
',',
. :;

i(.

'·
. •', i·

'I

'';···

::· .
... .:~· ·~· ·, ,•

. \ ... I ' ~ i

,, . ·.

1,'.

J

'·

June'J969

'.··"

-·.--.·

I~TERACTIVE COMPUTER-MEDIATED ANIMATION

by

RONALD MICHAEL BAECKER

S.B., Massachusetts Institute of ".'echnology
(1963)

M.S., Massachusetts Institute of Technology
(1964)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF

PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1969

Signature of Author

Certified by

Accepted by

Department of Electrical Engineering
March, 1969

Thesis Supervisor

Chairman, Departmental Committee
on Graduate Students

INTERACTIVE COMPUTER-MEDIATED ANIMATION

by

Ronald Michael Baecker

Submitted to the Department of Electrical Engineering in
March, 1969 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

ABSTRACT

The use of interactive computer graphics in the construc
tion of animated visual displays is investigated.

The dissertation presents a process called interactive
computer-mediated animation, in which dynamic displays are
constructed by utilizing direct console commands, algorithms,
free-hand sketches, and real-time actions. The resulting
"movie" can then be immediately viewed and altered.

The dissertation also describes a special kind of inter
active computer-mediated animation that exploits the poten
tialities of direct graphical interaction. The animator may
sketch and refine (1) static images to be used as components
of individual frames of the movie, and (2) static and dynamic
images that represent dynamic behavior, that is, movement and
rhythm. Because these latter pictures drive algorithms to
generate dynamic displays, the process is called picture-driven
animation.

Each representation of movement and rhythm determines
critical parameters of a sequence of frames. Thus, with a
single sketch or action that generates or modifies the re
presentation, the animator can exercise dynamic control
over an entire interval of the movie. One natural way to do
this is by mimicking in real time a movement or a rhythm,
using a stylus or a push-button.

These concepts are supported by experience with three
special-purpose picture-driven animation systems which have
been implemented and used on the M.I.T. Lincoln Laboratory
TX-2 computer.

-2-

The dissertation also presents an outline of the proposed
design of a multi-purpose, open-ended, interactive Animation
and Picture Processing Language. APPL is a conversational
language which accepts direct sketches, direct console com
mands, and algorithms that control interactive dynamic dis
plays.

Solutions are presented for the following problems:
How can the system be structured so that the command set can
easily be augmented by the animator? How can movie time be
represented in the language, and how does the choice of
representation interact with the flow of program and system
control? What computational data structure can facilitate
the modeling of seQuential and hierarchic structures of pic
tures and dynamic data? How can we provide a rich picture
description capability in the language? How can we facilitate
the construction of programs which describe the user's inter
action with the system?

APPL programs are included to demonstrate that the lan
guage can be gracefully used to construct dynamic displays,
to build system tools that aid the construction process, and
to implement special-purpose interactive computer-mediated
animation systems.

Thesis
Title:

Supervisor: Edward L. Glaser
Associate Professor of Electrical Engineering, M.I.T.
(currently Chairman, Department of Information and
Computer Sciences, Case Western Reserve University)

-3-

PREFACE ANV ACKNOWLEVGMENTS

Sevenat 6niendh have ahked me, with penhaph a tinge 06

envy in thein voiceh, how I Wah 6ontunate enough to 6ind a

thehih topic that, but non the inexonabte pnehhune 6nom a cen

tain dna6t, could have been 6un.

The thehih began with an ittuhion 06 inhpination and my

good 6ontune in being in Bohton at a time when inteneht in

computen animation wah high. Two ideah kept me awake one

night in Novemben 06 1966--one wah ho hpeci6ic that it wah

neven uhed, the othen ho genenat that the dihhentation banety

hcnatcheh ith hun 0ace. Yet a 0athe Euneka ih betten than none,

and he who thinkh he hah 6ound a pnomihing tnait hah at teaht

6ound a tnait. At that time tatkh with Watty Feuenzeig and

Ted Myen at Bott, Benanek, and Newman had atneady awakened my

inteneht in computen animation. Pno6ehhon Seymoun Papent at

M.I.T. huggehted wonk on a language 6on animating htick 6iguneh.

Pno6ehhon Ivan Suthentand, now at the Univenhity 06 Utah but

then at Hanvand, pnopohed uhe 06 wave 0onmh to de6ine changing

pictune panametenh, and Tim Johnhon 06 M.I.T. entanged upon

thih huggehtion. Gnoup 23 06 Lincoln Labonatony had atneady

o66ened uhe 06 the TX-2 computen with ith hupenb gnaphich

handwane and ho 0twane, a hyhtem with which I had become 6amitian

duning a hummen'h wonk on the inten6ace 06 gnaph theony and

gnaphich. So, late in Vecemben 06 7966, I began wonk on a

htick 6igune animation pnognam.

By eanty Manch a tone htick 6igune, headtehh but opti

mihtic, took ith 6inht 6attening hteph aQnOhh a TX-2 hcope.

Soon Enic Mantin, 0nom the Hanvand Canpenten Centen 6on the

Vihuat Anth and Cambnidge Vehign Gnoup, Inc., and I wene
beginning to teann how to contnot ith dynamich by cnudety

hketching and ne4ketching wave6onmh. Thuh we began intenactive

computen-mediated animation.

-4-

Somewhat eanlien, I had begun inten6ive and 6on me

thought-pnovoking di6cu66ion6 on computen animation with

Pno6e66on Edwand L. Gla6en 06 M.1.T., who 6ince then ha6

become Chainman 06 the Vepantment 06 In6onmation and Computen

Science6 at Ca6e We6tenn Re4enve Univen6ity in Cleveland. In

May 06 1967 1 6ubmitted a the6i6 pnopo6al, with Pno6e66on

Gla6en a6 menton. The pnopo6al 6tne66ed the 6ynthe6i6 on
movement thnough the 6ketching and gnaphical editing 06
wave6onm6, and the cneation o{i an animation language in which

pictune6 could be implicitly de6cnibed and netnieved in tenm6

06 thein "pnopentie6."

A£ten a 6ummen 6pent on gnaphical debugging, I began in

Octoben the de6ign 0£ an intenactive animation language.

Thene 6oon 6ollowed a pnematune and abontive attempt at an

implementation 06 the yet 6uzzily-de6ined language. In ne-

6pon6e to the pne66une 06 a 6peaking commitment to a gnoup on
anti6t6, 1 netunned to the TX-2 to genenate mane example6 on
computen animation. gnanted 0nom the 6tick nigune 6Y6tem

(AVAM) an ab6tnact dynamic ant pnognam (EVE). Having ju6t de

vi6ed the p-cunve a6 an altennate appnoach to the 6peci6ication

on continuou6 movement, I de6igned EVE to illu6tnate gnaphically

the powen 06 the dynamic mimicking 06 a motion and it6 necond

ing by the computen 6on u6e in an animated di6play. (In thi6

goal I appanently 6ucceeded, 6on one New Yank avant-gande

6ilm-maken, excited by 6ome animation 0nagment6 0nom EVE,

ne6ponded, "Man, that'6 pune undengnound--pune undengnound!")

I al6o con6tnucted a 6impli6ied animation 6y6tem in

which one could 6ketch component6 06 0name6. Thi6 appealed
to the anti6t in Enic in a way that the othen two 6y6tem6 had

not. 1 then nealized the need to couple the nichne66 06

dynamic contnol an6onded by the u6e 06 wavenonm6 and p-cunve6

with the nichne66 06 6tatic imageny to which anti6t6 and

animaton6 wene accu6tomed. The ability to u6e wave6onm6 and

p-cunve6 to de6ine the tnan6lation on anbitnany 6ketched

-5-

lmage6, now pant 06 the anlmatlon 6y6tem, wa6 cleanly ln6u6-

{,lclent. Enlc continued to 6tne66, and I continued to ne6l6t,

the notion that anlmatlon nequlned dl6cnete plctune change a6

well a6 contlnuou6 movement. What tnoubled me wa6 an appanent

conceptual gap between continuou6 movement and dl6cnete plc

tune change, and 60 I netunned to the dnawlng boand {ion anothen

pa66 at the language de6lgn.

Suddenly, ln late 6pnlng 06 1968, the altennatlon between

pnactlcal computen anlmatlon attempt6 and conceptual language

de6lgn began to pay 066, ju6t a6 Pno6e66on Gla6en had antici

pated all along. A 6olutlon began to gel, one ln which thene

wene nice panallel6 between c.ontlnuou6 and dl6c.nete plctune

c.hange, betwee.n contlnuou6 and di6cnete movement, betwec" c0,c-

tinuou6 plctonlal openatlon6 6uch a6 tnan6latlon and dlJcnete

plctonlal openatlon6 6uch a6 ln6entlon and deletion, and

between c.ontlnuou6 plctune attnlbute6 de6lnlng coondlnate6

and dl6c.nete µle.tune attnlbute6 de6lnlng 6tnuc.tune. A vlew

polnt wa6 cny6talllzed ln which c.entaln cla66e6 06 data

6equence6, called global de6c.nlptlon6 06 dynamlc6, wene u6ed

a6 c.hanac.tenlzatlon6 and genenatlve de6lnltlon6 06 ongo~ng

plctune change, and in whlc.h cla66e6 06 6tatlc and dynamic

plctune6 wene u6ed a6 de6lnltlon6 and 6ynthetlc tool6 (ion

manlpulatlng global dynamic de6c.nlptlon6.

Thene wa6 6u66lc.lent advance on two 6nont6, thnoughout

the 6ummen and 6all 06 1968, 60 that the the6l6 06 the dl6-

6eJttatlon, 6tated ln the Intnoductlon, could be 6upponted.

Fln6t, the anlmatlon 6y6tem qulcRly gnew lnto 6omethlng quite

dl66enent and o6 c.on6ldenably mane powefl, the GENEnallzed-cel

Anlmatlon SY Stem (GENESYS I. A6 c.noc.odlle66 e6 began to cavont

ac.no66 the TX-2 6cfleen, plctune-dnlven anlmatlon became a

µnae.tic.al fleallty. Second, the 6_nlmatlon and £le.tulle _Eno

c.e66lng 1=_anguage (APPL) wa6 Jte{ilned thnough the paln(iul con-

6tfluc.tlon and te6tlng on papell o{i algonlthm6 that de ed

- 6-

both dynamic di-0play-0 and 6pecial-punpo6e intenactive

computen-mediated animation -0y-0tem6.

And now the di-0-0entation i-0 complete. Many individual-0,
including tho-0e alneady cited, have contnibuted to the pno
gne-0-0 06 the ne-0eanch. It i-0 with deep appneciation that I
acknowledge:

Pno6e-0-0on Edwand L. Gla-0en, 6on hi-0 encounagement, hi-0 wi-0e
and patient coun-Oel, hi6 in-0ight, and hi6 contagiou6
enthu6ia6m and 6aith in the impontance 06 computen anima
tion;

Vn. William R. Suthenland 06 MIT Lincoln Labonatony, £on hi-0
con6tant 6uppont and expne-0-0ed con6idence in my wonk, hi-0
many cane6ul neading6 06 chapten dna 0t-0, and oun numenou6
thought-pnovoking di-0cu66ion-0;

Pno6e-0-0on Munnay Eden, non hi-0 kind advice and guidance thnough
out my yean-0 at MIT, and hi-0 valuable comment-0 on the
manu-0cnipt;

Mn. Enic Mantin, &on hi-0 6neely-given time and 6pinited intene-0t
in di-0cu66ing and expenimenting with animation -0y-0tem-0;
(by the way, Enic, the -0y-0tem i-0 beginning to look a-0 i6
it might po66ibly 6oon be almo6t cna-0h-6nee and bug-pnoo6,
I hope ...);

Mn. Jame-0 E. Cunny 06 Adam-0 A-0-0ociate-0, &on hi-0 thought6ul
-0ugge-0tion6 on pant-0 06 the di-0-0entation;

Mn. Timothy John6on 06 MIT, Vn. Amedio Anmenti 06 Lincoln
Labonatony, and Pno 0e-0-0on Adol6o Guzman 06 MIT, &on thein
comment-0 on the manu-0cnipt; Mn. Jack Nolan and Mn. Robent
Vavi-0 06 Lincoln Labonatony, and Pno 0e-0-0on Thoma6 G.
Stockham, Jn., 0on advice and a-0-0i-0tance;

The Digital Computen-0 Gnoup(23) 06 MIT Lincoln Labonatony, 6on
6ta66 -0envice-0, computen time, and -0timulating envinon
ment o0 many talented pno£e-0-0ional-0; Speci 0ic contnibu
tion6 have come 0nom Mn. C. S. Lin, who de-0igned the
cincuit linking the movie camena to the computen, and
Mn. Robent McConmack and Mn-0. Nancy John6on 06 Adam6
A-0-0ociate-0, who pnognammed pant-0 06 GENESYS;

Mn. Ephnaim Cohen, Mn-0. John6on, Mi-0-0 Banbana Koppel, and Mi66
Lynn Smith, 0on thein genenation 06 expenimental mini
cantoon-0, and 0on thein help6ul comment-0 on GENESYS;

Mn-0. Lila Hantmann, 6on hen typing 06 the 0inal copy;

-7-

AVAM, EVE, and GENESYS, 6on a-0-0i-0tanQe in pnepaning the illu6-
tnation6 &ound in the di66entation; it i-0 believed, inQi
dentalty, that alt movie-0 £nom whiQh 6name6 ane inQluded
would obtain one on the nottowing two nating6 unden the
Motion PiQtune Code on Set£-Regutation, eithen G, -0ugge-0ted
£on GENERAL audienQe6, o~ M, 6ugge-0ted £on MATURE
audienQe6 (panentat di-0cnetion advi-0ed);

Mn. Robent Gotdbeng, Mi-0-0 Patnicia Lewi-0, my -0i-0ten, and my
panent6, £an thein help in numenou-0 way-0, at numenou-0
time-0.

al-00 wi-0h ta than~ the othen-0, namete-0-0 but not 6ongotten,
who have helped.

Any ennon-0 nemaining in the manu-0Qnipt ane on coun-0e -0alely my
ne-0pon-0ibility.

