
GENERALIZED ORGANIZATION OF LARGE DATA-BASES;

A SET-THEORETIC APPROACH TO RELATIONS

Cambridge

Andrew Irwin Fillat

and

Leslie Alan Kraning

June, 1970

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Massachusetts 02139

This empty page was substih1ted for a
blank page in the original document.

GENERALIZED ORGANIZATION OF LARGE DATA-BASES;
A SET-THEORETIC APPROACH TO RELATIONS*

Abstract

Problems inherent in representation and manipulation
of large data-bases are discussed. Data management is
considered as the manipulation of relationships among
elements of a data-base. A detailed analogy introduces
concepts embodied in a data management system. Set theory
is used to describe a model for data-bases, and operations
suitable for manipulation of relations are defined. The
architecture chosen for an implementation of the model is
illustrated, and a representation of data-bases is suggested.
A particular implementation, the GOLD STAR system, is inves
tigated and evaluated. The framework outlined is meant to
provide an environment in which complex data handling prob
lems can be solved with relative ease. GOLD STAR provides
the user with tools sufficient for manipulation of arbi
trarily complex data-bases; these provisions are presented
in the form of an extremely simple interface.

*This report reproduces a thesis of the same title
submitted to the Department of Electrical Engineering,
Massachusetts Institute of Technology, in partial
fulfillment of the requirements for the Degrees of
Bachelor of Science and Master of Science.

ACKNOWLEDGEMENT*

The authors wish to thank several individuals whose
interest and cooperation made the thesis possible:

Our energetic advisor, Professor James D. Bruce, for
his belief in the merits of our research, and for his
continuing faith in us.

Our mentor and colleague, Burton J. Smith, for his
guidance, helpful suggestions, and tutelage.

Our typist, Nancy J. Murphy, for her adroit transla
tion of the manuscript into English.

Each other, for faithful interlocution and cooperation
throughout the research.

*This work was performed at Project MAC, an M.I.T. research
project sponsored by the Advanced Research Projects-Agency,
and was supported in part by the Off ice of Naval Research
under Contract N00014-69-0276-0002.

TABLE OF CONTENTS

Abstract ... 2

Acknowledgment 3

Chapter I. Introduction 7

Chapter II. The Structure of GOLD STAR 13

Chapter III. Set Theory of GOLD STAR

1. The Rhetoric of Sets 34

2. Ordered Set Theory SO

Chapter IV An Implementation of GOLD STAR

1. DSM Modules 64

2. RSM Modules 73

3. Other System Modules 83

Chapter V. Programming GOLD STAR

1 . The User Interface 8 8

2. Programming Considerations and Specifics .108

3. A Sample Problem 113

Author Commentaries 116

Appendix A.

Appendix B.

Appendix c.

Appendix D.

Appcn<lix E.

Appendix F.

J\ppenJix G.

A Lemma on the Nesting of Projections .120

Alphabetic Order and Reference Numbers.121

A Formal Syntax for a Parser 128

Protection on MULTICS 129

System Interfaces 145

Current System Code 149

The Error Handler 236

\p ·'' x:1:,:p1l''° ~:l~l

l ''

-5-

LIST OF FIGURES

2-1 Preliminary Draft of Directory 14

2-2a Name Console Cartridge 17

2-2b Address Console Cartridge 17

2- 2c Telephone Console Cartridge 18

2-2d Printed Directory 18

2- 3 GOLD STAR Sys tern Structure . 2 5

4-1 Header in dsm_astring Data Area ...•........... 67

4-2 Insertion of "Ezra" in Empty Data Area •....... 67

4- 3 Insertion of "Claude" in Data Area•.... 70

4-4 Insertion of "Milton" in Data Area 70

4-5 The Algorithm for Union, Intersection,

Difference in RSM_WQ ... 78

B-1 The "names" Data Area 122

B-2 Restructured "names" Data Area 126

This empty page was substih1ted for a
blank page in the original document.

- 7-

CHAPTER I

INTRODUCTION

The M.I.T. Electrical Engineering Department, like

other large organizations, requires a powerful data manage-

ment capability to provide information for daily operation.

The department currently utilizes a software system developed

by Burton J. Smith[l-~which operates on the M.I.T. Compatible

Time-Sharing System. Faced with the burden of manual gener-

ation of teaching and research assignments, budget reports,

mailing labels, and other documents, the department began

in 1966 to transfer these tasks to the CTSS system with a

significant saving in production time, personnel effort,

and cost. With the forthcoming demise of the 7094 CTSS

installation, an alternative computer system is needed,

and provides the motivation for this thesis.

For any integrated information system, the flexibility,

and hence the scope of its utility, depends heavily upon the

sophistication of its associated data management system.

While this term connotes the existence of various functions

to different individuals, the prime purpose of such an

entity is to provide a coherent and systematic method of

manipulating large volumes of interrelated data. Such a

purpose is laudable, but only if a user can avail himself

of the capability in a manner which makes the results, as

well as the process, meaningful to him.

- 8-

0ur concern in this thesis is the development of a data

management facility capable of serving a wide variety of

administrative information needs. Specifically the system

characteristics are:

1. Pre-eminence of User Perspectives and Techniques.

A data management system is most effective when a

user can express his problem to the system in terms

of his perspective and biases; to the faculty planner,

data types such as "name", "salary", and "project"

hold much more meaning than representation types like

INTEGER, DECIMAL, or BIT. For the same user, the

operation "SORT (PHONE_BOOK, (TEL, NAME, ADDR))"

expresses his purpose more than the effort required

to write his own sorting routine. A good data man

agement system will minimize the degree to which a

user alters his perception of, and approach to, his

information problems.

2. Modular Construction.

While extensive planning of a system is advisable

before development, experience indicates that soft

ware systems evolve with time rather than merely

exist. That is, pre-planning a system rarely

encompasses all features that may be desired at

some unknown point in the future. A system should

be modular in the sense that features added or

-9-

deleted in the evolution process disturb only local

portions of the system. Modularity obviates the

need for redesign and re-programming at each change.

3. Exportability

An organization may change the computer system it

utilizes for data processing, but such a change

should not disrupt the operation of the firm or

division. While few computer programs are machine

independent, a data management system can attain a

high degree of exportability or relative machine

independence, by isolating particular machine depen-

dent features in a few modules. The remaining

system modules should be written using a widely

available higher level language. Design of a data

management system with this objective in mind mini-

mizes the operational disruption occasioned by a

change in the target computer.

The goals outlined thus far apply to design philosophy;

as such they pertain to all features which a data management

system may exhibit. There are, however, more specific

requirements placed upon any particular data management

system, requirements dictated by the characteristic environ-

mcnt in which the system must operate. The envisioned

. . [1- 2] .
system is best suited to a "computer ut1l1ty" environment,

and as such requires two further considerations:

-10-

4. Controlled Sharing Among Users

A computer utility provides the services of computa

tion for a broad-based community of users. Since

some information, such as salaries and grades, is

often considered personally sensitive, it is 0f

prime importance that only those members of the

community who require this information be allowed

access to it. The strategy of allowing a user to

access only these relations he creates would largely

protect the integrity of sensitive information.

However, such an extreme requirement eliminates

effective communication among users whose data

purviews overlap.

5. On-Line Capabilities

Management of a department or office occasionally

requires instantaneous access to the data-base.

The ability to update files from a remote terminal

is extremely convenient; data may be entered by a

secretary as if she were typing a report, obviating

the need for keypunching and physical handling of

cards. !Iowever, the greatest need for on-line

access arises when a user searches the data-base for

specific facts, and based upon the computer's re

sponse, asks for any of a wide range of additional

data. For example, the university bursar may ask

-11-

for student accounts showing a lapse of payment

greater than 30 days, along with the total number

of dollars receivable from students. If the total

due were mostly a result of the overdue accounts,

he could generate address labels for those students

tardy in payment and send notices using these labels.

Interaction of a user with his data-base in this

fashion is a powerful administrative tool, and thus,

a justification for on-line capabilities.

The concurrent requirements of sharing and pre-eminence

of user perceptions of relatedness present the sub-system

designer with a formidable task. Vendors of software pack

ages offer a variety of solutions but almost all efforts

focus on representation and manipulation of data elements.

GOLD STAR (~eneralized _Qrganization of .!:_arge Qata-bases; a

Set Iheoretic ~preach to ~elations), however, focuses upon

the representation and manipulation of relations among data

elements. This focus should be the prime function of any

data management system. The functions of the GOLD STAR data

management system are: 1) to implement an arbitrary concep

tualization of relatedness among entries in a data base,

and 2) to transform the specified operations on the data

base into sequences of instructions which will produce the

effect of these operations. Thus the design intention of

GOLD STAR is to remove, as far as possible, computer con

straints on the conceptualization of a data management

-12-

problcm, while providing a direct means of mechanizing the

same.

Several methods of implementing such a system are possi

ble; in the first effort, GOLD STAR is imbedded within the

PL/l language as a set of function sub-programs. Imbedding

allows the user full access to GOLD STAR without the burden

of mastering some esoteric programming language; rather it

extends the power of an established programming system to

the realm of relation management. Imbedding permits imple

mentation of a model at low cost; the model's utility and

power can be evaluated, as well as operated, without devel

opment of a special purpose compiler or interpreter. GOLD

STAR assumes that calls to the imbedded functions are

"primitives", i.e., a user need endure no greater complexity

than these calls. GOLD STAR is written entirely in the PL/l

programming language and its facilities are available to any

program written in PL/l.

-13-

CHAPTER II

THE STRUCTURE OF GOLD STAR

To explain the data-management system developed in this

thesis, we shall use an example designed to illustrate and

motivate the system structure we have chosen. By introducing

additional concepts to the analogy, it will be possible to

explain all of the major issues of the GOLD STAR system.

Following the example, we will relate the user's needs to

the data-management system by both describing the general

kinds of operations he might wish to perform, and the way

in which the system conforms to the goals outlined in the

first chapter.

We assume that a small company has decided that it

should establish a name-address-telephone number directory

of its employees, although it has only eight employees.

The preliminary, hand-written draft of the directory appears

in Figure 2-lon the next page.

This preliminary draft of the directory has some very

important properties which should be noted. First, each

line not only contains three items of information (i.e., a

name, an address, anLl a telephone number I, but it states by

its physical structure that each of these items is in a

s c n s c re 1 ate d , i . c . , they ''belong" to ea ch other . Second ,

each item in the directory is associated, by its column,

with a heading or ~- Hence, "541-6622" (a telephone

-14-

Name Address Telephone

Abernathy, Fred 22 Maple Street 783-3055

Barnes, John 13011 s. Weymouth Drive 249-8112

Donnelly, Bill 2 Wallingham Place 247-7731

Jones, Art 53 Main Street 724-3718

Jones, Sally 53 Main Street 724-3718

Manning, Pete 264 Carling Avenue 861-8366

Manning, Pete 264 Carling Avenue 861-4431

Parker, Irv 10 s. Pannert 541-6622

Sanders, Doug 3 Mangrove Plaza 443-8190

Figure 2-1: Preliminary Draft of Directory

-15-

number) would never be found in the same column as "Parker,

Irv" (a name). Third, the directory itself is characterized

by the types it contains (in this case name-address-tele

phone). Finally, we note that the first column is in alpha

betical order. This makes a line easy to find when given ~

name. Hence, "Jones, Sally" is much easier to locate than

is "861-8366", since the directory is ordered primarily by

names rather than by telephone numbers. The left-to-right

representation of the directory is usually used to imply

that the further left we look, the more order a column pos

sesses. This is a convention adopted in most cases which

is not innately necessary.

Now let us complicate the problem -- a printing strike

is in progress when the directory is to be published. Print

ing costs are very high, with charges figured on a per charac

ter basis. In assessing the alternatives, management real

izes that the company currently possesses a microfilm storage

system for which each employee has a small console unit.

These consoles each have an array of push-buttons which are

used to display selected information on a screen.

Management decides upon the following approach to make

the directory available to the employees: the names, ad

dresses, and telephone numbers are placed on microfilm, and

a list of which button is to be pressed on the consoles to

retrieve information about which employee is readied for

-16-

printing. Thus, if you were to press the button "name"

(this loads the "name" cartridge), and then the button "l",

"Abernathy, Fred" would appear on the screen. In Figure 2-2

we picture the information stored on microfilm as well as

that printed.

At this point the use of this directory is not neces

sarily clear. However, before considering how, we should

observe a number of important concepts embodied by this

change, and which motivate the change.

1. The headings in the printed directory (Figure 2-2-d)

are still necessary in order to know which car

tridge to load when information is requested.

Thus an item of information is associated with

both a button number and a (cartridge) type.

2. The onl_y_ association between these cartridges

and this directory arc through the headers (and

corresponding cartridge types). The same "name"

cartridge would be used as part of this company's

name-department listing. Note that a saving is

reaped for this second listing in that a new

"name" cartridge would be unnecessary.

3. Although one forms a mental picture of the

contents of a cartridge such as is illustrated

in the figure, we do not actually know how the

inforiJtation is physically stored. The extent

-17-

Cartridge No. 1: Loaded by pressing "name"

Button No. For

1

2

3

4

s

6

7

8

Retrieval Information Retrieved

Abernathy, Fred

Barnes, John

Donnelly, Bill

Jones, Art

Jones, Sally

Manning, Pete

Parker, Irv

Sanders, Doug

Figure 2-2-a: Name Console Cartridge

Cartridge No. 2: Loaded by pressing "address"

Button No. For Retrieval Information Retrieved

1 22 Maple Street

2 13011 s. Weymouth Dr.

3 2 Wallingham Place

4 53 Main Street

s 264 Carling Avenue

6 10 s. Pannert

7 3 Mangrove Plaza

Figure 2-2-b: Address Console Cartridge

-18-

Cartridge No. 3: Loaded by pressing "telephone number"

Button No. For Retrieval Information Retrieved

1 783-3055

2 249-8112

3 247-7731

4 724-3718

5 861-8366

6 861-4431

7 541-6622

8 443-8190

Figure 2-2-c: Telephone Console Cartridge

The Printed Directory

Name Address Telephone Number

1 1 1

2 2 2

3 3 3

4 4 4

5 4 4

6 5 5

6 5 6

7 6 7

8 7 8

figure 2-2-d: Printed Directory

-19-

of our knowledge is that we can perform two func

tions: we can press a numbered button (presumably

we have already loaded the cartridge) and have the

corresponding data item appear on our screen, or

we can somehow type in a data item (the hardware

is irrelevant) and have its button number appear

on the screen. There is no reason to believe

that names and addresses are stored in the same

physical manner in the cartridges, despite the

fact that the console performs identically for

all corresponding requests.

4. Some tasks become easier. In glancing over the

directory, "Jones, Sally" will be more easily

mistaken for "Jones, Art" than "5" will be for

"4". In addition, comparisons are easier by

mere virtue of the fact that directory entries

are now a single number rather than a multi

character name (or address, etc.).

5. There is an implied order on button numbers

(numerjc, of course). Hence, in the case of

"name" numeric order on the button corresponds

to the alphabetic order on the names. However,

in the case of "address", where no order was

assumeJ in the beginning, the task of deter

mining the button number associated with a

-20-

given data item is a hard one -- all address

entries must be checked (i.e., there is no

guarantee of any relative positioning for the

addresses).

6. In cases where duplication of items occurs,

large savings accrue from the given organi

zation. For example, although Pete Manning

has two lines in the directory, all that must

be printed twice is his button number. His

name is stored only once on the''name" cartridge.

7. The directory is meaningless out of context

(i.e., with no headers). One would not know

which cartridge to load before pressing the

buttons for inquiry.

In order to consider how the system is used, we take a

name and request the associated address and telephone number.

First, the "name" button is pressed to load that cartridge.

Then the desired name is inserted and the associated button

number is read off the screen. Now we look in the printed

directory for the line with that number in the name column

and retrieve the other information by pressing the appropriate

cartriJge load button and number button.

Note that we have said that the printed directory in

this numeric form retains exactly the same properties as did

the original listing with the complete text (Figure 2-1).

-21-

There are new considerations (as outlined above), but there

are no conceptual differences in the information content of

the two methods of representation.

Let us now assume that negotiations in the printer's

dispute have broken down altogether; now no printing services

are available. Management can either wait for the printer's

strike to end or seek an alternative. They decide on the

following alternative: a new set of microfilm equipment is

purchased, with each employee receiving a terminal (we shall

distinguish these "terminals" from the previously discussed

"consoles"). This new system (the terminal system) is to be

employed to store the directory itself in a directory-car

tridge, which will be named, appropriately, "name-address

telephone number". The facilities of the terminals must be

more complex than the consoles in order to handle these more

complex directory-cartridges.

The terminals are capable of responding to requests such

as "di sp L1y the 1 inc in name- address - telephone number con

taining "5" in the address column." The request itself is not

ncccss:trily in English, hut the key words corresponding to

lo:id directory (first "in"), locate line ("display"), look in

:1 given column (second "in"), look in a given column for a

given button number ("containing") correspond to buttons. In

addition, the terminals are equipped with the ability to read

and create magnetically inked listings of the directory car-

-22-

tridges. These listings are used to verify the entire con-

tents of a directory cartridge, or to insert a new cartridge,

or to make modifications, or other such operations. Note

that the listings produced and read are in exactly the same

format as the one in Figure 2-2-d.

Now, again, we focus on some key considerations gener

ated by the change in our information storage arrangement.

1. We still have no idea how a directory is physically

stored on a directory-cartridge. We know only

that the terminal can perform various tasks

(which we will elaborate on later) on the

directory-cartridges such as load them, inquire

of them, and make a listing from them. The data

items stored in these directory cartridges are

the same button numbers which would have appeared

in a printed di rectory (Figure 2-2-d) and are to be

used on the consoles to obtain text from the

screen. Further, there is no reason to assume

that all directory cartridges have the same

physical format.

2. The logical structure used in different directory

cartridges may be different. The "relatedness"

implied by the line structure may be recorded

in ways other than lines. The only requirement

to be met by the other logical structures is

-23-

that they be capable of being translated into

a listing of the form of Figure 2-2-d. For example,

Pete Manning's two different telephone numbers

may both be associated with his name and address

in such a way that the name and address columns

need be physically present only once for his

name.

3. More than one directory-cartridge can be used

in the terminal system. One such cartridge

has no relationship to another. It is possible

to have both "name-address-telephone number"

and "name-department" cartridges, but the exis

tence of a given name in one says nothing about

the existence of that name in the other (i.e.,

because a name possesses an address and number,

we can determine no association between this

name and any department).

Now consider the kind of operations we might want to

perform upon the directory-cartridge(s). If another company

merged with this one and it used the same information system,

we might want to merge the two "name-address-telephone number"

directory cartridges to form one. Or, if an employee left,

we might wish to remove all lines about him from a directory

cartridge. Or, we might wish to "combine" the "name-address

telephone number" with "name-department" to give a new "name-

-24-

department-address-telephone number" directory-cartridge.

These arc but a few of possible operations which we might

want to perform.

It would be premature at this time to discuss the full

spectrum of operations we may wish to perform on the termi

nals and consoles. Rather, we extend our terminology by

putting forth a general system structure for GOLD STAR and

showing how the various components of the system correspond

to our example. Then we may attempt to define at least the

classes of operations we might do with the consoles and the

terminals. The diagram of Figure 2-3, al though it may seem

cryptic at first, serves to characterize the GOLD STAR data

management system.

Now let us take the various blocks of the figure and

discuss their function by referring to the example of the

microfilm system.

DSM (Data Strategy Module) : These correspond to the

consoles and serve to translate between the refer

ence numbers (the button numbers) and the data items.

Di\ (Data Arca) : These correspond to the data cartridges

which arc part of the console system. Just as a but

ton must be pressed to load a cartridge, so must

information be given to the DSM to tell it which DA

to ref er to when retrieving text or reference num

bers (refnos). This "load button" is what is

PARSER • Ji OPTION

DIRECT USE

INDIRECT USE

. . . .
DSM DS!1

DA DA DI\ DA RD

FIGURE 2-3 GOLD STAR SYSTEM STRUCTURE

LANGU.~G

RSM

..... ,
--~--~, .,,,,.

RD

RSM

RD

....

I

N
Vl

I

RD •····

-26-

referred to as a data-~ name.

RSM (Relational Strategy Module): These correspond to

the terminals and serve to perform operations on

relational data just as the terminals perform oper

ations upon the directory-cartridges.

RD (Relational Data): These are the directory-car

tridges of GOLD STAR. Just as the directory-car

tridge must be requested by name, so must an RD be

requested via a relation name (or rel-name).

QUART (QUAsi RelaTion): These are the listings of the

terminals. All RSM's can produce quarts or can, in

fact, convert the contents of an RD to a quart.

These are the fundamental units of the system in

that all modules of the system can deal in some way

with quarts.

MGR (Manager) : There is no direct analogy to the mana

ger in the microfilm system. The manager is merely

the module which has the effect of making button

press 1ng operations easier. It provides an easy

language for the user to use in utilizing the avail

ab lc powers of the DSM's and RSM's.

CENT & PENT: Two representations (£haracter and

pointer) of a header. The rest of the components

serve much more specific tasks and will be discussed

-27-

in later sections. To briefly review the main con-

cepts again, information text is stored only once

and a token refno assigned to it. The information

of how data items are related to one another is

stored separately and is operated upon separately.

This approach allows the savings and features men-

tioned in the discussion of the example to be

capitalized upon.

Consider briefly the classes of operations which will

be desired from our components.

{Data-String} + {refno}
DSM

(2-1)

This is the translation of text into its reference

number (rcfno). We have assumed that the nature of

the data string is known so that we can determine

into which data area we must inquire. We have also

assumed that each data area has one and only one

DSM which can perform the indicated translations

anJ that we can easily determine which DSM by

looking in the data area.

{rcfno} + {Data-String}
DSM

(2- 2)

This is the reverse of (2-1). The same assumptions

hold true. It is worthwhile to note at this point

-28-

that each reference number is stored as part of a

quart; these quarts also contain information indi-

eating the data area to which this refno refers.

Thus, the specification of data area can be either

implicit (found from the refno's quart) or explicit.

{refno} + {refno}
DSM

(2-3)

This is the way of representing a transformation

through a DSM, such as 11 get the next refno after

the one I supply". Again, the same assumptions

as above hold, and data area can be implicity or

explicitly indicated.

{refno} + {refno}
RSM

(2- 4)

This indicates a transformation performed when

information (in the form of refnos) is given to

an RSM; what is returned is another bundle of

information which has been found using the pro-

pertics of relatedness stored in a relation

(relational <lat a area). The appropriate RD and

RSM arc implicitly determined from a group of

input rcfno quarts.

{refno} + R
RSM

(2- 5)

-29-

This is the same as (2-4) except that the result

is a complete RD containing the properties of the

transformed refno input.

R-+ {refno}
RSM

This is the reverse of (2-5).

R -+ R
RSM

(2- 6)

(2- 7)

This is the transformation of one RD to another.

A merge is an example of such an operation.

These are the general classes of operations available

to the user. The first three are those which would be per-

formed on the console in the example. The final four would

be performed on a terminal where {refno} would be a listing

and R would be a directory-cartridge. These operation

classes are quite general, and later sections will narrow

their scope to certain well defined procedures.

But now, how can we justify this rather complex struc-

turing of the system in terms of our goals? Let us consider

the goals one by one:

1. User Perspective

The concept of data-types, or headers, identify

each reference number as being associated with a

given type of data. Hence, the user thinks of

- 30-

his data in terms of their type, or header,

rather than in terms of its PL/l representation.

This is exemplified by the fact that no matter

how data is stored on a console cartridge, the

user can handle it merely by pressing the button

corresponding to the cartridge name; i.e., the

machine handles representational considerations,

and the user is free to imagine all his different

kinds of data in terms of their type name.

2. Modularity

The freedom to use virtually any organization of

data or relations is guaranteed by this structure.

All that is needed is an appropriate DSM or RSM

to handle that format. The interfaces in the

system are uniform and well defined; addition of

new modules becomes little more than writing them.

This fact is not easily accounted for in our model;

we are proposing that new consoles and terminals

are easy to add when new format cartridges are to

be handled.

3. Exportability

Of course, the major feature of the system for

exportability is the PL/l language (see Chapter I).

Beyond that, two important facts remain. First,

the manager can be designed to incorporate all of

-31-

the machine dependent code, leaving the RSM's,

DSM's and information free for transplantation

to any machine. Second, the interfaces are so

explicit that any additional modules needed by

a new machine could easily be interposed in a

calling sequence between two system modules.

There is no analogy to the example, except if

the entire system were adopted by another company

with different microfilm equipment.

4. Controlled Sharing

Clearly this system allows for sharing by mere

sharing of data areas (cartridges). The control

arises from the fact that access to relations can

be given selectively. For example, an employee

might have access to both the name and salary

cartridge (Data Areas) but by being denied access

to the name-salary relation cartridge (relational

data) he has no way of making the associations.

The advantage to this scheme is that the employee

could well be permitted to examine other relations

containing name and salary (e.g. name-address or

salury-contract) and still never be able to asso

ciate the two. On the other hand, circumstances

might Jict~te that a console cartridge (or data

area) be denied a user, and still allow to him

-32-

all relations involving it. For example, we

might not care if it is known from name-classi

fication that ten people are of the same rank,

but we might want to protect just what that

rank is. In short, with all data and relational

data stored in modular units, we need worry in

general only about sharing these units, rather

than about sharing parts of a larger combined

medium.

5. On-Line Capabilities

This is a function of how the system's functions

are adapted for use, and does not bear on the

system design itself.

As to the unstated goal of efficiency, there are a couple

of points to consider. Appropriate design of RSM's and DSM's

can optimize operation to conform to the most frequent func

tion that the module must perform. For example, an RSM can

be designed to optimize inversion, just as one can be de

signed to optimize retrieval operations of a uni-directional

nature (i.e., with name-address-telephone, we are always

given a name and asked for the other two, but rarely in any

other order). Also, we achieve some saving of space by

using reference number tokens in relations; duplication costs

only the length of a rcfno, not of the data itself.

Tlwt summarizes the structures and motivations of the

-33-

GOLD STAR system. In the next chapter, we will consider the

set theory upon which these structures are founded, and how

set theory leads in logical progression to the concept of a

quart.

Chapter IV will discuss the implementation of GOLD STAR

and provide an insight into some of its current design capa

bilities. Chapter V will present the user interface, i.e.,

the functional calls to the manager of the system. That

section also discusses the programming considerations of

note, as well as presenting an example of the use of GOLD

STAR.

-34-

CHAPTER I I I

SET THEORY OF GOLD STAR

1. The Rhetoric of Sets

Each individual perceives the "relatedness" of two

items of data based upon his particular perceptions and

biases. Visual proximity, concurrent sensations of taste

and smell, or remembered patterns of association are but a

few means by which the human mind establishes relatedness

of two items of information. Different individuals often

interpret the same collection of information in vastly

different terms of relatedness; the string "V-8" as con

strued by the auto enthusiast signifies something afar from

the meaning assumed by the connoisseur of vegetable juices.

At the core of GOLD STAR rests the firm belief that

data relatedness is best conceptualized apart from the com

putational processes which implement relatedness. One con

ceptualization method, set theory, permits this separation,

and offers several unexpected benefits:

Set theory is sufficiently general to encompass

the operations and associations normally subsumed

in the term "data management".

As an outgrowth of pure mathematics, set theory

offers unambiguous, albeit complex, semantics;

furthermore, set operations and their limitations

arc well established.

-35-

Thc subdivision of a system into independent

functional modules is facilitated by a set

theoretic framework. Set-theoretic operations

specify quite well the tasks that any single

system module must perform.

The remainder of this section discusses data-bases and

operations upon them in terms of basic set theory. The

following section treats data-bases in light of orderings

upon their members.

Data-Bases

The notations and intuitive notions used in this sec

tion conform with common usager-~As an abstract model of

reality, a data-base depends upon certain concepts involving

sets, most importantly:

The set {a,b} is a collection of the objects "a"

and "b" with neither ordering nor structure

presumed among them. The elements "a" and "b"

may be either atomic, i.e. not sets, or they

may themselves name sets. Thus an element of

a set can be another set.

The ordered pair <a,b> is the set {{aJ,{a,b}}, and

indicates in the following directed graph that

the correct sequence of endpoints is "a" followed

by "b".

a------b <a,b>

-36-

The tuple (a,b) is the set {<l,a>,<2,b>}, that is

a function from {l,Z} to {a,b}. Likewise, the

tuple ln 1 ,n 7 ,n~, n.) is a function from the
~ .) 1

set {l,Z,3,4, ... i-l,i} to {n
1

,n 2 , ... ni}.

We define a data-base B as a tuple of order three:

B= (D,T ,R) (3-1)

The set D contains data clement names, and contains

within its power set three particularly useful sets.

(3 - 2)

The members of '.\JD are raw data elements, that is

elements apart from their relation to other elements.

For example, the clements "John", "red", "3. 5", anJ

"- 2+3. 8311~" could all be members of >JD.

The members of ND' and particularly associations

:unong its members, arc the motivation for the struc-

ture of the data-base B. Of first concern in this

structure is the function T, the data type function.

T takes as its domain a set of data type names, ~T'

NT=:: D, :mu m~1ps it into various subsets of D. More

rigorously:

T = '.'\ T +{iJ(D) (3- 3)

From the example of Chapter II,

NT={"namc" ,"address" ,"telephone"}

Tlnamc)=',"Abernathy, Fred","Barncs, John", etc.}

Tla<ldress)={"ZZ !'-laplc St.","53 Main St.", etc.}

-37-

T(telephone)={"783-30SS" ,"724-3718", etc.}

T(data types)={"name","address","telephone"}=NT

The last line is significant in that T(NT) =

T(data types) = NT. Note that this does not violate the

axiom of regularity (x a set+ x ~ x). NT is merely its

own image under the function T; hence NT E dam T and

NT E ran T, but NT ~NT.

T is a function, but since D is finite, the range of

T cannot be the entirety of (f:'(D), i.e. T is not an onto

function. Furthermore, T is generally not one-to-one. Apart

from constraints of cardinality, the first condition will

usually hold because not all members of G'>cn) form coherent

data types in the eyes of the user. The lack of a one-to-one

condition results whenever two data type names (or more)

have the same image under T. For example, the set

S = {Babe Ruth, Bill Dickey, Tony Lazerri,

Lou Gehrig}

might be T(Murder's Row) or T(Old Yankee Sluggers). Note,

however, that T(narne 1) = T(name 2) does not imply that

namc 1 = namc 2 , as in the above example.

The final element of structure within B is the mapping

from NR, a set of relation names and the set of relations

existing among members of ND. Before examining the formal

definition of this mapping, we define the cartesian product

(or cross product) over various members of the function T.

-38-

Let I s NT, then the cartesian product of T over I is

defined as

X T(i)={fif:I+D & (~i)(iEI+f(i) E T(i))}
iEl (3- 4)

Thus the cartesian product is a set of functions, each of

which is a set of ordered pairs; the following example

illustrates:

I~{age,hair,eyes} a NT

T(age)={l0,20}

T(hair)={brown,blond}

T(eyes)={blue,hazel}

X T(i)={{<age,10>,<hair,brown>,<eyes,blue>},
iEI

{<age,10>,<hair,brown>,<eyes,hazel>},

{<age,10>,<hair,blond>,<eyes,blue>},

{<age,10>,<hair,blond>,<eyes,hazel>},

{<age,20>,<hair,brown>,<eyes,blue>},

{<agc,20>,<hair,brown>,<eyes,hazel>},

{<age,20>,<hair,blond>,<eyes,blue>},

{<age,20>,<hair,blond>,<eyes,hazel>}}

If ISi denotes the number of elements in the set S, then

l _x T(i)j=.rr /TCi)/
id lEl

A relation is defined as a subset of some cartesian

product of T over a subset of NT. The function R maps NR

-39-

into the set of all possible relations among members of the

data-base. Rigorously,

(3- 5)

Specifically, if xsNR' and R(x) is a relation over the

cross product of T over some set I, I ~NT,

R(x) s. X T(i)
it: I (3-6)

Note that the set I may have several relations associated

with the cross product in (3-6). For example, several

different relations could be drawn from

X T (i)
is{name,address,telephone}

yet all would be subsets of the same cartesian product.

This implies that the exact contents of any relation cannot

be established from knowledge only of the data type names

involved.

The model B defined constitutes one of many possible

models. However, the choice of any one model depends upon

how well it represents reality, and more importantly, how

well its behavior can be made to conform to the behavior of

the situation it represents. From our data base, we wish

to selectively retrieve certain pieces of information; hence,

we require a set of operations which allow maximum control

over model behavior. In addition to the cartesian product

operation in (3-4) five other operations on members of R

will prove useful.

Let x,y E NR and

R(x) ~ X T(i)
ieI

R(y) =. X T(j)
j EJ

-40-

I=dom R(x)

J=dom R(y)

Note that I=domUR(x) and J=domUR(y) are the data type names

which participate in R(x) and R(y) respectively. The aper-

at ions

R(x) U R(y)

R(x) n R(y)

R(x) - R(y)

union

intersection (3-7)

set theoretic difference

are all defined if and only if I=J. Just as it makes no

sense to add chickens to apples, the value of unioning a

phone-book and a cook-book is moot within B. As with car-

tesian product, union and intersection are commutative and

associative; set theoretic difference is neither.

Given a relation R (phone-book)

X T(i)
R(phone-book) ~ iE{name, address,telephone}

we may wish to retrieve only a portion of the stored infer-

mation. To isolate a particular set S of name-address-phone

elements, we need specify only those elements of R also in

S. However, if we wish to restrict a relation via data

types, we define a projection on R(x). Let X=domUR(x) and

-41-

let Y =.NT be the projection set. Then IlyR(x) is the pro

jection of R(x) on those data types contained in XnY.

Formally,

(Jg)(gER(x) & f~g)}
(3-8)

For example TI{ t 1 h }R(phone book) would yield a name, e ep one

relation containing all names with associated phone numbers;

each name-phone number pair in the projection is a subset

of at least one name-address-telephone number tuple in

R(phone book). If !domain UR(x) l=n, then there are Zn

distinct projections. Thus for R(phone book), the projec

tion sets {}, {name}, {name,address}, {name,telephone},

{name,address,telephone}, {telephone}, {address}, and

{address,telephone} yield 23=8 possible projections. Since

f operates only on XAY, members of Y not contained in X

have no effect on the projection process. Thus while a

subset operation on R(x) yields a particular set of func-

tions on domU R(x), the projection operation takes from all

functions in R(x) those ordered pairs whose left component

is contained in the projection set Y.

Our sixth and final set-theoretic operation, that of

relation composition, is the most powerful and the most

difficult to define. Composition in GOLD STAR has two sim-

ilar forms: composition in its simple form and composition

under the auspices of a data type renaming transformation.

Assume the existence of two relations--a phone-book relation

-42-

and a name-salary relation; from these we wish to assemble

a third relation indicating salaries at various addresses.

Our algorithm follows:

1. We note that R(phone book) s. T(name) x T(address)

x T(telephone) and R(name-salary) ~ T(name) x

T(salary); each relation involves T(name) in the

cartesian product of which each is a subset.

2. We take from each relation a member in which the

names match and proceed to form a new relation

in which members are subsets of T(name) x T(address)

x T(telephone) x T(taxes).

