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RECOGNITION OF TOPOLOGICAL INVARIANTS* 
BY ITERATIVE ARRAYS 

Abstract 

A study is made of the recognition and transformation of figures 
by iterative arrays of finite state automata. A figure is a finite 
rectangular two-dimensional array of symbols. The iterative arrays 
considered are also finite, rectangular, and two-dimensional. The 
automata comprising any given array are called cells and are assumed 
to be isomorphic and to operate synchronously with the state of a cell 
at time t+l being a function of the states of it and its four nearest 
neighbors at time t. At time t=O each cell is placed in one of a fixed 
number of initial states. The pattern of initial states thus intro
duced represents the figure to be processed. The resulting sequence of 
array states represents a computation based on the input figure. If 
one waits for a specially designated cell to indicate acceptance or 
rejection of the figure, the array is said to be working on a recog
nition problem. If one waits for the array to come to a stable config
uration representing an output figure, the array is said to be working 
on a transformation problem. 

Chapter 2 contains a general theory of recognition. Thorems on 
the amount of time required to perform recognition and on methods of 
speeding up recognition are presented. Some properties of the classes 

t of recognizable figures are given. Arrays are compared to other types 
of figure recognition devices. In the last section the class of linear 
predicates is studied. A linear predicate is a family of figures which 
can be recognized in time proportional to the perimeter of the figure. 

Chapter 3 contains a study of the recognition of some topologically 
invariant properties of figures. A fundamental transformation of 
figures is presented and is then used to show that a wide variety of 
topologically invariant properties form linear predicates including 
connectivity and maze solvability. Two properties whose linearity is 
open are discussed. 

Chapeter 4 contains a brief study of transformation problems. Some 
general theorems are presented as well as discussions of specific 
transformations. An optimal solution to the two-dimensional firing 
squad synchronization problem is also presented in Chapter 4. 

In addition to the formal results, several open questions are 
presented and some iterative progrannning techniques are considered. 

ftflU teJilt fe!'f@@il ! "'"" Qt ~~~ ~~ t.~~tf f~i'4 to the 
~S-l'~9f(,_~fr¥@5~U·U·~'~l1~;~• IlliJJ.U~Y,1 ;1?.,.t~c nology, in 
Hi'44i ~,itll5tl~ ,tiE ~i'l•i.1i~tfM~~, lff uMM;; dflr~,,., <>/,, Doctor of 
Pbifl. .. MU~ .. ·· -:,•; · · ·~ "· c ':>c . · t: F1i.· . ; ,:·5·.,.·. 
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1.1 '!he Topic 

CHAPTER 1 

IHTROIDCTIOH 

In this thesis we study the recognition and transformation of 

figures by iterative arrays ot finite state. autcaata. For our 

purposes a figure is a finite rectangular t.wo-dillenaional array of 

symbols. OUr iterative arrays are also i'inita, rectangular, and 

two-diJllensi.onal. We call the autanata, which make up such an array, 

cells. All the cells in an array are assuaed to be ot the same type, 

that is, isanorphic. l'he cells on the edps and comers of an array 

11111' operate in a aanner quite distinct fran those in the interior, 

bl.it this ia to oe thought of as an effect which takes place because 

these cells oan SeD88 that the7 are an the edges rather than beoaue 

the7 are inherently ditterent frcllll the interior cell.a. All of the 

cells are placed in the array with COllllllon orienation and each cell 

is connected to its four nearest neighbors. 'l'he array !unctions 

synchronouw, with the •tate or each cell at tiae t + 1 being a 

!unction of the states of it and its four neal"eat neichbors at time t. 

At time t = 0 we place each cell in saM initial state. The 

contiguraticn or initial states thus introduced represents a figure 

which is taken to be the input to the arrq. Given an input figure, 

the array proceeds frca et.ate to state with the state transitions of 

the arra7 being detenained b7 the transition function of the cell 

type !ran which the array was constructed. 1'e prognasion of array 
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states may be interpretei as a computation based on the input .figure. 

Of the many interpretati~ns possible, we wjll consider two which we 

call recognition and display. 

In a recognition computation we view the array as an acceptor 

of figures in much the same way that a finite state automaton may be 

viewed as an acceptor of tapes. Two cell states are designated as 

final states corresponding to accept and reject. These states are 

assumed to be terminal. We input a figure, allaw- the computation 

to proceed, and observe some specially designated cell, say the 

northwest corner cell. When that cell enters one of the two final 

states, we say that the figure has been accepted or rejected. 

In a display computation we View the array as a device for 

performing a transformation or the input tigure. Certain cell states 

are designated as final states and are assumed to be tenninal. We 

input a figure, allow the computation to proceed, and observe the 

a.?Tay until it enters a state in which eacl1 cell is in a final state. 

We interpret the resulting configuration of final states as a figure 

and take that figure to be the output of the computation. 

The major portion of this thesis is devoted to the study of 

recognition. A central role in this study is played by the concept of 

predicates which are simply collections of figures. Usually the 

figures comprising a particular p1;"8d1cate share sane common property 

which is of interest. Given a particular predicate and a cell type, 

we say that the cell type recognizes the predicate if the arrays of 

that type accept exactly those figures belonging to the predicate 

and reject all others. We consider questions such as the following: 
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"What may be said about the class or predicates which 

are recognizable by arrays?• 

"What may be said about the speed with which a given 

predicate can be recognized?' 

"How powerf'ul are arrays as recognition devices?" 

"To what other devices may the7 be oauparedT" 

A modest theory of recognition is developed in an attempt to answer 

these and other questions. In addition the application of arrays to 

some specific recognition problems is considered. These problems 

include the recognition of connectivity, silllple connectivity, and 

more canplicated topologically invariant predicates. Di.splay problems 

are treated briefly in a concluding chapter. 

1.2 The Ba.ckgrOWld 

~e of the earliest uses of iterative arrays was by von Ne•ann 

who used the structure of a regular array of identical automata as the 

framework for a study of salt-reproducing automata. The von Neumann 

manuscript has been edited and canpleted by Bau-ks( 16). 

liennie(S) has performed an extensive analysis of the fUnctioning 

of iterative arra11 in several dimensions. In his work a?Tays are 

cl.2.ssified according to the number of diaensMlns, the number of 

directions of signal now, and whether or not the cells have an internal 

memoey. Bennie's cells are equipped with extemal inpu.t and output 

lines. Figures are presented to the array by placing an appropriate 

stimulus on each input line and maintaining the stillulus until an 
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appropriate output is obtained. He does net always assume that the 

cells have been reset to a canonical state at the time the input is 

presented. '!bus a given input figure aq cause ditterent behavior in 

the array depending on the ocat1pn.t1on ot stat.es at tbe tiae the 

inpu.t was pre~ented. U an array alwqa achiews a steady state no 

mtter what its initial configuration and input, it is said to be 

stable. If an arra7 baa exactly one steady state corresponding to any 

given input, it is said to be regular. Benni• studies th• quest1Clll 

of detenaining the stability or regularity of a tud.ly of array•, 

g1 ven a description or a typical cell. Be tinda algorithms for 

answering these questions in aost one-c:n..isional cases and goes an to 

show that the sue que•tions are recursiwly unsolnble in higher 

dimensions under all bat the aost aewre restriction• on signal f'lov. 

He also studies the relatiw cc:mputing ponr ot arra,ys of Y&rious 

~1P8'• lfADT of th• question• studied by bDni• deal with arrays per 

se as opposed to the application ot •rr&78 to CC11P1tatic:mal problems. 

Since we tend to •pbasise the latter t;ype of probl•, we feel that 

our work tonaa a caapl..-nt to that of Bennie. 

Many people are introduced to iteratiw arrays Tia the on•

dinaenaional tiring eq11&d qnchrcnisation prol>l•. Dais probl• has 

been credited to Jahn J(yb1ll (1967) bJ' Moore< 11). Solutions of 

varying degrees ot ettic19D07 and cen•ral.1'7 baw been published bT 

wu.an<11>, Balser()), and Moore and Langdon <12>. 'lbe two-

dillensional tiring squad is dieou.saed in Section 4.) below. 

'!he real till• ccapu.ting power ot iterative arr&)"& bas been studied 

by Cole<6>, AtrubinC2>, and Fischer(?). In their aOdels, one oell 
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of the arrq is equipped with input and ou.tpu.t channels. A t1M 

eequence of inputs is ted into this cell aud a cca:?Q.ted outp.it sequence 

is produced. Arrays are thus viewed as another .to~ ot eequence 

transducer. Atrubin shws that 11Ul.t1plloat1on of two binary coded 

numbers may be performed in real time by an infinite one-dimensional 

array. Fischer shows that an intinite one-dimensional array can 

generate the characteristic function of the set of prille integers in 

real tiJae. Cole performs extensive studies or the real-tille 

cQllputational powers of infinite iterative arrays in arbitrary 

dimensions. He establishes relations between the real-tiae ccaputing 

power of such arrays and the information oapa.city of the inter-cell 

connections. The use of arrays as figure ccaputers is not considered 

in these papers. 

The use of aITays to process tvo-diaeneicmal figures has been 

considered by Atrubin <1> vbo anall'M• sewral uaaplea ot siaple 

figure transtoru.tiona, bu.t makes no attempt to tonau1ate a general 

theory. 

Many algorithms tor aerial ccapu.ters haft been published which 

find a natural setting in iterative arrays. Examples are the shortest 

path method of Lae(9) and the picture processing of Rosenfeld and 

Pi'altz< 14> • 

The review ot highly parallel ccaputers by Murtha( 13) contains 

the designs of many theoretical and actual caaputers which in.corporate 

regular arrays ot identical proceaaing elaents. Allong those discussed 

we might mention the •spat1all7 oriented• acmpu.ter ot Unger< 15) and 

the ILLIAC IV described by Barnes<4>. 

9 



,------ -------r----------

Our work has been greatly influenced by the work of Minsky and 

Papert{10) on the perceptron. In their boo~ they state: 

"Good theories rarely develop outside the context of a 

background of well-understood real problems and special 

cases. • • • Accordingly, our best course would seem to 

be to strive for a very thorough under~tanding of well

chosen particular situations in which these concepts 

{parallel, serial, etc.) are involved." 

This thesis is an attempt to analyze a special case of parallel 

proce~sing in the same spirit and in a manner compatible with that 

of Minsky and Papert. 

1.3 The Layout 

Chapter 2 contains a general theory of recognition. After some 

basic definitions, an example of the solution of a recognition problem 

is given. Next the amount of time required for the solution of 

recognition problems is taken up. We give the Interdependence Theorem 

which allows us to predict the .future state of a cell, given sufficient 

info.nnation about the current states of it and its neighbors. The 

Interdependence Theorem is used to establish lower bounds on the 

recognition time of most predicates and is also the basis of the 

Speed-Up Theorem. An adaptation of a well-known iterative technique, 

the Speed-Up Theorem states that if recognition can be carried out by 

an array within time T{m,n) where the array is of size mxn, then 

for any integer k a second array can be constructed which wi.11 carry 
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out the computation rlthin time 1.r(a,n) + m + n + 2. Finally we 
k 

have the Minimizing Theorem, which says that two distinct methods of 

recogni2.ing a predicate may be combined to obtain a method which 1s as 

fast on any figure as the faster of the two. 

Cha.pter 2 continuel!I with a studY of the computing power of 

arrays. We find that arrays are not universal computers, but are more 

powerful as figure recognizers than the pebble autcmata of mum and 

Hewitt(5). In fact, arrays are equivalent in power to, although 

faster than, linear bounded automata which are allowed to walk about 

on a fiy.ure. This equivalence was to be expected since the 8.Dlount or 

storage available to an array increases linearly with the size of the 

figure. We show that the i:lass of recognizable predicates fonns a 

Boolean algebra. Scne und9Cidahll1.t.J' reaults an obtained including 

the undecidability of whether or not a given cell tYP' recognizes a 

given predicate. 

Cb.apter 2 ends with a brief study ot the class of linear 

predicates (those which are recognizable in tiae proportional to the 

perimeter of the array). It is shown that a linear predicate is, in a 

certain well-defined sense, recognizable almost as fast as any 

predicate. This fact is interesting because it is shown in Chapter 3 

that some intuitively very complicated predicates are linear. The 

class of linear predicates is shown to be a Boolean algebra and some 

unsolvable problems are presented. Finally we discuss the open question 

ot whet.her or not all recognizable predicates are linear. 

Chapter 3 contalns a study or some topologically invariant 

predicates (predicates over black and white figures which depend only 
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on the manner in which the holes and components of the figures are 

embedded within each other). We first develop a simple but very 

powerful transfonnation of figures called the connectivity transforma

tion. Ufing this transfcrmation as a basis, we prove that a wide 

variety cf predicates including "connectivity" and "simple connec

tivity" a.re linear. It is shown that it can be detenoined whether or 

not a maze is solvable 111 less time than is required for the trans

mission c-f a signal along the shortest path of the maze. The problems 

of solving multilevel mazes and developing a three-dimensional 

connectiYity transfonnation are discussed. It is shown that the 

solution in linear time of multilevel mazes would imply that any 

predicat.£- recognizable br a finite state au-comaton was linear. 

Chapter 4 contains a br1.ef description of the use of arrays in 

display prol:>lems and presents 11ome typical figure transformations 

which may be carried out. Several open questions are presented.. 

Throughout the thesis many open questions are raised. These 

questions may be referenced by looking in the index under "open 

questions." 

In e.ddition to the formal results obtained, we have included 

discussions of several interative programming techniques. These 

techniqU£•S were developed to solve specific problems, but are of 

general interest. They may be found by looking in the index under 

"programming techniques." 
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CHAPTER 2 

THEORY OF RECOGNITION 

L"l this chapter we will formalize the notion ot iterative array 

and study saae aspects ot the theor.r ot the recognition ot figures by 

iterativa &?Tays. 

2.1 Basic Dlf'initions 

Consider a .t'1nite, rectangular, two-diaensional iterative array 

of finite state autamata. Such an array is pictured below with the 

automata represented b7 1Cl'llA1"9s. '1'he lines connecting the squares 

represent. ccmmunicatioa oMnnels between the autaaata. 

The automata used in such a const:niction are called cells and 

the entire arrangement is called an iterative &lT&Y or simply an 

arraz. other tenas used in the literature include •cellular array• 

and •iterative array ot logical circuits.• We assume that all or 

the cells in the array are isomorphic and have been placed in the 

array with common orientation. Each cell is connected with its 

tour nearest neighbors. The array functions s111chronously with the 

state or a cell at time t + 1 being a !unction or the states or it 

and its four nearest neighbors at ti.lie t. 

13 



The above description assumes that ever;r cell in the array has 

f aur nearest neipbors while 1n the diagram it appears that the cells 

en ::he edges and comers or the array haw tenr than tour. We have 

here a confiict ot interest. On the one hand we would like to be able 

to treat all the cells as it they were the same, allowing us to make 

statements such as "ill cells are iscmaorpbic11 and 11ltach cell is 

connected to its tour nearest neighbors.• Qoi the other hand we 

definitely want to make use of the tact that the cells on the edges 

and corners can operate 1n a manner different frca those in the interior. 

Fortunately these two points of view can be reaCU.ved by a simple 

technical de'Yice. Inf'ol'll&lly we v1ll cciatinue to think of an array 

as a finite rectangular arrangement of cells. Formally. however, we 

v'-11 pie tuna this finite &rr&7 ot cells u being t9bedd9d in a two-way 

infinite cellular 1pace. .ill ot the •11• in this space which are not 

.:;· within the finite array will be in • ·speoial taminal state, e, oalled 

the !SI! state. Thus the only nal compu:tat1on w1 thin the space takes 

place within that finite portion knOll!l &• the array. Any cell in the 

array can determine where it lies with respect to the boundaey ot the 

arrq by detemining which of its neighbors are in edge states. 'l'hus, 

for example, the northwest comer cell of the array can operate in a 

manner which is ccapletely unlike any other cell in the atTaf and yet 

we can consider it to be 1scaorJiiic with all other cells in the array. 

The description ot a 11t,pical11 cell in an array must actually describe 

the behavior of that cell 1n each of the a1xteen possible positions in 

which it can find itself with respect to the boundar;r ot an array. 

For the sake of siaplicity we will omit traa our diagrams all 
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cells vh'.i.ch do not lie within the arnT and will suppress the lines 

indicating intercell connections. OUr diagram n011 beccmes simpl.yi 
.. _ 

Since the cells which do not lie within the array are alv&Ts in 

state e, we seldcm haYe to Mntion them explicit.]¥. Nevertheless they 

are tacitly' assl.Dled to be present at all ti.mes. 

To operate an array as a recognitic.i device for black and white 

figures, one designates two ot the cell's states to be initial states 

corresponding to black and white. At time t = O e'ftJ'7 cell in the 

array is placed in <me of the two initial statea and the pattem of 

states thus created represents the tigura to be pl"OCessed. Beginning 

with the initial state re:pruenting the tip1'9, tbe·arn.y proceeds trca 

state to state until f1nally a designated cell (we will always use the 

northwest comer cell) enters one or the other ot two specially 

designated final states thus indicating whether the figure has been 

accepted or rejected. The final states are asSUlled to be tenainal. 

Note that we use only one accept state rather than many. The use ot 

a single terminal accept atate is merely a teohnical convenience and 

causes no loss ot pneralit7. B;v' using the tecbniques ot Theorm 2.5 

below, any cell type with multiple non-tenainal accepting states can be 

converted into a cell type with a single teminal accept state. 

An array operatinc in the •ode macribed in the preceding 

paragraph is said to be working on a recopition probla. The 
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extensicu of recognitiOJi problems to include input figures of more t..18Jl 

t-,,,o colors and to n-w&T classification rather than binary classification 

is straight forward. 

These in.tomal remarks motivate the following definition. 

IBtinition 

A!!.!!~ M ie a 5.tuple (S,I,F,e,g) where 

S is a finite set of cell states; -
I is a subset of S called the ini.tial states; 

1 is a subset of S called the final states I 

e is a distinguished m9111ber or S called the 

!Se state; and 
~ 

g is a function g 1 S • S • S --+ S aalled s 
the trgsitic:m tanotion, 

such that t1nal states are temiDal 

(i.e. VoEr, g ( l*~~I) • • ) 

and edge states are conserved. 

