
24 October 1969

Cambridge

c _,

1
~·

ACICNCM..EDGEMENTS

I would like to thank Proj1::ct MAC ~ the ~~~PQ!ll Science

Foundation for tbAir f~J,al a~i"f-~~!r 4~~ :i!rJ study

at M. I. T.

Thanks also to Professor Jack Deatna ;.,for M•' &upt>O'l"t,

encouragelll8llt, an4. helpful ci:iticia,.-., ~. t,o ,~ofe.ssors
' ~- . ·-·~ .·.~ <l • ~--~-~. -<•''

R. M. Fano and Rw M. ~~ for .the:~ s .. ~~J.plUI . and

editorial assistance. ~. 1'isb.:,tP ,~Jfk.~-.·~~ .. ~n~rson,
'Suhas P•til, aad Dem .Slutz for ha1rtiful ,.~~~1P;118 d1U'illg

the fot111&tive stag.es of th~s ~-~·

Finally, I am-very deE!ply iimeM:e4:~:co '11¥ ~i Miny, not

O'llly fos her t-YP:i'lrlt·...-'f~u}·~,>~ ~

cO'l'lBtant' eotdi.War.:!e'·•M lialfh. :t.n **;

CONTROLLED INFORMATION SHARING IN A COMPUTER UTILITY*

Abstract

A computer utility is envisioned as a large, multi-access

computer system providing its users with the ability to store

information and share its use with other system users. This

thesis considers the nature of information sharing and how a

computer utility can provide facilities allowing such sharing to

take place in a controlled manner.

From a discussion of the goals of a computer utility, a set

of requirements for the facilities of the utility is described.

A model is developed which presents a method for structuring

information. It is shown that the mechanisms of the model

preserve certain structural characteristics of the information,

and that these properties can be directly related to the require­

ments regarding the control of shared information. Extensions of

the basic model are described which allow more selective types of

control, and which remove some of the limitations of the basic

model.

*This report reproduces a thesis of the same title submitted to
the Electrical Engineering Department, Massachusetts Institute
of Technology, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

4

Massachusetts Institute of Technology
Project MAC

545 Technology Square
Cambridge, Massachusetts

02139

Work reported herein was supported in part by Project MAC,

an M.I.T. research project sponsored by the Advanced Research

Projects Agency, Department of Defense, under Office of Naval

Research Contract Nonr-4102(01), and in part by the National

Science Foundation under Contract GJ-432. Reproduction of this

report, in whole or in part, is permitted for any purpose of the

United States Government.

Government contractors may obtain copies from:

Defense Documentation Center, Document Service Center,
Cameron Station, Alexandria, VA 22314

Other U.S. citizens and organizations may obtain from:

Clearinghouse for Federal Scientific and Technical
Information (CFSTI) Sills Building, 5285 Port Royal
Road, Springfield, VA 22151

5

DOCUMENT CONTROL DAT A - R&D
(Security clsssificstion of title, body of abstract and indexinQ annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) Za. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology
UNCLASSIFIED

Project MAC
Zb. GROUP

None
3. REPORT TITLE

Controlled Information Sharing in a Computer Utility

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Ph. D. Thesis, Department of Electrical Engineering
5. AUTHOR(S) (Last nBme, first name, initial)

Dean Hanawalt Vanderbilt

6. REPORT DATE 1a. TOTAL NO. OF PAGES
rb.

NO. OF REFS

October 24, 1969 172 14

Be. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBER(S)

Office of Naval Research, Nonr-4102(01)
TR-67 (THESIS)

b. PROJECT NO.
MAC

NR-048-189
c. 9b. OTHER REPORT NO(S) (Any other numbers that may be

RR 003-09-01 assi/lned this report)

d.

IQ. AVAILABILITY I LIMITATION NOTICES

This document has been approved for public release and sale;
its distribution is unlimited.

I 1. SUPPLEMENTARY NOTES IZ. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentagon

Washington, D.C. 20301
13. ABSTRACT

A computer utility is envisioned as a large, multi-access computer system providing
its users with the ability to store information and share its use with other system
users. This thesis considers the nature of information sharing and how a computer
utility can provide facilities allowing such sharing to take place in a controlled
ner.

From a discussion of the goals of a computer utility, a set of requirements for the
facilities of the utility is described. A model is developed which presents a method
for structuring information. It is shown that the mechanisms of the model preserve
certain structural characteristics of the information, and that these properties can be
directly related to the requirements regarding the control of shared information.
Extensions of the basic model are described which allow more selective types of control
and which remove some of the limitations of the basic model.

14. KEY WORDS

Computers On-line computers Time-shared computers
Machine-aided computers Real-time computers
Multiple-access computers Time-sharing

DD FORM
1 NOV 61 1473 (M.l.T.)

T A B L E 0 F C 0 N T E N T S

SECTION

Abstract
Acknowledgments
Table of Contents
List of Figures
List of Tables

CHAPTER l A BEGltmlNG

1.0. lntroduct ion

1.1. General Background

1.2. Overview

CHAPTER 2 RE~UIREMENTS OF INFORMATION SHARING

2.0. Introduction

2. 1. Principals and Users

2.2. Use of Shared Information

2.3. Sharing Methods

2.4. Additional Assumptions

2.5. Model Requirements

CHAPTER 3 INFORMATION STRUCTURES AND PROCESSES

PAGE

3
5
7

10
11

13

15

19

20

21

22

30

36

40

3.0. Introduction 45

3. l. lnformat ion Structures 47

3.2. Elementary Information Structures 50

3.3. Pointers, Activation Maps, and Processes 55

7

3.4. Program Instructions for Elementary Structures 60

3.5. Use of Elementary Structures by Processes 66

3.6. General Information Structures 75

3.7. Use of General Structures by Processes 80

CHAPTER 4 ENVIRONMENTS

4.0. Introduction 86

4.1. Elementary Environment 88

4.2. Properties of the Elementary Environment 98

4.3. Sharing Decisions by Algorithm in the 105
Elementary Environment

4.4. General Environment 108

4.5. Properties of the General Environment 117

4.6. Sharing Decisions by Algorithm in the 124
General Environment

CHAPTER 5 CONTROLLING THE USE OF SHARED INFORMATION

5.0. Introduction 126

5. I. Information Sharing in a General Environment 127

5.2. Restricted/Unrestricted Sharing 131

5.3. More Selective Sharing Restrictions 137

5.4. Sharing Decisions by Algorithm 141

CHAPTER 6 RELEVANT MISCELLANY

6.0. Introduction 142

6.1. Parallel Processing 143

8

\P¥$l .. Jdk JC42l41U

i.

I
I

6.2. Passing ArgutMats between P'°9raals' 154

6.3. Facilitle~ for Utilizing General Structures 157

6.4. Removal of Access Abilities

7 .o. lntrectuctfon

7. 1 • . Inf onnat ion St ruetun.! Stet'afe :· ·.

7 .2. Process lmplementattc>rt · ·· ·

CHAPTER 8 CONCLUSIONS

8.0. · Summary

8.1. Conclusions

8.2. Further WOrk - _.; ,-

REFERENCES

BIOGRAPHIC NOTE
(- .-.
•,;_,'

160

~(! ··:1 . C. l C) ;J62

- ;;;:.; :.f.63

· .. ,,,•·1,-,;-;:•, i :'. "t65

; ..} J67

. z,fc.1 '.'69

. ':V f71 · · ·'

173

.. """lli ··~

. i

I

L I S T O F F I G U R E S

3.1. An Information Structure 47

3.2. Evolution of an Elementary Procedure Structure 50

3.3. An eps with a Shared Subprocedure

3.4. An Elementary Data Structure

3.5. Use of Activation Hap

3.6. Use of a Process State

3.7. Example of Elementary Structure Use

3.8. Examples of General Structures

4.1. A Well Formed Elementary Environment

4.2. The .f.2r.!.1! ~ COOTnand

4.3. A General Environment

5.1. An Example of Sharing in a General
Environment

53

54

57

58

64

78

93

97

112

128

5.2. An Example of Restricted/Unrestricted Sharing 132

5.3. An Example of Selectively Restrictive Sharing 138

6.1. Comnunication between Two Processes 151

10

l I S T OF TAl~5S

• • • • • • • • • • • • • • '• • . . "'· .. ~"·~· ~. 6.1
' ~

4.l.
. ;-_-;-" •••• • • • • • • • • • • • • .. "~; ·~~- :~~•t"• :{'''.~: ..

4.2. • •· ··~L'.• ~~-~~o~ ·. :fa • • • • • • • • • • • • . .. • "' ~~'

6.1. • • • • •

n

1.0. lntroduct ion

C H A P T E R

A BEGINNING

The development of multi-access computer systems through the

principle of time-sharing has greatly broadened the scope of activity

to which computers can be applied. The user of such a system can

obtain on-Jine access to the facilities of a Jarge computing system at

a sma11 fraction of the cost of a comparable dedicated system. Thus

it is practical for him to make frequent, interactive use of a

computer system which makes available to him a large variety of

computing services. One of the important services, which many systems

provide, is the provision of facilities which enable a user to store

information within the system and utilize it at some future time.

In their simplest form, these facilities a11ow a user to store fi1es

containing programs or data, and to associate a name with each fi1e by

which he may refer to the file. Protection is provided so that each

user may access only those files which he requested to be stored.

However, in some cases, these facilities have been expanded so that

information stored by individual users can be made available to other

users.

These developments have Jed some to predict the evolution of a

computer utility. The computer utility is envisioned as a multi-access

system with facilities for general use by large numbers of people. In

addition to making "computing power" available to users, it would

13

provide a vehicle through which information could be easily shared among

users. This would involve both sharing of access to data bases of

interest to a number of users and sharing of the use of programs

written by users.

It is the objective of this work to provide a greater understanding

of the consequences of information sharing. A computer utility must

enable users to share, but it must allow them to control the sharing.

In the following, the nature of controlled information sharing is

considered, and requirements it places on the facilities offered to

users of a computer utility are described. An abstract description,

i.e. a model, of a computer utility design is described which satisfies

the requirements imposed on a utility by the provision of controlled

information sharing.

14

1.1. Genera] Background

A large amount of previous work by others is relevant to the topic

being considered. It can be grouped into rough1y three classes.

Descriptions of the Computer Uti1ity

A number of authors have discussed the information sharing

facilities a computer utility should provide. Fano ([l] - [2])

indicates that an important contribution of the computer utility wou1d

be to encourage 11 system users (to) build upon each other's work. 11 By

this he does not just mean that users should store papers in the system,

but that the results of work should be directly usable by others. In

particular, if the results are a computer program or a data base, the

utility should allow them to be stored so that they can be used directly

by others. This means that others should be able to use them, by only

11 interfacing 11 to them, without understanding their internal operation.

Parkhi11 [j] also sees shared information created by users to be

very significant. He indicates that "public files would constitute its

(the utility's) greatest asset, 11 and thus maximum protection from

unauthorized access must be provided.

Dennis[~ views the role of the computer utility as providing 11an

environment in which small information systems may flourish and

compete as private enterprises. 11 These information systems would

provide their services through the use of programs and data maintained

within the utility. Thus, the utility must provide facilities which

allow others to take advantage of these services, while still guaranteeing

15

that the proprietary nature of the shared information is protected.

Chapter 2 contains a discussion of requirements which these goals

place on facilities offered by the utility.

Existing Access Control Mechanisms

Mechanisms have been developed in various existing multi-access

systems to allow information created by users to be made available to

other users. The basic viewpoint taken in all of these systems is that

a user may store information, in the form of a file, within the system,

and that information may normally be accessed only by him. Means are

then provided for the users to make the information available to other

users.

Two of the simpler examples are the user group and the public file.

The user group idea has been used by commercial time-sharing systems,

such as the RUSH system (5]. The system users are partitioned into

groups, and sharing between groups is not possible. Within a group,

however, a user, who knows the name of another group member's file, or

perhaps a password associated with the file, may utilize that file by

simply specifying the appropriate identification information. Other

systems, such as the SHARER system [6] and the Lincoln Laboratory APEX

system (7], allow a user to specify that a file he created is "public";

that is, the file may be used (perhaps only in a non-altering way) by

any user of the system.

Some of the most extensive existing access control mechanisms are

provided by the Project MAC systems, c. T .s.s. [1] and MULTICS [8, 9],

16

and the Cambridge system [10]. Each of these al lows the owner of a file

to associate with the file a list of access control information. This

list may contain names of users and the way in which they may access

the file, or passwords which must be given to access the file, or some

more complex information. In effect, however, each list contains

information which enables the system to decide what access rights any

particular user may obtain for the file.

Chapter 2 contains a discussion of the capabilities provided by

these facilities, and the extent to which they satisfy the requirements

imposed by controlled information sharing.

Use of Structured Information

Also relevant here is a body of theoretical work considering

various types of structured information and ways of utilizing that

structure.

The closest related work is that of Dennis. The idea of a capability,

introduced by Dennis and Van Horn [11] and renamed a pointer in [12],

is utilized in this thesis. Many of the concepts regarding the infor­

mation structures of Dennis [12] are carried over into the particular

structures discussed here. Al so the concept of 11progranrni ng genera 1 i ty11

described by Dennis [12] is closely related to controlled sharing and

building on the work of others. If programming generality is restricted

to information stored within a single system, it becomes essentially

equivalent to ability to build on the work of others. In fact, the

req~irements described by Dennis in [12] for a naming scheme (that is a

17

set of rules relating instances of identifiers to stored items of

information) to exhibit programming generality are satisfied by the

mechanisms for using information structures described in Chapter 3.

The work of Evans and LeClerc [13] also contains indications of a

number of ideas used here. Their idea of a 11parametcr space, 11 indicating

an implicit structuring of information, and the idea of relating access

abilities to the program being executed are closely related to

activation maps and procedures used in the model. However they were

concerned primarily with processor design, and thus did not extend their

ideas to the organization and accessing of stored information.

Similar models for structured information have appeared elsewhere,

such as in the work of Lucas, et al [14] in specifying the semantics of

PL/I, but the structure is used for different objectives.

18

1.2. Overview

The main results of this work are contained in Chapters 2 through

5. In Chapter 2, the consequences of controlled information sharing

are considered, and requirements, which the sharing mechanisms of a

computer utility must satisfy, are developed. Arguments are also given

regarding the inability of existing systems to satisfy these requirements.

Chapters 3 and 4 contain the development of a model of structured

information, and mechanisms for utilizing that information which allow

the requirements in Chapter 2 to be satisfied. Extensions of the model

are described in Chapter 5 which allow the user to attain finer degrees

of control over shared information than is possible in the original model.

Chapter 6 contains extensions of the model which remove restrictions,

on user capabilities to utilize information, which are not directly

related to information sharing. Some problems which would be associated

with implementing the mechanisms of the model are discussed in Chapter 7.

Chapter 8 contains a summary of the ideas used in preceding chapters,

conclusions regarding accomplishments of the work, and suggestions for

further work based on these accomplishments.

19

C H A P T E R 2

REQUIREMEIJTS OF INFORMATION SHARING

2.0. Introduction

This chapter contains a discussion of the requirements placed on

the facilities of a computer utility by information sharing. The types

of activities wl1ich users should be able to perform arc described,

and requirements these activities place on mechanisms provided by the

utility arc developed. Arguments that mechanisms supplied by existing

systems do not satisfy these requirements are given also.

At the end of the chapter, the general requirements discussed in

the preceding sections are specified in a more precise manner, using

rclati onships, betv;cen users and information, previously defined in the

chapter. The arguments concerning the validity of the models developed

in Chapters 3 and 4 are based on a demonstration that the requirements

developed in this chapter are satisfied.

20

2. I. Principals and Users

Abilities and responsibilities regarding access to facilities and

stored information must be associated with the users of the utility.

This is accomplished by postulating a set of abstract entities, called

principals. These arc assumed to exist within the utility, and abilities

and responsibilities are associated with them. As a user initiates his

use of the system, he becomes identified with a particular principal,

and thus obtains the exact abilities associated with that principal.

Use of this abstraction has two advantages. First of all, it is

more general than associating abilities vlith users. A user may perform

different roles with respect to the utility, e.g. he may work on

different projects, and different people may perform the same role at

various times. Thus, a principal can be made to exist for each of these

"rolcs, 11 and the user 1 s abilities will depend on the role he is

currently playing. Secondly, use of principals allows separation of

the problems of user identification (which will not be of concern to us)

from the problems of controlling access to information.

Thus we shall consider controlled sharing of information among

principals. It will be assumed that no more than one user may be

associated with each principal at any time. This forces the actions of

a principal to be performed sequentially, and the effects of concurrent

actions by different users need be considered only on an interprincipal

basis.

21

2.2. Use of Shared Information

The activities of a principal (that is, a user associated with a

principal) in his utilization of the utility can be separated into two

categories. The first consists of those activities involving the use

of information to which the principal has access. This might involve

executing owned or borrowed programs on data supp I i ed by the pr inc i pa J,

or accessing and maintaining a data base, or creating new programs or

data. The activities in this category can be characterized by the fact

thay they are performed independent of the actions of other principals,

except for any interactions resulting from alterable information accessible

to more than one principal.

The second category contains those actions which affect the

abilities of principals to access stored information. These are actions

such as granting others the ability to utilize some particular informa­

tion, or establishing an access path to information which another

principal has shared with him, i.e. granted him the ability to access.

The remainder of this section provides a discussion of some of the

access control requirements which are consequences of the first type of

activity. The second category is discussed in Section 2.3.

Use of Shared Programs

One type of information which a principal may wish to utilize is

a program, owned by another principal, which he has borrowed. Actually

it is the~ of the program which is being shared, where by~ we mean

the program's execution. This execution couJd be requested, in genera),

22

directly by the borrower (through the use of a command) or by a program

created by the borrower (through a call).

To achieve controlled sharing, the user of a shared program must

be able to execute the program without knowledge of its internal

structure or operation. Furthermore, the user must be unable to obtain

that knowledge without specific provision by the owner of the program.

The arguments for this requirement are based on the goals of a computer

utility.

As we indicated in Chapter 1, the sharing of information through a

computer utility should enable its users to build on the work of others.

This means that it must be possible to make use of the results of

another's work without necessarily understanding his methods or the

steps used in obtaining the results. If the results are in the form

of a program, use of the program should be possible without an under­

standing of its internal operation.

In addition, the computer utility should be a vehicle through which

programs, whose structure is of a proprietary nature, may be made

available (presumably at a fee) for use by the user community. In this

case, users must be able to use a program without it being possible for

them to view its internal structure. This need for the ability to

execute a program without knowledge of its structure imposes a number

of requirements on the organization of shared information and the

mechanisms through which it is used.

The execution of a program, in general, involves the use of various

data and other programs (subprograms). This additional information can

23

be divided into two categories: that information which must be

available for each activation, and that which is associated with a

particular activation. The former category (Category I} consists of

subprograms which may be called by the program, subprograms of the

subprograms, ••• ,as well as any data which retain values from one

activation to the next. Category II consists of the information passed,

e.g. as call arguments, to and from the initiator of the program, as

well as temporary information used by the program during its execution.

In order to allow the execution of a program, use of this additional

information must be provided during program execution. There are two

aspects to this use. First, the names used by the program to refer to

this additional information must be bound to the correct information.

Secondly, the access control mechanisms of the utility must allow access

to the information when it is needed.

The Category I information is known to the owner, i.e. the creator,

of the program, but not to the borrower. Thus the owner must specify the

binding of names in the program to that information, and ensure that

the information is available when needed during an execution of the

program. Since the program borrower should be granted no more access

abilities than necessary, it must be possible for the owner to give the

borrower the ability to access the information~ in conjunction with

use of the program. Thus, access abilities and binding information must

be associated with the shared program so that the appropriate Category I

information is available each time the program is executed.

The Category II information consists of information supplied by

24

the program user and information created by the program. For the former,

the supplied arguments must be bound to the program's call parameter

names. The access abilities pose no problem since this is information

belonging to the program user. For the latter information, the process

executing the program must be allowed to ''create'' information and to

have it automatically bound to the appropriate names appearing in the

program.

In the next section, the ability of existing facilities to provide

for the program sharing is discussed relative to these requirements.

