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PRACTICAL TRANSLATORS FOR LR(k) LANGUAGES 

Abstract 

A context-free syntactical translator (CFST) is a machine which 

defines a translation from one context-free language to another. A 

transduction grammar is a formal system based on a context-free 

grammar and it specifies a context-free syntactical translation. A 

simple suffix transduction grammar based on a context-free grammar 

which is LR(k) specifies a translation which can be defined by a 

deterministic push-down automation (DPDA). 

A method is presented for automatically constructing CFSTs (DPDAs) 

from those simple suffix transduction granunars which are based on the 

LR(k) grammars. The method is developed by first considering gram

matical analysis from the string-manipulation viewpoint, then converting 

the resulting string-manipulation algorithms to DPDAs, and finally 

considering translation from the automata-theoretic viewpoint. 

The results are relevant to the automatic construction of compilers 

from formal specifications of programming languages. If the specifi

cations are, at least in part, based on LR(k) grammars, then corres

ponding compilers can be constructed which are, in part, based on 

CFSTs. 

*This report reproduces a thesis of the same title submitted 
to the Electrical Engineering Department, Massachusetts 
Institute of Technology, in partial fulfillment of the ~e
quirements for the degree of Doctor of Philosophy. 
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Chapter 1 

INTRODUCTION 

The general subject of interest in this dissertation is "programming 

linguistics", which we consider to be a science concerning the design and 

specification of programming languages and the translation and subsequent 

evaluation and execution of programs. In particular, we are primarily 

interested in the problem of automatically generating translators from 

formal specifications of translations based on context-free (CF) grammars. 

1. 2 Languages, Translations 

In the sequel we use the two words, language and translation (also 

translator), in both the formal and informal sense. The proper sense in 

each case is always clear from context. A language is defined formally in 

Chapter 2 to be a set of strings. However, when we say "programming 

language" or "language designer", we have in mind a more intuitive notion. 

For instance, when we refer to the "language" ALGOL 60, we mean the 

syntax and semantics, the set of strings and their meanings, the lexicon 

and the grammar, operator precedences and associativities, scopes of 

variables, etc. Similarly, our formal definition in Chapter 5 of translations 

limits them to mappings from one set of strings to another, but we also use 

the term to mean a mapping from one set of things, of any sort, to another, 

of any sort. 
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1. 3 Viewpoint: TWSs, Modular Compilers 

For purposes of discussion we picture ourselves throughout the 

dissertation as a subcontractor to a language designer. The designer has 

a contract to design and implement a practical algorithmic programming 

language, and he has subcontracted to us the task of implementing a com

piler for his language. 

We desire to automate our implementation procedures for three 

reasons: (1) the designer is likely to want to experiment to some extent 

to determine the effect of various design decisions, and he would like fairly 

short response time, (2) we expect to receive more such contracts in the 

future, and (3) implementing a compiler usually requires many man-hours 

of expensive programmer time. The embodiment of such an automation is 

called a translator writing system (TWS) (see the survey (F'& G 68)). It is 

a system which takes as input the specification of the syntax and translation 

of a language and which produces as output a compiler for that language. 

The questions, then, which confront us are: how do we specify 

programming languages and their translations, and how can we map these 

specifications into compilers? We choose a modular approach which is 

a combination of some of the notions of Cheatham (Che 67) and Landin 

(Lan 66). We find it convenient, even natural, to section our specifications 

into components. For instance, we might specify separately the lexicon, the 

------------- - --- - -------- --~------
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context-free syntax, and the context-sensitive syntax. (We discuss briefly 

in Section 1. 4 and extensively in Chapter 5 our reasons for sectioning the 

specifications in certain ways.) Further, we find it convenient to base 

some aspects of our translation specification on these different components. It 

is reasonable, then, to view a compiler, conceptually at least, as a con

catenation of several corresponding subtranslators; i. e. , as modularized. 

The adoption of this viewpoint results in three significant advantages 

relative to a less modular approach. First, the otherwise complex task of 

compiling is viewed as broken into several relatively s:i:mple components, 

each of which may be analyzed virtually independently of the others. Second, 

the task of a TWS is viewed as the separate generation of several subtrans

lators, followed by their optimal combination to form a compiler. Third, 

because the specifications of some of the subtranslations can be naturally 

and conveniently based on formal grammars, the abundant results of both 

formal-grammar theory and automata theory are relevant to the corres

ponding translators and their automatic generation. We consider the 

theoretical underpinnings which accrue from the latter to be important 

because (1) they allow us to make provable statements regarding the efficiency, 

execution time, size, etc. , of our translators, (2) they allow us to modify 

our translators in a rational way to get an optimal compromise between 

time and space, (3) they help us avoid ad hoc, ill-understood modifications 

which make the subsequent combination of translators difficult, if not 

impossible or incorrect, and (4) they add a certain degree of "cleanliness 11 

to our results. 
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A possible criticism of our approach is that the separate analyses of 

the components may result in translation methods or devices which, when 

combined, will form a compiler with gross redundancies, such as repeated 

building and scanning of data structures, which cannot be eliminated by any 

reasonably simple procedure. We do not believe that this will be the case, 

but we shall not go so far as to make this belief a thesis to be proved here. 

The results of ourselves and others are, however, steps in that direction. 

One existing result in this vein is presented in (Joh 68). It is a 

method of automatically generating practical "lexical analyzers", really 

"lexical translators", from a specification-based on regular expressions. 

The technique is based directly on some rudimentary notions of finite-state 

machine theory. It is our desire to get similar results for "CF syntax 

analyzers", really "CF syntactical translators (CFSTs) ". 

1. 4 The Role of CF Grammars 

Another belief which is fundamental to our work is that CF grammars 

can be used in a natural and convenient way as bases for the specifications 

of significant portions of the syntax and translation of programming languages, 

and we believe that this includes useful languages in which highly readable 

programs can be written. Furthermore, we find that a well designed CF 

grammer makes a concise, readable, and useful syntactical reference for a 

language, a reference from which operator precedences and associativities, 
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scopes of definitions, and other such "structural properties'~ can be quickly 

and easily determined. 

Having stated our view in positive terms, we now add some disclaimers. 

(1) We do not contend that it is obvious how to design CF grammars so that 

they exhibit the above stated properties. For instance, we do not think that 

the (probably) best known CF grammar, that of ALGOL 60 (Nau 63), is an 

example of a good syntactical reference; it seems more complex than it 

needs to be. However, we illustrate in Chapter 7 a grammar which partially 

specifies a language comparable to ALGOL in many respects, and which, we 

think, is a reference with the desired properties. Unfortunately, the value 

of our results is somewhat limited until this grammar design problem is 

better understood. We have pursued our research, then, on the hope that 

some results relating to this problem are forthcoming. (2) We do not contend 

that programming languages should be CF. We merely believe that much of 

their syntax can be easily defined via CF grammars and that the remaining 

syntax, e. g. , "context-sensitive features", can then be defined in other ways, 

probably related to the CF grammars. See for example(Knu 66). (3) Neither 

do we contend that CF grammars are a panecea with respect to language 

specification. Indeed, they are woefully inadequate for indicating nonasso

ciative operators, for instance; and there are certainly other ways (see Chapter 

8) in which their usefulness would be enhanced if they could be extended. We 

----- ---------
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merely believe that they are the most useful devices currently available for 

specifying many of the "structural properties" of languages. 

LR(k) grammars. Actually, we do not intend to cover all of the CF 

grammars here. Our experience is that, if a designer sets out to design 

an unambiguous CF grammar to specify the "structural properties" of a 

language, his result will be an LR(k) grammar (Knu 65);i. e., a grammar 

whose sentences can be analyzed (parsed) during a single, deterministic scan 

from left to right. Intuitively, we feel that this situation obtains because the 

language is presumably designed to be written and read by humans, and humans, 

at least those who are used to reading natural languages from left to right, 

would probably find programs quite unreadable if they could not be syntactically 

analyzed during a single scan from left to right. 

Thus, to the extent that unambiguity is a desirable characteristic of 

a syntactical reference, anyway, our results should be as useful as if they 

covered all CF grammars. We do not find the restriction to unambiguity 

bothersome. 

The reason we choose the LR(k) grammars, in particular, is that they 

form the largest set of CF grammars whose sentences can be analyzed quickly 

by a deterministic, left-to-right automaton, as we show. We can therefore 

automatically generate at least part of a compiler for any language whose 

specification is, in part, based on an LR(k) grammar, and we can expect that 

part of the compiler to be fast. 
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Translators. Finally, we emphasize that we are really interested in 

translators rather than just parsers, for reasons which we discuss exten

sively in Chapter 6. As a method for specifying CF syntactical translations 

we have chosen the "transduction grammars" of Lewis and Stearns (L&S 68). 

In fact, we use only the "simple suffix" transduction grammars (SSTGs) 

(see Chapter 6). Again our choice was based on the fact the method seems 

both natural and convenient for our purposes and on the fact it has strong 

ties with automata theory. 

1. 5 Thesis 

It is our thesis that by applying some rudimentary notions of 

automata theory we can develop a practical method of automatically generating 

CFSTs from those SSTGs which are based on the LR(k) grammars. Further

more, if the SSTGs in question are used to specify the CF syntactical 

translations of useful, readable programming languages, the resulting 

CFSTs will be of practical size and speed. 

By a "practical" method or CFST we mean one which is competitive 

with the methods or "recognizers" of section IL B of (F&G 68); i.e., ones 

which have actually been used in the construction of compilers. Our aim. is 

not so much to improve on the size and speed of CFSTs as it is to provide the 

language designer with flexibility. With existing methods the designer usually 

has to modify his grammar substantially before it is acceptable to the method. 

By covering all the LR(k) grammars we, hopefully, get a method which will accept 

-----------
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grammars as they are designed as syntactical references for languages, with 

no modifications. If the grammars are unambiguous and if all their sentences 

can be parsed deterministically, during a single scan from left to right, the 

latter will be true. 

1. 6 Approach 

Our approach to this problem is basically inspired by and quite 

similar to Knuth's. However, we draw even more heavily on automatic 

theory than he did, at least with respect to getting practical results, and we 

treat translation rather than just parsing. We treat parsers first because 

they provide a convenient basis from which we can develop translators. This 

follows from the fact that the specifications of our translations are based on 

CF grammars. 

We begin in Chapter 2 by discussing parsing from the string-manipulation 

viewpoint, as is typical when working with formal grammars. We present 

a particular parser, described as a string-manipulation algorithm, and 

motivate our own definition of the LR(k) grammars. 

In Chapter 3 we develop a foundation by treating only the LR(O) 

grammars. We draw on finite-state machine (FSM) theory to develop a 

machine for making basic string-manipulation (parsing) decisions. Then we 

shift entirely to automata theory by deriving from our string-manipulation 

algorithm, plus FSM, a deterministic push-down automaton (DPDA). That 

is, we get DPDAs as parsers for LR(O) grammars. 
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In Chapter 4 we find that a large and useful subset of the LR(k) 

grammars, which we call the "Simple LR(k)" grammars, can be covered 

by first constructing an FSM as in the case of an LR(O) grammar, then 

adding to the machine some "look-ahead" information computed in a simple 

way, and finally converting the string-manipulation algorithm and FSM 

to a DPDA with "look-ahead". 

We generalize to cover all LR(k) grammars in Chapter 5. We find 

that parsers for some of these grammars can be constructed just as are 

those for Simple LR(k) grammars, if more complex methods for computing 

"look-ahead" information are employed. In general, however, we find 

that some state-splitting nperations must be applied to the FSMs along with 

the more complex computations of "look-ahead". Our development in 

Chapter 5 is in two phases. We first cover a set of grammars of the 

"bounded context" variety and then we generalize to cover all LR(k) grammars. 

Our result going into Chapter 6, then, is a parser-constructing 

technique which grows in complexity as it discovers the complexity of the 

grammar at hand. 

In Chapter 6 we motivate the abstraction of a string-to-string 

translation from the compilation process. Then we define transduction grammars 

for use in specifying these translations and show how to convert our parsers 

to translators. Finally, we show how we envision our translators fitting into 

compilers, via an explicit model, and we discuss the relevance of our results 

to the design and specification of languages, translations and compilers. 
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We illustrate in Chapter 7 the practicability of our scheme. We 

first summarize our translator constructing technique as a whole. Then 

we propose a method of implementing the translators, apply the method 

to a particular, practical transduction gra.nimar, and show that our scheme 

compares favorably with an existing, practical technique. 

We end the dissertation with Chapter 8 in which we note some 

developments which are desirable before our scheme is incorporated in a 

TWS, state some conclusions, and pose some question for future research. 

1. 7 Efficiency, Complexity, Recognizers 

Several more informal definitions are in order before we proceed. 

In the sequel we frequently refer to the "efficiency" of our translators. 

By "time-efficiency" we mean the ability to effect a translation using a 

minimum number of "machine operations", and therefore time. In Chapter 

4 we give a specific definition in terms of an ideal machine. By "space

efficiency" we mean the ratio of the a.niount of space necessary to store 

the specification of a translation to that necessary to store the corresponding 

translator. We define this more precisely in Chapter 7. 

The "size" of a gra.nimar is the number of symbols required to write 

down all the left and right parts of the productions. By "gra.nimatical 

complexity" we mean a measure of the time required to construct a parser 

for a grammar when using our technique. Although this definition may seem 
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to reflect some egotism, we use it for lack of a better choice. It does, 

however, seem to correspond to the intuitive notion fairly well. Our 

measure depends both on the size of the grammar and on the "complexity" 

of the functions which must be employed to compute "look-ahead" and 

state-splitting. 

Finally, we use the word"recognizer" in a more technical sense 

than it was used in (F&G 68). We adopt the automata-theoretic notion that 

a recognizer is a machine which reads a string and either accepts or rejects 

it, as far as its being in a given language is concerned. Our parsers and 

translators output considerably more information than is contained in a 

simple "yes" or "no" from a recognizer. 
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Chapter 2 

PRELIMINARIES 

2. 1 Notation, Preliminary Definitions 

We begin by defining terms and notation. We assume the reader 

is familiar with the properties of symbols, strings of symbols, regular 

expressions, and languages, finite state machines (FSMs), formal grammars, 

and both deterministic and nondeterministic pushdown automata (DPDAs and 

NPDAs). 

A context-free (CF) grammar is a quadruple (VT' V N' S, P) where 

VT is a finite set of symbols called terminals, V N is a finite set of symbols 

distinct from those in VT called nonterminals, S is a distinguished member of 

V N called the starting symboL and Pis a finite set of pairs called productions. 

Each production is written A--w and has a left part A in V N and right part 

* ~ win V where V = V NV T" v··- denotes the set of all strings composed of 

symbols in V, including the empty string. 

Without loss of generality we conventionalize that (i) the productions 

are arbitrarily numbered from 0 to s, and (ii) the zeroth production is of 

the form s-- rS'1, where S' is sort of a subordinate starting symbol and S 

and the terminal "pad" symbols r and 1 appear in none of the other productions. 

We use Latin capitals to denote nonterminals, lower case Latin letters, 

digits and special symbols (e. g. , +, >:', :, etc. ) to denote terminals, and 
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lower case Greek letters to denote strings. An exception is that we reserve 

€ to denote the empty string. We use lf3 I to denote the length of (number 

of symbols in) the string f3, and k:fj to denote the first k symbols of f3 if 

lf3 I? k and f3 otherwise. If a = cpf3 is a string, then cp is a prefix and f3 

is a suffix of a, and a is the concatenation of cp and fJ. 

In the sequel, we often use for exa.nlples the gra.nlmar 

where P
1 
~onsists of the following productions: 

(O) (4) 

(1) E- E + T (5) 

(2) (6) P- (E) 

(3) T- Pt T 

If A .... w is a production, an immediate derivation of one string 

a = pf.43 from another a' = pA(:3 is written a'-a. We say a is immediately 

derivable from a' via application of the production A-w to a particular 

occurrence of A in a'. The transitive completion of this relation is a 

-·-
derivation and is written a' --·-a, which means there exist strings 6!

0
, a

1
, ... , an 

such that a' = a 0-o:
1 

- ... - O'.n =a for n~ 0. A right derivation, written 

-·-
a' - ; Cl(, is one in which for i = 1, 2, ... , n each di is immediately derivable from 
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O'. i-l via application of a production to the rightmost nonterminal in O'.i _ 1. 

We choose the right derivation as our canonical derivation. 

A terminal string is one consisting entirely of terminals. A 

sentential fornr is any string derivable from S. A sentence is any terminal 

sentential form. The language L( G) generated by G is the set of sentences; 

i.e., L(G) = (77 EV; I S _/:<11 } . A right sentential form, which we choose as 

our canonical form, is any string canonically derivable from S. 

An example of a canonical derivation of a string T) 
1 

in L(G
1

) follows, 

where in each canonical form we underline the rightmost nonterminal and 

indicate the production used to derive the next form. 

Canonical Form Production 

s 
r E l (O) S .... r El 

r E+ Tl 
(1) E ... E + T 

~ E+ pl 
(4) T .... p 

t-~+i-i 
(5) p .... i 

r 1+ i 1 (2) E .... T 

rPtT+i-i 
(3) T .... PtT 

rPtP+i-i 
(4) T .... p 

rP f i +i1 
(5) p .... i 

ri t i 4- i _, (5) p .... i 
= '1 1 
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Note that a canonical derivation is a strictly right-to-left process since we 

always replace the rightmost nonterminal. 

We assume that grammar G has no useless productions; i.e. , we 

assume that for each production A .... w there exists a derivation 

* S.... aofj where a, o, and B are terminal strings. Presumably our language 

designer has made an error if there are useless productions in the grammar 

Fortunately, well known methods exist for detecting such errors (see(Gin 66), 

section 1. 4). 

Loosely speaking, a parse of a string is some indication of how that 

string was derived. In particular, a canonical parse of a sentential form 

o: is the reverse of the sequence of productions (or equivalently, the numbers 

thereof) used in a canonical derivation of o:. We refer to the action of 

determining a parse as parsing, the determination constitutes a grammatical 

analysis , and a parsing algorithm is called a parser. 

Being interested for the present in grammatical analysis, we view a 

grammar G as serving two purposes: (i) it is a set of rules for generating 

the sentences in L(G), and (ii) it defines the input/output relations of any 

corresponding canonical parser; i. e. , if the input to the parser is a string 

11 in L(G), the output should be a canonical parse of Tl· However, because 

the latter is ill defined in the case that 17 has several canonical parses and 

because we desire ultimately to generate a unique translation of 71 from a 

unique canonical parse, we are led to the following definition. A grammar 
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G is unambiguous if and only if each canonical form, and therefore each 

sentence, has a unique canonical parse. It follows immediately that each 

canonical form of an unambiguous grammar has a unique canonical derivation. 

2. 2 Characteristic Strings 

We would like to describe a particular canonical parser, but fir~t 

we define some strings which together provide a useful characterization 

of the decisions which must be made while parsing. 

Definition 2. 1. Let G be a CF grammar with s + 1 productions. 

Let [ # 
0

, # 
1

, ... , # s} be a set of special symbols not in V, called 

#-symbols, such that# 
0 

is associated with production 0, # 
1 

with 1, ... , and # with s. Let the p-th production be A ... w, 
s 

and let a' = pAB and a = p wB be canonical forms such that there 

-·-
exists a canonical derivation S ... ; a' _. Ra. Then pw # is a 

p 

characteristic string of a. We call p w the stack string of 

p w # and a stack string of a, and we call fj an input string 
p 

of a. 

A characteristic string of a is, in essence, a summary of information about 

a useful for canonical parsing. It indicates that there exists a canonical 

derivation of a in which it is immediately preceded by another form a' 

which can be formed as follows: remove from the end of the stack string 

pw the substring w which matches the right part of production p, 
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replace w with the left part A, and concatenate the result with the input 

string {3. We describe this procedure as "making a reduction" via 

application of the "applicable production" to the end of the stack string. 

In concert with this terminology we often refer to productions as 

reductions, visualizing them written W ..... A. 

As examples we give several canonical forms of grammar G1 

with corresponding characteristic strings: 

171 =I-it i + i 1 
~Pt i+i1 

~PtP+il 

I- i * 5 

f-Pti#
5 

r pt P# 4 

Theorem 2. 1 : A CF grammar G is unambiguous if and 

only if each canonical form a of G, except S, has a 

unique characteristic string. 

Proof: We exclude a = S because we defined no 

characteristic string for it. Clearly S has a unique 

canonical derivation so the exclusion does not effect 

the following. 

if part: To prove G is unambiguous we must show that 

every canonical form has a unique canonical parse. We 

proceed by induction, letting P n be the proposition that 

every canonical form derived in n steps has a unique 
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canonical parse. P 
1 

is true, because there is only 

one derivation consisting of one step, namely 

}'or some n > 0 we assume that P 
n 

is true and prove P 
1

. Consider a form CL derived 
n+ 

in n+l steps and having a unique characteristic string. 

Every canonical derivation of CL must end in the same 

step CL' _,CL, for some CL' derivable inn steps, by 

definition of characteristic strings. Thus, any canonical 

parse of CL must be the production applied in CL' ..... CL, 

followed by some canonical parse of CL'. But CL' has 

only one such parse, by the inductive hypothesis, so 

CL has only one canonical parse. Thus, G is unambiguous 

by definition. 

only if part: If G is unambiguous, each such CL has a 

unique canonical parse and derivation. Therefore by 

definition it can have only one characteristic string. 

2. 3 A Canonical Parser 

Q. E. D. 

Our canonical parser is described simply as follows. Commencing 

with string fl in L(G), iteratively (i) determine a characteristic string of 

the current canonical form, (ii) output the production indicated by the last 



-25-

symbol of that characteristic string, (iii) make the corresponding reduction, 

and (iv) stop when the new canonical form is ex = S. 

Several comments are in order with regard to this algorithm. First, 

it is incomplete since we have not stated how to determine characteristic 

strings. We investigate this problem thoroughly in Chapters 3, 4, and 5, 

but we solve it there only for a restricted class of CF grammars which we 

are about to define. Second, since these special grammars are all unambigu

ous, we can change part (i) to read "determine the characteristic string ... " 

Thus, the algorithm is well defined, and deterministic, for the grammars 

of interest. Third, since each iteration is the reverse of a step in a 

canonical derivation, it is clear that the process as a whole is just the reverse 

of a canonical derivation. Thus, the parser proceeds strictly from left to 

right, except perhaps for the computation required to determine characteristic 

strings. This is, of course, precisely why we are interested in this particular 

parser. 

A determination of the canonical parse (5, 5, 4, 3, 2, 5, 4, 1, 0) of the 

string 11
1 

derived above is exemplified below, where we underline the 

reducible substring in each canonical form and characteristic string. 
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Canonical Form Characteristic Strigg Output 

r- 1 ti+i1 1- i #_ 5 
:J 

r- pt 1+ i -\ f-- p ~ i #5 5 

rPt~+ i -1 r- PtP # 
4 

4 

f- pt T+ i 1 \- PtT # 
' 3 3 

1- T + i -\ \- T #2 2 

r E + j l f- E+i #5 5 

1-E+P-1 f- E+P #4 4 

l-E+T-1 f- E+T # 
" 1 

l 

\- E -1 1- E -1 " 0 'if' 
0 

s 

Vic now informally prove that our canonical parser operates as 

desired for the purposes of compiling; i.e., that when it is applied to a string 

r} in L( G) it outputs the canonical parse of r) and stops, and that when it is 

applied to a string "7' not in L( G) it aborts somehow after a finite time. The 

former follows from the fact the parser execu tcs the reverse of a canonical 

derivation. The latter depends on the fact no canonical derivation exists for 

any such string r) ', and on the following two assumptions. First, we assume 

that there is an auxiliary mechanisn1, a "loader" program, say, vvhich ehecks 

all strings presented to the parser and ensures that the first and last symbols 

arc 1- and -1, respectively. Second, we assume that whatever device is used 

to determine characteristic strings never looks to the left of I- or to the right 

of l · The way the parser must abort, then, is by determining that there is 

no characteristic string for the string from \- to -1, inclusive. It is a finite 
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task to determine that T1' of length n has no characteristic string because, if 

nothing else, we could simply generate all strings of length n using G and 

determine that T1' is not one of these strings. Of course, the exact way in 

which our parser aborts will not become clear until we develop a device for 

determining characteristic strings. 

2. 4 LR(k) Grammars 

In hopes of being able to develop practical parsers for them, we now 

restrict our attention to those CF grammars whose sentences can be parsed 

deterministically during a single scan from left to right. 

Definition 2. 2. Let k be a non-negative integer. A CF 

grammar G is LR(k) if and only if every canonical form 

Cl! = cpB of G, except Cl! = S, has a unique characteristic 

string cp:/F p which can be determined by investigating 

only p and k:iS. 

The original definition of LR(k) grammars appeared in (Knu 65). A definition 

very like our own can be found in (H&U 69). 

Theorem 2. 2. An LR(k) grammar is unambiguous. 

Proof: The uniqueness of characteristic strings in conjunction 

with Theorem 2. 1 proves this. Q.E.D. 

We have already seen that our canonical parser proceeds strictly 

from left to right as far as the making of reductions is concerned. The 



-28-

implication of our definition is that for LR(k) grammars the process for 

determining characteristic strings need never get more than k spnbols 

ahead of the reduction process. Further, if sufficient information can 

be remembered about the string already processed, no rescanning of that 

string is necessary and the parser as a whole may proceed from left to 

right, except when the process for determining characteristic strings 

peeks ahead as many as k spnbols. We show in Chapters 3, 4, and 5, that 

sufficient information can be remembered via a finite number of machine 

states and a pushdown stack, and in fact, that our parser is equivalent to a 

DPDA. 

We emphasize that the LR(k) definition allows parsing decisions to 

depend on arbitrarily large left context (cp) but only on finite right context 

(k:/3). Thus it defines the largest possible set of grammars consistent with 

our deterministic,left-to-right bent. This because no additional information 

about the parsing decisions which were made to reduce the left part of the 

original string to Cf) would be of any use in making new decisions, since we 

are concerned only with context-free grammars. In other words, none of 

the 11 substructure 11 associated with cp is relevant to any future parsing 

decisions. 

As an example of an LR(O) grammar, consider G
0 

whose productions 

follow. 
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(O) S -+ r E l 

(1) E .... a A 

(2) A ..... c A 

(3) A ..... d 

(4) 

(5) 

(6) 

E-+ b B 

B-+ c B 

Because G
0 

is small and simple it is easy to confirm that it is, indeed, LR(O) 

The canonical forms of G
0 

are indicated in the following two derivations, 

where n > 0: 

S ..... r E l .... r a A l ..... . . . ..... r a c n A l ..... r a. c n d l 

S ..... rE l ..... r b B 1 ............ r b cnB l -+ r b end 1 

Since these represent all possible derivations, it is easy to see from 

definition 2. 1 that the corresponding characteristic strings are unique, and 

as follows: 

r E l ,11= O' r b B 11= 
4

, ... , r b c nB 11= 
5

, r a c n d 1/= 
6 

Further, it can easily be determined by exhaustive testing that the charac-

teristic string cp 11= of each canonical form a = cpf3 can be determined without 
p 

regard to any right context (8). Thus, G
0 

is LR(O). We shall prove this in 

a more satisfying way in Chapter 3. 
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Now. because G
0 

is LR(O), we can generate a parser for it via 

the simplest version of our technique, as we shall see. However, of all 

the parser-generating techniques discussed in (F&G 68). Knuth's is the 

only one which covers G
0

. This is because the most general of the other 

techniques covers only the "bounded right context" grammars (Flo 64); 

i. e. • grammars whose sentences can be parsed from left to right with 

no decisions depending on more than a bounded amount of left .2.! right 

context. 

To see that G
0 

is not bounded right context. consider the string 

17
0 

= r a end 1. To parse 17
0 

the reduction which must be made first is 

d ..... A. But that decision depends on the fact there is an "a" arbitrarily 

far to the left. Had the "a" been "b" instead, the applicable reduction would 

have been d - B. 

We illustrate that our previous example grammar G
1 

is not 

LR(O) by exhibiting two similar canonical forms of G
1 

which have distinct 

characteristic strings: 

Canonical Forms Characteristic Strings Reductions 

(4) P- T 

(5) i ..... p 
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Given the canonical form a = r P + i 1, we could not conclude on the basis 

of the prefix II r P 11 alone that the characteristic string of a is II r p + 4 II. 

We should have to look one symbol ahead to be sure a is not II r p t i ~ II 

or the like. Because elimination of such uncertainties as these can always 

be effected by a look-ahead of one symbol, G
1 

is an LR(l) grammar. We 

prove this in Chapter 4. 

Of course, our parser need not look ahead in unambiguous situations. 

For instance, there is never any uncertainty about whether 11 i 11 should be 

reduced to 11 P 11 for grammar G
1

, no matter what the context. This fact 

illustrates that the smallest k for which a grammar is LR(k) is limited by 

the worst case of necessary look-ahead. 