3. The new relation will contain that subset of the

4-ary cross product above formed by following the

rule in (2.).

Let X=types(R(x))=domUR(x), Y=types(R(y))=domUR(y), then

the composition R(x) 0 R(y) is defined as

R(x) 0 R(y)={g:XUY-+NT l3f R(x),]h R(y)
£ £

(('o't) (t£dom g

(t£dorn f-+g(t)=f(t)) &

(t£dom h+g(t)=h(t)))} (3-9)

Alternatively, each g=fUh. The simple composition operation

composes on all those data type names which are found in

both R(x) and R(y), and produces a new relation whose order

is greater than or equal to the orders of the operand rela-

-43-

tions. Specifically if order (R(x))=jdomVR(x)I and order

(R(y))=ldomUR(y) I, then new order=order (R(x)) +order

(R(y))-IXflYI.

A capability missing within simple composition is the

ability to match data type names which are different, yet

have intersecting images under T. For example, if R(regis

tration) ~ T(student) x T(subject) and R(phone book)s

T(name) x T(address) x T(telephone), the R(registration) 0

R(phone book)={}=¢. Such a composition may be necessary if

an instructor wishes to call all his students in a particu

lar subject. To allow for this renaming, we define two

functions A and p which apply to R(x) and R(y) respectively:

,X=types(R(x))=domUR(x)

,Y=types(R(y))=domUR(y)

(3-10)

(3-11)

A and p rename certain data types as specified by a user of

the sys tern. In the reg is t ration example, A (student) ="name"

would yield a results T(name) x T(address) x T(telephone)

x T(subject); the dual result, (name)=student, would yield

a result:=:T(student) x T(address) x T(telephone) x T(subject).

In both cases the information would be the same, differing

only in the perception of involved individuals as "names"

or "students". Formally, we define extended composition as

R(x) (A:p)R(y)={g: (ranAUranp)-+NT I Jfe:R(x) ,3he:R(y)

((\it) (te:dom g-+

--· -- ~ -- ----

-44-

(('\l'u) (usdomf & ;\(u)=t-+f(u)=g(t) &

((Vv) (vsclomh & r::; (v) =t-+h (v) =g (t))))}

(3-12)

In a set theoretic data management system, the most power-

ful operation is composition, and as one would expect, is

also the most complex to specify. Nonetheless, it is com-

position, simple and extended, which allows selective

merging by data types of relations.

Reconstructabilitv ,

The decision of what data types arc to be involved in

any relation is a non-trivial matter. In particular rela-

tions defined by (3-5) and (3-6) may be more "complex" than

necessary. Assume for example, that a company records for

each employee only his name, age, height, weight, employee

number, salary, ancl years with the company. The relation

R(employee) might then contain the member

{<weight,243>,<agc,36>,<height,5'9">,<name,J. Smith>,

<salary,$22,000>,<ycars employed,9>,<man #,6532>}.

While all this data pertains to "J. Smith", certain other

clements may have no particular bearing on each other; it

1s not clear, for example, whether a $22,000 dollar salary

is significant vis-ci-vis the height 5'9". However, the

Smith and the age "36" tell a certain fact

about J. Smith. Th e p r o j c ct i on s rr (d d) R (phone b o o k) name a ress

- 4 5-

IT R(phone book), et cetera, have been composed with {name,age}

each other without giving us additional significance among

the facts about J. Smith, except that such facts each be

long with him; but this is known already if the functions

(name,age), etc. are within our purview.

If we consider an office directory, however, the abil-

ity to obtain the original relation by composition of its

projections may be absent. Let R(phone book)=

{{<name,Al>,<room,A-5>,<extn,317>},

{<name,Al>,<room,A-5>,<extn,318>},

{<name,Andy>,<room,A-5>,<extn,318>},

{<name,Andy>,<room,B-2>,<extn,442>}} (3-13)

No set of projections (save the trivial case !\name room ext~

can be composed to exactly reconstruct (3-13); spurious

members would be coded.

Given TI{na R(phone book)={{<name,Al>,<room,A-5>}, me,roomr

{<name,Andy>,<room,A-5>},

{<name,Andy> <room,B-2>}}

and TI{ t }R(phone book)={{<name,Al>,<extn,317 >}, nnme,ex n

{<name,Al>,<extn,318>},

{<name,Andy>,<extn,318>},

{<name,Andy>,<extn,442>}}

then composition would generate the spurious members

{<name,Andy>,<room,A-5>,<extn,442>}, and {<name,Andy>,

-46-

<room,B-2>,<extn,318>}. In fact, no set of projections on

(3-13), when composed, yields R(phone book). The ensuing

theorem provides a condition sufficient for relation recon

struction. The phone book example in (3-13) is not recon

structable from any set of its projections because we can

find no single projection which would uniquely "tie together"

the information stored there. In the employee relation,

there exists, among others, a binary function which maps

every name to an age, i.e. there is a function from names

to ages. This fact assures us that, given a projection

containing a name, weight, etc., the composition of the

name-age function and this projection will yield a member

of the relation R(employee). The existence of such a func

tion f gives rise to a definition of relation reconstructa

bili ty:

Definition: Let P={TI"yR(x) I Ys domUR(x)}, i.e. the set

of all projections on R(x). R(x) is reconstructable

if and only if

3 P' ~ P such that

p'~r,p'=R(x). (3-15)

IVith thi.s definition in mind, we now state and prove

a theorem sufficient (unfortunately not necessary!) for

rcconstructability:

Theorem.

-47-

TI (S
2
US

3
) R(x) is a "function", that is, if

(3-16)

then R(x) is reconstructable, and

(3-17)

Proof:

If Lemma I of Appendix A is applied, then in (3-16)

TIS TICS us)R(x) = TIS f\(S us)R(x)
2 2 3 2 2 3

or

and

Thus the function (3-16) can be simplified to

7T (S US) R(x)))
2 3

(3-18)

(3-19)

(3-20)

We now show that 1) any member of the left side of

(3-17) is also a member of the simple composition on

the right, and 2) that conversely, any member of the

composition is also a member of R(x). These two

-48-

steps constitute the proof of (3-17).

I. Let g E R(x). The definition of projection (3-8)

assures the existence of some f 1 £ rr(S US)R(x)
1 2

and some f 2 £ rr(S US)R(x) such that f 1 = g and
2 3

f 2 ~ g. That is

Since <lorn f 1 = s1us 2 and <lorn f 2 = s2us 3 ,

<lorn f 1 U <lorn f 2 = <lorn g = s1us 2us 3 = dom UR(x).

f 1 and f 2 are functions; since the union of their

domains equals the domain of g, f 1LJf2 = g. The

union of f 1 and f 2 , however, is equivalent to the

binary composition of f 1 and f 2 , since

(Vt E <lorn g)(t £ dom f 1 & t £<lorn f 2 ~

Thus the element f 1°f 2 = g for some g £ R(x).

Tl. Let £1 £ rr(SlUS
2

)R(x) and f 2 £ rr(S
2
US

3
)R(x),

such that

fl of2 E (rr (SUS)R(x) o rr(S US)R(x)).
1 ~ 2 2 3

f 1 is g restricted to s1us 2 for some g £ R(x).

Consider an f 2
1 which is g' restricted to s2us 3

-49-

for some g' £ RCx). Since TICS US)R(x) is a
2 3

"function" in the sense of C3-16), £ 2 restricted

to s2 = f 2
1 restricted to s2 , so g = g'. Hence,

for all f 1 £TICS US)R(x) and for all f 2 £
1 2

TICS US)R(x), there exists a g £ RCx) such that
2 3

f 1 f 2 = f 1°f 2 = g. Thus all elements of the

composition of C3-17) are also members of R(x).

Q.E.D.

Knowledge that a relation is reconstructable can aid

in retrieval operations on the data-base B. Given the

relation

RCphone book) s X T Ci)

i E {name,address,telephone}

and the necessity of telephoning someone named "John",

then the operation

TI{ h }C RCphone book) 0 {{<name,John>}}) p one

will yield a unique phone number if John has only one

phone. The above operation for any person would yield

a unique phone number if there were a "function" in the

sense of C3-16) from names to phone numbers. Note however,

that if John has two phones then the above operation will

yield a set of two elements.

-so-

Even if we have no function from names to telephone

numbers, this does not imply that retrie,·ral of a unique

phone number is impossible. For example, if every pair

of names and addresses is "mapped into" a unique phone

number by the "function" of (3-16), then by specifying

both John and the additional information that he is cur-

rently at 10 Main Street, we can retrieve his unique phone

number. The operation

n{ h }(R(phone book) 0

p one

{{<name,John>,<address,10 Main Street>}})

will yield the unique phone number if the above condition

holds.

2. Ordered Set Theory

In considering how we might implement a relation, we

must come to terms with the most pervasive real-world

consideration to which we are bound, namely order. Order

is imposed in almost all environments; symbols and

notation will be written in a linear order, and a

representation of a set is free of order only by intention.

Most extant computers employ a sequential numerical ordering

scheme, the most common of orders. Hence, we must conform

to this constraint of order and include this notion somehow

within our framework of set-theoretic concepts.

- 51-

An ordering ~ ls a bijection (one-to-one, onto

mapping) from an index set I to a set S, each set

containing k elements. The index set I contains

the successor of all but one of its elements.

(3-21)

Paraphrased, Q assures us that we can step in some

well defined sequence over the index set (via successors).

Elements of S are thus associated with an ordering

procedure.

With <a,b> defined as {{a},{a,b}}, we define a special

case of ordering, the tuple. We already have an intuitive

feel for a tuple, e.g. (a, b, c). We recognize that the

physical position of an element is as much a piece of

necessary information as is the element itself. The tuple

(b,b) can exist, for example, while the set {b,b} cannot.

But a tuple can be viewed as follows:

A tuple T lS an ordering QT where the index set IT

has the special properties that it is a subset of

the natural numbers and contains the element 1 if

non-empty. Formally

T: ~T: IT-+S

k+~IT

where ITS N, 3 ic:IT-+lc:IT

& \;f i=k, ic:IT-+i+c:IT
'

(3-22)

-52-

That is, a tuple is the special ordering from {1,2,3, ... ,n}

to the n elements of the range set. In set notation, a

tuple is represented as

(t 1 ,t 2 , ,tn) = {<l,t 1>,<2,t 2 >, ... ,<n,tn>}

A tuple is readily represented on a real computer,

since the order of a tuple coincides with the most prac

tical implementations of order. However, an arbitrary

ordering ~may not be easily representable; therefore, at

some point, if no other assumptions are made, we must use

tuples (or whatever real-world form of ordering to which

we are bound).

As an alternative to a given environmental ordering

we define an entity called an explicit element.

An Explicit Element e is an element which is 1)

meaningful in a global sense, and 2) recognizable

independently of the context in which it is found.

For instance, if the word "fremitus"[
3

-
2 J appeared only

once on this page, we could locate it unambiguously,

independent of the way in which the words on the page are

searched. We can also determine its meaning free of the

context of this page. Note that any element can become

explicit by merely restricting the context of consideration

-53-

sufficiently; if we search only one word it must be explicit

since no duplication exists as long as the word is

meaningful. The requirement of global meaning is significant

in computers, since many words are not meaningful to a

given search request (e.g. the octal word 777777 has no

meaning when viewed as four ASCII characters.)

Often we wish to make the elements of NT and NR (see

section 1. of this chapter) explicit elements. It is

desirable that these names be recognized in a context-free

sense whenever they appear. Consider the set E of explicit

elements where eEE + eENT. With E we define another entity

which will be reencountered later in the discussion.

An Explicit Naming Tuple is a tuple whose range

consists entirely of elements e, where eENT and

e is an explicit element.

(3-23)

In effect, an ENT defines an arbitrary order on the ele-

mcnts of [; which will prove useful. Since ENT is a

fun ct ion, its range is totally ordered.

The ENT function is intimately tied to the definition

of a relation. A relation R(x) assumes the form

,<e ,d
1

>},
n n

-54-

{<el,dl2>,<ez,dzz>,

{<e1,d13> <e2,dz3>,

,<e ,d 2>},
n n

,<e ,d 3>}
n n

,<e ,d >}} n nm (3-24)

Since R(x) is a set, the subscripts identify, but do

not order the particular elements involved. Note that

<lorn UR(x) = {e1 ,e 2 , ... ,en}

Consider the class of functions

ENT: {ijl<i<n}-+(l to 1, onto) domVR(x)

(3-25)

(3-26)

There are n! possible ENT functions for any R(x); each such

ENT will be denoted by a subscript. We take in particular

some ENTk such that

ENT k (R (x)) = { < 1 , el> , < 2 , e z > , ...

= (el,e2, ... ,en)

,<n,e >}
n

The subscript k serves only as an identifier fox the

(3-27)

particular ENT chosen. An equally valid choice might be

(3-28)

ENTk(R(x)) and ENTk, (R(x)) are distinct bijections on the

same relation. Each ENT function is an arbitrary ordering

of the data type names in dam U R(x). The particular order

is specified by which of the n! possible orderings is

...:hos en.

-55-

As defined in (3-27), an ENT is a function with respect

to a relation. The particular k chosen depends on the organi-

zation of R(x) desired. This indicates how the ENT empiri-

cally defined in (3-24) is chosen. The explicit nature of

the elements of domVR(x) is, of course, maintained.

At this point, we introduce some additional functions

which transform R(x) into another entity. The transformations

will also exhibit the following characteristics of the rela-

tion R(x).

1. Given a data element d ND' we can determine a type

with which it is associated. This is possible

since each member of a relation R(x) is itself a

bijection:

t: e~d I tER(x) & CVi,jSn) <lorn t.=dom t.
1 J

(3-29)

-1 t , in turn, maps d onto e. Note that since t

is a bijection, we are always a unique e given

a specific d.

2. Given an e and an R(x) we can determine all instan-

ces of d (i.e. the exact subset of ND) which corres

pond to that e. These are merely the mappings t

over all of R.

3. Every clement of R(x), by virtue of the fact that

-56-

R(x) lS itself a set, indicates a relatedness

among its members. That is,

row: x "is related to" y where x,yEran t,

t E R(x) (3-30)

4. Every member of R(x) includes an ordered pair

for every e. The d's in these pairs are also

related by virtue of their association with

the same type e.

column: x "is related to" y where x=t. (k),
1

y=t.(k) for all i,j~m and for
J

all k<n (3-31)

The nature of relatedness expressed in characteristics

three and four lS at this point intuitive, but will

become clearer as transformations are performed upon

members of R. The names "row" and "column" are used to

indicate that when notation such as in (3-24) is used,

relatedness exists by virtue of the physical structure

of rows and columns.

We define a function called Tuple with Explicit Naming

Tuple (TI:NT):

TENT: t+t' I t ER (x) , t' = t 0 ENT

More specifically, consider a given ENTkR(x). Then

TBNTk(t) = t 0 ENTk(R(x)) ltER(x)

(3-32)

(3-33)

Note th:it both the domain and range of TENTk are functions.

The domain is a function from e to d; the range is a tuple.

-57-

Using the notation for R(x) in (3-24), we can formally

express a typical TENT:

={<l,dll>'

=(dll'd21'

[k arbitrary]

,<n,d >}
n

We note that the elements of the TENT are ordered in a

(3-34)

(3-35)

fashion analagous to that of the particular ENTk. If k'

from (3-28) were used instead, the TENT would appear as:

TENTk' (tl)=(dnl'dn-1,1' ... ,d2l'dll)

It should be clear that each of the TENT's (with

(3-36)

respect to ~ given relation R(x)) will each be ordered

with respect to the ENTk chosen to order the given R(x),

since

Vi,j l<i,j<m dom t.=dom t.= ran ENT
- - l J

(3-37)

In general then, for the R(x) of (3-24) the ith TENT:

TENTk(t.)=(d1 .,d 2 .,d3 ., ... ,d .)
- l l l l Ill

TENTk I (t -) ::-:: (J - ' d 1 . 'd 2 . ' - l n1 n- ,1 n- ,1

nnJ so on for any choice of ENT.

Note that we preserve the same content between

a TENTk(ti) and its ENTk as with the element ti of R(x)

itself. This follows since all derivations are bijectional,

-58-

and it is possible to "go back". Thus we seek a structure

which will include all TENTk's and the ENTk. This structure

would then contain all the information found in the relation

R(x) itself.

Therefore we define a sort on the various TENT's

SORT(R(x)) :{j Jl~j~m}+(l-to-1, onto)

{TENT (t) I tE:R(x)} (3-39)

There are ml possible ways of ordering the m TENT's derived

from R(x). SORT is esentially a second arbitrary order

placed upon the relation. However, there are a few standard

SORT mappings which are used more frequently than others.

The one used in GOLD STAR is called a lexicographic sort.

We define lex ordering of TENT's as follows:

TENTk(tx)< (lex less than) TENTk(ty) iff

(3i) (l~i~n & (~j) (j<i+TENTk(tx)(j) =

TENTk(ty)(j)) &

* TENTk(tx) (i)< TENTk(ty) (i) (3-40)

where

th
TENTk(t~)(p)= the p element of the

th
~ TENT

* Note that the < operation is determined by the ENTk chosen

in the sense that the ith element of the TENT is determined

by the orderings ENTk. For example,

For

Let

-59-

TENT(l)=(l,2,1,3)

TENT(2)=(1,1,l,l)

TENT(3)=(2,1,3\3)

TENT(4)=(2,l,3,2)

be determined a relation

SORTlex(the TENT's)= (TENT(2), TENT(l),

TENT(4), TENT(3))

example, then,

TENT(4).i{ TENT(3) since for i=4, j=l,2,3

TENT (4) (1) = 2 = TENT (3) (1)

TENT (4) (2) = 1 = TENT(3) (2)

TENT(4) (3) = 3 = TENT(3)(3)

TENT (4) (4) = 2 < 3 = TENT(3)(4)

(3- 41)

Lex ordering, then, is the intuitive order where the first

component of the TENT's is most significant, the second is

next most significant, etc. The importance of ENTk is in

the determination of which is the first component, which is

the second, and so on.

We now define what appears as a trivial construction,

the QUART:

QUART= (ENTk(R(x)), SORT(R(x)))

(QUAs i Re laTion)

For a typical relation R(x) as defined in (3-24),

(3-42)

-60-

QUART(R(x)) =

((el,e2' · · · ,en)' (dll'd21'

(dl2'd22'

(3- 43)

The construct QUART has two noteworthy properties, over and

above those possessed by R(x)) itself:

1. Two arbitrary orders are imposed upon the

relation, namely ENTk(R(x)) and SORT(R(x)).

2. The elements of ENT appear only once,

giving a "factored" effect. This is highly

desirable since by the definition of

explicit elements, we can now consider a

QUART as a context of consideration. (See

3-23). The relation in its proper form

has redundant occurances of the explicit

elements, which limits our context. When

transformed to a QUART, we can unambiguously

identify the e's, and hence eas~ the search

for information.

Note that QUART(R(x)) retains all the information found in

R(x) and discussed previously. By following the various

bijections created in the derivations we can freely translate

one form of information to another, e.g.

-61-

1. Given a d, find an e, ei= ENTk(TENT~ 1 (j)(dij)
2. Given an e, find the d's associated with it

d' ={TENTk(j)(ENT~1) over all j 's}

3. Each TENT relates all d's with it.

4. The d's defined above relate all d's of a

given data type.

The notation used in (3-43) lends itself to an even

clearer form:

e
n

d nm

(3-44)

This form is already familiar from (2-1) and (2-2-d). As

expected this form represents a relation.

Henceforth, where a QUART is mentioned, it will be

assumed that it is in effect a relation. We refer to its

structure as follows:

CENT, or PENT: Two computer representations for

the types, or e's in our formulation.

(CENT is Character ENT).

(PENT is Pointer ENT).

Order: The number of elements in the ENT and each

TENT (= I <lorn VR(x) I= n).

-62-

Length: the number of TENT's in the QUART, which

was m in our formulation.

When we mention the term "relation" henceforth, we mean a

relation stored in some form other than a QUART. This section

has discussed how any representation of a relation (which

represents the abstract notion of a relation in (3-24)

can be transformed into a QUART. Other relational organiza

tions are considered in the next chapter.

One final concept remains: that of a successor in the

context of a QUART. We have adopted the view that the successor

of a TENT is the next TENT according to the SORT function

adopted. This follows either the specified TENT, if it is

part of the QUART, or follows the place where the TENT would

have been inserted if not already included. More succinctly,

the successor operation is a least upper bound operation.

For example, given

a

1

l

1

2

b

1

3

3

1

c

1

1

3

2

successor[(l,3,1)] ; (1,3,3)

succcssor[(l,2,1)] ; (1,3,1)

Further examples of QUART operations are found in

. ~ • t : t r :

sct-theorcti approach to

',._ t t .1~1r _1n :_.;_g1..' ··Li.:

-64-

CHAPTER IV

AN IMPLEMENTATION OF GOLD STAR

This chapter discusses the rationale for one GOLD STAR

implementation. The system is not of the direct transplant

variety, since we have chosen to utilize some features

peculiar to the present target computer -- the GE/645/MULTICS.

Furthermore, the algorithms mechanized for the MULTICS sys-

tern may be less suited to environments other than ours.

Despite certain shortcomings, we feel it advantageous to

pursue the cogs and machinery of GOLD STAR/MULTICS.

1. DSM Modules

Representation of Data Elements

Every computer system faces the problem of dual repre-

sentation of data elements: one representation allowing fast

internal operation of the programs, and another suitable for

human consumption via printed or graphic input/output oper-

ations. Classically, i.e. in "algorithmic" languages, the

formats for user data have been dictated by "representation

types" such as integer, floating point, logical, and fixed

point data found in FORTRAN systems. In GOLD STAR the term

"data type" refers to classification of data according to

some attribute assigned by the user (e.g. "cities", "last

name"), and not according to some internal code peculiar to

the computer environment. To the user, this distinction

between "representation type" and "data type" is significant:

-65-

1n the former case, environment idiosyncrasies force extra

meaning on the data due to representation, while in the

latter case all semantics depend upon the user's own class-

ification of the data.

While the user views his data elements only in terms

of data type, there sti11 remains the issue of efficient

internal representation. Although relatively transparent

to the user, the techniques utilized to increase the speed

of operation merit further scrutiny. Internally, al1 user

data is manipulated in the form of word-length bit string

tokens, which we refer to as reference numbers. The task

of binding strings to reference numbers is performed by a

class of GOLD STAR sub-programs called data strategy modules,

or l/Sl\l's.

The Binding of Reference ~umbers to Strings

At the time a user creates a new data type within GOLD

STAR, he usually perceives or assumes a total ordering on

the clements or ;1 J;:ita type. The method of assigning refer-

cncc numbers to strings begins with the requirement that

+" o J any ta type

tctaZ or r'!ng on the assigned reference numbers.

\\'c further require that valid comparisons between data items

exist only if the comparands are numbers of the same data

-66-

Binding of Reference Number Via Alphabetic Order

The module dsm_astring binds strings to reference

numbers in such a way that ascending reference numbers

preserve alphabetic order among the data elements. The

notion of alphabetic order is deeply ingrained in most

individuals, and is significant in that it is a common

ordering scheme applicable to arbitrarily large lists of

strings of any length(s). Universal usage of alphabetic

order requires a facility, i.e. dsm_astring, for its accom

odation; dsm_astring serves this purpose.

For each data type it manages, dsm_astring maintains

a binary tree in which data elements are stored and from

which they are retrieved. Because collating sequences in

ASCII and otner codes preserve alphabetic order, dsm astring

is able to compute order-preserving reference numbers direct

ly from the input character strings. The exact method by

which this operation works will become clearer if we follow

the procedure invoked to perform a binding operation on the

data type "names". (By binding we mean inserting a new i tern

into a DD area and associating an appropriate reference

number.)

The user creates the data type "names" via a call to

1ngr$ncw data_type and initializes the header shown in

Figure 4-1. (Hach data type is stored in a separate segment

in the MULTICS system, and its size is controlled via the

-68-

"allocate" and "free" statements in the PL/l language.)

The header contains information required by GOLD STAR for

system calls, as well as pointers to the tree root, the

head of a successor chain, and counters used to indicate the

number of free and empty cells. The user establishes to

GOLD STAR that the DD area "names" will be managed by dsm

astring; he does so by specifying the DSM name in the call

to new_data_type. Subsequent references to "names" will

automatically invoke this DSM.

Figure 4-2 illustrates the logical changes in "names"

resulting from the insertion of "Ezra". Two actions occur:

the root pointer is set to the address of "Ezra", and the

canonical root reference number is assigned. The root

reference number is defined as

ref = zn- 2
root

where n = the number of bits in a full word. The choice

of this quantity as the root reference number implies there

are as many positive reference numbers greater then refroot

as there are less than refroot' and facilitates the forma

tion and maintenance of a tree symmetrical about the root.

In subsequent action, the successor chain head is set to

"Ezra" and the number of cells active in "name" is incre-

mcntcd by "l". As "Ezra" has neither descendants nor a

successor at this point, these pointers in the data item

arc null.

-69-

Figures 4-3 and 4-4 illustrate the method by which

dsm_astring computes reference numbers. In Figure 4-3

the name "Claude 11 is inserted in the tree as Ezra's left

descendant, since "Claude" is lexicographically less than

"Ezra". The rcf erence number of "Ezra" (= ref t) is the roo

only reference number at level 1 in the tree. Reference

numbers for descendants of an item present in the tree are

computed as follows.

A candidate data item for insertion is compared with

the root note item. If the candidate is less than the root

(according to alphabetic ordering), then one of three situ-

ations can occur. If the root item and candidate are equal,

then the candidate is already present; search stops. If

the root item's left descendant is non-null, then it becomes

in effect the root, and search begins at that point. If

the root item's left descendant is null, then a number of

words required to store an item are allocated, pointers are

chained and the new reference number is computed via the

formula

r left Jesccndant r -parent 2 (d-i)

where d is the maximum depth of the tree, and i is the depth

of the tree at which the parent node appears.

If the candidate item is alphabetically greater than

the root item, then a procedure analagous to the above pro-

cedure for left descendants is executed, on the right, with

-70-
,-- -~---- -- - - +---- ~-----,

I ~
I
I
I
I
t
I
I
I

I

I
l...._

"dsm_astring"

-
..... 't:laude"

-- --_ 1000 /
...... ?

l
__ ,,,

null null

I

"names" I •
7

"Ezra"

2000

1 n,..ull
/ - / -,. null

/

/
/

/

*'

2 0 10

Figure 4-3: Insertion of "Claude" in Data Area

I - -~ - - - - ..,.. - - - - ~ - - - "'"' - - - ~ - - - It

/

I
I
't
I
I
I
I
I
I
I
y
I
I
I
l

Ji...

"dsm_astring"

_t:

" Claude II
..... -_. 1000 /

-- /
1 -- .

nulJ. nulJ

Figure 4-4:

I

"names" l • 3 0 10

7
''Ezra II

2000

1 ,,,,......_
,

'1..., / ,...... - ' ..
/ ' II " / ,Milton

/

' :r 30!)0

1 ' null

null null

Insertion of "Milton" in Data Area

-71-

r =
right_descendant

r + 2 Cd-i)
parent

Note that the reference numbers for left and right descen-

dants will be less than and greater than, respectively,

the reference number of the parent node as long as i < d.

When i exceeds d, this implies that no more items may be

inserted in the tree below the current "working node". The

exact reasons for this limitation result from the fact that

the level of the tree i occupies one bit position in the

reference number, with a left turn at level i being indica-

ted hy a 0, a right turn by 1 in bit position i in the ref-

erence number. Thus a reference number of d bits allows at

most d levels to a binary tree. A more complete discussion

of dsm_astring and tree-overflow is found in Appendix A.

The module dsm_astring is ideally suited to the task

of binding reference numbers to alphabetically ordered

strings, since insertion and deletion of items requires no

reshuffling of data elements. The ability to delete and

insert items without restructuring is an important consid-

cration, but perhaps the greatest value of the tree search

is the fact that for a data type of n members, the average

search time is K1og 2n where the constant K is independent

or n.

BinJing of RcCcrcnce Numbers to Integers

Like the orJering on alphabetic strings, an ingrained

ordering is the consecutive nature of the integers. Classi-

- 7 2 -

cal data management systems have recognizetl this important

ortlcring, but only by providing a specific internal computer

representation. As mentioned at the begjnning of this sec

tion, C()LD ST\R treats all data types in relation only to

a p e r c L' i v e cl o r cl e r i n g . Thus a module Jsm integer maps data

elements representing integer ordered strings into fixed

length bit strings. (The dsm integer module uses the same

internal format for integers that a classical data manage-

ment system would. That is, strings made up of the charac-

tcrs "0" to "9" arc transformed into jnternal machine binary

representation. Thus, COLD STAR converts character strings

representing integer data, to binary numbers representing

integers to the target computer. However, "integer" is not a

data type; data types such as "popuL1tion", "number_of

children" etc. arc examples of data types utilizing the

integer ordering on strings.)

The Binding oC Reference 0:umbcrs to Strings Where a Wcll

Orderi ng of String is Inapparent from the Alphabetic Order

Ti.,:o other data strategy motlules complete the data

represent at ion repertoire of COLD STAR. Very few data

types of large membership ever utilize an ordering scheme

other than the two previously mentioned, simply because

humans finJ rnemori::ation of many ordering schemes incon-

venient. llowever, certain data types of small membership

si=e ce.g. the months, or academic titles) follow ordering

rcL1tions not Jirectlv Jisccrnible from the data clements.

-73-

In cases where the ordering is static (i.e. no insertions

in the data type, as in the case of "months of the year")

the module dsm table assigns indices in the table to data

elements. The data type "months of the year" would map

January in 1, February into 2, etc. For small data types

which are of dynamic rather than static nature, (e.g. the

collection to titles in a company) a module dsm_chain is

provided. dsm chain allows insertion and deletion of items

which are maintained in order on a single threaded list.

An inserted item assumes the reference number

1
r = 2 (rpredecessor + rsuccessor).

2. RSM Modules

Every relation in GOLD STAR is stored in its own seg-

ment, and each such segment is organized and managed by a

program known as an RSM, or relational strategy module. An

RSM operates on one particular physical organization of

relations; in most instances the number of relations will

far exceed the number of separate relation organizations.

The choice of which RSM is the most likely candidate

for creation and maintenance of any relation is probably

the user's greatest single problem. He must decide which

structure is most suited to operations involving the rela-

tion. If the relation is large, will it require simple

organization <lue to storage limitations? Will the relation

be modified frequently? Is there more than one frequently

----------- ----~-

-74-

used lexicographic sort of the relation?

Among these questions, there is a hint of the magni

tude of problems involved in the choice of an RSM for any

relation. Like the DSM choice, several factors are in-

valved, and since most CPU time will be incurred during

RSM operations, the judicious choice of an RSM is critical.

The more significant factors are:

A. The number of different lexicographic sorts

with respect to which the relation will be

accessed.

B. The frequency of use of the relation.

C. The probability distribution expressing

relative access to each item.

D. The number of tuples in the relation.

E. The envisioned dynamic nature of a relation.

If insertion and deletion of relation mem

bers is frequent, then some RSM which chains

items together by some ordering other than

storage location is called for.

r. The basic structure of the relation itself.

A many-to-one or one-to-many relation may

have to be managed entirely differently

from a nearly one-to-one relation. For

example, a relation in which names have

several telephone numbers is many-to-one.

- 7 5-

Thus far, these guidelines have been enunciated, but

very little is known (other than empirical testing) about

their measurement. Our efforts this past year have pro

vided an RSM managing quarts, and other possible RSM struc-

tures. We decided that all RSM's, in addition to normal

operation entries, should contain entry points for convert

ing between a quart and the particular relation structure

managed, and vice versa. This allows a user to consider

several alternative RSM's and test the operation of each;

the user enters his relation once, and can then proceed

among the desired RSM's via subsequent calls to convert to

quart and convert to relation. Morever, this double struc

ture format involves only a small amount of code compared

to most operations.

The following constitute the RSM repertoire in the

initial version of GOLD STAR.

A. RSM_Q -- assumes operands are quarts, but

treats them as non-transient members of the

function R.

B. RSM_WQ -- assumes operands are quarts, but

does not provide for keeping these quarts

beyond the life of a process. (See next section).

C. RSM_TREE (under consideration)

While both RSM_Q and RSM_WQ manage extremely simple

relation organizations (which are lexicographically ordered

matrices with some trimmings) they offer the least power of

-76-

all RSM's. Sorting, dynamic insertion, and dynamic dele

tion all require creation of new quarts which hold the

modified relation. In cases where large relations are

involved, these operations, or other RSM operations re

quiring these services as subfunctions (composition, union,

intersection, etc.) may become extremely costly and time-

consuming. i\loreover, in on- line operations, searching for

or modifying even a single tuple in large relations may

disallow quick real-time response. for certain relations,

it may prove expeditious to use a tree structure similar

to those of TDMS or the MacAIMS project at M.I.T.

While these structures require more space to implement,

addressing :m it cm depends not upon rest rue turing, but

rather upon the use, manipulation, and modification, of

certain pointers at each node.

The RSM_wq

This is the module which performs the basic system

operations on quarts only. The reader is referred to

Appendix 1 for some cx;.imples of such operations. A few

interesting issues have arisen in the implementation of

the ~orking Quart RSi\l.

A. Union, lntersection, Difference

These opcratjons all use fundamentally the same code

(sec Figure "1-::l for flow chart). A key issue, however,

was whether to sort the second input with respect to the

-77-

first before operating, or not. To solve this dilemma,

Let .Q,l = length of first quart

.Q,2 length of second quart

0 = order of each quart

s = a "search", or the comparing of one quart

element with some given entity.

We know that a simple token sort of the kind used in RSM_WQ

takes a number of steps

#S(sort) = o2£ log.Q, (on the average)

Once the quarts are both sorted alike, we can recognize a

best case in operating.

When the first TENT of one quart is lexicographically

greater than the last TENT of the other, then it is possible

to determine this by only examining the first element of

each of those TENTS; we can then determine the union, inter-

section or difference.

a

1

b

2

4* 5

c

3

6

For example, given

a b c

10* 11 12

13 14 15

since 10 is greater than four, we know the intersection is

empty, the JifCcrcnce is the first quart, and the union is

the combination of all TENT's of the two.

We can also recognize a wors case (see flow chart)

where we must examine every element at least once during

----~----

-78-

s

"List" = quart

E(l)=element of list
1 under consider
ation

Start at
left of
each tuple

E(2)=element of
list 2
under con
sideration

Copy tuple
in 2 to re ult
Bump down n
result

NO

Bump down
in list 2

Figure 4-5

Copy rest
of list 1
to result

Done

YES

Copy rest
of list 2
to result

Copy tuple
in 1 to re u t
Bump down n
result

NO

Bump down
in list 1

The Algorithm for
Union, Intersection,
Difference in RSM_WQ

Bump down
list 2

Done

-79-

NO
Move right1---~
in tuples

Copy tuple
in list 1 t
result;bump
down result

NO

Bump down
list 1

Bump down
lists 1
and 2

Figurc4-5(Continued) -- The Algorithm for Union,

Intersection, Difference in RSM_WQ

- 80-

the steady progression through each quart. This yields

2 ~ #S(operate) s (~ 1 + ~ 2)0

Hence, to sort and operate, we get, as an average,

In assessing just how many comparisons are needed to oper-

ate in an unsorted case, we again examine a best case:

For each TENT in quart 1, we need only search the

entire length of quart 2 once (~ 2 /2 average searches)

during which we find an equal TENT; that means that

the first match found for each of the TENT elements

is the only one. An example of this would be:

quart 1: a b c 2: b c a

1 2 3 2 3 1

4 5 6 10 11 12

7 8 9 5 6 4

Here, if we start searching the a column in the second

quart, we need go no further since the b and c columns

will also (and always) match (presuming a match was

found at all in ~). This best case requires t 1 et 20) /2

searches.