Existing Sharing Mechanisms

Existing systems, in which information sharing is possible, allow

users to store information in the form of files. A file may consist of

a program (or a set of related programs) or data. Generally each user

has a directory which associates a symbolic name with each file owned

by him, and he refers to the file by this name. Each of the directory

entries must have a different name so that its name identifies a file

uniquely. Depending on the particular system, the owner may allow

other users to access a file in a number of ways. He may specify to the

system the names of the allowed borrowers, or may specify a password

which must be known by a borrower, or he may just allow anyone who knows

its name to access it. In any case, the borrower establishes his

ability to access the file by "linking" to it. This results in an entry

being formed in the borrower's directory which associates a name of his

choosing with the borrowed file. The borrower is then able to utilize

25

the file in the same manner as his own, possibly subject to some

restriction such as inability to alter the file.

When a user requests the execution of a program file to which he

has linked, the Category I information required by the program is found

by matching names appearing in the program to entry names in the user's

directory or in a directory of pub! icly available files, e.g. library

routines. The Category II information supplied by the user to the

program is also specified by entry names in his directory, and files

created during execution of the program are entered into the user's

directory. Unfortunately, these mechanisms are not adequate to

accomplish the controlled sharing described in the preceding section.

First of all, entries for the Category information required by

a shared program must exist in the borrower's directory or a public

directory. Thus the borrower must know of this information, and must

have established his ability to access it. This means that the borrower

must have the ability to utilize the Category I information at any time

in order to have it available for use with the shared program, and thus

has more access ability than is necessary to accomplish the sharing.

Secondly, files created during a user's execution of a program

are entered into theusers's directory with entry names chosen by the

program. Thus the borrower of a program must be sure that none of the

file names used by the program or its subprograms conflict with existing

entries in his directory. Also the creator of a program must be

certain that file names used by its subprograms, which may be borrowed,

do not conflict with each other or with names used by the main program.

26

In each case, the user of a shared program is required to have knowledge,

about the program's internal operation, which should not be necessary

for use of the program.

The use of multiple directories organized in a tree-like structure,

such as in the MULTICS system, can be helpful in resolving name

ambiguities. Different directories can be used for the information

used with different programs, and the order in which the directories

are searched can be altered. Thus, a user can have the ability to access

a number of different files with the same name, and have each used at

the appropriate time by changing the directory search strategy.

However neither of the above problems are overcome, since access

abilities are still associated with users and search strategies are

specified by the program user, not the creator.

It should be noted that the MULTICS system does allow, to a limited

extent, the association of information with a program. This can be

accomplished by creating a process which has the ability to access a

program and information associated with it. No other processes are

allowed to utilize the program or its associated information except

indirectly through communication with the process. This mechanism is

used, for example, to protect shared data bases by creating them as

information private to a particular process which executes only the

programs which maintain the data.

This is not a general solution to the problem, however. The problem

of associating programs, along with their associated information, with

other programs is transformed into associating, with a process, the

27

ability to cormiunicate with, i.e. access, other processes. Thus, the

same naming and access control problems appear in an interprocess

context which were just described as problems in associating programs,

and which also are not solved in existing systems.

Shared Data

We have considered requirements which shared programs place on

facilities of the computer utility •. What about shared data? Again it

is the~ of the data which is to be shared.

We require that access to shared data be allowed only through a

(caretaker) program. To share data with others, a principal must make

available to others a program with which the data is associated, i.e. a

program for which the data is Category I information. A borrower can

then establish his ability to use the program, and the program wi11

access the data on his behalf.

Arguments for this requirement are based on the goals for the

computer utility described in Chapter 1. Here, 11bui1ding on the work of

others" implies that the user should be isolated from the techniques

used to manage the data. Under management, we include such things as

the internal structure of the data and the coordination of usage so that

only meaningful data alterations and accesses are made. Protection of

personal or proprietary information also is important. In the case of

a data base, it should be possible for the owner to enforce seJ~ctive

restrictions, so that certain parts of the data entries are available

only to designated users, whereas other parts are generally available.

28

This would be important, for example, if a data base containing personal

information is to be used for statistical purposes. Certain sensitive

information could be protected while the remainder would be made

generally available.

All of these functions can be carried out by an associated,

caretaker program, and thus we require that each data base be accessed

through a program. This requirement also reduces data sharing to a

particular type of program sharing, so that the remainder of the thesis

will consider information sharing to be sharing of the use of programs.

It should be noted that existing systems all allow the direct

sharing of data. However, this has been done because of efficiency

considerations, and not because of any basic need for direct data

sharing. We are not concerned here with questions of efficiency, but

rather the consequences of user requirements on system organization.

Thus, direct data sharing will not be considered.

29

2.3. Sharing Methods

We have seen in Section 2.2. that controlled information sharing

imposes a number of requirements on the facilities through which users

make use of accessible information, in particular, shared information.

In this section, the effects of this requirement on the other type of

user activity are considered. In particular, we consider what types of

facilities should be provided for making information available to others

and for establishing access to shared information.

As we have argued, only the use of programs should be shared.

However, it must also be possible to associate other (Category I)

information so that this information is available as the program is

executed. Conceptually then, it must be possible to associate access

abilities with programs. To differentiate between the actual code of

the program and a program along with its associated access abilities,

we shall use program to mean the former and procedure to mean the latter.

Thus it is use of procedures which is to be shared.

Sharing of procedures implies that a principal may have two types

of access ability for information. The first type, called direct

ability, applies to those procedures whose execution the principal may

explicitly request, and to that data which he may supply to those

procedures. Directly accessible information thus includes the principal 1 s

own data and procedures, and shared procedures owned by others. The

other type of ability, called indirect ability, refers to the additional

(Category I) information, both data and procedures, which is associated

with the shared, directly accessible procedures, and may be used only

30

through use of those procedures.

Another way in which a principal can utilize information is to

create procedures. This would involve 1) the creation of a program,

and 2) the association of the program with abilities to access other

information. Clearly the only candidates for inclusion within a

procedure created by a principal are data and procedures directly

accessible to that principal, for those are the only ones of which he

is aware. Thus the concept of direct accessibility must be extended so

that a principal may create a procedure by associating only directly

accessible information with the procedure's program. Note that although

indirectly accessible information cannot be explicitly incorporated into

the procedure, use of such information is required to execute the

procedure. For example, if A is an indirectly accessible procedure

whose use is required by a directly accessible procedure B, then any

procedure C into which the ability to access B is incorporated must

implicitly contain an ability to use A (when it is required by B).

Existing systems except for the use of separate processes in the

MULTICS system, allow only direct access to information. If a system

allows access abilities to be associated only with principals, either

a principal has direct access or no access to information. It is the

concept of associating access abilities with programs which leads to

indirect access.

Let us now consider the actions involved in sharing information.

By sharing we mean the activity which results in one principal obtaining

direct access to information created (and owned) by another. There are

31

tv10 aspects to sharing. First, the information which a principal is

allowed to make available to others, and, second, the mechanisms used

to accomplish the sharing.

Shareable Information

As we argued in Section 2.2., only procedures should be shared,

where by a procedure we mean a program and associated access abilities

for its Category I information.

Which of a principal 1 s accessible procedures may be shared? We

require that a principal may not share borrowed procedures. A

borrowed procedure is one which was created, and therefore is owned, by

another principal, and which was shared with the borrower. Sharing of

a borrowed procedure would not be necessary to make any of the borrower 1 s

work available, since he has added nothing to the procedure. Thus the

ability to decide with whom and how the procedure is shared should

remain with its owner. A principal may then share only owned procedures.

A question remains, however, of which owned procedures may be

shared. This question is not trivial since an owned procedure may make

use of Category I information not owned by the procedure owner. Thus

if a principal P grants direct access to a borrower Q for a procedure

owned by P, this may also allow Q indirect access to information

owned by neither P nor Q. There are a number of possible ways to

resolve this issue.

One approach would deny a principal the ability to share any

procedure requiring the use of a borrowed procedure. This would be

32

essentially equivalent to the approach of existing systems we have

described. In fact, if all of the information utilized by a procedure

is owned by a single principal, he could relatively easily avoid any

naming ambiguities, and could collect all of the information into a

single file. In that case, then, existing mechanisms would be adequate

as they are.

This approach, however, is not consistent with the desire to "build

on the work of others 11 in a controlled manner. For example, consider

the situation in Wiich a principal P2 has been granted direct access

to a procedure A owned by P1, and P2 desires to share an owned

procedure B, which uses A, with P • Under the approach just described,
3

this sharing could be allowed only by 1) enabling P
2

to obtain a copy

of A, which would then be owned by him and could be shared, or 2)

having p
1

grant P direct access to A, and then enabling
3

P to use
3

B and A together somehow. In either case, P1 is being forced to

give another principal more ability than is necessary to accomplish the

desired sharing.

A second approach would allow a principal to share all owned

procedures. To allow this, the granting of direct access to a

procedure would have to imply the ability to grant other principals

indirect ability for the procedure. This would enable the borrower to

associate the ability to use the procedure with any program which he may

create independent of who may come to use the program. Sharing would

proceed with each principal able to control who may directly use his

work, but not restricting the "propagation" of its (indirect) use to

33

other principals.

Other approaches, lying between these two extremes, are possible.

They would allow principals some type of selectivity in the restrictions

placed on the ''propagation 11 of use of procedures they have shared. A

general discussion of these approaches is given in Chapter 5.

We shall see that the model developed in this thesis will accommodate

any of these approaches. However, in order to develop the model in the

simplest way, mechanisms first are described which implement the second,

unrestricted approach. Mechanisms implementing other possible approaches

are then developed as extensions to this original model. The reason for

this is that the capabilities needed to satisfy the requirements

discussed in Section 2.2. naturally lead to access control of the

"unrestricted" type, and the extensions are in the direction of intro-

duc i ng more restrictive control of user activity.

Sharing Mechanisms

One final topic deserves brief mention here, and that is the basic

nature of the sharing mechanisms. There are two types of activity which

make up the sharing process. First the owner of a procedure determines

that it shall be shared, and makes it "available" to others. Second, a

borrower establishes his right to access the procedure, and obtains the

appropriate access ability. In the preceding section, we were concerned

with which procedures the owner may share. We have not considered,

however, how a borrower's access rights are determined.

Two approaches to this have been used in existing systems. The

34

first associates with the shared information a list of users and the

access privileges they may acquire. The system then determines a

borrower's rights by examining this list and acting accordingly. The

second approach is to associate a key (perhaps just its name) with the

information. A borrower's abilities are then determined by his knowledge

of the key.

The first approach, since it implies decisions based on principal

identity, results in assured control; that is, it does not rely on

information residing external to the utility to make access decisions

(assuming that a user has been identified and associated with a principal).

This approach will be used in the model development of the thesis.

However, both of these approaches represent special cases of a more

general decision method. The general method allows an owner to specify

an algorithm by which a potential borrower's abilities could be

determined. The algorithms for the above approaches would amount to the

matching of a principal 1 s identity to a list of names, or the examination

of a proposed 11key 11 supplied by the borrower. Because of its generality,

an extension of the basic model implementing this approach is given in

Chapter 4.

35

2.4. Additional Assumptions

Some additional assumptions have been made in development of the

model which should be discussed in this chapter. One assumption concerns

the alterabil ity of programs, and a second specifies the nature of the

sharing agreements made between principals.

The first assumption is that once information is changed into an

unalterable form it is never again altered. In the model, this change

occurs to a program segment when it is associated with other information

to form a procedure and to data which is to be used, in an unalterable

way, in conjunction with a program. (Note that data which may be altered

by some users and accessed in only a read-only manner by others

remains in an alterable form, and the caretaker program provides the

appropriate protection.) Since any read-only data used by a program

can be considered to be 11constants 11 which are part of the program, this

assumption reduces to the unchangability of programs used in procedures.

Programs can be changed into an unalterable form, since we require

that programs exist in pure form, and therefore are not altered during

execution. This allows re-entrant use and sharing of the use of a

program to be accomplished using a single copy of the program. In

addition, it ensures a separation of the program from information created

during its execution which should be associated just with the particular

program activation.

If the use of a program (as part of a procedure) has been shared

with others, the owner should not be able to alter the program. The

borrowers will in general have used the program as a subprogram for

36

procedures, use of which may have propagated to additional users and

use in other procedures. This may lead to certain problems if program

alteration is allowed. First, since it is generally difficult or

impossible to establish the equivalence of two programs, the introduc­

tion of an altered, "almost equivalent" version of a program may affect

the operation of the procedures in which it is used. Secondly, it may

be quite difficult to determine if and by whom a program is being used

or may be used at any given time. Since a program cannot be altered

while it is being executed, choosing a time to alter it is quite

difficult.

Thus we are reduced to the case in which a program is part of a

procedure accessible only to its owner. This would occur if use of the

procedure has never been shared or if all borrowers had relinquished

their capability to use the program. (This latter condition might also

be difficult to determine.) In this case, alterations to the program

must be performed by the owner. Thus it seems reasonable that the

owner be forced to recognize that the altered program is different by

constructing it (perhaps by copying much of the original program) as a

logical entity different from the original program.

In no cases, then, will programs be altered. In order to 11replace 11

a program within a procedure, each of the subprocedures of the procedure

which (directly or indirectly) make use of the program must be

reconstructed by their creators. This ensures that the changed procedure

is recognized as being different from the original, and that each

contributor to the construction of the procedure, who might be affected

37

by the changed program, is forced to recognize that a change has occurred.

(In Chapter 5, we shall see that this process need not be too tedious if

replacement is all that is required~)

The second assumption is that, under normal circumstances, a user

loses abilities only through his own action. Thus, a user is the only

one able to access his owned information unless he chooses to make it

available to others. In addition, once a borrower has gained access to

shared information, that ability will not be lost unless it is

relinquished by the borrower. The reason for this is that the borrower

will in general have done work, such as constructing other procedures

and offering them to others or embarking on a reserach program, which

depends on the availability of the shared information, and the owner

should therefore not be able to arbitrarily remove an access privilege

already granted. We require, then, that the establishment of the

borrower's access ability represents the formation of a contract which

binds the owner to provide use of the information.

Of course there may be reasons for termination of the contract,

i.e. removal of the access ability. The borrower may fail to provide

the compensation to the owner specified in the contract, or it may be

discovered that the shared information fails to meet the promised

specifications. In either case, however, this would require a decision

by a higher authority. Thus there must be capabilities within the

utility for determining, in response to user request, if a contract

violation has occurred, and for changing the appropriate access abilities.

Since these capabilities might in general depend on legal and other

38

considerations outside of tbe _,.of thf• '•JJm!!h-JM!l!~-~,!'r~-~~-

! f,,,)ffU~~-;~Y ,~,;r--'5" Matj••••-t•••••r•••e•n•A•Mlt• bt.1

-".>c:,•
j •,, ~",:::

2.5. Model Requirements

The following two chapters contain the development of a mathematical

model. The objective of this development is to describe an approach for

organizing and utilizing stored information, and to demonstrate that

this approach allows controlled information sharing to be accomplished.

In this section, we summarize the requirements which the model must

satisfy, based on arguments given in the preceding sections of this

chapter.

We have argued that only the use of procedures should be shared.

Also principals must be able to make use of information accessible to

them without affecting the information accessible to others, except

for indirect effects due to alteration of data associated with shared

procedures.

The types of activity which a principal can perform using accessible

information are to request the execution of procedures and the creation

of new procedures. As part of a request for a procedure execution, the

(Category I I) information to be supplied as arguments to the procedure's

program must be specified. This supplied information can be any

information which is accessible to the principal. All information

remaining following a procedure execution, which is not part of the

procedure, becomes accessible to the principal requesting the procedure

execution. Thus, creation or alteration of accessible data can be

accomplished by a procedure execution.

A principal can create a procedure by associating an accessible

program with other accessible information. Creation of new procedures

40

can involve the association of alterable data with a program. In order

to ensure orderly use of the data, the principal creating the procedure

must be restricted henceforth to access the data through the procedure,

as must the others with whom the procedure is shared.

Using the concepts of direct and indirect accessibility, we can

summarize these requirements as:

Requirement 1. Only procedures can be directly accessible to more than

one principal.

Requirement 2. A principal can request the execution of any directly

accessible procedure, and can supply, as arguments to the program of the

procedure, any directly accessible information of the appropriate form.

It is possible for information to be created during the execution of a

procedure, and any of that information, which is not destroyed during

execution, becomes directly accessible to the principal requesting the

execution.

Requirement 3. A principal can create a procedure using any information

directly accessible to him. Any alterable data associated with the

procedure must become indirectly accessible (through the procedure) to

the principal.

Requirement 4. Execution or creation of a procedure by a principal

cannot affect the directly accessible information of any other principal,

41

except through the alteration of data indirectly accessible to both

principals.

The execution of a procedure is accomplished through an activation

of the program part of the procedure. This involves associating values

with the names appearing in the program which are assumed to be

predefined, and then executing the program.

It is useful to think of the execution of a program being carried

our by a process, or a "locus of control", which accomplishes the

actions specified by the program instructions. In the model development,

we assume that just one process is used in the execution of a procedure.

(A generalization of the model to encompass parallel processing is

discussed in Chapter 6.) While the process is executing a program, it

must be able to use just the information associated with the program by

the procedure and the information supplied or created for this particular

activation, and it must be able to use this information only in the

intended manner. For example, in the case of a subprocedure (an

associated procedure), the process must be able to cause the subprocedure's

program to be executed, but it must do this while ensuring that infor­

mation regarding the internal structure of the subprocedure cannot be

acquired during execution of the main program.

To help make this discussion more precise, we differentiate two

types of information associated with a program by a procedure. The data

and procedures intended to be explicitly used by the program, and thus

for which the program contains names, are said to be directly associated

42

with the program by the procedure. The data and procedures associated

with programs of directly associated procedures are indirectly associated

with the program, as is information associated with the programs of

these indirectly associated procedures, ••.. Thus the data and procedures

whose use is required by the program and which is specified by the

procedure creator are directly accessible to the program, and the

information required by any of those procedures is indirectly associated.

We can now specify requirements for the operation of a process in

executing a procedure:

Requirement 5. During execution of the program of a procedure, P,

a process can use all data directly associated with the program of P,

supplied by the initiator of the program execution (either a principal

or another procedure), or created during the program's execution.

Furthermore, the process can create and use additional data.

Requirement 6. During execution of the program of a procedure P, a

process can request the execution of any procedure directly associated

with the program by P. However, while executing the program of P,

the process cannot access the program of a directly associated procedure

or gain any knowledge of its directly associated information. The same

requirements are true for procedures supplied as arguments for the

particular activation of the program of P.

Requirement 5 specifies that all of the data intended for use with

43

the program of a procedure be made available to the process although

only part of it may have been supplied by the principal or program

requesting the application of P. Requirement 6 constrains the use

of one procedure in another so that the requirements regarding the

protection of proprietary information are satisfied.

The other requirements for the model concern the activity of

sharing procedures between principals. For the development in the next

two chapters, a relatively unrestricted type of sharing is utilized.

(Chapter 5 describes other types of sharing restrictions and how they

might be implemented.) Using the concept of ownership which we have

discussed in this chapter, the requirements on the model's sharing

mechanisms are the following:

Requirement 7. Each procedure created by a principal becomes owned by

him.

Requirement 8. A principal can make the use of any owned procedure

available to any principal or group of principals.

Requirement 9. A principal can establish direct access to any procedure

made available to him.

C H A P T E R 3

INFORMATION STRUCTURES AND PROCESSES

J.O. Introduction

We have discussed the relationships of ownership and direct and

indirect accessibility, which exist between principals and information,

and of direct association, existing between programs and other information.

In the requirements described in Section 2.5., these relationships are

extremely important in determining the ways in which information can be

utilized. In fact, they are given meaning by the requirements.

The approach of this model is to specify a structured form for

stored information, in which the structure reflects these relationships,

and to specify mechanisms for utilizing structured information. Because

of this correspondence between the structure of information and the ways

it can be utilized, the requirements of Section 2.5. can be restated in

terms of structural properties of the model. Thus, by demonstrating

that the mechanisms of the model preserve certain structural properties,

they can be shown to satisfy the requirements of controlled information

sharing.

In this chapter, we introduce the idea of structured information and

describe the portions of the model concerned with procedure execution.

First, structures called elementary structures are defined. These can

be used to represent procedures having no associated alterable informa­

tion and utilizing Category II information which is composed solely of

alterable data. A description is given of the means, for identifying

45

and accessing information, used by a process while executing one of

these procedures. Some properties of these mechanisms are noted and

related to the model requirements regarding procedure execution. The

final section of the chapter contains a generalization, of the elementary

structures, allowing alterable data to be associated with procedures,

and procedures and read-only data to be specified as Category II

information for a procedure activation.

