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ABSTRACT 

This report presents a computational modd calh,d prograrn graphs which 
makes possible a precise description of parallel computations of arbitrary 
com.plexity on non-structured data. In the model, the computation steps 
arc represented by the nodes of a. directed graph whose links represent 
the ele1nents of storage and trans;mission of data and/or control informa
tion. The activation of the computation represented by a node depends 
only on the control information residing in each of the links incident into 
and out of the node. At any given time any number of nodes may be active, 
and there are no as surnptions in the model regarding either the length of 
time required to perform the computation represented by a node or the 
length of time required to transmit data or control informaticn from one 
node to another. Data dependent decisions are incorporated in the model 
in a novel way which makes a sharp distinction between the local sequenc -
ing requirements arising from the data dependency of the computation 
steps and the global sequencing requirements determined by the logical 
structure of the algorithm. 

The concept of the ~of a program graph is introduced and it is proved 
that every program graph represents a deterministic computation, i.e., 
that the final state of each computation started from the same initial state 
is unique. Computations which do not terminate properly are defined in 
terms of the concept of hang-rup state. Methods of analysis are developed 
and necessary and sufficient conditions for the absence of hang-up states 
are obtained. These conditions are interpreted in terms of the structure 
of the graph and the manner in which the decision elements are imbedded 
in that structure. Finally, an equivalence proble1n for program graphs 
is formulated and a solution to this problem is presented. 
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PREFACE 

The goals of generalized computer-aided design, being synonyrn.ous 

with generalized man-machine problem-solving, place the n10st stringent 

requirem.ents on underlying foundations and irnplementation techniques. 

As increasingly elaborate and complex applications are contcrnplated, it 

becon1es clear that substantial inroads rnust be inade to deepen our funda

mental understanding of computation itself. Ulti1nately it rnust be possible 

tc' prove the correctness of a program, for no conceivable technique can 

provide an adequate basis for debugging; it must be possible to transform 

a proposed computation automatically from one formulation to another 

radically different formulation, with firm knowledge that the two forms 

are in a useful way equivalent; it must be possible to design, analyze, 

and coni.pute using entire computational processes themselves as data, for 

manual composition of constructs of such vast complexity will be beyond 

human co1nprehension. It was in the spirit of these convictions that the 

rt~search described in this report was undertaken. 

Early in the preliminary investigation, it became clear that before 

any questions of equivalence or operations of transformation could mean

ingfully be posed, a rigorous, deterministic, and elegant model of a com

putational process itself was required. The model had to be independent 

of any artifacts of existing programming language characteristics and had 

to exhibit in an inherently simple and natural form only the essential rela

tions between data and operators on data, from which any computational 

process is composed. The "program graph" model introduced here is a 

major contribution which meets the most basic criteria. Since the model 

is based directly upon "data dependency'' relations, it enjoys the essential 

simplicity needed to assure its adequacy as a general model. Also, the 

rigorous formulation enables determinism of the model to be proved. 

Finally, some initial attempts to address questions of equivalence and 

transformation lend credence to the viewpoint that further elaborations and 

refinements can lead toward the desired basis for a mathernatic.s for com

putational process es. Alre.ady the trends in thi~ direction are taking shape 

in a munber of related theses and studies listed at the end of this preface. 

lX 



PREFACE (Contd.) 

In view of the abstract nature of the model, .and the fact that such 

important features as data structures are included only in the most 

degenerate form, it is clear that it still will be some time before these 

developments can have a direct impact on the practical matters of con-
, ' 

structing man-machine systems. Many aspects can, however, be 

extracted and can be cast in terms compatible with some of the more 

advanced aspects of programming language semantics and compilation 

of optimized machine code. Hopefully such application attempts com

bined with the theoretical advancements will accelerate the pace at 

which these vital matters can be pursued. 

Douglas T. Ross 
Head, Computer Applications Group 
January, 1969 

1. Dennis, J.B. Programming Generality, Parallelism and Computer 
Achitecture. (Submitted for publication to the Journal 
of ACM) 

2. Luconi, F. L. Asynchronous Computational Structures. MAC-TR-49, 

3. Slutz, D.R. 

Project MAC, MIT ( 1968) . 

The Flow Graph Schemata Model of Parallel Compu
tation. MAC-TR-53, Project MAC, MIT ( 1969) 
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I. INTRODUCTION 

A. SUMMARY 

This paper presents a computational model called program graphs 

which makes possible a precise description of parallel computations of 

arbitrary complexity on non-structured data. In the model, the comp 1.ita

tion steps are represented by the nodes of a directed graph whose links 

represent the elements of storage and transmission of data and/or control 

information. The activation of the computation represented by a node de

pends only on the control information residing in each of the links incident 

into and out of the node. At any given time any number of nodes may be 

active, and there are no assumptions in the model regarding either the 

length of time required to perform the computation represented by a node 

or the length of time required to transmit data or control information 

from one node to another. Data dependent decisions are incorporated in 

the model in a novel way which makes a sharp distinction between the 

local sequencing requirements arising from the data dependency of the 

computation steps and the global sequencing requirements determined by 

the logical structure of the algorithm. 

The concept of the state of a program graph is introduced and it 

is proved that every program graph represents a deterministic computa

tion, i.e. that the final state of each computation started from the same 

initial state is unique. Computations which do not terminate properly are 

defined in terms of the concept of hang-up state. Methods of analysis are 

developed, and necessary and sufficient C·~nditions for the absence of ~ang

up states are obtained. These conditions are interpreted in terms of the 

structure of the graph and the manner in which the decision elements are 

-1-
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imbedded in that structure. Finally, an equivalence problem for program 

graphs is formulated and a solution to this problem is presented. 

The model may be useful in a variety of problems including: the 

1 analysis and transformation of computer programs to meet some desired 

criterion, e.g. reduce the amount of space required, or increase the 

speed of operation, or both of these objectives; the assignment and 

sequencing of computations in parallel processor computer systems; and 

the design of sequencing and control units for parallel computation, in 

particular, the results of this paper are directly applicable to the design 

3 18 22 
of macro -modular systems. ' ' 

B. REVIEW OF RELATED WORK 

Graphs have been used to represent computations since the early 

days of computers. Most of these representations are strictly sequential 

and can be generally classified as flow charts. In a flow chart, a node 

represents either an operational element or a decision element, and an 

arc of the graph denotes flow of control from one node to another. At 

any one point, control resides in precisely one of the nodes. Flow charts 

have been studied by a number of workers in the field.2 ' 4 • S, 8 • 9, 11, 13 • 20 

In the context of this paper, these studies are not directly relevant and 

therefore we proceed to review only those models which have a direct 

bearing on the subject of parallel computations. 

C. A. Petri 19 has proposed an approach to the description of 

transmission and transformation of information in discrete systems in 

which time is introduced only as a local relation among local states, In 

Petri' s formalism, a system is represented by an undirected graph in 

which each node is a connecting element which binds together (relates) 

objects contained in places. Each arc of the graph is a place. A node 
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represents a switching element of a type given by its label. The behavior 

of each type of element is given by a transition table and is influenced only 

by those objects assigned to places attached to the .node. Petri claims that 

it is possible to construct conflict-free, deterministic networks corres -

ponding to Turin~ machines using switching elements defined over the 

objects 0 and l. 

A. W. Holt 7 has introduced a formalism called -theory for des -

cribing discrete information systems. In a -theory the characteristics 

and behavior of a system are expressed by means of relations of parts. The 

state of a system is formalized as a finite undirected graph. The nodes of 

the graph represent system parts and every node is labelled with a node type. 

The arcs represent relations between two parts. A -theory consists of a 

-grammar, a list of eve~t types, and a list of observables. The grammar 

establishes the laws of local context for the node types, i.e. what node types 

must or may relate and how. The list of event types establishes the laws 

. of local change, i.e. which relations of parts bring about which changes in 

relations of parts. The list of observables defines which relations of parts 

are capable of conditioning events in the environment of a system of the 

class. Changes on the state of a system are defined by means of a simula-

tion rule which effects the changes specified by an admissible subset of 

applicable event types. A subset of applicable event types is admissible 

if it is consistent and lossless which means that the state resulting from 

the changes obeys the rules of the grammar, no two events bring about 
. 

conflicting changes, and every applicable event not contained in the admis -

sible subset remains applicable after the changes are effected. 

23 
E. C. Van Horn has proposed a class of abstract machinen for 

coordinated multi-processing or MGM. An MGM c'onsists of a set of cells, 

a s<:heduler, and a count matrix. The state of an MGM is defined to be the 
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contents of the calls plus the contents of the count matrix. Each cell may 

behave either like a passive memory element or an active computing 

element. An active cell, called a clerk, may perform a sequence of 

transactions under the control of the scheduler. Each cell has its own 

table of transactions. There are five types of transactions; two trans-

actions read and write on cells, three transactions modify the count 

matrix. Reading of the count matrix is performed by the scheduler to 

determine which clerk cells are enabled, i.e. can perform one transaction. 

Van Horn has shown that the behavior of any MGM is asynchronously 

reproducible. 

R. M. Karp and R. E. Miller lO have introduced a model for 

parallel computations, called computation graphs. A computation graph 

is a directed graph in which nodes denote operations and branches denote 

storage elements where results are placed in first-in-first-out queues. 

Associated with each branch are four non-negative integers A , U , W , 
' ; ; p p p 

and Tp where T > W . For a branch directed from node n. to node n., these 
p - p 1 J 

parameters are interpreted as follows: AP is the number of data words 

initially in the queues; U is the number of words added to the queue upon 
p 

completion of the operation associated with n~: and T is a threshold giving 
~ . p 

the minimum queue length of the branch before the operation of n. is 
J 

initiated. Karp and Miller show that computations represented by these 

graphs are deterministic. They also give a test to determine whether a 

computation terminates, and study properties of the data queues associated 

with the branches, deriving ccmditions for the queue lengths to remain 

bounded. 
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G. Estrin and R'. Turn, 
6 

and D. Martin 
14 

have introduced a 

directed graph model for computer programs in which the vertices 

represent computational tasks and the arcs represent data dependency 

between nodes. In this model, the conditions for the initiation of the 

computation denoted by a vertex is expressed by writing a boolean ex

pression in terms of boolean variables associated with the arcs incident 

into the node. A boolean variable associated with an arc is true when 

the data in that arc becomes available .. A computation may be initiated 

when the boolean expression of the corresponding node. called the vertex 

input control, is true. There a,re three types of vertex input control: 

1) Conjunctive, 2) disjunctive, and 3) compound. Vertices with conjunc -

tive input control may be initiated only when all input data are available. 

Vertices with disjunctive input control may be initiated only when precisely 

one set of input data (i. e. one arc) becomes available. The compound 

input control is a combination of the other two. Vertices also have output 

control which is used to specify the program flow from a vertex to a subset 

of its immediate successors. A vertex with conjunctive output control 

simultaneously makes data available at all of the arcs incident out of the 

vertex. A vertex with disjunctive output control makes data available at 

precisely one of its output arcs. Thus, it may be seen that vertices with 

disjunctive output control effectively perform data dependent decisions to 

control the program flow. The model can ' properly represent 

only cycle free graphs. It has been used primarily as a tool for the 

a-priori assignment and sequencing of computation in parallel processor 

systems. 
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The model presented in this paper is a direct extension and formali-

zation of the model of Estrin and Turn using notational techniques intro-

duced by Petri. In extending the model of Estrin and Turn, the concept of 

pure control information is introduced so that decision elements do not 

transmit any data but only enabled or disable computations. Furthermore, 

node types have been introduced which make possible the unambiguous 

specification of cycles. The notational techniques of Petri have been 

very useful for precisely describing the behavior of the model in terms 

of local information alone. In this respect, the similarities between this 

form of specification of events and that proposed by Holt should be noticed. 

17 
D. Muller and W.. Bartky have developed methods for the 

analysis of asynchronous sequential circuits. These methods proved of 

considerable value in the analysis of the determinism of program graphs. 

C. OUTLINE 

The material is organized as follows: in Chapter II the model is 

presented and it is proved that every computation represented by the 

model is deterministic. Chapter III begins with a detailed consideration 

of the function of each type of node together wfrh reascms for the choices 

made in the specification of their behavior. This ie followed with the 

introduction of the concept of hang-up state and a study of the conditions 

which give rise to these states. Chapter IV formulates an equivalence 

problem and presents a solution to it. This is followed with a brief con-

sideration of some simple equivalence preserving transformations. Finally, 

Chapter V conta:i.ns the conclusions and recommendations of this research. 

---------- ----



II. THE MODEL 

A. INTRODUCTION 

This chapter presents a model for computational processes called 

program graphs. A program graph is both a denotation of an algorithm 

and a realization of this algorithm by a process. The linguistic device 

used to denote operations and the links of the graph denote data and/ or 

control flow among the operations. The realization of the algorithm by 

a process is accomplished by assigning certain rules of behavior to the 

program graph elements (nodes and links). These rules of behavior are 

such that each program graph is a special-purpose deterministic machine 

which realizPs an algorithmic process. The term deterministic machine 

as used in this paper means that the behavior of the machine is :always the 

same whenever identical data is presented to it at its input terminals. 

The material is organized as follows: Section B gives background 

for the model and the general viewpoint adopted in its formulation. Section 

C gives some necessary notation and introduces the elements used in con

structing program graphs. Section D specifies the syntax for constructing 

program graphs. Section E specifies the interpretation of program graphs 

and gives illustrative examples. Finally Section F contains a proof of the 

determinism of program graphs. 

B. BACKGROUND AND VIEWPOINT 

The formulation of program graphs as a computational model has 

been motivated by the common observation that a large fraction of the 

sequential constraints of a process can be completely spec~ified by explicitly 

indicating the data dependency among the different parts of the process. 

-7-
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In other words, if the results of sub-process A are data for sub-process B, 

then A must be performed before B. If control is defined as that quantity 

which determines the sequencing aspects of a process, then data flow always 

carries with it control flow information. An obvious advantage of this 

1nanner of process specification is the absence of unnecessary sequential 

constraints, and thus the immediate appearance of any parallelism inherent 

in the proces:3, This can be seen in the example of Figure 2. 1 which shows 

the represeD.tation of an algebraic computation by means of a directed graph 

in which the nodes denote operations and the directed links denote the data 

dependency. The potential parallelism of the two '·+' nodes is clearly 

evident. 

Data dependency is not sufficient to specify all the sequential con

straints of a process, however. Most computations include decisions which 

affect the sequencing of the process without introducing explicit data 

dependency. We can think of the simplest form of decision, a binary deci

sion, as generating pure control information which selects one out of two 

possible sequences. The decision does not affect the result of the computa

tions of either sequence but only whether or not the sequences of any parts of 

them should be performed. Figure 2. 2 shows how we might represent an 

ALGOL conditional expression. The diamond-shaped node denotes a decision 

selecting one of the additions to be performed as a prelude to the multiplica

tion operation. (Open arrowheads denote pure control flow.) 

A computational model which exploits the control aspects of data 

dependency and thereby places in sharp contrast the unique functions of 

pure control information is a potentially useful base for exploring trans

formations of algorithms which preserve input/output relations, logical 

design of asynchronous ma~hines, ·.and similar areas. 



-9 -

(B+C) * (O+E) 

B c 0 E 

Fig. 2. 1 Representation of an Algebraic Computation 
by <t Program Graph 



-10-

F * IF A THEN B + C ELSE D + E 

Fig. 2, 2 

E 

Representation of a Conditional Expression . 
by a Program Graph 
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Directed graphs are a natural choice for representing the 

dependency relations we are interested in, but the static relationships 

represented by a graph are not sufficient to unambiguously determine 

dynamic behavior, particularly when dealing with cycles. Dynamic be

havior of the process represented by a graph is a crucial question which 

cannot adequately be handled by introducing a series of ad hoc global rules 

of interpretation. Therefore, it was decided to formalize a program graph 

as a formal machine, by having well-defined rules of behavior associated 

with each element of the graph, i.e. the nodes and links. By making these 

rules depend only on local information, i.e. by making them independent 

of the over-all structure of the graph, we achieve two things: 

1. Any graph constructed following a minimum of local inter

connection rules represents a process with unambiguous 

behavior. 

2. Each operation proceeds asynchronously with all others, so 

that any degree of parallelism, anticipating computations or 

control, can be expressed by the formalism. 

• 

.. 
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c. THE CONSTITUENTS OF PROGRAM GRAPHS 

A program graph formally represents a computing machine. The 

computational elements of the machine are represented by the nodes of 

the graph, and elements for storage and transmission of data and control 

information are represented by the links of the graph. In what follows 

node shall be synonymous with computational element and link shall be 

synonymous with storage-and-transmission element. 

There are two types of links - a data link and a control link. 

Associated with both data and control links is a quantity called the link

status. At any given time the link-status of a link assumes precisely one 

out of the four possible values -1, 0, 1, 2. These values will be called 

disabled, idle, enabled, and blocked, respectively. 

Data links have in addition to link status, a property called data 

contents. No restrictions are placed on the nature of the data contents 

of a link. In the representation of program graphs data links are shown 

as heavy lines with black arrows, while control links are shown as light 

lines with open arrows. 

There are seven types of nodes differing from each other either in 

the kind of computation performed or in the logic used to activate the node. 

