
Cambridge

\,1' ,.,
,..1....1.\::J

~ .• ssachusetts n~13q

This blank page was inserted to presenie pagination.

DEADLOCK-FREE SHARING OF RESOURCES

IN ASYNCHRONOUS SYSTEMS*

Abstract

Whenever resources are shared among several activities that hoard
resources, the activities can attain a state of deadlock in which, for
lack of resources, none of the activities can proceed. Deadlocks can
be prevented by coordination of the sharing. Efficient running of the
activities under such coordination requires knowledge of the patterns
of use of resources by the activities.

This thesis presents a study of deadlock prevention in systems in
which a knowledge of the usage of resources by the activities during
several phases of steady resource usage is available. A representation
called a demand graph is presented and used for the study of deadlocks.
The model is a general one and encompasses systems in which the activi­
ties themselves consist of more than one sequence of phases and are not
necessarily independent of each other. The analysis is applicable to
computer systems as well as systems in the realm of operations research.

*This report reproduces a thesis os the same title submitted to the
Department of Electrical Engineering, Massachusetts Institute of
Technology, in partial fulfillment of the requirements for the degree
of Doctor of Science, September 1970.

ACKNOWLEDGMENT

The author would like to place on record his gratitude to his

thesis supervisor, Professor J. B. Dennis, for exc.ellent guidance.

Prof. Dennis's connnents have resulted in a substantial improvement in

the quality of the presentation. He is also to be thanked for en-

couragement and support throughout the author's graduate studies.

The editorial connnents of Professors F. J. Corbato and C. L. Liu,

both readers, are greatly appreciated. Prof. Liu also deserves

especial thanks for his cheerful optimism and friendly counsel during

the many years of graduate study.

The Computation Structures Group at Project MAC has contributed

much, in an intangible way, to the author's education. The author's

office-mates Suhas Patil, Murray Edelberg and Lawrence Seligman pro-

vided valuable interaction. Suhas Patil is also to be thanked for

reading the first draft of the thesis.

Miss Rubin is to be congratulated for doing an excellent job of

typing the thesis under considerable pressure of time.

The author is grateful to Project MAC for financial support.

Work reported herein was supported in part by
Project MAC, an M.I.T. research project sponsored
by the Advanced Research Projects Agency, Depart­
ment of Defense, under Office of Naval Research
Contract Nonr-4102(01).

1.

2.

3.

4.

5.

6.

TABLE OF CONTENTS

Introduction

Demand Graphs for Systems with a Single Type of Resource

Demand Graphs for Systems with Several Types of Resources

Demand Graphs for Systems with Interacting and

Internally Parallel Activities

Loops and Decisions

Conclusion

Appendix. Application of the Theory of Linear Inequalities

to Demand Graphs

References

Index

Biographical Note

5

18

50

100

141

156

166

183

185

186

-5-

Introduction

Chapter

-6-

Deadlocks

As this thesis deals with deadlocks and their prevention, it is

necessary for the reader to appreciate the nature of deadlocks. Three

examples are presented below, with the aim of introducing the concept

of deadlock to the reader.

The first example concerns a canal with locks and two drawbridges

on it. The drawbridges lie on a road, as shown in Figure 1.1, which has

been laid so as to avoid a marsh and crosses the canal twice. Both the

canal and the road carry traffic in one direction only. The principal

traffic on the canal consists of barges. As a barge approaches Bridge A,

a warning is sounded when the barge is 100 metres from the bridge and,

when the bridge is free of cars, it is drawn. The bridge stays drawn

until the tail end of the barge has passed the bridge. A similar disci­

pline is followed for Bridge B.

The system works very well until a rather long barge comes in on

a day when traffic is heavy. Then it can happen that Bridge A is

drawn and a queue of cars begins to build up that extends well past

Bridge B. Then the barge reaches Bridge B while its tail end is still

under Bridge A. But Bridge B cannot be drawn because there are cars on

it! The cars on Bridge B cannot move ahead until Bridge A is lowered and

that cannot be done until the barge has moved ahead, which in turn cannot

be done until the cars on Bridge B move on! A deadlock has thus occurred

because neither the cars nor the barge can back up. The deadlock will

persist indefinitely.

-7-

Canal
--iv "" ~ '¥" '\Ill

~ A ~

"" "" ""'
-.av \if'

... \IV "' \Ill w ...
~ "" \Ill w ~ "" 'IV

Road

Fi~ure 1.1

-8-

The deadlock above occurred because of improper planning of the use

of the bridges by cars and barges. If the warning for Bridge B had been

issued at the same time that it was issued for Bridge A, the deadlock

would not have occurred. This is not just a matter of hindsight; rather,

it indicates that deadlocks cannot be prevented without a priori know­

ledge of the use of shared resources (in this case the bridge). It will

be noted that a stochastic model is useless in this case; knowing that the

probabilities of there being very heavy traffic when a barge crosses the

section of the canal between Bridges A and B, and that a barge is long

enough to cause trouble, are each 0.07, with a consequent 0.995 probability

(assuming independence of the two events) of successful operation, is of

little comfort. Deadlocks, when they are catastrophic in their conse­

quences, must be prevented.

The second example concerns a maintenance hangar for aeroplanes.

The planes that come in for servicing represent tasks for the workshop.

Planes coming in for servicing are put onto stands for service. It is not

known, when a plane comes in, how much work needs to be done on it and,

therefore, how long it will take co overhaul the plane. When a plane is

taken in, the bottom of the plane is opened up on the stand and various

kinds of jigs are inserted for the overhauling. If planes are taken in

whenever a stand is empty, it is possible to reach a condition in which the

jigs are all used up and yet each plane needs more jigs before its over­

hauling is complete and jigs are released. (It is assumed that jigs can­

not be pulled off incompletely serviced planes as they also perform the

-9-

structural function that parts that have been removed perform.) Once more

deadlock is possible. The point being emphasized here is that the

scheduling of work for the hangar is not analogous to that of scheduling

work for an assembly shop. The servicing of planes is asynchronous, in

the sense that the times for processing of planes are not the same.

Thus the principal interest is not in picking a schedule that minimizes the

average processing time but rather in letting the processing of jobs which

are accepted proceed at their own pace, subject to the avoidance of dead­

lock. In this respect, the systems considered in this thesis differ fun­

damentally from the systems analyzed in the field of Project Scheduling

as typified by [l]. Another fundamental difference is that resources

(here, jigs) are not always returned between two overhauling operations,

i.e., it is not true that at the end of an operation, all the resources

~equired for its execution become available for general use. This reten­

tion of resources is a sine qua non for the occurrence of deadlocks and

its absence in Job Shop Systems is probably why, to the best of the

author's knowledge, it has not been studied in the field of Job Shop

Scheduling. Job Shop Scheduling will be taken up later, in greater de­

tail, at the end of Chapter 3.

The third example relates to computer systems with a one-level mem­

ory and multiprocessing. Here core memory is shared and processes can be­

come deadlocked for lack of free core. Processes cannot be deprived of

memory already allocated, as this implies nullification of any partial

computation already performed. The penalty for de-allocation is thus

-10-

the expenditure of time and computational effort to recompute, and this

can be substantial. This example brings out the large cost that undoing

the consequences of deadlock can imply, if at all this is possible. That

deadlocks could be resolved in this example is not unusual. Deadlocks

can almost always be resolved by preemption. Even in the first example

the deadlock can be broken at the cost of the destruction of the cars on

Bridge B. The resolution of deadlocks is no solution at all precisely be­

cause the price paid is too high to ignore the possibility of the preven­

tion of deadlocks.

The problem of prevention of deadlocks has been approached recently

with a view to seeking elegant solutions. Some of the earlier work is

described below.

Past Work

The best known past work in this field is that of Habermann [2,3]

who extended the somewhat more specialized analysis that was given by

Dijkstra in [4]. Habermann's analysis is summarized in the next paragraph

and the one following it. However, both assume the availability of some

information about the amounts of resource that will be needed by the dif­

ferent tasks in the system. Havender, in [5], treats a somewhat more

specialized case of resource usage. The work of Habermann is the most

elaborate of the three and also provides the basis and some of the termin­

ology of this thesis.

-11-

Habermann considers sequential processes, i.e. tasks, (say m of

them) sharing several (say n) types of resource. All the units of re-

source of any one type are equally useful. Each process is required to

state the maximum amount of resource of each type that it will need ~ m ..
1.J

for process i and resource-type j. The processes are free to acquire and

release resources as they please, subject to these maxima. The analysis

asstnnes that the various maximum amounts, m .. , for a process may be needed
1.J

simultaneously, and thus there is a maximum demand vector for each process,

~i for process i, whose n components are the maximum demands for each of

the resource types. Allocation of resources is done on the basis of ac-

tual requests for additional resource from processes and so as to prevent

the occurrence of deadlock. At any instant, each process has been allotted a

certain quantity of each kind of resource so that there is a vector of al-

locations to the process. Allocation vectors are represented by ~i

(for the ith process). The combined status of the processes at any time

is thus represented by the allocation state, (a1 , a 2 , ••• am)' whose com­

ponents are the m vectors of allocation for them processes. An allo-

cation state is said to be safe if there is some sequence in which the

needs of each process can be met, one at a time, so that all the processes

can terminate. Each process is assumed to terminate within a finite amount

of time once its needs have been satisfied fully. Habermann has shown that

the definition of safeness can be restated as a test for the safeness of

an allocation state, viz that there should exist a sequence, i 1 , i 2 , .•• i
m

of the m processes so that the allocation vectors and the unused resources

vector, R, satisfy the set of inequalities:

-12-

m. - a. ~ R
-il -il

m. - a. ~ R + a.
-i2 -i2 -il

m. - a. ~ R + a. + a. + a.
-i -i -il -i2 -i

m-1 m m

Habermann has shown that deadlock can be avoided if the allocation state

is safe but not otherwise. It can be seen easily that the inequalities

above can be rearranged in a canonical order so that the left hand sides

are non-decreasing. Thus the unused resources, B:_, at any time need only

be as large as the smallest of the unsatisfied resource needs of the

users at that time! (Clearly then the amount of unused resources need

never exceed the smallest of the maximum demands, m ..)
-i

In contrast to the good utilization of resources that is found

above, when no information about resource usage is available at all, the

processes can only be run sequentially. The greater information available

in the former case is what permits more efficient utilization of resources.

This is what suggests that systems capable of handling more detailed in-

formation about resource usage should be of interest, as even better util-

ization of resources may be possible. This thesis is an attempt to study

how this more detailed information can be used to advantage.

Shoshani has worked on an extension of Habermann's analysis using

an algebraic model [6]. His results are similar to, though somewhat less

general than, some of the results obtained independently by the author

and reported here. In [7] he discusses the problem of recovery from

-13-

deadlocks with minimum cost and presents an elegant solution.

The Problem

The systems dealt with in this thesis consist of a number of

processes, i.e., unified sequences of activities. The processes are asyn-

chronous, i.e., temporal relationships between the activities of two

processes based on a single time axis are meaningless. The processes

share several kinds of resource from a pool. The various combinations

of resources needed during the activity of each process are assumed to be

+
known . The processes do not have to be sequential in activity or indepen-

+
dent of each other. The problem treated of is that of allocating re-

sources in such a system in a manner that prevents the occurrence of dead-

lock and optimizes utilization of the resources. The choice of an appro-

priate model is important for the analysis of deadlock and a graphical one

has been chosen for this purpose.

As before, an example is presented here which, it is hoped, will

prove useful in gaining the proper perspective. The example will be re-

ferred to as "the construction analogue" later on, as it deals with the

building construction industry and as the principal context for the treat-

ment of deadlock prevention will be that of computer systems.

The construction analogue concerns a construction equipment rental

company. Several contractors rent equipment from this company, the only

+These are the two areas in which Habermann's analysis is extended here.

-14-

one in the neighborhood, to build buildings which they sell when completed.

From the point of view of the company, each contractor is a process which

it serves. Each contractor knows the phases that his work will go through,

such as foundation building, wall erection, and so on, and the amounts of

each kind of equipment that he needs in each phase. He knows that when he

needs bulldozers he does not need scaffolding, and so on, so that the max­

imum needs for each kind of resource (equipment) do not, in general, oc­

cur simultaneously. He does not know exactly how long each phase will

last, because of uncertainties of weather, material supply and availability

of labor. Moreover, these uncertainties are different for different con­

tractors and so the different processes in the system are asynchronous.

Each contractor gives the company a description of resource needs in

phases and expects, in turn, to be rented equipment on a first-come-first­

served basis but without ever being deadlocked in conjunction with other

contractors. He will return equipment when he does not need it, but not

under any other circumstances; for he works in competition with other con­

tractors. Several contractors may undertake joint projects, so that their

activities are not necessarily independent. Moreover, a single contractor

may undertake several projects which can proceed independently of each

other or interact at arbitrary points in their activity. Also, a phase

in a contractor's activity, or a set of phases for that matter, may be

capable of execution with more than one alternative combinations of equip­

ment. Contractors are free to undertake new projects upon completion of

others and new contractors can enter the system. The problem that the

-15-

company faces is that of maximizing its income from the rental of the

equipment, while satisfying all its clients.

In terms of computer systems, computations correspond to the con­

tractors. New computations enter the system when they are created by the

principals (users) of the system. The computations need not be sequential.

The resources shared are active memory, arithmetic units, input output

devices, etc. There is considerable latitude in the detail to which the

analysis may be extended -- thus specialized functional units inside the

arithmetic unit, for instance, can also be considered resources if it is

so desired. The active memory is considered to consist of one level and

space in it is allocated to processes dynamically. As the memory has only

one level, it is not possible to free space in active memory by pre­

emption without destroying information. When the memory does consist of

several levels, deadlock cannot occur on account of memory. For free

space can be created by moving information to a lower level; however, the

large time delays in such movement of information that are encountered in

practice emphasize the need for prevention of deadlocks, as does the pos­

sibility of thrashing. The inability to preempt resources is more evident

in the case of input output devices such as tape-drives, plotters and

graphic output devices.

It is not proposed that a user or programmer supply the information

about resource needs; rather, it is assumed that a pre-processor of some

sort, perhaps a compiler, provides the information. It is not a fanciful

idea to expect that such information can be extracted from programs. It

is already known how to get upper bounds on core usage of non-recursive

-16-

programs, if only conservative estimates. It is not necessary to extract

further detailed information from a program although, if such information

can be obtained, it can be used. It is merely required of the principal

that he state which procedures are used, and in what sequence, in the defi­

nition of the computation. Thus, rather than determining the largest of

the memory requirements of the individual procedures making up the com­

putation and stating just that, the entire information consisting of the

sequence of procedure calls and the memory requirements of each procedure

can be made available.

An important restriction that is placed on programs to which the

study undertaken in this thesis applies is that they not contain unre­

stricted recursion; for it is impossible to guarantee that deadlocks will

be prevented if the demands of a process can increase beyond bound.

Plan of the Tilesis

Chapter 2 introduces the demand graph as the model to be used to

represent the systems of interest. Specialized demand graphs of systems

with sef!Uential processes and a single type of resource are analyzed here.

A non-enumerative algorithm is presented for determination of safeness,

a concept related to deadlock avoidance, in this chapter.

Chapter 3 extends the analysis of Chapter 2 to systems with more

than one type of resource. The concepts of limited-backtracking and

linearity are introduced and it is shown that linear algorithms for

-17-

determination of safeness do not exist. The algorithm of Chapter 2 is

also extended.

Chapter 4 introduces interactions between processes into the pic­

ture. The analysis of Chapter 3 is extended to this case.

An initial attempt at the handling of decisions, loops and alter­

native ways of satisfying the resource requirements of a process is made

in Chapter 5.

Chapter 6 presents some concluding thoughts,and the appendix

describes some properties of demand graphs deduced by the use of the

theory of linear inequalities.

th

-19-

Problems of the Use of Continuous Time

It was pointed out in Chapter 1 that the systems of processes

being investigated in this thesis are those in which information about

the usage of resources during the activity of each process is available.

A natural way to think about such information is as graphs of resource

usage with time. Figure 2.1 illustrates such graphs for two processes

which share one kind of resource. Unfortunately, such graphs use time

axes which are meaningful only for the respective processes; for the

processes are asynchronous and so no temporal relationships between the

activities of two processes that are based on a single time axis can be

defined. The graphs are thus incomparable. However, from the point of

view of resource allocation, only the epochs corresponding to changes in

resource usage are of interest -- the length of time, on any axis, be­

tween such epochs is irrelevant. Thus, only these epochs need to be rep­

resented in an abstract model for the study of deadlocks and resource al-

location. The next section describes such a representation, viz the

demand graph. The concept of a demand graph was inspired by Holt's work

[8] on the representation of events and by the realization that

it is the class of events, which correspond to changes in resource usage,

that is of interest in the study of deadlocks.

- :z 0-

Resource Requi rf'ment Resource Requirement

Process-time Process-time

User 2

Figure 2.1

-21-

Demand Graphs

A demand graph is a finite directed graph with arcs and nodes;

the nodes are called transitions. Associated with each arc is a quantity

called a demand, chosen from a set 6. A quantity called the capacity,

which is represented by C and also chosen from the set 6, is associated

with the demand graph. The set 6 t
is ordered (partially or totally)

and the demands associated with the arcs of a demand graph are always

less than or equal to the capacity associated with the demand graph.

Demand graphs are generally dis-connected. In any case, every compo-

nent of a demand graph must contain at least one node that has in-

degree zero and one node that has out-degree zero.

The study of demand graphs in this thesis will proceed from a re-

stricted class of demand graphs, called Rectilinear Scalar Demand Graphs

and studied in this chapter, to progressively less restricted classes.

Rectilinear Scalar Demand Graphs

Rectilinear Scalar Demand Graphs, or Scalar Demand Graphs for brev-

ity, are acyclic demand graphs that have the property that the components

are unilateral, i.e. for every pair of transitions at least one transition

is reachable from the other by a path. The components thus look 1 ike

t '
See gz.7.

-22-

chains and for this reason they are formally termed chains. The sec-

bion of a chain between any two transLcions will be called a segment of

the chain; clearly, an arc of a chain is a segment of that chain. The

demands associated with the arcs of simple demand graphs belong to the

set of non-negative integers, and so does the capacity, c, associated with

the system. The demands associated with the first and last arcs of each

chain are 0. These arcs are called initial and terminal arcs of the

chains, respectively.

The Scalar Demand Graph is a model for a class of systems of pro­

cesses in which resources are shared. The chains of a Scalar Demand Graph

correspond to processes in the system represented by the graph. The

transitions correspond to the epochs at which a change in resource usage

occurs and the arcs to phases of activity of the processes, i.e. periods

of steady resource usage. The processes can be said to be sequential as

each phase can be followed by exactly one other phase. Moreover, as the

sub-graphs consisting of chains are disjoint from each other, the pro­

cesses they model can be said to be independent. The only interaction

between processes is that due to sharing of resources. Later chapters

will contain discussions that relate to broader classes of systems in

which the processes are not so constrained. The demands associated with

the arcs of the graph represent the demands for resources associated with

the corresponding phases (of activity) of the processes. As the demands

are integers, the processes modelled share a single type of resource from

a connnon pool. The capacity, C, associated with a demand graph repre­

sents the size of this pool or the number of servers in this pool. The

--------··-----

-23-

different servers are identical in their capability to serve and thus the

resource can be said to be homogenous ~ in fact, a resource of any one

type will always be considered to be homogeneous. The requirement that

adjacent arcs have distinct demands is consistent with the fact that the

transitions represent changes in resource usage. Needless to say, the re-

sources are shared in an unpreemptable manner so that deadlocks can occur.

The zero demands associated with the initial and final arcs of each chain

represent the fact that processes which are uninitiated or terminated re-

quire no resource.

Some of the notation to be used in the discussion which follows is

described next.

Notation

A demand graph is denoted by D with appropriate superscripts when

two or more graphs have to be distinguished. The chains of a demand graph

will be denoted by xi (chi-i) where the suffix is an integer and serves

to identify the chain being denoted. In general, there will be m chains

so that i assumes values from the set of integers (1, 2, 3, ••• m}, which

will be denoted by [l, m]. The arcs of the demand graph are denoted by

i their labels, aj' where the superscript i identifies the chain and the

subscript j the position of the arc on this chain. The arcs on a chain

are numbered in increasing order in the direction of the arrows. The

quantity n.
]_

represents the number of arcs on the chain x ..
]_

Thus j

-24-

takes values in the set [l, ni] for arcs on Xi· Individual arcs are some-

i
times denoted by a and ~. The demand associated with an arc a. will

J
i

be represented by d(a.). The arrows on the chains will be assumed to be
J

directed downwards, so that "down a chain" means in the direction of the

arrows.

Figure 2.2 shows a typical demand graph from the class of Scalar

Demand Graphs and illustrates some of the notation.