The structures and mechanisms developed in this chapter are used

in the complete model, which is described in Chapter 4. The complete

model embeds these ideas in a representation of all of the information

stored within a utility and mechanisms for using it.

46

-~--- ---------------

3.1. Information Structures

Information is stored and utilized in the form of structures.

Information structures are acyclic, connected, directed graphs composed

of two classes of nodes, called segments and connectors, with directed

arcs, called branches, between them. Segments must be terminal* nodes,

non-terminal* nodes must be connectors, and each structure must have a

unique root* node which is a connector. Associated with each branch of

a structure is a symbolic.!!!!!!!:· Branch names must obey the rule that

no two branches leaving the same node have the same name. Each node

has an associated~' which must be E, R, or W. Figure 3.1. shows an

example of an information structure, in which connectors are represented

by rectangles and segments by ovals. Each node contains a unique number

by which it can be identified, e.g. node is the root node.

Figure 3.1. An Information Structure

* A terminal node has no branches leaving it, a non-terminal node has
branches leaving it, and a root node bas no branches terminating on it.

47

Each segment of an information structure is an array of words; the

array can be of arbitrary length. A segment may contain, for example,

a program or a set of related programs, or it may contain a set of data.

We shall assume that the contents of a segment are equivalent with

respect to access control. That is, the finest level at which access

abilities may be differentiated is the segment level. If two principals,

or two processes (as we shall see later), have the same access ability

for any part of a segment, each has the same ability for the entire

segment.

The branches of information structures represent abilities to

access information. If an entity, e.g. a principal, is able to access

the node from which a branch emanates, then the entity may also access

the node on which the branch terminates. Since there may be many branches

leaving a node, however, a means for differentiating among them must be

provided. Use of the branch name accomplishes this, since it is required

that all branches leaving a node must have different names. The way in

which a node may be used is specified by the node type. This constrains

the type of access ability to be E_xecute, _!!ead-only, or !.{rite and Read.

(The precise meaning of these types will be discussed below.)

The role played by connectors is to allow associations of access

abilities to be formed. From the definition of an information structure,

segments must be terminal nodes. Thus branches may emanate only from

connectors. As we have described, ability to access a non-terminal

node, i.e. a connector, implies the ability to access the nodes to

which the branches lead.

48

Of course, some of the branches leaving a connector may terminate

on connectors which have branches leaving them. Ability to access the

original connector implies ability to access the intermediate connectors,

and those abilities in turn imply abilities to access the succeeding

nodes. Continuing this argument, then, we see that ability to access

a connector imp! ies the ability, subject to node type restrictions, to

access all nodes on '~aths'' of branches from the connector. Thus a

connector can be thought of as defining a structure, which is composed

of all nodes on brancn paths leaving the connector, and access to this

root connector of the structure can be thought of as access to the

structure.

49

3.2. Elementary Information Structures

In this section, we describe some particular classes of information

structures, whose form is made to reflect relationships among the

information contained in the structure. As a vehicle for discussion,

we use the following example.

A principal P is constructing a table-driven compiler. The

compiler is composed of 1) a program segment, which reads from 2) a

set of tables in a data segment, and invokes the use of 3) another

program segment S as a subroutine. Principal P would like to

associate segments 2 and 3 with program

shown in Figure 3.2.(a). The main program

to form a procedure as

would have associated

with it the abilities to access 2 and 3, which are represented by

the arrows leaving 1. During the execution of the other segments

could be referenced by symbolic names, say Table and Subr, and the

named arrows leaving node would indicate the particular segments

being referenced. Of course, during the compiler's execution, the two

program segments would be executed and the table would be read and not

altered. This is indicated by the notation appearing in the nodes of

Figure 3.2.(a).

3, R

~) (b)

Figure 3.2. Evolution of an Elementary Procedure Structure

50

R

Elemenatry Procedure Structures

We must be able to represent this procedure as an information

structure. However, segments and branches cannot be directly substituted

into the structure in 3.2.(a), since segments must be terminal nodes

and only connectors can be used to associate information. This

difficulty can be overcome quite simply, by giving special significance

to certain branch names.

The branch names of each information structure are taken from a

set Au{*}, where A is countable and ~·(-.A. We say a branch with

name "l: is a "le-branch and one with a name from A is an A-branch.

The method of representing a procedure by an information structure

is re I at ive 1 y straight forward. A ~'r-branch I eaves the root node (a

connector) and terminates on the program of the procedure. A-branches

leave the root node and terminate on information which is directly

associated with the program by the procedure. The root node is of type

E and the program and read-only data segments are of type R. The pre­

cise significance of the node types is discussed in the next section.

Intuitively, however, the type E root node indicates that the

procedure may only be executed, and the type R segments indicate that,

during execution, the segments are read but not altered. (As we

indicated in Chapter 2, programs are in pure form and thus are not altered

during use.)

Returning to the above example, the information structure shown

in Figure 3.2.(b) represents the procedure described by 3.2.(a). Note

that the subroutine 3 was transformed into a procedure structure in

51

which no other information is associated with the program.

This type of procedure structure, which associates with a program

only abilities for read-only segments and other procedure structures

of the same type, is called an elementary procedure structure. This

type of structure can be more formally defined by:

Definition 3,J, The class of elementary procedure structures is the

set of all information structures satisfying the following property:

The root node of the structure is a connector of type E

having a *-branch leaving it which terminates on a segment

of type R, and zero or more A-branches leaving it, each

with a different name, such that each terminates on a type R

segment or the root node of an elementary procedure structure.

We abbreviate elementary procedure structure by eps.

Elementary Data Structures

In order to make use of the compiler, principal P must have a

means for supplying data, namely the source program, to the procedure

and for receiving the compiled object program. In addition, since the

compiler programs are pure, the procedure must be given the ability to

create working space for the storage of temporary data, such as the

values of internal variables and tables. Both of these requirements

can be met by the use of another type of structure, the data structure.

A data structure contains all of the information, used by the

52

process for an activation of the program of a procedure, which is not

contained in the procedure structure. When execution of a procedure is

requested, a data structure is specified which contains the information

to be used as arguments for the requested activation of the procedure's

program. The process may expand the data structure during execution of

the program to accommodate both the 11output" from the procedure and

temporary storage space. When the execution is completed, the data

structure, containing 11output 11 from the execution, is returned to the

initiator of the procedure execution.

A simple form of data structure is the elementary data structure.

It is an information structure in tree form, containing A-branches,

type W connectors, and segments. In the case of elementary procedure

structures, we did not rule out shared substructures. Figure 3.3. shows

an eps with two subprocedures both containing a third subprocedure.

8, R

9 R

Figure 3.3. An eps with a Shared Subprocedure

This is allowable since the subprocedure is not altered during execution,

53

and the operation of the entire procedure is the same as if separate

copies of the shared procedure were contained in each of the sharing

procedures. However, in the case of data structures, having more than

one "path" to a type W node could lead to inconsistencies. Thus, we

require that each type W node of a data structure have no more than

one branch in the structure terminating on it.

Definition 3.2. The class of elementary data structures is the set of

all information structures satisfying the following property:

The root connector of the structure is of type Wand has

zero or more A-branches, each with a different name,

leaving it with each branch terminating on a segment of

type W or R or a root node of an elementary data structure.

In addition, each node of the structure must have no more

than one branch of the structure terminating on it.

We shall abbreviate elementary data structure by eds. An example of

an elementary data structure is shown in Figure 3.4.

2

w

Figure 3.4. An Elementary Data Structure

3.3. Pointers, Activation Maps, and Processes

In the previous section, two classes of information structures were

defined. In order to see hON these structures can be used to provide

the controlled access to and utilization of information, we must discuss

the mechanisms used to "execute" the procedure structures.

We assume that all information structures are stored in a Storage

Subsystem. The Storage Subsystem associates a unique identifier with

each information structure node. Requests for access to nodes in the

Storage Subsystem must be accompanied by a token for each node specified.

Each of these tokens, which we call pointers, consists of two components:

a node identifier and a specification of the access ability it provides.

This access ability is specified in two parts, the first being the node

class (segment or connector) and the second being an access mode

restriction, which may be Execute (E), Read-only (R), or Write and

Read (W). The significance of this second pointer component is

discussed later in this section.

Definition 3.3. A Qointer is an ordered pair (i, a), where

is a node identifier, and

a is an ordered pair (c, t),

where c £ {segment, connector} and

tE{E, R, Wf.

The second component of a pointer is called its type. Its value will

be abbreviated by the first letter of the node class (S or C) follONed

55

by the access mode restriction, e.g. SE, CW, •..

The activity of executing programs is carried out by a Processing

Subsystem. It contains a number of processes, each of which is concerned

with the execution of a program, or more exactly, the program of a

particular procedure structure. Within a program, there exists a set

of symbolic names which denote variables. For an activation of a

program, these variables take on particular values, and these values

are utilized as specified by the instructions appearing in the program.

Since it is necessary for a program to refer to nodes of information

structures, some of these variables take on values which are pointers.

Since these values determine the access abilities associated with the

program activation, the model is concerned only with variables which

take on pointer values.

Definition 3.4. Let X={x0, x
1

, x2, ···} be a countable set from

which all variable names are taken. Then an activation map is a finite

set xcx of variable names, and a partial function f which maps some

(possibly all) of the names in X into pointer values.

The set X represents all variables appearing in the program which

take on pointer values, and the function f represents the correspon­

dence between variables and pointers. In general f is a partial

function, sinceat any point in the execution of a program, not all of

the variables appearing in the program are defined, i.e. have values.

The interaction between the processing and storage subsystems,

56

can be depicted by Figure 3.5.

Processing f (x0) XQ
Subsystem variable __., Xl f Cx1) pointersi Storage

names
r

X4 f (x4) -..

(single . . Subsystem
Program) . .

~ -
Figure 3.5. Use of Activation Map

The execution of a program in the Processing Subsystem causes references

to variables, which are transformed through an activation map into

pointer values which are presented to the Storage Subsystem. Of course,

the execution of a program may require the execution of other programs,

i.e. the programs of directly associated procedures, which may themselves

have associated procedures. During the execution of each of these

programs, a different activation map must be in effect since each program

may associate its own meaning with the variable names it uses. Also to

guarantee the required "isolation" between a program and procedures it

may use, the utilization of a different activation map for each program

restricts access by the subroutine to only that information required

for its execution.

As we indicated in Chapter 2, a program is thought of as being

executed by a process, a locus of control which performs the actions

necessary to 11execute11 a procedure structure. We assume that the

mechanism for requesting, in a program, the execution of a subprocedure

is a call-return mechanism (whose detailed specification will be

57

described shortly). If during the execution of a program, a process Is

required to make use of a subprocedure through a call, a new activation

map is created for the program of the subprocedure, and the process

begins execution of the program using that map. When that execution is

completed, the process returns to continue execution of the calling

program using the map which was in effect for that program, and the

activation map for the subprocedure ceases to exist.

Thus the access abilities of a process can be described by a

sequence of activation maps, the last in the sequence being "currently

in effect. 11

Definition 3.5. A process state is a finite sequence of activation maps,

We can thus see that the interaction between processing and storage

can be represented by Figure 3.6.

: 11><o>]
.

XO .
Xl "k-1
• • XO fic-1<xo> l Mk

Processing .
fk(><o) XO

Subsystem . xl fk(XJ) .. Storage
-- x3 fk(x3) ..

(single . . Subsystem
process) • .

Figure 3.6. Use of a Process State

As we have indicated, the access abilities of a process vary

during the course of its activity. The values associated with variables

58

are changed as nodes are accessed; activation maps are created and

destroyed as control passes between programs. In the next section, we

describe a set of operations, which a process may perform while

executing a program, which allow the process to utilize the information

associated with the program being executed. These operations are

described in terms of their effect on the state of the process, and

properties of these operations are discussed relative to the requirements

discussed in Chapter 2.

59

3.4. Program Instructions for Elementary Structures

As a process executes the program of a procedure, it must be able

to utilize the information directly associated with it in the procedure

and other information associated with the program only for that

particular activation. This information is contained in the procedure

structure of the program being executed and the data structure available

to the process. Thus, it must be possible for the process, using the

activation map associated with the program activation, to access

components of these structures.

The method used to implement this provides an activation map for

a new program activation, which associates, with standard variable

names, pointers to the program to be executed, to the root node of its

procedure structure, and to the root node of the data structure to be

used for this activation. The program contains instructions which

enable the process to access other nodes of these structures, by

traversing branches which leave nodes already accessed, and to create

and delete portions of the data structure.

When a process is initiated, the activation map M1 is established

with values assigned to names x
0

, x
1

, and x
2

. The value f
1

(x
0

) is a

type SR pointer to the program of the procedure structure being

activated, f
1

(x
1
) is a type CR pointer to the root node of the

procedure structure, and f
1

(x
2

) is a type CW pointer to the root

node of the data structure to be used by the process.

The instructions which can be used by programs to make use of the

structures available to it are described in Table 3, 1. It is assumed

60

TABLE 3.1.

Assume that the process is using activation map Mk when the
instruction is executed.

1) xj=obtain ~(xi, b) - If fk(xi) is a pointer of type CR

or CW, and a branch named b leaves the connector, fk(xj)

becomes a pointer to the node on which the branch terminates.

The type of fk(xj) is specified by the class and type of the

newly accessed node.

2) d (b { segment l) _ 1 f f () . CW xj= create~ xi, , connectorf k xi 1 s a type

pointer and no branch with name b leaves it, a branch with

name b is established from the commector to a newly created

node, which is of type W and of class specified by the third

parameter. fk(xj) is established as a pointer to the newly created

node, with its type specified by that node's class and type.

is a pointer of type CW, a new activation map Mk+J is esta­

blished such that fk+J(x1) is a type CR pointer for the node

specified by fk(xi), fk+l(x0) is a type SR pointer for the

program segment of the called eps (specified by fk(xi)), and

fk+l (x2) = f k (xj).

4) return - If k>l, the activation map Mk is deleted and Mk-l

5)

is reactivated. If k=l, this signals completion of the task

and the process is terminated.

delete (xi' b) If fk(xi) is a pointer of type CW to a

connector with a branch with name b leaving it, that branch

is deleted from the structure.
61

that the process is executing the program containing the instructions

using activation map Mk. The form of each instruction is shown, and

a description of the instruction's effect on the process state is given.

The symbols x.
I

and x.
J

are used as variable names and b is used as

a branch name such that bE A.

The instructions obtain~ and create~ allow access to other

nodes of the procedure and data structures to be gained by branch

traversals from nodes already accessed. In the case of obtain~,

the newly accessed node already exists, whereas create~ causes a

new branch and a new node to be created. In both cases, the var i ;1b 1 e

specified on the left hand side of the instruction takes as value a

pointer to the newly accessed node, with the pointer type being specified

by the accessed node's class and type.

The instructions call and return allow control to be transfered

between programs. Use of call causes an activation map for the program

of a directly accessible procedure to be created with initial variable

values assigned, and execution of return causes the activation map to

be deleted and control to be returned to the calling program.

The final instruction, delete, enables the process to alter a data

structure by removing branches from it. This has the effect of

dissociating a substructure from the main data structure, and therefore

preventing access to it to be gained from other parts of the data

structure through use of obtain~· The deletion of a node can be

accomplished by isolating it from its structure through delete, since

the completion of program executions and the consequent destruction of

62

activation maps, removes all means, i.e. pointers, for accessing the

node.

Figure 3,7, shows an example of the use of these instructions.

The instructions as they might appear in the programs are shown, as well

as structure and process configurations at appropriate points in the

execution. In the example, lower-case letters are used for variable

names and integers for identifiers. The "standard" form of a newly

initiated activation map is that variables a, b, and c are assigned

pointer values for the program, root of the procedure structure, and

root of the data structure, respectively.

An overall description of the actions specified by the example

procedure is:

I) The process gains access to Its associated table and the input

source program, and creates a scratch segment called Temp.

2) It constructs an eds containing an intermediate representation of

the program, and calls the directly associated procedure, supplying

it with the newly created data structure.

3) The process alters the intermediate program representation while

using a scratch segment of its own, which is deleted before

control is returned to the main program.

4) The main program creates the object program, cleans up the data

structure, and signals completion of its task.

(a) The program instructions in the order of execution, and
indications of the points in the execution to which the
following "snapshots" correspond.

Instructions in Program Instructions in Program 2

d=-obtain ~ (b, Table)
e=obtain node (c, Source)
f =create ~ (c, Temp, SEGMENT)

g =create~ (c, Data, CONNECTOR)
h =create node (g, lntcode, SEGMENT)
k=obtain node (b, Subr)

4 (b)

(c)

~ (k-;-gf
•'4-- (d}

m =obtain node (c, I ntcode)
n =create ~ (c, Temp, SEGMENT)

delete -rz:-Temp)

l =create node (c, Object, SEGMENT}
delete ~Data}
delete (c, Temp}
return

return

(b} The structures and process state as execution is begun.
(Since the eps does not change, it is not included in
succeeding illustrations.)

M1 eds:

a 1 • SR
b 4, CR
c 6, cw

3, R

Figure 3.7. Example of Elementary Structure Use

64

-4-- (e}

4 (f)

w

], w

Ml

(c) a I ,
b 4,
c 6,
d 2,
e 7,
f 8,

Ml

(d) a I , SR
b 4, CR
c 6, cw
d 2, SR
e 7, SW
f 8, SW
g 9, cw
h 10,SW
k 5, CE

(e) a 1 , SR
b 4, CR
c 6, cw
d 2, SR
e 7, SW
f 8, SW
g 9, cw
h 10,SW
k 5, CE

(f)

SR
CR
cw
SR
SW
SW

Hz

a 3, SR
b 5, CR
c 9, cw

7, w

a 3, SR
b 5, CR
c 9, cw
m 10,SW
n 11, SW

7, w

Figure 3.7. (continued)

65

6,

8, w

I 0, iJ

6,

(11, w)

12, w

3.5. Use of Elementary Structures by Processes

In this section, we demonstrate that the utilization of elementary

structures by a process causes the structures to remain well defined.

We also relate properties of the activities of a process, while using

elementary structures, to the requirements given in Chapter 2 concerning

the use of information by a process.

First let us define a property of elementary procedure structures

which corresponds to a relationship discussed in Chapter 2.

Definition 3.6. Let P be an elementary procedure structure. A

segment is directly associated with the program of P if there exists

a branch from the root node of P to the segment. An information

structure x is directly associated with the program of P if there

exists a branch from the root node of P to the root node of x.

We show later in this section that this relation corresponds to the

relationship discussed in Chapter 2 in terms of the requirements it

places on the utilization of information.

Let us now consider the relationship between pointer types and

node types, and their significance in determining how nodes may be used.

In the case of pointers to connectors, the possible pointer types are

CW, CR, and CE. From the descriptions of Table 3.1., we see that a

type CW pointer must point to a type W connector which must be part

of an elementary data structure. The instructions obtain~, create

~. and delete, enable a process to make use of a type CW pointer

66

for accessing nodes reached by branches leaving the node denoted by the

pointer, building substructures connected to that node, and deleting

existing substructures. A type CW pointer is also used by the

instruction~ to specify the root node of the data structure to be

made available to the process during its execution of the called

procedure.

The pointer types CR and CE both appear only in pointers to

type E connectors, which occur only as root nodes of elementary

procedure structures. Whether an activation map contains a type CR

or CE pointer for the root node of an eps depends on whether the

program of the procedure structure is being executed or the eps is

directly associated with the program being executed. This is imple-

mented in the following way. If the pointer is the root of the currently

activated procedure, it must have been associated with the variable

name x by~ and must be of type CR. A type CE pointer can be
l

acquired only through use of obtain~ starting at a node for which

the process has a type CR pointer, which must be the root node of the

currently activated procedure.

If a pointer specifies a segment, it must be of type SR or SW.

This is because elementary information structures contain only segments

of type R or W and obtain~. create~. and £2.11 cause the type

of the pointer to reflect the segment type. There is no need for type

E segments, since we are concerned with ''executing" procedures, not

programs. When a program segment is being used by a process, information

from it is accessed as it would be from any other segment. The

67

difference lies in the way in which the processor interprets the

information. We assume that a type SR pointer enables the process

to access, but not alter, the contents of the segment, and a type SW

pointer allows both reading and alteration.