The won~ neponted henein wa-0 6upµonted in pant by Pnoject MAC,
an MIT ne-0eanch µnajeQt 6pon-0oned by the Advanced Re6eanQh
Pnoject6 AgenQy, Vepantment on Ve£en-0e, unden 066ice 06
Naval Re-0eanch ConthaQt NONR-4102(01), and in µant by
MIT LinQotn Labonatony, oµenated with -0uµpont 6nom the
U.S. AdvanQed Re-0eanch PnojeQt6 AgenQy.

-8-

TABLE OF CONTENTS

INTERACTIVE COMPUTER-MEVIATEV ANIMATION

Uhing Intenactive Computen Gnaphich in the

Con~tnuction 06 Animated Vihuat Vihplayh

ABSTRACT .

PREFACE AND ACKNOWLEDGMENTS.

TABLE OF CONTENTS.

WHAT IS ANIMATION?

INTRODUCTION
What has work to date in computer animation
achieved, and what has not been achieved? The
general features of digital computer-based ani
mation systems, and two unique systems using
analog and hybrid computers, are described. The
approach of the dissertation is stated, and dis
tinguished from what has been done in the past.

2

4

9

19

The thesis of the dissertation is then formulated. 21

A NOTE TO THE BUSY READER. 33

I.A.

Footnotes to Introduction 34

INTERACTIVE COMPUTER-MEDIATED ANIMATION. 36

1. THE ROLE OF DIRECT GRAPHICAL INTERACTION
IN THE SYNTHESIS OF ANIMATED VISUAL DISPLAYS 37

2. INTERACTIVE COMPUTER-MEDIATED ANIMATION
The process of interactive computer
mediated animation is defined in terms
of the minimal components required to
realize a working system ..

3. A SCENARIO ILLUSTRATING THE USE
OF AN INTERACTIVE COMPUTER-MEDIATED
ANIMATION SYSTEM .

4. IMPLICATIONS OF THE SCENARIO
The scenario is interpreted and
its significant features listed.

Footnotes to I.A ..

-9-

46

52

60

62

I. B. THE DEFIKIIION OF PICTURE DYNAMICS-
PICTURE-DRIVEN ANIMATION

Three old approaches to the
of a sequence of frames are

synthesis
described:

1. THE INDIVIDUAL CONSTRUCTION OF
EACH ~RAME IN THE SEQUEUCE .

2.

3.

THE INTERPOLATION CF SEQUENCES
OF FRAMES INTERMEDIATE TO PAIRS
OF CRTTTCAL FRA~ES .

TEE GENERA~ICN OF FRAMES FROM AN
ALGORITHMIC DESCRIPTION OF THE SEQUENCE.

A new approach, picture-driven
ani~ation, is introduced:

4. PICTURE-DRIVEN ANIMATICN
Pictures "drive" algorithms to generate a
sequence of frames. The pictures repre
sent data sequences, whose successive
elements determine critical parameters in
each frame. The data sequences are called
global descriptions of dynamics.

5. THE RELATIONSHIP, IN GENESYS, OF CELS
AND CEL CLASSES TO GLOBAL DYNAMIC
DESCRIPTIONS
GENESYS is a picture-driven animation
system in which algorithms produce dynamic
displays by combining static images, called
eels, wjth global dynamic descriptions

There are three kinds of
dynamic descriptions:

6. PATH DESCRIPTIONS

7.

Picture changes that are potentially
continuous variations of value are
expressed by path descriptions

SELECTION DESCRIPTIONS (1)
Picture changes that are recurring discrete
choices of pictures, data, events, or
actions are expressed by selection
descriptions ..

8. RHYTHM DESCRIPTIONS
Rhythm descriptions express patterns of the
triggering, pacing, coordination, and
synchronizing of picture change.

-10-

64

70

72

74

76

Bo

82

I. c.

9. SELECTION DESCRIPTIONS (2)
--DYNAMIC HIERARCHIES
The hierarchic construction of
complex movements out of simple
ones is described.

10. GENESYS GENERALIZED
Additions to GENESYS arc contemplated.
These would allow dynamic descriptions
to play an even greater role in de
fining picture dynamics.

Footnotes to I.B ..

THE ART OF DEFINING AND REFINING GLOBAL
DYNAMIC DESCRIPTIUNS--THE USE OF
PICTORIAL REPRESENTATIONS.

1. SPECIFYING GLOBAL DYNAMIC DESCRIPTIONS
Six general approaches are described

2. WAVEFORMS, P-CURVES, AND OTHER
PIC~ORIAL REPRESENTATIONS OF PATH
DESCRIPTIONS
Both static pictures, such as the
waveform, and dynamic pictures, such
as the p-curve, are considered ..

3. PICTORIAL REPRESENTATIONS OF PATH
DESCRIPTIONS--AN ANALYSIS
Criteria are established for evaluating
the utility of various pictorial repre
sentations in the construction and
modification of dynamic descriptions ..

4. SKETCHING AND RESKETCHING PATH
DESCRIPTIONS
This includes both the free-hand
sketching and dynamic mimicking
of desired animated behavior ..

5. EDITING AND GRAPHICALLY REFINING
PATH DESCRIPTIONS
The essential features of a flexible
editing system are outlined.

6. SPECIFYING SELECTION AND RHYTHM
DESCRIPTIONS
Techniques are similar to those used
in the definition of path descriptions ..

-11-

87

93

95

99

. 107

• 113

. 118

. 123

I. D.

I.E.

7. COORDINATING PARALLEL ACTIONS
This is a critical problem of
picture-driven animation ..

8. IMPLICATIONS OF THE FACT THAT
DEFINING AND REFINING DYNAMIC
DESCRIPTIONS IS AN ART
The argument develops the need for
an extensible animation system ..

Footnotes to I. C ..

127

130

134

A DETAILED EXAMPLE OF PICTURE-DRIVEN
ANIMATION--MANY SYNTHESES OF A PULSATING HEART
Numerous techniques for constructing this
simple dynamic display are presented. Each
technique facilitates a certain kind of
control over the movement and rhythm of the
resulting movie. 136

Footnotes to I.D.. 147

EXPLORATORY STUDIES IN PICTURE-DRIVEN ANIMATION
There are presented results, observations,
and interpretations from the use of the three
picture-driven animation systems that have
been implemented on the M.I.T. Lincoln
Laboratory TX-2 computer ..

1. CONSTRUCTING, VIEWING, AND FILMING
MOVIES ON THE TX-2
Features of the movie construction,
playback, and filming processes, common
to all three systems, are described.

2. ADAM
This is a special-purpose system for
the animation of a stick man ..

3. EVE
This is a special-purpose system for
the animation of an abstract figure.

4. GENESYS--THE GENERALIZED-GEL
ANIMATION SYSTEM
The proces~f using GENESYS
is further clarified ..

Footnotes to I.E .•

-12-

148

149

151

159

162

174

I. F.

II. A.

CONCLUSION--THE REPRESENTATION OF
DYNAMIC INFORMATION--THE CONCEPT
OF A DYNAMIC DISPLAY
Picture-driven animation is summarized and
its advantages characterized. To exploit
these advantages, the animation system must
allow a plastic relationship among global
dynamic descriptions, pictures, and
processes of picture construction
(actions)--they must be interchangeable
representations of dynamic behavior and
equivalent components in the generation of
dynamic displays. Thus, further motivation
for the design of an extensible animation
system is developed.

A GENERAL INTRODUCTION TO THE DESIGN OF AN
OPEN-ENDED, MULTI-PURPOSE, INTERACTIVE
COMPUTER-MEDIATED ANIMATION SYSTEM.

1.

2.

3.

4.

Aspects of the design are motivated
terms of the relevant history of
computer graphics and animation:

THE ESSENTIAL FEATURES OF SKETCHPAD,
BEFLIX, AND CAFE.

in

SOME SPECIFIC ISSUES RAISED BY BEFLIX,
CAFE, AND GENESYS ..

The system must be open-ended--the
directly executable commands funda
mental to any interactive computer
graphics system must also serve as
statements in a complete programming
language, one which is capable of
definitional extension. This conver
sational language will be called APPL,
an ~nimation and ~icture ~rocessing
.!.:_anguage:

ESSENTIAL FEATURES IN THE DESIGN OF APPL.

A SCENARIO ILLUSTRATING SOME USES OF APPL

5. IMPLICATIONS OF THE SCENARIO
The system is flexible and multi
purpose, for it may be used:
(1) to construct animated vjsual displays,

by directly designating a sequence of
APPL commands for immediate execution,
or by writing a program in APPL;

-13-

. 176

184

185

192

195

199

II. B.

II.C.

6.

(2) to bulld system tools that aid the
constructjon process; and,

(3) to implement special-purpose inter
active computer-mediated animation
systems

WHAT IS TO COME, AND WHAT IS NOT
TO COME, AND WHY
The language is developed in the next
four chapters; the philosophy of the
presentation is stated here.

Footnotes to II.A ..

T3F INCORPORATION OF A COM~AND LANGUAGE INTO
AN ANIMATION PROGRAMMING LANGUAGE

COMMANDS AND PICTORIAL DATA IN APPL
The interaction of a user with APnL
resu!ts in the creation of a pic
torial data base consisting of
structured collections of pictures
and numbers ..

2. EXTENDING THE COMMAND STRUCTURE
Arbitrary command sequences may be
saved for delayed execution under
system-directed flow of control.
New commands so defined may be
nested to arbitrary depth; hence
7he language is open-ended.

3. ~H:S SCOPE ISSUE
Tho issue of the scope and binding
o~ names in programs is discussed.
A distinction is made between the one
g'obal (system-wide) pictorial data
base, and various local data bases
bcJ_ongin~ to individual programs.

Footnotes to II.B ..

THE I~TERACTIVE DEFINITION OF
DYNAMIC DISPLAYS IN APPL.

TE? INDIVID~AL CONSTR~CTION OF
EACH FRAME IN THE SEQUENCE
The use of APuL in the ind'vidual
sketching o~ a sequence o~ frames
ls i2-lustrated.

-14-

2 08

21C

212

214

. 21 5

?19

00 ['
LC]

226

2?7

II. D.

2. TEE GENERATION OF FRAMES FROM AN
ALGORITHMIC DESCRIPTION OF THE
SEQUENCE--THE CONCEPT OF MOVIE TIME
An example of the algorithmic defini
tion of a dynamic display is presented
and analyzed, with particular concern
for the implications of real time
construction and playback of the
movie, The discussion motivates the
introduction of the concept of simu
lated, or movie time.

3. THE MODULAR DEFINITION OF CONCURRENT
DYNAMIC ACTIVITIES
A mechanism of program control,
quasi-parallel processing, is adopted
from simulation languages to facilitate
the specification of parallel actions
in a movie.

4. THE FLOW OF CONTROL AMONG INTERACTIVE
APPL PROGRAMS
Control is distributed, during the
passage of movie time, among instances
of APPL programs in quasi-paralleJ
execution. A mechanism called the
agenda mediates the flow of control.
Particular emphasis is placed on the
effect one program can have on
another, and on ways the animator's
use of the stylus, push buttons, and
other devices can affect the flow of
control and the passage of movie time ..

Footnotes to II.C ..

APPL'S DATA STRUCTURE FOR MODELING
PICTURES AND GLOBAL DYNAMIC DESCRIPTIONS.

1. DESIGN CRITERIA FOR A DATA STRUCTURE
The goals are related to the needs
for sequential and hierarchic struc
tures in animation and picture
processing.

-15-

• 230

• 2 3 6

251

?52

II. E.

2. THE AGGREGATE

3.

This data structure shares certain
features with (ordered) sets, arrays,
and rings, and is a generalization
of all ordered hierarchic data
representations. Linguistic con
structs for its manipulation are
enumerated. The assignment of names
to values and the issues of struc
ture sharing are discussed.

AN ILLUSTRATION OF MODELING COMPLEX
PICTURES BY PICTORIAL AGGREGATES.

4. ILLUSTRATIONS OF MODELING GLOBAL
DYNAMIC DESCRIPTIONS BY
SCALAR AGGREGATES .

The parallel mechanisms for representing
structured pictures and dynamic descrip
tions allow a very plastic representation
of dynamic information. It also facili
tates the implementation, through
extensions of APPL, of the mechanisms
re~uired for picture-driven animation:

5. PICTURE-DRIVEN ANIMATION IN APPL.

Footnotes to II.D.,

MECHANISMS FOR DESCRIBING AND MANIPULATING
STRUCTURED PICTURES IN APPL .

1. ATTRIBUTES AND PROPERTIES OF PICTURES
An attribute is a scalar-valued or
picture-valued function of a picture.
The value of an attribute of a pic
ture is called a nroperty. Sub
pictures possessing certain properties
may be isolated by the application of
a picture selection function.

2. THE DEFINITION OF NEW PICTURE TYPES
The type attribute distinguishes
classes-of pictures with individual
characteristic features. The user
may extend the descriptive capability
of his language by defining new
picture types ..

-16-

256

267

270

272

276

277

278

. 287

III .A.

III.B.

3. AUXILIARY DEFINITIONS OF PICTORIAL
ATTRIBUTES AND OPERATIONS
He further extends his ability to
manipulate classes of pictures by
defining new attributes, and by
making auxiliary definitions of
attributes and operations which
refer to their behavior when
applied to pictures of a new type ..

Footnotes to II.E •.

SUMMARY AND CONCLUSIONS.

DISCUSSION AND SUGGESTIONS FOR FUTURE WORK
This chapter further comments upon and
criticizes the dissertation, points out
what has not yet been accomplished, and
suggests what should next be done in
interactive computer-mediated animation.

1. DIFFICULTIES ENCOUNTERED IN
IMPLEMENTING AND USING
ADAM, EVE, AND GENESYS
These problems are described with
reference to published literature
on components of the TX-2 inter
active graphics environment.

With respect to picture-driven
animation and the proposed design
of APPL, the development of future
interactive animation systems is
considered, and some unanswered
questions are posed for future
research.

2. WHAT TO DO NEXT IN PICTURE-DRIVEN
ANIMATION.

3. THE IMPLEMENTATION AND FURTHER
GENERALIZATION OF APPL .

4. HOW SUPPORTING SUBSYSTEMS, BOTH
HARDWARE AND SOFTWARE, COULD BETTER
FACILITATE INTERACTIVE COMPUTER-
MEDIATED ANIMATION
Some avenues of research towards better
environments for interactive animation
are suggested.