(1... v OE s. , ( , • ra. , ) . . ¢=::? • • • ) 

Two notational deTioea have been introduced in the above 

definition, Qie is the two-dia•uricmal cartesian product. Rather 

than express the dcmain of the transiticn tunotiori as the usual linear 

oartesian product of sets, n have taken the liberty or arranging the 

!actors or the product in a two-diJlltnsional aanner which more clearly 

illustrates the process being modelled. '!'he aecond notational device 

16 



intro-luced is the don't <!!!!! symbol,* , which is used to replace 

uni..,rsally quantified variables. Thus •g; I *ill* I ) = s• io 

notational shorthand for • Vs, 'rls, Va, V-. g( + ) = s.• The set 

over whi.ch quantification takes place is usually understood. 

!.et M be a cell type. An array composed of cells of type M is 

said t.o be an array g£_ ~ !i• If the array has m cells per column and 

n c9lls per row, it is said to be an !!!a array of ~ !i• The notion 

cf cell tYP9 formalizes the mechanism underlying the operation of an 

array. Corresponding to the idea of an instantaneous description in the 

theory of Turing machines, we have the following definition. 

:ll9fini tion 

An ~ description Et, ~ !i (or simply a description 

if m, n, and M are understood) is an mxn matrix with 

entries in S, where S is the set of cell states of 

the cell type M. An initial description is a 

description, all of whose entries are initial states. 

Not..e that a mxn description contains only enough information to 

determine the states of the cells within an mxn arra:r. The states o! 

the remaining cells in the space are formally set equal to ! by the 

following definition. 
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;)tfinition 

It D is an mxn description of t;r.:>e M then the 

.!l!!!, ot oell (1,j) in D. denoted ~j, is the 

(i,j)-t.h entry in D provided 1 ~ t (• and 1 ~ j ~ n, 

and is e otherwise, where e is the edge state 

ot M. 

~> ;· .- -.~:. ~.---=-~ .. ---- -- -~-, 

Note that we have introduced matrix type coordinates. For 

example cell (1,1) i• the nort.hwat corner oell and oell (m,n) is the 

southeast conier cell. 

'lbe transi ti cm function is now uaed to de tine the obvious notion 

of successor. 

!ltf'ini ti.on 

Let D be an •)(D deaoription ot type M. The 

suoceuor of D is the aicn description ot type M, 

D' • giY911 b7 

Di-1,J 

o;,j = e( ll . 1,J·I 
o .. 

l,] DiJ•I ) 
Oi+1,j 

where c is the transition .tunction ot M. 

We can now t'ol'll&l.ize the concept ot a caaputation. 
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Dltfinition 

An ~ computation ££, ~ f1 is an inf'inite 

sequence J:f • o0 , n1, if, ... of' axn descriptions 

of' type M such that 

0 
D is an initial description and 

if+1 is the successor of 'If- for all i )O. 

It 2f = r:f', n1, r/-, ••• is a computation, then 

Dti,j is said to be the state 2I cell (i,j) ~ 

~ ! in the 0G111p12tation J:f. 

This completes the f'ol'llalization or the tams necessary for 

desorib~.ng an array and its functioning. We now formalize the terms 

necessacy to describe recognition probl••· 

An !!,!!l figure ~~ID! ( or simply figure if 

m. n, and I are understood) is an mxn matrix with 

entries in I. 

We will most frequently consider figures over the set ~ = { b. w} 
representing black and white. When we wish to represent a specific 

figure over I
2

, we will use a diagram o:r the form IJ rather than 

standard aatrix notation. Note that a figure has a speci.fic size. 

'lhus EE and ffij are distinct figures even t.nougn both 

are blank. 

Recognition problems involve the separation of all figures over 

a fixed set into two classes, the accepted .figures and the rejected 
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figurf's. We concentrate our attention on one of the two classes. 

r.fi.nition -----
A predicate ™ !9!. .!!! ! is a sub•t, J//, of t.he 

•t ot all tiprea over I. The oe11pleaent ot Vt, 
denoted 'if, is the set of all fipres oTer I which 

are not in 1/1. 

It is the predicate which allows ua to aak• connections between 

fignres which have si:llilar properties. For instance we could form a 

predicate by taking the set of all blank figures or the set of all 

.figures cont.ainin1 tiw or tewer black squares. 

J'inEU.lT we relate ccmpitations to recognition of predicates. For 

this purpose we will tix a set F -= {a, r } which represents the final 

two status ot 8lJ1' c.ll type involved in a recognition problem. 'l'he 

states a and r correspond. to accept and reject respectivel7. 

D9finit1on 

Let l/I be a predicate over the set I and let M 

be a cell type. We sq M acctpy If' (respeoti vely 

reJect.a If) 1.t the followinc bolds 

i) I is the set of initial 1tates of M. 

11) r = {a, r } is the set of final states 

of M. 

iii) Given any ce11pitation 1:f = If, D1, r/, ••. 
ot tJP9 JI, we haw rP E I/I ¢::=> 3 t 

such that D\,1 •a (reapeotively nt1, 1 = r). 
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We say that M recoeizes 1/1 if 

i) M accepts "/!, and 

ii) M rejects 'Vi. 

Note that we actually require the set or il'iit1al states of M to 

be tile same set as that over which If is de.tined. '!bis not only 

elim:i.na+.es the need !or introducing an artitrary correspondence, but 

act~.lly makes a figure and an initial description the same f onul 

object. 

We have made an arbitrary choice or cell (1,1), the northwest 

cornt-r (:ell, as being the cell which is designated to give the accept 

or reject signal. One could make a case for having the designated cell 

be somewhere more centrally located in the a?Tay, but then one would 

eithE:r have to introduce additional machinery so that that cell could 

be s:i.ngled out, or have the a?Tay compute the location of that cell 

each tine it performed a computation. 

Perhaps it would be best at this point to give some life to our 

definitions by considering an example. 

Let l/'PAR be the predicate over I 2 consisting of all figures with 

an oC.d nW!lber of black cells. This parity predicate plays an 

important role in the work or Minsky and Pa.pert on the perceptron< 10 >. 

They show that 'PAR is very difficult for a perceptron to recognize 

and use this fact to show that many other predicates which are 

reducible in perceptron theory to l/'PAR are alao difficult for a 
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perceptron to recognize.. We will see that. ~AR is quite easily 

recogniz.ed by arrays. It is introduced hl!re only as an example and 

plays no role in our thdory. 

We now describe a cell type MPAR which recognizes YtPAR • The 

most precise way of describing MPAR would be to list its states and 

display a state transition table. Unfortunately a cell type with s 

states has s5 rows in its complete state transition table. Since the 

cell type we are about to describe has 6 states, its transition table 

would have 65 = 7,776 entries, making it quite unreadable as well as 

shedding little light on the method by which MPAR carries out its 

computation. Use of the don 1 t care symbol, *, drastically reduces the 

number of entries needed, but still leaves the underlying method of 

computation to be puzzled out be the reader. It has been found that 

the best method of describing the functioning of a cell type is to 

describe the action of a typical array composed of cells of that type 

on a typical figure. Attention is thus focused on the method of 

computation rather than the machinery which carries it out. In most 

cases we do not even attempt to give a complete list of the states 

involved in the cell type. The reader who is interested in more 

detailed analysis of cell types may refer to Hennie(S) and 

Atrubin( 1). 

Operation !?! MPARI Assume the figure to be processed is at 

least 2x2. The cases of 1xn and mx1 are easy modifications of the 

main idea. Each cell which is not on the northeni edge of the array 

simply copies the state or its southeni neighbor. In this way the 

infonnation within each column of the array is shifted to the north. 
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Wher. tlte information arri.fts at the northem edge, it is shifted to the 

west b;r the cells on the northem edge. All 1.nroraation eventuall7 

arrives at the nortbwet comer. Each oell co th• northern edge or 

the arrq ca.binea the inf'ol'llaUcm arri.Ting traa the sou.th with that 

arri'Yi.'ll trca the wet in such a wq that ~t7 is preael'ftd. 'lhe 

northwest corner cell e'Yelltuall.T arrina in state b or v depending on 

whether the paritT was odd or eYU 1"91pe0Uve17. All that reaai.ns is 

to cause the northwest comer cell to enter the approp.riate final 

state. '!his is acocaplished by having a ocn'tqiws 1cione• signal d 

begin 1n the southeut comer at tiae t • 1 and spread at the rate or 

one cell per unit time toward the northweet comer cell. BJ' the time 

the nortr.vest comer detects the done signal, all or the pari.t7 

in!onmaticn will haw been prooaased and the appropriate final state 

can be er.tered. 
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'l'he following diagram illustrates th• process tor a p.\lrticular 

4x.5 a:rray. 

d 

d d 

d d d 

d d cf 

d d d d 

d d d d d 

d d d d d 

d 

d d --+ l---1--1-..... -+--4 
d d d 

d d d d 

d d d d 

d d d d d 

d cl d d d 

d d d d d 

M PAR as described above has six states: 

b black } initial states 
w white 

d done 

8 edge 

a accept } final states 
r reject 

d d 

d d d -+ ...._..._....._ ........... ~ 
d d d d 

d d d d d 

r d d d d 

d d d d d 

d d d d d 

d d d d d 

The reader who is concerned with the number of states used in MPAR 

JDay wish to show that MPAR could be modified to have onl7 five states. 
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Note that KPAR in aeneral takes m + n - 1 time uni ts to 

recognize an mxn figure. We will be quite interested in the aowit of 

time required to recopir.e Tarious predioatee, so we now define saae 

appropriate te.nninology. 

Dl!'ini ti on 

Let M be a cell type with initial states I; P, a 

figure over I; and 3?J = P, n1, r/, DJ, • • • the 

CClllputation of type K with P as its initial 

description. It t is a real naber, we sa;y that 

! recognizes l within ~ ! provided that nf.l, 1 

is a t1nal state or K, where [ '] 111 th• great.at 

integer function. 

It would certa.inly have been act.quate 1n the above definition to 

restrict t to the pos1tiw integers. HOW9Y9r, the slight generality 

obtained by allowing t to range over the reals will be useful later. 

The timing functions in the tollowing definitions are real valued tor 

the same reason. 

Dlt'ini tion 

Let l/I be a predicate onr I; K, a cell type which 

recopizes 1/1 ; and T(m,n), a real-valued tunction. 

We say that 11 I"*copiizes J::. witbin la:!!. T(m 1n) 

provided that K recognizes eve17 axn f'igu.re over I 

within t1ae !(m,n). 
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'?.:le tolloving detinition .forms a basis tor aeasuring the 

cc:.plexit7 ot predicates with respect to iterative arrays. 

Dftin1t1on 

Let Y be a predicate and T(a,n) .i real-valued 

function. We sq that I/I is recognip.bl• wit,b.in 

!:!:!!. T{a,n) it there exists a cell type M such that 

M recognizes , within time T(a,n). 

Thus we would say that MPAR recopiua '/'PAR within t1ae 

m + n - 1 and that ,PAA is recognizabl• ill tiM a + n - 1. As we 

shall see in Corolla17 2.1.1 belw, '/'PAR i• not recognizable in t1ae 

• + n - 2. This result 1e an applioatiaa of th• Interdependence 

Theorem. To properl.J' state the Intermpeadenoe 1heorm, we need 

three mo.re detin1t1ons • 

.tet1Di tion 

Let 01 • (i,,j1) aa.d 02 • (12,J2> be two oells. 

1:be distyoe between c1 ud c2 ia given by the tmicticm 

.f(C1,o2) • 111 • i21 + lj1 • Jzl • 

rote t.hat the distance tmioticm p is a aetric on the set ot all 

cells and that the distance between two cells equals th• aaount of 

time it takes a signal to traftl f!"QI an• to the other. 
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n.tinition 

If d ie a positiw intepr, then the j-Mipborhooci 

ot a cell a i• the Mt 

Bd(o) • [ o' I a• i• a oell and p(c,c•) ( d}. 

Since neighborhooda &N detined Oftr tlle tvo-wq iDtinite 

cellular apace of celle, theN &N no edp etteote and hence all 

d-neighborhoods have the IJ&lle Bise and sbape. IndNd the d-neiahborhoocl 

ot a cell c contains 1 + 2 • d -(d + 1) cell• and tom• a diaond aped 

cluster ot cells ab0t1t o. ror emple, 1-,2-, and 3-a.eipborhoocl8 

haft the following abapeaa 

,..... 

L ' ] 

.... 

Note that the state transition twiotion tor any cell type ia a 

function which has as it• dc:main a tvo-diaensiCID&l oarte11an product ot 

cell states in the ahl.pe of a 1-neighborhood and vhiaJa ia u•d to 

p:Ndict the state ot the central cell or that neicbborhoocl at one tiM 

unit in the tutuN. 'Dl• following mtudtion and tbeorm generalize 

this concept. 

I!f1nit1on 

Let d be a poaitiw intepr and K a cell tJP9 with 

•t. ot etatee S. '1'bel1 a ,i-Mi!h'bol'Bood .flu!ction sl. 
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~His a function whose domain is the two

dimensional c1.rtesian product of S with itself a 

total or 1 + 2·d·(d + 1) times (arranged in the 

shape of a d-neighborhood) and whose range is S. 

Tht1orem 2.1 (Interdependence) ---
Let M be a cell type and d a positive i21teger, then 

there exists a d-neighborhood .function of type M, 

say !, such that it 1:f = i:P, n1, r/, ••• is any 

canputation of type M, t is any non-negative integer, 

and c is any cell, then the state of c at time t + d 

can be obtained by applying f to the d-neighborhood 

of c at time t. 

PROOJ•': The result is immediate for d = 1 by letting f be the 

tran~:i t:Lon function of cell type M. 

Asaume by induction that it holds for all d < n and let d = n. 

Th,3n for each c'E N1{c) we haw Nd_1(c•) c Bd(c) by the triangle 

in~u.a.lity. Hence by induction the state of cell c 1 at time t + d - 1 

is a !unction of the states at time t of all cells in Nd{c), for all 

o::'E N1(c). .Bu.t by def'1nit1on the transition function gives the state 

of call c at time t + d as a function of the states at time t + d - 1 

of a:~1 c' E N1 (c). Composing these functions gives the desired function 

f. 0 

'!he Interdependence Theorem is fundalllental and has se~ral 

impo~ant applications. It can be viewed in two di!'ferent ways. As 
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stated, it allow• OIU9 to make prediction• about th• tuture state ot a 

cell giftn sutt.1.aient our.rent informaticn about the neighbors of that 

cell. It will be ued in th1• cuise to pron the .Speed-Up 'Dleorm 

('lbeorem 2.2 below). fteved in another vq, the InterdepenGlnce 

'l'beor. states that two cells which are at. a diatance ot d + 1 frCB 

each other cannot 1.nfillUoe each other's bebavior tor the next d units 

of tiM. In this fOl'll it is aillply' the atateaent that sip.is 

propagate at unit diatanoe per unit ti.lie, but aYoid• mentioning 

signals as such. In this latter tom it MT be uaed to establish 

llinillal tiae results, such as the tollowillg. 

Coroll.art 2, 1, 1 

V'PAR 11 not r.oopiu.ble within tiae less than 

• 
{ 

• + 11 • 1 it either • • 1 or n • 1 
TMil(a,11) 

a • a - 2 it a,D ~ Z. 

PBOOFi Let M be a cell t1P9 which r.aognisea ;~R • 

11rst consider the case where a • 1. I.et J' be an initial 

description, sa7 

low create the initial description i' b7 addiJlg a black aquare to the 

eastern end of 'IP, Thu• 

Bow the cells in the (n-1)-neighborhood ot cell ( 1, 1) ban the A.119 
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states ir~ both rP and i'. Bence b7 the Iaterdapendence 'l'heorea, cell 

( 1, 1) will be in the saae state in both Jll-1 ud :ri-1• Bu.t since M 

recognizes Y'PAR and ainoe I and i' haft opposite parit7, this state 

cannot be a ti.nal state. 'Dn&a M tabs at l•st. n +• • 1 • n un1ts of 

tiae to recognize If PAR when • = 1. 

The oa• wb•N n • 1 is sillilar. 

Finally assume tbat • ,n ~ 2. Canaider a typical 1n1 tial description. 

rm ... ag 
Note that the sa.itheaat corner cell (• ,n) is at a distance • + n - 2 

tran cell ( 1 , 1 ) and hence by the Interdependlmoe 'lbeor. cell ( 1, 1) is 

independent of the state of oell (a,n) tor the first n + • - ) units ot 

time. Bence since '/'PAR depends an the atl.ta o£ cell (a,n), we haw 

that M requires at least • + n - 2 wai.ta to l"MllDi• f PAR • 0 

Note that the onll' property ot Y'PAR which we used in the aboft 

proot was that it depended an the initial state of cell (a,n). 'l'hua 

we have actuall1 proTed the following. 

Corollazz 2,1,2 

Ho reasonable predicate, Vt, can be recognized in 

time less than u• wbere b7 reasonabl.e ve aean 

that tor an7 a,n ) 1 tbare exist two figures P ~d P' 

vhiCb ditter cnl7 in·their (a,11) ent.r.r and such that 



PE 'f and P' ff If 

The reader with an eye tor detail will note that the cell type 

MPAR constructed earlier actually achiena 'the theoretical ainimua 

t:1Jling only tor the cans n • 1 or • • 1 and it is one unit slower 

than the m1nimwl tor the oases where • 1n ~ 2. '?bis ainor defect can be 

remedied by modi.tying KpAR• '!he ..Uest n1.111ber of states the author 

has f'ound for suoh a llOditied machine. is seven. Dltalla are left to 

the reader. 