We can also ascertain a worst case:

For each TENT in quart 1: every column in quart 2

must be searched (£ 20/2 average searches) for each of

the columns in quart 1. That is to say, when a match

-81-

is found in column ~' one is not found in b and a

must be searched for again, with the worst case

being once for the entire length of a (if all of a

is the same). This case takes 2
1

2 2 0 2;2 searches

on the average.

Let us now compare the two cases:

Sort then operate No sort

2 < # < 2+0 2 21og 2 - s -

I
20 + £0'"' log£

1 + Olag£

l + 6 7

c21 +2 2)o+o 2
i 21og2 2 cz 1 i 2o)/2 s #S

~ (tl £202)/2

On the average

letting £ 1=2 2=£ approximately

£202/4

dividing each by tO

£0/4

for £=100, 0=3

75

for t=lO, 0=3

1 + 3 = 4 7.5

So, for most configurations of quarts, the sort aper-

ation is well worth the tune. That is why that course of

operation was chosen.

-82-

B. Composition

A first consideration in composition is how to specify

it. We face a number of decisions:

1. Compose or not on columns with equal CENT's

2. How to indicate composition on columns with

unequal CENT's

3. Whether or not to keep the resulting column

The scheme adopted of binding all CENT's involved to a user

supplied vector of names has the following effects on the

decisions:

1. We compose by equality of bindings, not CENT's.

This allows a choice on columns with equal

CENT's, since they can easily be bound to

themselves.

2. By binding unequal CENT's to equal names, we

can choose this alternative.

3. This is not optimal; all columns are kept.

Projection will elimanate unwanted columns.

The equivalence vector also presents the easiest form to

deal with on a practical level; a complete equivalence

relation indicating classes of equivalence by CENT would

be very difficult to specify syntactically.

The equivalence vector for R(x)(A:p)R(y) (see Chapter

Ill) is the concatenation of ENTK(A) and ENTK' (p) where

K and K' arc the sorts specified by the user. To

-84-

output_expression)

where the input expression is a regular expression which

is "matched" to the input, and the output expression dic

tates how to transform the bindings to an output string.

The regular expression syntax considered is as follows:

Delimiters are: blank, and parentheses

Operators are: or CJ), closure (*),not (A), and

concatenation (e.g. aJb matches a or b, a* matches

any number of a's, Aa matches anything but a, ab

matches ab).

Special characters are: (matches any character),

$ (matches any number), ? (matches any upper case),

(matches any lower case), < (matches the beginning

of a line), > (matches the end of a line).

Bindings are made by /numeric, variable/ and are

created only if the numeric expression is satisfied.

The format of the numeric is n+ (n or more charac

ters in the string to be bound), n- (n or less),

and combinations of these using concatention or or.

Some examples are:

RE Input Bindings

<a* jb*/ 5-,x/> a a amp x -+ mp

same aamnopqr none (will not match)

:.ijbc/x/$# bcmno231 x -+ mno

------~-

-85-

The user is referred to explanations of QED for fur

ther elucidation, and to Appendix C for a formal syntax

definition.

The main drawback to implementing such a parser is the

lack of efficiency that code doing these tasks will have.

It is necessary to, in effect, compile machine code from

these regular expressions and execute that code. No attempt

has yet been made to implement this design, although it is

hopeful that the task is not too complex to undertake.

Protection and The Projector (See Chapter II, Figure 2-3 for

the part the projector plays in the system structure)

A situation that is sure to arise is that of having

privileged information which is not isolatable to a single

data area or relation. For instance, the relation name

salary-contract-percentage might exist; salaries are con

fidential while contract and percentage are not. In effect,

we are in the position of wanting to allow access to a

projection of a relation. Given the MULTICS protection

scheme (see Appendix D for a full discussion of protection

issues), a need for a "projector" arises. This projector

would operate in a ring higher than that of the user. The

user would then have to request (through certain stringently

defined entries) the projection he was entitled to via the

projector. By having the relation in question only permitted

to the higher ring of the projector, protection is gained by

-86-

limiting the user to accessing the relation via a we11 set

forth sequence of code, the projector.

The problem 0rises of some users of GOLD STAR having

ring permission as high as would the projector. This brings

about a manifestation of the ring uniqueness limitation

(Appendix D) of MULTICS: that a user in your ring (here,

that of the projector) must be given access to a segment

on zm all or nothing basis; you cannot force a gate upon

him.

Until such time as MULTICS allows gates to be imposed

on a c0ller in tl1e current ring, we must content ourselves

with protecting on a projection basis only against those

users in inferior rings to the system.

the projector.

This is the job of

The Common Usage Descriptor (CUD) (See Chapter II, Figure 2-3

for an indication how the CUD fits in the system structure).

The purpose of the CUD is to provide a description of

the most common usage a relation receives. For instance,

if a telephone directory were always to be accessed by

"given :1 name, find an address and telephone" (rather than

"given an address ", or "given a number "), the CUD

would somehow describe this and indicate that the ideal

sorting of the directory would have name as its most ordered

column.

No design or plans have yet been made for the CUD, but

- 8 7 -

it is felt that as the complexity and number of RSM's pro-

1 i [e r at e s , a ci c \' i c e 1 i k e i t w i 1 1 b e n c c z1 c c1 fo r e ff i c i en c y .

The next chapter will now explain the specifics of

the implementation just described: the subroutine calls,

the programming considerations, and an example of the use

of COLD STAI<.

-88-

CHAPTER V

PROGRAMMING GOLD STAR

1. The User Interface

In this part of the thesis we will outline in detail

the specific functional calls available from the GOLD STAR

system. A few subjects are worth noting before a complete

description is presented.

Arrays

GOLD STAR permits both pointers and arrays of pointers

as input. This is an efficiency matter considered in

a later part of this chapter, section 2.

Nesting

Since all calls in GOLD STAR are functional, calls can

be nested. This means that whenever the result of an

operation is appropriate, the function can be used as

an argument to another call. For example, with a, b,

c, d as pointers,

(a)

(b)

a=mgr$union(b,c)

d=mgr$union(mgr$intersect(a,b) ,c)

Note that all characteristics of the result will be

determined by the left-most argument. Hence in (a)

a will be "the same as" b (meaning if one is a quart,

the other is a quart, likewise for relations; or, that

the order of the CENT elements for a is the same as

in b) ; w h i 1 e , w i th (b) d w i 11 b e "the s am e as " a .

-89-

0ne other point: since PL/l prevents us from returning

arrays from a function, a pointer to an array is re

turned. We denote this by (p->)A where A is an array

of pointers. This will affect nesting and assignment;

a typical array nesting would be as follows

D=mgr$union(mgr$intersect(A,B)+E,C)+E

A,B,C,D,E arrays of pointers, E based

Notation

1. All upper case variables denote arrays

2. All lower case variables denote scalars

3. (p- >)A indicates a pointer to an array

4. {} denotes a choice of elements contained

5. [] denotes what is contained is optional

6. "option" denotes a character string of one to

three characters which can assume the indicated

values as its characters

7. Underscored variables are character variables

Semantics

1. q & Q refer to quart pointers

2. r & R refer to relation pointers

3. All arrays in a given expression using the GOLD

STAR calls must have a lower bound of one and

and identical upper bounds

4. Meanings of options are:

F = delete first argument when done (RSM)

S = delete second argument when done (RSM)

-90-

I : insert item being referred to (DSM)

D : delete item being referred to (DSM)

(I overrides D)

1,2, ,9 =use this column of the quarts

supplied as input (see get_data&successor_data)

(DSM)

E = treat first argument exactly as if it were

expand_quart(argl) -- this is an efficiency

feature (DSM)

5. Only one DSM or RSM can be used per operation.

This means that the RSM or DSM dictated must be

the same for all elements of the arrays which

determine the DSM or RSM to be used.

6. Non-existent optional arguments are the same as

if NULL were specified.

New Relations

Since an operation producing a relation (or a group

of relations) must create new segments to hold these

relations, the following procedure is followed to

handle naming:

1. If F option is specified, the new relation is

given the name of the one to be deleted.

2. Otherwise, the console is queried. This policy

is changeable if the need arises for another

approach to this case.

-91-

Error Handling

This is handled by a system program called GS_error.

The user will receive a message of the form:

Error xxx Internal opcode was y

followed by two pointers, a name and pointer, or two

names of interest (their meaning depends on the error

code xxx) followed by an error message. Y is the

internal code for the operation in progress and is

indicated with each call description. Depending on

the call form to GS_error, the user may be given the

opportunity to return and continue from where the

error occurred. The nature of the results will de

pend on the error incurred. Appendix G describes

GS error in greater detail. All error messages are

stored in GS_err_messages with the kth line being

the message for error number k.

The reader is referred to the PL/l code listings of the

manager which include all of the PL/l structures used by

the system (see Appendix F), and to Appendix E, which con

tains the important PL/l structures in an annotated form.

The operations are classed into six groups. They are:

1. Pure set theoretic -- those outlined in Chapter III,

section 1.

2. Ordered set theoretic -- those considered in Chapter

III, section 2.

-92-

3. Structural utilities -- for conversion to and from

quarts and relations, and to and from scalar quarts

and arrays of quarts.

4. ENT utilities -- for examination and manipulation

of the ENT's.

5. Token creation and maintenance -- the creation and

examination of reference numbers in data areas.

6. System Utilities -- for the creation, initiation

and deletion of data areas and relations.

Finally, the reader is referred to Appendix H which

describes a useful debugging aid, and to Appendix I which

contains simple examples of many of the operations per

formed on quarts.

-93-

Pure Set Theoretic Operations

union (un=abbreviation recognized)

q=mgr$un(q[,{i}] [,option])

r=mgr$un(r[,{i}] [,option])

(p- >) Q=mgr $un (Q [, {~}] [,option])

(p- >) R=mgr$un (R [, {~}] [,option])

options: F,S

(U=internal opcode)

This is the set theoretic union of the two arguments.

A null second argument is interpreted as empty; i.e. it

produces a copy of the first argument.

intersect (in) (I)

Forms as in union

This is the set theoretic intersection of the two ar

guments. A null second argument produces a quart identical

to the first except with no elements.

difference (di) (D)

Forms as in union

This is the set theoretic difference of the two argu

ments. A null second argument produces a copy of the first

argument.

cart_prod (cp) (X)

Forms as in union

This produces the cartesian product of the two argu

ments. The result contains a column for every column in

- 9 4-

the inputs, with a tuple for every possible concatenation

of each of the input tuples. For example,

a b c d a b c d
- - - -
1 11 21 31 1 11 21 31

x ;:

2 12 22 32 1 11 22 32

2 12 21 31

2 12 22 32

A null second argument produces a copy of the first.

compose (co) (C)

q==mgr$co(q[,{i}] [,eqp] [,option])

r==mgr $co (r [, {q}] [, eqp] [,option])
r

(p->)Q==mgr$co(Q[,{~}] [,EQP] [,option])

(p->)R=mgr$co(R[,{~}] [,EQP] [,option])

options: F,S

The composition is performed in the following way:

1. If there is an equivalence vector (pointed to by

eqp) it must be of the form

eqp -> width name(l) name(2) name(width)

where width=sum of the orders of the inputs.

Bindings are then made between the names in the

equivalence vector (neq's) and the CENT's in a

sequential fashion. For an example, take

-95-

input 1 + a b input 2 + c d eqp + 4 w x y z

then the bindings are a-w, b-x, c-y, d-3. An "&"

(ampersand) in the equivalence vector causes a CENT

to be bound to itself. eqp + 4 w & y & above would

produce bindings a-w, b-b, c-y, d-d. A null pointer

for an equivalence vector has the same effect as if

the vector were all ampersands.

2. The resulting quart (or relation) will consist of

one column (conceptually, in the relation's case)

for each unique, non-blank neq. For example

eqp + 4 w x y z produces w x l. z - -
eqp + 4 w x w z produces w x z - -
eqp -+ 4 w II II w z produces w z -
3. A TENT in the result is produced from a TENT from

each of the inputs such that

a. All input columns with identical bindings have

an equal refno (which goes into the resulting

column headed by the binding's name).

b. When the above holds true, other columns from

the result are filled from the other input

columns bound uniquely to the result column's

name.

c. Columns bound to blank names are ignored. For

example, given

-97-

produce the two lines Jones 33 Maple_783-800l_Ford and

Jones 33 Maple 783-800l_Chevy. Had there been no listing

for Jones_33 Maple in either of the directories, the result

would not include him.

project (pr) (0)

q=mgr$pr(q,eqp[,option])

r=mgr$pr(r,eqp[,option])

(p->)Q-mgr$pr(Q,EQP[,option])

(p->)R=mgr$pr(R,EQP[,option])

options: F

This projects out all columns whose name in the equiv

alence vector is blank. The width of the vector must be

equal to the order of the input, and the values in the equiv

alence vector replace the original CENT's in the result.

For example

a b c eqp 3 X Y II
II x l. - - -

1 11 21 1 11

1 11 22 yields 3 13

3 13 23

Note th3t after a column lS removed, any duplications in

TENT's are deleted to a single entry. The ampersand may

be used to indicate that the CENT for that column is to

be unchanged.

-98-

Ordered Set Theoretic Operations

sort (so) (S)

Forms as in union

This sorts the first input with respect to the order

of the ENT of the second input. Both inputs must contain

the same ENT elements, unless the second input is null, in

which case the first input is sorted without change in ENT

ordering. Note that the effect of sorting according to an

equivalence vector can be had by saying

q=mgr$so(q' ,mgr$me(q' ,eqp))

where eqp points to a vector containing the ENT elements

of q' in the desired order (see modify_ent later on).

successor relation (sr) (P)

q=mgr$sr({;} [,q] [,option])

(p->)Q=mgr$sr({~} [,Q] [,option])

options. F,S

This produces the TENT in the first argument which is

immediately greater than (in the lexicographic sense) the

first TENT in the second input. If the second arg is null

or non-existent, the first TENT in the first argument is

returned. If there is no successor, a zero-length quart

is returned. For example,

given first input a b c

1 1 1

1 3 1

. ! r C' J 1J L~ C ~:

.l b

~)

h !1

,! i· ,(b L.

1' ' 1 L

~ 1 ~ ~ .J b

.)

-100-

Structural Utilities

convert_to_q (cq) (Q)

q=mgr$cq({i} [,option])

(p->)Q=mgr$cq({~}[,option])

options: F

The first argument is converted to a quart.

convert to r (er) (R)

r=mgr$cr({i},r[,option])

(p->)R=mgr$cr({~},R[,option])

options: F

This converts the first input to a relation with

respect to the RSM used for the second input.

expand_quart (eq) (T)

Q=mgr$eq(q)

This converts a quart of length n into an array of n

length 1 quarts.

squash array (sa) (T)

q=mgr$sa(Q)

This converts an array of quarts (with identical ENT's)

into 3 single quart. Duplications in TENT' s are not deleted,

but the result is sorted. Care should be exercised not to

3llow duplications to hinder proper operation (the duplica

tions c3n be removed by projecting without removing any

- 1u1 -

columns:

,cqpl (Kith appropriate cqui\'alcncc

vector)

ENT Utilities

get_ent (ge) (E)

eqp=mgr$ge({q})
r

EQP=mgr$ge ({~})

-102-

This returns an equivalence vector containing the CENT

portions of the input.

modify __ ent (me) (M)

q=mgr$me(q,eqp)

r=mgr $me (r, eqp) ·

(p->)Q=mgr$me(Q,EQP)

(p->)R=mgr$me(R,EQP)

This changes the CENT portions of the input to the

contents of the equivalence vector. The returned pointers

are the same as the input. Ampersand (&) may be used.

clear ent (ce) (Z)

q=mgr$ce(q)

r=mgr$ce(r)

(p->)Q=mgr$ce(Q)

(p->)R=mgr$ce(R)

This clears to NULL the PENT portions of the input and

returns the input pointer.

-103-

Token Operations

At this point, it is well to point out a practical

consideration which necessitates distinguishing a CENT

element from a data type. It is possible that one would

desire a relation such as employee-employer; but in this

case, the reference numbers for employees and employers

could refer to the same data type, namely personnel or

name. To allow for the case where two CENT entries must

be distinct, yet refer to the same data-type (and associated

data area), the following convention is adopted: for all

relational operations (RSM), the entire CENT is used; for

all token operations (DSM) only the first four characters

are used. Hence, we could have the relation name_employee

name_employer with both columns refering to the same data

type "name".

By way of explaining the PENT, let us first note that

when a CENT is used by a DSM to indicate a data type (by its

first four characters), this character name is associated

to the data area by a pointer variable. This pointer is

then stored in the PENT linked to the CENT in question.

Then, in future references to the quart in question, the

PENT's which are non-null can be used directly without

incurring the overhead of translating the first four charac

ters of the CENT into a pointer to the data area.

A final note: in discussing the following operations,

q' will refer to the special case of an order one length

-104-

one quart. So, we will be talking about the CENT and the

TENT of a singleton quart.

get_ refno (gr) (R)

q'=mgr$gr(d,{~}[,sptr] [,ent] [,option]) ap -

(p->)Q'=mgr$gr(D,{~}[,sptr] [,ent] [,option]) op -
options: D,I

d is a pointer to a raw data item such as string or

an integer. This operation takes a data item and returns

a singleton quart with the item's reference number. The

data area used is determined by its name, ~' or by a

pointer to it (which is more efficient), dp(which can be

obtained via MULTICS hcs_$make_ptr routine or by the new

data_type operation outlined in group six). The resultant

CENT is ~ unless ent is specified, in which case that is

put in. If an item is not in the data area, and I is not

specified, a zero-length quart is produced; if I is speci-

fied, the item is inserted, and the new reference number

returned. With D option, the refno is returned despite the

item's being deleted. sptr is an optional argument provided

for certain DS~l's where the user must indicate after which

i tern ~m insertion is to be made; it is a pointer to another

data item.

get_data (gd) (D)

d=mgr$gd(q[,~] [,option])

-105-

(p- >) D=mgr$gd (Q [,~] [,option])

options: D,E,1,2, ... 9

This converts a reference number to a raw data item.

The data area to be used is determined by !YE..£ if specified;

otherwise it is determined as indicated in the preface of

this group from the nth CENT, where n is the number option

specified (1 is the default). Basically the number option

permits the user to choose which column of the quart to use.

The refno used is then the first in the nth column.

The E option permits an entire column to be operated

upon since

(p->)D=mgr$gd(q,"E")=mgr$gd(mgr$eq(q))

The E option is much more efficient, however. Finally,

even if the D option is specified, the item is returned,

but then deleted; references to non-existent items yield

a result of NULL.

successor data (sd) (S)

q'=mgr$sd(q[,~] [,ent] [,option])

(p->)Q'=mgr$sd(Q[,~] [,ent] [,option])

options: D,E,1,2, ... 9

The reference number and data area to be used are

determined exactly as in get_data, using the column number

option, and CENT conversion. Waht is returned is a single

ton quart (with ent for its CENT if specified, else ~)

containing the reference number of the item which is "next"

after the input refno. The order on the data is determined

-106-

by the DSM, but reference numbers are always assigned such

that numerical order is kept by the order on the data.

Hence, successor_data returns the next greatest refno which

is included in the data area; the input refno need not be

included in the data area itself. D options causes the

deletion of the item whose successor was found, if there

was one, not the successor itself. Finally, a null input

or zero refno returns the first refno in the area, while

if no successor exists (the input is greater than or equal

to the last refno in the area), a zero-length quart is

returned.

-107-

System Utilities

initiate relation (ir) (Z)

r=mgr$ir(name)

This intiates the relation "name" and clears the PENT

portions of the relation (this is necessary since each new

process invalidates all stored pointers by virtue of the

new segment numbers assigned).

new relation (nr) (N)

r=mgr$nr(name,r)

This creates a new relation by the name "name", and

assigns to it the same RSM as the second input.

new_data_type (nd) (N)

dp=mgr$nd(~,DSM)

This creates a new data type "~" (which must be a

name 4 characters in length) and assigns to it the DSM

named "DSM". dp is a pointer to the new data area.

kill_data_type (kd) (K)

NULL=mgr$kd ({qt })
~

This deletes the data type "~", if that is given,

or deletes the data type associated with the first ENT

clement of the input quart, if that is given. (See preface

to group 5.)

-108-

2. Programming Considerations and Specifics

The user is referred to Appendices E and F for the

system structures which serve as interfaces, and for the

code of currently existent modules.

Special Functions of the Manager

The manager serves to make the rigid calling sequence

enforced by PL/l less of a problem. In the formal

language, it is not possible to omit arguments, or to

have a choice of the form (pointer, string, etc.) of a

given argument. For example, the call to kill data

type could not be handled by the standard PL/l facili

ties (it takes either a pointer or string). The mana

ger overcomes this problem using a utility which ob

tains for the program a pointer to the arguments, but

makes no interpretation (see cu_ in Multics Manual).

The arguments are then treated, on a machine dependent

basis, by code designed to test for argument types as

well as contents. This code then permits the user to

be free with his form and receive a diagnosis of trouble

from GOLD STAR (rather than from MULTICS) which is more

specific in its messages.

The manager also serves a number of other vital needs.

It contains all of the machine dependent code (except

ing area considerations, which are mentioned later).

Segment and name-space management are handled by the

-------~ - - -- ---

-110-

Arrays and Calls

In MULTICS, the call and return sequence is relatively

expensive, often taking the same time as fifty or more

machine instructions. To minimize this overhead, GOLD

STAR is designed to deal in arrays of pointers as well

as in pointers alone. By this vehicle, the user can

achieve the effect of iterative calls by passing instead

whole arrays. The system routines then iterate within

themselves, saving the need to iterate upon the calling

sequence. Hence, the entire system is designed to

effectively minimize the number of calls. Hence we

find that the following two calling sequences are

identical in effect.

dcl (A,B,C) (n)pointer;

dcl D (n) pointer based (x) ;

.
A=mgr$un(B,C)+D;

is the same as

dcl (A,B,C) (n)pointer;

do i=l to n;

A(i)=mgr$un(B(i),C(i));

end;

The second is less efficient due to call overhead.

Paging

Care must be taken that a minimum number of pages are

requested in a limited period of time. Otherwise,

-111-

excessive waiting for pages will ensue. Basically,

only two remedies are available: limit code as much

as possible to linear flow without external calls,

and localize external references to a given page.

The modular construction of GOLD STAR lends itself to

these restrictions; most modules have approximately

linear flow, and during a given task, usually only a

strategy module, a data area (or relation segment),

and the free free segment (dynamic allocations) are

needed. There is virtually no intercommunication

needed among the various system components other than

in a simple linear transfer of control.

Frequent Trouble Spots

One of the most troublesome errors to encounter is

that that of passing around erroneous pointers. The

system takes care not to permit null pointers to be

transmitted where they are going to cause a MULTICS

error. The user must be very careful not to use

uninitialized or incorrectly set pointers, as they

can cause disaster.

GOLD STAR makes extensive use of allocations, and, in

fact, returns all values in based allocations. The

user should beware of filling up this free_free area;

the system cleans up where possible, but cannot do so

in some cases. For instance, when a pointer to an

-112-

array of results is returned, that array must be

freed by the user to clean up properly (single returns

are handled by the system).

Dynamic Storage

GOLD STAR is suitable for manipulation of large aggre

gations of data. At any one time, however, only a

small portion of the collection need be accessible

to user and system programs. In addition, GOLD STAR

utilizes a certain amount of ephemeral storage in the

form of QUARTS. In order to reduce the amount of

storage required at any one time the free storage

facilities of PL/l are frequently invoked. Thus QUARTS

and some character strings exist only as long as a user

deems necessary.

In addition to those instances where ephermal data is

used, data-reference number bindings are stored in a

PL/l accessible AREA. This feature, also used by

RSM_Q, allows effective management of data which is

dynamic in nature, without explicit storage management

by the user.

-115-

/* grade list contains: "semester", "subject_number",

"letter_grade", "student_name" */

compose_ptr=mgr$cart_prod(mgr$cart_prod(

mgr$get_refno(F_ptr,"letter_grade"),

mgr$get_refno(subj_ptr,"subject_number)),

mgr$get_refno(term_ptr,"semester"));

/* this forms an order 3 quart with the CENT's "letter

I*

grade", "subject_ number", and "semester" *I

fi_ptr=mgr$compose(compose_ptr,fi_ptr);

failed_ptr=mgr$project(fi_ptr,addr(names));

now get addresses of the names already obtained

fi _ptr=mgr$ini tiate _relation (''student_di rectory'');

fi_ptr=mgr$compose(fi_ptr,failed_ptr);

call labels (fi_ptr);

return;

end;

*/

-116-

AUTIIOR COMMENTARY -- L. ALAN KRANING

ASPECTS OF THE MODEL

The development of any large system must presume that

certain trade-offs will be made during the implementation

phases, but there are certain pre-implementation and pre-

development considerations that have far more significant

impact than the actual generation of a working system.

First of all, the needs which motivated the design of the

system must be considered in detail. The GOLD STAR system

is suitable for administrative data management needs for a

university such as M.I.T., but it is not at all obvious

how well such a system would perform in other environments

where the decision structure were different. Second, de-

spite the generality of set theory, the GOLD STAR model

presented in Chapter II reflects my biases, the biases of

my thesis partner, and biases of those who will use the

system about the nature of relatedness. An exact defini-

tion of "a is related to b" is difficult to produce without

using words as nebulous as "related". What do we mean when

we say that "John" is related to "Dodge"? Difficulties in

this area -- especially in determining what relations are

and are not properly included within a data-base -- ultimately

determine the utility of our model.

The nature and degree of trade-offs in GOLD STAR revolve

ahout some conflict between the unordered nature of sets and

-117-

the ordering of storage in computers. Retrieval of ele

ments from sets is not well specified, but since sets and

operations on them are abstract, this is not severe.

However, in an environment where sets must be represented

as bit strings in a totally ordered memory, we must specify

an algorithm for retrieval of any item, as well as speci

fying its representation. Large scale associative memories

would aid in representation of sets, but current technology

and economics of implementation now preclude such a situa

tion.

The quart construction saves storage space by "fac

toring" the data type names out of a relation. However,

many to one relations such as the name-friend relation

would replicate many data elements when considered as a

quart. While the quart imposes ordering implicitly by

storage address, it suffers the same malady of other data

structures: retrieval of information must somewhere take

into account an immutable order on memory. The notions of

dynamic storage management and pointer data elements allev

iate part of this burden, but only at execution time. The

programmer must completely specify, or accept someone else's

specification, for a mapping between sets and storage cells.

-118-

AUTHOR COMMENTARY -- ANDREW FILLAT

ASPECTS OF THE IMPLEMENTATION

There is a distinct dichotomy of feelings which accom-

pany the birth and early life of GOLD STAR.

On the positive side is the most important feature of

all: the framework of the system; once truly familiar to

a user, it is one that reduces many exceedingly difficult

data problems to amazingly short and simple algorithms.

It was, in fact, hard to come up with a non-trivial example

(at least from the coding standpoint).

In addition, on the positive side, is the vast open

space that GOLD STAR can expand to. As special data hand-

ling needs arise, new strategy modules can be written to

increase efficiency, without ever redesigning the options

which use the system.

The apprehensions are attributable in great part to my

inherent skepticism. There are many nagging doubts at this

point of how marketable the entire MULTICS system really is.

GOLD STAR, though not designed for MULTICS alone, depends

upon its host for many of its nicest features and conveni-

ences. It seems a loss to create a one-of-a-kind system,

even if it becomes an integral part of the installation.

The issue of efficiency is also a nagging one. There

is no way to my knowledge that one can test the design of

a module under heavy loads until enough of the entire system

-119-

is available to create such a load. Hence, there is little

way to elicit the performance of the system under production

conditions. Although indications to date are excellent, it

somehow sits uneasily upon me to be forced to design such a

complex entity as GOLD STAR so empirically.

My final and I think most serious doubt is the possible

"understanding gap". After conceiving, creating, and devel

oping GOLD STAR in collaboration with the co-author, the

system has become a perspective on my thinking. It is dis

turbing to realize how difficult it is for a detached but

interested party to conceive of the system or his problem

in light of the system. It is my hope that the systematic

(albeit untested) approach presented through this disserta

tion will allow a user to become familiar with our set the

oretic conception of data.

Finally, I would hope that a wide range of users would

be willing to tackle the job of learning about GOLD STAR.

I am convinced that the entire administration of M.I.T.

could use GOLD STAR to handle virtually every part of its

problems and assignments. It is my hope that these other

people will see the tremendous value in our system.

Lemma I.

Proof:

-120-

APPENDIX A

A LEMMA ON THE NESTING OF PROJECTIONS

if X = domUR(x) then by the definition of

projection in (3-8)

7T BR c x) = { f : xn B-. N 0 I c 3 g) c g ER c x) & f c:: g) }

Thus,

But

So

AncxnB) = XO(AnB) = xn(BOA)

nAnBR(x) = nAnBR(x) = nBnAR(x)

Q.E.D.

-121-

APPENDIX B

ALPHABETIC ORDER AND REFERENCE NUMBERS

Data types ordered by alphabetic sequence will usually

be large in size, typically of the order of 10 1 or greater.

Many types will be highly active in numbers of insertions

and deletions. The large size of any data type poses no

significant barriers if the number of bits composing a

reference number is sufficiently great; the MULTICS imple

mentation of GOLD STAR uses a 35 bit reference number,

which limits the size of any data type to 234 - 1 ~ 17.8

billion data elements. The ability to insert and delete

items with impunity is more problematic. Insertion of an

item requires sparseness among reference numbers if well

ordering is to be maintained. Furthermore, when either

inserting or deleting an item, it is of utmost importance

that previous string-reference number bindings remain un

affected. Alteration of any binding necessitates a sub

sequent search and modification of all relational structures

where the binding was assumed valid; in large data bases this

process becomes prohibitively expensive if frequently per

formed.

One strategy which adequately serves the needs of dy-

namic l1inding is the binary tree concept outlined in Chapter

4. The illustration in Figure B- 1 extends the tree dis

ct1sscd in Chapter 4. Inside each node above the data element

\
\
~

' [00]
Al~n

~

[O,]
c11aude

I I
010001 = 8

' 'f f I
I
I

' 00100 ~ ,4
~
I

'
"' [001]

Andy

00110 = 6

v
[0100]

Dan

[01~]
D've \
ti

01010
/

01001 = 9

[]
,tf zra

\ lUOOf = 16

/' " I \
I \

I \
I \

" \ I ~

r--.._;;;:a...-,--1~ ~~~'---~--...
cod 'r~o1
Do~g Geo~~e

I
01100/= 12

" I

I
I
I

10100

[1] 1\
Mil tpn\

I \

11000'= 24~
I \

"' \ ' I C i

'\J

I
I
I
I

"' I

[101]
Hiram

[11]
Tom

11100 = 28

I
1

Sequence
of Entry

Ezra
Claude
Doug
Milton
Tom
Dave
Donald
George
Dan
Alan
Hiram
Andy

10110 = 22

\
[01~ 11)

Donald

01011 = 11

Figure B-1: The "names" Data Area

Level d
[=4]

Level d-1
[= 3]

Level d-2
[= 2]

Level d-3
[=lJ

Level d-4
[=O]

I

.....
N
N
I

-123-

name is a bit string which, when read left to right, indi-

cates the left and right turns required to reach an item

in the tree. For example, to reach the root node, no turns

are required, and to reach "Donald" turns to the left,

right, left and right (0101) are called for. Two problems

prevent direct usage of these "path trace" numbers as

reference numbers. First, since all reference numbers are

36 bits long, the "path trace" numbers 00, 0, 000, and 0000

would be indistinguishable, as would be the set 101, 1010,

101000000, and 10100. Second, the bit strings serving as

path trace numbers do not preserve the well ordering among

the data elements. For example "George" lexicographically

precedes "Milton", yet path traceG = 10 is greater - eorge

than path traceM.lt = 1. Uniqueness of reference numbers
- i on

and preservation of order will both prevail if we adopt the

following schema:

Assume that a word of storage identifies bit positions

as below:

t
I I ' I

f n
sign bit

most significant
bit (msb) !

Sa n I
210

least
significant
bit (lsb)

Without loss of generality, we let the ith bit position

i = n-1, n-2, ... 3, 2, 1 hold the flag, 0 or 1, for

left and right turns respectively to be taken once we

reach the ith level of the tree. Note that a tree of

maximum depth n will require n bits for representation

of path trace numbers.

Assume that the first 1 bit starting from the right

indicates that all bits to its left are significant

in a path trace. Thus the path left-left-right-left-

right would result in a path trace 00101 and a refer-

ence number

.~~~,._~path trace number

~01oi110000000000000000000000000000
d

---path trace flag

Figure B-1 shows reference numbers below each node

both in binary and decial. Thus if a data item is

found at depth k of a tree, its reference number can
d k-1 be expressed as (}~ a.2i) + 2 with a. = 0 or 1 for

. k 1 1 l=
i = k,k+l, ... d. (21 in binary is represented as

a 1 bit in position i, if the bits are labeled as dis-

cussed above.) To compute a reference number from a

string, we set 1 = d, and then compare the given string

with the root datum. If equal, the reference number

lf the given string is less than the root, the

reference number is 0·2 1 + the reference number ob-

taincJ by 1) changing the "search" node to the root's

left descendant, and 2) reducing 1 by 1. An analagous

procedure applies to the right. If the given item is

greater than the root node, then its reference number

-125-

is 1·2i +the reference number obtained by 1) changing

the "search" node to the right descendant, and 2) re-

ducing i by 1.

Notice that at each step of the search, reduction of

the value of i will ensure ref#(a) < ref#(b) +~ a < b.

Overflow of the Binary Tree

Figure B- 1 illustrates a tree structure resulting

from one of many possible input sequences for the data type

"names". Although the tree is not optimal, i.e., all nodes

in which both descendants are missing lie on either level i

or i + 1, fine bits are sufficient to contain all reference

numbers. What happens, however, if we attempt to insert the

item "Cyrus"? If we descend the tree searching for an in

sertion position, this item would logically be the left

descendant of "Dan"; however, such an insertion cannot be

made with a fjve bit reference number; hence we must restruc

ture the tree before inserting "Cyrus". The Ness[Al] algor

ithm for restructuring trees to optimum depth yields the

form in Figure B- 2. The restructuring process destroys

the entire set of old bindings; to retain the viability of

relations and quarts in which the original bindings parti

cipated, a quart is produced, relating new and old reference

numbers for each member of the data type. At restructure

time, the user is informed of tree overflow, and the exis-

tcncc of the new-old-refno quart. He then performs composi-

'
~

\

' Alan
\

(\

Claude
I I
I \

.f. •
I I
I I
I ,,.

I
I
I

/\
Donald

I I
I I

/ I
I 'f

I I
I I

I I
I t

I I

[±] ~
I I

i I

16

/\
Ezra
I \

I
/.