Slices of a Demand Graph

A slice of a demand graph is a set of arcs, one from each chain;

the slice is said to intersect the chains in the respective arcs. A slice

is thus conceptually similar to a cut-set of the demand graph - it par-

titians the transitions of a demand graph into those that lie above it and

those that lie below it. The transitions that lie above the slice make

up the predecessor set of the slice and those that lie below, the sue-

cessor set of the slice. The initial slice of a demand graph consists of

the set of initial arcs and the terminal slice consists of the set of ter-

minal arcs of the graph.

Slices of a demand graph are represented by lower case Greek

letters other than a and ~ - usually y. The initial slice of a demand

graph is denoted by y
1

and the terminal slice by Yr· The arc from a

chain X.
J

that goes into a slice y is represented by y tI x ..
J

It is

frequently necessary to refer to a slice obtained from another one by a

1
Ci n ~l

1

()

d ()

()

-25·-

2
Ci

n -1
2

0

d ()

()

Capacity C

Figure 2.2

m
a

n
m

0

d()

0

-26-

substitution of arcs. For this purpose a substitution operation on

slices is used. The operation is represented as (x/y), and read "sub-

stitute arc x for arc y"; arcs x and y must belong to the same chain.

Thus (x/y)y represents the slice obtained by replacing arc y by arc x

in y. The operation can be repeated so that expressions of the

form (Ct' 1 /ct)(~' /~)y, which means "replace a and ~ by a' and ~', respec-

'tively, in y", are possible. The notation (a~/y t:l x.)y represents the
1 1.

slice obtained when the arc y t:Ix. from the slice y is replaced by the
l.

i arc ct .• Slices are also represented by a string made up of the labels
J

of the arcs from x 1 , x 2 , ..• xm (in order) that make up the slice. Thus

1 2 m 1 1 2 2
(CilCt'l . . . al is another notation for Yr and (a /ct1)(a !ct1) ...

nl n2
m m 1 2 m Figure 2.3 shows several (ctn /al)Yr is Ct'n1 Cin2 Ci or YT· n m m 1 2 slices; is 1 2 is and so on. As has been done in Y1 ct1 0:2' Y2 cv2ct1,

Figure 2.3, the arrows on the arcs of demand graphs will be omitted in

the figures that follow, unless clarity demands that they be shown.

The slices of a demand graph represent all the states of the sys-

tern of processes; the arcs composing a slice indicate which phase each

process is in. The state of the system is also known as the allocation

state of the system since the phases are characterised by steady re-

sour·ce usage. It should be noted that the allocation state is not de-

termined by the set of m demands (and also allocations) of the m processes

but rather by the set of m phases -- the same set of demands may be en-

countered for several combinations of phases. The allocation state of the

system before any process is initiated is represented by the slice y1 .

-27-

Figure 2.J

-28-

As the processes are initiated and progress, the slice representing the

current state, i.e. the current slice, moves to lower and lower posi-

tions in the demand graph until the state where all the processes have

terminated is reached. The last state is represented by the slice Yr·

Relations on the Set of Slices of a Demand Graph

Two relations, viz "earlier than or the same as" and "later than

or the same as", can be defined on the set of slices of a demand graph.

The relations have the same meaning as their names suggest intuitively.

A slice is said to be earlier than or the same as a slice

the predecessor set of y
2

includes the predecessor set of y1 • Pred­

ecessor sets are represented by P(y) and successor sets by S(y).

The relation "earlier than or the same as" is written "<". Thus

yl .:; Y2 if P(y2) :! P(yl). Similarly Y2 is later than or the same

as Yt , written y2 > y1 , if S(yl) :i S(y2)' i.e., if the successor set

of Y1 includes that of Y2· A slice Yz is said to be an immediate

successor of a slice yl if yl ~ Y2 and if the predecessor set of

y2 is larger than that of y1 by exactly one transition. In general,

a slice has m immediate successors. The immediate successor of a slice

y is denoted by S. (y), where i identifies the chain on which the suc-
1.

cessor differs from y in the arc used. In Figure 2.3, Y1 is the

same as s2 <Yo) while Y3 is Sl(yl). The strict relations corres-

ponding to ti -<;" and II>" are represented by II -<II and ">"'

respectively, and are mutually complementary.

-29-

The relations "~", ";...", "-<" and ">-" are also used for arcs

with the same meanings, i.e., 0:11 ~ 0:12 , for instance, means that arc 0:11 lies

above arc on some chain. In this connection, the arcs of a chain

may be regarded as degenerate slices, i.e., slices of demand graphs that

consist of single chains.

Partial Orderings and Lattices

A . 1 d . . fl . t . t . d t . t. partia or ering is a re exive antisymme ric an ransi ive

relation. For example, the ordinary "less than or equal to" relation for

integers is a partial ordering. A set with a partial ordering defined on

it is a partially ordered set. As explained above, the set of integers

is an example of a partially ordered set. A set is said to be totally

ordered if every pair of elements is related by the partial ordering re-

lation. Thesetof integers, for instance, is totally ordered. The set

of pairs of integers is only partially ordered ~ for neither (2,3) ~ (3,2)

nor (3,2) ~ (2,3) is true when "S:" is interpreted as requiring that "~"

hold for each pair of corresponding components.

The least upper bound or l.u.b. of a subset, w, of a partially or-

dered set, 0, is the smallest element of 0 that is greater than or

equal to every element of w. Thus the least upper bound of {3,5,7} is

7 while that of {(3,2), (4,1), (2,5)} is (4,5). The greatest lower bound

tReaders unfamiliar with these terms may wish to consult Birkhoff and
MacLane's book [9] or a similar work.

-30-

or g.l.b. of a subset, w, of a partially ordered set, 0, is the largest

element of 0 that is less than or equal to every element of w.

A lattice is a non-empty partially ordered set, every pair of

elements of which has a l.u.b. and a g.l.b. A lattice is said to be a

complete lattice if every finite subset of the lattice has a l.u.b. and

a g.l.b. It can be shown that every finite lattice, i.e. a lattice with

a finite number of elements, is complete. Every finite lattice, there-

fore, has a least element and a greatest element which are respectively

the g.l.b. and l.u.b. of the lattice. The set of pairs of integers from

1 to 10 is a lattice whose least element is (1,1) and greatest element is

(10, 10). A lattice is a distributive lattice if the operations of ex-

tracting g.l.b. 's and l.u.b. 's distribute over each other. The lattice

in the previous example is distributive.

An element a of a lattice is said to cover another element b

of the lattice if b ~ a but there is no other element x such that

b ~ x ~ a. A connected chain in a lattice is a set of elements

xl, x2, ... x such that each x. covers xi-1' the length of such a
n }_

connected chain is n - 1. Two elements x and x' are said to lie on

a directed path from x to x' if there exists a connected chain whose

first element is x and last element is x'. The length of such a di-

rected path is the length of the connected chain. The Jordan-Holder-

Dedekind Theorem for lattices implies that the lengths of all directed

paths between a pair of elements of a distributive lattice are equal.

For the example in the previous paragraph, the length of any directed

-31-

path from (2,3) to (5,5) is 5 since 4 elements are required to connect

them, e.g. (3,3), (4,3), (5,3), (5,4). Because of this property of dis-

tributive lattices, the elements of a distributive lattice can be ar-

ranged into ranks ~ elements at the same distance from the least ele-

ment of the lattice lie on the same rank.

The Lattice of Slices of a Demand Graph

The slices of a demand graph of the kind illustrated in Figure 2.2

form a distributive lattice under the relation " """. The greatest ele-

ment of the lattice is while the least element is Figure 2.4

shows the lattice of slices of the demand graph of Figure 2.3. The

height of the lattice, i.e. the length of a directed path from y1 to

is (n
1

- 2) + (n
2

- 2) + + (n - 2) or the total number of trans­
m

itions in the graph.

The l.u.b. of the two slices and Y2 in Figure 2.3 is

while their g.l.b. is y
0

. This can also be seen in Figure 2.4 where

is and are
1 2

a 2a 2 and

1 2
Ci.r 1Cir2 .•• In general, the l.u.b. of two slices

is the slice
1 2 m

at
1
at

2
•.• ct~ where ti = 1.u.b.

(r., s.), and similarly for the g.l.b. of two slices.
1. 1.

_32-

'L '2
(12 04

-33-

Feasibility and Safeness of Slices

A move on a chain in a demand graph is a function whose do-

main is the set of all slices which intersect xi in a given arc and

whose range is the set of innnediate successors of these slices on x ..
1.

A move is thus defined by a pair of typical elements from its domain

and range. If a slice, y, is in the domain of a move, µ, then the

corresponding element, y', in the range of µ is the slice resulting

from the application of the move to the slice y and is represented by

yµ. If a move µ, leads from y1 to Yz then µ is also represented

by y1 4 Yz· Two moves, µ1 and µ2, are said to be connected if they can

be represented in the form y1 4 Yz and Yz 4 y3 , respectively. A macro----
move is a sequence of moves, every pair of which is connected. The se-

quence of slices y1y2y
3

... yk is a connected sequence of slices if the

sequence of moves y1 4 y2, Yz 4 y3 ... , yk-l 4 yk is a macro-move. A

macro-move from the initial slice, y
1

, of a demand graph to its terminal

slice, yT' is called a run. A uni-chain macro-move is a macro-move all

of whose components are moves on the same chain.

A slice is said to be feasible if the stnn of the demands asso-

ciated with the arcs in it is no greater than C, the capacity associated

with the demand graph. A slice that is not feasible is infeasible. A

feasible slice of a demand graph is safe if there exists a macro-move

from it to the terminal slice of the graph and if the slice resulting

from the application of each move in the macro-move is feasible, i.e.,

-34-

if there exists a connected sequence of feasible slices from the slice

in question to the terminal slice of the graph. A slice that is not

safe is said to be unsafe. Figure 2.5 shows a safe slicet and the moves

that lead from it to In terms of the lattice of slices, a slice

is safe if there exists a directed path from y to Yr' the terminal

slice of the graph, that uses only feasible slices.

y

In terms of the system of processes represented by a demand graph,

a feasible slice represents a meaningful allocation state. A feasible

slice that lies on a directed path from y
1

which uses only feasible

slices represents an attainable allocation state. That a slice is safe

means that there exists a schedule for the processes that leads, from the

state of the system represented by the slice, to the state in which all

the processes have terminated; for each feasible slice resulting from the

application of a move to a feasible slice that represents an attainable

state, itself represents an attainable state. A slice all of whose

immediate successors are infeasible represents a state of deadlock.

The slice representing the current state is referred to as the current

slice. That the current state is not safe, or is unsafe, implies that

every sequence of macro-moves when applied to the current slice eventu-

ally leads to a slice all of whose immediate successors are infeasible;

there is no schedule for the processes that permits all the processes to

complete deadlock is unavoidable. Because of this association of

tit should be noted that if Habermann's analysis were used in this ex­
ample, the slice marked safe would be declared unsafe. The lar~er num­
ber of slices that can be safe is indicative of the ability to improve
resource utilization that the systems discussed here possess.

-35-

'X2

5
A safe slice

---1----------
----------- ---

6

6 8
- - -t- - ..

----1----
------+-- -

0 0

l'T

Capacity 10

Figure 2.5

-37-

§2.10 Representation of Habermann's Systems

It will be recalled from the discussion of Chapter 1 that

Habermann studied deadlock avoidance in systems of independent sequential

processes in which the only available a priori information about resource

usage by processes is that of the maximum amount of each kind of re-

source that a process uses. Such systems will be known as Habermann

systems. As the discussion in this chapter (and Habermann's analysis in

[2)) concerns systems with a single type of shared resource, the maximum

amount for that resource can be assumed to be available in such a system.

The demand graphs of Figure 2.6a and b represent such systems. In

Figure 2.6 max. represents the maximum amount of resource that process i
i

ever uses. There are max. arcs, in addition to the initial and terminal
i

arcs, on chain xi in Figure 2.6b. Figure 2.6b permits representation

of allocation states in which a process has been allocated some resource

but not the maximum amount it ever needs ~ this is not possible in Fig-

ure 2.6a.

In either of the demand graphs of Figure 2.6, it is clear that a

slice is safe if and only if a sequence of uni-chain macro-moves, each

of which consists in crossing all the remaining transitions on the chain,

can lead from the slice to yT by way of feasible slices alone. This

is because the demands increase monotonically up to the penultimate arc

on each chain. When interpreted this means that a state is

-38-

0 0

max
1

0 0

Figure 2.6a

0 0

l 1

2 2

0 0

Figure 2.6b

0

max
m

0

0

1

2

max -1
m

max
m

0

-39-

represented by a safe slice if and only if the processes can be scheduled

so as to run to completion one at a time (no interleaving of processes).

This is exactly Habermann's Theorem 1 in section 2.3 of his thesis [2].

As they stand, neither of the demand graphs of Figure 2.6 really

model Habermann systems in all their detail when Habermann's model is

interpreted broadly. Firstly, they suggest that allocation to processes

is made either all at once (Figure 2.6a)or one server at a time (Figure

2. 6b) and this need not be assumed in Habermann sys terns. However, as

phases of processes may last for vanishingly small lengths of time, the

representation of Figure 2.6b does not represent a serious distortion.

Secondly, after a process has been allocated the maximum amount of re­

source it ever uses, both the graphs suggest a sudden return en bloc.

This behavior is not necessarily shown in Habermann systems either. How­

ever, the next section shows that partial return of resources by pro­

cesses at unknown stages can be represented in the demand graphs for such

systems. Thus Habermann's systems are indeed special cases of the sys­

tems that can be represented by rectilinear demand graphs.

§2.11 Rynamically Available Resource Usage Information

Consider the demand graph of Figure 2.6b. Suppose a slice such

as y were safe. This implies the existence of a sequence of uni-chain

macro-moves that lead from y to yT by way of feasible slices and each

of which involves crossing all the remaining transitions on a chain.

-40-

Consider a segment of a chain that lies entirely below y and that does

not include the terminal arc. If this segment is replaced by another

segment, that is of any length whatsoever and the demand an whose arcs

does not exceed the largest demand of any arc in the segment removed,

then it is clear that the same sequence of macro-moves can still be used.

The slice y is thus safe in spite of this substitution. Figure 2.7 il­

lustrates this for a specific example. For general scalar demand graphs

of the kind illustrated in Figure 2.2, if the replacement is restricted

to segments consisting of single arcs, then a similar assertion can be

made.

One can interpret the discussion of the previous paragraph as im­

plying that any information about future resource usage that becomes

available dynamically can be acconnnodated without deleterious effect if

the new information does not contradict an earlier and more conservative

estimate. In general, the addition of such information makes safe some

states that were unsafe before and thus improves the potential for ef­

ficient utilization of resources (see Figure 2.7b).

It should be clear, now, that it is possible to use demand graphs

to represent systems that exhibit the kind of behavior that Habermann

systems can display, i.e., systems that return resources partially.

The discussion of this section shows that demand graphs can be

used to represent systems in which additional information about re­

source usage becomes available during the running of processes.

-41-
X1 X2

' ,
() ()

• •
l

I I

2 2
I 4 cr (safe)

y J 3
(unsafe) • • y

a 4 4
4 I

• 5
I

()

()

•
CapRcity = 6

Figure 2.7a

')(1 'X2

' ' () ()
I I

1
• ~

2 2
CT

a (.safe) • j

y' 3 3
y' (safe)

c •
Replacement for ry

2 4
•

4 ()
~ •
~

5

ti
()

CRpacity = fi

Figure 2.7b

-42-

§2.12 Safeness Tests

It was indicated in section 2.8 that the avoidance of deadlock re-

quires ensuring that the allocation state is always represented by a safe

slice. It is important, therefore, to be able to test a slice for safe-

ness.

One could examine all the slices of a demand graph for feasibility

and eliminate those slices that are infeasible from the lattice of slices.

Then a slice is safe if a directed path from it to still exists.

By examining every slice for safeness in this manner one could mark all

slices that are safe. An allocator desirous of investigating the safe-

ness of a slice, then, need merely determine if it is marked safe.
m

Unfortunately, there are IT n. slices in the lattice while in any run
m i=l i

only 1 + ~ (n. - 1) slices are encountered. l-fuch of the effort in such a
i=l i

scheme is thus wasted. Moreover, if a new chain is added to the graph

(corresponding to addition of a process to the system), a similar compu-

tation has to be re-done! For these reasons, the safeness tests that are

of interest to a resource allocator are incremental tests, i.e., those

that test a single slice at a time for safeness -- presumably the slice

that represents the next state that may become current. Such tests will,

in general, attempt to construct a sequence of moves from a test slice

to YT while ensuring that each move results in a feasible slice.

The next section describes a safeness test in the form of an al-

gorithm for the construction of a sequence of the kind described. An

•

-43-

important virtue of this algorithm is that it is non-enumerative, i.e.,

it does not require the examination of all possible sequences of moves

from the slice being tested.

§2.13 The Safeness Algorithm

The slice being tested is assumed to be cr. The slice y is a

variable of the algorithm, as is the set fX} which consists of chains

of the demand graph.

Step Q: Set y equal to cr and {x} equal to {xl'x2, ••. ~}.

Go to step 1 if y is feasible. If y is infeasible go to

step 5.

Pick a chain from {X} ~call it x .• Go to step 2.
1

Attempt to construct a uni-chain macro-move down X· from y
1

so that the slice resulting from each component move is fea-

sible. Terminate the macro-move at the first point where a

slice ~ call it y' ~ results that satisfies both

d (y I t1 X.) S: d (y t1 X •)
1 1

and d cs. < Y') t1 xi) /. d < Y' t1 x.)
1 1

If such a sequence can be constructed go to step 4; if not

(i.e., if some move results in an infeasible slice) go to

step 3.

-44-

Delete xi from (X}. If (X} is now empty, go to step 5;

if not go to step 1.

If y' is not yT' then replace y by y', set (X} equal to

(x1,x2, ... ~}and go to step 1. If y' is yT then stop

and report success (a is safe).

Stop and report failure (a is unsafe).

It is clear that when the Safeness Algorithm (called SA for

brevity) terminates successfully, a is safe. Theorem 2.1 below shows

that when SA terminates unsuccessfully, a must be unsafe. An interpre-

tation of the algorithm shows that it seeks the first local minimum of

demand that can be found next. When such a local minimum is found, the

search is iterated for the new slice and this continues until is

reached. Figure 2.8 shows a sequence of moves constructed by means of

the Safeness Algorithm.

The proof of Theorem 2.1 uses the concept of barriers. A barrier,

~.,on a chain, X·, with respect to a slice
l. l.

y is an arc on that is

the first arc below y for which the predicate ((~./y nx.)y is an in-
l. l.

feasible slice} is true.

THEOREM 2.1 A feasible slice, a, of a demand graph, D, is

safe if and only if the Safeness Algorithm terminates sue-

cessfully when applied to a and D.

/lit

-45-

'X 2

T ,

y > y I --->--'-:------------t----------,,,_j-­

"

y" YIP_

4 7

8 y

')
/

/

7

0 /
/

I

I

l(jf

y I

I
I

I

I

6

3

I
/0

2

1

/
/ 6

I

11111

y
3

I

0
y ,y ,y /

i

Capacity 10

Figure 2.8

lit lfll 111,, y,y ,y

1(1/p

-47-

An examination of SA shows that every uni-chain macro-move in

Step 2 of SA leads to a slice y' which satisfies:

d(y' C xi) s d(0) for all arcs a that lie between y and

y' (inclusive) on xi.

Thus it is seen, bv a clia]_i-, of deductions, that satisfies

for all chains x ..
1

y.) ·-: cl(;) for all arcs Ci that lie between CT and
1

Yo (inclusive) on Xi

Therefore, in partictilar,

Therefore,

Case 2 .,o

'.) < cl(y ·-y.)
I s l

·y
s

Y)v is feasible; for , j. 's

x . -< r:i .
1 J

y
s

is feasible.

In this case (as exnlained at the beginning of the proof) too

and so (yo ::-, x. Ir
J s

f ea s i b il i ty of y .
s

,,
, '

'/ j) < d(ys ::-= xj)

s
is a~ain a feasible slice by virtue of the

Thus in either case. 0:1e can replace all the arcs in ys except

the correspo;1 l arcs or y
0

and still get a feasible slice.

But the resulting slice l" Yo :=- l\ho and this is infeasible by as-

sumption 1 This contra .!L:·L10· ir:1plies that y
0

and hence the sequence

cannot exist.

fhat c is sare il ':.•\terminates successfull°', follows from the

definitions of sa!et;ess :F·l :i JL::cessful termination.

Q.E. \!.