As examples of grammars which are not LR(k) for any k~ 0, we 

could choose any ambiguous grammar. The violation of Theorem 2. 2 is 

immediate. Neither is the mirror image of grammar G
0 

LR(k). This is 

because the "d" would now appear on the left end of each sentence, and we 

would need arbitrary right context to choose between the reductions d ~ A 

and d ..... B. 

This latter case suggests the concept of RL(k) grammars, whose 

sentences can be parsed deterministically from right to left. We do not 

pursue this concept further since the generalization is obvious. 
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2. 5 The Meaning of the LR(k) Condition 

We emphasize the fact that the LR(k) condition is one on the grammar, 

not the language. For instance, the grammar S - rEl, E - aEa E - a 

* is not LR(k) for any k, but the language it generates ra f aa} i is regular, 

and therefore recognizable by an FSM. The grammar not being LR(k) 

corresponds to the fact the strings cannot be parsed by a DPDA. There 

does, however, exist an LR(k) grammar which generates the same language. 

In fact, Knuth has shown that there exists an LR(k) grammar for every 

deterministic language; i.e. , every language which can be recognized by a 

DPDA has a grammar such that the sentences can be parsed by a DPDA. 

The latter fact is only of somewhat academic interest from our point 

of view because we are ultimately interested in using grammars to specify 

translations from strings into structures, so we are as interested in the 

structural properties of grammars as we are in the languages they generate. 

The case just given is one where no LR(k) grammar exists which has the 

symmetrical structural property of the original grammar. This corresponds 

to the fact that no DPDA could determine the center of an arbitrarily long 

string without looking arbitrarily far ahead to find the end of the string. 

It is also of some academic interest that any "LR(k) language", i.e. 

t 
one generated by an LR(k) grammar, can also be generated by an LR(O) grammar. 

t In (Knu 65) the result is that there is an LR(l) grammar for each LR(k) language, 
but this is because Knuth does not assume the left and right "pad" symbols to be 
built into the grammar. One-symbol look-ahead is therefore necessary to detect 
the end of the string. 



-33-

This fact is another which is not very interesting from our viewpoint because 

it has not been shown, and indeed, we suspect that it is not true, that an LR(O) 

grammar exists which is "structurally equivalent" to the original grammar. 

(See (Che 67) for a precise definition of the "structural equivalence" of 

grammars.) 

2. 6 Tenpinology in Automata Theory 

The following is intended only as a review of terminology. since we 

assume that the reader is already familiar with the concepts. However, the 

reader should pay special attention to the discussion of DPDAs, because our 

representations of them are unusual. We first discuss a link between formal 

grammars and automata theory. 

A production is said to be right linear (Gin 66) if it is of the form 

* A .... wB or A .... w. where A and B are in V N and w is in VT . A CF grammar 

is called right linear if all of its productions are right linear. A right linear 

grammar GR is said to generate a regular language. and it is well known 

that the latter can be recognized by an FSM which can be derived from GR 

(H&U 69). 

FSMs. Formally. an FSM (Hen 68) is an abstract model consisting 

of a finite set of input symbols, a finite set of output symbols, a finite set 

of states. a next- state function, and an output function. For our purposes 

an FSM need only be a recognizer, so the output symbols need include only 

''1" and "O", or "yes" and "no". We consider an FSM to be synonymous 
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with one of its representations, namely a "transition graph", and we discuss 

FSMs in terms of the latter rather than in terms of the above five components. 

A transition graph consists of a set of nodes with various arrows 

drawn between them. Each node represents a state and is indicated thus 

0 . where N is the name of the state (we use integers for state-names). 

Each arrow is labeled with an input symbol s; it is said to be a transition 

under~. or simply an a-transition, and it represents an element of the next -

state function. A starting state is indicated by a short incoming arrow which 

originates on no node of the graph. A terminal state is indicated thus IDI . 
An example of an FSM (transition graph) is as follows. 

A series of transitions leading through an FSM from state N1, to 

state N2 ... to state Nk is called a path from N
1 

to Nk. Every such path 

spells out a unique string of input symbols (i.e., an input string) in the 

obvious way. An FSM accepts a given string fl if and only if there exists 

at least one path that begins at a starting state, spells out 17, and ends at 

a terminal state. The set of all strings accepted by an FSM is referred to 

as the set that is recognized by that FSM. 
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A state M is said to be accessible from state N if and only if there is 

a path from N to M; the input string spelled out by such a path is said to 

access M from N. When the initial state is not specified, it is understood 

to be a starting state. 

If we associate the output symbol "1" with each terminal state and 

"O" with each of the others, each path also spells out a unique string of 

output symbols (i. e. , an output string). States M and N are said to be 

equivalent if and only if for each input string f1 spelled out by some path 

from M (N), such that the path also spells out the output string 11', there 

exists a path from N (M) which spells out the same two strings f1 and TJ ', 

respectively. 

An FSM is said to be deterministic if and only if it has a single 

starting state and from each state there is at most one transition under each 

distinct input symbol; otherwise, it is said to be nondeterministic. A deter

ministic FSM is said to be reduced if and only if every state is accessible 

from the starting state, some terminal state is accessible from every state, 

and no two states are equivalent. A reduced machine is unique within the 

names of its states, and, since it is a homomorphic image of other machines 

which recognize the same set, it can in a real sense be thought of as minimal. 

We often think of a deterministic FSM as a physical machine, rather 

than as an abstract model, and this leads to the following terminology. To 

determine if a given FSM accepts a given string f1, we say that we initialize 
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the machine (i.e .• start it in its starting state). .!EE!Y it to 17, and determine 

if 17 takes the machine through a sequence of states to a terminal state. The 

machine is said to read the symbols in 17 from an input tape, to enter first one 

state and then the next, and to o.utput symbols onto an output tape. If after reading 

the last symbol of 17 the machine outputs a 111 11
, then it accepts 17. However, 

if at that time it outputs a 110 11 or if it stops reading before it reaches the 

end of 17, it does not accept fl· The machine stops reading whenever it enters 

a state with no transition under the next symbol to be read. 

DPDAs. Our trea1ment of DPDAs is less formal than that of FSMs. 

For our purposes a DPDA is a machine consistin!g of an input tape, an 

output tape • a finite control, and a pushdown stack. 

The finite control can be thought of as a program consisting of 

instructions pertaining to the reading of symbols from the input tape and 

the outputting of symbols onto the output tape, the storage. interrogation, 

and removal of items on the stack, and jumps from one point in the program 

to another. The control can be represented by a transition graph whose 

nodes (we use circular nodes for DPDAs) are called states and whose labeled 

arrows are called transitions. 

Each state represents a point in the program which can be jumped to, 

and it has a name which is given inside the node. There is a unique starting 

state, indicated thus 6 and a unique terminal state , indicated thus 0 . 
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Each transition implies one of four kinds of instructions, the 

interpretations of which are indicated next. If the machine enters state 

N having a transition to state M, then, if the label of the transition is 

(1) a symbol s, the machine reads the next symbol and, if the symbol 

read is s, it then enters state M, (2) "push i", the machine pushes the 

item ion the stack and then enters state M, (3) "pop n, out p", the machine 

pops the top n items off the stack, outputs p, and then enters state M, or 

(4) "top i", the machine compares item i with the top item on the stack, t 

and, if they are the same, it then enters state M. 

The following two conditions are sufficient to guarantee determinism: 

(1) any state having a transition under either "push i" or "pop n, out p" may 

have no other transitions, and (2) any other state must have either every 

transition under a symbol, or every one under "top i" for some item i. 

The initial configuration of a DPDA is as follows. It is started in 

its starting state with the input string (the string to be parsed, in our case) 

on its input tape, with its input head (reading device) over the leftmost 

symbol <r> of the input string, and with its stack empty. The final configuration 

t Our special application of DPDAs has prompted us to depart from the usual 
restrictions (ll9:D 69) of allowing "pops" of only one symbol at a time from the 
stack, and investigations of items on the stack only when popping them off. 
Also., outputs are usually associated with states, as in the case of FSMs. We 
believe it is obvious how to modify our DPDAs to abide by these restrictions. 
We have deviated from the norm for the sake of simplicity and practicality. 
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is: the input head one place to the right of the rightmost symbol <i) of the 

input string, the stack empty, and the machine in its terminal state. 

The similarity of DPDAs and FSMs is emphasized if we note that 

a DPDA which never uses its stack is equivalent to some FSM. This leads 

us to think of a DPDA, then, as being based on some FSM. We think of this 

FSM as reading symbols, as usual, but interspersed between some of the 

reads are some "bookkeeping"operations involving the stack, and these 

operations effect some of the state changes of the FSM. This viewpoint proves 

to be quite useful in Chapters 3, 4, and 5. 
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Chapter 3 

PARSERS FOR LR(O) GRAMMARS 

3. 1 Perspective 

Chapters 3, 4, and 5 are difficult ones to read because they contain 

many detailed definitions, lemmas, theorems and corollaries, and intricate 

proofs. But alas, the difficulties cannot be circumvented entirely because 

the material covered is fundam.ental to the dissertation and must be precise 

and proven, and because it is distinctly nontrivial. We can, however, 

minimize problems by providing perspective via an informal preview of 

the results to come. 

The objective of the present chapter is merely to show how to construct 

parsers for LR(O) gram.mars, but in the process we lay a foundation upon 

which we ultimately build to cover all LR(k) gram.mars. 

We begin by showing that the set of characteristic strings of a 

given CF gram.mar G is a regular language. Thus, the set can be recognized 

by an FSM. We next show that if G is LR(O) the reduced, deterministic FSM 

which does this recognition is adequate, without modification, for use in 

parsing. In particular, the FSM can be used to determine characteristic 

strings of canonical forms, as is necessitated by our parsing algorithm. 

It follows rather directly that the parsing algorithm as a whole can be 

converted to a DPDA, the finite control of which can be derived directly 

from the FSM. 
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In Chapter 4 we define the "Simple LR(k)" grammars; i.e. , those 

grammars for which the special FSMs can be used to determine charac

teristic strings if they are extended by the addition of certain "look-ahead" 

information which can be computed in a simple way. The conversion of the 

modified FSM to a DPDA is straightforward, simply resulting in a DPDA 

with "look-ahead". 

In Chapter 5 we address the problem of constructing parsers for 

general LR(k) grammars. We find that in some of these cases the modification 

needed for the FSM is the same as above, but that the "look-ahead" information 

is more difficult to compute than for the "Simple LR(k)" grammars. In 

the general LR(k) case, however, some of the states of the FSM must be 

split into several copies because of complex correspondences between left 

and right contexts. The state splitting process is explained simply as 

"building into the machine" the capability to remember more left context 

so that the corresponding right contexts can be checked to make parsing 

decisions. Thus, the construction of the parser in the general case can 

become computationally complex. 

In conclusion, what we develop in the next three chapters is a 

method for constructing parsers which grows in complexity as it discovers 

the complexity of the grammar it is working on. That is, we first assume 

the grammar is LR(O) and set out to generate a parser for it. In the 

process of constructing the parser we are able to determine if the grammar 
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is. indeed. LR(O). If it is, we complete our construction and are finished. 

However. if the grammar is not LR(O). we assume it is "Simple LR(k)" 

and compute the "look-ahead" information in a simple way. If certain 

conditions do not hold regarding this "look-ahead". we use more complex 

methods and perhaps discover that some state splitting is necessary. 

Ultimately. we are able to determine if a given grammar is LR(k) for 

any finite value of k given a priori t. and if it is. w'e can construct a 

parser for it. 

3. 2 Foundation. 

To complete the specification of our canonical parser we develop 

an automaton which is capable of determining characteristic strings. We 

first concentrate on LR(O) grammars and then gradually generalize to 

·include all LR(k) grammars. The following theorem. regarding both 

amgibuous and unambiguous grammars. is fundamental to our development. 

Theorem 3. 1. The set of characteristic strings of a 

given CF grammar G = {VT' V N' s. P) is a regular 

language. 

Proof: Consider a canonical derivation of some 

canonical form a: 

t Knuth (Knu 65) ·has shown that it is undecidable, in general, whether a grammar 
is LR(k) if k is not given a priori. 
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s .... 

( (p) Am .... w) 

W W W W W" w"w" = o: 0 1 .. · m m .. · 1 0 

where m ::::_ o. Am .... w is the p-th production in P. and 

* * for 0< i < m each w~' is in VT. each w. and w! is in V 
- 1 1 1 

a production in P. Then a characteristic string of o: is 

w0w1 ..• wmw:/I: p' 

This string can be generated by a grammar containing 

the right linear productions: 

s' .... ""oAo 
AO .... wlAl 

A' .... w# 
m p 
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where S' and the A! are the nonterminals in this grammar. 
1 

Generalizing. we see that the following right linear grammar 

generates all possible characteristic strings of G: 

where 

V.' T 

V' 
N 

S' 

= V u [ 41= 0• =Ir 
1 
•...• =ii' s} and 

= [ A' I A is in V N} and 

= S primed and 

P' = [A'-+ wfl: \A-+w is the p-th production in P} 
p 

U ( A 1 -+w
1
B 1 1A-+w

1
Bw

2 
is in P and Bis in VN} 

Further, because there are no useless productions in 

G there corresponds to each derivation of a string 

cp :/I= using grammar F' derivations using grammar 
p 

G of one or more canonical forms. each of which 

has cp:/I: as a characteristic string. Thus, the grammar 
p 

F' generates all and only the characteristic strings of 

G. 

Finally, F' generates a regular language because 

it is a right linear grammar. Q.E.D. 
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Definition 3. 1. The grammar F' of the proof of Theorem 

3. 1 is called the characteristic grammar of G. 

As an example we present the productions of the 

characteristic grammar of our example grammar G
0 

(see page 29): 

(0) S'- rEl #0 (6) A'- d# 
3 

( 1) S'- ~E' (7) E'_, b B # 
4 

(2) E'-aA# 
1 

(8) E'- b B' 

(3) E'- a A' (9) B'- c B# 
5 

(4) A'- c A# 
2 

(10) B'- c B' 

(5) A'- c A' (11) B ,_, d # 
6 

3. 3 CFSMs: Characteristic FSMs 

We now concentrate on a particular FSM which can be derived from 

a characteristic grammar. 

Definition 3. 2. A CFSM (characteristic FSM) of a CF 

grammar G is a reduced, deterministic FSM which 

recognizes the set of characteristic strings of G. 

Since any such FSM is unique within the names of its states we refer to the 

l'.FSM of G. The CFSM can be derived from the characteristic grammar 

of G via well known techniques (see for example, {H&U 69) page 33) or it 

can be derived directly grom G, as we discuss in detail in Section 7. 1. 
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We illustrate in Figure 3. 1 the CFSM of our LR(O) grammar a
0

. 

It is the CFSM which is capable of determining the characteristic strings 

of canonical forms for an LR(O) grammar and an extension of it which is 

so capable for an LR(k) grammar. However. the proofs of these state

ments require several preliminary results. 

In the sequel we use +-transition to mean a transition under a 

+-symbol. 

Lemma 3. 2. Several properties of the CFSM of a CF 

grammar Gare as follows: (1) it has a single starting 

state. (ii) every state is accessible from the starting 

state, (iii) every :fir-transition is to a unique terminal 

state T, such that there are none other than +-transitions 

to T and such that there ar_e no transitions from T. and 

(iv) the terminal state is accessible from every other 

state. 

Proof: (i) the machine is deterministic, (ii) the machine 

is reduced, (iii) every string accepted by the machine has 

exactly one -#-symbol and it is the last symbol in the 

string; thus, any terminal state must have none other than 

+-transitions to it.and it must not have any transitions from 

it; there is a unigue terminal state because the machine 

is reduced, and (iv) the machine is reduced. Q.E.D. 
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E i ~r.··J ·#o _r-1--·11 . -- L 3 ...... - ·· 1liil1 

c 

---~~=--·-----"') 

d "'-------~--~- 1 =th -c{l[rj]-=·n /3 - ----- - fU 
·-------- --------!:> - -~ 

Figure J.1. The characteristic FSM of our example grammar 

Go: ( 0) s - ~ E i, ( 1) E .... a A, ( 2 ) A -- c A, ( 3) A -+ d, 

( 4) E --.. b B, ( 5) B -+ c B, ( 6) B --.. d. Al though [f.ilj appears 

at several locations above, it is to be taken as the unique 

terminal state. 
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Now we give convenient and, as we shall see presently. meaningful 

names to all the states of such an FSM. except for the terminal state. 

Definition 3. 3 Any state having no #=-transitions is called 

a read state 

Definition 3. 4 Any state whose only transition is a 

+-transition is called a reduce state. 

Definition 3. 5 Any state having two or more transitions 

at least one of which is a #=-transition. is called an 

inadequate state. In the case of a state with more 

than one #=-transition, we sometimes refer to it 

as multiply inadequate. 

The lattermost definition, motivates the following one. 

Definition 3. 6 A CFSM with no inadequate states is 

said to be adequate, otherwise it is said to inadeguate. 

3. 4 Parsers for LR(O) Grammars 

Preliminaries. The following lemma is a concise and useful statement 

of the LR(k) condition specialized to the case k = 0. It provides a way to 

decide if a grammar G is LR(O) by checking properties of its characteristic 

strings. rather than of its canonical forms. This is a decided advantage. 

Informally. the lemma means that, if the stack string of one characteristic string 

is a prefix of another characteristic string, then G is not LR(O). 

Lemma 3. 3. Let G be a CF' grammar. Let <P 1 ff p and 

<P
2

41= q be any two characteristic strings of G such that(/) 1 =<t> 2=<P· 

Then G is LR(O) if and only if e = £ and q = p. 
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Proof: Our proof depends on the fact that by definition of 

characteristic strings there correspond to cpf and 
p 

cp8* q canonical forms a 1 = cp .8 1 and a
2 

= cpe{J 2• 

* respectively, for some fJ 1 and fJ 2 in VT . 

if part: If 8 = £, and q = p, then a
1 

and a
2 

have the 

same characteristic string cp* • Consider the case 
p 

a 1 = a
2 

= a. This implies every canonical form a 

has a unique characteristic string. Consider the case 

a 1 I a 2• If we were given a alleged to be either a
1 
or a

2
• 

we could determine the characteristic string cpf of a by 
p 

investigating onlycp. Since a
1 

and a
2
can be any canonical forms 

as given above, we have shown that G is LR(O) by definition. 

only if part: If G is LR(O) then, if a
1 

= a
2 

= a. we 

must have e = £ and q = p,since each canonical form 

a has a unique characteristic string. If a
1 

I a
2 

and 

if e = £ and/ or q I p, then a
1 

and a
2 

have distinct 

characteristic strings, and given a alleged to be 

either a
1 

or a
2

• we could not determine the charac

teristic string of a on the basis of cp alone. Since this 

is a contradiction of the LR(k) definition for k .. 0, 

we again have e = £ and q = p. Q.E.D. 
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We use this lemma immediately to verify another and still more 

useful method for deciding if a grammar is LR(O). 

Theorem 3. 4. A CF grammar G is LR(O) if and only 

if its CFSM is adequate. 

Proof: .!! part: If the CFSM is adequate and if it 

accepts the string <pf p' then it cannot accept the string 

<p &IF for (} = € and/ or q = p. For if it did, the state 
q 

accessed by <p would be inadequate, having distinct 

transitions under f and 1 :&IF • G is therefore LR(O) 
p q 

by the "if part" of Lemma 3. 3. 

only if part: By Lemma 3. 2, part (ii). each state N 

of G's CFSM is accessible by some string <p. Assume 

that N has a :fr -transition; i.e .• that the CFSM accepts 
p 

<p:I/= • If N had another distinct transition, it would be 
p 

either to the terminal state or to a state from which the 

terminal state is accessible, by Lemma 3. 2, part (iv). 

Thus. the machine would also accept <p 61! for some 
q 

e I € and/or q Ip. But by the "only if part" of Lemma 

3. 3, <p:/r and <p6# cannot both be characteristic strings. 
p q 

i. e. 

q = p. 

the CFSM cannot accept both, unless (} = € and 

Thus, any such N must have only the :/I= -transition, 
p 

and the CFSM is adequate by definition. Q.E.D. 
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Thus, we have proved that our eYample grammar G
0 

is LR(O) by 

exhibiting its CFSM (Figure 3. 1), which is adequate by inspection. 

Parsers. We now prove that for the special case of an LR(O) 

grammar, the corresponding CFSM is capable of determining the charac-

teristic strings of canonical forms. 

Theorem 3. 5. Let G be an LR(O) grammar and O:'. = cp(3 

be a canonical form of G with characteristic string cp# . 
p 

The stack string cp accesses a reduced state of G's 

C.FSM whose only transition is under # . 
p 

Proof: The CFSM accepts the string cp# . Thus, 
p 

cp accesses a state N with a transition under # . 
p 

But since G is LR(O), Theorem 3. 4 implies N is 

not an adequate state. Therefore, N must be a 

reduce state whose only transition is under # . 
p 

Q.E. D. 

Pc:lrsing algorithm. Thus for an LR(O) grammar Gour parsing 

algorithm can be restated as follows. Commencing with O:'. =Tf, where 

T/ is a string in L(G), and with the CFSM of G: 

(i) Initialize the CFSM and apply it to the current canonical form O:'.. 

\Vhen the machine enters a reduce state R, it will have read the stack 

string cp of O:'. and will have left to read the input string (3 of O:'.. 

(ii) The only transition from R must be under # for some production 
p 

p, so output p. 
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(iii) Apply reduction p to the end of cp and concatenate the result and 

j3 to form the next canonical form CJ.., 

(v) If the new form is Ci. = S then stop; otherwise start at step (i) again. 

Note that in this algorithm characteristic strings are determined 

without checking the entire string. Thus, in general, when it is applied 

to a string T/' not in L( G), it goes through several iterations, making 

reductions on the left part of T/ ', but it ultimately aborts when the CFSM 

is applied to a string 0: 1 = cp '/3' such that cp' accesses a state with no 

transition under 1 :/3'; i.e., when the CFSM stops reading. This must 

be the case because there is no other way for the algorithm to fail, and 

because if it were successful, that would imply there exists a canonical 

parse of T/ 1 • (Recall the discussion at the end of Section 2. 3.) 

Obviously this parser is neither efficient nor strictly left-to-right 

since it starts back at the beginning of the stack string at each iteration. 

We now solve these two problems by converting our string-manipulation 

algorithm to a DPDA. 

3. 5 Conversion of the Parsers to DPDAs 

Our conversion technique is most easily understood if it is presented 

in two steps. We first convert our parser to a "stack algorithm"; i. e. , 

an algorithm incorporating a pushdown stack. The use of the stack eliminates 

the need for rescanning the stack string at each iteration. Then we give a 
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technique for converting the CFSM to the finite control of a DPDA, such that 

the DPDA simulates the stack algorithm. 

Consider an iteration of our parsing algorithm. We begin with some 

canonical form a' = ~/3 whose characteristic string is pwil' • We apply 
p 

the CFSM to a'. The string pw is read, the CFSM enters a reduce state, 

and the characteristic string is determined. If production pis A ... w, we 

replace w with A to form a = p.AfJ and start anew. 

Now, on the next iteration the first action of the CFSM is to read 

p again. But the CFSM is deterministic and will therefore go through the 

same sequence of states while reading p this time as it did on the previous 

step. Thus, had we remembered in the previous step the state N of the 

CFSM immediately after reading p, we could in this step merely start the 

CFSM in N and apply it to A{3 to get the desired result. 

The stack algorithm: To eliminate the rescanning of the stack string 

at each iteration we use a pushdown stack. As the CFSM reads a canonical 

form we push onto the stack the names of the states entered by the CFSM. 

Upon determining the characteristic string, say pw:f where production p 
p 

is A ... w, we pop the top I wl state-names off the stack and output p. We 

then return the CFSM to the state whose name is at the top of the stack 

(determining the top name is called looking~) and continue the process 

by reading Af3. The process ends when the string to be read is simply S. 
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It should be clear, in light of the two paragraphs preceding, the 

algorithm, that the stack algorithm is equivalent in effect to our previous 

algorithm. However, it is more efficient than the previous one. 

We emphasize. for reasons which will become apparent shortly, that 

the sequence of state-names stored in the stack at a particular time T 

represents a path through the CFSM. The path is the one which would be 

taken by the CFSM were it to be applied to the prefix which is implicitly 

the left context at time T. This property is the basis of several observations 

which we make below. 

Note that at this stage we have substantially departed from the string

manipulation notions with which we began. Our stack algorithm has no 

further interactions with symbols after it.has read them. Instead, it interacts 

with the state-names of the CFSM. We now move another step away from our 

original parsing notions by coverting the stack algorithm plus CFSM to a 

DPDA. 

The conversion technique. We consider the CFSM to be the basis from 

which we construct the finite control of our DPDA. Since both FSMs and 

finite controls can be represented by transition graphs, the technique can 

be described as a piecewise conversion of one graph into another. 

We think of the CFSM-graph as a skeletal program which we must 

convert to a detailed program (finite control) by filling in more instructions. 

The basic structure and the read instructions are already in the program. 
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and we must add the stack-manipulation instructions. Our guide to this 

programming task is, of course, the stack algorithm. 

For each state N of the CFSM there is a state named N in the DPDA. 

such that the actions of the DPDA immediately subsequent to entering state 

N are similar to the actions of the stack algorithm when the CFSM is in 

state N. The CFSM can be converted to the appropriate finite control by 

applying to it the three transformations indicated in Figure 3. 2. 

Figure 3. 2a indicates a transformation for replacing #-transitions 

with "reduction procedures". Consider a reduce state R corresponding 

to production p, A-+ w. We replace the # -transition from R with a 
p 

transition under "pop lwl. out p" to a new look-back state R'. There is 

one transition from R' under''top N" to state M for each pair (N. M) in 

the set Q. where Q = ( (N. M) I there exists an A-transition from N to M 

and a path from N to R which spells out w}. 

Note that there is an optimization implicit in this transformation. The 

reduction procedure executed by the stack algorithm can be described via the 

following sequence: "pop lwl. out p"; look back and see N; return to the CFSM 

to state N; read A (which causes the CFSM to enter state M). However, the 

reduction procedure for the DPDA is simply: ''poplw1. out p''; look back and 

the 
see N; enter state M. That is, the DPDA does not manipulateAnonterminal 

A. The optimization might be described as precomputing part of the reduction 

procedure and "wiring the results into the machine". 
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(a) 

w 

w 

)fil 
f.op N1c 

w 
out p 

top Ni 
(exception: if p=O then ~) 

out 0 

{b) ~ . . 

( c) A 
t> => poof I 

(i.e., delete all transitions under nonterminals.) 

Figure J.2. Transformations for converting the CFSM of 

an LR(O) grammar G to a DPDA-parser for G. 
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There is one exception to our first transformation. If p = 0 then we 

replace the # 
0

-transition from R with one under "pop 4, out O" to the 

terminal state. This follows because the associated production is known 

to be of the form S ..... r S' l; i.e. , because we know that R is associated 

with the final reduction. If we analyze first the parsing algorithm at the 

end of Section 3. 4 and then the stack algorithm, we see that when our DPDA 

enters state R, the implicit left context must be r S' 1. and therefore, 

that there must be four state-names in the stack. Thus, "pop 4 11 empties 

the stack so that the final configuration of the machine will be correct. 

Figure 3. 2b indicates a transformation which causes the DPDA to 

push the same state-names on its stack as the stack algorithm does on its, 

and at the same time. That is, when the DPDA enters state N, it first 

pushes the name N on its stack and then it enters a new state N' where it 

continues doing whatever the stack algorighm would do with the CFSM in 

state N. 

Figure 3. 2c indicates the deletion of all transitions under nonterminals. 

This is possible because of the optimization implicit in Figure 3. 2a and 

because the DPDA is assumed to be parsing only terminal strings. t 

In Figure 3. 3 we present the result of applying the first and third of 

our transformations to the graph of Figure 3. 1. We did not apply the second 

t However, we believe that, if the transitions under nonterminals were 
retained, the DPDA could parse any sentential form. 
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pop 'f 

o•+ 0 

Cl. por 2 

o .. t 1 

c 

c 

d 

b r0r 2. 
Olf~ I/ 

c 

c 

d d 

, .. 

15 

11 

top 1 

pop 1 

011.t 3 

-top 1 

pop f. 

oui 6 

t:op 6 

top 11 

Figure 3.3. The finite control of the DPDA-parser for our 

example grammar G0 : (O) S .... ~ E ;, (1) E ...... a A, (2) A• c A, 

{J) A• d, (4) E - b B, (5) B-+ c B, (6) B ...... d. This figure 

was derived from Figure J.1. 