2.4 Speed-Up 

We now tum to the Speed-Up 'l'heorem, 'lh• central idea behind thi1 

theorem is that by packing information into tewr cells in an array. 

the informaticm can be proce1Hd at a higher rate since the amount 

ot tiae it takes tor a signal to tra'Y9l. trcma the location or one 

piece of information to the location of another hae been reduced. 'lhi• 

idea ha.a occurred to many people and us•• of' it may be f'ound in the 

papers of' Cole(6), '1scber(7), and Hennie<8>. In their formulations no 

information is initially present in the cc:aputer and hence the packing 

can be done as the intonaation is inpit to the ccaputer. In this way 

the1 achieve any desired degree or speed-up without having to pay a 

price in processing time, although they do increase the number of states 

per cell. In our fol'llUlation. the intomat.iori to be processed is 

initi•lly present in the array and scae tiae must be spent in packing 

it into a smaller area within the array. Thus we must -pay a price in 

both time and states to achieve a speed-up. 
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f!!!.-Dlmensional .Q!!!: As a warming ui: enrcise for the two

dillem·i0112.l Speed .. Up 'l'benrem, we first con~ider a one-dimensional 

example. Assae that w have set up a~ :figure in a 1x9 array of 

coils of type M and let i:.s observe its operatiao for a few till• unita. 

rP • [s~(s:(s~ls!ls:ls!(s:ls:ls~I 

D
1 

• [s; Is! Is~ Is! Is~ lJ! Is~ Is! Is~ I 

Tl = Is~ Is: Is: Is: Is; Is: Is~ Is~ Is: I 
":ile 11.}'llbol sj ot course represents the state or cell (1,j) at 

time 1;. We are going to describe a cell type ~· where each cell must 

have 1:.he ability to simulate two cells of type M. Our notation should 

be tnnsparent. laael7 

[~] 
repreaen~s one cell of type ~ which is currentl7 in a state represent

ing two cells- or type M, one or which is in state ~ and the other ot 

which is in state ~· lxtensions of this notation will be introduced 

without further ccmment. Since we will be talking about both M cells 

and M2 cells at the same ti.lie, we will tind it conftllient to refer to 

the former as cells and the latter as modules. For example, we sq 

that each module in an M
2 

array simulates two cells. Now let us 

observe the operation ot a 1x9 arr&T or type M2 when started with the 

same figure. '!he first five steps of this operation are shown in the 

oiagrmn on the next page. 



t = l so so 50 50 
I 2 3 "' 

s; 50 ,, s~ so 
'8 I SD 

' J 
t = 1 I [filJ Im Im Im Im l [] I[] Im I[!] J 
t = 2 I am I [IIJ I m I m Im Im I rn 10 I 1 

t = J I [lliJ I [ill] I am I [] Im Im 10 I I J 
t=4 I [ill] I [IIJ I [IDJ I illil I m 10 I I I ) 

t = 5 I [ill] I mIJ I [ID] I ITID I [fill I I I I I 
J1t this point, the Hi array bas packed the original figure by a 

,factor of two and is read,y to begin processing the figure at a rate 

exactly two times that of the M array. Note that the packing process 

takes n - [~] time units in general, where n is the length of the array, 

k is the packing factor, and [J is the greatest integer :function. 

(We cc-nsider the packing to be complete when the edge state e can no 

longer move to the left.) 

Qie problem now arises. We wou.ld like all of the Modules in the 

packed portion of the array to begin their simulation s1multaneousl1. 

This is accomplished by using a firing squad procedure such as that 

described in Ba.lzer(J). '!he last module to be packed (module ( 1,5) in 

our example) acts as the general of a firing squad with the soldiers 

being the modules to the left of the general. The modules in the 

firing squad retain their packed information on one level while 
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carrying out the firing squad process on another level. When the 

firing squad goes off, the simulation begins. Note that the firing 

squad :rr::>Gess, if carried out as described aboft, will take 2-[;J units 
to begin simulation. Thus the simulation gets under way at time 

t=n-+·1-. rn] 
Lk 

'!he reader who is tond of firing squad problems may show 

!low this time can be reduced to t = n by beginning scne firing squad 

activity at time t = 0 instead of waiting for the packing to be 

comple1.ed. Note that t = n is the earliest the simulation can begin, 

since by the Interdependence 'lheolWl •odul• (1,1) cannot begin sillulation 

oefore it is aware of the existence or the right-band and of the arl'aY' 

and thi.s carmot happen before t = n. We will cait the details of the 

firing squad mechanism, since an alternate Mthod for synchronization 

will be given later. 

Let us assume then that at tillle t = 9 our array begins simulation. 

The process will look as follows. 

t = a I f!P1.1 !p,ll Dm:i I (fill I C!I!l I ... ~,, ....... 

t = 9 ! 1JJJJJ~L~ I [!TI] I [IE] I .... ., ...... 
t. 10 I crm l®H@l I um l!IID I 

·,~.,_.,.,,,,. 

~ 

Dotted arrows have been drawn to show how module (1,2), which is 

responsible for simulating cell ( 1, 3), has access to all of the 

information necessal"1 tor predicting the state of cell (1,J) two 

units into the tuture via the Interdependence 'l'heorma. In general 

with a packing tactor ot k, one obtains a simulation which is faster 



by a factor of k. 

'lhe simulation continues until module (1,1) senses that cell (1,1) 

is a~out to enter a final state. Instead ot simulating this entry, 

module (1,1) actually enters that final state itself. Thus the M 
2 

array accepts Qr rejects the initial figure according as the M array 

would have accepted or rejected it. 

Since simulation begins at step m, recognition takes place at tinle 

t :: n -+tT(.111,n' - 1], where T(m,n) is the time in which M carries out 
k 

its recognition. The number of states required is approximately 8·s 

where 3 is the number of states of cell type M and where we assume one 

posses3es an eight state solution to the firing squad problem. 

Progressive Sznchrcaization: Before tuming to the two-dimensional 

case, we present a second solution to the synchronization proble111 

which does not use the firing squad. This second solution is slighUy 

faster than the firing squad method, but uses a.pproxillately 2·s2k 

states per cell. We present it here because it is of interest in its 

own right. Let us call it the method ,2! :progreepive sypchronization. 

In progressive synchronization the simulation begins to take 

place while the packing operation is still under way. Each module 

carries out a simulation step as soon as the necessary information 

becaaes available to it. Modules which begin to simulate before 

packing is canplete carry out their simulation at a reduced rate 

because of limited infonaation availability. The last module to 

be packed immediately begins simulation at tu.11 speed and eventually 

catclle3 up with the modules which began simulation earlier. Larger 

and larger blocks of modules become synchronized until at last the 
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entire array is synchronized and simulatinp, at full speed. 

t = o s~ s: s; I s: I s~· I s: J s; I s; I sj 

t=l IITIIJlm Im Im Im Im Im Im l0 I 

t=Z l[ill]l[ffi]lrn Im Im loo I~ l0 I I 

t = 3 
[fill 

t :s 4 
[ill] [ill z .. 
[IIJ [[] [IIIJ IIill m 2. ¥ 6 

IIIIl rnil (fil] 
t=5 [IIl] [ill] um [ill] IJE] ,,. 

ITIIJ lIIIl [ill] 
t • 6 [fill [I[]] [ill ITIIl GE] I. ... ' v 

[ill] [ill ... . 

[fill IIIlJ [ill] lfil [lli] 2 • 6 t 
t = 7 

t=s [~lrnTilrITillumlrrml 
tm

9 lrrmlarnlamlrrml[[0I 

J6 

[!) 

I I I I 

I I I I 



The diagram on the preceding page illustrates progressive 

synchronization as it would be used in our example. From t = 9 

on simulation proceeds as in the firing squad case. 

Each module in the above diagram must actually have one more 

bit of infonnation so that it can indicate to its neighbors when it 

has made a simulated state transition. We have anitted this bit frau 

the diagrams above. 

Observe how module (1,2) carries out a simulation step each time 

the necessary information becomes available in the neighboring modules. 

Also observe how the last module to be packed, module ( 1,5), is able 

to begin simulation at full speed as soon as it is packed. Since this 

module is packed at time t = n - ~], the recognition will take place 

at time t = n - [~] + [T(a,nk - 1] + 1 or before. '!be case where 

recognition takes place sooner is due to the fact that module ( 1, 1) is 

several simulation steps ahead for a while. 

To recapitulate, we can create, using firing squad techniques, a 

cell type which perfonns recognition in time t = n + [T(1,nk - g and 

which has on the order or sk states. By using the 11ethod of 

progressive synchronization, we can create a cell type which performs 

recognition in time t = n + 1 -[i] + [T{1,n,fr - ~ and has on the order 

of s2k states. 

'lhe method of progressive synchronization introduced above belongs 

to a class of iterative programming techniques which we shall call 

methods of non-uniform simulation. These methods all have the - - - ------ ---------= 
following characteristics in commoni 
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1) 

2) 

the1 invol Ye silnlla tion of one arl"l.1' b;r another• 

a module 1n the simulator 1181' k .. p JIUltiple copies or 

the cells that it is sillulatinc, and 

J) simulat.d time mq be distorted, that is, at any 

given maaent modules which are 9pat1.ally separated in 

the simulatinc array ma;r be vorkinc at different 

points in sillulated tiae. 

We will use a method ot non-unifol"ll sillulation in the proof ot 

Theorem 2.5. 

S,P!ed-.Y.2: We now turn to the tvo-dillensional Speed-Up Theorem. 

The statement of the theorea could be sharpened in several ways. 

Preferring the more simple and workable statement for our main result, 

we will leave the sharpening to a corolla17. 

'fheorm g (Speed-Up) 

Let '/I be a predicate and let M 'be a cell t1'P8 

which recognises 'I/' in ti.me 'f(a,n). Tb.en given 

any positive integer k, there exists a cell t1'P8 

Mk which recognizes 'I/I in time '. T(m,n) + m + n + 2. 

PROOF: The two-dimensional case is quite similar to the one-dimensional 

case. We perform packing by a factor o! k followed by or overlapped 

with simulation at a rate k times f'aster than the original array. 

Again we have our choice of using a two-dimensional firing squad or of 

using a method of progressive synchronization. 

Packing: Packing is accaaplished by perf'orming simultaneous 

packing within each row and when all the cells in a g1 ven column are 

i, < ·~ 



fully packed, the column is then packed. The following diagram 

illustrates packing by a factor of two, where each simulated cell 

is represented by a single dot. 

. • . . . . 
. . • 

~ . . • --+ 
. . e . . 
. . • et 

. . . . :1 .. . . . . . . .. .. 
·~ . . . . . . . . 

li_t. .. •• .. •• ••• •• 
~· 

.. . t . • . • .. . • .. . • 

. . •• . . ~ . . •• . . o_jJ .. 
• • •• 

; 

'"' 

--+ 

.. . . 
• • .. . . . . . . • • . . .. .. •• 

e• . . •• 
•• • • 

.....• .....• . . . ... . . . . . . . ..... ---+ •••••• ....-............ ~~ 

Packing is completed in m - [I J + n - [~ J units of time. Assuming 

that progressive s)'nchronization is used, simulation gets under way 

immediately. 

Sillulatian: In considering two-dimensional sillulation, we find a 

problem which wasn't present in the one-dimensional case. It is due 

to the fact that we do not allow diagonal neighbor connections in our 

llOdel. 

Consider a portion ot an M) array attempting to simulate an 

M-array at a rate three times .faster than nol'llal. 



~ ~ 
2 2 2 

l z 2 

2 2 2 

"l z 2 1 , 1 2 2 2 

2 2 2 1 1 1 1 a a 
z l 2 ' 1 , I ,,. t-

~ f!m 2 2 t 

2 2 t 

z I I 

The central module in the above diagram baa responsibility !or 

simulating the cell• labeled 1. In order to adl'a,nce the states of 

these cells by three units, the central module must have access to the 

cells labeled 2 and J. Because diaganal connecticms are prohibited, 

access is available only to those cells labeled 2. 

There are several 11&7s around this probl•. tne is to allow 

diagonal connections between cells. In that case, assuming diagonal 

connections were also allowed 1n the M-array, the central module in 

the diagraa above would require access to all sillulat.ed cells shown. 

Thus it would actuall1 have access to exactlf the information needed 

to advance the states or the cells for which it is responsible. 

Within the restriction of neareat neighbor interaction, we could 

simply pack by a tactor of a1x and then use two steps of real time to 

allow each module to get info:naation around the comer !ran its diagonal 

neighbor and advance the states of the cells for which it is 
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responsible by six steps. Thus an average speed-up of three would 

result. The cost in tenns of states, however, would be high. In 

order for each module to pass infonnation around the corner during the 

intermediate step, it would have to have provisions in its memory for 

remembering additional s1111Ulated cells. The smallest number of 

additional simulated cells required seems to be ~·k2 - k - 1. Thus in 

the case above where k = 6, we would require each module in the 

s:iJnulator to have memory capacity for holding eighty-three simulat0d 

cells, just to provide an average speed-up factor of three. When 

compared with the nine simulated cells required per module in the 

diagonal connection case, the cost of this method seems excessive. 

A more reasonable method is now described which requires twenty

five simulated cells per module to produce a speed-up of three. It is 

apparent that a module, if it is to advance the cells for which it is 

responsible, needs access to infonnation about the states of the cells 

for which its diagonal neighbor is responsible. Instead of having this 

infonnation canputed by the diagonal neighbor and then passed around 

the corner via a nearest neighbor, we let the nearest neighbor 

compute the infonnation directly, thus making it available one time 

unit sooner. 

Consider the diagram on the following page which represents one 

module in the simulator array. 
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The module contains twenty-five simulated cells. 'l'he central 

nine, which are drawn with solid lines, are the same as those for 

which it would be responsible under the earlier scheme. We say that 

these are the cells for which it is primarily responsible. One thinks 

of these primary cells as being the ones which a.re "really" being 

simulated and that the aj.xteen aecond!rx cells an simulated merely as 

a convenience for the benefit of the module'• nearest neighbors. 

The tollowing diagram shows a portion of an array which is to be 

simulated. 

r--

L J 

..... 
'lbree concentric heavy outlines have been drawn. The inne.rmost out

line contains a set of nine cells for which a module is primarily 
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re:;ponsible. The middle outline contains the twenty-five cells for 

which this module is both primarily and secondarily responsible. ThEi 

outer outline shows the set of cells to whjch the module has access 

via its nearest neighbors at any given step. Note that the. cells 

contained 1n the outer outline are exactly those cells to which access 

is required for a speed-up or three. 

'!he following diagram presents the situation from the point of 

view of the simulating array • 
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'!he preceding diagram shows a 3x3 set or modules and within each the 

simulated cells tor which it is responsible. Each simulated cell has 

been labeled with its row and column number. Sme cells such as (8,8) 

are simulated by as many as five dif'terent Modules. ill are simulated 

by at least three modules. 

Of the many methods of simulation considered by the author, the 

above method requires the fewest states for the case of nearest 

neighbor interaction. It requires 2·(k2 + k) states (fork even) 

and 2·(k2 + k) + 1 states (tor k odd). 

Conclusion: We have all the pieces necessary to construct a cell 

type Mk' given M and k. To recapitulate, ~ first perfonns packing by 

a factor of k and then begins high speed simulation. Simulation is 

begun either by the method or progressive synchronization or by the use 

of the two-dimensional f'irine squad which is discussed in Section 4. J. 

The method or progressive synchronization requires on the order of' 

s4:(k2 + k) states per cell and recocnition is ccapleted on or before 

time t = m + n - [I J -[ ~] + [T(m,n' - 1] + 2 ' ~ ·T(m,n) + a + n + 2. 

The firing aquad method requires on the order of s~(k2 + k) 

states per cell and recognitica is ccapleted on or before time 

t = 2(• + n) -[I] .. ~] + u.x { m,n} + [t<a.p,- g. The details of 

the latter fonaula follow frm a knowledge of' the two-dilllensional 

firing squad which is discussed in Section 4.J. 

This completes our proof of' the Speed-Up Theorem. 

We now state as a corollary to tb.e above proof the complete 

statement of the Speed-Up Theorem. 
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Corollary 2,2.1 

There exists a lmown etf'ective procedure which, when 

given a positive integer k and a cell type M, 

produces a cell type Mk such that 

i) M and!\ have the same initial and 

final states 

ii) any mxn !igure P which is recognized by 

M in time t is recognized by ~ in time 

• + n - [:] - [~] + [t k 1] + 2. 

In the proot ot the Speed-Up '?heoJ.Wa. we mentioned the idea of' 

having packing going on in one layer of the array and a firing squad 

going on in another layer of the array. 'l'his conceptual trick of 

resolving the processing of' an array into several s•i-independent 

but simultaneous processes and of' picturing th• as taking place in 

different layers o:r the array is simple but powerful. As an application, 

we present 

Theorem ~ (Minillizin1) 

Let '// be a predicate and let K1 and K2 be cell 

types which recognize 1/1 in times T1 (m,n) and 

T2(m,n) respectively, · Then there exists a cell 

type K which recognizes I/' in tiae 

T(m,n) a min {r
1
(m,n), T

2
(m,n)}. 

PROOF: Let M consist of two layers. <:me layer behaves llkl M
1

, the 

•)ther like M2• Cell ( 1 • 1 ) goes to its :final state as soon as either 
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layer caapletes its recognition. Since both layers recognize the same 

predicate, there can be no confiict. 0 

2.5 Computing Power 

We naw tum to the study of the class of predicates which can be 

recognized by arrays. 

O.tinition 

A predicate "/! is said to be a cellular predicate 

if there exists a cell type M which recognizes I/I • 

A predicate 'f is said to be a finite predicate if 

it contains only a finite number of figures. 

'lheor.a &d ('Boolean/Finite) 

The class of oellular predicates fol'lls a Boolean 

algebra and contains all finite predicates. 

Furthel'llore, given two cellular predicates ~ 

and Vi which are recognizable in tiae T1 {a,n) 

and T2(a,n) respectively, then both. i;. U ~ and 

I/{ n ~ are recognizable in t1M 11ax f T1(m,n),T2(11,n)}. 

PROOF 1 Proof of the closure of the class of cellular predicates under 

the Boolean operations ot union, intersection, and compleJDentation is 

directly analogous to the proof ot this property tor regular events. 