-17-

296

302

303

307

308

320

321

324

5. THE FEASIBILI~Y OF i•TE.4qTIVE
COMPUTER-MEDIATE~ A·~~t~N
A numb41.r 9t . .. facto~• vtll< t.ter,11ine
the eceno~o and pr~ti.o-~J, c"fi•bU·
i ty, p re.se~:t &n.d :(v,.t.~e t -o.t ~\er-.
active coap..u1;e:l"-ae4~.a.,\;ed, ~•&1'ien ,., • •. , • 328

6, APPLI<J;A'l'IO-l'fS OF :Ili'?"J!f1UC1?1E
COMPUTER-JO;DIATED 4JJIIU.TI~li
Uses in educational til .. aking,
psychology, psychiatry, and the
arts are discussed,;,··· .- .••. , • , ,. , , • ,332

Footnotes to III.B, ••• • 335

REFERENCES . • . • . . ~ 337

APPENDIX 0:

BIOGRAPHICAL NOTE •••••••• , , •• , 35.0

WHAT IS ANIMATION?

***Animation i6 not .the ant 06 DRAWINGS-that-move

but the a~t 06 MOVEMENTS-that-ane-dnawn.

***What happen~ be.tween each 6name i6 mane impontant

than what exi6t6 ~ each {i~ame.

***Animation i6 the~e6o~e .the ant 06 manipulating

the invi6ible inten6.tice6 that lie between {iname6.

The inten6tice6 ane the bone6, i)le6h and blood oi) the

movie, what i6 on each {iname, menely the clothing. 1

Nonman McLa~en I* 1 I

National Film Boand--Canada

Thi6 di66entation may be neganded in pant a6 an inve6tigation

o{i .the u6e on the compu.te.n in "the ant 06 SIOVEMENTS-tha.t-ane

dnawn," ln the manlpula.tlon at) "the lnvl6lble lnten6.tlce6 .that

lie between 6~ci_me6."

All t)ootnote6 I* ... I may be {iound at .the e.nd o{i the Chap.te~
ln which they occun. l*l) l6 located on page 34.

-19-

Wheneah a htatic image (huch ah a Picahho on a complex gnaph)

may convey complex in 0onmation thnough a hingle pictune,

animation conveyh equivalently complex in6onmation thnough

a hequence 06 imageh heen in time. It ih chanactenihtic on

thih medium, ah oppohed to htatic imageny, that the actual

gnaphical in 0onmation at any given inhtant ih nelatively

hlight. The hounce on in6onmation non the viewen on animation

ih implicit in pictune change: change in nelative pohition,

hhape, and dynamich. Thene 0one, a computen ih ideally huited

to ma~ing animation ttpohhible'' thnough the nluid neoinement

on thehe changeh. 4

Canpenten Centen £on
the Vihual Anth,

Hanvand Univenhity,
and

Cambnidge Vehign Gnoup, Inc.

-20-

INTRODUCTION

The animation industry is ripe for a revolution.

Historical accidents of available technology and knowledge

of visual physiology have led to the evolution of the ani

mated film as "one that is created frame-by-frame." 3 The

prodigious quantities of labor required for the construction

of twenty-four individual frames per second of film have led

to a concentration of animation activity in the assembly-

line environments of a few large companies, an artificial

yet rarely surmountable separation of the artist from his

medium, and extravagant costs.
2

(*2) In conjunction with

other trends in American society, the result is usually what

the English critic Stephenson describes as "the respectable

sadism and sterotype of commerce." 3 Yet he offers this hope-

ful prediction in concluding his 1967 study, Animation in the

Cinema: "There seems every reason to look forward to changes

which would make it possible for the creative artist to put

on the screen a stream of images with the same facility as

he can now produce a single still picture." 3 This paper

explains how a creative artist, aided by a computer, can de-

fine a stream of images with the same facility as he can now

produce a very few still pictures.

Although the computer's entrance into animation has been

a recent one (1964), 5 • 6 the growth of interest and activity

B-14 (4) has been phenomenal. *3,* Experience to date strongly

-21-

suggests that the following statements are true:

(1) The animated display is a natural medium for the record-

ing and analysis of computer output from simulations and

data reduction, and for the modeling, presentation, and

elucidation of phenomena of physics, biology, and engi-

. 15-20 neering. Depiction through animation is particularly

appropriate where simultaneous actions in some system

must be represented. If the animation is the pictorial

simulation of a complex, mathematically-expressed physical

theory, then the film can only be made with the aid of a

computer.

(2) The computer is an artistic and animation medium, a

powerful aid in the creation of beautiful visual

phenomena, and not merely a tool for the drafting of

regular or repetitive pictures. 21 - 2 5

(3) The formal modeling of pictures by complexes of algo-

rithms and data facilitates the continued modification

of a single animation sequence and the production of a

series of related sequences.

This dissertation is a study of ways in which man, aided

by a computer in an interactive graphical environment, can

synthesize animated visual displays. I stress the coincidence

of the words "interactive" and "graphical"; the animator must

interact directly with the production of his film in a way

which may truly be called graphical, that is, by sketching and

-22-

modifying pictures, and by viewing in real time successive

versions of the movie. (*5)

Computer animation is the process of constructing

animated films using a computer. The approach of this dis

sertation differs significantly from that of past (and, to

the best of my knowledge, present) work in computer animation.

The difference is reflected in the phrase, "interactive

computer-mediated animation." I use this terminology to

stress that the computer is a medium with which the animator

interacts graphically to create dynamic displays. These may

later be recorded on photographic film or video tape, but

this is not an essential part of the process.

We begin, therefore, by reviewing other work in computer

animation. Central to the design of any animation system is

the choice of the style and extent of man-machine communica

tion best suited to Dotential users of the system. (*6) We

shall look at the choice that has been made in several digital,

hybrid, and analog computer systems.

-23-

Digital Computer Systems

All but two computer animation projects have used

general-purpose digital computers, with punched-card or

typewriter input of written language, and off-line movie

output to a microfilm recorder or scope-mounted camera. The

animator generally submits a movie as a deck of punched cards,

and views the resulting film hours or days later. CAFE, the

Computer-Aided Film Editor system developed at M.I.T. Lincoln

Laboratory, allows a movie-maker to define and edit a film

from an on-line typewriter.
26

His interaction, however, is

not graphical--he cannot sketch pictures and he too must wait

hours or days to see the film.

Some workers using digital computers have made minimal

changes to existing programming languages, such as FORTRAN,

in order to attain more quickly the capacity for movie genera-

tion.
10 (*7) In other instances a language has been designed

expressly for animation, as was done in providing Bell Tele-

phone Laboratories movie-makers with BEFLIX, the first true

animation programming language.5• 6
Users of both augmented

FORTRAN and of BEFLIX can in principle write arbitrary algo-

rithmic descriptions of dynamic pictures. Still a third

approach is that of CAFE, which is a package of commands, a

26 control language. A limited number of useful algorithms

are embedded in the interpretation of the commands. This

special-purpose graphics system lacks the ability to accept

and interpret algorithms expressed in a programming language.

(*8)
-24-

The ability to define pictures by giving formal generative

descriptions has enabled many programmers, scientists, and

engineers to produce animated films. That many such indivi-

duals can now become animators is an attractive result. 27

Very few artists, however, have attempted computer animation.

(*9) To use BEFLIX or CAFE, an animator trained only in

traditional media and techniques is forced to learn a com

pletely new "language," a completely new way of thinking. (*10)

Stan Vanderbeek, a creative and inventive film-maker who has

experimented with many media, claims that it took him nearly

two years to attain real fluency in the use of BEFLIX. (*11)

This must imply that BEFLIX, although a significant and pace

setting contribution, fails (for Vanderbeek, at least) to

transform the raw computer into an effective, responsive,

animation-machine and animation medium. I claim that failure

is likely a priori, for some direct graphical interaction is

a prerequisite for achieving this transformation. (*12)

-25-

Analog and Hybrid Computer Systems

Two other groups achieve varieties of direct graphical

communication with very different equipment configurations,

hybrid and analog computer systems,

In a 1967 paper, Miura, Iwata,
28

and Tsuda report:

We have recently developed two computing methods
for producing animation: (1) Representing the picture
in mathematical equations and moving it by switching
the constants of the equations (analog computer method);
and (2) having two frames drawn by an animator. The
curve indicating the movement between these two frames
is then read into the computer. According to the re
sults calculated by the computer, animations between
the two frames are machine drawn (hybrid computer
method).

This method [the analog computer method] has the
advantage that the pictures produced on the cathode ray
tube can be moved on real time. However, the method
also has two important drawbacks. One is the fact that
it is difficult to produce a picture which is faithful
to the artist's intention, The second drawback is that
in order to obtain complicated pictures the computing
circuit itself will become complicated.

Furthermore, they note that the constants in the analog

computer method may be varied "either manually or under the

program control of the digital computer." Yet no techniques

for generating and modifying these variations are described.

Setting the constants individually in each frame is not a

viable method.

In their hybrid computer solution for interpolation; the

animator must decompose all sketches into curved segments.

He must define, for each segment, the original curve, the

curve after it has been moved or modified, corresponding

-26-

sequence of representative points along each curve, and paths

of interpolation for the two endpoints of the segment. In a

variation on the technique, the final curve need not be speci-

fied. A combination of translation, rotation, expansion, and

contraction is employed by the computer to carry out an inter-

polation of the representative points. The solution, although

the only one published to date, is far from ideal. The

decomposition into segments and the identification of corres

ponding points will be time-consuming and frustrating for an

animator, especially since the choice of segments and points

must be based on geometrical qualities of the curves and not

on symbolic relationships among picture parts. Furthermor·e,

no mention is made of the problem of hidden lines, or occlusion

of picture parts.

Lee Harrison of Computer Image Corporation in Denver has

designed and built a hybrid computer specifically for anima

tion. 29 The system, not yet described in the published

literature, is novel and innovative. Movies with texture

may be viewed in real time. Hardware techniques solve a

useful special-case of the hidden line problem. All images

must be synthesized by literally wiring a plugboard to model

a stick figure, and then modulating the frequency, length,

and intensity of a vector that spins rapidly around each

stick. The result is an interesting shimmering, filmy quality,

and so Computer Image terms the process "synthesizing skin."

-27-

Harrison is an artist as well as engineer, and has con

ceptualized and developed his machine over a span of years.

Sample experimental films, many produced in a single night's

work, are vivid proof of his control over his medium, and

constitute the most exciting computer animation produced to

date. Yet I question whether many animators will find as

natural and useful the enforced modeling of pictures through

stick figures and rotating vectors. Wiring a model on a

plugboard is archaic in this age, but was quick and economi-

cal in the early stages of their work. They are planning to

introduce a small digital computer to assume this and other

functions. From what I have seen and heard described, they

still need better techniques for describing and controlling

the temporal behavior of the parameters of the rotating vectors.

These analog and hybrid systems allow direct graphical

interaction, but lack fundamental and I feel essential capabil

ities usually found only in large scale digital computers.

What is missing is the capacity for flexible storage and

retrieval of numerous images and dynamic descriptions, and

the ability to define arbitrary formal and analytic picture

generators where appropriate. All but the hybrid approach

of Miura, et al, force the animator to build pictures out of

a very limited set of analog picture generators. We do not

yet know if there exists such a set of generators from which

a sizeable portion of interesting pictures can easily be syn-

thesized and modeled. Any picture can be built from points,

-28-

or circles under affine transformations, or vectors rotating

about stick figures, but the construction may be awkward and

the representation inelegant. The hierarchic picture descrip-

tion capability of suitably programmed digital computers

enables a flexible and powerful solution to this problem, for

it is in principle easier to rewrite a program than it is to

rewire a machine. Until we obtain a better understanding of

the descriptive capability of limited picture models, experi

mentation with general-purpose digital computers would appear

useful and essential. After we possess such understanding,

special-purpose digital and analog hardware should be added,

and the digital computer can evolve towards a truly useful

and economical animation-machine.

-29-

This Dissertation

I have attempted to develop a process that augments

harmoniously the techniques with which most animators are

familiar, that reflects and extends the ways of thinking to

which they are accustomed. The animator can sketch with a

stylus on a horizontal tablet. (*13) What he draws appears

immediately on a CRT display scope above the tablet.(*14)

Both static images and complete movies may be viewed directly

on the scope.

An operational system (GENESYS) allows the animator, as

soon as he lifts the pen, to sketch frames or components of

frames. Within this same intuitive ''language" of sketching

and mimicking, he can also synthesize picture dynamics,

that is, descriptions of movement and rhythm. The techniques

at his disposal are unlike those found in any traditional

animation medium or existent computer animation system.

I of the dissertation presents the concepts that are the

heart of this approach.

Part

The skilled computer-animator should also be able to grow

and modify his own animation-machine. This will be possible

once the concepts developed in Part II of the dissertation are

embcdied in an operational system. The animator will then

have the power to dc~ine algorithms that ex~end the basic

set of syst~m CCMCTands, that a~~ment tte basic pictorial co~-

structs and oper~tors. He will himself design and add

-30-

mechanisms that synthesize and ald the synthesis of dynamic

displays.

To summarize, the dissertation seeks to:

In Part I,

(1) describe the role of direct graphical interaction,

sketching, and mimicking in computer animation,

resulting in the process we shall call interactive

computer-mediated animation; and,

(2) deve~op a new approach to the specification of

picture dynamics, one which exploits the capacity

for direct graphical interaction, and which we shall

call picture-driven animation; and,

In Part II,

(3) based on the principles evolved in (1) and (?), out

line the design of a multi-purpose, open-ended,

interactive animation programming system.

These goals are currently best met in the standard interactive

computer graphics environment, a general-purpose digital

computer, buffered by hierarchies of auxiliary storage, and

augmented by hardware for directly displaying pictures and

for accepting real time drawn input.

T~e ~hes~s of the dissertation is that:

(1) Direct graphical lnteractlon is a ¥lexible and

powerful aid to the construction of animated visual

displays; interactive computer-mediated animaticG

feasible and deserves further research.

(2) Picture-driven animation ls a simple yet powerful,

intuitively suggestive process with which to express

animated displays, one which euccessfully exploits

-31-

the availability of direct graphical interaction;

the important feature of this process is that it

enables an animator to define and refine picture

dynamics, movement and rhythm, through sketching,

mimicking, and graphically manipulating static and

dynamic images.