I! 
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transformation for two reasons: (1) the figure would have gotten too large 

and unreadable, and (2) in our :implementation in Chapter 7 we find it 

efficient to :implement "states which push their names on the stack when 

they are entered"; i.e., we :implement @ _E_us_h_ N_-c:{""0 as a single 

state. Thus, [~] can be thought of as an abbreviation for such a state. 

To illustrate the operation of our machines, we indicate in Table 3-1 

the history which results when the DPDA implied by Figure 3. 3 is applied 

to the string racd -\ in L(G
0

). Note that for perspecuity we indicate at 

each step the symbols of what is :implicitly the left context. Of course, 

those symbols are not stored in the stack by the DPDA. 

Comments: A read state of a DPDA is one all of whose transitions 

are under symbols. When a DPDA for an LR(O) grammar G is applied to 

a string 17 1 not in L(G), it must abort in a way similar to the way the stack 

algorithm aborts. This follows because the DPDA simulates the stack 

algorithm. In particular, the machine will ultimately enter a read state N 

having no transition under the next symbol to be read. Further, the 

corresponding state N of the CFSM is the one in which the CFSM would abort 

if the stack algorithm were applied to 17'. 

The only other seemingly possible time that the DPDA could 

abort is when it is in a look-back state. But this possibility is 

ruled out, again because the DPDA simulates the stack algorithm. 

The stack algorithm looks back only to decide in which state to 
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Table 3-i. The history of grammar G
0

' s DPDA-parser applied to the 

string r acd 1 in L( G
0

). 

State Stack Input String Output 

none r a c d 1 

0 0 r a c d 1 

1 1 1 a c d 1 
I-

4 0 I- 1 4 c d 1 
a 

6 0 \- 1 a 4 6 d 1 c 

8 0 1 4 fi d 8 \- a c 
3 

16 0 \-1 a 4 G 
c 

7 0 r-1 4 6A 7 1 a c 
2 

16 or- 1 4 1 a 

5 0 r 1 a 4 \5 1 i 
1 

15 or- 1 -1 

2 0 \- lE 2 

3 0\-1E2l3 

0 
14 
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restart the CFSM after a reduction. It does not look back to check the 

validity of the information in the stack since, as noted above, that information 

always represents a path through the CFSM. Thus, looks back cannot fail. 

We do not formally prove that our DPDA for a given LR(O) grammar 

G is a correct parser for the sentences of G. Instead, we informally argue 

that the DPDA is equivalent in effect to the stack algorithm, which in turn 

is equivalent to the algorithm at the end of Section 3. 4, which in turn 

is equivalent to our canonical parser that was informally proved to be 

correct in Section 2. 3. We implicitly rely on a similar line of reasoning 

with respect to our parsers throughout the remainder of the dissertation. 

3. 6 Optimizing the DPDAs 

As noted above our DPDAs have already been optimized with respect 

to the stack algorithm. By precomputing part of the reduction procedures, 

we increase both the time- and space-efficiency of our machines. Less 

time is used because the reductions are executed with fewer machine 

operations, and less space is used because transitions under nonterminals 

are unnecessary. There are three more ways in which the DPDAs can be 

optimized and all three are related to look-back in one respect or another. 

(1) Two look-back states Rl and R2 are said to be equivalent if and 

only if for each transition from R~ (R2) under "top N" to state M there is 

a similar transition from R2 (Rl ). Clearly, equivalent look-back states 
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may be eliminated in favor of a single state, in the obvious way. Note that 

the machine of Figure 3. 3 has already been optimized in this way; e. g. , 

7 and 8 have transitions to the same look-back state. Clearly, the effect 

of this optimization is only to increase space-efficiency. 

(2) Another optimization arises from the fact that we look-back only 

to determine which state to enter after a reduction. Thus, if all the 

transitions from a given look-back state R' are to the same state M, 

then R' is unnecessary. States 15 and 17 of Figure 3. 3 can be eliminated 

due to this property, increasing both the time- and space-efficiency of the 

DPDA. That is, the transitions from states 5 and 10 may by-pass states 

15 and 17, respectively, and go directly to state 2. 

(3) Finally, note that reduce states need not push their names on the 

stack since the names are immediately popped off again without ever being 

interrogated (via a "top R "). Thus, the node [!!] in the lower part of 

Figure 3. 2a can be changed to @ , and "pop lwl" must then be changed 

to "pop I wl - 1 ". 

In fact, in almost all cases only those states in the set X = [NI 

there is a transition under "top N" in the machine } need push their names 

on the stack; i. e. , be represented by square nodes. Of course the 

"pop lwl" instructions must be changed accordingly, and thence arise 

the only exceptions to the previous statement. If we follow the path from 

N 
1 

to R in Figure 3. 2a, starting with a counter set to zero as we leave N 
1

, 
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and increment the counter by one each tirne we encounter a state in the set X, 

we can reduce 11 pop I wl " to "pop n ", where n is the value of the counter 

after reaching H. However, the same statement applies to the path from 

N
2 

to H , ... , and Nk to R. Clearly, each path must imply the same n, 

or if this is not the case, some extra states not in X must push their names 

so that the paths are "balanced", in the c1bvious sense. 

In the case of our DPDA of Figure 3. 3, only states 1, 4, 6, 9, and 

11 (the ones in the corresponding set X) need push their names. The effect 

of this optimization is, of course, to increase both time- and space-efficiency, 

but it also reduces the depth of the stack during execution. 

Comments. To indicate the significance of these optimizations in a 

practical case, we give some statistics relating to our DPDA which is 

presented in Chapter 7. The DPDA corresponds to the grammar of a pro

gramming language which is quite practical, syntactically. The optimized 

machine has 172 states. The first optimization reduced the potential number 

of look-back states from 82 to 32. The second optimization further reduced 

the number to 22. The third optimization reduced the number of states 

pushing their names on the stack from 157 to 61 (again only those states 

in the corresponding set X); i.e., it reduced the depth of the stack during 

execution to about 3 / 8 of what it would otherwise have been. 

~Ve delay any specific estimates of the time-efficiencies of our 

machines until we have discussed parsers for 'fSim ple LR(k) ff grammars, 
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the subject of Chapter 4. The LR(O) grammars are not very interesting 

for our purposes, so the efficiencies of their parsers are also uninteresting. 

However, we find the "Simple LR(l)" grammars, and therefore their 

parsers, quite interesting, as we shall see. 

We delay discussion of specific space-efficiencies until Chapter 7, 

where we are concerned with implementation issues. Space-efficiency 

is most easily discussed in terms of an actual implementation. 

Regarding implementation issues, the fact that look-back is not for 

validation of information on the stack, also implies two possible optimizations 

when implementing these parsers. (1) If the implementation is sequential 

in nature (as is the one presented below), then, if in all but a few cases 

the transitions from a look-back state R' go to a single state M, the "odd 

balls" may be checked first and, if the top of the stack is not one of them, 

a default transition to M may be made. (2) If the implementation is para-

llel in nature (e.g., array or matrix look-ups), then "compatible" look-

back states may profitably be merged into a single state. For instance, 

in Figure 3. 3 the four look-back states are "compatible" and can be merged 

to form a single state having transitions under "top 1" to state 2, "top 4" 

to 5, "top 6 11 to 7, "top 9" to 10, and "top 11" to 12. (The fact that the 

first number in each case is one less than the second is a "red herring".) 

We do not pursue the parallel possibilities in the present dissertation, even 

though they have significant potential. 
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Finally, we emphasize that, since all of these optimizations concern 

look-back, they have no effect on error detection. That is, the optimized 

DPDA will detect that its input string is not in L(G), if indeed that is the 

case, at the same time relative to the reading of Tl' as would the unoptimized 

DPDA. 

3. 7 Conclusion 

At this point it is advisable that the reader should reread Section 3. 1 

to place the foregoing results into perspective. 

We have now developed much "machinery" for converting CFSMs to 

optimized DPDA parsers. Of course, our results thus far are useful only 

for LR(O) grammars, but we shall see in Chapters 4 and 5 that with the 

addition of one more transformation rule, namely one relating to "look

ahead", we shall have the "machinery" necessary for covering all LR(k) 

grammars. The problem of generating parsers for "Simple LR(k)" 

grammars, then, reduces to that of appropriately adding "look-ahead" 

information to CFSMs, and that for general LR(k) grammars reduces to 

appropriately splitting some states of the CFSMs and then adding "look

ahead" information. 
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Chapter 4 

PARSERS FOR SIMPLE LR(k) GRAMMARS 

We now investigate a class of grammars which is of substantial 

interest from the viewpoint of programming-language design and speci-

fication. The class is a subset of the LR(k) grammars for which parsers 

are only slightly more difficult to construct than are parsers for LR(O) 

grammars. The class includes the LR(O) grammars, and the accompanying 

parser-constructing technique is based on our LR(O) technique. 

We begin by discussing the nature of the "inadequacy" of CFSMs for 

non-LR(O) grammars and a solution for that "inadequacy". 

4.1 Inadeguacy, Look-ahead 

In the case of a grammar G which is not LR(O), Lemma 3. 3 implies 

that G has at least one pair of characteristic strings of the form cpf/= and 
p 

cp81/i such that p I q and/or 8 I £. By definition of characteristic strings, 
q 

then, there exist canonical forms a
1 

= cp 13
1 

and a
2 

= cp {J
2 

which have the 

characteristic strings cpf and cp Of , respectively. 
p q 

Assume that we attempt to use G's CFSM to determine the charac-

teristic string of a form a alleged to be either a
1 

or a
2

. If we apply the 

CFSM to a, it reads cp and enters a state having distinct transitions under 

+ and 1 :Of (recall the proof of Theorem 3. 4); i. e., the machine enters p q 

an inadequate state. What do we do then? 
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If a = a
1 

then we should stop and apply reduction p to the end of <P· 

However, if a = a
2 

then, if e f. E", we should allow the CFSM to continue 

reading, whereas if e = E", we should stop and apply reduction q to the end 

of <P· The problem is that there is not a unique parsing decision associated 

with an inadequate state, as is the case with a read or reduce state. 

Stated another way, the state, and therefore the CFSM, are indeed 

"inadequate" for use in determining characteristic strings. However, the 

LR(k) definition itself hints at a solution to this inadequacy. By using the 

CFSM we have., in effect, investigated and remembered some pertinent 

features of the left context <P· However, we have not investigated the right 

context at all; i. e. , we have not looked ahead of the decision point. 

Let us consider an example. There follow the productions t of 

the characteristic grammar of our example grammar G
1 

(page _19). 

t Note that the production E' _. E' makes the grammar "infinitely ambiguous"; 
i. e., each sentence has infinitely many canonical parses. This is of no 
concern to us here because we are not interested in the "structural properties" 
of the grammar. We are only interested in the strings which the grammar 
generates and the CFSM which accepts them. 

-----~-- - ---
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(0) S' ..... rEl 11= 0 
(7) T' ..... PtT 1/:

3 

(1) S' ..... f-E' (8) T' ..... PtT' 

(2) E' ..... E + T 1/:
1 

(9) T' ..... P' 

(3) E' ..... E + T' (1 O) T' ..... p 11= 
4 

(4) E' ..... E' (11) pr ..... i 11= 
5 

(5) E' ..... T 4f 
2 

(12) P' -+(E)#6 

(6) E' ..... T' (13) P' ..... ( E' 

The corresponding CFSM is illustrated in Figure 4. 1. For our purposes 

here the only state of interest is the inadequate one, state 7. 

Consider the two canonical forms of G
1 

a
1 

= r P + i l and a
2 

= r Pt i l · 

The unique characteristic strings of a
1 

and a
2 

are r P 1/= 
4 

and 1-P ti# 
5

, 

respectively, as the reader may easily confirm by canonically deriving the 

forms. Clearly, the prefix l- P, which is common to a
1 

and a
2

, accesses 

state 7 of G
1 
's CFSM. 

Now, if we were given a alleged to be either a
1 

or a
2

, we could 

determine a' s characteristic string as follows. First, we apply G
1 
's CFSM 

to a. Then, when the CFSM enters state 7, we look ahead at, but do not let 

the CFSM try to read, the next symbol to be read. If the symbol is +, then 

the characteristic string is the prefix read by the CFSM thus far ( !- P) 

concatenated with# 
4

. However, if the symbol is t, we must allow the 

CFSM to continue reading to determine the characteristic string. (In this 
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Figure 4.1. The CFSM of our example grammar G1 : (0) S .. r E 1, (1) E .. E + T, 

(2) E - T, (J) T - Pt T, (4) T - P, (5) P - i, (6) P~ ( E ). Here as in 

Figure J.1 ilE11 denotes a single state. 
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case the machine would read t i and enter state 10, thus determining that 

the characteristic string is r P t i + 
5

. ) 

In fact. we show below that no matter what canonical form a of G
1 

we are given. if a prefix cp of a accesses state 7. then we can determine 

via one symbol look-ahead whether a' s characteristic string is cp# 
5 

or 

cp t . • • In particular. if we look one symbol ahead and see a symbol in 

the set [ l • +.) } • the characteristic string is cpff • but if we see one in 
4 

the set [ f } • it is cp t ... 

LALR(k) Grammars. The above discussion and example might lead 

one to think that perhaps every LR(k) grammar has the property that its 

sentences can be parsed. in a manner similar to that just illustrated, by 

using its CFSM and some look-ahead sets associated with the transitions 

from inadequate states. Unfortunately. this is not the case. However. for 

purposes of discussion let us informally define a CF grammar to be LALR(k) 

(for look-ahead LR(k)) if and only if it has the above stated property. 

Clearly every LALR(k) grammar is LR(k). since the determination 

of character.istic strings for such a grammar is based on some knowledge 

of left context and at most k symbols of right context. In fact. the deter-

mination concerns only the eguivalence class of the left context. Further. 

a minim.um number of equivalence classes is involved, since we use an FSM 

with a minim.um number of states to remember relevant information about 

left con text. 
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We illustrate in Chapter 5 that the LALR(k) grammars are a subset 

of the LR(k) grammars by giving a grammar for which adding look-ahead 

alone is not a sufficient modification to the CFSM; it must have some of 

its states split to make it remember more about left context; i. e. , to 

increase the number of equivalence classes of left context. 

Unfortunately, again as we shall see in Chapter 5, even the LALR(k) 

grammars cannot be described as a "simple" subset, since the computation 

of the look-ahead sets for some of those grammars is distinctly nontrivial. 

Thus, if we are to have a parser-constructing technique which grows in 

complexity as it discovers the complexity of the grammar at hand, we 

should not jump from a procedure covering the LR(O) grammars to one 

covering the LALR(k) grammars. 

Instead, we consider next a smaller subset of the LR(k) grammars 

which are distinguished both by the fact that adding look-ahead to the 

corresponding CFSMs is sufficient to render them useful for determining 

characteristic strings and that the computation of look-ahead sets is 

simple. It turns out, as we shall see in Section 4. 8, that even this 

smaller subset is a large and useful set of grammars. 

4. 2 Simple LR(k) Grammars 

Expediency dictates that we define this subset of the LR(k) grammars 

in terms of our parser-constructing technique, as we did in the case of 
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the LALR(k) grammars. This is not unreasonable since there seems to be 

no good, intuitive definition in terms of canonical forms and parsing decisions, 

anyway. 

The "simple" function which is central to our definition and which is 

useful for computing look-ahead sets is as follows. 

Definition 4. 1. Let k be a positive integer and let 

G = (VT' V N' S, P) be a CF grammar, one of whose 

nonterminals is A. Then 

Thus, F~(A) is the set of all terminal strings of length k which may follow A 

in a canonical form of G. We are interested in look-ahead sets containing 

only terminal strings because our ultimate DPDAs will operate in a strictly 

left-to-right manner and will be applied to nothing but sentences. 

1 
As an example we compute F T(P) for grammar G

1
: P appears in the 

right parts of two productions. The production T-+ P t T implies that t is 

in F~(P). The production T-+ P implies that all the strings in F~(T) are 

1 . 1 
also in F T(P). E-+ E + T and E-+ T each rmply that the members of F T(E) 

are also in F~(T). S-+ ~E~ implies that 1 is in F~(E); E-+ E + T adds +; 

t Our set notation is an abbreviation of the usual mathematical notation: 
{crE" V~ I S-pA{3 for some p, f3 and a= k:f3}. 
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and P ..... (E) adds ")". 
1 

Thus, we have determined that F T(P) = [ t, l • +, ) } , 

and in the process that F~(T) = F~(E) = [ l • +, ) } . 

Warshall (War 62) has a fast "bit-matrix technique" which can be 

used (Che 67) for computing these sets for k = 1. This is particularly 

important since we expect the large majority of the grammars of interest 

to be "Simple LR(l)'~ as we indicate in Section 4. 8. Further, for those 

few grammars which are not "Simple LR(l)" we expect to have to resort 

to k = 2 or 3, say, with respect to only one or two inadequate states. Thus, 

we have a reasonable step up in complexity from the LR(O) grammars. 

We now define the look-ahead sets in terms of which we later define 

the "Simple LR(k)" grammars. 

Definition 4. 2 (Recursive on the value of k. ) Let G be a CF 

grammar and k be a positive integer. There is associated 

with each terminal- and +-transition of G's CFSM a simple 

k-look-ahead set which is as follows. For a flt -transition, 
--- p 

where production p is A ..... w, the set is F~(A). For a 

transition under the terminal t the set is [ t} if k = 1 and 

* otherwise [ tf3' £ VT l the t-transition is to a state N and 

{3' is in the simple (k-1)-look-ahead set associated with 

some transition from N}. 

Comments: (1) We do not define look-ahead sets for transitions 

under nonterminals because our ultimate DPDAs will have no such transitions, 
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and (2) although for ease of definition sets are associated with every 

terminal- and 41'-transition of the CFSM, we are interested only in the 

sets for transitions from inadequate states. 

For the value as an example we illustrate the computation of the 

simple 3-look-ahead set for the t-transition in Figure 4. 1. The 

computation is actually unnecessary for grammar G
1

• since a
1 

is 

"Simple LR(l) ". 

First, we follow all paths leading from state 7, never taking 

transitions under nonterminals, until either a string of length three is 

spelled out or until the terminal state is reached. The strings spelled out 

by all such paths are ti# 
5

, t(i, and t ((. Next, the desired set of strings 

can be derived from these strings as follows. First, each string which 

contains no +-symbol is in the desired set. Second, for each string of the 

form a:fr p' where production p is A -ow and I a I = n, every string which can 

be formed by concatenating a with a member of F~-n (A) is in the desired 

set. In our special case the latter means ti concatenated with the members 

1 
of FT(P). Thus, the simple 3-look-ahead set for the t-transition is 

[ t(i, t((. tit•' t i1. ti+. ti)}. 

Finally we come to our main definition. 

Definition 4. 3. Let k be a positive integer. A CF grammar 

G is Simple LR(k), abbreviated SLR(kl if and only if for each 
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inadequate state N (if any) of G's CFSM the simple k-look

ahead sets associated with the (terminal- and#-) transitions 

from N are mutually disjoint. G is SLR(O) if and only if it 

is LR(O). 

Our example grammar G
1 

is SLR(l). Proof: The simple 1-look

ahead set associated with the t-transition of its CFSM is ft } and that 

of the # 
4 

-transition is l<T(T) = { 4, +, ) } , as we have seen. Obviously, 

these sets are disjoint. 

4. 3 SLRkFSMs 

We now turn to the question of how to explicitly encode look-ahead 

sets into CFSMs. We desire an explicit encoding for two reasons: (1) 

it facilitates proofs that 11 CFSMs-plus-look-ahead sets" can be used to 

determine characteristic strings, and (2) it facilitates our discussion of a 

technique for converting those machines to DPDAs. 

The encoding is accomplished by adding to each CFSM transitions 

under ''generalized symbols". If R is a look-ahead set associated with 

a given X-transition (X not a nonterminal) of the CFSM, thm XR is a 

generalized symbol associated with the X-transition and the set R. 

Definition 4. 4. Let G be an SLR(k) grammar. We construct 

G's SLRkFSM from its CFSM as follows. For each inadequate 

state N (if any) of the CFSM and for each X-transition (X not a 
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nonterminal) from having associated with it the simple k-

look-ahead set R, we add a transition from N, under the 

generalized symbol XH, to the terminal state. 

Clearly an SLRkFSM is a reduced, deterministic FSM. It accepts 

the characteristic strings of G plus the strings in the set [cpXR I cp accesses 

an inadequate state N of G's CFSM and N has an X-transition (X not a 

nonterminal) with which is associated the simple k-look-ahead set R}. 

As in the case of CFSMs we use the terms "read 11
, "reduce'', and 

"inadequate" with regard to states of SLRkFSMs, in the obvious way. 

However, for emphasis we sometimes refer to the inadequate states as 

"modified- inadequate states". 

In the case of grammar G
1

, its SLRl FSM is the graph in Figure 4. 1 

with state 7 replaced by the following: 

_t ------{>rsr:
~-~ 

# [-\,+,)J 
________ 4 __ -t>[g) 
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In the sequel we sometimes use an abbreviated notation for modified-

inadequate states. For instance, the above can be abbreviated: 

ff f-J,+,)} 
4 D 

rt J 
t 

We emphasize that this is only an abbreviation. Our theorems below are 

easier to prove in terms of the former notation than the latter. 

The modified stack-algorithm. In a manner similar to the way in 

which we developed DPDA-parsers for LR(O) grammars, we first state a 

stack-algorithm which uses an SLRkFSM to determine characteristic strings, 

and then we convert the SLRkFSM to a DPDA which simulates the stack-

algorithm. Our stack-algorithm here is simply our previous one modified 

to "look ahead" at the appropriate times. We present the algorithm next 

and prove that it works correctly afterward. 

Commencing with a string ex = 17, where 11 is in L( G), with an empty 

stack, and with G's SLRkFSM in its starting state: 

(i) Apply the SLRkFSM to ex; store on the stack the names of the states 

entered by the machine as it reads. 

(ii) If, after reading some prefix 'fJ of ex such that ex = tpfj, the machine 

enters a reduce or inadequate state N, then 
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(a) if N is a reduce state whose only transition is under + . 
p 

where production p is A .... w. then output p, pop the top I wl 

names off the stack, return the SLRkFSM to the state whose 

name is at the top of the stack, set a = A{J. and go to step (iii). 

(b) if N is an inadequate state with (among others) transitions 

Rl R2 Rn 
under the generalized symbols xl • x2 • . . . • xn • compare 

the strings in the sets R
1

• R
2

, ... , Rn with k:fj .. Exactly one 

match will occur, say with a string in R .. 
. 1 

(1) If X. is a #-symbol, execute step (ii), part (a), 
. 1 

as if N were a reduce state whose only transition is 

under X .. 
1 

(2) However if X. is a terminal symbol, treat N as if 
. 1 

it were a read state (i. e. • as if it had only its 

transitions under symbols), continue the reading 

and name-storing processes, and return to step (ii). 

(iii) If a = S then stop; otherwise, return to step (i). 

Proof . Since the present stack-algorithm is like our previous one 

except for the addition of a procedure related to inadequate states, we need 

only pr0ve that it operates correctly wheri the SLR_kFSM enters such a state. 

Informally, we prove in Theorem 4. 1 that, if the SLRkFSM reads to the end 

of a canonical form's stack string, the algorithm will correctly determine the 

characteristic string. Then, in Theorem 4. 2 we prove that in reading the 

stack string the algorithm will not make an incorrect choice before reaching 

the end. 
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Theorem 4. 2. Let G be an SLR(k) grammar and a = cp e{3 be a 

canonical form of G with characteristic string cp e:/I= such that 
p 

e is in v; but e f €. Then, if cp accesses an inadequate state 

N of G's SLRkFSM having transitions under the generalized 
R

1 
R

2 
R 

symbols, x
1 

, x
2 

, ... , Xn n for some n ~ 2, the string 

k:e/3 is in R. but not in R. for 1 < i I j < n, such that X. = 1 :e. 
1 J - - 1 

Proof: k:e{3 may appear in at most one of the sets R
1

, R
2

, ... , Rn' 

since the sets are mutually disjoint. k: e{3 must appear in R. 
1 

such that X. = l:e for the following reasons. Since both G's 
1 

SLRkFSM and its CFSM accept cp (}:/!= , there is a path leading 
p 

from N (of both) which spells out (}:/!= • It is easy to see from . p 

the definition of a simple k-look-ahead set R for a terminal 

transition (in particular, one under l:e) that if l el~ k then 

k:(} is in R, whereas if le l = n < k then every string formed 

by concatenating e with a member of F~-n(A) is in R, where 

production p is A_. w. The latter includes k:e{3 by definition 

k 
of F T(A). Q. E. D. 

4. 4 Minimizing Look-ahead 

We noted in Chapter 2 (page 31) that the smallest value of k for which 

a grammar is LR(k) is limited by the worst case of necessary look-ahead. 

A similar statement is true regarding the SLR(k) condition. In fact, we 
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could have defined SLR(k) grammars in the following alternate way. We 

could have first defined a grammar G to be "SLR(k) with respect to" a 

given inadequate state of its CFSM, in the obvious way. Then we could 

have defined G to be SLR(k) if and only if it is "SLR(k) with respect to" 

each of its CFSM' s inadequate states. 

This alternate definition emphasizes the fact that the look-ahead 

sets for the transitions from a given state N may be computed for the 

smallest value of k such that the sets are mutually disjoint. In effect, 

we recognized this fact to a limited extent in Theorem 4. 1; i. e. , we 

recognized that every grammar is "SLR(O) with respect to" each reduce 

state of its CFSM. Only notational and expositional difficulties prevented 

us from incorporating this fact into our definition of SLRkFSMs and 

Theorems 4. 1 and 4. 2, rather than belatedly bringing it up now. 

Fine tuning. In some cases not only may the amount of look-~head 

required be different for distinct states, but even a single state may have 

strings of various lengths in its look-ahead sets. Consider, for instance, 

a state N having only the two look-ahead sets, {ab, cd}, and ( ae). Clearly, 

if the SLRkFSM is in N and the next symbol to be read is c, we need not 

investigate the second symbol to make the associate parsing decision. 

That is, the first set above may be changed to (ab, c} . 

In general, look-ahead sets may have the lengths of their strings 

minimized as follows. Consider a state N with look-ahead sets R
1

, R
2

, ... Rn 
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for some n > 2. We change each set R. by removing from the right end 
1 

of each string in R. the maximum number of symbols such that the result 
1 

is not a prefix of a string in R ., for 1 < i I j < n. Clearly, the sets remain 
J - -

mutually disjoint after these changes. 

Note that this optimization is not applicable to simple 1-look-ahead 

sets, since € is a prefix of every string. 

4. 5 The Conversion of SLRkFSMs to DPDAs 

It should be clear from the modified stack-algorithm that the 

transformations implied by Figure 3. 2 remain valid ones, as regards the 

read and reduce states of our SLRkFSMs. Furthermore, the computation 

of look-back states implied by Figure 3. 2a is also valid for the #-transitions 

from inadequate states. Thus, all we need now is one more transformation 

rule; i. e. , one for mapping modified-inadequate states, whose associated 

look-back states have already been computed, into look-ahead states t of 

a DPDA. The appropriate transformation is implied by Figure 4. 2, and 

the conversion technique goes as follows. 

First, we apply the transformation implied by Figure 3. 2a to each 

reduce state of the SLRkFSM. Also, for each inadequate state I of the 

t Again we are abusing strict automata theory by allowing our DPDAs to 
"look ahead". We do so for the sake of simplicity and practicality. It is 
well known (Knu 65) that DPDAs without "look ahead" can perform the same 
computations as ours. 
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. . . R . . t: • 

\_ t~ Jttt>fDI 

Figure 4.2. The transformation for converting modified

inadequate states to look-ahead states. This transformation 

plus those implied by Figure J.2 are all that are needed for 

converting an appropriate FSM to a DPDA-parser for any LR(k) 

grammar, 
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machine and for each +-transition T from I. we apply the former transformation 

to I. as if it were a reduce state whose only transition is T. The result 

after this first step is. of course, a machine with "inadequate states" of 

the form indicated in the left part of Figure 4. 2, where if n = 1 then 

m ~ 1, but if n > 1 then m ~ 0. 

In the case of the inadequate state 7 of a
1 
's SLRkFSM (illustrated 

in Section 4. 3), the result is as follows: 

t 

Next, we apply to each inadequate state I resulting from the first step 

the transformation implicit in Figure 4. 2. The latter indicates a conversion 

to a look-ahead state I of the DPDA. The intent. of course. is that when 

the DPDA is in state I it should simulate the modified stack-algorithm when 

the SLRkFSM is in state I (recall step (ii) of the algorithm). 

The result of applying this second step to state 7 illustrated above is 

as follows. 
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pop 1 

HJ 
t 

out 4 

t 

Finally. we apply the transformations implied by Figures 3. 2b and 

3. 2c to the machine, and we have the desired "DPDA with look-ahead". 

except for optimizations. 