-48-

Theorem 2.1 shows that any macro-move of the kind that leads from

cr to a slice y' , ... ' which is of the form described in Step 2 of SA

can be applied fearlessly to cr in the construction of a feasible se-

quence of slices from cr to yT backtracking beyond y 11
···' is never

required. This leads to Corollary 2.1.1.

COROLLARY 2.1.l Let cr be a safe slice of a demand graph

D and let cr. be an innnediate successor of a resulting
]_

from a move down a chain X·· Let cr. be feasible and let
]_]_

µ1µ2 ... ~be a macro-move that leads from

cr! by way of feasible slices. Then if
]_

(i) d (cr ! D X.) :.::: d(cr Dx.)
]_]_]_

and (ii) d (cr ! DX.) :.::: d (cr DX.) for
]_ J J

all chains xj on which

differ in the arcs chosen

then is a safe slice.

cr.
]_

cr !
]_

to a slice

and cr

The corollary follows since µ1µ2 ... ~is a macro-move of the

kind described in the paragraph above Corollary 2.1.1.

If the macro-move µ1µ2 ..• ~ in Corollary 2.1.1 is a uni-chain

macro-move down then the test is simplified considerably. Thus it

should be profitable to look for such a uni-chain macro-move. In any

case, as long as cri < yT' some labour is saved.

-49-

COROLLARY 2.1.2 Let a be a safe slice of a demand graph

and let a. be S. (a).
l. l.

then a. is safe.
l.

Then if d(a. J:1 x.) ~ d(a J:1 Xi·)
l. l.

This corollary follows from Corollary 2.1.1 since the move a_. a.
l.

is itself the macro-move that satisfies the conditions of that corollary.

Theorem 2.1 and its corollaries point out that the Safeness Algo-

rithm, shortened as suggested in Corollary 2.1.1 and 2.1.2 whenever pos-

sible, provides a simple test for the use of an allocator of resources.

It should be pointed out that a sequence of feasible slices from

a to yT which is constructed by the Safeness Algorithm does not repre­

sent the actual schedule or order in which processes will be allowed to

proceed (by the allocator). The actual order may be quite different,

being determined by actual requests from the processes, to be permitted

to proceed to their respective next phases of activity, together with

considerations of safeness of the slices corresponding to the allocation

states of the system which would result if the requests were granted.

This is the incremental aspect of tests that was referred to earlier. It

is this incremental approach that permits dynamic increase of the number

of processes in the system as well as the dynamic changes, in the de-

mand graphs of processes already in the system, that were described in

section 2. 11.

-51-

Rectilinear Vector Demand Graphs

The discussion and analysis of Chapter 2 dealt with the represen­

tation and analysis of systems in which a single type of resource is

shared from a pool in an unpre-emptable manner. As the construction

analogue of Chapter 1 illustrates, however, there are many systems in

which more than one type of resource are so used. An extension of the

analysis of deadlocks to systems with multiple resource types, or

multi-resource systems, for brevity, is therefore of interest and is the

goal of this chapter.

Sections 3.11 and 3.12 illustrate how the sharing of locked data

bases in computer systems and Job Shop Scheduling can be analysed using

the representation and analysis developed in Sections 3.2 to 3.10.

Multi-resource systems can be represented by Rectilinear Vector

Demand Graphs, or Vector Demand Graphs for brevity, which are struc­

turally identical to Rectilinear Scalar Demand Graphs except that 6

for such graphs is the set of n tuples of non-negative integers for some

specified n. The arcs of Vector Demand Graphs, therefore, have n-tuples

or vectors of demand instead of scalar demands associated with them­

selves. The vectors of demand are represented by ~(a) to emphasize this

difference. As before, convention dictates that the initial and terminal

arcs of each chain have zero demand, i.e. (O, O,

them. Figure 3.la illustrates such a demand graph.

O), associated with

'

•
I

•

y

y'

.-

-52-

(O,O)

(1,1)

(4,4)
--- -.--......

(8,2) __ ><...._, -- .._

(O,O)

Capacity= (10,10)

Demand Graph D

Figure 3.la

(0,0)

(1,1)

_(_4,4}

(4,2)

(8,2)

(0,0)

•

Capacity= (10,10)

Demand Graph D Transformed

Figure 3.lb

(0 ,0)

Yr
(2, 2)

(3, 3)
y,yl

(1,

(0,

7)y' ,y2

0)
YT

(0,0)

(2,2)

(3,3) y

(1,3)

(1,7) y'

(0,0)

-53-

The terminology of Chapter 2 carries over mutatis mutandis

the qualification refers to the replacement of a scalar capacity, C, by

a vector capacity, ~' and of scalar inequality by vector inequality.

A Transformation for Vector Demand Graphs

A peculiar phenomenon appears in Vector Demand Graphs in

connection with safeness. It will be noticed in Figure 3.la that the

slice of D marked y is unsafe because both y
1

and y2, the two slices

which are innnediate successor slices of y, are infeasible. However, y'

is feasible. Moreover, in the system which is represented by D, the

state represented by y' can be attained just after that represented by

y; for it merely corresponds to responding (favourably and) simultane-

ously to the requests from two users to be permitted to proceed to their

respective next phases of activity. Thus the state corresponding to y

should be safe.

To be able to make y safe would require changing the definition

of a move to permit crossing of several transitions in a move.

However, representation of such simultaneous or multiple moves

in the lattice of slices requires addition of a large number of paths to

the lattice; for at each node of the lattice there would be, in general,

1 ~ r ~ m

-54

possible successors, viz the slices that can be reached by multiple moves

that involve crossing up to r transitions simultaneously. Moreover, an

algoritlun such as the Safeness Algorithm has to examine these 2r possible

successor slices one by one until its test is satisfied. This increases

immensely the amount of work involved in examining the safeness of a

slice.

Fortunately, a transfonnation of the demand graphs (as illustrated

in Figures 3a and 3b) produces a demand graph in which every slice of the

original demand graph that was safe, when multiple moves are pennissible,

is safe when only single moves are permissible. The transfonnation op-

erates on pairs of adjacent arcs, typified by and say, on each

stood in the usual vector sense of each component of the Left Hand vector

being less than or equal to the corresponding component of the Right Hand

vector), an arc Ci I

1 is introduced between and with a demand

which is the greatest lower bound of the two vectors ~(o:1) and i(o:
2

).

Thus ,-,, <'. Ci I <'. n;

v:l 1 ; 2 It should be clear that

these arcs which are inserted provide a sequence of single-transition

moves between every pair of slices of the type y and y' in Figure 3.1,

with only feasible slices resulting from the moves.

As the transfonnation described above is vital to the accuracy of

representation and analysis of multi-resource systems by demand graphs,

it will be presumed that such a transformation is carried out before any

algorithms or tests are applied to demand graphs. However, the trans-

formation is not crucial to the analysis that is presented.

-55-

The Modified Safeness Algorithm

As in Chapter 2, an incremental algorithm for the determination

of the safeness of a slice ts desirable. It is tempting to try and use

the Safeness Algorithm of Chapter 2 with a vector comparison in step 2,

instead of a scalar one. TI1at step would read:

Step l: Attempt to construct a uni-chain macro-move down

',i so that the slice resulting from each component

move is feasible. Terminate the macro-move at the

first point where a slice y' is reached that

Sil tis fies:

.:_l(y' :::: '\.) s; Q(Y c-i x.) where II~ n is
J_ J_

d ((y I) ,.__,
xi) 1. ~(y' x.)

interpreted as
and S.

J_ J_

holding for all

components s imu 1-

taneously.

If the attempt is successful, go to step 4; if not

(i.e., if some move results in an infeasible slice),

go to step 3.

Consider Figure 3.2a. \Jere one to apply the algorithm as modified

above to slice y, one would get to y", by way of y', and discover that

no moves from y" result in feasible slices. Unfortunately, the failure

of the algorithm at y" does not imply (as it would in the case of the

Safeness Algorithm for Scalar Demand Graphs) that y is unsafe. For

-57-
,'ri(,'(

the sequence of slices y - y - y in that figure, shows part of

a full sequence of feasible slices from y to yT.

* The slice y suggests that avoidance of erroneous moves requires

changing the condition to be satisifed by y' in step 2 of the algorithm

above to

for all slices o that lie between
y and y' (inclusive)

and d(S.(y') Ox.)'/. d(y' Ox.)
- i i - i

Corollary 3.1.2 of Theorem 3.1 below proves the validity of this conclu-

sion. The Safeness Algorithm of Chapter 2 with the condition in Step 2

replaced according to this suggestion will be referred to as the Modified

Safeness Algorithm.

A few definitions are required for the precise statement of the re-

sult of Theorem 3.1, and these follow.

The Prefix Property

The set of extensions, ED (y)' of a demand graph, D, with respect

to a slice, y, of D is the set of all demand graphs which are identical

to D up to y, have the same capacity associated with themselves as D, and

have at least one arc below y on each chain. The demands

associated with the arcs below y are not constrained except by the def-

inition of a Vector Demand Graph. A member of ED(y) is called an ex­

tension of the demand graph, D, with respect to the slice y. Figure 3.2b

-58-

shows an extension of the demand graph of Figure 3.2a with respect to Y

Extensions of a demand graph with respect to a slice represent possible

continuations of the demand graph beyond that slice.

A feasible slice, y, of a demand graph, D, which can be reached

by a connected sequence of feasible slices from an earlier slice, a, is

said to possess the prefix property with respect to the slice, a, if in

all extensions of D with respect to y in which a is safe, y is safe

too. Let P be the prefix relation '~assesses the prefix property with

respect to ". TI1en P is clearly transitive, so that cPy and yPy'

implies oPy'. This transitivity is very valuable and will be utilized

extensively.

Necessary and Sufficient Conditions for the Prefix Property

In terms of the prefix property, it will be seen that for Scalar

Demand Graphs, the con di ti on of Step 2 of the Safeness Algorithm (see

Chapter 2) is sufficient for possession of the prefix property by a slice,

i.e. by y' with respect toy. Lermnas 3.1 and 3.2 state necessary and

sufficient conditions, respectively, for a slice of a Vector Demand Graph

to possess the prefix property with respect to another slice. In these

lemmas and in the rest of this thesis, the term "accessible" means "can

be reached by a connected sequence of feasible slices". Also,

"d (a slice)" is the concise notation for the sum of the demands on the

arcs in the slice - the object in parentheses may be only a part (subset)

of a slice and then the notation stands for the sum of the demands on the

-59-

arcs in that part of the slice. The term "a move fits a slice feasibly"

in the proofs of these lemmas means that the slice, y, is feasible and

in the domain of the move, µ, and yµ is a feasible slice. A macro-

move fits a slice feasibly if each component move fits feasibly the slice

resulting after the previous component moves have been applied.

Note: The case in which a slice of a demand graph passes through only

one arc that has a non-zero demand is a degenerate one. That is to say,

every such slice possesses the prefix property with respect to any earlier

slice from which it is accessible; for one process-at-a-time completion is

possible, as the demand on each arc of the demand graph does not exceed

the capacity of the graph. For this reason that case has been excluded

from consideration in Lemmas 3.1 to 3.3 and in Theorem 3.1.

LEMMA 3.1 Let D be a vector demand graph and let y be a

feasible slice of D that contains at least two arcs having

non-zero demands. Further, let a be a feasible slice of D

""k
from which y is accessible. Let D be the extension of D

with respect to y defined by Figure 3.3 and 6
1

be any

,'(

of D that is of the form Fl defined below. Then the

slice y possesses the prefix property with respect to

only if whenever the slice 6
1

is accessible from cr, the

slice y is not accessible from 6
1

.

slice

a

Form F1 A slice, 61 , of this form satisfies the

following conditions:

y

I
I

1

-60-

,
I

_j___ -t----t ---+--1

,
I

!
I

I --;T ·- +-
I I

~ \ I I

~ I

I I
I I \

I I
'

' " /L/

• / ~
I

I
/

_(_Q_,J}_,_. • Ol _(_O_l_O_L .. 0) J.O~~ .. ())
• .- ..

The Extension D*

Figure 3.3

"X.m ,
I
I

1 CT

I
-------+---

' \

y

(0,0, .. 0) (0,

-61-

(ii) o1 and y share at least one arc that has a

non-zero demand.

PROOF: Suppose that the condition is violated, i.e. a slice

o1 of the form F1 is accessible from cr and y is accessible from

~t be the chain on which the arc common to y and lies.

Consider the extension D' of D with respect to y that is

defined by Figure 3.4 (the chains have been rearranged for drafting con-

venience).

Tile slice y is not safe in D' as the values for the demands,

d. have been chosen so that the only slice later than y from which
1k

y~, the terminal slice of D', is accessible is y' and y' is not

accessible from y because ~(y) ~ ~(6 1).

However, cl, is clearly accessible from o1 and has a smaller

demand on each chain than o1, i.e.,

for all chains X··
1

Tilus, since y is accessible from o1 , y' must be accessible from 6i·
Now it is clear from the figure that y' is safe in D'. Conse-

quently, the sequence of macro-moves 6 4 o', 61 4 y' and y' 4 yT is one

which produces a connected sequence of feasible slices from 6 to yT.

Tilus 6 is safe in D' and, consequently, cr is safe in D'.

c I

1 ' I

v ,v'

c1. c:

('

> c:

r i [
f
I
I

1

- -r-- -.:

.. ,, .
-11,

')

\

\

\
\

yj

T
I
I

-62-

~v.' .

T
1 ')

1

Y·
l

T m-1

,__,,..-- - ~----------!--­
//

/ ;-, l

/ / I

-f
I /

I

cl/ I
y

d .
I- .-<- i '1 I -1

')

I
() / '.) r)

/

~· _ ... -j- .. ___ --------~""--l~'---------f-----------1-i'--

m

I:c1('1t1
1

if~

cl (v')

c1 (v)

cl (v)

x .)
· 1

<i(v'

cl (v -·

~(y r- x.) J
l

k

The Ex l c n s i on D '

Figure 3.4

y,v

-63-

However, y is not safe in D'. Thus y cannot possess the

prefix property with respect to cr.

Q.E. D.

An irranediate consequence of Lerrana 3.1 is Lerrana 3.2

LEMMA 3.2 Let D be a vector demand graph and let y be a

feasible slice of D that contains a least two arcs having

non-zero demands. Further, let cr be a feasible slice of D

~~
from which y is accessible. Let D be the extension of

D with respect to y defined by Figure 3.3 and 62 be any
"]'(

slice of D of the form F
2

, which is defined below. Then

the slice y possesses the prefix property with respect to

cr only if each such 6
2

is inaccessible from cr.

----------- ------

Form F2 A slice 62 of this form satisifes the

following conditions:

(ii) 62 and y share at least one arc that has

a non-zero demand.

(iv) for all slices, p,
which lie between cr
and 62 (inclusive)
and for all chains,

Xi·

-64-

PROOF: It need merely be shown that condition (iv) in Form F2

implies that y is accessible from o2, for then the result follows from

Lennna 3 .1 •

Since y is accessible from cr, there exists a sequence, M, of

moves from cr

Also, the slice resulting from the application of each move is feasible,

i.e., each µ.
1

fits the slice

the first move in M that has the property that

feasibly. Let be

i.e., µtis the first move to cross o
2

. Ulen, by virtue of condition

(iv) in the definition of form F2,

Thus, µt fits o2 feasibly.

Similarly, µt+l fits o2µt feasibly, and so on up to where

µP is the first move to cross o2 completely,

i.e.

but

At this point, crµ1µ2 •.. µP = o2µtµt+l .•• µP and, consequently,

the macro-move µp+l .•• µq fits cr~µ2 ••• µp feasibly.

-65-

Thus is a macro-move that fits

••• µ = y.
q

Thus y is accessible from 82•

[Some moves, µ , produce no apparent effect
m

feasibly and

These moves are those that produce an innnediate successor on a

chain that still intersects the chain at or above 82• These

moves can be ignored.]

Q.E.D.

LEMMA 3.3 Let D be a vector demand graph and y be a

feasible slice of D that contains at least two arcs that

have non-zero demands. Further, let a be a feasible slice

* of D from which y is accessible. Let D be the extension

of D with respect to y defined by Figure 3.3 and 83 be

* any slice of D that is of the form F
3

, which is defined below.

Then y possesses the prefix property with respect to a if

* whenever 83 is accessible from a, yT' the terminal slice of

* D , is not accessible from 8
3

•

Form F3 A slice 8
3

, of this form, satisfies the

following conditions:

(i) a ~ 83

(ii) Either 83 and y share at least one arc

that nas non-zero demand, or 83 includes

* at least one terminal arc of D .

-67-

Moreover,

so that the macro-move µp+l . . . µq fits yµ..e,µ..e,+l ... µp feasibly.

Thus µ..e,µ..e,+1 ... µq is a macro-move from y to y'
T

that has

the property that each µm fits yµ..e,µ..e,+1 ... µm-1 feasibly. Thus y is

safe.

Therefore, y possesses the prefix property with respect to a.

Q.E.D.

An immediate consequence of Lemma 3.3 is Theorem 3.1.

THEOREM 3.1 Let D be a vector demand graph and y be a

feasible slice of D that includes at least two arcs that

have non-zero demands. Further, let a be a feasible slice

of D from which y is accessible. Then y possesses the

prefix property with respect to cr if

for all
between
and for

slices, p, that lie
cr and y (inclusive)

all chains, X·
l.

PROOF: From the condition of the theorem it follows that con-

dition (iii) of Form F
3

cannot be met by any slice satisfying conditions

(i) and (ii) of that Form. The result, therefore, follows from Lemma 3.3.

-68-

The results proved above have little intuitive meaning and their

principal use is in proving Theorem 3.3 later. The reader should sat-

isfy himself that the necessary and sufficient conditions in Lemmas

3.1 and 3.3 are compatible. Figure 3.5 shows a slice, y, which pos-

sesses the prefix property with respect to another slice, cr, even though

the conditions of 1beorem 3.1 are violated - the conditions of Lemma 3.3

are met, however. lbeorem 3.1 provides the basis for the Basic Alga-

rithm, which is presented later.

Inadequacies of the Modified Safeness Algorithm

Theorem 3.1, stated above, shows that the slices, y', produced in

Step 2 of both the Safeness Algorithm of Chapter 2 and the Modified Safe-

ness Algorithm possess the prefix property with respect to the slices Y·

111e prefix property states that partial sequences of feasible

slices possess extensions that lead to the terminal slice. Theorem 2.1

showed that, in addition to producing slices with the prefix property,

the Safeness Algorithm of Chapter 2 was always able to construct the ex-

tension. Unfortunately, such is not the case for the Modified Safeness

Algorithm, and Figure 3.6 illustrates this. In that figure, the Modified

Safeness Algorithm fails at y even though there is an extension, viz

... Yr' of the sequence cr - y. The Modified Safe­

ness Algorithm thus needs to be augmented by an algorithm that con-

y - y - y - y

structs such an extension when the former is unable to - the Crutch

Algorithm given below is such an algorithm.

- 69-

y
.')

L

r T
I

I I

(. ~. (5' 5)
2 cc

y (--+' Ii) (16,2)
- -- -- -

'-

'-
''- (5,2)

y

I
I I
I I

1
I

•
>ip:icitv = (20' 2Cl)

Fi.ccure
0 3. "i

+
y,y

~

,, '
___: ±--

n ,, l

(fi' fi)

(8,7)

I
I

(l ' 7)_,/ /
t---~

\P, 7)

(0,0)

- 70-

X2

(fi' 6)

/ "-' ""
/ '" ~

I \ "'
I (8\ 6-) "'

' \ \ ' I \ \
'\

I \
I

(8, s? \

\

I \

~2 (l 2' 70 \

\
\

(0,0)

"' "-

capacity= (20,20)

Figure '3. 6

"' \
\
"-- -

"-
~3 - - -

(6,

(8,

..

(8,
~--

(12

I- - -

(0,

•

6) Y' yo'<

6)

5) +
y

'7)

0)

-71-

The example of Figure 3.6 shows that the reason that an extension

of the sequence cr - y exists, even when the Modified Safeness Algo-

rithm is unable to find one, is that the demand on the arc marked Q' I
1

is sufficiently low in a crucial component, viz the first one, to enable

a macro-move down to its terminal arc to fit feasibly in spite of

the fact that the demand on Q' I

1 is not vectorially less than that on

y t1 X1. An arc such as Q' I
1

is called a crutch for the obvious reason.

An arc, Q'i' on a chain, xi' of a demand graph, D, is said to be a crutch

with res Ee ct to a slice, y, of D if the following relation is satisfied:

The example in Figure 3.6 also points out that the Modified Safe-

ness Algorithm fails at a slice, y, of a demand graph when moves down

each chain result (eventually) in an infeasible slice before the con-

diton in Step 2 of that algorithm is satisfied. The arcs on the chains

which correspond to these infeasible slices are thus barriers (see the

arcs marked ~l' ~ 2 and ~3 in Figure 3.6 for instance). An arc, ~., on
l.

a chain, x., is said to be a barrier with resEect to a slice, y, which
l.

lies above it, if ~.
l.

is the first arc on after y Dx. such that
l.

the slice (~./y t1 x.)y is infeasible. When the Modified Safeness Al-
i l.

gorithm fails at a slice, y, then a barrier with respect to y exists

on each chain of the demand graph.