Nodes have specific points of attachment called connectors. The connectors 

of a node are distinguished as being either input or output connectors. 

Furthermore an input or output connector may be a data connector or a 

control connector. Data connectors are attached only to data links. 

Similarly, control connectors are attached only to control links. 

When the computation represented by a node is being performed, we 

say that the node is active. The activation of a node iEl determined by the 

link status of the data and control links attached to the connectors of the 

node. For brevity we often refer to the 'status of a connector' meaning the 
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link status of the link attached to the connector, even though a connector 

docs not properly have a status. 

A node is in an active configuration when the statuses of its connectors 

is such that the node becomes active. The occurrence of an active configura-

tion initiates a transition of arbitrary time length. Upon completion of the 

transition, the status of each connector (and perhaps the data contents of 

attached data links as well) are changed in a way specified by the transition 

table for that type of node. 

The transition table for a type of node specifies all of the active 

configurations of the node ip terms of the statuses of the input and output 

connectors. For each active configuration the transition table also specifies 

the final configuration i.e. , the status of each connector after completion 

of the transition, and the change, if any, of the data contents of output data 

links. 

The specification of the transition table is simplified by certain 

. .19 
conventions and a notation adopted from the work of Petri. Each connector 

of the node is assigned a sequential number. A configuration is then rep-

resented by writing the link status values from left to right in the sequence 

determined by the ordering assigned to the set of connectors. Thus the 

configuration 1 1 0 corresponds to a node with three connectors in which 

connector number l is in status 1, connector number 2 is in status 1, and 

connector number 3 is in status 0. A transition is denoted by writing the 

active configuration followed by ' - ', followed by the final configuration. 

If a transition changes the data contents of some link, an expression is 

written after the ifinal configuration defining the new ne-N value. Thus" the 

expression $1 - fi ($2, $3) means that the data contents of connector 1 is 

replaced with the result of applying function f
1 

to the data contents of 

connectors 2 and 3. 
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Operator 
l 

Data operator 

Function 110-001 $3-£($1,$2) 

1-1 0 - 0 0-1 

-1 1 0 - 0 0-1 

A3 
-1-1 0 - 0 0-1 

Identity 100-011 $Z,$J.-$1 

-1 0 0 - 0-1-1 

Control operator 

And 1'( 110-001 

1-1 0 - 0 0-1 

-1 1 0 - 0 0-1 

-1-1 o- 0 0-1 

Or lv.2 110-001 

1-1 0 - 0 0 1 

-1 1 o- 0 0 1 

-1-1 o- 0 0-1 

Selector ~ 0-1 I if j3($1,$Z)=~ 
1 l 0 o-

0 1-1 if j3($1,$Z)=false 

1 -1 0 0 --'!!" 0 0 -1 -1 

3 4 -1 ,1 0 0 - 0 0 -1 -1 

-1 -1 0 0 - 0 0 -1 -1 
1 

Junction 1-1 o- 0 0 1 $3-$1 

-l. 1 o- 0 0 1 $3-$Z 

-1-1 o- 0 0-1 

Table Z. 1 The Transition Tables of Program Graph Nodes 



Loop Output 

3 

Input Tc rn1inal 

Output Terminal 

l 
! 

2 
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000-202 

0 o- 2 1 .'.., 

l -) 0 o- 2 -1 2 

-1 () 0 o- 2 0 2 -1 

·l 0 o- 2 l 2-1 

-1 -1 0 0 - 2 -1 z -1 

$4-$1 

$4-$1 

$4-$1 

2 l 0 0 - 2 0 -1 $4 -$2 

2 -1 0 0 - 0 0 0 

o- 0 0 

1-1o-0 0-1 

-1 l 0 - 2 0 0 

-1 -1 0 - 2 0 0 

210-010 

2-1 o- 0-1 0 

1- 0 

-1 - 0 

$3-$1 

Table 2. 1 The Transition Tables of Program Graph Nodes 
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Table 2. 1 contains the transition tables for each type of node. A 

brief description of the characteristics of each type follows. 

1. Operators 

Operator nodes denote functions of one or more input argumen'ts and 

one or more output values. An operator node all of whose inputs and out

puts are data links is called a data operator. Similarly an operator all of 

whose inputs and outputs are control links is called a control operator. 

Every operator is either a data or a control operator. The data operator 

representing the identity function will always be denoted by the symbol '.!'· 

The contr~'l operators representing logical disjunction and conjunction will 

always be denoted by the symbols • V • and • A 1 respectively. These 

are the only control operators allowed in a program graph. 

2. Selectors 

Selector nodes denote decision-making elements. A selector is 

associated with a predicate function. All inputs of a s~lector are data links 

and there are precisely two control outputs. When the predicate associated 

with a selector is applied to the data contents of the inputs the result is to 

place one output connector in enabled status and the other in disabled status. 

Selectors and data operators may have a control input connector in 

addition to their data connectors. The function denoted by a selector or 

data operator is applied only for those active configurations in which all 

input connectors are in enabled status. 

3. Junctions 

Junction nodes merge two or more sources of data. A junction 

transmits the data contents of at moat one of its data inputs to its unique 

data output. 
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4. Loop Junction 

Loop junction nodes are used to form cyclic structures in a program 

graph. Their function can be roughly described as follows: Suppose one 

has an iterative process and A, B, C represent the quantities on which the 

iteration depends, then to every one of these variables there will correspond 

a loop junction. Input connector l is used to 'assign' the initial value of the 

variable and input connector 2 is used to 'assign' the new value of the 

variable on every iteration. I shall often refer to input connectors 1 and 2 

as the initial and feedback corinectors of the loop junction. 

5. Loop Output 

Loop output nodes are used in conjunction with loop junctions to 

precisely define what is to be considered the result of an iterative process. 

Proper usage of loop output nodes requires that their control tnput connector 

be attached to the control output connector of a loop junction. Some of the 

examples in the next section will serve to clarify the relationship between 

loop junctions and loop outputs. 

6. Input Terminals 

Input terminals are nodes with no inputs and precisely one output. 

7. Output Terminals 

Output terminals are nodes with no outputs and precisely one input. 

D. THE CONSTRUCTION OF PROGRAM GRAPHS 

This section sets forth the rules for constructing program graphs 

and provides a few examples of the use and abuse of these rules. 

A program graph is a finite set of input terminals, output terminals, 

and nodes interconnected by data links and control links according to the 

following rules: 
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1. The root of a data link must be attached to an input terminal 

or to a data output connector and its tip must be attached to 

an output terminal or to a data input connector. 

2. The root of a control link must be attached to a control output 

connector and its tip must be attached to a control input 

connector. 

3. Every input connector of a node must be attached to some link. 

Figures 2. 3, 2. 4, 2. 5, and 2. 6 are examples of program graphs. 

Each example is provided with an Algol-like description of the algorithm. 

Figure 2. 3 illustrates how functional composition is represented by 

the interconnection of data operators. Figure 2. 4 illustrates the use of 

loop junctions and loop outputs in a simple iterative process. The arrange

ment illustrated in the figure is used whenever an output value, e.g. 11ans" 

is desired only upon completion of the iterative process. Quite often itera

tive processes are used which do not behave this way, but instead output 

values are produced on every iteration. A common example of this type of 

iteration is that of a program producing lines of output. Figure 2. 5 shows 

another example of this situation which is perhaps not as obvious as the 

'output feeder' case. The flow chart representation of this algorithm shows 

a single loop however, upon separating the data flow from the control flow 

in the program graph representation, two distinct loops arise: a counting 

loop (loop junction labelled i) and a summation loop (loop junction labellet _!) 

with the counting loop effectively controlling the iterations of the summation 

loop. It should be noted that this type of relationship between two or more 

loops often gives a clue to one of two forms of parallelism among subrparts 

of the process: 

---- -~-- -
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Sqrt {Sin { X f 2 ) + cos ( I - tan { Y) f 2 ) ) 

Fig. 2, 3 Fullcticn;'!J Composition in 2. Progran1 Graph 
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t•t1(x); 

z•t
2

(t); 

v•t
3

(z); 

t•if~ 1 (z) then f4 (vh1H t5(Zli 

If ~2(t) then begin 

t•f7(t); 

goto L end 

Fig. z. 4 A Simple Iterative Process 
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1. Horizontal parallelism meaning simultaneous ope ration of 

individual computations without irnposing requirements on 

the sequence of using the results. 

2. Vertical parallelism meaning sirn.ultaneous computations 

with certain sequential constraints as to the use of the results 

of each computation. 

In the example of Fignre Z. 5 horizontal parallelism will be possible 

giv€,n the extra knowledge that addition is commutative and associative, 

otherwise we have to be content with vertical parallelism, i.e. initiation 

of as n1any functions as possible, but adding them in the specified sequence. 

The final example of this section, shown in Figure 2. 6, illustrates 

one single loop (in the flow chart sense) with more than one loop junction. 

·Recall that each loop junction represents one variable of the iterative pro-

cess and a loop junction is required even for those quantities which are not 

changed within the loop because there is no perinanent storage in a program 

graph, as is the case with the quantity denoted by A in Figure 2. 6. 

E. THE EXECUTION OF PROGRAM GRAPHS 

The transition tables for program graph nodes determine the dynamic 

behavior of a program graph by specifying whether or not a node should be 

activated, and if it is activated, whether or not certain data transformations 

should take place. 

Unless otherwise specified, all links are initially in the IDLE(O) 

status. Execution of a program graph begins when enough input terminals 

have been placed in ENABLED(l) status to produce an active configuration 

on some node of the graph. For simplicity, however, we usually assume 

that there is time, t , at which all input terminals are placed in ENABLED 
0 

status simultaneously. 
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I( • r; 
/: ysov9(1t+A/1t); 

If K ~ y then be9in 

I(. y; 
voto lend; 

ans• y; 

Fig. 2. 6 A Single Loop with Multiple Loop Junctions 
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A !•imple example will serve to illustrate how the execution of a 

graph tak1~s place. FiguTe 2. 7 shows a program graph at various stages 

of executjon. In these figures, the number written to the right of each 

link is the link-status at the time of the snapshot; the data contents of the 

link is wJ'itten to the left of the link as a functional expre1uion. A '*' next 

to a node signifies that the node is in an active configuration. 

Figure 2. 7a shows the state of the graph shortly after time, t
0

, with 

operators labelled f 1 and f 2 active. In Figure Z. 7b operator f 1 has com

pleted its transition enabling £3 to become active while f2 still has not 

finished. The final snapshot Figure Z. 7d shows the state of the graph upon 

operator f 6 having completed its transition. Note that all links have been 

restored to the IDLE status. 

Figure 2. 8 shows a complex situation, arising due to the presence 

of a loop. Figure z. Sa, b, c are snapshots during the execution of a non

final iteration showing the state of the graph before the activation of selector 

132 at two successive time intervals after the completion of the sdector 

transition which enables the output link labelled '-'. Figure z. 8d, e, and f 

is a similar sequence, but in this case 132 has enabled the output link labelled 

'+' signalling the end of the iterative loop. These sequences serve to clarify 

the purpose of the link-status value blocked which only affects loop 

junctions and loop outputs. While the loop is in progress, the initial con

nector of the loop junction is in blocked status, effectively blocking any 

attempt to initiate a new loop before finishing the current one. In the mean

time the loop output blocks any signals to the outside world. When the loop 

junction receives an indication that the cycle has finished (DISABLED status 

of the feedback connector), it signah the loop output that it is alright to allow 

an output to be produced. Again, note in Figure z. Bf that upon completion of 

the iterative process all link-status values have been restored to the IDLE 

status, 
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Fig. z. 7 States During the Execution of a Cycle 
Free Program Graph 
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F. THE DETERMINISM 01'" PROGRAM GRAPHS 

The rules for interconnecting nodes set forth in Section D do not 

place any restriction on the topology of the resulting program graph. 

Furthermore, it has been specifically assumed that we have no knowledge 

of the time elapsed between the initiation and the completion of a transition. 

These two situations combined can result in the specification of a process 

whose behavior is unpredictable in the sense that two distinct executions of 

the process with the same set of data values supplied at the input terminals 

may produce a different set of results. 

The behavior of a program graph is determined by the link-status 

and the data contents of the links of the graph. We shall denote these two 

properties of a data link by an ordered pair (s, d) where.! can take any of 

the link-.status values -1, 0, 1, 2 and dis a functional expression, e.g. 

f 1 (x, £2 (y, z)) denoting the value of the data contents. In the case of a 

control link, data contents is not defined so that only the link-status value 

s will be used. 

If~ is the number of links in a graph, then the state of the graph is 

an ordered n-tuple A = (a1, a 2 , ••• an) where each state variable ai is 

either an (s, d) pair or an.! depending on whether ai is associated with a 

data link or a control link. Two states A and B are equal if and only if for 

all 1 < i ~ n, sa. = sb. and da. = ~-. The state determines which nodes of 
1 1 1 1 

the graph are in an active configuration. We make this explicit by 

associating with each node an n-tuple as follows: 

\ 

The ith element of the n-tuple for a node f is zero unless 

the link associated with the corresponding element of the 

state is attached to f. In this case the ith element is the 

number of the connector off to which the link is attached. 
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For example if the third. fourth, and sixth links of the state vector are 

attached to the second, third, and first connectors off. the n-tuple for f is 

(O. o. 2, 3, 0, l, o .... ). Then-tuple associated with a node f will be called 

the connectivity vector off and is denoted by Cf. 

A state A changes into a tJtate A' upon completion of the transition 

of one of the active nodes of A. The components of the n~w stat~ A' are 

determined by those of the old state A and the transition table for the node. 

If f is any node, the notation A' = A x Cf is interpreted as follows: 

1. If the ith element of Cf is zero then the ith element of A' is 

the same as the corresponding element of A. 

2. If elements of A corresponding to non-zero elements of Cf 

form an active configuration of f, the corresponding elements 

of A' are obtained by using the applicable transition off. 

3. Otherwise these elements are not changed and A' = A. 

We now introduce the concept of the possible "next" states A' of 

a state A by means of the relation £ . 

Definition z. 1 A state A' follows a state A iff A' results from the 

completion of the transition of none, one, or more active nodes of A. If 

A' follows A we write AR A'. We say A' is a next state of A. 

Definition z. Z A final state of a program graph is a state in which 

no node is active. 

From the definition of ll and final state it is clear that a state A 

is final if and only if A~ A' implies A= A'. 

During execution, a program graph passes successively from one 

state to one of its next states. 

Definition Z. 3 An execution sequence of a graph ia a sequence of 

states A0 • A 1 ••• ~such that Ai ~·Ai+l and Ai I Ai+l" 

---------

! 
-1 

I 
I 

_I 
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Definition 2. 4 An execution sequence A0 , A 1 ••• Ak is terminal 

if Ak is a final state. If a is an execution sequence, the length of CJ 

denoted by J. (a) is the number of states in the sequence. 

For a given initial state, a program graph may exhibit several 

execution sequences depending on the relative speeds of the nodes. The 

problem of the speed-irrlependence of the final state (when it exists) of a 

program graph with respect lo an initial state A
0 

is crucial to the justifica

tion of the model. The only requirement that we place on the behavior of 

a program graph is that every node transition is an indivisible operation, 

i.e. , once a transition begins the indicated changes of status take place 

simultaneously. This assumption does not say that a node placed in 

active configuration performs the corresponding transition immediately. 

Quite to the contrary, we do not place any restrictions in the time interval 

elapsed from the time an active configuration occurs to the time a transition 

is actually performed. This of course raises, among others, the possibility 

of a node entering and leaving an active configuration without performing 

any transition. 

Theorem 2. 1 establishes a property of the f1l relation which, as 

we shall see, is sufficient to guarantee the uniqueness of the final state of 

a program graph for any assignment of elapsed times to the nodes of the 

graph. This property of the ~ relation is closely connected to that existing 

among the states of semimodular asynchronous circuits as described by 

Muller and Bartky. 

Lemma 2. 1 Let A0 be a non-final state of a program graph P and 

let A 1 and A2 be any two states of P such that A 1 = A
0 

x Cf , · 
1 

A2 = A0 x cf
2

• Then, there exists a state 
0

A 3 such that Ai tll A 3 

O< i<2. 
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Proof: From the definition of the a relation, if A0 = A 1 = A2 

then Ao satisfies the requirements for A 3• Similarly if A0 I A 1 = A2 

then A
1 

"" A
2 

= A
3 

satisfies the c;>nditions of the lemma. Therefore assume 

that A
0

, A
1

, and A
2 

are distinct. This means that there are at least two 

active r.odes f
1 

and f2 in A0 . We claim that the state arising from the 

simultaneous completion of the transitions of f 1 and f2 satisfies the conditions 

for A 3• 

First we note that the active configurations of program graph nodes 

as shown in Table 2. 1 place certain restrictions on the possible inter-

connection of nodes which are simultaneously active. Specifically, we 

have the following: 

1. The status of an output connector is IDLE for any active 

configuration. 

2, The only input connector which can be in IDLE status when a 

node is active is the feedback connector of a loop junction. 

These two observations tell us that if two nodes are in an active 

configuration in the same state then either they do not have a common link 

or they have a common link which is attached to the feedback connector of 

a loop junction. 