Optimizations. Since the optimizations discussed in Section 3. 6 

applied only to look-back, which is independent of look-ahead, each of 

those optimizations is also applicable to "DPDAs with look-ahead". Only 

one more optimization presents itself, and it is applicable only to (the very 

important case of) 1-symbol look-ahead states. We illustrate this final 

optimization in conjunction with the presentation in Figure 4. 3 of the fully 

optimized DPDA-parser for grammar G
1

. 

For present purposes consider only state 7. The intent is that, when 

the DPDA enters state 7. it should look-ahead as usual and, if the next symbol 

is r, +, or). it should enter state 16 next. as usual; however if the symbol is 

t , it should move its read head to the right one place and then enter state 8. 

That is, the state is sort of a combination "look-ahead read-state". and it 

eliminates the inefficiency of investigating the t twice. We allow such states 

because it is easy to implement them. as we show in Chapter 7. 
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... p -- -

top 1 

·t.,. 11 

pop 0 

. 

top 8 

to '1-

"tap 1 

top .11 I 
I 
I 
I 
I 
I 
1. 

. .. l L pop 0 

( 

1 

I 
1 -- ----- -I 
I 
l 

I 

' --- -- -

--~~~~~~~~--r 

out S 

E pop 1 

out 6 

' I -- -=====::> + 

... p -- _:====) 
L 

( 

Figure 4.3. The fully optimized DPDA-parser for grammar G1 • 

This figure was derived from Figure 4.1. The dashed arrows are 

not intended as part of the machine. Recall that when the DPDA 

enters a state represented by a square, it pushes the name of 

that state on its stack. 
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The dashed arrows in Figure 4. 3 indicate the transitions under 

nonterminals which were removed from a
1 
's SLRl FSM in forming the 

DPDA. That is. they are not to be taken as part of the DPDA. We include 

them to facilitate future discussions and to aid the thoroughly interested 

reader in reviewing the transformation rules as they apply to this example. 

Recall that when the DPDA enters a state represented by a square. 

it pushes the name of the state on the stack. 

4. 6 Time-Efficiency 

From the automata-theoretic viewpoint a parser is simply a translator; 

it is a machine which translates strings into parses; i.e .• strings of symbols 

into strings of production numbers. We adopt this viewpoint for the purpose 

of discussing the time-efficiency of our parsers. 

We informally define time-efficiency in terms of an "ideal machine". 

The latter is assumed to be able to translate a string of n symbols into a 

string of m symbols with only 2(n +m) "machine operations" of approximately 

equal complexity (execution time); i.e .• it takes n reads, m outputs. and 

n+m accompanying state-changes. By the "time-efficiency" of a DPDA. 

then, we mean the number of machine operations required by the ideal machine 

to perform a given translation divided by the number required by the DPDA 

to perform the same translation. 

In Table 4-1 we illustrate the history which results when the DPDA 

of Figure 4. 3 is applied to the string 11
1 

= ~i t i + i 1 in L( a1 ). Counting 
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Table 4-1 . The history which results when the DPDA of Figure 4. 3 is 

applied to the string 77
1 

= ht i + d. 

State 

0 
1 

10 
7 

8 
10 

7 
16 
15 

9 
15 

6 
17 

2 
4 

10 
7 

16 
15 

5 
17 

2 
3 

14 

Stack 

1 
1 
1 

1 8 
1 8 
1 8 
1 8 
1 8 

1 
1 
1 
1 
1 

1 4 
1 4 
1 4 
1 4 
1 4 

1 
1 
1 
1 

23 state changes 

Time efficiency 

Input String 

ht i + d 
ili+i-1 
t i + i 1 
{' i+i 1 
i + i -1 
+ i -1 
+i-1 
+ i -1 
+i-1 
+ i -1 
+i-1 
+ i -1 
+ i -1 
+ i -1 
i -1 
-1 
-1 
-1 
-1 
1 
1 
1 

2(7 + 9) 
23 + 7 + 3 + 3 + 2 + 5 + 9 

Totals 

32 
52 

Output 

5 

5 

4 

3 

2 

5 

4 

1 

0 

62% 

Machine Operations 

'"O 
(1j .:,:: 
<lJ C) 
~ (1j 
(1j ...0 ....., 

'"O~ ~~ 5, 
mrno..oo...., 
<lJ ;::l 0 0 0 ;::l 
p:; p, p, ,. .. 4, .. -1 0 

x 
x x 

x 

x x 

x 
x x 

x 

x 

x 
x 

x 
x x 

x 

x 

x 
x 

x 
x 

x 
x 

x 

x x 

x 

x 

7 3 3 2 5 9 
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all the pushes, pops, reads, outputs, and state-changes executed by the 

machine, it requires 52 machine operations to map 77 1 into its canonical 

parse. Since I 11
1 
I = 7 and since there are nine symbols (production 

numbers) in the parse, the ideal machine could have performed the trans

lation in 2(7 + 9) = 32 machine operation. Thus, the time-efficiency of 

the DPDA is 32/52 or about 62% for 77
1

. 

If a similar table is constructed for the unoptimized version of G1 's 

DPDA parser, we find that it takes 79 machine operations; i.e., for 77 1 

its time-efficiency i_. 32/79 or about 41%. Thus, the optimized DPDA is 

1. 5 times as fast as the unoptimized one. 

A general case. Let us consider the time-efficiency for a more 

general case. In particular, let us compute the worst-case time-efficiency 

for the DPDA-parser of some SLR(l) grammar, when it is applied to a 

string of n symbols having a canonical parse of m symbols. We merely 

analyze the behavior of the DPDA (assumed to be similar to the one of 

Figure 4. 3) and determine the maximum number of machine operations 

which can be associated with each of the n+m symbols. 

At worst we may need a push, a read, and a state-change for each 

of the n input symbols, since we may need to push the name of each read 

and look-ahead state. For each of them output symbols (i.e., for each 

reduction), we may need a push, a look-ahead and a state-change, then a 

pop, an output and a state-change, and finally a look-back and a state

change. 
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Thus. the DPDA could take as many as 3n + 7m machine operations 

to perform the translation. The time-efficiency in the worst case. therefore, 

is 2(n+m)/(3n+7m). which is a minimum of 29% when m >> n. 

4. 7 Error Detection 

In the present- section we have three points to make regarding the 

actions of a DPDA-parser for an SLR(k) grammar G when the DPDA is 

applied to a string Tl' not in L(G): 

(1) The machine must ultimately detect the "error". 

(2) It may detect the error either while reading or while looking ahead. 

(3) It may not detect the error as soon as it would have had its look-ahead 

sets been computed by using functions complex enough to cover the LALR(k) 

or general LR(k) grammars. 

(1) The first point follows from the facts that the DPDA ultimately 

simulates our canonical parser of Chapter 2 and that there exists no 

canonical parse for Tl'· (Recall the argument at the end of Section 3. 6.) 

(2) Our DPDAs without look-ahead had only one way in which to 

abort, namely by entering a read state with no transition under the next 

symbol to be read. Clearly. by adding look-ahead states we add another 

possibility. The machine may enter a look-ahead state N such that none 

of the strings in the look-ahead sets of the transitions from N match the 

beginning of the string remaining to be read. 
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(3) We illustrate our third point by example. .Consider an SLRkFSM 

with two inadequate states N
1 

and N
2

, each having a + p-transition, where 

* production p is A -ow. For i = 1, 2 let RCi = (fj £ VT l'PfJ is a canonical 

form with characteristic string fPf such that 'P accesses state N .J. Assume 
p 1 

that RC
1 

and RC
2 

are disjoint sets. Then if 'Pl accesses N1 and {3
2 

is in 

RC
2

, fP
1

{3
2 

is not a canonical form. And yet, if our DPDA is in state N1 

with implicit left context 'Pl and right context fj 
2

• it will not detect the 

error immediately via look-ahead. This follows because the simple 

k-look-ahead set corresponding to the +p-transition contains k:{J
2

• by 

definition. 

Clearly, if the look-ahead sets of the + p -transitions from N
1 

and N2 

are reduced to R. = ( k:,8 lf3 £ RCJ for i = 1, 2, respectively, then the DPDA 
1 1 

continues to correctly parse sentences in L(G). However, after this change, 

it will detect the above error via look-ahead when it is in state N1• since 

k:fj 
2 

is not in R
1

. 

Jia-
What we have A covered is that, if the look-ahead sets for a state N 

are computed independently of the left contexts which access N. as is the 

k 
case when we use FT' the sets sometimes contain strings which cannot 

begin a legitimate right context when the machine is in state N. Thus, in 

a sense, ~ is not always "restrictive" enough. Note, however, that this 

situation may obtain only if there is more than one transition in the machine 
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under some +-symbol. (In our practical example in Chapter 7 only 2 of 

82 productions have more than one corresponding #-transition in the CFSM.) 

Our example also illuminates the difference between LALR(k) grammars 

and SLR(k) grammars. If a grammar G is LALR(k) but not SLR(k) for a 

particular value of k, then some state of G's CFSM must have overlapping 

simple k-look-ahead sets. And yet, if those sets are reduced by considering 

corresponding left contexts, they become mutually disjoint. In Chapter 5 

our first example illustrates such a grammar, and we find that in general 

the functions necessary for computing look-ahead sets for LALR(k) grammars 

are the same complex functions which are necessary for general LR(k) 

grammars. 

4. 8 On the Extent of the SLR(k) Grammars 

We should like to give the reader some intuitive feel for the usefulness 

and the extent of the SLR(k) grammars; that is, a feel for which grammars 

are SLR(k) and which are not. But alas, given our conceptual framework 

there seems to be no good intuitive explanation, so we resort to discussing 

some inclusion relations between SLR(k) and other well-known grammars. 

In the Appendix we show that the "weak precedence" grammars of 

Ichbiah and Morse (I&M 69) are included in the SLR(l) grammars. Since 

those authors have shown that the "simple precedence" grammars of 

Wirth and Weber (W&W 66) are a subset of the "weak precedence" ones, 

it follows that the "simple precedence" grammars are SLR(l). Further, 
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it is easy to see from the proofs in the Appendix that, if the "precedence 

relations" were extended to include k symbols of right context, the 

resulting "right-extended weak-precedence" grammars would also be 

SLR(k). This leads us to suspect that the "(1, k) ·precedence" grammars 

of Wirth and Weber (W& W 66), the "(O, k) bounded context t" grammars 

of (F&G 68), and the "ICOR (0, k)" grammars of Lynch (Lyn 68) are all 

SLR(k). 

But these inclusions really undersell the SLR(k) grammars, for 

the latter include many grammars which are in none of the abdve classes 

or their generalizations. They include all LR(O) grammars and many 

other LR(k) grammars tor which arbitrary left context is necessary to 

make parsing decisions. Our example grammar a
0 

is a case in point, 
I 

as we noted in Section 2. 4. 

The ability of the CFSM for a given grammar to remember some 

left context which may be arbitrarily ~ar to the left seems to arise because 

the confusion between contexts, which may obtain when two productions may 

be applicable to the same part of a string, is minimized in the CFSM in 

the following sense. If there exists an inadequate state N in the CFSM, 

then no matter how much left context we investigate we will not be able 

to make the parsing decision associated with N. The former statement 

t These grammars should really have been called "(O, k) bounded right 
context" (Flo 64). 
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is implied by Lemma 3. 3: if <P accesses N, then there exist characteristic 

strings cp# and cp e# and corresponding canonical forms. 
p q 
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Chapter 5 

PARSERS FOR GENERAL LR(k) GRAMMARS 

5. 1 Objective 

In the present chapter we continue the development of "Our parser-

constructing technique. However, before we proceed we (1) place the 

foregoing results into perspective by reviewing them from the viewpoint 

of a TWS attempting to construct a parser for a given grammar, (2) preview 

the results of the present chapter, and (3) disclaim any interest in these 

results from the practical viewpoint. 

Review. Assume that we are given a CF grammar G and that we are 

to construct a parser for it. We first assume that G is LR(O) and construct 

its CFSM. If the CFSM is adequate, G is LR(O) so we convert its CFSM ~o 

a DPDA and are finished. If, however, the CFSM is inadequate, we deter-

mine if G is SLR(l) by computing the simple 1-look-ahead sets for the 

transitions from the inadequate states. If the sets for each inadequate state 

are mutually disjoint, G is SLR(l) so we convert the CFSM to an SLRl FSM 

anci_then convert the latter to a DPDA with one-symbol look-ahead. As noted 

above, we expect none of the grammars of interest to be LR(O), but most of 

them to be SLR(l). 

Of course, it may be that there are one or more inadequate states 

which have overlapping, simple 1-look-ahead sets, in which case our work 

is not done. For the transitions from each such state we compute the simple 
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k-look-ahead sets for some values of k > 1. Since the time-efficiency of 

our ultimate parser will go down as k goes up (because look-ahead means 

multiple interrogation of some symbols), we shall undoubtedly be interested 

in only a restricted range of values of k, probably k ~ 3 or so. If it turns 

out that the simple k-look-ahead sets are mutually disjoint, i.e. that G 

is SLR(k) for an acceptable value of k, then we can construct a DPDA

parser which has perhaps some one-symbol, and one or more k-symbol, 

look-ahead states. 

In some cases, of course, we shall find that G is not SLR (k) for 

an acceptable k. However, there remains the possibility that G is LR(k) 

for such a k. For instance, our first example below is a grammar which is 

not SLR(k) for any k, but which ~ LR( 1 ). In such a case we need more 

complex methods,first for determining if a grammar is LR(k) for a given 

k and second for constructing a corresponding parser if the former is the 

case. 

Preview. These more complex methods are the subjects of the 

present chapter. In some cases (more of the LALR(k) grammars) we 

find that our modification of the CFSM is the same as for an SLR(k) 

grammar, but that the look-ahead sets are more difficult to compute then 

for the latter. In other cases, however, we find that some states must 

be split into several copies so the CFSM will remember more left context 

and so we can check corresponding right contexts to determine charc:cteristic 

--------------~------
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strings. The determination of the appropriate state-splitting and 

corresponding look-ahead requires techniques which are substantially 

more complex, computationally, than our previous methods. 

We introduce these notions by defining a set of grammars via 

some "sets of bounded-context pairs" and by showing how to extend our 

techniques to cover those of the latter grammars which are not SLR(k). 

The reasons for state-splitting come out rather naturally in the discussion, 

which leads eventually to a method for covering all LR(k) grammars. 

Impracticality. The reader should keep in mind throughout this 

chapter that we expect to have to resort to these techniques only rarely, 

if at all. This expectation stems primarily from two sources. First, 

the grammars which were shown in Section 4. 8 to be included in the SLR(k) 

grammars have been found to be quite useful for describing much of the 

syntax of many programming languages (F&G 62). The prime example 

is, of course EULER (W&W 66). Second, our own experience with languages, 

particularly with the language whose grammar and translator are presented 

in Chapter 7, has been especially encouraging in this respect. The latter 

grammar generates an extremely powerful, useful, and readable language 

with many constructs in common with languages like FORTRAN, ALGOL, 

EULER, PL/I, etc. The grammar was designed to be unambiguous, small, 

concise, and useful as a syntactical reference for programmers (i. e. , for 

~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the determination of operator precedences, associativities, etc.), but 

it was not designed with our parser-constructing techniques in mind. 

Indeed, the techniques did not exist when the grammar was designed. 

And yet, the grammar turns out to be SLR(l). 

Thus, the material in this chapter is here more because of a desire 

for completeness and for a fuller understanding of the LR(k) grammars than 

for its expected usefulness in practice. Consequently, we do not in this 

chapter concern ourselves particularly with the efficiencies of the techniques 

discussed. We are primarily interested in getting across the ideas. 

5. 2 "Bounded-Context" Examples 

In this section we analyze two grammars which are not SLR(k). The 

first is an LALR(k) grammar for which the look-ahead sets can be determined 

by using a function which computes "bounded-context pairs". The second 

grammar is not LALR(k), but it is LR(k); i.e., its CFSM needs both state

splitting and look-ahead. The above mentioned function is found to be 

useful in the second case, also. 

The two examples motivate the definition of a set grammars which 

we call "L(m)R(k)", and a parser-constructing technique to cover them. 

These grammars include, and their definition has similarities with the 

definition of, the "bounded right context" grammars (Flo 64); i.e., those 

grammars whose sentences can be parsed during a deterministic, left-to-
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right scan with each parsing decision being made on the basis of the knowledge 

of a bounded amount of context surrounding the decision point. 

Example 1. Consider the CFSM shown in Figure 5. 1. It corresponds to 

grammar G
2 

which contains the following productions 

(0) S _, rEl (3) E _, b Ac 

(1) E _, a Ad (4) E _, b e d 

(2) E _, a e c (5) A-+ e 

There are two inadequate states in the CFSM, states 7 and 12, both involving 

production 5 whose left part is A. Since G
2 

generates only four strings, namely 

I- aed 1, ·t- aec -l, I- bee -1, and I- bed 1, it is trivial to compute the appropriate 

simplek-look-aheadsets. In particular, foranyk> 1, Fk(A) = {c1,d-U, 

is the set for the # 
5 

- transitions; that for the c-transition from state 7 is 

k-1 
{ c 1}; i. e. , c followed by the only member of F (E} = { l}; and that for 

the d-transition from state 12 is [ d-n; i.e., d followed by the only member 

of Fk-l(E). We represent this information, as we did in Chapter 4, using 

generalized symbols: 

7 

and 
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e 

b 

e 

Figure 5.1. The CFSM for grammar G2 • 
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Clearly, G
2 

is not SLR(k) for any k since the simple k-look-ahead sets 

have strings in common for both the inadequate states regardless of the 

value of k. 

However, because the grammar generates only four strings, we 

can easily determine by exhaustive tests that the look-ahead sets can be 

reduced to those indicated as follows; i.e., that G
2 

is LALR(l). 

c 
l c} 

* [ dj 
5 

. . . 12 
d{d} 

* l c} 
5 

Clearly, a parser constructed using these look-ahead sets is a correct 

one for this grammar. But how do we compute these look-ahead sets in 

general? 

For G
2 

and many other grammars we can use the function mck which 

is defined below and whose value is a set of ordered pairs of left and right 

contexts. The definition requires the following two preliminary definitions: 

(1) if cp is a string, thencp :m denotes the last m symbols of cp if l'P ! > m and 

* * cp otherwise, and (2) { (V , VT)} denotes the set of pairs whose first components 

* * are in V and whose seconds are in VT" 
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Definition 5. 1 Let G = (VT' V N' S, P) be a CF 

grammar and m and k be positive integers. Then 

m k * * * C ('if ) = ((pw:m,k~) ( ( (V , V T)J IS ... R p.A{J and 
p 

production pis A ... wJ. 

Each pair in this set consis1B of the last m symbols of a stack string 

cp and the first k symbols of a corresponding input string fj, respectively, 

such that the canonical form ex = cp/3 has a characteristic string cpl • In 
p 

other words, we have the ordered pairs of left and right contexts which 

may surround a point in a canonical form where, during a deterministic, 

left-ro-right parsing, we should decide to make a reduction using production 

p. 

The mCk(I ) sets play a part in the pefinition of "L(m)R(k)" 
p 

grammars similar to that played by the Fk(A) sets in the definition of 

SLR(k). The former sets can be computed in a way resembling the manner 

in which the Fk(A) sets are computed (recall the example on page 71 ), except 

that, of course, corresponding left and right contexts must be tallied. 

The former sets are certainly more difficult to compute than the latter, 

but their computation is a reasonable next-step in our parser-generating 

procedure. 

In the case of grammar a
2 

we have 

'2C1 (I ) = { (ae, d), (be, c)} 
5 
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and we can observe that any string ending in ae will not access state 12, 

therefore the look-ahead set for the+ 
5

-transition need not contain the 

string dl. Similarly, the look-ahead set for the f 
5 
-transition from state 

7 need not contain c1. t If we minimize the lengths of the strings in the 

look-ahead sets which result after these deletions, we arrive at the same 

sets deduced above. 

Example 2. Our second grammar G
3 

is rather similar to G
2

. 

G
3 
's productions follow. and its CFSM is illustrated in Figure 5. 2. 

(O) S ... ~El (4) E ... b B d 

(1) E ... a Ad 

(2) E _.a B c 

(3) E ... b Ac 

Again we have a grammar which is not SLR(k), since 

Fk(A) = ( c1. d-U = Fk(B) for any k > 1. In this case, however, the 

conflict is not as easily removed as was that of the previous case. If we 

compute the context pairs, we get 

2 1 C C+ 
5

) = ( (ae, d), (be, c)} and 

2 1 
C (# 

6
) = ( (ae, d), (be, d)}. 

t This example illustrates that the simple k-look-ahead sets may contain some 
strings which cannot appear as the prefix of the input string fJ of a canonic~! 
form a = cpfj such that cp accesses the state in question; i. e. • that the set F .. 1A) 
is not sufficiently restrictive. In the current case this "causes" the grammar 
not to be SLR(k). In other cases it may only cause the parser to be slower 
(because it checks too many possibilities for look-ahead) and to detect some errors 
somewhat later than it otherwise would. Recall the discussion in Section 4. 7. 
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e 

b 

e 

F1gµre 5,2, The CFSM for grammar G3 • 
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Analyzing this case as before we see that these context pairs imply no 

restrictions on the look-ahead sets, so we are left with the overlap: 

There is, however, a simple solution in this case, too. Note 

that we could make the parsing decision associated with state 9 by looking 

at both our left and right contexts after arriving there. If we look to our 

left and see "ae" then, if we look to our right and see d, fl: 
5 

is the correct 

transition, but if we see c, + 
6 

is correct. On the other hand, if we see "be" 

to our left then the correspondences are d with I 
6 

and c with :II= 5. 

Although we could build a parser for a
3 

which decides whether to 

reduce using production 5 or 6 by looking at both left and right context, we 

prefer to eliminate the special look-to-the-left for two reasons: (1) it 

would be less time-efficient and also possibly less space-efficient than an 

alternate approach which we give below, and (2) we can easily generalize 

our other approach to cover all LR(k) grammars, but we cannot easily 

generalize this one. 

What we chose to do is to "build into the machine" some extra memory 

for the extra left context. Note that in the case of grammar G
2 

the machine 
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implicitly remembers the appropriate left context; i.e .• we know that if the 

machine is in state 7. the two-symbol. left context is "ae". whereas if 

the machine is in state 12. the context is "be". Unfortunately the CFSM 

of G
3 

forgets this context; i.e .• when the machine is in state 9 the left 

context may be either "ae" or "be". 

We solve the problem for G
3 

by splitting state 9 into two copies. 

9
1 

and 9
2

• as shown in Figure 5. 3. Note that the look-ahead sets are 

indicated and that there is no overlap. The sets may be determined (in 

this case) just as they were for the CFSM of G
2

, after the state splitting 

has been performed. 

5. 3 L(m)R(k) Grammars 

The preceding examples motivate the definition of a set of grammars 

which can be described informally as those whose sentences can be parsed 

by using (1) corresponding CFSMs to determine potential characteristic 

strings and (2) sets of context pairs computed using mck to make parsing 

decisions associated with inadequate states. Our method of defining these 

grammars is similar to our method of defining the SLR(k) grammars. and 

we point out the similarities as we proceed. 

We first need two preliminary definitions. 

Definition 5. 2. Let G be a CF grammar. m be a positive 

integer. and N be a state of G's CFSM. 
m 

Then the set L(N) 
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#6 Djtilll 
=H=JcJ 

=#=lJl 

Figure 5.J. The CFSM of grammar GJ after state-splitting 

and with look-ahead sets indicated via generalized symbols. 

The machine is later called the L2R1FSM of G3• 
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is the set of left contexts of length m which end strings 

which acceS3N; i.e .• 

m * L(N) = [ t,o :m) f: V I cp accesses N} . 

This set can be computed by following all possible pathes backwards 

through the CFSM. from N. form steps or until the starting state is 

reached. Since the connectivity of the CFSM (graph) can be represented 

by a bit-matrix. the computation involves some fast bit-matrix manipulations 

(Pro 59). 

Now we define some "sets of bounded-context pairs" associated with 

the transitions of CFSMs. The definition is to our "L(m)R(k)" definition 

what the definition (4. 1) of simple k-look-ahead sets is to the SLR(k) 

definition. 

Definition 5. 3. (Recursive on the value of k.) 

Let G be a CF grammar and m and k be positive 

integers. There is associated with each transition T 

of G's CFSM a set of (m, k)-bounded-context pairs, 

m k 
BC (T), as follows: 

If T is a# -transition from state N then 
p 

m k { mk I m BC (T) = o, µ) £ C (# ) C1 £ L(N)}. 
p 
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Or if T is a transition under the terminal t from state N 

to state M then 

mBCk(T) = 

if k = 1 then [(a, t) £ ((v*, v;)} la£ mL(N)} 

otherwise [(a, tµ') £ ((v*, v;)} la£ mL(N) and 

(at,µ') £m+lBCk-l(some transition from M)}. 

As in the case of simple k-look-ahead sets: 

(1) we do not define these sets of pairs for transitions under nonterminals because 

our ultimate DPDAs will have no such transitions, and (2) although for the ease 

of definition sets are associated with every terminal-and #-transition of the 

CFSM, we are interested only in the sets for transitions from inadequate states. 

The computation of these sets of pairs for a #p -transition primarily 

consists of computing mCk(:/I= ) and mL(N), as can be seen from the definition. 
p 

For a transition under a terminal and for k > 1, the computation proceeds 

in a manner similar to that illustrated above (page 73) for the computation 

of a simple k-look-ahead set, except that, of course, corresponding left 

and right contexts must be tallied. 

In the case of G
3 
's CFSM and for m = 2 and k = 1, we have for 

inadequate state 9: 

2
BC

1 
(the :ff 

5 
-transition) = 

2c 1(:/f
5

) = [ (ae, d), (be, c)} and 

2
Bc

1 
(the fl: 

6 
-transition) = 

2
c 1

(://=
6

) = [ (ae, c), (be, d)}. 

Of course, this agrees with our results above. 
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We now come to the main definition of this section. 

Definition 5. 4 . Let G be a CF grammar and m and k 

be positive integers. Let N be an inadequate state 

(if any) of the CFSM of G. Then G is L(m)R(k) if 

and only if the sets of (m, k)-bounded-context pairs 

associated with the transitions from N are mutually 

disjoint. Also, G is L(O)R(k), L(m)R(O), and L(O)R(O), 

if and only if it is SLR(k), LR(O), and LR(O), respectively. 

We include the three special cases solely for completeness; we do not discuss 

them further. 

Note that grammar a
3 

is L(2)R(l) by definition, as can be seen 

from the disjoint sets 
2c1

(#
5

) and 2c1(#
6

) above. 

5. 4 LmRkFSMs 

We now define an FSM which can be used by our modified stack-

algorithm of Section 4. 3 to determine characteristic strings for an L(m)R(k) 

grammar. This new machine is the CFSM modified to accept some extra 

strings in which correspondence between (bounded) left and right contexts 

is explicit. 

Definition 5. 5. Let G be an L(m)R(k) grammar. We construct 

G's LmRkFSM from its CFSM as follows. For each inadequate 

state N (if any) of the CFSM and for each string a in mL(N). we 

follow each path backward through the CFSM under the reverse 
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of cr, say to state M; from M we add a new path (of 

new transitions and new states) under cr to a new 

state N'; from .N' there is a transition to the 
R 

accepting state under the generalized symbol X cr 

for each X-transition (X not a nonterminal) from N 

* such that Rcr = ( µ £ VT I (cr, µ) is in the set of (m, k)-

bounded-context pairs associated with the X-transition}. 

This results in a non-deterministic FSM. We change 

the latter to an equivalent, deterministic FSM (via 

well known techniques (H&U 69) and reduce the 

result to form the LmRkFSM. 

In the case of our example grammar a
3 

the nondeterministic 

FSM is shown in Figure 5. 4. The reduced, deterministic version, i.e. 

the L2Rl FSM, is exactly the machine shown in Figure 5. 3. Thus, the 

state splitting and look-ahead sets which we deduced were necessary 

above have "fallen out" of our procedure. 

Proof. We need the following preliminary result to prove that the 

LmRkFSM can, in fact, be used to determine characteristic strings. 

Lemma 5. 1 . Let G be an L(m)R(k) grammar and N be 

an inadequate state (if any) of G's CFSM. Every string 

cp which accesses N also accesses a state N' of G's LmRkFSM 

such that for every X-transition from N there is an X-transition 

and, if X is not a nonterminal, an XR-transition from N' such 
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Figure 5.4. The nondeterministic FSM which is an intermediate 

result in the process of computing the L2R1FSM for grammar G3• 
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* that R = R = [µ £ VTI '·"':m,µ) is in the set of (m, k)-cp:m ~ 

bounded-context pairs associated with N's X-transition}. 

Furthermore, there are no other transitions from N'. 

Proof: By construction the LmRkFSM is a reduced, 

deterministic FSM which recognizes the characteristic 

strings of G plus some extra strings for each inadequate 

state N of G's CFSM. The extra string are as follows. 