(3) The progression from the ability to sketch, through

the ability directly to command the computer to aid

sketching and the modification of sketches, to the

ability to extend the capabilities of the animation

machine and the characteristics of the animation

medium, is natural both for the growth of the system

and for the learning experience of the non-program-

ming animator. The last stage of the progression

requires an animation programming language which is

a multi-purpose, open-ended, picture description

language. (*15)

-32-

A NOTE TO THE BUSY READER (*16)

If you are ~nterested in computer animation,

(1) Read the Table of Contents, the Introduction, and
Chapter I.A.

(2) Skim quickly I.B. through I.E., then reread what
interests you.

(3) Read I.F., and as far into Fart II as you have
time and interest.

(If you have no technical training in computers
and programming languages, you should be able to
read through I.E., but it will be difficult to
go much further.)

(4) Alternatively, obtain and read a copy of my
condensation of Fart I,30 Then return to the
dissertation.

If you are interested in on-line systems and languages

for computer graphics, or in extensible languages,

(1) Execute Step 1 above.

(2) Read quickly Chapter I.B., then skip or skim
I.C. through I.E.

(3) Begin reading carefully at I.F.

-33-

(*l)

(*2)

(* 3)

(*4)

(* 5)

(*6)

(*7)

(*B)

(*9)

(*10)

FOOTNOTES -- Introduction

McLaren has been termed "a highly individual artist,
... , a research worker in film techniques" (Halas and
ManvelJ,2 p. 290), "a craftsman and an innovator"
(Stephenson,3 p. 73). His work is described in Halas
and Manvell, 2 pp. 290-2, 301-3, and in Stephenson,3
lJlJ• 69-73.

I.B.l contains a brief discussion of aspects of tradi
tional animation. For a fuller account, see References
2 and 3.

Some interesting speculations on uses of the computer
in animation and sculpture appear in Sutro•s7 early
paper (1962).

Reference 8 through Reference 13 are to recent confer
ences, either devoted partially or exclusively to
computer animation.

The phrase in real time, as it is used in the disserta
tion, is defined in context in I.A.2, (3) and (4).

In the "real world," economic constraints play a role
in the decision. Fortunately, we have been able in the
dissertation to ignore questions of current economic
viability. This is fitting, for in the computer field
what is expensive today may literally be cheap tomorrow.

The desire to proceed with the movie-making partially
explains the dearth, since BEFLIX, of fundamental re
search on multi-purpose programming languages for anima
tion.

In II.A.l and II.A.2 there is a detailed analysis of
BEFLIX and CAFE viewed as languages.

Reichardt, 25 p. 71.

Traditional media and techniques include sketching with
pen and ink on sheets of celluloid and superimposing
them on an animation stand (eel animation), and position
ing and moving cut paper on an animation stand. In either
case the resulting image is photographed with a camera
mounted on the stand; then construction of the next
frame begins. Still another method is pixillation, in
which the passage of time is artificially accelerated by
shooting with a standard movie camera individual frames
of live action, spaced at large intervals ranging from
seconds to days. See also I.B.l, and Reference 2 and 3.

(*11)

(*12)

(*13)

(*1h)

(*15)

(*16)

This comment was made by Vanderbeek after a recent
(late 1968) lecture and film-showing at the Harvard
Carpenter Center for the Visual Arts.

We shall return in III.B to the question of how much
direct graphical interaction is required. A related
question is how much direct graphical interaction one
can afford, Cost, in terms of the kind of films that
are made at Bell Laboratories and Lincoln Laboratory,
is one major reason that BEFLIX and CAFE are graphically
off-line.

Soc I.A.2,(3). The stylus is in fact a sheathed ball
point pen, with a wire connecting it to the computer.
The tablet is covered by a glass plate, on which paper
may be placed if so desired,

Cathode Ray Tube.
depict the scope,

See I.A,2,(4). Figures I.A.11-13
stylus, and tablet.

Throughout the writing of Part II, we adopt the ideal
and convenient fiction that the animator himself will
master the language described there. The thesis does
not stand or fall on this shaky hypothesis. The ani
mator may always need a programmer to write and debug
precise statements of algorithms. Nonetheless, the
language should be a communications medium for the two
of them. The animator should gradually become able to
use the language informally and to comprehend roughly
the meaning of programs. For, as we shall stress often,
the artist who wishes to exploit fully the capabilities
of the computer medium must in some sense understand
its unique feature, the ability to execute with ease
algorithms specified in some language. It is part of
the thesis of the dissertation that the language
developed in Part II is well conceived to achieve this
more limited goal.

We are indebted to Adolfo Guzman for the concept of the
busy reader. Guzman, 31 p. 14.

-35-

I. A. INTERACTIVE COMPUTER-MEDIATED ANIMATION

One thing only is needed for the pictorial narrator--a
knowledge of physiognomies and human expression. After all,
he must create a convincing hero and characterize the people
he comes into contact with; he must convey their reaction and
let the story unfold in terms of readable expressions. Does
this not need a skilled artist who has spent years drawing
from plaster casts, who has drawn those eyes, ears, noses
which, as To

0

pffer says [the humorist and draughtsman Rudolph
Topffer of Geneva, in a pamphlet on physiognomies published
in 1845], are the pleasant exercises which art schools impose
on budding artists? For Topffer all this is waste of time.
The practical physiognomies needed for a picture story could
be learned by a recluse who never sets eyes on any human
being. All he needs is drawing material and some perseverance.
For any drawing of a human face, however inept, however
childish, possesses, by the very fact that it has been drawn,
a character and an expression. This being so, and being
quite independent of knowledge and of art, anybody who wants
to try should be able to find out the traits in which this
expression resides. All he must do is to vary his scrawl
systematically. If his first mannikin looks stupid and smug,
another with his eyes a little closer to the nose may look
less so. By a simple reshuffle of these primitive traits,
our lonely hermit will find out how these elements and their
combinations affect him and us. Thus a little experimenta
tion with noses or mouths will teach us the elementary
symptoms, and from here we can proceed, simply by doodling,
to create characters

T~pffer's method--to "doodle and watch what happens"-
has indeed become one of the acknowledged means of extending
the language of art.

E. H. Gombrich
Art and Illusion, pp. 339-340,356
(Emphasis added)

-3 6-

I.A.1. THE ROLE OF DIRECT GRAPHICAL INTERACTION IN
THE SYNTHESIS OF ANIMATED VISUAL DISPLAYS

This dissertation is a study of ways in which man aided

by a computer may synthesize animated visual displays. It

assumes that the animator and the computer will be working

in the kind of interactive context that is by now well known

and whose utility in computer graphics is well appreciated.

Work in fields as diverse as the design of large sculptured

shapes like airplanes and automobiles, 32 the layout of inte-

t d . "t k 33 t t"l d . . gra e circui mas s, ex i e esigning
. 34 and weaving,

mathematical graph theory, 35 and the debugging of computer

36 programs, has established the fact that on-line graphical

interaction facilitates man-machine communication about still

pictures. (*l) This research explores the role of direct

graphical interaction in the construction of motion pictures.

On the basis of experience with static pictures, four

favorable aspects of the role of interaction in computer

graphics may be distinguished:

(1) The availability of immediate visual feedback of

results, final or intermediate;

(2) The ability to factor picture construction into

stages, and to view the result after each stage;

(3) The ability to designate commands and pictures

directly and naturally, anytime during the course

of picture construction; and,

(4) The ability to sketch pictures directly into the

computer.

-37-

Furthermore, we have seen that the computer simulates

not only a passive recording agent in its ability to retain

images, but an active medium which transforms the very nature

of the sketching process. It can help in the imposition of

structure onto pictures and in the transformation of simple

drawings into more complex ones, sloppy sketches into precise

ones. 3 9

Analogous statements on the role of direct interaction

apply in the domain of the computer graphics of dynamic dis

plays.

The power of immediate visual feedback in animation is

striking, The computer calculates, from its representation

of a dynamic sequence, the individual frames of the corres-

ponding nmovie." Like a video tape recorder, it plays it

back for direct evaluation. A small change may be made, the

sequence recalculated, and the result viewed again. The

cycle of designation of commands and sketching by the animator,

followed by calculation and playback by the computer, is

repeated until a suitable result is achieved. The time to

go once around the feedback loop is reduced to a few seconds

or minutes. In most traditional and computer animation environ-

ments, the time is a few hours or days. The difference is

significant, for now the animator can see and not merely

imagine the result of varying the movement and the rhythm of

a dynamic display. Thus he will be led to perfect that aspect

of animation that is its core: control of the changing spatial

-38-

and temporal relationships of graphic information.

Factoring the construction of an animation sequence

facilitates the effective use of feedback from early stages

to guide work in later stages. Working on individual small

subsequences heJps overcome the serious practical problems

of computer time and space, difficulties documented in

Chapter III.B., that could disallow rapid enough calculation

and playback. One goal of this research is a conceptual

structure that facilitates factorization in time, through the

definition of individual frames and of consecutive subse

quences, and factorization in space, through the definition

of parallel strands of dynamic activity that exist concurrently.

Modularity, where possible, is as much a part of good animation

practice as it is a part of good programming practice.

Several stages in the construction of two animation sequences

are depicted and discussed in Figures I.A.1-10.

Through direct control over the computer one commands

the various aspects of construction and playback. The prob-

lems here are somewhat more difficult than they are in the

domain of the computer graphics of still pictures. (*2)

One goal of the language design of Part II is that the con

trol features of an interactive graphics system be flexible

and adaptable. The language allows the user to define his

own conventions of interaction--what each action of his is

to mean and what the visible response from the computer is

to be.

-39-

There are at least two distinct roles for direct sketch-

ing in the production of dynamic displays. As in traditional

animation, a sequence of drawings may be constructed as

constituents of individual frames of the movie, as static

images existing at single instants of time. If this were

all that were possible, then picture change that extends over

entire intervals of time could only be synthesized as a suc

cession of individual (temporally) local changes that alter

one frame into the other.

The dissertation goes further, for it explains how the

computer can be a medium which transforms the very nature

of the process of defining picture change, of defining move-

ment and rhythm. Dynamic behavior is abstracted by descriptions

of extended picture change. These descriptions may themselves

be represented, synthesized, and manipulated through pictures,

both static and dynamic. The animator can then define a

stream of images with the same facility as he can construct

a few simple still or changing pictures, for these pictures

both generate and represent that stream of images. Each

picture affects all images of the sequence. This means that

dynamic control can be exercised globally over the entire

sequence. The result is one new conception of what it means

to draw an animated film.

-40-

(1)

(2)

Figures I.A.1-4 are successive stages in the construction of a
cartoon depicting a dog dashing to his dinner and then dining.
Four frames from each movement are shown superimposed.
Further details may be found in R. M. Baecker, Picture-Driven
Animation, Proceedings of the 1969 Spring Joint Computer
Conference.

(1) A static dog glides towards a bowl. The sketches are by
Mrs. Nancy Johnson of Waltham, Massachusetts.

(2) Leg motion has been introduced.
bowl.

Figures I.A.1-2

Now the dog hops to the

A SHORT CARTOON---STAGES ONE AND TWO

-41-

(3)

(4)

(3) Eager for dinner, the dog wags his tail.

(4) Slurp goes his tongue, lapping up the milk.

None of these intermediate stages need be transferred to film.
Each can be evaluated directly at the interactive animation
console, and film used only when the movie is complete.

Figures I.A.3-4

A SHORT CARTOON---STAGES THREE AND FOUR

-42-

One movie may easily
be transformed into
another. The result
of the first working
session was this
happy, hopping
crocodiless. Frames
spaced at uniform
intervals in time
are shown top to
bottom, left to
right. The
sketches are by
Miss Barbara Koppel
of Chicago,
Illinois.

(5) (6)

Figures I.A. 5-6

A CAVORTING CROCODILESS

-43-

(7)

Then we decided to
alter the theme of
the movie. At the
second working
session, we shifted
spatially the
original movement
(with one command
to the system, a
good illustration
global control over 1
an entire sequence).'
We then added the
crocodiless' mate,
and caused him to
respond as is shown
on the following
page.

The initial frames
of the new movie
appear here; the
concluding frames
appear on the next
page,

Figures I.A.7-8

(8)

TWO CAVORTING CROCODILES---THE BEGINNING

-44-

(9)

Interactive
computer-mediated
animation derives
much of its power
from the ease and
fluidity with
which such trans
formations of one
dynamic sequence
into another may
be executed and
evaluated.

Figures I.A.9-10

TWO CAVORTING CHOCODILES---THE END

-45-

(10)

I. A. 2. THE COMPONENTS REQUIRED TO REALIZE AN
INTERACTIVE COMPUTER-MEDIATED ANIMATION SYSTEM

Interactive computer-mediated animation is the process

of constructing animated visual displays using a system con-

taining, in one form or another, at least the following eight

components:

Hardware:

(1) A general-purpose digital computer.

(2) A hierarchy of auxiliary storage. This is listed

separately to emphasize the large quantities of storage

required for the data structures from which an animation

sequence js derived and for the visual images of which

it is composed.

(3) An input device such as a light pen, tablet plus

stylus, 53 - 55 or wand, 56 which allows direct drawing to

the computer in at least two spatial dimensions. (*3)

The operating environment must, upon user demand, provide

at least brief intervals during which the sketch may be

made in real time. This means that the animator must be

able to draw a picture without any interruption from

the system. Furthermore, the computer must record the

"essentiaJ_ temyor:ll informP.tio!l 11 from the act of sketch-

ing. 0ampling the state of the stylus 24 times ~er

sec0r1cl '.JJ'ten su:'fices for our :purpose.

(4) An output device, such as a standard computer display

scope or a suitably modified TV monitor, which allows the

-4 6-

direct viewing of animated displays in real time. (*4)

Playback at 12 or 24 frames per second is usually re-

quired. This feature is essential to enable the inter-

active editing of animation subsequences, The final

transmissi~on of a "movie" to the medium of photographic

film or video tape can but need not use the same

mechanisms.

Software:

(5) A "language" for the construction. and manipulation of

static pictures.

(6) A "language" for the representation and specification

of picture change and the dynamics of picture change.

We shall introduce in this work methods of specifying

dynamics not possible with traditional animation media

and not yet attempted in the brief history of computer

animation.