Layers are used as the Mthod ot ccabining two distinct cell types. 

To prove the second statement, let 'l/t be any finite predicate 

and let k be the smallest integer such that all f1gm'e8 in 1/1 are 
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k•k or ....Uer. Construct a cell type which packs by a factor of' k + 1. 

As socn as cell (1,1} is packed it will haft allot the information 

necessary to accept or reject the figure since any figure larger than 

kxk must be rejected and sine• there are only a finite number ot 

figures kxk or •aller. 'lbe entire proceau will be ccmpleted by at 

least tille ts 2k - 1. 

In recursion theory one finds that there &l"9 •t• which are 

recursively .... rable at raot recareiw. Tbat 1• there are .. t. 

which can be accepted (or rejected) by 1'lr1nc achiDea, bu.t which 

cannot be recogni.Md by 'l'uring •chines. The tollowin& theorem uova 

there is no analopu aitutian tor arraya. 

'lheoiw !t.1 
Let 'I/I be a predicate and let M be a cell type which 

accepts (or reject.a) V1. 1hen YI 1• a cellUlar 

predicate and a cell type M' which recopi••• 1' 

can be ettectivel7 constructed fria M. 

PR001 a Let ua a18'1M tut M aooept.1 '/', tM ... vbere M reject• '/I 

beinc siailar. We will give two ditterant. •Y• in which the cell 

type M' aay be constructed. 

(Method 1). Let an M' array conaiat ot two 1&)'9r•. The bot.tea 

layer acts aa M doe• and ~ e'l'9Dt.uall1 aooept or reject '/', in which 

case M 1 does also. 'Dle top la19r act• aa a oounter with a capacity 

ot (s - 1)1U1, where • i• the ra•ber ot state1 ot cell type M. (We 

u .. a - 1 rather than • since the edp state • doe• not utter tor 
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the present parpoaes.) When the counter reaches the value ( s - 1 )llll, 

a signal is sent to the oell ( 1, 1) which rejects the figure if it has 

not already been recognized. The basis for this method is that the 

entire mxn array of type M. which is being sillul.ated in the bottcn ia,.r, 

has only (a - 1)1111 states and hence 11USt be in a loop if it has not 

recognized the figure by time t = ( s - 1 )Jiil. It is assumed that the 

reader has no dit.ficul ty in seeing how to orgainize the top layer o! 

M' into a counter of capacity (s - 1 )Jiil. 

(Method 2a). In this method we will detect possible looping ot 

the M array by having two layers in the M' array each of which behaves 

as an M array-. CM layer runs at halt the speed or the other. The 

two layers will be in identical states at t:Ule t • 0, lMt the slower 

la;rer will imlediately tall behind. When the two layers again achieve 

identical statea, we know that they.llWlt be in loops, since the taster 

layer must be entering this state tor at least the second time. When 

such a loopinc condition is detected, the figurw may be rejected if it 

has not already been recognized. 

'lhe probl• here is how to detect when the two layers are in the 

same state. Ckle atraipt forward but tiae cca.ming •thod would be to 

have a third layer which obsern1 and ocntrols the first two. The 

third layer would cause the other two to adft!loe by one and two steps 

respectively and would then inhibit their action. Bach cell of the 

third layer would then caapare the states of the corresponding cells 

in the other two la19rs and wQUl.d generate a aicnal indicating 

whether or not tbe7 were in the same state. 'l'hese signals would be 

accuaulated at one point, ay cell (1,1), in much the same manner as the 
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parity information was a.cOWIUlated by KPAA• Cell ( 1, 1) would then 

decide whether the figure should be rejected or whether another step 

in "!:he simulation should be carried out. If the latter is the oase, 

a firing squad could be started to initiate another step in the 

simulation. This method. clearly bums up a lot of tille, since the 

acCUllUlation portion takes about • + n steps and the firing squad take• 

another m + n + max { m ,n } steps. A much faster method is now 

dascribed. It will be more expensive in teras of' states required. 

(Method 2b). We will use a method of' ncm-unif'ol'll siaulation. The 

basic idea is that wafts or simulation spread out frc:. the southeast 

corner. Ahead or each wave the two layers are at simulated times 

t 1 and t
2

• After a waft passes, they are at sillulated tiJDes t 1 + 1 

and t 2 + 2. Between the wafts ot simulation acme ccmpariaon wafts 

which accuaulate the necessary caaparison intomaticm. As each 

caaparison wave washes OTar cell ( 1 , 1 ) • all the intoraaticn necessary. 

to decide whether or not a loop as been entered is present and oell 

( 1, 1) can make its decisicn. The speed ot the Mthod comes frca the 

tact that one waft may follow immediately behind another. 

Qie way or stucb'ing the claaa or cellular predicates is to 

caapare it to the el.a••• ot predicates recognizable by other types 

ot recognition d8vicea such as the peraeptron. We have already seen 

one cellular predicate, namely ff PAR, which is not in the class or 

predicates recognisable by order or diameter lillited perceptrons. 

Other predicates which have been considered by Minsky and Papert(10) 

in connecticn with the perceptron will be discussed in Chapter J. 
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Rennie (S) has classitied arrays by the n\lllber of directions in 

which signals may flow within the array ano then cOlllpa.red the relative 

computing power ot variou.s classes. 

Other types of recognition devices uy be obtained by modifying 

normal one-dillenaional tape-accepting d9Yices to operate on two-

dimensional tapes. Caud.der for a manent a universal computer which is 

able to walk about on a two-dimensional taP41, sense the edges without 

stepping ott the tape, and which can read the sJllbola written on th• 

tC?pe. (A two counter machine provides a more tidy mental image of this 

process than a Turing machine, since the latter must drag its tape 

behtnd and is always in du1er of tripp1n1 over it.) We will use 

the phrase .E!.2,-diaenaiona.l uniYeraalcanwter t.o describe such a device. 

Given a figure represented on a tape, the machine can wander about on 

the figure and eventually accept or reject the .figure. The phrases 

two-diaensional finite state automaton, !!2-<iiaenSional WS•S2s 

autoutClll, and !!2-d1Mnsional linear bounded etau.ton describe 

sillilar adaptations ot one-dimensional devices. 

Bl\111 and Bevitt{S) introduced a special class of two-dimensional 

devices called pebble automata. 'lbese d8'Y1ces are just two-dimensional 

.finite state autcaata, which are provided with a fiDd finite n\lllber 

of markers (called pebbles) which the7 carry about with them and leaYe 

on squares as teaporary markers. Upon returning to a square on which 

a marker had been prerloualy placed, the automaton can sense its 

presence, pick it up, and carry it oft tor i'Urther uae it so desired • 
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D9fin1 tion 

Given two classus c1 and c2 of devices for recognizing 

predicates, we say that .Q+ !! strictly more fOWertul 

~ .Qa, provided that the class o:t predicates 

recognized by davices in c2 is a proper subclass of 

the class of predicates recognised by devices in c1• 

If these classes are the same, we say that ~ !,!, 

equivalent ~ J>9!!!r ~ ~· Note that the relation 

thus defined induces a partial ordering on the 

family or claaees or caaputing devices. 

Theorem 2.6 (Non-Uniwraality) 

Tvo-dimensional universal oaaputers are strictly 

more powerful than iterative arrays. 

PROOF: Certainly a uniftraal caaputer can recognize anything which 

can be recognized by an iterative array. '1he existence of a predicate 

which is recognizable by a universal computer, but which is not a 

cellular predicate can be obtained by a diagonaliution argument as 

!ollows. Set up saae fixed effective method for coding descriptions of 

cell types into figu.res. Then consider the predicate lf'otAG given as 

rollowas 

{ 

P is a coded description of a cell 

type· M such that an array or type M 

would reject P. 

Now l/IOIAG is certainly an effectively ccmpitable predicate. Assume it 

is a cellular predicate and let M' be a cell type wbich recognizes it. 
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Let P1 be the coded description of M1 • Then P' E lf 01AG ~ M' 

rejects P' by definition or IJ'otAG • Bu.t M' rejects P' <==:} P'; 'DIAG 

s2.nce M' is assuaed to recognize .,.-DIAG. lbis contradiction shows 

that Vt01AG is not cellular. 0 

Before stating the next two theo.r98, let us describe the model 

0f two-dimensional linear bounded automata which we will use. We 

could assume that such a device has a ane-diaensi<lllal awdllary 

working tape which is bounded 1n 19Ql1;.h by a linear function of the 

.'.Ullber of squares in the input figure. We will, however, take the more 

natural approach that the device has no auxiliary tape, but rather 

uses the input figure itself as a tape and is able to both read and 

write on the figure with a finite set of s~bols ot which the initial 

figure's ~111bols u7 be ·:>nly a subset. 'l'his model seems D1Uch more 

natural in the cmrrent context. We alao uw that the autaaaton is 

always started 1Ja its initial state an eqware (1,1). 

Theorem hl 

Two-dimensional linear bounded automata are strictly 

more powertul than pebble autaaata. 

PROOF: Using the model of a linear bounded autcmaton(LBA) described 

above, it is easy to ... how, given any pebble autmaton (PA), we 

can construct an I.BA to simulate it (in f'act to simulate it in real 

time). 

To show that I.BA' s are strictly more powerful than PA 1 s, we carry 

out the same diagcnalization argwaent found in the proof ot Theorem 2.6, 
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replacing universal ccaputer by LBA and iturative array by PA. 'l'herit 

are some things to check. First one must r:heok that a coding of PA 1 s 

can be produced such that a single LBA can look at a coded descripti"ll 

of any PA and then simulate that PA operating on its own description. 

Second since a PA may begin looping rather than accepting or rejecting 

a figure, we must ensure that the LBA. can detect such loops. 'l'his can 

be done by an adaptation of the second method of detecting loops in the 

proof of Theorem 2.5. Naaely two copies of the PA are simulated, one 

copy at one rate and the other, at half' the rate. In between simulated 

_:;taps the LBA checks to see if the two simulated PA's are in the same 

location and same state and if' they have their pebbles all arranged in 

the same manner. This must eventually happen if the PA' s enter a loop 

and hence the I.BA can determine if tne PA described has rejected its 

own description by looping. 

'lheorem 2,8 

Iterative arrays are equivalent in power to two-

dimensional linear bounded automata. Indeed, given 

any predicate lf which is recognizable in time 

T(m,n) by a linear bounded autcmaton and given any 

positive integer k, t/I is recogniu.ble by an array 

in tiJlle ~·T(m,n) + (1 + ~){a + n) + 2. 

Conversely, given any predicate l/I which is 

recogniu.ble in tiae T(m,n) by an array and given 

any positive integer k, Vt is recognizable in time 

4mn( ~ T(m,n~ + 1). 
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PROOF: It is clear that an array can sillul.ate a linear bounded 

.!\utomatgn(LBA) in Nal time. However, the :.:.BA can make its decision 

about the figure traa any position on the f:Lgure whereas the array 

must deliver its answer to cell (1,1). Thus it the LBA takes 

time T(a,n) to recognige the tigure, then an array might take as long 

as T(•,n) + m + n - 2. Given any positive integer k, we have by the 

Speed-Up 'l'heorm that l/I aan be recognised by an a.rray in time 

1. ( T(m,n) + • + n - 2) + • + n + 2 ( l.T(m,n) + ( 1 + l}(m + n) + 2. 
IC k k 

It is also not difticult to see how an LBA might simulate an 

array. It could use a working alphabet which would allow it to 

represent two dittenmt cell states within one square of the figure. 

One of these states would repNsent the state ot the cell at the 

"current time• and the other the state ot the cell at the •next time.• 

By malr1ng a pass over the array it would be able to update the states 

of each cell. '!he first method of passing over the array which one 

considers usually inYolws tracing out a path as indicated in the 

following diagraa, which shows the I.BA •1lfin1 a acari of one row. 

'!his is the path tnced out by an I.Bl which examines each of 

the neighbors or a cell 1n t.m so that it oan update the state or the 

cell, The black dots in the diagram aban represent the points at 



which the LBA has accumulated en011gh in!onnation to update a cell. 

Note that the LBA makes seven movements per cell. 

I.t' instead ot att.apting to update the state of each cell on 

each pass over the arr&T, w allow several preparatory -passes, we can 

reduce the average number of movements per cell to f011r. In this case 

the LBA keeps !011r simulated cells within each square of the tape. One 

represents the cell located at that position and the other three 

represent its westem, northem, and eastern neighbors. 

The LBA begins in the northwest corner and describes the following 

pa.th. 
..Ji. 

L ~ :J 

,,,._ 
~ :JI 

..... ..1 -.: ::a; 
-"'fl J!_ .i 
..1 

Dlring this pass each square can be marked to represent the states of 

its western and eastern neighbors. 

'!he LBA next describes the following path. 

~ 1111 

I~~ ~' ~"~ ~ " 
"" """ --

~ 

})iring this pass each square is marked with the state of its northern 

neighbor upon the first visit from the LBA and upon the second visit 
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the LBA, which is caning up fraa the south, ha.a all the information 

necessary to advance the state ot the cell by one time unit • 

.An obserYer stationed at a giwn cell in the interior of the 

array would note the following bu.ild up ot information where a dot 

represents infonaation about the current state or a cell. 

Before first visit by the LBA. 

After .tirst Visit. 

Attar second visit • 

.After third visit. 

After fourth visit. 

('!he state ot the cell has now been 

advanced by one simulated time unit.) 
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'!he entire process involves an average or four movements per cell 

per unit simulated time. But given any positive integer k, we can 

simulate not just one time unit per pass, but k time units per pass 

simply by increasing the info:naation deposited in each square by the 

LBA on its first three vi.sits to the square. or course the LBA must 

carry along more local information in this case. For example, if k = J, 

then the information capacity of each square would be sixteen cells 

and our observer would note the following sequence of events. 

Before first visit by the LBA • 

.After first visit. 

Atter eecond visit. 
. . . . . . . 

. . . 
. . . . . Atter t.hird visit. 

. . . . . 
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After tourth visit. 

(The eta te is now advanced by 

thnae simulated time units.) 

'!he tim1ng result stated in the theorera now follows immediately. D 

Corollary 2.a,1 

Iterative arrays are strictly aore powertul than 

pebble automata. 

PROOF: !mediate from 'lheoreaa 2.7 and 2.8. 

Let us return for a mOIDent to the idea ot a two-dimensional 

uni ve real compg ter. 

Dl1'1ni ti cm 

A predicate '/! is sud to be etf'ectively recopiizable 

it there exists a two-di.Jlenaimf.l universal canputer 

which recognizes Jt. We say we are given an 

effectively recognizable predicate fl provided we are 

given a finite description of a universal computer 

which recognizes "/I. 

We now state acme undecidabiltiy results. Rote that Theorem 2.6 

proved the existence of a non-cellular effectively recognizable 

predicate. 
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Theorem ~ 

Given an eff'eotively recognizable preciicate '/I, it 

is in general undecidable whether or not 'f is a 

cellular predicate. 

PROOF: By 'l'heora 2.6 there exist ef'f'ectively recognizable predicates 

which are not cellular. Let l/'1 
be such a predicate. Now given any 

Tu.ring machine T, let -;T be given by 

i 
PE '/'' and P is an mxn pattem and T 

doesn't halt in a•n steps when started 

on a blank tape. 

Now 'l'r is certainly effectively recognisable. Furthermore l/IT is 

finite ¢=::> T eventually halts on a blank tape, by definition ot 

lfr • !kit I/IT a t/14 ¢:::::::> T doesn •t halt an a blank tape, again by 

def'inition of '/Ir• Since finite predicates are cellular by Theorem 2.4 

and since I/I' is not cellular. we have that V'T is cellular ¢::::} T 

halts on a blank tape. The theorem follows by the undecidability ot 

the halting probl• for Turing machines. 

'l'heorem ~ 

Given a cellular predicate l/I and a cell type M, 

it is in general undecidable whether or not M 

recognizes '/'. 

PROOF: Let T be a Tu.ring machine and M 1 be a cell type which 

recognizes 11'. Constniot a cell type MT' which first simulates T 

starting on a blank tape for m steps or until T makes an excursion of 
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more than n uni ts from ~.ts starting point. (A similar construction 

based on the Post correspondence probl• rather than on Turing machines 

may be found in Chapter) of Hennie(8).) It T has not halted by the 

time the simulation ends, MT then simulate• M' and accepts or rejects 

I/I according as M' does. It T has halted, then MT sillulates M' and 

makes the opposite classification from the one M' would have 111ade. 

Thus MT recognizes 1/1 ¢=:::::} T never halts.. The theorm follows. 0 

Dtfinition 

Tvo cell types are said to be !Q,Uivalent if they 

recognize the same predicate. 

The following corollaries due to Hennie(B) are iaediate from the 

above theorems. Hannie shows the corollaries hold even if one assumes 

that signals can only travel fran east to west and !ran south to north 

within the array. 

Corollary 2.10,1 (Bennie) 

f4uivalence ot cell types is undecidable. 

Corollary 2.10.2 (Rennie) 

Given a cell type M, it is \Uldecidable whether or 

not it accepts any figures. 

2.6 Linear Predicates 

We now define an important class ot predicates. 
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Dltfinition 

A predicate If' is said to be liDear it there exist 

non-ne1ative integers p~ q, and r such that Vt 1111 

recognizable within tillle i:- + qn + r. 

In view of Corollary 2.1.2, we aight be justified in saying that 

the following theorem shows that linear :predicates can be recognized 

naimost" as fast as any predicate. 

Theorem 2.11 ----
It 1/1 is a linear predicate, then tor any real € > O, 

I/I is recogniuble within t1ae ( 1 + £ ) (• + n) + 2. 

PROOF: Let p, q, and r be such that '/I is recognisable within tille 

Pl -tqn + r. Let a = ux {P + r, q + r}. '!hen since m,n )1, we have 

pa + qn + r ' (p + r)a + (q + r)n ' a(• + n). Seace 1/1 is 

recognizable within t1JDe s(a + n). Let k be a positive integer wch 

that S < £. 'lhen by the Speed-Up Theorem Vr 18 reco¢zable w1 thin 

time ! · (m + n) + • + n + 2 ' ( 1 + £ X• + n) + 2. 
k 

Corresponding to Theorem 2.4 we have the following. 