If the string cp accesses N, the LmRkFSM accepts the 

string cpXR where X and R are as given above. Now, 

because the machine is deterministic, any string, in 

particularcp, must access a unique state. say' N', 

of the LmRkFSM; because both the CFSM and the LmRkFSM 

accept the characteristic strings, in particular those with 

prefixcp, there must be an X-transition from N' for each 

such transition from N; and because the LmRkFSM accepts 

the extra strings with prefixcp, state N' must have the 

extra transitions given above. Furthermore, we have 

accounted for all strings with pref ix cp which are accepted 

by the reduced machine, so there can be no other transitions 

from N'. Q.E.D. 

The following two theorems .serve the same purpose with respect to an 

LmRkFSM as do Theorems 4. 1 and 4. 2 with respect to an SLRkFSM. 
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Theorem 5. 2. Let G be an L(m)R(k) grammar and 

a = cp/3 be a canonical form of G with characteristic 

string cp# . Then the stack stringcp of a accesses 
p 

a state of G's LmRkFSM which is either (1) a 

reduce state whose only transition is under # or 
p 

(2) a state (like N' of Lemma 5. 1) with transitions 

under the generalized symbols, 

Rl R2 Rn 
xl ' x2 ' ... 'xn ' for some n:::. 2, such that 

k:/3 is in R. but not in R. for 1 < i f. j ~ n, and such 
1 J 

that X. = # . 
1 p 

Proof: Our proof depends upon the similarity of the 

CFSM and the LmRkFSM of G. There are only two 

cases since cp must access either a reduce state or 

an inadequate state of the CFSM. (1) If it accesses 

a reduce state of the CFSM, it must also access a 

reduce state of the LmRkFSM, because they both are 

deterministic and, although the LmRkFSM accepts more 

strings than does the CFSM, the extra ones are formed 

by adding symbols to the end of prefixes which access 

inadequate states but not reduce states of the CFSM. 

Further, the only transition from the reduce state 

accessed by cp must be under # , since the machine 
p 
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accepts cp# . (2) If cp accesses an inadequate state N' 
p 

of the CFSM, it must access a state N' of the LmRkFSM 

with transitions under generalized symbols, by Lemma 

5. 1. Consider the sets R
1

, R
2

, ... , Rn which are 

associated with the generalized symbols labeling 

transitions from N'. These sets must be mutually 

disjoint because they were derived from the mutually 

disjoint sets of context pairs associated with the 

transitions from N as follows: each set is the set of 

right contexts which are paired with a common left 

context, in particular cp :m, in the set of context pairs 

associated with some transition from N. Thus, k:8 

can be in at most one of the sets. Furthermore, by 
R. 

Lemma 5. 1 one of the generalized symbols X. 
1 

has 
1 

X. = # , and R. must contain k:8 because it is computed 
1 p 1 

m k 
from C (# ) which by definition (5. 1) contains 

p 

(cp:m, k:,8). Q. E. D. 

Theorem 5. 3 . Let G be an L(m)R(k) grammar and 

o: = cp e,B be a canonical form of G with characteristic 
_,_ 

string cp e# such that e is in v''' but e I €. Then, if 
p T 

cp accesses a state (like N' of Lemma 5. 1) of G's 

LmRkFSM having transitions under the generalized 
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R 
n 

for some n :::_ 2, the 

string k:8/3 is in R. but not in R. for 1 ::::_ i -f. j < n, such 
1 J 

that x. = 1 :8. 
1 

Proof: k: 8/3 may appear in at most one of the sets 

R
1

, R , ... , R , since the sets are mutually disjoint, 
2 n 

as was shown in the previous proof. k:8f3 must appear 

in R. such that X. = 1 :8 for the following reasons. G's 
1 1 

CFSM accepts cp8# ; thus, if cp accesses state N of the 
p 

CFSM, then there is a path leading from N which spells 

out 8# . It is easy to see from the definition of the set 
p 

mBCk of (m, k)-bounded-context pairs for a terminal-

transition (in particular, one under 1 :8) that if I 8 l :::. k 

then (cp :m, k: 8) is in mBCk, whereas if I 81 = n < k then 

every pair (cp :m, fJµ ') is in mBCk such that µ' is in the 

,,, 

set [ µ' E: v; Jcp 8 accesses state M of the CFSM and 

(cp8:(m+n), µ'} is in the set of (m+n, k-n)-bounded-

context pairs of some transition from M}. Furthermore, 

(cp8:(m+n), (k-n):B) must be in the latter set of pairs because 

m+n k-n 
there must be a # -transition from M and C (# ) 

p p 

includes the former pair by definition. Finally, since 

we have shown that the set of bounded-context pairs 

associated with the (1: 8)-transition from N of the CFSM 
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R. 
contains ~ :m, k:O~). Lemma 5. 1 implies that the (1 :8) 

1
-

transition from N' of the LmRkFSM is such that R. 
1 

contains k:e/t. Q. E. D. 

Summary. In review, our technique for constructing an LmRkFSM 

for a CF grammar G which is L(m)R(k) is as follows. Compute the 

context pairs associated with the transitions from the inadequate states 

of G's CFSM. Form a nondeterministic FSM by adding to the CFSM certain 

new transitions and states. The result is a nondeterministic machine which 

recognizes some extra strings in which correspondences between left and 

right contexts are explicit. Change the machine to an equivalent, deter-

ministic FSM and and reduce it. Violl! Of course, we can minimize the 

lengths of the strings in the look-ahead sets here just as we did for SLRkFSMS. 

It should be clear from Theorems 5. 2 and 5. 3 that LmRkFSMs can 

be used by our modified stack-algorithm just as are SLRkFSMs. It 

therefore follows that we can replace "SLRkFSM" with "LmRkFSM" 

throughout the description of our technique for converting SLRkFSMs to 

DPDAs to get the appropriate procedure for LmRkFSMs. 

It should also be clear that for a given L(m)R(k) grammar, we 

need to resort to the L(m)R(k) techniques only for inadequate states with 

overlapping simple k-look-ahead sets. To formalize this we would have 

to prove theorems similar to Theorems 5. 2 and 5. 3 stated for a machine 

having reduce states, inadequate states with simple k-look-ahead sets, 
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and states like N' of Lemma 5. 1. That is, the new theorems would be 

a combination of Theorems 4. 1 and 4. 2, and 5.2 and 5. 3, respectively. 

We do not state and prove these theorems since the notation would get 

out of hand and since the exercise would be of little intellectual value. 

5. 5 Parsers for General LR(k) Grammars 

We now turn to the problem of constructing a parser for a general 

LR(k) grammar. That is, we want a method for covering grammars which 

are LR(k) but which are not SLR(k) or even L(m)R(k). Again we choose to 

illustrate the solution first by example and then to give the general 

solution. We do not formalize the results of this section because they 

are sim.ilar to those of the previous section, however, we do include an 

informal proof regarding the only significantly different feature. 

Example. Consider the grammar G
4 

(also similar to G
2

) whose 

productions follow. 

(O) S ... rE-i 

(1) E ... a Ad 

(2) E ... a B c 

(3) E ... b Ac 

(4) E ... b B d 

(5) A ... e A 

(6) A- e 

(7) B ... e B 

(8) B ... e 
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The corresponding CFSM is shown in Figure 5. 5. It has one inadequate 

state, state 9. 

The grammar is not SLR(k) because Fk(# 
6

) = Fk(# 
8

) = [ c1, d1} 

for any k > 1. Since these sets overlap for all k, we need not bother 

to compute the simple k-look-ahead set L k for thee-transition; however, 
e 

we do so for the value as an example: 

/3 is in a simple (k-1)-look-ahead set 
associated with a transition from state 9} 

= [ e,8 I /3 is in [ c 1 , d-i} v L k- l} 
e 

k-2 k-2 
= [ ec1, ed-L eec1, eed1, ... , e c-L e d-t 

k-1 
e c, k-1 ek} e d, 

for k > 2. Obviously, this adds no new overlaps. Thus, the parsing 

decision associated with state 9 about whether to read or reduce can be 

made on the basis of one-symbol look-ahead ([ e} and [ c, d} are the 

respective look-ahead sets); but the decision as to which reduction to make 

cannot be determined via look-ahead alone, even if we look all the way to 

the end of the string. Having discovered this, we need not discuss the 

e-transition further below, although we do so, again for exemplary value. 
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B 

e 

B :/1:1 [i] 

*~~ 
::fl:s 

....__,_;---=--ie>tl!iJ 

e 

b 

e 

Figure 5.5. The CFSM for grammar G4 • 
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Neither is the grammar L(m)R(k). Because it is small it is easy 

to compute by hand the context pairs for the transitions for state 9 which 

are as follows fo.r m > 2 and k > 2: 

+ 
6 
-transition_( ct-ae • d-1 ), n· be • c·i>. 

( 1-aee , d·i), ( rbee • ci ), . 
m-2· 

( \-ae , d-i ), 
m-2· 

Cf-be , c-i ), 
m-1 m-1 

(ae m' d~ ), O-be , c-i ), 
(e , d ), (em, c·-l>. } 

# 
8 

- transition_( ( r ae, c-i ), 
O- aee. c1 ), 

(}·be, d~ ), 
(~bee, d ), 

m-2 m-2 <f- ae • c-i ), Cf-be • d-1 ), 
m-1 m-1 

(ae , c1 ), (be • d-i}. 

(em. c1 ). (em • d1) } 

e-transition 

\-ae, ed·L I-be, ec·L 
raee, eed-1, rbee, eec-1 . . . . 

[( r m-2, ek- 2d1, 
)J v { ( 

rbem-2. 
),( 

ek-2d-I, 
)} 

ae 
m-1 irl m-1 k-1 

ae m' ek d, be • ek d, m 
e • e e • e 

where the notation u{ J ). <{ Jn is to be understood as was ((v*. v;n 
above. Because the context pairs (em. c-I) and (em, d·D appear in both the 
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sets associated with the# 
6 

and# 
8
-transitions, the grammar is not 

L(m)R(k), and our informal solution of looking at a finite amount of 

both left and right context to make the parsing decision associated with 

state 9 will not work here. The problem is, of course, that the left 

context in which we are interested (the a or b) may be arbitrarily far 

t 
to our left . 

The essential reason that we shall be able to solve this problem 

is that, although the context of interest can appear arbitrarily far to the 

left at the time we need it, the states and transitions of the CFSM which 

are involved in reading that context are only a finite distance from the 

inadequate state (since the CFSM is a finite machine! ). Our solution 

again involves state- splitting, but this time to get the machine to remember 

extra context which may be arbitrarily far to the left. 

For instance, the CFSM of Figure 5. 6 must have state 9 split into 

two copies so it will remember whether an a or b is to its left. The 

appropriate FSM is shown in Figure 5. 6. Note that because of space 

limitations we have drawn the FSM in the abbreviated form. Because grammar 

C 
4 

is small the reader should easily be able to convince himself that this is 

t In the case of Grammar G
0 

the CFSM is obliging enough to remember the a 
or b for us. The difference seems to be that for G the a or b has no 
implication about the symbols in the right context, 'l>Ut only about how they 
should be parsed, whereas with G

4 
there is a correspondence between left 

and right symbols. We see no general way of discovering such complexities 
in a grammar except by trying to generate a parser for it. 
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e 

B =#='1 D 
~!dl 

#~cJ 

ef el 

e 1--A~~~~~

B 

Figure 5.6. The CFSM of grammar G4 after state-splitting and 

with look-ahead sets indicated via generalized symbols; i.e., 

Lthe (abbreviated} LRlFSM for G4• 
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the appropriate FSM. Note that no more than one-symbol look-ahead is 

necessary. therefore the grammar is LR(l). 

LRkFSMs: Now. for the general case we have two questions 

confronting us: (1) how do we compute the necessary state- splitting. and 

(2) how do we compute the look-ahead sets? The answers to these two 

questions are rather similar to those for L(m)R(k) grammars. We answer 

these questions next. continuing to use G 
4 

as an example, and we justify 

our answers afterwards. 

In the general case the left context which must be remembered may 

be anywhere to our left, thus we must search for it all the way back to the 

beginning of the string. In terms of the CFSM this means all the way back 

to the starting state. The procedure for a general LR(k) grammar G whose 

CFSM has an inadequate state N goes as follows. 

We first find the set of strings kLL(N) = {cp E'. v* jcp accesses N via 

a path through the CFSM which contains no more than k instances of any 

given cycle of states}. Because our CFSM can be represented via a 

directed graph some of the results of graph theory are appropriate for 

use in computing such paths and the corresponding strings. In fact, well 

known. even fast. techniques exist for doing just that (Pro 59) (War 62). 

In the case of our LR(l) grammar G 
4 

the strings are 

t-ae, t-aee, rbe, and rbee, and they correspond to paths which can be 
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represented by the sequences of state names: 0, 1, 4, 9 (no cycles); 

0, 1, 4, 9, 9, (one cycle, 9 to 9); 0, 1, 12, 9; and 0, 1, 12, 9, 9, 

respectively, none of which contain more thank • 1 instance of the only 

cycle in G
4

1 s CFSM. 

k R X k 
Next we compute the set LC(N) = {cpX cp, lcp is in LL(N) and 

R 
X cp, Xis a generalized symbol such that there is an X-transition (X not 

* a nonterminal) from N and 1\o. X =f(k:~) ( VTlcpB{J is a canonical form 

with characteristic stringcpe,Y. , and X = (1 :e:f )} . 
p R p 

Each generalized symbol X cp • X represents the set of terminal 

strings of length k which may follow cp in a canonical form a = cp{J such that 

the characteristic string of a accesses state N and then takes the X-transition; 

i. e. , it is the look-ahead set corresponding to cp and the parsing decision 

associated with the X-transition. We reference a method for computing 

these sets below. 

R X 
For G 

4 
the set of such cpX cp • for k = 1 is: 

[ r e1 rd} 
a 6 • raee# 6 {d}. l-bef6 ( c} • J-beef 

6 
(c}, 

1-aef 8 ( c} • r (c} . aeef 8 , rbef 
8 
rd}. {d} 

I-beef 
8 

, 

f-aee( e} , raeee{ e} • rbee( e} • rbeee( e} } 

as the reader may compute for himself. 
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We now form a· nondeterministic FSM in a manner similar to that 
R 

for an L(m)R(k) grammar. For each string cpX r,o,X in kLC(N) we add to 

the starting state of the CFSM a new path (of new transitions and new 
R X 

states) under cpX cp., leading to the accepting state. We convert the 

mahine to a deterministic device, reduce it, minimize the strings in the 

look"".ahead sets, and presto --- the-appropriate FSM with look-ahead 

sets built in; i.e., the "LRkFSM1'. 

To specify the p+ocedure fully we must provide two things: (1) 

a procedure for computing the look-ahead sets implicit in the generalized 

R X 
symbols X cp • , and (2) the reason why we need to consider only such 

left contexts (the cp 's) as take paths through the CFSM which contain no more 

thank occurrences of a given cycle. 

Regarding the first point, we use the simple expedient of a reference. 

Knuth (Knu 651 see especially page 617) has already solved this problem. 

His parsing algorithm in a sense computes the states of our CFSM dynamically, 

as it is parsing a string. However, it also computes much more information, 

all of which is bundled neatly into what are called "state sets". If we 

simply apply his algorithm to each stringcp, we can deduce the look-ahead 

sets from the "state set" computed just after the algorithm has read the 

last symbol of cp, as he describes in "Step 2" of the algorithm. (His set 

"Z" is the look-ahead set for all transitions under terminals, and the 

set "Z " is the look-ahead set for a f -transition. ) 
p p 
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Regarding the second point, we provide an informal proof. Recall 

the canonical derivation of a form ex. of CF grammar G illustrated on page 

42 • Lt - fJ h - dQ-" " ""f e ex. - cp w ere cp - w
0
w

1 
... wmy an tJ - y wm ... w

1
w

0 
or some 

* y and y" such that')'')'' = wand')'' ..... * y" £ VT' Note the correspondence between 

left and right contexts: each w.(or y) has a matching w! (or y"). In the 
l l 

next two paragraphs we investigate the iinplications of this correspondence 

with regard to the computation of look-ahead strings corresponding to a 

particular cp which accesses an inadequate state N of G's CFSM. 

We consider first a stringcp spelled out by a path through the CFSM 

which accesses a given cycle only once. That is, cp first accesses a state 

in the cycle, then goes around the cycle several, say r, tiines, and then 

accesses state N. In this case cp can be written 

r 
WOW! •• • w.(w.+1· . . w. ) ""·+ +1' . . w ')'. i i i+n l nr m 

The subexpression( ... )r cannot include only a part of an wi' Since r can 

have any nonnegative integral value and since there are only a finite number 

of productions, the canonical derivation must also have a cycle in it; i. e., 

we can write the numbers of the productions used in the derivation 

r 
P1P

2
· · • P.(p.+l' .. P-+ ) P-+ +l' .. p p. But each application of a i l in inr n 

production in this sequence adds a whole w. to the left context, never a 
l 

part of one. Thus, the first k symbols of the right context can be written 
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But if r > k, this is equivalent to k: ... ( ... )k ...• since in the worst case 

h I II II II l - 0 d I II II I - 1 h k·Q -w ere y w ... w ·+ +l - an w. .. . w. 1 - we ave :,.. -m 1 n r l+n l+ · 

(w'~+n' .. w'~+l )k. The point is that the look-ahead strings for any cp 

which accesses a cycle r times in succession, where r :::_ k, are exactly 

the same as those for a similar cp which accesses the cycle only k times 

in succession. 

We must now consider the case where cp accesses a cycle once, 

goes around it several, say r 
1

• times, wanders around the machine 

elsewhere, returns, goes around the cycle several more, say r 
2

• times. 

etc. Because the notation gets out of hand otherwise. we shall argue the 

case for only two separate accesses of the cycle and let the reader 

generalize for himself. In this case {J can be written 

In the worse 

h 1 1111 II 1-0 di" II l Q d case w ere y w . . .. w . + +l - an w. . .. W. + +l = an m 12 n2r 2 12 ll n 1r 1 

lw" w" I - 1 and lw" w" I = 1, . + . . . . +1 - . + . . . . +1 
11 nl 11 12 n2 12 

r 
th t "f > k th k tJ = (w'.' w" ) 2(wu w11 

) r' we .see a 1 r 1 _ en :tJ + . +l . + · · · · +1 
12 n2... 12 11 nl 11 

where r' c 

maximum of k - r 
2 

and zero. Thus, if r 
2 

:::_ k the look-ahead strings for 

'() are the same as for a similar'() but with r = k and r = 0. However, 
2 1 
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if 0 < r 
2 

< k. they are the same as the ones for a similar cp but with 

r
1

=k-r
2

. 

In conclusion (and generalizing). the look-ahead strings for a given 

cp whose path through the CFSM goes around a given cycle a total of r :::_ k 

times are the same as those for a similar cp with only k such loops t. 

Therefore, our procedure above which computes look-ahead sets by considering 

only the cp 's with no more than k such loops computes all possible look-ahead 

strings. 

Conclusion. Here, as above. it seems clear that these more 

complex techniques need be applied only to inadequate states for which our 

simpler techniques will not work. It is also clear that the procedure for 

converting an LRkFSM to a DPDA is the same as that for an LmRkFSM. 

What we have not provided thus far, however. is a. method which 

is convenient to use in the above procedure for deciding if a given grammar 

is LR(k). It should be clear from our informal proof above and the definition 

(2. 2) of LR(k) grammars that a CF grammar G is LR(k) if and only if. for 

each inadequate state N of G's CFSM and each stringcp in kLL(N). the set 

{ R xi where is an X-transition (X not a nonterminal) from N} is a set 
cp. 

of mutually disjoint sets. This, of course, means that the look-ahead sets 

t Actually we could do better than this. If all the cycles were "separate" 
from each other in the CFSM, we could consider onlycp's with a total of 
k loops around any cycle. Unfortunately our proof would get excessively 
complicated to cover the case where one cycle is a part of another. We are 
satisfied with the above simple, sufficient condition because our purpose here 
is to show that the task of computing the look-ahead sets is a finite one. not 
to develop a method for computing the sets which requires a minimum of time. 
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for each inadequate state of the LRkFSM are mutually disjoint. 

5. 6 Comments 

We noted above that Knuth's LR(k) parsing algorithm in a sense 

computes the states of our CFSM dynamically, as it parses a string. 

Actually, we believe this to be accurate only in the case k = 0. If k '.::. l, 

Knuth's algorithm computes the states of a machine much larger than our 

CFSM. In effect, the processes of splitting states and computing look

ahead sets are bound together in his algorithm. Consequently, for k = 1 

the number of states computed is the number of states of the CFSM times 

some number having to do with the number of symbols which appear in 

the look-ahead sets. In practical cases this multiplicative factor is 

impractically large (Kor 69). Further, the size of the machine increases 

rapidly with increasing k. 

Korenjak (Kor 69) noticed that the multiplicative factor depends upon 

the size of the look-ahead sets, and he proposes a parser-construction 

technique to reduce the effect. He proposes that the grammar be partitioned 

into several sub-grammars, that a sub-parser be generated for each 

sub-grammar by using Knuth's algorithm for each, and that the desired 

parser be constructed by combining the sub-parsers appropriately. Since 

the look-ahead sets for each sub-grammar are much smaller than those 

for the entire grammar, the multiplicative factor for each sub-parser is 

much smaller than that for a parser constructed directly for the entire 
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grammar. Further, a relatively small number of extra states are required 

to combine the sub-parsers. 

In a sense, we have taken Korenjak' s approach to the extreme by 

analyzing the grammar production-by-production; or more precisely, we 

analyze the CFSM inadequate-state-by- inadequate-state. Our method 

seems to cause nearly a minimum of state- splitting and look-ahead. We 

leave as questions for future research, however, whether or not it does 

cause such minimums, and if not, how it could be modified to do so. 
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Chapter 6 

TRANSLATORS 

6. 1 Philosophy 

Thus far we have followed the lead of Knuth, concerning ourselves 

solely with grammatical analysis. However, our interest is ultimately 

in translators rather than parsers. We have addressed the parsing 

problem first because it gives us a convenient basis from which to address 

translation, a fact which will become abundantly clear below when we see 

that our method of specifying translations is based directly on CF grammars. 

It will follow that our translators can be based directly on our parsers. 

We now, therefore, abandon the grammatical analysis approach 

and adopt the philosophy of Lewis and Stearns (L&S 68), namely that 

"Implementing a translation should be regarded as an 

automata theory problem of machine capability and 

efficiency rather than as a problem of grammatical 

l 
. II ana ys1s. 

We deal only with the capabilities of DPDAs here, so our main concern is in 

improving efficiency by making transformations on our machines which 

preserve their input/ output relations. Of course our yen to perform 

transformations must be tempered by the implications of our desire to 

implement the translators ultimately on a modern digital computer. 
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Actually, we have already been abiding by part of this philosophy, 

in preparation for the material in this chapter. In effect, we have 

regarded parsers as translators which translate sentences into parses, 

i. e. , into strings of productions or production numbers. Although we 

found it convenient to discuss grammatical analysis at first from the 

string-manipulation viewpoint, we certainly made it a point to convert 

to the automata -theory viewpoint when we converted our string-manipula -

tion parsers to DPDAs. 

6. 2 Objective 

It is the objective of this chapter to show how our results are 

relevant to (a) the specification of translations of programming languages, 

and (b} the construction of compilers from those specifications. 

In Section 6. 3 we motivate an interest in string-to-string translators 

similar to our DPDA-parsers. We do by discussing some well-known 

approaches to compiler construction. 

In Section 6. 4 we show why we are not interested in parses, per 

se. We motivate an interest in string-to-tree translators, each of which 

can be regarded as a concatenation of two subtranslators: the first being 

a string-to- string translator which maps input strings into strings (sequences) 

of tree-building directives, and the second being a string-to-tree translator 

which maps strings of directives into trees (by obeying the directives). 
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In Section 6. 5 we present a formalism based on CF grammars for 

specifying string-to-string translations, and in 6. 6 we show how to 

convert our DPDA-parsers to corresponding translators. The latter 

feat is trivial, but some nontrivial optimizations ensue. We formalize 

only string-to-string translators because our (linear) automata-theoretic 

approach seems inappropriate when discussing trees. 

Finally, in Section 6. 7 we present a compiler model,and in 6. 8 

we show the relevance of our results to the specification of languages, 

translations, and compilers; i.e. , to TWSs. 

We emphasize that the only formal results in the present chapter 

are those of Sections 6. 5 and 6. 6. The remainder of the chapter is 

intended as motivation for those two sections and discussion of their 

relevance to TWSs. 

6. 3 Syntax Directed Compilers · 

Many compilers in existence today, whether written by hand or 

partially or wholly written by a TWS, are termed "syntax directed"t 

compilers. The approach of Cheatham (Che 67) is fairly representative 

for our purposes here. He advocates the use of "augments" to productions 

to enhance the descriptive power of CF grammars so they can be used to 

"f . 1 f tt " " spec1 y programmlilg anguages ully . These augments are in the 

t 
In the sense we have in mind here the term should perhaps be "syntax-

analyzer directed". 

tt 
What amounts to a generalization and a formalization of this approach can 

be found in (Knu 66). 



-134-

f f 11 t . ll l l d . t . l I d ll . t t t . ll . t d . th orm o ac ions , con i ions , an in erpre a ions associa e wi 

the productions. He envisions a parser as an ' 1engine" operating in an 

"environment 11
• As the parser parses a string it drives other mechanisms 

which (a) execute "actions 11
, thus causing the ' 1environment 11 to change, (b) 

check ' 1conditions 11 in the 1'environment 1
', thus providing context- sensitivity, 

d ( ) 11· . 11 (11 1 " " . " 11 t" ") an c compute interpretations va ues , meanings , or seman ics . 

The auxiliary mechanisms are activated each time the parser makes a 

reduction,and they then compute the "augments" associated with the 

corresponding production. When the parser has finished parsing the input 

string, intermediate object code has been output via 11actions" and any 

relevant tables are available via 11 interpretations 11 associated with the 

entire program. 

A basically similar approach is one due to Feldman (Fel 64) in 

which 11 EXEC n" routines are associated with 11 Floyd-Evans productions 11 

(Eva 65) comprising a parsing program. Roughly speaking, the 11 EXEC 

n 11 routines are the analogues to Cheatham 1 s 1 'augments 1
'. 

An approach similar to one or the other of these two, or similar 

to our own approach (described below) where an 11abstract syntax tree 1
' 

or 11parse tree" is built, is used in every compiler or TWS effort 

described in (F&G 68). Implicit in and fundamental to the compilers of 

all these schemes is a string-to- string translation: a translation from 

the input string to a string (sequence) of commands to mechanisms to 
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compute "augments", or of calls to "EXEC n'' routines, or "semantic 

t . II II II rou ines , or generators , etc. Thus, if the reader is partial to one 

of these schemes in particular, he may think of the "output symbols" 

below as the appropriate commands or calls to routines, and he may 

think of our "CFSTs" as the corresponding string-to-string translators. 

For our purposes we think of the "output symbols" as tree-building 

directives, as we discuss next. 

6. 4 Abstract Syntax Trees 

In previous chapters we devoted much time to the development of 

DPDA-parsers; i.e., string-to-string translators which map input strings 

into parses. In the present section we discuss the reasons why parses, 

as such, are not as appropriate for purposes of compiling as are the strings 

of tree-building directives referred to above. 

Inefficient coding. There are two problems with parses, per se: 

(1) they contain some information in which we are not interested, and (2) 

the information which we do desire is not explicit. 

For instance, for grammar G
1 

the string r i + i ~ can be reduced 

to [- E + T -1 -+ r E -j ... S. But for purposes of compiling we do not care 

that the reductions for the first i were i-+ P-+ T -+ E and the second were 

i-+ P _.. T, nor do we care which reductions were made first or which 

particular nonterminals were used. The only information which is both 

implicit in the parse and of interest to us is that one i is the left operand 
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of the operator + and that the other is the right operand. If we were 

mathematically inclined, we might represent this information via a 

functional form; e.g. , + (i, i) or PLUS (i, i). However, for purposes of 

discussing compiling activities and for an explicit representation of the 

"structure" which is implicit in parses, we find it more convenient to 

represent the above information via the following graph (tree): 

Such a graph, representing the "structural" information or relationships 

which are implicit in a parse, has been called by some an "abstract 

syntax tree" (W&E 69, Lan 66, McC 66). We elaborate on the reasons 

for this name in Section 6. 7. 

