

Tius blank page was inserted to preserve pagination.

RECOGNITION OF TOPOLOGICAL INVARIANTS
BY ITERATIVE ARRAYS

Wendel Terry Beyer

24 October 1969

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02199

Massachusetts Institute of Technology
Project MAC
545 Technology Square
Cambridge, Massachusetts
02139

ACKNOWLEDGEMENTS

I wish to express my gratitude to Seymour Papert for his
supervision of this thesis and to Marvin Minsky and Mike Paterson,
the other members of my committee. I especially appreciate the time
and energy given so unsparingly by Mike Paterson and the enthusiasm
of Manuel Blum, who helped get this work underway. Many others have
given me assistance and guidance at one time or another. Finally
I am deeply indebted to my wife, Kathleen, whose continued encourage-

ment and aid made it all possible.

Work reported herein was supported in part by Project MAC,
and M.I.T. research project sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of Naval
Research Contract Nonr-4102(01). Reproduction of this report, in
whole or in part, is permitted for any purpose of the United States

Government .
Government Contractors may obtain copies from:

Defense Documentation Center, Document Service Center,
Cameron Station, Alexandria, VA 22314

Other U.S. citizens and organizations may obtain from:

Clearinghouse for Federal Scientific and Technical
Information (CFSTI) Sills Building, 5285 Port Royal
Road, Springfield, VA 22151

e S T T e T R s S s S e AN o

RECOGNITION OF TOPOLOGICAL INVARIANTS*
BY ITERATIVE ARRAYS

Abstract

A study is made of the recognition and transformation of figures
by iterative arrays of finite state automata. A figure is a finite
rectangular two-dimensional array of symbols. The iterative arrays
considered are also finite, rectangular, and two-dimensional. The
automata comprising any given array are called cells and are assumed
to be isomorphic and to operate synchronously with the state of a cell
at time t+l being a function of the states of it and its four nearest
neighbors at time t. At time t=0 each cell is placed in one of a fixed
number of initial states. The pattern of initial states thus intro-
duced represents the figure to be processed. The resulting sequence of
array states represents a computation based on the input figure. If
one waits for a specially designated cell to indicate acceptance or
rejection of the figure, the array is said to be working on a recog-
nition problem. If one waits for the array to come to a stable config-
uration representing an output figure, the array is said to be working
on a transformation problem.

Chapter 2 contains a general theory of recognition. Thorems on
the amount of time required to perform recognition and on methods of
speeding up recognition are presented. Some properties of the classes
of recognizable figures are given. Arrays are compared to other types
of figure recognition devices. 1In the last section the class of linear
predicates is studied. A linear predicate is a family of figures which
can be recognized in time proportional to the perimeter of the figure.

Chapter 3 contains a study of the recognition of some topologically
invariant properties of figures. A fundamental transformation of
figures is presented and is then used to show that a wide variety of
topologically invariant properties form linear predicates including
connectivity and maze solvability. Two properties whose linearity is
open are discussed.

Chapeter 4 contains a brief study of transformation problems. Some
general theorems are presented as well as discussions of specific
transformations. An optimal solution to the two~-dimensional firing
squad synchronization problem is also presented in Chapter 4.

In addition to the formal results, several open questions are
presented and some iterative programming techniques are considered.

HGais of the sape title sybs ':ﬁ to the ’
negaggaegg@of,up;yepgzgg;, Massachusetis Ing;igq@@iﬁ ‘Technology, in ‘
pastial fulftlinant &é the: ﬁ%tgﬁcug gg;i'_, ,F.dg;rm of . Doctor of

Phidesoply. - te oo pETEEE

3

1

Chapter

TR T e AT

TABLE OF CONTENTS

g

n

Acknowledgements

Abstract . . R . R 3

INTROWCTIW . [} [} [] . . L] L] 5

1«1 The Topic 5
1.2 The Background 7
103 The hyout [} . . [] L] . L 10
THEORY OF RECOGNITION 13
2.1 Basic Definitions 13
242 An Example 21
2.3 Timj-ng . . - . . L] . L4 25
2.“’ Speed.-Up 31
2.5 Computing Power L6
2,6 Linear Predicates 60

RECOGNITION OF TOPOLOGJCAL INVARIANTS 65

3.1 Basic Terminology 65
3.2 An Example 68
3s3 A Fundamental Transfomation . . . 71
3.4 Linear Recognition of Topological Invariants . . 79
3.5 Euler Number 90
3.6 Topological Match Problem 92

OISPLAY PROBLEMS o . . . R . . 119
4,1 Introduction 119

4,2 Specific Problems ., . . . « 124
4,3 Two-Dimensional Firing Squad 132

Bibliography 1 37

Irldex L [L) L] ® . [[4 L] 1 40
Index ur mwz;u

--é;a,;mj & wﬁubuzqw AL ..'.« %f.ﬁa
gy rﬁs;ﬂ faoiriely

TAG i L Y@L a1 1y, 33 J%‘?erxﬂm

ool *’ 28Tl :m I0k sﬁﬂ! LS B

4

Vg mige By R

CHAPTER 1
INTRODUCTION

1.1 The Topic

In this thesis we study the recognition and transformation of
figures by iterative arrays of finite state automata. For our
purposes a figure is a finite rectangular two-dimensional array of
symbols, Our iterative arrays are also finite, rectangular, and
two-dimensional. We call the automata, which make up such an array,
cells. All the cells in an array are assumed to be of the same type,
that is, isomorphic., The cells on the edges and corners of an array
may operate in a manner quite distinct from those in the interior,
but this is to oe thought of as an effect which takes place because
these cells can sense that they are on the edges raether than because
they are inherently different from the interior cells. All of the
cells are placed in the array with common oriencation and each cell
is connected to its four nearest neighbors. The array functions
synchronously, with the state of each cell at time t + {1 being a
function of the states of it and its four nearest neighbors at time t.

At time t = 0 we place each cell in some initial state. The
configuration of initial states thus introduced represents a figure
which is taken to be the input to the array, Given an input figure,
the array proceeds from state to state with the state transitions of
the array being determined by the transition function of the cell

type from which the array was constructed. The progression of array

states may be interpreted as a computation based on the input figure.
Of the many interpretations possible, we will consider two which we
call recognition and display.

In a recognition computation we view the array as an ;cceptor
of figures in much the same way that a finite state automaton may be
viewed as an acceptor of tapes. Two cell states are designated as
final states corresponding to accept and reject. These states are
assumed to be terminal. We input a figure, allow the computation
to proceed, and observe some specially designated cell, say the
northwest corner cell, When that cell enters one of the two final
states, we say that the figure has been accepted or rejected.

In a display computation we view the array as a device for
performing a transformation of the input figure. Certain cell states
are designated as final states and are assumed to be terminal. We
input a figure, allow the computation to proceed, and observe the
array until it enters a state in which each cell is in a final state,
We interpret the resulting configuration of final states as a figure
and take that figure to be the output of the computation.

The major portion of this thesis is devoted to the study of
recognition. A central role in this study is played by the concept of
predicates which are simply collections of figures, Usually the
figures comprising a particular predicate share some common property
which is of interest., Given a particular predicate and a cell type,
we say that the cell type recognizes the predicate if the arrays of
that type accept exactly those figures belonging to the predicate

and reject all others. We consider questions such as the following:

L SR RN

"Wwhat may be said about the class of predicates which

are recognizable by arrays?"

"What may be said about the speed with which a given

predicate can be recognized?"

"How powerful are arrays as recognition devices?"

"To what other devices may they be compared?"
A modest theory of recognition is developed in an attempt to answer
these and other questions., In addition the application of arrays to
some specific recognition problems is considered. These problems
include the recognition of connectivity, simple connectivity, and
more complicated topologically invariant predicates. Display problems

are treated briefly in a concluding chapter,

1.2 The Background

One of the earliest uses of iterative arrays was by von Neumann
who used the structure of a regular array of identical automata as the
framework for a study of self-reproducing automata. The von Neumann
manuscript has been edited and completed by Burks“é).

Konnie(s) has performed an extensive analysis of the functioning
of iterative arrays in several dimensions, In his work arrays are
clessified according to the number of dimensions, the number of
directions of signal flow, and whether or not the cells have an intermal
memory. Hennlie's cells are equipped with external input and output
lines, Figures are presented to the array by placing an appropriate

stimulus on each input line and maintaining the stimulus until an

appropriate output is obtained. He does nct always assume that the
cells have been reset to a canonical state at the time the input is
presented. Thus a given input figure may cause different bebavior in
the array depending on the configuration of states at the time the
input was presented. If an array always achieves a steady ‘statc no
matter what its initial configuration and input, it is said to be
stable, If an array has ox-actly one steady state corresponding to any
given input, it is said to be regular. Hennie studies the questiom
of determining the stability or regularity of a family of arrays,
7iven a description of a typical cell. He finds algorithms for
answering these questions in most one~dimensional cases and goes on to
show that the same questions are recursively unsolvable in higher
dimensions under all but the most severe restrictions on signal flow.
He also studies the relative computing power of arrays of various
Lypese. Many of the questions studied by Hennie deal with arrays per

se as opposed to the application of arrays to computational problems.
Since we tend to emphasize the latter type of problem, we feel that
our work forms a complement to that of Hennie.

Many people are introduced to iterative arrays via the one-
dimensional firing aquad synchronization problem. This problem has
besn credited to Jehn Myhill (1967) by Moore!'!), sclutions of
varying degrees of efficiency and generality have been published by
Wakna.n“?). Bo.lzer(3). and Moore and Langdon (12). The two-
dimensional firing squad is discussed in Section 4.3 below.

The real time computing power of iterative arrays has been studlied

by Cole(®), Atrubin?), and Mischer (7)., In their models, cne cell

8

of the array is equipped with input and ocutput channels., A time
sequence of inputs is fed into this cell and a computed cutput sequence
is produced. Arrays are thus viewed as ancther form of sequence
transducer. Atrubin shows that multiplication of two binary coded
numbers may be performed in real time by an infinite ome-dimensional
array. Fischer shows that an infinite ons-dimensional array can
gensrate the characteristic function of the set of prime integers in
real time. Cole performs extensive studies of the real-time
computational powers of infinite iterative arrays in arbitrary
dimensions. He establishes relations between the real-time computing
power of such arrays and the information capacity df the inter-cell
connections. The use of arrays as figure computers is not considered
in these papers.

The use of arrays to process two-dimensiocnal figures has been
considered by Atrubin ¢V vho analyses several examples of simple
figure transformations, but makes no attempt to formulate a general
theorye.

Many algorithms for serial computers have been published which
find 2 natural setting in iterative arrays. Examples are the shortest
path method of 1.00(9) and the picture processing of Rosenfeld and
prartz¢ ™),

The review of highly parallel computers by nurtha(13) contains
the designs of many theoretical and actual computers which incorporate
regular arrays of identical processing elements, Among those discussed
we night mention the "spatially oriented" computer of Unger“” and
the ILLIAC IV described by Ba:mes(“).

Our work has been greatly influenced by the work of Minsky and
Papert(1o) on the perceptron. In their boos they state:

"Good theories rarely develop outside the context of a

background of well-understood real problems and special

CaASES, « o« o Accordingly, our best course would seem to

be to strive for a very thorough understanding of well-

chosen particular situations in which these concepts

(parallel, serial, etc.) are involved."
This thesis is an attempt to analyze a special case of parallel
processing in the same spirit and in a manner compatible with that

of Minsky and Papert.

1.3 The Layout

Chapter 2 contains a general theory of recognition. After some
tasic definitions, an example of the solution of a recognition problem
is given. Next the amount of time required for the solution of
recognition problems is taken up. We give the Interdependence Theorem
which allows us to predict the future state of a cell, given sufficient
information about the current states of it and its neighbors. The
Interdependence Theorem is used to establish lower bounds on the
recognition time of most predicates and is also the basis of the
Speed-Up Theorem. An adaptation of a well-known iterative technique,
the Speed-Up Theorem states that if recognition can be carried out by
an array within time T(m,n) where the érray is of size mxn, then

for any integer k a second array can be constructed which will carry

10

out the computation within time %-T(n.n) +m+n+ 2, Fnally we
have the Minimizing Theorem, which says that two distinct methods of
recognizing a predicate may be combined to obtain a method which is as
fast on any figure as the faster of the two.

Chapter 2 continues with a study of the computing power of
arrays. We find that arrays are not universal computers, but are more
powerful as figure recognlzers than the pebble automata of Blum and
Hewitt(s). In fact, arrays are equivalent in power to, although
faster than, linear bounded automata which are allowed to walk about
on a figure. This squivalence was to be expected since the amount of
storage available to an array increases linearly with the size of the
figure, We show that the tlass of recognizable predicates forms a
Boolean algebra, Same undecidablility results are obtained including
the undecidability of whether or not a glven cell type recognizes a
given predicate.

Chapter 2 ends with a brief study of the class of linear
predicates (those which are recognizable in time proportional to the
perimeter of the array). It is shown that a linear predicate is, in a
certain well-defined sense, recognizable almost as fast as any
predicate. This fact is interesting because it is shown in Chapter 3
that some intuitively very complicated predicates are linear., The
class of linear predlcates is shown to be a Boolean algebra and some
unsolvable problems are presented. Finally we discuss the open question
of whether or not all recognizable predicates are linear,

Chapter 3 contains a study of some topologically invariant

predicates (predicates over black and white figures which depend only

1

on the manner in which the holes and components of the figures are
embedded within each other)., We first develop a simple but very
powerful transformation of figures called the connectivity transforms-
tion. sing this transfcrmation as a basis, we prove that a wide
variety cf predicates including "connectivity" and "simple connec-
tivity" are linear. It is shown that it can be determined whether or
not a maze is solvable in less time than is required for the trans-
mission c¢f a signal along the shortest path of the maze. The problems
of solvirg multilevel mazes and developing a three-dimensional
connectivity transformation are discussed. It is shown that the
solution in linear time of multilevel mazes would imply that any
predicate recognizable by a finite state automaton was linear.

Chapter 4 contains a brief description of the use of arrays in
display problems and presents some typical figure transformations
which may be carried out. Several open questions are presented.

Throughout the thesis many open questions are raised. These
questions may be referenced by looking in the index under "open
questions,.®

In addition to the formal results obtained, we have included
discussions of several interative programming techniques. These
techniques were developed to solve specific problems, but are of
general interest, They may be found by looking in the index under

"programming techniques.™

12

CHAPTER 2
THEORY OF RECOGNITION

In this chapter we will formalize the notion of iterative array
and study some aspects of the theory of the recognition of figures by

iterativs arrays.

2.1 Basic Dsfinitions

Consider a finite, rectangular, two-dimensional iterative array
of finite state autamata. Such an array is pictured below with the
automata represented by squares, The lines connecting the squares

represent communication channels between the autamata.

The automata used in such a construction are called gells and
the entire arrangement is called an iterative array or simply an
array. Other terms used in the literature include "cellular array"
and "iterative array of logical circuits.® We assume that all of
the cells in the array are isomorphic and have been placed in the
array with common orientation. Each cell is connected with its
four nearest neighbors. The array ﬁmctions sjnchronously with the
state of a cell at time t + 1 being a function of the states of it

and its four nearest neighbors at time t.
13

The above description assumes that every cell in the array has
four rearest neighbors while in the diagram it appears that the cells
cn ‘he edges and corners of the array have fewer than four, We have
here 2 conflict of interest. On the one hand we would like to be able
to treat all the cells as if they were the same, allowing us to make
statements such as "All cells are isomorphic® and "Each cell is
connected to its four nearest neighbors.® On the other hand we
definitely want to make use of the fact that the cells on the o_dges
and cormers can operate in a manner different from those in the interlor.
Fortunately these two points of view can be resolved by a simple
technical device. Informally we will comntinue to think of an array
as a finite rectangular arrangement of cells, Formally, however, we
will picture this finite arrey of cells as being embedded in a two-way
infinite cellular space, All of the cells in this space which are not
within the finite array will be in a spescial terminal state, e, oalled
the edge state. Thus the only real computation within the space takes
place within that finite portion known as the array, Any cell in the
array can determine where it lies with respect to the boundary of the
array by determmining which of its neighbors are in edge states. Thus,
for example, the northwest cormer cell of the array can operate in a
manner which is completely unlike any other cell in the array and yet
we can consider it to be iscmorphic with all other cells in the array.
The description of a "typical® cell in an array must actually describe
the behavior of that cell in each of the sixteen possible positions in
which it can find itself with respect to the boundary of an array,

For the sake of simplicity we will omit from our diagrams all

14

¢oalls which do not lie within the array and will suppress the lines

indicating intercell comnections. Our diagram now becomes simply:

Since the cells which do not lie within the array are always in
state e, we seldom have to mention them explicitly. Nevertheless they
are tacitly assumed to be present at all times,

To operate an array &s a recognition device for black and white
figures, one designates two of the cell's states to be initlial states
corresponding to black and white. At time t = 0 every cell in the
array is placed in one of the two initial states and the pattem of
states thus created represents the figure to be processed., DBeginning
with the initial state representing the figure, the array proceeds from
state to state until finally a designated cell (we will always use the
northwest corner cell) enters one or the other of two specially
designated final states thus indieating whether the figure has been
accepted or rejected. The final states are assumed to be terminal.
Note that we use only one accept state rather than many. The use of
a single terminal acoept state is merely a technical convenience and
causes no loss of generality, By using the techniques of Theorem 2.5
below, any cell type with multiple non~-terminal acocepting states can be
converted into & cell type with a single terminal accept state.