'lheora ~ 

The class ot linear predicates is a Boolean algebra 

which contains all tinite predicates. 

0 

PROOF: 'lhe containaent ot all finite predicates was shown in the proot 

ot Theorem 2.4. Since we are interested in the values o!' the 

recognition-time functions only over the positive quad.rant in {m,n)-
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s~ce, we can bound the maximua of two linttar tunctions b;r a linear 

function. 'lbe result then follows !rem Corollary 2.4.1. 

Corresponding to Theorm 2 • .5 we have the following. 

'lheora &.lJ. 

Let I/I be a predicate and M a cell type which 

accepts (.or rejects) 1/1 in linear time. Then 

there exists a cell type M' which recognizes 

If in linear time. 

0 

PROOF: Assuae M accepts If, the case of M rejecting I/I is sill1.lar. 

Since M accepts Vt in linear tiae, n haft by a1ailarit1 to 'l'heorm 2.11 

that 11' must be acceptable in time (1 + f )(m + n) + 2 for any E > o. 

Let K1 be a cell type which accepts V' in time 2(11 + n) + 2. Modify 

M" by adding a second la19r which count. up t.o 2(• + n) + ) and then 

rejects the figure if it hasn •t already been accepted by M1 • Th• cell 

type so constructed is M'. 0 

Note that the correspondence or Theorem 2.1) to 'lheorem 2.5 is 

not quite complete. Namely we do not claim that M' is effectively 

constructable given M. It is certainly effectively constru.ctable 

given M and an integer k such that M alva;ra accepts 'I/I by time 

t = k(m + n). However, the problem of whether or not it is possible to 

effectively caapite such a k, given just K and the lmowledge that M 

accepts in linear time is open. A partial result is given by the 

.following theorem due to Mike Paterson (unpublished). 
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_The_or ....... ...,.. 2.14 (Paterson) 

Given a predicate 1/1, a cell tn>e M which recognizes 

1/1 • and gi'ftn that there is an integer k such that M 

recognizes Yt in time k(a + n). then the problem or 

finding a a1n1mm such integer k is in general 

unsolvable. 

PROOF: Let 1/1 be the •pty predicate. Given any Tu.ring machine T, 

constnict a cell type Kz which behaves as follows. It sillulates T 

for n steps on a blank tape. If T baa not halted, it rejects the 

input figure at tille 2(• + n). It T has halted, it rejects the input 

figure at time )(• + n). irbua MT recognizes l/l in tiae 2(m + n) 

~ T never halts, &.""lcl in time J(m + n) ~ T eventually 

halts. '!he result follows. 

Similarl.7 we bave the following. 

'lbeorem ~ 

G1. van a predicate Vt and a cell type M which 

recognizes lf, it is in general undecidable 

whether or not M recognizes I/' in linear time. 

0 

PROOFa As in the proof ot 'Dleora 2.14, let 1/1 be the •pty predicate 

and for any Turing machine let MT be a cell type such that 

MT recognizes l/I in time 2(m + n ) {:::::::> T doesn't halt 

and MT recognizes ~ in time 2(• n) ·~ T halts. The result 

follows. 

63 

0 



We will see in the next chapter that SQM predicates which would 

intuitively seem to require tiJlae on the orct.r ot a•n are in fact 

line;1r. Indeed, the existence of a cellular predicate which is not 

linear is an open question. There &l"9 .MDY candidates for- non

linearity. but there are no known •thods ot proving them to be non

linear. The onl.T method of establishing ain1mal time bounds which is 

available is the Interdependence Theorea, which is only useful in 

establishing bounds less than a + n - 1. Cole(6) in his thesis on 

tterative caaputere has established certain computations which cannot 

be done in real tille under restrictions an interoell cClllllllunications. 

However his model receives information from the external world as the 

canputation progresses and can be overloaded as he shows. In our model 

the input has already been digested at till8 t = O, so no contusion of 

inputs is possible. Modified diagonalizaticn arpaents have been 

tried by the author and by several other :people; bit promising as they 

seem, every such argument has contained a naw. Finally we might add 

that this open question is related via Theorem 2.8 to an apparently 

open question about deterministic linear bounded automata. Assuming 

m = 1, Theorem 2.8 implies that if all cellular predicates were linear, 

t.:ien all predicates {i.e. languages) recognizable by deterministic 

LB.A (using our particular aodel in whicab the inp11t tape also serves as 

the working tape) could be recognized in t.iae proportional to the 

square of the length ot the tape. Hence the existence of a language 

requiring on the order ot n3 units or time for its recognition would 

show that non-linear cellular predicates exist. As far as the author 

knows, no such language has been found. 
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CHAPTER J 

RECOGNirION OF TOPOLOGICAL INVARIANTS 

In this chapter we will study the recognition of some specific 

predicates over black and white figures. All of these predicates 

depend only on topological properties of the figure such as 

connectivity, simple connectivity, number of components, Euler number, 

and so on. The principal result of this chapter is a fundamental 

transfonnation of figures which allows the construction of algorithms 

for recognizing in linear time a wide variety of these predicates. 

Many of these predicates have been studied in Minsky and Papert ( 1 O) 

and in Blum and Hewitt(.5). The interested reader may thus compare 

arrays with perceptrons and pebble automata with regard to recognizing 

these predicates. 

J.1 Basic Terminology 

Assumption: Unless otherwise specified, all figures and 

predicates in this chapter are assumed to be over I 2 (i.e. black and 

white). 

We begin by establishing some terminology. 

Dafinition 

Two cells at (i,j) and (p,q) are said to be 

adjacent if I 1 - p I + I j - q I ~ 1 and are said 

to be neighboring if I i - p I ~ 1 and j j - q I ~ 1 • 
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Two black cells are connected if there is a chain 

of pairwise adjacent black cells beginning with 

one and ending with the other. Two white cells are 

connected if there is a chain of pairwise 

neighboring white cells beginning with one and 

ending with the other. 

Note the asymmetric definition of connectedness for black and for 

white cells. Some such asymmetric definition is necessary if one is to 

,· . .::tain such "nice" properties as the Jordan curve Theorem. A notion 

of connectedness which is symmetric with respect to black and white 

can be obtained by assuming that each cell "touches" all of the 

neighboring cells except the ones to the northeast and southwest. 

This notion which is derived from a hexagonal partition is, however, 

asymmetric with regard to direction. 

We assume that figures are presented against a white backgroWld. 

Hence the following definition. 

~finition 

The equivalence classes of black cells under the 

relation "connected" are called the canponents of 

P. The equivalence classes of white cells under the 

relation "connected" which do not contain cells on 

the border (that is cells in rows 1 or m or in 

colUJIUls 1 or n) are called ~· The remaining 

equivalence classes of white cells are lumped 

together into a class of white cells called the 
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backgroWld. A component or hole which contains only 

one cell is said to be isolated, otherwise 

~-isolated. 

For example, the following figure has five components (two of 

which are isolated) and t~ree holes (one of which is isolated). 

Another exuple is an 8>e8 checkerboard which according to our 

definitions has thirty-two oc:aponents. all of which are isolated, and 

no holes. 

IBfinition 

Given a figure, one can construct an associated E:!!, 

which represents the containment relationships 

between the background, the components, and the 

holes. A figure and its associated tree are 

shown below. 
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Two figures which have isomorphic trees are said 

to be topologically equivalent, where by isomorphic 

trees we mean isaaorphic as labeled graphs or as 

unoriented rooted trees. 

IB!inition 

A predicate I/I is said to be topologically 

invariant if whenever P and P' are topologically 

equivalent figures, we have PE 1/1 ~ P'E Y'. 

J. 2 An Example: Y'coNN 

The first topologically invariant predicate we study consists of 

the set of all connected figures. 

IBfinition 

The predicate 1/'CONN is given by 

PE 'l'coNN ~ P contains at most one caaponent. 

If we were to ask the reader at this point to design a cell type 

which recognizes 'JtoNN• his first attempt might very well be an erase

one-component-and-see-if-anything-is-lert algorithm. We now describe 

such an algorithm. 

At time t = O the northwest corner cell emits a scanning signal 

.! which begins to scan the array row by row in a back and forth 

manner until it encounters a black cell. This stage of the process is 

illustrated in the diagrams on the following page. 
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t = 0 t = 1 t = 6 

At the point at which ! encounters the first black cell, two 

things happen. First ot all a chain reactiai of erasure is set ott 

within the component. to which the black cell belongs. The black cell 

which was struck by ! turns white and emits an erase signal ! to each 

of its four neighbors. The ! signals are ignored by white cells, but 

an ! signal striking a black cell causes it to tum white and eait ! 

signals to its four neighbors. In this manner the entire component is 

erased. 

The second thing which happens when • encounten the first black -
cell is that ! changes into a waiting signal !!• The waiting signal 

continues the same zigzag scanning motion wbiah ! had been using, but 

does not interact with either black or white cells or with ! sitnals 

which are propagating around the array in various directions. The !! 

signal eventually completes the scan or the array and strikes one of 

the bottan comers of the array. At this point the erasure of the 

component is guaranteed to be complete. 

The .first three steps of the erasure process are shown in the 

figure on the following page. 
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t = 1 t•B t•9 

When ! strikes the comer at the end of its scan, the figure 

contains one less component than it did to begin with. All that 

remains to be done is to see if the 19&1ning figure is blank. This 

is accomplished by having the w signal rebound f'rom the last comer as -
an accept signal ! which scans up the array searching for a black cell. 

If ! encounters a black cell. it is converted into a reject 

signal ! which heads directly for the northwest comer to cause a 

reject. If! doesn't encounter a black cell, it eventually strikes 

the northwest corner causing an accept. 

The case of the blank figure is handled by having the .! signal 

rebound as ! when it completes its scan. 

The cell type inaplioitly described above recognizes connectivity 

in time approximately 2mn and hence is not linear. The reader is 

challenged to find a faster method of recognizing connectivity before 

reading on. A good (or bad, depending on your point of view) example 

to keep in mind while searching for a linear method is the figure 

illustrated on the following page which has length and area of about 

-imn. 
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J.J A Fundamental Transformation 

We now study a transformation of black and white figures which 

will have important applications to the recognition of topological 

invariants by iterative arrays. By transformation we mean a mapping 

from black and white figures into black and white figures. The 

transformation will be studied in its own right in this section and 

its applications will be discussed in the following section. This 

transformation was discovered by the author while he was attempting to 

prove that connectivity could not be recogni&ed in linear ti.me. 

Since its first application was to show that connectivity could be 

recognized in linear time, we call it the connectivity transfonnation 

and denote it by T. '!he image of a figure P under T is denoted by 

T(P). 
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For heuristic purposes we will describe the transformation as 

taking place in three steps. 

Step !• Color all southeast comer cells 

of the black subfigure red. (That is it a 

cell is black and its eastem and s0t1them 

neighbors are white, color it red.) 

Step ,g,. Color all southeast corner cells 

._~x the white subfigure black. ('!bat is if 

a cell is white and its eastern and southern 

neighbors are black and its southeastern 

neighbor is either red or black, color it 

black.) 

Step J.• Color all red cells white. 

i Step 1 

m 
Step 2 

~ ~ ~ ~~ 

R 

~ R ~ 

R R 

step 3 

Propgrties ,2! .I: We now informally descrl.be the properties ot T. 

The remainder of this section will be devoted to proving these 

properties in a series ot lemmas. If one considers repeated 

applications of T to a figure, one observes that each component is 

reduced to an isolated component which then disappears. Dlstinct 

components remain distinct and either vanish at different points 

or at the same point at different times. Similarly, each hole is 

reduced to an isolated hole which then vanishes with distinct holes 

remaining distinct and vanishing at different points or different times. 

It is easy to calculate exactly how many applications of T will be 
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required to reduce a given component or hole to a single cell and 

exactly where that cell will be. The entire figure, no matter how 

complex, will be reduced to the all white background in less than 

m + n applications of T. 

To begin proving t.he above statements, we need some way of 

relating the components of P to those of T(P). This is done in the 

next four lemmas by using the concept of a stationary point. 

~fi.nition 

A cell (i,j) is called a stationary point of P if 

it is black in both P and T(P). 

Note that the stationary points are exactly those black cells in 

P which are not southeast corners of the black subfigure of P. 

Lemma ! 

Every non-isolated component of P contains a 

stationary point. 

PROOF: Let C be a non-isolated component and let x be a northwest 

corner of C. Then x must be a stationary point for otherwise it 

would also be a southeast corner and hence C = { x} would be isolated. D 

~z. 

Two stationary points are connected in P if and 

only if they are connected in T(P). 

PROOF: [ ==}_] Let x and y be two stationary points of P which are 

connected. Then by definition there exists a sequence Xo,x1, ••• ,.xn 
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of distinct pairwiae adjacent black cells such that x = XO and 

y = xn. We use induction on n. If n = 1 , then x is adjacent to y and 

we ar.e done. If n 111 2, then either x
1 

is also a stationary point 

in which case we are done, or x1 is a southeast corner. In the latter 

case we have the situation depioted in the figure below, possibly with 

x and y interchanged and one sees that the cell z will be black in 

T(P) no J11B.tter what its color in P. Thus x and y are connected in 

T(P). 

) 

p T(P) 

Now assume n ~ ). Obsern that any Qhain ot distinct pairwise 

adjacent black cells cannot contain two consecutive southeast comers. 

Thus either Xn-2 or ~-1 is a stationary point and we may apply the 

induction hypothesis to the chain XO• ••• , ~ and Xie• ••• , ~ 

where k is either n - 1 or n - 2. 'l'hus x is connected to y in T(P> 

via ~· 

[¢::=: J SUppose x and y are connected in T(P) and let 

XO• x1, ••• , xn be a sequence of pairwise adjacent black cells in 

T(P) such that x = J&O, and y = Xn• Again w use induction and again 

the cases for n = 1 and n = 2 with x1 a stationary point (of P) are 

trivial, so assume n = 2 and x1 is not a stationary point. Then x1 

must have been white in P since it is black in T(P). Hence x1 must 
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have satisfied the conditions in step 2 ot the description of T and 

the situation depicted below must have existed in P. 

We know that x and y are adjacent to ~ and are stationary points 

of P. Therefore it will suffice to show that all stationary points 

of P which are adjacent to x1 are connected in P to the call labeled 

z,. Fraa the diagram above we sea that the eastern and southem 

neighbors of x1 are indeed stationary points of P and are connected 

to z. Now consider the northern neighbor of x
1 

which has been labeled 

n in the diagram below. 

Assume n is a stationary point. Then n cannot be a southeast comer 

and hence either x., or n' is black. But x1 is whi ta, thus n' must be 

black. Therefore if n is a stationary point, it is connected to z via 

n'. A similar argument holds for the western neighbor of x
1

• This 

completes the case for n = 2. 

The remaining cases for n ) J follow as before fraa the 

observation that either X'n-1 or ~-2 is a stationary point, although 

different reasoning must be used to make this observation now since 

:XO• ••• , ~is a chain in T(P). 
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Caabining lemas 1 and 2 w1 th the observation that every black 

cell in T(P) is either a stationary point ot P or is adjacent to a 

stationary point, we have shown 1 

There is a canonical one-to-one col"1"8spondence 

between the nan-isolated ccnponents of P and the 

canponents of T(P). 

We now state without proof the corresponding leaa for holes. 

which can be proved by methods similar to those above. However, a 

slightly different concept than that of stationary point must be used 

since some holes such as the one illustrated below have no stationary 

points. 

p T(P) 

Lema 4 --
'!here is a canonical one-to-one correspondence 

between the non-isolated holes ot P and the 

holes of T(P). 

The foil owing lenaa should be obvious by now. 
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If P contains no isolated components or holes, 

then P and T(P) are topologically equivalent. 

We now show bow to compute the number of applications of T 

required to reduce a component to a single square and where that 

Square will lie. Identical results can be proved tor holes using 

similar arguments. 

Detini ti Oil 

Given a caaponent C of a pattern P, let 

rr°Cc) = c 

tc(c) = the canonical image ot tc·1cc) under 

T tor k o (prondlld it exists) 

n( C) = min { i 1 row i intersects C l 
w(C) = min {J I column j intersects C} 

se(C) • ax {1 + j I (i,j)E C} 

Note that n(C), w(C), and se(C) represent three lines tonaing a 

triangle such that C lies within the triangle and touches each line 

as shown in the figure below. 

n 

w 

We will show that the component vanishes at the cell indicated by 
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the dotted lines and that the number of applications of T required to 

achieve this is equal to the distance from this cell to the se line. 

Le111111a 2 
If C is a non-isolated component, then 

n(T(C)) = n(C) 

w(T(C)) = w(C) 

se(T(C)) = se(C) - 1 

PROOF: [n(T(C)) = n(c] It is clear that n(T(C))~n(C), since 

each black cell in T(C) is either a stationary point (of P) or is the 

westeni neighbor of a stationary point. On the other hand, if (i,j) 

is the westeni most point of C which lies in row n(C), then (1,j) must 

be a stationary point and hence n(T(C)) ( n(C). 

[w(T(C)) = w(c)] 'nds result follows immediately from the above 

and the symmetry of T with respect to north and west. 

[se(T(C)) = se(C) - 1] Any cell (i,j) in C such that i + j = se(C) 

must be a southeast oonier of C and hence is adjacent to a stationary 

point (p,q) such that p + q = se(C) - 1. Thus se(T(C)) ~ se(C) - 1. 

On the other hand all suah cells (i,j) do not appear in T(C), so 

se ( T( C)) ~ se ( C) - 1 • 

If C is a non-isolated component, then 

tc(C)(C) is an isolated component located at 

(n(C),w(C)), where k(C) = se(C) - n(C) - w(C). 

PROOF1 By lemma 6 we have k(T(C)) = k(C) - 1. Thus by induction 
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k(.f<(C)(C))) = k(C) - k(C) • O, which can only hold tor an isolated 

ccaponent. That component 11Ust be located at (n(tc<0>cc)),w(tc<0>cc)J) 
which is (n(C), w(C)) b7 i:..r.a 6. 