118

24

A
Hi ram "

I

I

f
I

I
I

.1\
I 2 2

I ' I

6 #
,-----IL--=-/

' ~
Andy, I ..,

~o t .
--~~,1--,~,~ m, 1'

Dan Doug
\I V

\
~

\

\ /
George v

Sequence of Entry:
Donald
Claude
Hiram
Alan
Dave
Ezra
Milton
Andy
Dan
Doug
George
Tom

Quart for
Restructure
of Relations
Involving
"names" data
type-

Figure B-2: Restructured "names• Data Area

28

' . ' Milton
\

~
\

\
\
\ Tom

old new
4 4
6 6
8 8
9 10

10 12
11 16
12 18
16 20
20 22
22 24
24 28
28 30

30

I

~
N
0\

I

-127-

tion of this quart with the necessary relations. The tree

overflow problem will in practice arise very infrequently;

however when overflow does occur, it is mandatory that

recovery procedures by operable.

Randomizing The Input Sequence for dsm_astring

Referring to Figures B-1 and B-2 we note that the

particular organization of that tree depends to some extent

upon the sequence in which data elements are entered. In

particular, if we insert a large number of data elements

which are input in alphabetic order, then the tree will

quickly overflow. Alleviation of this problem is accom

plished by scrambling large sets of input data prior to the

binding process.

-128-

APPENDIX C

A FORMAL SYNTAX FOR A PARSER

<Regular Expression>=: :<EXPl>/<NUMERIC EXP><VARIABLE>

<EXPl>=: :<EXP2>j<EXP2><0R><EXP1>

<EXP2>=: :<EXP3>j<EXP3><EXP2>

<EXP3>=: :<PEXP4>l<PEXP4>*

<PLXP4>=: :"<literal>"! $1 ?j ! i. j<J>l "<PEXP4>j

(<Regular Expression>)

<NUMERIC EXP>=:: <NUMERIC EXPl>l<NUMERIC EXPl><OR>

<NUMERIC EXP>

<NUMERIC EXPl>=: : <NUMERIC EXPZ>j<NUMERIC EXPZ><NUMERIC

<NUMERIC EXP2>=: :<NUMERIC EXP3>j<NUMERIC EXP3>+j

<NUMERIC EXP3>-

<NUMERIC EXP3>=: :<digit strings>

<VARIABLE>=::<character strings>

definitions: <OR>= I
$ - any digit

? - any upper case character

- any lower case character

= anything -

< - left anchor

> = right anchor

EXPl>

Note: any special character appearing twice in succession

is interpreted as one of itself.

-~------- ---~---

-129-

APPENDIX D

PROTECTION ON MULTICS

1. The Basic Concepts

Each segment in MULTICS possesses an access control list

(ACL) which lists all processes which may access that segment,

and the restrictions on that access. There also exists a com

mon access control list for each process (CACL) which can be

viewed as simply an ACL common to all of a user's segments.

The possible forms of access are read (R), write (W), execute

(E), and append (A), or no access (this appears as i blank in

the ACL but will be signified by either - or X). It should be

noted that by process, what is meant is a thread of control;

i.e. , no matter who the segments "be long to", a series of cal ls,

returns, and execution represents the thread of control of a

process. It is important to note the ACL discriminates by this

process concept.

As well as an REWA attribute, each process listed in the

ACL possesses a ring bracket, of the form a:b:c. This ring

bracket specifies the action the supervisor will take upon a

call from this listed process depending on which ring the

calling process is in. The general concept of rings is merely

an extension of the two state system to 64 states; operations

permissible (in this case, by operations we mean access and

calls) grow progressively more restricted as we move out from

ring O to ring 63. Part 3 is a discussion of how rings work,

and the following diagram should indicate how rings serve an

-130-
analogous purpose to states.

Ring bracket listed
in called segment
for calling process

Calling process
in ring 0-(a-l)

Effect of a call: Legal
New Ring:::::a

Effect of non
call access: Illegal

a

a-b

Legal
Ring

Unchanged

Legal

b c

(b+l)-c (c+l)-63

Legal if Illegal
call is to
"gate"
New Ring:::::b

Illegal Illegal

This is all subject to the REWA permission listed for the

calling process. In words, the essence of this ring bracket

is as follows: if the calling segment is in the first speci-

fied range (a to b), then all forms of access are legal, and

no ring changes occur; if the calling segment is in the second

range (b+l to c), only a call is permitted, and this generates

a "gate crossing fault" (the fault is analogous to the excep-

tion generated when a problem state program makes a call on

the supervisor, entry to the more privileged routine must be

at specified places, or "gates"); if the calling segment is

1n the low outside range (less than a), only a call is per-

mittcd, and an "attempt to execute data fault" is generated

(the name is misleading as Part 3 indicates , but the

situation is analogous to a supervisor calling a problem

program-care must be taken to allow the less privileged called

program only the arguments passed to it, and not to allow any

access to the calling programs' more privileged data); if the

-131-
calling segment is in the high outside range (greater than c),

no access is allowed.

This gate scheme has distinct advantages over a simple

two state system. First, by using ring O for the supervisor,

the HCS can be fully protected from undesired access by speci-

fying a ring bracket of O:O:i (i any other ring) for all pro-

cesses. Yet, under this view, the HCS becomes merely a copy

of code available to everyone; system processes (usually

called daemons) can run in any ring, and still have full

access to the HCS if its process is permitted from any ring,

without allowing other users unrestricted access. The second

major advantage is almost a corollary to the first; by writing

a sub-system in ring i, any user can possess supervisor type

privileges over his system by having his users in ring i+l.

The logical consistency of this plan is clear: the HCS is to

its sub-systems as the sub-system is to its users. Since each

user can itself be a sub-system, the uniformity of this scheme

is fantastic. The ability to assign access on a per process

basis, combined with the refined and extended system of states

-- the rings -- leads to a computer system which is virtually

tailored to the sub-system writer as well as the average,

albeit necessarily skilled, user.

There is one major limitation upon the flexibility of the

ring system. I shall call this the "ring uniqueness limita-

tion". The name describes the fact that if a user has privi-

lcgc to some ring, then there is no way that another process

-132-

with the same ring privilege can permit access to the first

process on a subordinate basis. For example, if Jones has a

sub-system in ring 3 (his users run in ring 4), and Smith has

ring 3 permission, then Jones must make the all-or-nothing

choice of whether to give Smith unrestricted access or no

a~~ess at all. This situation is clearly one that does arise

on any large system like MULTICS, where there would be much

demand for equal and independent sub-system space.

2. Eliminating The Ring Uniqueness Limitation

Eliminating the aforementioned limitation is clearly a

useful and advantageous goal to adopt, at least from a theo

retical aspect. What would result would be a totally control

lable environment of sharing, where the level of privacy could

range from zero to total. There is, however, a serious ques

tion of whether any scheme could both remove the restriction

and not cost dearly in overhead.

Three different schemes art presented which, through

different approaches, would eliminate the MULTICS restriction.

These ideas are the creation of non-concentric rings, the use

of procedure as well as process access control, and the effect

ing of a trap mode of access. It is not possible for the

author to make detailed analysis of the implementations or the

overheads, for simple lack of facts; however, general assess

ments based on a knowledge of the system overview and the ring

system will be made.

-133-
A. Non-concentric Rings

The idea of non-concentric rings is a reasonably simple

conceptual extension of the current ring system. A diagramatic

presentation would be the best introduction.

3baa.-~~~
-~--- 2.ba

MON- CA"C.EMT'a.\C. a,\llC.~

The non-concentric rings (NCR's) would effectively define what

might be called a "sub-system context". The advantageous fea-

ture of this system would be that a user might have ring 3

permission in his own sub-system context, and have only ring 5

permission in another such context. The NCR's would isolate

sub-systems into their own branch of the tree, and would even

define independent scopes of authority on the higher level

rings. The NCR's permit allotment of sufficient privilege

without the allocation of over-sufficient permission.

A major problem would certainly be the excessive space

required to store information about ring status. In its full

extension, NCR's would have a theoretically infinite number

of subrings at every level. A practical solution, which is

not especially costly in a theoretical sense, is to have a

binary tree structure for the ring system. There would be

one ring 0, two ring l's, four ring 2's, and so on. Under

-134-

this plan, a process' place on the ring tree could be deter-

mined using n+l bits, where n is the number of levels in the

tree (the one extra bit would be used as a flag to mark the

end of significance in the left to right scan of the binary

bit string). The following diagram indicates the binary for-

mat employed. Note that the binary method places a restriction

on the operations staff: sub-systems must be placed on a low

enough level to permit space enough for all the co-equal systems.

In practice, ring 6, 7, or 8 would be the likely location for

the average sub-system (thus permitting 64, 128, or 256 sub

systems).

Tree Structure of Rings

Ring level 0 11000

~
Ring level 1 11100 lA 10100 lB

Ring
level 2

~ ------- ~
111100 ... ~- -ll~;O~ ~. 2AB lOll<a ... 2BA ~100 2BB

There is another major problem involved with the use of

the NCR's. That is, how do we determine faults? Clearly,

there arc two types of faults (disregarding the distinction

between upward and downward): the standard type -- as from

2AA to lA -- and a tree-crossing fault -- as from 2AA to lB,

the dotted line. The standard upward and downward faults are

easily determined by being on connected branches -- simple up

or down movement on the tree -- and would be handled exactly

as in MULTICS. The tree-crossing fault presents a problem:

-135-

if we allow faulted access to gates across the tree, we run

into tremendous problems specifying what corresponds to a

ring bracket. A variable length list would be needed for each

entry in the ACL specifying from which branches of the tree a

process could call from. Another problem: how does the system

distinguish between the faults?

A possible solution to these problems might be to not

allow cross-tree access at all. Then, the system could search

for rings by simply following the branches of the tree. A

cross-tree access would be detected if the system has to change

direction in its tree search; i.e., if the tree search required

going up and then down branches. Ring brackets would remain

unchanged, and would only refer to the branches of the tree

reachable without a cross-tree fault arising. For example,

a segment would be specified with brackets like 1A:2:3; this

would permit access unrestricted from 1A,2AA, and 2AB, and

faulted access from rings 3AAA, 3AAB, 3ABA, and 3ABB.

But note that this solution requires one important addi

tion to the features allowed a process: a process would have

to be able to change its current ring so as to be able to

reach all rings to which it is permitted. That is, a user

with ring lA permission who wishes to use a system in ring lB

must be able to change his ring to the 2BA he has been per

mitted to by the lB system writer. This ring changing facility

would require changes to the supervisor which would maintain

a list of permissible rings for each process (currently, this

-136-

list has only one entry). Facility for users to grant appro-

priate permissions would also have to be added, with appro

priate safeguards, such as another list for acceptable ranges

into which permission might be granted.

The system of non-concentric rings is conceptually the

most rigorous solution to the ring uniqueness limitation of

MULTJC:S. ln its ideal form, with cross-tree faults being

treated analogously to regular f~ults by use of an expanded

ACL, the system should be easy to use, albeit difficult to

imp 1 emen t. In the modified form, with cross-tree reference

allowed only by a conscious change of rings, use would be more

complicated, but implementation possibly easier. In any form,

this system would be difficult to implement, and might not

prove the best way to overcome the restriction of ring unique

ness despite its conceptual advantage.

B. Procedure and Process Oriented Access Control

The principle involved with this method of overcoming the

ring uniqueness limitation is a very simple one. As well as

specifying what processes may access a given segment, a user

could also specify from what procedures (segments) these pro-

ccsses could issue the calls. A sample version of the current

and extended ACL's might show how such a specification would

appear.

Current form

Multics.Jones.* RE 1:1:8

Adrnin.Smith REWA 1:6:6:1

-137-

Extended Form

Multics.Jones.* System.Andy RE 1:1:8

Admin.Smith Exec.* REWA 1:6:63

What this form of extension does is to specify from what

procedure a process must make a call to be permitted. In

the example, only if Smith of the Admin project were calling

from a segment named Exec.something would he be allowed

access.

The above scheme does circumvent the ring uniqueness

restriction by allowing a sub-system writer to specify that

his segments are callable only by other segments of his sys

tem. This would then prohibit other users, even those with

high enough ring permission, from accessing critical segments

on their own. As long as the dispatching segments which

could be referred to by outside programs were permitted only

to execute (and not to be modified), the integrity of the

calling sequences could be maintained.

There clearly are limitations on this type of system.

Space would certainly prove some sort of factor where it was

necessary to specify complex lists of permitted callers.

Some degree of overhead would certainly be introduced in

cl1ccking the validity of the calling procedure. This method

would go to pot if write permission were involved at any

level. But a more fundamental problem might be the mainte

nance of the integrity of pathnames. Although pathnames are

-138-

unique, there seems to be no assurance that a clever pro

grammer could not pass to a called program an erroneous

pathname. If the system were to completely handle identi

fication of calling procedures, the overhead involved in

verification might prove unworkable.

Though this plan has merit as a conceptually simple

one, it would be a hard plan to carry out effectively. Safe

guards would be required against tampering with name conven

tions, and proper permission specifications by users would

become more crucial and difficult to keep track of. This

scheme might, however, be the easiest to implement, at least

relative to others.

C. Trap Mode

From an efficiency of operation standpoint, the effect

ing of a trap mode of access would be the best solution to

the ring uniqueness problem. A specification of trap mode

for a calling process would automatically invoke a trap pro

cessing program upon issuance of a call. This trap processor

could do anything, including freeing the caller from future

traps on the same segment. In the case of ring uniqueness,

a sub-system writer could assure that the caller was in a

properly low ring by specifying trap for all calls from

rings too high (low in number). The advantage of this method

is obvious: special action is taken only on invalid refer

ence attempts; valid access will generate a zero overhead.

-139-

The problems in implementation are considerable. They

would include such items as maintaining the integrity of the

trap procedure itself (note that if the trap procedure is run

under the calling process, the caller has permission to exe-

cute, and might find it useful to run the trap procedure

independent of any real trap). Disabling the trap for a

fixed period might also be difficult to accomplish without

loss of efficiency. In fact, though the original plans for

MULTICS included provisions for a trap mode of access, com

plications in the design forced its exclusion from the cur-

rent system.

A proposal for the inclusion of trap mode is outlined

below. To the author's knowledge, this plan is feasible,

although shortcomings in the interprocess communication

facility would make a completely tight, safe system difficult.

This shortcoming will be mentioned and considered later. A

diagram would illustrate the basic operation of the system.

The name appearing above each segment indicates its owner.

IICS T D ra_E_ a em on

Trap ~-- - - - ~ User Trap

Ring () IPC Handler
Processor Invoker

System Generated___!!\

Jones Smi-1..h Smith's~ 1 Tr a_Q_ Handler

Ring l
~ ACL: , ACL:

Trap
access Jones T Daemon RE

-141-

mine who had desired its activation. Argument passing

presents a related difficulty to the system.

The only possible solution under the current system

design is to employ an array of "mailboxes". These would

be segments possessed by the trap daemon, and allowed on a

one per user basis to other processes. The daemon could

then determine who had issued the IPC by checking the mail

boxes; he cnuld be assured that the proper process has issued

the request because only one process is permitted per mail

box. The two potential difficulties that arise are space

requirements, and the possible confusion of sequence brought

about by the asynchronous nature of the IPC requests.

An implementation of trap mode, though not allowing as

complete a flexibility as would non-concentric rings, would

certainly provide that extra leaway of freedom to expand

upon the available sub-system capabilities. The ring

uniqueness limitation would be eliminated in an indirect

way. Those programs which require special screening due

to ring permission would experience considerable overhead,

but those permitted only to low rings (high in number)

would be unaffected by the safeguards imposed through trap

mode. Trap mode is certainly not an easy concept to imple

ment, but it might well prove a worthwhile investment in

time and effort.

Illiminating the single big restriction of the MULTICS

protection method is to be a virtual necessity as the size

-142-

and applicability of the system increases, and more sub-

systems come under its purview. Which of the three methods

outlined is taken, or whether another method is used is not

so crucial. It is most likely that overheads, and not theo-

retical advantage, will determine the final choice. It is

hard to divorce oneself from the idea that a free sharing

environment is the ideal, given the ability to totally

regulate its scope. It is this idea of a full range -- from

total privacy to total sharing -- that must be the ultimate

goal of protection design.

Just as generalization brings flexibility, it also

brings overheads and time consumed where the activity might

have been foregone. It is the ultimate futures of MULTICS-

like systems which will bring at least a statistical answer

to the trade-off at hand.

3. How Rings are Implemented in MULTICS

Associated with each process is a set of descriptor

segments, one for each ring in which the process has access

defined in the ACL by ring brackets. A schematic represen-

tation would prove useful: (x=no access; i=any ring of

hi"hcr ~
number)

Segment name DS 0 DS 1 DS 2 DS 3 DS 4 ... DS I Bracket
in ACL

aaaa R RE x x x l:l:i

bbbb R R RE x x 2: 2: i

cc cc R RE RE RE x 1: 3: i

-143-

The ring of current execution is determined by which des

criptor segment (DS) the descriptor base register points

to. The following enumeration of cases describes how the

file system uses rings.

A. cccc calls or refers to bbbb; current ring is 2

B.

All attempts at access are legal, as governed by the

RE permission.

bbbb

1.

2.

3.

calls aaaa; current ring is 2

no access is found in the ring 2 DS; a gate crossing

fault causes the gatekeeper to obtain control (the

gatekeeper is conceptually an independent overlord)

gatekeeper examines DS 0-1 for E access in aaaa

if access is found, first ring in (highest number)

is used; third element of bracket is checked to

assure call is from a valid ring

4. referenced entry point is validated as a gate

5. if all is OK, DER is loaded to point to DS 1

C. bhbh refers to aaaa; current ring is 2

Non-call references arc illegal; the effect is the

same as acL·cssing another segment with no permission

at all.

D. aaaa refers to bbbb; current ring is 1

Read is permitted; WA is permitted only if the ring

bracket of bbbb includes the current ring in the

first range (a:b).

-144-

E. aaaa calls bbbb; current ring is 1

1. since there is read permission, an attempt to

execute data fault is generated, and the gatekeeper

takes control

2. gatekeeper checks DS 2-63 for E access

3. first ring down with E is used; no gate is checked

for

4. DBR is reloaded to DS 2; appropriate arguments are

made available to the lower ring bbbb

There is one safeguard worth noting. The system will

not allow a ring bracket to be assigned to any segment such

that any element of the bracket specifies a ring lower in

number than the ring it is being created from (the current

ring). Thus, a user in ring 2 cannot assign 1:1:3. This

guards against a user writing a lower number ring routine,

and then transferring to it, thereby giving him higher

level privilege than he should have.

One other note: a called segment will run in the same

ring as the caller is in, unless a fault is generated; in

that latter case, the new ring will be the nearest ring

numerically to the calling ring.

-145-

APPENDIX E

SYSTEM INTERFACES

1. User to System Int~rface

The option writer or user of GOLD STAR needs basically

the PL/l environment and temporary storage facilities, and

a collection of segments which he wishes to use with the

system, and which were created by it. He need have no knowl

edge of the segments except their names, and the data types

they contain if they are relations. In the case of DSM's,

the segment name is the data-type. With RSM's, it is suggested

that the segment name reflect the data-types related (e.g.,

the relation segment "name addr" should relate data types

"name" and "addr".

The user deals with GOLD STAR exclusively with pointers,

segment names, and strings (see section V-1). There is a

ve~y small group of items to which these pointers refer:

quarts, relations, equivalence vectors, "data", and data areas.

The structures are described as follows:

declare 1 quart based (quart_ptr)

2 ID fixed binary (35) initial (0),

2 length fixed binary (35) '

2 order fixed binary (35) '

2 CENT (allocation_order ref er (order) character (3 2) '

2 PENT (allocation_order ref er (order) pointer,

2 TENT (allocation _length ref er (length),

-146-

allocation order refer (order)) fixed binary (35);

declare 1 equivalence_vector based (equiv_ptr),

2 width fixed binary (35),

2 element (allocation_width refer (width)) character(32);

declare 1 data_item based (data_ptr),

2 length fixed binary (35),

2 string character (allocation_length refer (length));

Note that the data item definition is merely a way of describing

a based varying character string. The relations and data areas

are PL/l areas with the first allocation containing as its

first item the character (16) RSM or DSM name respectively.

All other names and character strings are assumed to be

fixed strings of whatever length is called for, if any.

2. Internal Interface

The manager translates the rather free form of arguments

it receives into one of two structures for RSM's and DSM's.

These argument structures are the sole communication between

the system modules.

The following is an annotated version of the PL/l struc

tures used:

declare 1 dsm_arguments based (arg_ptr),

2 upper bound fixed bin(l7), This tells how many ele

ments were in input arrays

2 column index fixed bin(l7), This is the 1, 2, ... 9

option

-----------------·~··------------

-147-

2 operation_code character(l), This tells which oper

ation is to be performed

2 d or_i_option character(l), This contains either

"D" or "I" if called for

2 e_option character(l), This contains "E" if called

for

2 data_area_ptr pointer, This is filled in by the

manager from the appro

priate given information

(CENT, PENT, or given

name)

2 data_or_quart_ptr (limit refer (upper_bound))

pointer, These are the first arguments

2 return_ptr (limit refer (upper_bound)) pointer,

These are for the re

sults. If sptr's were

provided in a get refno

operation, they are put

in here.

declare 1 rsm_arguments based (arg_ptr)

2 upper_bound fixed bin(35), This gives the upper_

bound of the input arrays

2 operation_code character(l), This tells the opera

tion to be performed

2 quart l_ptr (limit refer (upper_bound)) pointer,

-148-

2 relation_l_ptr (limit refer (upper_bound)) pointer,

2 quart_2_ptr (limit refer (upper_bound)) pointer,

2 relation_2_ptr (limit refer (upper_bound)) pointer,

These are the inputs.

The manager determines

whether they are quarts

or relations and places

their pointer in the

appropriate slot. Non

existent arguments are

null.

2 equivalence_vector (limit refer (upper_bound))

pointer, These are the equivalence vectors for com

pose. Other operations

needing eqv place the

pointer in quart 2_ptr.

2 return_ptr (limit refer (upper_bound)) pointer,

These are for the

results. They are null

if the result is to be

a quart, or point to a

new segment of a rela

tion is to result. It

is the responsibility

of the RSM to initialize

the new segment pr~rly.

Pref ace

-149-

APPENDIX F

CURRENT SYSTEM CODE

The following modules are included in PL/l source form:

mgr_declare these are the declarations for the manager

mro -- this is the portion of the manager which handles calls

to union, intersect, difference, compose, project, cart

prod, sort, successor_rel, convert_to_r, convert_to_q,

modify_ent, get_ent, and clear ent.

oro -- this is the portion of the manager which handles calls

to new_relation, initiate_relation, and squash_array.

ero -- this is the portion of the manager which handles calls

to expand_quart.

mdo -- this is the portion of the manager which handles calls

to get_refno, get_data, and successor_data.

odo -- this is the portion of the manager which handles calls

to new_data_type and kill_data_type.

GS error -- the error handler (see Appendix G).

GS_crr_messages the error messages (see Appendix G).

gs<lb -- the syst0m utility program (see Appendix H).

<lsm_astring -- this is the DSM which handles alphabetic

strings to be placed in alphabetic order (see Appendix B).

dsm_intcger -- this is the DSM for integers.

dsm_chain -- this is the DSM for alphabetic strings to be

placed in a non-alphabetic order.

-lSO-

dsm table -- this is the DSM for alphabetic strings which

are not in alphabetic order, and which arc involved

ir1 frequent retrieval, and infrequent updating.

rsrn~~q -- this is the RSM which performs all operations

(except, of course, convert to r) on two quarts.

rsm_q -- this is the RSM which handles quarts to be kept

pcrmanent1y. RSM_Q calls RSM_WQ to O;Jerate on the

quarts, and only handles storage and retrieval of

quarts to and from auxillary segments.

tree -- this is the algorithm to restructure a tree of a

dsm astring data area. TREE produces an optimal tree,

and a quart of new and old reference numbers to use to

update all relations using that data type.

-151-

mgr_declare.incl.pll 05/20/70
1116.4 edt Wed

declare 1 parameter_structure based (param_ptr),
2 arg_no bit(l7) ,
2 filler bit{2),
2 display_if_8 bit(17),
2 desc_no blt(17),
2 multJcs_junk bit(l9),
2 a_ptrs (100) pointer; /*pointers are compute

d by formula•/
/•The following is the technically correct version of the pa
rameter structure.

Note that the display pointer exists only if the di8 half
word is 8. The actual

method used is to compute an offset to use, since this is
faster than this

adjustable structure method.
declare 1 arg_structure based,

2 arg_no bit(l7),
2 filler bit(2),
2 di8 bit(14), use of bit 14 has effect of

dividing by 8
2 filler bit(3),
2 desc_no bit(17),
2 filler bit(l9),
2 arg_ptrs (arg_no) pointer,
2 display_ptr (di8) pointer,
2 desc_ptrs (desc_no) pointer;

*/
declare 1 descriptor_structure based (desc_ptr),

2 dt_code bit (15) , /*data type code - see
MULTICS implementation of PL/1•/

2 other_stuff bit(3), /•not used•/
2 string_size bit (18),
2 low_bound fixed bin(35) ,
2 top_bound fixed bin (35);

declare 1 quart based (gen_purpose_ptr),
2 ID fixed bin(35) initial(O), /•zero ID mea

ns quart•/

r refer

2 qlength fixed bin(35), /•not used here•/
2 order fixed bin(35), /•not used here•/
2 cent(alloc_order refer Corder)) char(32) ,
2 pent(alloc_orrler refer Corder)) pointer,
2 tent(alloc length refer (qlength),alloc_orde

(order)) fixerl binT35};

r,

er;

r;

-152-
decl are 1 arr;_array_rsm baserl (0r~_ptr),

2 upper_bound fixed bin(35) ,
2 opcod~ characte~ 'l),
2 ql_ptr (limit refer (urper_bounrl)) pointer,
2 rl_ptr (limit refer (upper_bounci)) pointer,
2 q2_ptr (limit refer (upper_bound)) pointer,
2 r2_ptr (limit refer (upper_bound)) pointer,
2 equiv_ptr (limit refer (upper_bound)) pointe

2 return_arg (limit refer (upper_bound)) point

declare 1 arg_array_dsm based Carg_ptr),
2 high_bound fixed bin(17),
2 column Index fixed bin(17) initial(!),
2 opcode-character(!),
2 d_or_t_option character(!),
2 e_option character(!),
2 data_rlata_ptr pointer,
2 d_or_q_ptr(limit refer (high_bound)) pointer

2 return_arg (limit refer (high_bound)) pointe

declare fixed_plate fixed bin(35) based (~en_purp
ose_ptr); /•fixed bin template for quart. ID•/

declare oset bit(l8) based (gen_purpose_ptr); /*Th
is is for the area manipulation*/

declare label_plate char(16) based (~en_purpose_p
tr); /*this is char(lG) template for ID slot*/

declare return_structure (limit) pointer hased Cr
eturnable_ptr); /*returned to the caller•/

declare option character (oplength) based (op_ptr
) ;

declare based_nam character (4) based (gen_purpos
e_ptr);

declare rel_name character Clentty) based (gen_pu
rpose_pt r);

rleclare based_arg character(as_len) based (gen_pur
pose_ptr);

declare p pointer based (~en purpose ptr);
declare indexor Ckk) pointer -based (~en_rurpose_p

tr); /•this acheives the kk th pointer*/

declare
declare
declare
declare
declare
declare

callname char(16) aligned;
nam character(4) aligned;
options character (3) aligned;
ent character (32) aligned;
op character(!) aligned;
wdir characterC168) aligned;

-153-

declare unique_chars_ entry external returns (char
acter (15));

declare Cerror_table_$noarg,error_table_$se~known,
error_table_$name_not_founrl)

fixed bln(17) external;
declare Cxfer,other_ptr,arg_ptr,desc_ptr,gen_purpo

se_ptr,op_ptr,param_ptr,returnahle_ptr) pointer;

);
declare access_~ode fixed binary(5) initialCOlOllb

declare Ckk,kik,jj,mm,iii,limit,dlen,oplength,dose
t,lwdir) fixed binC17);

declare Clentty,err_code,new_place,alloc_order,all
oc_length) fixed bin (17);

rleclare Ctwo_arg_sw,three_arg_sw,arg_array_sw,skip
_3_sw) fixed bin C 1) in it i a 1 C Ob);

declare (option_sw,nam_sw,ent_sw,ptr_sw,squash_sw,
F_sw,S_sw} fixerl bin(l) initlal(Ob);

declare Cas_len,op_bump) fixed bin(17);

-] 54-

1.1rr1. p I] 05/20/70 1011.0 erlt \'J~.!

·1ro: 111tlC!~'lt1rP 1•·t111r1·,(11·1ir1t1•t i;

%inc1ude mgr_decJare;

un:union:entry returns(pointer);
op="U";
7,0 to setup!;

in:intersect: entry returns(11ointer);
op=" I ";
g;o to setupl;

d i : d i f f e re n c e : en t r y re tu r n s (110 i n t e r) ;
op="D";
go to setufll;

cp:c;1rt. prorf: 1•ntry rf!t11rn·.(11olnlt'"r);
op .. "X";
J',o to setunl;

so:sort: entry returns(pofnter);
op="S";
go to setupl;

sr:successor_rel: entry returns(11ointer);
op="P";
go to setupl;

cr:convert_to_r: entry returns(pointer);
op="R";
go to setupl;

cq:convert_to_q: entry returns(pointer);
op="Q";
go to setupl;

co:compose: entry returns(pointer);
op="C";
go to setupl;

r·1e:modify_ent: entry returns(pointer);
op="M";
go to setupl;

:~e:get_ent: entry returns(pointer);
op="E";
~o to setupl;

ce:cJear_ent: entry returns(pointer);
op="Z";
go to setupl;

pr:project: entry returns(pointer);
op="O";
go to setupl;

-155-

setupl: /*Here we rlo ar·~u111Pnt prnct-'sslng•/
cal 1 cu_$ar.·~_1 ist_ptr(p,1r.rn1_ptr);
if nisrlay_if_8==S then .t0s<'t"';H,1-~~-nn ... 1;
else rloset=arg_no;
if arg;_no<2 then cal 1 GS_error$p(12,op,nul 1,nul 1);

/*Error here is a nul 1 argument cal 1 in*/
if a_ptrs{l+rloset)->dt_code=29 then dn;

/*We have first arg is array of pointers*/
a r.o;_a r ray_sw= lb;
limit=a_ptrs(l+doset)->top_~ound;
if a_ptrs{l+doset)->low_bounrl~=l then call r.s_

e r r o r $ p { 14, o p, a_p t rs C 1) , nu 1 1) ;
/*Error here is non one lower bound*/

end;
else if a_ptrs(l+doset)->dt_code=13 then do;

arg_array_sw=Ob;
1 imi t=l;

end;
else call GS_error$p{13,op,nu11,nu11);

/*Error here is failure to have pointer or array of pointers
for first ar~uments*/

code);

op_bump=a_pt rs (a rg_no-1 + fose t)- >d t_corle;
if op_hump=5201op_hump=522 then do;

call cu_$arg_ptr(arp,_no-1,op_ptr,oplen~th,err_

If index(optlon,"F")""•Ollndex(option,"f") ... =0 t
hen F_sw=lb;

If index(option,"S") ... =01 index(option,"s")~=O t
hen S_sw=lb;

op_hump=l;
end;
else op_bumo=O;
if op="C" then kik=O;
else kik=l;
if ar.o;_no-l-op_bump>3-kik then call (;S_errnr$p(15,

op, a_p tr s (1) - 'p, nu 11) ;
/*Error here is too many arguments*/

rlo kik=2 to aro;_no-1-op_hump;
if limit=! then do;

if a_ptrs(kik+doset)->dt_code ... =13 then cal
GS_error$p(l6,op,a_ptrs(l)->p,

a_ptrs(2)->p);
/*Error here is inconsistant upper bound*/

end;
else do;

other_ptr=a_otrs(kik+doset);
if other ptr->dt code""=29 then call GS_err

for$p(17,op,a_ptrs(l)->p,nu11); -
/*Error here is inconsistant upper bound or type*/

-156-

el se if other_ptr->top_bound""'=limit then c
al 1 GS_error$p{ 18,op,

a_ptrs(l)->p,a_ptrs{kik)-)p);
/*Error here is inconsistant upper bound*/

else if other_ptr->low_bound""'=l then call
GS_error$p{14,op,a_ptrs(l)->p,nu11);
/*Error here is non one lower bound*/

end;

end;
if kik=2 then two_arg_sw=lb;
else three_arg_sw=lb;

/*Here we compare ar~ument structures with those permiss
ible by operation*/

if two_arg_sw & (op="Q"lop="E"lop="Z") then call
GS_error$p{ 19,op,a_ptrs{l)-)p,nul 1 };
/*Error here is two ar~uments with cq,ge, or ce*/

if ""'two_arg_sw & (op="M"lop="O"lop="R") then call
GS_error$p(20,or>,a_ptrs(l)->p,nul 1);
/*Error here is omission of mandatory second arg in er or me
*/

if F_sw &. (op="E"lop="M"lop="Z") then F_s\•1=0b;
if S_sw & (op="Q"lop="R"lop="E"lop="M"lop="Z"lop="

O") then S_sw=Ob;

/*Here allocate ar~ument array structure and go to work*
I

allocate ar~_array_rsm;

setup2: do kk=l to limit;

tr(kk)=

n do;

ptr(kk)=null;

if op="C" then do;
if three_arg_sw then arg_array_rsm.equiv_p

a_ptrs{3)->indexor(kk);
else arp,_array_rsrn.equiv_ptr(kk)=null;

enrl;
if ""'two_arg_swla_ptrs(2)->indexor(kk)=nu11- the

arg_array_rsm.q2_ptr(kk),arg_array_rsm.r2_

if op="R" then go to err_20;
end;
else if a_ptrs(2)->indexor(kk)->fixed_plate=OI

op="M"lop="O" then do;
arg_array_rsm.q2_ptr(kk)=a_ptrs{2)->indexo

r{kk);

err_20:

tr!>(~)-'>p);

arg_array_rsm.r2_ptr{kk)=nu11;
if op="R" then do;

free ar~_array_rsm;
call GS_error$p(20,op,a_ptrs{l)->p,a_p

r(kk);

end;
enrl;

-157-

else rlo;
arg_array_rsrn.r2_ptr(kk)=a_ptrs(2)->indexo

ar~_array_rsrn.q2_ptr(kk)=nu11;

if op="P" then do;/*Error handling$$$*/
free ar~_array_rsm;
call GS_error~p(21,op,a_ptrs(l)->index

or(kk),r2_ptr(kk));
end;

/*Error here is attempt to get successor of a relation*/
end;

/*First operand is examined here*/
if a_ptrs(l)->indexor(kk)=null then do;/*Error

hanrll ing$$$*/
free arg_array_rsm;
cal 1 GS_error$p(22,op,nul 1,nul 1);

end;
/*Error here is a null first operand*/

do;

r(kk);

r(kk);

if a_ptrs(l)->indexor(kk}->fixed_plate~=o then

enrl;

arg_array_rsm.ql_ptr(kk)=null;
are_array_rsfll.rl_ptr(kk)=a_ptrs(l)->inrlexo

else rlo;
arg_array_rsm.ql_ptr(kk)=a_ptrs(l)->indexo

enrl;
end;

ar~_array_rsm.rl_ptr(kk)=null;