An array operating in the mode described in the preoceding
paragraph 1s said to be working on a recognition groblam.. The

15

extension of recognition problems to include input figures of more taan
two colors and to n-way classification rather than binary classification
is straight forward.

These informal remarks motivate the following definition.

Definition
A cell type M is a S-tuple (S,I,F,e,g) where
S 1s a finite set of cell states;
I 4is a subset of S called the initial states;
F 1s a subset of S ocalled the final states;
e 1is a distinguished member of S called the

€ 1is a function g: S*S*8 ——> S ocalled
8

edge state; and
4
3

the transition functiom,
-such that final states are teminal

;4
(tee Vaer, ¢ ([Fa[H]) =)
kd

(0. Vses, g ([*

Two notational devices have beern introduced in the above
definition, One is the iwo-dimensional cartesian product. Rather
than express the domain of the transition function as the usual linear
cartesian product of sets, we have taken the liberty of arranging the
tactors of the product in a two-dimensional manner which more clearly
illustrates the process being modelled. The second notational device

16

introduced is the don't care symbol, « , which is used to replace

r
universally quantified variables. Thus "g{ [=|s|x]) = s" is

s
notatioral shorthand for " Vs, Vs, Vs, Vs, g([S]3]%]) = s." The set

-

T

over which quantification takes place is usually understood.

et M be a cell type. An array composed of cells of type M 1s
said to bs an array of itype M. If the array has m cells per column and
n cslls per row, it is said to be an mxn array of type M. The notion
of cell type formalizes the mechanism underlying the operation of an
array. Corresponding to the idea of an instantaneous description in the

theory of Turing machines, we have the following definition.

Definition

An mxn description of type M (or simply a description

if m, n, and M are understood) is an mxn matrix with
entries in S, where S is the set of cell states of

the cell type M. An initlal description is a

description, all of whose entries are initial states.

Note that a mxn description contains only enough information to
determine the states of the cells within an mxn array. The states of
the remaining cells in the space are formally set equal to e by the

follewing definition.

17

Jefinition
If D is an mxn description of tyse M then the
state of oell (1,Jj) in D, denoted 2.1.1' is the
(1,3)=th entry in D provided 1< 3 <m and 1< J¢n,
and is e otherwlise, where e is the edgs state
of M.

Note that we have introduced matrix type coordinates, For
exanple cell (1,1) is the northwest cormer cell and cell (m,n) is the
southeast cormer cell.

"he transition function is now used to define the obvious notion

of successor,

Dafinition
Iet D be an mxn description of type M. The
successor of D is the mxn description of type M,

D', given by
Dl'-l,j
]
Dii = g(D.i-1 {i,j | Pij)
Dz'u,j

where g is the transition funetion of M.

We can now formalize the concept of a computation,

18

Definitlion

This

An mxn computation of type M is an infinite

sequence = Do, D1. D2 » oo Of mxn deseriptions
of type M such that
Do is an initial description and

" 15 the successor of D* for all 130.
1t B= Do. D1. Dz. ese 18 a computation, then
Dti,j is said to be the state of cell (i,j) at
time t in the computation JY.

completes the formalization of the tsrms necessary for

describing an array and its functioning., We now formalize the terms

necessary

to describe recognition problems.

Definition

An mxn figure over the set I (or simply figure if

m, n, and I are understood) is an mxn matrix with

entries in I.

We will most frequently consider figures over the set I, = { b,w}

representing black and white. When we wish to represent a speciflec

figure over Iz, we will use a diagram of the formm rather than

7.

standard matrix notation, Note that a figure has a specific size,

Thus

and are distinct figures even wnougn both

are blank,

Recognition problems involve the separation of all figures over

a fixed set into two élasses. the accepted figures and the rejected

19

figures, We concentrate ocur attention on one of the two classes,

IDafinition
A predicate over the set I is a subset, ¥, of the
set of all figures over I, The complement of W.
denoted 7. is the set of all figures over I which
are not in V¥,

It is the predicate which allows us to make connections between
figures vhich have similar properties. For instance we could form a
predicate by taking the set of all blank figures or the set of all
figures containing five or fewer black squares,

Finzlly we relate computations to recognition of predicates, For
this purpose we will fix a set F = {a. r} which represents the final
two states of any cell type involved in a recognition problem. The

states a and r correspond to accept and reject respectively.

Dsfinition
Let ¥ be a predicats over the set I and let M
be a cell type, We say M accapts ¥ (respectively
rejects ¥) if the following hold:
1) I is the set of initial states of M.
ii) F= {a, r} is the set of final states
of M,
111) Given any computation &= 1, D', I, ...
of type M, we have DoeV’,¢=-'>3t
such that 1:"'1.1 = a (respectively D% , = r).

20

We say that M recognizes V is
1) M accepts ¥, and

ii) M rejects W.

No%e that we actually require the set of initlal states of M to
be the same set as that over which ¥ is defined. This not only
eliminates the need for introducing an artitrary correspondence, but
actuslly makes a figure and an initial description the same formal
object,

We have made an arbitrary choice of cell (1,1), the northwest
corner cell, as being the cell which is designated to give the accept
or reject signal. One could make a case for having the designated cell
be somewhere more centrally located in the array, but then one would
either have to introduce additional machinery so that that colJ. could
be singled out, or have the array compute the location of that cell

each tine it performed a computation,

2.2 An Example: WPAR

Perhaps it would be best at this point to give some life to our
definitions by considering an example.

Let WPAR be the predicate over I, consisting of all figures with i
an ocdd number of black cells, This parity predicate plays an
important role in the work of Minsky and Papert on the perceptron“o). 1
They show that %AR is very difficult for a perceptron to recognize |
and use this fact to show that many other predicates which are |
reducible in perceptron theory to WPAR are also difficult for a

21

perceptron to recognize., We will see that %AR is quite easily
recognized by arrays. It is introduced here only as an example and
plays no role in our theory.

We now describe a cell type Mo, which recognizes VPAR « The
most precise way of describing Mpar would be to list its states and
display a state transition table. Unfortunately a cell type with s
states has s° rows in its complete state transition table. Since the
cell type we are about to describe has 6 states, its transition table
would have 6 = 7,776 entries, making it quite unreadable as well as
shedding little light on the method by which Mp,p carries out its
cormputation. Use of the don't care symbol, %, drastically reduces the
number of entries needed, but still leaves the underlying method of
computation to be puzzled out be the reader. It has been found that
the best method of describing the functioning of a cell type is to
describe the action of a typical array composed of cells of that type
on a typical figure, Attention is thus focused on the method of
computation rather than the machinery which carries it out. In most
cases we do not even attempt to give a complete list of the states
involved in the cell type. The reader who is interested in more
detailed analysis of cell types may refer to Hennie(a) and
Atrubin(1),

Operation of &AE' Assume the figure to be processed is at
least 2x2. The cases of 1xn and mx1 are easy modifications of the
main idea, Each cell which is not on the northern edge of the array
simply coples the state of its southerm neighbor, In this way the

information within each column of the array is shifted to the north,

22

Wher tie information arrives at the northern edge, it is shifted to the
west by the cells on the northern edge. All information eventually
arrives at the northwest cormer. Each cell on the northem edge of
the array combines the information arriving from the south with that
arriviag from the west in such a way that Mity is preserved. The
northwest corner csell eventually arrives :Ln state b or w depending on
whether the parity was odd or even respectively, All that remains is
to cause the northwest corner cell to enter the appropriate final
state. This is accomplished by having a contagious "done® signal d
begin in the southeast corner at time t = 1 and spread at the rate of
one cell per unit time toward the northwest comer cell. By the time
the northwest corner detects the done signal, all of the parity
information will have been processed and the appropriate final state

can be er.tered.

23

The following diagram illustrates the process for a particular

4x5 array.
%,
ZI: L
7 - A — d
% | d|d
Z

—>

N

N
N
ﬂ-n.n_\\
[« %
ajo-ja
Qajlaja.
Q.
a.lo
ajajao |
ajajaja-

\Q\
n.a.ﬂ—k\\
glalo|on
adlalaia
plajlaja
ala
ajajala
alajajo
afajale
ajojaja
alaljajlx
aljajala
alajala
alsjala
Qlaoja]a

d

MPAR_ as described above has six states:

b black
initial states

w white

d done

e edge

a accept

} final states
r reject

The reader who is concerned with the number of states used in Mpar

may wish to show that Mp,. could be modified to have only five states.

24

R a0 AR A T, 3w, g - e Lo g . , s " . .

2,3 Timing

Note that Mp,o in general takes m +n - 1 time units to
recognize an mxn figure. We will be quite interested in the amount of
time required to recognite various prediocates, so we now define some

appropriate terminology.

Definlition
Let M be a cell type with initial states I; P, a
figure over I; and ﬁf-* P, D1. nz. D’. see the
camputation of type M with P as its initial
description, If t is a real number, we say that
M recognirzes P within time { provided that Du?"
is a final state of M, where [| is the greatest
integer functionm.

It would certainly have been adequate in the above definition to
restrict t to the positive integers. However, the slight generality
obtained by allowing t to range over the reals will be useful later.
The timing functions in the following definitions are real valued for

the same reason,

Definition
Let ¥ be a predicate over I; M, a cell type which
recognizes ¥; and T(m,n), & real-valued function.
We say that ¥ recognizes ¥ within time T(m,n)
provided that M recognizes every mxn figure over 1
within time T(m,n).

25

L A g i e

The following definition forms a basis for measuring the

complexity of predicates with respect to iterative arrays.

Definition
Lot ¥ be a predicate and T(m.n) 1 real-valued

function, We say that ¥ is recognizable within
time T{n,n) if there exists a cell type M such that
M recognizes ¥ within time T(m,n).

Thus we would say that Mp,p recognizes Wp‘h within time
m+n-1and that ¥pp is recognizable in time m +n - 1. As we
shall see in Corollary 2.1.1 below, WPAR is not recognizable in time
m+n -2, This result is an application of the Interdependence
Theorem. To properly state the Interdependence Theorem, we need
three more definitions.

Definition
Let °1 = (11.31) and °2 = (12.32) be two cells.
The distance between c, and ¢, is given by the functian

P(°1.°2) = |11 - 12| + |J1 - Jz

Yote that the distance functiom P is a metric on the set of all
cells and that the distance between two cells equals the amount of
time it takes a signal to travel fram one to the other.

26

Definition
If d 1s & positive integer, then the d-peighborhood
of a cell ¢ is the set
N!(c) = {e' | o' 1s a ce11 and P(c'.c')Sd}.

Since neighborhoods are defined over the two.way infinite
cellular space of cells, there are no edge effects and hence all
d-neighborhoods have the same size and shape. Indeed the d-neighborhood
of & osll ¢ contains 1 + 2:d-(d + 1) cells and forms a diamond shaped
cluster of cells about ¢. For example, 1-,2-, and 3-neighborhoods

have the following shapes:

- t

-

Note that the state transition function for any cell type is a
function which has as its domain & two-dimsnsional cartesian product of
cell states in the shape of a i-neighborhood and which is used to
predict the state of the central cell of that neighborhood at one time
unit in the future, The following definition and theorem generslize
this concept,

tion
Iat d be a positive integer and M a cell type with

set of states S. Then a d-neighborhood function of

27

iype M is a function whose domain 1s the two-
dimensional cartesian product of' S with itself a
total of 1 + 2.d-(d + 1) times (arranged in the

shape of a deneighborhood) and whose range is S.

Theorem 2.1 (Interdependence)
Let M be a cell type and d a positive integer, then
there exists a d-neighborhood function of type M,
say £, such that it = DO. D1. Dz. ese 15 any
computation of type M, t 1s any non-negative integer,
and ¢ is any cell, then the state of ¢ at time t + d
can be obtained by applying f to the d-neighborhood

of ¢ at time %,

PROOF: The result is immediate for d = 1 by letting f be the
iransition function of cell type M.

Assume by induction that it holds for all d<n and let d = n,
Than for each c'e N1(c) we have Nd_1(c') c Ng(e) by the triangle
in=quality. Hence by induction the state of cell ¢! at time t +d - 1
is a function of the states at time t of all cells in Ny(c), for all
e'€ Ny(2)s But by definition the transition function gives the state
of cell ¢ at time t + d as a function of the states at time t + d - 1

of a.l ¢'e Ny(c). Composing these functions gives the desired function

. 0

The Interdependence Theorem is fundamental and has sevgral_

important applications, It can be viewed in two different ways. As

28

stated, it allows one to make predictions about the future state of &
cell given sufficient ocurrent information about the neighbors of that
cell, It will be used in this gulse to prove the Speed-Up Theorem
(Theorem 2.2 below), Viewed in another way, the Interdependence
Theorem states that two cells which are at a distance of d + 1 from
each other cannot influence each other's behavior for the next d units
of time. In this form it is simply the statement that signals
propagate at unit distance per unit time, but avoids mentioning
signals as such, In this latter form it may be used to establish
minimal time results, such as the following.

Gorollary 2,1,1
%AR is not recognisable within time less than
m+ne-1{ifeitherm=1orn-=1

Typy(men) =
e {n-»n-Zitn.n):.

PROOF: Let M be a cell type which recognises an .
First consider the case where m = 1, let Do be an initial

description, say

ﬁ = ’," ‘1.' '," see "..

Now create the initial description £ by adding a black square to the
eastern end of I)0 o Thus

xo = %03]% °ee 2 st_,n b

Now the cells in the (n-1)-neighborhcod of cell (1,1) have the same

29

states in both IP and E0. Hence by the Interdependence Theorem, cell
(1,1) will be in the same state in both IP~! and E9-', But since M
recognizes ‘/’pAR and sinoe Do and lo have opposite parity, this state
cannot be a final state. Thus M takes at least n +» = 1 = n units of
time to recognize VH\R vwhen m = 1,

The case where n = {1 is similar,

Finally assume that m,n>2. Consider a typical initial description.

Su 2 [Sun
\J

N pa

sm.l 2 e 2sn.a

Note that the southeast corner cell (m,n) is at a distance m + n - 2
from cell (1,1) and hence by the Interdependence Theorem cell (1,1) is
independent of the state of cell (m,n) for the first n + m - 3 units of
time, Hence since ¥p,q depends on the state of cell (m,n), we have
that M requires at least m + n - 2 units to recegnise Vpag . 0

Note that the only property of wPAR which we used in the above
proof was that it depended on the initial state of oell (m,n). Thus
we have actually proved the following.

Corollary 2,1,2
No reascnable predicate, V’, can be recognized in

time less than TMIN’ where by reasonable we mean
that for any m,n 31 there exist two figures P and P!
which differ only in their (m,n) entry and such that

30

PeV andP'¢V
The reader with an eye for detall will note that the cell type
Mpar constructed sarlier actually achleves the theoretical minimum
timing only for the cases n = {1 orm = 1 and it is one unit slower
than the minimum for the cases where m,n22., This minor defect can be
remedied by modifying Mp,ne The mmallest number of states the author
has found for such a modified machine is seven, Details are left to

the reader.

2 . u sp.d"up

We now turn to the Speed-Up Theorem, The central idea behind this
theorem is that by packing information into fewer cells in an array,
the information can be processed at a higher rate since the amount
of time it takes for a signal to travel from the location of one
piece of information to the location of another has been reduced. This
idea has occurred to many people and uses of it may be found in the
papers of 0019(6) ' nschor(7). and Hannio(s). In their formulations no
information is initially present in the computer and hence the packing
can be done as the information is input to the camputer., In this way
they achieve any desired degree of speed-up withm;t having to pay a
price in processing time, although they do increase the number of states
per cell, In our formulation, the information to be processed is
initially present in the array and some time must be spent in packing
it into a smaller area within the array. Thus we must pay a price in

both time and states to achieve a speed-up.

31

(ns~Dimensional Case: As a warming up exercise for the two-
dimensionel Speed-Up Theurem, we first consider a one-dimensional
example., Assume that we have set up same figure in a 1x9 array of

cells of type M and let s observe its operation for a few time units,

P = [s?]ss[ss]s3s2Ts?s%]s5

p' = [sf

1|t [}
15351505754

= [stfs? Sy |5k [SE [sd [S5 |Se ISe

"he symbol 33 of course represents the state of cell (1,j) at
time %.. We are golng to describe a cell types M,, where each cell must
have ihe ability to simulate two cells of type M. Our notation should

be trinsparent. Namely

[L]
%

s:|s? or more simply

represents one cell of type Hz which is currently in a state represent-
ing two cells' of type M, one of which is in state sg and the other of
which is in state g. Extensions of this notation will be introduced
without further comment. Since we will be talking about both M cells
and Mz colls at the same time, we wiJ.l find it convenient to refer to
the former as cells and the latter as modules. For example, we say
that each module in an Hz array simulates two cells., Now let us
observe the operation of a 1x9 array of type Hz when started with the
same Tigure, The first five steps of this operation are shown in the

diagram on the next page.

b=3 | 5P sy so| si| s se|sh| s | s
arnEEEREREREEERERE
SN sl EalERERERERERE
t=3 [e]

t=% [FIE|BE|CE | EE{E |E

v=s (oo [em (e

At this point, the Mé array has packed the original figure by a
factor of two and is ready to begin processing the figure at a rate
exactly two times that of the M array. Note that the packing process
takes n - ﬁﬂ time units in general, where n is the length of the array,
k 1s the packing factor, and [i] is the greatest integer function,
(We ccnsider the packing to be complete when the edge state e can no
longer move to the left.)