From this discussion, we can draw the following conclusions:

Proposition Je.I.* A process does not alter an elementary procedure

structure as it executes its program.

Proof: A process is initiated with a type CR pointer for the eps

root and a type SR pointer for the program. Since the eps has only

type R and E nodes, obtain node can yield only type SR or CE

pointers. Also, call yields only type SR and CR pointers for the

eps. Create~ and delete can therefore never be used in conjunction

with an elementary procedure structure node, since they require type

CW pointers. Also only type SR pointers can be obtained for segments,

and thus no segment of a gps can be altered.

Proposition 3e.2. The actions of a process must result in the elementary

data structure supplied to it being transformed into another elementary

data structure.

Proof: Changing the contents of a segment will not affect the '~orm''

of an eds. Thus only the two operations which cause structure alteration,

* Thee in 3e.I. indicates that the proposition concerns elementary
structures. Later in this chapter, we consider properties of general
structures.

68

create~ and delete, must be shown to transform an eds into another

eds. Create~ behaves properly since it creates a branch to a newly

created node, which must therefore have no other branches terminating

on it. The instruction delete also causes no problem since it can only

break off portions of the eds. At least the root node of the original

eds must remain. Since this is a well defined eds, use of delete

always causes an eds to remain.

Proposition 3e.3. If P is an eps, the only segments of P, which

may be referenced by a process executing the program segment of P,

are those which are directly associated with that program.

Proof: Assume the process is using M •
k

By definition of an eps,

only type R and E nodes may exist in P. The instruction which

allows other nodes of P to be accessed is obtain node. Since the

pointer f k(x1) to the root node of P is of type CR, obtain~

can be used to access each of the nodes reached by branches leaving P's

root node. Each of these nodes must be either a type R segment or a

type E connector. In the latter case, the new pointer is of type CE.

Obtain~ cannot be used to traverse a branch leaving a node for

which a process has only a type CE pointer. Thus, no segments may

be accessed by paths through the type E connectors, and the only

accessible segments are those reached directly from the root node of P.

Proposition 3e.4. If a process is using activation map Mk, it has the

ability to access each of the nodes contained in the eds whose root node

69

is pointed to by fk(x 2). Furthermore, the structure may be changed

into any desired form. (The~ of a data structure can be considered

to be a skeleton of the structure which ignores the node identifiers

and the segment contents, but retains the node classes and types and

the named branches relating them.)

Proof: The first part follows directly from the description of obtain

node, since any node can be accessed by its repeated use. The second

follows from the ability of delete to remove arbitrary portions of the

structure and repeated use of create~ to form arbitrary substructures.

The second type of property of the model which is of interest concerns

the means used to name information. Through use of the mechanisms just

described, processes can identify information from the storage subsystem

without having any global, i.e. unique, identification, such as a

pointer value, stored within the program being executed. Identification

of and access to information is determined by the value of a variable.

This variable value exists either from being predefined for the program

activation, or by causing its definition through one of the described

instructions. But information is specified to these operations relative

to some already defined variable through the use of a branch name. Thus

the only naming information needed within a program are variable names

and branch names used in the structures being referenced.

The following consequence can be deduced from this property:

70

Proposition 3e.S. A process is able to access only information which

is part of one of the structures to which it was given root node pointers

when initiated.

Proof: This follows immediately from the relative naming methods used

for the program instructions.

The first two propositions indicate that the execution of the

program of an eps must leave the structures used by the process well

defined. The last three propositions relate to the requirements of

Section 2.S. If we restate Requirements Sand 6 in terms of elementary

structures and processes using them, we obtain the following two theorems:

Theorem Se.* Let P be an eps. During execution of the program of P,

a process can access the data segments directly associated with that

program, the nodes of the eds supplied for that activation by the

initiator, and the nodes created during the program execution. Further-

more, the process may create other eds nodes and utilize them.

Proof: Assume the process is executing the program using map Mk.

Proposition 3e.3. indicates that the directly associated data can be

accessed. The supplied data and that created by the process during

execution of the program must be part of the eds pointer to by fk(x
2
),

and thus are accessible by Proposition 3e.4. Since fk(x
2

) is a type

CW pointer, the process can attach new nodes, by use of create~'

* Here Se indicates Requirement S of Section 2.S. related to
elementary structures.

71

to the connector denoted by the pointer at any time during the program

execution.

Theorem 6e. Let P be an eps. During execution of the program of P,

a process can request the execution of any eps directly associated with

the program of P. However, while executing the program of P, the

process cannot access the program of any directly associated eps or any

of the segments or structures directly associated with that program

(unless they are also directly associated with the program of P).

Proof: Assume the program of p is being executed using map Mk.

Through the use of x.
J
obtain~ (x

1
, b) with appropriately chosen

branch name b, the value f kCx} can be made a type CE pointer to

the root node of any directly associated eps. The use of the eps could

then be requested using call (x., x), where
- J k

is any type cw

pointer (pointing to a connector of the eds being used). Proposition

3e.3. tells us that no pointers for other nodes of the directly associated

eps can be obtained, while the process is using Mk, unless the nodes

are also directly associated with the program of P.

An additional property of elementary structures, which we have not

yet considered, relates to the possibility of name ambiguities. As we

indicated in Chapter 2, existing systems, which provide only one directory

for the information utilized by each principal, require that each file

have a unique name. Thus, the names, for other information, in programs

(both owned and borrowed) used by the principal must not conflict. Use

72

of a tree-1 ike directory structure, as in the MULTICS system, allows

the same entry name to be used for more than one file. However this

required some additional steps to be taken so that, when a program

refers to a file by an entry name, the intended file is utilized.

This possible ambiguity of file names, however, can be avoided by

the use of elementary structures. As Proposition 3e.5. indicates, a

process can make use only of nodes contained in the structures, whose

root nodes are pointed to by f 1(x 1) and f 1(x2). Those nodes are

accessed through the use of instructions, in which each node is

identified (uniquely) by the name of a branch leaving a node which

has already been accessed.

To see how this mechanism can be used to avoid name ambiguities,

consider the example in Figure 3.7. The eps makes available to the

process all information which is associated with the procedure program

by the procedure creator. This information can be accessed by the

process through the use of obtain node, since it has a pointer to the

eps root node (f (b) in the examp 1 e) and "knows" the names of branches
l

leaving that node. Similarly the process can access the information

in the eds supplied by the initiator of the procedure execution. The

other information needed by the process is that which is created by the

process.

Both programs in Figure 3.7. cause a branch named Temp to be

created leaving the node specified by the variable c. No ambiguity

results, since the subprocedure is supplied with an eds containing only

the information (node 10) it requires. The program of the subprocedure,

73

! - . !

!

~ . ..

11knowi-ng" that it wi 11 be tSUJIP1 l-1 """'rth an eel•~ tbat t~ only branch

leaving the eds root AOlle .._ ,,_. ~lnt..,.'v'can ~-·-die .WltlenaJ

to access tAat nocle, _..9\o\ F:ty ~wo.J!d ~ ~ , :fhu:s._ J f-. ea\c:h

progr.a .ecti""at loa ··1 s-•_.,,,.tJed -wi~t'h •-'-._ .,_ . .,..,, rilitta fwa ':,(tn

the sense descr l'Oed 111 "r4JllOS i t.ian:]&;;lti..-~ ~;:;:no illlb feu;i ty: .-11 result.

74

3.6. General Information Structures

The structures discussed in 3.1. and 3.2. are not adequate to

model all types of stored information. We have shown no way to incor­

porate alterable data into a procedure, which we argued in Chapter 2

should be the means for maintaining shared data bases. Also, we have

no way to incorporate read-only data into data structures or to pass

procedures as arguments to subroutines. It is the role of this section

to generalize the mechanisms discussed above to allow these capabilities,

and to demonstrate that the properties of the structures are essentially

unchanged.

First, we shall define a new type of structure, called a basic

structure. This is simply an information structure composed of read­

only data. The class is defined as follows:

Definition 3.7. The class of basic structures is the set of all

information structures satisfying the following property:

The root node of the structure is a type R connector with

one or more A-branches leaving it, each with a different

name, with each branch terminating on a segment of type R

or the root node of a basic structure.

A basic structure will be abbreviated by bs.

In order to generalize the procedure structure and data structure,

it is necessary to define them in terms of one another in a recursive

fashion. This has the effect of allowing data structures to contain

75

read-only data and procedures, and allowing procedure structures to

contain alterable (data) structures as components.

Definition 3.8. The class of general~ structures is the set of all

information structures satisfying the following property:

The root node of the structure is a type W connector

which has zero or more A-branches leaving it, each with

a different name, and each terminating on any of the

following:

I) a segment of type w or R,

2) the root node of a basic structure,

3) the root node of a general procedure structure, or

4) the root node of a general data structure.

Furthermore, each type W node of the structure has no

more than one branch of the structure terminating on it.

Definition 3.9. The class of general procedure structures is the set

of all information structures satisfying the following property:

The root node of the structure is a type E connector with

one *-branch leaving it which terminates on a type R

segment, and zero or more A-branches, each with a different

name, and each terminating on any of the following:

I) a type R segment,

2) the root node of a basic structure,

76

3) the root node of a general data structure, or

4) the root node of a general procedure structure.

These two new types of structure are abbreviated as gds and gps.

Examples of these structures are shown in Figure 3.8. We should

observe that the elementary structures defined earlier are special

cases of these general structures.

Basically the general procedure structure allows alterable infor­

mation to be associated with a procedure. Thus a procedure may retain

information generated by its past activations, and, for example, may

maintain an alterable data base. The general data structure allows

read-only data as well as alterable data to be associated with a data

structure, and to be passed to a procedure as parameters of a call. In

addition, a general data structure may contain procedures, that is

general procedure structures, so that they al so might be supplied to a

procedure for a particular activation.

The same form of activation map and set of instructions can be

utilized for modelling activations of general structures as for elemen­

tary structures with one minor modification. A mechanism is required

to keep alterable data associated with a procedure (Category I information)

separated from the (Category 11) information associated only with that

activation. This separation ensures that the data structure supplied

to each procedure activation, is a substructure of the gds originally

supplied to the process, and thus is owned by the process owner. The

importance of this will be seen in Chapter 4.

77

I -·~

(a) General Procedure Structure

(b) General Data Structure

Figure 3.8. Examples of General Structures

78

9, R

The implementation of this mechanism is relatively straightforward.

Each type CW pointer is classified as internal or external, which

is intended to indicate whether the connector is part of the procedure

structure or not. When a process is initiated, the pointer f 1(x2)

is made to be external. This indication is propagated by

x.=obtain node (x., b) and x.=create node (x., b,{segment }>
J 1 J - 1 connector

causing fk(x} to be external just if fk(xi) is. When call (xi,

is executed, the pointer f k(xj) is required to be external, and

by

x.)
J

fk
1

Cx
2

) also becomes external. Use of these mechanisms thus ensures

that the general data structure passed to a procedure activation is a

substructure of the data structure originally supplied to the process.

79

3.7. Use of General Structures by Processes

This section contains a description of properties of a process'

use of general structures analogous to those discussed in 3.5. for

elementary structures.

First we define direct association for general procedure structures.

To do this, we need the notion of a path in an information structure,

and of particular types of paths.

Definition 3.10. A path in an information structure s is a sequence

of A-branches in s, such that x1 leaves the root

node of s, and each x
1

, for i>l, leaves the node on which xi-I

terminates. The path~ of the path is b1.b2 ••••• bj, where

the branch name of x .•
I

b. is
I

Definition 3.ll. A path of~..!!_ in an information structure s is

a path in s for which each node from which a branch of the path

emanates, with the possible exception of the root node of s, is of

type W. That is, all branches of the path, except perhaps the one

leaving the root node of s, leave nodes of type W. A eath .2f. ~ !!::J!

in s is a path in s for which each node from which a branch of the

path emanates, with the possible exception of the root node of s, is

of type W or type R.

As we shall see, these are the paths which can be traversed using

obtain~' and thus nodes which can be reached by such paths are

80

"access i b 1 e 11 to the process if it has a pointer to the root node of the

structure. The exception of the structure's root node allows us to

describe such paths in both procedure and data structures.

Definition 3.12. Let P be a general procedure structure. A segment

is directly associated with the program of P if there exists a path in

P of type W-R to the segment. An information structure x is

directly associated with the program of P if there exists a path in

P of type W-R to the root node of x.

This definition causes all of the data, both type R and W, contained

in P which can be reached without passing through any type E

connectors to be directly associated with the program of P.

Now let us turn to the properties of the mechanisms for utilizing

general structures. The propositions are numbered to correspond to

those given for elementary structures in Section 3.5.

Proposition 39.J. The actions of a process in executing the program

of a general procedure structure always result in the gps being

transformed into another gps.

Proof: The difference between this case and that of elementary

procedure structures is that it is now possible for the process to

alter the data structures which are part of the procedure structure.

The process, using obtain~. can obtain type CW pointers for the

root nodes of the gds's reached by branches from the procedure

81

structure's root node. The question then is whether these data

structures are always transformed into other gds's by the execution of

program instructions. Again, create~ and delete are the only

instructions which can alter the form of a gds. Create~ can

establish branches only to new nodes, which therefore have no other

branches terminating on them, and delete can only remove substructures

of the gds. Thus a gds must remain after use of these operations, and

thus the procedure structure wilt still be a general procedure structure.

Proposition 39.2. The actions of a process always result in the gds

supplied to it being transformed into another well defined gds.

Proof: This result is shown by the above proof for Proposition 3g.l.

Proposition 39.3. Let P be a gps. The only nodes of P which may

be accessed by a process while executing the program of P are those

segments which are directly associated with the program of P, and the

root nodes of structures directly associated with the program of P.

Proof: A process may 11traverse 11 a path in P to a node through the

use of obtain~· At each step, obtain~ requires that the process

have a type CR or type CW pointer for the connector from which the

branch to be traversed leaves. But the process could have this pointer

only if it were traversing a path of type W-R in P.

A similar argument can be made for nodes accessed by create node. Thus,

by Definition 3.12., these segments and root nodes must be directly

82

associated with the program of P.

Proposition 39.4. If a process is using activation map Mk' it has the

ability to access each of the nodes reached by a path of type W-R in

the gds whose root node is pointed to by f k(x
2
). Furthermore, the

process may alter the type W paths of the gds and any segments reached

by such paths.

Proof: The first part is true by the same argument used for Proposition

39.3. The second part is true because the process may obtain a type CW

or SW pointer for a type W connector or segment reached by a path of

type W, through the use of obtain~· Thus, if the node is a

connector, the process may add or delete branches leaving the node. If

it is a segment, the process may alter the contents of the node.

This proposition does point up one dissimilarity between the use of

general and elementary structures. A process can create an eds of

arbitrary form to pass to a subprocedure. However, since a process has

no means to create a gps or bs, it cannot construct a gds of arbitrary

form, but may only add type W nodes. This is a slight constraint on

the forms of information which can be passed between general procedures,

but is necessary to attain the controlled sharing discussed in Chapter

4. Chapter 6 contains a discussion of this constraint and a means for

overcoming it.

Proposition 39.5. A process can access only information which is part

83

of one of the structures to which it was given a root node pointer

when initiated.

Proof: This is the same as Proposition 3e.S. and is true for the

same reasons.

The first two propositions tell us that the execution of the

program of a gps must leave the structures used by the process well

defined. The last three relate to the requirements of Chapter 2, as

indicated by the following theorems:

Theorem Sg. Let P be a gps. During execution of the program of P,

a process can access all segments directly associated with that program,

all root nodes of directly associated general data structures and

basic structures, and all type R or W nodes reached by paths of

type W-R in the gds supplied for that execution. Furthermore, the

process may create other gds nodes and utilize them.

Proof: Propositions Sg.3. and Sg.4. indicate that this is true.

Theorem 6g. Let P be a gps and Q be the gds supplied for the

execution of P. During the execution of the program of P, a process

can request the execution of any gps directly associated with that

program or any gps, contained in Q, whose root node can be reached by

a path of type W. However, while executing the program of P, the

process cannot access the program of such a gps, or any of tf-e segments

or structures contained in such a gps, unless they can also be reached

~

by paths of type W-R in P or Q.

Proof: From Propositions 39.3. and)g.4., the process can access the

root nodes of these procedure structures. Since call requires only a
pointer to the gps' root node, this is adequate to request its execution.

The same propositions tell us that nodes may be accessed only by

traversing paths of type W-R. Thus, nodes accessible only by paths

through type E connectors may not be accessed by the process while

executing the program of P.

85

4.0. Introduction

C H A P T E R 4

ENVIRONMENTS

The last chapter introduced some forms of structured information.

In addition, it showed how means can be provided, for a process to

utilize information, which satisfy the requirements of controlled

information sharing. In this chapter, we show how information can be

associated with and used by principals to accomplish controlled sharing

of information.

A means for organizing stored information is first described.

Analogous to the use of structures by processes, the form of this

organization determines what information each principal may use and

constrains the type of use he may make of it. A set of commands is

also specified, which defines the types of activity which a principal

may request the utility to perform. These enable a principal to control

procedure executions, form new procedures, and share procedures with

other principals. Arguments are then given to show that properties of

the mode) can be directly related to the requirements of controlled

information sharing discussed in Section 2.5.

We should note again that the mode1 described here a11ows a

relatively unrestricted type of information sharing; a principal is

allowed to share any owned procedure. Chapter 5 contains a discussion

of other sharing disciplines and the model modifications required to

implement them.

Analogous to Chapter 3, the development in this chapter is

86

separated into two parts.

~-;;_ __ ,

4.1. Elementary Environment

In this section, a model of a means for organizing stored

elementary information structures is defined, and mechanisms which

enable principals to make use of the information is described.

Structure of the Elementary Environment

The means by which information is organized and by which access

abilities are associated with principals is the elementary environment.

The elementary environment is a collection of information structures,

each one being associated with a particular principal. Each of these

structures is referred to as an elementary principal structure,

abbreviated eprs. The form of a principal 's eprs exhibits which

information is accessible to him, and thus it determines which stored

information he can utilize and how he can use it. Sharing is accom­

plished by providing a means for information structures to be contained

in the eprs's belonging to different principals.

All information in the elementary environment is owned by some

principal, who has control over how it is used. The ownership of

information private to a principal, e.g. data structures, is specified

by the form of the environment. An additional indication is required

to determine the owner of shareable information, however, and this is

provided by a function called the ownership function.

Definition 4.1. An elementary environment consists of three components:

1) A set of principals P=(p1, p
2

, ••• , PK)

88

2) A set of information structures F=(f 1, f 2, ••• , fK) in

which

a) the root node of each f.
I

is a type W connector

and is not contained in any of the other structures

of F (that is, there is no other structure

a path in f.
J

to the root node of f .), and
I

f. with
J

b) the root node of each f. has zero or more A-branches
I

c)

leaving it, each with a different name, such that

each branch terminates on the root node of an elementary

procedure structure or an elementary data structure, and

any eds which is directly attached to f.
I

has only

one branch terminating on its root node, and is disjoint

from any other eds which is directly attached to any

f.(j=I, 2, ••• K). (An eds is said to be directly attached
J

to f. if there exists a branch from the root node to
I

f. to the root node of the eds).
I

3) A function, O, which maps each type E connector of each

element of F into an element of P.

Each element of F is called an elementary principal structure,

abbreviated eprs.

Relationships between Principals and Information Two relationships

between a principal and information determine his ability to use that

information: ownership and direct (and indirect) accessibility. Both

89

can be determined by the form of the elementary environment in conjunc-

tion with the function O.

As we discussed in Chapter 2, only procedures may be shared. Thus

data structures which are substructures of an eprs should be owned by

the associated principal. The ownership relation for structures is

determined by the following definition. (In this discussion, the types

of paths defined in the last chapter are used.)

Definition 4.2. (Part 1) Each principal structure f.
I

is owned by

principal p,. Each elementary data structure whose root node is
I

reached by a path of type W in f.
I

is owned by p ••
I

An elementary

procedure structure is owned by the principal which 0 associates with

its root node.

This definition associates exactly one owner with each eps of F,

since 0 associates a unique principal with each type E connector.