If the nodes f1 and f2 in A0 do not have a common link it is clear 

that the state A 3 resulting from the simultaneous completion of their 

transitions is identical to the states A 1 x Cf and Az x Cf • 
z 1 

Thus all it remains to show is that when f 1 or f2 or both are loop 

junctions sharing a link, the order in which these nodes complete -their 

transitions does not matter. Figure z. 9a and 2. 9b show the two possible 

connections that may exist between f 1 and f2 t~p to symmetry. I::i. both of 

these cases an output of f
1 
·is attached to the feedback connector ~of f2 and 

since f 1 is active this link must be in idle status. The only active 
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(o) ( b) 

Fig. 2. 9 The Possible Configurations of Two Active Nodes 
Sharing a Link 
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configurations of loop junctions with a feedback link in idle status are, 

from Table 2. l, l 0 0 0 and -1 0 0 O. By a straightforward use of Table Z. l 

it can now be checked that the value and status of all link• attached to f 1 and 

£2 are identical independently of the sequence in which their transitions are 

completed. 

Q. E. D. 

L•.!mma 2. 2 Let A0 be a non-final state of a prog1.-am graph P 

and let A. = A0 x Cf , A. /: Ao for 1 < i < k. Then there exists a 
1 • l - -

1 

state Ak+ l such that Ai tJl Ak+ l' O~ i ~ k. 

Proof: Since Ai /: A0 , A0 has at least ~-active nodes f.1• f2 , ••• fk· 
From the proof of Lemma Z. l, the completion of a transition of an active 

node cannot place any other a~tiv4' node in a non-active configuration. 

We claim that state resulting from the simultaneous transitions of f 1 , f2 , 

•.. fk satisfies the conditions of the state ~+i· 

From Lemma z. 1, there exists a state A such that A0 "'°A , A A'J A · nm ~ nm n ~ nm~ 

and A ~ A · for all 1 < n, m < k and n /: m. States A . and A. ate 
m nm ·- - m 1m 

obtained from state Ai by the completion of precisely one transition, 

consequently by Lemma 2. 1 we again conclude that there exists a state 

A . such that A0 ,f} A . , A ~A . A (,i A . , A. ti/, A . 
nim n1m n nim, m nim 1 n1m, 

an.d A. (j/,A . for all 1 < i <k, i /: n, i /: m, and n + m. 
im n1m - - · 

A £A . , n. nim 
1 

By 

repeating this process, we must eventually reach a state A 1, z ••. k 

satisfying the conditions of the theorem. 
Q. E. D. 

The construction of Lemma Z. Z is illustrated in Figure ia.10 for 

the case k ::; 3. In the process of proving thia lemma we also proved the 

following. 

Theorem 2. l Let A0 be a non-final state of a program graph P 

a.nd let A 1, A2 , ••. Ak be states of P such that A0 IJ?Ai, 1 < i <k. 

Then there exists a state ~+ 1 such that Ai t,e Ait+ 1 for 0 < i <: k. 

~1 
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Fig. Z.10 The Relation Among the 'Next' States of a State AO 
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Theorem 2. 2 Let A
0 

be the initial state of a program graph. 

H there exists an execution sequence a 1 = A0 A
1 

••• Ak such 

that Ak is a final state then Ak is unique. 

Proof: To prove the theorem we will show that for any other 

execution seque:'.l.ce with the same initial state as a1 , e.g. a2 = A0 Bl' · • 

B , if B f:. Ak then B is not a final state. m m m 

The proof consists of con·structing two new execution sequences 

a~ and er~ such that J. (a~)< J. (a2 ) and every state in a~ is also a state of 

a 2• Since a2 is a finite sequence, successive applications of the construe-

. . 1 , ' " 11 r r . h r B Ar A tion y1e ds sequences a 1 , a2 , a 1, a 2 , ••• a
1

, a2 wit a 1 = m 1 ••• k' 

a~ = Bm, i.e. A~ is a next state of Bm. 

I I 
To construct the execution sequences a 

1 
and a

2 
we proceed as 

follows: 

Let Aj be the last state in a1 which also appears in a2• 

is at least one such common state, namely A
0

. 

Aj ~Aj+l in a 1 

and 

Aj IR.Bj+l in a2 

There 

From Theorem z. l, there exists a state q uuch that Aj+l tR, q and Bn+ 1 ~q. 

The state q can be either in sequence a
2 

or in sequence a
1 

or in neither 

sequence. Specifically, we must consider the following three cases, 

(Figure 2, 11 ): 

l. q=B for some n l< n< m n 

2. q=A for some n j + l< n< k n 

3, q f:. A ' q -/:. B for any n. 
n n 
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ca .. 2 

ca .. 3 

Fig. 2. 11 The Three Cases in .the Proof of Theorem 2. 2 
·\ 
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Case l 

' Set al = Aj+ l Aj+Z •.. Ak 

a'z = Aj+ 1 Bn Bn+ 1 • • ' Bm 

This case cannot occur indefinitely for if it did we could find two 

sequences crf. er~ such that 

crP = A 
l k 

(J~ = ~ ••• B m 

which contradicts the assumption that Ak is a final state. 

Case 2 

Case 3 

l (a~)~ l (a 1) 

i<a2>< i(az> 

By repeated application of Theorem 2. 1 there must exist states 

Cl , C z, , . . S UC h that 

where 

qotc 1 ~c2 ... ~~ 
c 1 is a state such that Aj+Z ~ c 1, q JIB C 1 

c 2 is a state such that Aj+J IN c2 , c 1 ((, c2 etc. This must 

stop at Ak because it is terminal. 

Thus we set 

Since Case 1 must eventually produce sequences a'
1

, a~ such that either 

Case 2 or Case 3 applies, and in both cases J. (a~)< 1 (a
2

) we conclude 

that eventually sequence CT~ will be Bm alone. 

Q. E. D. 
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Theorem 2. 3 Let A
0 

be the initial state of a program graph. If 

there exists an execution sequence a
1 

= A0 A 1 A2 ••. Ak such that 

Ak is a final state, then every sequence with initial state A0 is 

terminal on ~· 

Proof: All we need to show is that every execution sequence is 

terminal and by Theorem 2. 2 it will follow that the final state is Ak. 

Assume that there existLJ a non-terminal execution sequence 

I I 
Then we construct two new execution sequences a

1 
and a

2 
such that 

i. (O'~) < J. (a1) and O'~ and O'~ have the same initial state. Successive appli

cations of the 'construction yields sequences O'~ = Ak and a{ =. ~· •• A~ •.. , , 

contradicting the asswnption that Ak is a final state. 

To construct the execution sequences O'~ and O"~ we proceed in a 

similar way as in the proof of Theorem 2. 2. 

' 
Let Aj be the last state common to sequences a1 and a2 • 

Aj f:€Aj+ l in O' l 

Aj ~Aj+ 1 in u2 

. 

By Theorem 2. l there exists state q such that Aj+l t/lq and AJ+l t£ q 

consider the three cases (Figure 2. 12): 

1. 
I 

q=A n 

2. q =A 
n 

for some n, j+l ~ n 

for some n, j+l ~ n< k 

3. q f. A q f. A' for any n n n 

Ca.se 1 

I 

Set O' l = Aj+l Aj+Z ~ 
I = Aj+l A' A' O'z n n+l 

A.+ 1 f. A' since A. is the last common state in both sequences. 
J n J 
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Cose I 

Cose 3 

' 

' 

"' ' 

' 

' 

' ' ' ' 

' ' ' 

Fig. 2. 12 The Three Cases in the Proof of Theorem 2. 3 
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Case 2 

Set O'~ = Aj+ l AL •• ', Ak 1(O'~)~1 (O'z) 

O'~ = AJ+ l AJ+Z • • • 

AJ+ 
1 

I A
1 

since Aj is the last common state in both sequences. 

Case 3 

By Theorem 2. 1, there exists states C
1

, c 2 ,, .• su:h that 

q //l,c 1 tf2 c
2
..• . Therefore, set: 

' O' 1 = A j+ l Aj+ 2 ' • ' Ak 

a~ = Aj+ 1 q C 1 C2 . , , 

To complete the proof, we show that the condition 1 (a~) = J. (O' 
1

) in Case 2 

cannot occur indefinitely. From the construction of the sequences O'~ and 

a~. ii i(a~) = 1(0'1) indefinitely, then there exists a state Aj+l in a 1, and 

• I A' . h A /}A A lit A' ' /)A s~ates Aj+ 1, j+Z' •• , m o2 such t at f'ut j+l' j ~ j+ l' Aj+ 1 (/'// j+ l' 

AJ+Z Ui?Aj+l'... However, this implies that there are an infinite number 

of active nodes in state Aj which is impossible. Therefore, either there 

is a state A'.+ in a2 such that A~+ tfiA.+ , s > 1, or Cases 1 or 3 apply. 
J r J r J s 

Whichever alternative occurs, 1(0'~) < .l(u1). Therefore, O'z must be 

terminal in ~· 

Q. E. D. 



III. ANALYSIS OF PROGRAM GRAPHS 

A. INTRODUCTION 

The results of Chapter II tell us that every program graph represents 

a deterministic process. It is possible, however, to construct program 

graphs such that for some or all sets of input values no complete set of 

output values is ever produced, even when all execution sequences are 

terminal. If we view a useful computational process as a transformation 

of a set of input values into a set of output values, then not every program 

graph represents a useful computation. 

The failure of a program graph to produce output values may be 

caused either by a never-ending cycle or by entering a final state pre

maturely. It is this second condition, which we call a _hang-up state, that 

we are interested in because it is peculiar to program graphs, and because 

a study of the structure of graphs where it .:>ccurs provides insight into the pro

perties of the model. 

The occurrence of a hang-up state during an execution sequence is 

due to structural anomalies of the graph. The~e anomalies can arise from 

obvious misuse of a node for a purpose for which it was not intended, e.g. 

connecting a loop output control connector to a node other than a loop junction. 

Less obvious and more interesting struc~ural anomalies arise in connec -

tion with communicating cycles. Section B introduces terminology and 

notation. In Section C we present several examples illustrating the proper 

use and the misuse of the various node types. Section D considers hang-up 

states in cycle free graphs. Finally Section E studies hang-up states in 

cyclic graphs. 

-40-
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B. NOTATION AND TERMINOLOGY 

l. Notation 

In this and subsequent chapters we will use the following notation 

when referring to nodes of prograxn graphs: 

Input terminals will be denoted by the letter ~. 

Output terminals will be denoted by the letter ~· 

Data operators will be denoted by the letter i_. 

Selectors will be denoted by the letter~· The output connectors 

+ -of a selector will be distinguished by writing ~ or ~ • 

Junctions will be denoted by the letter l· 

Loop junctions will be denoted by the letter .8.· 

Loop outputs will be denoted by the letter h. 

Links will be denoted by the letter !.• 

Each of the above symbols will be used with a number subscripts 

when it is necessary to distinguish among two or more instances of a type, 

e.g. f 1• £2 , I3 1• ~z· The letter a will be used to denote a node without 

specification of its type. 

2. Paths, Cycles, and Connectivity 

The following concepts and terms associated with directed graphs 

have been adapted from Busack~r and Saaty. 1 

A finite sequence of links J. 1 , I.?, • .. J. k is said to constitute a path 

of length k in a program graph P if there are nodes a 1, a 2 , •.• ~+ 1 in P 

such that l.. is a link from an output connector of a. to an input connector 
l . l 

of ai+l' The path is said to pass through the nodes a1, a 2 , .•• ~+l' The 

nodes a 1 and ~+l are said to be the initial and final nodes of the path. 

respectively, and it is said that there is a path from a 1 to ~+l' If 

a 1 = ~+l the path is said to be a cycle. If all the k+l nodes are distinct, 
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the path is called a g_i·('\per path. If a 1 = ak+ 
1

, but otherwise all nodes are 

distinct, the path is s:-1.id to be a proper cycle. Clearly,' all links of a 

proper path or cycle <1 re distinct. If all the k links are data links the 

path is called a data path. Similarly, a control path consists solely of 

control links. A program graph is said to be cyclic if it contains at least 

one cycle and cycle free otherwise. 

Given two nodes a. and a. of a cycle free program graph P, it is 
1 J 

said that a. is an ancestor of a., or alternatively that a. is a descendant of 
l J J 

a., if there exists a proper path from a. to a .. 
l . 1 J 

(descendant) of aj and there is a path of length 

If a. is an ancestor 
1 

l from a.(a.) to a.(a.) it is 
1 J J 1 

said that a. is a direct ancestor (descendant) of a .• 
1 J 

A subgraph P• of a graph Pis a subset of the set of nodes of P 

together with all the links connected to these nodes. If for every pair of 

distinct nodes a. and a. of P 1 there is a path from a. to a. as well as one 
1 J l J 

from aj to ai, it is said that the subgraph is strongly connected. If, in 

addition, this condition is not satisfied for any pair of nodes ai and ~ when 

ai but not ~ is contained in pt, then it is said that pt is a maximal 

strongly connected subgraph (abbreviated macs). 

Two subgraphs P 1 and P" of a program graph Pare said to be 

disjoint i£ they do not share a common node. 

3. Normal Sequences and Hang-up States 

The last two definitions in this section are concerned with certain 

properties of the initial and .final state of execution sequences of a program 

graph. In order to study the behavior of program grap:'ls it is conven.ient 

to concentrate our a~tention to a limited, yet useful, class of execution 

sequences by normalizing the initial state of these sequences as follows: 

__ i 
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Definition 3. l A normal execution sequence of a progran1 graph 

is an execution sequence with an initial state in which all links of the graph 

are in idle status except for those links attached to the input terminals. 

Henceforth, execution sequence will be used interchangeably with normal 

execution sequence. Furthern10re, unless otherwise specified we will 

assume that the links attached to the input term1nals are in enaW.ed status 

in the initial state. 

The final state of a terminal execution sequence will be called a 

!1ang-up state or a normal state according to whether or not it satisfies the 

following: 

Definition 3. 2 A state of a program graph is a hang-up state if 

1. No node is in an active configuration. 

2. At least one link is not in idle status. 

C. EXAMPLES OF PROGRAM GRAPHS 

1. Properties of Transition Tables 

In this section we will consider in detail several examples of 

program graphs. We do this with a dual purpose. First, we want to 

acquaint the reader as much as possible with the manner of execution of 

a program graph. Second, we want to provide a better understanding of 

the properties of each type of node an<i how they should and should not be 

used. Concurrently we will indicate some of the reasons for the choices 

made in the specification of the transition tables. 

During execution, the state of a graph changes as a result of the 

transitions specified by the active configurations of each type of node. 

The active configurations of a node are determined only by the status. of 

the input and output connectors of the node. Upon completion of any transi

tion these statuses are always changed. For some transitions the value of 

the output connectors may also be changed, 
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An examination of Table 2. l reveals the following facts: 

1. In all active configurations of every node type except loop 

junctions the status of every input connector is never IDLE(O). 

2. In all active configurations the status of every output connector 

is always IDLE. 

3. Upon completion of each transition, except for loop outputs, the 

status of every output connector is always non-IDLE. 

4. Upon completion of each transition, except for loop junctions, 

the status of every input connector is always IDLE. 

5. Selectors are the only nodes which place one of their output 

connectors in disal:iedstatus when none of their inputs are 

• DISABLED. 

6. The function and predicate associated with operators and selectors 

respectively are applied to the input values only if no input is 

DISABLED. 

7. The application of the function associated with a data operator 

to obtain a new value fo1· an output,link alwa)·a results in placing 

the link in ENABLED status. 

Items 1 and 3 suggest viewing the execution of a graph as effecting 
I 

the flow of status and data information from one node to another in the 
i 

direction indicated by the oriented links. The IDLE status signifies either 

fhat no activity has taken place on a link or that previous activity on a link 

has been properly accounted for. As a rule, activity must occur at each 

input to a node before the node can perform any action. The only exception 

to this rule is the loop junction which under .some circumstances, only 

requires one of its input connectors to be in non-IDLE status to become 

active. Effectively this means that each node waits to receive information 

from each of its ancestors before it takes any action. 
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Items 2, 3, and 4 point out that new activation of a node cannot 

occur until the information transmitted to the immediate descendants of 

the node has been used by these descendants. This observation together 

with items 6 and 7 imply that, as a rule, both the status and data of a link 

attached to an input connector of a node a.re effective for precisely one 

activation of the node. The only exception to this rule can be found in loop 

junctions and loop outputs both of which have provisions for 'remembering' 

status and data information. This property of loop junctions and outputs 

appears to be needed in order to obtain a deterministic model in the 

presence of cycles. 

Finally, items 5 and 6 point out the UniQue function of selectors as 

the arbiters which determine the functions and predicates that should be 

applied during the course of an execution sequence. Note that application 

of a function or predicate requires that the associated node be active, 

however the converse is not true. In fact, most of the active configurations 

shown in Table 2. l do not require application of a function, predicate, or 

effecting a data transmission operation. Instead, their only purpose is to 

propagate through the graph the necessary status information. The enable 

and disable statuses get their names from the effect that a link exhibiting 

these statuses have en the data transformation and transmission action of the 

nodes to which the link is attached. 