(ne problem now arises, We would like all of the modules in the
packecd portion of the array to begin their simulation simultaneously.
This is accomplished by using a firing squad procedure such as that
described in Balzer(3). The last module to be packed (module (1,5) in
our example) acts as the general of a firing squad with the soldiers
being the modules to the left of the general. The modules in the

firing squad retain thelir packed information on one level while

33

carrying out the firing squad process on another level, When the
firing squad goes off, the simulation begins. Note that the firing
squad process, if carried out as described above, will take 2-[?] units
to begin simulation. Thus the simulation gets under way at time
t=n+ g_ E]. The readsr who is fond of firing squad problems may show
how thi.s_time can be reduced to t = n by beginning some firing squad
activity at time t = 0 instead of waiting for the packing to be
completed. Note that ¢t = n 1s the earliest the simulation can begin,
since by the Interdependence Theorem module (1,1) cannot begin simulation
ocefore it is aware of the existence of the right-hand end of the array
and this cannot happen before t = n. We will omit the detalls of the
firing squad mechanism, since an alternate method for synchronization
will be given later.

Let us assume then that at time t = 9 our array begins simulation.

-y

/

The process will look as follows.
t=8 l!!lk [gl:ﬂ L;'[;?_:[f]« CI3 | BT<]
e
t=9 |[[] i;;flijzlf] CL] | GIe]
t=10 [T I%ifzjlz]fﬂ 313} | GTe]
S

Dotted arrows have been drawn to show how module (1,2), which is
responsible for simulating cell (1,3), has access to all of the
information necessary for predicting the state of cell (1,3) two
units into the future via the Interdependence Theorem. In general
with a packing factor of k, one obtains a simulation which is faster

b/

by a factor of k.

The simulation continues until module (1,1) senses that cell (1,1)
is abtout to enter a final state. Instead of simulating this entry,
module (1,1) actually enters that final state itself. Thus the Mz
array accepts or rejects the mitiﬁl figure according as the M array
would have accepted or rejected it.

Since simulation begins at step m, recognition takes place at time
t=n +F.§Ea!l%:_l], where T(m,n) is the time in which M carries out
its recognition. The number of states required is approximately 8- sk
where 3 is the number of states of cell type M and where we assume one
possesses an eight state solution to the firing squad problem.

Progressive Synchromization: Before turning to the two-dimensional
case, we present a second solution to the synchronization problem
which does not use the firing squad. This second solution is slightly
faster than the firing squad method, but uses approximately 2-32k
states per cell. We present it here because it is of interest in its

own right. Let us call it the method of progressive synchronization,

In progressive synchronization the simulation begins to take
place while the packing operation is still under way. Each module
carries out a simulation step as soon as the necessary information
becomes available to it. Modules which begin to simulate before
packing is complete carry out their simulation at a reduced rate
because of limited information availability. The last module to
be packed immediately begins simulation at full speed and eventually
catches up with the modules which began simulation earlier. Larger

and larger blocks of modules become synchronized until at last the

35

HEo

€ |8 |

HEIHEO

oo

~ O

N

31%]

(1) |GE | CE | EE B ([

712]
[3]2]

entire array is synchronized and simulating at full speed.

36

BR8]

%
'

'y
g

H8
1

HUJHHHH U a0

The diagram on the preceding page illustrates progressive
synchronization as it would be used in our example., From t =9
on simulation proceeds as in the firing squad case.

Each module in the above diagram must actually have one more
bit of information so that it can indicate to its neighbors when it
has made a simulated state transition. We have omitted this bit from
the diagrams above,

Observe how module (1,2) carries out a simulation step each time
the necessary information becomes available in the neighboring modules.
Also observe how the last module tco be packed, module (1,5), is able
to begin simulation at full speed as soon as it is packed. Since this
module is packed at time t = n - [%]. the recognition will take place
at time t = n - [E] + [T nn) - 1] + 1 or before, The case where
recognition takes place sooner is due to the fact that module (1,1) is
several simulation steps ahead for a while,

To recapitulate, we can create, using firing squad techniques, a
cell type which performs recognition in time t = n + [:11&5%—:—1 and
which has on the order of sk states. By using the method of
progressive synchronization, we can create a cell type which performs

recognition in time t = n + 1 -l:g] + [Lf;ﬂ...!z)t_-_ and has on the order

of s2k states,
The method of progressive synchronization introduced above belongs
to a class of iterative programming techniques which we shall call

methods of non-uniform simulation. These methods all have the

following characteristics in common:

37

1) they involve simulation of cne array by another,
2) a module in the simulator may keep multiple copies of
the cells that it is simulating, and
3) simulated time may be distorted, that is, at any
given mament modules which are spatially separated in
the simulating array may be working at different
points in simulated time.
We will use a method of non~uniform simulation in the proof of
Theorem 2.5.
Speed-Up: We now turn to the two-dimensional Speed-Up Theorem.
The statement of the theorem could be sharpened in several ways.
Preferring the more simple and workable statement for our main result,

we will leave the sharpening to a corollary.

Theorem 2.2 (Speed-Up)
Let '/’boapredicatoandlotnbeacolltypo A ,
which recognizes ¥ in time T(m,n). Then given
any positive integer k, there exists a cell type
M_ vwhich recognizes ¥ in time l3;-'1‘(1:.1:1) +m+n+2,

PROOF: The two-dimensional case is quite similar to the one-dimensional
case, We perform packing by a factor of k followed by or overlapped
with simulation at a rate k times faster than the original array.
Again we have our choice of using a two-dimensional firing squad or of
using a method of progressive synchronization.

Packing: Packing is accomplished by performing simultaneous

packing within each row and when all the cells in a given column are

38

fully packed, the column is then packed. The following diagram
illustrates packing by a factor of two, where each simulated cell

is represented by a single dot.

e H ') [}
. ’ °
—p e] ~———p 3 w———p e
e] eeje-{-0
e eej*] e oo+
X) ces ju @@ Y3
*@ L3 LX) @
.e 9 ‘e
—> lee e —> leales}® — loe]ee eo
tej-e Y)
e
- -
Packing is completed in m - E] +n - [g units of time, Assuming
. L .

that progressive synchronization is used, simulation gets under way
immediately.

Simulation: In considering two-dimensional simulation, we find a
problem which wasn't present in the one-dimensional case. It is due
to the fact that we do not allow diagonal neighbor connections in our
model.,

Consider a portion of an M3 array attempting to simulate an
M-array at a rate three times faster than normal.

2i21{2 tfr] 2}2f2
111t 2}
zle t11 tiefe
3|3 2j2]2 313
3 2]z 3
212

The central module in the above diagram has responsibility for
simulating the cells labeled 1. In order to advance the states of
these cells by three units, the central module must have access to the
cells labeled 2 and 3. Because diagonal connectioms are prohibited,
access is available only to those cells labeled 2.

There are several ways around this problem. One is to allow
diagonal connections betwsen cells., In that case, assuming diagonal
connections were also allowed in the M-array, the central module in
the diagram above would require access to all simuiated cells shown,.
Thus it would actually have access to exactly the information needed
to advance the states of the cells for which it is responsible,

Within the restriction of nearest neighbor interaction, we could
simply pack by a factor of six and then use two steps of real time to
allow each module to get information around the corner from its diagonal

neighbor and advance the states of the cells for which it is

responsible by six steps. Thus an average speed-up of three would
result. The cost in terms of states, however, would be high. In
order for each module to pass information around the corner during the
intermediate step, it would have to have provisions in its memory for
remembering additional simulated cells. The smallest number of
additional simulated cells required seems to be g-kz -k - 1, Thus in
the case above where k = 6, we would require each module in the
simulator to have memory capacity for holding eighty-three simulated
cells, just to provide an average speed-up factor of three, When
compared with the nine simulated cells required per module in the
diagonal connection case, the cost of this method seems excessive,

A more reasonable method is now described which requires twenty-
five simulated cells per module to produce a speed-up of three. It is
apparent that a module, if it is to advance the cells for which it is
responsible, needs access to information about the states of the cells
for which its dilagonal neighbor is responsible. Instead of having this
information computed by the diagonal neighbor and then passed around
the corner via a nearest neighbor, we let the nearest neighbor
compute the information directly, thus making it available one time
unit sooner,

Consider the dlagram on the following page which represents one

module in the simulator array.

B

The module contains twenty-five simulated cells. The central
nine, which are drawn with solid lines, are the same as those for
which it would be responsible under the earlier scheme. We say that
these are the cells for which it is primarily responsible. One thinks
of these primary cells as being the ones which are "really" being
simulated and that the sixteen secondary cells are simulated merely as
a convenience for the benefit of the module's nearest neighbors.

The following diagram shows a portion of an array which is to be

simulated.

Three concentric heavy outlines have been drawn. The innemmost out-

line contains a set of nine cells for which a module is primarily

42

responsible. The middle outline contains the twenty-five cells for
which this module is botn primarilyband secondarily responsible. The
ouler outline shows the set of cells to which the module has access
via its nearest neighbors at any given step. Note that the cells
contained in the outer outline are exactly those cells to which access
is required for a speed-up of three.

The following diagram presents the situation from the point of

view of the simulating array.

r=A r-9 [riarie
o] 28 ok
[t vk I Y o sy 1 [
ALY L 3,7iL,81%9 9,008, 11 702t
r= =1 r =3 r-- -9
a9 forlus fneler! e (a7 [ne }n.e e 0! A Lod o R LK
- AR resie . P weley
[)]
it G L0 L CUTLHN IR CUIE) Gl L Ll L M AT L B0 L
3 lavlas]as|er 166 167[6,7{47 |40 16,9 {ePish [0I2]619)
La - boa 4 L—-' -
i [})]]
A4 AL L‘.".;H’.:}_"..
]
el e H !
= r- ==
158 15,8} 1511
L e [l e B Lo D e
165168 a6 6760169 o161 1412
r=- -~ r- “ [ol -
11378185 J26)27! 126 771 7.8] 10)19} 179 |10 2 2 {2}
-l dm o pe == P B P S
5210 |eelecaejering 106126 lerjerfsrfemien: g9 1ee lenlen]nu|wsinn
bl B A s - pieltt B = gl
103 laglasiesfan nclarfasir]an 19,9 [awlan]enfes)
[- L. -d [-d
] 1
pon o e o imeie it
5t m,c: (NI}
| -] e | S |
=9 r=- r--
! 18,91 ‘o)
),] i '
PR S podmmdee ponfmata -
KIS X gL X2 lvnigeinn 19,0009.01 v 2t
re -9 [b re- =
10,3 | iaefw.sime b 1 10,6 [w0,7]1.9 {100]un, 104 lo.g boslniloialam
r--i- I e I B s (==
:_N.z'n.i welns fnejnrin :j 'tu';n,a wiypnelavhivioine ! ey wld Gk R
-a'e - vl = T cdan maelme et -
tn, 3jiaolshnels 7) Y Jarjn olne 21 g 1 lusta, nfinaeig)
b= - baw $ F] bew -
¢), t 1 1514300
Faadiacd kol QAL Lo
:"Q,IO -!n g: :N h
[P (o] [ipsgsh

43

The preceding diagram shows a 3x3 set of modules and within each the
simulated cells for which it is responsible, Each simulated cell has
been labeled with its row and column number. Some cells such as (8,8)
are simulated by as many as five different modules. All are simulated
by at least three modules.

Of the many methods of simulation considered by the author, the
above method requires the fewest states for the case of nearest
neighbor interaction. It requires 2-(k% + k) states (for k even)
and 2-(k® + k) + 1 states (for k odd).

Conclusion: We have all the pleces necessary to construct a cell
type Hk. given M and k. To recapitulate, Mk first performs packing by
a factor of k and then begins high speed simulation. Simulation is
begun either by the method of progressive synchronization or by the use
of the two-dimensional firing squad which is discussed in Section 4.3.

The method of progressive synchronization requires on the order of
sl'-'(k2 + k) states per cell and recognition is completed on or before
time t =m +n '[ﬂ]'[ﬁ] .,.[Tnn = 1]+2 < %-T(m.n) +m+n+2,

The firing squad method requires on the order of sg(kz + k)
states per cell and recognitiom is completed on or before time
t=2(m+n) -l}] - [ﬁ] + ux{n.n} + [I‘!ﬂz-'—l « The details of
the latter formula follow from a knowledge of the two-dimensional
firing squad which is discussed in Section 4.3,

This completes our proof of the Speed-Up Theorem. D

We now state as a corcllary to the above proof the complete

statement of the Speed-Up Theorem.

Ly

B it S S e e

Corollary 2,2.1

There exists a known effective procedure which, when
given a positive integer k and a cell type M,
produces a cel. type M, such that
i) M and uk have the same initial and
final states
i11) any mxn figure P which is recognized by
M in time t is recognized by H'k in time

n+n-[ﬂ-[§]+[_t_k-_1]+ 2.

In the proof of the Speed-Up Theorem, we mentioned the idea of
having packing going on in one layer of the array and a firing squad
going on in another layer of the array. This conceptual trick of
resolving the processing of an array into several semi-independent
but simultaneous processes and of picturing them as taking place in
different layers of the array is simple but powerful. As an application,

we present

Theorem 2.3 (Minimizing)
Let ¥ be a predicate and let M, and M, be cell
types which recognize ¥ in times T,(m,n) and
‘l‘z(n,n) respectively. Then there exists a cell
type M which recognizes ¥ in time
T(m,n) = min {T1(m.n). Tz(m.n)} .

PROOF: Let M consist of two layers, One layer behaves like M,, the
other like M,. Cell (1,1) goes to its final state as soon as either

k5

layer completes its recognition. Since both layers recognite the same

predicate, there can bs no confliect. ﬂ

2.5 Computing Power

We now turn to the study of the class of predicates which can be

recognized by arrays.

Dsfinition
A predicate ¥ is said to be a cellular predicate

if thers exists a cell type M which recognizes y.
A predicate ¥ 1is said to be a finite predicate if
it contains only a finite number of figures,

Theorem 2.4 (Boolean/Finite)
The class of cellular predicates forms a Boolean
algebra and contains all finite predicates.
Furthermore, given two cellular predicates V;
and ¥ which are recognizable in time T,(m,n)
and T,(m,n) respectively, then both. ¥ U ¥, and
¥ N % are recognizable in time max {’1‘1 (n,n).‘l‘z(n.n)}.

PROOF: Proof of the closure of the class of cellular predicates under
the Boolean operationvs of union, intersection, and complementation 1is
directly analogous to the proof of this property for regular events,
Layers are used as the method of combining two distinct cell types.

To prove the second statement, let ¥ be any finite predicate
and let k be the smallest integer such that all figures in ¥ are

46

SR SARTHIERS AN o Y S 2 i sali SO By . b e

kxk or smaller., Construct a cell type which packs by a factor of k + 1,
As soon as cell (1,1) is packed it will have all of the information
necessary to accept or reject the figure since any figure larger than
kxk must be rejected and since there are only a finite number of
figures kxk or smaller, The entire process will be completed by at

least time t = 2k - 1,

In recursion theory one finds that there are sets which are
recursively szwmerabls but not recursive, That is there are sets
which can be accepted (or rejected) by Turing machines, but which
cannot be recognized by Turing machines. The following theorem shows
there is no analogous situation for arrays.

Theorem 2.5
Let ¥ be a predicate and let M be a cell type which
accepts (or rejects) ¥ . Then V is a cellular
predicate and a cell type M' which recognises y

can be effectively constructed from M,

PROOF: Let us assume that M accepts y » the case where M rejects y
being similar. We will give two different ways in which the cell
type M' may bs constructed.

(Method 1). Let an M' array consist of two laysrs. The bottm
layer acts as M does and may eventually acespt or reject Y’. in which
case M' does also., The top layer acts as a counter with a capaclity
of (s = 1)™®, where s is the number of states of cell type M. (We
use s - 1 rather than s since the edge state e does not matter for

47

the present purposes.) When the counter reaches the value (s - 1)®F,

a signal is sent to the cell (1,1) which rejects the figure if it has
not already been recognized. The basis for this method is that the
entire mxn array of type M,which is being simulated in the bottom layer,
has only (s - 1)®R gtates and hence must be in a loop if it has not
recognized the figure by time t = (s - 1)®?, It is assumed that the
reader has no difficulty in seeing how to orgainize the top layer of

M! into a counter of capacity (s - 1)1,

(Method 2a). In this method we will detect possible looping of
the M array by having two layers in the M' array sach of which behaves
as an M array. One layer runs at half the speed of the other. The
twe layers will be in identical states at time t = 0, but the slower
layer will immediately fall behind., When the two layers again achieve
identical states, we know that they must be in loops, since the faster
layer must be entering this state for at least the second time. When
such a loopink condition is detected, the figure may .bo rejected if it
has not already been recognized.

The problem here is how to detect when the two layers are in the
same state. One straight forward but time comsuming method would be to
have a third layer which observes and controls the first two. The
third layer would cause the other two to advance by one and two steps
respectively and would then inhibit their action. EKach cell of the
third layer would then compare the states of the corresponding cells
in the other two layers and would generats a signal indicating
whether or not they were in the same state., These signals would be

accumulated at one point, say cell (1,1), in much the same manner as the

48

parity information was acoumulated by Mpsqe Cell (1,1) would then
decide whether the figure should be rejected or whether another step
in ‘he simulation should be carried out. If the latter is the ocase,
a firing squad could be started to initiate another step in the
simulation, This method clearly burns up & lot of time, since the
accumulation portion takes about m + n steps and the firing squad takes
another m + n + max {n.n} steps. A much faster method is now
described. It will be more expensive in tems of states required.
(Method 2b), We will use a method of non-uniform simulation. The
basic idea is that waves of simulation spread out from the southeast
cormer, Ahead of each wave the two layers are at simulated times
t1 and tz. After a wave passes, they are at simulated times t1 + 1
and t, + 2, Between the waves of simulation oome comparison waves
which accumulate the nﬂcﬁury comparison information. As each
comparison wave washes over cell (1,1), all the information necessary.
to decide whether or not a loop as been entered is present and cell
(1,1) can make its decision. The speed of the method oomes from the

fact that one wave may follow immediately behind another, D

One way of studying the class of cellular predicates is to
campare it to the ¢lasses of predicates recognizable by other types
of recognition devices such as the perceptron. We have already seen
one cellular predicate, namely "PAR' which is not in the class of
predicates recognizable by order or diameter limited perceptrons,
Other predicates which have been considered by Minsky and Papert(w)
in connection with the perceptron will be discussed in Chapter 3.