/•ll1•rf' Wf' prnr:C'SS cal 1 in,r-; narne for r•10st operati0ns*/
·.~tup'•: do kk:=l tn llrnit;

if op="R" then p;o to r'it1s t_11e_secon 1;
if ar~_arr~y_rsm.rl_ptr(kk)~=null then ~o;

if kk=l then callname=arldrel(a_ptrs(l)->o,
a ptrs(l)->p->oset)->label plate;
- else if addrel (a_ptrs(l)->indexor(kk),a_pt
rs(l)->indexor(kk)->oset)->label_plate~=

callname then do;
/*Error handling$$$*/
free arg_array_rsm;

trs(l)->indexor(kk));
end;

call GS_error$p(23,op,a_ptrs(l)->p,a_o

/*Error here is specification of inconsistant RSM names*/
end;
else do·

-158-
if,two_arg_swlarg_array_rsm.r2_ptr(~k)=nu

11 I op="M" I op="O" then do;
if kk=l then ca11name="rsm_,,1q";
else if callname-="rsm_\-JQ 11 then do;

f rce arg_array_rsrn;
call GS_error$p(24,op,a_ptrs(l)->p

,a_ptrs(l)->indexor(kk));
enrl;

/*Error here is inconsistant RSM names*/
end;
else must_be_second:io;

if kk=l then callname=addrel(a_ptrs(2)
->p,a_ptrs(2)->p->oset)->label_plate;

else if addrel (a_ptrs(2)->indexor(kk),
a_ptrs(2)->indexor(kk)->oset)->label_plate =

callname then do;
/*Error handling$$$*/
free ars_array_rsm;
call GS_error$p(25,op,a_ptrs(2)->p

,a_ptrs(2)->indexor(kk));
end;

/*Error here is inconsistant RSM names*/
end;

end;
end;

I *\~here it is proper, space is obtained for the new resu
lt rel<Hion*/
setup6: if op= 11 Q"lop= 11 E11 lop="M"lop="Z 11 then go to setup7;

~o kk=l to limit;
arg_array_rsm.return_arg(kk)=null;

_new_r;
if ar~_array_rsm.rl_ptr(kk)=nullvthen go to no

& Of""\:O •p_"

call hcs_$fs_search_get_wdir(addr(wdir),1wdir)
;

call hcs_$make_seg(wdi r, "", 1111 ,access_code,arf;_
array_rsm.return_arg(kk),err_code);

if err_codc>O then do;/*Error handling$$$*/
free arg_array_rsm;
call GS_error$p(26,op,a_ptrsll)->indexor(k

k),a_ptrs(2)->indexor(kk));
end;

/*Error here is failure of make seg procedure*/

if F_sw & op ="R" then do;
F_sw=Ob;
option_sw=lb;
go to no_name_needed;

end;
else do;

call ioa_$nnl("New relation created. Op is
-1a. Relation 1 is p. Give new name ••• ",

/

-160-

1 t 1--, .::'- r~ r I n ;

i c : r ; "" __ r: r r (1 :/ _ r .S ": .. G ') _ !' t r (~, k) -. = n U J 1
'rr:c:.::: ;-1trs("\- in '~".:>rtk!,)->r;u-"rt;

.. r , (;· ,)

i i

n r. J;

r, 1 (· : • I l 1--> rs " r; r l r ri t r " s r "' (~ n c r c; (2 ' - >

(' ·: (

f'-s(;tr
,,- r· t C.J r· r; ;

-irrtl'/ ""'s~;

r ') J - .) I "' X + r~ r ;

.'l l)r~·t 0 1· 1~t:1rn_'itruct:1r~;

1 j r 1 j t /
r c t _: r :; tr: 1 r t •.1 rt' (~i~) =a r ""_,-,,,. r' y __ rs 'Tl • r n tu r n

(' ri:

fr, ... , r ,; ,,. ,..,..~~----- r r ,'""! v_r ·3 ·--1;
. ' :' t r :o (• ; r ri ·)) - ' "l = r o t u r n 2 h l 0 "" t r :
Pr ... (1;

-161-

oro.pll 05/20/70 1025. 3 edt \.e'

'} .
'?,

oro: procedure returns(pointer);

%inclurle mgr_declare;

nr:new_relation: entry returns(pointer);
cdl l cu_sarg_ptr(l,gen_purpose_ptr, lentty,err_corle

) ;
if err _code>O then call GS_error$p(1, "N",nul l ,nul 1

) ;
/*Error here is null relation name*/

,

call cu_$arg_list_ptr{naram_ptr);
if rlisplay_if_8=8 then rlnset=arg_no+l;
else doset=arg_no;
if arg_no""=3 then call GS_error$p{2,"N",null,null)

/*Error here is incorrect ar~ument specification for nr*/
if a otrs(2+rloset)->dt code""=13 then call GS error

$ p (3, "NII, nu 11 , nu 1 1) ; - -
/*Error here is nnn_pointer seconrl argumetn fnr nr*/

limit=l;
allocate arg_array_rsm;
op="N";
if a_ptrs(2)->p=nul 1 then do;/*Error handl ing$$S*/

free ar~_array_~sm;
cal 1 r,s_error$p{4,op,nul 1,nul 1);

end;
/*Error here is failure to specify an r for the rsm name*/

callname=addrel (a_ptrs(2)->p,a_ptrs{2)-)p->oset)->
label_plate;

ca 11 hcs_Sf s_search_p.;et_wr:I i r (addr (\'tr! i r), l wrl i r);
call hcs_$make_seg(wdir,rR1_name,rel_name,access_c

ode,arg_array_rsm.return_arg(limit),err_code);
if err_code>O then rlo;/*Error handling$$$*/

free ar';_array_rsni;
call GS_errorSc(5,op,rel_narie,nu11);

end;
/*Error here is failure in make segment procedure*/

go to setup7;

ir: initiate_relation: entry returns(pointer);

) ;
call cu_$ar~_ptr(l,gen_purpose_ptr,lentty,err_corle

if err_code>O then call GS_error$p(6,"Z",null,null
) ;
/*Error here is null relation name*/

-162-
limit-1,
allocate arg_array_rsm;
op="Z";
call hcs_$fs_search_i:;et_wdi r(addr(\\ldi r), lv1di r };
call hcs_$initiate(wdir,rel_name,rel_name,O,O,arg_

array_rsm.rl_ptr(l imit},err_code);
if err_code>O & err_code-=error_table_$segknown th

en do;/*Error handling$$$*/
free arg_array_rsm;
cal 1 GS_error$c(7,op,rel_name,nul l);

end;
/*Error here is failure to initiate relation specified in ir
operation*/

cal 1 narie =add re 1 (a r g_a r r a y_rsm. r l_pt r (l i rn i t), a r g_a r
ray_rsm. rl_11tr (1 imi t)-)Clset >->1 abel_pl ate;

go to setup7;

sa:squash_array: entry returns(pointer);
call cu_Sarg_l ist_ptr(param_ptr);
if display_if_8=8 then doset=arg_no+l;
else doset=arg_no;
if a_ptrs(l+doset}->dt_code-=29 then call GS_error

$p(8, "A",nul l ,null};
/*Error here is non array of pointers for first ar~ument*/

1 imi t=l;
allocate arg_array_rsm;
limit=a_ptrs(l+rloset)->top_bound;
if a_ptrs(l+doset)->low_bound ... =l then do;

free arg_array_rsm;
call GS_error$p(CJ, "A",a_ptrs(1)->p,nul 1);

/*Error here is non one lowver hound*/
end;
a 11 o c_ 1 en gt h = 0;
alloc_orrler=a_ptrs(l)->p->orrler;
do kk=l to limit;

alloc_length=alloc_length+a_ptrs(l)->indexor(k
k)->qlength;

rlo jj=l to alloc_orrler while (kk>l);
if a_ptrs(l)->indexor(kk)->cent(jj)-=a_ptr

s(l)->p->cent(jj) then do;/*Error hanrllin~$$$*/
free ar~_array_~sm;
call GS_errClr$p(lO," ",a_ptrs(l)->p,a_

ptrs(l)->indPxor(kk));
end;

/*Error here is inconsistant cent entries*/
enrl;

enrl;
allocate quart set {gen_purpose_otr);
kik=l;
arg_array_rsm.ql_ptr(kik)=gen_purpose_ptr;
squash_sw=lb;
new_place=O;
do kk=l to limit;

o,.
'.;,

-164-

ero.pll ns/20/70 1052.2 edt Wed

ero: procedure returns(pointer);

0:;include mp;r_declare;

eq:expand_quart: entry returns (pointer);
call cu_$arg_list_ptr(param_ptr);
if display_if_8=8 then doset=arg_no+l;
else doset=are_no;
if a_ptrs(l+doset)->dt_corle~=13 then call r,s_error

$p(ll," ",nu11,nu11);
/*Error here is non pointer ar~urnent*/

lirnit=a_ptrs(l)-)p->qlength;
allocate return_structure;
alloc_orrler=a_ptrs(l)->p->order;
al loc_length=l;
do kk=l to limit;

allocate quart set (return_structure(kk));
~o jj=l to alloc_order;

return_structure(kk)->cent(jj)=a_ptrs(l)->
p- >cent (j j) ;

return_structure(kk)->pent(jj)=a_ptrs(l)->
p- >pent C j j) ;

return_structure(kk)->tent(l,jj)=a_ptrs(l)
->p->tent(kk,jj);

end;
end;
free a_ptrs(l)->o->auart:
a _rt rs C <1 r !"._no) - > n =-return ah 1 r __ ri t r;
r>nd;

t?,. , ,

-165-

icio.pll 05/20/70 1032.0 edt 1.le'i

"1do: ;:iroceriure returns(pointer);

gr:1et_refno: entry returns(pointer);
np="R";
r;o to setuplO;

sd:successor_~ata: entry returns(pointer);
op="S";
o;o to setuplO;

gd:get_rlata: entry returns(pointer);
op="D";
go to setuplO;

/•Here check the general structure of arguments•/
setuplO: call cu_$arg_l ist_Dtr(param_ptr);

if ~isplay_if_8=8 then rloset=arg_no+l;
else •i0se t =a rg_no;
if ar~ no~2 then go to err_33;
if a_::itrs(l+rloset)->dt code=l3 then limit=l;
else if a_ptrs(l+rloset)->clt_code=29 then rlo;

l imit=a_ptrs(l+rloset)->top_'1ound;
if a ptrs(l+doset)->lov1_'1ounrl..,=l then call ::)

error$p(37,op,nul l,nul l);
/•Error here is non zero lower hound on input array*/

end;
else err 38: call r,s_error$p(38,op,null,null);

/•Error here is non pointer first argument*/
if ar~_no>6 then call GS_error$p(39,op,a_ptrs(l)->

p,null);
/*Error here is illegal number of an;urnents*/

/*Here do the interpretation of the arguments•/
if op="R" then do;

:Jtrs(3)->p);

if a_ptrs(2+doset)->dt_code=l3 then ptr_sw=lh;

if arg_no<4 then go to no_further_check;
if a_ptrs(3+rloset)-)rlt_corle=l3 then do;

if 1 imit=l then skip_3_sw=lb;
else cal 1 GS_error$p(40,op,a_ptrs(l)-)p,a_

/*Error here is inconsistant upper bounrls on optional R argu
11ent*/

end;

-166-
el se if a_ptrs(3+doset>->dt_code=29 then do;

if limit=a_ptrs(3+doset)->top_bound thens
kip_3_sw=lb;

else call GS_error$p(40,op,a_ptrs{l)-)p,a_
ptrs(3)->p);
/*Error here is
rnent*/

inconsistant upper bounds on optional R argu

end;
no_further_check:if -ptr_sw then do;

call cu_$arg_ptr(2,gen_purpose_ptr,as_len,
err_code);

if err_code>O then call GS_error$p(41,op,a
ptrs(l)->p,null);

/*Error here is incorrect format for NAM field*/
if as len-=4 then call GS_error$c(42,op,ba

sed_arg,a_ptrs(l)->p);
nam=based_arg;
nam_sw=lb;

enrl;
end;
else rlo;

call cu_$arg_ptr(2,gen_purpose_ptr,as_len,err_
code);

if err_code=error_table_$noarg then go to no_n
ore:

else if err_code>O then call GS_error$p(43,op,
a_ptrs(l)->p,null);
/*Error here is format error in ar~ument 2*/

if as_len=4 then do;
nam_sw=lb;
nam=based_a rP-;;

end;
else go to rearl_arg;

end;

ii i =3;
next_one: if skip_3_s\v then if iii=3 then iii=4;

call cu_$ar~_ptr(iii,gen_purpose_ptr,as_len,err_co
de);

if err_code=error_table_$noar~ then go to no_more;

else if err_code>O then call GS_error$p(43,op,a_pt
rs(l)->p,nul 1);
/*Error here is format error in ar~ument iii*/
read_arg: if as_len<4 then rlo;

end;

oplength=as_len;
option_sw=lb;
options=based_arg;

else if as_len<33 then do;
ent_sw=lb;
ent=based_arg;

enrl;
else call GS_error$c(44,op,based_arg,a_ptrs(l)->p)

, -167-
/*Error here is argument of string size greater than 32*/

if ii i=5 then go to no_more;
else iii=iii+l;
~o to next_one;

/*Here allocate the proper size ar~ument array*/
no _mo re : i f o pt i on_ s w ,!1.z (i n de x (opt i on s , 11 E ") ..., = 0 I i n rl e x (op t i on
s , "e 11

) = 0) t h e n d o ;
squash_sw=lb;
if l imit>l then call GS_error$p(ll,op,a_otrs(l

)->p,null);
/*Error here is feeding array to conceptual expand_quart ope
ration*/

O) then

end;

else limit=a_ptrs(l)->p->qlength;
allocate arg_array_rlsm;
l imi t=l;

else allocate arg_array_dsm;

/*Here set opcode and options slots*/
ar~_array_r:lsm.opcode=op;
/* Here scan the options*/
if option_sw then do;

arg_array_dsm.d_or_i_option= 11
";

if (index(options,"D") =01 inrlex(options,"d") =

arg_array_dsm.d_or_i_option="D";
if op="R" ,~ {index(options, 11 1 11)....,=0linrlex(optio

ns,"i") =0) then

) ;

s top_co 1 :

ption=" ";

end;

arn:_array_r:lsm.d_or_i_option="I";
if squash_sw then arr>;_array_rlsm.e_option="E";
else ar.'.~_array_dsm.e_option=" ";
rlo kik=l to 3;

end;

rnm=inr:lex{"l23456789 11 ,suhstr{options,kik,l)

if rnm....,=O then rlo;
column_index=mm;
go to stop_col;

end;

else arg_array_rlsm.d_or_i_option,arg-_array_dsm.e_o

/*Here set the return arg slot with given pointers
, if needed*/

do kk=l to 1 imit;
if skip_3_sw then arg_array_dsm.return_;:irg{kk)

=a_ptrs(3)->inrlexor{kk);

ts*/

-168-
el se ar~_array_rlsm.return_ar~(kk)=null;

end;

/*Here cio consistancy checking on the pents or cen

if ...,na11'l_sv1 & pt r _sw then do;
ii i =O;
do kk=l to limit;

if a_ptrs(l)->indexor(kk)->quart.pent(colu
mn_index) ... =nul 1 then do;

if ii i=O then ii i=kk;
else if a_ptrs(l)->indexor(kk)->quart.

pent(colurnn_index) =
a_pt rs C 1)-> i nrlexo r Ci i i)- >quart. pen

tCcolumn_index) then do;
free arg_array_dsm;
call GS_error$p(45,op,a_ptrs(l)->i

ndexor (kk), a_pt rs (1 >-> i ndexo r Ci ii)) ;
/*Error here is inconsistant data type by non null pents*/

end;
end;
if substr(a_ptrs(l)->indexor(kk)->cent(col

urnn_index),1,4)...,=
substr{a_ptrs(l)->p->cent(column_index

),1,4) then do;
free ar~_array_dsm;
call GS errnr$cc{46,op,a ptrs(l)->p->c

ent(column_index),a_ptrs(l)->lndexor(kk)-> -
cent(column_index));

end;
/*Error here is inconsistant data types ~Y cent name*/

end;

r(kk);

di r);

end;

/*Here fill in first arguments*/
do kk=l to limit;

arg_array_dsm.d_or_q_ptr(kk)=a_ptrs(l)->indexo

end;

/*l~ere construct the driptr*/
if ptr_sw then do;

arg_array_'.isrn.data_rfata_ptr=a_ptrs(2)->p;
enrl;
e 1 se if ...,narn_sw then do;

if iii=O then do;
iii=l;
cal 1 hcs_$fs_search_.~et_v1di r(addr(wdi r), lw

call hcs_Sinitiate(wdir,suhstr(a_ptrs(l)->
p->ciuart. cent (co 1 uflln index). L 4).

-169-

suhstr(a_ptrs(l)->p-)quart.cent(col umn_i
ndex),1,4),0,0,a_ptrs(l)->p->quart.pent(column_index),

err_code);
if err_code=error_table_Ssegknown then rlo;

end;
else if err_code>O then do;/*Error hanrllin

?;$$$*/
free ar7,_array_dsm;
call GS_error$c(47,op,a_ptrs(l)->o->ce

nt{column_index),a_ptrs(l)->p);
end;

/*Error here is failure in get seg ptr or initiate procedure
*/

enrl;
arg_array_dsm.data_data_ptr=a_ptrs{l)->indexor

(iii)->quart.pent(column_ir.dex);
enrl;
else do;

cal 1 hcs_$fs_search_get_wrli r{addr(wdi r), lwdi r)
;

call hcs_$initiate(wdir,substr{nam,1,4),substr
(nam, 1, 4),

0,0,ar~_array_dsm.data_data_ptr,err_code);

if err_code=error_table_Ssegknown then rlo; enrl
;

else if err_code>O then rlo;/*Error handling$$$
*/

free arg_array_dsm;
call SS_error$c(48,op,nam,a_ptrs(l)->p);

end;
/*Error here is failure in get seg ptr or intitiate procedur
e*/

end,

/•Here set callname and issue call to dsm•/
callname=addrel(rlata_data_ptr,data_data_ptr->oset)

->label_plate;

ode);
cal 1 hcs_$make_ptr("",ca11name,cal lname,xfer,err_c

if err_code>O then do;
free a r g_ar ray_ds111;
call ns_error$c(49,op,callname,null);

end;
call cu_$ptr_call(xfer,arg_ptr);

/•Here do post call processing like filling in ret
urn args and ent•/

do kk=l to limit;
if (op="S"lop="R") & ent_sw then do;

arg_array_rlsm.return_arg(kk)-)quart.cent{c
olumn_index)=ent;

- l 7 0 -

r ~ (

i t

~ ,.... 1 r t l r~ (··-"r"'"·) : (

r 0 l - " ,., = r ,., t '1 r r• ,--. ·, 1 , :; t r ;

n, • 0,

nrlo. p 11

-171-

05/20/70 1044.3 edt Wed

odo: procedure returns {pointer);

0include mgr_declare;

nd:new_data_type: entry returns(pointer);
call cu_$arg_list_ptr(param_ptr);

) ;

1) ;

if display_if_8=8 then doset=arg_no+l;
else doset=arg no·
call cu_$arg_ptr(~,gen_purpose_ptr,lentty,err_code

if err_code)Q then call GS_error4.>p(28,"N",null,nu1

else callname=rel_name;
/*Error here is non label second arg*/

1 i111i t=l;

de);

allocate arg_array_rlsm;
do;

call cu_Sar~_ptr(l,gen_purpose_ptr,dlen,err_co

if err_code>O then do;/*Error handling$~$*/
free ar~_array_rism;
cal 1 GS_error$p(29, "N",nul 1,nul 1);

enrf;
/*Error here is incorrect first argument*/

if dlen~=4 then do;/*Error handling$$$*/
free ar~_array_dsm;
cal 1 GS_error$c(30, "N",based_nam,nul l);

end;
/*Error here is incorrect length for data type name*/

cal 1 hcs_$fs_search_get_vJdi r(addr(wdi r), lwdi r) . ,
ca 11 hcs_$make_se~ (\·1d i r, based_nam, based_nam, ac

cess_code,arg_array_dsm.data_data_ptr,err_code);
if err_code>O then do;/*Error handling$$$*/

free arg_array_~sm;
cal 1 GS_error$c(31, "N",based_nam,nul 1);

end;
/*Error here is failure in make seg procerlure*/

ode);

arg array rism.opcode="N"; .
end · - - (.. ,~_a.rrfl"- ~"""'. d-Cl("-'--ot'-,

1

d h • h b ...I l • • AC'0.-4C"t'Cl 'l - c!. 1"'· (.-0, :. " " . arg_array_ srn. 1g _ ounl1= 1rn1 t; ·.1 '

cal 1 hcs_$make_ptr("",cal lname,cal lnarne,xfer,err_c

if err_code>O then do;
free ar~_array_dsrn;
call ~S error$c(49,arg_array_rlsm.opcode,ca11na

-172-
rne, nu 11) ;
/*Error here is illegal callname*/

end;
ca 1 1 cu __ $ pt r _cal l (x fer, a r p;_p tr) ;
~-~tr~c~r~_no)->r=~~ta_rlat~_ntr;
return;

kd:kill_data_type: entry returns(pointer);
1 imi t=l;
call cu_~arr,_list_ptr(param_ptr);
if rlisplay_if_8=8 then doset=arg_no+l;
else rloset=arg_no;
if a_ptrs(l+doset)->dt_code=520la_ptrs(l+doset)->r1

t_code=522 then do;
call cu_$arg_ptr(l,gen_purpose_ptr, lentty,err_

code);
if err_code=error_table_$noar~ then call GS_er

ror$p(32, "K",nul 1,nul l);
else if err_code=O then do;

if lentty ... =4 then call GS_error$c(33,"K",r
el _name, nu 11) ;

cal 1 hcs_Sfs_search_get_wrli r(adrlr(vJdi r), lw
di r);

call hcs_$delentry_file(wdir,based_nam,err
_code);

if err _code>O then cal 1 GS_error$cC34, "K",
based_nam, nu 11) ;
/*Error here is failure in initiate or in rnget seg ptr*/

end;
enrl;
else if a_ptrs(l+doset)->rlt_code=13 then do;

if a_11trs{l)->p->quart.pent(lirnit)=null then rl
o;

call hcs_$fs_search_~et_wdir(addr{wrlir),lw
di r);

call hcs_$initiate(wdir,substr(a_ptrs(l)->
p->quart.cent(l imit),1,4),

substr(a_ptrs{l)-)p-)quart.cent(limit)
,1,4),0,0,gen_purpose_ptr,err_code);

if err_code=error_table_$segknown then do;
enrl;

else if err_code>O then call GS_error$c(35
, "K", a_p tr s (1) - > p- >cent (1 i mi t) , a_p tr s (1) - > p);
/*Error here is failure in initiate or in get seg ptr*/

end;
else r,en_purpose_ptr=a_ptrs(l)->p->quart.pent(

limit);
call hcs_$delentry_se~(gen_purpose_ptr,err_cod

e);
if err_code>O then call GS_error$p{36,"K",gen_

purpose_ptr, nul 1);
/*Error here is failure in delete seg procedure*/

end;

-l".'.4.-

<'s>GS_error.pll 05/20/70 1059.4 edt
Wed

GS_error: procedure;
declare (p,pr) entry (fixed bin(17),char(l),pointe

r,pointer);
rleclare (c,cr) entry (fixerl ~in(17),char(l),char(*

) , po i n t e r) ;
declare (cc,ccr) entry {fixed hin{17),char(l),char

(•),char(•));
rleclare corle fixerl bin(17);
declare op char{l);
declare (pl,p2) pointer;
declare (cl,c2) char(•);
declare err_code fixed bin(17);
declare puse pointer;
declare pi_label label static;
rlecl are .~s error$pi entry external;
declare buffer char(120) initial("");
cl e c 1 a r e n u ri1_ i t ems f i x e d b i n { 3 5) i n i t i a 1 (12 0) ;
declare ascode charC12);
declare (cond_flag,p_sw,r_sw,c_sw,cc_sw) fixed bin

(1) initial(Qb);

d bin(35);
pr:

p:

er:

c:

declare 1 quart based (quart_ptr),
2 ID fixed bin{35),
2 qlength fixed bin(35),
2 order fixed bin(35),
2 cent(l refer (order)) char(32),
2 pent(l refer (order)) pointer,
2 tent(l refer (qlength),1 refer (order)) fixe

entry (code,op,pl,p2);
r_sw=lh;
entry (code,op,pl,p2);
p_sv1=lb;
go to message;
entry (corle,op,cl,pl);
r _sw=lb;
entry(code,op,cl,pl);
C_S\v'=lh;
.o;o to message;

ccr: entry (code,op,cl,c2);
r_sw=lh;

cc: entry(code,op,cl,c2);
cc_s\·1=lb;

nessage: call ioa_C"GS: Error Sd Internal opcode a",code,
op);

a",cl,c2);
if cc_sw then ca 11 i oa_C 11 Name 1: a Name 2:

else if c_sw then do;
call ioa_$nnl(" Name 1: a ",cl);
if pl =null then call ioa { 11 Pointer 1: p",pl

-175-
J;

else ca 11 ioa - (II II) i
end;
if p_ SW then do;

i f pl"'"=null then ca 11 ioa S>nnl en Pointer 1:
"'"p II 'pl);

if p2"'"=nu11 then ca 11 ioa_Snnl (11 Pointer 2:
"'"p " 'p2);

i f p 1 ... =nu 1 1 I p 2 ... =nu 1 1 then ca 1 1 i o a_ (" ") ;
cnrl;
call cv_hin_(code,ascode,10);
cal 1 ioa_$nnl (" ");
cal 1 print("GS_err_messages",ascorle,ascode);

new_try: if r_sw then call ioa_$nn1C" Type procedure na
me , re t u r n , or q u i t ••• 11

) ;

else cal 1 ioa_Snnl (" Type procedure name, or qu
it ••• ");

call ios_$rea<l_ptr(arldr(buffer),num_items,kk);
if r_sw & substr{buffer,1,kk-l)="return" then retu

rn;
if substr{buffer,1,kk-l)="quit" then call signal_(

"GOLD_STAR");
call hcs_$make_ptr("",substr{buffer,1,kk-1),substr

(buffer,1,kk-1),puse,err_code);
if err code>O then call ioa (" Mo such procec1ur

e can be found!"); -
else call cu_$ptr_call(puse);
go t:o new_try;
end;

1

2

3
4
5

6
7

-176-

<s>GS_err_messages 05/20/70 1128.4 edt
\-Jed

/\rgurnent for nr operation not founrl.
nr operation does not have two arguments plus return argumen
t(non_functional invocation is illegal).
Second ar~ument of nr operation is not a pointer.
Second argument of nr operation is a null pointer.
~ake segment procedure in nr operation failed - name provide
d is attempterl relation name.
Ar~ument not found for ir operation.
Initiate procedure failed for ir operation - name provided
s attempted name.

8 Argument for sa operation is not an array of pointers.
9 Low bound of argument{pointer 1) is not one.
10 CENT inconsistancy found between elements of array of pointe

rs in sa operation{pointer 1 and 2).
11 Argument in eq operation must be pointer.
12 Too few arguments-must be at least one plus return for funct

ional invocation.
13 First argument must be pointer or array of pointers.
14 L01·1 bounrl of first ar<;ument(pointer 1) must be one.
15 Too many ar,p;urnents(pointer 1 is first one).
16 /\ll art;uments must be pointers if first one is(11ointer 1).
17 All arguments must be arrays of pointers if first one is{poi

nter 1).
18 Upper bound of input argument arrays{pointers 1 and 2) are n

ot the same.
19 Operation cannot have more than one ar~ument(pointer 1).
20 Operation must have more than one argument(pointer 1).
21 Successor cannot have relation as second argument{arg l=poin

ter 1, ar~ 2=pointer 2).
22 First operand cannot be null.
23 First argument is array of relation pointers calling for inc

onsistant RSf,1CrJointers 1 and 2).
24 Second argument is an illegal array of quart and relation po

inters{pointers 1 and 2).
25 Second argument is array of relation pointers callin~ for in

consistant RSM(pointers 1 and 2).
26 ~1ake segment procedure failed - ar,-;uments one anr:f t1·m are po

inters 1 and 2.
27 Change narne procerlure has failed on seg1,1ent of pointer 1.
28 Illegal second ar~ument for nd operation.
29 Illegal first ar~urnent for nd operation.
30 Data type name (Name 1) in nd operation is not four characte

rs.
31 ~1ake segment procedure has failed during nd operation(name a

tternpted vJas i·lame 1).
32 ~10 argument given for kd operation.
33 Type(Name 1) indicated in krl operation not four characters.
34 Delete segment procedure failed during kd operation{name att

-178-

78
7 <J

30
:n
82
83
34
SS
8G
87
88
89
90
C) 1
92
93
l) I~

'l 5
96
97
lj 3
') 9

lOOOverla~)pin,"; c:::·n in CD operation hetv1een i'ointer 1 and 2. f'.e
turn yeilrls null pointer.

lOlCJders of quarts (Dointers 1 anrl 2) are not equal. ::eturn ye
ilrls null result.

l 0 2 :; EiH o f q u a r t s (fl o i n t e r s 1 a n d 2) 'Io no t o v e r 1 a p • r' c t u r n ye i
lds null result.

1 0 3U i rl t h of e q u i v a 1 enc c v e c to r (Po i n t e r :I) r·iu s t be e qua 1 to o r rl e
r o f q u a r ~ (P ,-, i n t C' r 1) .
104
105

\fod

~sdb:

bin(35};

35}};

-179-

<s>gsrlb.pll

procer:iure;
declare 1 dsm haserl (inptr},

2 rltop fixed bin(17),
2 cindex fixed bin(17),
2 dop char(l),
2 rli char(l),
2 eopt char(!},
2 drlptr pointer,

05/20/70 1053.3 erlt

2 rlqptr (1 refer (dtop}) pointer,
2 rlretptr Cl refer (dtop}} pointer;

declare 1 rsm based (inptr},
2 rtop fixed bin(35),
2 rop char(l),
2 ql (1 refer (rtop)) pointer,
2 rl (1 refer (rtop)) pointer,
2 q2 (1 refer (rtop)) pointer,
2 r2 Cl refer (rtop)) pointer,
2 ep (1 refer (rtop)) pointer,
2 rretptr (1 refer (rtop)) pointer;

rleclare 1 quart baserl Cinptr),
2 ID fixed bin(35),
2 qlen fixed bin(35),
2 qorrler fixed bin(35),
2 cent (1 refer (qor<ler)) char(32),
2 pent (1 refer (qorrler)) pointer,
2 tent Cl refer (qlen),1 refer (qorder) fixerl

declare 1 entvector based (inptr),
2 width fixed hin(35),
2 ents Cl refer (width)) char(32);

·ieclarc p;sdh$pi entry external;
rl e c l a re (ct, r, q, e) en t r y (po i n. t er) ex tern a 1 ;
.:Jeclare call_sw fixed bin(l) initial{Ob);
declare pi_lahel label static;
declare op char(4) initial(" ");
rleclare buffer char(l32);
declare (baseptr,arlrlrel,min,suhstr,index) builtin;

declare cv_oct_ entry external returns (fixed bin(

rleclare wnffset fixerl bin(35) initial (0);
de c 1 a re w p t r po i n t e r i n i t i a 1 (n u 1 1) ;
declare (inptr,aptr) pointer;
rl e c l a r P. (nun, k k, i i , o r p 1 ace, end pl ace) f i x e d b i n (1 7) ;

call ioa_{"ASK!");
cal 1 _sw= lb;
pi_label=rearl;

read:

o;

-180-
cal l ios_Sread_ptr(addr(buffer),132,kk);
op=substr(buffer,1,1);
if op="." then return;
if op ="<:!" A op ="r" r~ op =''q" p, op ="e" then do;

ca 11 i oa_ C "?") ;
.~o to rearl;

end;
do mrn=2 to kk-1;

if substr(buffer,r.im,1) =" " then go to start_n

end;
go to no_offset;

start_no: orplace=inrlex(buffer,"I");
if orplace=O then do;

orplace=mm-1;

) ;

go to offset_only;
end;
wptr=baseptr(cv_oct_(substr(buffer,mm,orplace-mm))

offset_only: do ii=orplace+l to kk-1;

end;

if substr(buffer,ii,1)•"" then do;
enrlplace=ii;
go to end_found;

end;

endplace=kk-1;
end_found: rm=endplace+l-orplace;

if mm=O then go to no_offset;
woffset=cv_oct_(substr(buffer,orplace+l,mm));

no_offset: inptr=addrel (wptr,woffset);

rl :

r:

q:

e:

labset:

output:

.~o to output;

entry{aptr);
op="rl";
p;o to 1 ah set;
entry(aptr);
op="r";
go to 1 abs e t ;
entry(aptr);
op="q";
.~o to 1 abs et ;
entry(aptr);
op="e";
pi_label =back;
inptr=aptr;
if inptr=nul 1 then rto;

call ioa_C"NULL!");
go to done;

enrl;
call conrli tion_{ 11 pro.~ram_interrupt",gsdb$pi);
cal 1 ioa_C"AT -p", inptr);
if op="o" then rlo;

-181-

do ii=l to qorder;
call ioa_C"..,16a ..,p",cent(ii),pent(ii));

end;
do ii=l to qlen;

end;
end;

do mm=l to qorrler;
call ioa_$nn1C" ... 8d ",tent(ii,mm));

end;
ca 1 1 i o a_ (" ") ;

else if op="r" then do;
call ioa_("f3ound ... 3d Op ""la",rtop,rop);
ca 1 1 i o a_ ("0.1 R 1 Q 2 R 2

EP RET");
do li=l to rtop;

ca 1 1 i o a_ (11 "" p ... p .., p ... p ... p ... p", q 1 (i i) , r 1C i i
),q2(ii),r2Cii),ep(il),rretptr(ii));

end;
end;
else If op=-''d" then rio;

cal 1 ioa ("Bound ""3d Op --1a DI option ... la
E option ""la C option ... ld DDptr ""p",

dtop,dop,di,eopt,cindex,d~ptr);

done:

back:

pi :

cal 1 ioa_C"D or Q RETURN");
do ii=l to dtop;

end;
end;

call ioa_C"""p ""p",dqptr(ii),dretptr(ii));

else do ii=l to width;
ca 1 1 i o a_ (11

"" l Ga", en ts (i i)) ;
end;
if call sw then go to read;
else

return;

entry;
go to pi_ 1abe1 ;
end;

-182-

dc:;r.i_astrinn;.ol 1
:lon

c.'. c 1 1 quo r t b ;:is e d (q u u r t_r> tr) ,
2 i rl f i x r -l ~ i n CJ r y (3 5) ,
2 lcnr:th fix~rl ~in (3'.,),
2 order fixed hin (35),
2 cent ~hdr (32),
2 pent ptr,
2 tent fixed '1in (35);

ci c 1 1 qua r ~-Pro r f' r '1 .:isl"! rl (u a r t_p tr),
2 qi~ fixr~ hin (3S),
2 qlenrth fixr~ '1in (~S},
2 oorrler f ixrrl hin (~5),
2 qr:cnt {qord0r; ch<.ir (32),
2 qpcnt (qor(!cr) ;:>tr,

