonic system 

using predicates of degree one. 

Proof. If the Post system has the axiom w, let the canonic system 

have the rule ~ ~· If the Post system has the production 

let the canonic system have the rule 

,.J 

Then the set W describes exactly the strings th.e Post system generates. 

QED 

Observe that, in general, canons with indicat.ed context will be 

required. The equivalence in the opposite direction is of interest 

only to show the construction required. 

Theorem 3. ~ny canonic system can be simulated by a Post system. 

Proof. We will only indicate the procedure involved in the 

simulation, since the details are tedious. We let the Post system 

build up a proof in much the same way that higher level systems do 

(Chapter 1). Markers mus~ be left in the workspace to separate each 

remark in the proof, and non-determinism must be allowed so that any 

canon can "reach" arbitrarily far back for remarks proven previously. 

Reduction of Indicated Context to Cross Referencing 

Definition 2. A canon 

f 1(x
1

, ••• ,x )F
1 

/\ ••• /\ f (x
1

, ••• ,x )F t- g(x
1

, ••• ,x )G 
n- m n-m n-
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... 

where 

fi(xl, •.• ,xn) • <wOlzllwll 000 zn
1

wn
1

' ••• , wOkzlkwlk"""znkkwnk~ 

and zij e {x1 , ••• ,xn}' wij e v* is said to contain cross referencing if 

not all the. zij are distinct variables; that is, zp • zq does not imply 

that p = q for all p and q. 

Theorem J. Any canon using indicated context may be reduced to a 

rule without indicated context if cross referencing is allowed. 

Proof. Consider a premise term of the general form 

where the wi are constant strings indicating contest, and the zi are 

variables. Form the t+l new canons 

1-w A r-r 

where the Ai are new, distinct predicates. The intent of the original 

premise term can be s:l.uiulated by 

,.., 
Since each Ai contains exactly one ele.ment by construction, the effect 
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of evaluating these premises is identical to that of applying the original. 

QED 

Summary 

We have shown that successive reductions from predicates of degree 

k to indicated context and from indicated context to cross referencing 

are possible. These manipulations indicate some of the relationships 

between canons of various types. 
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