49

Hennie (8) has classified arrays by the mmber of directions in
which signals may flow within the array and then compared the relative
cemputing power of various classes,

Other types of recognition devices may be obtained by modifying
ncrmal one-dimensional taps-accepting devices to operate on two-
dimensional tapes. Consider for a moment a universal computer which is
able to walk about on a two-dimensional tape, sense the edges without
stepping off the tape, and which can read the symbols written on the
tzpes (A two counter machine provides a more tidy mental image of this
process than a Turing machine, since the latter must drag its tape
behind and is always in danger of tripping over it.) We will use
the phrase two-dimensional universal computer to describe such a device.
Given a figure represented on a tape, the machine can wander about on
the figure and eventually accept or reject the figure. The phrases
two~dimensional finite state automaton, two-dimensional push-down

autamaton, and two-dimensional linear bounded automaton describe
similar adaptations of one-dimensional devices.

| Blun and Hewitt(s) introduced a special class of two-dimensional
devices called pebble automata. These devices are just two-dimensional
finite state automata, which are provided with a fixed finite number
of markers (called pebbles) which they carry about with them and leave
¢n squares as temporary markers. Upon retuming to a square on which
a marker had been previously placed, the automaton can sense its

presence, pick it up, and carry it off for further use if so desired.

50

Definition

Given two classes 01 and c2 of devices for recognizing

predicates, we say that C, is strictly more powerful
than 9_3 provided that the class of predicates
recognized by devices in 02 is a proper subclass of
the class of predicates recognised by devices in 01.
If these classes are the same, we say that Cq4 is
squivalent in powsr to C,. Note that the relation
thus defined induces a partial ordering on the

family of classes of computing devices.

Theorem 2.6 (Non-Universality)
Two-dimensional universal camputers are strictly

more powsrful than iterative arrays,

PROOF: Certainly a universal computer can recognize anything which
can be recognized by an iterative array. The existence of a predicate
which is recognizable by a universal computer, but which is not a
gellular predicate can be obtained by a dlagonalization argument as
follows. Set up some fixed effective method for coding descriptions of
cell types into figures. Then consider the predicate WDIAG glven as
followss
P 1s a coded description of a cell
Pe Vpue type M such that an array of type M
would reject P,
Nov ¥pac 1s certainly an effectively computable predicate. Assume it
is a‘cellular predicate and let M' be a cell type which recognizes it.

51

Let P' be the coded description of M', Then P'€ ¥p s <= M!
rejects P' by definition of WDOAG . But M' rejects P! <= P'¢ WD!AG
3znce M' is assumed to recognize WDI AGe This contradiction shows

that WDIAG is not cellular. D

Before stating the next two theorems, let us describe the model
»f two-dimensional linear bounded automats which we will use, We
could assume that such a device has a one~dimensional auxillary
working tape which is bounded in length by a linear function of the
~umber of squares in the input figure. We will, however, take the more
natural approach that the device has no awdliary tape, but rather
uses the input figure itself as a tape and is able to both read and
write on the figure with a finite set of symbols of which the initial
figure's symbols may be only a subset. This model seems much more
natural in the current context. We also assume that the automaton is

always started in its initial state on square (1,1).

Theorem 2.7
Two~-dimensional linear bounded automata are strictly

more powerful than pebble automata,

PROOF: Using the model of a linear bounded automaton(LBA) described
above, it is easy to see how, given any pebble autcamaton (PA), we
can construct an LBA to simulate it (in fact to simulate it in real
time),

To show that LBA's are strictly more powerful than PA's, we carry
out the same diagonalization argument found in the proof of 'mcorﬁn 2.6,

52

replacing universal computer by LBA and iturative array by PA. There
are some things to check. First one must check that a coding of PA's
can be produced such that a single LBA can look at a coded description
of any PA and ¢hen simulate that PA operating on its own description.
Second since a PA may begin looping rather than accepting or rejecting
a figure, we must ensure that the LBA can dsteet such loops. This can
be done by an adaptation of the second method of detecting loops in the
proof of Theorem 2.5, Numely two copies of the PA are simulated, one
copy at one rate and the other, at half the rate. In between simulated }
stepg the LBA checks to sese if the two simulated PA's are in the same
location and same state and if they have their pebbles all arranged in
the same manner. This must eventually happex; if the PA's enter a loop
and hence the LBA can determine if tne PA described has rejected its

own description by looping. D

Theorem 2,8
Jterative arreys are equivalent in power to two-
dimensional lirear bounded automata. Indeed, given
any predicate ¥ which is recognizable in time
T(m,n) by a linear bounded autcmaton and given any
positive integer k, ¥ is recognizable by an array
in time }-T(m,n) + (1 + IMm +n) + 2.
Conversely, given any predicate ¥ which is
recognizable in time T(m,n) by an array and given
any positive integer k, ¥ is recognizable in time
mm(E T(m.n)] 1),

53

PROOF: It is clear that an array can simulate a linear bounded
automaten(LBA) in real time. However, the .BA can make its decision
atout the figure from any position on the figure whereas the array
must deliver its answer to cell (1,1). Thus if the LBA takes

time T(m,n) to recognize the figure, then an array might take as long
as T(m,n) +m +n - 2, Given any positive integer k, we have by the
Speed-Up Theorem that ’V" can be recognigzed by an array in time
d.(T(mn) +m+n-2) +m+n+2g %.r(.,n) + (1 +%)-(n+n) + 2,

It is also not difficult to see how an LBA might simulate an
array. It could use a working alphabet which would allow it to
represent two different cell states within one square of the figure,
One of these states would represent the state of the cell at the
"current time®™ and the other the state of the cell at the "next time,"
By making a pass over the array it would be able to update the states
of each cell. The first method of passing over the array which one
considers usually involves tracing cut a path as indicated in the

following diagram, which shows the LBA making a scan of one row.

AT T T T

=i o D
2 UT Ut U

This is the path traced out by an LBA which examines each of
the neighbors of a cell in tum so that it can update the state of the

cell, The black dots in the diagram abave represent the points at

Sk

which the LBA has accumulated enough information to update a cell.
Note that the LBA makes seven movements per cell,

If instead of attempting to update the state of each cell on
each pass over the array, we allow several preparatory passes, we can
reduce the average number of movements' per cell to four., In this case
the LBA keeps four simulated cells within each square of the tape. One
represents the cell located at that posltion and the other three

represent its western, northern, and eastern neighbors,

The LBA begins in the northwest corner and describes the following

path,

During this pass each square can be marked to represent the states of
its western and esastern neighbors,

The LBA next describes the following path.

LA ANl

515
U

During this pass each square is marked with the state of its northern

neighbor upon the first visit from the LBA and upon the second visit

55

the LBA, which is coming up from the south, has all the information
necessary to advance the state of the cell by one time unit.

An observer stationed at a given cell in the interior of the
array would note the following build up of information where a dot

represents information about the current state of a cell.

ble] | Before first visit by the LBA.

i
l- 111 After first visit,
-1 After second visit,

o]
el After third visit.

—
L1} After fourth visit,

(The state of the cell has now been

advanced by one simulated time unit,)

56

The entire process involves an average of four movements per cell
per unit simulated time. But given any positive integer k, we can
simulate not just one time unit per pass, but k time units per pass
simply by increasing the information deposited in each square by the
LBA on its first three visits to the square. Of course the LBA must
carry along more local information in this case, For example, if k = 3,
then the information capecity of each square would be sixteen cells

and our observer would note the following sequence of events,

—
Before first visit by the LBA.
l]
[]
After first visit.
| B
.
After second visit.
| 1]
[
A After third visit.
[1]

57

] After fourth visit.

(The state is now advanced by

L - J three simulated time units.)

The timing result stated in the theorem now follows immediately. U

Corollary 2,8.1
Iterative arrays are strictly more powerful than

pebble automata.

PROOF: Immediate from Theorems 2,7 and 2.8. D

Let us retum for & moment to the idea of a two=dimensional

universal computer,

Dsfinition
A predicate V is said to be effectively recognizable
Lf there exists a two-dimensional universal computer
which recognizes V. We say we are given an
effectively recognizable predicate y provided we are
given a finite description of a universal computer

which recognizes V’.

We now state some undecidabiltiy results. Note that Theorem 2.6
proved the existence of a non-cellular effectively recognizable

predicate.

58

Theorem 2.9
Given an effesctively recognizable predicate ¥, it

is in general undecidable whether or not ¥ is a
cellular predicate.

PROOF: By Theorem 2.6 there exist effectively recognizable predicates
which are not cellular., Let ¥’ ve such a predicate. Now given any
Turing machine T, let V¥; be given by
PE€Y' and P is an mxn pattern and T
Pe WT = doesn't halt in m+n steps when started
on a blank tape.
Now Vﬁ— is certainly effectively recognisable., Furthermore SVT is
finite <— T eventually balts on a blank tape, by definition of
Y. But ¥;=¥' <= T doesn't halt om a blank tape, again by
definition of ¥y, Since finite predicates are cellular by Theorem 2,4
and sines ¥' is not cellular, we have that ¥ is cellular <= T
halts on a blank tape, The theorem follows by the undecidability of
the halting problem for Turing machines, D

Theorem 2,10
Given a cellular predicate ¥ and a cell type M,
it is in general undecidable whether or not M

recognizes Y.

PROOF: Let T be a Turing machine and M' be a cell type which
recognizes Y, Construct a cell type HT' which first simulates T

starting on a blank tape for m steps or until T makes an excursion of

59

more than n units from its starting point. (A similar construction
based on the Post correspondence problem rather than on Turing machines
may be found in Chapter 3 of Honnio(a).) If T has not halted by the
time the simulation ends, MT then simulates M' and accepts or rejects
¥ according as M' does. If T has halted, then My simulates M' and
makes the opposite classification from the one M' would have made,

Thus M, recognizes 4 ¢<=> T never halts, The theorem follows, D

T

Definition
Two cell types are said to be equivalent if they

recognize the same predicate.

The following corollaries due to Hennio(a) are lmmediate from the
above theorems. Hennie shows the corollaries hold even if one assumes
that signals can only travel fram east to west and from south to north

within the array.

Corollary 2,101 (Hennie)
Equivalence of cell types is undecidable,

Corollary 2,10,2 (Hennie)
Given a cell type M, it is undecidable whether or

not it accepts any figures,

2.6 Linear Predicates

We now define an important class of predicates.

Dsfinition
A predicate ¥ is said to be linear if there exist
non-negative integers p, q, and r such that V is
recognizable within time pm + qn + r.

In view of Corollary 2.1.2, we might be justified in saying that
the following theorem shows that linear predicates can be recognized

"almost" as fast as any predicate.

Theorem 2.11
If ¥ is a linear predicate, then for any real £>0,
¥ is recognizable within time (1 + €)(m + n) + 2.

PROOF: Let p, q, and r be such that ¥ is recognisable within time
pn4gn + r., Let s =ux{p+r. q+ r}. Then since m,n 21, we have
m+an+r {(p+r)m+(q+r)n < s(m+n). Hence V is
recognizable within time s(m + n). Let k be a positive integer such
that § <€, Then by the Speed-Up Theorem ¥ is recognizable within
time l5(-(::1+n)+l|+n+2$(1-!-8)-(1'0-11)4-2. U

Corresponding to Theorem 2.4 we have the following.

Theorem 2,12

The class of linear predicates is a Boolean algebra
which contains all finite predicates,

PROOF: The containment of all finite predicates was shown in the proof
of Theorem 2.4, Since we are interested in the values of the

recognition-time functions only over the positive quadrant in (m,n)-

61

space, we can bound the maximum of two linear functions by a linear

function, The result then follows from Corollary 2.4.1, D

Corresponding to Theorem 2.5 we have the following.

Theorem 2,13
Let ¥ be a predicate and M a cell type which

accepts (or rejects) ¥ in linear time. Then
there exists a cell type M' which recogniges

¥ in linear time.

PROOF: Assume M acoepts V. the case of M rejecting ¥ is similar,
Since M accepts ¥ in linear time, we have by similarity to Theorem 2,11
that ¥ must be acceptable in time (1 + €)(m + n) + 2 for any £> 0.
Let M* be a cell type which accepts ¥ in time 2(m + n) + 2. Modify

M" by adding a second layer which counts up to 2(m + n) + 3 and then
rejects the figure if it hasn't already been accepted by M"., The cell

type so constructed is M', D

Note that the correspondence of Theorem 2.13 to Theorem 2.5 is
not quite complete. Namely we do not claim that M' is effectively
constructable given M. It is certainly effectively constructable
glven M and an integer k such that M always accepts y by time
t = k(m + n), However, the problem of whether or not it is possible to
effectively compute such a k, given just M and the lnowledge that M
accepts in linear time is open, A partial result is given by the
following theorem due to Mike Paterson (unpublished).

62

AOPUNTE Y aran e e G ER e e T

Theorem 2,14 (Paterson) |
Given a predicate V’, a coll type M which recognizes
¥, and given that there is an integer k such that M
recognizes ¥ in time k(m + n), then the problem of
finding a minioum such' integer k is in general

unsolvable.

PROOF: Let ¥ be the empty predicate. Given any Turing machine T,
construct a cell type H‘I which behaves as follows., It simulates T

for n steps on a blank tape., If T has not ho;ltod. it rejects the
input figure at time 2(m + n). If T has halted, it rejects the input
figure at time 3(m + n), Thus M, recognizes ¥ in time 2(m + n)

<=> T never halts, and in time 3(m + n) <> T eventually
halts, The result follows. D

Similarly we have the following,

Theorem 2,15
Given a predicate ¥ and a cell type M which

recognizes V, it is in general undecidable
whether or not M recognizes ¥ in linear time.

PROOF: As in the proof of Theorem 2.14, let V¥ be the empty predicate

and for any Turing machine let M. be a cell type such that

T
M, recognizes V in time 2(m + n) <> T doesn't halt
and HT recognizes ¥ in time 2(m n) <> T halts., The result
follows. Q

63

We will see in the next chapter that some predicates which would
intuitively seem to require time on the order of m:n are in fact
linear. Indeed, the existence of a cellular predicate which is not
linear is an open question. There are many candidates for non-
linearity, but there are no known methods of proving them to be non-
linear. The only method of establishing minimal time bounds which is
available is the Interdependence Theorem, which is only useful in
establishing bounds less thanm +n = 1, 0010(6) in his thesis on
iterative computers has established certain computations which cannot
be done in real time under restrictions on intercell comnnications..
However his model receives information from the external world as the
computation progresses and can be overloaded as he shows. In our model
the input has already been digested at time t = 0, so no confusion of
inputs is possible, Modiflied diagonmalization arguments have been
tried by the author and by several other people; but promising as they
seem, every such argument has contained a flaw. FMinally we might add
that this open question is related via Theorem 2.8 to an apparently
open question about deterministic linear bounded automata. Assuming
m = 1, Theorem 2.8 implies that if all cellular predicates were linear,
then all predicates (i.e. languages) recognizable by deterministic
LBA (using our particular model in which the input tape also serves as
the working tape) could be recognized in time proportional to the
square of the length of the tape. Hence the existence of a language
requiring on the order of n3 units of time for its recognition would
show that non-linear cellular predicates exist. As far as the author

knows, no such language has been found. \

64 |

CHAPTER 3
RECOGNITION OF TOPOLOGICAL INVARIANTS

In this chapter we will study the recognition of some specific
predicates over black and white figures. All of these predicates
depend only on topologlecal properties of the figure such as
connectivity, simple connectivity, number of components, Euler number,
and so on. The principal result of this chapter is a fundamental
transformation of figures which allows the construction of algorithms
for recognizing in linear time a wide variety of these predicates,
Many of these predicates have been studied in Minsky and Papert(1o)
and in Blum and Hewitt(5). The interested reader may thus compare
arrays with perceptrons and pebble automata with regard to recognizing

these predicates.

3.1 Basic Terminology

Assumption: Unless otherwlse specified, all figures and
predicates in this chapter are assumed to be over 12 (i.e., black and

white),
We begin by establishing some terminology.

Dafinition
Two cells at (1,3j) and (p,q) are said to be
adjacent if |1 - pl + |j - q| < 1 and are said

to be neighboring if li - p| <1 and |:] - qI < 1.

65

Two black cells are connected if there is a chain
of pairwlise adjacent black cells beginning with

one and ending with the other, 7Two white cells are
connected 1f there is a chain of pairwise
neighboring white cells beginning with one and

ending with the other.

Note the asymmetric definition of connectedness for black and for
white cells. Some such asymmetric definition is necessary if one is to
~3tain such "nice" properties as the Jordan Curve Theorem. A notion
of connectedness which 1is symmetric with respect to black and white
can be obtained by assuming that each cell "touches" all of the
neighboring cells except the ones to the northeast and southwest.