The role of the augmentative Crutch Algorithm can now be ex-

plained. When the Modified Safeness Algorithm fails while testing a

-72-

slice cr for safeness, there exist barriers, ~i on xi' with respect to

the last slice possessing the prefix property with respect to the

slice cr. If no crutches with respect to y lie between y and the

~'s, then extension of the sequence cr y to YT is not possible

and cr is unsafe. When such crutches can be found, such an extension

of the sequence may exist (see Figure 3.6, fqr instance). The function

of the augmentative algorithm is to examine the possibility of using the

crutches to cross a barrier. + The slice y in Figure 3.6 shows that not

all crutches are (equally) useful. Figure 3.7 shows that more than one

crutch may need to be used in fact as many as m - 1 crutches may

need to be used to cross a barrier. The Crutch Algorithm should,

therefore, be capable of examining all possible combinations of crutches

that may prove useful.

Augmentation of the Modified Safeness Algorithm produces the

Augmented Safeness Algorithm (ASA for brevity). This algorithm is

rather complicated to follow and so it is preceded by a prologue which

explains the interaction between the components of the ASA and shows a

model for the working of the ASA in terms of a growing tree.

Prologue to the Augmented Safeness Algorithm

The Augmented Safeness Algorithm is really a shell algorithm, in

that it calls the Basic Algorithm iteratively until BA fails or until

it is found that the terminal slice, yT' is accessible from the test slice.

-73-

CT

(6,6) (7' 7)

y

(6,7) (8,7)

(4,7) (8' 5)

y;'<' y;'d< - --+- - - - - - - - - - - -t- -­. ' "'
" " \ '

(8,8)

(8,9)

(7,9)

(13,13) (11,11) (12,12-) ',
\ "' \

\

(0,0) (0,0)

Capacity (25,25)

Figure 3.7

\
\

\

, ___ I---

(0,0)

' '-..
~- -1---

y

-74-

The Basic Algorithm (BA) uses the test in Theorem 3.1 to seeks

slice that is accessible from the slice w, which is one input parameter,

and that possesses the prefix property with respect to w. Occasionally,

BA encounters barriers on all the chains and then it resorts to the

Crutch Algorithm (CA). CA merely advances the slice toy+, a slice

passing through a crutch, and calls BA. If BA again encounters barriers,

it resorts to CA once more, and so on, so that calls to BA and CA can

be nested. If BA does not encounter such barriers it seeks slices ac-

cessible from + y and possessing the prefix property with respect to

it. It tests these slices, y', to determine if y'P w and if so, to

declare success. If -iy'Pw, it continues its search. Thus the success

of BA always results in a slice, y , being returned that satisfies y P w.
p p

The slices y' are said to be conditionally acceptable since it may or

may not be true that y'P w, + but it is true that y'P y • If y'P w, then the

slice y' · is said to be acceptable; for instance, y is always an ac­
p

ceptable slice.

The activity of ASA and its components can be modelled by a

growing tree whose nodes represent slices. Each slice represented by a

node is accessible from the slice represented by a node preceding it in

the tree. The shape of a node reflects the characteristics of the slice

represented. Square nodes represent acceptable slices. If a square

node representing the slice y1 precedes a square node representing the

slice y2 , then y2Py1 • The test slice, cr, is at the root of the tree and

is represented by a square node. An asterisk-like node represents a

-75-

slice passing through a crutch relative to the slice represented by the

node innnediately preceding it. Triangular nodes represent condition­

ally acceptable nodes. If a triangular or asterisk-like node repre­

senting the slice y
3

precedes a triangular node representing the slice

y4 , then y4 P y3 • The plain nodes represent slices that are dead-ends.

The activity of BA appears as in Figure 3.8a, while that of the

full ASA appears as in Figure 3.8b.

Readers may find Figure 3.8b of value in understanding the Aug­

mented Safeness Algorithm.

In the statement of the ASA, the word "invocation" is used to

mean "activation" and relates to recursive performances of algorithms.

The term hump in the statement of the Crutch Algorithm refers to an

arc whose demand is no less than that of the next arc.

The Augmented Safeness Algorithm

'!he slice whose safeness is being examined will be denoted by a.

There is an internal variable, µ, which is a slice.

Step Q: Set µ equal to a. If µ = crT' note that a is safe and stop;

if not, go to Step 1.

Perform the Basic Algorithm with y and w set equal to µ

and x set equal to ~' the empty set. If the algorithm

terminates unsuccessfully, go to Step 3; if not, set µ equal

-76-
~

,___,

/l~,
/~

M

··~----
,/ r:~

Figure 3.8a

Figure 3.8b

-77-

to yp' the value returned, and go to Step 2.

~ l: If l == yt' stop and report success; if not, go to Step 1.

Step l_: Report failure and stop.

Basic Algorithm

This algorithm uses three input parameters, viz two slices, y and

w, and a set of chains, X. It seeks a feasible slice yp that is ac-

cessible from 1'1 and that satisfies y P _;J
p

(Since, presumably rJJ PCT,

this implies that y PCT.)
p

TI1e set XBA is an internal variabl~

Step Q: Set XBA == [xl' x 2 , ... ~}. Go to Step 1 if y is feasible;

if not, terminate and report failure.

~ l: Pick a chain from XBA' preferably one that is in X - call it

x ..
l

Attempt to construct a uni-chain macro-move down x.
l

that

fits y feasibly and is as large as possible - however,

terminate the macro-move at the first point where the slice,

y', resulting from the macro-move satisfies

s!_(y' r-x.) < iCP ex.)
l l

for all slices
between y and
(inclusive)

and d(S. (y') :=- x.) f. cl(y' ,- x.)
- l l - l

(i.e. a local minimum is reached on x.).
l

i:i lying
y'

If the attempt is successful then go to Step 2. If the attempt

is unsuccessful, go to Step 5.

-78-

Step ~: If x is empty, then go to Step 7. If x is not empty, then

go to Step 3 if xi is not in x and to Step 4 if xi is

in x.

Step l_: Set y equal to y' and go to Step 0.

Step ~: If

~(y' t:r x.) s: d (s Cl x.) for all slices s lying be-
l. - l.

tween w and y' (inclusive)

then delete from X and go to Step 2. Otherwise go to

Step 3.

Delete from XBA" is now empty, go to Step 6;

if not go to Step 1.

Step ~: Perform the Crutch Algorithm with w, X and y as values for

c c the input parameters, w , X , and + . 1 y , respective y. If BA ter-

minates with success, set y' equal to ye' the value returned, and

go to Step 7. If BA fails, terminate and report failure.

Step~: Set yp equal toy', terminate and report success.

Crutch Algorithm

This algorithm extends the sequence of slices to a slice which

+ passes through a crutch relative to the input parameter y . It uses an

internal variable XCA which is initialised to fxl' Xz' ... xm} at

entry. It uses the input parameters WC and Xe for calls to BA.

Step Q: Pick a chain from XCA - call it X·· Go to Step 1.
J

-79-

Step l: Attempt to construct a uni-chain macro-move down Xj that

Step 2:

fits + y feasibly and that is as large as possible ~ however,

terminate the macro-move at the first point where the slice,

* y, produced by the macro-move satisfies:

(i) + t:1 X .) 'f d (y t:1 X .) or 3:et .
J - J J

d (et.) > d </"' t:1 X.) where
- J - J

+ 7, y nx.-< a.-< y nx.
] J J

i.e., either y* contains a crutch or a hump a. was crossed,
J

and (ii) d(/' l:1 x.) 'j d(S. (y~'<') J:l x.)
- J - J J

If the attempt succeeds, go to Step 2; if not, go to Step 3.

Add x.
J

c
to X and call for the performance of BA with the input

7, c c
parameters y , X and w as values for the input parameters

y, X and w. If BA terminates successfully, then set y equal
c

to the value, y , returned by BA and go to Step 5. If BA
p

terminates unsuccessfully (then the macro-move
+ 7,

y _. y is not

acceptable and so), set + * y equal to y and go to Step 1

(rather than to Step 0 as a larger uni-chain macro-move down

x. than
J

Delete

+ 7,
y _. y may be acceptable).

from XCA. is now empty, go

if not, go to Step O.

to Step 4;

Step ~: Terminate and report failure.

Step 2= Terminate and report success.

-80-

Adequacy of ASA

Theorem 3.2, which follows, shows that the Augmented Safeness

Algorithm is sufficiently potent to handle all vector demand graphs.

THEOREM 3. 2 The Augmented Safeness Algorithm applied to a

slice of a vector demand graph terminates successfully if

and only if the slice is safe.

PROOF: The "only if" result follows from the fact that ASA

terminates successfully only if the terminal slice of the graph is

reached and from the fact that every slice in the sequence constructed

is feasible.

It remains to be shown that ASA never reports failure erroneously,

i.e. when the slice being tested is safe.

Suppose ASA failed even though the slice under test is safe.

Let D be the demand graph and cr the slice under test. Now fail-

ure of ASA implies failure of BA, which implies failure of CA. Let

represent the last value of yp returned by BA. Then is the last

slice possessing the prefix property with respect to cr that was found

by ASA. At yt' all attempts by BA to use the test of Theorem 3.1 failed

anJ BA asked for the performance of CA, which reported failure. That

CA reported failure when applied at y implies that all attempts to use
t

crutches failed sooner or later.

-81-

In terms of the tree of Figure 3.Bb, the (sub-) tree rooted at

yt contains asterisked, triangular and plain nodes only. ni.e leaves

of the tree are plain nodes and these slices have the property that

there are no accessible crutches below them, i.e. there are m barriers

~~ (on them chains) relative to each such slice o. ni.e arcs between
1.

o tlxi and ~~ all have demands strictly greater than that on o
0

Let ~i' for all m values of i, be the lowest of the barriers ~i'

for all slices of the form o

tl x ..
1.

i.e.

Since a is safe and since yt possesses the prefix property

with respect to a, yt is safe. Thus there exists a connected sequence,

~' of feasible slices from Yt to yT. Let a' be the first slice in

b to pass through one of the ~i's. Say a' passes through ~k. Then

j E [1, m] j 7' k

y nx -<a' tlx t k k ~k k E [l, m]

It will now be shown that the connected sequence of feasible

slices yt .•. a' can be transformed into one that can be produced by

ASA. Since ASA was unable to produce it, a contradiction will result.

This will imply that a sequence such as ~ cannot exist.

Let the macro-move Y _.a'
t

••• µ , so that
q

be broken up into uni-chain macro-

-82-

O' I

Consider an intermediate slice, y', in the sequence y 4 O' I
t

that terminates a uni-chain macro-move, and say

Let y" represent the slice y t µ1µ2 •.• µf+l and say µf+l is a macro-

move on x f,.

Then two cases can arise:

Case 1 ---
In this case µf+l consists in moving to a relative crutch, i.e.

a crutch relative toy'. (It should be noted that an arc which

satisfies:

is also a crutch with respect to Y.) In this case, µf+l is to be left

unchanged.

Case ~ £(y" tr X £) > £ (y' tr Xi)

In this case y" tr Xz is not a relative crutch.

sub-cases arise:

Here two

Case A There is an arc on X £' between

and y", that satisfies

i.e. a hump was crossed.

In this case µf+l is left unchanged.

y'

Case B ---

83-

There is no arc on xi' between

that satisfies

y' and y",

In this case the arc y" t:rxi has the greatest demand

of all arcs on between y' and y" (inclusive). Two

further cases can arise.

Case Bl There is an arc on xi' be-

tween y' and y" and as close

to y" as possible, that satisfies:

In this case, µf+l is shortened to stop at a

slice passing through a£· Let the remaining part of

µf+l be labelled µf+l·

Case B2 There is no such arc ---
In this case µf+l is shortened to ~, the null

move. Let the remaining part (i.e. µf+l) be labelled

In either of the two cases Bl and B2 above, no point is

served in carrying out µf+l innnediately after µf+l' and µf+l

can be consolidated with any later uni-chain macro-move, ~'

down Xi· For the macro-move µf+Z •.• ~still fits

y tµ1µ2 ••. µf+l feasibly, as the demand on (a l/y" J:1 x i)y"

-84-

is no greater than that on y". (If there is no later move

down Xt and t -F k, then I

µf+l can be dropped, while if

t = k then ff+l can be carried out towards the end of the

sequence Yt -+ 0" I ' i.e. after µ •) q

To stmlI!larise Cases 1 and 2, either consists in moving to

a relative crutch or in crossing a hump, or can be shortened to

consist in moving to a relative crutch. (The shortening may reduce µf+l

to a null move~.) In any case, µf+l is or can be made a move of the

kind that the Augmented Safeness Algorithm produces.

Let the uni-chain macro-moves when consolidated and transformed

be labelled by µ 1 s with asterisks, so that µf+l' for instance, becomes

* µf+l" Then it is clear from the discussion above that the slice re-

** * sulting from the application of any macro-move, ~µ2 .•• µf' to Yt

has a demand no greater than the demand of a slice resulting from the

application of the corresponding macro-move µ1µ2 ..• µf' to yt. Thus

the macro-move µf+lµf+ 2 .•. µq (ignoring moves already made) fits

* * * * * * ytµ1µ2 .•. µf feasibly and, therefore, so too does µf+lµf+ 2 ••• µq fol-

lowed by µiµ2 ••• µ~ (ignoring those included in a * µ due to consol-

idation).

One thus gets a sequence of uni-chain moves, of the kind ASA that

generates, which leads from yt to cr' by means of feasible slices

alone.

But this is absurd, since ~k is the lowest of the barriers

discovered on Xk by ASA!

-85-

Thus the sequence :0 cannot exist and must be unsafe. As

yt possesses the prefix property with respect to 0, this implies that

CT is unsafe. Thus, the "if" part of the result in the theorem has been

proved.

Q.E.D.

The reader who is still skeptical about the necessity for the

complicated interactions and backtracking in the Augmented Safeness

Algorithm, should remember that the algorithm is expected to handle all

cases and, in particular, the case illustrated in Figure 3.9. In that

figure it will be seen that if a choice of crutches is made so that one
,

reaches y", then two conditionally acceptable slices y 1 and y" can

be found (which possess the prefix property with respect to /') before

it is realized that there is no way in which YT can be reached from

y". It

further

·'-
of y".

0

is necessary then, to backtrack to y and (perhaps with some

-,':: ~k

fumbling) move to yo instead of y The sequence of slices

y~ illustrates that yT can be reached from y by way

Careful observation of the Augmented Safeness Algorithm, and the

Crutch Algorithm in particular, shows that in the worst case it tries

out all possible crutch combinations in an enumerative manner. It is

interesting that this is not a fault of the way the algorithm works.

This is stated more precisely in Theorem 3.3 below. A few definitions

and a lemma lay the groundwork for Theorem 3.3 and these follow.

-86-

X1 X2 X3 X4

' ' r ' I I I I
I I I I

cr -;1-(8-, -8)---,,--,1.i~,-~-7 ,-7) ___ ,i..l _(_9 _, 9-) ---?...l.1-(6, 6):, Y*

I / I '-, I I I
I I I ' I I I
I / I ' I I I

* , ,,_ - t ~6~9J _j_ __ 1 _<:;~ -'-~ -_ -f-~~~~o~ ~,:- -1-c~,o) v3.vo
y ,y ,y ~ I ' -+ -,_

I I I \ I \ I

y'
0

I I : \ I \ I
I I I \ I \ I

I I I \ • \ :
I I \ y" I \ y 1

I

I I \ I \ I
I I \ I \ I

I \ \

(ll,2~) (35,35) \ (24,18) \
I \ \
I \ \

(0 f) (0 ' 0) \ (0 , 0) \
_.; '...... ______

Capacity = (35,35)

Figure 3.9

(14,12)

(0,0)
y I' y"

-87-

§3 .10 Characterization of Safeness Algorithms

By algorithm is meant an algorithmic test for the safeness of

an arbitrary slice of an arbitrary demand graph that attempts to con­

struct a connected sequence of feasible slices from the test slice to

the terminal slice of the demand graph.

A local algorithm is one which, at any point in the construction

of a connected sequence, has the partial sequence of slices constructed

up to that point as the only information about the demand graph on which

to base its decision regarding what move to try next. Thus, a local

algorithm does not know about the entire remaining portion of the demand

graph and, therefore, cannot make only the correct move (in the defined

technical sense) every time. Similarly, a local algorithm does not have

recall abilities in respect of futile past moves other than to recall

that they were futile. Thus, it cannot sweep down the chains one at a

time and thereby gain (and store) knowledge of the whole or part of the

remaining portion of the demand graph. (Were one to assume such an

ability, then it is clear that an arbitrarily large memory would be

required to store the information, as the chains can be of arbitrary

length. Since any realistic memory has finite capacity, such an assump­

tion is clearly unrealistic.) It can be seen, easily, that both the

Modified and Augmented Safeness Algorithm are local. If the order

x1 , x2, ••• ~ is used whenever chains are to be picked, then this ob­

viates the need for recording futile use of chains. The use of the set

- -- ----""" ----

-88-

X of preferred chains is not crucial to the working of ASA ~ it

merely makes ASA more efficient.

A local algorithm is said to be a limited-backtracking algorithm,

if one can generally partition the sequence of slices it produces into

two or more sub-sequences, the initial and terminal slices of which

possess the prefix property with respect to the slice whose safeness is

being investigated. The Safeness Algorithm of Chapter 2 and the Aug-

trented Safeness Algorithm are limited backtracking algorithms. An

equivalent definition of a limited backtracking algorithm is one that

states that the sequence of moves constructed can be broken up into

macro-moves such that each such macro-move is applied to and produces

a slice possessing the desired prefix property. Let these macro-moves

be called correct macro-moves. A limited backtracking algorithm is said

to be linear if the number of macro-moves examined, before the correct

macro-move to apply at an intermediate point, characterized by the slice

y, is found (or it is discovered that none exists), is always less than

where: A is some constant, f(n1, n2 , ••• nm) is linear in the ni'
m

i.e. of the form Z: a. n. (where the a. are integer constants), and
. 1 1 1 1
1=

ni is the number of relevant arcs on chain xi below y. If the function

f increases with the n. faster than any linear bound does, then the al-
1

gorithm is said to be of higher order or non-linear.

-89-

In the case of the Safeness Algorithm of Chapter 2, the number of

macro-moves examined at a time is at most m, i.e. A=m and

f(n
1

, n
2

, ... nm)= 1, and the algorithm is thus linear. An example of

an algorithm of higher order is the Augmented Safeness Algorithm. (This

statement is clarified in the theorem below.) In the case of the Aug-

mented Safeness Algorithm, the relevant arcs are crutches with respect

to y, so that n. is the number of such crutches on x ..
i i

The lemma which follows is essential to the proof of TI1eorem 3.3.

LEMMA 3.4 Let D be the demand graph defined by Figure 3.10.

The arcs marked P{, ~2• ... ~~ are m barriers on the m

chains. TI1e arcs marked l.u.b. are arcs whose demands are

the least upper bounds of the demands on the two arcs on

either side of these arcs. The arcs marked a. are crutches.
i

Let y' be a feasible slice that is accessible from y
p

and is distinct from y. If y' lies above the barrier slice
p

~{~2 ... P~, then y; cannot possess the prefix: property with

respect to y.

PROOF: Since y' is accessible from y, the macro-move y 4 y'
p p

fits y feasibly. Let this macro-move be broken up into uni-chain

macro-moves so that y 4 y; = µ1 µ 2 ··· µq.

µq be a macro-move down chain xx! and let yµlfl2 ... µq-1

be referred to as y
1

. Then there are two cases: q-

Let

-90-

X1 Xz Xm
t ' ' cr

y (p1'P2,··Pn) (p1'P2'""Pn) (pl 'P2' · ·Pn)

1.u. b. 1.u. b. 1.u. b.

0:1 0:2 a
m

p I 1.u.b. p' 1.u. b. p' 1.u. b.
1 2 m

P1 (O,O, .µh,µj ..)p2 (0' 0' . µh' µ j' ..) pm (0 ' 0 ' . µh ' µ j ' • .)