OG/01/70 21r~.~ ~~t

2 qtent {qlcn~t~,~orrl~r} fix"~ ~in f35);
clcl 1 r;it_riuart stl'ltic,

2 mtirl fixerl '"'in (35) initial (0),
2 mtlength fix~rl hin (35) initlal (0),
2 mtorder fixrd ~in (3'.>) initial (J),
2 mtcent chur {32),
2 r:i t pent !'1 tr;

dcl 1 rlsm_arn;s husrd C<is'"":"l_ar"".s_ptr),
2 upper_hound fix~~ '1in~ry (17),
2 ci fixPrl '1ln (17),
2 op char (1),
2 di char {1),
2 <' chur (1),
2 ddptr ~>tr,

2 d_or_q_:Jtr (•.in~rr bound) ptr,
2 rrturn_otr (u~prr:~ound) ptr;

dcl 1 type based (type_ptr),
2 <isr~i_nur,1r chu r { lG),
2 data_typP chnr (3~),

2 num_frN-'_cells fix0-' '1in (35),
2 nu r-i_ en tr i f's f i x r. -i '1 i n (3 5) ,
2 r.lil x_ l c n g t h f i x e rJ ~d n (3 5) ,
2 first_cntry offsrt (data_sf>~),
2 successor_chnin_h~arl offsP.t (rlata_sP.~);

de 1 1

de 1 1

itPm 11<lsrd Cirtr), -183-

2 lrt.r offs~t (rlutn_s,.,i·;),
2 rrtr offsnt (rlatil_s0~),
2 succ ~ffset (rlat<l_s,..-),
2 flar flxerl ~inilry (3S),
2 r~fno fix~rl ~in (~5),
2 strin!'"_strur.t11rf"',

3 s tr i n r:_ 1 ('In rr t It f i x (' .--! 1-., i n r 'J (3 5) ,
3 strinf" r:l1C'lrcict"r ('l~x_lr>n.,.t 1·);

<lreo_srg ~asr>rl (s0~_ntr),
2 first_nff 0ffs~t Crlut~_srrr),
2 curr lf'n offset (rl~tn_scrr),
2 nf'xt_off offsr>t (dat2_snr-);

clcl 1 pseudo_strinr_array h~sr:rl (str_ptr),
2 psP.udo_lPnr;th fixer! '->innry (35),
2 inp~t_or_rPturn_strin~ c~~r Cml~n_int);

c: c 1 (pt r, n ew_p tr, su cc_p tr, t y rr·_p tr, n r:•:t_s e r:_P tr,
qua r t_D tr , s e ~-Pt r, i r tr , s t r _Pt r) D t r s t ('; t i c ;

dcl dsr.i_arrr;s_ptr ptr;

c.: c 1 (a r r; u _s i z p, i , i i , f 0 u rd, r1 l (' n _ i n t , r:i i f f , r! i ff (' r , t u r n , !'") r f"' <; r r
tcd_ l oop_rcfno, stn rrcl_ l 00r_rf'fno,

iii,ik,1-,o:rer:h) fix"'' ""iin<1ry (35) stc:1t!c;

c.lcl (m,:x_rlrpth_of_trrr initial (31i),.lroFt initi.;il {10),ri<'"i...
t initi~l (2n) fixrrl ~in~rv (35) stiltic;

cl c l r c t u r n _ 1 C1 I) c 1 1 il 1 ~ r 1 (i n s 0 r t _ r r t ll r n , rl ~ t u n_ r P t u r n , r,., f n o _ r
P.turn, successor_rf"'turn,

c!~l 0t,..,_hy_rf"fnn_r,.tu rn, rlr:l t?tn_hy_rl
atuni_r~turn, r _, rl_, s_, i_, rd, rlrl);

dr.1 clhd_lnbel (-1:1) la 11~l (h,., in_ds..,_ustr!nro:) static;

r~cl dhr_lubel (-]:]) lo,cl (h<'r·in_ds~,_astrinri:) static;

c'.cl succ lubel (-1:1) lohcl (nl" in_r's,.-,_astrinr:) s::ntic;

clcl inscrt_l.:ibcl (1:1) l<l~Jcl {h~'.';in_<isr.i_astrinrr:) static;

dcl ins_cor.1p_lahel (-1:0) 1ai.,c1 {b~r-:in_dsri1_astrin<;) stcitic
;

d c 1 en .:i n c ch a r C:7i 2) , rl i r n <i r:1 P. r. h <i r (J G 0) s t v t i c ;

clcl (prr.sentcd_lC'op_strin."',st:or(!r'_ln,..,!')_strin--:) charactr-r (
JCS) v.:iryinr st~tic;

(:cl (c x r>, ~or i , o '.)co cl€') r. ~ l1 r (J} v a r y i n ..- s t" t i r.;

;

-184-
~cl trrr_rcstructurr entry (nnint 0 r,n0int,..r,nointrr),

(vrf"';)_$rf"dcf ,ar00_) en tr~/ (fixc- 1 '1!nary (17l,r>oint"r)

c.:C 1 (nu l l , nu l l o , s u '1 s t r, rl i v i r,... , <:! .-! d r" l , r, i n , a ~ ·' r) i:, u i l t i n ;

clcl (off,curr,nr.xt,r:odc) fix0'! ~'in.-iry (7i5) st2tic;

dcl (~1 ich, l<:ist_lrft, hst_ri-i:t,t) offs~t (r:l::it2_Sf'"") st;" tic;

de l ((!!: d_l <i 1l_su, rlf) r _ l i1~_s•·1, ins_ l ul-i_sw, succ_ 1 <it..,_s,·I) fix r-l h
in (35) static initi<Jl (O);

/***
t***/

·C":. i n_dsr~_as tr i nr;:

c xp=::J sr:1_a r ;;s. ";
c'.o r i =r's;1_.:i r.n:s. <1 i;
opco<iF-C=c 1 sr1_<ir~s. 0r;
sc~_ptr=ds~_ar~s.~clrtr;
typc_ptr=first_off;

if opc:oclc= 11 D11 then /* i nriut is rl"fn0s *I
j f COr j ::II

11 tfir.n "O t0 '"';f't_rlat~Jri;

0 l s f' i f <in r i ==" l' 11 t '~ r n "". <"' t n ..; l" l r t r _ i:, y _ r '°' f n o ;
else ~o to or_crror;

/* rlRt~ strin""s ~rr lnrut */

if dori="" ti,~n "':C"l to 'cr-t_rf'fnn;
else if rlori ::lln•• t''rn ro t0 rl("l"t"_i.,y_rlatuni;
clsr if -Jori=llf" thl"'n ~o to in:.,....rt;

else ~o to on_crror;

el SC if O'.!C:0·:fr=llSll thrn
if clori ='' 11 th~n "':O tn SllCC<'S'.;nr;
clsP .r:o to 01,_crrnr;

rls•: if opcor'r='''''' tl'rn
if (dori== 11

" ~. <'xr=" ") th0n r:o to nr":J_d;;tc:i_typ0;
clsr. Go to op_r.rror;

clsr r.o ta or_error;

/************************************/

-185-

r, C' \1_ cat a_ type :
rlo i i = 1 to urn" r - ho' rnrl;

call ~r0a_c1r~4,sn~_ptr);
coll hcs_~~s-~0t_poth_n~Mr(s0~_ptr,rlirn~~<',~r~r:h

, rr,.1ror, r:ocie);
allor:atf' tyrr sr:t (ty'"lr_ptr) in (rluti1_s~o;);
nu r:i_ (' n tr i rs = 1J ;
n u ,,,_ f r r r _ r: <' 1 l s = 0 ;
c;:ll in.:J (11\·1!1Clt is nc:x lrr..-t'"' for rh;lrar:tnr stri

n f~ s f o r .., o \ ... i.1 ? ... I ", s ~ '1 s t r(<1 i r n i1 ., ,.., , 1, -; r N" '') , f' n ,, . .,, "'.') ;
call reCJd_list_(~r,,,c!1);

max_lrno;t~=~rrch;
succf"ssor _c'1ui n_:ir~u,·'.=nul ln;
da ta_typ~=cno:rw;
csm_namp="ds':l_cJstri n"'; 11

;

first_P.ntry=nul lo;
end;

return;

/************************************/

~-~<'t_c!a tum:
do ii = 1 to 11pr0r_f)ourv!;

rrturn_l.:ihrl =rl<Jt•.ir1_r,...LJrn;
eo to rrfn0_pr0l0~ur;

datum rrturn:
if fourid=l I', 1Jtr->fll'.r-=l ti-inn r 10;
rcturn_la~rl=rl_;

~n to strin~_o110r;
rl_:

ps ru rlo_ 1 r-n r- t I' =pt r- >st r in":_ 1 "r -t 1-;

i n r tJ t_ or_ r,... t ii r n_s tr i n ""= s ~J "1st r (pt r- > s t r l n ~, 1, n tr -
>strin&_lcn~th);

enc;
clsr 'in;

end;
return;

cism_ar~s. rrturn_ptr(ii) =adr-lr(rnt_qu~rt);
ritcrnt==da tu_typr:;
m t p P. n t = s e r:_ r t r ;
end;

/************************************/

-186-

r~r t ref no:
rlo 1 1 = 1 to uppf'r_hourd;

rr tu rr _ 1nhe1 =rf'!f n0_r,.. turn;
~o to datun_prol0r.;ur';

rf"fr.o rPturn:
if f;unrl=l ~ otr->fl;)"=l t~~n ~o;

rrturn_l nhc1 =r_;
~n to quart_a110r;

r_:
trnt=ptr->rrfnn;
P.nrl;

f" l Sf' ·!0;

rfsr1_rir"':s. rPturn_ptr(ii) =arVr(rnt_qurirt};
·ntcPn t=rlo t0_ tY!'";
nit p<>n t =s r. r:_p tr;
en r.;

enc;
return;

/************************************/

~ucccssor:

if succ_lub_s\·J='.J t•·;r.n rl0;

succ_l a':i_s•:1=l;
succ_ltihrl (-l}=sur:r._1 t_0;
succ_lzihel (')} =sur::r._Pq_O;
succ_la'1cl (l)=sur.r:_p;t_O;
end;

do ii = 1 to ur:Jrr_hcrnr.,l;
rcturr~_la 1H'l =s_;
go to qu~rt_c:ill~r.;

s_:
succ_rtr=qu0rt_rtr;
r r tu r r _ 1 uh P 1 =s u r: r:,.... s s n r _ r r turn;
~o to refnn_prnlo-ur;

succrssor_rrturn:
r;o to sur::c_lalicl(fnur:·');

surc_cr;_n:
i f t ~ r n = 1 0 ~ 1· t h: r ,, r ;

if L1st ri,.,.ht=n•111--- t~'rn ''o;
;J tr = s u c r: r.::; s n r _cl ;i i n_ h "'u ·';
if ~tr->flu~=] then ~o;

SUCC_!'tr-> t('11t=ptr-)rpf11r:;
::;o to sur:cc·s:.or_en("!;
end;

clsr r;o to sut::c_r,t_O;
end;

clsP µtr=lust_r1.ro:!it;
rnd;

f

'.>llCC ...
I '

{' l.,

-187-

l + ,- -
I' l I ln .. L r· r

,~ t ~ c r, t -= - ~ (-, t t-_ t y 'Jr;

- 't;" 1- t = s ";r -~) l. r ;
, (' .-) I~ i ('"_ c 0 :.) 'l f' ; - - (> r: , I ;

' r

) !~ r - / C) I ! i r -) ~ 1 ,- r- = l t l r r

' I . ~ r: ~ t: r - 'J t ,-., n t = [I ~- r - > s ' 1 .""' r: - > r (" r r-"'J ,_., ;

, ... ~ (I t._ C) ~ 1 I <: C C" ~ :; ~-J 1'" _ r t: r-' ;

"n~;;

f'ls0 ;,-,;
;~ 1 i CI :..: '.) ~ (- \ ~;Jr~;

r (t .J r ~, ;

r-' ,_, l ,-, ''
i r·, c, 1 <:; '-:, ~, · = l ;

1 -, '-, r 1 (- ' =I

l 0 ~~ ~ 1 (J) = I 'i :)

1 t
r, •

) ,
insf'rt
i r- s r> r t
insert l r: ~ (> l (~) = i n s - ~ t_) ;

' I

i r. s _ c: o 1-1 r•_ 1 2 h r 1 (- ') = i n ':- ,., -· '-: l t_ 'J ;
i n::.,_r.o~'r_ 1;-:'->r1 (0) = i ns_C"'""•_0r _r;;

0 r, c'.;
! (J i i

rrturn
t'J u"r~rr h0:ir--
' 1·el=irs 0 rt rnt•Jrr;

"', o t 0 c: c: t ~i ,~_ ~ r ·" 1 ,.., ,..,,. t; r ;

n s r-- r t r r t .1 r '
r r t '.J t n l ,--: ', r-- l " i
"'') 1 :• , ' l ,-. r- t 1

I''..:> r r t , , 1' (f n ~J r-, ') ,

n:.; 1 t J:
ol locatr " . ' '

+ jr,tr=n:.Jll thl'r: ·:n;
n

c cJ 1 1 ,; r (' (<' r n ': (+ ('_j ·- s ') " (" (s u ,, s t r (h i t (u 'l s ') .. c (n fl x t - 0 f' (' l
J \') I l , 1 :::)) + l c ~ :-. I S (' r:_ ') t r')

-:c' to i r:, t_J;
f: n r! :

lptr=nullo;
rptr=nullo;
f lar;=l;

-188-

st r i n r;_ l r. n rr th= n s P.U rlo_ l <' r.,,. th;
st r in r =s u ~is tr (in nu t_o r _ r" tu rn_s tr i n ~, 1, r. in (max_ l "r i; t ~.,

psE'uc!o lenr;th));
;-o to ins_comp_la~i0l (found);

i ns_conir_ l t_O:
succ=nullo;
rr·fno=l 717C'J~Gr::13r1;
tcnt=l717986~1~4;

first_r.ntry=irtr;
s u ccP.s so r _ch fl i n_h 00 -! =i '.1 tr;
~o to ins_incr;

ins_cornr_P.q_n:
diff=ilox_d0pth_of_trnf"-i r i;
diffcr=l;
~Jo il~=l to diff;

diffrr=2*rliffnr;
end;

if turn=ridit t!1f'11 ·lo;
ptr->r;-itr=irtr;
irtr->succ=ptr->succ;
ptr->succ=iritr;
iptr->rrfno=ptr->r<'~no+rliffP.r;
tent=iptr->rrfno;
zo to ins_incr;
encl;

else do;
iptr->succ=ptr;
ptr->lptr=iptr;
i p tr-> r0fno=p tr-> rr:f n0- ·'if f Pr;
tent=intr->rrfno;
if last_rif".rt=nullo t~·r-n su!".:C"ss0r_r.'';")in_h"rid=intr;
f'lsc last_ri~ht->succ=intr;
r;o to i n s_ i n c r;
rnd;

ins_~ t_O:
tr.nt=f"'tr-" rf'fn0;
if rtr->fl~~=1 th~n ~o;

ntr->fL1r-:=:I;
nur.1_f rl:'r _ce 11 s=mv1_f rf'r _c<' 11 s-1;
enci;

else go to ins0rt_end;
ins incr:
nu r:1_ en t r i rs =nu "1-en t r i <' s + 1 ;

inserl_end: end;
return;

-189-

/***********************************/

cif'l etc_by_rrfno:

i 1 d;

if dbr_l~h s~=Q t~Pn rlo;
d hr_ 1 (l hr 1 (-1) =d hr_ 1 t_ '1 ;
chr_lube1(0)=d~r_e~_O;
c'l-ir_l.:if-icl (l)=d!-ir_!!;t_O;
drr_l.Jb_sv.1=1;
e nci;

do ii = 1 to u :irrr _hour, r';
re tu r n_ 1 CJ '1 c 1 = ri" 1 r t f"\ _ h y _ r f"\ f n n _re t ll r n ;
,f',0 to rt?fn0_'.")rnlO""U'"';

rlrlet<'_hy_r0fnr;_r0t·1rn:
~o to d'"1r_li11-irl (foun·l);

dhr lt_O: rP)r r>ti_O:
cisr.1_CJrr,s. r'"'turn_;->tr(ii)=.:i-'r'r(rnt_o:i2rt);
'":lt ccn t =c';:i t 2_t YD<';
11 t pr n t = s r. :-:_i> t r ;
r:o to rlPlctr_':>y_r<'fn0_r.nr1

;

c'.h r _:: t_):
if ptr->f1.1.~=f) thr~r ,.,.(~ tJ) (111r_er_Q;
clst:;
ptr->flar:=J;
num_entr i rs=nwi_entr i rs-1;
nurn_free_ccl 1 s=nu·~i_frr-r:_cr.11 s+l;
r ('tu r r._ 1 oh p 1 = r r';
~o to strin~_<1l lo~;

re:
ps eurlo_ 1 cn.r:tti =r> tr-> st r in,.,._ 1 rn-'"t h;
in pu t_o r _ r ct u r r _st r in": =s u 1-. st r (pt r- >st r in~, J, ..., s c>' J --10 _ 1

rlC'l f'tr:_hy_r.,fno_cnr': ~w~;
if 2*ntt~1_fr0r_Cr>lls) nur1_,..ntrif'S ti-en "'c:'°' t0 tr"r_r"' 1>1.J

return;

/************************************/

-190-

G<' 1 r:: t c_hy_da tt.r'l:

i 1 c;;

if dbd_lah_s~=1 then ~0;

d hd_ 1 t:i b_s \·!= 1;
dhc!_ l <:i'1 cl (-1) =d'-->~l_ l t_G;
clhd_lof)rl (O)=dhr_cn_C;
rihr1_ l (1 1><' l (J) =dhd_~t_O;

r n cl;
do ii = 1 to uprcr _bounr!;

rr.:turn_l abcl =cl,...l r.tt"?_~)y_dutuni_r,,tu rl"'l;
.~o to d<Jtum_f)rolori:un;

d c l <? t c_ h y _ rl a turn_ r r t u r n :
r;o to dhd_lilh£'1 (four.·!);

dhd_l t_O: d!.rl_~r!_1:
<lsm_ur~s. r~turn_r>td ii) =a-f..-1 r(Mt_qu;:irt);
~1 t cc n t = d.: t ~i- t ~·fH';
·n t r <' n t = s (' ~-r t r ;
r.o t~ <i<" l rt£' _by_rl<1 turi_~r,..l;

rlhrl_ "; t_n:
if ntr->~l~~=Q t~rn ~n t0 ~~~_rn_0;
C'lse;
rt r - >fl <H': =O ;
nu1_~r tr i <'s=nw1_r-ritr i r:~-1;
nur1_frcr_cl"l l s=nu!-,_f rrr _ci"l l s+l;
rrturn_lu~cl=rlrl;

~o to qu~rt_ulloc;
drl:

tcnt=ptr->rr.f110;

d c 1 c t c _ b y _cl a tu -;1_ c w! : c n d ;
if 2*num_frr.c_ccl ls > ntF'LCntriPs ti.,cn n;o t".1 trr,.._rcbu

return;

/************************************/

-191-

rt'fr:o prolo--:L:r:
if 0xr1="~" t 1·0n 'ltJ,-,rt_;itr=rl_or_q_'Jtr(!)
r:lsr qu,'rt_·;tr=<'_01-_Cl_...,tr(i i);
1 l r r1 _ i n t = ~1 CJ x _ l 0 n - th ;

Sf'ZJrch _ l-iy_rrfn1:
turn, founr::::-,;
if first 0·~tr~1=nr~llo

f'Jun<'=- 1 ;

"I to rrturn lCJl-irl
r. n r'. ;

clsr ntr=first_r.ntry;

rf n. . . ,

if r.xp=''r- 11 th0n 'Jrrs0r.t0r1_lnnn_rr'nn=q~1«:rt_pr0rir:r,

r;tcnt(ii,ci);

rl c;;

rJo;

r! CJ ;

c l s P pr rs r n t" r! _ l o o ~,_ r r 'n n = q ll a r t . t" rt ;
l us t_ l cf t, 1 ls t_ r i rr 1: t = n ~J 1 1 0;
do iii=] t:o 'li"JX_rlrpt~_of_trrr;

storr-rl lnr;p rcfnr=ntr->itrr1,rr;rr-.;
if ;1rn::;r·nt0·!_lnor_rPfr:o < st;rr>r1 lr•op_rpfn1J t 1-1rr

i; ;Jtr-> l rtr"""==nul ln t''"n rlo;
l ,1 s t_ l 0 f t = n t r ;
>: l i c t, = p t r - > l :-' t r ;
n t r =; l i c '' ;

--:o to s0urf'. 1-_f-i;_r0r-n0_0n·';
~ n c1;

::lsr rlo;
t~rr:=lnft;
-0 to r0t•,1rn_lol.-,rl;
r> n .·);

c n rl;
j f r) r (· S r· :I t " '1 _ l 0 n !' r 0 f n n) S t "1 r ,., ,-1 _ l 0 0 r) _ r P f :I 0 t 1

" (' r

j r ') t r -) r CJ t I"', = n I, J l 1 Cl t t-, r" r .I 0 ;

l .:-; s t_ r i - 1
• t = :-; t r ;

":1 i c 11=-it r-> rntr;
pt r = r; 1 i c 1' ;

r;o tri srzirc: 1~_1-,y_rF'fn~_f'n 1 ;

0 wl;
cl Sf' do;

t cl r n = r i - ~ t ;
"'.o to r0turr1_l.1'0l;
r :lr 1

;

c r.r:;
if prrsrrt0~ lnon_rrfnn = stnrr~ loori_rr~nn thrr

f 0 u n rj = l ;
"': o to r n t u r r: _ l ci 1·, r· i ;
enc:;

search_hy_rrfno_f'rr1: cw!;
c;o t0 trr:-c_r 01 J:Ji1·!;

/************************************/

-192-
rla tur:i_pro 1 o.r:;ur.:

str_ptr=dsm_arvs .rl_or_q_ptr(ii);
~lrn_int=~ux_lrn~th;

srarch_hy_rl2tuM:
fc>und, turn=');
if first_rntry=nullo thrn ~o;

fnun0=-1;
~o to r0.turn_lahe1;
r.ncl;

clsr :;tr=first_entry;
prrs~nted_lnon_stri~~=su~str(inr")ut_or_return_strin

~,l,pseudo_length);

l as t_ 1 f' f t, l o s t_ r i ro:: ht =nu l 1 ();
do ii i=l to nax_depth_of_trrr;

s t o r e d _ l o o r~_ s t r i n n; = s u 1-:i s t r (p t r - > i t er-,, • s t r i n "" , 1 , I} t r
->string_len_r;th); ·

if presenterl_loop_strinf': < st0rPr_lo0r_strinrr th

lcss_tl·on: do;
if ptr->lntr-=nullo tren r0;

10st_lrft=:->tr;
ri;l ir.h=ptr->lritr;
:->tr=r;li("'.h;
-; n t o s (' C! r r: h 1-i v rl u t 1 1 n e n --' ;
en~; - -- -

elsf' -io;
turn=lrft;
r:c· to rrturn_l<'~H'l;

0.!i·.J;

cls0 j• :;rr>s""nt'"''1_lnc1ri_strin"' > stor"'r'_lorv:i_stri

[':rf'atrr_t''V0: rln;
if ntr-> r:>tr-=n'.J ~ l n tt.,0r. ,fn;

last_ri""t=Dtr;
r;l ich=ptr->rptr;
ptr=~lich;
go to scarch_by_dutu~i_P.n~!;

end;
else: do;

turn=rir;ht;
~o to rcturn_lQ~cl;
(' n ·!;

encl;
elsP if pr0srnte~_l00n_strin" = st0rr:r_loon_stri

nr: then do;
found=l;
~o to re:turn_ln~"l;
enc!;

s ca r c t' _ '1 y _ d .c; t u ~ L c r"' : c n r! ;
:;o to trC'f' _r0')u i 111

;

~- ---------

. , --I:, rt_
1 '
I '

' ' ''
cc ' -· I... -· '~ (_;

~.) (t. :: :..; (' .,,. ~) v

,_ t ;-, -:::: 1

r· , . r r " 1

::; t
('.

«.

·• 1

19 3 .

r

,,

.- (

') t ~. I ;

. r·

·; t r) ,

(; r ,,.
' '

..-. (",·,1 S'

-194-

d s ni_ i n t '"'r; P r • o 11 OG/01/7r 1?,11,J ~~t

ds~_integer: proc (rls~_ar~s_ptr);

dcl datCJ_seg <lrea (1024) based Csc"._ptr);

dcl f irst_off offset (data_s~~) based (s~"_Ptr);

dcl 1 dsm_args based (dsm_ar~s_otr),
2 upper_bound fixcrl !Jin (17),
2 c i f i x eel ..., i n (1 7) ,
2 or char (1),
2 di chDr (1),
2 ~ char (1),
2 ddrtr ptr,
2 rl_or_q_otr (u11n~r_hound) ptr,
2 rf'turn_ptr (u::>r0r_boun~) ptr;

rlcl 1 type haserl (typc_ptr),
2 dsm n~m~ chvr (32),
2 data_type char ClG);

<icl 1 ouart b<ised (qutirt_ptr),
2 ir fix~d hin (35) initial (0),
2 lrn~th fixP~ hin (35) initial (1),
2 orrler fixerl ,in (35) initial (1),
2 cent char (32),
2 rent ptr,
2 t~nt fixed '1in (35);

dcl 1 quart_proper hasP~ (quart_ptr),
2 qirl f ixerl !Jin (35),
2 qlcngth fixerl hin (35),
2 qorder fixrd hin (35),
2 qcent (qor-:fer) chCJr (32),
2 q pen t (q or·!~ r) pt r,
2 qtent (qlen~th,qorrlrr) fixrd hin (35);

dcl 1 -:it_quc""Jrt st<:1tic,
2 irl fixed bin (35) initial (0),
2 ntlen.P.;th fixer! '1in (35) initial (0),
2 ritordcr fixed '">in (35) initial (1),
2 mtcent char (32),
2 ntpent rtr;

dcl 1 pseudo_strin~_array h<Jsed (str_ptr),
2 csrudo_lrn~th fixr~ hin (35),
2 input_or_rrturn_strin~ char (mlcn_int);

-195-

. l c·· 11 l . t. . 1 ·,) i:.·1x0r! l.."1n (7i~),· c1 c j J , , ~1 r r. _ 1 r. , L r ri !• , s 1 r: n , s o r , 1 , '

ri c 1 cl 1 (l '.') r: 1- <J r (1) u r. ,-:-' l i r: n r' 'i,
c l l = c h ,l r (l 2) rl c f i n (' ci c ,] (l) u n " 1 i (Y r r r' ;

cl cl (q u c: r t_:J tr , st r _Pt r, s u r: r:_p ~ r, r's ri _a r ~ s_r tr, c0 r _0 t r, s" ~ _n t r
, t yr• r Pt r) 00 i rte r;
declare' exr char(l) varyinq;
clr:l opcor10 char (1) v,1ryinr-;

cicl dir char (1G8), rn,11ir· r:h<Jr (3~), '~rr>cl, fixPrl h,in (715), c
)c:c fixed bin (17);

dcl (divic!c,su~str,nu11,il'lr1r) 11L1iltin;

c: c 1 re~ f ixrd bin
false char (4)

(35) based (con_ptr),
h <~ s r r! (co n_p t r) ;

Gel pot (C:l1) fixec'. hin (V";) initial Cl,1'J,FJ,10JJ,Ji'":1J,1
GOOC0,1GOOOJJ,1GC10GJJ,

1 G 1) 1 J 1 ') 1 , 1 1 0 J 0 1 1 1 J 1 ,
1CGOOOOOJOJ,100G100010J~) st~tic;

/***
**********/

o~codr=dsm_ar~s.np;

sec,_ptr=dclptr;
t y p c_p tr= f i rs t_ off;

i f op co cl e = 11 R11 t f, r n ro: o to r: rt_ r r i: n 0;

p]5r; if opcodc= 11 fi 11 t 1'rn (Y() to rrrt_datur'.;
P.lsc if orcode=''S" t"0n r:n tn r,11rc0ssnr;
P.l SP. if opcorlc="i:" thrn n;o tn nt'1.1_rlat0_tyr'\0;
else ii=O;
1onr_2:

return;

i i = i + J ;
rl s ~i _ ci r r: s • r r t u r n _ r t r (i) = a '"l · ! r (r;i t _ q u o r t) ;
sr:p:_ptr=dGptr;
typ<'_ptr=fi rst_o:'f;
r1 t rr n t =s <' f" ~Pt r;
~~1 t cf' n t = rl a t <l _ t y p <' ;

i f i < u r pr r b o u n rl t ~, r n & n to l o o o _2 ;

/***
**********/

-196-

successor:

i , c i) ;

ii =O;
l oop_3:

i i = i i + 1;
c:illoc<it~ qu.Jrt sr>t (succ_ptr);
succ_otr->cPnt=rlCltn_ty~i:;
succ_ptr->pent=sP~_ptr;
returr._ptr(ii)=suc~_ptr;
if exp="E" t'icn '1U<1rt_ptr=d_or_q_ptr{]);
else quart_ptr=r:l_or_ri_ntrC ii);
succ ptr->cf'nt=qu~rt otr->c~nt;
succ-otr->oent=qu0rt-ptr->p~nt;
if e xp="E" thl'!n sucr.=p tr-> tf'n t =l +qua rt_pt r-> tl'n t (i

else sur.c_ntr->t~nt=l+quart_ptr->t('nt;
if ii<urp0r_houn~ t~r.n ~o to lo0p_3;
return;

/***
**********/

gPt_da tum:
on fix~dovrrflow ~n~in;

i i = 0;

dsm_ar~s. r<'turn_ptr(ii) =ad..-!r(rnt_quart);
rntprn t=s t:"":_Pt r;
ntcPn t =rl.'1 t ,:_ tyr'"';
r.nrl;

l oor_7:
i i = i i + 1;
if exp="F" then qq;irt_ptr=d_or_q_ptr(l);
else quart_ptr=d_or_q_ptr{ii);
m 1 en_ i n t = 12 ;
allocate fals0 snt (con_ptr);
allocute psl'!udo_strin,,.._arr<J~' s'"'t (str_ptr);
rf'turn_ptr{ ii) =str_'">tr;
if exr="F" thrn tr~r.1r=qtC'nt(ii,ci);
Plsr tr.~p=qu~rt_ptr->tr.nt;
i f tr 1~1 f1 < 0 t ~- r. n r' o;

s i .o:n=-1;
t rn1p =- tr.-nr;
0.nd;

cl sr s i o:n=J;
i =12;

corn p:
rem=t 0:np;
temp= d i vi r' e (t r.·n p, l '1 , 3 !J, 0) ;
rem=rem-lO•ter.ip;
rem=r~rn+4R; /* A3r1 I convrrsior */
cll(i)=su~str{falsr.,4,l);

th) ;

-197-
i = i -1;
if tcmn-=J then ~0 to co~p;
if si~n=-1 then rlo;

~l~(i)="-";
1=1-1;
C?nc';

pseudo_lcn~th=12-i;
i n p u t_ o r _ r e tu r n _s t r i n r: = s uh s t r (c 1 1 2 , i + J , n s cu _, 0 _ l r-- r ,,.

if i i<uppcr_houn~ tbcn ~o to loop_7;
revert fixcdov<?rf1m1;
return;

/***"******
**********/

f.ct_refno:
i i ='.);

1 oop_O:
ii=ii+l;
str_ptr=d_or_q_ptr(i i);
2llocatc quurt S0.t (qunrt_ptr);
ccn l =t1c:; ta_t ync;
pcnt=sr:r:_ntr;
allocate rcn S('t (con_ptr);
return_ptr(ii) =qu<Jrt_ptr;
c 1 1::: =s u ') s tr (i n ;iu t_o r _r ct u rn_s tr i n ":, 1, I') s ~ •J -! o_ 1 "n ~th

if cll(l)="-" th(>r ''n;
sloe=:;
si,,.n=-1;
"'n r';

P.lsc if r.11(1)="+" t~'""" d0;
sloc=2;

c 1 se rlo;

t c::ip=O;
r0m=O;
i=slor.-1;

loop:
i=i+l;

sia:n=l;
f"nrf;

s1oc=l;
s i .rrn=l;
<' n ·:l;

substr(fc::l s~, 4, J)=cl 1(i);
if (rcr.i<4Slcr.>57) th~n do;

dsm_ar~s. r~turn_pt r(ii) =a·'dr (mt_qua rt);
mtpcnt=ddptr;
free quart_ptr->quurt;
p;o to Pnr:_of --~ r;
cnrl;

-198-

ternp=tP.mp+(rP.n-!+:"~)*pot(ps~urlo_l nnuth-j);
cnc.J_of _r;r:

if i<ns0u~o_l~n~th th~n ":O to 100~;
tf'nt=trmr•sir;n;
if ii < urr,.r_boun-! thC"n ~o to loor,_');
return;

/*******************•***************************************
**********/

nN1_da ta_t YPf":
i i =O;

111 looop:
ii=ii+l;

, code);
call hcs_$fs_get_pnth_na~~cse~_ptr,dir,~rech,en~n~

call arr.a_oo21~,sr.":_Ptr);
al loc;ite typP s~t C tyr><?_ptr) in (dat~_seP:);
ri~ta_typ~=enane;

dsn_nC1~e="<lsrn_i n t!"!.~~r";
if ii<uonrr_boun-J then ~n t'.') 11110000;
return;

/***
*********/

end dsrn_inte~Pr;

-199-

d s r.i_ ch n i n • p 1 l .,
'!On

rlsm_chain: proc (dsm_ar~s_ptr);

/***
*********/

dcl data_scp: area (1024) basC''! Cs~r:_ptr);

dcl 1 dsm_arr.s based (dsm_arr;s_ptr),
2 upper_b0und fixr·d bin (17),
2 ci fixrrl hin (17),
2 0:1 chur Cl),
2 di char (1),
2 r char Cl),
..., cdrtr ptr,
A d_or_q_ptr (upnPr_bounrl) ~tr,
2 rrturn_otr (upp~r_bounrl) ptr;

dcl 1 quart bosf"d (quart_otr),
2 ic fixed ~in (35) initial (0),
2 lcn~th fixr~ bin (35) initial (J),
2 ordrr fixe~ bin (35) initial (]),
2 c!"!nt char (32) initiill (dnta_tY'"'"),
2 prnt ptr initi~l (sc"_ptr),
2 tent fix~d hin (35);

dcl 1 quart_pr0nnr has"~ (qu~rt_ptr),
2 qirl fixrd ~rn (~5),
2 olrn~th fix0d bin (;~),
2 qordcr fixc~ ~in (35),
2 qcent (qorrl~r) ch~r (32),
2 qpent (qordPr) ptr,
2 qtent (qlcnrth,~orrlrr) fix~~ ~in (35);

dcl 1 psf'udo_strinr._array based Cstr_ptr),
2 pscudo_len~th f ixcd bln (35),
2 input_or_return_strin~ char (mlcn_lnt);

dcl 1 type based (tync_ptr),
2 dsm_namc ch<lr (16) initial ("dsri_chain"),
2 rlata_typc char (32),
2 nurn_entries f ixc>rf ~in (35),
2 successor ch~in ~earl offsPt (rlata_sc~),
2 max_len~th fix0rl ~in (35),
2 f i rs t_ r,. f no f I x e d b i n (3 5) ;

bc:;in_dsrn_chain:

c xp =C.:sr~1_u r r~s • r;
dori=dsn_ar::s.1 1 i;
or:' code = c~ s :1_ ;:i r '~ s • or;
sc,<;_ptr =cldptr;
typf:_;Jt r =firs t_off;