This notion which is derived from a hexagonal partition is, however,
asymmetric with regard to directian, ’

We assume that figures are presented against a white background.

Hence the following definition.

Definition
The equivalence classes of black cells under the
relation "connected" are called the components of
P. The equivalence classes of white cells under the
relation "connected" which do not contain cells on
the border (that is cells in rows 1 or m or in
columns 1 or n) are called holes, The remaining
equivalence classes of white cells are lumped

together into a class of white cells called the

66

it e BRI 7 S T b T S wsh o i B T R N TR e e

background. A component or hole which contains only
one cell is said to be isolated, otherwise
non-~isolated.

For example, the following figure has five components (two of

which are isolated) and tnree holes (one of which is isolated).

Another example is an 8x8 checkerboard which according to our
definitions has thirty-iwo components, all of which are isolated, and

no holes.

Definition

Given a figure, one can construct an associated iree

which represents the containment relationships
between the background, the components, and the
holes. A figure and its assoclated tree are

shown below,.

67

Two figures which have isomorphic trees are said
to be topologically equivalent, where by isomorphic
trees we mean isomorphic as labeled graphs or as

unoriented rooted trees,

Dafinition
A predicate ¥ is said to be topologically
invariant if whenever P and P' are topologically
equivalent figures, we have PEY¥ <= ple ¥,

3.2 An Example: ¥conn

The first topologlically invariant predicate we study consists of

the set of all connected figures.

Definition
The predicate WbONN is given by

Pe V’couu < P contains at most one component.

If we were to ask the reader at this point to design a cell type
which recognizes V&onu. his first attempt might very well be an erase-
one-component-and-see~if-anything-is-left algorithm. We now describe
such an algoritim,

At time t = 0 the northwest corner cell emits a scanning signal
8 which begins to sean the array row by row in a back and forth
manner until it encounters a black cell. This stage of the process is

illustrated in the diagrams on the following page.

7.

N\
"N

7 2

7.
t=0 t=1 t=6

At the point at which s encounters the first black cell, two
things happen. First of all a chain reaction of erasure is set off
within the component. to which the black cell belongs. The black cell
which was struck by s turns white and emits an erase signal e to each
of its four neighbors, The e signals are ignored by white cells, but
an e signal striking a black cell causes it to turn white and emit e
signals to its four neighbors. In this manner the entire component 1is
erased,

The second thing which happens when s encounters the first black
cell is that s changes into a waiting signal w. The waiting signal
continues the same zigzag scanning motion which s had been using, but
does not interact with either black or white cells or with e signals
which are propagating around the array in various directions. The w
signal eventually completss the scan of the array and strikes one of
the bottom cormers of the array. At this point the erasure of the
component is guaranteed to be complete,

The first three steps of the erasure process are shown in the

figure on the following page.

69

% wy
2% de| b & Zi
Z 2% %e.
t=7 t =8 t=9

When w strikes the corner at the end of its scan, the figure
contains one less component than it did to hegin with. All that
remains to be done is to see if the remalning figure is blank, This
is accomplished by having the w signal rebound from the last corner as
an accept signal a which scans up the array searching for a black cell.

If a encounters a black cell, it is converted into a reject
signal r which heads directly for the northwest corner to cause a
reject. If a doesn't encounter a black cell, it eventually strikes
the northwest corner causing an accept.

The case of the blank figure is handled by having the s signal
rebound as a when it completes its scan.

The cell type implicitly described above recognizes connectivity
in time approximately 2mn and hence is not linear. The reader is
challenged to find a faster method of recognizing connectivity before
reading on, A good (or bad, depending on your point of view) example
to keep in mind while searching for a linear method is the figure

illustrated on the following page which has length and area of about
4mn.

70

/..II/I/I’
%l% LU %% B
%I%II--IIIIWI%
CRAZ 794477247/ W%,
.1 1 | ll-lll!--

CHUH DY GH A

\3

&

3«3 A Fundamental Transformation

We now study a transformation of black and white figures which
will have important applications to the recognition of topological
invariants by iterative arrays. By transformation we mean a mapping
from black and white figures into black and white figures., The
transformation will be studied in its own right in this section and
its applications will be discussed in the following section. This
transformation was discovered by the author while he was attempting to
prove that connectivity could not be recognised in linear time.

Since its first application was to show that connectivity could be

recognized in linear time, we call it the connectivitiy transformation

anc denote it by T. The image of a figure P under T is denoted by

T(P).

71

For heuristic purposes we will deseribe the transformation as

taking place in three steps.

Step 1. Color all southeast comer cells
of the black subfigure red., (That is if a
cell is black and its easterm and socuthem

neighbors are white, color it red.)

Step 2. Color all southeast corner cells
27 the white subfigure black, (That is if
a cell is white and its eastern and southern

neighbors are black and its socutheastern

neighbor is either red or black, coler it

black.)

A%
| ks

Step 3. Color all red cells white,

Properties of T: We now informally describe the properties of T,
The remainder of this section will be devoted to proving these
properties in a series of lemmas. If one considers repeated
applications of T to a figure, one observes that each component is
reduced to an isoclated component which then disappears., Distinct
components remain distinct and either vanish at different points
or at the same point at different times. Similarly, each hole is
reduced to an isolated hole which then vanishes with distinct holes
remaining distinet and vanishing at different points or different times.