Lema ~ 

If Pis an ••n figure, then t1 ... -1(P) is the 

all white figure. 

PR001s Apply Lemlla 7 and the fact that k(C) < n + n - 2 tor any 

component C of P. 

Lema 2. 
It P is an m•n figure containing c components 

and h holes, then the total nuaber of isolated 

ccnponents appearing in the figures 

P, T(P), ir2(P), ••• , if1+11•1(P) is c and the 

total number or isolated holes is h. 

PROOF s Immediate from Lemas 7 and 8. 

3.4 Linear Recognition of Topological Innriants 

The connectivity tranaf'o:naation, T, described in the previous 

section f'orms the basis of the cell types to be presented in this 

section. 'lbese cell types all have two ccamon cbaracteristicss 

i) They recognize topolog1call7 invariant predicates 

in linear tiJae. 

ii) They consist of two layers, a lower or transformation 
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layer which carries out suooeas1Te connectivity 

transtoraations on th• initial figure, and an upper 

or obsern.tion layer which watches the transformations 

taking place, gathers and processes info:nnation, and 

finally comes to a decision about the figure. 

1he transformation layer can carry 011t nooeasive applications ot 

the connectivity transronaation, T, at the rate or one trans.formation 

every two units or time as follows. At time t • 0 (sod 2) the latest 

figure P is represented in the transfomation layer. At ti.Ile 

t = 1 (J11od 2) each cell has entered a state which represents not only 

its own state at the previous time, but also that of its southem 

neighbor. Each cell now has access to the information necessary to 

enter the appropriate state 1n T(P). By the n.xt unit or time, 

t ii 0 (mod 2), the transtozwatian is canplete. The intermediate step 

is necessary to pass intomation aroqnd the corner so that a cell in 

the white state can determine the state or its southeastern neighbor. 

(This step could be eliminated i.f diagonal connections were allowed.) 

The process is illustrated below. 

t=o t iE 1 t = 0 

The observation layer watches tor the disappearance of ccmponents 

or holes in the transformation layer and generates appropriate signals 

at each such disappearance. These signals are then processed and a 
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decision is reached. In some cases it is necessary for the northwest 

corner cell to know that it has received all the infonnation required 

for a decision. In these cases the southeast corner cell, sends out a 

timing signal which propagates through the array at an appropriate 

rate. When the timing signal reaches the northwest comer cell, all 

other signals must have preceded it, and a decision can be made. 

We now present some topologically invariant predicates whiah are 

linear. In each case the proof that the predicate is invariant rests 

on the construction of a cell type which recognizes the predicate in 

linear time. As explained above, all of these cell types operate in 

two layers with the lower layer being the transformation layer. Thus 

to describe any given cell type, we need only describe the observation 

layer. 

1'heorem .l:.1 

l/lcoNN is a linear predicate. 

PROOF: Signals are only generated by vanishing components. As each 

signal is generated it heads for the northwest corner cell. '!he figure 

is rejected if more than one such signal is received at the corner. If 

two such signals collide on the way to the comer, they combine to 

form a reject signal which, when it reaahes the comer, will cause the 

figure to be rejected. 

n,finition 

Let l/tsc be given as follows 

P E 'Y sc ¢:::::? all components of P are simply connected. 
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'.tbeoz. ~ 

Y'sc is a linear predicate. 

PROOF: Signals are generated by vanishing holea. If the northwest 

conter receives any such signal. the figure is rejected; otherwise it 

is accepted. 

'!he above two predicates are special cases of a more general 

predicate. 

Dafinitiop 

For any c1, c
2 

,h1 ,h2 such that 0 'a1, o2,h1'~ !S oo 

let 1f' ~: ~ be given by 

c1 'c 'o2 and h1 'b~~ 

where c is the number of components 

1n P and h is the number of holes. 

'lbeOreDl J.:.l 

For any 0' c1 ,c2,b1•hi' oo , tbe predicate l/'~;.~ 

is linear. 

PROOF: This is a simple adaptation of th• methods employed in 

Theorems J.1 and J.2. D 

In the abovs theorems we have merely used our transformation to 

count components and holes. But Lema .5 indicates that the 

connectivity transformation preserves additional topological 

info.nnation. By introducing a slightly different mode of operation in 

the observation layer, we may take advantage of this tact. Con.sider 
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the following predicate. 

Dtfinition 

Let 'l'Noc be the predicate given by 

p E l/'NDC ¢:=::} 

No ccmponent. ot P is doubly 

connected (i.e. no canponent 

or P has exactly two holes). 

1/r iuC C 
Now TNDC is not or the form T ~.~ , but nevertheless we have 

Theorem~ 

l/'Noc is a linear predicate. 

PROOFi As before signals are generated by vanishing holes, but unlike 

previous oases they do not medlately head tor the northweat corner. 

Instead they remain positioned over the OClllponent. 1n which they were 

embedded. As these ccmponents graduall.7 shrink and 1Jbitt under the 

action of the connectivity t:ranstomation, the hole signals shitt so 

as to remain positioned over the caaponents in which they originated. 

By the time the caaponent is finally reduoed to a single cell, all hula 

signals associated with it have collided and a signal generated by 

their combination is centered over the now isolated component. In 

the case of '/!Noc this COlllbined signal would indlcate whether the 

component had originally contained 0, 1, 2, or more than 2 holes. In 

the case of 2 holes, a reject signal would be .generated which would 

cause the figure to be rejected. otherwiae both the cOlllponent and 

the canbined hole signal vanish at the next unit of time. 

8J 
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'!he method of making a signal generated by a vanishing hole 

remain above the component in which the ho::.e was embedded can be 

applied in a dual manner. Thus the predicate "no hole contains 

exactly two components" could be recognized since it is just the dual 

of ¥'Noc • '!his procedure may be extended as in the following theorem. 

Theorem .J.:.2. 

Given any figure Q, let 11':a be the predicate 

given by 

{ 

P is topologically 

equivalent to Q. 

'!hen '/'=. Q is linear. 

PROOF: Recall that two figures were said to be topologically 

equivalent if they had isanorphic associated trees. 'thus given an 

input figure P, we can begin computing its associated tree. If at 

any point in the computation it becanes apparent that the tree of P is 

not isomorphic to the tree of Q, a reject signal can be generated. 

otherwise the computation will continue to completion and P will be 

accepted. The c011putation of the tree of P can be carried out in the 

following manner. 

When a hole vanishes (assuming there were no components located 

in that hole), it generates a signal which represents the subtree ~. 

This signal floats above the component in which the hole was located. 

If two such signals should collide, they combine to form a signal 

representing @ • 
®~ 

(Extensions to more holes is clear.) When 
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eventually the caaponent vanishes, it replaces the signal © by a 

0~ 
signal A . Thi• signal then noato aboYe the hole (or 

possibly the backgrOWld) in which the caaponent was located. The 

process now continues. In general the signal generated by a vanishing 

subfigure will represent a tree which is obtained :tl'c:a that sub-

figure's associated tree by adjoining a node urkad •B• to the root. 

When two such signals collide, they join to term a signal representing 

the tree obtained by identifying the "B" nodes. By the time P has been 

reduced to the background and all signals have merged at cell (1,1), 

the resulting signal will represent the tre. associated with P. 

The process described above is workable bu.t for one fact. Since 

there is infinite variety in associated trees and subtrees, we need 

an infinite number of signals to represent taa. In the case of 

recognizing 1/l:Q this restriction is not ef'fecti"N since we need only 

enough signals to represent all the possible subtrees which could be 

fonned while constructing the tree associated with Q. Anytime two 

signals collide or a component vanishes in such a manner that the 

resulting signal has not been provided for, it indicates that P is not 

equivalent to Q and a simple reject signal may be produced instead. D 

Corollar,y 3.5.1 

Given any figure Q, let 1/lcQ be the predicate 

given by 
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the associated tree or P 

p E lf'c Gl ¢:::::> is isomorphic to a subtree 

or Q. 

Then l/'cQ is linear. 

PROOF: A cell type which recognizes fctil may be constructed by a 

simple adaptation or the method or Theorem J.5. 

Corollary J.5.2 

Given any finite set J of figures, let ~ be the 

predicate giv.n by 

{

there exists an S E J such that P 

is topologically equivalent to s. 

Then ~ is linear. 

PROOF: The result follows immediately !rem Theorem 2.12, since 

V1i, = U V'.s • ,. S•I -

D 

There seems to be an endless variety or topologically invariant 

predicates to which the connectivity transformation may be applied 

to obtain linear results. We will conclude with the mention or 

two predicates which seem interesting and amusing. 

I8finition 

Let I4 = {b,w,s,r} (representing black, white, start, 

finish). A figure P over r4 is said to be a !!!.!.!. 

provided it contains exactly one occurence of s 

(start) and exactly one occurence or r (finish). 
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.A. maze P is said to be solvable i1' the cells 

containing the s and t are connected by a chain of 

pairwise connected black cells. 

Theorem l!,!±. 

Let l/IMAZE be the predicate over I4 given by 

PE l/'MA'Zf' ¢:=:::} P is a solvable maze. 

'lben Y'MAlE is linear. 

PROOF: Glven a f'igure P over I4 , it can be. determined in a linear 

amount of time whether or not it is a maze. If it is, a two layer 

co?Ulectivity type array can determine solvability in linear time by 

having the s and f tloat above the components in which they were 

embedded. They will oolli~ if and only if the uze is sol 'fable. D 

In view of TheOIWI 2.11, the above result says that we can test 

whether two gi van points in a figure are connected in time 

( 1 + E. ){m + n) + 2. !lit in many figures the shortest patn between 

such points is on the order of jmn in len1th. Thus we can determine 

that two points are connected in an amount of time which is less than 

that required to tran•it a signal along the short.est path in the 

component connecting them (l). 

An applicaticxu The final predicate n consider is included as 

a highly impractical application or the foregoing methods. Let any 

figure over I4 represent a map of some islands in a lake with white 

representing water and all other symbols representing land. Let b 

represent a bare plot of ground, s a plot on which a sheep is standing, 
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and f a plot on which a sh•p dog (Fido) is standing. Then it will be 

of relief to shepherd.a who keep their flocks on islands to know that 

the following predicate is linear. 

p E l/'SHEFPD06 
~ { every island which has sheep has 

a sheep dog. 

The proof is cnitted. 

Highf!! Dilllep.aionsz ~e might ask for a three-dimensional analog 

to the connectivity transfo:mation which would allow a three

dimensional iterative cube of automata to test in linear time whether 

an inpu.t figure (input solid?) is connected. Ho such transfonaation 

has been fou.nd. Indeed. one can see that any transfonnation which 

would handle three-dimensional cases 11Ust be sC111ewhat more complicated 

than a simple shrink-the-cc:aponents-to..a-aingle-point approach, since 

one can have figures such as two interlocking rings which must be 

unlocked before being shrunk. 

As a problem intermediate between two and three dimensions, one 

might study the problem or recognizing connectivity in multi-level 

mazes of finite depth. The solution in linear time of multi-level 

mazes would allow us to relate arrays and two-dimensional finite state 

automata in an interesting manner. 

If multi-level ma.zes are solvable in linear time 

by iterative arrays, then any predicate recognizable 

by a two-dilaensional finite state autanaton is 

recognizable by an array in linear time. 
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PROOF: Assume that multi-level mazes are solvable in linear time. 

Let A be a fixed two-dimensional finite st~te automaton which 

ope::.,ates on figures over the set I. Then construct the cell type MA 

which operates as follows. At time t = 0 the figure over I is present. 

At time t = 1 the array has created an a-level maze, where s is the 

number of states in A. Ea.ch level represents a state of A. If cells 

{i.j) and (p,q) are adjacent and if the initial input at (i,j) would 

cause the automaton to go frQD state k to ~tate r and move from (i,j) 

to (p,q), then a connection between level k at (i,j) and level r at 

(p,q) is established in the maze. Thus we see that by time t = 1 the 

array has constructed a map of the movements of A over the figure. 

This map contains the path actually traced out by A when it is placed 

on cell (1,1) in its starting state as well as many other paths 

corresponding to state/location configurations which A would never 

actually enter. The question "does A accept the figure?" now becomes 

the question "does the multi-level maze have a solution?" (using the 

initial state level at (1,1) as the start point and any accept state 

as a finish point). By assumption this problem is a linear problem. 

The author has tried several modifications of the connectivity 

transformation in an attempt to find a successful method of solving 

multi-level mazes in linear time, but none have worked. Multi-level 

mazes can certainly be solved in time proportional to m•n, but their 

linearity is still an open question. D 
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3.5 Euler Number 

IB!inition 

The ~ ID!!ber of a black and white figure is 

the number of components in the figure Jllinus the 

number of holes. 

Minsky and Papert( 10) show that predicates depending in a 

reasonable way on the Euler number ct a figure are easily recognized 

by peroeptrons. 'lheir method o! determining the Euler number is to 

perfonn a weighted sum over certain subtigures. Namely, each 

occurrence of the subfigures ~ and • counts +1 and each 

occurrence of the sub.figures - and E counts -1 • They showed by 

induction how the sum of these integers O'ftr a figure is equal to the 

Euler number of the figure. 'lheir scmewbat obscure motivation for this 

process is that ~ is analogous to a vertex, • to an edge, and 

~ to a race. Actually there is a quite simple interpretation of 

their result. If we agree to deposit the count (t1) for each of 

these subfigures in its southeast comer 8Quare and if' we agree to sum 

the counts deposited in any given square, we find that only two cases 

arise where a non-gero count is attributed to a square. These 

correspond to the sub.figures L and R below. 

L~ 
+1 J 

90 



Now think of an observer who starts walking along the outer 

boundary of a canponent, keeping the component on his left, and who 

eventually returns to his point of departure. Dlring his stroll he 

will have made a number Of lett- and right-hand turns. Since he was 

on an outer boundary, he must have made a total of four more left than 

right tums in returning to his starting point. If instead of 

counting all tums, one counts onl.;r those left tums which change 

direction f'ran north to west and onl;r those right tums which change 

direction from west to north, then one will have exactly one more left 

than right tum. But these special north-to-west and west-to-north 

turns occur only at L and R configurations respectinly. Thus an 

outer boundary has exactly one more L than ll configuration. Similarly 

an inner boundary has uactly ane more R than L configuration. Hence 

the sum over a figure of the weighted L and I configurations is equal 

to the difference between the numbers ot CNter and inner boundaries. 

But this is just the difference between the nuaber ot cmponents and 

holes, which in tum is the luler number or the figure. 

As an example, the figure 

would produce the following distribution of counts. 
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.----·-·--- -·---·-- ---~----~-~~--~~---

+I +f 
-I +I 

-I +I 
-I 

We can easily design an array which would by time t = 2 hava 

transfonned an original figure into its corresponding pattern of +1'a 

and .. 1•s. This might be a natural first step in setting out to recog

nize a predicate which depends on the Euler nW11ber. Consider for 

e.:x:mnple the predicate, ~ULE~ • which contains all those figures 

having positive Euler numbers. After transfoming the figure into a 

distribution of counts, the problem bec011es simply to determine 

whether there are more +1 1s than ~1 1 11. 

This can easily be done in t1ae proportional to m•n. It 

ce:rrtainly seems ·that one should be able to detect a surplus of one 

type of symbol over another in linear time, but surprisingly, this 

question l"81Dains open. 

J.6 Topological Match Problem 

A prime candidate for a non-linear recognition problem is the 

topological match problem. In this probl• we present two black and 

white figures to the array and ask whether or not the two figures are 

of the same topological type. The best known times for solving this 

problem are on the order of {a•n)2• We will mention several methods 
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of solving this problem below. 

Represepting pairs gl, t'i.gsres: Let us make the following 

convention for representing pairs of black and white figures. Given 

two black and white figures we wish to ccnpare, we .first adjust them 

to have the same number of rows by adding extra rows of white cells 

to the bottan o.f' whichever figure has fewer rows. The figures which 

now have the same number of rows are placed side by side, separated 

only by a single columi of red cells. The total figure consisting of 

the two black and white figures and the red divider constitutes the 

input to our array. We will refer to the two figures as the 1:!fi 

figure and the ri&bt fiG!'!. An array which is to solve the 

topological match probl• will acqept onJ..y thoae figures which are in 

this form and in which the left figure is topologically equivalent to 

the right. 

Convertipg ! tip.re~ .B:!!, repreHntatisp: It is possible to 

design an-ays which solve the topological match problem by dealing 

direcUy with the figures as initially presented to the array. It is 

also possible to first convert the figures into representations of their 

associated trees and then perform is<norphism checking on their trees. 

Since topological equivalence of figures was defined in teras of 

isanorphism of the associated trees, we feel the tree ccmparison 

method is conceptually cleaner as well as auch easier to describe. 

The process of converting a figure into a representation of its 

associated tree appears to requi~ on the order of (m·n) units of time 

to complete. Since all known methods of ocmaparing figures or trees 

for isomorphism take on the order of (m•n)2 units of time, the 
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conversion process does not alter the twaotional tom of our recognition 

time. By using speed-up, we may c~aat.e enti.l"el7 tor the tiae spent 

in conversion. 

The conversion process may be thought ot as taking place in the 

following two steps: 

1) one cell in each component or hole is chosen to 

represent the corresponding node in the associated 

tree and 

ii) the noct.s are connected topther by a pathway of cells 

in a manner which represents their connectedness in 

the associated tree. 

We now describe a process for conftrting a figure into a tree in 

which these two steps oftrlap. S1nCe the diati.notion between back

ground, component, and hole will be relatively unimportant in the 

following discussion, w will uae tbe ten sm 1lo refer to any of th811. 

The background is b7 dltinition one area, bat it •Y be in fact 

disconnected by a ccaponent which to.iches the ..,_s of the array in 

several places. A disconnected backgrowld. represents a dif!'icul ty 

for the process about to be described, since it recognises the 

integrity of an area by its connectedness. We will assume that the 

1.'igure to be processed .baa an all white border and hence a connected 

background. Any 1.'igure which does not haft such a border mar be 

treated as if it did bf having the border cella or the array pretend 

to be double cells with the outer oeJ.l being white. 