(7) A set of programs that transform the specifications of

picture structure and picture dynamics into a sequence

of visual images.

(8) A set of programs that stores into and retrieves from

auxiliary memory this sequence of visual images, and

facilitates both its real time playback for immediate

viewing and its transmission to and from permanent

recordin~ media.

-4 7-

Fin~~' _.;,,A_~!;l·l~ p~iif::_. :•~•'...,.~'!l!nvi!'en ...

a"t" f'll'Z!c~nicttt.- ·~..-_._..,.~JPli~l'e

,' :·-

')1 ·,

:1 ' ,_ : .• ~: !'.f

I
D l

~- •=:
~

t~

This is a typical interactive computer-mediated animation
conso}e. The author is sketching with tte stylus on the tablet.
There is a CR~ for viewing dynamic displays, a storage scope
above it, a typewriter, knobs, toggle switches, and a telephone
so that the animator may summon telp.

Figure I.A.11

AN I~TERACTIVE ANIMA~ION CONSOLE

-49-

Interactive computer-mediated animation is often a group activ
ity. Suppose, for example, that an educator, an animator, and
a programmer collaborate on an educational film. They can
together propose, evaluate, and modify new ideas in a highly
fluid manner. They view the visual consequences of each sugges
tion directly at the console, without the time delay or expense
of transferring it to photographic film.

Figure I.A.12

DISCUSSION OF A MOVIE UNDER CONSTRUCTION

-50-

Above is a block diagram of a minimal system for interactive
computer-mediated animation. The parenthesized numbers refer
to the system components defined in the dissertation.

Figure I.A.13

AN INTERACTIVE ANIMATION SYSTEM---A BLOCK DIAGRAM

-51-

I.A.3. A SCENARIO ILLUSTRATING THE USE OF AN
INTERACTIVE COMPUTER-MEDIATED ANIMATION SYSTEM

To illustrate the process of animation in an interactive

computer graphics environment, we present a scenario. The

example could be executed with the GENEralized-cel anima-

tion SYStem, a picture-driven animation system implemented

on the M.I.T. Lincoln Laboratory TX-2 computer. All capa-

bilities purported to GENESIS are operational or could be made

so with minor additions. The written form of the interactive

dialogue has been adjusted to increase its clarity.

We want to see a dynamic sequence with two characters

that are simple abstract figures, a wedge and a block. The

wedge is usually triangular, the block rectangular. The

wedge bounces in, goes sproing on top of the block and

bounces away. The block quivers and quickly recovers. After

a slight deJay, the wedge returns, this time coming from the

opposite direction, and pounces again. Now recovery is more

difficult; the block's reverberations die out more slowly.

On the third attempt, however, the block enlarges and then

devours the wedge.

How we do it:

ANIMATOR(A): CALL GENESIS;

GENESYS(G): HELLO, GENESYS AWAITS YOUR CREATION;

[GENESYS either types this response, or displays it in

an area of the scope designated for messages and instructions

from the system to the animator.

-52-

A: FORMMOVIE SPROINGBOINGZAP;

[The animator either types the command name 1 FORMMOVIE, 1

hits a corresponding light-button with the stylus, or writes

an abbreviation of the command name to a character recog

nizer. 58 (*5) He then types a movie name, 'SPROINGBOINGZAP'.

G: FRESH;

[No such movie exists in the animator's directory.

Therefore, the command means that work begins on a totally

new one. (*6)]

A: FORMBACKGROUNV;

[A. wants to define a subpicture that will be visible

in all frames of the sequence. J

G: SKETCH 1T, MAN;

A:

[A. sketches a background of two scowling clouds and a

smiling sun, drawing with the stylus on the tablet. What he

draws appears immediately on the display scope. He indicates

that he is through by giving a termination signal, such as

lifting the pen high above the tablet. J

G: OK;

A: FORMCEL 1 in the cla~~ P.WEDGE;

[The wedge, in its various instantaneous sizes and shapes,

-53-

is to be represented by a unique set of subpictures, called

a eel class. He sketches one version of the wedge as a

unique subpicture, or eel, in the eel class P.WEDGE.

He then sketches a square as a unique eel in the class named

'P.BLOCK.' Now the wedge and the block, unmoving, appear on

the scope along with the clouds and the sun, J

A: SKETCHPCURVE P.WEDGE;

[A. sketches the path of the desired motion of the wedge,

mimicking the movement with the action of his stylus.

Bounce .. , bounce ... sproing ... bouncebouncebounce goes his hand.

The act of mimicking a continuous movement is called a p-curve.

A visible, growing trail of symbols mirrors the motion of

the stylus.

display.]

A: PLAYBACK;

The resulting trail is later removed from the

[Playback the current version of the movie. Bounce .•.

bounce •.. sproing ... bouncebouncebounce goes the rigid wedge

across the scope. J

-54-

A: EVTTFRAME 41;

[Assume that the wedge strikes the block in frame41.

Viewing the sequence in slow motion, A. notices that the

wedge appears to overlap the block in a way that destroys

the illusion of its striking and rebounding. Since only its

location in frame 41 in incorrect, he alters the vertical

position in that frame by using a knob (shaft-encoder) under

the scope.]

A: PLAYBACK;

[With that adjustment made, the wedge's first movement

is found to be satisfactory.]

A: FORMCEL 2 ~n the eta~~ P.BLOCK;

[A. sketches the block in another shape, that is, he

defines the second eel in the class P.BLOCK. This is followed

by several more shapes and sizes, The images are ones that

the animator thinks will be useful in synthesizing the reaction

of the block to the blow from the wedge. Each depicts the

block somewhat flattened, now more or less rectangular, and

with ripples in its top surface that will be combined into a

'boinggg.' J

-55-

A: TYPESELECTIONSFROM P.BLOCK;

[He types in a sequence of integers, each of which

designates a choice of one of the drawings of the block.

Each succeeding choice selects the eel to be displayed in

the next frame. Of course only one state of the block is

visible in a frame, when played back.]

A: PLAYBACK;

[Now the block is squashed and then quivers in response

to the blow from the wedge. The total sequence is

bounce ... bounce, .. sproing ... bouncebouncebounce, ..
• · .. •. • boinggg.,, , ... ,,, ..

Further refinements to the quivering are made. These include

the resketching of one eel, and alterations of the sequence

and rhythm of transitions among eels. The effect of each

modification is immediately viewed by calling PLAYBACK,]

A: REPEATVYNAMICPATTERNOF P.WEDGE;

[This appends a copy of the dynamics of the wedge's

bouncing motion to its existing dynamics, thus causing the

movement to be repeated. Since only one eel representing

-5 6-

the wedge has been introduced, its dynamics are generated

solely by translational motion.

He similarly causes the reverberation of the block to be

repeated. In this case the dynamics are generated solely by

sequences of eel selections.]

A: TAPRHYTHM BOINGINTERVALS;

[The block's second reaction should consist of several

distinct reverberations, each delayed somewhat in time from

the last. A. can feel or intuit the rhythm of the desired

successive movements better than he can rationalize it. Hence

he goes tap .. tap ...•. tap •..•... tap on a push-button.

Using techniques we shall not detail here, he isolates the

pattern of block selections which yields a single reverbera

tion, and repeats it at intervals determined by the tapped

rhythm.]

-57-

A: PLAYBACK;

[Now the action is

bounce ... bounce. .sproing ... bouncebouncebounce.
. boinggg

. bounce ... bounce .. sproing ... bouncebouncebounce.
. .. boinggg boinggg . .boinggg .

... boinggg.

A: EVITVYNAMICS;

[GENESYS produces a display, arranged on a common hori-

zontal axis which represents movie time clocked in frames, of

the changes with time of the selection sequences and the X

and Y coordinates of the wedge and the block. (*7) There

are then available a variety of editing commands for operating

upon these graphs and thereby changing the movements they

represent. For example, the animator decides that more speed

and acceleration in the second hopping movement would better

portray the wedge's mischievousness. He also recalls he

intended that this motion be from left to right, opposite in

direction from the first one. Hence his first command negates

the section of the X waveform of the wedge which defines the

second movement. He then latches on to this section of the

curve with his pen, and compresses it horizontally. This has

the effect of speeding up the motion. Finally, he resketches

part of the waveform so that there is more acceleration in

-58-

one part of the movement. He also edits somewhat the selec-

tion sequences of the block, adding some variety in the sue-

cessive reverberations.]

A: PLAYBACK;

[The final task is to construct the wedge's third attack

and its unhappy end. New eels for both the wedge and the

block are constructed. A variety of techniques may be used,

again including the mimicking of new continuous movements and

the alteration of existing ones, the definition of new selec-

tion sequences, and some fine adjustments on individual

critical frames.]

A: PLAYBACK;

[Thus, the final sequence is

bounce ... bounce ... sproing ... bouncebouncebounce ..
• ••• • •• boinggg

.. . bounce .. bounce .. sproinggg .. bouncebouncebounce.
. . . . ,boinggggg ,boinggg ... boingg ..

. bounce .. bounce .. snroin
,boing.

- g
• •••• Z A P ! ! 1 J

A: SAVE SPROINGBOINGZAP;

[The movie is saved under the name 1 SPROINGBOINGZAP,' and

is available for playback or further refinement at any time.]

G: SPROINGBOINGZAP IS SAVEV; GOOV BYE.

-59-

I. A. 4. IMPLICATIONS OF THE SCENARIO

(1) Approximately 200 frames are generated from fewer than

20 eels. These eels may be constructed with very limited

tools, specifically, programs that accept direct sketches

and that enable selective erasure of picture parts.

Nonetheless, great power results from the animator's

ability to control and evaluate dynamic combinations of

a few static images.

(2) Immediate playback encourages trial-and-error experimen

tation to achieve desired visual effects.

(3) A variety of static images, analytical graphs of picture

action, depict the time dependence of dynamic picture

parameters. An example is the waveform representing the

wedge's changing horizontal position. Viewing such

static representations aids the understanding of exist

ing animation sequences; resketching or editing them

changes the actual dynamic behavior accordingly.

(4) The animator may in real time mimic aspects of dynamic

behavior. His movement and rhythm are recorded by the

system for application in the movie. This occurs when

the bouncing of his stylus motion is used to drive the

wedge, and when the tapping of a push-button is used to

determine the rhythm of the recurring reverberations of

the block.

(5) Three aspects of dynamic behavior appear in the example:

-60-

path descriptions, or potentially continuous coordinate

changes;

selection descriptions, or recurring choices of eels

from a eel class; and,

rhythm descriptions, or temporal patterns marking events.

The pictures (3) and actions (4), through which direct

control over dynamics is exercised, are representations

of these three kinds of global descriptions of dynamics.

(6) Global operations (3)-(4), which alter dynamic behavior

over entire intervals of time, may be supplemented where

necessary by local operations, which adjust individual

frames. An example is the positioning of the wedge with

respect to the block at the moment of impact.

-61-

(*l)

(*2)

(* 3)

(*4)

FOOTNOTES -- I.A.

Primarily for the benefit of readers not trained in
computer science, here are numerous references to
articles on interactive computing and computer graphics:
The historical roots are found in the classic papers of
Bush37 and Licklider.38 I. E. Sutherland's SKETCHPAD,
still fundamental to workers in the field, was the first
interactive computer graphics system of significant
generality.39 A readable introduction to computers,
methods of man-machine communication, and various appli
cations is a recent issue of Scientific American.40
The most enthusiastic and spirited descriptions of the
potential of tnteractive computing are those by
Licklider.41, 2 There are many current survey papers,
including one in each Annual Review of Information
Science and Technology that reports on and refers to
yearly progress. 43-47 Also of considerable interest
are a 1966 paper on ten major unsolved problems of
computer graphics (most still essentially unsolved,
many relevant to achieving economically viable computer
animation)~B an article stressing hardware-software
trade-offs in the design of computer graphics systems,49
and more-or-less detailed descriptions of available
display hardware.50,51 Finally, a recent book surveys
the entire field of information display, including
photometry, colorimetry, image analysis, optics, record
ing media, cathode-ray devices, film-based projection
systems, light valves, lasers, electroluminescent devices,
and laser holography, and lists extensive references to
each of these topics.52 The use in movie-making of
technologies other than film and cathode-ray devices
should soon be explored.

Not only the "result"of a user action, that is the
sequence of designated commands and data, but also the
dynamics of the action, must be properly recorded and
interpreted by the system. Furthermore, extended user
actions may exist concurrently with extended system
actions, such as the dynamic display of a picture.

References 53 and 54 describe two tablets currently
much in use. Reference 55 presents a device called the
comparator, which should be added to tablet hardware
to simulate the light-pen's role in the direct designa
tion of picture parts by pointing at them. The
comparator generates an interrupt whenever the display
beam comes close enough to the stylus position.

Reference 57 describes a novel hardware configuration,
potentially useful for animation, in which the display

-62-

(*5)

(*6)

(*7)

is projected through the glass of the horizontal tablet.
The TX-2 hardware, like most, has a vertical scope and
a horizontal tablet mounted beneath it.

Serious problems can arise in the display of a menu of
light-buttons corresponding to available system commands,
because the area on the scope allocated to such functions,
in fact, the entire area of the scope, is often inade
QUate for sets of commands large enough to be useful.
Sophisticated layout algorithms, and paging and window
ing mechanisms may be devised to combat the difficulties.
GENESYS currently employs some paging, and relegates
many commands to typewriter control.

A typical alternative response would indicate the length
in frames of the existent movie named 'SPROINGBOINGZAP,'
and the date and time of the most recent session in
which it had been constructed or modified.

A similar display is depicted in Figure I.B.l, in which
the graph of a selection description appears near the
top of the picture, and the waveform representing the
change with time of a continuous coordinate appears near
the bottom of the picture.

-63-

tr~.- ':t~:B•
·~: r:

-~ 01.s."- :'l.JS 7, <-;,;t '!! .~ ;-! O"'t .o; -:rl f: ,: . .; ,.., -·· ''.i< ;

i~.-·.c,-;:ts..r;."'!:"X\i~,. '.;J"t()J':f;;~---.:.: ;·~;.