It is easy to calculate exactly how many applications of T will be

72

~~~~~~~~~~~~~




required to reduce a given component or hole to a single cell and
exactly where that cell will be., The entire figure, no matter how
complex, will be reduced to the all white background in less than
m + n applications of T.

To begin proving the above statements, we need some way of
relating the components of P to those of T(P). This is done in the

next four lemmas by using the coneept of a stationary point,

Definition
A cell (i,]) is called a stationary point of P if

it is black in both P and T(P).

Note that the stationary points are exactly those black cells in

P which are not southeast comers of the black subfigure of P.

Lerma 1
Every non-isolated component of P contains a

stationary point.

PROOF: Let C be a non-lsolated component and let x be a northwest
corner of C. Then x must be a stationary point for otherwise it

would also be a southeast cormer and hence C = {x} would be isolated. U

Lemma 2

Two stationary points are connected in P if and

only if they are connected in T(P).

PROOF: [ =] Let x and y be two stationary points of P which are

connected, Then by definition there exists a sequence XgsXqseeosXy

73




of distinct pairwise adjacent black cells such that x = x5 and

y=x. We use induction on n, If n = 1, then x is adjacent to y and
we are done., If n = 2, then elither x1
in which case we are done, or x is a southeast cormer. In the latter

is also a statlionary point

case we have the situation depioted in the figure below, possibly with
x and y interchanged and one sees that the cell z will be black in
T(P) no matter what its color in P, Thus x and y are connected in
T(P).

P (P)

Now assume n 23, Observe that any chain of distinct pairwise
adjacent black cells cannot contain two consecutive southeast corners.
Thus either Xpep OF X4 is a stationary polnt and we may apply the
induction hypothesis to the chain Xgr eee 0 X and Xir see 9 X
where k is either n - 1 or n - 2, Thus x is connected to y in T(P)
via X

B—-——' Suppose x and y are connected in T(P) and let
Xge Xqs see s xn be a sequence of pairwise adjacent black cells in
T(P) such that x = xol and y = x,. Again we use induction and again
the cases forn = {1 and n = 2 with x, & stationary point (of P) are
trivial, so assume n = 2 and Xy is not a stationary point. Then X,

must have been white in P since it is black in T(P)., Hence x, must

74




have satisfied the conditions in step 2 of the description of T and

the situation depicted below must have existed in P.

7,
B
%%

We know that x and y are adjacent to x, and are stationary points

of P. Therefore it will suffice to show that all stationary points
of P which are adjacent to x, are connected in P to the cell labeled
2, From the diagram above we see that the eastern and southem
neighbors of x, are indeed stationary points of P and are connected

to z. Now consider the northern neighbor of x, which has been labeled

n in the diagram below,

Assume n is a stationary point. Then n cannot be a southeast corner
and hence either xy or n' is black. But Xy is white, thus n' must be
black. Therefore if n is a stationary point, it is connected to z via
n', A similar argument holds for the westem neighbor of x1. This
completes the case for n = 2,

The remaining cases for n 2 3 follow as before from the
observation that either Xpoy OF X, o is a stationary point, although
different reasoning must be used to make this observation now since

Xgs «es s X is a chain in T(P). a

75




Combining lemmas 1 and 2 with the observation that every black

cell in T(P) is either a stationary point of P or is adjacent to a

stationary point, we have shown:

lemma 3
There is a canonical one-to-one correspondence

between the non-isolated components of P and the

camponents of T(P),

We now state without proof the corresponding lemma for holes,
which can be proved by methods simllar to those above. However, a
slightly different concept than that of stationary point must be used

since some holes such as the one illustrated below have no statlonary

points.

P ™P)

Lemma 4

There is a canonical one-to-one correspondence
between the non-isolated holes of P and the
holes of T(P).

The following lemma should be obvious by now,

76




Lemma 2
If P contains no isolated components or holes,
then P and T(P) are topologically equivalent.

We now show how to compute the number of applications of T
required to reduce a component to a single square and where that
square will lie, Identical results can be proved for holes using

similar arguments,

Definiticn
Given a component C of a pattern P, let
©(c) = ¢
‘rk(c) = the canonical image of ™=1(¢) under
T for k 0 (provided it exists)
n(C) = min {1 row 1 intersscts C }
w(C) = min {j |colum J intersects C}
se(C) = max {1 + 3| (4,5 €}

Note that n(C), w(C), and se(C) represent three linss forming a
triangle such that C lies within the triangle and touches each line

as shown in the figure below,

We will show that the component vanishes at the cell indicated by

7




the dotted lines and that the number of applications of T required to

achieve this is equal teo the distance from this cell to the se line,

Lermma 6

If C is a non-isolated component, then
a(7(C)) = n(c)

w(T(C)) = w(C)

se(T(C)) = se(C) - 1

PROOF: [n(T(C)) = n(C)] It is clear that n(T(C))>n(C), since

each black cell in T(C) is either a stationary point (of P) or is the
western neighbor of a stationary point. On the other hand, if (i,j)
is the western most point of C which lies in row n(C), then (i,j) must
be a stationary point and hence n(T(C)) < n(C).

[w(T(C)) = w(C)] Tis result follows immediately from the above
and the symmetry of T with respect to north and west,

[se(T(C)) = se(C) = 1] Any cell (1,) in C such that 1 + j = se(C)
must be a southeast corner of C and hence is adjacent to a stationary
point (p,q) such that p + q = se(C) - 1, Thus se(T(C)) > se(C) - 1.
On the other hand all such cells (i,]) do not appear in T(C), so
se(7(C)) < se(C) - 1. [1

Lemna 7
If C is a non-isolated component, then
Tk(c)(c) is an isolated component located at
(n(C),w(C)), where k(C) = se(C) - n(C) - w(C).

PROOF: By lemma 6 we have k(T(C)) = k(C) - 1. Thus by induction

78




k(™) (c))) = k(C) - k(C) = 0, which can only hold for an isolated
component. That component must be locaf.od at (n(‘l"(c)(C)).w(l‘k(c)(c)))
which is (n(C), w(C)) by Lemma 6, D

Lemma 8
If P is an men figure, then ™™ 1(P) is the
all white figure,

PROOF: Apply Lemma 7 and the fact that X(C) < n + n - 2 for any

component C of P, [l

Lemna 9
If P is an mxn figure containing ¢ camponents
and h holes, then the total number of isolated
canponents appearing in the figures
Py T(P)s T2(P)s oo » T*'2"1(P) 45 ¢ and the
total number of isolated holes is h.

PROOF;: Immediate from Lemmas 7 and 8, D

3.4 Linear Recognition of Topological Invariants

The connectivity transformation, T, described in the previous
section forms the basis of the cell types to be presented in this
section, These cell types all have two common characteristics:

1) They recognize topologically invariant predicates
in linear time,

ii) They consist of two layers, a lower or transformation

79




layer which carries out successive connectivity
transformations on the initial figure, and an upper
or observation layer which watches the transformations
taking place, gathers and processes information, and
finally comes to a decision about the figure.

The transformation layer can carry out successive applications of
the connectivity transformation, T, at the rate of one transformation
every two units of time as follows, At time t ® 0 (mod 2) the latest
figure P is represented in the transformation layer. At time
t =1 (mod 2) each cell has entered a state which represents not only
its own state at the previocus time, but also that of its southern
neighbor, Each cell now has access to the information necessary to
enter the appropriate state in T(P)., By the next unit of time,

t 0 (mod 2), the transformation is complete. The intermediats step
is necessary to pass information around the cormer so that a cell in
the white state can determine the state of its southeastern neighbor,
(This step could be eliminated if diagonal connections were allowed.)
The process is illustrated below. |

The observation layer watches for the disappearance of components
or holes in the transformation layer and generates appropriate signals

at each such disappearance, These signals are then processed and a

80




decision is reached. In some cases it is necessary for the northwest
corner cell to know that it has recelved all the information required
for a decision. In these cases the southeast corner cell.sends out a
timing signal which propagates through the array at an appropriate
rate. When the timing signal reaches the northwest corner cell, all
other signals must have preceded it, and a decision can be made.

We now present some topologically invariant predicates which are
linear. In each case the proof that the predicate is invariant rests
on the construction of a cell type which recognizes the predicate in
linear time, As explained above, all of these cell types operate in
two layers with the lower layer being the transformation layer. Thus
to describe any given cell type, we need only describe the observation

layer,

Theorem 3.1

¢Eonu is a linear predicate.

PROOF: Signals are only generated by vanishing components. As each
signal 1s generated it heads for the northwest corner cell. The figure
is rejected if more than one such signal is recelved at the corner, If
two such signals collide on the way to the corner, they combine to

form a reject signal which, when it reaches the corner, will cause the

figure to be rejected.

Definition
Let ¢%C be given as follows
Pe Wéc <—> all components of P are simply connected.

81




Theorem 3.2
¥;c is a linear predicate.

PROOF: Signals are generated by vanishing holes. If the northwest
corner receives any such signal, the figure is rejected; otherwise it

is accepted.

The above two predicates are special cases of a more general

predicate.

Definition
For any c1.cz.h1,h2 such that 0 €c,,0,¢hy,h, S o°
let V’:z be given by

e, £¢ soz and h1 ShShz

1
Pe V:’;:. A — where ¢ is the number of components

in P and h is the number of holes.

Theorem 3.3

For any 0<©140,,h19hy 0o , the predicate W:'.ci:.
is linear,

PROOF: This is a simple adaptation of the methods employed in

Theorems 3.1 and 3.2. D

In the above theorems we have merely used our transformation to
count components and holes, But Lemma 5 indicates that the
connectivity transformation preserves additional topological
information. By introducing a slightly different mode of operation in
the observation layer, we may take advantage of this fact, Consider

82




N R i

the following predicate.

Dafinition
Let Yypc be the predicate given by
No component of P is doubly
Pe Ypo connected (i.e. no component
of P has exactly two holes).

Now ¥ypc is not of the form Y07t , but nevertheless we have

Theorem 3.4
Yooc 1s a linear predicate,

PROOF: As before signals are generated by vanishing holes, but unlike
previous cases they do not immediately head for the northwest corner,
Instead they remain positioned over the component in which they were
embedded. As these components gradually shrink and shift under the
action of the connectivity transformation, the hole signals shift so
as to remain positioned over the camponents in which they originated,
By the time the component is finally reduced to a single cell, all hole

signals associated with it have collided and a signal generated by

‘their combination is centered over the now isolated component. In

the case of %DC this combined signal would indicate whether the
component had originally eontained 0, 1, 2, or more than 2 holes, In
the case of 2 holes, a reject signal would be generated which would
cause the figure to be rejected. Otherwise both the component and
the combined hole signal vanish at the next unit of time. []

83




The method of making a signal generated by a vanlishing hole
remain above the component in which the hole was embedded can be
applied in a dual manner. Thus the predicate "no hole contains
exactly two components" could be recognized since it is just the dual

of VNDC . This procedure may be extended as in the following theorem.

Theorem 3.5

Given any figure Q, let Y=o be the predicate
given by
P is topologically

equivalent to Q.

Then qu is linear.

PROOF: Recall that two figures were said to be topologically
equivalent if they had isomorphic associated trees. Thus given an
input figure P, we can begin computing its assoclated tree. If at
any point in the computation it becomes apparent that the tree of P is
not isomorphic to the tree of Q, a reject signal can be generated.
Otherwise the computation will continue to completion and P will be
accepted. The computation of the tree of P can be carried out in the
following manner,

When a hole vanishes (assuming there were no components located

in that hole), it generates a signal which represents the subtree .

This signal floats above the component in which the hole was located.

If two such signals should collide, they combine to form a signal

representing ’!‘ . (Extensions to more holes is clear,) When
8k




eventually the component vanishes, it replaces the signal by a
O ONO

signal (c) o This signal then floats above the hole (or

W O
possibly the background) in which the component was located. The
process now continues, In general the signal generated by a vanishing
subfigure will represent a tree which is obtained from that sub-
figure's assoclated tree by adjoining a node marked "B" to the root.
When two such signals collide, they join to form a signal representing
the tree obtained by identifying the "B" nodes. By the time P has been
reduced to the background and all signals have merged at cell (1,1),
the resulting signal will represent the tres associated with P,

The process described above is workable but for one fact. Since
there is infinite variety in associated trees and subtrees, we need
an infinite number of signals to represent them, In the case of
recognizing ‘VEQ this restriction is not effective since we need only
enough signals to represent all the possible subtrees which could be
formed while constructing the tree associated with b. Anytime two
signals collide or a component vanishes in such a manner that the
resulting signal has not been provided for, it indicates that P is not

equivalent to Q and a simple reject signal may be produced instead. D

Corollary 3.5.1
Given any figure Q, let V’CQ be the predicate

given by

85




the assoclated tree of P
Pe V’c a & is isomorphic to a subtree
of Q.

Then VY., is linear,

PROOF: A cell type which recognizes V%:Q may be constructed by a

simple adaptation of the method of Theorem 3.5. D

Corollary 3:2.2

Given any finite set o of figures, let V,’g be the
predicate given by
there exists an S exy such that P
PeY
is topologically equivalent to S.

Then ¥ is linear,

PROCF: The result follows immediately from Theorem 2.12, since
% = sE£ bes -

There seems to be an endless variety of topologically invariant
predicates to which the connectivity transformation may be applied
to obtain linear results, We will conclude with the mention of

two predicates which seem interesting and amusing.

Definition
Let I, = {b,w,s,f} (representing black, white, start,
finish). A figure P over I, is said to be a maze
provided it contains exactly one occurence of s

(start) and exactly one occurence of f (finish),

86




A maze P is sald to be solvable if the cells
containing the s and f are connected by a chain of
pairwise connected black cells,

Theorem 3.4
Let szs be the predicate over Iu_ ginn by
Pe V’m\zr < P is a solvable maze.
Then WNAZE is linear.

PROOF: Glven a figure P over Iy it can be &eteminod in a linear
amount of time whether or not it is a mage, If it is, a two iayer
connectivity type array can determine solvability in linear time by
having the s and f float above the components in which they were
embeddsd. They will collide if and only if the maze is solvable. ]

In view of Theorem 2,11, the above result says that we can test
whether two given points in a figure are connected in time
(1 +€ )m+n)+ 2. But in many figures the shortest path between
such points is on the order of 4mn in length. Thus we can determine
that two points are connected in an amount of time which 1s less than
that required to tranamit a signal along the shortest path in the
component connecting them (!).

An application: The final predicate we consider is included as
a highly impractical application of the foregoing methods. Let any
figure over Il& represent & map of some islands in a lake with white
representing water and all other symbols representing land. Let b
represent a bare plot of ground, s a plot on which a sheep is standing,

87




and f a plot on which a sheep dog (Fido) is standing. Then it will be
of relief to shepherds whe keep their flocks on islands to know that
the following predicate is linear,
every lsland which has sheep has
Pe %HFEPDOO @ {
{ a sheep dog.
The proof is omitted.

Higher sions: One might ask for a three-dimensional analog
to the connectivity transformation which would allow a three-
dimensional iterative cube of automata to test in linear time whether
an input figure (input solid?) is connected. No such transformation
has been found. Indeed, one can see that any transformation which
would handle three-dimensional cases must be somewhat more complicated
than a simple shrink-the-components-to=-a-single-point approach, since
one can have figures such as two interlocking rings which must be
unlocked before being shrunk,

As a problem intermediate between two and three dimensions, one
might study the problem of recognizing connectivity in multi-level
mazes of finite depth. The solution in linear time of multi-level

mazes would allow us to relate arrays and two-dimensional finite state

automata in an interesting manner,

Theorem 3.5
If multi-level mazes are solvable in linear time

by iterative arrays, then any predicate recognizable
by a two-dimensional finite state automaton is

recognizable by an array in linear time.

88




PROOF: Assume that multi-level mazes are solvable in linear time,
let A be a fixed two-dimensional finite stazte automaton which
opzrates on figures over the set I. Then construct the cell type MA
which operates as follows, At time t = 0 the figure over I is present.
At time t = 1 the array has created an s-level maze, where s is the
number of states in A, Each level represents a state of A, If cells
(i, 3) and (p,q) are adjacent and if the initial input at (i,j) would
cause the automaton to go from state k to ctate r and move from (i,J)
to (v,q), then a connection between level k at (i,3) and level r at
(p,q) is established in the maze. Thus we see that by time t = 1 the
array has constructed a map of the movements of A over the figure,
This map contains the path actually traced out by A when it is placed
on cell (1,1) in its starting state as well as many other paths
corresponding to state/location configurations which A would never
actually enter. The question "does A accept the figure?" now becomes
the question "does the multi-level maze have a solution?™ (using the
initial state level at (1,1) as the start point and any accept state
as a finish point). By assumption this problem is a linear problem.
The author has tried several modifications of the connectivity
transformation in an attempt to find a successful method of solving
multi-level mazes in linear time, but none have worked. Multi-level
mazes can certainly be solved in time proportional to men, but their

linearity is still an open question, D

89




3. 5 Euler Number

Dafinition
The Euler pumber of a black and white figure is
the number of components in the figure minus the

number of holes,

Minsky and Papert''®) show that predicates depending in a
reasonable way on the Euler number of a figure are sasily recognized
by perceptrons. Their method of determining the Euler number is to
perfiomm a welghted sum over certain subfigures. Namely, each

counts +1 and each

counts -1, They showed by

induction how the sum of these integers over a figure is equal to the
Euler number of the figure. Their somewhat obscure motivation for this
, 1Y
7 v
process is that is analogous to a vertex, to an edge, and
/] to a face. Actually there is a quite simple interpretation of
their result. If we agree to deposit the count (%1) for each of
these subfigures in its southeast corner square and if we agree to sum
the counts deposited in any glven square, we find that only two cases

arise where a non-zerc count is attributed to a square. These

correspond to the subfigures L and R below.

7

L V R /
+ 7 -1 —




Now think of an observer who starts walking along the outer
boundary of a camponent, keeping the component on his left, and who
eventually returns to his point of departure. During his stroll he
will have made a number of left- and right~hand turns, Since he was
on an outer boundary, he must have made a total of four more left than
right turns in returning to his starting point. If instead of
counting all turns, one counts only those left tums which change
direction from north to west and only those right turns which change
direction from west to north, then one will have exactly one more left
than right turn., But these special north-to-west and west-to-north
turns ocour only at L and R configurations respectively. Thus an
outer boundary has exactly one more L than R configuration, Similarly
an inner boundary has exactly one more R than L configuration., Hence
the sum over a figure of the weighted L and R configurations is equal
to the difference between the numbers of outer and inner boundaries.
But this is just the difference between the number of components and
holes, which in turm is the Euler n\gnber of the figure.

As an example, the figure

ALY

would produce the following distribution of counts.

91




+| H

- +|
|

We can easily design an array which would by time t = 2 have
transformed an original figure into its corresponding pattern of +i's
and -1's. This might be a natural first step in setting out to recog-
nize a predicate which depends on the Euler number. Consider for
example the predicate, %’ULER' which contains all those figures
having positive Euler numbers, After transforming the figure into a
distribution of counts, the problem becomes simply to determine
whether there are more +i's than =1's,

This can easily be done in time proportional to m-n. It
certainly seems that one should be able to detsct a surplus of cne
type of symbol over another in linear time, but surprisingly, this

question remains open,

3.6 Topological Match Problem

A prime candidate for a non-linear recognition problem is the
topological match problem. In this problem we present two black and
white figures to the array and ask whether or not the two figures are
of the same topological type. The best known times for solving this

problem are on the order of .(n*n)z. We will mention several methods

92




of solving this problem below,

Representing pairs of figures: Let us make the following
convention for representing pairs of black and white figures. Given
two black and white figures we wish to compare, we first adjust them
to have the same number of rows by adding extra rows of white cells
to the bottom of whichever figure has fewer rows, The figures which
now have the same number of rows are placed side by side, separated
only by a single column of red cells, The total figure consisting of
the two black and white figures and the red divider constitutes the
input to our array. We will refer to the two figures as the left
figure and the right figure. An array which is to solve the
topological match problem will ac¢ept only those figures which are in
this form and in which the left figure is topologically equivalent to
the right.

Converting a figure into tree representation: It is possible to
design arrays which solve the topological mateh problem by dealing
directly with the figures as initi#lly presented to the array. It is
also possible to first convert the figures into representations of their
associated trees and then perform isomorphism checking on their trees,
Since topological equivalence of figures was defined in terms of
isomorphism of the associated trees, we feel the tree comparison
method is conceptually cleaner as well as much easier to describe,

The process of converting a figure into a repmsentatidn of its
associated tree appears to require on the order of (m-n) units of time
to complete, Since all known methods of comparing figures or trees

for isomorphism take on the order of (m-n)2 units of time, the

93




conversion process does not alter the funetional form of our recognition
time. By using speed-up, we may compensate entirely for the time spont