2. The Use of Selectors and Junctions 

Selectors and junctions have complementary functions. If we view 

the action of a selector as choosing between two alternative sequences of 

data transformations, then the purpose of a junction is to transmit th~ 

result of whichever sequence was chosen to succeeding computations. 

Figure 3. la illustrates the simplest form that this relationship between 
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(c) (b) 

Fig. 3. 1 Use of Selectors and Junctions 

(o) (b) 

~, 

Fig. 3.Z Junctions_ Creating Hang-Up States 
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selectors and junctions can take. Clearly one selector can be used to 

choose one alternative from any number of pairs of sequences. Further

more, several selectors n1ay have to be invoked, either sequentially or 

in parallel, when more than two alternatives exist -or when complex 

decision rules are needed. Figure 3. lb illustrates some of these points. 

Figure 3. 2a illustrates a typical misuse of a junction. In this 

graph, data junction j
1 

will never become active, since Table 2. 1 requires 

that one or the other (or both) of its inputs be in the disabled status for 

any active configuration. Note that if the junction transition table did not 

have this characteristic, then the output of junction j 1 would depend on the 

relative speed of operators f
1 

and f
2

• Figure 3. 2b shows another example 

of this situation. In this case, junction h is placed in a hang-up configura

tion if during an execution sequence the parallel selectors 131 and (32 enable 

their respective '+' connectors. Compare this with the arrangement of 

selectors 131 and 132 in Figure 3. 1 b where no hang-up configuration arises. 

The need for this type of behavior in junctions imply that in order to 

guarantee determinism we have to: 

1. have three distinct link status values. 

2. propagate a disable status throughout the graph. 

3. ·. The Use of Loop Junctions and Loop Outputs 

Now let us turn our attention to the use of loop junctions and loop 

outputs. Loop junctions allow us to construct cycles in a program graph 

without necessarily introducing hang-up states. To see the necessity of 

loop junctions, consider the graph in Figure 3. 7. If all links are initially 

in idle status, operators £2 and £3 will never become active because the 

idle output status of each prevents activation of the other. Clearly what 

is needed is a type of node which does not require each of its inputs to be 



-48-

in non-idle status before it can hr.come active. We have already seen in 

the case of junctions that if the inputs of such a node were symmetric, 

non-deterministic behavior would arise even in the absence of cycles. It 

is not hard to convince ourselves that in order to have deterministic 

behavior given an~ input node with an asymmetric transition table, the 

inputs must be arranged in a priority scheme. This priority must 

effectively dictate that an input cannot place the node in an active configura

tion unless the node had been previously activated by an input with a higher 

priority. For, unless this condition is satisfied the sequences of values at 

the outputs of the node would depend on the sequence of arrival of values at 

each of the inputs. 

In order to implement this priority in a transition table it is neces

sary to introduce a fourth link status whose function is to remember the 

history of the activations of the node until such a time as this history 

becomes irrelevant. The link status blocked(2) serves this purpose in a 

program graph. Examination of the transition table for loop junctions reveals 

that the high priority input is the one labelled .!_which we call the initial 

input. The low priority input, labelled 2 will be. called the feedback inp~t. 

The behavior of a loop junction can be described as follows: The node becomes 

active as soon as the initial input becomes enabled or disabled independently · 

of what the status of the feedback input is. The next active configuration 

of the node must be one in which the feedback input is enabled or disabled 

while the initial input is blocked. 

Now we have to make a choice as to when to forget the history of 

activations of Ci: loop junction. Since we want to allow an arbitrary n~ber 

of repetitions of a cycle, the cue for this transition must come from the 

feedback i;-iput to the loop junction. The only two information 
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Fig. 3. 3 Single and Parallel Cycles 
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statuses possible on a link attached to the feedback input are enabled and 

disabled. The obvious choice is the disabled status. 

Figure 3. 3a shows a simple example of a cyclic graph. Loop 

junction g 1 forms a cycle together with operators f 1 and £2 , and selector 

f3
1

. The cycle is initiated by enabling the input terminal a. Each time f3t 
is enabled, f

2
, g

2
, f 

1
, and (3 1 are reactivated. Note that since enabling 

f3~ implies disabling 13~, operator f 3 , which is not a part of the cycle, will 

be activated on every iteration as well. This secondary effect may or may 

not be desirable. Figure 3. 3b illustrates a cyclic graph with two parallel 

cycles. The cycle on the left, nodes g 1 and f 1 , receives inputs from the 

cycle on the right. Both cycles repeat as long as f3; is enabled. When f3; 
is disabled, both cycles terminate. Operator f3 is in neither cycle, yet it 

becomes active during each iteration, in this case performing a useful 

function. In the example of Figure 3. 3a, the repeated activation of f 3 causes 

a sequence of disable statuses to appear at the output terminal~ Upon 

termination of the cycle, the output terminal is enabled. In this instanc,e, 

it is desirable to prevent the activation of f3 while the cycle is in pro gr es s. 

In fact, if it is not possible to exert this type of control, we cannot construct 

graphs with nested cycles which are free of hang-up states. This difficulty 

is illustrated in Figure 3. 4a where after four repetitions of the 'inuer' cycle, 

formed by nodes g2 , f2 , 131 , and f
3

,. every node is unable to enter an active 

configuration because the output of 13~+), f4 , f 5 are in non-idle status and 

the initial input of g 1 is in idle status. 

Loop output nodes have been introduced to avoid such situations. 

Figure 3. 4b shows the proper use of loop outputs to avoid hang-up states in 

the example of Figure 3. 4a. A loop output should be connected only to a 

loop junction. The proper form of this connection is illustrated in Figure 3. 5. 
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(a) (bl 

Fig. 3. 4 Nested Cycles with and without Loop Output Nodes 
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Dy exan1ining Table 2. l we can verify that in this arrangement the output 

link of a loop output becomes non-idle only when the feedback input of the 

loop junction becomes disabled (provided the initial input had been enabled 

or disabled), i. e. when the cycle formed by the loop junction terminates. 

D. ANALYSIS OF CYCLE FREE GRAPHS 

l. The Role of Cycle Free Graphs 

In this section we study certain properties of cycle free prograin 

graphs. The simplicity of this class of graphs relative to cyclic graphs 

makes them a natural starting point in the analysis of program graphs. 

Furthermore, some of the questions about cyclic graphs raised in the next 

section can be satisfactorily resolved by reducing them to similar questions 

about cycle free graphs. 

2. Properties of Execution Sequences 

Intuitively we expect each execution sequence of a cycle free graph 

to be terminal. In fact, at this point such a statement should not take us 

by surprise. However, the method we have chosen to specify the behavior 

of each node, i.e. the transition table, does not make this property obvious 

or even necessary. The following theorem and its corollaries are a justi

fication for the choice of directed graphs for our representation. 

Theorem 3. l Every execution sequence of a cycle free program 

graph is a subsequence of a terminal sequence. 

Proof: Assume that the theorem is false. Then we can find an 

execution sequence which never terminates. Since the number of active 

configurations in the transition table of each node is finite, it follows that 

there is at least one node which is placed in the same active configt-iation 

an infinite number of times. An ex~mination of Table 2. l indicates that 

after completion of the transition of most active configurations of a node, 

a new active configuration can occur only if the status of the input 
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connect.ors of the node are chan~ed by its direct ancestors. The only 

cxcepti.ons to this rule are the four active configurations of a loop 

juncticn: 1 1 0 0, 1-1 0 0, -1 l 0 0, and-1-1 0 0. For these configurations 

two transitions may ocrur while the direct ancestors of the looi:· junction 

arc necessarily non-active. Thus, if a node is active an arbitrary num-

ber of times, the same is true of at least one of its direct ancestors. 

Since the graph is cycle free, by repeatedly applying this reasoning it 

must be that the initial terminal m)lst be active an infinite number of times 

against the definition of an execution sequence. This shows that every 

node must be active a finite number of times. Therefore each execution 

sequt!nce must eventually reach a final state and is a subsequence of a 

ter:.nin.al sequence. 

Q.E.D. 

Corollary 3. 1 A program graph with an infinite execution 

sequence must be cyclic. 

Corollary 3. 2 If a. and a. are two nodes of a cycle free program graph 
- 1 J 

and there is a proper path from a. to a. which does not pass through any 
1 J 

loop junction (except for a.}, then a. can become active only after a. has 
1 J 1 

completed a transition. 

Proof: In order for a. to become active, all of its inputs must be 
J 

non-idle. Since initially all links are in idle status, this change can take 

place only by completing a transition of all its immediate ancestors. By 

repeating this process, the immediate ancestors of the immediate ancestors, 

... etc. must also complete a transition. But a. is an ancestor of a .. 
1 J 

Thus eventually ai must be encountered in the chain of direct ancestors 

which must complett;l transitions before a. can become active. 
J 

Q.E.D. 
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Theorem 3, l applies to an arbitrary cycle free graph. However, 

from a behavioral point of view, loop junctions and loop outputs do not 

perform any useful function in a cycle free graph while unnecessarily com-

plicating the analysis. This motivates the following definition: 

Definition 3. l A simple cycle free program graph is a cycle free 

program graph which does not contain any loop junctions or loop outputs. 

In Section C it is mentioned that the effect of most active configura-

tions ia to propagate the necessary status information throughout the graph 

even if no functional application (and presumably useful computations) take 

place. The following theorem shows that this is a necessary condition for 

the absence of hang-•.ip states. 

Theorem 3. 2 The final state of a terminal execution sequence of 

a simple cycle free graph is not a hang-up state if! every node of· 

the graph enters an active configuration exactly once during the 

exerution sequence. 

Proof: As surne the final state is not a hang-up state. Then every 

link is in idle status in the final state. Since initially all links atta'?hed to 

input terminals are placed in non-idle status, it follows that every direct 

descendant of an input terminal must have been in an active configuration. 

But every transition of a node appearing in the graph, i.e. operator, selector, 

and junction, places each of its outputs in non-idle status. Therefore the 

direct descendants of these nodes must also have been in an active con-

figuration. This shows that every node becomes active at least once. 

However, by Table 2. l, each active configuration requires all input 

connectors in non-idle status, whereupon the completion of each transition 

reverts the status back to idle. Since there are no cycles, the status 

must remain idle thereafter which shows that each node becomes active 

at nlost once. 

Q.E.D. 
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Fig. 3. 5 The Proper Way of Connecting Loop Junctions 
and Loop Outputs 

0 

(ol (bl 

Fig. 3. 6 Initial States of Prograrn Graphs that do not 
Satisfy Theorem 3. 2 

al o2 

Fig. 3. 7 A Cycle that does not Pass Through a Loop Junction 
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Corollary 3. 3 A node of a simple cycle free graph becomes 

active at most once during an execution sequence. 

The simple characterization of hang-up states of Theorem 3. 2 

is not possible if we neither have a normal execution sequence nor are 

loop junctions forbidden from the cycle free graph. Figure 3. 6a shows a 

program graph with an initial state such that the final state of every 

execution sequence is not a hang-up state, yet junction j 1 is never in an 

active configuration. In the program graph shown in Figure 3. 6b, all 

nodes become active during each normal execution sequence, yet the 

final state is a hang-up state. 

The following theorem shows that junctions constitute the source 

of all hang-up states in simple cycle free graphs. 

Theorem 3. 3 A node of a simple cycle free graph does not enter 

an active configuration during a terminal execution sequence iff 

the node is, or has as an ancestor, a junction with at least two 

input connectors in enabled status upon reaching the final state. 

Proof: If a node is a junction and during the execution sequence 

two of its inputs become enabled, then by the transition table for junctions, 

it will never become active. By corollary 3. 2, any descendant of this 

junction will never become active either. 

Now assume that no two inputs of a junctioh are enabled during 

the execution sequence and that some other node does not become active. 

By the transition table of operators, selectors, and junctions this can 

only occur if a link remains in idle status throughout the execution 

sequence. This in turn implies that one or more of the input links of 

the node to which that link is attached must have remaired in idle status 

also. By repeatedly applying this reasoning we must eventually reach 
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a link attached to an input terminal and this link must have been idle. But 

this contradicts the definition of an execution sequence. Therefore every 

node must have been active during the execution sequence. 

Q.E.D. 

Theorem 3. 4 A simple cycle free program graph has a hang-up 

state iff two or more input links of a junction are placed in 

enabled status. 

Proof: Immediate from Theorem 3. 2, Corollary, 3. 3, and 

Theorem 3. 3. 

Q.E.D. 

It is clear that the hang-up states of simple cycle free graphs 

arise only as a result of improper specification of the relationship between 

junctions and selectors. 

3. The Enabling Function 

The foregoing results suggest that it is desirable to have an easy 

way of ascertaining whether or not two links can be placed in enabled status 

during an execution sequence, To this end we associate with each link of 

a simple cycle free graph a boolean function,' called the enabling iunction, 

with the property that the link cannot be enabled during an execution if its 

enabling function has the value false. The enabling function associated with 

a link 1i will be denoted by Ei. If E 1 and E 2 are enabling functions then 

the union (or) is denoted by E 1 V E 2 and the intersection (and) is denoted 

by E
1 

/\ E 2 . If B is a boolean variable, then B denotes its complement. 

To obtain the enabling functions associated with the links of a graph 

* we first assign a boolean variable B. to each selector ~· , The enabling 
l l 

.'.unction of a link l is obtained by recursively applying the following rules: 

>:c Throughout this discussion we assume that each 1>elector in a graph has 
a label di.stinct from every other selector la.bel. 
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l. If 1. is the output link of an initial terminal, assign to it the 

identity element (true). 

2. If I. is an output link of an n-ary operator, assign to it the 

function E
1 

/\ E 2A ... /\En' where Ei is the enabling function 

. d . h h .th . l' k associate wit t e i- input in . 

3. If I. is the output link of an n-ary junction, assign to it the 

function E 1 v E 2 v ... v En. 

4. If I is the '+' output link of n-ary selector 13., assign to it 
1 

the function Bil\ E 1 AE2 A •• ,/\En. 

5. If I. is the '-' output link of an n-ary selector 13., assign to it 
' 1 

the function J\AE 1 AE2 A •.. /\En. 

Clearly, the enabling function associated with a link involves only 

the variables B., their complement, and the identity element. In rules 
1 

4 and 5 we have effectively adopted the convention that a boolean variable 

B. is true if the '+' output of the corresponding selector is enabled. We 
1 

now define the relationship between the values of the B. and an execution 
1 

sequence. Let 131, 132 , ... 13n be the selectors of a graph P, and let 

B = (b 1 , b 2 , ... b ) be an n-tuple where b., l < i < n is either true or false. 
n i - -

An execution sequence of P during which 13.+ is enabled only if b. = true 
1 - 1 

is said to match the n-tuple B. , Note that this definition does not require 

13. to be active during the execution sequence. If l. is a link of P, E. (B) 
1 1 1 

denotes the value of the enabling function of 1. when b. is substituted for 
1 1 

B. in E .. 
1 1 

Theorem 3. 5 Let P, j3., B., B, J.., and E. be as above. If 
1 1 1 1 

E. (B) = false then 1. cannot be enabled during any execution 
1 1 

sequence of P which matches B. 
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Proof: In the lransilicm tal>les for 01wrators, selector, and 

j11nc lion in Tnhlc Z. l note< th.it tiw ;1ssig1111w11t t•n;thled E true, 

dis.1hled ~ false is c:n•1Hif'1tt•11t wit II rules 2, ~. 4, aml 5, The transition 

tahh-i1 an· 11Pt con1plete in tile st~nse that junctio1H1 do not have <1.n active 

con f1 ~:11rat1011 l l O. Howcve1· f!Vl~ ry active configuration that can di a able 

an output lint. of a junction is included in rule 2 and vice versa. Thus, the 

nwal that can be said is that a link cannot be enabled when its enabling 

fum·tion is false. 

0. E. D. 

F ron1 'i'wo rems 1. 1i and 3. '1 it follows lh<1t ~ simple cycle free 

1:r;1 11h clot>A 11ot havu ha11g-up ntatt·s if £01· each pair of links t. an.d I.. 
1 . J 

wtwn~ l. and t. are inputs of the same junction, E.l\E. :5 false. 
1 J . 1 J 



Jn tliiA Rrc·tion Wt> undert<ike the study of cyclic graphs frorn the 

point of view of relating the cyclic structure of the graph to its behavior. 

The main rC'Rults are that 

l. for n huge claAs of cyclic graphs necessary and sufficient 

conditions for the abscmce of hang-up states can be obtained 

b;i:~cd on properties of strongly-connected subgraphs, and 

2. C<>rtain relations between cycles of a graph either introduce 

hang-up statPs or can be replaced. by cycle free graphs. 

The lmsis for studying rdations among cycles of a gr;iph Pis a 

dt>composit ion of the graph into certain stron'gl.y-connccted subgraphs 

K 
1

• K
2 
•... K

11
• The decomposition is unique and has the property that for 

any two strongly-connected subgraphs K. and K., either* K.c K .• K.c K., 
. 1 J 1 J J 1 

or K. n K. I ti. Thus the K. are partially ordered under the relation of 
1 J 1 

proper set indusion. 

The decomposition of a graph P into its strongly-connected sub-

graphs K 1, 1<
2

, ... Kn is accompliAhed by the iterative application of a 

pro('cclure which at each step of the iteration breaks certain cycles of P. 