~ ~;;m1Lf i' "!~C-lB.l• · !tin~ 1{~ I
:;.:.!. !';.;~al-»· ~:f t;r.:;;· '1f;.e• ,iN~J;;r;.~1.,~~J;:)m ~~:.~ ~

'·fn{~, "'·. -~ ·.; .-::; .::q-~~ v.f J· ...,~"'f'!U4 ~ r0.'3'·ti· r ~-
~· '•'

· :~' -~if:~,;;_, .. ~ ~--Ei'l .gy l .i~il"l-'.! :;- r $ ~Ji~': -~'t1

}~-·~· :::> .• ~ .:j-I-1::;!.-~~~'.J~~ "!l'rt.~· "":,;:; .:-2:.'1.::.~"t:

d ·:<t! -{:.:: -'1_,.~, ~m: ;- .t bfi.~ o~t'i;-f-i. sffj' ~ .l~·

,~, 1J.S<~:·n -c b"}:'::l.'l'~H~O~ .. a~·t;ef b--$>.-({ :!"f fi')~-t~""

·:<IL J '1,c ;' :;:, ~"'j; 131 \:l0k~'9J:f, ':r.l!t £1:;::, :.
~;'::':i -;:.'l~:::.., '.-!! I'!'(,~}·.-::J·".~.:;-~~f'J ill\)]::~~-f!_!~a_ ~ -~~ fio.:;:.;J"!~ -·._~:

".vn1r· .,,,,;J.& ea.it ,.a'li"'.t"3J:q ~~d:r ~l~ -,,:-;

:·. , ~:t_n:1:tQ -~ "ti::o ~.;itl1:1 ~$!\.'. ~!:;:--;;Jr~c;

4~ .. ;:.£J.#D-i~- $fd-:!'" 'H:: ~o-:-r,:to.U .:-,.:; .. ~~

I.B.l. THE INDIVIDUAL CONSTRUCTION OF EACH FRAME IN
THE SEQUENCE

Animation seQuences have traditionally been synthesized

through the individual construction of frames, with the illu-

sion of a continuum of time later being attained through

rapid playback of the discrete instants of time. This

approach is the only one possible when constructing a series

of pictures which defy regular or formal description, and

which reQuire uniQue operations on each frame.

Stephenson describes how the burden of drawing 1440

pictures for each minute of film has been lessened in commer-

cial animation, and how this has affected both the product

and the process of animation: 3

.There are various means of economising.
By using layers of transparent celluloid, and by
painting or drawing different parts of the scene
on different layers, backgrounds or characters
which are stationary can be used again and again,
and only the part actually moving at the time
(lips, fingers, eyes etc.) need be re-drawn.
Again an arm on a separate eel can be moved by
tilting the eel instead of redrawing. A second
means of economy possible with slower movements,
is to repeat the same drawing for two (even three)
frames. This is eQuivalent to projection at 12
frames a second, intervals are adjusted to corres
pond, and the eye accepts movement as normal or
nearly normal. In more recent cartoons less
realistic movement is accepted. As John Halas
says "Now we can get away with four drawings a
second whereas once twenty-four were necessary."

The third way of lightening the labour of
drawing involved in the cartoon is by simplify
ing the style. The patient composition of the
painter in oils or water colour, the intricate
traceries of the pen-and-ink artist or the
etcher, the careful building 'up of subtle colour

-65-

effects, are outside the range of the cartoonist.
Simple line, clear, readily-grasped colour ef
fects, are what the animated artist must go for.
The economy of drawing dictated by the conditions
of production may seem a handicap. The cartoon
will never emulate the wealth of detail which
enriches the picture galleries of the world. But
when we come to the conditions of viewing, the
cartoon's simplicity is an advantage. If the
moving cartoon were as complex as the static paint
ing the viewer would never be able to grasp it, A
clear, quickly-understandable composition is
essential.

(*l)
A fourth method of meeting the demands of

the cartoon medium is by organization and divi
sion of labour. Carl Fallberg writes in The
American Cinematographer: "Assembly-line--inethods
are essential. It is technically possible for
one person to do everything from the first pre
liminary story sketches to photographing the
finished drawings on film, but there is such an
infinitude of detail involved that the number of
hands doing the work simply must be multiplied."

In every animated film-studio of any size
the work is divided up and different people spe
cialize in particular jobs. In a small studio
the workers will know each other's jobs, there may
be an interchange of work or at any rate a reward
ing feeling of group effort and mutual apprecia
tion of each other's skills. In the large studios
it may be more like a factory process. There are
individual variations in different studios but
the general procedure is as follows. Before the
animation drawing is started there are several
preparatory stages--story-board, work-book, lay
out, model sheets, soundtrack, charts, dope
sheets. The story-board is the same as for any
film: a series of small sketches with enough
description to enable the plot of the film to
be followed, The work-book is a much more
detailed, almost photo-by-photo analysis without
drawings, describing the action in words and
giving dialogue or other sound to accompany each
action; it is a kind of film script. Layout and
model sheets are preliminary drawings to deter
mine the type and relative size of the characters
and the style of the film, The soundtrack charts
show the music, bar by bar, related to the visuals,
and the dope-sheets or camera exposure charts,

-66-

schedule in more detail each single exposure. The
film is then fully planned and the work of execu
tion begins.

The following now set to work: the back
ground artist, the key animator, the in-betweeners,
the inker, the painter, the checker, the cameraman,
and the film editor. The key-animator draws the
key positions of each movement, the in-betweeners
copy his work, varying it slightly to provide the
necessary movement between one position and another.
Then the inker blocks in the outline on the
celluloid sheet and the painter or opaquer fills
it in with the correct colour. Checkers ensure
that the eels are properly lined up and matched
and in the correct sequence for the cameraman
who photographs the drawings. An animation
camera and its rostrum are especially designed
to photograph drawings or models or objects,
photo-by-photo, frame-by-frame.

One sequence or scene of the film will be
completed at a time and viewed. Finally, the
various sequences will be assembled by the editor
and the completed film is ready for viewing.

It is this division of labor, this dispersal of the

creative process which separates the artist from the medium.
4

Another result is the continuing dramatic rise, faster than

the GNP, of the cost of animation.
4

In large studio opera-

tions, salaries for producers, directors, designers, layout

artists, studio managers, and those others named above

typically consume half of the cost of a film. 2

A serious weakness of conventional frame-by-frame anima-

tion is that there are no efficient methods of making changes

to a movie stored on photographic film or video tape.

On the other hand, film's high resolution and resulting

capacity to store and convey information allows diverse kinds

of textures and color to be reproduced. Dynamic collages of

a variety of cut-out material, puppet animation, and McLaren's

-67-

technique of drawing and painting directly on film all achieve

radically different tonal qualities. (*2) Such qualities

are presumably difficult to preserve in computer processing.

However, we need not try to imitate them when we instead can

develop new and interesting styles unattainable without a

computer, such as those created by Harrison at Computer Image

and Vanderbeek using BEFLIX.

Despite the computer's flexibility as a sketching and

resketching medium, it also appears wasteful to use a large

general-purpose digital computer merely to reproduce conven-

tional frame-by-frame animation techniques. In this disserta-

tion we seek ways to use creatively the great computational

capacity of such a machine.

With the aim of streamlining the techniques of eel and

cut-out animation, the National Film Board of Canada has

undertaken to control the movements of their animation stand

with a small digital computer. 59 (*3) It will be interest

ing to compare and integrate the results of their approach

with those of Computer Image and this dissertation, as all

may contribute towards the design of a more flexible, more

responsive animation-machine.

-68-

I.B.2. THE INTERPOLATION OF SEQUENCES OF FRAMES
INTERMEDIATE TO PAIRS OF CRITICAL FRAMES

The technique of interpolation has long been used to

cut costs and reduce the burden of picture constructionwhich

is placed on the key animator. Interpolation occurs when the

key animator asks his assistants to fill in the frames inter-

mediate to a pair of critical instances of transition. In a

typical cartoon, for example, the key animator may himself

sketch only the following: gasp of horror, arm cocked for

ferocious swing, arm thrusting forward as target ducks, arm

stretched as if made of rubber, and arm zooming off into outer

space.

It has been suggested that part of the interpolation

process could be mechanized, and we have described in the

Introduction the only published attempt to do this. 28 We

shall discuss interpolation in its general formulation no

further. Limited instances of interpolating sections of move-

ment, however, will reappear, particularly in I.C.

-69-

I. B. 3. THE GENERATIOK OF FRAMES
FROM AN ALGORITHMIC DESCRIPTION OF THE SEQUENCE

The generation of a sequence of frames from a formal

algorithmic description is a process characterized by:

(1) the need to use a computer, for it is the only

animation medium which can follow and execute with

ease a complex algorithm;

(2) generality, that is, applicability to a large

class of regularly-structured pictures;

(3) representational power, or the compactness with

which interesting animated displays may be formu-

lated; and,

(4) flexibility and adaptability, or the ease with

which a variety of alterations may be made to a

movie expressed as an algorithm.

One primary source of representational power and flexibility

is the algorithm's temporally global quality--it specifies

the picture state over an entire interval of time, and not

merely at individual frames.

We have noted in the Introduction that, since formal

picture descriptions are usually expressed as written pro-

grams in a language such as 5 6 BEFLIX, ' or as sequences of

directives in a typewriter-controlled command language such

26
as CAFE, artists have found it difficult to adopt the com-

puter as a new medium.

-70-

/4¥JEL4MW. t4J.
I
I

The process of picture-dt-1-t'eh a.aiaation·&t~elilpts to

bridge the gap between traditional and computer techniques
·-~ ;· - !.; ; -1,._;_

by exploiting direct graphical inter.c"t:lon~anci the descrip-

tive capability of pictures and sketches. As we shall now
-.. . . ----~~~-:.:~.::. .. ~ - -- , .,

see,.the aniaator creates a aovie by coa~ining alaorithaic

definitions, drawings, and representations ot aoveaent and

rhythm.

·.t·

r:.;_'

j .: .. fi ~., : ', ~;·
~'"'-·- ------··--·--

-Tl-

I. B. 4. PICTURE-DRIVEN ANIMATION

Picture-driven animation is a new process that augments

harmoniously the animator's traditional techniques, that re

flects and extends the ways of thinking to which he is

accustomed. Within his intuitive "language" of pictures and

sketching and mimicking, he may synthesize both components

of frames, called eels, and generative descriptions of extended

picture change, called global descriptions of dynamics.

Global dynamic descriptions are data sequences, whose

successive elements determine critical parameters in succes-

sive frames of the movie. Algorithms embedded in a picture-

driven animation system combine eels and dynamic descriptions

to produce visible picture change. The animator defines and

refines pictorial representations of dynamic descriptions.

These data sequences then "drive" the algorithms to generate

an animated display. Hence the process is called picture-

driven animation.

The process is powerful because it is easy to achieve

rich variations in dynamic behavior by altering the data se

quences while holding constant a few simple controlling

algorithms. The data sequences precisely determine the

evolution of recurring picture change, within the constraints

set by a choice of controlling algorithms.

The remainder of I.E. introduces the three kinds of

global dynamic descriptions and some useful algorithms for

-72-

which they may be driving functions.. r.c. deseribes and

analyzes the art of defining and refining dynamic descriptions.

We adopt the following classification:

A global dynamic de.acritpti.on, is.: «<ither

a nioveaent :dea.cript<i.o.n: •. wb·i:ch i.s e;i;ner

a continuous movement description = a path
description, or

a discrete movement description c a selection
deser.iption; or,,

a rhytluiJ description.

I claim th&t the ter111.inology ia &pp.rl>lJriAte,: 'l<be,t. t.he.se. descrip-

tions are conceptually meaningtul ~¥t'ilA1Ul« o~llU>~•ent and

rhythm, a .kind Of "vocabu1ary rn.r -~It:~ . . A' :va\:abu..l.&ry for

-73-

I.B.5. THE RELATIONSHIP, IN GENESYS, OF CELS
AND CEL CLASSES TO GLOBAL DYNAMIC DESCRIPTIONS

Since the following discussion relies heavily on illus-

trations of the use of GENESYS, we now describe how it combines

eels and global dynamic descriptions to produce dynamic dis-

plays.

GENESYS permits users to impose dynamic picture behavior

independently of the definition of static picture structure.

Static pictures are generated by the traditional techniques

of sketching and individual construction, and may then be

used in one of three ways:

(1) A static picture may serve as the constant back-

ground for an entire animation sequence, as did the

scowling cloud and smiling sun in 'SPROINGBOINGZAP. 1

(2) A static picture may be introduced in a single

unique frame of the final animation sequence,

Frames totally generated in this manner have there-

fore been defined by the approach of individual

construction,

(3) A static picture may be defined to be a unique

eel. Cels are then grouped into eel classes. The

term 'eel' is taken from conventional animation

practice. We have seen that it means a sheet of

transparent celluloid on which is painted some

separable aspects of the picture scene, part of the

-74-

background (group of trees, or clouds, or a rocket

ship) or even the foreground (hat which is to fly

off, garbage can which is to be kicked or sprinkled).

Examples of two eel classes in GENESYS are the

wedge and the block of 'SPROINGBOINGZAP' each

represented in various sizes and shapes. Other

examples are a set of choices for the mouth of a

cartoon character, and a set of striped patterns

used to create the illusion of a revolving barber

pole.

Using the current system, the GENESYS animator sketches

or otherwise defines two path descriptions and one selection

description for each eel class. The system applies a simple

algorithm which in each frame selects and positions one eel

from each class according to the data in the descriptions.

Beginning with this very special case, we shall develop

and broaden the concept of global dynamic description, showing

how the sequences may drive a much wider variety of algorithms,

and thereby generate a much more interesting repertoire of

dynamic displays.

-75-

I. B. 6. PATH DESCRIPTIONS

Consider those alterations of static pictures that

consist of modifications of continuously variable parameters,

such as location, size, and intensity. Their instantaneous

values determine the picture's appearance at a given moment.

Thus the static picture may be animated by specifying the

temporal behavior of such parameters. A representation of

the temporal behavior of a continuously variable parameter

is called a path description.

The movement of a fixed-geometry picture (eel) in GENESYS

is described as the change of two coordinates with time, and

is represented by a pair of path descriptions. Their speci-

fication may be used to synthesize the drifting of a cloud,

the zooming of a flying saucer, the bouncing of a ball, or

the positioning of a pointer.

Since the behavioral descriptions of the parameters apply

to entire intervals of time, the animation is liberated from

a strictly frame-by-frame synthesis. The computer is a

medium through which one can bypass the static or temporally

local and work directly on the dynamic or temporally global.