Now, (a) if we are not interested in all the information implicit 

in a parse, it would be inefficient for our compiler to generate it. Further, 

(b) if an abstract syntax tree represents all and only the information 

implicit in the parse which is of interest for further compiling activities 

and (c) if the tree can be represented in some convenient and useful way 

in a computer, then our results would be more useful if we could show 

(1) how to specify a translation from strings to trees in a _manner based 

on CF grammars and (2) how to convert our parsers to efficient translators 

which affect the corresponding, string-to-tree translations. 
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Conceptual modularity. Although if-clauses (a) and (b) of the 

preceding paragraph probably represent good assumptions. (c) is 

subject to some question. partly because it is not clear that the 

abstract syntax tree, per se, ever needs to be built during the compiling 

process. But we do not let this stop us for the following reason: even 

if our compiler does not actually construct an abstract syntax tree, we 

can regard the process conceptually as building it. 

We argue that even the string-to-string translator which we 

develop below can be regarded as the concatenation of two subtranslators. 

the first being a parser and the second affecting a translation fran parsers 

to the desired strings. However. after we have thoroughly investigated 

the two subtranslators. we see that they can easily be combined so as to save 

us actually having to generate the parse. 

Similarly. we can regard preliminary compiling activities as 

performing a translation from input string to abstract syntax tree and 

subsequent activities as performing a translation. again conceptually 

composed of several subtranslations. from abstract syntax tree to object 

t 
code . The advantage of this approach relative to a less modular one is. 

of course. that the otherwise complex task of compiling is broken into several 

relatively simple subtranslations. Hopefully. when we are finished analyZing 

t This approach was largely inspired by (W&E 69) which in turn was based 
on (Lan 66). See Section 6. 7. 
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the subtranslators separately, we will be able to see how to put them 

together in such a way as to minimize redundancies. This may mean 

that the abstract syntax tree, per se, need never actually be constructed. 

Example. As an example of what we mean by "tree-building 

directives", consider the following. If our string-to-string translator 

maps the example string r i + i ~ of above into the string i i +, we can 

regard the latter as the following sequence of directives: build a terminal 

node with name i; build another terminal node with name i; build a non-

terminal node with name +, with right (or second) son the last node 

built, and wilh left (or first) son the next-to-the-last node built. 

In general, if our tree builder is always to construct nonterminal 

nodes whose sons are the last few nodes constructed, and in the same 

order, the sequence of directives must be a linear representation of the 

tree which is commonly called a "suffix form". (See (Che 67) for a 

thorough discussion of the correspondences between trees and their 

linear representations. ) Further, the device can keep track of the nodes 

it has built by maintaining a push-down stack of pointers to them, and 

the pushing and popping of this stack will occur in a sequence closely 

corresponding to that of the stack of our DPDA-translator which issues 

the directives. Our compiler model and another example below should shed 

more light on this subject. 
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6. 5 Transduction Gram.mars, Translations 

We now get down to business. As our method of specifying string-

to- string translations we choose a technique which is based on CF grammars 

and which fits naturally and conveniently with our notions about both grammars 

and automata. The first and fourth paragraphs below are taken almost 

directly from (I....&S 68). 

A transduction grammar Gt based on a CF grammar G is a triple 

(G, v.y. g), where V.f is a set of output terminals and g is a mapping 

defined on G which associates a string w' in (VT u V N)* with each 

production A - w in G and which specifies a one-to-one correspondence 

that pairs each instance of a nonterminal in w with an instance of the same 

t nonterminal in w'. We refer to the string w' as the transduction elementt 

for production A .... w. 

We are interested, for the present at least, only in simple suffix 

transduction grammars (SSTGs). since they are trivially adaptable to our 

results thus far. "Simple" means the corresponding nonterminals are 

in the same order in wand w'. "Suffix"tt implies the additional stipulation 

t A similar definition in which "translation rules" were associated with the 
alternatives of Backus Naur Form definitions appeared in (Eva 65). 

tt We use "suffix" where "Polish" was used in (I.AS 68) because it is more 
specific. Also, for those readers who like to reference "semantic routines" 
via output symbols in the middle of the right parts of productions, it is shown 
in (I....&S 68) that for many simple transduction grammars based on LR(k) 
grammars there are "structurally equivalent" SSTGs which define the sam.e 
translation and which are based on LR(k') grammars for some finite k' > k. 
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that the nonterminals in w' must all be to the left of any output terminals. 

An example SSTG Gtl based on our example grammar G1 is 

as follows, where the transduction element for each production is in 

brackets to the right of the production. 

(O) s l- E 1 [ E} (4) T _, p [ P} 

(1) E _, E + T [ET+} (5) p _, i [ i } 

(2) E _, T [ E} (6) P-->(E) [ E} 

(3) T _, p t T [ p T t} 

The transduction elements may be thought of as defining an 

output grammar G', where production A_, w' is in G' if and only if w' 

is the transduction element for production A_, w in G. Each derivation 

from S using G has a corresponding derivation using G' which is obtained 

by applying corresponding productions to corresponding nonterminals. 

Thus, for each derivation of a sentence Tl in L(G) there is a corres

ponding derivation leading to a string Tl' in (V1Y'. The string 17' is 

called a translation of Tl induced by Gt. 

Our example SSTG Gtl above induces translations of strings in 

L(G
1

) which are commonly called "suffix forms" (Che 67). For example, 

the translation of ri 1 = r it i + i 1 induced by Gtl is Tli = ii ti+. 
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6. 6 Translators 

We now show that the translations induced by an SSTG Gt = (G, VT, g) 

are in one-to-one correspondence to the parses of the sentences in L(G). 

Consider a canonical derivation S = a
0

-+ a
1 

-+ ... -+an = 17 of a sentence 17 using 

grammar G. If step i (1 ~ i ~ n) is the application of production pi' whose 

* transduction element is w' = y 6 where y is in V N and 6 is in 
pi pi pi pi pi 

CV.JJ*, then the translation of 11 induced by Gt is 11' = 6 6 ••. 6 
pn pn-1 pl 

Thus, if we were given the reverse of the sequence of productions used in 

a canonical derivation of 11. i.e., if we were given the canonical parse of 

11. we could generate its translation 17' directly in a left-to-right manner 

by outputting first 6 , then 6 , ... , then 6 That is, we can 
pn pn-1 P1 

generate the translation 17' of the sentence 17 simultaneously with the parsing 

A machine is called a translator t for a transduction grammar 

Gt = (G, V.J.. g) if and only if (1) it is a recognizer for L(G) and (2) it 

maps each s.tring in L(G) into its translation induced by Gt" Ciearly, our 

DPDA parser for G becomes a translator for an SSTG Gt based on G if 

t This, of course, is our formal, automata-theoretic definition of a 
translator. Below we distinguish these from other translators (in the 
informal sense) by calling them "context-free syntactical translators 
(CFSTs)". 
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for each production p with transduction element W' = y6, where y is in 

* V N and 6 is in (VT)*, each "out p" is changed to "out 6 ". 

Optimizations. The translator which results from this trivial 

transformation may have points where optimizations are applicable. We 

consider first a "local" opti:inization and then a 11global"one. 

Consider the conversion of the parser of Figure 4. 3 (page 85) 

to a translator for the SSTG Gtl above. The transitions from states 6 and 

16 become under "pop 0, out t: ", or equivalently, under "do nothing". 

Thus, the two states and the transitions are unnecessary, and they may 

be eliminated as follows. In the case of state 16 the look-ahead transition 

from state 7 may be redirected to go directly to state 15. In the case of 

state 6 the transition under "top 1" from state 15 may be redirected to go 

directly to state 17. But the latter results in a look-back transition to a 

state which is itself a look-back state. Clearly, if the "top 1" transition 

from 15 to 17 is taken, then the "top 1" transition from 17 to 2 will 

also be taken. Thus, we may redirect the "top 1" transition from 15 

again, this time to go directly to state 2. The result of applying these 

changes to the DPDA of Figure 4. 3 is depicted in Figure 6. 1. 

We do not give an exhaustive list of all possible types of "local" 

optimizations which may be applicable after a parser is changed to a 

translator. Suffice it to say that (1) all such optimizations arise when a 
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transition is found to be unnecessary due to its being under "pop 0, out f: ". 

and (2) whenever a transition is redirected to a new state, an analysis of 

the device is in order to detect any redundancies, as in the case above, 

in its actions immediately after taking that transition. 

Unfortunately, the efficiency of our DPDA as a translator is likely 

to be lower than it was as a parser, notwithstanding the above "local" 

optimizations. The problem is that our DPDA still goes through the 

motions of parsing but does not output anything along with manyof its 

actions. This is not immediately obvious from our running example, but 

by analyzing it somewhat and generalizing we can illuminate the problem. 

Consider the actions of the translator of Figure 6. 1 associated 

with states 7 and 15. The decisions which are made there can be described 

in terms of operator precedences and associativities as follows. 

Encoded in state 7 is the information that t is a right associative 

operator and it has more binding power than any other operator of the 

subexpression which is implicitly stored in the stack when the machine 

is in state 7. Thus, when the machine is in state 7, if an t is the next 

symbol in the input string, it should be read. The look-ahead set { 1, +. ) } 

is just the set of other operators which may be the next symbol and which 

have less binding power than t . In case the next symbol is one of 

these, the device should not read but enter state 15, where it makes 

decisions regarding the past rather than the future. For instance, if it 
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has recently read ... it i. it makes a reduction and outputs t. again because 

t is more binding than the operators in the look-ahead set. Similarly. 

if it has recently read ... i + i. it makes a reduction and outputs +. 

because + is left associative and more binding than -I or ). 

Now. if in our programming language there are many operators 

and many levels of precedence, it will happen that our translator. in 

translating a simple string like r i 1 J will have to proceed through a 

cascade of pairs of states like 7 and 15. In effect. each pair of states 

will be associated with a precedence level. The first state will look ahead 

to check the precedence of the next operator to be read, and the second 

will look back to see if it should make a reduction and output. Of course. 

the decisions will be made relative to the precedence level associated with 

the pair. 

The point of our generalization is that for a simple string like 

r i -I J many state transitions, look-aheads. and look-backs may have to 

be performed before reaching the accepting state, all for an output of 

the single symbol i. Of course. the problem can be equally bad with 

parenthetical expressions such as ... (i) . . . and the inefficiency also 

creeps into a lesser extent with all subexpressions; e.g .• once a 

subexpression with one operator has been translated. the translator 

will have to proceed through the cascade from the level of precedence of 

that operator to the top. 
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To eli:minate such inefficiencies we could, as in previous cases, 

precompute all possible results and "wire them into the machine". In 

this case this would mean modifying each look-ahead and look-back 

state so that the machine would, in effect, jump as far up any such 

cascade as it should given the next symbol(s) in the input string and the 

top state-name on the stack; i. e. , given the relevant information about 

left and right context. Unfortunately, if we do this for a grammar of 

practical size and usefulness, the state diagram representation of our 

translator is likely to get disturbingly large. We suspect, however, that 

some clever coding tricks can be employed to i:mplement these "jumps 

over cascades" in a reasonable amount of space. We do not pursue 

the subject here, since our objective is not to develop a "fine-tuned" 

i:mplementation technique. Rather, we leave the problem as one for 

future development. 

The reader should notice that in the case of our example grammar 

G
1 

this "global" opti:mization amounts to noticing that the string\- i 1 

can be reduced directly to r E 1 without going through r P l and 

r T l · However, he should also notice that this depends on the fact there 

are no output terminals in the transduction elements of the two productions 

T-+ P and E .... T. Since in general such productions could have output 

terminals, i. e., since transduction grammars give us that flexibility, 
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it is clear that we must wait until the translator is constructed, or at 

least until the SSTG is investigated, before attempting to make such an 

optimization. 

6. 7 A Compiler Model 

Our compiler model is an incomplete one. Indeed, we detail only 

the "front end"; i.e., the first three subtranslators and their interconn

ections and interactions. The model is similar to Cheatham's (Che 67), 

but much of our viewpoint and terminology are inspired by the approach 

of Landin (Lan 66) to programming language design. Landin's method 

goes something as follows. 

A programming language is first designed on an abstract level. 

That is, the designer first decides what are to be the primitives of the 

language, what abstract objects are to be in the universe of discourse of 

the language, how things are to be defined in terms of other things, i. e. , 

what sort of definitional facilities are to be available, what sort of 

"structure of expressions" or "linguistic constructs" are to be available 

and how they are to be interconnected for the manipulation of abstract 

objects, etc. At this "abstract syntax" level programs in the language 

are represented by abstract syntax trees. Then the designer provides 

two functions: (a) one to define the mapping or "flattening" of abstract 

syntax trees into a convenient representation for use by programmers, 

i.e., "source code", and (b) the other to define the flattening of the trees 
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into representations convenient for use by a computer, i.e., "object 

code 11
• 

Of course, we do not believe that any language has ever been 

designed in a single iteration of the above procedure, but the procedure 

seems to us a good model of the process which designers go through 

repeatedly before finally settling on a particular design. At the least, 

it provides a model of how the language might ideally have been designed 

and it suggests an intuitively reasonable method of formalizing programming 

language specifications (W& E 69). 

In view of the above procedure, then, compiling can be regarded 

as first performing the reverse of mapping (a) above and then performing 

mapping (b). The two tasks correspond exactly to the 1ffront end'f and 

the 1frear end ff of our compiler model, respectively. 

Landin subdivides the first of these mappings into two mappings, 

and we further subdivide one of them into two, so that the 11front endf' 

of our compiler consists of three subtranslators. We illustrate the 

corresponding mappings with the aid of Figure 6. 2, in which are presented 

four representations of a program in a programming language based on 

grammar Gr From the viewpoint of compiling, the mappings are as 

follows. 

The first is from what Landin calls the rfphysical 11 level to what 

he calls the fflogical'f level. The 'fphysical 1f level is the level at which 
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the programmer uses the language (Figure 6. 2a). The "logical" level is 

the level at which certain strings of characters have been recognized 

as 11textual elements" denoting single entities. The strings might denote 

constants, names, operators, key words, or the like (Figure 6. 2b). This 

mapping is often called "lexical analysis". We call the corresponding 

translator a lexical translator. It maps strings of characters, provided 

by a programmer via some input device, say, into strings of lexical 

tokens. The latter are the terminal symbols of a corresponding CF 

grammar, some with certain "semantics" (values, types, etc.) associated 

with them. 

The second mapping is from the "logical" level to what we call 

the "tree-building directive" level. This mapping is performed by our 

translator of section 6. 6, which we call here a context-free syntactical 

translator (CFST) to distinguish it from other translators (in the informal 

sense). The mapping results in a string of tree-building directives, some 

of which have "semantics" associated with them as do some of the terminal 

symbols (Figure 6. 2c). 

The third mapping is from the "tree-building directive" level 

to the "abstract syntax" level. It is performed by an abstract-syntax 

tree builder (ASTE) and it results in an abstract syntax tree having 

"semantics" associated with some of its nodes (Figure 6. 2d). (For present 

purposes ignore the tabular representation of the tree; we discuss it below.) 
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Our compiler model, with emphasis on the "front end", is 

illustrated in Figure 6. 3. Note that the "rear end" consists of the 

several subtranslators which are in the box labeled EVERYTHING ELSE 

and which affect the mapping from abstract syntax tree to "object code". 

The box labeled ERROR is intended to be a general error recovery 

device; it is called when any other device in the compiler discovers 

that the program being compiled is not in the given language. 

The boxes labeled LEX and DICTIONARY and the two queues 

together form our lexical translator. LEX is basically an FSM which 

can be automatically constructed via the technique of Johnson, et al 

(Joh 68 ), also see (L& P 68) if the method of specifying the "lexicon" of 

the language is based on regular expressions. When LEX is activated 

it reads from the source code the next string of characters which repre

sents a single entity, i.e., the next textual element, and it outputs one or 

two things: (1) to our CFST, via the "syntactic queue" Ql which is 

necessary for look-ahead, it sends the terminal symbol t which is the 

"name" of the element just found, e. g. , i for the identifier Abe or 123, 

(2) if the string must have some "semantic" information derived from it, 

LEX sends both the "name" t and the string of characters to DICTIONARY. 

The latter then derives the appropriate information from the string, stores 

the information in the TREE STORAGE TABLE (TST) as a terminal node, 

e.g., lines 0, 1, and 2 of the TST of Figure 6. 2d, and sends a reference 
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to the node (TST line number) to the "semantic queue" Q2. Thus, it is 

actually DICTIONARY rather than the ASTB which constructs terminal 

nodes with associated "semantics". 

Within DICTIONARY there is a NAME"LIST in which names, e. g. , 

Abe, are stored, and references to the appropriate entries in NAMELIST 

are stored in the TST rather than the names themselves. This is for 

the sake of fast name comparisons and other reasons regarding "attributes" 

of names which are irrelevant for our purposes. 

Our CFST uses Ql as its input tape, and LEX is activated to 

refill Ql whenever it has insufficient symbols for a read or look-ahead 

by the CFST. That is, in effect, when the CFST desires to read or look 

ahead it makes the appropriate request of Ql. If Ql has insufficient 

symbols to fill the request, it in turn requests the number it needs from 

LEX. As indicated in the figure, LEX deposits symbols into the top of 

Ql and they are removed from the bottom via reads by the CFST. As 

noted in Section 2. 3 we assume that the program which loads the source 

code onto the input tape assures that the last symbol is a l • so that the 

compiler will not read past the end of the source code, and therefore, 

will stop after some finite time. 

The dashed line in Figure 6. 3 indicates that the two queues are 

"ganged", in an important sense. We have already seen that, when 
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LEX processes a textual element with "semantics". both Ql and Q2 

receive a new item. Likewise. as we shall see in the next paragraph. 

these pairs are removed from the queµes simultaneously also. Thus. 

although at a given time there may not be as many references in Q2 

as there are symbols in Ql (because some symbols have no "semantics"). 

the order of the references in Q2 is the same as the order of their 

corresponding symbols in Ql. This correspondence is seen to be 

important below. 

Let us refer to terminal sym.bols with associated "semantics" 

as "pseudo-terminals". We require that pseudo-terminals be distinguishable 

from terminals without "semantics", a not unreasonable restriction for 

our purposes. Whenever a pseudo-terminal is read from the bottom of 

Ql. the latter sends a signal to the ASTB which causes it to remove the 

bottom reference from Q2 and to push that reference on its stack, the 

"node-reference stack". It is this stack which the ASTB uses to hold 

references to the top nodes of pieces of a partially constructed abstract 

syntax tree. Thus. immediately after the CFST reads a pseudo-terminal. 

the top reference on the ASTB's stack is to a terminal node which corres

ponds to that pseudo-terminal. 

Summary. In summary, the lexical translator (LEX plus 

DICTIONARY, Ql, and Q2) reads the "source code" and translates it 

into a string of sym.bols. some of which have associated "semantics". 
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Each time the CFST reads a pseudo-terminal a reference to a corresponding 

terminal node with "semantics" is pushed on the ASTB's stack. Each time 

the CFST outputs a symbol (i. e. , .a directive to the ASTB to build a 

nonterminal node). the ASTB pops the appropriate number of node- references 

off its stack, builds the appropriate nonterminal node whose sons are the 

nodes whose references were just popped, and pushed a reference to the 

new node on its stack. 

In a sense, then, the language designer's problem is, in part 

(1) to design a transduction grammar such that the corresponding CFST 

issues the appropriate directives at the appropriate times, and (2) to 

specify an ASTB which constructs the appropriate trees. given that as 

, the CFST reads pseudo-terminals the ASTB will be directed to build 

,, corresponding terminal nodes with "semantics". Of course. stated that 

way the design problem sounds like a fairly "low level" task. Our next 

order of business. then. is to transliterate this task of specifying CFSTs 

and ASTBs into one which can be performed at a "high level". This 

requires that we return to our approach to language design and work 

from there down to the level of tree-building directives. 

6. 8 Specifying Languages. Translations, Compilers 

We have chosen to employ CF grammars as aids to that part of 

language specifications which we describe, after Landin, as specifying 

the mapping of abstract syntax trees into strings of lexical tokens. In 

more common parlance: we use a CF grammar both to define a set of 
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potentially legal programs. some of which may be screened out by context 

sensitive checks. and to define certain operator precedences. associativites. 

etc., by building into the grammar certain "structural properties". 

Unfortunately, due to the nature of CF grammars we usually get too much 

"structure" (at least from the viewpoint explained below). We therefore 

propose the use of something very like an SSTG for specifying only the 

amount of "structure" we desire. We elaborate on this subject by first 

considering just what "structural" information is implicit in a parse. 

Consider a variation of our compiler model. Let us assume for 

the moment that every textual element is sent to the DICTIONARY to 

have a corresponding terminal node built from it. If the element has no 

"semantics", then the node will just be a simple terminal node with no 

"semantics" and with the same name as that of the element. Further, 

let us assume that every read by the CFST causes a corresponding 

terminal node reference to be pushed on the ASTB's stack. Finally, 

let us assume that the CFST is replaced by the parser for the grammar 

at hand. and that the ASTB is simply a collection of subroutines associated 

with the productions such that when the parser outputs production 

p, A-+ w. a corresponding subroutine is activated whith pops lwl 

references from the node reference stack. builds a nonterminal node named 

A with lwl sons which are the nodes corresponding to the references just 



-157-

popped, the first popped being the lwl -th son, and then pushes a reference 

to the new node on the node reference stack. 

If this device is applied to some legal program, then after the 

parser has made the final reduction, namely to S, there will be a single 

reference on the ASTB's stack and it will be to the top node of what is 

commonly called a "parse tree". The parse tree contains the same 

information as the parse but the "structural properties" are explicit rather 

than implicit. As an example the parse tree corresponding to our string 

~ i + i 1 generated by G
1 

is as follows. 

Now, if our language designer has been careful to design into his 

CF grammar all the "structural properties" he desires, then the abstract 

syntax trees can be derived from the parse trees by removing any spurious 

structure which may have crept ir\ and perhaps also "recoding" the informa

tion slightly, e. g. , by renaming nodes. This follows by definition of what 

we mean by the above phrase "design into ... desires. " That is, we view 
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this design problem as one of constructing a grammar which generates 

strings having parse trees from which the desired abstract syntax trees 

can be easily derived as just described. 

Thus we must provide the language designer with a way to specify 

what information to keep. what to discard, and how to "recode" any of the 

information in the parse trees. One way he could do this would be on a 

node-by-node basis with respect to parse trees. and therefore. on a 

production-by-production basis with respect to his CF grammar. In 

effect. he could specify replacements for the subroutines which comprise 

the ASTB so nodes would be constructed differently. For instance. for a 

production like E - T he might replace the corresponding subroutine with 

,'.'' one which does nothing. so that a node named E with only one son named 

T would never appear in the resulting tree. Similarly. he might change 

the subroutine for E - E + T to one which creates a node named + with 

two sons. 

We place only two restrictions on the designer with respect to his 

new subroutines. The first is really just a matter of the efficiency of 

our compiler. It is inefficient for us to build terminal nodes for textual 

elements with no "semantics" and to carry references to them on the 

node reference stack, because the designer may have no need for them 

in his tree. and even if he does. he can easily build them himself. Thus. 

he should be aware that only references to nodes corresponding to 

______ ,,, __ 
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pseudo-terminals and nonterminals in the right part of a given production 

will be at the top of the stack when the corresponding subroutine is called. 

The second restriction is more severe than is necessary, but it is simple 

and it still allows adequate power for the purpose at hand. To be sure 

that references in the ASTB's stack are always kept in the appropriate 

correspondence with pseudo-terminals and nonterminals in the right parts 

of productions, we require that any new subroutine have the same effect 

relative to the node reference stack as does the one it replaces; i. e. , 

if the original subroutine, or really the original modified to abide by the 

first restriction, pops n references and pushes one, then the new sub

routine must pop n references and push one t, unless n = l, in which case 

it may do nothing. Again we have a not unreasonable restriction, given 

the application. 

A proposal. Now, we hope the reader has not taken the above 

discussion too literally. It was intended to illuminate the specification 

problem associated with our CFST and ASTB. We do not, however, propose 

that the designer should actually think of himself as modifying our compiler, 

or necessarily, writing any subroutines, per se. Having gone through 

this discussion though, it should be easy to see that the following proposal 

t We might ha~e allowed simply pop n - 1, but pop n - 1 implies that some 
information is being discarded. We assume that, if n > 1 references are 
popped, then a reference to a new node will be pushed such that the new 
node has at least the n corresponding nodes as sons. 
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will serve as the desired "high level" specification of CFSTs and 

ASTBs. 

We propose that the language designer specify a correspondence 

between strings generated by his CF grammar and abstract syntax 

trees merely by associating tree nodes with his productions. For 

example, for the + operator we might have 

E-E+T ~T 
and for a production with no corresponding node we might have 

E 

E-+ T ~ 
T 

Our second restriction above merely implies that for each instance of 

a nonterminal or pseudo-terminal in the production there must be a 

corresponding instance in the corresponding node. Thus, we have a method 

of specification rather similar to a transduction grammar. In fact, if we 

settle on some conventions about diagrams like the above, i. e. , if we 

develop a graphical language t for this purpose, a set of node building 

t To specify the language BASEL Jorrand (Jor 69) uses the AMBIT I G 
graphical language (Chr 61) to specify the "augments" to productions. His 
approach is an adaptation of Cheatham' sand is sim.ilar to but more extensive 
than our proposal. 
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subroutines and a corresponding SSTG can be derived from a set of such 

"production-node pairs", such that the corresponding CFST and ASTE 

are the appropriate ones for a corresponding compiler. For instance, 

corresponding to the above two examples would be the following components 

of an SSTG: 

E-E+T [ET+} 

[ T} 

and a subroutine called PLUS, say, which would be activated when the 

CFST outputs + to the ASTE. PLUS would pop two references off the 

node-reference stack, use them to build a node named + with two sons, 

and push a reference to that node back on the stack. Of course, we have, 

in effect, made an optimization with regard to the second production: 

rather than have our CFST output a call to a nugatory subroutine, we have 

it not output anything when the reduction T -+ E is applied. 

TWSs. Ideally, then, the portion of our TWS which builds the 

"front ends" of compilers would consist primarily of (1) a device which 

translates a specification based on regular expressions into a LEX and a 

DICTIONARY, (2) a compiler which translates a set of production-node 

pairs into a set of node-building subroutines, i.e., the ASTE, and an 

SSTG, and (3) a manifestation of our procedure (summarized in Chapter 

7) for constructing a CFST from an SSTG. 
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Of course the latter component is useful only if language designers 

find it possible, natural, and convenient, to specify a significant portion 

of the translations of their languages via techniques similar to those we 

have proposed. More specifically, the value of our results depends on 

designers being able, once they have a set of abstract syntax trees in 

mind, to construct an LR(k) grammar which implies parse trees from 

which the abstract syntax trees can be easily derived. Of course, it would 

be even better if the grammar were SLR(l ). 

Unfortunately, we know of no significant formal results in this 

area. Currently, designers seem to build operator precedences, etc. , 

into grammars purely on the basis of past experience and trial-and-error 

methods. We have pursued the research, then, only because of empirical 

evidence that some related results may be forthcoming. We hope because 

so many authors (F&G 68) have found LR{k) grammars useful in this way 

that there are some underlying principles which will some day come to the 

fore. 

Conclusion. We conclude by further illustrating the similarity of 

our model to those of other authors. To do so we consider the absorption 

by the ASTB of some of the tasks conceptually performed by the "rear 

end" of our model. 

As we have already seen, the ASTB can be regarded, even implemented 

as a collection of subroutines. Consider for example our subroutine PLUS 
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of above. It could be a much more sophisticated routine than we have 

indicated thus far. For instance, it might check the two sons of the 

node it would build to determine if they are both constants, or of one is 

zero, and if so, perform the addition, i.e., prune the tree; it might 

reorder the sons in some way so that ultimately more efficient "object 

code" would be generated; it might do "type-check;ing" ; ... ; it might 

even be able to perform the entire function of the "rear end" with 

respect to the node in question and actually output object code. 

It should be clear, then, how similar our approach is, basically, 

to the approaches of Cheatham and Feldman 
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Chapter 7 

IMPLEMENTATION ISSUES 

We seek in this chapter to illustrate the practicability of our 

scheme. To do so we choose a particular method of implementing 

our translators and present the results when the method is applied to 

a particular, practical transduction grammar. Our implementation 

should be regarded only as a first approximation to an optimal one. 

We have not labored at getting an optimal solution, but only at getting 

one which would illustrate the potential of our methods. Undoubtedly, 

some empirical results would be invaluable aids in "tuning up" our 

implementation. 

Before presenting our practical example we discuss further the 

construction of CFSMs and then we summarize our translator constructing 

technique as a whole. 

7. 1 Constructing CFSMs 

The CFSM of a CF grammar G can be constructed from the productions 

of G in a manner similar to the we 11 known technique for constructing an 

FSM from the productions of a right linear grammar. (See for example 

(D&D 69) for a thorough discussion of the latter technique. ) We review the 

technique here because our technique is derived from it. 