As an example we will follow the f'lgure given in the following 

diagram through its conftrsion into a tree representation. 



t .. 0 

Cur process involfts a row by row soan of the entire figure by a 

signal which we will call the scener. 'l'be scanner will travel from 

west to east along the top row, then •an south one row and travel 

from east to west along that row, mcmt sa.ith a row and so on. Each 

time it strikes an area tor the tirst time, the scanner pauses while 

that araa is processed. 'lhe processing of a new anta has three points 

of' interesti 

i) The cell on which the scanner is sitting becomes 

marked as the node correspondine to that araa; 

ii) a linking pathway is established between this newly 

created node and the appropriate node above it in the 

tre• representation; and 

iii) the entire area is marked by a contagious process so 

that it will be recognized by the scanner as having 

been processed. 

Shortly attar the scanner has caripleted its scan~ the transformation 

will be canplete. 
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At t = 1 the scanner is sitting on cell ( 1, 1) and begins waiting 

for the background to be processed. We will represent the location ot 

tht: scanner by drawing a small triancJ.e ( • ) in the lower right-band 

corner of the cell in which it is located. A cell which has become a 

node will be denoted by a hea'V7 outline ( D ) . Thus we have 

t = 1 

In the case ot the background. no connection to another node is 

made. The contagion which marks the backg?'OWld as having been processed 

is similar to the contagious erasure used to recognize t/l'coNN in 

Section 3.2, but with two important differences. First, each cell 

which catches the contagion keeps a permanent record of one of the 

directions frClll which the contagion arrived. We will represent this 

record by a small arrow within each cell which begins in the center of 

the cell and points in the direction from which the contagion 

arrived ( G ) . Second a mechanism is provided which allows the 

scanner to know when the contagion which it has created within an area 

has completely covered that area. As each new cell catches the 

contagion, it sends a signal, called a dot, back along the system of -
arrows which ultimately leads to the scanner. Thus as long as the 
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contagion continues to spread, the scanner will continue to receive 

dots and will not resume its scan. Since ·~he contagion moves away 

from the scanner at one cell per unit time and since dots travel at 

one cell per unit time, the normal frequency of arrival of dots at the 

scanner is one dot every other time interval. Thus if two time 

intervals pass without the arrival of a dot, the scanner may resume 

its scan. We will represent the presence of a dot in a cell by a black 

dot ( B ) . One might think of the contagion as a spreading grass 

fire and the dots as particles of smoke drifting back from the fire. 

The signalling mechanism provided by the dots is necessary since the 

scanner recognizes new areas by the fact that their cells have not 

been infected by contagion. If the scanner resumed scanning before 

the contagion stopped, then it would not be able to distinguish 

between cells in newly encountered areas and cells in old areas to 

which the contagion had not yet spread. 

Let us now look in on the progress of our example. (Note: the 

diagrams which follow are intended as an aid to understanding the 

process and do not necessarily represent all the information present 

in each cell.) 

t = 2 
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t Ill 3 

t=4 

The contagion and signaling process are under way. At t = 14 

the contagion branches for the first time. 

t = 14 
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t = 15 

t. 16 

At t = 16 we observa the first case of the contagion spreading 

through a diagonal connection between white cells (!ran cell (4,9) to 

cell (5,8)). Note that the contagion takes two time units to pass 

through the connection because of our nearest neighbor model. Note 

also that cell (4,9) has generated a second dot at t = 16 to avoid a 

gap in the dot sequence which would be created if it simply waited to 

transmit the dot generated by cell (51 8). In general any white cell 

which catches the contagion and which has diagonal white neighbors 

will generate a second dot in this manner. 
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----------~---------

We now watch the contagion come to an end. 

t = 17 

t = 18 

Note that the contagion arrived at oells (7,8) and (9, 10) rran 

two directions at once and that these cells made a choice of direction. 

Any choice will do. 

We now see the last of the dots begin to move toward the scanner. 
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t = 19 

t = 20 

By t = 35 the last dot has arrived at the scanner. 

t = 35 
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,--------~---~--····-· 

At t = 36 the scanner sees that no nore dots will arrive and by 

t = 37 1 t has begun to continue its scan. B,y t = 47 1 t has completed. 

its scan or the first row, dropped down one row, and has encountered 

an unprocessed cell •. Once again contagion within the new area begins. 

In addition we now see the J inld ng prooeas begin to take place. The 

pathway connecting the new node to its parent in the tree is grown 

cell by cell sinlply b7 connecting the node cell to the cell from 

which the scanner arrived and continuing to grow the pathway in the 

direction indicated by the arrows. 

The first three steps are shown below. 

t = 47 

t = 48 
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t = 49 

By t = 57 the pathway has been completed, but the contagion is 

still spreading. 

t = 57 

By t = 73 the contagion is dead and the last dot has arrived 

back at the scanner. 
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t = 73 

By t = 97 a third area has been processed and linked and the 

scanner is preparing to continue its scan. 

t = 97 

At t = 179 the scanner has completed its scan and all processing 

is complete. 
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t = 179 

.Al though the process was complete in our example by the time the 

scarmer finished its scan, this is not always the case. The scanner 

waits at each node until the contagion is dead, but does not wait until 

the connecting pathway has been established. Thus it might be the 

case that some pathways are still not complete by the time the scanner 

arrives at the end of its scan. Since the longest pathway may be 

about tm·n in length, we must wait this additional amount of time to 

insure that processing is complete. 

The entire process of converting a figure into a tree represen

tation takes time proportional to m·n. The scanner is in motion for 

about m·n units and at rest for a total time less than or equal to 

twice the sum of the areas. Counting the waiting time for caupletion 

of connections, the entire process will be complete in at most 3i(m·n) 

units. 

The tree which was produced in our example contains six nodes 

corresponding to areas and two false nodes created by the confluence 

of pathways. The false nodes located in cells (2,6) and (2,10) are to 
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be ignored in our interpretation or the reaults. The creation or 

false nodes is a necessary evil since the trees we are trying to 

represent may have nodes of arbitraril,y high degree. One way of 

ignoring the false nodes is to think of a tree-like structure of loops 

rather than of an actual tree. In such a loop structure the descend-

ents of a node are threaded on a loop which begins and ends at the 

node. 'nle diagram below shows a tree T and the corresponding loop 

structure L. 

T L 

The algorithm for converting figures to trees which was desc:ribed 

above can be moditied to produce such loop structures simply by 

making the connecting pathways double. The loop structure 

corresponding to our example is shown below. 

:.ii: 

:.:i: 

1 r... ~ ~ .... ,,.. .. ·i\ ', 

t!: G 
).. ~-
IU 'a 

106 



~ 

Canparing trees: Having shown how to convert figures to tree 

representations, we now must describe how two tree representations 

may be compared for iscmorphi!lll. The methods to be described will 

make use only of the cells which act.ually .f'o.nn the tree representations 

for the left and right figures, plus a pathwa7 of cells connecting thrt 

background node of the lett tree to the background node of the right 

tree. The pathway connecting the background nodes is used for 

communication between the cells in the left and right trees. Imagine 

now that we have deleted all cells fran the array except those 

canprising the trees and the communicating pathway. If we grasp the 

left background node in one hand and the right background node in the 

other hand and litt, the trees will untangle and hang down. Qle has 

an image of something like the following diagram. 

ommunicating - - -- -- ' pathway -..,,., 
' 

...... 
/ ' / ' I ' / ' ' / 

' I right / 
\ I ' I 

I 
I 

left I I I 

tree I I 
\ 

\ I 
\ , I 
\ \ 

I 
\ I \ 
\ I \ I 
\ \ I 

\ I \ 
\ I '\ I 

\ / ....... 

' ./ ....... ,, 
._ - -----
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This is the ro.nn in which we imagine the cells to be arranged 

purely to avoid thinking about their aotual •bedding in the array ancl 

to be able to use words such as "above" and "below" in describing the 

relationship between node3. Since no path lengths were altered in thtt 

lifting process, cOllllllWli.cation times ha'V9 not been altered. 

Recursive lll8thoda The first aethod of isc.orph1811l-checking to be 

considered is a straight forward recursive procedure. We think of 

two observers, one standing on each background node, who can speak to 

each other via the comunicating pathway. ou.r observers agree to 

check whether the trees are isomorphic. they do this by first 

comparing the degrees or the nodes on which they are standing. If the 

degrees differ, then the trees are certainly non-isamorphic and the 

process te.nninates. Ir the degrees are both zero (ignoring the 

communication pathway), then the trees are certainly isomorphic and 

the process terminates. If the degrees are equal but non-zero, then 

further checking is required. The checking involves comparing each 

subtree belO'A' the node on which the left observer is standing with 

each subtree belO'A' the node on which the right observer is standing. 

The comparisons are carried out in a recursive manner by the observers 

themselves. They begin methodically to make all pairwise comparisons 

of one left subtree with one right subtree. Each time a matching 

pair is found, they are marked and eliminated from consideration. 

Eventually either a one-to-one correspondence of subtrees will be 

found, in which case the trees are isomorphic, or a subtree will be 

found which has no matching subtree, in which case the trees are 

non-isomorphic. 
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])3scription generation method: The second method of isomorphism 

checking might be called the description generation method. Only the 

central idea will be sketched here. Assume that we have established 

a set of conventions for describing finite rooted trees by strings of 

symbols. PUrthermore assume that our system is canonical in the 

sense that two trees which are isomorphic have identical descriptions. 

Such a system could for instance be a parenthesis system in which a 

tree is described by an opening parenthesis followed by the descriptions 

of each of its subtrees in lexicographical order followed by a closing 

parenthesis. Having established such a system, we have the cells 

in a tree representation carry out organized activity in such a 

manner that the cell corresponding to the root node emits the 

canonical description or the tree. Given two trees, we simply 

compare the descriptions they emit. The trees are isomorphic if and 

only if the descriptions are identical. A problem which arises with 

this method is that one tree may emit symbols faster than another, 

but by organizing additional cells into a variable length stack, 

such inequities in generation speed may be ignored. 

Squad £:!!: method: The final method of performing the topological 

match might be called the squad car method. It is similar to the 

recursive method described above, but is more highly parallel. It is 

in its simplest form when applied to the comparison of binary trees, 

so we will consider this case first. Let B1 and B2 be two rooted 

binary trees as in the figure on the following page. 
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The comparison process goes as follows. A radio equipped aquad 

car, s. will drin over the branches ot s1 reporting over its radio a 

description of its route. Sillultaneously a second car, C, will begin 

to drive over the branches of B2 while listening on its radio to the 

description of the route taken by s. The car C will atteDJpt to 

follow an isanorphic route. It C is successful, it will eventually 

arrive back at the root ot s
2 

and the trees will have been proved 

isomorphic. If C is 1.mSUCCeH.f'ul, it will, as w shall see, vanish 

sanewhere along its route and hence never return to the root of B1• 

The route taken by S in driVing over s1 is a simple right-hand 

tum method for traversing a tree. When S approaches a node of 

degree three frQD above, it leaves by the (from S's point of view) 

right-hand branch. Upon returning to the node from below, S then 

takes the second deaoending branch. Upon return to the node again, S 

leaves by the upper branch. The path of S over B1 is shown in the 

diagram on the following page. 
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The description which S broadcasts is as follows. Upon entering 

a node for the first time from above, it broadcasts the number of 

descending branches leading fran the node (0 1 1, or 2). Qi all 

subsequent visits, it simply broadcasts (N) to indicate that it has 

returned to a previous node. The ccnplete sequence of symbols as 

broadcast by S when driving over B
1 

would be 1, 2, 1, 2, O, N, o, N, 

N, N, 1, O, N, N, N. (Che could use instead a system. of parentheses, 

but the system described above is more attuned to the task at hand.) 

Now let us follow our example as S traverses B1 and C attempts 

to find an iscmorphic path in B2• 

t = 1 

At t = 1 both cars are about to begin and are sitting on the root 

nodes. S has already transmitted its first report (1), but it has 

not yet been received by c. 
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t = 2 

By t = 2, Chas received the 1 emitted by Sat t = 1, has found 

its current path to be in agre8111ent with the 1, and both cars have 

advanced to the next node. (We ignore for the moment the ti.Jne it 

takes to transmit messages and the time it takes to move from node to 

node.) S has transmitted a 2. When C receives the 2, it will find 

that it is indeed sitting on a node of the appropriate degree. Which 

branch should it take next? A deterministic car would get one choice 

and might make the wrong one. A non-deterministic car could be 

assumed to make the correct choice. °'1r car however is a parallel 

car and it makes both choices. That is, it splits into two identical 

cars and each car takes a different branch leading from the node. 

t = J 

By t = J, S has moved to the next node and our bilocating car C 

has moved dovm to the next two nodes. 
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t = 4 

By t = 4, S has arrived at a doubly branching node and has 

transmitted a 2. Both copies of C have advanced one node. When the 

left-hand copy of C receives the 2, it will simply vanish since it 

will then be apparent that it can no longer follow a route similar to 

that followed by s. The right-hand copy of C will be in agreement with 

the 2, will again split, and will advance to the next two nodes. 

t = 5 

-z-O~ 

Both copies of C will agree with the 0 now being received and 

will attempt to return to the previous node. When a car splits, 

leaves a node in two directions, and returns fran both directions, it 

indicates that both branches lead to isOll!orphic subtrees. One of the 

cars can simply vanish, leaving the other car to complete the process. 
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t = 6 

By t = 6, one car remains to continue the processing. 

t=7 

By t = 7. C has descended a node and is still in agreement with 

the description being given by S. Fran here on out C will simply 

mirror the movements of B and the trees will be found to be isomorphic. 

The entire process has taken time proportional to the nWllber of nodes 

in B1• 

A point of interest is t.hat the number of distinct isomorphisms 

between two trees can be easily obtained frOlll the above method. Each 

time two cars return to a node and merge, a marker is placed at that 

node indicating that the two subtrees below are isomorphic. If by 

the end of the process the trees tum out to be isomorphic, then 

there will be 2n distinct isomorphisms, where n is the number of 

marked nodes. 

When we come to apply the squad car method of isomorphism 

checking to the tree representations which have been generated from 
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f'igures, we encounter two dif'!iculties. Fi.rat the trees are not 

binary, but contain nodes of arbitrarily high degree. Second the int.Ir-

node distances vary widely. 

The problea of the existence of' nodes •lf' arbitrarily high degree 

is easily overcaae. When S arrives at a new node, it must report the 

degree of that node. In the binary caae this could be done by using a 

fixed set of symbols, since only three poHibilities could arise. In 

the current case S can report the degree of' a newly encountered node 

in Wlary by driving along the loop (thinking in terms of a loop 

structure for a mcnent) OD which the descendents of that node are 

located and transmitting a "1" every time it passes a node. When S 

canpletes its circuit of the loop and arriYes back at the original 

node, it transmits an and of nuaber signal. The degl"M of the 

corresponding node or nodes on which C is located is checked by having 

C traverse the corresponding loop or loops, adYancing by one node as 

each "1" is received. Any copy ot C which is not back at its starting 

node when the end ot nuaber signal arrives is Cll'l the wrong track and 

will vanish. Provisions for handling highly multiple splitting and 

'recombination of C in B
2 

1111st also be established. This can be 

accaaplished by leaving appropriate ll&l'kers at the nodes. 

The problem of' varying di.stances betw.en nodes appears to be more 

serious in that the Mthods ot OYercaaing it sem to boost the total 

time required for the process from sanething OD the order of the path 

lengths of the trees to sc:nathing on the order of the product of the 

pathlengths of the trees. Consider for a acment what took place in 

the naive binary picture presented above. The squad car S drove over 
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B1 and transmitted a description or its route. Since S received no 

feedback rran C, the rate at which S progressed was independent of 

any difficulties enco\Ultered by c. In particular if S and C drive at 

the same rate, then the branch lengths in 8
2 

mu.st be shorter on the 

average than those in S or else C will become overloaded with the 

info.naatiOlJ transmitted by S. In the caee or the tree representations 

which we have generated from figures, there is no correspondence 

between branch lengths in B
1 

and in B
2

• Ckle way of circumventing 

this difficulty is to allow the signals fran S to pile up in a queue 

at c. However, C moves up and down within the tree and there may be 

multiple copies of C present which may be able to process the signals 

fran S at different rates. By the time the aovement and multiplicity 

of C has been accounted for, one ends up with a process which is 

proportional to the product of the path lengths of 8
1 

and B
2

• 

A simpler method which yields the ,,... processing time is to have 

S wait tor acknowledgement atter each trwn8'11eeion. Thus S makes a 

unary degree count and then waits tor an aclmowledg•ent from c. The 

signal sequence produced by S travels up the branches of B1, across 

the communication pathway, and down the branches of B2• As the signals 

travel down the branches of B2, they split at each node of degree 

greater than two and a copy 1oes down eaah desoending branch. Each 

copy of C will receive the signals, process them, and send back an 

&.cknowledgement, 1.A... 1.he • .A.11 s travel up the branches or ~· When 

an "A" arrives at the node of degree greater than two, it waits for 

the remaining 1 .A.111 s to arrive fraa the ot.ber descending branches. 

When they have all arrived, they canbine into a single "A", which 
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then continues up the tree. It now beca1es important that when a 

copy of C vanishes, sanething be left behir,d which can still 

acknowledge signals, for otherwise no acknowledgement would ever be 

received fran a branch down which a C had ventured and disappeared. 