Movement is represented as it is perceived, as (potentially)

continuous flow, rather than as a series of intermediate

states.

Chapter I.C. describes how path descriptions may be

defined by algorithm or by direct on-line construction.

-76-

Free hand sketching is a useful techniQue when one knows the

general shape and Quality of a motion rather than an analyti-

cal expression for a function that determines it. Modifi-

cations of the sketches are freQuently invoked after one

views the current animation seQuence and determines how it

is inadeQuate.

There are two related kinds of pictorial representations

of all movement descriptions, static and dynamic.

A static representation of a single path description is

a waveform, in which time is identified with a spatial dimen-

sion, in common practice the horizontal. The continuous

curve at the bottom of figure I.B.l. is a waveform depicting

a picture parameter which increases and decreases gradually,

then Quickly oscillates between large and small. The super-

position on a common time axis of several path descriptions,

such as plots of the positions of fleeing and overtaking

flying saucers, facilitates the refinement of their relative

dynamics. In this case it provides the animator with a

very powerful, temporally global control over the "feeling"

of the chase scene.

A dynamic representation of a path description is an

animated display. (*4) The dynamic construction of a path

description is achieved by timing the stylus's movement and

recording its position at short, uniform intervals such as

every 24th of a second. A tangible representation of the

path is the display of a seQuence of symbols spaced eQually

-77-

in time. Thus the bouncing of the wedge in 'SPROINGBOINGZAP'

may be synthesized by "bouncing" the stylus along some path

on the tablet surface, that is by mimicking the desired

dynamic behavior.

A path description, in summary, defines dynamic activity

that consists of potentially continuous and arbitrarily fine

alterations of value. The reader should not be misled by the

choice of the word "path." What is meant is a path, or

sequence of values, through an arbitrary "continuous undimen-

sional space," through a mathematical continuum. One applica-

tion or interpretation of this path is the representation of

a movement through the location-space of an object, such as

a figure's trajectory along the floor of a room. To specify

this trajectory, we need two paths, x(t) and y(t), that define

the horizontal and vertical position. This application,

although the only one operational in the current version of

GF.NESYS, is not the only possible one. Depending upon the

picture description capability of the system in which it is

used, and the algorithm which it drives, a path description

may determine changing locations, intensities, thicknesses,

densities, or texture gradients. For example, a pulsating

heart could be animated by varying either the size or the

intensity of a single heart shape.

on this point.

I.B.10. further elaborates

A pair of path descriptions may be used to represent

the layout of a complex information display, that is, an

-78-

ordered sequence of locations at which components of the

display are positioned. Here the descriptions convey the

movement of an implicit scan of a static picture; they need

not necessarily correspond to an actual trajectory dynamically

traced in an animation sequence.

There is norequirement that the defined movement be

applied always to the same eel, or to only one eel. So that

the drifting moon may smile in anticipation of a visit from

Apollo-10, changing facial components must be superimposed;

the facial expressions must be driven by the same path descrip-

tions as move the moon. The GENESYS animator can accomplish

this by making copies of the path descriptions. A more

powerful and useful mechanism would allow the binding of the

motion of one eel class to that of another eel class, so that

the controlling movement is always automatically copied into,

or added to, that of the subordinate movement. (*5) This

technique, whether executed by the animator or automatically

by the system, is often used to constrain various eel classes

to move as a unit. The eels of a crocodiless, members of the

classes 'body', 'legs', 'jaws', and 'tail', are drawn so that

the figure coheres as a static image. If the same paths are

then applied to all four classes, it will not disintegrate

while moving.

-79-

I. B. 7. SELECTION DESCRIPTIONS (1)

Consider the algorithm that selects an element of the

current frame from among members of a eel class. A good

example arises in the synthesis of different facial expres

sions through the abstraction of discrete shapes and posi-

tions of mouth, nose, eyeballs, and eyebrows. One eel class

could consist of the two members "eyebrows raised" and

"eyebrows lowered." An animation sequence in GENESYS may be

achieved by a temporal concatenation of selections from a col

class. A changing facial expression may be achieved by the

parallel application of several such sequences of selections,

one corresponding to each facial component. In

1 SPROINGBOINGZAP 1 , this technique was used to generate

the reaction of the block to the wedge. (*6)

A representation of the dynamic selection from a finite

set of alternative pictures is an example of the second type

of global dynamic description and is called a selection descrip-

ti on. It is suggestive to think of a selection description as

a single melodic line, the notes of which are selected from a

conventional discrete scale. The synthesis of selection de-

scriptions is also aided by the use of pictorial representations,

such as a graph of a sequence of steps, where the length of

each step denotes an integer number of frames, and its height

is a transition from one position to another on the

-80-

discrete scale. An example of such a picture appears at the

top of figure I.B.l.; the selection description it represents

is one which chooses among four alternatives. Superposition

on a common time axis of pictures of several descriptions

facilitates coordinating the counterpoint of the parallel

selection strands.

The use of the term "selection" implies that a mechanism

chooses from among a designated set of alternatives. In the

example of the animation of a facial expression, the alter

natives are eels, images to be introduced as components of

frames in a dynamic sequence. A natural question comes to

mind--is it meaningful and useful in computer animation to

consider selections from among other kinds of entities, for

example, algorithms or numbersY

in I.B.9., is 'yes'.

-81-

The answer, as we shall see

I.B.8. RHYTHM DESCRIPTIONS

Rhythm descriptions consist of sequences of instants of

display time (frames), or intervals between frames. They

define patterns of triggering or pacing recurring events or

extended picture change. In this context it is suggestive

to think of a rhythm description as a pulse train. Each

pulse may be used to trigger the same action, or, as we shall

soon see, it may trigger one of several activities under the

control of a selection description. Examples of the apparent

triggering effect of a rhythm occur when we advance the hand

of the clock every second, cause a dancing figure to hop at

every pulse, or produce a tremor in a house whenever smoke

emerges from a nearby factory. In 'SPROINGBOINGZAP' we

generated new reverberations in the block at intervals cor

responding to a tapped rhythm.

Rhythm descriptions facilitate the achievement of

coordination and synchrony among parallel strands of dynamic

activity. In this context it is suggestive to think of a

rhythm description as a sequence of event markers. The rhythm

may be defined with respect to the actions of one eel class,

and then used to guide the construction of another action.

For example, the animator records the instant when the wedge

in its third movement would hit the block, and then adjusts

the devouring action of the block to anticipate the arrival

of the wedge. ~e determines the set of frames in which the

lead bird of a fleet accelerates, and uses this information

-82-

to generate a kind of coordinated action--each bird flies on

a separate path, but all accelerate and decelerate simultan

eously.

A rhythm description does not by itself define picture

change; it defines a beat, a sequence of cues with respect

to which picture change is temporally organized and reorganized.

Animators have sometimes used metronomes as generators of

rhythm descriptions.
2

Proper synchronization of a sound track

to the visual part of a film is most critical to its success.
2

In practice, much effort is expended, sometimes aided by special

devices, to extract rhythm descriptions from a sound track in

such a form that they can be used in animating, or in editing

existing animation sequences. (*7)

Hence, rhythm descriptions marking critical instants of

time play a key role in the synthesis and editing of movement

descriptions. For these operations a rhythm description

requires pictorial representation. In Figure I.B.l. it is

depicted both as a static pulse train and as a sequence of

event markers along the axis of movie time. A direct and

simple dynamic input, as we have seen in 'SPROINGBOINGZAP'

consists of tapping out the rhythm on a push-button.

-83-

The continuous curve at the bottom is a waveform representing
a path description, The discrete curve at the top represents
a selection description that chooses among four values. The
pulse train between them represents a rhythm description. The
three pictures are plotted on a common horizontal axis--movie
time measured in frames. Picture change occurring in any frame
is therefore depicted along a single verticalline. The visible
character strings are "light-buttons'' which activate GENESYS
commands, and messages to the animator.

Figure I.B.l

GLOBAL DYNAMIC DESCRIPTIONS

-84-

I. B. 9. SELECTION DESCRIPTIONS (2)
--- DYNAMIC HIERARCHIES

With selection descriptions, as we have seen in I.B.7.,

the GENESYS animator chooses subpictures, or eels, from a eel

class. A more general view regards a selection description

as a sequence of selectors, functions which choose from a

designated and finite yet potentially denumerable set of

alternatives. Depending upon the picture description capabil-

ity of the system in which it is used, and the algorithm which

it drives, a selection description may also choose among

alternatives that are numbers, picture-generating algorithms,

other global dynamic descriptions, or pictorial events or

activities.

The dynamic selection from alternative numbers would

occur in a system whose pictures could be displayed at one

of eight different intensities, or whose lines could be drawn

either solid, dotted, or dashed. The dynamic selection among

alternative picture-generating algorithms would occur in a

system with discrete texture choices, where there is one

algorithm capable of filling an arbitrary region with that

texture.

A pictorial event is an instantaneous state of an anima-

tion sequence, a single frame or one of its constituent sub-

pictures. The subpicture may itself consist of several eels.

An example is the initial instant of collision between the

wedge and the block in 'SPROINGBOINGZAP'. A pictorial activity

-85-

is an extended interval of an animation sequence, or an

extended interval of a subsequence contained within it. An

example is the 'bounce,bounce,sproing,bouncebouncebounce' of

the wedge. A pictorial activity is sometimes called a strand

of dynamic activity to emphasize that there may exist other

concurrent activities, other parallel dynamic strands.

In a system in which selection descriptions could choose

from sets of global dynamic descriptions, pictorial events,

or pictorial activities, useful dynamic hierarchies could be

established. Suppose, for example, that the animator of a

crocodiless develops sequences of selections from the eel

class 'jaws' that are visual representations of laughter,

smugness, frowning, and crying. When he later wants the

crocodiless to laugh, he refers to this pattern of selections

as a unit and introduces it as part of a new sequence. Sup-

pose further that a hop, a skip, and a jump of the crocodiless

are synthesized. This is done by defining and refining two

path descriptions and one selection description for each of

the constituent eel classes, 1 jaws 1 , 'body', 'legs', and

I tail I, If he then wishes to experiment with varying dynamic

patterns of hop, skip, and jump, he defines a selection de

scription which chooses among these three alternative pic

torial activities, the sets of dynamic descriptions that form

a hop, a skip, and a jump.

-86-

I.B.10, GENESYS GENERALIZED

We have seen how a single eel class, a pair of path

descriptions, and a selection description are used in GENESYS

to generate a dynamic sequence. The argument has also de-

scribed the far greater role that dynamic descriptions could

play, if used as driving functions for a wider class of

algorithms. This concluding section suggests how GENESYS,

within its design philosophy, can gracefully be augmented to

enable dynamic descriptions to play this greater role.

Generalization 1--Projective Transformations of Cels:

Currently in GENESYS, at most one member of a eel class

is visible in a given frame. If the selection description

assumes the value zero at that frame, no eel is visible; if

its value is k, the kth eel is visible. The position of the

eel is determined by a pair of path descriptions. Continuous

rotation, a very important feature, would be possible if the

orientation of the eel could be controlled by a third path

description. There would then be as many degrees of freedom

as now exist in animating by selecting and arranging paper

cutouts and by overlaying drawings done on celluloid sheets.

A straightforward extension of GENESYS would allow the

animator to associate with each eel class a sequence of two

dimensional projective transformations, including not only

translations and rotations but also scale changes and hori

zontal and vertical expansions and contractions. Parameters

-87-

of the transformation, for instance, a rotation angle and a

factor of expansion, would be assigned either a constant

value or a sequence of values, that is, a path description.

It would then be as easy to depict a rotating space ship

fading into the distance as it is to show a space ship of

fixed size and orientation zooming across the sky.

Generalization 2--Dynamic Hierarchies:

I.B.9. has introduced the concept of hierarchies of

structured dynamic behavior. Combining collections of dynamic

descriptions for use as a unit is an economical way of achiev-

ing a higher level of discourse. GENESYS should be augmented

to include such a macro-capability. The user would then

define an event or an activity by listing: the eel class

(or group of classes) whose movement is to be saved as a

unit; the attributes of the movement to be included, which

may be any or all of the x path, the y path, and the selec

tion description; and, the frame of the event or the interval

of frames of the activity. (*8) If arbitrary dynamic

hierarchies are to be established, then the system must also

allow combining defined events and activities into higher

level activities.

What is desired is illustrated by the following hypo

thetical sequence of commands: CALL JAWS BODY LEGS TAIL the

CROCODILE; CALL x y s 06 CROCODILE 6kom6kame 25 thkough6kame

48 a HOP; APPENV HOD tothemovemento6 CROCODILE; APPEND HOP

-88-

tothemovemento6 CROCODILESS. The first command groups a

set of existing eel classes into a unit called a 'crocodile'

The second command extracts the fragments of the twelve

dynamic descriptions that make the crocodile hop. The third

command appends a copy of the hopping motion to the croco-

dile's existing movement. The fourth command, which assumes

that a crocodiless has been similarly formed from four eel

classes, causes the crocodiless to hop in the same way as did

the crocodile.

Generalization 3--The Generalized-Gel:

A generalized-eel is, roughly speaking, a picture so

defined that its appearance in a given frame of the dynamic

display is determined by the values of a set of associated

movement descriptions. (*9) Cel classes as they currently

exist in GENESYS, and eel classes under arbitrary projective

transformations, are special kinds of generalized-eels.

As an example of a generalized-eel, consider the follow

ing picture--a textured five-pointed star, whose location in

two dimensions, orientation, and density of texture are con

tinuously variable, and whose edges are displayed either

solid or dashed and in one of eight different intensities.

Suppose that these four continuous and two discrete parameters

may be varied throughout an interval of a dynamic sequence.

Then an instance of the star appearing in a particular frame

depends upon the values of four path descriptions and two

selection descriptions.

-89-

The GENESYS user should be able to commission a

generalized-eel in the sense that he instructs a programmer

to embed into his version of the system a special algorithm,

one which takes a number of movement descriptions as para

meters and from their values in each frame computes a picture.

This algorithm will be expressed in the language in which

GENESYS is implemented, for one cannot write programs in the

command language of GENESYS. GENESYS's design, on the other

hand, should allow the new command to be integrated smoothly

into the system. Specifically, it must guarantee that all

tools available for the editing of X, Y, and selection

descriptions are available for the editing of the new move

ment descriptions.