in conversion.

The conversion process may be thought of as taking place in the
following two steps:

1) one cell in each component or hole is chosen to
represent the corresponding nodes in the associated
tree and

ii) the nodes are connected together by a pathway of cells
in a manner which represents their connectedness in
the assocliated tree.

We now describe a proscess for converting a figure into a tree in
which these two steps overlap. Since the distinction between backe-
ground, component, and hole will be relatively unimportant in the
following discussion, we will use the term grea to refer to any of them.
The background is by definition one ares, bat it may be in fact
disconnected by a component which touches the edges of the array in
several places. A disconnected background represents a difficulty
for the process about to be described, since it recognitzes the
integrity of an area by its connectedness., We will assume that the
figure to be processed has an all white border and hence a connected
background., Any figure which does not have such a border may be
treated as if it did by having the border cella of the array pretend
to be double cells with the ocuter cell being white,

As an example we will follow the figure given in the following

dlagram through its conversion into a tree representation.

ol




Qur process involves a row by row secan of the entire figure by a
signal which we will call the scanner. The scanner will travel from
west to east along the top row, then move south one row and travel
from east to west along that row, movs south a row and so on. Each
time it strikes an area for the first time, the scanner pauses while
that area is processed. The processing of a new area has three points
of interest:

i) The cell on which the scanner is sitting becomes
marked as the node corresponding to that area;

ii) a linking pathway is established between this newly
created node and the appropriate node above it in the
tree representation; and

iii) the entire area is marked by a contagious process so
that it will be recognized by the scanner as having
been processed,

Shortly after the scanner has completed its scan, the transformation

will be camplete,

95




At t = 1 the scanner is sitting on cell (1,1) and begins waiting
for the background to be processed. We will represent the location of
the scanner by drawing a small triangle (4 ) in the lower right-hand
corner of the cell in which it is located. A cell which has become a

node will be denoted by a heavy outline ( )e Thus we have

In the case of the background, no connection to another node is
made. The contagion which marks the background as having been processed
is similar to the contagious erasure used to recognize VCONN in
Section 3.2, but with two important differences. First, each cell
which catches the contagion keeps a permanent record of one of the
directions from which the contagion arrived. We will represent this
record by a small arrow within each e¢ell which begins in the center of

the cell and points in the direction from which the contagion

arrived ( | 5 ). Second a mechanism is provided which allows the

scanner to know when the contagion which it has created within an area
has completely covered that area. As each new cell catches the
contagion, it sends a signal, called a dot, back along the system of

arrows which ultimately leads to the scanner. Thus as long as the

96




contagion continues to spread, the scanner will continue to receive
dots and will not resume its scan. Since <the contagion moves away
from the scanner at one cell per unit time and since dots travel at
one cell per unit time, the normal frequency of arrival of dots at the
scanner is one dot every other time interval. Thus if two time
intervals pass without the arrival of a dot, the scanner.may resume

its sean. We will represent the presence of a dot in a cell by a black

dot ( | ). One might think of the contagion as a spreading grass

fire and the dots as particles of smoke drifting back from the fire,
The signalling mechanism provided by the dots is necessary since the
scanner recognizes new areas by the fact that their cells have not
been infected by contagion. If the scanner resumed scanning before
the contagion stopped, then it would not be able to distinguish
between cells in newly encountered areas and cells in old areas to
which the contagion had not yet spread.

Let us now look in on the progress of our example. (Note: the
diagrams which follow are intended as an aid to understanding the
process and do not necessarily represent all the information present

in each cell,)

nz
z777777
A W
Z 2%,
-  m /BN Ny
) A 4
77 77
yél// L7 //é/A/ //'
A,

97




=

At t = 14

The contagion and signaling process are under way.

the contagion branches for the first time.

%w%.
4..%4

ﬁ%l%&l%

///,,,// /%f///////

t=14

98




. . ’ j& o @ .
) A
| A
3 %
t =15 1l
%
P lefe le e
e e lele e e e
. 7 : *
3 T
t = 16 s 7 |
4 !
e le e [efe e

At t = 16 we observe the first case of the contagion spreading
through a diagonal connection between white cells (from cell (4,9) to
cell (5,8)). Note that the contagion takes two time units to pass
through the connection because of our nearest neighbor model. Note
also that cell (4,9) has generated a second dot at t = 16 to avoid a
gap in the dot sequence which would be created if it simply waited to
transmit the dot generated by cell (5,8)s In generai any white cell
which catches the contagion and which has dlagonal white neighbors

will generate a second dot in this manner,

99




We now watch the contagion come to an end.

o 1 leole o @ & .
Q .
*
t =17 A
L
T
72 Z. :
? e e | e e || |e-
. & le ¢ ]|e | e«
; *
t =18 , ‘
. o @ . . -

Note that the contagion arrived at cells (7,8) and (9,10) from
two directions at once and that these cells made a choice of direction,
Any choice will do,

We now see the last of the dots begin to move toward the scanner,

100




. e e |e e e e e fe
) ks
* A
<’
HZ I~
t=19 )
YEZ
* b~ Z
T4' . € (@ . |€ o &

€ € |e |e-]e |e e e

. @=e | (€@ & | &

By t = 35 the last dot has arrived at the scanner.

t=35

101




At t = 36 the scanner sees that no nore dots will arrive and by

By t = 47 it has completec

t = 37 it has begun to continue its scan.,

row, and has encountered

dropped down one

its scan of the first row,

- Once again contagion within the new arsa begins.,

an unprocessed cell,

The

In addition we now see the linking process begin to take place,

pathway connecting the new node to its parent in the tree is grown

cell by cell simply by connecting the node cell to the cell from

which the secanner arrived and continuing to grow the pathway in the

direction indicated by the arrows,

The first three steps are shown below.

*r%t

WMW .M...,”M ,.V/N/ //é
AN

¥

,,,//////

t = 47

.9“‘%&?%*

*7m¢m%%n.
,WmmWw Hme—-—m-mwwv, w_m
SN | N BN

«%%.%ﬁ.&
YHERER Y
A AN

t =48

102




B e R £ g

e |¢ [¢ e | |e € |e

r .‘ .
R
21

t =49 /
‘ L
XA

« e |e |¢ e e |6 le je

By t = 57 the pathway has been completed, but the contagion is
still spreading.

- o> . .
HE o=P| H
] g ]
e <
t=57 3 K
g O
/ Pa
e |e e |e - e le

By t = 73 the contagion is dead and the last dot has arrived

back at the scanner,

103




A
/

>
4

Ll Ld. L B4L i

« | le e e e e e e

By t = 97 a third area has been processed and linked and the

scanner is preparing to continue its scan.

At t = 179 the scanner has completed its scan and all processing

is complete,

104




VIrTnz7rn7rr
* 4
M > >
-—3 LLL ///,
4 L
t =179 AV ENLNE EYAEENZTYR)
v, LiiN L LA .
777V A A
OLLL
[ 7 K G e ik 7 # W
/ 3 1;’/ 3 LiL IJ/’ . 4/}5 //5
* € |€ |& € (& |& € €& *"

Although the process was complete in our example by the time the
scanner finished its scan, this is not always the case., The scanner
walts at each node until the contagion is dead, but does not wait until
the connecting pathway has been established. Thus it might be the
case that some pathways are still not complete by the time the scanner
arrives at the end of its scan. Since the longest pathway may be
about 4m-n in length, we must wait this additional amount of time to
insure that processing is complete.

The entire process of converting a figure into a tree represen-
tation takes time proportional to m-n, The scanner is in motion for
about m:n units and at rest for a total time less than or equal to
twice the sum of the areas, Counting the waiting time for completion
of connections, the entire process will be complete in at most 3#(m-n)
units,

The tree which was produced in our example contains six nodes
corresponding to areas and two false nodes created by the confluence

of pathways. The false nodes located in cells (2,6) and (2,10) are to

105




be ignored in our interpretation of the results. The creation of
false nodes is a necessary evil since the trees we are trying to
represent may have nodes of arbitrarily high degree. One way of
ignoring the false nodes is to think of a tree-like structure of loops
rather than of an actual tree. In such a loop structure the descend-
ents of a node are threaded on a loop which beginé and ends at the
node. The diagram below shows a tree T and the corresponding loop

structure L.

Q

T L

The algorithm for converting figures to trees which was described
above can be modified to produce such loop structures simply by
making the connecting pathways double. The loop structure

corresponding to our example is shown below,

106




Comparing trees: Having shown how to convert figures to tree
representations, we now must desoribe how two tree representations
may be compared for isomorphism. The methods to be described will
make use only of the cells which actually form the tree representations
for the left and right figures, plus a pathway of cells connecting tho
background node of the left tree to the background node of the right
tree. The pathway connecting the background nodes is used for
commanication between the cells in the left and right trees. Imagine
now that we have deleted all cells from the array except those
camprising the trees and the communicating pathway. If we grasp the
left background node in one hand and the right background node in the
other hand and 1lift, the trees will untangle and hang down. One has

an image of something like the following diagram.

communicating -——
/// (), metmay Y1) \\\\
7 N / ~
e () ()N @, N
s O D / @ right
/
/ () O\
l left Vo () () () tree
tree ‘ ® / /
\ C Ne C O |
' /
\ O I ®
/
v O I
\ ;N /
A () \ /
A O \ O
\ 0 y \ O 7
\ . 7/ ~ /
~ - ~ 7’

107




This is the form in which we imagine the cells to be arranged
purely to avoid thinking about their actual embedding in the array and
to be able to use words such as "above" and "below"™ in describing the
relationship between nodes. Since no path lengths were altered in the
lifting process, cammnication times have not been altered.

Recursive method: The first method of isomorphism-checking to be
considered is a straight forward recursive procedure. We think of
two observers, one standing on each background node, who can speak to
each other via the communicating pathway, Our observers agree to
check whether the trees are isomorphic. They do this by first
comparing the degrees of the nodes on which they are standing, If the
degrees differ, then the trees are certainly non-isomorphic and the
process terminates, If the degrees are both zero (ignoring the
communication pathway), then the trees are certainly isomorphic and
the process terminates, If the degrees are equal but non-zero, then
further checking is required. The checking involves comparing each
subtree below the node on which the left observer is standing with
each subtree below the node on which the right observer is standing.
The comparisons are carried out in a recursive manner by the observers
themselves. They begin methodically to make all pairwise comparisons
of one left subtree with one right subtree., Each time a matching
pair is found, they are marked and eliminated from consideration.
Eventually either a one-to-one correspondence of subtrees will be
found, in which case the trees are isomorphic, or a subtree will be
found which has no matching subtree, in which case the trees are

non~isomorphic,

108




Desceription generation method: The second method of isomorphism

checking might be called the description generation method. Only the
central idea will be sketched here, Assume that we have established
a set of conventions for desecribing finite rooted trees by strings of
symbols, Furthermore assume that our system is canonical in the

sense that two trees which are isomorphic have identical descriptions,
Such a system could for instance be a parenthesls system in which a
tree is described by an opening parenthesis followed by the descriptions
of each of its subtrees in lexicographical order followed by a closing
parenthesis, Having established such a system, we have the cells

in a tree representation carry out organized activity in such a
manner that the cell corresponding to the root node emits the
canonical description of the tree. Given two trees, we simply

compare the descriptions they emit. The trees are isomorphic if and
only if the descriptions are identical. A problem which arises with
this method is that one tree may emit symbols faster than another,

but by organizing additional cells into a variable length stack,

such inequities in generation speed may be ignored.

Squad car method: The final method of performing the topological

match might be called the squad car method., It is similar to the
recursive method described above, but is more highly parallel. It is
in its simplest form when applied to the comparison of binary trees,
so we will consider this case first., Let B1 and B2 be two rooted
binary trees as in the figure on the following page.

109




By

The comparison process goes as follows., A radio equipped squad
car, S, will drive over the branches of B1 reporting over its radio a
description of its route. Simultaneously a second car, C, will begin
to drive over the branches of B2 while listening on its radio to the
description of the route taken by S. The car C will attempt to
follow an isomorphic route. If C is successful, it will eventuslly
arrive back at the root of Bz and the trees will have been proved
isomorphie. If C is unsuccessful, it will, as we shall see, vanish
somewhere along its route and hence never return to the root of B1.

The route taken by § in driving over B1 is a simple right-hand
turn method for traversing a tree, When S approaches a node of
degree three from above, it leaves by the (from S's point of view)
right-hand branch. Upon returning to the node from below, S then
takes the second descending branch., Upon return to the node again, S

leaves by the upper branch. The path of S over B1 is shown in the

diagram on the following page.

110




The description which S broadecasts is as follows, Upon entering
a node for the first time from above, it broadcasts the number of
descending branches leading from the node (0, 1, or 2), On all
subsequent visits, it simply broadcasts (N) to indicate that it has
returned to a previous node. The complete sequence of symbols as

broadecast by S when driving over B, would be 1, 2, 1, 2, O, N, O, N,

1

N, N, 1, 0, N, N, N. (One could use instead a system of parentheses,

but the system described above is more attuned to the task at hand.)
Now let us follow our example as S traverses B1 and C attempts

to find an isomorphic path in Bz.

—2- 1>

At t = 1 both cars are about to begin and are sitting on the root
nodes. S has already transmitted its first report (1), but it has

not yet been received by C.

111




227y

By t = 2, C has received the 1 emitted by S at t = 1, has found
its current path to be in agreement with the 1, and both cars have
advanced to the next node., (We ignore for the moment the time it
takes to transmit messages and the time it takes to move from node to
node.) S has transmitted a 2, When C receives the 2, it Qill find
that it is indeed sitting on a node of the appropriate degree. Which
branch should it take next? A deterministic car would get one choice
and might make the wrong one. A non-deterministic car could be
assumed to make the correct cholce. Our car however is a parallel
car and it makes both choices, That is, it splits into two identical

cars and each car takes a different branch leading from the node,

t=3 -2 1"2»

By t = 3, S has moved to the next node and our bilocating car C

has moved dovn to the next two nodes.

112




t=4
227y c

By t = 4, S has arrived at a doubly branching node and has
transmitted a 2, Both ccpies of C have advanced one node, When the
left-hand copy of C receives the 2, it will simply vanish since it
will then be apparent that it can no longer follow a route similar to
that followed by S. The right-hand copy of C will be in agreement with

the 2, will again split, and will advance to the next two nodes.

t=35
~2_. 0>

Both copies of C will agree with the 0 now being received and
will attempt to return to the previous node. When a car splits,
leaves a node in two directions, and returns from both directions, it
indicates that both branches lead to isomorphic subtrees. One of the

cars can simply vanish, leaving the other car to complete the process,

13




o

By t = 6, one car remains to continue the processing.

"y

By t = 7, C has descended a node and is still in agreement with
the description being given by S. From here on out C will simply
mirror the movements of 5 and the trees will be found to be isamorphic.
The entire process has taken ti;e proportional to the number of nodes

in B1.

A point of interest is that the number of distinct isomorphisms
between two trees can be easily obtained from the above method. Each
time two cars return to a node and merge, a marker is placed at that
node indicating that the two subtrees below are isomorphic., If by
the end of the process the trees turn out to be isomorphic, then
there will be 2" distinct isomorphisms, where n is the number of
marked nodes,

When we come to apply the squad car method of isomorphism

checking to the tree representations which have been generated from

114




AN

figures, we encounter two difficulties, First the trees are not
binary, but contain nodes of arbitrarily high degree. Second the inter-
node distances vary widely.

The problem of the existence of nodes of arbitrarily high degree
is easily overcome. When S arrives at a new node, it must report the
degree of that node. In the binary case this could be done by using a
fixed set of symbols, since only three possibilities could arise. In
the current case S can report the degree of a newly encountered node
in unary by driving along the loop (thinking in terms of a loop
structure for a moment) on which the descendents of that node are
located and transmitting a "1" every time it passes a node. When S
completes its circult of the loop and arrives back at the original
node, it transnits an end of number signal., The degree of the
corresponding node or nodes on which C is located is checked by having
C traverse the corresponding loop or loops, advancing by one node as
each "1" is received. Any copy of C which 1is not back at its starting
node when the end of number signal arrives is on the wrong track and
will vanish, Provisions for handling highly multiple splitting and
recombination of C in Bz must also be established. This can be
accomplished by leaving appropriate markers at the nodes.

The problem of varying distances between nodes appears to be more
serious in that the methods of overcoming it seem to boost the total
time required for the process from something on the order of the path
lengths of the trees to something on the order of the product of the
pathlengths of the trees. Consider for a mcmsnt what took place in

the naive binary piocture presented above, The squad car S drove over

115




B1 and transmitted a description of its route. Since S received no
feedback from C, the rate at which S progressed was independent of
any difficulties encountered by C. In particular if S and C drive at
the same rate, then the branch lengths in B2 must be shorter on the
average than those in S or else C will become overloaded with the
information transmitted by S. In the case of the tree representations
which we have generated from figures, there is no correspondence

between branch lengths in B, and in Bz. One way of circumventing

1
this difficulty is to allow the signals from S to pile up in a queue
at C, However, C moves up and down within the tree and there may be
multiple copies of C present which may be able to process the signals
from S at different rates. By the time the movement and multiplicity
of C has been accounted for, one ends up with a process which is
proportional to the product of the path lengths of E1 and Bz.

A simpler method which yields the same processing time is to have
S wait for acknowledgement after each tranamission. Thus S makes a
unary degree count and then waits for an acknowledgement from C. The
signal sequence produced by S travels up the branches of B1. across
the communication pathway, and down the branches of Bz. As the signals
travel down the branches of BZ' they split at each node of degree
greater than two and a copy goes down each desoending branch. Each
copy of C will receive the signals, process them, and send back an
acknowledgement, "A", The ¥"A"'s travel up the branches of B,. When
an "A" arrives at the node of degree greater than two, it waits for
the remaining "A"'s to arrive from the other descending branches,

When they have all arrived, they combine into a single "A", which

116




then continues up the tree. It now becomes important that when a
copy of C vanishes, something be left behird which can still
acknowledge signals, for otherwise no acknowledgement would ever be
received from a branch down which a C had ventured and disappeared.

The squad car method as modified by unary degree counting and
acknowledgement of transmission takes on the order of (m-n)2 to
compare two m»n figures, The analysis is as follows. The amount of
time spent in motion by S and C is bounded by a multiple of the path
lengths of By and B, This time is small compared with the time
spent by S waiting for acknowledgements. The number of times S waits
for acknowledgement is proportional to the number of nodes in B, which
in turn may be proporticnal to men, The amount of time spent waiting
for a single acknowledgement is primarily a function of the distance
between S and the furthest (in termms of path length in the combined
trees) copy of C. The latter distance may also be proportional to
m-n. Thus the total time S spends waiting for acknowledgements is
proportional to (mvn)z. Of course some figure pairs may be found to
be non-isomorphic soon after the tree representations have been

generated. Other figures however will take much longer.

17




The diagram bslow shows a type of figure whose tree representation

has a number of nodes proportional to (m-n) and a depth (measured

Such

from the root to the deepest node) proportional to (m-n).

figures will require a long time to check against similar figures,

DV N
NHEEERERERY
NEINENENWEN
NHENENENEN
/I%Izl/.lé

mw-—._4<-u¢m_uww-fu
VN NN R
\ dEEEEEED

WA AR AR W
NORAEEENE
A AR
NI LI IR
%I%&%Z&%;,
4IIIIIIII%
NIHIEIST N
N LN
AN A ANAT A AR AT
%ljllllll@
A AN RN N

EERERERERY

RNV

118




CHAPTER 4
OISPLAY PROBLEMS

The preceding two chapters dealt with the use of arrays as
devices whose input was a figure and whose output was a single blnary
symbol., We now study arrays as devices whose input is a figure and

whose output is also a figure,

4,1 Introduction

If the arrangement of initial states in an array can be viewed
as an input figure, then by allowing the array to run until every cell
is in a final state, we may view the arrangement of final states as an
output figure. In this way an array or more properly a cell type may
be viewed as a transformation from figures over the initial states
into figures over the final states. An array operating in this mode
is said to be working on a display problem. The following definitions

formalize these concepts.

Definition
Given two sets I and F, a figure transformation
(or transformation for short), J, of type I/F is
a function from the set of figures over I into
the set of figures over F, such that the image
of an mxn figure is always an mxn figure. If
P is a figure over I, we denote its image under

J vy J(P).

119




Definition
Given a transformation J and a cell type
M, we say that M implements J, if
1) J is a transformation from figures over
the set of initial states of M into
figures over the final states of M
11) Given any mxn computation &= DO.D1.D2. 0o
of type M, there exists an integer k such

that J(IP) = IF.

Dafinition
Given a transformation J we say that it is
gellular if there exists a cell type M which
implements it.

Definition
If T(m,n) is a real-valued funotion, we say that M