The productions of a right linear grammar GR are either of the 

form A ..... a1 a 2 ... an or A ..... a
1 

a
2 
... amB where n and m are::::_ 0, the ai 
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are terminals, and A and B are nonterminals. We construct an FSM 

which recognizes the strings generated by GR by forming a small piece 

of the machine for each production and then putting the pieces together. 

For the production A ..... a
1 

a
2 
... an the corresponding piece is 

~J-~-c{J,_a_2_v- ... ~~ 

that is, a path which spell out a
1

a ... a and leads from a state named 
2 n 

A, the left part of the production, to the terminal state. For a production 

of the form A ..... a
1 

a
2 
... amB the corresponding piece is 

that is, a path which spells out the string of terminals in the right part 

and leads from a state named A to a state named B. If we simply put all 

the pieces together by identifying all states with the same name as the 

same state, we get the desired FSM, although it may be nondeterministic. 

Now, to build our CFSM we could just apply the above procedure 

to G's characteristic grammar. However, since that grammar is so 

closely related to G, we can transliterate the procedure to one which will 
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work directly on G. We illustate the procedure using our example Gf 

Consider the production (1) E _, E + T. There are three corresponding 

productions in G's characteristic grammar, E' _, E + T # E' _, E + T', 
1 1' 

and E' _, E'. The corresponding FSM pieces are as follows. 

E + T 
f-----<c>i 

~~--+-C:>! 

In the latter case we visualize the production written E' _, E E' so it fits 

the second rule above. If we now combine all the pieces corresponding 

to the single production of G
1

, just as we would do if they were all of 

the pieces, and change the result to a deterministic (piece of) FSM, we 

get the following. 

It is easy to see that, in general, the piece corresponding to a production 

(p) A__. w consists of a path which spells out w# and leads from a state 
p 
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named A to the terminal state, such that from each state in the path 

having a transition under a nonterminal B there is also an E" -transition 

to a state named B'. If all the pieces corresponding to the productions 

of Gare put together by identifying all states with the same name as the 

same state, an FSM with E" -transitions results which recognizes the set of 

characteristic strings. The E" -transitions can be removed by well-known 

techniques (again see (D&D 69)) and the machine can be made deterministic 

and reduced. The result is the desired CFSM. 

7. 2 An Efficient Translator Constructing Procedure 

We now review our procedure for the construction of a translator 

from an SSTG Gt based on a CF grammar G. The review is rather terse, 

being presented as an imperative "English program" with simple, forward 

jumps. Our purpose is to summarize the procedure as a whole and to point 

out the general order in which things might be done in a TWS. The order 

suggested here is largely a result of our experience with our single example 

presented below and should therefore be to some extent "taken with a grain 

of salt". Also, since the most useful TWS is undoubtedly an interactive 

one, some of the decisions built-in below should probably be made variable. 

Certainly, more empirical results are necessary for the development of 

an optimum strategy. 
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The translator constructing procedure is as follows. Note that 

we have referenced pertinent definitions, theorems, sections, and page 

numbers. 

START: 

LR(O): 

SLR(l): 

SLR(k}: 

Generate G's CFSM (Section 7. 1 ). In the process do 

the following for future purposes: (1) for each non-

terminal A record in a "nonterminal-transition 

table" all pairs of states such that there is an 

A-transition from the first to the second, (2) note 

whether there are any inadequate states and if so 

which, and (3) associate with each production p a 

"set of p-states", those states which have I -transitions. p 

If the CFSM has no inadequate states then G is LR(O) 

(Theorem 3. 4). so go to COMPUTE LOOK-BACK (below). 

For each inadequate state N compute the simple 1-look-

ahead sets (Definition 4. 2) for the transitions from N. 

If these sets are mutually disjoint for each such state, 

then G is SLR(l) (Definition 4. 3) so convert the CFSM 

to the SLRlFSM (Definition 4. 4) and go to COMPUTE 

LOOK-BACK. 

For each inadequate state N with overlapping simple 

1-look-ahead sets compute the simple k-look-ahead 

sets (Definition 4. 2) for the tran~itions from N for the 
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largest value of k for which we are willing to implement 

a translator with k-symbol look-ahead. (This value of 

k is probably dependent upon the number of such states, 

the implementation, and perhaps the language designer, 

if the TWS is interactive. Empirical results are needed 

here.) 

If these sets are mutually disjoint, G is SLR(k) 

(Definition 4. 3) so minimize look-ahead (Section 4. 4), 

convert the CFSM to the SLRkFSM (Definition 4. 4) and 

go to COMPUTE LOOK-BACK. 

Report to the language designer that his grammar is not 

SLR(k) for an acceptable k. Provide him with some 

information regarding what kinds of strings need more 

thank-symbol look-ahead and/or state-splitting to determine 

their characteristic strings. (Empirical results are needed 

regarding what information is useful to the designer. ) 

Then, if the designer so desires, continue with the more 

complex techniques which follow. 

For each inadequate state N which has overlapping simple 

k-look-ahead sets, choose the above value of k and a 

similarly maximal value of m and compute the sets of 

(m, k)-bounded-context pairs (Definition 5. 3) for the 

transitions from N. 
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If these sets are mutually disjoint, G is L(m)R(k) 

(Definition 5. 4) so convert the CFSM to the LmRkFSM 

(Definition 5. 5) with minimum-look-ahead (section 4. 4). 

change the "nonterminal-transition table" and the "sets 

of p-states" (see START above) appropriately so that 

they reflect the new states and transitions, and go to 

COMPUTE LOOK-BACK. 

For each inadequate state N with overlapping context 

pairs and fork as above, compute the strings cp (page 123) 

which access N via paths with no more than k instances 

of a given cycle, then compute the look-ahead sets 

corresponding to each such cp (page l 24)and each 

transition from N. 

If these look-ahead sets are mutually disjoint for each 

such N, G is LR(k) (page128)so convert the CFSM to 

the LRkFSM (page 125) with minimal look-ahead 

(section 4. 4), change the "nonterminal-transition table" 

and the "sets of p-states" appropriately, and go to 

COMPUTE LOOK-BACK . 

Otherwise, G is not LR(k) for an acceptable k so reject 

G and provide the language designer with some information 

regarding what kinds of strings need more thank symbols of 

look-ahead to determine their characteristic strings. 
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Associate with each #-transition in the FSM a ''look-back 

set" of state pairs (the set Q on page 54), for the compu-

tation of look-back transitions below. For a :ff -transition 
p 

from state R, where production p is A -+ w, the set is as 

follows. If there is but one + -transition in the machine, 
p 

the set is the set of pairs associated with A in the "non-

terminal transition table". Otherwise, the set is the 

subset Q of A's set such that for each pair (N, M) in Q 

there is a path from N to R which spells out w. 

If production p has transduction element w' such that 

* w' = y6 and y = V and 6 = (V.JJ*. replace the =lfp-transition 

with one under "pop lwl. output 6" (page142) to a new state 

R'. 

R' (page 54) has a transition under "top N" to state M for 

each pair (N, M) in the "look-back set" associated above 

with the =IF -transition. Eliminate equivalent look-back 
p 

states (page 60). 

Convert each inadequate state (if any) to a look-ahead state 

(Figure 4. 2). 

Optimize the DPDA by (a) deleting transitions under 

nonterminals .(page 56) and "pop 0, out£" (page 142) 
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(b) eliminating redundancies via precomputation 

(page 144), by minimizing look-back, pushing. 

and popping, (page 61), and (c) precomputing jumps 

over cascades of look-ahead and look-back states 

(page 146). 

All done. 

We emphasize that we expect most of the grammars of interest 

to be SLR(l). the remainder to be SLR(k) for k = 2 or 3 (caused by only 

one or two inadequate states. at that), and none to require the more 

complex L(m)R(k) or general LR(k) techniques. Thus. the poor state of 

our strategy regarding those complex techniques is not likely to be a problem. 

at least with respect to programming languages. However, if our TWS is 

to be employed in some other application where more complex grammars are 

to be expected. that strategy will require development. Otherwise. a con

siderable amount of computation time is likely to be expended in deciding 

whether a grammar is. indeed, LR(k) for an acceptable k. 

7. 3 Tabular Translq.tors. an Interpreter 

In this section we present a method of representing our translators 

by means of tables. and we present via a flowchart an interpreter for those 

tables. We first illustrate our storage method by using our trivial SSTG Gtl: 

then we present the interpreter. (However, the reader may find it helpful 
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to reference th.e interpreter (Figure 7. 2 below) as he follows the description 

of the storage method.) This implementation works only for LR(l) grammars 

whose CFSMs have no multiply inadequate states. Nonetheless, it covers 

our practical example which is presented in Section 7. 4. We discuss in 

Section 7. 6 the modifications necessary to cover the general case. 

Shown in Figure 7. 1 is a tabular representation of the translator 

of Figure 6. 1 (page 143). Note that we have stored the information regarding 

states, transitions, and look-ahead sets in a STATE TABLE (ST). a 

TRANSITION TABLE (TT). and a LOOK-AHEAD TABLE (LAT). respectively. 

Each entry in the ST corresponds to a state and it has three components. 

The first, TYPE, indicates the type of state and it can have one of the seven 

values: READ, LA (look-ahead). POP (pop and output). LB (look-back). 

EXIT (the terminal state). •READ, and •LA, the last two of which indicate 

states which push 0) their names (ST line numbers)-on the stack. This 

covers all types of states whioh can appear in our translators. In the 

case of a POP, state, the second component, NUM, is the number of state 

names to pop from the stack. However, in all other cases NUM is the 

number of transitions from the state. The transitions are represented by 

contiguous entries in the TT and the third component. TTREF, is a reference 

to the topmost of these entries; i.e .• it is a TT line number. 

Each entry in the TT consists of two components, SYM and STATE. 

In the case of the entries for a READ or 4-READ state and all but the last 
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STATE TABLE (ST) TRANSITION TABLE (TT) 

TYPE NUM TT REF SYM STATE 

0 READ 1 0 0 I- 1 

1 +READ 2 1 1 i 10 

2 READ 2 3 2 ( 11 

3 POP 1 6 3 ... 3 

4 -"READ 2 1 4 + 4 

5 POP 1 7 5 ) 13 

6 6 E 11+ 

7 LA 2 8 7 + 17 

8 ~READ 2 1 8 t 8 

9 POP 1 10 9 1 15 

10 POP 0 11 10 + 15 

11 '-READ 2 1 11 i 7 

12 HEAD 2 4 12 E 7 

13 POP 1 12 13 1 2 

14 EXIT 14 11 12 

15 LB 4 13 15 8 9 

16 16 4 5 

17 LB 2 13 

LOOK-AHEAD TABLE (LAT) 

t :t + t i ' l 1 I 1 1 1 

Figure 7.1. The DPDA-translator for the example SSTG 

Gtl represented by tables1 1.e., a tabular version of 

Figure 6.1. 
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entry for an LA or .J.LA state. each entry represents a read transition 

under SYM to STATE. The last entry for an LA or +LA state represents 

a look-ahead transition to STATE under the look-ahead set implied by 

the SYM-th row of the LAT. If there is a 11 1 11 in column t of row n of 

the LAT. where t is a terminal symbol, then t is in the look-ahead set 

implied by row n. In the case of an LB state the corresponding TT entries 

represent look-back transitions; i.e .• each means if the top state-name 

on the stack is the same as SYM. go to ST A TE. 

For POP states there is always only one transition and it is under 

"pop NUM. output SYM" to ST ATE. TYPE is the only relevant component 

for the EXIT state. 

The following examples illustrate the meanings. 

(1) From line one of the ST we see that state 1 is a push-then-

read state. i.e .• it is represented by a square in the corresponding 

state diagram. and it has two transitions which are listed contiguously 

in the TT starting at line one. From the TT we see that state 1 has 

an i-transition to state 10 and a (-transition to state 11. 

(2) From line nine of the ST we see that state 9 is a pop-then-output 

state which. since the NUM component is 1 and the TTREF points 

to the pair ( t • 15). has a transition under "pop 1, output t " 

to state 15. Note that some of the POP states should output 

nothing. as indicated by £ in the SYM component of their TT entries. 
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In such cases our interpreter will actually output something, namely 

£, therefore our ASTB will have to have a nugatory subroutine which 

will be called when this happens. Our practical translator below 

has so few such POP states thp.t we thought it not worth the cost 

of eliminating the inefficiency. 

(3) From line seven of the ST we see that state 7 is a look-ahead state 

with two transitions. One is actually a read transition under t 

to state 8 and the other is a look-ahead transition to state 15. The 

SYM component of line nine of the TT indicates that the look-ahead 

set [ l • +, )} is implied by line one of the LAT. Note that the LAT 

is included purely for the sake of earlier error detection since, if 

only strings in L( G
1

) were being translated, we could be sure upon 

arriving in state 7 that the next symbol would be t, l • +, or ). 

However, since our string may not be in L(G
1
), we take the 

attitude that once a symbol has affected any decision it must be 

validated. 

After two more comments we present the interpreter. First, the 

"holes" in the ST, lines 6 and 16, could obviously have been filled by 

renumbering the states; however, we choose not to so that the one-to-one 

correspondence with Figure 6. 1 would be preserved. Second, it should be 

noted that some of the lines of the TT are referenced by more than one 

state. For example lines one and two are referenced by states l, 4, 8, 
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and 11. This is an important optimization of the use of space in the TT 

which we use extensively in our practical example. We have computed 

the optimization by hand here; however, there exists a graph-theoretic 

method for doing it automatically (I&M 69). 

The interpreter. Since the reader presumably already knows what 

the actions of our DPDA are supposed to be and what the meanings of the 

tables are, . we will not elaborate extensively on the operation of the 

interpreter. However several comments are in order. (1) The interpreter 

is presented via a flowchart in Figure 7. 2 and it is described as if it were 

part of our compiler model of Chapter 6. (2) The variable, Stack, denotes 

a large vector which we use as our pushdown stack. The variable, S, is 

used as the stack index. The top name on the stack is always Stack (S-1). 

(3) We do not have to initialize any input string or pointer to one, since 

that initialization is affected when the lexical translator is initialized, 

before the interpreter is activated. Input and look-ahead symbols are 

acquired from the S)lintactic queue Ql as described in Chapter 6. When Ql 

is called with argument LA, the symbol in the queue is returned as the value, 

but the symbol is not removed from the queue. When Ql is called with 

argument READ it both returns the symbol as its value and removes the 

symbol from the queue. (4) The variables, READ, LA, POP, LB, EXIT, 

-l- READ, and i LA, may be thought of as denoting some distinct constant 

values. (5) The variables, ST, TT, and LAT, denote two dimensional 
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Figure 7.2. The interpreter for our tabular translators. 
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arrays which represent tables such as the ones in Figure 7. l. The 

variable, State,, denotes the current state, which is represented by an ST 

line number. The current reference is kept in TTRef. We can view 

TYPE= 1, NUM = 2, TTREF = 3, SYM = 1, and STATE = 2, so that., e.g .• 

if State = 10, ST(State, NUM) has the value stored in the tenth row, second 

column of the ST. (6) ASTB is, of course, the abstract-syntax-tree builder 

of Chapter 6. 

7. 4 A Practical Example 

The programming language PAL (Pedagogic Algorithmic Language) 

(Eva 68, Eva 69, W&E 69) is used as a vehicle to teach some of the 

fundamentals of programming linguistics to undergraduates interested in 

computer science at the Massachusetts Institute of Technology. It is one 

of the more progressive languages in existence today, being a decendent 

of !SWIM (Lan 66). In a sense PAL is a generalization of ALGOL 60 (Nau 6'3); 

it has the general functional capabilities of LISP (McC 6 5), generalized 

structures, and generalized jumps. 

PAL's Grammar. Of course most of this is irrelevant for our 

purposes here. It is the syntax of PAL in which we are interested. Since 

the formal definition of PAL specifies the set of legal programs as a CF 

language, we do not have to remove any "context-sensitive features" from 

the syntax. The syntax is similar to that of ALGOL 60, but it is considerably 
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"cleaner" and it is unambiguous. It is specified v_ia modified Backus 

Naur Form (BNF) which, for our purposes, is just a shorthand way of 

writing CF productions. 

As we noted above, the PAL grammar was designed, for the sake 

of pedagogy, to be unambiguous, small, concise, and useful as a syn

tactical reference. Except for the fact it was designed to be unambiguous, 

it can truly be said that the grammar was not designed to be within the 

domain of our parser constructing technique. And yet, the grammar turns 

out to be SLR(l ). 

A slightly modified version of the PAL grammar is presented in 

Table 7-1 where nonterminals are denoted by one or two capital letters, 

pseudo-terminals by three or mor.e capitals, and other terminals by strings 

of small letters and/ or special characters. The grammar differs from 

real PAL in several respects, which, for our purposes, are minor: (1) 

it includes new constructs which the author has proposed be added to PAL, 

(2) the original uses "regular expressions" in some alternatives to indicate 

nonassociative operators, e.g .. , DA ::= DR {and DR}~· and we have changed 

these in an obvious way to get a strict CF grammar which generates the 

same strings, (3) the original grammar has the definitions of CONST and 

RLN built-in, whereas we have moved them into the lexical domain, and 

(4) the operator$ here has different precedence relative to other operators 

than it has in real PAL. 
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def D 

I f n VB • E 
I EV 

c 

11= CL 1 C I CL 
11= NAME I CL I cc 

I EW 

11= test B 1fso CL 1fnot CL I test B 1fso CL ifnot CL 
I if B do CL I unless B do CL I while B do CL 
I until B do CL I CB 

11= T 1= T I goto R I res T I T 

11= TA, T I TA 
1 1= TA aug TC I TC 
11= B ->TC bar TC I I,. $ R I B 

11= B or BT I BT 
1i= BT & BS I BS 
: : = not BP I BP 
11= A RLN A I A 

TE l 
comment a "bar" really 
should. be "I" but, if it 
wer~ the BNF would 
read 1noorreotly. 

11= A+ AT I A - AT I +AT I 
1 : = AT * AF I AT / AF I AF 
11= AP** AP I AP 

- AT I AT 

11= AP.% N.AJIE R I R 

(55) R 11= R RN I RN 
( 51 ) · RN 1 : = NAME I CONST I ( E ) I [ E ] 

(61) D 
(6J) DI 
(65) DA 
(67) DR 
(69) DB 

(7J) v 
(75) VB 
(78) VL 

11= DI within D I DI 
11= DI 1nwh1ch DA I DA 
11= DR and DA I DR 
11= rec DB I DB 
11= VL = E I NAME V = E 

11= VB V I VB 
I I= NAME t ( VL ) I ( ) 
a:= NAME , VL I NAME 

I ( D ) I C D ] 

Table 7 -1. The PAL gr•mmar. It has 48 terminals, J of 
wh1ch are pseudo-terminals (NAME, CONST, and BI&), 32 
nonterminals, and 80 productions. The gramr 1• SLR(l). 
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Some statistics pertinent to the PAL grammar are as follows. It 

has 48 term:lnals. 3 of which are pseudo-terminals, 32 nonterminals. 

and 80 productions. The corresponding CFSM has 157 states. 26 of 

which are inadequate, but none of which are multiply inadequate. and 61 

of which must push their names on the stack during parsing. 

Since our interest here is primarily in PAL's CFST, we concentrate 

on its transduction grammar rather than the production-node pairs. The 

SSTG is implied by PAL's output grammar which is presented in Table 7 -2. 

The output grammar is our own concoction; heretofore. the correspondence 

between PAL programs and abstract syntax trees has been specified 

informally by PAL designers. 

When the SSTG is viewed as a specification of the CFST. the 

pseudo-terminals should be regarded as nonterminals; however. if the 

outputs from the CFST and the lexical translator together, as seen by the 

ASTB, are being specified, the pseudo-terminals should be regarded as 

terminals. (Recall the restriction discussed on page 160 and the summary 

of the interactions of the components of our compiler model on page 154). 

In most cases the abstract-syntax-tree node corresponding to a 

given production can be determined from its transduction element W' as 

. 
follows: if w' consists only of a nonterminal, there is no node, or if only 

a pseudo-terminal. then a terminal node with "semantics". of if w' = yo 

where i' is a string of nonterminals and pseudo-terminals and o is a 
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( 0) s : i= p 

(1) 
(J) 

(5) 
(8) 
(10) 

P : i= PL I E 
PL : := D PL def D lastdef 

E 
EW 
EV 

I 1= 

I := 
I 1= 

D E let I 
EV DR where 
C valof I 

VB E >. 
I EV 

c 

CL C ; I CL 
NAME CL 1 I CC 

• EW 

(12) 
(14) 
(16) 

c 
CL 
cc 

I 1= 

: := 
I 1= B CL CL test-t I 

B CL unless I B 
T T 1= I R goto 

B CL CL test-f t B CL if 
I CL while I B CL until CB 

(23) CB I 1= I T res I T 

(27) T 
(29) TA 
(31) TC 
(JJ) TE 

(35) B 
(37) BT 
(39) BS 
(41) BP 

(4J) A 
(48) AT 
(51) AF 
(53) AP 

1 1= TA T , I TA 
is= TA TC aug t TC 
:i= B TC TC test-t TE 
I 1= R $ I B 

11= B BT or I BT 
: 1= BT BS & I BS 
1i= BS not I BP 
11= A RLN A rln A 

1i= A AT+ I A AT - t AT pos 
1:= AT AF* I AT AF/ I AF 
11= AP AF** I AP 
11= AP NAMER% I R 

(55) R 11= R RN¥ I RN 
(57) RN 1:= NAME t CONST I E t E 

11= DID within I DI 
11= DI DA 1nwh1ch I DA 
: 1 = DR DA and I DR 
a:= DB rec I DB 

t 

(61) D 
(6J) DI 
(65) DA 
(67) DR 
(69) DB I:= VL E = I NAME v E ff I D I 

(73) v 
(75) VB 
(78) VL 

11= VB V bv I VB 
11= NAME I VL I () 
a 1= NAME VL vl I NAME 

Table 7-2. The output grammar for PAL. 

AT neg I AT 

D 
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terminal, the node has name 6 and lw' l-1 sons which are the nodes 

corresponding to the symbols in y and in the same order. Exceptional 

cases are trivially different and of no importance here, since they concern 

the node-building subroutines of PAL's ASTB, but not its CFST. 

PAL's CFST is presented in Figure 7 .-3 where the ST spans the 

first two pages, the TT spans the first three, and the LAT is shown in the 

fourth page. In the latter case only the numbered lines are. to be considered 

in the LAT; we have included the extra lines to indicate for each nonterminal 

A the set F~(A) for the thoroughly interested reader. 

Space-efficiency. For lack of a better choice, we define the space

efficiency of a translator T corresponding to an SSTG Gt to be the ratio of 

the space necessary for storing Gt to that for storing T. 

Let us compute a rough estimate of the space-efficiency of PAL's 

CFST. The ST contains 172 entries. There are seven possible values for 

the TYPE component, requiring three bits, values as high as 18 in the 

NUM component, requiring fiv:e bits, and values as high as 254 in the TTREF 

component, requiring eight bits. Thus, the ST requires 172*(3+5+8) = 2752 

bits. The TT contains 255 entries. The largest values in the SYM and 

STATE components are 154 and 171, respectively, re.quiring eight bits each. 

Thus, the TT requires 255 *(8+8) = 4080 bits. The LAT requires 16 rows, 

each with 48 binary entries, or 7 68 bits. In total the translator requires 

7600 bits, or 238 words at 32 bits per word, of memory space. 
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STATE TABLE TRANSITION STATE TABLE TRANSITION 
TABLE TABLE 

TYPE NUM TTREF SYM STATE TYPE NUM TTREF SYM STATE 
0 READ 1 0 ,... 1 44 POP 1 9J 115 149 
1 t.READ 19 1 def 5 45 .1,LA 2 94 116 150 
2 READ 1 22 let 6 46 LA J 96 117 151 
J POP 1 254 f n 7 47 POP 1 248 118 152 
4 LB 2 252 val of 10 48 LA 2 99 156 159 
5 ~READ 4 2J NAME lJ 49 ~READ J 24 157 160 
6 ~READ 4 23 test 15 50 LB 2 101 12 
7 READ 2 27 if 16 51 READ 1 103 := 69 
8 LB 7 29 unless 17 52 {.LA 4 104 J 14 
9 LA 2 35 while 18 53 +READ 4 23 ' 72 

10 iREAD 15 5 until 19 54 ~READ 4 23 aug 73 
11 POP 1 251 goto 22 55 READ 1 108 4 162 
12 LA 2 37 res 23 56 READ 1 109 -> 74 
13 LA 2 39 $ 28 57 LB J 245 or 75 
14 LB 10 41 not 31 58 tREAD 2 110 5 27 
15 ~READ 7 14 + 34 59 tREAD 4 23 73 121 
16 +READ 7 14 - 35 60 POP 1 112 74 122 
17 *'READ 7 14 CONST 41 61 tREAD 15 5 153 158 
18 ~READ 7 14 ( 42 62 tREAD 15 5 24 
19 ~READ 7 14 r 43 63 -liREAD 3 llJ & 77 
20 POP 1 250 NAME 41 64 LB 2 243 6 163 
21 LA 2 51 10 167 65 READ 2 115 75 114 
22 \.READ 4 17 -f 44 66 READ 2 117 29 
23 ~READ 8 13 rec 49 67 READ 2 118 77 123 
24 LA 3 53 NAME 52 68 READ 2 120 JO 
25 POP 1 249 ( 5J 69 tREAD 8 lJ RLN 79 
26 LA J 56 ( 54 70 ~LA 5 122 + 80 
27 LB 4 59 NAME 99 71 POP 1 127 - 81 
28 +READ 4 17 ( 58 72 •READ 8 13 7 164 
29 LA 2 63 1 4 73 ~READ 8 13 * 84 
JO LB 2 65 42 89 74 ~READ 8 lJ I 85 
Jl vREAD 6 15 96 136 75 •READ 7 14 8 165 
32 LB 2 67 104 142 76 vLA 5 128 34 82 
33 LA 4 69 105 143 77 ~READ 7 14 35 BJ 
34 •READ 4 17 1J8 155 78 POP 1 133 80 125 
35 ~READ 4 17 where 59 79 ~READ 6 15 81 126 
36 LA 3 73 1 8 80 'READ 4 17 36 
J7 LB 5 76 ' 61 81 ;READ 4 17 ** 86 
J8 LA 3 81 2 161 82 LA J 134 % 87 
39 •LA 5 17 . 62 83 LA J 137 9 166 . 
40 LB 4 84 11 41 84 •READ 4 17 22 70 
41 LB 5 88 62 111 85 tREAD 4 17 28 76 
42 ~READ 18 2 112 146 86 tREAD 4 17 !JO 154 
4J •READ 18 2 113 147 87 READ 1 140 39 

Figure 7.3. PAL's CFST (through page 188). 
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STATE TABLE TRANSITION STATE TABLE TRANSITION 
TABLE TABLE 

TYPE NUM TTREF SYM STATE TYPE NUM TTREF SYM STATE 
88 POP 1 1 1 39 88 134 POP 1 180 * 84 
89 READ 1 142 70 88 13.5 POP 1 181 I 85 
90 READ 1 143 76 88 136 POP 1 182 8 132 
91 POP 2 144 1.54 88 137 POP 2 183 * 84 
92 ~READ 4 23 40 138 ~READ 18 2 I 85 
93 ~READ 4 23 E 171 1.39 POP 1 184 8 101 
94 ~READ 4 2J def .5 140 POP 1 185 NAME 1.30 
9.5 POP 1 145 0 168 141 POP 1 2J8 l 40 
96 tREAD 18 2 within 92 142 POP 2 186 ) 1Jl 
97 tREAD 2 110 inwhich 93 143 POP 2 187 J 131 
98 READ 1 146 12 169 144 POP 1 188 def 100 
99 ~LA .3 147 and 94 14.5 POP 1 2J7 rec 50 

100 LB 2 241 13 170 146 READ 1 189 = 1.38 
101 POP 1 240 59 109 147 READ 1 190 NAME 99 
102 READ 1 150 48 148 LB J 2)4 ( 58 
103 READ 1 151 = 96 149 POP 2 191 14 64 
104 ~READ 18 2 

' 97 1.50 POP 2 192 ) 140 
105 ~READ 18 2 NAME 99 1.51 POP 2 193 J 140 
106 READ 1 1.52 ( .58 152 POP 2 194 ) 144 
107 LA 2 1.53 1.5 148 1.53 tREAD 7 lJ ' 97 
108 POP 1 1.55 in 104 154 LA 5 19.5 1.5 57 
109 POP 1 1.56 • 10.5 1.5.5 POP 2 200 () 99 
110 POP 1 1.57 NAME 107 1.56 ~READ 15 .5 where 8 
111 POP 1 158 ) 108 157 ~READ 15 5 ; 9 
112 ~READ 15 .5 val of 9 1.58 POP 2 201 : 12 
113 tREAD 15 5 if so 112 159 POP 4 202 & 77 
114 LA 2 1.59 if not 113 160 POP 4 20.3 6 47 
11.5 ~READ 1.5 .5 or 7.5 161 LB .3 204 := 14 
116 ~READ 1.5 5 do 11.5 162 LB J 207 ' 21 
117 oltREAD 15 .5 do 116 16.3 LB 6 210 aug 24 
118 ~READ 1.5 5 or 7.5 164 LB 2 216 bar 1.53 
119 POP 1 161 do 117 165 LB 2 218 & 29 
120 POP 1 162 do 118 166 LB 4 220 + 80 
121 POP 1 163 or 7.5 167 POP 1 224 - 81 
122 READ 1 164 CONST 41 168 POP 2 225 7 2.5 
123 POP 1 16.5 ( 42 169 LB .5 226 * 84 
124 LA .3 166 ( 43 170 LB 3 231 I 85 
125 LA J 169 NAME 41 171 EXIT - 8 20 
126 LA 3 172 3 14.5 172 * 84 
127 POP 1 175 res 114 173 I 85 
128 ~OP 1 176 CONST 41 174 8 11 
129 POP 1 177 ( 42 17.5 * 36 
130 •READ 4 17 c 4) 176 I 36 
131 POP 1 178 NAME 44. 177 ** .37 
1J2 POP 1 239 5 141 178 E 41 
1.3 .3 POP 1 179 not JO 179 within 46 

FiS:!:!re Z·J· Continued. 