-201-

if orcorle="D" then /* innut is r~fnos •/
if dori=" " tl-ien ~" t0 n;r.t_r:latum;

else if rlori="[)" t"':cn 1"'.0 to ,.;,..lrtr>_hy_r!" 1 no;
else ~o to op_error;

else if orcorlr.="11" th~n /* rlntn strin~s nrc inriut */

if rlori=" 11 then .P.'.0 to rr("t_rP.fno;
else if rlori ="O" thi:n rco to rlr.lr't,.._hy_datun;
else if r!ori="I" tl1~n "':O t0 insr-rt;

elsP go to op_error;

else if opcorlP="S" t...,r.n
if dori ="" then rro t0 sucr.cssor;
else go to op_error;

e 1 se if opcorle="r'" tl~i:n
if (dori =" " ~! rxp=" 11

) then ri;o t0 nc':J_dat<'_tyriE";

op_error: rlo ii = 1 t0 unr<'r_nound;
r~turn_ptr(ii)=a~rlr(mt_quart);

mtcent=dat;i_tyrr;
rntpr.nt=scc-;_ptr;

enrl;
rP.turn;

/***
********/

nev1_da t2_ t ypf':
<lo ii = J to !IPf"'r.r_ho 1 inrl;

cal l ;i r r-;i_ (1()21~, s '"':_Pt r) ;
call hcs_$fs_~~t_path_na~P(s~rr_ptr,rirra~r,c-:rcr.h

, r.narnc, code);
al locate tyrr sr.t (typr._ptr) in (data_se.P:);
num_entriP.s=O;
call lo<J_(11vJhi1t is rir:ix l('nr;tl-- for c,.,aracter stri

n.r;s for ..,a> ... a ? ... /",substr{dirnur1r,l,!;rPch),en<line);
cal1 rcilrl_list_(~rr>ch);

end;
return;

-2.03-

/***
**********/

successor:
do i i = 1 to 11 rp(' r _hounr;

rcturn_lu~el=su~c~ssor_rPturn;
~o to r~fno_prolov.u~;

succcsso r _r~tu rn:
return_ln'1e1 =s_;
go to qu<1rt_a11oc;

s_:
if foun...f=-1 t"'cn l<'nrrt~=O;

els~ if ptr=null then tcnt=suc
ccssor_chaln_hcad->r~fno;

llo then lcn~th=O;

rf'turn;

els~ if ptr->succ=nu

~lsr. trnt=ptr->succ->refno;
enrl;

/***
**********/

dclcte_by_refno:
do ii = 1 to upppr_bounrl;

th;

r c turn_ 1 uf-i P.1=de1 ~ tr-_by _re~no_n~ turn;
go to r~f nn_p rl'l l 0.<>:uc;

dclct~_by_r~fno_return:
if found-=l thpn rlo;

els~ c:io;

r(' tu rn_pt r(ii) =arlri r (mt_qua rt);

mtcrnt=dat~_typ~;

!il t pc n t =s j!!lo I" _n tr;
en(';

r"turn_la"'l1>l =r('I;
r.o t~ strtn~_alloc;

r rl:
PS"UrlC'_l ~nr-:th=pt r-> st r in""_ 1 prrr

input or rPturn strin~=su~str(
ptr->string,l,ptr->string_lPnf"tf»; - - -

ain_hcaci=ptr->succ;
if prec:i=null t"'~n successor_c~

r.lsP. pr~rl->succ=ptr->succ;
fr"" rt r•> i tf'r1;
num_entrics=num_entries-1;

-206-
iotr->strin~=su~str(

i n Du t_ or_ re tu r r. _s t r i n .P-, J , p s <: u c 'c _ l e n 17'. t h) ;
iptr->strin~_ler~th=

pscudo_lr:nRth;

return;

en-J;
i end: end;

/***
**********/

q u <J r t_ a 1 1 o c :
allocute QLwrt St"\t {qu<irt_pt..-);
re tu r 11_p tr (i i) =qu ;:i r t_p tr;
pcnt=se~_ptr;

cent=data_typ<';
~o to rrturn_la~~l;

s t r i n g;_ u 1 l o c :
11 l en_ int =r.10 x_ l en r-; th;
allocatr rseur!o_strinr:_<:!rrvy s~t (str_r>tr);
rrturn_;1tr(ii)=str_ptr;
r: 0 to r r t u r r _ l ri ~, r 1 ;

/***
**********/

rr~fno_pro I ogu0:

z;

if exp=":" thrn q!10rt_ptr=d_or_ri_r>t r(1);
else quLlrt_ptr=d_or_q_ptr(ii);

search_?y_rrfno:
found=O;
if successnr_c 1,;;in_'ira-1 =nul]Q t"~n rio;

f 0 u r. ,, = -] ;
r:o to rct•1rn_la 1"r-l;
f'ti'l;

ptr=sticr.rssor c 11.:iin !ir:.:1''.;
prE"r1 =n•.1 l l; - -
if exc="r- 11 t 1 ~t"\r. rrr.sl"nt~~_n•fnn=Qt!"nt(ii ,cl);
c 1 s e p r cs n n t c · i_ r r> f n 0 = tr n t ;

refno_l oo!"':
if pr~sentn~_rrfnn>ptr->refno t~en ~o to refno_fut

if prcscrteJ_refno < ptr->refno then r0;
p t r = p r N! ;

found=l;

r;" to r c tu r n_ 1 a hi C! 1 ;
end;

- 20 7-

~o to return_ra~~I;
rrfno_fu tz:

prcd=;1t r;
glich=ptr->succ;
if glich=nullo t~rn ~o;

ptr=~lich;

p;o to r~turn_lo'1~1;

end;

go to refno_loop;

/***
**********/

cla tuni_pro l o.ri:uc:
str_ptr=C._or_Q_ntr(ii);

s c <:i r c: ~ _ h y _ d .:i tu "1:
foun·1=1;
if sur.r.0ssnr_c'-<iin_'1rv:'=nulln tli"n do;

fl")U nd =-1;
.r; o lo r 0t!.1 r n_ 1 n '"1 e 1 ;
en~.!;

ptr=succcssor_c~.:iin_~P()~;
prec=null;
p r cs en t c r'_s t r i n r: = s u i.. s t r (i n r u t_ or_ r P. tu r I" _s t r i n ii:, 1, P

:;; cudo_ l cnr;th);
da tu :1_ l oor:

i f ::> r cs"' n tr. cl_s tr i n ::"'" :::s uh.st r (pt r- >st r inn;, 1, o tr-> st r
in'.;_1£-nr,th) then ":Oto :ic:;ti.w"'._futz;

fou nC"l=l;
go to return_la~el;

da tum_fu tz:
pred=ptr;
~lich=ptr->succ;
i f ~ 1 i ch =nu 1 1 o then 'lo;

ptr=r:lich;

r:o to rPturn_lali~l;
cnr!;

~o to iatur.1_lo0r;

/***
**********/

encl dsf'l_chain;
Ear

-208-

d s r:i_ ta h 1 r. r> 1 1 OG/01/70 1758. 3 r~t
~lon

dsrn_ta!)lc: proc (dsr.i_arr:s_ptr);

/***
*********/

dcl data_se~ arra {area_sizr) hasr~ (sP~_ntr);

r~cl 1 dsm_arr;s hriscrl (ds11_21r'.""s_ptr),
2 urper_bounrl flxcrl ~in (17),
2 ci fixed hin (17),
2 op char (1),
2 <li char (1),
2 <' char (1),
2 ddrtr ptr,
2 d_or_q_ptr (uppPr_bounrf) ptr,
2 rcturn_ptr (uppr.r_hound) ptr;

dcl 1 quart based (quart_ptr),
2 Ir fixed ,in (3S) initial (0),
2 length fixed hin (35) initial (1),
2 order fixerl hin (35) initiul (1),
2 cent char (32) initial (data_tyrH~),
2 P<'nt ptr initi<'l (scr:_ptr),
2 tent fixed hin (35);

dcl 1 quart_rroner hased (quart_ptr),
2 qid fixed hin (3S),
2 qlen~th fixed hin (35),
2 qorrler fixerl hin (35),
2 qcent (qorrlf'r) chrir (32),
2 qprnt (qorrler) ptr,
2 qtent (qlen~th,nnr~er) fix~~ hin (35);

dcl 1 rsrudo_strinp-.,_urrciy '1asNI (str_ptr),
2 pseudo_l~n~th fixrrl ~in (35),
2 inrut_or_return_strinr: r.'inr (rnax_len!".th);

dcl 1 type basrd (type_ptr),
2 dsm_narnc ch~r (lG),
2 data_typr char (32),
2 tab_off offs 0 t (rlato_Sf'~),

2 num_entrics fixrd '"1in (35) initial (in_lPn),
2 max_lrn1-'"tr fixr?d hin (35) initi~l (in_m2lx);

cicl 1 table (in_len) bas<'rl (tnh_off),
2 strinp,_len~th fixrrl hin (35),
2 strin~ char (rnax_lcn~th);

-209-

dcl 1 mt_quc:irt static,
2 r.1 t i r' f i x r. rl ~ i n (3 5) i n i t i Cl 1 (0) ,
2 mtlen~th fixr.rl hin (35) initial (0),
2 mtordPr fixe<l hin (35) initial (1),
2 mtcP.nt char (32)#
2 mt pc n t p t r ;

dcl riresentcd ~trinr-; char (1Gn vnryinr-: static;
declare exp char{l) varyinq;
dcl (dirnarne char {1G2), ~n<1rn~ r.''<ir (3?.), .rrrF'r.h fix~--! hin (3
5)) static;

dcl (scr;_ptr,typ~_ptr,str_ptr,ntFlrt_ntr} ptr st<:itic;

dcl code fixerl bin (17};

o c 1 (a rl d r, d i vi c e; su ~st r, mu x) b t: i 1 t i n;

dcl dsm_ar~s_ptr ptr;

dcl first_off offset (datn_sr>~) based (se~_ptr);

ci c 1 (, i i , tab_ 1 en, i n_ 1 en, i n_ma x, j j , a re a_s i z c>, c !i a r _ 1 en) f i x c r!
bi n (3 5) stat i c;

cicl return_label label (r_,s_,rl_);

/***
**********/

brr; i n_dsm_tab 1 e:
scg_ptr=ddptr;
tyrc_ptr=first_off;
if subs tr (op, 1, 1) ="D" th~r. r;n to rr;F't_rli1tu"'; /* i nrut i

s refnos */
else if suhstr(on,1,1)="~" thr>n "':0 tn "'"Ot_rf'fn0; /*

clata strin~s arr input */
0.l 5C' if suhstr(oD, 1, 1) =11 S" th"n r:n t0 succrssor;

elsr: if substr{op,l,1)= 11
:•

11 thrn "'"0 t0 nf'•.·f rlcita typr;
f.!1 sr. do ii = 1 to urrH"r_ho1mr!; - -

rPturn_ptr(ii) =<:v!.-lr(mt_quart);
mtcent='" 1

;

rntpent=drlptr;
end;

return;

/***
********/

-210-

nf'w_da ta_t Ylif':
do ii = 1 to u;>pcr_~ound;

call hcs_$fs_~ct_p~t~_na~r(se~_ptr,~irna~r,~rC"r.h
, enari1C·; coc~c);

ca 11 i oa (1".·1'10t is t!-r: nur.'J""r nf t;:i°Jl" 0ntr i "S in
data typr -0>-a ?-/~1 su~~tr(dirna~~,l,~rrc~),en2~0);

call rcad_list_(in_l,.n);
call ioa_("w~1at is riux lr>n";ti.-. for ch<>r<'.!ctrr strinrr

s in -a>-a? ..,/ 11 ,su~strCdirnu'TH',J,r:rcch),enEir·1n);

,f)+l));

call r<'<Jd list (in "1i1X);
t.i r c 0_s i z P -;rn.:i x (T. 0 2 1,; 11; + i n_ l ~ n* (l +cl iv i rl" (i n_ 11.:i x, r~, 3 5

r.Cl 1 ·1 i1r c.::i_ (;i rrl:l_s i 7.<', srro:_p tr);
.:il lociltf' type# S<'t (tynf""_ptr) in (riatci_se,,-);
allocate t0hl0 s0t (tn~_off) in (rilt2_sr,,.);
nU!!l_rntrics=O;

C..::i t<i_ tyrr=cn0~1c;
dsr.i_nu111c="dsr.i_t:<J11 l <' 11

;

end;
rrturn;

/**************w**
************/

get_da tum:
do ii = 1 t'J urmrr _bound;

if exp="[" th"n n=rl_or_q_ptr{l)->qtent(ii ,ci);
else rn=d_or_q_ptr{ii)->t~nt;
if ({m<=nu~i_entrics) ~ Ctahlr>(m).strin~_l~n~th-=-1

)) then do;
return_lohcl =rl_;
go to strin~,__alloc;

d_:
pseudo_len~th=tahlr{m).strin~_l~n~t~;

in r>u t_o r _ rP tu rn_s tr in": =s u i., st r (t 0 h 1 fl(11) • st r i n ":, 1,
pseudo_l enr,th);

end;
return;

if di="f1 11 thPn tahlc(rn).strin.("'_lC"na:tl"'=-1;
Pnrl;
els<' rio;

c!sm_;:ir~s. rr>turn_ptr(ii) =aridrCrnt_quc:irt);
111tccnt=datu_tyr~;

rntpf"nt=scr;_ptr;
end;

/************************************/

-211-

r;et_rr.fr.o:
do ii = 1 to urrPr_bound;

str_ptr=d_or_q_ptr(ii);
pres en ter!_s tr in p: =s uh st r (i W'lU t_o r _r Pt urn_

strinr,,1,rseudo_len~th);
do jj = l t0 n•ir1_P.ntriPs;

if ta~lf'(jj).strin~_lf'n~th-=-J
thf'n

if nres<'nterl_strin~=
s u b s t r (t a h l e (j j) • s t r i n r: , 1, t Cl "1 1 f' (j j) . s t r i n rr._ 1 P n g t Ii) t h P n o; o t
o _g rq;

t_quart);

th=pseudo_length;

end;
if di="I" thP.n "'.O t0 ins<'rt;
elsr- io;

insPrt:

dsr1_a r""s. rPt u rn_ot r(i i) =arlrl r (.,,

rntr.crt=dat2_tynP;
mt pent =s "''_r> tr;
go to i_enr!;
end;

nurn_entries=nur:i_entriE"s+l;
talile(num_entries).strinri:_len~

tahlr.(nu~Lentries).strin~=suhs
tr(input_or_return_str ing, l,r>seudo_l enr:tf->);

1;

return;

j j =num_en tries;
g rq:

r_

return_lahel=r_;
~o to ~uort_~lloc;

tr.nt=jj;
i f rl i = "D" t '1 f' n t v "11 F' (j j) . s t r i n ri:_ 1 f> n ri: t '' =-

_cn<l: en-1;

/***
**********/

successor:

i, c i) ;

do ii = 1 to urprr_hound;

s_

if Pxr="F" t..,~n m=d_or_q_ptr(l)->qtent(i

elsr '71=c'_or_q_ptrCii)->tent;
rf'turn_luhPl =s_;
go to ~u~rt_alloc;

if m>nur:i_cntries I -n<O t'"'cn rlo;
rP.turn_ptr(ii) =a-i-ir(rnt_quart);

S l OOP;

-212-

s l oor:
m=r.i+ 1;

fre~ qu~rt_ptr->qu~rt;

~tcent=dat~_typA;

rntrcnt=sc~ ptr;
~o to succ=enrl;
enrl;

if rn>mn_cntries ti...en l 0 np-:th=O;
i f t a h l ~ (m) • s t r i n !".:_ 1 e n I': t h = - 1 t h ~ n ~ o t 0

t~nt=m;

suc:c_enci: enr!;
rPturn;

/***
**********/

quc:irt_al loc:
c:i l I o c c:i t e q u <i r t s ,._ t (q u <l r t_ Pt r) ;
pent =s cr;_pt r;
cent =dt:1 ta_ typ~;
r~turn_ptr(ii)=qu~rt_ptr;
go to return_lc:i~~l;

str ini:;_al loc:
al locate pseucio_strinP:_array set (str_ptr);
re tu r n_p tr (i i) =s tr _Pt r;
~o to r~turn_la~el;

/***
**********/

end dsm_table;

-213-

r S!~l_\'10,. p 11 06/03/7~ 1014.5 erlt
~·Jed

rsm_wq: rrorerlureC~rg_ptr);
rleclare 1 args haserl (ar~_ptr),

2 upper_hounrl fixerl hin(35),
2 op character(l),
2 ql_ptr (limit refer (upper_~ound)) pointer,
2 rl_ptr (limit refer (upper_bo~nd)) pointer,

/*Mot used here*/
2 q2_ptr (limit refer (upper_hound)) pointer,
2 r 2 pt r (l i m i t ref e r (up re r _hound)) po i n t er,

/*Not userl here*/
2 eo,uiv_ntr (limit refer (upper_'1ound)) rointe

r, /*Not used here*/

er;
2 return_arp; (1 imit refer (urper_bound)) point

declare 1 quart hased (lptr),
2 ID fixed hin(35) initial (0),
2 length fixed hin(35),
2 order fixed hin(3S},
2 cent(alloc_orrler refer (order)) char(32)
2 rent(alloc_orrler refer (order)) pointer,
2 tent{alloc_length refer (length),alloc_orrler

refer Corder)) fixerl hin {35);
rleclare 1 ent_vector haserl (rptr),

2 wirlth fixed bin(35),
2 names(alloc_nrder refer {width)) char(32);

rleclare J int_sort_quart,
2 sirl fixerl hin(35) initial(O),
2 slenp;th fixed hin(35) initial{O),
2 sorder fixed hin (35) initial(20),
2 scent(sorrler) char(32);

declare 1 feht based (eq_ptr),
2 num fixed hin(35),
2 newcent (1 refer (num)) char(32);

rleclare return_place lahel (rnajor_loop, in_!llD_op, i
n_P_op, in_C_or_l,in_C_op_2);

declare op_label lahel (UID_operate,S_operate,P_op
erate,X_nperate,Z_operate,~1_nperate,

E_operate,n_operate,O_oper
ate,C_operate);

declare q_al loc_r label (q_al loc_l,q_CJ1loc_2,q_al1
oc_3,q_alloc_4,q_alloc_5,q_alloc_6,q_alloc_7,q_alloc_8);

declare (gen_nurpose_ptr,new_otr,free_ptr,eq_ptr,t
ptr,cptr) pointer;

declare (lptr,rptr,tenp_ptr,teMp2_ptr,temp_lptr,te
"1P_rptr) pointer;

d e c lc1 r C' (n u 1 1 , r1 Cl x) h u i 1 t i n ;

-214-
decl are corres(<;lPnp;th) fixerl bin(35) hasec1 (gen_r

urpose_ptr);
c1eclare token(slength) fixed hin(35) based (~en pu

rpose_ptr);
rlecl~rP int_cent(20) char(32);
rleclare alloc_cent(20) char(32);
declare cent_fla~(20) fixerl initial((20) 0);

rleclare tenp fixerl ~in(35);
declare (n_sw,no_sort_sw) fixerl hin (1);
declare (step_sw) fixed bin(l) initial{Ob);
rleclare (lplace,rplace,oplace,tplace,alloc_or~er,a

lloc_length,entry_count) fixerl bin(17);
rleclare (slength,rrow,rcol,lrow,lcol,nc,nr,cl,lt,r

t,free_len,free_ord) fixerl hin(17);
rl e c 1 a re (i i , j j , k k, 1 1 , mri, i , j , l i rn i t , o co u n t, pl ace, ch u

nk) fixerl hin(l7);
rleclare (1 len.r>;th, rlength, larder, rorder, l_new_orrler

) fixerl bin(17);

if arP,s.op="U"largs.oo="l"largs.op="D" then op_lah
el=lJID_operate;

if args.op="P'' then 011_lahel=P_operate;
if arr-;s.op="S" then op_label=S_operate;
if args.op="X" then op_label=X_operate;
if args.op="O" then op_label=O_operate;
it ar.r;s.op="C" then op_label=C_operate;
if ar.!';s.op="E" then op_lahel=E_operate;
if ar~s.op="r.1" then op_label=r~_operate;
if ar~s.or="Z" then op_label=?_orerate;
if args.op="0" then op_label=n_operate;

do kk=l to ar~s.upper_bounrl;
if ar.P;s.op="l'"lar.r.;s.op="l"largs.op="D" then go to

no_set_ptrs;
lptr=args(kk).ql_rtr;
rptr=ilrgs(kk).q2_ptr;

no_set_rtrs:
return_place=major_loop;
r;o to op_l abel;

quart_alloc: allocate quart set (temp_ptr);
go to q_a l 1 oc_r;

[_operate: alloc_order=orrler;
allocate ent_vector set(args(kk).return_arg);
do i=l to alloc_orrler;

il r ~ s (I: k) • r e t u r n _a r g - > n a r'l e s (i) = c e n t (i) ;

-215-
end;
:i;n tr1 return place;

Z nper,1te: ,c;r;;s (U). rcturn_clr~=l ritr
r~() i-::J u-, nr..-ler;

;; e n t (i) = n u l 1 ;
E"' r, ,.~ ;
.r;n tn rPturn_rlncc;

i ~-ope r n t c : a r gs (k k) . r e t u r n _ n r o; = l rt r ;
if wicith =nrrler then rlo;

end;

c,111 r:s_errorSrr(103,"'1", lritr,rC"Jtr);
,1rgs. return_.lrg(kk)=nul l
.r:o to return_pl.lcc;

,Jo i = 1
if

to nrrlr>r;
n "'r1 e s (i) = 11 ,~~ 11 tl-ien cent(i)=names(i);

f' n 0;
~o tn return nlace;

O_opercite: if 1:irlth =orrler then dn;
call GS_error$rr(103,"0", lrtr,r:-itr);

null answer: args.return_arg(kk)=null;
~o to return_place;

end;
s l en i:i; th =or rl er ;
al loc_nrrler=slen~th;
allocate ent_vector set(cptr);
.1llncnte token set(trtr);
j j = 1 ;
.lo r111=l tn order;

if nrir1pc,(r·rn)=",Q:" then cptr->nf;:ir1es(111rn)=ct:>nt(r1•11)

c l s e c r t r - '> nil r 1 e c; (!'1''1) =names (1'111) ;

if n,11cip5(1:1,n) ="" then rln;

en1;
c n ri ;

t pt r - > token (j j) =~ir~1;
jj=jj+l;

if jj'>J then allnc_orrler=jj-1;
else ~n tn null_answer;
al loc_len~th=lenr;th;
n_al lnc_r=n_al lnc_7;
r;o tn ouart al loc;

a_nl loc_?:tplace=l;
do Mm=l to nl loc_orrier;

te·-1r_r tr- >ccn t (rc1111) =cp tr-> n,:mes (t pt r- >token (r:v1)
) ;

t e rc1 p _ p t r - > pen t (nw1) = n u l l ;
cnrl;
do jj=l tn len":th;

r' '--)\•/:::: n~,;

e) then do;

-218-
i f tent(lplace,on1aceJ>rptr->tent\rp1ace,0µ1d~

if ar~s.or="U" then rlo;
rlo ocount=l to alloc_orrler;

temp_ptr->tent(tplace,ocount)=rptr
->tent(rplace,ocount);

enrl;
tplace=tplace+l;

enrf;
if rptr->length>rplace then rlo;

rplace=rplace+l;
go to neworder;

end;
else finish left: do place=lplace to lengt

h while(args.op= 11U"largs.op="D");
do ocount=l to alloc_order;

temp_ptr->tent{tpl~ce,ocount)=tent
(lplace,ocount);

end;
tplace=tplace+l;

enrl;
~o to stop_action;

enrl;
else rlo;

if ar~s.op="U"largs.op="D" then rlo;
rlo ocount=l to alloc_orrler;

temp_ptr->tent(tplace,ocount)=tent
(lplace,ocount);

enc!;
tplace=tplace+l;

enrl;
if length>lplace then rlo;

lplace=lplace+l;
.~o to neworder;

end;
else finish_ri~ht: rlo place=rplace to rptr

->length while(args.op="U");
rlo ocount=l to alloc_order;

temp_ptr->tent(tplace,ocount)=rptr
->tent(rplace,ocount);

ocount);

enrl;

enti;
tplace=tplace+l;

~nrl;

~o to stop_action;
end;

else do;
if orrler>nplace then do;

nplace=orlace+l;
.~o to check;

cnrl;
if arir.s.on="D" then go to nocopy_right;
rlo ocount=l to alloc_order;

tern p _pt r - > ten t (t p 1 ace , o co u n t) = ten t C 1 p 1 ace ,

-219-
end;
tplace::tplace+l;

nocopy_ri.i;ht: if lenr,th ... >lplace then do;

enrl;

if rptr->length>rplace then rlo;
rplace=rplace+l;
go to finish_riRht;

enrl;
else go to stop_action;

else <io;
lplace=lplace+l;
if rptr->length ... >rplace then go to finish

left;

en--l;
enri;

rplace=rplace+l;
~o to nev10 rde r;

stop_action: opl~cc=~lloc_length;
~lloc len~th=tplace-1;
if 0lloc_length=oplace then go to no_new_copy;
temo2_ntr=temp_ptr;
q_alloc_r=q_a11oc_2;
go to quart_alloc;

q_alloc_2: io jj=l to alloc_orrler;
te·1p_ptr->cent(jj)=cent(jj);
te:·1p_otr->pent(jj)=pent(jj);
r1 0 r1ri = 1 to a 1 1 o c _ 1 e n g t h ;

ter;ip_~ tr - >tent (mm, j j) =tern p 2_r> tr-> tent (i-ir~1, j
j) ;

enrl;
enrl;
alloc_len~th=oplace;

free temp2_ptr->quart;
no_new_copy:args(kk).return_arg=te~p_ptr;

go to return_place;

r_operate: if rptr=null then rr,n to get_first_elerient;
if rptr->length=O then ~n to get_first_element;
~lloc_orrlPr=orrler;
slength=alloc_nrrler;
if rptr->orcler--=alloc_order then rlo;

args.return_arg(kk)=null;

enrl;

call GS_errnr$pr(101,op,lptr,rntr);
~o to return_place;

allocate corres set (cptr);
rlo i i=l to alloc_or<ier;

cio jj=l to alloc_order;
if rptr->cent(jj)=cent(ii) then rlo;

cptr->corres(ii)=rrtr->tent(l,jj);
go to next_step_on;

enrl;
P,nrl;

C_operate:

-221-

eq_ptr=equiv_ptr(kk);
llength=lptr->leneth;
rlength=rptr->length;
rorrfer=rptr->order;
lorder=lptr->or1er;
if (lorder+rorder)~=feht.num then

call GS_error$p(105,"C",eq_ptr,nu11);

/* 1. put new bindings in int_cent */

j) ;

:lo i = 1 to lorder;
if neHcent(i)="!1" then int_cent(i)=lptr->cent(

else int_cent(i)=newcent(i);
end;

do j = 1 to rorrfer;
if newcent(lorrfer+j)="&" then int_cent(lorder+

j)=rptr->cent(j);
else int_cent(lorder+j)=newcent(lorrler+j);
end;

/* 2. sort left quart on cents in domain of larn~da (see thes
is) */

l sort:

nofill;

k=l;
sorrfer=l orr1er;
do i=l to lorder;

if cent_flap;(i)=llint_cent(i)="" then go to 1

do m=lorrler+l to lor~er+rnrrler;

end;

if int_cent(~)=int_cent(i) then do;
cent_flag(i)=1;
scent(k)=lptr->cent(i);
k=k+l;
go to j test ;

end;

,n;o to lnofill;
jtest: ~o j=i+l to lnrrler;

if int_cent(i)=int_cent(j) then do;
cent_fla~(j)=l;
scent(k)=lptr->cent(j);

end;
enri;

lnofill: end;

k=k+l;

cnntin: rlo i = 1 to (lorrler-1);

1 i end;

-222-

if cent_flag(i) = lfint_cent(i)="" then .e;o to

cent_ f 1 a g; (i) = 1;
scent(k)=lptr->cent(i);
k=k+l;
rfo j = (j+l) to lorrfer;

if int_cent(i)=int_cent(j) then do;
cent_flag(j >=1;
scent(k)=lptr->cent(j);
k=k+l;

enrl;
liend: enrl;

rlo i=l to lorrler;
if cent_flag(i)=O then do;

cent_flag(i)=1;
scent(k)=lptr->cent(i);
k=k+l;

enrl;
end;
rptr=addr(int_sort_quart);
return_place=in_C_op_l;
go to s_operate;

in_C_op_l: ~emp_ptr=return_arg(kk);
temp_lptr=temp_ptr;
rptr:;q2_;:>tr(kk);
do i = 1 to lorder;

jo j = 1 to lorder;
if temp_ptr->cent(i)=lptr->cent(j) then

temp_ptr->cent{i)=int_cent(i);
enri;

end;

/* 3. check right quart for need to sort */
rsort:

nof i 1 1 ;

k=l;
sorder=ror·ler;
rptr:::q2_ptr(kk);
rl o i = 1 o r ii e r + 1 to 1 o r rf e r + r o r -! e r ;

if cent_flag(i)=llint_cent(i)= 11
" then go tor

io j=l to lorder;
if int_cent{i)=int_cent(j) then do;

cent_ fl a g (i) = 1 ;
scent(k)=rptr->cent(i-lorder);
k=k+l;

enri;

p;o to mtest;
end;

~o to rnofill;

mtest:

rnofill:

iend;

riend:

rio m=1+1 t:o 6M~-r+1or:·Jer;
if int cent(i)=int cent(m) then rlo;

cent_flag(f'1)=17
scent(k)=rptr->cent{m-lorrler);

enrl;
enr:l;

enrl;

k=k+l;

do = (lorrler+l) to (lorrler+rord~r);
if cent_flag(i)=llint_cent(i)="" then zo tor

cent flar,Ci)=1;
scent(k)=rptr->cent(i-lorder);
k=k+l;
.-!o 1n=i+l to lordcr+rorder;

i f i n t c e n t (ii1) = i n t c en t (i) t h e n rJ o ;
cent flag(rn)=l;
scen~(k)~rptr->cent(m-lor1er);
k=k+l;

enrl;
end;

end;
do i=l+lnr1er to lorrler+ror~er;

if cent_flag(i)=O then do;
cent flag{i)=l;
scent(k)=rptr->cent(i-lorrler);
k=k+l;

end;
end;
Jptr=rptr;

rptr=arldr(int_sort_quart);
return_place=in_C_op_2;
~o to S_operate;

in_C_op_2: ternp_ptr=return_arg(kk);
rptr=q2_ptr(kk);

then

n al iend;

1 ptr::i:temp_l ptr;
do 1 = 1 to rorr:1er;

do j = Clorder+l) to (lorrlcr+rorder);

end;
end;

if temp_ptr->cent(i)=rptr->cent(j-lorder)

rptr->centCj-lorrler) = int_cent(j);

.il loc_orrler=l;
do i = 1 to (lorder-1);

i f 1 Pt r - > c en t C i) = 1 pt r - > c en t (i + 1) then go t

else if lptr->cent(i) ... ="" then do;
alloc_cent(alloc_order)=lptr->cent(i);
alloc_order=alloc_orrler+l;

en

;

o ariend;

o ariend;

en

;

q a 11 oc 8 : - -

-224-
enrl;

aliend: end;
if lptr->cent(lor·fer-l)"'"=lptr->cent(lorder) th

if lptr->cent(lorrler)"'"=" " then rlo;
alloc_cent(alloc_orrler)=lptr->cent(lorrler)

alloc_ordcr=alloc_order+l;
end;

l_new_order=alloc_orrler-1;

do i = 1 to (rorder-1);
rlo j = 1 to 1 new order;

if alloc_cent(j)=rptr->cent(i) then got

enrl;
if rptr->cent(i)=rptr->cent(i+l) then got

else if rptr->cent(i)"'"=" "then do;
a 1 1 o c_c en t (a 11 oc_ or rl er) = r pt r- >cent (i) ;
alloc_orrler=alloc_order+l;
encl;

ariend: end;
if rptr->cent(rorrler)"'"=rptr->cent(rorrler-1) th

if rptr->cent(rorrfer)""=" " then do;
alloc_cent(alloc_orrier)=rptr->cent(rorrler)

alloc_order=alloc_order+l;
enrl;

alloc_order=alloc_nrrler-1;
alloc_length=rlength*llength;
teMp_rptr=temp_ptr;
q_a11oc_r=q_alloc_8;
~o to quart_alloc;

new_ptr=temp_ptr;
do i = 1 to alloc_orrler;

nevJ_ptr->cent (i)=al 1 oc_cent (i);
end;

!o = 1 to lorrler;
if rptr->cent{l)=lptr->cent(i) then cl =i;

enrl;
begin_compose:

1 rov,r, rrow, nr=l;
ro\·J_ i nc r :

if lrow>llengthlrrow>rlength then do;
nr=nr-1;
~o to return_sequence;
end;

if lptr->tent(lrow,cl)<rptr->tent(rrow,1) then do;

- 2 2 5-
1rov-1=1row+1;
?:o to row_ inc r;
end;

if lptr->tent(lrow,cl)>rptr->tent(rrow,l) then do;

r rn1.,1= r rov1+ 1;
p;o to row_incr;
end;

one_compose:
lcol,rcol,nc=l;

1 r _COfllJ'):
i f l pt r- >cent (1co1) = r pt r- >cent (rco 1) I 1 pt r- >cent (1

col)= 11 11 then rio;

1);

ncr_O;

en

lcol incr 0:
1co1 = 1 co 1 + 1;
if lcol>lorder then 0o;

new_ptr->tent(nr,nc)=lptr->tent(lrow,lcol-

nc=nc+l;
eo to riP,ht_finish;
enrl;

else if lptr->cent(lcol)= 11 11 then go to lcol_i

else if lptr->cent(lcol)=lJ')tr->cent(lcol-1) th

if lptr->tent(lrow,lcol)=lptr->tent(lrow,1
co 1-1) then

1);

go to lcol_incr_O;
else do;

1 row=l rov1+ l;
go to rov1_incr;
end;

else do;

end;

new_p tr-> tent (n r, nc) = 1 n tr-> tent (1 rov1, 1 co 1 -

nc=nc+l;
,go to 1 r _comp;
enrl;

else if lcol>=lorrler then rlo;
lcol=lcol+l;
if lptr->tent(lrow,lcol-1) =rptr->tent(rrow,rc

ol) then ~o to ri~ht_finish;

1);

else rlo;
new_ptr->tent(nr,nc)=lptr->tent(lrow,lcol-

enrl;

nc=nc+l;
go to ri~ht_finish;
enrl;

-226-
el se if lptr->cent(lcol)=lr>tr->cent(lcol+l) then

if lptr->tent(lrow,lcol)-=lr>tr->tent{lrow,lcol
+ 1) then do;