Consider now a type W connector which is not the root node of some

It can be part of only one directly attached eds, since the directly

attached eds's are disjoint. Each directly attached eds has only one

branch to its root node, and thus the type W connector must be part

of one eprs, say f .•
I

The eds, of which this connector is the root

node, therefore is owned only by p. 1 and each type W connector has
I

exactly one owner.

Since the ownership of a structure is determined by a condition

regarding its root node, and each connector is the root node of a

90

f .•
1

structure, the ownership of a structure can be thought of as synonomous

with the ownership of its root connector. Thus we can define the notion

of an owned path.

Definition 4.3. An owned path in an elementary principal structure f.

is a path in f for which each connector from which a branch of the

path emanates is owned by p .•
I

We would now Jike to define ownership of segments by stating that

I

p.
I

owns a segment if there exists an owned path in f.
I

terminating on

it. This would be adequate in the case of type W segments, but if

the segment is type R, it could have more than one branch terminating

on it, each being part of an owned path in a different eprs. To resolve

this problem, we need the idea of a welJ formed elementary environment

(abbreviated wfee).

Definition 4.4. A we11 formed elementary environment is an elementary

environment in which, for each type R segment,

1) all of the type E connectors, from which a branch

leaves which terminates on the segment, are owned by

the same principal, and

2) if the segment is reached by a path of type W in

f., all of the type E connectors, from which a
I

branch]eaves which terminates on the segment, are

owned by p .•
I

91

This definition ensures that, if there are any owned paths to a

type R segment, all of those paths are owned by the same principal.

Ownership of segments can be specified by the following definition.

Definition 4.2. (Part 2) In a wfee, each segment reached by an owned

path in f.
I

is owned by p .•
I

This definition associates no more than one owner with each

segment. If the segment is part of an eds, it is owned by the owner of

the eds, as are all eps 1 s making use of the segment, since the environ-

ment is well formed. If the segment is not part of an eds, it must be

the program of, or directly associated with the program of, one or more

eps 1 s. Since each of these must be owned by the same principal, that

principal is the only one who may own the segment.

Note that it is possible to have an "unowned" type R segment,

since there may exist no owned paths to the segment. This means that

the original creator of the segment has "cut it loose" by deleting all

owned paths to it, but that use is still being made of procedures with

which it is associated.

In the subsequent discussion, all elementary environments are

assumed to be well formed. The idea of an owned path can be used to

define direct accessibility.

Definition 4.5. An information structure x is directly accessible in

an elementary principal structure f. if there exists an owned path
I

92

in f. to the root node of x. A segment is directly accessible
I

in f. if there exists an owned path to it.
I

From Definition 4.2. each path of type W is an owned path, and

thus all owned data structures and segments are directly accessible.

Also, since paths of a single branch are owned, each procedure attached

to the root node of an eprs is directly accessible. Finally, if a

procedure is owned, the path to its subprocedures is owned, and each

of those is directly accessible. This aspect of direct accessibility

allows a principal to access the substructures of a procedure he

created, without having to retain direct connections from his eprs root

to each of the subprocedures. An example of a well formed elementary

environment is shown in Figure 4.1.

r
a

11 , R

3, w
R

Figure 4. I. A Well Formed Elementary Environment

93

Connectors are shown as rectangles; segments as ovals. The components

shown in each node are the node identifier and type, as in Chapter 3.

In addition, a box is appended to each type E connector indicating

the owner of the node; that is, the value of the function 0. The

figure shows two elementary principal structures. The eprs owned by

p
1

contains a data structure (nodes 2, 3, 4) and a directly accessible

procedure structure owned by p
2

• The structure owned by p2 also

contains the procedure structure as well as a data structure (nodes

7, 8, 9) which contains (node 8) the program segment of the procedure

structure. Note that the path named a.a from node 6 is an owned

path, therefore node 11 is owned by p
2

. However, node 13 is

unowned since none of the paths to it are owned.

Instructions and Commands

To see how these structures can be formed and used, we shall

describe the operations which can be performed on the structures. The

operations are of two types: commands and instructions. Commands are

directly requested by the principal, and specify actions to be performed

utilizing directly accessible structures. Instructions are those actions

discussed in Chapter 3 which can be requested by a process operating on

behalf of a principal.

The commands are of three types. The first type requests the

initiation or termination of a process, the second causes procedures

to be formed, and the last implements sharing. The commands are

described in Table 4.1. There we use the abbreviation "path name n

94

denotes structure s 11 to mean that there exists an owned path in f.
I

with path name n which terminates on the root node of the structure s.

Similarly "path name n denotes segment x11 means that there exists an

owned path with path name n which terminates on x. From the

definition of direct accessibility, we can see that, since the paths

must be owned, only directly accessible structures and segments may be

''denoted 11
•

The commands for controlling a process are quite straightforward.

As part of the initiate process command, the principal specifies the

root nodes of the eps and eds, to be used by the process, by path names.

The command causes a process to be established with a state consisting

of the single map M, initiated with values for
I

principal may use this command only when no other processes owned by

The

him exist. This restriction eliminates the need, in this basic model,

for the additional complexity required for parallel processing. (Chapter

7 discusses a model generalization to allow parallel processing.) It

is necessary that a principal be able to supply a process with the entire

structure f. as data, since a process must have access to the root
I

node of f. in order to create data structures contained by it. This
I

proves to be no problem relative to the instructions executed by the

process, since an eprs is clearly a special case of a gds, and we have

seen that the instructions utilize generalized data structures in an

appropriate manner. The command .£2.!1!! ~ seems to be quite complex,

but its operation is straightforward as is shown by the example in

Figure 4.2. (Only the directly affected portions of the environment

95

T A B L E 4. l.

Assume these are issued by principal p .•
I

1) Initiate process (m, {~}) - If path name m denotes an eps

2)

3)

and path name n denotes an eds, and if there exist no processes

owned by p,, a process owned by
I

P. is initiated utilizing the
I

designated structures. If n is not specified, the structure f.
I

is used in place of an eds.

Terminate process - The process owned by p.
I

is destroyed.

name not already occurring for a branch leaving the root node of

n denotes a segment, n1 ••• n denote segments or eps's, and
0 J

b
1
••• bJ are distinct branch names, an eps is formed utilizing the

segment denoted by n as program segment and having branches
0

from its root node with names b
1
••• bJ terminating on the nodes

specified by n
1
••• nJ. All of the denoted segments are made type

R. A branch with name b is also constructed from the root node

f.,
I

of f to the newly formed node. Principal P. becomes the owner
I

of the newly formed node.

4) Share n with S - If n denotes an owned eps, the set of

5)

principals S becomes the share set for the eps.

Borrow n .f!:E!!! j ~ b - If p.
I

appears in the share set of the

eps denoted in elementary principal structure f
j

by n, then a

branch with name b is constructed from the root node of f to

the root node of the eps.

96

are shown.) Use of the command results in a new eps directly accessible,

and owned by, p
1

which makes use of owned program and data segments

(nodes 3 and 4) and a borrowed subroutine (node 5). Since the

segments (3 and 4) are now part of an elementary procedure structure

they can no longer be altered and thus are changed to type R.

E 2
2

~ ~ f ~ (a.c; ~.d, ~; (b, ~)

Figure 4.2. The form~ Command

The two commands,~ and borrow, allow procedures to be shared

among principals. The owner of the eps associates a share set, which

is a set of principal names, with the procedure. Each principal whose

name appears in the set then may establish access to it via a branch to

its root node. It should be noted that this mechanism allows a principal

to share any owned procedure, even though it may utilize non-owned

subprocedures, which is the 11 least restricted" type of sharing discussed

in Chapter 2. In the next chapter we describe how the model can be

modified to allow other types of sharing involving greater amounts of control.

97

4.2. Properties of the Elementary Environment

Two types of properties must be demonstrated regarding the elementary

environment. The first shows that the environment remains well formed

and well defined. That is, a structure formed by alterations to a well

formed elementary environment, resulting from the use of commands by

principals, still satisfies the definition of a wfee. The second set of

properties shows that the system organization, consisting of an elementary

environment, satisfies the requirements described in Chapter 2.

Preserving Well Formedness

To demonstrate that use of the commands leaves a wfee well defined

and well formed, assume that a well formed elementary environment, i.e.

sets P and F and function O, already exists, and consider a

particular eprs f •
i

The following properties hold.

Proposition 4e.1. Use of commands by any principals cannot cause

branches to be formed which terminate on the root node of f;·

Proof: The only commands which can cause branches to be formed are

form~· borrow, and initiate process. f2r!!! ~ forms only branches

to segments or eps root nodes (type E connectors) and borrow forms

only branches to eps root nodes, so neither of these could be used to

form a branch to an eprs root node, which is a type W connector. A

pointer to the root node of f.
I

could be given to a process owned by

p., through his use of initiate process (b, -). However, since the
I

process may only form branches to new nodes, this could not cause the

98

creation of a branch to that node.

Proposition 4e.2. Use of commands by principals always results in f.
I

being transformed into another, well defined eprs, with its elementary

data structures being disjoint from those of any other eprs.

Proof: First let us show the following Lemma.

Lemma 4.1. Use of corrunands by P. cannot result in the alteration
J

of f.. if i :F j.
I

Proof: The three commands which can result in alteration of the

structure of F are initiate process, .f.2!:.!!! ~· and borrow.

Consider use of these by p., where j ;Ci •
J

Use of initiate process

by P. causes a process to execute the program of an eps using a
J

supplied eds, which can be altered by the process. The eds is

specified by a path name which, if P. issues the command, is the
J

name of a path in f
j

to the root node of the eds. Since this

eds is part of a directly attached eds in f .• it is disjoint from
J

any eds in f .• Thus this eds may only have parts in common with
I

eps 1 s in f .• However, the only parts they could have in command
I

are type R segments, which may not be altered by the process.

The use of f2.!:.!!! ~by P. causes a new node to be formed, as well
J

as branches to and from it, and some type W segments are changed

to type R. The new node and branches are only on paths from the

root node of f , and thus are not part of f .• The type W
j I

segments must be part of eds's in f. and also are not in f .•
J I

Use of borrow by p.
J

causes only a branch to be formed from the

99

To see that the environment remains well formed, consider a type R

segment x in F. Only the use of f2!:m !:!?.! can cause a branch

terminating on the segment to be formed. If a principal P. is able to
I

construct a branch to x using .f2.!:!!! !:!?.!• there must already exist an

owned path in f to x, and, since the environment is well formed,

all owned paths to x must be in f..
I

Use of form eps by p,, however,
I

only causes the creation of another owned path to x in f., since p.
I I

owns the newly formed type E connector. Thus, no other principal may

cause an owned path to x to be formed, and wfee's must be transformed

into wfee's.

Controlled Information Sharing Requirements

Now let us consider the correspondence between the requirements

for controlled sharing, restricted to cases modelled by wfee's, and

properties of the well formed elementary environment. In the following

discussion, the requirements of Section 2.5. are restated in terms of

structures and relations defined for the wfee, and an informal proof of

the validity of each is given.

Theorem le. Only elementary procedure structures can be directly

accessible to more than one principal in a wfee.

Proof: We must show that the other forms of information, namely

elementary data structures and segments, can be directly accessible to

only one principal. If an eds is directly accessible to p. then it is
I

contained in a directly attached eds in f.
I

and is disjoint from any

101

of the eds 1 s in f .. where j ~ i. Thus its root node cannot be reached
J

by a path of type w in f. and is not directly accessible to p .•
J J

By comparison of Definitions 4.3b. and 4.6., segments are directly

accessible to P. only if they are owned by p • Thus, since we have
I i

shown that each segment can have only one owner, only that principal

may have direct access to it.

Theorem 2e. A principal may request the execution of any directly

accessible eps, and may supply, for use during that activation of the

eps program, any directly accessible eds. During the eps execution,

information can be created, but all of that information, which is not

deleted during the execution, becomes directly accessible to the

principal requesting the execution.

Proof: The first part follows from the form of initiate process and

Definition 4.6. If p. requested the eps execution, the eds used by
I

the process is in f .. Information can be created by the process through
I

create~. which attaches the new node, by a branch, to a type W

connector. This type W connector must be part of the eds, or have

been separated from it by the use of delete. When the process is

terminated, this information remains as part of the eds in f., or, if
I

it was separated from the eds, it is destroyed.

Theorem 3e. A principal can form an elementary procedure structure

using any segments or eps 1 s directly accessible to him.

Proof: This follows directly from the form of .:f.£!]! ~·

102

Theorem 4e. Use of .!2r.!!! eps or initiate process by a principal cannot

affect the directly accessible information of any other principal.

Proof: This follows directly from Lemma 4.1., which is shown in the

Proof of Proposition 4e.2.

Theorem Se. Let P be an eps. During execution of the program of P,

a process can access the data segments directly associated with that

program, the nodes of the eds supplied for that activation by the

initiator, and the nodes created during the program execution. Further­

more, the process may create other eds nodes and utilize them.

Proof: This is proved in Section 3.5.

Theorem 6e. Let P be an eps. During execution of the program of P,

a process can request the execution of any eps directly associated with

the program of P. However, while executing the program of P, the

process cannot access the program of any directly associated eps or any

of the segments or structures directly associated with that program

(unless they are also directly associated with the program of P).

Proof: This is proved in Section 3.5.

Theorem]e. Each eps created by a principal becomes owned by him.

Proof: This follows directly from the description of .f2!:!!!~ and

Definition 4.3.

Theorem Be. A principal can make the use of any owned eps available

103

to any principal or group of principals.

Proof: This is directly implemented by the share command.

Theorem 9e. A principal may establish direct access to any eps made

available to him.

Proof: Borrow causes a branch to be formed from the root node of the

principal 1 s eprs. Since any path of only one branch is an owned path,

the eps is directly accessible.

This discussion has shown that the relations of ownership and

direct accessibility defined in this chapter correspond to the relation­

ships described in Chapter 2. Thus, if a computer utility were designed

with properties representable by those of the well formed elementary

environment, users could make use of the utility to share and utilize

information in a controlled way.

104

4.3. Sharing Decisions by Algorithm in the Elementary Environment

As we indicated in Chapter 2, the use of a share set is just one

method by which a potential borrower's rights may be determined. It

would be desirable, in general, to allow the procedure owner to specify

an algorithm which determines how sharing decisions for that procedure

are to be made.

An implementation of this can be provided by extending the wfee of

4.1. The following is a typical scenario for this type of sharing. A

principal, say pi, owns elementary procedure structures s1 ••• Bh which

he desires to make available to others. He specifies the algorithm by

which the suitability of potential borrowers would be judged regarding

their use of e1 ••• Bh, and writes a program, say C, which implements

the algorithm. Principal P. then forms an eps A using C as its
I

program and B
1
••• Bh as subprocedures, and creates a share set for A

which makes A available to potential borrowers (perhaps everyone) of

81 ••• Bh.

A principal P. who desires to use one or more of the procedures
J

B1 ••• Bh, uses borrow to obtain direct access to procedure A. He then

initiates a process to execute procedure A and supplies it with an

eds from f. which contains, for example, a specification of which
J

procedures are desired, along with a password or other identification

information. The algorithm in C is executed and a decision is made

regarding the procedure access which P. is to obtain.
J

One piece of information which could be important to C is the

identity of the potential borrower. The borrower could not be trusted

105

necessarily to give his own name, so an instruction should be provided

to supply this information to the process as it is executing C. This

instruction could be of the form

u =process owner - If u is a non-pointer variable name, and p.
I

is

the process owner, then u is assigned the value i.

It supplies the process with the identity of the process owner, which

can be used as information for the algorittvn specified by C.

After a decision to share a procedure has been made, a mechanism

must be provided to implement the decision. Sharing of procedures can

be accomplished by the process, while still executing C, through the

use of a new ins.truction, connect. This instruction is defined in the

following way, assuming that the process is using activation map Mk:

connect (xi, b) - If f k(x
1
) is a pointer to a type E connector,

and if O(f k(x1)) (owner of the executing procedur~ is the same as

O(f k(xi)), and if a branch named b does not already leave the root

node of the principal structure of the process owner, a branch named b

is constructed from that node to the node pointed to by fk(xi).

Use of the instruction causes a branch, with name b, to be formed from

the root node of the borrower's eprs (the borrower being the process

owner) to the root node of the eps being shared.

In order for connect to be executable, the owner of the sharing

algorithm (and thus of the procedure containing it) must be the same

106

as that of the procedure being shared. This ensures that this mechanism

cannot be used by a principal to share direct access to a procedure he

does not own.

Use of connect does alter the properties discussed at the end of

Section 4.1. First, it alters the properties regarding process access

abilities since the process may cause a branch to be attached to the

root of the process owner's eprs, which may not be part of the data

structure supplied to the process. However, since this node is accessible

to the process owner only, the directly accessible information of other

principals is not affected.

Secondly, of course, it provides an additional means for procedure

sharing which cannot be used for every owned eps. That is, there must

exist a procedure which a borrower accesses through borrow before connect

can be used. However, that is no real restriction, since any eps can

be made a substructure of another, whose program may use connect, so

that use of any procedure may be shared through a sharing algorithm

utilizing connect.

107

4.4. General Environment

In this section, we are interested in studying a more general form

of environment allowing the inclusion of general procedure structures

and general data structures. Use of these structures allows users to

interact more, such as through shared, alterable data bases. However,

mechanisms analogous to those discussed for elementary environments

still provide control of sharing in the sense discussed in Chapter 2.

The general environment is defined in a similar manner to the

elementary environment.

Definition 4.6. A seneral environment consists of three components:

1)

2)

3)

A set of principals p =(pl' P2• ... ' pk).

A set of information structures G = (g 1' g2'

a) each g_ is a general data structure,

'

... ' gk) in which

b) the root node of each g. is not contained in any of the
I

other structures of G, and

c) each type w node in G, which is not the root node of

a g.' has exactly one branch terminating on it.
I

A function 0 mapping each type E connector of each element

of F into an element of P.

Each element of G is called a general principal structure, abbreviated

gprs.

108

Relationships between Principals and Information

The relationships of ownership and direct accessibility are defined

similarly to the same relationships for the elementary environment.

First we define ownership for general principal structures and some of

the structures they contain.

Definition 4.7. (Part I} Each 9. in G is owned by principal pi.
I

Each general data structure whose root node is reached by a path of

type W in 9. is owned by P.• Each general procedure structure is
I I

owned by the principal which the function 0 associates with its root

node.

Clearly this definition associates exactly one owner with each g.
I

and each gps. Also, each type W node can have only one branch

terminating on it. Thus, if there exists a path of type W in g.
I

to

an eds root node, that must be the only path to that node, and P.
I

is

the unique owner of the eds.

In order to define ownership for basic structures and segments,

general environments must be restricted to be well formed. The type R

connectors of basic structures cause a problem similar to that caused

by type R segments in the elementary environment, and thus the owner-

ship of paths to them must be constrained just as those to type R

segments.

Definition 4.8. A well formed general environment is a general

109

environment in which, for each type R node (connector or segment),

I) all type E connectors, from which a branch leaves which

terminates on the node, are owned by the same principal, and

2) if the node is reached by a path of type W-R in a 9prs g.,
I

all type W-R paths to the node are in g, and all type R
i

or E connectors (excluding those type R connectors which

are unowned), from which a branch leaves which terminates

on the node, are owned by P.•
I

This definition guarantees that all owned paths to type R segments

and to basic structure root nodes are owned by the same principal.

Ownership can now be extended to basic structures and segments.

Definition 4.7. (Part 2) A basic structure whose root node is reached

by an owned path in 9. is owned by P.• A segment reached by an

owned path in g.
I

I I

is owned by p .•
I

Any eds or bs or segment reached by a path of type W-R in a

structure 9. is owned by p • If a node can only be reached through
I i

a type E connector, it may or may not be owned. From Definition 4.7.,

if there exists an owned path in g.
I

to a 9ps root node and P.
I

owns

the 9ps, P. also owns the gps program segment, the basic structures
I

directly connected to the 9ps root node, and the segments of the basic

structures. However, neither P. nor any other principal owns any
I

general data structures accessible from the gps root node nor any of

110

the type W segments they contain. This is consistent with the fact

that any alterations to a gds associated with a procedure can be caused

only through use of that procedure. All principals which may execute

the procedure thus have equal capability to alter the gds, and thus no

one can be said meaningfully to own it.

The direct accessibility relation can be defined as follows.