If Pl' is the gr<tph ;\fter the rth itrr:ttion (P:: P 0
), then each of the K. is 

J 

a maxim<ll strongJy-connectecl subgraph (mscs) of some Pi, 0 ~i ~ r. 

Thr d1oi<-e of which cycleR arr broken at each step is Qased on the remarks 

of seC"lion C that in order for a cycle of a program graph to be effective 

ii has t.o pass through a lnop junction. This motivates t.he following 

clc-finition: 

- ------·-. --... ·- .. - . -· -·- - ... __ .. ____ . ____ .. _____ ----
*A !'lt1h1~r;1ph J<L is contained in a subgraph K

2 
if every node of K

1 
is 

;t\sn ~ node nl l<z. We write K~ ~ Kz to denote inclusion and 
KI c l<z to <if'nOlC' propel' inclus10n. The notation ~Jn Kz denotes the 
frnhgraph cousisling of the nodes contained in both ~l and Kz· If K 1 
and K 2 are disjoint we write K 1n Kz =fl. · · 

• ------------~-·--- -- ---~-
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Ddi11ilion 3. 2 --------------- Let J:<. be a strongly-connected subgraph of a 
1 

progr:1n1 graph P. The G-sct of K. is the set of loop junctions of P such 
1 

that gc K. and the direct ancestor of the input connector of g is not in K .. 
t 1 

The G-set of R. will be denoted by G .. 
1 1 

In Fi gnrP 3. 8, the G- set of rnsc s K 1 consists of g 1 and g 2 • Now 

we show that certain hang-up statrs of a graph can be directly related to 

the G-sets of its strongly-connected subgraphs. First we need the 

following two letnrnas: 

Le1nma 1. l Let ::l. and a. be two nodes of a program graph P. 
1 J 

lf there is a prtth from a. to a. and rt. becomes acti,,e during an 
l J J 

execution sequence of P, then a. must have been active during 
1 

th:lt sequence. 

Proof: The proof is entirely analogous to Corollary 3. 2. 

Lernma 3. 2 If during <1 terminal execution sequence of a cyclic 

graph sotne node ~does not enter an active configuration, then 

the final state is a hang-up state. 

Proof: Assume the lemma is false. Then every link is in idle 

statue in the final state. Using the transition tables and modifying the 

argument of Theorem 3. Z to take loop outputs into consideration it follows 

that every node must have been active at least once. Loop outputs deserve 

special attention because for some of their active configurations the status 

of the output link remains idle after the transition. However, these transi-

tions leave an input link enabled or disabled; the only way that this link can 

become idle is if the active configuration enabling or disabling the output 

link occurs. Thus, if the final state is not a hang-up state all nodes have 

been active which contradicts the assumption. 

O.E.D. 
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Tlw11 n·n1 l. (1 T ,ct J< he a At rongly-connected subgraph of a 

prngr;lm graph P. If the G-Aet of K is empty then P has a hang-

up Alilte. 

Proof: Since input terrninals do not have any input connectors, 

no c-ycle crn p;urn through thenl. For any node of P, there is a path from 

<lt lrrlst one input lf'rmin<t.l to the node. Therefore, K has a node with a 

di rrct .:lllC<'Ato r not contained in K. Let a be such a node. Since J< is 

Atrongly-connN·ted, tlu~re is a C'ycle 1 1, ... , l k such that 1 1 and l k are 

respf'clivPly an output link and cin input link of~· If~ is a loop junction, 

J.k must be alt;tched to its initial input for, otherwise the G-set of K 

would not :Je empty. Thus, for any~· lk must become enabled before 1 1 

rlors anrl hy lemma 3. l, a can never become active. By lemma 3. 2, it 

follows that P has a hang-up state. 

Q.E.D. 

If K 1. K 2 , ... Kn are the maximal strongly-connected subgraphs of 

P with non-rmpty G-sets G l, G 2 , ... Gn' let P 
1 

be the graph obtained from 

P by disconnecting all links attached to the feedback connectors of each 

loop junction g E G., 
1 

l < i < n, 
l We say that P is derived from P. 

l Let P be a cyclic graph and P its derived graph. 

Then 

I. P 
1 

is uniquE'. 

2. pl iR cycle free or every mscs o£,P1 is properly contained 

within precisely one rnscs of P. 

Proof: That P
1 

is unique follows directly from the fact that a 
. 

directed graph can be u~iquely decompost;!d into its maximal strongly-

connected subgraphs, 



To show p:i.rt 2, Wf' nolf' thrtl pl n111At tH'CcSsrtrily hilve fewer 

cy- J,.s th;in P sinre Pvery proper cycle of P which passes through 

~; t G., I< i < n does not exist in P\. ThHfl, pl rnay be cycle free. 
1 

/\ltrrn;-itivf'ly, if pl is not cycle free, every proper cycle of P 1 is also 

l 
;i cycle of Pano therefore every tnSC8 of P iA cont;:iined in one n1scs 

of P. The inclusion is proper bP<«nlfle at least every gE Gi' 

l 
is not contained in any m sc s of P . 

<i<n 

Q. E. D. 

Givf'n a cyclic graph P, Wf' Cilll obtain a sequence of graphs 

pc:: po P 1 ... Pn such that pH 1 is drrivf'd from Pi. Since there are a 

finite n111nhf'r of proper cycles in P and f'<tCh step of derivation destroys 

one or more cyclPs, P
11 

is eitlwr cycle fref' or it h;:is an mscs with an 

f'rnpty G-set. If P
11 

is cycle fr"ee it is said that Pis ~yclic consistent. 

The process of obtaining the seqttt>nce POP 
1 
•.• Pn will be called cycle 

gene r~ted by P. The msc s's of the graphs obtained during the cycle 

decomposi I inn of P can be arranged in a tree structure. The root of the 

tree is labellf'd P and every other vertex of the tree is labelled with the 

name of one n1scs in such a way that there is a branch joining vertex K. 
1 

t.o vertf'X K. iff K.c K.. The tree obtained in this manner will be called 
J 1 J 

the cycle structure of P. A node a is said to belong to an mscs K of 

the cycle structure iff K is the smallest mscs containing~· Figure 3. 8 

illustrates the application of the cycle decomposition procedure. The 

0 l 2 
sequence P = P P P appears in Figures 3. 8a, b, and c respectively. 

The cycle structure is shown in Figure 3. 8c. Node £
2 

belongs to K3' 

while node f 6 belongs to K 
1

. 
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Thr cnncrpt of cyclic cnnsiRtrnt gr<iphs suggrsts that we restrict 

011r <"lt!Pntion to the study of cyclic gr<1phs which meet certain minimal 

Alnll~tural conditions in the fonn;ition of their cycles. In Section D we 

ddined Rimple cycle frcr graphs by disaJlnwing the use of loop junctions 

and loop outp11tA, Here wr dPfillP simpl~ ___ gra.1:?hs (scg) by only allowing 

'proper' us<' of loop junction!'! and loop outputs in cyclic graphs. Simple 

graphs incl11de Rimple cycle free graphA as a Rpecial case. 

Definition 3. 3 A graph Pis simple iff 

l. P is cyclic consistent. 

2. Evc>ry loop junction of Pis in the G-set of some macs of 

the cycle structure of P. 

3. Every loop output of P is properly connected to a loop junction. 

From Theorem 3. 2, we know that if all the paths from each ancestor 

of a node to the node pass only through operators, selectors, and junctions, 

then,.in the absence of hang-up states .the node becomes active iff its 

ancestors do. This suggests the following definition associating the links 

of the graphs with the macs of the cycle structure: 

Definition 3. 4 A link I. ~~_!._:i_ngs to an mscs K if there is a proper 

path t 11. 2 ... l kt passing through nodes a
1

, a 2 ... ak ~+ 1 such that 

l. 

2. 

a., l < i < k + l is neither a loop junction or a loop output. 
1 -

a 1 is a loop junction contained in the G-set of K, or 

a 1 iR a loop output having as direct ancestor a loop junction 

whose initial input belongs to K. 

A link may belong to zero, one, or more macs' a. For our purpoeee, 

we will consider that all links which do not beJong to any macs do in fact 

belong to a 'virtual' macs. 



The hang-up states of simple graphs can be characterized in 

tern1~ of a connting property of links belonging to the same mec s and 

link a attached to loop junction - loop output pairs. Figure 3. 9 defines 

the link names used in Theorem 3. 6. If l is a link, { l] denotes the number 

of times that J. is enabled or disabled during an execution sequence. 

' 
Theorem 3.8 The final state of a terminal execution sequence of 

a simple program graph is not a hang-up state iff the following two 

conditions a re satisfied~ 

I. For each loop junction - loop output pair [ l z] = ( 1 3] = ( f 4] = 
11';1 :::_11 11. 

2. If l. and l. brlong to the same mscs then[ l.) = (f. ]. 
1 J 1 J 

Proof: If P is cycle free, condition l does not apply and condition Z 

becomes the statement of Theorem 3. Z. Thus, it suffices to assume that 

P is ryclic. The iroof invokes certain properties of the transition tables 

obtaine;d by exhaustive case analysis. Because performing the case 

analysis each time becomes extremely tedious, we will just li1't these 
I 

properties here and defer their detailed verification to Appendix B. The 

properties are grouped according to the node types to which they apply. 

Loo_p junctions - loop output pair 

;i.. I l 1 ] = [ l 6 ) iff t 1 and l 3 a re idle 

Lonp junctions - -------
b. If 1

1 
is idle then: 

11 2 1~t1 4 ) iff[ 12 ) =[ f 3], 1 2 and t 4 are idle. 

c. Iff 1, t 2 , l3' t 4 areidlethen[t
2

)=[.f
3
]=(l

4
] 

Operators, selectors, junctions, and loop outputs 

d. Each input link hae been enabled or disabled n times iff 

either all input links are idle or all are non-idle. 
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e. Tf I. ;md l. are input and output links respectively then: 
1 .I 

j Ii l = [lj Jiff ti is idle. 

To show that conditions 1 and 2 imply that all links are idle in the 

final state, we divide the nodes into two classes: 1) operators, selectors, 

and junctions, and 2) loop junctions and loop outputs. For each class we 

show that each of their input links has the desired property and thereby 
I 

cover all thf' Jinks of the graph, since links attached to output terminals 

are inconsequential. 

In Figure 3. 10, let the node represent an operator, selector, or 

junction. If the input links Ii and lj belong to mscs's K 1 and K 2 respectively, 

then l j' the output link, belongs to both K 1 and 1<
2

. By condition Z, 

{ti]=-[ lk] = ll j ]and by property~ both li and l j must be idle. Clearly, the 

same argument can bE" applied for any number of inputs. Now consider 

Figure 3. 9. Since the graph is simple, every loop output is paired with 

precisely one loop junction as illustrated in the Figure. By Definition 3. 

1 1 and t 6 belong to the same msc s, and by condition Z, [ 1. 1 J = [I. 6]. 

Therefore, by property~ both 1 1 and 1 3 are idle. By condition l.[ l z) = [ t 4 ] 

and by property~· ( 1 2 ] = [1 3 ] and I. 2 and t. 4 are idle. Thia shows that 

both inputs of the loop junction are idle. We also have that I. 
3 

is idle and 

by condition l, [ l 3 ] = [I. 5 ·). Therefore, by property d, t 5 mu at also be idle 

and this completes the first half of the proof, 

Next, we show that conditions 1 and 2 are necessary as well. Thus, 

assume that all links are in idle statue. In particular, for any loop junction 

1 1.t 2 ,t3't 4 are idle. Thus, by property~· [l. 1 ] = [l. 6]and by propert.Y ~ 

[l.z] =[1 3 ] =[l. 4 ]. Finally, by property ~[l. 3 ] =[ l.sJ and thus follows 

condition 1. To show that condition Z is also implied, we just reverse 

the argument using Figure 3. 10 and condition e. This completes the proof. 

Q.E. D. 

J 
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Corollary 3. 3 Let g
1 

and g 2 be loop junctions contained in the 

G-sct of ;lO macs of the cycle structure of a simple graph P. The final 

state of a terminal execution sequence is not a hang-up state, only if 

* [f2(g1)J =ll4(gl)] ={l2(g2)} ={l4(gz)) and[ll(gl)] =ll1(gz)]. 

Proof: Immediate by observing that 1 2(g 1) and 1 2 (g2) belong to 

the same mace. 

0.E.D. 

Corollary 3. 4 Let g 1 and g 2 be loop junctions contained in the 

G-sets of macs' e K 1 and K
2 

of a simple graph P respectively. If there 

exists a link l in P which belongs to both K 1 and K 2 , then the final state 

of a terminal execution sequence is not a hang-up state only if 

Proo{: l must be the output connector of a node as shown in 

Figure 3. 10. By first applying condition 2 and then 1 we obtain the desired 

result. 
Q.E.D. 

If we view the links of the graph as providing channele for the 

flow of control information, Theorem 3, 6 says that there must exist a 

certain balance of in-flow and out-flow at each node and at each cycle, 

The next theorem shows that in order to preserve this balance, and there-

by avoid hang-up states, communication between cycles should be restricted 

when the cycles are not contained within msc s' a of the cycle structure 

sharing common nodes (i, e. msc e's that are not die joint). The essence of 

this constraint is shown in the proof of Lemma 3. 5. We need two pre-

liminary lemmas relating the initial and feedback inputs of loop junctions 

to the cycle structure of simple graphs. 

* l. (g) denotes the named link of loop junction g with reference to 
Figure 3. 9. 
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Lemm~ 3. 3 Let P be a simple graph, K
1 

an mscs of its cycle 

structure and g
1 

a member of the G-set of K 
1

• If 1
1 

is the 

initial input of g 1, then I. 1 belongs to an msc s K2 , where K 1 c K2 

orK 1 nK 2 =i'l. 

Proof: Assume the lemma is false, then K
2

SK 1. This implies 

that there is a path from g
1 

to every g
2 

E K
2

. Since t 1 belongs to K
2

, 

there is a path from some g
2 

and the last link in this path is 

1.
1

. Therefore, there is a cycle in K
1

involving1.
1 

and either g
1 

is not in 

the G-set of K
1 

or Pis not simple. In either case we obtain a contradiction. 

Thus, either K 
1 

c K
2 

or K 
1 
n K

2 
= 0. 

Q.E.D. 

Lemma 3. 4 Let P, K
1 

and g
1 

be as in Lemma 3. 3, If 1.
2 

is 

the feedback link of g
1

, then 1.
2 

belongs to K
2

, where K
2

S K
1

• 

Proof: If K 1 c K
2 

or K 
1 
n K

2 
= 0, both inputs of g

1 
have direct 

ancestors not contained in K 
1

• Consequently g
1 

E K 
1 

which contradicts 

the hypothesis. Thus, K 2 SK 1• 

0. E. D. 

Lemma 3. 5 Let I.. and I.. be links belonging to mscs's K. and 
1 J . 1 

Kj of a simple program graph P. Let gibe a loop junction con-

tained in the G-set of K.. If K. c K. and [I. .J = [ l.], the final 
1 1 J I: J 

state of an execution sequence is not a hang-up state only if 

Since K. c K ., there must exist a loop junction g E G. 
i J r 1 

Proof: 

and an mscs K' such that I. 1 (g ) belongs to K' and K CK.. For, s r s s- J 

by lemma 3. 3, if such g did not exist it follows that K 1 n K. = 0 and· 
r s 1 

therefore K. = K .• 
1 J 

Now by Theorem 3. 8 we have: (See Figure 3. 11) 

ll2(gr)] > 

= 

[l l (gr)] 

(l.4(gr)] 

{ 1) 

(Z} 
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If g 1
8 

ie a loop junction in the G-set of K ~ , since .t 4(g
1
8

) belongs to the 

eamf" m sc s as l 
1 
(gr) it follows that: 

l 
l1 1(gr) 1 = [ 1 4(g s) J (3} 

If K I K ., we can apply the same process yielding at the mt~ step the 
s .1 

relations (see Figure 3. l l) . 

m-l 
l 1 2(gs )] 

m-1 
r lz(gs )] 

m-l 
[ll(gs )] 

At the nt~ step Kj is reached, by Theorem 3. 8 

(4) 

( 5) 

( 6} 

l l i ] = [ l j J = [ l 4 ( g :} J ( 7) 

Substituting back into each set of relations u1ing (4h (6), and (7) 

we obtain: 

m-1 
[lz(gs )]~[li] 

Using (8), (5), and (3) we obtain: 

m-2 
[ 1 1 (gs )] .:: [ 1i] 

(8) 

(9) 

This process is repeated as often as needed using the appropr~ate 

instances of (4), (5), and (3), finally yielding: 

( 10) 

But 

( ll) 

which when substituted in ( 10} yields 

( 12} 

By Corollary 3. 3 

[ 1 2(gr)] = [ 1 z(gi)] and [ 1 1(gr)] = ill(gi)] 
I 

From these two equalities and (12) we obtain 

as required. 

Q.E.D. 
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Fig. 3. 11 The Link Names in the Iteration Step of Lemma 3. 5 
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Theorem 3. 9 Let g 
1 

and g
2 

be loop junctions contained in the 

G-scts of mscs's K 1 and K 2 respectively, where K 1 cK 2 . If 

lhe re exists a link l. which belongs to both K 1 and K 2 , then the 

final state of a terminal execution sequence of Pis not a hang-up 

stateonlyif[J. 2 (g 1)] = [l. 1(g 1)J. 