The squad car 111ethod as modified by unary degree counting and 

acknowledgement of transnission takes on the order of (m•n)2 to 

compare two mwn figures. The analysis is as follows. The amount of 

time spent in motion by S and C is bounded b7 a 11Ultiple of the path 

lengths of B1 and B2• This time is small compared with the time 

spent by S waiting for aclmowledgeJllents. The number or times S waits 

for acknowledgement is proportional to the number of nodes in B1 which 

in tum may be proportimal to m•n. The aount of time spent waiting 

for a single acknowledgement is primaril7 a fllnotion of the distance 

between S and the .t'urthest (in terms of path length in the combined 

:: trees) copy of C. The latter distance 01 also be proportional to 

m·n. Thus the total time S spends waiting for acknowledgements is 

proportional to (m·n)2• Of course some figure pairs may be found to 

be non-isanorphic soon atter the tree representations have been 

generated. Other figures however will take much longer. 
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The diagram below shows a type or figure whose tree representation 

has a number of nodes proportional to (m·n) and a depth (measured 

from the root to the deepest node) proportional to (m·n). such 

figures will require a long time to check against similar figures. 
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CHAPTER 4 

msPLA y PROBLEMS 

The preceding two chapters dealt with the use or arrays as 

devices whose input was a figure and whose output was a single binary 

symbol. We now study arrays as devices whose input is a figure and 

whose output is also a figure. 

LJ.. 1 Introduction 

If the arrangement of initial states in an array can be viewed 

as an input figure, then by allowing the array to nm until every cell 

is in a final state, we may 'View the arranceaent of final states as an 

output figure. In this way an array or more properlJ' a cell type may 

be viewed as a tranaronaticri traa figures over the initial states 

into figures over the final states. An arra1 operating 1n this mode 

is said to be working on a ~ap;Lax probl9. 1he following definitions 

formalize these concepts. 

J))fini tion 

Given two sets I and r, a figure trgatanetion 

(or tranetoqation for short), J, ot type I/Fis 

a function trca the set ot £1.cures over I into 

the set of figures over 1, such that the image 

or an micn figure is always an •Kn figure. If 

P is a figure over I, we denote its image under 

J by J' (P). 
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ll9finition 

Given a transfomation 'J and a cell type 

M, we say that M 1.mplaenta J, ~f 

ll9tinition 

1) J is a transtomation frCll figures over 

the set ot initial states of M into 

figures Oftr the final states ot M 

ii) Given any m>en ccmputation 3!f = 'IP, D1, r!-, 
of type M, the.re exists an integer k such 

that Jc&> = rJ'. 

Given a transformation ";/ we say that it is 

cellular ii' the.re exists a cell type M which 

implements it. 

Definition 

If T(m,n) is a real-valued tunotion, we say that H 
implements 1_ within :ll!!, T(m,n) if M implements J 
and for every mxn caaputation b = rJ', n1, 'fl, ..• 
the.re exists an integer k such that 'J ( rf'> = rJ< 

and k ~ T(m,n). 

If the.re exist integers p, q, r such t.hat M 

implements 'J within time pn + qn + r, we say 

that 'J is linear. 

••• 

Many of the theorems on .recognition such as Theorem 2.J, the 

Minimizing 1heo.rem, have inamediate analogs for display. Since nothing 
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really new is contained in these analogs, we will omit them. The 

Speed-Up Theorem however is slightly different in form in the case of 

dispJ.ay. 

Theorem iJ. (Speed-Up) 

PROOF: 

Let J be a transformation and let M be a cell type 

which implements 'J within time T(m,n). Then given 

any positive ir.teger k, there exists a cell type M 
k 

which implements 'J within 

~·(T(m,n)) + 2(1 + ~){m + n) - 2. 

As in Theorem 2.2 and Corollary 2. 2.1, we perform packing 

followed by speeded-up simulation. According to Corollary 2.2.1, we 

will have all simulated cells in their fina.l states by time 

t = m + n _ [~] _ [~] + [T(m,ni - 1j + 2• 
Unlike the recognition case where no more remains to be done, we 

must, in the case of display, unpack the results so that the output 

.figure can be displayed by the array. 

Unpacking may begin as soon as all the simulated cells have 

entered their final states. If it were the case that all the 

simulated cells entered their final state at the same time, we could 

begin unpacking at that time. However, since different cells may 

enter final states at different times, we need a method of deciding 

when the last cell has entered its final state. This is done by 

having a module generate a completion signal as soon as all of the 

cells it is simulating have entered their final states. The 

completion signals originating on the southern edge of the packed 
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portion or the array now to th• north 1n the column in which they 

originated. It a signal arrifts at a module, all of whose simulated 

cells have not entered tinal states, it waits until they do enter 

final states before continuing. thus when a ocapletion signal arriws 

at a module on the nortbem edge, it signifies that all of the 

simulated cells in that column are in final states. In a similar 

manner each northem edge module passes the a<apletion signal on to 

its westem neighbor as soon as it receift& ccapletion sicnals fran 

its southem and eastern neighbors. 'l'bus in no more than [i] + [i] 
units after the last simulated cell has entered its final state, the 

norttiwest corner module will be aware ot this tact. It can then 

initiate a two-dimensional tiring aquad in the packed portion of the 

array. When the tiring 1Quad 1oes ott, the unpacking will begin. 

Assuming that the firing squad takes 2<[!] + [~]) - 4 units to go ott, 

the unpacking operatioa will get und9r •7 no later than 

t =a+ n + 2([~] +[e]> -2 +[T(m,9' • 1] • (We will see in 

Section 4 that this firing squad time can be improYed slightly.) 

'!he unpacking process is quite simple and is illustrated on the 

following page tor a SxS case with k • 2. 
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The unpacking process takes m + n steps. (Note information can be 

packed faster than it can be unpacked.) 'J.hus the entire simulation 

fran the beginning of packing to the end of unpacking takes 

2(m + n + [~] + [~] - 1) + [T(m,:)-1 ]" ~·T(m,n) + a(1 + ~){m + n) 

steps. 

We also have by a simple const:ruction 

Theorem !:l, 

The canposition of cellular (linear) transformations 

is a cellular (linear) transfonaation. 

12J 
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4.2 Specific Problaas 

In this •ction we will consider sc.e specific figure transtor

ma ti ons and their impl•entation bJ iten.tive arrays. Scme of these 

transfonaations are included because they are frequently proposed by 

people who are hearing about iteratiYe arrays tor the first time. 

others have been included because they 8Mll to be interesting trans-

fonnations whose linearity is still open. The discussions are brief 

and informal. 

The first set of transformations we consider are some simple 

geaaetric transfonaations ot black and white figures which are 

usually proposed as 'problems• by persons who are experiencing 

iteratiYe programming for the first ·tiae. They are all linear 

transformations. 

JTRANS( 'l'RANSLA1E) 

This transtomation is the result or translating the 

input figure rigidly to the nst so that the western

most black cell in the :figure lies Oil the western 

edge of the array. 

Examples 

p 

J TRANS may be :implemented in linear time as follows: 
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i) The figure oasts a shadow ctowmrards onto the 

southern edge. 

ii) The westem-aost point of the shadow is detected 

and a line is drawn to the northern edge from this 

point. 'Ihe figure has now been enclosed in a 

block of cells and is tangent to the western edge 

of the block. 

iii) Using shifting techniques similar to those used 

in packing and unpacking .figures for speed-up (see 

Theorems 2.2 and 4.1), shift.the block to the west 

so that it is tangent to the westem edge. 

JROT (ROTATI) 

This transformation applies only to aquare (• = n) 

arrays. '!he transformation is the raault of rotating 

the input figure about its central point by 90° counter-

clockwise. 

Examples 

p 

First observe that a hollow square of cells can shift 

the information it contains by 90° counterclockwise in 
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time proportional to the edge of the square. such a 

shift is indicated below. 

---+ 

Then 'J ROO.' may be implemented in linear time by first 

organizing the array into a set of concentric hollow 

squares and then having each hollow square shift its 

information by 90° counterclockwise. 

• One might ask for rotations of other than multiples of 90 • A. 

major difficulty then beo~es the question of just what the result of 

such a transformation should be. This queation in tum leads to the 

area of approxillatiQU techniques for figures which is outside the 

scope of the current work. 

-::! D!.L(n) { mLATE) 

This transformation causes a dilation of the figure by 

a factor of n about the center point of the array, where 

n is a positive integer or the reciprocal of a positive 

integer. It n is greater than 1, the figure enlarges; 

if n is less than 1, the figure contracts. 

126 



Examples 

p JDIL(2)(P) 

J DIL(n) may be impl~ented in linear time as follows 1 

i) The center point of the array is detenained and 

each cell determines which of the four rectangular 

quadrants it lies in. 

ii) '!be portion of the figure within each quadrant is 

dilated by a factor or n, either away frCllll or toward 

the central point. 

The process of expanding or contracting a quadrant is 

similar to the process ot packing or unpacking for the 

purpose of speed-up as described in the proofs of 

Theorems 2. 2 and 4.1. When expanding by a factor of k, 

each cell in the quadrant pretends that it is a module 

in which a k•k block of cells has been packed. The 

color of these cells is taken to be the color of the 

module. When the cells have been unpacked, they will 

cover a k•k area in the figure. That is, the original 

cell will have expanded by a linear factor of k. The 

process of a contraction is similar. After a k•k block 
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of cells has been packed into a module, that module takes 

on a color which is detemined by the colors or the cells 

packed within it. In this case one bas to fix a rule which 

detenllines the color of the module as a function or the 

colors of the cells. Three such rules are (1) the module 

tums black if all the cells are ·olack and white otherwise, 

(2) the module turns black if any of the cells are black 

and white otherwise, and (.3) the .module tums black if 

more than halt of the cells are black and white otherwise •. 

In carrying out a contraction, one always has enough room in the 

array to represent the image or the tranat'omation. In carrying out 

an expansion, however, there may not be enoup room in the array to 

contain the resulting figure. (When we say the array contains the 

resulting figure, we or course mean that the array contains all the 

black cells in the resulting figure.) We may simply truncate the 

expanded figure at the boundary of the array or we may use the concept 

or folding to preserve the entire expanded figure for turther proces

sing, although it cannot be displayed. Consider the similarity in 

structure betwen a piece ot paper which has been folded in half 

once with the fold on the left and an iterative array or two layers 

in which we think of the layers as being connected only at the 

western edge. If the array has dimension axn, we have in effect an 

array of dimension m~2n which has been folded over once. This is 

the concept of folding. By using more layers, more complicated 

folding aay be simulated. In particular, given any positive integer 
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k, we may design an array which, by using folding, acts as though the 

initial figure is centered on an array of size kllxkn. Thus given any 

positive k, we Jll&y use tolding to design a cell type which can expand 

any input figure by a tactor of k although it cannot display that 

figure in the usual sense. 11nally given any positive rational 

number, q, we may perfo:rm a dilation by a factor of q by first 

expanding by the numerator and then contracting by the denominator. 

The next set ot transformations to be considered are known to be 

solvable in time proportional to m•n, but their linearity is open. 

'JPACK (PACKING) 

This transfonaation accepts black and white figures and 

produces a .t'igure which has the sue number of black 

cells, but in which these cells are packed into solid 

rows at the top of the figure. 

Examples 

p JPACK(P) 

There are se"Yeral simple ways ot achie'Ying this packing 

in time proportional to mn. We will leave them for the 

interested reader to discover. 

The packing transfonu.tion is related to the recognition ot 

;EULER which was defined in Section J.5. The recognition of that 
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predicate had bean reduced to d9teJ'Dlining whether there were more 

+1 's than -1 's distributed about the arrq. It 'JPACJ. is linear, 

then in linear time the +1 1s could be packed in one laJ9r• the -1's 

in another layer, and the majority detel'llined. Thus the linearity of 

'J PACK illlplies the linearity ot f
1

ULD. It would also imply the 

linearity ot Vt BLACK' defined to be the set ot all black and white 

figures which have more black than white cells. Currently the 

llneari ty ot 1Jt BLACK is still open. 

'J REP (REPRESENTATIVE) 

The probl• is to transform a black and white figure 

into a black, red, and white figure by tuming exactly one 

cell ot each component or hole red. '?his transformation 

thus corresponds to the proceas of selecting a represent-

ative cell f'rcm each hole and ccmponent.. The tree generation 

process described in Section 3.6 can be easily modified 

to produce a solution to the representative probla. The 

linearity of this probl• i• open. Att.pts have been 

made to adapt the connectivity transforaaticm to this 

probl•, but without success. 

Note: In the abon probla as in the following two 11e do not 

actually specify the transfol'llation in oc:mplete detail. Instead we 

indicate saae general properties which the transtonaation must have. 

For example in the probl• above we do not care which cell in a given 

component turns red, so long as exactly one turns red. '!he problem 
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is to find a cell type which implements in linear time a transformation 

having the properties given. 

J'5p (SfORTEST PATH) 

Given a solvable maze, draw a shortest path solution to 

the maze in red. 'l'heoram J.4 states that solvable mazes 

can be recognized in linear time. Here we ask that a 

shortest pa th solution be displayed in linear time. We 

might be less ambitious and ask can any solution to the 

maze be displayed in linear time, since this problem is 

open also. A solution to the shortest path problem can be 

obtained in time proportional to m•n by a simple 

adaptation of the contagion process described in 

Section J.6. 

'J GP (GOLD PLATE) 

Given a black and white treasure map (black islands in 

white water) an which is indicated the location of a 

chest of gold (by a gold cell), display the map obtained 

by coloring gold the entire island on which the gold is 

located. (Or equivalently erase all islands on which 

the gold is not located.) This process is easily carried 

out in time proportional to m·n by a contagion process. 

Its linearity is open. 
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4.J Two-Dimensional Firing Squad 

In this section we consider a two-dilllensional analog of the well-

known firing squad synchronization probl•• (See Section 1.2.) This 

problem is strictJ.¥ speaking not a displq problem, but is more related 

to display than recognition, so we have included it in this chapter. 

As has been seen in the proof of 'l'heo1"811.a 2.2 and 4.1, a solution to 

the firing squad problem is a useful tool in solving other iterative 

array problems. 

The two-dimensional firing squad problem may be stated as 

follows. Design a cell type M such that the following conditions 

hold: 

i) The initial states of M are g (general) and s 

(soldier). 

ii) The final state of M is t (fire). 

ill) The soldier state is dormant relative to soldier 

and edge states. '!hat is 

where i is the transition £'unction and els represents 

either an edge state or a soldier state. 

iv) Given any m•n array of type M in which the initial 

configuration consists of one cell in the general 

state at location (1,1) and all other cells in the 

soldier state, then there exists an integer k such 
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that all cells enter state f for the first time 

at t = k. 

A thorough discussion of this problem. for the case where m = 1 is 

given in Balzert3' where he prone the existence of an eight state 

solution (nine state solution in our fomalism) in which the soldiers 

fire at time t = 2n - 2. This solution or any solution to the one-

dimensional case may be used to construct a solution to the two-

dimensional problem as follows. A firing squad activity is organized 

in row 1 of the array by the general in cell (1.1) •. At time 2n - 2 

each soldier in row 1 instead of entering the firing state, becanes a 

general. (~e of the largest and most drastic field pranotions in the 

annals of military history.) These new pnerals, together with the 

old general, now organize firing squad activity in their respective 

columns. Since this actiVity begins in each column at the same time 

(t = 2n - 2) and since the columns are all of length m, we have that 

the entire array will enter the .firing state at time 

t = 2n - 2 + 2m - 2 = 2(m + n) - 4. 

'!he solution to the two-dimensional tiring squad problem which 

was presented in the previous paragraph is not optulal in tems of 

time. Before considering a faster method, let us find a lower bound 

on the time required for a solution. 

Theorem .i:.J. 

Any solution to the two-dimensional tiring squad 

problem will require at least m + n + ux {m,n} - J 

uni ts of time to enter the firing state on an mxn 

array. 
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PROOFs Let m, n be given and asswne without loss of generality that 

n ~m. We will show that cell (1,m) cannot fire before time 

t = m + 2n - J. 'lbe tdea is quite simple. Cell ( 1,m) cannot fire 

before it learns of the existence of the eastern edge of the array. 

The amount of time it takes a signal to travel from the general to 

the eastern edge and return to cell ( 1 ,m) is m + 2n - J. 

A more .formal proof may be given using diagrams and the 

Interdependence 'lbeorea, but the idea is the same. 

We now find that the lower bound given above is attainable. 

Theorem 4.4 

There exists a solution to the two-dimensional 

firing squad problem which enters the firing 

state at t = m + n +max {m,n} - J. 

PROOF: Moore and Langdm< 12> demonstrate the existence of a 

seventeen state solution to what they term the generalized firing 

squad problem. This is a one-dimensional tiring squad in which the 

D 

general is located not necessarily at one end of the line or soldiers, 

but sanewhere in the middle. If we bend such a line of soldiers by 

90° at the general's location, we end up with an L-shaped firing 

squad as in the following diagram. 

-----n-----i 
i I 
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Moore and Langdon 1 s solution, expressed in terms of m and n will 

cause the soldiers to fire at time t = m + n +max {m,n} - J. 

Now consider an mxn array which has been partitioned into a set of 

L-shaped components as in the diagram below. (Assume n~ m.) 

L 

We will set up a Moore and Langdon solution to the .firing squad 

problem in each of these L's. Notice that the corners of the L's lie 

in a diagonal line. The corner cell in the largest L knows it is a 

general at time t = 0 and can begin activity at once. A signal is 

made to propagate down the diagonal at the rate of one diagonal cell 

every three uni ts of time. As the signal strikes each soldier on the 

diagonal, he becomes a general and initiates firing squad activity in 

his L. Thus the L whose general is in row i will begin activity at 

time t = Ji - J and hence will fire at tiule 

t = Ji - J + (m - i + 1) + 2(n - i + 1) - J = m + 2n - J. 

That is all cells in the array will fire at the same time, 

t = m + 2n - J. 0 

Letting m = n, we find that the above solution will cause the 

cells of a square array to fire at time t = Jn - J, which is minimal 

by Theorem 4.J. Suppose however we ask for a solution to the firing 

squad problem which works only on square arrays. That is, we don't 

care what it does on arrays which are not square. Then it turns 
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out that we can obtain a solution in time 2n - 2 by using the same L 

partitioning. However instead of treating the entire L as a Moore and 

Langdon firing squad, we treat each half as a Balzer fir:.ng squad. 

In addition we initiate the squad in row i at time 2i - 2 rather than 

Ji - J. This result yielding a time of 2n - 2 for a square (which is 

provably the best possible) was discovered in parallel by the members 

of Seymour Papert' s class at M. I. T. 

1 J6 
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