Definition 4.9. A general procedure structure or a basic structure is

directly accessible in a gds g. if there exists an owned path in g.
I I

to the structure's root node. A general data structure is directly

accessible in g. if there exists a path of type W to its root node.
I

A segment is directly accessible in g. if there exists an owned path
I

to it.

This definition excludes general data structures associated with

procedures by requiring that the path be of type W, and thus not pass

through the root node of a procedure. Since there is only one path to

an associated type W connector from the procedure root node (by the

definition of a gds), all paths to the connector must pass through the

procedure's root node, and thus would not be of type W.

A well formed genera) environment is shown in Figure 4.3.

111

w

Figure 4.3. A General Environment

Principal P. has direct access to a basic structure (root node 5),
I

a general data structure (root node 2), and a general procedure

structure not owned by him (root node 13). He also has direct access

to segments 4 and 3. Principal p
2

has direct access to a gps

(root node 13) which he owns, and a gds (root node 7) which contains

abs (root node 15). Note that the gds (nodes 11 and 12) contained

in the procedure structure is not owned (or directly accessible) to

either principal.

Instructions and Commands

The form of a process in a general environment and the instructions

it may use are the same as those described in Section 3.6. The commands

112

are analogous, with one addition, to those of Table 4.1., and are

shown in Table 4.2. Again we use the phrase "the path name n denotes

a structure (or a node) 11 to mean that there exists a path, with name n,

in g_ which terminates on the root node of the structure (or on the
I

node), and which ensures that the structure (or node) is directly

accessible to P.• Thus, if a gps, bs, or segment is denoted, the
I

path must be owned; if a gds is denoted, the path must be of type W.

The conwnands initiate process and terminate process are analogous

to the same convnands for elementary environments. £2!.!!! ~ is similar

to .f2r.m.!:E!• except that the gps may be attached to any directly

accessible (and owned) gds root node, and that general data structures

may be made part of a gps. The first difference only implies a change

in the syntax of .f2r.m ~ so that the name of the newly formed structure

is specified as a path name followed by a branch name. It is required

that any gds contained in a gps can no longer be directly accessible to

any principal. Thus, each branch which connects the root node of a gds,

incorporated into the new procedure, with g. is deleted by use of
I

The comnand .f.2!:!!! .£.a operates in a s i mi 1 ar manner to .f2!]! ~·

except that only segments and other basic structures may be used as

components, and that there is no program segment. Thus no deletion of

existing branches is necessary. Share and borrow are also similar to

those of Table 4.1., except that borrow can attach the newly accessed

procedure to any directly accessible type W connector.

Note that the commands .f.2!:ill ~and borrow al low the branches to

113

T A B L E 4.2.

Assume these are issued by principal p1•

1) Initiate process (m, {~}> - If path name m denotes a gps and n

a gds, and if there exist no processes owned by p., a process
I

owned by P.
I

is initiated utilizing the designated structures.

(If n is not specified, the structure g is used as the gds.)
I

2) Terminate process - The process owned by pi is destroyed

3) .f2.o!!~ n:b .f!.2m (n0 ; ~l' b>, ••• , ~J' b}) - If n denotes

a type W connector without a branch named b leaving it, n
0

denotes a segment, n
1
••• nJ denote already existing nodes and

b
1
••• bJ are distinct branch names, a gps root node is formed

using the segment denoted by n
0

as program segment and having

branches from the new node, with names b 1 ••• b J' to the nodes

specified by n1 ••• nJ. Al 1 of the denoted segments are made to

be type R. For each n.
I

denoting a type w connector, the last

i
branch in the path n is deleted. A branch with name b is

constructed from the connector denoted by n to the newly formed

node. Principal P. is the owner of the newly formed node.
I

4) £2.r.!!!~ n:b .f.!:2!!! (~ 1 , bi>, ••• , ~J' bJ)) - If n denotes a

type W connector without a branch named b leaving it, n1 ••• nJ

denote segments or basic structures, and b1 ••• bJ are distinct

branch names, a type R connector is formed with branches, named

b
1
••• bJ' leaving it and terminating on the nodes denoted by n1 ••• nJ'

respectively. Each of the nodes denoted by n
1
••• n J is made type R.

114

M,)ft,llJilllQ,£2 .IMtn@P,.,~#iJllJE JIJlll\~l!MLfaJU.JU4k ~"-"' ···-~"~"'~~~. 1,Jml .• ~ Jiii,~ .. •.II J 111£ .,.JDC _. ."" - ·" " . ·.. . - . - - . - _· . - - - --. ·- _,... ..

:-;

(Table 4. a. cont ioued)

A brarw:h n-.d b is also fotaleO ffOll- la.,GOnaeetot' det:a<>ted.:.j)y .. n

to the · owcly fo,.....noct..

5) Share n .l:AS1! &:i- If n denotes ..,,.....,,,,.,., the,_. Df

pr inc i pe Is s- INcolles the. sbare·~·Ht f•r~he:,i gps." '>

6)., PO!'"• m fran J a ·.n:lt ""'If· pri 1•P1••rs·;io:~afted1hare. •t of

the 9PS in Untcture 9. denotecl 8¥ ;""''~- :,Cl ,d.-u .,type;.:,W
J

connector in · 9t .. •ith ao lar._b :...e · o:;.O'.x:;f , it. ·Cle· bqhdt

naaleCI b i.s c:outructM f~.,&fter~•••toe1drnaeeht>y,, 11 111; 9i

to the type E connector denoted by

115

m in g .•
J

newly created or accessed procedure structures to emanate from any

connector which is accessible from the root of the gprs by a path of

type W. This is a generalization from the elementary environment in

which procedure structures are attached to the eprs root node. This

has a similar effect to going from one file directory per principal to

a tree-like directory structure for each principal, as is (essentially)

done, for example, in going from the M.l.T. CTSS system to MULTICS.

Principals can group procedures according to common aspects, and give

mnemonic significance to the path names used to name the procedures.

JJ6

4.5. Properties of the General Envirorvnent

As in Section 4.2., we must show that use of the general

environment mechanisms always leaves well formed general environments

(abbreviated wfge) well defined, and that the requirements of Section

2.5. are satisfied.

Preserving Well Formedness

Assume that a wfge exists, and consider a particular gprs

The fo11owing properties hold:

g ••
I

Proposition 4g.J. Use of conrnands by principals cannot cause any branches

to be formed which terminate on the root node of g ••
I

Proof: The only conwnands which can be used to form branc.hes to type W

connectors are initiate process and ..f2!:.m~· Initiate process can

cause branches to be formed only to new type W connectors • .f.2!.m~

can form branches to type W connectors, but only those specified by

a path name. Since the root node of g.
I

has no branches to it, it

cannot be denoted by a path name.

Proposition 4g.2. Use of conwnands by principals always causes g.
I

to

be transformed into another general data structure, such that each of

its type W nodes has on1y one branch (in G) terminating on it.

Proof: Note that the addition or deletion of branches, terminating

on type R or type E nodes in g., which emanate from nodes not in
I

gi does not affect gi' since those branches are not part of gi.

117

Also the corrrnands do not allow the alteration of type R segments or

of branches leaving a type E or type R connector. Thus, we need

only be concerned with the alteration of type W segments and the

addition or deletion of branches leaving type W connectors in g .•
I

The type W nodes of g_ can be separated into two categories:
I

those directly accessible to pi and those unowned nodes in gps 1 s

which are substructures of g .• To each node in the first category
I

there must exist a path of type W in g .• Since each type W node
I

can have only one branch terminating on it, there is no other path to

the node, and thus it is not in the second category. Similarly, any

type W node in a procedure structure must be reached by a path of

type W from a type E connector, and thus all paths to the node

must pass through the type E connector. Thus the node is not directly

accessible to any principal. Therefore the two categories of nodes are

disjoint.

Nodes of the second category are directly accessible to no

principal. Thus, they can be accessed only by processes executing the

procedure structures with which they are associated. As we have seen

in Chapter 3, each process operating individually will transform a gps

into another gps. We assume that each shared gps, whose program may be

executed by more than one process simultaneously, forces the processes

to interact so that they alter data associated with the gps only in ways

which keep the gps properly formed. Thus use of initiate process (and

terminate process) by any principal will always leave the gps used by

that process well defined, and a gprs which contains that structure

118

also will remain well defined. Also, since a process can only form

branches to newly created type W nodes, the process will cause no

type W node of that gps to have more than one branch terminating on it.

Nodes of the first category, those which are directly accessible

to P.• can be utilized only through comnands issued by p., since they
I I

are in no gprs other than g .•
I

Since a process can only transform a

gds into another gds, use of any of these type W nodes by P. through
I

initiate process must leave g_
I

well defined. Also, since a process

can only form branches to newly created type W nodes, it cannot cause

any of these type W nodes to have more than one branch terminating

on it.

No other commands can form branches to type W segments. ~ ~

can form a branch to a gds root node, but it deletes the branch

previously terminating on it. Branches from type W connectors can

be formed through use of!.£!:.!!!~· .f2.!:!!! ~. and borrow. However, in

each case the branch terminates on the root node of a gps or bs,which

are allowable substructures of g •
i

Proposition 49.3, Use of commands by principals causes a well formed

general environment to be transformed into another wfge.

Proof: The set P cannot be altered by any comnand. Also .f2!:!!! ~

causes the function 0 to be extended when a type E connector is

created. These two facts, along with Propositions 4g.l. and 4g.2. imply

that the use of commands always causes a well formed (well defined)

general environment to be transformed into another general environment.

119

To see that a transformed general environment is well formed,

consider a type R node in G, and additional paths which may be

constructed to it. The only commands which can cause a branch to a

type R node to be formed are~~ and 12.!:nJ bs. In each case, the

node must be directly accessible to the principal, say p., executing
I

the command. This implies that the node must be owned by P. (compare
I

Definitions 4.7. and 4.9.), and since the existing environment is well

formed, the node cannot be directly accessible to any other principal.

Thus, .f.2!.!!! ~ and form bs can on 1 y be used by p to construct branches

to the node, and these branches must leave nodes owned by P. •
I

Al I new

owned paths to the node therefore must be in

environment is well formed.

Controlled Information Sharing Requirements

g., and the general
I

This section includes theorems corresponding to the requirements

of Section 2.5., which restate those requirements in terms of the

structures and relationships associated with general environments.

Theorem Jg. Only general procedure structures can be directly accessible

to more than one principal in a wfge.

Proof: For basic structures, general data structures, and segments,

ownership and direct accessibility require the same conditions. Thus,

since each of these must have a unique owner, only the owner may have

direct access to them.

120

Theorem 2g. A principal can request the activation of any directly

accessible gps, and may supply, for use during that activation of the

eps program, any directly accessible gds. Information can be created

during the gps execution, and any of that information, which is not

part of the gps or is not destroyed during execution, becomes directly

accessible to the principal requesting the execution.

Proof: The first part follows from the description of initiate

process in Table 4.2. Information can be created by the process

through create~' which attaches the new node to a type W connector

accessible to the process. This node must be part of the gps or gds

supplied to the process, from Proposition 3g.5. Thus, unless the branch

is deleted during execution, the created node must be part of the gps,

or part of the supplied gds which is directly accessible to the principal

requesting the execution.

Theorem 39. A principal can form a general procedure structure using

any segments, general data structures, general procedure structures,

and basic structures directly accessible to him. Any type W nodes

associated with the gps become indirectly accessible to the principal.

Proof: The first part is true from the description of .fE!.m~ in

Table 4.2. Since l.2.!:!!! ~deletes the existing branch to the root node

of any gds's incorporated into the gps, it can be accessed only through

execution of the gps and is thus indirectly accessible to all principals.

Theorem 4g. Use of .f2r.!1!~, initiate process, or .f.2.a!! bs by a

121

principal cannot affect the directly accessible information of any

other principal, except through the alteration of type W nodes

indirectly accessible to both principals.

Proof: (This was shown in the proof of Proposition 4g.2.) Use of

form ~ and .f2r.!!! bs by pr inc i pal P.
I

can have no effect on 9.(i;Cj)
J

since the substructures of the newly formed structures are not affected

(except for the branches to directly accessible gds 1 s which are only

in g • Use of initiate process by
i

P.
I

accessible to p (and thus not directly
i

must supply a gds directly

accessible to P.). Thus only
J

type W nodes indirectly accessible to P. can be affected.
J

Theorem 5g. Let P be a gps. During execution of the program of P,

a process can access all segments directly associated with that program,

all root nodes of directly associated general data structures, and

basic structures, and all type R or W nodes reached by paths of

type W-R in the gds supplied for that execution. Furthermore, the

process may create other gds nodes and utilize them.

Proof: This is proved in Section 3.7.

Theorem 6g. Let P be a gps and Q be the gds supplied for the

execution of P. During the execution of the program of P, a process

can request the execution of any gps directly associated with that

program or any gps, contained in Q, whose root node can be reached by

a path of type W. However, while executing the program of P, the

process cannot access the program of such a gps, or any of the segments

122

or structures contained in such a gps, unless they can also be reached

by paths of type W-R in P or Q.

Proof: This is proved in Section 3.7.

Theorem]9. Each gps created by a principal becomes owned by him.

Proof: This follows directly from the description of form sel in

Table 4.2.

Theorem 89. A principal can make the use of any owned gps available to

any principal or group of principals.

Proof: This follows directly from the description of share in Table 4.2.

Theorem 99. A principal can establish direct access to any gps made

available to him.

Proof: Borrow causes a branch to be formed to the gps root node from

a type W connector directly accessible to the principal. Since this

path is then an owned path, the gps is directly accessible to the

principal.

123

4.6. Sharing Decisions by Algorithm in a General Environment

The sharing algorithm can be implemented in the same way as in

the elementary environment case. Again, the algorithm should be able

to determine the identity of the process owner through an instruction

k =process owner.

The connect instruction can be utilized to allow sharing of

procedures using a decision algorithm. In this case, however, it should

be possible to connect the borrowed procedure to any owned, type W

connector in the borrower's gprs rather than just to its root node.

Thus, we assume that the node to which the procedure is to be connected

is part of the data structure passed to the decision algorithm. The form

of connect is now: (Assume the process is using activation map Mk.)

connect (x • b, x.) - If x is an internal pointer to a type E
i J i

connector, and if O(fk(x
1
))= O(fk(xi)), if fk(xj) is an external

pointer for a type W connector, and there is no branch named b

leaving the connector pointed to by f k(x.), a branch named b is
J

formed from the node pointed to by f k(xj) to that pointed to by

f (x) •
k i

Note that the node to which the procedure is connected must be pointed

to by an external pointer. This ensures that the node is part of the

gds originally supplied to the process, and thus is owned by the process

owner. This prevents a shared gps x from ''taking advantage" of a

borrower's call to it by attempting to gain access for itself to another

124

shared procedure y. This could be done by having x pass a data

structure internal to it, instead of the process owner's gds, to the

decision algorithm, and thus have the branch to y be connected

internally to x rather than to a node owned by the process owner.

Since connect can only be used to attach branches to a data

structure owned by the process owner, say p., the newly created paths
I

are all in g., and the gps is made directly accessible only to P.·
I I

The only properties which are affected, of those discussed at the

end of the last section, are those dealing with the mechanisms for

sharing. As we indicated in 4.2., not every gps may be shared using

connect, since a borrower must access the "sharing" procedure through

use of borrow before connect can be used. However, this again is no

restriction since any gps can be made a substructure of another gps,

which may in turn may share the first gps through use of connect.

125

CHAPTER 5

CONTROLLING THE USE OF SHARED INFORMATION

5.0. Introduction

In the last two chapters, two models have been developed which

represent methods for organizing and using stored information. These

models allow each principal to share with others the use of procedures

which he created, a.nd therefore owns. This implies that he is able to

share the (indirect) use of information he has borrowed from others.

It is the purpose of this chapter to investigate the Implications

of this sharing strategy, and to describe other types of facilities

which would allow the owner of a procedure greater control over its use.

The general approach of the discussion is to present, for each type of

sharing strategy, an example in which certain types of control over the

use of shared information are required. Then a description of modif ica­

t ions to the model, which would implement this strategy, are discussed,

and arguments demonstrating their validity are given.

Section 5.1. discusses the facilities supplied by the well formed

general environment of Chapter 4. In the remainder of the chapter,

other types of sharing facilities are discussed which allow finer

degrees of control, but which can be implemented only through additional,

more complex mechanisms.

126

5.1. Information Sharing in a General Environment

An Example

Let us assume that there exists a principal named Dowjones.

Dowjones has constructed a data base and programs for maintaining the

data base. The information in the data base consists of certain

information regarding stocks, say current price and the size and price

of recent transactions. Dowjones wishes to provide access to the

information of the data base to his customers and to simultaneously

update the data base so it remains current.

Two of Dowjones' customers are Trendfinder and Chartist. Both of

these customers provide services to investors, consisting of various

types of charting and statistical information on particular stocks.

The manner of implementation of the services by Trendfinder and Chartist

involves use of proprietary programs which retain knowledge regarding

past trends of stocks and utilize the Dowjones data base for current

information.

A possible structuring of the information required for these

services is shown in Figure 5.1. Part (a) of the figure shows the

structure of Dowjones 1 service. A caretaker procedure (node 6 is its

root) coordinates accesses and alterations to the data base. The

procedure, which is made available to customers, is named 11Access11 , and

allows the customers• processes to access the data base. Maintenance

of the data base is performed through another procedure, "Update",

which can only be used by Dowjones. Figure 5.1.(a) also shows how the

customers Trendfinder (p2) and Chartist (p1) have obtained access to

127

P3: Share Access

3 ~ {P2• P1l

p J : Borrow Access iJ:2!!! P3

~ Dowdata

p2: Borrow Access .f.!:2!!! P3

.!! Djdata

(b)

14, w 15, w

PJ: £2!:!!! ~ Charter

.f.!.2fil (Service.Prag, ~ervice.Data, 01~ , ~owdata, Curren~)

Figure 5.1. An Example of Sharing in a General Environment

128

the data base from Dowjones (p
3
) through use of share and borrow.

Part (b) of Figure 5.1. shows how Chartist makes use of the

Dowjones service in supplying his own. His service, provided by the

procedure named 11Charter 11 , maintains old information in the gds it calls

110ld 11 (with root node 13) and makes use of the Dowjones service through

a branch named 11Current 11
• Pr inc i pa 1 Chartist is then free to make its

11Charter 11 service available for use by others.

We have assumed that Dowjones does not care to whom Chartist and

Trendfinder make available their services. If we assume that Dowjones

charges its customers for its service on the basis of amount of usage,

this is not an unreasonable assumption. The more customers Chartist

has, the more the Dowjones service is used. In the wfge, when a

customer of Chartist, named Investor, requests service, it is Investor's

process which actually 11uses 11 the Dowjones service, not a process of

Chartist. It is not reasonable, however, to require that Dowjones know

of each of Chartist's customers and charge them for this usage. Rather,

it is Chartist who should be held responsible for the use made by his

service of the Dowjones service. Chartist should therefore pay for this

usage, from the charges he received for his services from~ customers,

such as Investor.

Therefore, we require that it be possible for the system to determine

to whom charges for usage should be made. As Investor's process is

executing the procedure of the Chartist service and makes use of the

Dowjones service, responsibility for that usage should be given to

Chartist, since it is he to whom Dowjones rents his service. This

129

information can be extracted easily from a record of procedure calls.

Since Chartist can only share owned procedures, he cannot allow a

customer of his to use the Dowjones service directly. Thus all calls

to Dowjones 1 service, which are made by processes owned by customers of

Chartist, must be from procedures which are owned by Chartist. Thus,

the requirement that only owned procedures may be shared ensures that

only a procedure owned by a customer of Dowjones may call the Dowjones

procedure, and therefore it may be determined which of Dowjones 1

customers is responsible for the usage.

To this extent, then, the wfge provides control of information

sharing. However, there are cases in which more control is required.

The next section provides a discussion of such a case.

130

5.2. Restricted/Unrestricted Sharing

An Example

Let us consider, again, a case in which a data base is maintained

for use by others. However, assume that the data base contains personal

medical records. This centralization of records could enable a patient

to have his complete medical history made available to any doctor

quickly and easily, and would relieve doctors of the problems of keeping

complete and up-to-date records. In this case, it is clear that the

11propagat ion 11 of use must be control led.