(0,0, 0) (0,0,• O) (0,0, 0)

Capacity (Cl' c2, en)

µj c. (m-l)p. +k µ. > 0 c. ~ k.p. + (m-k).(p .+l)
J J J J J J

µh ch (m-l)ph - k µh ~ 0 ~~ (m-k).ph + k.(ph+l)

Of the arcs a. :
l_

(i) Exactly k have the demand

(ii) The rest have the demand

cr

y

h . . 1 . h . th T e critica resource is t e J ;

(pl'Pz'. ·ph+l,. ·P j-1,. ·pn)

(pl' p 2' .. Ph -l, .. P / 1 ' .. P n)
th

the h component is specified so as

to ensure that each O'.i is a crutch relative toy but i(O'.i) d i(Y n xi).

Figure 3 .10

-91-

Case 1

yq-l meets all the conditions of Lennna 3.1 and,

therefore, y' cannot possess the prefix property with respect to y.
p

In this case

Thus

Case 2 ---

In this case yq-l tl Xi must be one of the arcs marked "1.u.b. ".

yq-l tl Xi must have a greater demand than the arc, a', preceding

it, viz an a or the arc y tl xi.

Let µf be the previous move down Xi·

must lie above a' or be a'.

If is a' then the move µf can be de­

will fit leted at this point. Since

y .
0

Then y'
p

feasibly.

is accessible from since the move µ' ,
q

be

which is µf consolidated with µq' fits and leads to y' •
p

Thus y
0

meets all the conditions of Lennna 3.1 and, therefore,

y' cannot possess the prefix property with respect to y.
p

If yµ 1µ2 ..• µf-ltl Xi lies above a', then µf can be shortened

so that Once again • • • µ 1 q-

meets all the conditions of Lennna 3.1 and, therefore, y' can­
p

not possess the prefix property.

Q.E.D.

-93-

The values of demand have been chosen so that there is exactly

one set of k crutches which must be used to cross any barrier at all.

Non-obstructive arcs are arcs whose demand vectors are such that any

feasible slice that includes i arcs that are crutches, for any

i ~ m - 1, (and shares the remaining arcs with y) is accessible

from y. The arcs marked l.u.b. are non-obstructive arcs. For

if is a slice going through crutches, then (y nx./a.)y,
]_]_ 0

where is a crutch, is feasible and so is y .
0

That any

feasible slice that uses z crutches in addition to arcs from

y is accessible from y will be used below.

Since a local algorithm has no way of knowing which combination

of crutches is correct other than by trial and error, as many as

Z - 1 trials can be wasted, where Z is the number of possible crutch

combinations of from 1 to m - 1 crutches (one from each chain) at a

time that correspond to slices accessible from y. Here n. = 1,
]_

for all values of i, and since all slices using i crutches are ac­

m-1 cessible,Z = 2 .

The non-linearity of a local limited-backtracking algorithm

is thus obvious.

Q.E.D.

-94-

To further simplify understanding of the example, Figure 3 .11

shows a special case of Figure 3.10.

The construction of Figure 3.10 is quite general, in that k can

be an arbitrary integer between 1 and m-1 and can be chosen suitably.

Now suppose a limited back-tracking algorithm is given. Since

it is local, it must examine the combinations of the crutches in some

order, and for each combination of r crutches it tries out some moves.

However, since there is only one combination that works, all other

trials are wasted. The number of trials wasted can be made non-linear

by choosing a value of k appropriate to the algorithm. (It should be

noted that the choice of values for Cj and Ch ensures that all slices

which use from 1 to m-1 crutches are feasible and accessible from y.)

For example, consider an algorithm that uses the crutches 1

at a time, 3 at a time, etc. up to m-1 or m-2 (whichever is odd) at a

time and then 2, 4, 6 ... at a time.

Pick k = 2. Then the number of wasted trials

m'

(no. of combinations - r crutches at a time) where m'
--
1

(r odd)

the sum of the coefficients of
1 3 5 7 n-1

x x
'

x x x

in (1 + x) (1 + x) () () ... (1 + x)

111-e right hand
m-1

r10n -1 i near side is 2 ' which is in m.

m-1 or
m-2

a

y

~1

(6,6,6)

(7,6,6)

(7,5,6)

(7.9.6)

(5,9,6)

(O,O,O)

-95-

~2

X2

t
I
I

(6,6,6)

(7,6,6)

(7,5,6)

(7,9.6)

(5,9,6)

(0,0,0)

Capacity= (19,19,19)

(6,6,6)

y

(6,7,6)

(5,7,6)

(5,9,6)

~3 (5,9,0)

(0,0,0)

(With reference to Figure 3.10,m=3,n=3,k=2,h=l,j=2)

The 'correct' combination of crutches
is a

1
and a 2 .

Figure 3 .11

-96-

Connnent 1: The proof technique above is really quite conservative for

Figure 3.9 shows that merely being able to cross the barrier is not a

guarantee of being able to reach a slice that possesses the prefix

property (without further backtracking).

Connnent 2: It is clear that if no combination of crutches (from 1 to

m-1 of them) permits crossing of any barrier, then y (and hence cr) is

unsafe.

The theorem above indicates that the Augmented Safeness Algorithm

is in a sense optimal. As long as the Basic Algorithm succeeds the num­

ber of sequences examined in vain is at most m-1 and consequently the

algorithm is linear. When it fails, it is necessary for the Crutch

Algorithm to try crutches in a trial and error fashion to get past the

barriers discovered earlier by the Basic Algorithm. It then tries to

reach a slice possessing the prefix property (by use of the Basic Algo­

rithm); the Basic Algorithm can then be used again.

The rest of this chapter deals with special cases of the recti­

linear vector demand graphs discussed so far.

§3.11 Locked Data Bases and Semaphores

One of the resources that can be shared in an unpreemptible manner

in computer systems is a set of data bases that have locks on them; only

one user or process at a time can use such a data base. Tables of

------------ -------

-97-

miscellaneous varieties in the operating system software are typical en­

tities of this kind.

The lock is exactly analogous to Dijkstra's semaphores [10]. A

process examines the lock to see if it is set; if it is net set (the corre­

sponding semaphore has value l~ then it is set (the semaphore is

decremented by 1). The lock stays set until the process using the data

base relinquishes control ~ at this time the lock is reset again. Of

course, semaphores are more general than locks, in that they can be used

for coordination of activities in general. However, whether processes

use semaphores or locked data bases, deadlocks can occur. The corre­

sponding demand graphs have demand components which are always either

0 or 1 and C is (1, 1, 1). The techniques described in this chapter

can be used to examine the consistency of use of semaphores (or locked

data bases) by a set of users or processes in such a system.

§3.12 Job Shop Scheduling

A problem of considerable interest in the field of operations re­

search is that of scheduling a set of manufacturing jobs in a workshop.

Say the workshop processes raw stock of some kind in several steps to

produce useful items. There could be variations in processing for dif­

ferent raw stocks and different items. In any case, one can draw up a

job chart, which describes which processes have to be performed and in

what order. The jobs are then to be scheduled on the different machines

that do the processing.

-98-

0ne can represent the jobs by a demand graph of the kind shown

in Figure 3.12. Each arc has a demand consisting of zero's and one's

corresponding to the machines it does not and does need, respectively,

in that phase. The General n/m Job-Shop Problem [11] deals with n jobs

and m distinct machines ~ in this case the demand graph has n chains

and each demand vector has m components (the interchanged notation is

confusing and regrettable). £is (1, 1, 1, •.• 1), indicating that there

are m distinct machines. Thus the Job Shop can be represented by a re­

stricted class of demand graphs.

However, it is important to note that each arc of the demand

graph of Figure 3.12 that has a non-zero associated demand is followed

by an arc with a zero associated demand. This is true for all Job Shop

problems, as the operations are performed one at a time and jobs can lie

between two machines ~ having been processed by one (freeing that ma­

chine for other work) and awaiting processing by the other. But this

feature automatically ensures that any slice of the demand graph that

is feasible is also safe! ni.us deadlocks and examination of safeness

are not important issues in Job Shops. Rather, it is the minimization

of processing time (average or maximum) for a set of jobs that is an

interesting problem ~ particularly, as the time required for each op­

eration is quite predictable.

-99-

X1 X2 XJ

(0,0,0) (0,0,0) (0,0,0)

Yr Yr

(l,0,0) (1,0,0)

(1,0,0)

(0,0,0) (0,0,0)

(0,1,0) (0,0,0) (0,1,0)

(0,0,0) (0,0,0)

(0,0, l)

(0,0,1) (l,0,0)

(Cl,0,0) (0,0,0) (0,0,0)

Capacity= (2,1, l)

Figure 3.12

-100-

.1cmanc1 Graphs For ~ ystc~ms With

fn· :·.H· w~ and Internall:i Par;=illcl Activities

Chapter '+

-101-

Arboraceous Demand Graphs

In this chapter the constraints on components of demand graphs

are relaxed somewhat. The components will look like trees but with

more than arc incident on some nodes.
t

Since the word tree has been

used to describe what others# call arborescences, both terms will be

avoided. Instead the term arbour will be used. An arbour is a finite

directed graph that is circuit free, i.e., that has no directed cycles.

An arbour always has at least one node with indegree zero and one with

outdegree zero. An arboraceous demand graph is a demand graph whose

components are arbours and whose arcs are labelled with demands chosen

from the set of n-tuples of integers. The capacity associated with the

graph is also such an n-tuple. No distinction will be made between

vector and scalar demands on arboraceous demand graphs, except where

exceptional properties appear in graphs with scalar demands. Initial

and terminal arcs are respectively out-going arcs of transitions with

zero indegree and in-coming arcs of transitions with zero outdegree.

Initial and terminal arcs have zero demand. Transistions with indegree

one and outdegree greater than one are called forks after Conway [14].

Transitions with indegree greater than one are known as points of syn-

chronisation or points of interaction. Every point of synchronisation

must have at least one outgoing arc.

t See [12] for instance

#See [13] for instance

-102-

In terms of systems of processes sharing resources, arboraceous

demand graphs represent systems in which processes are not necessarily

either sequential or independent. Such systems, with parallel or inter­

acting processes or processes that are both, are not uncommon. In terms

of the construction analogue of Chapter 1, contractors may undertake

more than one project at a time, with the projects sharing initial or

final phases of activity but being independent otherwise. Alternatively,

some projects may be too large for one contractor and may be undertaken

by several contractors with division of the work into independent se­

quences of tasks with some interaction between contractors. In com­

puter systems such as MULTICS [15] processes can produce other processes

and interact with each other by means of the ''block" and 'wake-up"

primitives. The interaction that has been mentioned so far is explicit

interaction, that is interaction other than through the sharing of

limited resources. There is one kind of interaction, however, that is

modelled like explicit interaction even though it is occasioned by re­

source sharing. This is mechanism for acquisition of write access

capability in systems which guarantee determinacy of computations ~

such as those of Van Horn [16], the implementation in MULTICS of which

is discussed by the author in [17]. In Van Horn's systems, a clerk

(process) which possesses read-access capability for a shared data

object acquires write access capability for it when every other clerk

has relinquished its read access capability. This behaviour cannot be

modelled merely by treating such a data object as one kind of resource.

-103-

Rather, the dependency of the first process on the others has to be

modelled explicitly, as in Figure 4.1 where the process represented

by the chain that begins with a 2 is the one that waits to acquire

write access capability before proceeding with the phase represented

by a2·
When arboraceous demand graphs represent systems of users, the

users are not in one to one correspondence with the components of the

demand graph; for two or more interacting users appear as one com­

ponent. Rather, the only construct in the demand graph that indicates

the number of users in the system represented is the number of initial

arcs. If every user's processes merge or join [14] before his activity

terminates, then the number of terminal arcs in the demand graph rep­

resenting the system also indicates how many users the system has.

Slices and Related Concepts

A sliver in an arboraceous demand graph is a cut-set of a com­

ponent of the demand graph. A slice of an arboraceous demand graph is

a set of slivers, one from each component-graph. Slices are denoted by

lower case Greek letters other than a and ~ ~ usually y. The pendant

sub-graph of an arc consists of the arc and the arbour from its

terminal transition, t, i.e., the maximal arbour, with t as the only

transition with zero indegree, that is a sub-graph of the graph. The

-104-

Figure 4.1

-105-

pendant sub-graphs of the arcs in a slice of an arboraceous demand graph

are termed the chain-graphs defined by the slice. Clearly, the chain-

graphs defined by a slice are not necessarily disjoint. In rectilinear

demand graphs chain-graphs are chains and this is what suggests the

terminology for arboraceous demand graphs. Chain graphs are repre-

sented by X·

As in Chapter 2, since a slice of an arboraceous demand graph

partitions the transitions of the graph, one can speak of the predecessor

set and successor set of a slice. The relations "earlier than or the

same as" and "later than or the same as" for slices are represented by

"S:" and ":?: ", respectively, and are defined exactly as in Chapter 2.

The initial slice, y1 , and terminal slice, yT' of a demand graph

are defined as in Chapter 2.

A frustum of a demand graph is the part of the graph that lies

between two slices, one of which is earlier than the other. The frustum

defined by slices and of a demand graph D, where y1 ~ y2, is

denoted by F(D, yl' Y2). A frustulum is a component of a frustum. The

frustula of F(D, y2) denoted by f. (D, Y2)'
f h .th

yl' are yl' or t e J
J

frustulum, or simply f. when the frustum referred to is clear from the
J

context. By analogy to entire demand graphs, cut-sets of frustula are

also termed slivers ~ the components of the demand graph are the

frustula of F(D, y1 , Yr). In rectilinear demand graphs, frustula are

chains. Figure 4.2a shows a frustum of a demand graph and Figure 4.2b

shows the frustula of the frustum. As indicated in Figure 4.2

I
I
•

T

I

'
I

'

'

I •

-106-

I
I •

' I

I

•
I
I •

t
I

(The dashed arcs are not in the frustum)

Figure 4.2a

Figure 4.2b

I

i

' I

-107-

transitions innnediately following the slice y
2

and innnediately pre­

ceding the slice y
1

are part of the frustum F(D, y
1

, y
2

), but forks

preceding y
1

are split up into as many nodes as there are outgoing

arcs and points of interaction are split up into as many nodes as

there are incoming arcs. As a consequence, in Figure 4.2b, the sub­

graphs marked f
3

and f
4

or those marked f
6

and f
7

are distinct frustula.

The concepts of innnediate-successor slices, moves, macro-moves,

uni-chain macro-moves, connected sequences of slices, runs, feasibility

and safeness of slices, etc., carry over directly from Sections 2.6 and

2. 9.

The slices of an arboraceous demand graph representing a system

correspond, as before, to the states of the system. The number of

chain-graphs defined by the current slice corresponds to the number of

processes in the system in the current state. As before, a state is also

called an allocntion state and feasible slices represent meaningful al­

location states. Safe slices represent states from which the processes

can be scheduled so as to run to completion without deadlock. In gen­

eral, the interpretations of Chapter 2 carry over. However, the term

"user" is now not necessarily synonymous with the term "process'' since a

user's activity may involve several processes, even though it involves

only a single process initially.

-109-

0 0
YI YI

2 3

7 6

6 5

y y

Capacity 10

Figure 4.3a

y' 1 y

7 5

3 6

2

3

0 0
YT YT

Capacity= 10

Figure 4.Jb

YI
0

3

5

6

2

l

0

0

)

5

6

s

2

l

0

-1 Hl-

Capacity = 10

Figure 4.4a

Capacity= 10

Figure 4.4b

0

3

5

6

2

0

0

3

5

6

5

2

l

0

YI

-111-

then the graph of Figure 4.4a can be transformed into that of Figure

4.4b which does not exhibit inherent deadlock. 'lbere are instances,

however, when such a transformation does violence to the representation.

For the processes may deliberately be withholding resources from other

processes until certain conditions are satisfied by the latter processes,

satisfaction of the conditions being signalled by the processes reaching

the point of interaction. Consequently, although it is tempting to pre­

scribe a transformation of arboraceous demand graphs so as to duplicate

the arcs preceding and following a point of synchronisation and replace

the demand on the one near the point by the g.l.b. of the demands on the

arcs on either side of the point, no transformation will be prescribed.

However, the spirit of the transformation should be borne in mind in

the specification of a demand graph for a system of processes.

The Prefix Property

As with rectilinear demand graphs, it is desirable to have

limited-backtracking algorithms for determination of the safeness or

unsafeness of a slice. This requires extension of the prefix property

to arboraceous demand graphs.

The set of extensions E0 (y) of an arboraceous demand graph is

the set of arboraceous demand graphs that are identical to D until y,

and that have the same capacity as D. An element of E0 (y) is an ex­

tension of D with respect to y. If D' is such an extension, then

-112-

F(D', Yi, y) = F(D, Yr' y), where y'
I

is the initial slice of D'.

The definition of the prefix property is identical to that in

Chapter 3.

Necessary and Sufficient Conditions for the Prefix Property

It should be clear from the discussion thus far that arboraceous

demand graphs can be analyzed like rectilinear demand graphs as far as

necessary and sufficient conditions for the prefix property are con-

cerned. For the frustula of F(D, y
1

, y) correspond to the chains

intersecting y in a rectilinear demand graph, the demand on a sliver

of a frustultnn corresponds to the demand on an arc of a chain in a recti-

linear graph, and so on.

Thus, the results in Lemmas 3.1 to 3.3 and 'llleorem 3.1 can be

translated directly for arboraceous demand graphs. They are stated be-

low as Lemmas 4.1 to 4.3 and Theorem 4.1, respectively. The proofs are

similar to those in Chapter 3 and only the variations will be ex-

plained. In general, the proofs of Chapter 3 apply with substitution

of "frustulum" for "chain" when the reference in Chapter 3 is to the

part of a chain above a slice, and "chain-graph" for "chain" when the

part referred to lies below a slice, of "sliver" for "arc", ''move down

a chain-graph" for ''move down a chain", etc., where appropriate. The

notation "y t:1 f." stands for the sliver in which y intersects the
I.

frustultnn f. of some frustum, and d(y t:1 f.) for the demand on that
I. I.

sliver.

-113-

LEMMA 4.1 Let D be an arboraceous demand graph and let y

be a feasible slice of D that intersects at least one

frustulum of F(D, cr, y) in a sliver with non-zero demand,

where cr is a feasible slice of D that is earlier than y
,'(:

and from which y is accessible. Let D be the exten-

sion of D with respect to y defined by Figure 4.5, and

o
1

be any slice of D that is of the form F1 , which is de­

fined below. Then the slice y possesses the prefix

property with respect to cr only if whenever the slice

o1 is accessible from cr, the slice y is not accessible

Form F
1

A slice, o
1

, of this form satisfies the

following conditions:

(ii) o1 and y share at least one arc that has a

non-zero demand

COMMENT It will be recalled that the proof of Lennna 3.1 in-

valves constructing an extension in which cr is safe but y is not.

This is done by following y t1 x., where
J

is the chain on which y

and 01 share an arc, by an arc a', whose demand is just small enough

for (a'/o 1 tlxj)o 1 to be feasible. The arcs on xk(k f j) following y

have demands in D' which are such that uni-chain macro-moves down the

x 's fit
k (a4/y t1 xj)y feasibly for some ordering of the k's, where

(J

\
I

I
I
l
I
\
\
' ,,

/ y

I
Q

I

-114-

Q Q 0

1
I
I
I
I
I
J

r------

The Extension D*

Figure 4.5

f
m

Q Q Q

y

y*
T

-115-

j
aT is the terminal arc of xj in D'. Thus y~, the terminal slice of D'

is accessible from o1 but not y.

In the case of arboraceous demand graphs D' is similary con-

structed with chain-graph read for chain. Accessible slivers of

frustula play the same role as arcs that are not barriers in rectilinear

graphs.

LEMMA 4.2 Let D be an arboraceous demand graph and let y be

a feasible slice of D that intersects at least one frustulum

of F(D, cr, y) in a sliver with non-zero demand, where cr is

a feasible slice of D that is earlier than y and from which

* y is accessible. Let D be the extension of D with respect

* to y defined by Figure 4.5 and o
2

be any slice of D of

the form F2, which is defined below. Then the slice y pos­

sesses the prefix property with respect to cr only if every

o2 is inaccessible from a.

Form F2 A slice, o
2

, of this form satisfies the

following conditions:

(ii) o2 and y share at least one arc that has

a non-zero demand

(iv) for all slices, p,
which lie between cr
and 02 (inclusive)
and for all frustula fi.

-116-

COMMENT In the case of Lemma 3.2 use is made of Lemma 3.1

and condition (iv) in F
2

is shown to imply that y must be accessible

from o2• The accessibility of y from o
2

is shown by modifying the

moves from a to y that fit y feasibly to fit o2 •

In the case of arboraceous demand graphs too the moves can be

modified to fit o2• As in the proof of Lemma 3,1, one can consider

moves and so that the slice resulting from the application

of µ1 is the first one in the sequene of feasible slices from a to

cross o2, etc.