Proof: There must be an operator, selector, or junction which 

has inputs belonging to K 1 and K
2 

respectively. Then the· theorem follows 

immediately from Lemma 3. 5. 

The following corollaries of Theorem 3. 9 relate the cycle structure 

to sources of hang-up states. The cycle structures are sketched in Figure 

3. 12 where each circle denotes an macs. 

Corollary 3.5 If a simple graph P has a node other than a loop 

junction with input links belonging to mace's K 1 and K 2 and K 1 c K 2 , 

then either no cycle of K 1 is ever effective or P has a harig-up state 

for some execution sequence. 

Proof: By Theorem 3. 9, for each loop junction g
1 

of K 1 

[ J. 2 (g 1)J =[ J. 1(g 1)] or there is a hang-up state. But this condition 

merely says that the feedback link of a loop junction is enabled or disabled 

the same number of times. This must occur for every execution sequence. 

Thus, for no execution sequence does the cycle repeat. 

Q.E.D. 

The proof of the remaining corollaries is completely analogous and will 

not be given. 

Corollary 3. 6 If a simple graph P has two nodes a
1 

and a 2 with 

input links belonging to rnscs's K 1 and K3' and K
2 

and K
4 

respectively, 

where K 1 c K 2 and K4 £ K3' then either no cycle of K 
1 

is ever effective or 

P has a hang-up state for some execution sequence. 
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Fig. }, 12 Diagram of Paths Between mscs's which 
May Ccinse Hang - Up States 
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Corollary 3. 7 Let P be a simple graph. K 2 an mscs of P, and 

g
1 

a loop junction in the G-set of K 2 . If the feedback link of g 1 belongs to 

an m sc A K 1 and Kl c K
2

, then either no cycle of Kl is ever effective or P 

has a hang-up state for some execution sequence. 

Combining Lemma 3. 4 and Corollary 3. 6 we obtain: 

Corollary 3. 8 Let P, K
2

• and g 1 be as in Corollary 3. 6. If the 

• feedback link of g 1 does not belong to K 2 , then either no cycle of any mscs 

K 
1 

where K 
1 

c K
2 

is ever effective or P has a hang-up state for some 

execution sequence, 

Corollaries 3, 5 and 3. 6 tell us that a node in an inner cycle should 

not depend directly on a node in a containing cycle unless the node in the 

inner cycle is a loop junction. Corollary 3. 7 tells us that loop outputs 

have to be used in order to nest cycles. For example, in the graph of 

Figure 3. 4a loop junction g 
1 

does not satisfy the condition of Corollary 

3. 7. We have already seen in Section C how the hang-up states of this 

graph arise. 

3. Graphs of Type I 

We will now restrict our attention to a class of program graphs 

having the property that a hang-up state can arise only if two bput links 

of a junction are placed in enabled status during an execution s 1equence. 

Graphs with this property will be called graphs of type I. Under suitable 

assumptions on the behavior of the selectors, we will give a procedure to 

test whether or not hang-up states can arise in graphs of Type I. 

The motivation for the following definition comes from Corollary 

3. 8 which states that if the feedback input of a loop junction in the G-eet 

of an mscs does not belong to the mscs, then all cycles of inner mscs's 

are uneless. Thus, if we require that the feedback input of a loop junction 
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belong to the same msc s as the outputs of g, we do not seriously restrict 

the cl a A A of program graphs. If, in addition, we require that both inputs to 

a loop output belong to the same mscs, then condition Z of Theorem 3, 6 

implies condition 1. 

Definition 3. 5 A simple graph is said to be of Type I only if: 

l. The initial inputs of all loop junctions in the same G-set belong 

to the same msce. 

l. If a link l belongs to mace's K 1 and K 2 , then the initial inputs 

of g
1 

and g2 , where g
1 

E: G
1 

and g2 E: G 2 , belong to the same 

roses. 

3. The input links of every loop output belong to the same roses. 

~orollary 3. 9 The final state of a terminal execution sequence of 

a graph of Type I is not a hang-up state iff whenever l. and l. belong to the 
1 J 

same mscs, [li] =[ lj]. 

Proof: Immediate from the definition and Theorem 3. 8. 

If P is a graph of Type I, we associate enabling functiorls with the 

n links of P in the following manner: 1,~t P be the cycle free graph generated 

by the cycle decompositic1n of Pa Every link of P is also a link of Pn. 

n . 
To obtain the enabling functions, we apply, in P , rules l through 5 of 

Section C. 3 plus the following three additional rules to deal with loop 

junction and loop outputs. 

6, If l is the data output link of a loop junction g assign to it the 

function E 1 associated with the initial input of g. 

7. If J. is the control output link of a loop junction g as sign to 

it the function E 2 associated with the feedback input* of g. · 

* The feedback input of g is not attached to the loop junction in the graph 
pn, 



-77-

~· 

·""" 

Fig. 3. 13 The Enabling Functions of a Cyclic Graph 
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8. If l is the output link of a loop output assign to it the function 

E
1 

v E
2 

where E
1 

and E
2 

are the enabling functions associated 

with the input links. 

Rules 7 and 8 define the enabling function of the output link of a loop output 

in term.a of the function of the feedback input of the associated loop junction. 

Since the definition of graphs of Types I require that the initial and feed

back inputs of a loop junction belong to different mscs's, it follows, by 

Lemma 3. 3, that the enabling function of each link is uniquely defined, i.e. 

application of rules 6, 7, and 8 will not give rise to an endless loop. 

Figure 3. 13 illustrates the application of these rules for the graph previously 

decomposed in Figure 3. 8. The interpretation of the enabling function 

associated with links of loop outputs by rule 8 is, as with all other enabling 

functions, that the link cannot be enabled when the value of the function is 

false. By checking the transition table for loop outputs and keeping in mind 

rule 7, it can be verified tha.t the assignment of rule 8 is consistent with this 

interpretation and the conventions established in Section C. 3. 

Strictly spea}dng, the enabling functions associated with the links of 

Pn are applicable only to those execution sequences during which no cycle 

of P repeats. However, in order to guarantee that no hang-up states can 

occur, the enabling functions of feedback inputs of loop junctions covered 

by l and 2 of ~finition 3.5 have to be equivalent (i.e. they must be false, 

and therefore the link disabled, under the same conditions). For, it is 

clear that if this condition is not met, then we could find execution 

sequences for which corollary 3, 9 is not satisfied. This is illustrated in 

the example of Figure 3. 14 where the output link of the operator labelled 

f 3 be~ongs to both mscs of the graph. The cycles of each mscs are indepen

dent of the other. Thus, during some execution sequence one cycle is 

enabled more times than the other and a hang-up state thereby ari.ses. 
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Fig. 3, 14 A Possible Hang-Up State Arising from mace with 
Different Feedback Enabling Functions 
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We formalize this observation as follows: 

Lemma 3. 6 The final state of each terminal execution sequence 

of a graph of Type I is not a hang-up state only if the enabling 

I 
functions of the feedback input links of loop junction satisfying 

l and/or 2 of Definition 3, 5 are equivalent. 

It is convenient to introduce the term G*-set to denote the union 

of the G-sets of the mscs's K
1 

and K 2 such that there exists a lin~ be

longing to both K 1 and K 2 . Clearly, any two G':C-sets are disjoint. To 

extend the enabling function to those execution sequences where cycles 

repeat, we observe that whenever the feedback input of the loop junctions 

of a G*-set become enabled, the next value of the enabling function can be 

obtained by simply setting the data output link of all members of the G*-set 

to the identity function, The enabling functions so obtained applies to all 

succeeding repetitions of the cycles, and should also satisfy Lemma 3. 6. 
I 

We will call these functions the Pn enabling functions. 

Theorem 3. 8 Let P be a graph of Type I. The final state of all 

. * terminal execution sequences of P is not a hang-up state only 1f : 

1. The Pn and pn' enabling functions of the feedback inputs of 

2. 

all members of each G*-set are equivalent and different from 

the identity element, 

If E. and E. are the Pn(Pn
1

) enabling functions of two inputs 
1 J 

of a junction, then E. /\ E. =false. 
1 J 

Proof: The first half of part l follows directly from Lemma 3. 6. 

The second half, i. e. that the e~abling function be different from the 

identity element, is also needed. For, otherwise the feedback links of 

the corresponding G*-set will never be disabled and therefore they 

could not be in idle status in the final s·:ate. 

* As in Section C. 3, here we assume that no two selectors of P have the 
same label. 
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In order to show the necessity of part 2, consider the possible 

exC'c11tion sequences of a graph in the light of its cycle structure. First, 

if the condition E. E. false is not satisfied for some junction in Pn, 
1 J 

then, by Theorem 3. 5, there is at least one execution sequence during 

whi<:h a hang-up state occurA, i.e. that sequence during which no cycle 

of the graph repeats. Now, let K
1

, K
2

, ... Kr be the mscs's in the first 

level of the cycle structure. Set the output links of the loop junctions in 

their G-sets and compute the pn' enabling functions for all links belonging 

to an mscs K, where K K., 1 < i < r. All other links of the graph are 
1 

discarded. By the definition of the G':< -sets, the result is a set of disjoint 

graphs such that the data output links of a G~< -set obtained from G
1

, G 2, .. ·Gr 

correspond to the input terminals of a graph. The argument used for the 

Pn enabling function is valid for each of these graphs and consequently 

E. I\ E. =false at each junction as well. This process is repeated until 
1 J 

the cycle structure is exhausted. 

Q. E.D. 

The proof of Theorem 3. 8 contains the essence of a procedure to 

test whether a graph of Type I has hang-up states under the assumptions 

that all selectors are distinct and independent of one another. 



IV. AN EQUIVALENCE PROBLEM 

A. INTRODUCTION 

The determinism of program graphs guarantee not only the unique

ness of the final state of terminal execution sequences with the same initial 

state, but also the uniqueness of the sequence of value and status pairs at any 

link. It is often the case that we are interested in observing identical 

value and status pairs in a subset of the links of the graph. Under these 

circumstances, the following two problems are of interest: 

l. To determine of two program graphs P 1 and P 2 whether or 

not the value and status of a given link of P 1 is the same as 

the value and status of a given link of P
2

. 

2. To determine what kind of transformations can be performed 

on a program graph P 1 so that the transformed graph P 2 is 

equivalent (in the sense of 1) to the original graph P
1

. 

In this chapter we consider both of these problems when two values 

are to be considered the same if and only if they have identical functional 

expressions after elimination of identity functions. For example, if I denotes 

the identity function, then 

f 
1
(l(f

2
(x, y)), z) = f 

1 
(f

2
(x, y), I(z)) 

Section B presents a solution to the equivalence problem for graphs 

with a known, simple structure. Section C formalizes and generalizes the 

reasoning of Section B to program graphs with almost arbitrary structure. 

Theorem 4. 1 in that section establishes necessary and sufficient conditions 

for the equivalence of two program graphs. Finally, Section D considers 

certain simple equivalence-preserving transformations. 
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B. A SIMPLE EQUIVALENCE PROBLEM 

Let us consider the following problem: we are given two program 

graphs P 
1 

and P
2 

-- whose structure is known and is as shown in Figure 

4. l. Specifically, we know that both graphs have precisely one maximal 

strongly-connected subgraph, i. e. the boxes labelled H 
1

, H 2 , F 1 , F 2 , 

G 
1

. G
2

, V 
1

, and V 
2 

in Figure 4. l are cycle free. Furthermore, we know 

that a cycle occurs in either graph only if the selectors labelled 13~ and 13~ 

respectively enable the conn~ctors labelled '+'. Both graphs have the same 

number of input terminals and loop junctions, and there are no hang-up 

states in either one. We are asked to determine whether or. not the value 

and status of the links labelled 1
1 

and 1
2 

in P 1 and P 
2 

respectively are the 

same for all sets of input values when the input terminals of both graphs 

are identified as indicated by the dotted lines in the figure. Assume for 

the moment that 13 1
1 and13i are the only selectors in both P 1 and P 2 . Now 

assume that it is poss,ible to find execution sequences of P
2 

which yields 

a value at 1 2 identical to the value obtained at 1
1 

when the first activation 

l 
of 131 in P 1 enables the connector labelled '-',and when the first activation 

l 
of 131 enables its '+' connector and the second activation enables its ' - ' 

connector. Similarly, assume the same thing holds true when the roles 

of P 1 and P 2 are reversed. We claim that these two conditions imply 

the following: 

1. Fl H
1

(x):.::F
2

H 2 (x) 

2. F 1 Gl (y) = F zGz(Y) 

3. v
1

(z) =V
2

(z) 

and it is clear that 1, 2, and 3 imply that to each execution sequence o'f P 
1 

producing any value at 1
1 

there corresponds an execution sequence of P 
2 

producing the same value at I. 2 and vice versa. 
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a2 
n 

Fig. 4. 1 Cyclic Graphs with the Same Cycle Structure 
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Let a!, CJ'~ denote the two chosen execution sequences of P 1 and 

1 2 
o2 , o2 those of P 2 • 

For each of those sequences let us write the expression corres-

ponding to the value and status of 1
1

, 1 2 as follows: 

o~: p;(F
1

(H
1

(x)))--V
1

(F
1

(H
1

(x))) (1) 

o~: p~(F 1 (H 1 (x)))l\{l~(F 1 (G 1 (F 1 (H 1 (x)))))-V 1 (F 1 (G 1 (F 1 (H 1 (x))))) (2) 

l o
2

: p;(F
2

(H
2
(x)))-v

2
(F

2
(H

2
(x))) (3) 

o~ : p:(F 
2

(H
2

(x)))" p;(F 2 (G
2

(F 
2

(H
2

(x)))))-V 2 (F 
2

(G2 (F 2 (H2 (x))))) (4) 

The expression on the left hand side of the arrow denotes what 

sequence of selector outputs must be enabled in order for the value on the 

right hand side of the arrow to appear at the chosen link. 

Now suppose that CT~ is matched with CT~ and CJ'~ is matched with 

CT~, i.e., V l (Fl (H 1(x)))=V2 (F 2 (H2 (x))) and V l (Fl (G 1 (Fl (H 1(x))})}=V2 (F 2 

(G
2

(F 2 (H2 (x))))). 

In order for the left hand side of the arrows in (1) ar d (3) to be 

enabled under all circumstances we must have F
1 

H 1 = F 2 H2 . From this 

identity and the identity of the right hand sides it follows that V 
1 

= V 2 . 

A similar argwnent using the identity of (2) and (4) y~elds F \ G 1 = F 2c 2 . 

On the. other hand, if F 
1 

H
1 

= F 
2

H 2 then (1) and (3) cannot be 

matched even if V 
1
(F

1 
(H

1 
(x))) = V 

2 
(F 

2 
(H

2 
(x))) for we have no assurance 

that p;(F 1 (H
1 

(x))) = p~(F2 (H2 (x))). Analogously, (1) and (4) cannot be 

matched either; in fact ( l) cannot be matched with any execution sequence 

of P 2 . Similarly if F 1 G 1 
= F 2G 2 , (2) cannot be matched with any 

execution sequence of P 2 either. This, however, contradicts the hypothesis 

and we must conclude that the only possible match is (1) with (3) and (2) 

with (4) which proves our original claim. 
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If we now allow H
1

, H
2

, F 
1

, F 
2

, G
1

, G
2

, v
1

, and v2 to be arbitrary 

cycle free graphs, the same reasoning still holds by considering every 

execution sequence which results in a different combination of selector 

connectors being enabled. The detailed justification of this assertion is 

best left to the .next section. 

C. THE EQUIVALENCE PROBLEM FOR ARBITRARY GRAPHS 

In order to apply the foregoing reasoning to arbitrary program 

graphs we must be able to express the same concepts without any know-

lege of the cycle structure. The concept of base sequences is introduced 

with this aim. 

Definition 4. 1 A base sequence of a program graph P is a normal 

execution sequence during which at least one link of every proper cycle of 

P is enabled at most once. 

Corollary 4. l Every program graph has a finite number of base 

sequences. 

Proof: Immediate from the definition and the fact that there are 

a finite number of proper cycles in a program graph. 

The definition of base sequences immediately yields the following: 

Corollary 4. 2 If a 1 , a 2 are two nodes of a program graph P and 

there exists a proper path from a 1 to a 2 all of whose links are enabled for 

some execution sequence of P then there is a base sequence of P during 

which these links are also enabled, 

Corollary 4. 3 Every execution sequence of a cycle free program 

graph is a base sequence. 

Definition 4. 2 An infinite cycle is a data cycle all of whose links 

are enabled for all execution sequences. 
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A program graph with an infinite cycle never reaches a final 

state. Infinite cycles can be detected by examining the relationship between 

the cycles and selectors of a graph. 

Appendix A contains an algorithm to determine whether or nQt a 

program graph has infinite cycles and/or hang-up states. Furthermore 

the algorithm generates all the base sequences of the graph if neither of 

the above conditions are present. 

We shall henceforth consider program graphs without infinite 

cycles and/ or hang-up states. 