To illustrate this point, let us assume that a principal, Medbank,

has developed a set of procedures for maintaining this data base, which

are shown in Figure 5.2. We ignore problems dealing with identification

and authorization, except to say that there exist three types of

principals which desire to access the records: doctors, patients, and

researchers. Doctors should be able to access and alter the records of

patients (who have authorized the doctor in some way, perhaps within

their record). Each patient should have free access to, but limited

alteration capability for, just his record. Finally, researchers could

have free access to certain (non-identifying) portions of patient

records.

Let us assume that, in order to ensure correct control of access,

the doctors and patients must be unable to grant to others indirect use

of their abilities to use the data base. This could be accomplished by

restricting users of the 11Doctors 11 and 11Pat i ent s 11 procedures from

sharing with others any procedures that use those as subprocedures, and

I 3 I

by not restricting the users of the 11Research 11 procedure.

Figure 5.2. An Example of Restricted/Unrestricted Sharing

An Implementation

This type of control of sharing could be provided by performing

the following modifications to the general environment and its associated

commands.

1) Associate with each branch of each g. a class, which can be U
I

(for unrestricted) or R (for restricted).

2) Augment the definition (in Table 4.2.) of .f2.!]). ~so that

a) the newly formed *-branch becomes class U,

b) for all i, the newly formed branch of name b takes on the

132

class of the last branch in path n,, and
I

c) the class of the branch terminating on the newly formed node

becomes U if and only if all branches leaving the node are

of class U; otherwise the branch becomes class R. If the

branch becomes class R, the class of the branches in the path

named n also becomes R.

3) Augment the definition of !2.!:!!!~ so that all of the newly formed

branches are of class U.

4) Change the definition of share to be

share n ~ S - If the last branch of n is of class U

and denotes an owned gps, S becomes the share set for the

gps. The elements of S are ordered pairs, each pair consisting

of a principal and either a U or R restriction.

5) Augment the definition of borrow so that the newly formed branch

takes on the class associated with P. in the share set of the
I

borrowed procedure. If that class is R, all of the branches on

the path n also become class R.

6) Augment the definition of the instruction create node so that it

always creates branches of type U.

To show that these modifications accomplish the desired objectives,

the following two properties are demonstrated.

Proposition 5.1. If a principal is allowed restricted access to a gps,

he cannot share any owned general procedure structure which contains

that gps.

133

Proof: First we inductively show that all paths in the borrower's

structure to the root node of the borrowed gps are composed solely of

class R branches. Let P. be the borrower of a gps A.

Basis:
I

The first path formed in 9. to the root node of A is
I

composed solely of class R branches. This path must be formed

through use of borrow, since it is the only command which does not

use only paths within g .. From the form of borrow, we see that
I

all of the branches in the path composed of path n and branch b

are made to be class R. Also, since path n must be the only

path to the type W connector on which it terminates, that path

(path n and branch b) must be the .2D..l.l one formed to the root

node of A by borrow, and thus must be the first.

Inductive Step: If the first k paths to the root node of A

are all composed of class R branches, so is the k+I path. This

new path could be formed only using borrow or 1£!:!!! ~· (The only

other command which forms new paths to existing nodes is .f.2.!:.!!! ~'

but those paths can only be to type R connectors or segments.)

If borrow is used, the above argument applies. If 1£!:!!! ~is used,

it may form a path to A by incorporating A or a gds containing

A into a new gps, say B. In either case, the path used to specify

this structure must be at least part of a path to A and must be

composed of class R branches. Thus the branch formed from B's

root node to the structure containing A must be of class R, as

must the branch .!_2 the root node of B and the path to the type W

connector from which that branch emanates. Thus, the new branches

134

of the new path to A must a11 be of class R, and the entire

path must be composed so1e1y of c]ass R branches.

Thus we have shown that al] paths to the root node of A must be only

class R branches. From the definition of share, we see that a branch

to root node of a gps must be of c]ass U to be 11shareable11
• This is

not possible for any node on a path to A, and thus no gps containing

A may be shared.

Proposition 5.2. If use of none of the components of a gps has been

restricted by another principa1, the gps may be shared by its owner.

Proof: First note that branches formed by create~ and .12,rm~ are

of class U, and that .ff?!!!!~ and borrow only change the class of

branches to type W connectors. Thus, all branches terminating on

segments or type R connectors must be of class u.

As a gps is formed, the classes of branches from its root node to

its components reflect the classes of other branches to the components.

From the above argument, it is c1ear that the branches to basic structures

and segments must be of class u. Similarly, the branches to borrowed

gps's are of c1ass U if there is no restriction, from the form of

borrow.

Other components can be general data structures and other owned

gps•s. The branch to the gds was created as class U and could only

have been changed if it contained a gps whose use was restricted. If

we assume that its use has not been restricted, then the branch to the

gds must therefore be class U.

135

By repetition of this argument, we can see that the branch to any

owned gps must be of c1ass U if it has no components whose use has

been restricted. Thus, a11 of the branches 1eaving the gps root node

are of class U, and the branch entering is as we11. Thus, share can

be uti1ized for this gps.

Thus the mechanisms work as desired. Returning to the Hedbank

examp1e, we see that if the share sets for the "Doctors" and "Patients"

procedures contained principal names with R indications, those

principals cou1d on1y use the procedures themselves. However, if the

principa1s in the share set for 11Research11 were given U indications,

they could share the resu1ts of their research with others by sharing

procedures using the "Research" procedure.

This type of Restricted/Unrestricted sharing, however, does not

a11ow the restrictions on a procedure's use by a particu1ar principal

to be made except in an "a 11 or nothing" manner. The next section

discusses mechanisms for allowing se1ective remova1 of restrictions.

136

5.3. More Selective Sharing Restrictions

An Example

Let us suppose that a principal, named Simulex, has developed a

simulation language called Simlang and a processing program for running

simulations written in that language. His primary goal is to use this

language in providing modelling services to certain groups of principals

with particular needs, e.g. urban planners, civil engineers. Simulex

is also willing to make the use of Simlang available to others. However

he does not want his customers, who have access to the language, to use

it to provide services which might compete with his own services.

The mechanisms of the last section could provide a solution to

this problem, by enabling Simulex to allow others only Restricted access

to the simulation language. However, Jet us assume there exists another

principal, called Modelex, who wishes to use Simlang in offering a

modelling service which would not be in competition with any of Simulex's

services. Modelex is willing to satisfy various conditions imposed by

Simulex concerning, for example, marketing and advertising policy,

potential customers, and charging policy, in return for the ability to

market his service (which uses Simlang).

In order to accomplish this sharing, it must be possible for

Simulex to allow Modelex to make available this particular application

of his procedure,Simlang, without allowing Modelex to make available

other uses of Simlang. An example of this situation is shown in Figure

5.3. Simulex would like to allow Modelex to share the gps called Trans­

port (root node 4) without enabling him to share Simlang (root node 2)

137

or any other procedures containing Simlang, such as Civilengr (root

node 8).
p2= Simulex

Figure 5.3. An Example of Selectively Restrictive Sharing

The General Problem

This example represents a general class of sharing controls. In

each case, it must be possible for the owner of a shared procedure to

allow a borrower to "propagate" use of certain procedures utilizing the

shared procedure without allowing him to share others which also use the

shared procedure. The members of the class can be differentiated by

the conditions which may be enforced by the owner of the shared

procedure on the propagation of its use. These conditions might be

enforced within the utility, for example, by restricting potential

customers or charging policies; they might exist, and be enforced,

outside the utility, such as by restricting advertising policy regarding

138

certain characteristics of the service provided.

Nature of the Solution

Although the utility may not provide enforcement of alt of the

conditions of a contract, it should be able to allow use of the

11selective 1
' restrictions characteristic of these sharing controls.

These can be implemented using a generalization of the mechanisms

discussed in Section 5.2.

The strategy is to associate a set of conditions with each gps

root node, for example the names of all principals who are restricting

the use of that structure. When a new gps is created, its 11condition

set 11 is formed by taking the union of all of the condition sets of its

components. In order to share a gps, all of the conditions in its

"condition set 11 must be satisfied.

In order to allow the selective propagation of use, a capability

could be provided to allow the removal of a condition by the principal

which imposed it. Each element of the condition set can have a

principal associated with it, and only that principal may remove the

condition. Then, by allowing a principal to remove the condition in

only selected sets, the sharing of particular gps 1 s would be possible.

For example, in the situation described in Figure 5.3., Simulex

would place a restrictive condition on the use of Simlang. This condition

would then be 11propagated 11 into the condition sets of Transport (node 4)

and Civilengr (node 8), owned by Modelex. Since he established that

condition, he could then remove the condition for Modelex 1 s Transport,

139

while leaving it on the others. Modelex could then share Transport,

and that condition would not affect gps 1 s containing Transport, but the

condition would continue to restrict other uses of Simlang.

In summary, the following steps are required for this general

solution.

l) Associate a condition set with each gps root node.

2) Augment the definition of .f.2.!:!!! ~so that it creates a condition

set for the new node containing all conditions affecting the gps's

which are directly associated with it (or are contained in directly

associated gds's).

3) Augment share so that it allows sharing only if the conditions

associated with the gps are satisfied, and so the gps owner may

insert additional conditions.

4) Provide a means for the principal which imposed the condition to

remove it for any individual case.

140

5.4. Sharing Desi sions bx Alprlthm

The connect Instruction .,...ltwf' 1;.·:c~r 4. to allow the

procedure owner to specify an algorltt. by which decfitW~~

to sha'te the procedure, could 'h adapbMfto1.11jli:ila~WPeltflir'ef·'the

new sharing strategle's ctescr1b9d ilMWe';'' ti'"'elttf~~''QiiiMf-.1d'

141

6.o. Introduction

C H A P T E R 6

RELEVANT MISCELLANY

The general environment model involves a number of assumptions

and simplifications regarding the ways in which information can be

stored and used within a computer utility. Some of these are concerned

with the type of control which an owner should have over shared infor­

mation. Chapter 5 explores some of the consequences of these assumptions

and describes some modifications to the general environment model which

allow more extensive control of shared information.

In order to concentrate on the issues of information sharing, a

number of other simplifications were made. It is assumed that there

can exist at any time no more than one process for each principal. The

procedures which may be activated by a process must be directly

associated with the procedure, or be part of its data structure, so

that recursive procedure calls and certain types of argument passing

are not possible. Also, some facilities which would be necessary in

any utility implementation are not discussed, such as editing facilities

for structures and mechanisms for revoking Bccess abilities.

In this chapter, mechanisms for removing some of these simplifica­

tions are discussed. It is the intention of this chapter to demonstrate

that additional capabilities can be added to the basic model in a way

that is consistent with the mechanisms of the model, and that does not

destroy its basic properties.

142

6.1. Parallel Processing

In this section we consider a generalization of the general

environment of Chapter 4 to enable a single principal to perform

processing activities in parallel by allowing him to own multiple

processes which exist concurrently. The two problems considered are

1) how multiple processes can be initiated, operate, and be terminated

without conflict while using portions of the same general principal

structure (g.) concurrently, and 2) how communication among these
I

processes may take place.

Multiple Processes

The method used to allow a principal to own multiple processes is

to enable a process to Initiate another. A principal initiates a

computation* by initiating a process, as in Chapter 4. The process may

initiate further processes which may operate concurrently with it in a

non-conflicting manner (see next paragraph). The computation is

terminated only when all of its processes have been terminated.

We consider two processes to be operating in conflict if they

simultaneously have the ability to access a type W node owned by a

principal. Thus operation without conflict requires that simultaneously

existing processes use disjoint, that is disjoint relative to owned

type W nodes, portions of a gprs. Note that this does allow processes

* We are here giving the term "computation" a meaning, essentially
that of Dennis and Van Horn [1 I] , of 11a set of processes that are a I I
working together harmoniously on the same problem or job''•

143

to utilize a commonly accessible general procedure structure, which may

contain alterable, but unowned, data.

The process which initiates another process passes to the new

process a portion of its gds. To avoid conflicts, it must be ensured

that the initiating process retains no pointers to the type W nodes

used by the initiated process, and that it is unable to obtain such

pointers. To accomplish this an identifier is associated with each

process, and a process identifier ID and a pointer count C are

associated with each owned, type W node. As we shall see, ID is

used to indicate which of the owner 1 s processes has access to the node,

and C is used to indicate the number of pointers in the state of the

process which point to the node.

Table 6.1. contains a description of an instruction set which

enables processes to initiate others, and to operate concurrently in a

non-conflicting manner. The first five are analogues of the instructions

used in the general environment, but the last two instructions, initiate

process and remove pointer, are new. Initiate .e.rocess enables one

process to initiate another, which is established to execute a gps

contained in one of the structures available to the initiating process,

while using as its gds a portion of the gds supplied to the initiating

process. Remove pointer enables a process to remove a pointer from an

activation; this allows a process to relinquish its ability to access

a type W node so that another process may then access it.

External/internal indications are again assumed to be associated

with pointers to type W connectors. Since the external pointers

144

T A B L E 6. 1.

Assume that process h is using map Mk as it executes the instruction.

la)

1 b)

2)

3)

x =obtain node (x., b) - If fk(x.
1

) is a type CR pointer or
j - I

an internal type CW pointer, and a branch named b leaves the

connector pointed to and terminates on a node y, then f k(xj)

becomes a pointer, internal if fk(xi) was, to y.

x =obtain node (x , b) - If
j - i

f (x)
k i

is an external type CW

pointer, and a branch]eaves the connector pointed to and terminates

on a node y, and C(y)=O or [c(y)>O and ID(y)=h], then

becomes a pointer to y, C(y) is incremented by 1, and

If x. had a previous value of an external pointer to
J

a type W node, then the pointer count for that node is decreased

by l.

d (J segment \) ()
xj= create~ xi• b, I connectorl - If f k xi is a type cw

pointer and no branch named b already]eaves the connector

pointed to, a branch with name b is created from the connector

to a newly created type W node, y, of class specified by the

third argument, and f (x)
k j

becomes a pointer to the new node.

If f (x) is externa 1, so is f k (x), and C(y):J and ID(y)=h.
k i J

If f k (xi) is i nterna I, so is f k (xj). If x had a previous
j

value of an external pointer to a type w node, then the pointer

count for that node is decreased by 1 •

ca I l (x. • x.) - If - I J f k (xi) is a type CE pointer to a connector z,

and f k (x.) is an external type cw pointer to a connector y,
J

145

(Table 6.1. continued)

then C(y) is incremented by I, and a new activation map Mk
•I

is established such that fk+l(x
1
) is a pointer to z, fk•l(x0)

is a pointer to the program segment associated with z, and

f k
1

(x) = f (x) •
+ 2 k j

4) return - If k~I. Mk is deleted and Mk-I is reactivated. If

k=I, the process is terminated. In either case, the pointer counts

are adjusted downward for the nodes pointed to by external type CW

pointers in Hk.

5) delete (x., b) - If f (x) is a type CW pointer to a connector
I k i

with a branch named b leaving it, that branch Is deleted from

the structure.

6) initiate process (xi' xj:b) - If fk(xi) is a type CE pointer to

a connector w, and f k(xj) is an external type CW pointer to a

connector y, and if the branch leaving y named b terminates

on a type W connector z with C(z):O, then a process Is

7)

established with identifier g. The activation map M1 of g is

formed so that f
1

(x1) is a pointer to w, f
1

(x
0

) is a pointer

to the program segment associated with w, and f
1

(x
2
) is a

pointer to z. Also ID(z)•g and C(z)= J.

remove pointer (x.)
I

is an external pointer for a

type W connector y, then f k(x
1
) is deleted from Mk and C(y)

is decremented by I.

146

indicate which of these connectors are owned by the process owner

(the internal pointers denoting type W connectors associated with

gps's), these pointers also indicate the type W nodes having associated

ID and C indications.

Note that in two instructions, obtain node and initiate process,

conditions regarding the ID and C indicators of a node to be

accessed must be satisfied before the instruction can be executed.

These conditions do not relate to keeping the structures well defined,

but are required to ensure that only one process may have the ability

to access the node under consideration. We assume that if these condi­

tions are not satisfied when execution of the instruction is attempted,

it will be at some future time when another process "is finished'' with

the node.

Thus we require that these instructions be implemented so that the

process waits for the conditions to be satisfied. That is, if a process

attempts to execute an obtain node or initiate process instruction, and

all of the conditions for the execution are satisfied except for the

required values of ID and C for a type W connector to be utilized,

the activity of the process is suspended. When the conditions become

satisfied, the process activity is resumed, and the instruction is

executed. This type of implementation is necessary since we have

provided no other means for synchronizing the activities of concurrently

existing processes. In the next section, we shall see how this

implementation allows obtain~ to be used to easily provide inter­

process communication.

147

The convnands initiate erocess and terminate process in the general

environment must be replaced by initiate computation and terminate

computation. They are described as follows, assuming they are issued by

principal p • i.

initiate computation (m, {~J> - If m denotes a gps and n a gds, and

if there exist no processes owned by P.• a process owned by P. is
I t

initiated using the designated structures (a blank second argument

denoting g). If the identifier of the new process is h and the
i

root node of the structure denoted by n is y, then ID(y):h and

C (y):I.

terminate computation - All processes owned by P.
t

are terminated.

These commands start a computation by initiating a single process,

leaving it to the process to initiate others, and, if termination is

required, terminate all processes of the computation at once. The

other commands of Figure 4.2. need not be changed.

Properties of Concurrently Active Processes

To show that these mechanisms operate correctly, we must argue that

1) no two processes may have pointers to the same owned, type W node

simultaneously, and

2) for any owned type W node, only one process may attempt to gain

access to it at any time.

148

The first point tells us that no conflicts can arise if the

instructions operate correctly. The second tells us that only one

process has the ability to request access to any type W node at any

given time, and thus no races between requests can arise.

The first point follows directly from the description of the

instructions. Each instruction, causing a pointer to an owned type W

node to be created, increments the appropriate C by I, each one

causing pointers to be deleted decreases each C, and create~

initiates C of a new node at one. Thus the pointer counter C indeed

represents the number of existing pointers to that node. Also, the use

of ID by obtain~ and~ implies that, if there already exist

pointers to an owned, type W node, already having the pointers. Thus

if any process has pointers for a node, it is the only one.

The second point follows from the first and the fact that there

exists one path, of type W, to an owned, type W node. Thus, there

exists exactly one owned, type W connector from which the node can be

reached, by use of obtain node or initiate process. Only one process

may have access to that node, and thus only that process can request

access to the reached node.

Communication Between Processes

We could constrain communication between processes to take place

through commonly accessible procedures as we do in the case of processes

owned by different principals. However, in this case, processes can be

extremely closely related, being parts of the same computation, and a

149

simpler, more direct method of communication could be justified among

such processes.

Fortunately, the mechanisms just described provide the capabilities

needed for communication among processes of a computation. An example

should illustrate how these mechanisms can be used in this manner.

Consider a process A which has constructed the general data

structure shown in Figure 6.1.(a). We assume that only the nodes

numbered 1-5, and the branches between them, currently exist. Process

A removes all of its pointers to nodes 2, 3, and 4, (thus reducing

C(2), C(3), and C(4) to zero), while retaining pointers to and 5,

and initiates a second process, say B, giving it the use of node 2

as the root node of its gds.

To complete the initialization for communication between the two

processes, process B obtains pointers to nodes 3 and 4 and removes

its pointers to node 2. Process A then obtains a pointer to node 2.

(Note that A could attempt to obtain this pointer at any time, and

its activity would be suspended until process B had removed all of

its pointers for node 2 and reduced C(2) to zero.)

After this initialization, the situation is as shown in the top of

Figure 6.1.(b). For simplicity, we have assumed that both processes

are utilizing activation map M1 when the communication occurs. In

those maps, process A has variable names u and v associated with

type CW pointers to nodes 2 and 5, and B has r and s similarly

associated with nodes 3 and 4.

Communication between the processes can be accomplished through

150

(a)

8,

(b)

M :
I

9

Process A

u 2, cw
v 5, cw

A+B v:create node (v, b, CONNECTOR)

B-+A

u 2, cw
v 7' cw

u :.obtain node (u, b)

u 4, cw
v 7' cw

M • I .

w

Process B

r 3, CW
s 4, cw

r =obtain node (r, b)

r 5, CW
s 4_._ cw

s =create ~ (v, b, CONNECTOR)

r 5, CW
s 6, cw

Figure 6.1. Communication between Two Processes

151

use of create~ and obtain~. as shown in Figure 6.1.(b). For

example, A can make a message available to B by attaching a structure

containing the message to the node associated with v (node 5 in the

example), removing its pointers for that structure, and executing the

instruction v:create ~ (v, b, connector). Use of this instruction

causes the pointer f
1

(v) to be changed to point to node 7. Also,

assuming that the previous value of v was the only pointer to node 5,

the pointer count C(5) is reduced to zero. Through execution of

r:obtain ~ (r, b), process B can then gain access to node 5.