LEMMA 4.3 Let D be an arboraceous demand graph and y be a

slice of D that intersects at least one frustulum of

F(D, a, y) in a sliver with non-zero demands, where a is

a feasible slice of D that is earlier than y and from

''c
which y is accessible. Let D be the extension of D with

respect to y defined by Figure 4.5 and o
3

be any slice

''c
of D that is of the form F

3
, which is defined below. Then

y possesses the prefix property with respect to a if

whenever is accessible from * a, YT' the terminal slice

* of D , is not accessible from o
3

.

Form F3 A slice, o3 , of this form satisfies the

following conditions:

COMMENT

-117-

(i) cr ~ o
3

(ii) Either o
3

and y share at least one arc

that has non-zero demand or o
3

includes

* at least one terminal arc of D •

tained by replacing arcs in y by terminal

* * arcs of D , on all those chain-graphs of D

defined by y that o3 intersects in

terminal arcs.

It will be recalled that the proof of Lemma 3.3 is

similar to that of Lemma 3 .1, in that it involves modifying a sequence

of moves from cr to y~, the terminal slice of an extension D' in which

cr is safe, to fit y feasibly. Exactly the same technique is applicable

to arboraceous demand graphs.

THEOREM 4.1 Let D be a vector demand graph and let y be a

feasible slice of D that intersects at least one frustulum of

F(D, cr, y) in a sliver with non-zero demand, where cr is a

feasible slice of D that is earlier than y and from which

y is accessible. Then y possesses the prefix property with

respect to cr if

d(y t:l f.) ~ d(p t:l f.)
- 1. - 1.

for all slices, p, that lie
between cr and y (inclu­
sive) and for all frustula,
f..

1.

y

5
1

'.)'.6

-119-

Figure 4.6a

4 6h F'i gure ·

y

-120-

for such graphs cannot be linear. To prove this would merely require

translation of Lemma 3.4 and Theorem 3.3. In fact, even translation

is unnecessary as rectilinear demand graphs are special cases of

arboraceous demand graphs.

However, even with scalar demands arboraceous demand graphs can

have only non-linear limited-backtracking algorithms. This is proved

in Theorem 4.2 below. The term "crutch" and ''barrier" may be applied

to slivers in addition to arcs in the rest of this chapter (although

''barriers" are usually arcs), as the slivers of interest consist of

single arcs in those instances.

THEOREM 4.2 There does not exist a linear limited-backtracking

algorithm for arboraceous demand graphs even when the demands

and capacity are chosen from the set of integers.

PROOF: Consider the demand graph in Figure 4.7. Suppose one

has constructed a partial connected sequence of feasible slices from

cr to y and suppose y possesses the prefix property with respect to

CJ.

Because of the choice of values for the demands associated with

the a's and ~'s, each arc labelled a or ~ has a demand that is greater

than the demand on the arc in y that lies on the same frustulum of
,.(

F(D, y, y) . No slice, y', that lies strictly between y and '~ y can

µ
y

~1 d(~l)

Y*

d(a.) = µ + i ; i E [1,m]
1

d(~.)
1

= µ + (m-i+l) ; i E

Xl Xr-1

'
,

y

-121-

µ

I

'
[1,m]

Figure 4. 7a

Xr

'

I

~

Figure 4.7b

Xm

'
µ

~m d(~) m
d(a) m

Capacity = m + m.µ

Xm-1
t

(J

y

y*

-122-

possess the prefix property with respect to y. For the macro-move

y 4 y' can be broken up into exactly m uni-chain macro-moves

µ1 , µ2, ••. µm because of the relations between demand values indicated

in the previous sentence, and the slice yµ
1

is a slice that satisfies

all the conditions of Form F
1

in Lennna 4.1.

Thus the next slice that possesses the prefix property with re-

~~
spect to y lies below y •

Careful observation of the figure shows that there is exactly

one ordering of the chain-graphs x 1 , x 2, ••• ~ defined by y for

* the uni-chain macro-moves making up the macro-move y 4 y that fits

y. This order is xl' x2 , ••• ~ in the figure but can be made

aribtrary by permuting the values of demand on the a. 's and ~- 's.
l. l.

As there is no way in which a local algorithm can determine the

one order that is correct, other than by trial and error, the number of

futile trials, consisting of uni-chain macro-moves, can be (conserva-

tively speaking) as large as

(m - r) + (m - r) + ••• m - r times

For each of the m - r uni-chain macro-moves,

2
(m - r)

µj ~ Yr-l 4 (aj/yr-l tl xj)yr-l for the values of j in [r, m], fit

yr-l" Of these all but one are incorrect. However, that the macro­

move µ.(j ~ r) is incorrect is not discovered until m - r futile uni-
J

chain macro-moves (down xr' Xr+l' ••• xj-l' Xj+l' ••• ~)are tried

from y 1µ .•
r- J

-123-

Thus as many as

2 2 2 1 (m - 1) + (m - 2) + . • • + 1 = 6 (m - 1) (m) (2m - 1)

trials can be wasted.

The non-linearity of any limited-backtracking algorithm follows,

since there is always a graph that has a "correct order" different from

that used by the algorithm, andin fact a correct order that is as bad

as the worst.

Q.E.D.

~ On the Non-local Nature of Algorithms for Arboraceous Demand Graphs

* Consider the frustulum shown in Figure 4.8. Two slivers s and s

are shown there. Suppose cr is a feasible slice which contains s and

* y is the feasible slice (s /s)cr. The slice y does not possess the

prefix property with respect to cr because the slice (s 1/s)cr is a

slice of the form F1 in Lemma 4.1. However, if a safeness algorithm

were to use the macro-move cr 4 y shown by the sequence of dashed

slivers in Figure 4.8, then (s 1/s)cr is not a slice that is part of the

connected sequence cr ••• y. That a general limited backtracking al-

gorithm needs information about slices that are not in the sequence of

slices it constructs to determine whether a macro-move is acceptable or

not, means that such an algorithm is not local in the defined sense.

-------------------------------- ---· -------------

s

sl

a

a'
1

T
I

-124-

{17,15,15)

-'-
,,

' '- ----(1S,15, 16'),

" " ~ " '"'-

(19,30,30)

'Capacity'= (100,100,100)

Figure 4.8

a

a'
2

T
I
I

(15,15,15)
s

(3,16,15)
sl

-125-

It may be local in the broader sense that it uses only the initial part

of the demand graph up to the slice reached.

The problem is not restricted to demand graphs of which the

frus tulum in Figure 4. 8 is a part. Rather, it is a consequence of two

facts. The first fact is that there are more slices in a frustulum

which is followed by a point of synchronisation than in a sequence of

slices that is produced by a macro-move that crosses it. The other fact

is that crutches such as those in can lead to slivers of smaller

demand in combination with other crutches. For instance, in Figure 4.8,
~':

the sliver s has a demand no greater than that of any of the dashed

slivers encountered, andyet this is not so with respect to s
1

. Thus a

translated version of the Modified Safeness Algorithm of Chapter 3 would

have (erroneously) declared the macro-move a -+ y acceptable! How-

ever, this version of the Modified Safeness Algorithm would not be in

error in this manner if the demands were scalar; for if

a' ta and b' t b

then

a' +b' ta' +b'

which is not necessarily true for vectors, as the arcs a
1

, ai and

show in Figure 4.8. The sliver has a smaller demand than

s does and also a smaller demand than (az/u2)s or (ai/a1)s do.

Let be a slice that uses the sliver s and y a slice
s

that uses s . Then the fact, that all the feasible slices that are

-126-

Efflorescence of t

Figure 4.9

I
/

t

I
I
I
I
I
I

s post

I

I
I

-127-

accessible from and that lie betweeen and need to be con-

sidered if Theorem 4.1 is to be applied in an algorithmic test, is

crucial to the understanding of the General Safeness Algorithm. This

algorithm is presented in the next section. Fortunately, s need not

be earlier than the last sliver that meets the test of Theorem 4.1,

relative to the corresponding sliver in the test slice, on each of

the chain-graphs that join at the point of synchronisation.

§4.10 The General Safeness Algorithm

The General Safeness Algorithm, or GSA for brevity, is an al-

gorithmic test for testing the safeness of a slice of an arboraceous

demand graph. It attempts to construct a connected sequence of feasible

slices from the test slice to the terminal slice of the demand graph.

Some new terminology is useful in the description of the GSA and is

indicated below.

t The pre-synchronisation sliver, spre' of a point of synchronisa-

tion, t, is the sliver that contains exactly those arcs which are the

incoming arcs of t. Similarly, the post-synchronisation sliver,

st t' of t is the sliver that contains exactly those arcs which are pos

the outgoing arcs of t. Figure 4.9 shows the pre-synchronisation

sliver and post-synchronisation sliver of a point of synchronisation.

The efflorescence [(t) of a point of synchronisation, t, is the

frustulum of F(D, y1 , yt) that contains the arcs incident on t where

-129-

FUNDAMENTAL ALGORITHM

FA is similar to the Basic Algorithm of Chapter 3. The input

parameters w and y are respectively the reference slice and the cur-

rent conditionally acceptable slice. In case of successful termination,

FA returns a slice, y , that possesses the prefix property with respect
p

to w. Nothing is returned in the event of failure.

The set X~A is in internal variable. The set S is an input

parameter and a set of slices that are relevant to the application of

the test in Theorem 4.1. St is a similar set except that it is of

temporary interest and is an internal variable. XFA is an input

parameter and is a set of chain graphs.

Step Q: Set St equal to~' the empty set, and X~A equal to XFA"

Go to Step 1.

Step,!: Add y to St. Go to Step 2.

Step 1: Pick a chain-graph from ~A call it x .• Go to Step 3.
l.

Attempt to construct a uni-chain macro-move, µ, down x.
l.

that fits y and is as large as possible, but terminate the

macro-move at the first point where the slice y' resulting

from the application of µ satisfies one of the conditions

given below. In any case, add the slices resulting from the

component moves of µ to the set St.

(i) ~(y' l:lxi) ~ ~(p t:l xi) for all slices p
tween y and y'

that lie be­
(inclusive)

-130-

Go to Step 4.

(ii) y' is following by a fork, f,

In this case perform the Fork Algorithm (FkA, for

brevity) with y', XFA and fas values for the input

parameters yF' XF and fF.

If FkA terminates with failure, go to Step 5.

If FkA terminates successfully, set y and XFA
")'(";'(

respectively equal to Yp and XF' the values returned,

and go to Step 4 •

(iii) y' is followed by a point of synchronisation, t.

In this case, go to Step 5 after setting St to ~.

Step~: If y' satisfies:

for all slices p in S
and for all frustules, f.,

]_
of F(D, w, y')

then set yp equal toy', terminate and report success.

If y' does not satisfy the above condition then add

St to S, set y equal to y' and both x;A and XFA equal to

the set of chain-graphs defined by y', and go to Step 2.

Step 2: Delete Xi from x;A. If x;A is now empty then go to Step 6;

if not, go to Step 1.

Step 6: Perform the Sync Algorithm (SA) with y, w, XFA and S as re­

spective values for the input parameters, YsA' wSA' XSA and

Step]_:

-131-

SSA" If SA terminates successfully, set y' equal to

"'' YsA' the value returned, and go to Step 4. If SA terminates

with failure go to Step 7.

Perform the Crutch Algorithm (CA) with y, w, XFA and S as

respective values for the input parameters yCA' wCA' XCA

and SCA" If CA terminates successfully, set y equal to

~" yCA' the value returned, and go to Step 4. If CA terminates

with failure, terminate and report failure.

SYNC ALGORITHM

Input parameters to this algorithm are ySA' wSA' XSA and SSA'

The algorithm searches the chain-graphs in XSA one at a time until a

point of synchronisation is reached. If it finds such a point, t, it

seeks the aid of the Sync Crosser Algorithm (SCA) to extend the sequence

from to a post-synchronisation slice of t and (recursively) asks

for the performance of FA. The parameter w
SA

is a slice. XSA is an

SSA is a set of slices. internal variable and is initialized to XSA'

Step Q: Set XSA equal to XSA and go to Step 1.

Pick a chain from XSA -- call it X·.
l.

Go to Step 2.

Attempt to construct a uni-chain macro-move, µ, down x.
l.

that fits and that is such that YsAµ is followed by

a point of synchronisation, t.

If the attempt is successful go to Step 3; if not go to

Step 4.

-132-

Perform the Sync Crosser Algorithm (SCA) with YsAµ' XSA and t

as values for YsCA XSCA and tSCA' respectively. If SCA

terminates successfully, set YsA and XSA respectively

* * equal to YsCA and XSCA' the values returned, augment SSCA

* with SSCA which is returned, and go to Step 5.

If SCA terminates with failure, go to Step 4.

Delete If is now empty go to Step 6;

if not, go to Step 1.

Perform FA with wSA' YsA' XSA and SSA as respective values

for w, y, XFA and S.

* If FA terminate successfully, set YsA equal to yp, the

value returned, terminate and report success.

If FA terminates with failure, go to Step 4.

Terminate and report failure.

Sync Crosser Algorithm

Tilis algorithm uses the Enumerative Algorithm (EA) to build up

* a set, SSCA of slices thatare feasible and accessible from, ySCA' one

of its input parameters and determines if the pre-synchronisation sliver

s~re of, tSCA' another input parameter is accessible from YsCA" Tile

* parameter XSCA is a set of chain-graphs as is XSCA' but the former

is an input parameter and the latter is returned upon successful

-133-

termination. * * A slice, ySCA' and the set SSCA of slices are also re-

turned upon successful termination.

Construct the set of chain-graphs in the efflorescence of

tsCA· Call it X~CA· (At worst, X~CA can be set equal to

XSCA.) Go to Step 2.

Perform the Enumerative Algorithm with X~CA

respective values for the input parameters.

and

* * * !f EA terminate successfully, set SSCA' YsCA and XSCA'

* * *

as

respectively equal to the values SEA' yEA and XEA returned,

terminate report success.

If EA terminates with failure, terminate and report

failure.

Enumerative Algorithm

This is a recursive algorithm similar to the Crutch Algorithm of

Chapter 3, except that it asks for the performance of EA instead of the

Basic Algorithm and that it needs to use FkA at forks and to treat

* points of synchronisation as barriers. It builds up the set SEA of

feasible slices accessible from and terminates with success if

(st /s)y the slice that is identical to pre y EA'

uses the

mination

* XEA' the

EA
* pre-synchronisation sliver, is in SEA.

* * SEA is returned, as is yEA' which is

set of chain-graphs defined by y~.

YEA except that it

Upon successful ter-

t
(s t/s)yEA' and pos

-134-

CRUTCH ALGORITHM

This algorithm is similar to its namesake in Chapter 3, except

that it uses FkA when necessary and seeks performance of FA instead

of the Basic Algorithm.

FORK ALGORITHM

It takes three input parameters, a slice yF' a set of chains

XF' and a fork fF. If the slice through the post-fork sliver (this is

similar to the post-synchronisation sliver, conceptually) i.e.,

is feasible, it terminates with success and returns this

~~
and the chain-graphs it defines as XF. No value is re-

turned if FkA fails.

§4.11 Isolation of Efflorescences

The SCA algorithm in the previous section assumed that the

efflorescence of a point of synchronisation can be isolated. The task

is far from easy as Figure 4.10 shows. In Figure 4.10, if the chain-

graph of y were searched from top to bottom to determine if t lies

on them, a fairly long and futile search down the chain-graphs marked

Xf and Xf is possible before it is realized that t is not on it.

Besides, unless the points of synchronisation are labelled too, there

-135-

y y

t

I
I I

~ ~

Figure 4.10

-136-

is no way of distinguishing one from another.

The isolation of an efflorescence becomes considerably easier

if the demand graphs are constrained so that graphs such as that in

Figure 4.11 are ruled out; for them the chain-graphs can be labelled

conveniently. The constraint can be described precisely if the

notion of generations is associated with chain-graphs. For this pur­

pose it is useful to use chains again. A chain-graph of y1 starts

out as a chain and sub-divides into more chains, with consolidation

occurring at some points of synchronisation. Points of synchronisation

will be referred to as joins.

The first constraint requires that all points of synchronisation

have exactly one outgoing arc. It will be recalled that forks have

exactly one incoming arc.

concept of generation.

This makes it possible to introduce the

The chains that are chain-graphs defined by y1 belong to the

first generation. At a fork, such a chain gives rise to two or more

chains of the second chain. Each chain of the second generation gives

rise to chains belonging to the third generation at a fork, and so on.

Similarly, chains give rise to a chain of one lower generation at a

join. However, this leads to an ambiguity if chains of different

generation meet at a join. The second constraint, therefore, re-

quires that only chains belonging to the same generation can meet at

a join.

Chains of second or older generations that arise from a chain,

-137-

Figure 4.11

-138-

that is a chain-graph defined by y
1

, are called siblings. All chains

of the first generation are also siblings.

The third constraint requires all chains meeting at a join to

be siblings in addition to belonging to the same generation.

These three constraints are necessary for consistency of gen­

eration numbering.

Figure 4.12 shows arcs marked with the generations of the chains

they belong to. The demand graph of Figure 4.12 satisfies all the con­

straints.

Figure 4.13 is a copy of Figure 4.11 but shows a one-digit

position per generation labelling with increasing numbers from left

to right on outgoing arcs of a fork. It is seen that the efflorescence

of t consists of all chain-graphs that are labelled with a leading 1.

The constraints described above have a meaningful interpretation

in terms of processes in a computer system. They state that processes

are created by a computation to carry out an internal computation and,

therefore, no other computation knows about the processes. A similar

argument is used for processes of the third generation, and so on.

Since only processes of the same generation that are siblings ''know

each other", only they can interact. The constraint on points of

synchronisation that they have only one outgoing arc is a relatively

artificial constraint, though. However, it does simplify the task of

isolating efflorescences.

- i 3 9-

')

~'

-140-

' '
• I

,,~-~ t ,, -.... I ;,, -- I - I -A. ~., t
/ ' ,

' ,,,,
' I • ~ .. ,,, ~, t f

I
,

I I ,
' • I ,
' I I

+
.

" A /(. A
I • I I '

, ' I \
\ I '

, " "
111 11211 11212 1122 121 122 32

y y

t

Figure 4.13

-141-

Loops and Decisions

Chapter 5

-142-

Unrestricted and Augmented Demand Graphs

A demand graph was defined in Chapter 2 to be a finite directed

graph with demands on the arcs and a capacity associated with

the graph. The analysis in Chapter 4 dealt with all but demand graphs

with circuits or directed cycles. Sections 5.2 and 5.3 aim at an in­

formal study of the effect of cycles in demand graphs on the analysis

of deadlocks. The study is informal because the complexity of the

graphs to be considered becomes unmanageable. Moreover, the analysis

of Chapter 4 suggests that there can be much repetition of familiar

techniques, so that an analysis of the differences alone may suffice.

Section 5.4 deals with augmentation of demand graphs to include a

mechanism for the representation of decisions and alternative alloca­

tion possibilities in processes. There, too, an informal discussion

of the effect of such augmentation on the analysis is presented. Be­

cause the discussion is informal, there is an underlying assumption

in all sections that the demand graphs that should be considered are

those that represent meaningful behaviour by users of systems, rather

than general members of the classes of graphs considered.

Unrestricted Demand Graphs

Unrestricted demand graphs are the demand graphs defined in Sec­

tion 2.2, and thus include cyclic graphs. However, rather than treat

such graphs in general, the discussion in this section aad the next

-143-

deals with rectilinear demand graphs in which arcs have been added for

the purpose of creating cycles. Figure 5.1 shows an example of such a

graph.

The demand graph of Figure 5.1 exhibits overall loops, i.e.

it is a rectilinear demand graph in which the corresponding terminal

arcs and initial arcs of chains are joined. The graphs thus consist

of chains and rings. Demand graphs with overall loops will be referred

to as annular demand graphs.

In terms of systems of processes, annular demand graphs represent

repeatable or recurrent processes. The manufacturing industry provides

several instances of recurring processes in the field of operations re­

search. In interactive computer systems, a process that responds to

editing cormnands or a process that handles console commands is an ex­

ample of a recurrent process.

It is clear that slices of annular demand graphs can be defined,

exactly as in Chapter 2, as sets of arcs, one from each chain. However,

the slices do not form a lattice as they did in Chapter 2, since y1 < y2

and y2 < y1 do not necessarily imply that y
1

= y
2

• Feasibility and safe­

ness of a slice can be defined as before. However, as Figure 5.1 shows,

if a slice such as y is safe, then a slice such as y' is safe too.

For the (now merged) initial and terminal arcs have zero demand and the

arcs on any chain have a demand that does not exceed the capacity of

the graph. Thus annular demand graphs may be analyzed by cutting each

ring at any arc that has zero demand and analyzing the rectilinear

demand graphs that result by the techniques of Chapter 3.