If !_is any link of a program graph, its value and status are, 

according to Theorem 2. 2, uniquely defined for every execution sequence. 

Accordingly, the execution sequencee; can be grouped into equivalence 

classes with respect to_! as follows: 

Definition 4. 3 Two execution sequences are in the same equiva-

lence class with respect to a link l. if and only if the value and status of l 

are identical upon completion of both sequences. 

Since the value of a link is considered to be undefined when the 

link status is not the enabled status, there is one equivalence class for 

all sequences during which the link is not enabled. 

In order to study the equivalence between program graphs we 

need only consider a suitable representative of each equivalence class. 

For this purpose we need a precise description of the circumstances 

under which a particular value is assigned to a link. It is r.ot enough to 

know that the link is enabled. We also need to know what selector 

terminals are enabled when a value is obtained at the link. We will 

represent each equivalence c;las.s of execution sequences by a pair of 

functional expressions. The first member of the pair denotes the condition 

under which that value is obtained. The second member of the pair denotes 

the value as signed to the link. The condition part is a boolean expression 



-88-

using the connectives 'I\' (AND) and ' ' (OR) among terms of the form: 

+ f3 (y
1

, · .. Yn) or f3-(y 1, ... yn) where yi are any functional expressions de-

noting the values of the input links of the n-place selector (3. 

The notation is best clarified by an example. The pair: 

denotes that link!._ is assigned the value f 
1 

(f
2

(a1 , a 2 ). f 3(a1)) if either 

selector 13 1 enables its '+' connector when its input has the value a 1 and 

selector '3z enables its I_ I connector when its input has a value £2 (a. 1 , a 2), 

or when selector 131 enables its '-' connector when its input has a value 

Note that the first member of the pair is closely related to the 

enabling function used in Chapter III. There it was specifically asswned 

that all selectors of a program graph were distinct and therefore it was 

sufficient to consider only the selector label. In the context of this 

chapter such an assumption is too restrictive, yet the need to uniquely 

distinguish each selector value is preserved by the use of the functional 

notation as above. 

The two members of a pair characterizing an equivalence class 

of execution sequences will be called dynamic enabling fnnction (def) 

and value respectively. 

Given two dynamic enabling functions it is possible to determine 

whether or not they are equivalent by replacing each expression of the 

+ -form j3. ( ••• ), j3. ( ••• )with single boolean variables according to the 
1 1 

following rules: 

1. 
± ± I I I 

Two expressions f3i (y1 , Yz• ••• yn) and f3j (y1 , Yz• ••• y
0

) are 
\ I 

as sign*'d the same variable iff i = j, y. c; y., l < i< n. 
1 1 -

! 
-·' 
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z. + If f.\(y 1, Yz• •.. yn) is assigned the variable Bi' then 

'3i-(y 1, Yz• ..• yn) is assigned its negation Bi 

From the foregoing and the definition of equivalence class we 

obtain: 

Corollary 4. 4 Two execution sequences belong to the same 

equivalence class with respect to a link !._ iff their characterizing pairs 

exhibit identical values and equivalent dynamic enabling functions. 

Now we give a precise formulation of the equivalence problem for 

program graphs. 

Let P 1 and P 2 be two program graphs without infinite cycles and/ 

or hang-up states. Nodes of P 1 and P 2 tagged with the same label denote 

the same function or predicate. Furthermore, we assume that if p. is 
1 

an n-place predicate and y 
1 

only constraint on the value 

and Yz are n-place value expressions, the· 

of p. is that p:- (y
1
) and p~(y2) may occur during 

1 1 1 

the same execution sequence only if y 1 1 Yz· Let the input terminals of 

P'1 and P 2 he denoted by a 1 , a 2 , ... an and a}, al, ... a~ , respectively. If 

1. 1 and I. 2 are links of P 1 and P
2

, the notation 1. 1 (a
1

, a 2 , .•. an) and 
i 

1. 1 (a~, a~, ... a~) denotes the value assigned to the links as a function of 

the values assigned to the input terminals of P
1 

and P
2

, respectively. 

Let X denote the set of values which can be assigned to these input terminals 

I 

and Cl> a mapping which associates each a., a. with a member of X. 
1 1 

Definition 4. 4 P 1 and P 2 are equivalent with respect to 1.
1 

and I. z 

under the mapping Cl> iff to every equivalence class of the execution 

sequences of P 1 there corresponds an equivalence class of the sequences 

' ' ' of P 2 such that I. 1 (Cl>(a1), Cl>( a 2 ), ... Cl>( an)).; .t 2 (Cl>( a
1

) ,Cl> ( a
2

), ... Cl> (am)) and 

the corresponding dynamic enabling functions are equivalent. 
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This is a very strong definition of equivaknce. It requires that 

to car h sequence of functional applications of one graph there corresponds 

an identical sequence of the other graph. Furthermore, it assumes that 

it is always possible to assign to a selector 13 a predicate function such 

that if y 1 and y 2 are suitable arguments of thi13 predis:ate and y 1 ~ Yz then 

+ - + - ) either j3 (y 
1
) or 13 (y 

1
) may be enabled concurrently with '3 (y2 ) or j3 (Yz • 

This form of equivalence is closely related to the equivalence of 

program schemata as defined by Ianov. There are two important dif-

ferences, however, which makes our definition a non-trivial generaliza-

tion of lanov's. First, we specifically require that during no execution 

+ -sequence it occurs that 13. (x) and j3. (x) are enabled; second, we allow 
1 1 

functions of any number of arguments and parallel evaluation of functions. 

Neither of these situations can be expressed in Ianov's program 

schemata which can only represent strictly sequential application of 

single -input, single-output functions and where the predicate variables, 

which perform the selection function in program schemata, are distinct 

and their values at any one time areindependent of the past history of the 

process. In fact,. Rutledge has shown that program schemata are equiva-

lent to finite state devices whose inputs are sequences of allowable predi-

cate variable vectors and whose outputs are sequences of operators (i. e. 

values so defined by Ianov). This implies that the allowable input and 

output sequences of program schemata are regular sets. This assertion 

does not hold, in general, for program graphs even if the first condition 

mentioned above were not required, 

The following theorem gives necessary and sufficient conditions 

for the equivalence of two program graphs in term1t1 of the base sequences 

of each graph, 
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Theorem4.l LetP
1

, P 2 ,4>, '1' and1 2 beasbefore. P 1 and 

p
2 

are equivalent iff to every equivalence class of the base 

sequences of P
1 

ther£ can be found an equivalent class of execu

tion sequences of P 
2 

and vice versa. 

Proof: If P 
1 

and P
2 

are equivalent, the condition of the theorem 

must be satisfied since otherwise we would have found an execution 

sequence of P
1 

not equivalent to any execution sequence o{ P 2 or vice 

versa. 

Next, we show that if the condition of the theorem is satisfied, to 

every execution sequence of P
1

, there can be found an equivalent execu

tion sequence of Pz and vice versa. 

If none of the links of P
1 

and P 2 are enabled more than once for 

any of their base sequences, then by Corollary 4. 2, neither P
1 

nor P 2 

have any effective cycles and by Corollary 4. 3 it follows that the condition 

of the theorem considers all execution sequences. 

Now assume that there is a base sequence of P 
1 

during which some 

link is enabled more than once. 

We recall from Chapter III that every cycle of a program graph with

out hang-up states must pass through a loop junction. Since all inputs of 

loop junctions are data links, it follows that every cyclic graph without 

hang-up states does not have control cycles. If during any execution 

sequence any link is enabled more than once, all links of some cycle must 

have been enabled. 

P 1 and P 2 do not have any infinite cycles. This can occur only if 

for each proper cycle there is at least one selector capable of disabling 

(and therefore also enabling) a link of the cycle. 
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Let B = 13. , • • • , 13. 
1 l ln 

be the set of selectors of P 
1 

which has the 

<lore mentioned property for a given cycle. 

From the definition of base sequences, there are such sequences 

during which the values assumed by members of B disable this cycle, 

and there are other base sequences during which the c.:ycle is first enabled, 

then disabled. We shall refer to these base sequences as acyclic and 

cyclic respectively. Note that a sequence acyclic with respect to a cycle 

may be acyclic or cyclic with respect to another cycle. If a cyclic base 

sequence is in the same equivalence class as an acyclic one, then there 

is no execution sequence during which all links of the corresponding 

cycle are enabled more than once, i. e. , all execution sequences involving 

the cycle are base sequences (e.g., the example of Figure 4. 3). On the 

other hand, if a cyclic base sequence is not in the same equivalence class 

as any acyclic one then the cycle may repeat any nwnber of times. 

Our first task is to show that the condition of the theorem implies 

that to every such cycle in P 1 there corresponds an identical cycle in P 2 • 

The dynamic enabling function of the cyclic base sequence of P
1 

must 

have two instances of each of the members of the set B of selectors. 

Each of these instances must have at least one of its arguments different 

from the corresponding argument of the other, for otherwise the graph 

has infinite cycles. Since by hypothesis we have found an equivalent execu-

tion sequence a of P 2 , there are instances of members of B in P 2 which 

either are in cycles having the same relationship to a cycle as in P 1 or 

are not contained in any cycles •. If it is the latter case, then there muElt 

exist a base sequence of P 2 identical to the sequence a up to the second 

activation of members of B at which point, one or mo1:e members of B 

enable the complementary connectors instead. This second activation, 

I 

! 
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therefore, yields values corresponding to the repetition of the cycle of P 1• 

It follows that the sequence of P 
1 

equivalent to this base sequence of P 2 

enables the cycle once more and therefore the corresponding def 

has a third distinct instance of members of B. By repeating this argu-

rnent as often as needed we conclude that either there are an infinite 

number of instances of B in P 2 or there is a set of these instances con

tained in some cycle. But the first alternative is not possible since a 

program graph is finite. 

An entirely parallel argument can be used when the set B deter-

mines a data cycle of P 2 . 

The foregoing construction also shows that to any execution 

sequence of P 1 which enables a cycle any number of times, there corres

ponds an equivalent sequence of P 2 and vice versa. Thus, now we have 
• 

shown that in addition to the base sequences, all sequences of one graph 

enabling one of the cycles an arbitrary number of times and all other 

cycles at most once have an equivalent sequence in the other graph. Using 

the correspondence of cycles and an analogous reasoning we conclude 

that the set of equivalence sequences can be extended to include those in 

which two cycles are repeated an arbitrary number of times and so on 

until all cycles are considered and therefore all possible execution 

sequences. 
Q. E. D. 

We illustrate the application of Theorem 4. 1 by working out several 

examples. Throughout these examples we shall omit parentheses from 

functional expressions. 

Example 1. We want to determine whether or not the graphs 

P 1 and P 2 shown in Figure 4. 2 are equivalent with respect to the links w
1 

and Wz· 
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Fig. 4. 2 The Two Program Graphs of Example 1 
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P 
1 

has two base sequences corresponding to the proper cycle 

passing through nodes g 1 , f 1• and £2 . 

1 -
al : 131 fl a-f6f5f3fl af4f3fl a. 

and 

2 + -
al : 131 fl a.Al31 ~l f2fl a. -f6f5f3f2fl af3fl f2f 1 a. 

P 2 has four possible base sequences corresponding to the proper 

cycles passing through nodes g
2

, £1 , and g2 and g3 , £
1

, and £2 . 

1 
O'z: 13~flaAl3~fla-f6£5f3flaf4f3fla 

2 - + -
a 2 : 131 fl f 2 f 1 a " 131 f 1 a "131 fl a - f 6 f 5 f 3 f 1 f 2f1 a.£ 4 f 3 f 1 a. 

3 - - + a 2 : 13 1 f 1 a A 13 1 f 1 f 2 f 1 a "13 1 f 1 a - f 6 f 5 f 3 f 1 af 4 f 3f 1 f 2 f 1 a. 

4 + - + 
O' 2 : i\ f 1 a f\ 13 1 £ 1 f 2 f 1 a " 131 f 1 f 2 f 1 a. - f 6f5f3f1 f 2f1 a.f 4f3f1 f z f 1 a. 

However, a~ and O'~ can not be execution sequences since both 

13~ £1 a and 13~ !"1 a occur in their clefs. It is readily checked that o~ = CJ~ 
and a~= a~ and thus P 1 and P 2 are equivalent. 

Example 2. P 1 and P 2 are as shown in Figure 4. 3. P 1 has eight 

possible base sequences corresponding to the proper cycles passing through 

nodes g 1 , £2 . I and g2 , £2 , £3• 

I + + 
al : 132°"131 fl ci.-£4£1 a 

2 + - -
a.I: l3za."l31f1a."l31f2f1aa.-f4fzf1a.a. 

3 + - + + 
al : l32a."l31 £1 a.1\131 £2£1aa.1\1311£2£1a.a.--f41£2£1 a.a 

a i : 13~ a. I) 13~ f 1 a.I\ P1 £2flaa."13;1£2£1an/\13~ f 21£2£ 1a.a.£3£ 2£ 1 a.a.a. 

- £4 £21£2£1 a.a.£3£2£1 a.a.a. 

5 - + 
O'l: j32a./\j31£la.-£4fla. 

6 
O'l : f3za.Aj3~£1 a./\j3~£Zfl a.a.-£4£2£1 a.a. 
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Fig. 4. 3 The Two Program Graphs of Example 2 
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7 - - + + . 
O' 1 132a/\ 13

1
f
1

nl\13
1

£
2

£
1 
na/\j31 I£2 £

1 
aa .-f4 H 2 £1 aa 

O'~ 13~ a/\ 13~f 1 a/\13: f 2 f 1 aa l\l3~If 2f 1 an 13~ f 2I£2f 1aaf3f 2 f 1 nan 

After eliminating identity functions (I) from all expressions, there results 

the following equivalence classes: 

1 5 + 
{O'l' al} : 131 fl a-f4£1 a (1) 

2 3 6 7 -
{al' al' al' al}: 131 fl a-f4f2fl aa (2) 

where a i and O'~ have been eliminated because both 131 £2f
1 
aa and 13; f2f 1 a.a 

a.ppear in their clefs. The equivalence classes in (1) and (Z) are in one to 

one correspondence with the two base sequences of P 2 . 

In order to establish that the equivalence problem is solvable, 

all that remains is to show that there is an effective procedure to test 

the conditions of Theorem 4. 1. 

The algorithm of Appendix A generates all the base sequences of 

a program graph. Determining the equivalence of two dynamic enabling 

functions is a solved problem of the propositional calculus. The only re-

maining difficulty is to find an execution sequenc~ of a graph equivalent 

to a base sequence of the other. If such a sequence cannot be found, it 

is conceivable that we may never know when to stop the search. That this 

is not the case is easily discernible from the fact that for two sequences 

to be equivalent, their values have to be identical. Therefore, all we have 

to do is generate all possible values whose lengths are less than or equal 

to the length of the longest value in any base sequence. By a simple · 

modification, the algorithm of Appendix A can be used for this purpose. All 

thctis needed is to place a higher upper bound in the number of times a 
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Fig. 4. 4 Transformations to Identify Common Subgraphs 
Dis regarding Selectors and Junctions 
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cycle is allowed to repeat. If L is the length of the longest value in any 

bas~ sequence and £, is the length of the shortest cycle in the program 

graph then L/ J. + 1 is a suitable upper bound. 

We formalize these observations in the following theorem. 

Theorem 4. 2 The equivalence problem for program graphs 

is solvable. 

D. SIMPLE TRANSFORMATIONS 

In this section we will briefly indicate by means of exam'ples 

the application of the results of the previous section to obtain equivalence 

preserving transformations of program graphs. In general, w-e seek to 

transform a graph in order to optimize a given criterion. For example, 

we may wish to minimize the number of operators and selectors associated 

with functions and predicates by identifying all identical subcomputations, 

or we may wish to transform a graph so that a function or predicate is 

applied only if the results of each application will actually be used by 

another computation during the course of the execution sequence; alternatively, 

we may want to speed up the average time of an execution sequence by per

forming as many computations as possible in anticipation of the possible 

utilization of their results, etc. 

Ideally, we would like to obtain a set of elementary transformation 

schemes such that : 1) each scheme can be applied independently of each 

other to yield an equivalent graph, 2) the value of the criterim function in 

the transformed graph is not less (greater) than the corresponding value 

in the original graph, 3) each transformation is local, and 4) the set of 

transformations is complete. A transformation is said to be local if it 

can be applied to any subgraph without any knowledge of the structure with

in which the graph is embedded. Otherwise we 13ay that the transformation 

is global. A set of transformations is said to be complete if whenever the 
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Fig. 4. 6 Alternative Form of a Transformation Scheme 
Which Does Not Preserve Equivalence 

I 



" 

I 

I 

FJ3 (Jl $' 

• (a) (bl 

Fig. 4. 7 Subgraph in which the Transformation of Figure 4. 6 Introduces a Cycle 

) ' ----- l ----~---~- >---~----- - ) 

t -0 
N 
I 

j 



- l 03 -

criterion function has a minimum (maximum), there is a sequence of 

transformations which obtains a graph exhibiting this minimum (maximum) 

value. 

The transformation schema shown in Figure 4. 4 satisfy each of the 

above conditions when the problem is to minimize the number of functional 

data operators in a simple cycle free graph consisting solely of nodes 

with one output and either one or two inputs. In order to include cycle free 

graphs with selectors and junctions, we may augment the set of transforma

tions to include subgraphs with control links with or without selector nodes. 