(Again, process B could attempt to execute this instruction at any

time, and its activity will be suspended until process A has made

node 5 available.) Once it has obtained access to node 5, process

B can access the message attached to that node, but it cannot traverse

branch b to node 7 until A has made it available.

Repeated use can be made of these instructions for passing other

messages from A to B. This will result in a "chain" of nodes being

formed (shown as nodes 5, 7, 9 in Figure 6.1.(a)), with a new node in

the chain being used for each message. Note, however, that after B

accesses node 5, he can delete the branch leaving node 3. Then, when

he is finished with node 5 and has removed all pointers to it, the

node is automatically deleted. In a similar way, the structure used to

pass each message can be discarded when the contents of the structure

are no longer needed by the process which received the message.

As is shown in the final part of Figure 6.1.(b), an analogous

method can be used for passing messages from B to A. In this case,

152

the chain of nodes Jeaving node 2 in Figure 6.1.(a) is used. Note

that process A cou1d accomp1ish communication with other processes it

created through a similar mechanism, as cou1d B with processes it

created, •••.

Since a11 of this information is contained in a general data

structure which is direct1y accessible to the owner of the computation,

it must be contained only in the owner's gprs. Thus, it is not accessible

to any other principals, and the properties of the general environment

are not affected.

153

6.2. Passing Arguments between Programs

During the execution of a program a process has available to it,

in addition to the information directly associated with the program by

its gps, the information in the gds supplied for this activation.

Through use of commands, a principal may incorporate directly accessible

general procedure structures and basic structures into a gds, and can

supply this gds to a process he initiates. Thus, the principal can make

any directly accessible information available to the process for

execution of the gps program. However, when the process wishes to call

a subprocedure, it does not have the ability to make all of the infor­

mation, which is currently available to it, accessible during execution

of the subprocedure. In particular, it cannot pass use of its directly

associated information to the subprocedure.

Consider a situation in which a process is initiated, by principal

pl, to execute a procedure A. Assume that the program of A has

directly associated with it two subprocedures, B and C. Since the

process cannot attach gps's to a gds, it cannot call B and obtain the

ability to call C during the execution of B's program, and, in fact,

cannot obtain the ability to access any of the information directly

associated with the program of A while executing B's program. This

limitation prevents, for example, the recursive use of procedures

(e.g. X calls Y, Y calls Z, Z calls X).

A modification to the general environment can be made, however,

which easily removes this limitation. This modification changes the

~ instruction to be the following: (Assunethat it is executed

154

using activation map Mk.)

ca I I x with (y, y2 , ••• , y.) - If fk(x) is a type CE pointer,
- I J

and f k(y
1

) ••• f k(y.) are pointers, a new activation map Mk+l is
j

established such that f k+J (x
1
) is a type CR pointer for the node

specified by fk(x), f (x) is a type SR pointer for the program
k+J 0

segment of the ca I I ed gps, f (x) = f (x), and f (2+ i) ::. fk(y.)
k+J 2 k k+J I

for l~i~j.

Also the initiate £rocess command is changed to be

initiate process (m, n , ••• , n) - I f path name
I j

m denotes a gps and

path names n1 ••• n. denote other structures or segments, and if there
j

exist no processes owned by pi, a process owned by pi is initiated

such that f (x) is a type CR pointer for the node denoted by m,
I I

is a

type CE pointer for the node denoted by m, and f (x) ••• f
1
(x.

2
)

I 3 J+

are pointers to the structures and segments denoted by

These modifications allow two things. First of all, they enable

the principal or process to supply pointers to~ information currently

accessible to the principal or process to the procedure to be executed.

Also, they provide a process with a type CE pointer for the root node

of the gps it is now executing (in addition to the type CR pointer).

This enables the program to call itself or pass that ability on to a

155

subproc:edvre. Thus • •tproer•' ~· ,... • •t'l .. •ll•-'~ 1l4ftll••
tlon which Is •-...sta.1;• to the,. •• ,

"', -

.)

·~ '

i j

,_,;~1.~~ •. n r~.~:·:,,q :~; .. ,.. (n
l

•··~ 'n J

t.

-·>~.~· ·?·-.~~:W:21q $ ii ,q -"'\·d b$ft\~f ~~~!~~·;;-!'·:.t.'.,10·-~(~ .,,L; Jt! !.X~

c>d] ~ ~ .~- '. ' ,~ j.i!_fq 11:~ t:iq'l(l !$ ~ 1 (;(} ,,
j~1dj ri :Jl~!! '

·'
" '.! ! ·101: ,~;)ft !<>q .~~: ::·f{ ~_: ::: ' (,<) ~ :,:

0 f
-'·,,{\ 4;- i;i.i100~0 oSbon erl:t -i1)-=t·' '1<s. J'+'" \ 1-:1 J ', ,.;.-..,- ~-qy:i

•

6.3. Facilities for Utilizing General Structures

The commands and instructions of the general environment have been

developed to provide the capabilities necessary to implement controlled

sharing of information. It is not assumed that users of the system

would be forced to directly use these mechanisms, but that higher level

facilities would be developed utilizing these basic mechanisms. One

important capability which these facilities should provide users is the

ability to edit and debug procedures utilizing a high level language.

In this section, we discuss some of the issues involved in providing

these capabilities.

These facilities must operate within the restrictions of the

general environment, among them being the fact that once information

is utilized in unalterable form, it cannot be altered again. After a

segment becomes type R, its contents cannot be changed. After a type

R or E connector is formed, the branches leaving the connector may

not be altered.

Under these constraints, the process of editing a procedure would

involve the construction of a new procedure utilizing some new components

and some of the components of the previously existing procedure. The

editing procedure could ensure that paths are retained to the components

of a gps so that its structure could be 1 ~opied 11 using the mechanisms

we have described. However, in order to actually construct the new

procedure, it would be necessary to perform activities which we have

constrained to be performed only by commands (form~ and .f9.!:!!!~).

These activities have been constrained to be commands to avoid

157

certain complex problems. First of all, since .f2.a!! ~may cause a

type W segment to be changed to type R, it must be true that no

type SW pointers for that can still exist. Also, the newly formed

gps can be composed only of components which are directly accessible to

the owner, so that the sharing mechanism (share and borrow) is not

circumvented.

However, it is clear that under the appropriate constraints,

.f2.a!! ~and .f.2.!:.!!! ~could be utilized as instructions. An indication

of whether the structures being utilized by the process are directly

accessible to the process owner could be provided by keeping track of

whether an owned path was followed or not. In addition, since only the

process forming the new structure could have type SW pointers for the

nodes changed to type W, and these pointers would be destroyed when

the process is terminated, this limited ability to alter an 11unalterable 11

segment might be acceptable.

Another issue which must be resolved concerns the privacy of infor­

mation. These editing and debugging facilities will be provided by one

or more principals and borrowed by principals wishing to utilize them.

Since these facilities will be used for working with a principal 's pro­

cedures, he must be sure that the editing procedure does not 11 remember 11

information about the procedures it is used to construct so that the

owner of the editing procedure can later extract this information. It

seems clear that, if a procedure is allowed to retain .§!.!Jl information

regarding its activations, it may be capable of retaining an arbitrary

amount of information. Thus, it would seem to be necessary that the

158

editing and debugging procedures be constrained to retain no information

regarding their activations.

One straightforward way to implement this would be to allow both

general and elementary procedure structures to be constructed. When a

procedure is borrowed, the borrower could be informed of the procedure

type. Also eps 1 s could only be formed using other eps's and type R

segments. Since eps's can retain no information regarding their

activations, editing procedures could be implemented as eps's, and the

borrowers could be confident that it could not 11 remember 11 information

concerning the procedures it is used to construct.

While this discussion undoubtedly has not considered all of the

issues involved in providing high-level user facilities, it hopefully

has demonstrated that the basic mechanisms of the general environment

can be easily modified to provide required facilities without destroying

the basic properties of a wfge.

159

G.4. Removal of Access Abilities

As we indicated in Chapter 2, it is necessary that it be possible

to remove established access abilities, although it can only be done

under special circumstances. Two types of removal seem to be necessary.

The first would result from the discovery that a particular

procedure performed incorrectly, so all access to the procedure should

be prevented. This could be done by destroying the root node of the

procedure in some manner outside the mechanisms of the model, and

causing an error to occur when any attempt to access that node is made.

A question remains, however, involving the fate of the contents

of a general procedure structure whose root node has been destroyed.

There could have existed paths to the type R and type E nodes of

the gps not passing through the destroyed node, and their contents

could remain accessible. However, the general data structures, directly

associated with the procedure's program, could only be reached by paths

through the gps root node. Thus, when that node is destroyed, these

type W nodes would become inaccessible unless other provisions were

made. Since this information in general might be of great value for

determining what was wrong with the procedure, if not actually being an

irreplaceable collection of information, it should clearly be retained.

We therefore assume that, as part of the destruction of the procedure,

the gds components, of a gps which is destroyed, be made directly

accessible to a particular (system) principal by having them attached

to his gprs. He could then make some or all of this information

available to the users of the destroyed procedure as is deemed appropriate

160

by an authority existing outside of the system.

The second type would involve the removal of a particular principal 1s

ability to access a particular shared procedure. A more complex opera­

tion is required here, since that procedure may be used as a part of

many different procedures. What is required is an ability to search

the nodes of the principal 1 s structure which are directly accessible

to him using a method similar to that of 6.2. The search could destroy

the branches connecting nodes owned by the principal to the root of the

shared procedure structure. If each of these branches were destroyed,

the access abilities resulting from the borrowing of the shared

procedure would be removed.

Since both of these operations would require action by an authority

superior to a principal, the actual mechanisms can be considered part

of the design of an implementation of the model, and they will not be

discussed further in this thesis.

161

C H A P T E R 7

IMPLEMENTATION OF A GENERAL ENVIRONMENT

7.0. Introduction

In the deveJopment of the genera] environment and extensions of it,

we have not considered any of the issues regarding its impJementation.

Rather we have discussed the mechanisms in terms of their satisfaction

of requirements for the controJJed use of shared information. In this

chapter, we briefly consider some of the issues whichould have to be

dealt with in an implementation of a general environment.

We assume that the utility is implemented as a Jarge set of

operating system programs which are executed by processors similar in

design to general purpose processors existing today. Since the general

environment is a description of a method for structuring and utilizing

stored information, we consider only portions of the system which are

concerned with the storage and utilization of information. In particuJar,

we are interested in the means by which information structures are

stored, and the system capabilities which are required to implement the

general environment instructions and commands.

162

z.1. Information Structure Storage

The information structures contained in the genera] environment G

must be maintained by the uti1ity so that they are avai1able to

legitimate access requests. As we have seen, the form of G is

dependent on naming and access control considerations. However, the

information in G is stored, in general, in a collection of storage

devices, with varying access characteristics. Decisions regarding

information allocation among the various devices must be dependent on

frequency of usage, and other factors in addition to the form of G,

to allow efficient operation, and thus the components of G must be

implemented in a manner which allows those components to be stored and

accessed independently of other components.

One possible implementation method would store the information

structures of G as a set of segments. A segment is a linear array of

words (or whatever units of information are used by the processors),

which may vary in length from zero to some upper limit determined by

the addressing capabilities of the processor being used. The maintenance

of stored segments is performed by a subsystem of the operating system

ca11ed the Segment Storage System (SSS). Associated with each segment

is a unique identifier, which is assigned when the segment is created

and does not change thereafter. Access to a word of information is

supplied by the SSS when it is presented with a segment identifier and

a displacement, i.e. word number, within the segment.

The method for storing information structures causes one information

structure node to be stored in one segment in the SSS. The contents of

163

a segment node are stored in a SSS segment, a1ong with information

specifying the class and type of the node. In the case of a connector,

the SSS segment contains information specifying the class, type, and

share set of a connector and a representation of the branches leaving

that connector. Each branch is implemented as an entry in the SSS

segment containing the name of a branch and the identifier of another

segment stored by the SSS. The node implemented by the SSS segment

specified by the identifier is considered to be the node upon which the

branch terminates.

164

7.2. Process Implementation

Using the Segment Storage System, the implementation of a process

is quite straightforward. The state of a process can be described by

a segment, utilized as a pushdown stack, where the last stack frame

contains the current activation map. Each activation map entry associates

a pointer variable and a (SSS) segment identifier. This entry specifies

the identifier of the SSS segment within which the node associated with

the variable name is stored.

The processor which carries out the activities of a process contains

a register specifying the location (that is, segment identifier and

displacement) of the current activation map. Instructions W'l ich do not

affect the state of the process (and which only reference segments) can

then be carried out directly by the processor using the activation map

to translate pointer variable names into segment identifiers.

The instructions requiring alteration of the process state, which

include the instructions described for the general environment, would

be implemented by system programs. These programs would make use of

the activation map to reference the SSS segments containing connector

nodes, and would be able to request alterations of the process state.

The commands of the general environment could also be implemented

by a process which executes system programs capable of performing

additional instructions (such as creating a type E connector or adding

a share set to a connector) available to a general environment process.

The commands of the general environment would also be implemented

by a process utilizing system programs. These programs, however, would

165

.$-.

be ca.,..Je of utllizlng ackUtl.onal r.-NGtl!!!!fJ.,!!_@l~l.~~ •

type.~. eoftMO.,-or . .-1n9 .,i.,.J··--cl••••tlfmi; _. ,.,.,, ••
of acoe1slftl_tft4t.·9•••reJ .. _.J,pH ••••,••• ol:Mlt1rs•,-;•l•ea$..

borrw •.

.· ;. ;

«"-

"·-'

.,
~$ -t:J:;-_~;~t ,:--·::c-:-;~~

:: -,_'

8.0. Summary

C H A P T E R 8

CONCLUSIONS

In the six chapters fo11owing Chapter 1 the prob1em of contro11ed

information sharing has been considered. Chapter 2 contains a genera1

discussion of the requirements which a system must satisfy in order to

enable its users to share information in a contro11ed way. In this

discussion a number of relationships are described, among them being

direct association of information with a program, and direct access

to information and ownership of information by a principa1.

In Chapters 3 and 4 models for structuring and uti1izing information

are described. The structuring is made to directly ref1ect the relation­

ships described in Chapter 2, and the mechanisms for utilizing information

are described by their effects on the structure of information.

Properties of the use of structured information by the mechanisms are

related to the requirements described in Chapter 2, thus demonstrating

that the mechanisms a11ow contro11ed information sharing between

principa1s.

Chapter 5 contains a discussion of types of control which a

principal might require of the use of shared information owned by him.

Through the use of examples, the contro1 provided by a genera1 environ­

ment and types of more restrictive contro1 are described. A1so, ways

of modifying the general environment to provide these additiona1

controls are specified.

Other modifications to the general environment are discussed in

167

UJJ-JJC ,_04;;,;cc;
I

Chapter 6. These are concern9d Wi •~I llefl proc:essi ng and other

.... .,.

.;-_

)- --,,,·.· . .::

':'.: -

:,i•

8.1. Conclusions

There are two primary conclusions which we can draw from this work.

First, it is possible for a computer utility to be constructed which

enables its users to share information with others easily and in a

controlled manner. The structures and mechanisms of the general

environment, and its extensions, provide powerful facilities for

structuring and utilizing information. The properties shown in Chapters

4 and 5 demonstrate that they also enable the owner of information to

maintain strict control over the use of that information.

The second conclusion is more general, and perhaps more significant.

The fundamental idea which is exploited in this work is that information

should be structured to reflect the way it is to be~· All of the

information used by a process is contained in the procedure and data

structures with which it is supplied. All of the information a principal

may use is contained in his principal structure. These properties then

have a number of effects on the mechanisms which utilize the information.

The act of establishing access to information (borrow) is separated

from utilizing it, and it is only at this time that the borrower 1 s

identity and rights must be verified using some mechanism (share set)

in addition to the structure of the information. During the execution

of a procedure, the access abi Ji ties of the process are determined

completely by the structure of the information. Thus, it is guaranteed

that the process is able to utilize exactly the information needed to

execute the procedure when it is needed.

It seems clear that this capability is necessary in order to

169

provide effective sharing. Unless it is possible for the borrower of a

procedure to be able to use it easily without being concerned with its

internal structure, full utilization of others' work cannot be realized.

Also unless protection of the ideas utilized in developing procedures

or data bases can be provided, much incentive for sharing information

will be lost. A computer utility could enable people to work together

more effectively and could allow many services to be provided which

would not be feasible otherwise. This can occur only if facilities for

controlled information sharing can be provided.

170

8.2. Further Work

There are many areas touched on by this work in which questions

remain. One of the most significant is in characterizing the "power''

of this model. It seems clear that the general environment is more

powerful than the elementary environment, and that many different

types of computation can be performed using its mechanisms. However,

there are many other types of information structures which could be

defined, and other mechanisms for using information. It is not obvious,

however, whether these other models could provide users with more or

less capability in the computations they are able to perform.

Another question concerns the idea of ownership. There seem to be

situations in which information can be thought of as jointly owned (for

example, a medical record being owned by both doctor and patient), but

the appropriate ways in which such information can be stored and used

are not clear. Also, what does the ownership of information mean in

regard to the ability to share it with others? Since we are considering

Information, the use of which may require the use of other information,

the rights of the owner are not totally clear. Chapter 5 contains a

discussion of some of these issues, but the general problem of what

conditions on the use of information can or should be enforceable within

the utility is not resolved.

171

J)

2)

3)

4)

5)

6)

7)

8)

9)

J 0)

J J)

J 2)

J 3)

14)

R E F E R E N C E S

Fano, R. M., "The MAC System: The Computer Ut i Ji ty Approach, 11

I .E.E.E. Spectrum, 2, Jan., 1965, pp. 56-64.

Fano, R. M., "The Computer Utility and the Community," l.E.E.E.
International Convention Record, Part 12, 1967, pp. 30-37.

Parkhill, D. F., lbs, Challenge of the Computer Utility, Reading,
Massachusetts, Addison-Wesley, 196~

Dennis, J. B., "A Position Paper on Computing and Communications."
Communications of .!..b.s=. A.C.M., JJ, Hay, 1968, pp. 370-377

Babcock, J. D., 11A brief description of privacy measures in the
RUSH time-sharing system, 11 AFIPS Conference Proceedings, 30,
1967, pp. 301-302.

Harrison, M. C. and J. T. Schwartz, "SHARER, A Time Sharing System
for the CDC 6600, 11 Communications of the A.C.M., JO, October, 1967,
pp. 659-664. - -

Forgie, J. W., "A Time- and Memory-Sharing Executive Program for
Quick-Response On-Line Applications," AFIPS Conference Proceedings,
27, 1965, Part J, pp. 509-529.

Corbato, F. J. and V. A. Vyssotsky, "Introduction and Overview of
the Multics System, 11 AFIPS Conference Proceedings, 27, 1965, Part J,
PP• 185-196.

Daley, R. C. and P. G. Neumann, 11A General Purpose File System for
Secondary Storage,'' AFIPS Conference Proceedings, 27, 1965, Part J,
pp. 213-229.

Wilkes, M. V., Time-Sharing Comguter Systems, New York, American
E 1 sev i er Pub 1 i sh i ng Company, J 9 8.

Dennis, J. B. and E. C. Van Horn, "Programming Semantics for
Multiprogrammed Computations," M.l.T. Project MAC, MAC-TR-23,
Dec., 1965.

Dennis, J.B., "Programming Generality, Parallelism and Computer
Architecture," M. l.T. Project MAC, MAC-H-409, 1968.

Evans, D. C. and J. Y. LeClerc, "Address mapping and the control
of access in an interactive computer, 11 AF I PS Conference Proceedings,
30, 1967, pp. 23-30.

Lucas, P., P. Laner, and H. Stigleitner, "Method and Notation for
the Formal Definition of Programming Languages," l.B.M. Laboratory
Vienna, TR 25.087, June 28, 1968.

172