-144-

X1 X2 X3 -, -,
I

/'
-;- I

I I \ I
I I \
I I

I
y' I \ I

I I I I

I I I I
I I

I I I I
I I

\ I
I I \

I

I
I

\ I
I I \ I

I I \ + I

' I \
I I \ I

y,y' y,y'

\ I I

\ I I
\ I I
\ • {

\ I {

\ I I
\ y I I
\ I I
\ I I
\ I I

' I / -T-
_.J -.J

Figure 5.1

-145-

Figure 5.2 shows another form of cyclic demand-graph, viz one

with an internal loop. Although moves across transitions having more

than one output arc have been interpreted so far as representing the

initiation of parallel processes, it is clear that such an interpreta­

tion would be meaningless for the demand graph of Figure 5.2 A useful

interpretation would consider a transition, such as t 1 in Figure 5.2,

which has several outgoing arcs, one of which is part of a loop, as

representing a point of choice. Consequently, a slice of such a demand

graph should not be defined, as it has been in Chapter 4, in terms of

slivers that are cut-sets of component sub-graphs of the demand graph.

Rather than attempt to find an appropriate definition of a slice for

analysis of deadlock, it may be worthwhile to determine if the loops

can be meaningfully rectified; for then the definitions of slices, safe­

ness, etc., used in Chapter 3 as well as the analysis in that chapter

can be used.

Now a loop in a demand graph such as that of Figure 5.2 rep­

resents the fact that the phases represented by the arcs around which

the loop is drawn (the three arcs a 1, a 2, and a
3

in Figure 5.2) may

occur more than once and, in fact, an unpredictable number of times.

Consequently, in rectification of such a graph, it must be ensured that

a slice such as y in Figure 5.2 is considered safe only if it is safe

no matter how many times the string of arcs a 1, a 2, a
3

is repeated in

succession. The rectified graph used for safeness analysis must,

therefore, use an adequate number of copies of the iterand, viz the

(1 \ (!) ,'))

C» ') --- -, y

1) (()' 8)

I r . ~~- -- - Co,4) • I

I (1 , ::i.)

L ,

t~:) ; ------
('), ; 1) I

r- _..J
1

(4, ri)
--

<LJ,1~)

(0,0)

Fl gu rC' s . :1

-147-

segment a
1

, Ci
2

, ,~, 3 . The problem of determining what number of copies is

adequate will be referred to as the adequate rectification problem.

The Adequate Rectification Problem

Consider the slice y in Figure 5.2. If using one copy of the

iterand is adequate, then Figure 5.2 shows that y is safe. However,

the result is fallacious, since it is clear that if the phases represented

by the iterand do get repeated then deadlock would result in the system

represented. Figures 5.3a and b show an example in which y is safe

when two copies of the iterand are used but not when three copies are.

Figure 5.4a shows a somewhat different example, in which the slice

y is safe when one or two copies of the iterand are used (Figure 5.4b)

and also when any larger number of copies is used. The difference

seems to lie in the fact that in Figure 5.4b one can find a slice y~

that is accessible from y and that has the property that a uni-chain

macro-move across the entire iterand fits y' feasibly. Clearly a se-

quence of any number of such macro-moves across copies of the iterand

would fit y' too.

In general, let y be the slice whose safeness is being examined.

Let y be safe when 1, 2, 3, n copies of the iterand are used, and

let n be the smallest number such that when n copies are used, a slice

y' is accessible from which a uni-chain macro-move across the entire

th
n copy of the iterand fits y' feasibly. Then n is the number of

y

y

-148-

' I
(6,6)

(7,6)

(7,5)

(7,7)

(6,7)

(8,7)

(8,5)

(20,20)

(0,0)

Figure 5.3a

'
(6,6)

.......
(7' 6)

......
' '

(7' 5) ' ' '

'
(6' 6) y -----,
(14,8) I

I
I

(12,8) +
(12,15)
-- - _ _.a

(3,3)

(0,0)

Capacity = (20,20)

'
(6,6)

(14,8)

(12,8)

y

- -- __ _______ .::::,,.. __
.....

(7,7) ',

' (6, 7) '-.......
- ----=::::: - - - - - ;:;;;. __ -

' (8, 7) '-.. "-..

(8' 5)
- -.:;..·-- - - - ..::::::.-

(20,20)'

(0,0)
" ------- ' - ' --.::,,,

Figure 5.3b

(12,15) copy 1

(=~8)7

(14,8)] additional arc
(l2 8) introduced ~y

' transformation

(12,15) copy 2

(3,3)

(Q_,Q)

-149-

' ' • I

y
(5,5) (5,5) y ----,
(11, 5) ' (9,5) \

\ I

(§?....41 _"" _ \ (10,9) I

~ \ ' \

(6,9) \ "' ~._2) -- - -\

(5,4) \ (4, 11) I
\ - _-J

(15,15)
I (8,8)
\

(0,0) \ (0,0)
........ ----

Figure 5.4a Capacity= (15,15)

' t
I I
• I

y
(5,5) (5,5) y

" (11,5) \ (9,5)
\

\
(6,4) \ (10,9)
- - -- \ copy 1

\ '
(6,9) \ ' \ (4,9)

\
'~ ----

(5,4) \ (4, 11)
y' ---"' \

' \ (15,15) \ ' ' (4, 5) additional
\

-:::...... ____
y' arc

(0,0) I (9' 5)
\

I (10,9)

\ copy 2

\ (4,9)

\
(4, 11)

(8,8)
\ __ _

cr,D)

Figure 5.4b

-150-

copies that represents "adequate rectification." It would seem quite

likely that n varies from test slice to test slice.

It would appear that in demand graphs with scalar demands one

copy is adequate. Tiiis is because a reduction in demand cannot be

selectively for one component only (as was the case with arc a in

Figure 5.4a).

The number of copies referred to above is the number of complete

copies ~ the qualification is redundant except when the test slice it­

self includes an arc from the iterand.

§5.4 Manifold Demand Graphs

A Manifold Demand Graph is an augmented form of demand graph in

which some transitions with more than one output arc are marked with

the logical Exclusive Or symbol. Such transitions represent points of

choice in the processes. A process takes only one of the many paths at

such a point during a run. As in Section 5.2, the aim of this section

is to examine the effect of such an augmentation on the analysis of

deadlock and, consequently, the demand graphs considered will consist

of chains.

A point of choice may arise in processes because the choice of

activity to be undertaken next depends on a decision that is based on

a predicate which cannot be evaluated until this point in the process.

It may arise also from the presence of versatile resources in the

-151-

system. Such resources can serve as well as resources of another type

and, therefore, may be used in place of the latter if these are un­

available at the time.

As discussed in Section 5.2, the problem of a suitable definition

for slices arises. Once again, it is tempting to try and avoid the

problem by replacing the multiple chains of arcs emanating from such

transitions by a single representative chain. The analysis of recti­

linear demand graphs in Chapter 3 would then be applicable.

The choice of a representative chain depends on what is repre­

sented. If the point of choice represents a stage where a process auto­

nomously chooses one path, then the representative chain should represent

the "worst" alternative. If, on the other hand, the point of choice rep­

resents a stage in a process where one of several combinations of re­

sources can meet its needs, so that the alternative paths represent the

availability of choice to the resource allocator, then the ''best" alter­

native is the one that should be represented. Since deadlock avoidance

is of interest, the terms ''best" and 'worst" presumably represent the

choices that are respectively most and least likely to make slices safe.

Unfortunately, which alternative is "best", say, depends on the

slice being tested and, consequently, a local algorithm has to try all

the alternatives one by one. This is illustrated in Figures 5.5 to 5.7.

In Figure 5.5, slice y1 is safe only if the left hand alternative is

used, while Yz is safe only if the right hand alternative is used.

Figure 5.6 shows that even with scalar demands, the choice of an

-152-

X1 X2 X3

t T t
I I
I I
I I

• I I

(6,6) (6' 6) (9,7)

Y1 ,y2 4 -i Y1

(7,7) (12,12) (7,9)
4 Y2

(5,5) (11,11) (14,14)

..... ~ ..
I \

(7,11) \ I (11,7) (10, 10) (12,12)

'
I .. " r (0,0)

• •
(0,0) (0,0)

Capacity = (25,25)

Figure 5.5

-153-

X1

' I
I
I

CJ (a safe

5 5
slice)

4 17

5 ,, 6 ,,
/ ,, ' ,.. ' .,

0

7 I I
I I

~
I 3

I I
6 I

I
I

I I
~ ,)

/~ 4' ' '
,,

'
,,

20

0

Capacity = 20

Figure 5.6

,\ ' y

..
' I +--

!

---·-------- --··--

1 ,.
'

....

r 'ti
1 ,::

,,. ..,,.

't
,,.

'..:J

~

-155-

alternative is not easy. In that figure the chain that has the larger

maximum of demands on arcs is not inferior; for 0 is safe only if the

right hand alternative is used. Figure 5.7 shows that even if a chain

has the smaller maximum of arc demands and the smaller minimum of arc

demands, it can be '\10rse" than the other; for slice er is safe only

if the right hand alternative is used.

The selection of a ''worst" alternative runs into similar problems.

Thus it is necessary to redefine a slice so that it is a set of

arcs, one from each chain, with alternative chains emanating from a

transition that represents a point of choice considered to be a single

chain. Safeness algorithms have then to try the alternative chains one

at a time until either a chain that can be crossed is found or all the

chains can be crossed - the choice depends on whether the alternatives

represent a decision by the process represented or a choice by the re­

source allocator. This, of course, increases the amount of backtracking

and probably makes it non-linear.

-156-

Cone lus ion

Chapter 6

-157-

Demand Graph Analysis of Resource Sharing ~ in Perspective

Deadlocks due to resource sharing are a result of limited re­

sources and hoarding of allocated resources. In general, the avoidance

of deadlock requires control of the acquisition of such resources by

users, the entities that acquire and release resources. Total se­

quencing of the users, so that they proceed one at a time until com­

pletion, is always possible if no user ever needs more resources than

are in the pool. Such control is gross and wasteful. Finer control

requires information about resource usage by users.

The demand graph model is a model for the representation of

information about resource usage by users when their activity can be

divided into phases of known and steady resource usage. What scale

of activity a phase represents can vary with the circumstances. The

ability to represent a set of phases as a single phase whose demand

is the least upper bound of the demands of the original phases is the

key to this facility. The assumption of Habermann [3], that only the

maximum demands of a user are known, corresponds to combining all the

phases (other than the initial and terminal arcs) of the subgraph that

represents the activities of a user and representing them by a single

phase, whose demand is the least upper bound of the demands of all

slivers of the sub-graph. It thus represents one extreme. However,

there is a whole range of scales of representation on one side of that

extreme, and demand graph analysis serves to illustrate what can be

done in that range.

-158-

Non-linearity in Algorithms

Between Scalar and Vector Demand Graphs there is a quantum jump

in the amount of computation that a safeness algorithm has to do in the

worst case. While it is to be expected that the amount of computation

in the worst case increases as the number of components of demand in­

creases, the increase would seem to depend more on the particular

figures of demand encountered than on the number of components. For

the Augmented Safeness Algorithm becomes non-linear only when it finds

barriers before it finds arcs with total reduction in demand that sat­

isfy the test of the Basic Algorithm; thus it is clear that the oc­

currence or non-occurrence of such lows of demand is what determines

the amount of computation. However, the likelihood of occurrence of

such lows in all components of demand may decrease as the number of

types of resources in the systems represented increases.

It should be borne in mind that the non-linearity of the Aug­

mented Safeness Algorithm is also a consequence of its local nature.

The proof of non-linearity of the Augmented Safeness Algorithm as­

sumed that even when barriers are discovered on all chains, the con­

siderations for a slice to possess the prefix property must still be

based on arbitrary extensions - not just those that also have barriers

on all chains. This assumption was based on the particular defini­

tion used for local algorithms.

-159-

The principal cause for the non-linearity of the Augmented Safe­

ness Algorithm is the fact that there are situations in which exactly

one combination of crutches is useful and this can only be discovered

by trial and error by a local algorithm.

The principal factor in the proof of non-linearity in arbo­

raceous demand graphs even with scalar demands is the existence of

situations in which a pre-synchronisation slice is accessible by

exactly one sequence of chains on which to make moves. Here, too, if

the demands on arcs incident on and emanating from points of syn­

chronisation are small enough, then the amount of computation a safe­

ness algorithm has to use does not become very large.

Demand Graph Analysis in Operations Research

The problem of deadlocks is as serious in transportation, manu­

facturing, maintenance, etc., as it is in computer systems. That it

has not been recognized in operations research is unfortunate, since

the fields to which operations research addresses itself are those

that are connnonly encountered.

The assumptions for the demand graph model, viz that processes

go through phases of known and steady resource usage, are particularly

apt for manufacturing and other similar spheres to activity. The ex­

ample of a maintenance hangar for aeroplanes in Chapter 1 is a case

in point.

-------- ----------

-160-

It should be pointed out that the assumption of an asynchronous

nature for the processes in the analysis is not crucial, and its viola­

tion does not invalidate the results as far as scheduling problems in

operations research are concerned. For deadlocks are caused by

hoarding and improper coordination of the acquisition of resources by

activities, not by the unpredictability of the durations of various

phases of activity. That these durations are not known in asynchronous

systems, merely implies that the activities should be viewed as dis­

crete phases with a sequencing structure, rather than as continuous

on-going activity.

The effect of knowledge of processing times or duration of

phases is to make the various connected sequences of feasible slices

from a safe slice to the terminal slice unequal -- some sequences may

be preferred over others, say because they result in a lower average

running time for the processes. However, if a slice is not safe, then

no schedule will allow all the processes to complete without deadlock.

Thus considerations of deadlock prevention have the effect of elimi­

nating certain schedules from the set of schedules that are considered

for minimization of running time. All the work that has been done so

far on selection of schedules that optimize running times can be ap­

plied to this reduced set.

-161-

Use of Demand Graphs in Computer Systems

Deadlocks can occur in computer systews because processes com­

monly hoard resources such as locked data bases, main memory in sys­

tems with a single level memory, etc. Thus it would seem that demand

graph analysis would be useful, and the next few sections touch upon

some of the relevant issues.

The discussion in Chapter 1 pointed out that the scale for

description of a computation (the activity of a "user" or a set of

"users") as a sequence of phases can be chosen to suit the circum­

stances. Thus, it is possible to consider a phase as representing the

execution of a single procedure or of a set of procedures, for instance.

In other instances the phases may represent execution of parts of a pro­

cedure. The scale can, therefore, be chosen to suit the circumstances.

Although the discussion thus far has not touched on the effect

of priorities, the use of priority schemes is not precluded. The

analysis of Chapters 2 to 5 is invariant with choice of a priority

scheme. It is perfectly reasonable to have any scheme, whatsoever, to

select one or a few of several competing processes to receive resources,

as long as allocating those resources corresponds to a move to a safe

slice in the demand graph representation. In fact, one can even rep­

resent facilities such as guaranteed service, by modifying the safeness

algorithms. If a certain sequential process needs to be guaranteed

of always being able to proceed with the next k phases (for some value

of k) as soon as it finishes the current one, then the safeness algorithm

-162-

can be modified to assure such a process; for it can be made to ensure

that every sequence of moves it constructs, during a test for safeness

of any slice, begins with a uni-chain macro-move across k transitions

on the chain representing that process. A page swapping process may

perhaps be an instance of such a process.

Interactive systems are somewhat different. In such systems a

user needs to be guaranteed not just of being able to complete his

computation, but of being able to complete it within a reasonable

amount of time. This "reasonable wait" constraint is usually quite

strong and may imply either that the ability to preempt resources is

required, no matter what the cost, or that computations should not be

accepted until the expected time to completion is less than a certain

limit. In such instances the analysis of demand graphs is still quite

useful although, at times, only to provide guidelines or a philosophy,

rather than to be applied directly and in detail.

System designers should not be distressed by the non-linearity

of safeness algorithms for vector demand graphs. The large amounts of

computation that non-linearity implies relate to worst cases and not

necessarily to ordinary cases. Secondly, compromises are possible,

since it is only required that the states that are permitted to occur

are represented by safe slices not that all states that are represented

by safe slices be permitted to occur. The cases in which the amount of

computation begins to become rather large could be handled by refusal

to consider the states represented by these slices for allocation.

-163-

Thus requests from processes for additional allocation may be denied

because the slice representing the state that would result is unsafe,

or because determination of its safeness takes too much computation.

In this context the discussion in Section 6.1 on the scale of repre-

sentation is quite relevant. In any case, the results in this thesis

point out the sources of complexity and the degree of complexity that

can be encountered. Non-optimal strategiest may be more practical and

better, as long as extremes are avoided. The non-linearity of the

Augmented Safeness Algorithm could thus be only of academic interest.

Moreover, good heuristics could probably be found for corrnnonly oc-

curring situations.

Finally, there is a trend towards making resources preemptable

on the one hand and effectively infinite on the other. The implementa-

tion of virtual memory schemes on multi-level memories is indicative

of this trend. The trend is irmnensely desirable. However, deadlocks

owing to sharing of locked data bases will continue to arise in com-

puter systems, making coordinated allocation of such resources to

avoid deadlock imperative.

tit should be pointed out that the Basic Algorithm in Chapter 3 only
uses a sufficient condition (rather than a necessary and sufficient
condition) as a test, anyway.

---- ----- ----

-164-

Conclusions and Future Work

The demand graph model for the analysis of deadlocks is not the

last word on the subject. Chapter 5 showed that the techniques of

analysis become unmanageably cumbersome for unrestricted and augmented

demand graphs. This is largely a consequence of the complex structures

that these graphs exhibit. However, good algorithms for testing the

safeness of slices of such graphs need to be devised and may require

considerable ingenuity.

Moreover, there are several situations that demand graphs are

incapable of representing. An output process for a group of recurring

or cyclic processes that treats pieces of data from all processes

syrrrrnetrically and operates with a finite buffer memory, which it shares

with other output processes, is such an example. The full power of

(unsafe) Petri nets [8] is required for the representation of such a

system. For Petri net "conflicts" are required to represent the sym­

metrical treatment of pieces of data from all processes and the init­

iation of output as soon as possible after any such piece has arrived,

without pre-ordained sequencing of the handling of outputs from the

various processes served. This would suggest that Petri nets with

numbers (demands) on places and constraints (capacity constraints) may

be worth examining ab initio with a view to representing systems for

analysis of deadlock.

-165-

In concluding, it should he pointed out that the work in this

thesis represents an attempt to construct models for activities in

systems so as to aid understanding and analysis of systems. Computer

systems, in particular, need such models to aid in the understanding

of fundamental problems. Such models are also required to provide

tools for debugging of systems that are so complex that comprehension

of the whole is almost impossible. The fact, that in using demand

graphs to analyze consistency of use of locks on data bases one can

construct the demand graph one process or one computation at a time,

is of great value. For then mechanical tools (such as safeness algo­

rithms) can handle the interactions of the parts in the complex whole.

It is to he earnestly hoped that more debugging tools of this nature

will be devised.

:!('lr Tnequal i::, (c

. .\0n· \r 1< 1

-167-

An examination of the lattice of slices of a demand graph such

as that in Figure 2.4 shows an apparent redundancy of information. For

instance, in the lattice of Figure 2.4 ,all the arc labels have appeared

in slice labels by rank 4. This suggests that a test of a kind differ­

ent from that considered in the main body of this thesis may be possible.

Such a test would utilize this observation, viz that the first few ranks

of the lattice of slices contain a good deal of information. The test

is, in general, a (K, p) feasibility test, i.e. a test which seeks p

connected sequences of feasible slices from the test slice, y, to a

slice K ranks above y in the lattice.

The test that is of particular interest is a (K, 1) feasibility

test, especially because it is comparable to the tests discussed earlier.

It should be interesting to determine how large K has to be in relation

to Ly, the rank of yT relative to y. In determining such a lower

bound on K, however, it is proposed to take a more mathematical approach

in this appendix than has been taken so far. The intent of the analysis

is to explore the effectiveness of such an approach rather than to obtain

a tight bound for K. The investigation will therefore concern general

questions such as what patterns of feasibility and infeasibility over the

lattice of slices can be obtained, and so on. The mathematical tool that

will be used is the theory of linear inequalities.

The reason why it appears, intuitively, that some patterns of

feasibility and infeasibility may not be attainable is because these two

-168-

types of constraints are opposite in nature and, therefore, could give

rise to a contradiction. For example, suppose slices A
2

B
2

c
2

and

A
3

B
3

c
3

of a three-chain demand graph were required to be feasible. Then

could A
2

B
3

c3 and A
3

B
2
c

2
both be infeasible? Clearly not, for the fea­

sibility requirements imply that

d(A2) + d(B
2

) + d(C
2

) ~ C

d(A
3

) + d(B
3

) + d(c
3

) ~ C

d(A
2

) + d(B
2

) + d(C
2

) + d(A
3

) + d(B
3

) + d(C
3

) ~ 2C

ie [d(Az) + d(B3) + d(C3)] + ~(A3) + d(B2) + d(C2)] ~ 2C

which clearly contradicts the infeasibility constraints.