The transformation scheme 4 in Figure 4. 5 serves to illustrate a case in 

which care should be exercised in order to guarantee that the transforma

tions are in fact local. An apparently reasonable alternative to this scheme 

is shown in Figure 4. 6, however, this transformation is not local as can 

be verified by considering the graph of Figure 4. 7. When transformation 

4 is applied to both instances of selector (3 1, there results the graph of 

Figure 4. 7b which obviously cannot be equivalent to the original since it 

contains a cycle without any loop junction and therefore has hang-up states. 

Scheme 4 in Figure 4. 5 avoids this difficulty by applying the control links 

labelled 3 and 4 in such a way that every path of the transformed graph is 

also a path of the original. 

As an example of a problem which appears to be inherently global 

consider the transformation of a graph with the objective that a function or 

predicate is applied in an execution sequence only if the results of its 

application will be used by another computation during the execution. This 

objective can be achieved simply by moving the point of application o~ 

chosen control links. For example, in the graph of Figure 4. Sa, operators 

f 1 and £2 will be applied under all circumstances. However, their results 



(a) 

( b) 

Fig. 4. 8 Two Equivalent Program Graphs Differing on 
the Way a Control Link is Applied to Operator c; 
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will be used by operator £3 only if 13~ is enabled. To eliminate this 

condition, the control link 13~ is applied at both f 1 and £
2 

as shown in 

Figure 4. Bb. The equivalence of both graphs is readily established. To 

see that this transformation is in fact global, imagine that there is a path 

from £2 to 13
1

. If this is the case, applying the control link '3~ to £
2 

creates 

a cycle and the resulting graph is not equivalent to the original. Since the 

path from £2 to {3
1 

can be of arbitrary length, there is no single finite rule 

that can accomplish this transformation. 



V. CONCLUSIONS AND RECOMMENDATIONS 

We have presented a deterministic model for the representation of 

parallel computations on non-structured data. The model incorporates 

data-dependent decisions and sufficient apparatus for precisely defining 

cyclic structures. Methods of analysis have been developed and a simple 
' ' 

characterization of the hang-up states of a computation has been given. 

An equivalence problem for the model has been formulated and solved. 

The main weakness of the model is its inability to represent 

computations on structured data. Further research is needed to determine . 
whether the same conceptual framework used in this paper can be adapted 

to represent relations between an unbounded memory and a finite sequencing 

and control structure. 

The results obtained in Chapter IV regarding the equivalence of 

15 
program graphs suggest several areas of future research. McCarthy has 

proposed that the formulation of a theory of equivalence is a basic step 

towards the development of a theory of programming. Very little progress 

has been made towards a satisfactory selection of this problem. Undoubtedly 

the difficulty of the general problem is related to the known unsolvability 

results of every computational model so far proposed, e.g. Turing 

machines, >..-calculus, Markov algorithms, etc. If we separate the 

computational aspects of a program from the pure control aspects, we can 

identify <.i.t least two sources of unsolvable problems. On one hand, it may 

be that the decision problem of the functional calculus for a given set of 

primitive functions and predicates is itself unsolvable. In this case, the 

equivalence problem is unsolvable even for the simplest programs, i.e. 

cycle-free programs. On the other hand, even i£ the aforementioned 

decision problem is solvable, it may be that the iterative or recursive! 
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structures expressible in the model give rise to unsolvable combinational 

problems. We have often looked at the combination of these two effects 
' 

as permitting just too many ways of representing processes that do nothing. 

In our formulation both of these difficulties are avoided by 1) defining 

equivalence in terms of the identity of certain strings, and 2) allowing just 

one way of doing nothing, the identity fun~tion, and thi~ in a manner which 

is easily detected. The equivalence obtained is too strong and ways must 

be sought to obtain weaker conditions. 

It appears that under certain circumstances, the criterion given 

in Chapter IV may supply sufficient conditions for weaker forms of equiva-

lence, i.e. if one can show that to each base sequence of one graph one 

can find an equivalent sequence of the other and vice versa, then the two 

programs are equivalent. It would be of interest to determine under what 

circumstances, if any, this conjecture holds. Also, there are some 

similarities between that criterion and the recursion-induction principle 

formulated by McCarthy.15 

From the point of view of computational linguistics, a program 

graph may be considered as the definition of a grammar whose terminal 

symbols are the labels associated with the operators of the graph. The 

languages generated by these grammars include the finite-state languages 

16 but are not limited to that class. McNaughton has studied the class of 

languages generated by parentheses grammars which are in turn a subset 

of the backward deterministic grammars. He has shown that the equiva-

lerice problem for parentheses grammars is solvable. It would be of 

interest to investigate the relationship between program graph-like 

grammars and either parentheses or backwards deterministic grammars. 
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FinaJiy, the model and methods of analysis developed in this 

i .. pc r should be useful in tlH' s tu Jy oi problems arising in the de sign of 

1 l 
;:,~'.ynchronous 1nultiprocessor computer systems. In particular, the 

relatively smcill nurnber of node types with which determinism is achieved 

3,18,22 
.. onstitute a workable basis for ti1e design of macro1nodular systems. 



AN ALGORITHM TO GENERATE BASE SEQUENCES 

APPENDIX A 

The algorithm described in this section generates all base 

sequences of a program graph without hang-up states and/ or infinite 

cycles. If the program graph does not satisfy these conditions, an 

appropriate diagnostic is produced and the algorithm stops. 

The generation of the base sequences is accomplished by simula

ting all possible execution sequences during which no propE1r cycle is 

reported more than once. The finiteness of the graph guarantees that the 

process eventually stops. 

We assume a suitable representation of the program graph which 

allowE1 for storing the state of the graph, i.e. the value and status of every 

link. In addition, five separate structures are used to keep track of the 

state of the simulation. These five structures are: 

1. The selector choice list (C-list). 

2. The selector value list (V -list). 

3. The proper cycle list (P-list). 

4. The dynamic enabling function (DEF). 

5. The environment stack (E-stack). 

C-list The C-list contains an entry for every selector in the graph. 

Associated with each entry is a list containing the possible outcomes of the 

application of the selector function, i.e. which output connector to enable. 

Initially, this list cont<,i.ins '+'and'-' for :very entry in the C-list. 

V-list The V-list contains an entry for ev~ry distinct selector 

label in the graph. Associated with each entry is a list of all outcom~s of 

a selector having this label. The entries of these sublists also contain the 

input values corresponding to the outcome, e.g. +~f 
1 
(f2 (x, y}}, z). Initially, 

these sublists are empty for every entrY, in the V -list. 
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P-list The P-list contains an entry for every proper cycle of the 

graph. Associated with each entry is a list of ~11 link~ contained in the 

cycle. Each entry in these sublists have a count field which is initially set 

to zero. 

DEF The DEF is a variable containing the dynamic enabling function 

for the simulated execution sequence. 

The state of the graph, G-list, V-list, P-list, and DEF are collectively 

referred to as the environment. 

E-stack The E-stack is a last-in-first-out list.. Each entry in 

the E-stack is an environment. 

It is convenient to define the followl.ng operations: 

l. Scan i, n 1 

This operation scans the graph looking for a node in an active 

configuration, For this purpose it is assumed that the nodes 

are ordered. The scan always starts at the first node. When 

an active node is found, the variable i is set to point to this 

node and control is transferred to the step following the scan. 

If no active node is found, control is transferred to the step 

labelled ni. 

z. Stack 

This operation obtains a copy of the environment and places it 

on top of the E-stack. The current environment remains 

unchanged. 

3. Pop n 1, n 2 

This operation removes the top element from the E-stack and 

installs it as the current environment. A successful performance 

of the operation transfers control to the step labelled n 1• I! the 

operation cannot be pe.rformed because the E-stack is empty, 

control is transferred to the step labelled nz. 



-1 ll-

4. Outcome i, n l' n2 

This operation picks a number from the list of outcomes found 

in the entry of the C-list corresponding to i which must point 

to a selector. If the list of outcomes is empty, control is trans

ferred to the &tep labelled n
2

. Otherwise, the outcome chosen is 

deleted from the list and the V -list is checked to verify that it is 

an allowable outcome for the selector i, i.e. if the outcome 

chosen is '+' and the input value is y, -(y) should not appear in 

the V-list. If the outcome is not allowed, the process is repeated. 

If the outcome is allowed the following sequence of operations is 

performed: 

a. if outcome list is not empty, stack. 

b. the outcome and input values are added to the V-list 

entry of i. 

c. the DEF is augmented with the chosen selector value. 

d. an indication of the desired outcome is set in the node. 

e. control is transferred to the step labelled n 1• 

5. Do transition i, n 1 , n 2 

This operation updates the state of the graph according to the 

transition table for the node pointed to by i. If i is a selector, 

the information set by step 4 of outcome is used. After updating 

the status and possibly the value of the links involved, the sub

lists of the P-list are searched for all instances of links which 

have been newly enabled. For each such instance found the count 

field is incremented by one. If this causes all members ol a 

sublist to have a count greater than one, control is transferred 

to label n2 • Otherwise, control ~oes to label n 1• 
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6. Reset C The list of outcomes for all members of the 

C-list is initialized. 

In terms of the above operations the algorithm is written as 

follows: 

1. scan i, 13 

2. if i is not a selector, loop junction, or final node, go to step 8 

3, if i is a final node, go to step 11 

4. if is is a loop junction, go to step 7 

5. if the active configuration of the selector does not require a 

functional application, go to step 8 

6. outcome i, 8, 15 

7. if the status of the loop junction inputs is blocked and enabled 

respectively, reset C 

8. do transition i, l, 9 

9. ~ E 1, 15 

10. pop E 1, 16 

11. write DEF and value as a base sequence 

12. go to step 8 

13, if all links are in IDLE status, go to step 10 

14. report hang-up i;itat~ and halt . 
15. report infinit~ cycle and halt 

16. report successful completion and halt. 

The algorithm generates all the b~se sequences by trying all allow-

able combinations of selector, values. This is accomplished in step 6 by 

stacking the environment as it existed prior to every selector application. 

Before the stacking is performed, a note is made that a certain branch has 

been taken by removing the chosen selector outcome from the corresponding 

• 
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C-list entry. Upon successful completion of a base sequence (step 13), th ... 

environment is restored to the point of the last selector application and the 

process continues. If at this point the E-stack is empty, all alternatives 

have been tried. At step 7, all outcomes are rehabilitated upon the occur-
' 

rence of any cycle. All sequence,s which are not base sequences will 

eventually be caught in step 8. When this occurs, step 9 discards the 

current sequence and tries an alternative one. Note that if at this point no 

alternative is present, it can only mean that under no circumstances can 

the cycle be disabled and this is reported as an infinite cycle. 

A similar situation occurs if in step .6 no allowable outcome can be 

found. In this case however, the infinite cycle may be caused by previously-

chosen selector outcomes and need not occur for all execution sequences. 

A hang-up state is reported whenever an active node cannot be found, 

yet these are links in a status other than IDLE. 



VERIFICATION OF PROPERTIES OF THE TRANSITION TABLES 

APPENDIX B 

In this Appendix we verify properties a, b, c, d, and e of the 

transition tables in Table 2. 1. These properties have been used in the 

proof of Th~orem 3. 8. If J. is a link, [ J. ] denotes the number of times 

that J. is enabled or disabled during an execution sequence. 

Property a. For every loop junction-loop output pair of a simple 

graph (see Figure 3. 9), [ J. 1] = [ J. e] iff J. 1 and J. 3 are idle. 

Proof: By lines 1 and 2 of the transition table for loop outputs, 

1 6 can be enabled or disabled only if 1
3 

is enabled. By line 8 of the transi

tion table for loop junctions, 1 3 can be enabled only if I. z is disabled and 

J. 1 is blocked.. By lines 1 through 6 of this same table, I. 1 is enab~ed or 

disabled. Therefore, 1 6 is enabled or disabled at most once for each 

time that J.
1 

is enabled or disabled. 

First, assume that [ J. 1] = [ 1 6 ] • If [J. 1 ] = 0 then J.
1 

and J. 3 are 

necessarily idle since their status must be identical to that occurring in 

the initial state. Therefore, assume [ l 1] = [ l 6] -J:. 0. The next to the 

last status of l 3 must have been enabled. Fo:t·, otherwise, by lines 3, 4, 

5, and 6 of the loop output transition table and the argument of the previous 

paragraph [ l 1] =[ l <) + 1. Thus, the last transition of the loop output was 

either line 1 or line 2 of the ~able and J. 3 is in idle status. Also, if J. 
3 

was 

last enabled, by line 8 df the loop junction table, l 1 is also in idle status. 

This verifies the first part of the property. Now assume both l 1 and l 3 

are in idle status. If l 1 has been in enabled or disabled status at all, 

the last transition of the loop junction must have been line 8 of its table, 

which we have seen can occur at most once for every time I. 
1 

is enabled 

or disabled. Thus, the last transition of :the loop output must have been 
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either line 1 or line 2 of its table. Thus, lb n1ust have been enabled 

or disabled once for each time J. 
1 

has been enabled or disabled, i. e. 

[ l iJ = [ J. 6 ]. Thie verifies the second part of the property. 

Q. E. D. 

Property b. For every loop junction of a simple graph, if l 1 

ie idle, then [.t 2 ] =[ 14 ] iff [1 2 ] =[ J. 3J and both J. 2 and 14 are idle. 

Proof: First, assume [ 1 2 ] = [ .e 4J = 0. By lines 1 through 6 of 

the transition table, it is clear that [ J. 
1 
J = 0 and, therefore, [ l 3) = O. 

Furthermore, 1 4 must be idle and since the graph is simple, by Lemma 

3. 4, there is a proper path containing l 4 and l. 2, and, by Corollary 3. 2, 

1 2 is idle. Now, assume [ l 2 J = [ J. 4 ] f. O. By Lemma 3. 4 and Corollary 

3. 2, 1 4 is enabled or disabled after J. 2 , so tha~ the only possible con

figurations of the loop junction are 2-1 - -, 2 1 - -, or 0 0 - O. But since 

J. 
1 

is idle, only the last configurations, i. e. 0 0 0 0 or 0 0 l 0 are allowed. 

In any event, J. 3 is disabled or enabled and, by lines 2, 3, 5, 6, 7, and 8 of 

the loo!' junction table, J. 3 is enabled or disabled every time that 

1 2 had ::>een in those statuses. Therefore, [ l 2] = [ 1
3

] and J. 2 and 1 4 are 

idle. This shows the first part of the property. Next, assume [ 1 2 ] = [ l 3] 

and both 1 2 and 1 4 are idle. By the transition table, the last transition 

;Jf the loop junction must have been line 8. Therefore, by the same 

argument used above, [ l z] = [ 1 4] . 

Property c. For every loop junction of a simple graph, if l 1, L 2, 

1 3 , and 1 4 are idle, then[lz] =[ 1 3] = [1 4 ]. 

Proof: First, assume [ 1 1 J = 0. Then [ 1
3

] =[ 1
4

] = 0 and by 
. 

Lemma 3. 4 and Corollary 3. 2, [ lz] = 0 also. Now, assume [ L 1] f. O, 

Since .t 1, .t 2, and .t 4 are idle, the last transition of the loop junction 

----------
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must have been line 8 of its table. By property b, [l z] =[ .t 4 ) , and 

by lines 2, 3, 5, 6, 7, and 8 of the loop junction table, [.t 2 J =[ .t 3J. This 

shows that [.t 2 J =[ .t 3] = [ 1 4 J • 

Q. E. D. 

Property d. All input links of an operator, selector, junction, 

or loop output have been enabled or disabled the same number of times 

iff each input link is idle or each is enabled or disabled. 

Proof: For operators, selectors, and junctions the property is 

easily verified by notins.in Table 2. I, that all active configurat\ons of 

these nodes require all inputs to be enabled or disabled, and that the 

completion of a transition places all the inputs in idle status. 

In the case of loop outputs, lines 3, 4, 5, and 6 do not have this 

property. Lines 3 and 4 satisfy an equivalent condition since the transi-

tion places the input links in a status other than enabled or disabled. 

Thus, all it remains is to verify the property for lines 5 and 6, i.e. 

the active configurations Z 1 0 and 2-1 O. In both of these cases the link 

in enabled or disabled status remains in that condition after the transition. 

It follows that if all the input links are enabled or disabled the same number 

of times one of the active configurations 1, 2, 3, or 4 must eventually 

occur. Conversely, if all input links are idle, or either enabled or dis -

abled this last condition must have occurred the same number of times, 

since consecutive occurrences of the configurations of lines 5 or 6 must 

eventually yield to one of the others. 

Q. E. D. 

Property e. If .t. and .t. are input and output links, respectively, 
1 J 

of the same operator, selector, or junction, then [ .li] = l .t jl iff .ti is 

idle. 
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Proof: An cxarninati·Jn of T:iblc 2. l yields that an output link of 

~, node can b,~corne enabll'cl 01 clis;1bled only if all inputs to that node have 

been enabled or disabled. Furthermore, the transitions that effect a 

change of output status place the input links in idle status. This is s11f -

ficient ~o verify both parts of the property. 
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