----------------------------
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TRANSITION TABLE 

SYM STATE 
180 inwhich 
181 and 170 
182 = 4 
183 vl 148 
184 bv 57 
185 E 4 
186 let 8 
187 >. 8 
188 E 99 
189 ifnot 156 
190 ifso 157 
191 if 14 
192 unless 14 
193 while 14 
194 until 14 
195 CONST 41 
196 ( 42 
197 [ 43 
198 NAME 41 
199 10 3 
200 ff 4 
201 testT 24 
202 testT 14 
203 testF 14 
204 10 60 
205 61 110 
206 --- 9. 
207 23 71 
208 69 119 
209 72 120 
210 15 63 
211 16 65 
212 17 66 
213 18 67 
214 19 68 
215 --- 26 
216 31 78 
217 --- 32 

Figµre 7.3. 

TRANSITION TABLE 

SYM STATE 
218 79 12 
219 --- 33 
220 84 127 
221 85 128 
222 86 129 
223 --- 37 
224 ( 38 
225 lastdef 100 
226 5 45 
227 6 55 
228 53 102 
229 54 103 
230 92 133 
231 93 134 
2.32 94 135 
233 --- 46 
2.34 58 106 
235 97 137 
236 --- 51 
237 goto 14 
238 $ 27 
239 E .33 
240 neg 33 
241 1 2 
242 45 91 
24.3 52 98 
244 99 139 
245 58 106 
246 97 137 
247 --- 51 
248 or 26 
249 rl J2 
250 + 33 
251 - JJ 
252 49 95 
253 --- 50 
254 .38 

Continued. 
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LOOK-AHEAD TABLE 

1 1111 
1 1111 
1 1111 
1 1111 
1 1111 
1 1111 
1 1111 

1 1 1111 
1 11 1 1111 
1 11 1 1 1111 
1 11 1 1 1111 

1 1 1111 1 1 1111 
1 1 1111 11 1 1111 
1 1 1111 11 1 1111 
1 1 1111 11 1 1111 
1 1 1111 11 111 1 1111 
1 1 1111 11 11111 1 1111 
1 1 1111 11 11111 1 1111 
1 1 1111 11 1111111 1 1111 
1 1 1111 11 1111111111111111 
1 1 1111 11 1111111111111111 

1 1 
1 111 
1 111 
1 1111 
1 1111 

1 1 
1 

Figure 7.3, Continued. 

~ 

p 
PL 
E 
EW 
EV 
c 
CL 
cc 
CB 
T 
TA 
TC 
TE 
B 
BT 
BS 
BP 
A 
AT 
AF 
AP 
R 
RN 
D 
DI 
DA 
DR 
DB 
v 
VB 
VL 

---------------------------------------
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Now there are 80 distinct symbols necessary to store the SSTG, 

thus requiring seven bits each. If for each production p, A-+ w, we 

assume we need store only lwl +2 symbols, one for the left part, 

lwl for the right part, and one for an output terminal, then it takes 342>:'7 = 

2394 bits = 75 words to store PAL's SSTG. Thus the space-efficiency of 

the PAL translator is a respectable 75/238 = 31%. It seems clear that 

this figure could be increased somewhat by bringing to bear some coding 

tricks; however, it is not our purpose here to develop an optimal imple

mentation as regards either space or time. In fact, our scheme is already 

competitive with existing schemes, as we show next by comparing it with 

one which is well known to be fast and efficient (F&G 68). 

7. 5 Comparison with a Precedence Scheme 

For the sake of simplicity we compare parsers rather than 

translators, and we use the PAL grammar when we need pertinent statistics. 

In Figure 7 .4 we present a flowchart describing a variation of a "Simple 

Precedence" parser (W&.W 66) which is compatible with our terminology 

and compiler model. We do not detail the actions of the parser but only 

note that it makes read-reduce decisions and locates reducible substrings 

by looking up "precedence relations" in a precedence matrix (PM). and it 

determines which production, with left part A and output symbol OutSym, 

is applicable by searching (via Search) the set of productions to find one 

with a right part that matches the reducible substring. 

-------- ------ -------------------
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5..-0 
Sta.c.k(S)..- Q1(~EAD) 

S,,_.ht -4- Qi (Rf"AD) 

Rt-.• PM C st.Jc (s)_, s.,..J.i) 

HO 

HO ------------.... ~;.J PM(st.Jtc,·),S-G.c.Jt (j)) : ~ 

YES 

s .. j 
St..c.lc Cs)..- A 

Coll. AS TB (OJ-Sr) 

5+5+1 
Sto.dt {s) +-S~ 

Rl,,, = .:.. 
MO 

STOP 

Figure 7.4. The interpreter for a "Simple 

Precedence" parser. 
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Space. Each entry in the PM can have one of four values. <- • = . 

·>, or "none", so two bits are required for each. The rows and columns 

of the PM correspond to the symbols in the grammar. For PAL there 

are 80 symbols so the size of the corresponding PM would be 

80*80*2 = 12, 800 bits = 400 words. The size of the production table with 

output symbols would probably be greater than what we calculated above: 

75 words. Thus, the whole parser would require greater than 475 words, 

or twice as much as our translator above. Of course our parser might 

be somewhat larger than the CFST above because of the extra output 

symbols, but probably no more than 15% larger. A more significant 

difference would be that our interpreter would be larger than that for the 

precedence scheme, perhaps by an extra 50 words or so (an "educated 

guess"). On the other hand, the amount of space necessary for the stack 

during execution for our scheme would be less than that for the PM scheme 

(see page 62). In conclusion, then, the two schemes are roughly com -

parable in space usage. 

Time. Let us now compare the speeds of the schemes. Following 

this paragraph are four lists of statements which must be executed in the 

performance of reads and reductions by the two schemes. To the left of 

the statements we indicate very rough estimates of the time required to 

execute each statement individually (generally one time unit per statement) 

and each group of statements. The groups comprise statements which 
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are executed variable numbers of times depending on the production or 

state involved. We weight these groups according to statistics derived 

from PAL's grammar, CFSM, or translator, as appropriate, and we 

indicate the pertinent statistics to the right of the statements. 

Precedence Matrix {PM) reada 

1 
2 
1 
1 
1 
1 
1 

Symbol • Ql {READ) we count 
Rln + PM{Stack(S) ,Symbol) 
Rln = :> ? 

only the stores no lexical 
analysis 

Rln = ::: ? 
Symbol = 'i ? 
s • s + 1 
Stack(S) .+ Symbol 

8 time units total 

CFST reada 

1 ST{State,TYPE) = {~)READ or {lo)LA? 
1 • 5 { 1 stack ( s ) • state } * ..,6· .. 1 _6.,:R,:.:;~i==:.....:::an=d=--+~U~..:;s:..:::t~a:.:.t.;:;.e:;..s __ 

1 S • S + 1 82 (+)READ and(•)LA states 
1 Symbol + Ql (READ) 

1 Last• TTRef + ST{State,NUM) 
6 8 1 Symbol= TT(TTRef ,SYM) ? 

• 1 TTRef + TTRef + 1 
1 TTRef > Last ? 

Ci (linear search) * avg. no. of 

-1} *1.7 

read transitions 
from C•>LA and (~)READ states)---------

1 State.+ TT(TTRef ,STATE) 
1 TTRef + ST{State,TTRef) 

12.J time units total --- about 1.5 times as long 
as a PM read 
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PM reduce: 

0 Symbol+ Ql (READ) happens infrequently 
2 Rln+ PM(Stack(S),Symbol) 
1 Rln = ~ ? 
1 i• s - 1 
1 j+ s 

{ 
2 PM(Stack(i) ,Stack( j)) = ~ ?J b 1 9 • 2 11 j • i * 2 • 3 s~ o s i ,. i _ 1 rght pa.rt 

6.6 A, outSym - Search(Prods,Stack(J) ••• stack(1)) 
(1 time unit per store + 2 per each symbol in right par~) 

1 s .. j 
1 Stack(S) • A 
1 .ASTB(OUtSym) 

23.8 time units total 

CFST reduce: 
1 ST(State,TYPE) = (t)LA ? 

{
1 Stack(S) + State]* 6 ~tt states 
1 s + S + 1 26 ( • LA " 
1 LASymbol+ Ql(LA) 

J.6 1 Last .. TTHef + ST{State,NUM) - 1 26 '*>at states 

~
1 LASymbol = TT(T'l'Ref ,SYM) ?} 53 'So pro uct!ons 
1 T'l'Ref + TTRef + 1 *20 
1 TTHet ~ Last ? 
(avg. no. read transitions -' I 

from <•>LA states )__...../' 
2 LAT (TT ( T'l'Ref, SYM) , LASymbol) = 1 ? 

o.6 t 1 ST(State,TYPE) =POP ?J *48/80 POP states/productions 
1 S• S - ST(State,NUM) 
1 Call ASTB(TT(T'l'Ref,SYM)) 

1 ST(State,TYPE) = LB ? 
1 TopState • Stack (S-1) 
1 Last• TTRef + ST(State,NUM) - 1 1.8 {1 TopState = TT(TTHef ,SYM) ?]~BO 
1 TTRef ~ TTRef + 1 ·~ 
1 TTRef i!:: Last 
(avg. no. transitions from LB ,,,} 

states * linear search 

*22 !J? states . s·o· J)r&luctions 

time units total --- about 1 3 as long as a PM reduce 

In conclusion, we see from the above that on the average the PM 

sc~me reads symbols about 1. 5 times as fast as does ours, but our scheme 

makes reductions about three times as fast as the PM scheme. 
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Of course, our estimates are very rough, but we believe it is clear from 

this that the two schemes are also roughly comparable as far as speed 

goes. 

7. 6 Variations, Extensions 

There are, of course, many ways in which our scheme could be 

speeded up. We mention two here because they seem particularly 

appropriate. First, the read states with many transitions could be 

implemented as "transition matrix (TM)" look-ups; i. e. , such that, if 

the next symbol is Symbol and the current "TMREAD" state is State, 

then TM(State, Symbol) would be the next state. This would substantially 

increase the average read speed at some storage cost. Since for PAL 

there are 18 read states with 10 or more transitions, the cost would be 

about 18*48* = 6912 bits = 216 words extra to implement those 18 as 

"TMREAD" states. Second, whether or not the first method is used, the 

ST and TT could be compiled rather than interpreted. In the nature of these 

things we might expect a factor of ten increase in speed for a factor of 

four increase in space, say. Since this would still leave us with a 

reasonable aIIlount of space usage, it would represent a reasonable space

time trade-off for our purposes. The main point here is that our implement

ation method is flexible. 

Extentions. We next discuss the modifications to our implementation 

methods necessary to cover multiply inadequate states and k-symbol look-ahead. 
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Our intent is merely to indicate the ease with our method can be extended 

to cover these "exceptional cases. " 

Multiply inadequate states. In general, the multiply inadequate 

state may have several read transitions a_nd several look-ahead transitions. 

For example, we might have the following: 

b 

l ... J 

{ ... } 

{ ... } 

One way to implement such a state would be first to implement it as we did 

above but with only one of the look-ahead transitions and then to store the 

extra look-ahead transitions in the TT immediately below the other transi

tions as follows. For each transition add two entries to the TT: (1) the 

first having an irrelevant STATE component and a special symbol, ':'MORE':', 

in the SYM component which has a representation distinct from all other 

items which can appear in the SYM component, and (2) the second having 

a regular (SYM, ST ATE) pair corresponding to the transition in question. 

For the above state the table entries would be as follows. 
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STATE TABLE TRANSITION TABLE 

TYPE NUM TTREF SYM STATE 

s= ,._a N 
M (t )LA 3 0 b 0 

rl p 
*MORE* 
r2 Q 

rl, r2, and rJ *MORE* 
are references rJ R 
to the LAT 

It should be clear that we can implement any multiply inadequate state in 

this way. Of course our interpreter will have to be modified to be ready 

for such states. The modification is trivial. It concerns only the bottom-

most decision box in Figure 7. 2. The NO exit must be changed as indicated 

next. 

__ N_O-c LAT (TT(T'fR4, SYM), LAS:;wJ.l)•! 

Look-ahead for k > 1. To cover look-ahead of more than one 

symbol, we could add a new type of state, namely LAk for "look-ahead 

at the k-th symbol. " This would require an additional exit point from the 

topmost d_ecision box in Figure 7. 2. We illustrate our proposed modification 

via example. Suppose we want to implement the following state. 
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[ abc, e] 

[ abd, f} 
'------otP 

What we propose can be represented diagram.matically as follows. 

[f} 
•-------c><P 

[a} [ 0 b] [OD c} 

[ ODd} 

We intend to imply by this diagram that M is a look-ahead state with 

three look-ahead transitions of the normal type. that Q has one look-ahead 

transition but it indicates a comparison with the second symbol ahead rather 

than the first, and that R has two look-ahead transitions which investigate 

the third symbol ahead. State M could be implemented as we have just 

discussed. States Q and R would be LAk states with tabular representations 

as follows. 

STATE TABLE TRANSITION TABLE 

TYPE NUM TTREF SYM STATE 

Q LAk 1 ~_...~ R 
LAJ 

R LAk 2 o~~ N 
p 
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The corresponding section of the interpreter would be as follows. where 

we assume that, when Ql is called with argument LAn for some specific 

n = 2, 3, ...• it returns as value the n-th symbol in the queue, counting 

from the bottom. but it does not change the queue. 

<-~ST_(_S_tJ&.__,,_TY_P_E~)~~-? __ ) 
t.

1Ak 
LASrf-l + Qi('TT(TT~-1,svM> 
LMt"-ITR.sl+ST(St.:t.., NUM) - 1 

LAS = IT ( iTli.t.& , SYh\) 

YES 
MEXT STATE' 

Note that if we use the variable Symbol rather than LASymbol above, the 

flowchart from the line beginning Last ... down is exactly the same as the 

counterpart in the READ section. Thus, the modification requires only 

one new exit from the TYPE-test box, one extra statement, and a transfer 

into the READ portion of the interpreter. The only question remaining. then, 

is how do we deduce the new states and their interconnections? We believe 

the answer to this question is obvious so we do not treat it here. 

Thus. we have shown that "exceptions" like multiply inadequate states 

and k-symbol look-ahead states can be implemented with little change to our 
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interpreter and with changes which do not affect the speed of the interpreter 

for 11 normal 11 states. We have, then, a very flexible method. 
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Chapter 8 

CONCLUSIONS 

Before our results will be ready for actual incorporation in a 

TWS several variations should be investigated as possible improvements. 

These variations concern computational methods, strategy, diagnostics, 

and translator-implementation methods. 

Computational Methods. We believe, for instance, that Knuth's 

parser-generating technique (Knu 65) could be adapted for use in the 

generation of CFSMs. Specifically, we believe that the set of all possible 

"state sets" generated by his algorithm for grammar G and k = 0 is 

isomorphic to the set of states of G's CFSM. Furthermore, if the latter 

is true, the "bit matrix" techniques of Lyncl\!. (Lyn 68) can probably be 

used for the very fast generation of CFSMs. We suspect that the resulting 

method would be faster than our piecemeal method in Section 7. 1. 

Another possible area of improvement regards the computation of 

look-ahead sets and context pairs and the attendant strategy. We do not 

think this will be a critical issue for programming languages because we 

expect most of the related grammars to be either SLR(l) or very nearly 

SLR(l ). However, for the sake of generality, exceptional cases, and 

the possible use of our TWS to build systems for more general "syntax

directed" computations, it would be reasonable to research further in this 

area. 
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Strategy: Of course, the obvious thing to do in complex cases 

is to make the TWS interactive so the language designer, who presumably 

knows the grammar best, can assist in determining strategy. It may 

be reasonable, however, to provide more (or other) than the three 

methods for computing look-ahead sets that were provided above. Con-

veniently, our technique as a whole is amenable to other such methods; 

i.e .• we do not care how look-ahead sets and state splitting are computed 

as long as they result in a correct parser. 

Computation of look-ahead, state-splitting. With regard to this 

area of possible improvement we briefly list three methods which should 

be investigated. 

(1) Especially if Knuth's algorithm is adapted for the generation of CFSMs, 

it should also be investigated for possible adaptation for computing simple 

1-look-ahead sets. This would require the separation in his technique of 

the computations of look-ahead sets and state-splitting, which we believe 

to be easy to do. Actually, we believe the resulting technique would cover 

slightly more than the SLR(l) grammars, perhaps with little or no more 

complexity (computation time) than our SLR(l) technique. We do not 

believe, however, that the technique would be nearly as fast as our 

SLR(k) technique for k > 1 because we see no simple way of using it to 

compute look-ahead for a single state. 
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(2) Lynch (Lyn 68) has a fast technique for computing left and right 

context in which each symbol is computed independently of all others. 

This technique should be investigated as a possible prelude to or 

replacement for the computation of corresponding context pairs. 

(3) Finally, for the general LR(k) case the look-ahead sets might be 

most easily computed by simulation of the parser in a nondeterministic 

manner; i.e., for each left context cp see if cp{3y is a canonical form, where 

* fJ'Y £ VT and I fJ I ~ k, by determining if there is any sequence of actions 

by the stack algoritlun which will cause cpf3 to be read. Of course it must 

be proven that this method would result in the appropriate look-ahead sets. 

Diagnostics. A related area which needs investigation concerns 

diagnoistic messages to the language designer. What information would 

be useful to the designer when his grammar is found not to be SLR(k) or 

LR(k)? Presumably, in such cases the designer has inadvertently submitted 

an ambiguous grammar, since we expect all of his unambiguous grammars to 

be SLR(k) or at least LR(k). The diagnostics should, of course, lead the 

designer to find the reason why the grammar is ambiguous. 

Implementation methods. Finally, there are several possible ways 

in which our translator implementation could be improved. First, a way 

of implementing in a reasonable amount of space states which jump over 

long cascades of look-ahead and look-back states is desirable. We suspect 

that these can be implemented by using bit matrices in a manner similar to 
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precedence techniques. Second, s:i.m.ilar bit-matrix techniques may also 

be useful for speeding up read states with many transitions. rather than 

using transition matrices. Third. we believe that the obvious way (for 

most applications) to :i.m.plement the state and transiticm tables which 

remain after the above modifications is to compile them into machine code. 

8. 2 Conclusions 

We believe that we have demonstrated the validity of our thesis. 

We have a practical translator-constructing technique which grows in 

complexity as it discovers the complexity of the grammar at hand. and it 

generates practical translators for SSTGs which are based on LR(k) 

grammars and which partically specify useful. readable programming 

languages. Thus we have a basis for a TWS in which the key feature is 

flexibility. 

First and foremost. we have given the language designer flexibility 

in the design of his grammar. From the beginning it has been our desire 

to get a method which would accept a CF grammar as it was designed as 

a syntactical reference for a language. with no modifications. That is. 

we wanted a method that would accept a "humanized" version of the syntax. 

To the extent that unambiguity is considered a desirable trait of such a 

reference. we believe we have such a method. This belief is founded on 

the intuitive grounds that. when a designer sets out to define part of the 
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syntax of a programming language via a CF grammar. he will just naturally 

come up with an LR(k) grammar. and in fact. probably an SLR(l) grammar. 

Second, we have given the implementor of the TWS flexibility. 

He has the flexibility to build-in whatever strategy is appropriate for the 

purposes at hand for deciding whether grammars are LR(k), and he can 

leave some of that strategy to be decided by the language designer. He 

also has the flexibility not only to implement each translator as a whole 

in a variety of ways, but also to implement particular states in special 

ways. In fact, see (DeR 68) for a proposal concerning the use of different 

kinds of parsing techniques on different parts of a grammar. 

8. 3 Future Research, Extensions 

The area of future research most important to our results is that 

of language design and specification itself. The value of our results is 

somewhat limited until there is developed a useful, unified methodology 

for specifying programming languages fully, which incorporates something 

similar to SSTGs and/or production-node pairs. We have proceeded on the 

assumption that such a methodology is forthcoming, and we have faith 

that one is (see for example (Knu 66) and (Tho 69)). 

A more specific design problem, which is part of the above area 

and important to our results, is the one discussed in detail in Section 6. 8. 

Once the designer has in mind a set of abstract syntax trees, operator 
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precedences and associativities, scopes of variables, etc. , how can he 

algorithmically generate an appropriate CF grammar which has the 

corresponding "structural properties" and which is guaranteed to be 

LR(k), or even better SLR(l)? Currently, the generation of such grammars 

is definitely an art, being performed on the basis of past experience and 

trial-and-error methods. 

Another related problem is that of extending the usefulness of 

CF grammars, and therefore, BNF. There are three ways in particular 

in which we would like to see their powers extended. It goes without saying 

that we would also like to see our techniques extended to cover these 

extensions. 

(1) We often like to indicate via regular expressions in right parts 

of productions that certain operators are nonassociative. For instance, for 

PAL the following production-node pair specifies the correspondence between 

an abstract-syntax-tree node and strings involving the nonassociative 

(syntactic) operator "and": 

(p) * DA : : = DR { and DR } 

DR 

k 
DR DR DR 

There seems to be no natural way of indicating this correspondence using 

pure BNF. Can we construct a CFSM from a grammar including the above 
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production in a manner similar to that given in Section 7. 1? Presumably, 

the piece of FSM corresponding to that production is as follows: 

DR 

f 

But what should be the "reduction procedure" executed by the corresponding 

DPDA for the 4f -transition? How should that procedure interact with the 
p 

ASTB? 

(2) One can often indicate a reduction in the need for parentheses in certain 

special contexts via special context-sensitive productions. For instance, 

to use a trivial example, the meaning of the following subexpression seems 

clear: 

... (1 + if B then 2 else 3) ... 

And yet the ALGOL 60 syntax disallows it, requiring the programmer to 

write: 

... (1 + (if B then 2 else 3)) ... 

Often the set of legal programs can be extended to include subexpressions 

such as the former one above by adding either a large number of CF pro-

ductions or only one or two context-sensitive productions to the grammar. 

------------------------~--------~·· ------



-207-

If in the latter case the resulting language is CF, our results should, in 

theory. still be applicable. Can we get sufficient conditions on the 

allowable contexts such that we still have a CF language? Can we modify 

our DPDA in a silnple way so that it checks these contexts at the appro

priate tilnes and therefore recognizes the intended language? 

(3) Finally. since we are really interested in translations rather than 

parses. can we change our notions of unambiguity to correspond to the 

former rather than the latter in such a way that we can extend our techniques 

to cover all "unambiguous" SSTG's? See (Eva 65) for some results in this 

area. 

More in regard to compilers, we note that it is probably true that 

if we retain transitions under nonterminals. we would have an "incremental 

compiler"; i.e .• one which would accept a string which is already partially 

parsed. (A proof is needed. ) If these transitions were stored in some 

special place, rather than directly in the CFST, and if the reads and look

aheads concerning nonterminals were treated as special cases. our 

compiling speed for terminal strings would not be reduced. Perhaps a 

compiler would be constructed using this technique which would have good 

recompilation characteristics, and therefore, good overall "efficiency". 

Finally. our automata-theoretic tendencies lead us to ask if we are 

on the verge of a result regarding the minilnality of DPDAs. at least with 

respect to parsers for CF grammars. Our DPDA-parsers are based on 
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CFSMs which are reduced, and therefore minimal. Is the DPDA which we 

get by starting with a minimal FSM in some meaningful sense a minimal 

version of any other DPDA which affects the same parsings? We know 

of no existing results in this area. 
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APPENDIX 

WEAK PRECEDENCE GRAMMARS 

A CF grammar is called £-free if and only if it has no productions 

with empty right parts. 

An £-free CF grammar is called weak precedence (1'M 69) if 

and only if (1) no two productions have identical right parts, (2) at most 

one of the following relations hold between any two of the symbols in V: 

if A .... a 
1 
x

1
x

2
a

2 
is a production, or A .... a

1 
x

1 
A

2
a

2 

* is a production and A
2 

.... x
2
a 

3 

if A .... a 
1
A

1
x

2
a

2 
(or A .... a 

1 
A

1
A

2
a

2
) is a production 

* * and A
1 

.... a 
3
x

1 
(and A

2 
.... x

2
a 

4
>. 

and (3) neither of these relations hold between x
1 

and A
2 

if there exist 

productions A
1 

.... a
1
x

1
x

2
a

2 
and A

2 
.... X

2
a

2
. 

The sequence of theorems below proves that any weak precedence 

grammar is SLR(l ). The inverse is not true: grammar G
0 

(page 29) is 

LR(O) (and therefore SLR(l )), as was shown in Chapter 3, but it is not weak 

precedence since productions 3 and 6 have identical right parts. 

Lemma A. 1. Let G be a CF grammar and N be a state of G's 

CFSM having a f -transition, whose production p is A .... w. 
p 
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Then any string cp which accesses N must end in 

* w; i. e. , cp = pw for some p £ V . 

Proof: The CFSM accepts the characteristic string 

cp:flr , therefore there exists a canonical form cpfj = pufj 
p 

which reduces to p.Af3, by definition of characteristic 

strings. Q. E. D. 

Theorem A. 2. When the CFSM of a weak precedence 

grammar G enters an inadequate state, the last 
wp 

symbol of the left context is implicitly known. 

Proof: The fact that G is £-free in conjunction with 
wp 

Lemma A. 1 proves this. Q.E.D. 

Lemma A. 3. Let G be a CF grammar with characteristic 

Proof: By definition of characteristic strings 

* per 1 x 1 X£Yf3 is a canonical form, for some f3 in VT" Thus. 

either 

* where cr
2

.... y, or 
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These are the only two possibilities and each implies that 

Q.E.D. 

Theorem A. 4. The CFSM of a weak precedence grammar 

has no multiply inadequate states. 

Proof: Lemma A. 1 implies that any cp which accesses a 

state N with transitions under distinct + and* must 
p q 

end in both w and w • where productions p and q are p q . . 

A .... w and A ..... w • respectively. But we cannot have 
p p q q 

w = w for distinct p and q. because that would violate 
p q 

condition (1) in the definition of weak precedence. 

Furthermore. if lw I > lw I then we have w = a
1
x

1
x

2
a

2 p q p 

and wq = x
2
a

2
. But this implies that cp:f q = pa

1
x

1
x

2
a

2
* q 

is a characteristic string (by Lemma A. 1). and therefore, 

* that pa 
1 
x

1 
A.J is a canonical form, for some fJ in VT' 

whose characteristic string is pa
1 
x

1 
A

2
ef r for some 

* (} in VT and some production r. Thus, Lemma A. 2 implies 

that x
1 

< A
2

. But that violates condition (3) of the definition, 

so no such state N can exist. Q.E.D. 

Theorem A. 5. Let G be a weak precedence grammar. 
wp 

Then G is SLR(l). 
wp 
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Proof: Because of Theorem A. 4 and the SLR(k) definition 

(page 73) we need only prove, for any inadequate state N of 

G 's CFSM with (among others) transitions under some wp 

terminal t and :fr for some production p which is A .... w, 
p 

that t is not in the set F~(A). Consider the following. 

1 * F T(A) = [ (1 :.8) ( VT l S .... p~} 

Thus, the relation > holds between the last symbol of the 

left context implicit when the CFSM is in N (i.e., w:l by 

Lemma A. 1 and Theorem A. 2) and every symbol in F~(A). 

But from Lemma A. 1 all of the characteristic strings which 

correspond to the t-transition are of the form cptO:fr = pwte+ , 
q q 

so Lemma A. 3 implies that (w:l) < t. Since condition (2) 

of the definition of weak precedence states that both the 

relations< and> cannot hold between (w:l) and t, we see 

that t is not in F~(A). Q.E.D. 
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