In simple cases such as the example shown above, the incompati­

bility of the (four) constraints may be quite obvious. When a large number

of constraints is involved, however, the incompatibility of constraints

may be much less obvious. For this reason, it is proposed to seek sim­

pler tests based on the exhibition of a well defined structure by the

constraints. The principal task, then, is to determine what structures

have important implications in this regard. It will be assumed that the

demand graphs are rectilinear and that in any example the number of chains

and the number of arcs on each chain are known, as is the capacity asso­

ciated with the graph, but that values of demand that satisfy a given set

of constraints are sought.

-169-

The discussion to follow assumes scalar demands but it is con-

jectured that the results are valid also for vector demand graphs.

Each requirement of feasibility of a slice imposes a constraint

of the form

m
~

aj I -::: c L r.
for the jth such slice

i=l
l

where aj is the concise notation for
r.

l

merely serves to identify the slice to

d(~i) and the superscript j
r.

l

which the inequality relates.

Similarly, each requirement of infeasibility imposes a constraint of the

form

m m
\"'

aj (-aj) ~ > c or l < -c
r. r.

i=l
l

i=l
l

The question of the compatibility of the feasibility and infea-

sibility requirements thus reduces to that of the consistency of a set

of inequalities made up of inequalities of these two types. The theorem

which follows relates to this question directly. It is taken from

Cernikov [18}.

"Theorem [3.4]. Let

f. (x) - a. -::: 0
J J

j 1, 2, 3, ... m

t
be an arbitrary compatible system of inequalities over the linear space

L(P) where
t

P is an arbitrary ordered field , then the system

t
See [9J.

-170-

f. (x) - a. < 0
J J

j 1, 2, ... m'; m' ~ m

f. (x) - a. ::;: 0
J J

j m' + 1, ... m

x E L(P)

is compatible iff the equation

'b u. f. (x)
J J

0 with the unknowns

has no positive solutions satisfying the condition

0 > O" um'

In the discussion which follows, the linear space L(P) is the

linear space over the field of rational numbers since the components of

demand are rational numbers.

An intuitive understanding of the theorem can be obtained by re-

writing the inequalities as

j 1, 2, ... m'; m' ::;: m

f. (x) ::;: a.
J J

j m' + 1, m' + 2, ... m

Each fj(x) is of the form ~l x1 + ~ 2 x2 + ... ~n xn' where n is the

dimension of the linear space L(P). Since multiplying an inequality by

a positive constant leaves the inequality unaltered, if positive mul-

tipliers u. can be found which (after multiplication) make the sum of the
J

left hand sides identically zero, then in a compatible system the

-171-

corresponding sum of the right hand sides must be greater than zero

(unless no non-zero multiplier multiplies any inequality in the second

group), or else one gets the absurd conclusion 0 < O! What is less ob-

vious, and therefore interesting, is that this condition is also suf-

ficient for compatibility.

Now, a given pattern of feasibility and infeasibility implies

that a set of inequalities be true simultaneously. This set is

m

l aj s: c
r. j E [l, p'] for the p' feasible slices

i=l l.

AO
m

l (-aj) < -c
r.

j E [p' + 1, p] for the p-p'

i=l l.

infeasible slices

The theorem quoted above is applicable to this set of inequalities only

if it is compatible when the inequality in the second group is changed to

"s: ". But this is clearly true, since a value of c for each re-
m

sults in satisfaction of all of the resulting inequalities. Therefore,

the theorem is applicable to the set, A
0

,of inequalities given above.

In order to apply the theorem to the inequalities in A
0

, a

correspondence of terms must be set up. Consider one of the inequalities

in~:

+ ... +a s:c
r

m

-172-

(The j merely identifies the slice

from which the inequality comes and

hence which ar 's appear)
i

The variables here are the demands a Let the total number of dist1inct r.
1

demand variables appearing in A
0

be N. Then the above inequality is of

the form

[l, o, o, ... 1, o, ... 1 [·] s: c

where the column vector a is the vector of N demand variables, and the

row vector, with m components having a value 1, serves to pick out

those components of a which appear in the inequality above. Thus a

corresponds to the x of the theorem. The row vector of l's and O's

is called a selection vector.

Now the equation

m

\ u.f.(a) 0 L J J
j=l

in the variables u. is really an identity in terms of a, since the
J

equation has to be true for all values of a.

The two lemmas which follow interpret the implications of the

theorem stated above in terms of two patterns of feasibility and in-

feasibility. The patterns are described in terms of a substructure of

-173-

the lattice of slices called a hull, a precise definition of which appears

later.

A sub-lattice is a subset of the elements of the lattice which is

itself a lattice under the same definitions for computing least

upper bounds and greatest lower bounds. It can be shown that a sub-set

of a lattice that is closed under the operations of the lattice is a

sub-lattice. Consequently, one can generate a sub-lattice from any sub-

set of a finite lattice by adding the elements needed to make the set

closed.

The hull of a set, A, of slices is the set of all slices, cr, in the

lattice that satisfy g.l.b.(A) ..:_; cr ..:_; 1.u.b.(A). Figure 1 shows thehullofa

set of slices. The hull of a set of slices is a sub-lattice of the lattice

of all slices since the hull is closed with respect to the operations

of extracting the greatest lower bounds and least upper bounds of

slices. It is clear that every slice in the hull of a set of slices,

A, lies on a directed path from g.l.b. (A) to 1.u.b. (A).

LEMMA 1 Let D be a demand graph of m chains with n. arcs
l.

on the .th chain. Let be slices of D re-l. yl' y2' ... yp

quired to be infeasible and Yp+l' yq be slices re-

quired to be feasible. Then a set of demands for the arcs

of the demand graph that ensure that all these conditions

are met exists if none of the slices lies

,/

________ ,.

1 ')
; J
1

(

(i 'Jc .
7 re Jed

!he hulJ)
P]E, - -mE'nts

-175-

in the hull of (or synunetrically, if none of

the slices lies in the hull of Yp+l' ... Yq).

PROOF: The system of inequalities whose consistency is being

examined consists of the two sets of inequalities:

m

I
i=l

-aj < -C
r.

l.

j E [l, p] --------------------- (1)

corresponding to the infeasible slices, y1 , y 2 , ... yp' and

~ c j E [p + 1, q]------------------ (2)

corresponding to the feasible slices, Yp+l' Yp+2' ... Yq.

Step l: Suppose that positive multipliers ~l' ~2 , ... ~P and

µ
1

, ••• µ for the f~o sets exist such that
p+ q

i.e.,

rn

>-1 (I -a;.) + >-2 (
i=l l.

.......... + µq (

+ ... +A()­
p

)

) - 0

+ . . . + µ ()- - - (3)
q

-176-

Then, for consistency, the theorem requires that

p

(-C) • I
j=l

A. + (C) •
J

q

I
k=p+l

be true unless A. is 0 for all values of j.
J

f1k > 0

Consider the identity in (3). It will be noticed that as each term

in parentheses relates to a slice, it contains exactly m variables, each

with coefficient 1. Since one can multiple (3) through by the LCM of the

denominators of the A's and µ's to get integer multipliers, it may be as-

sumed that the A1 s and µ's are integers so that one can speak of the num-

her of terms on one side of (3). The number of terms appearing on the

left hand side when (3) is expanded out is
p

m ~ A.
1 J

whereas that on the
q

right hand side is m 2: f1k.
p+l

Since (3) is an identity, it is necessary,

inter alia, that these two numbers be equal. Thus

q

ti I f1k
p+l

Therefore,

The system of inequalities consisting of (1) and (2), therefore. is

inconsistent if positive integer values for the A's and µ's exist

that satisfy (3).

-177-

The identity in (3) can be rewritten in terms of the selection

vectors so as to eliminate the variables. It then becomes the set of N

equations

[-~
1 -~2 ... -~]

p
selection vector for v

1

selection vector for y
p

= [µp+l µp+Z ..• µq] selection vector for yp+l

selection vector for y
q

Now both sides of this identity can be multiplied by the N X 1 vector of

a's which corresponds to a. One then gets an identity which is identical

to (3) but with arc-labels rather than demands in it. Call the new

identity (4) -- it is an identity of algebraic expressions whose terms

are the arc labels

That values

i a r.
i

for the ~·s and µ's that satisfy (3) should not

exist, implies (in terms of the identity (4)) that values for the ~·s

and µ's that satisfy (4) should not exist. That is, for consistency no

permutation of the collection of labels of slices in a selection (with rep-

etition) from the set (y1, y2, ••• yp} should produce a collection of la­

bels that is also a permutation of the collection of labels of slices in

-178-

a selection of tl1e same size from y }
q

(again with repetition

allowed); selectior; ,,. Ll slice more than once corresponds to a multiplier

y (or l.) wh i.ch i.::: ~rec1 ter t!1an one.

Now consider a selection (in this proof, always with repe-

tition allowed) fron; y
1

, ••• y . • T11en any permutation of the collection of
J_ ;•

labels of these slices that yields slice-labels must satisfy the condi-

tion that each compone1;t a of a new slice label satisfies:
r.

l.

>;. 1. b. of the arc ,;11mbers s;

r i of the "·i CotHponents
of slice labels i·· ,.

therefore,

g.l.b. of the "i <H"c

components of the .<1 ices

in the selectio':

u
r.

l

l. u. b. of tlie arc numbers
ri. of the Xi components
of slice labels in "

:; .. 1. b. of the xi arc compo­
nents of the slices in the
selection

since the arcs on each chain are numbered in sequence downwards. Thus

g.l.b. of the slices
from the selection

~ the slice in question
(resulting fron a
permutation)

l.u.b. of the
slices from the
selection

i.e., the slice lies in the hull of r
l yl' •.. y } .

p

(For example one slice-label resulting from the permutation

is
l ., 3 Y;Y;u

2
, wl1ich clearly satisfies

1 2 3
and Y3u3

u2 does lie in the hull

anJ

-179-

Thus, if none of the slices Yp+l' ... yq lies in the hull of

yl' ... yp' then the collection of labels in any selection fr on

Yp+l' ... yq} cannot be a permutation of the collection of labels in

a selection from { y
1

, :
)) .
n

TI1us no inconsistency can result and,

therefore, demands for t1ie arcs exist so that both the feasibility and

infeas ib i li tv require;:1ent s are satisfied.

R that is

mal subset

(~. [. D.

Consider a demand graph with m chains, the ith

chain having Il
i

;:ir cs . Let [y
1

, ... y}
p

be a set of

slices of the de~and graph which lie in one rank, R, and

let y
1

, ... 'i,, be required to be infeasible. Further-
. t"

more, let yl' ... y
p

completely partition their hull,

i.e. there does not exist a slice at rank R that is in the

bull of but is not in ty
1

,
;

.•• y '.
p

Then if valc1es of demand can be found so as to make the

slices ..• y infeasible and all the slices be-
p

low rank R in the hull of y }
p

feasible, then

no slice that l1es above rank R in this hull can be feasible.

PROOF: Let y be a slice in the hull at a rank greater than

required to be feasible. Let [y. ' y. ' ... y. } be a mi:l.i-
J1 J ') J2 "-

of (y ; such that is the l.u. b. of -~ Y1' ... y
p

y. ' Y .• That J.S')'" '
y. } is the smallest set of slices

J1 J .£ J1 J 1
)',

-180-

at rank R whose l.u.b. is y. Such a set has to exist since the set of

all slices at rank R that lie on a directed path from g.l.b.

(y1 , .•• yp} to y certainly have y as a l.u.b., and all such slices

belong to the hull.

Now it will be shown that slices ys ' ... y all lying above
s.t-1' 1

rank exist such that the labels ... R, of y, ys ' ys '
y

1 2 s ,e-1 are permu-

tat ions of the labels of y. , y. , ••. y. .
J1 J2 Ji,

In the discussion that follows the labels of slices y, y'

will be designated by y, y' .•.. This should cause no confusion as the

context should resolve any ambiguity. The labels ys , •.• y
1 s i,

are ob-

tained as follows: Take out the elements that make up y from

y. , y. , • . • y. . Then take any of the i, "stripped" labels remaining
J1 J2 J,e

and distribute its components among the other i,-1 stripped labels, giving

each a component that is from the same chain as the one it contributed to

y. The resulting labels are y , y ,
sl s2

(The construction is illustrated for

below:

y. '
J1

y. '
J2

y. :
J3

A3 Bl C2 A2 B3

y: A3 B3

Stripped labels: Bl c2
I

Result of distribution:

cl Al B2C3

c3

A2 cl Al B2

A2 1\ cl Al B2

Clearly, (A3 + Bl + c2) + (A2 + B3 + c1) + (Al + B2 + c3)

c2

= (A3 + B3 + C3) + (A2 +Bl+ Cl) + (Al+ B2 + C2).)

------~~~~---------------

-181-

In general, it is obvious that y, ys ,
1

of y. , y. , •.• y ..
J1 J2 Jf,

y is a permutation
si,-1

It remains to be shown that all lie above ys ' y ' •• • y
1 s2 s.t-1

rank R and are therefore feasible - this, together with the feasibility

of y and the infeasibility of leads to an incon-

sistency.

It is obvious from the construction that

Each component of a com­
pleted stripped label

~ The corresponding com­
ponent of y

For each label, y, some one component the relation is really"<" -
s

this is the component received in the distribution, i.e. the one component the

unstripped label alone can contribute to y.

Thus each of the resulting slices ys , ys ,
1 2

less than R.

y has an index sum
s.t-1

Q.E.D.

LEMMA 3. If a slice y of a demand graph is feasible but

none of its immediate successors is, then no slice other than

y in the hull of its successors can be feasible.

-182-

TlillOREM Let D be an m-chain demand graph and let L be

the rank in the lattice of slices of its terminal slice, YT·

Let there exist a connected sequence of feasible slices from

a slice y of D to a slice, y', at rank L-m and let y'

have m successors. Then the sequence can be extended to yT.

Lerrnna 3 follows from the fact that y is the only slice in the

hull of its successors that lies above the successors. TI1e theorem fol­

lows from Corollary l; for the hull of them successors extends m-1 ranks

below themselves, and thus encompasses yT - therefore at least one of

the successors must be feasible (from Lerrnna 3) and one can apply the re­

sult to the successors of that slice, and so on.

111e theorem above is a result, regarding a (K, 1) safeness test, of

the kind that was sought at the beginning of the appendix. Undoubtedly,

many more results of this kind could be proved. The aim of the appendix,

however, is merely to indicate the nature of results that can be obtained

by utilization of the theory of linear inequalities.

-183-

REFERENCES

1. Crowston, W. B. S., Decision Network Planning Models, Doctoral

Dissertation, Graduate School of Industrial Administration,

Carnegie Mellon University, Pittsburgh, Pa., May 1968.

2. Habermann, A. N., "Prevention of System Deadlocks", Communications

of the ACM, July 1969, pp 3 73-3 78.

3. Habermann, A. N., On the Harmonious Cooperation of Abstract

Machines, Doctoral Dissertation, Department of Mathematics,

Technological University, Eindhoven, The Netherlands, 1967.

4. Dijkstra, E.W., De Rankiersalgorithme, Department of Mathematics,

Technological University, Eindhoven, The Netherlands, 1965.

5. Havender, J. W., "Avoding Deadlock in Multitasking Systems",

IBM Systems Journal, No. 2, 1968, pp 74-85.

6. Shoshani, A. and Coffman, E. G., Sequencing Tasks in Multiprocess,

Multiple Resource Systems to Avoid Deadlock, Technical Report

Number 78, Princeton University, June 1969.

7. Shoshani, A. and Coffman, E. G., Detection, Prevention and Re­

covery from Deadlocks in Multiprocess, Multiple Resource Systems,

Technical Report No. 80, Department of Electrical Engineering,

Princeton University, October 1969.

8. Holt, A. W., Inforn~tion System Theory Project, Final Report,

RADC-TR-68-305, Rome Air Development Centre, New York, 1968.

9. Birkhoff, G. and MacLane, S., Algebra, The MacMillan Company,

New York, 196 7.

-184-

10. Dijkstra, E. W., Cooperating Sequential Processes, Department of

Mathematics, Technological University, Eindhoven, The Netherlands,

1965.

11. Conway, R. W. et al, Theory of Scheduling, Addison Wesley Pub­

lishing Company, Reading, Massachusetts, 1967.

12. Harary, F. et al, Structural Models, John Wiley and Co.,

New York, 1965.

13. Berge, c., The Theory of Graphs, Translation, Methuen and Co.

Ltd., Great Britain, 1962.

14. Conway, M. E., "A Multiprocessor System Design," Proc. Fall

Joint Computer Conference, 1963, pp 139-146.

15. Corbato, F. J. and Vyssotsky, V. A., "Introduction and Overview

of the Multics System," AFIPS Conference Proceedings, Volllllle 27,

1965, pp 185-196.

16. Van Horn, E. C., Computer Design for Asynchronously Reproducible

Multiprocessing, Doctoral Dissertation, Department of Electrical

Engineering, M.I.T., August 1966.

17. Hebalkar, P. G., Asynchronous Cooperative Multiprocessing Within

Multics, S.M. Thesis, Department of Electrical Engineering,

M.I.T., June 1968.

18. Cernikov, S. N., "Algebraic Theory of Linear Inequalities",

American Mathematical Society Translations, Series 2, No. 69,

1968, pp 147-203.

arbour 101
arc 21

initial 22, 101
terminal 22, 101

accessible 58
barrier 44, 71
Basic Algoritlun 77
capacity 21
chain 22
chain-graph 105
crutch 71
Crutch Algoritlun 78
current slice 34
demand 21
demand graph 21

arboraceous 101
manifold 150
rectilinear scalar 21
rectilinear vector 51
scalar 21
vector 51

directed path 30
earlier than or equal to 28
efflorescence 127
extension 57
feasible slice 33
Fundamental Algoritlun 129
fork 101
Fork Algoritlun 134
frustulum 105
frustum 105
hull 173
innnediate successor 28
later than or equal to 28
lattice 30

distributive 30
of slices 31

-185-

INDEX

Lemma 3.1 59
3. 2 63
3.3 65
3.4 89
4.1 113
4.2 115
4.3 116

limited-backtracking algoritlun 88
linear algorithm 88
local algoritlun 87
macro-move 33
move 33
non-linear algoritlun 88
partial ordering 29
partially ordered set 29
point of interaction 101
point of synchronisation 101
post-synchronisation slice 127
prefix property 58
prefix relation 58
pre-synchronisation slice 127
safe slice 33
Safeness Algoritlun 43

Augmented 75
General 128
Modified 57

segment of a chain 22
set of extensions 57
slice 24, 103

initial 24
terminal 24

sliver 103
Theorem 2.1 44

3.1 67
3.2 80
3.3 92
4.1 117
4.2 120

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project .
Document Control Form

Report # l C. S:..TR..-7 5

Date: ~1 ls 11.£

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (~CS)

Document Type:

}!. Technical Report (TR)

D Other:

D Technical Memo (TM)

Document Information Number of pages: r1c ~ t'mA<:rs)

Not to include DOD forms, printer in~. etc ... original pages only.

Originals are:

D Single-sided or

'M, Double-sided

Print type:
0 Type'Miter D Offset Press

Intended to be printed as :

D Single-sided or

~ Double-sided

D Laser Print

0 Ink.let Printer)fQ' Unknown 0 Other:. _______ ~~-

Check each if included with document:

D DOD Fonn

D Spine

D Other:

0 Funding Agent Form

0 Printers Notes

--------------------~
Page Data:

<..oN lif°N~

Q(Cover Page

D Photo negatives

Blank Pages(bys-eenumbell: F~J.J...QVJ TJ"(a-~rr PA.~(,

Photographs/Tonal Material (byi-ge number): _________ _

Other 1na11e~numbefl:
Description : Page Number:

;:r: fYl ~ ©A6' ! D ~ 1'66) u N lf h JITL\ A<,~ TA ft J..K 0 p-· CDJ.,
llNQ l?LA1vk P;.9K'i) s- 1~.s;u.NtiD l?LftiaJJ< ..

(191-ti1) 5'-.ANGo.J\Rlllpflr~ ---mrrs Ct J

Scanning Agent Signoff:

. Date Received: J.. / IS ljf Date Scanned: J-1 /)1 ~£ Date Returned: ..sb_I J9.J. %

Scanning Agent Signature: __ __.<&[l....J<.l...,.A""""~""j-"0.. J..._0~~~1'.J..;:;....>..., (~IL>"'-'-""
ReY 9194 DSILCS Document Control Fonn cstrform. Y5d

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgtwpw Rev. 9/94