implements J within time T(m,n) if M implements J
and for every mxn computation 3= DO.D1.DZ. ves
there exists an integer k such that U(DO) =
and k ¢ T(m,n).
If there exist integers p, q, r such that M
implements ;7 within time pm + qn + r, we say
that J is linear,

Many of the theorems on recognition such as Theorem 2.3, the

Minimizing Theorem, have immediate analogs for display. Since nothing

120




really new is contained in these analogs, we will omit them. The
Speed-Up Theorem however is slightly different in {form in the case of

display.

Theorem 4.1 (Speed-Up)
Let 7 be a transformation and let M be a cell type
which implements J within time T(m,n). Then given
any positive irteger k, there exists a cell type Mk
which implements J within
&-(T(m.n)) + 2(1 + %){m +n) -2,

PROCF: As in Theorem 2.2 and Corollary 2.2.1, we parform packing
followed by speeded-up simulation. According to Corollary 2.2.1, we
will have all simulated cells in their finasl states by time
vemen-[g] -[g] [ Hemt] e

Unlike the recognition case where no more remains to be done, we
must, in the case of display, unpack the results so that the output
figure can be displayed by the array.

Unpacking may begin as soon as all the simulated cells have
entered their final states, If it were the case that all the
simulated cells entered their final state at the same time, we could
begin unpacking at that time. However, since different cells may
enter final states at different times, we need a method of deciding
when the last cell has entered its final state. This is done by
having a module generate a completion signal as soon as all of the
cells it is simulating have entered their final states. The

completion signals originating on the southern edge of the packed

121




portion of the array flow to the north in the column in which they
originated. If a signal arrives at a module, all of whose simulated
cells have not entered final states, it waits until they do enter
final states before continuing. Thus when a completion signal arrivas
at a module on the northern edge, it signifies that all of the
simulated cells in that column are in final states. In a similar
manner each northern edge module passes the completion signal on to
its western neighbor as soon as it receives campletion signals fram
its southern and eastern neighbors. Thus in no more than l}] + [2]
units after the last simulated cell has entered its final state, the
nortawest cormer module will be aware of this fact. It can then
initiate a two-dimensional firing squad in the packed portion of 'the
array., When the firing squad goes off, the unpacking will begin.
Assuming that the firing squad takes_z([{] + [z]) - 4 units to go off,
the unpacking operation will get under way no later than

t=n+n+z([g]+[g])-z+[ﬁm%.ﬂ]. (We will see in

Section 4 that this firing squad time can be improved slightly.)
The unpacking process is quite simple and is illustrated on the
following page for a 5x5 case with k = 2,

122




°e s e @ * Joeo .-L
X
:: b B :: ae {ue jee
celeefes —> [Nl —> e
sojoe]oe evJoeele
_._.1“0
[y ] X
L] 4 e e
selocieg E—— . oo ]e —-9 . N XN EY )
HEER ] N P PPN P
‘e .!T'. sefec]ee o |oe]ec]@
e _6 . -—-—) o]
L] . L]
o] o e .
i

The unpacking process takes m + n steps. (Note information can be
packed faster than it can be unpacked.) Thus the entire simulation
from the beginning of packing to the end of unpacking takes

n n T(myn)=-1 |,-1. 1 -
2 +n+ R ]+ [R] - 1)+ [2EB ]G Lontaem) + 201+ Lim 4 m) - 2

steps. : D
We also have by a simple construction

Theorem 4,2
The composition of cellular (linear) transformations

is a cellular (linear) transformation.

123




4,2 Specific Problems

In this section we will consider scme specific figure transfor-
mations and their implementation by iterative arrays. Some of these
transformations are included because they are frequently proposed by
people who are hearing about iterative arrays for the first time.
Others have been included because they seex to be interesting trans-
formations whose linearity is still open. The discussions are brief
and informal.

The first set of transformations we consider are some simple
geometric transformations of black and white figures which are
usually proposed as "problems" by persons who are experiencing
iterative programming for the first time. They are all linear
transformations.

Jrans( TRANSLATE)

This transformation is the result of translating the
input figure rigidly fo the west so that the western-
most black cell in the figure lies on the western

edge of the array.

Example:
%%%l% %
P Jorans(P)
J may be implemented in linear time as follows:

TRANS

124




1) The figure casts a shadow (ownwards onto the
southern edge.

iil) The western-most point of the shadow is detected
and a line is drawn to the northern edge from this
point. The figure has now been enclosed in a
block of cells and is tangent to the western edge
of the block.

11i) Using shifting techniques similar to those used
in packing and unpacking figures for speed-up (see
Theorems 2.2 and 4.1), shift the block to the west

so that it is tangent to the westerm edge.

Jaop (ROTATE)

This transformation applies only to square (m = n)
arrays. The transformation is the result of rotating
the input figure about its central point by 90° counter-
clockwise,

Example:

P Jao7(P)
First observe that a hollow square of cells can shift

the information it contains by 90° counterclockwise in

125




time proportional to the edge of the square. Such a
shift is indieated below.

Then JR , may be implemented in linear time by first
organizing the array into a set of concentric hollow
squares and then having each hollow square shift it§
information by 90° counterclockwise,
One might ask for rotations of other than multiples of 90" . A
major difficulty then becomes the question of Jjust what the result of
such a transformation should be. This question in turn leads to the

area of approximation technigues for figures which 1s outside the

scope of the current work,

Jitr(n) (DILATE)
This transformation causes a dilation of the figure by
a factor of n about the center point of the array, where
n is a positive integer or the reciprocal of a positive
integer. If n is greater than 1, the figure enlarges;

if n is less than 1, the figure contracts.

126




sromyz

Example:

et

P JEIL(z)(P)
may be implemented in linear time as follows:

J

DIL(n)
i) The center point of the array is determined and

each cell determines which of the four rectangular
quadrants it lies ih.

11) The portion of the figure within each quadrant is
dilated by a r#ctor of n, either away from or toward
the central point.

The processAof expanding or contracting a quadrant is

similar to the process of packing or unpacking for the

purpose of speed-up as described in the proofs of

Theorems 2.2 and 4.1. When expanding by a factor of k,

sach cell in the quadrant pretends that it is a module

in which a kxk block of cells has been packed, The
color of these cells is taken to be the color of the
module. When the cells have been unpacked, they will
cover a kxk area in the figure. That is, the original
cell will have expanded by a linear factor of k. The

process of a contraction is similar. After a kxk block

127




of cells has been packed into a module, that module takes
on a color which is determined by the colors of the cells
packed within it. In this case one has to fix a rule which
determines the color of the module as a function of the
colors of the cells, Three such rules are (1) the module
turns black if all the cells are vlack and white otherwise,
(2) the module turns black if any of the cells are black
and white otherwise, and (3) the module turns black if
more than half of the cells are black and white otherwise,.

In carrying out a contraction, one always has enough room in the
array to represent the image of the transformation. In carrying out
an expansion, however, there may not be enough room in the array to
contain the resulting figure. (When we say the array contains the
resulting figure, we of course mean that the array contains all the
black cells in the resulting figure.) We may simply truncate the
expanded figure at the boundary of the array or we may use the concept
of folding to preserve the entire expanded figure for further proces-
sing, although it cannot be displayed, Consider the similarity in
structure between a piece of paper which has been folded in half
once with the fold on the left and an iterative array of two layers
in which we think of the layers as being connected only at the
western edge., If the array has dimension. mxn, we have in effect an
array of dimension mx2n which has been folded over once. This is
the concept of folding., By using more layers, more complicated
folding may be simulated. In particular, given any positive integer

128




k, we may design an array which, by using folding, acts as though the
initial figure is centered on an array of size kmxikn, 'ﬂms given any
positive k, we may use folding to design a cell type which can expand
any input figure by a factor of k although it cannot display that
figure in the usual sense, Finally glven any positive rational
number, q, we may perform a dilation by a factor of q by first
expanding by the numerator and then contracting by the denominator.
The next set of transformations to be considered are known to be

solvable in time proportional to m.n, but their linearity is open.

Jpacx (PACKING)
This transformatlon accepts black and white figures and
produces a figure which has the same number of black
cells, but in which these cells are packed into solid

rows at the top of the figure,

Example:

P Jpack(P)
There are several simple ways of achieving this packing
in time proportional to mn. We will leave them for the
interested reader to discover,

The packing transformation is related to the recognition of

v

EULER which was defined in Section 3.5. The recognition of that

129




predicate had been reduced to determining whether there were more
+1's than -1's distributed about the array., If wa is linear,
then in linear time the +1's could be packed in one layer, the ~i's
in another layer, and the majority determined. Thus the linearity of

JPAGK
linearity of WBLAC

implies the linearity of VEULER’ It would also imply the

X' defined to be the set of all black and white

figures which have more black than white cells, Currently the

linearity of V.

BLACK is still open,

Jpgp (REPRESENTATIVE)
The problem is to transform a black and white figure
into a black, ‘nd. and white figure by turning exactly one
cell of each component or hole red., This transformation
thus corresponds to the process of selecting a represent-
ative cell from each hole and component, The tree generation
process described in Section 3.6 can be easily modified
to produce a solution to the representative problem. The
linearity of this problem is open. Attempts have been
made to adapt the connectivity transformation to this

problem, but without success,

Note: In the above problem as in the following twe we do not
actually specify the transformation in complete detail., Instead we
indicate some general properties which the transformation must have,
For example in the problem above we do not care which cell in a given

component turns red, so long as exactly one turns red. The problem

120




is to find a cell type which implements in linear time a transfommation

having the properties given.

O;P

GP

(SHORTEST PATH)

Given a solvable maze, draw a shortest path solution to
the maze in red. Theorem 3.4 states that solvable mazes
can be recognized in linear time., Here we ask that a
shortest path solution be displayed in linear time. We
might be less ambitious and ask can any solution to the
maze be displayed in linear time, since this problem is
open also, A solution to the shortest path problem can be
obtained in time proportional to msn by a simple
adaptation of the contagion process described in

Section 3.6,

(GOLD PLATE)

Given a black and white treasure map (black islands in
white water) on which is indicated the location of a
chest of gold (by a gold cell), display the map obtained
by coloring gold the entire island on which the gold is
located. (Or equivalently erase all islands on which

the gold is not located.) This process is easily carried
out in time proportional to m:n by a contagion process.

Its linearity is open.

131




4.3 Two-Dimensional Firing Squad

In this section we consider a two~dimensional analog of the well-
known firing squad synchronization problem. (See Section 1.2.) This
problem is strictly speaking not a display problem, but 1s more related
to display than recognition, so we have included it in this chapter,
As has been seen in the proof of Theorems 2.2 and 4.1, a solution to
the firing squad problem is a useful tool in solving other iterative
array problems,

The two-dimensional firing squad problem may be stated as
follows, Design a cell type M such that the following conditions
hold:

i) The initial states of M are g (general) and s
(soldier),

ii) The final state of M is £ (fire).

1ii) The soldier state is dormant relative to soldier

and edge states. That is

els
1 els| s [els =g

els

where g 1s the transition function and e|s represents
elther an edge state or a soldier state,

iv) Given any mxn array of type M in which the initial
configuration consists of one cell in the general
state at location (1,1) and all other cells in the

soldier state, then there exists an integer k such

132




that all cells enter state f for the first time

at t = k.

A thorough discussion of this problem for the case where m = 1 is
given in Balzer(3) where h§ proves the existence of an eight state
solution (nine state solution in our formalism) in which the soldiers
fire at time t = 2n - 2, This solution or any solution to the ona;
dimensional case may be used to construet a solution to the two-
dimensional problem as fullows, A firing squad'activity is organized
in row 1 of the array by the general in cell (1,1). .At time 2n - 2
each soldier in row 1 instead of entering the firing state, becomes a
general. (Cne of the largest and most drastic field promotions in the
annals of military history.) These new genserals, together with the
old general, now oréanize firing squad activity in their respective
columns. Since this activity begins in each column at the same time
(t = 2n - 2) and since the columns are all of length m, we have that
the entire array will enter the firing state at time

t = 2n-2+2m=-2 = 2(m+n) -4,

The solution to the two-dimenslonal firing squad problem which
was presented in the previous paragraph is not optimal in terms of
time. Before considering a faster method, let us find a lower bound

on the time required for a solutlon.

Theorem 4,3
Any solution to the two~dimensional firing squad

problem will require at least m + n + max {m.n} -3
units of time to enter the firing state on an mxn

array.

133




PROOF: Let m, n be given and assume without loss of generality that
n>m, We will show that cell (1,m) cannot fire before time
t = m+2n - 3. The idea is quite simple, Cell (1,m) cannot fire
before it learns of the existence of the eastern edge of the array.
The amount of time it takes a signal to travel from the general to
the easterm edge and return to cell (1,m) ism + 2n - 3.

A more formal proof may be given using diagrams and the

Interdependence Theorem, but the idea is the same. D
We now find that the lower bound given above is attainable.

Theorem 4.4
There exists a solution to the two-dimensional
firing squad problem which enters the firing

state at t = m+n+max{n.n} - 3.

PROOF: Moore and Langdm(jz) demonstrate the existence of a
seventeen state solution to what they termm the generalized firing
squad problem. This is a one-dimensional firing squad in which the
general is located not necessarily at one end of the line of soldiers,
but somewhere in the middle, If we bend such a line of soldiers by
90° at the general's location, we end up with an L-shaped firing

squad as in the following diagram,

n

slsisislefs]sfofs]s]

T

lulnlmln o

1%




Moore and Langdon's solution, expressed in terms of m and n will
cause the soldiers to fire at time t = m + n + max {m,n} - 3.
Now consider an mxn array which has been partitioned into a set of

L-shaped components as in the diagram below. (Assume n>mn.)

We will set up a Moore and Langdon solution to the firing squad
oroblem in each of these L's, Notice that the corners of the L's lie
in a diagonal line. The corner cell in the largest L knows it is a
general at time t = 0 and can begin activity at once. A signal is
made to propagate down the diagonal at the rate of one diagonal cell
every three units of time. As the signal strikes each soldier on the
diagonal, he becomes a general and initiates firing squad activity in
his L. Thus the L whose general is in row i will begin activity at

31 ~ 3 and hence will fire at time

time t

t

H-3+(m-1+1)+2n-1+1)=-3 =m+2n-3,
That is all cells in the array will fire at the same time,

t=m+2n"3. U

Letting m = n, we find that the above solution will cause the
cells of a square array to fire at time t = 3n - 3, which is minimal
by Theorem 4.3, Suppose however we ask for a solution to the firing
squad problem which works only on square arrays. That is, we don't

care what it does on arrays which are not square. Then it turns

135

i




out that we can obtain a solution in time 2n - 2 by using the same L
partitioning. However instead of treating the entire L as a Moore and
Langdon firing squad, we treat each half as a Balzer firing squad.

In addition we initiate the squad in row i1 at time 2i - 2 rather than
3i - 3. This result yielding a time of 2n - 2 for a square (which is
provably the best possible) was discovered in parallel by the members

of Seymour Papert's class at M. I. T.

136



(1

(2)

(3)

(4)

(5)

(6)

(7)

BIBLIOGRAPHY

Atrubin, A. J., A Study of Several Flanar Iterative Switching
Circuits, Masters Thesis in Electrical Engineering,
Massachusetts Institute of Technology, February, 1958,

Atrubin, A. J., "A One-Dimensional Real-Time Iterative

Multiplier," IEEE Transactions on Electronic Computers, EC-14,

3, June 1965, pp. 394-399.

Balzer, R., "An 8-State Minimal Time Solution to the Firing
Squad Synchronization Problem,® Information and Control, 10
1, January 1967, pp. 22-42,

Barnes, G. H., et al,, "The ILLIAC IV Computer," IEEE Trans-

actions on Computers, C-17, 8, August 1968, pp. 746-757.

Blum, M, and C., Hewitt, "Automata on a3 Two-Dimensional Tape,"

IEEE Symposium on Switching and Automata Theory, 1967,
Pp. 155-160,

Cole, S. N., Real-Time Computation by Iterative Arrays of

Finite-State Machines, Doctoral Thesis in Applied Mathematics,

Harvard University, August, 1964,

Fischer, P. C., "Generation of Primes by a One-Dimensional
Real-Time Iterative Array," J. AQM, 12, 3, July 1965,
PP. 388-3%4,

137

R ot ﬂ




(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Hennie, F. C., Iterative Arrays of Logical Circuits, The MIT
Press, Cambridge, Massachusetts, 1961.

Lee, C. Yo, "An Algorithm for Path Connections and Its
Applications," IRE Transactions on Electronic Computers, EC-10,
3. Saptember 1961' PDPe 3‘“‘6-3650

Minsky, M. and S. Papert, Perceptirons, The MIT Press,
Cambridge, Massachusetts, 1969,

Moore, E, F., Sequential Machines: Selected Papers, Addison -

Wesley, Reading, Massachusetts, 1964, pp. 213-214,

Moore, F. R, and G. C. Langdon, "A Generalized Firing Squad
Problem," Information and Comtrol, 12, 3, March, 1968,

PP. 212=220,

Murtha, J. C., "Highly Parallel Information Processing Systems,"
Advances in Computers, Vol. 7, Academic Press, New York, 1966,
PP. 2-116.

Rosenfeld, A, and J. L. Pfalteg, "Sequential Operations in
Digital Pieture Processing, " J. AQM, 13, 4, October 1966,
PPe 471404,

Unger, S. He, "A Computer Oriented Toward Spatial Problems,"
Proceedings of the IRE, 46, 10, October 1958, pp. 1744-1750.

138




(16)  von Neumann, J. (ed. Burks), Theory of Self-Reproducing

Automata, University of Illinois Press, Urbana, Illinois, 196&.

(17)  Waksman, A., "An Optimal Solution to the Firing Squad

Synchronization Problem," Informaticn and Control, 9,

1, February.1966, pp. 66-78,

139



Accept a predicate 20
Accepted figure 19
Adjacent 65
Area 94
Array 13
iterative -- 13
nxn -=- 17
-= of type M 17
Associated tree 67
Atrubin’ A. J. 8‘9' 22
Automaton
linear bounded == 50
pebble -- 50

Background 67

Balzer, R. 8, 33, 133
Barnes, G, Ho 9

Blum, M. 11, 50, 65
Boolean/Finite Theorem 46
Burks, A. We 7

Cartesian product, two-

dimensional 16
Cell 13, 32

primary -- 42

secondary -- 42

-~ state 16

-- type 16
Cellular .

~- predicate 46

-- Space 14

-~ transformation 120
COle. Sc N. 8-9' 31. 6‘4’
Complement of a predicate 20
Computation 19
Connected 66
Connectivity transformation 71
Components 66

Description 17

initial -~ 17

-= generation method 109
Display problem 119

Distance 26
Don't care symbol 17
Dot 96

INIEX

Edge state 14, 16
Effectively recognizable 58
Equivalent

== cell types 60

«= in power 51

topologically -- 68
Euler number 90

Figure 19

accepted -- 19

left -~ 93

rejected -~ 19

right -- 93

-= transformation 119
Final state 15-16
Finite predicate 46
Firing squad 132
FiSCher' P. C. 8-9’ 31
Function, transition 16

Given 58

H.nnie. Fo Co 7-89 22' 31’ 50' 60
Hewitt, C. 11, 50, 65
Holes 66

Implement a transformation 120
Initial

== description 17

-~ state 15-16
Iterative array 13
Interdependence Theorem 28
Invariant, topologically 68
Isolated 67

Langdon, G. C. 8, 134
Layers 45
LBA 52
lee, C. Y. 9
Left figire 93
Linear
== bounded automaton 50
-- predicate 61
-=- transformation 120

140




Maze 86
multilevel ~- 88
solvable -~ 87
Methods of tree comparison
description generation 109
recursive 108
squad car 109
Minimizing Theorem 45
MinSkY! Mo 107 21’ 49’ 65’ 90
Module 32
Moore, E. F. 8
Moore, F. Re 8, 13
Murtha, J. C. 9
Myhill, J. 8

Neighborhood, d- 27

-= function of type M 27
Neighboring 65
Non-isolated 67
Non-uniform simulation 37
Non-Universality Theorem 51

Open questions
connectivity 88
construction of M' 62
linear transformations 129
linearity of predicates 64
multilevel mazes 89
topological matching 92

PA 52
Papert, S. 10, 21, 49, 65, 90
Paterson, Mike 62-63
Pebble automaton 50
Pfaltz, J. L. 9
Predicate 20
cellular - 46
finite -= 46
linear -- 61
Primary cell 42
Problem
display -- 119
firing squad ~-- 132
recognition -- 15
topological match -~ 92
Programming techniques
folding 128
layers 45
non-uniform simulation 37

Recognition problem 15
Recognizable

effectively =~ 58

within time T(m,n) 26
Recognize

-~ a predicate 21

-- within time T(m,n) 25
Reject a predicate 20
Rejected figure 19
Right figure 93
Rosenfeld, A. 9
Scanner 95
Secondary cell 42
Solvable maze 87
Space, callular 14
Speed-Up Theorem 38, 121
Squad car method 109
State

cell -- 16

edge -~ 14, 16

final -- 15-16

initial -~ 15=16

-« in a description 18

== of cell at time t 19
Stationary point 73
Strictly more powerful 51
Successor 18
Synchrenization

firing squad -~ problem 132

progressive -- 35

Theorem
Boolean/Finite -~ &6
Interdependence -- 28
Minimizing -~ 45
Non-Universality -- 51
Speed-Up -- 38, 121
Topological match problem 92
Topologically
== invariant 68
-- equivalent figures 68
Transformation
cellular -~ 120
connectivity =-- 71
implement a -- 120
linear -- 120
Transition function 16
Tree, associated 67
Two~dimensional

progressive synchronization 35
Progressive synchronization 35

-- cartesian product 16
-- automaton/computer 50

141




Type, cell 16

Unger, S. Ho 9
Universal computer 50

Von Neumann, J. 7

Waksman, A. 8

142



CS-TR ScanhingPi'diect-»:~<—~—.~,, e . ,
Document Control Form Date : oL/ /96

Report #_ LesTh66 - '

Each of the following should be identified by a checkmark:
Originating Department:

O Arificial Intellegence Laboratory (Al)
“B Laboratory for Computer Science (LCS)

Document Type:

" Technical Report TR) [ Technical Memo (TM)
O other:

Document Information  Number of pages: (42 (142-] mpCrS )

mmmumooom pcmmm etc... original pages only.

Originals are: yd to be printed as :
O Single-sided or [0 Single-sided or
X Double-sided | A Double-sided
Print type:

[0 Typewriter [ offsetPress [ LasarPrint
[  inkJet Printer X Unknown [0 other:
Check each if included with document:

0 poD Form O Funding Agent Form m Cover Page
O spine O Printers Notes O photo negatives
O Other:

Page Data:

Blank Pagesey pege numbes:

Photographs/Tonal Material m;... numbeq

Other (nots descriptionpege numbes;

Description : Page Number:
Traey on® ([~ 193 uniPEp TILE PAGE, Q ~ 141
(143147 ) scanconragl Coven TRETS (3)
Scanning Agent Signoff: -'
Date Received: ! /S /3£ Date Scanned: __c>_§__ 1Y 9¢ Date Retumned: 2~/ /51 €

Scanning Agent Signature: W Gd’é

Rev 9/34 DSA.CS Document Control Form cstriorm.ved




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the MLL.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94