1rm!=1 row+ 1;
go t0 rm·J_incr;
enrl;

else rlo;
l col = l col + 1;
go to lr_cornp;
end;

else if rcol>=rorder then rlo;
rcol=rcol+l;
if lptr->tent(lrow,lcol)-=rptr->tent(rrow,rcol

-1) then go to left_finish;

1);

else do;
new_ptr->tent(nr,nc)=rptr->tent(rrow,rcol-

end;

nc=nc+ 1;
~o to left_finish;
enrl;

else if lptr->tent(lrow, lcol)-=rptr->tent(rrow,rco
l} then do;

if lptr->tent(lrow,cl) < rptr->tent(rrow,1} th
en r rm-v= r row+ 1;

else lrow=lrow+l;
.~o to row_incr;
end;

else r:fo;

right_finish:

new_ptr->tent(nr,nc}=lptr->tent(l ro\.,r, lcol };
l co 1 = 1col+1;
rcol=rcol+l;
nc=nc+l;
go to lr_cornp;
end;

if rcol>rorder then do;
nr=nr+l;
if lptr->tent(lrow,cl} < rptr->tent(rrow,1) th

en r row= r rO\"!+ 1;
else lrow=lrow+l;
.~o to row_incr;
end;

else if rptr->cent{rcol)= 11
" then rlo;

rcol=rcol+l;
go to right_finish;

enrl;
else if rptr->cent(rcol)=rptr->cent{rcol+l) then

if rptr->tent(rrow,rcol)=rptr->tent(rrow,rcol+
1) then do;

rcol =rcol+l;
go to ri~ht_finish;

) then

enri;
else do;

-227-

if lptr->tent(lrow,cl)
rrow=rrow+l;

else do;

else lrow=lrow+l;
go to rovJ_incr;
end;

< rptr->tent(rrow,1

new_otr->tent(nr,nc)=rptr->tent(rrov:, rcol);
nc=nc+l;
rcol=rcol+l;
~o to right_finish;
enrl;

left finish:
if lcol>lorrler then do;

nr=nr+l;
if lptr->tent(lrow,cl) < rptr->tent(rrow,1) th

en rrow=rrow+l;
else lrow=lrow+l;
~o to row_incr;
enri;

else if lptr->cent(lcol)=" " then rlo;
lcol=lcol+l;
go to left_finish;

enrl;
else if lptr->cent(lcol)=lrtr->cent(lcol+l) then

if lptr->tent(lrow,lcol)=lptr->tent(lrow,lcol+
1) then do;

lcol=lcol+l;
go to left_finish;
end;

else rlo;
1 row=l rov;+ l;
eo to row_incr;
end;

else do;
new_ptr->tent(nr,nc)=lptr->tP.nt(lrow, lcol);
nc=nc+l;
lcol=lcol+l;
~o to left_ftnish;
end;

tplace=nr-1;
free temp_lptr->quart;
free te1;1r>_rpt r- >quart;
return_pl ;:ice=ri1ajor _loop;
go to stop_action;

-228-

$_operate: slength=length;
if rptr=null then go to skip_l;
if orrler~=rptr->orrler then rlo;

args(kk).return_ar~=null;

end;

call GS_error~pr(lOl,op,lptr,rptr);
go to return_olace;

/*Error here is unequal orders in s0rt*/
skip_l: alloc_length=length;

alloc_order=order;
no sort sw=lb;
allocate token set (tptr);
allocate corres set (cptr);
if rptr=null then rlo;

do ii=l to alloc_order;
co r res (I i) = i i ;

t?nrl;
~o to skip_2;

end;
do ii=l to alloc_orrler;

do jj=l to alloc_order;
if rptr->cent(ii)=cent(jj) then do;

cptr->corres(ii)=jj;

end;

if ii~=jj then no_sort_sw=Ob;
go to one_corres_1own;

end;
args(kk).return_arg=null;
fr~e cptr->corres;
free tptr->token;
ca l 1 1 ~ S _er r o rS pr (1 O 2, or>, 1 pt r, r pt r) ;
,~o to r~turn_place;

/*Error here is inconsistant entries in the two cent tuples*
I
one_corres_down: end;

/*Set up the tptr->tokens*/
skip_2: do ii=l to alloc_length;

tptr->token(ii)=ii;
end;

I * ~, 1 a i n so r t * I
if no_sort_sw then go to sort_done;
do ii=l to alloc_length;

do jj=l to (alloc_length-1);
n_sw=O;
do mrn=l to alloc_orrler;

if tent(tptr->token(jj),cptr->corres(m
m))>=tent(tptr->token(jj+l),cptr->corres(mm)) then do;

temp=tptr->token(jj+l);
tptr->token(jj+l)=tptr->token(jj);

t pt r - > token (j j) =temp;
n sw=l· - ,
go to pop_extra_loop;

-229-

end;
end;

pop_extra_loop: end;
if n_sw=O then go to sort_done;

enrl;
sort_done: q_a11oc_r=q_alloc_4;

~o to quart_alloc;
q_a11oc_4: do ii=l to alloc_orrler;

temp_ptr->cent(i i)=centCcrtr->corres(i i));
temp_ptr->pent(ii)=pent(cptr->corres(i i));

do jj=l to alloc_length;
temp_ptr->tent(jj, Ii)=tent(tptr->token(jj)

,cptr->corres(i i));
end;

enrl;
free tptr->token;
free cptr->corres;
args{kk).return_arg=temp_ptr;
go to return_place;

major_loop: enrl;
return;

error: end;
rn~

Tur:

rs111_q:

-230-

<w> rsr:i_q. p 11

nroccdurr(ar~ntr);
declare 1 cir~s hcisrrJ (ar~ntr),

2 bound fixed 'lin(35),
2 op char(l),

Of/02/70 2~35.7 ~~t

2 q 1 p t r (1 i r' i t r c f P. r (b o u n '1)) p n i n t t:> r ,
2 rlptr (lirit rr.ff'r (bou!i~)) pointer,
2 q2ptr (lir:iit rr:fpr (bounr')) point~r,
2 r2ptr (1 irnit rrfcr (hounr1)) pointer,
2 eptr (l ir·,i t ref Pr (bourr!)) pointl'?r,
2 retptr (lidt rPfrr (bnunrl)) pointf"r;

rleclare mgr$cq i:ntry P.xtcrnal rcturns(pointnr);
declar~ 1 quart ~~s~rl (qu~rt_ptr),

2 ID fixed ~in(3S) initicil(O),
2 1 en5T,th f i xC'rl t,i n(3:;),
2 or~cr fixrrl ~in(3S),
2 cPnt(alloc_orrfP.r r~frr (or'Jr>r)) c 1·,ar(32),
2 pent(alloc_orrl~r r~fPr (or~Pr)) n0lntrr,
2 t e n t (a 1 1 o c _ 1 i: n ri: t " r !"! f " r (1 P n n; t ~-) , a 1 1 n r _ o r ,, "' r

r~fer (ord~r)) fixed hin(3S);

)) ;

) ;

)) ;

declare osrt hit(1~) '1<Jsrd (i;C'n_purn"s0_ptr);
declar~ new_arr.a cirr0 (arra_siz,.,) i-)as~i:-1 (rf'trtrCkk

declare old_arco 2rc;::i Car0.1_sizr:) based (rJ!'"'tr(kk)

declare old_area2 ~r0n (areD_siz0) haserl (r2ptr(kk

dccl<Jrc 1 header '1i1s"d (hdr_ptr),
2 rsn_nar.H:~ char(15),
2 name_r char(32),
2 quart location offsf"t Cold area);

declare (alToc_lrnpth,allo~_or~~~,~rr2_size,jj,!·~,
l i nil t, rn;n) f i x ec ~ in (1 7} ;

declc:ire (arp:rtr,r:0n_purrosf'_ptr,.,dr_ptr,nn1·1_arrrs_D
tr,quart_ntr,usr) pointer;

if op="~J 11 tf,en ~n to no_cu l 1;
1 i ri i t =h0unrl;
allocate i1rP;s srt (:if\ 1.-.'_ur""s_rtr);
new_~r~s_ptr->or=or;
if or="R" tr~n rl0;

-:lo k k = 1 to 1 i r' i t;
if qlritrCkU ... =nul l thrn n"\·J_ar,..~_ptr->r"tr

tr(kK)=qlptr(kk);
c 1 s e i f a d -r r c 1 (r J p t r (k U , r 1 :- t r C k k) - > o s i:- t) -

> rsrn_naric ... ="rs:n_q 11 then 1o;
ncw_a rr;s_pt r-> r "t ;-'tr (k !-) =rn"; r$ cc:(r J rit r(

kU);

end; -231-

else n~v!_.::irr::.>_Ptr->rf"'t;"'t1·(k''.)=a~lr1 rcl (rlrtr
(k U, r 1 pt r (k U - '> os ct) -> qu u rt_ l ncil ti on;

end;
r,o to no_co l l ;

end;
c! 0 k k = 1 t 0 l i ['' i t ;

if qlptr(kk) ... =null :~1~n ~0;

ne\·;_a rP;s_n tr-> q 1 f"I t d k k) =q 1 rt r (k k);
~n rl;
if q2rtr(kk) =null t"~n ~·0;

n e v1 _a r r: s _ l' t r - > q 2 n t r (k k) = ri 2 :i t r (k k) ;
r nd;
if rlrtr(kk)"""=null t 1~('r do;

nc\1_ar":s_r>tr->ql:;tr(kk)=noint0r(ari(lrr>l (rlp
tr (kk) , r 1 pt r (k k) - > o s ct) ->quart_ l or.:<l ti 0:-1, o 1 r _arr <t) ;

end;
if r2~tr(kU ... =n!lll t 1 f'n '1('1;

i f <vi d r (' l (r 2 r t r (k I ·) , r '.', t r(k I -) - > o s " t) - > r s ri_

nc:.1.1c ... =" r sr.1_q" t 1---f'n
n <'\v_.:u ri:s_p tr-> <l '.2...., tr (k k) =m n: r ~ cri (r 2,., tr (1<.

k)) ;

P. l s e n <'':J_ i1 r o: s _pt r - > q 2 :-i tr (k k) = r> n i .., tr: r (a +-1 r"
1 (r 2 pt r (k Id , r 2 pt r (k U - > o s c t) - > q u 2 r t_ 1 or. v t i or, n l r _a r ca ") ;

end;
n cw_u r ";S_i1tr->r1 r>t r(k I:), n c·,;_a r "'S_P tr-> r ~ n tr (k k

),rie1·1_<:ir~s_ntr->rctntr(kk)=nul l;
nc\·;_a r.":s_p tr-> er tr (kk) =e rtr (k U;

end;
ca 11 r srn_wri (n c·.-;_a r rrs_r tr) ;

no_ cu 1 1 : rJ o k k = 1 to l i r' i t ;
qu~rt_ptr=nr11_~r~s_ptr->rrtrtr(kk);

a rca_s i zr=d iv i ('c (qun r t_pt r-> l ~nri: t"* qua r t_ot r->
ord£r+1050,1024,17,C)*lC24;

cal 1 urca_(arcu_s i zr, rc'trt,r(kk));
allocate header in (ne11_arra);
r sm_narne =" r sr.Lq";
if op="M" then p.:o to skiriit;
<:illoc_lcngth=qu~rt_Ptr->lrn~th;

J 11 oc_order=quci rt_pt r->or·1r. r;
.-:'llocutc qu<Jrt s~t (us~·» in (nr1·1_areri);
~ddrcl (rctr>tr(kk), rf't11tr(kk)->osPt)->qu0rt_l 0c

.:ition=offset(usr.,ne\J_arf'u);

) ;

sldpit:

end;

do jj=l to i1llnr._orrlrr;
use->c:r>nt(jj) =quvrt_ntr->c"nt(jj);
us"->pnnt(jj)=qu~rt_ptr->prnt(jj);
do rrn=l to 2lloc_lPnr-t1-;

cnn;
end;

usc->t0nt(rn~,jj)=qu~rt_~tr->t~nt(~r,jj

if op ... ="q" then fr0c qunrt_ptr->quart;

free new_ar~s_ptr->ur~s;
end;

-232-

<s>trec.pll OC/02/70 1244.0 e~t
Tue

PRELIMINARY VERSION
trcc_rcstructurc: procedure (dsr~_arri:s_ptr-);

) ;

clcl datu_seg area (arc~_siz~) basrd (se~_ptr);

dcl 1 quCJrt 1.:iosed (quiirt_ptr),
2 i~ fix~d binary (35) initial(O),
2 lcn~th fixPrl ~in (3~),
2 order fixrd bin (3S) initia1(2),
2 cent (2) char (32) ,
2 pent (2) [)tr,
2 tent (alloc_lenn:t'' rr.fcr (l~n,..th},2) fixr·i hin (35

c.lcl 1 dsm_ar-;s h0sccl (dsri_'-lrn;s_ptr) ,
2 uppcr_bound fix(~rl i,in.::ry (35) initialCl),
2 op ch<:1r (1) initi<1l ("~'"),
2 di ch<:Jr (1) initit:il (" "),
2 e char (1) initial (" "),
2 d_or_q_ptr ptr,
2 cklptr ptr,
2 return_ptr ptr;

dcl 1 type based (tyre_ptr) ,
2 dsm_n~mc char(lG),

2 rl~ta_tyf)c char (4),
2 num_frce_cells fixrrl !-,Jn (35),
2 nun1_entrics fixed ~in (35),
2 ma x_ 1 P. n .~ th f i x C" rl h i n (3 5) ,
2 first_entry offsrt (rlata_s~~),
2 succPssor_chain_hcad nffs~t (data_s~~>;

d c l l i t ~n1 b <is rd (i n t r) ,
2 lntr nffsrt (~at~_Sr"),
2 rptr offset (dat~_sr"),
2 succ offsrt (dat0_srri:),
2 flag fixed ,innry (~S),
2 rrfno fixrd hin (35),
2 strin~_structur0,

3 strinr-;_leno;th fixrrl hin;iry (35),
3 strin~ character (max_l~nn:th);

dcl 1 area_fakc hased (fakr_ptr),
2 first_off ~it (lt) unali~ne~,
2 tprewq_fak~ bit {18) unal i~nrrl,
2 cur r _ 1 c n b i t (18) u n a 1 i r-; n "r,
2 qccudm_fake bit (18) unc.il Jo:rr•(',
2 nf'x t_offset !-., it (18) una 1 i rr:nr-:-1;

-233-

de c l a r e (n f' vJ_ n t r , x f ~ r , n c \'J _ h d r) p o i n t I'.' r ;
declare (ncxt,t~np_offs,.,t) of<-s,.,t (dat2_s<'~);

dee la re (n cvJ_ i t cr.1_0 ff s r> t, l ;is t_n <'','/_ i t f''T1_0 ff s" t) off
set (nev1_dd_t:ir0a);

decl()rf' (left_s.:iv,.,,2nst,1rr) (35) offsr>t (rlCJt;->_Sf'"'");

declare (off_hdr,fllloc_len~t~,~siz~,qplac,.,,lPv"l,c
urn,nn,expo) fixed hin(17);

declare (stem,nu..,,t..,,.,r) ('~5) fixP-1 hin(35);
declare nc\·1_dd_ar0" tlr('la (arc~_sizr) bCls"'rl (ne\·:_r'rl

_ptr);
cff'clarr> 11uck (35) l;il-,r,l (tnr>_of_tr(',.,,CC'i 1_r,.,1.•1r,fl

oo r _recur) ;

tr) ;
declare nc1;1_q_arc;-1 clrrn (arr,.,_sizr>) basr>rl (n1·,,,.1_q_p

declare (\'/(lir,input_nl<H::I") char(lGS);
rleclar~ err_corlc fixrrl hin(l7);

u1 locate ds~_ar,~s s,.,t(nf'vt_ptr);
call hcs_$fs_s~arr::l-i_gr>t_wcli r(adrlr(wdi r),jjj);
call hcs_$r1ukr._sC';(v1r'i r,<'<:ita_tyrcl l"_r.s_nc\·J'~rl<'ltfl_

typel l"_GS_ne 1:1 11 ,101Jb,n~w_dd_ptr,crr_corlc);
if crr_code>O then ~o;

call iou_C"rrror hus occur~c' in t:ill0catinr; n,..w
seement for data type ""'4c:i.Filc error c0rlf'= 60.",

dat<:i_typc,crr_corlc);
call ioa_("\Jhen you :.;1is'1 to continur>, tytJf' any

thing and hit return.'');
ca l l i o s_$ r r: i1 cl_p t r(ad r1 r (i n pu t_p 1 a c P) , 1, j j j) ;

end;
cal 1 hcs_$~'-Jkf"_sco:,(\·1rli r,r'ata_tyrrl l"_convf"rsion_qu

art", c'a t .;:i_ t ypc I I "_conver s i on_qu.:i rt", JC 11 ~,
ncw_q_ptr,rrr_corlc);

if rrr_corlP>O t'1~n dn;
call ioa ("rrror '1.:is occurN1 in allor.<Jtinn: nf'v1

segment for conversion quart.");
call ioa_("Data ty!"1~ is ... 4a. FilP rrr0r corlP i

s, 4 o • ' ~c~ a t a_ t ~· p e , " r r _co rl r) ;
call i0<:i_(11 \lhi:n you 'tis'- t0 r:0ntinuf', tyrP 2ny

thinr, and hit return.'');
c a 1 1 i o s _ $ r 0 <:l ~ _ p t r (a rl r' r (i n n u t _ p 1 a c: f") , 1 , j j j) ;

end;
ty!)P_Ptr=arlr!rrl (rrlntr, r!rlptr-)fi rst_off);
nc1·1_hrlr=acldrrl (nr\!_rlr'_ptr,n"'vt_rlrl_ptr->fi r~;t_of'°);
a 1 1 o c_ l fl n .P; th =n w:1_~ n tr i <' s ;
q s j : <' = 2 *a 1 l o \- l <' r n; th+ J 0 ~ 'i + 2 S •
~s1zc=divirlcCijslzc, 1124,J7,r5•1n24;
call .1rru_(qsiz<',n<'\!_q_ptr);
ullocLJtc qurirl s('lt{qu.:irt_ptr) in (nC'\·J_q_ar,.,~);
pent(J),pcnt(2)=nul l;
cent(l)=data_typr;
cent(2)=dcJt.:i_ty11el l"_GS_n0\/ 11

;

,.,.,t:ir-n ntr-=011;-ir-t ntr:

-234-

oc.ic);
if rrr_code>O then rlo;

c<1ll io;) ("lllro:<Jl c'111 t" tr"r r0strur-t•1r'"' -n
3~i for old VCr!:.iOn Of 7'ut.J ty!J(' rlr")f'S n0t r'Xist. 11

);

cc:il l r.s_error~cr(!JG,"T",<lsri_na-,0.,nul l);
cr.d;
cull· cu_$ ptr _c.:111 (x f<' r, r.r>v1_pt r);

n ci·J_ t rf' r.: nu·nbe r (l) =a 1 10 r._ l 0 n,,. th;
next=succrssor_r:h;iin_h~u-';

strM(J)=10000J1J0~0S110~111J1111~1100010100~;
b c:; d: (]) = t n ;i_ of_ t r r- r. ;
or'l..-1cr=l;
lrvrl=l;
r;o t'.) ortir1 ;

opti1~1: /*proccdur0 (nu·1 11r.r,stnr-1) rl"turns C'ns\1r.r*/
if nur1'1r.-r(lr>vrl)=!'J t'·~r- ,-~o;

ffsct);

11 0;

<:i r. s \!" r (l e v r 1) =nu l l o;
r-; o t 0 11 '1 c I~ (l ~ \' r: 1) ;

r~nci;

if nur.iher(JP.v~l) =l then rlo;
allocate item in (nr\"1_dc_ar"a) SC't (nr.\/_ite...,_o

new_ i t c n_o ff set - > f 1 ii":= J ;
1 ci s t_n<'w_ it !'r:i_of f s <' t-> s ur":r, =nf'!· ·-it~,.,., _offs" t;
l a s t_ n r. v:_ i t ,_ .. ,_ 0 "' f s e t = n r· ·1 _ i t ('"'1 _ o f f s " t ;
<rn s VJ r r Cleve 1) = n r:: ;.: t ;
n r\''- i tf''Tl_o ff s rt - > 1 ~ t r, n ~v·_ i t f-!:1_0 ff s,... t - > r.., tr =nu

n "'"- i t rm_ '.1 f " r, r t - > r " fr: 0 = s t N1 (1 ,... v r 1) ;
t r. n t (q p l o c ", 1) = n " :·: t - > r (\ f n o ;
tent(qpl.1cr, ~) =nr\·1_i tl'.'"'1_0ffsr.t->ri:>fn0;
qpl ClCC'=qpl 2cr.+l;
if qplilcc=l t'"'rn rir.\•_h~r->S'.Jl'.'r:"SS"r_chr.iin_,.,rri.-1

=ncw_i tcm_offset;

<'nd;

tr.r1p_offs£>t=n~xt->su<:r.;
ncxt=tPmn_offs(".t;
~n to h~ck(l~v~l);

lr.vcl=levcl+l;
nLH~1 ~ C' r (1 c v ~ 1 } = rl i v i r 1" (nu ri I-, c r (1 r v r. l - 1) + 1, 7, J 7, '1) ;
f 1 Oil t c r =cl iv i 0r (n•1n~, r. r (1cvr1-1)+1, '.', J 7, r);
if flo~tcr>~loat(nunhcr(lcv~l),J7) then num~~r(l"V

c l) = n u n1 b c r { 1 e v c 1) + 1 ;
expo=rn~x_d~pth-lcvrl;

CUi~1=1;

de rn=l t~ ex110;
cur.1=cw:1* 2;

"nd;

-235-

·.:; tcnH l F":VC 1) =s tN1(1r.vr.1 -J)-(".u"';
back(level) =cei l_rrr.ur;
i;o to optirn;

ccil recur: lcft_save(levr,l)=ans\.'F'r(l0v"1);
answer(level-l)=ncxt;
tcmp_of fset=nrxt->su'":c;
ncxt=temp_offset;
nu r.1h er (1 c v e 1) = ci i vi rl" (nu nh~ r (l "v r-1 -1) + 1, ~, J 7, 0) ;
rxpo=~ax_1Pn~th-1cvrl;

r::u:·1=l;
rl0 nn=l to l"Xf"ln;

cu·-:i=cu''1*2;
~nd;
s t c~ (l ~ v f' l) =s t ,....,,., (1 r v,..., - J.) +cu -:i;
buck(lPvrl)=flo0r_rcr.ur;
r: c t o o p t i r· ;

floor rrcur: alloc<:ltl'! it<'"l ir (nr\:_cirl arr.J) srt (nf"\·J_itr'"~_of
fsct);

nevi i tcm 0ffset->fl0.r;=l;
nc\·1=i tem=off srt-> l :.it r=l cf t_sc:ivn (l <'vr. l);
ne\·J_i tenLoffsct->r!ltr=urs\1~r(1 cvr-1);
new_itcnLoffsr.t->r0fn0=stc~(lcv,...l-l);

l cJ s t_new_ i t "'~LO ff s e: t-> suer. =nr'.·/_ it ,.,n_of f s rt;
lust_new_i tcrn_offsct=ncv:_i trr:i_of.f'sr-t;
tr. n t (qr 1 u c e,]) =ans 1 :r· r(1 c v,.. l - 1) - > r ~ f no;
tent (qr 1 ace, 2) = n r\1_ i t l"!ri_o ff s ~ t - >rt=' f no;
qplace=qrluce+J;
if qrlace=l then nr·.1_hdr->sur::r.<'ss0r_ch21in_fi,...ar!=nf.'•.•1

_i tCITLOffset;
1 cvel =1 evel -1;
~o to hack(lrvrl);

top_of _trcc: 1 as t_ncv1_i tcr:i_o'"'s" t=nu 11 '"';
new_hdr->f i rst_~r.try=0nsv1r.rC 1);
new_hdr->max_l f'>nl!ti..,=rii1x_ 1,...r..,.t 1';

new_hd r-> num_e nt r i r. s =nur1_cn tr i,... s;
ne\·1_h d r-> nur1_f rr.r -'-" 11 s =O;
rrturn;
f"nd;

-236-

APPENDIX G

THE ERROR HANDLER

The error handler, GS error, is called via one of six

entries, each of the basic form:

call GS_error$entry (error_number, one_character_error_

code, argl, arg2)

The error number is printed out and also refers to the line

in the file of error messages (GS_err_messages) which is to

be printed out (e.g., error 51 prints out the Slst line).

The one character code is the internal opcode to indicate to

the user what operation was in progress. argl and arg2

depend upon the entry:

p, pr~ argl, arg2 are pointers

c, er: argl is character, arg2 is a pointer

cc, ccr: argl, arg2 are character

Null pointers are not printed out; i.e., their absence indi

cates they were null.

If one of the entries ending in "r" is used, the user is

given the option to return from GS error. The action taken

then depends solely upon the invoker of GS_error. In any

case, the user is given the options of "quit" and transfer

to a procedure. This is done via the request:

"Type procedure name, or quit " or with return allowed

-237-

"Type procedure name, return, or quit "

The procedures most frequently invoked will be db and

gsdb (sec Appendix H). Two typical error cases are given:

gives

gives

call GS_error$p(l21, "U", lptr, rptr)

GS: Error 121 Internal Opcode U

Pointer 1: 1611232 Pointer 2: 1611420

Input quarts (pointers 1 & 2) disagree on choice

of RSM. Type procedure name or quit

call GS error$ccr(221, "G", ent, cent(jj))

GS: Error 221 Internal Opcode G

Name 1: address Name 2: address

Discrepancy between ent (name 1) and cent (name 2).

Return yields null result.

Type procedure name, return, or quit

One final note: typing "quit" causes signalling of the

condition "GOLD_STAR", so if the user should desire further

processing of error conditions, he need only claim this con

dition. When a procedure name is typed, and that procedure

returned from, l;S _crror reissues the request for a procedure

name or quit Lor return, if called for).

-238-

APPENDIX H

GOLD STAR DEBUG (gsdb)

The utility program gsdb is used to provide a tool with

which to debug programs written for GOLD STAR. It may be

invoked as a command, or as a subroutine, and will dump to

the console four types of items: equivalence vectors,

quarts, RSM argument structures, and DSM argument structures.

The latter two are produced by the manager for the RSM's and

DSM's and are useful to examine when a bug occurs within an

RSM or DSM.

From command lell'el, the user types "gsdb". The program

responds with "ASK!". All requests are of the form:

X segjoffse.t

X can bee, q, ~, a, or ·. The first four correspond to

equivalence vector, quart, RSM array, and DSM array; period

indicates quit (see Appendix E for these structures).

When invoked as a subroutine, it is done on a per

request basis; i.e., it is called gsdb$X (ptr) where Xis

as above.

The quit button can be hit to interrupt unwanted output;

the command "pi" will resume gsdb at the request point.

-239-

APPENDIX I

SOi\!E Sf\!PLE QUART EXAMPLES

This appendix is intenclecl to give the reader a f cw

examples of each of the basic operations as performed on

quarts.

a h c a b c a b c
- - - - - -

l
,.,

3 7 8 9 1
,., 3 .:.. L.

(1)
4 5 6

union
10 11 12 4 5 6

....,
8 9 13 14 lS 7 8 9 I

10 11 12

13 14 15

a b ~ a b c a b c '-- - - - - -
(2) union =

4 5 6 1 2 3 1 2 3

4 5 6

a b C b c a +-note the a b c
- - - - - -

sort
1 I

-~
) 3 1 1 2 3 t...

(3) 4 5 c 7 8 9 9 7 8

10 11 12 12 10 11

(See also sort examples to clarify the second quart lS

sorted before union lS done to the order a-b-c.)

a b c a b c a b c - - - - - -

1 ') 3 7 8 9 7 8 9
intersect =

(4) 4 5 6 10 11 12

7 s ,, 13 14 15

-241-

a b c b a c b a c
- - - - - -

1 2 .) sort 100 101 102 2 1 3

(11)
6

(with respect to) = 4 6 4 5 5

7 8 9 8 7 9

a b c c b a a b c
- - - - - -

1 2 3 100 101 102 3 2 1

(12) 4 5 6 sort (w.r.t.) = 6 5 4

7 8 9 9 8 7

a b c a b c a b c
- - - - - -

(13) 1 2 3 successor 7 8 9 = 10 11 12

4 5 6

(14) 7 8 9 successor a b c a b c
- - - -

10 11 12 3 1 7 = 4 5 6

(15) successor a b c a b c
- - - -

10 11 15 =

(16) successor a b c a b c
- - - -

1 1 1 = 1 2 3

Note: The following operations will automatically sort the

second argument with respect to the first in order to per-

form the operation (see example 3) : union, intersect,

difference, successor relation.

(1 7) a b c - -

get ent 1 2 3 = (3) a b c (equivalence vector)

-242-

(18) a h c x y z
- ,_ -

l ' _) modify ent (3) x y z 1 2 3 ~

c 1 9) a b ~- x b c
-

1 2 _) modify ent (3) x ~ f1 1 2 3 L

(2 0) :1 b l a b c
- - -

1 -, 3 clear cnt 1 2 ,) where all -
PENT's = null

(2 l) a h c x z
- - - -

l ,) project (3) x " " z l 3

1 ' -+ l 4 ~

~~ s 1 5

(2 2) l -+ :1 project (3) c 1111 ,,,,
a j_ lj

1

(23) project (3) x Ci " " x b
-

1 2

1 3

1 4

d b l :1 x l

_) ' l -
:1) (1 -i s 4 composition usino ,--,

l) 1' ' :; ~I 7 1 () equivalence vectors

14 1 s l I
• 1 l ll 10 1 5

-243-

(2 4) null vector ptr a b c x L_ - - -·

l .) ! l -

~I 10 8 10

(..'. :; I ((l) m ''1 \ p (' \' m £ r_ x L_ j l ~ \j lf --

1 3 l ! l '-

s b 4 s 4

(2b) l (1) m m "' m p q m 0 r_ 9_ ,.,
-

l 3 2 1

(27) c b) \' \\'
,. ,. 1; w a w c x li q li

- - - -

1 1 3 !
'-

(2 8) ((1) m n ~ & p n m n Q. x £ - -- -

l 3 l 2

l 0 10 8 ~) 7

15 1 :; 1 1 1 ll 10

Other operations do not lend themselves to simple quart

us age.

-244-

REFERENCES

1-1 Smith, Burton Jordan, SPLP: A Special Purpose List

Processor, Unpublished S.M. Thesis, M.I.T. Depart

ment of Electrical Engineering, Cambridge, Massa

chusetts, June 1968.

1-2 Fano, Robert M., "The Computer Utility and the Com

munity", IEEE Convention Record, Part 12, 1967.

3-1 Rubin, Jean E., Set Theory for the Mathematician,

Holden-D:Jy, San Francisco, 1967.

3-2 Webster's Third New International Dictionary, G. & C.

Merriam Company, Springfield, Massachusetts, 1967.

4-1 Vonhaus, A. H. and Wills, R. D., "The Time-Shared

Data Management Systems: A New Approach to

Data Management", SDC Report Sp-2747, Santa

Monica, February 13, 1967.

~-2 Goldstein, R. C., Data Dase Design Considerations,

M. l.T. Project MAC, MacAIMS Multics Memo B.l,

CambriJgc, Massachusetts, February 12, 1970.

B-1 Martin, W. A. and Ness, D. N., Optimizing Binary

Trees Grown With a Sorting Algorithm, M.I.T.

Alfred P. Sloan School of Management Working

Paper 421-69, Cambridge, Massachusetts, 1969.

-245-

BIBLTOGRAl)IIY

1. The MULTICS Programmers' Manual, M.I.T. Project MAC,

Cambridge, Massachusetts, 1970.

2. Organick, E. I., A Guide to MULTICS for Subsystem

Writers, M.I.T. Project MAC, Cambridge, Massachu

setts, 1967.

3. Hays, David G., Introduction to Computational Linguistics,

Elsevier, New York, New York, 1967.

4. Frcyberghouse, R. A. ct al, MULTICS PL/l Language

Specification, G. E. Cambridge Information Systems

Laboratory, Cambridge, Massachusetts, 1969.

5. Freyberghouse, R. A. et al, A User's Guide to the MULTICS

PL/l Implementation, G. E. Cambridge Information

Systems Laboratory, Cambridge, Massachusetts, 1969.

6. The MULTICS Systems Programmer's Manual, M.I.T. Project

MAC, Cambridge, Massachusetts, 1970.

7. The CTSS User's Guide, Section Ni 3.09, Ken Thompson,

M.I.T., Information Processing Center, Cambridge,

Massachusetts, 1966.

8. Thompson, Ken, Regular Expression Search Algorithm,

-246-

CACM, Volume 11, No. 6, June 1968.

9. Daley, Robert and Dennis, Jack, Virtual Memory, Processes,

and Sharing in MULTICS, CACM, Vol. 11, No. S, May 1968.

10. Graham, Robert, Protection in an Information Processing

Utility, CACM, Vol. 11, No. S. May 1968.

11. Bensoussan, A, Clingen, C. T., and Daley, R. C., The

Multics Virtual Memory, Project MAC Memo MOlll.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DAT A - R&D
(Security classification of title, body of abstract and indexinQ annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. uWcf.As'~fI:Fl:H:i5LASSIFICATION

Massachusetts Institute of Technology 2b. GROUP

_E_roj_ect MAC _N_one
3, REPORT TITLE

Generalized Organization of Large Data-Bases; A Set-Theoretic Approach
to Relations

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

~.s. and M.S. Thesis, Dept. of Electrical Engineering, M.I.T.
5. AUTHOR(S) (Last name, first name, initial)

Fillat, Andrew I. and
Kraning, Leslie A.

6. REPORT DATE 7a. TOTAL NO. OF PAGES I7b. N070F REFS

June, 1970 2 50
~·

ORIGINATOR'S REPORT NUMBER(S) 8a. CONTRACT OR GRANT NO. 9a.

ONR, N00014-69-0276-0002
b. PROJECT NO. MAC TR-70 (THESIS)

9b. OTHER REPORT NO(S) (Any other numbers that may be
c. assitlned th! s report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

I I. SUPPLEMENTARY NOTES 12. SPONSORIN~ MILITARY ACTIVITY

~dvanced Research Projects Agency
None ~D-200 Pentagon

ti_ashing_ton _D_..__C_._ -2.Q.3.fil
13. ABSTRACT Problems inherent in representation and manipulation of large
~a ta-bases are discussed. Data management is considered as the manipulati p
pf relationships among elements of a data-base. A detailed analogy intro-
nuces concepts embodied in a data management system. Set theory is used
1-0 describe a model for data-bases, and operations suitable for manipulati p
~f relations are defined. The architecture chosen for an implementation olf
1-he model is illustrated, and a representation of data-bases is suggested.
~ particular implementation, the GOLD STAR system, is investigated and
~valuated. The framework outlined is meant to provide an environment
tvhich complex data handling problems can be solved with relative ease.
~OLD STAR provides the user with tools sufficient for manipulation of
1-rarily complex data-bases; these provisions are presented in the form
tm extremely simple interface.

14. KEY WORDS

data bank, data base, data structure, data management, relations

DD FORM
I NOV H 1473 (M.l.T.) UNCLASSIFIED

Security Classification

in

arbi
of

t-

n

n