Implementing Generalizations 1 and 3 would augment the

class of dynamic images that can be produced with GENESYS;

implementing Generalization 2 would only facilitate the

production of certain sequences.

In conclusion, we have seen that GENESYS is a picture

driven animation system in which a few simple controlling

algorithms combine eels and dynamic descriptions to form

animation sequences. The algorithms are fixed and embedded

in the interpretation of GENESYS 1 s command set. At some

point the animator may discover that the set of available

-90-

algorithms restricts the class of dynamic displays that he

can generate and modify with ease. Already in this section,

we have proposed a concrete schemata for additions to the

system. The animator's only current recourse is to persuade

the programmer maintaining GENESYS to modify or augment the

system. These additions must be made in the language with

which GENESYS is implemented, a language unrelated to the

command language used by the GENESYS animator. For eventual

users of APPL, the system described in Part II, there will

be a nicer solution. The user will be given the capacity for

picture-driven animation, and also the ability algorithmically

to define picture change and algorithmically to control the

interpretation of the sketches and pictures through which he

communicates with the computer. The algorithms may be

expressed within the language of the system, using the com-

mand set of APPL. This means that APPL will be an open-ended,

multi-purpose animation system.

On the other hand, there are advantages to holding fixed

a few simple algorithms, and separating the imposition of

dynamic behavior from the definition of static picture

structure. We have discovered that even these simple algo-

rithms, when augmented with powerful tools for manipulating

movement and rhythm, yield a useful animation system. Further-

more, I would estimate that this system, GENESYS, could be

reimplemented on the TX-2 in 4-6 man-months, whereas APPL

-91-

might.:.t&ke·l~·to 2 lllall .. ,. s. ru..a~ro.rtll~P«-•cns~o4tpt#$».re

tlr!YH. •n:i.Utiea t•3lt0l'At t , •• " i1H-.Oll~i.4.kerd~jJIU¥S

th&Jl inc one: like· UN,. tll..,.,~1t:i-t·,•.-i.t1rfi~Gq~a~7s-ed~rut"'

c.a.uu·;r tu e.rt ~ ••·Hniac-._. 'fd(U.tis:>giiallllllol 4PU1.-c'L' ;\: ·.:

de.Jer:f.slJoii.-." · 'P~t .,._,.a4•B'.t.a$bf:, ~d..&.$-'Dll&1l;• '"'4:PS•r.

,.

t ..

(*l)

(*2)

(*3)

(*4)

(* 5)

(*6)

FOOTNOTES -- I.E.

Stephenson,3
pp. 16-19. At this point, he also notes:

"As a further compensation the added dimension
of movement gives the cartoon an advantage which
static art has been reaching out for over the
centuries. Even the simplest drawing can be made
interesting when things start moving. The composi
tion of the cartoon lies not onlyin the arrangement
of lines and masses in each individual picture,
but in the relationship of one picture with the
next--contrast or harmony will exist between pic
ture and picture, as well as within the individual
image. Thus the cartoon, though lacking some of
the possibilities of painting, nevertheless has
a richness of its own which offers infinite pos
sibilities and presents a serious artistic
challenge to the film-maker."

See Footnote 1, Introduction.

The term "animation stand" refers to the animation camera
and the rostrum upon which eels and cut-outs are ar
ranged and then photographed.

It need not necessarily be an animated display of the
object that is ultimately being driven by the path
description.

Implementation of this mechanism is straightforward pro
vided one disallows any circularity in the relationships
between movements. In other words, if b's movement
depends on a's, and e's on b's, then a's cannot be de
fined in terms of either b's or e's. Allowing circular
relations leads to the problem labeled by I. E.
Sutherland as "constraint satisfaction."39 See also
I.B.10, and Footnote 8 (Ch.I.B.), and I.E.2.

There is an interesting difference between the eel
class {"eyebrows raised", "eyebrows lowered"} and the
eel class used to generate the reaction of the block.
In the former example, each eel is a discrete identi
fiable visual state, which as a static image has
significance in terms of its symbolic relationship to
other members of the class. The latter case, on the
other hand, illustrates that the eels need not represent
static states to which we can attach nice verbal labels.

-93-

(*7)

(*8)

(*9)

They are in a sense visual artifacts required for the
synthesis of the dynamic from the successive presenta
tion of the static.

Francis Chagrin, a highly experienced composer in
animated films, writes in Halas and Manvell, 2 p. 238:

II .more often than not, the music is actually
recorded first, then measured carefully (or
charted) and all the exact points of emphasis
marked and handed over to the animators. sound
and vision have equal importance; they are equal
partners, preparing for it scrupulously by
synchronizing their moods and their movements.
both telling the same story at the same time.
in perfect harmony and with single-mindedness. I
do not mean in unison; the harmony may be brought
about by parallel movement or by counterpoint."

The ability to group eel classes will also facilitate
constraining these groups to move as a unit.

The concept of a generalized-eel parallels what Max
Bense calls an "aesthetic object." See Reichardt,25
P• 72.

-94-

'.'.'.-

r.c.

\ .·.

·~ .

. ~

-~ .

• r ~· ~

', - - ; ·,

-;;:·

-.ff-

I.C.l. SPECIFYING GLOBAL DYNAMIC DESCRIPTIONS

Six general approaches to the specification of dynamic

descriptions may be distinguished:

(1) The sketching or mimicking of a new pictorial

representation of the description.

Examples: Mimicking the 'bounce,bounce,sproing,bounce' of

the wedge in 'SPROINGBOINGZAP'; Drawing a rapidly oscillating

waveform to represent the path description of the intensity

of a 'burning sun'.

(2) The editing or refinement of an existing pictorial

representation of the description.

Examples: Editing a picture of a selection description to

lengthen one reverberation of the block in 'SPROINGBOINGZAP'

Resketching part of a waveform to add acceleration to the

horizontal movement of the wedge.

(3) The direct algorithmic specification of the data

sequence.

Example: Setting x(t) = x
0

+ vx 0t, y(t) = y
0

+ vy
0

t + (l/2)gt
2

to determine the trajectory of an object falling to the earth.

(4) The indirect algorithmic specification in terms of

combinations of existing data sequences.

Examples:

objects #2 and #1 always move together, #2 remaining 1 spatial

unit above #1; Setting x
2

(t) = x
1

(t-1), y
2
(t) = y

1
(t-l),

s 2 (t) = s 1 (t-l), so that object #2 follows object #1 along a

-96-

trajectory, remaining exactly 1 temporal unit behind #1.

s
1

(t) and s
2

(t) are selection descriptions operating upon the

eel classes representing the two objects.

(5) An indirect algorithmic extraction of the data

Example:

sequence as the succession of values assumed by

some aspect, or attribute, of a constituent picture

in an existing animation sequence. (*l)

Computing f(t) =Distance between PIC.l and PIC.2,

when some other movement is to depend upon the relative motion

of these two subpictures, whose absolute motion is already

determined.

(6) A coupling to a real physical process in the external

world, such that it transmits a data sequence as

(analog) input to the computer.

Examples: Interesting couplings may be to particle collisions,

the atmospheric pressure or wind velocity, a music waveform,

or, in the case of (1) and (2), a reaJ live animator.

GENESYS contains techniques implementing the first,

second, and fourth approaches only. APPL allows in principle

arbitrary algorithmic specification of data sequences, as

well as the dynamic computation (extraction) of a property

and its recording as a movement description.

The ability to accept continuous and discrete time series

and sequences of pulses and waiting times is critical if one

wants aspects of a movie to be precisely determined by pheno

mena of the real world, such as the output of scientific

-97-

[,,JJ.§Jt£ Wt# .. ZXA4, .. Ml- J431$. Ai-4. Xiii XL! Ji,LtJ,,L...£4,M .@iJQ!JlU## L4. J4 Ut.,J

experiments. These direct couplings to physical processes

depend upon the existence of appropriate -hardware, tor eza•ple,

analog-to-digital conTertera anCl input.cla't>a channels. In the

impleaentation of GEJJBSYS an4 in t-ae deai'P ot APPL we have

made no explicit provision tor such inp1tta, .sinee only elemen

tary software is required.

A system eaboctying all siz gene-raJ; appro&cGe:s, each

represented by a wide Tarie1iy -0f specrltic teehBi4ues .-. v:o.u-ld

allow the truly plastic r-e:p-rea-ent>ati:Gm •ri -2an-i:lflll&t.tcm of

dynamic inforaation. (•2)

-98-

I. c. 2. WAVEFORMS, P-CURVES, AND OTHER PICTORIAL REPRESENTATIONS
OF PATH DESCRIPTIONS

Waveforms and p-curves are two kinds of pictorial repre-

sentations of path descriptions. Both may be introduced with

a single example.

Consider the motion of a figure that goes from one corner

of a square room to the diagonally opposite corner by walking

along two adjacent walls. We shall ignore the vertical move-

ment and consider only motion of the center of the body in

the two dimensions of the plane of the ground. He first walks

in the direction of increasing X coordinate, then in the

direction of increasing Y coordinate. We further assume that

he begins from a standstill, accelerates and then decelerates

to the first corner, pauses there for a brief interval while

he turns in place, and finally accelerates and decelerates

to its destination.

One complete description of this planar movement con-

sists of the functions of the X and Y coordinates versus time.

These are depicted in Figures I.C.l. and I.C.2. Such repre-

sentations of changing picture parameters are called waveforms.

Time is depicted, in the waveform, along one spatial dimension.

The waveform's construction requires movement of the stylus

along that dimension; the display records and makes tangible

this movement.

Alternatively, both spatial coordinates could denote the

two spatial coordinates of the movement. A natural

-99-

correspondence is established between the X(Y) coordinate of

the floor and X(Y) coordinate of the medium of the representa-

tion (paper, scope face, etc.). Figure I.C.3. depicts such

a parametric curve representation of the movement.

trates with clarity the figure's path on the floor.

It illus-

Yet the dynamics of the motion are hidden because the

temporal dimension is only an implicit coordinate. This

rectified in Figure I.C.4. A stream of symbols is used in-

stead of a continuous trail to depict the path. Characters

are spaced along the path at short, uniform intervals of time,

such as every 24th of a second. Dynamics are apparent in the

local density of symbols. Observe in particular how they

cluster where the figure pauses.

The dynamic construction of a path description is a user

driven animated display in which the timing of the stylus's

movement is preserved by recording its position in every frame.

A tangible representation of the stylus's movement is the

dynamic display of a lengthening sequence of characters spaced

equally in time. We shall call a parametric curve dynamically

sketched in real time a p-curve. The p-curve corresponding to

Figures I.C.1.-4. is depicted in Figure I.C.6. We have

attempted to convey in a single static image that the p-curve

is a dynamic display.

two path descriptions.

Each 2-dimensional p-curve determines

Thus the bouncing of the wedge in

'SPROINGBOINGZAP' may be synthesized by "bouncing" with the

-100-

stylus along some path on the tablet surface, that is by

mimicking the desired dynamic.

The waveform and the p-curve illustrate two aspects of

the representation of time that apply to all pictures of

dynamic descriptions:

(1) Pictures and actions are termed static when real

time and movie time are independent, when the passage of

real time in the display or construction of a dynamic descrip

tion bears no fixed or useful relationship to the dynamics of

the animation sequence eventually driven by the description.

Alternatively, pictures and actions are termed dynamic when

real time and movie time are closely coupled, when picture

change and interactive input are clocked, controlled and

coordinated by the computer so that they depict and define

the dynamics of the eventual movie. We say that these dynamic

processes occur in real time.

(2) In the visible record of a dynamic description, movie

tim2 can be represented as an explicit axis such as the hori

zontal; the user then draws movie time explicitly along that

axis. Alternatively, movie time can be represented implicitly

along a curve by a technique such as the controlled spacing of

a trail of symbols.

Table 1 summarizes how these distinctions apply to our

definitions of waveforms and p-curves:

-101-

Actions Actions
and pictures and pictures
are dynamic, are static,
real-time not real-time

Movie time
is an xxx (*3)

explicit Waveform

axis

Movie time
P-curve

Point-by-point
is not p-curve

an explicit
Strobe

(parametric
axis curve)

Table 1

PICTORIAL REPRESENTATIONS OF PATH DESCRIPTIONS

There is a significant qualitative difference between

"playing back" the animated display that is a p-curve very

rapidly and very slowly. At 12 or 24 frames per second, con-

tinuous movements of the stylus are accepted; discontinuities,

that is, large gaps between deposited symbols, can be intro-

duced by lifting the pen, thus stopping playback, and then

repositioning it again. At 5 seconds per frame, lifting the

pen allows each point of the parametric curve to be individually

positioned. Since the dynamics of lifting the pen have no

effect on the dynamics of the resulting path descriptions, the

action of a point-by-point p-curve does not occur in real time.

Still another mechanism for displaying existing two-

dimensional movements is called the strobe, (*4) Consider

-102-

the spatial and temporal superposition of a p-curve and its

corresponding parametric curve. Assume that each is repre-

sented by visually distinguishable symbols. The p-curve

component traces the movement dynamically. The static component

allows the viewer to see the entire trajectory throughout the

duration of the dynamic trace. Because of the overlapping

static component, only the leading point of the p-curve is of

interest. Therefore, we replace the growing trail of symbols

that is the p-curve with a moving marker that represents its

leading point. One frame of the resulting strobe is portrayed

in Figure I.C.5. The display resembles symbols moving across

an array of neon lights, and also the airport strobe lights

which guide pilots down a runway.

from this similarity.

-103-

The strobe gets its name

'

I """ - - - -- -

(1)

'

''"" -~--- -~~~

(2) (3)

(1) The X coordinate waveform of a movement.

(2) The Y coordinate waveform of a movement.

(3) A parametric curve representation of the same movement.
The rhythm of the motion is not visible.

Figures I.C.1-3

PICTORIAL REPRESENTATIONS OF A CONTINUOUS MOVEMENT

-104-

(4) (5)

(4) A better display of the parametric curve of Figure I.C.3.
Symbols are deposited at short, uniform intervals of time.

(5) One frame of the strobe corresponding to Figures I.C.1-4.
The strobe is a dynamic display, in which superimposed on
a static parametric curve is a marker tracing in real time
the trajectory.

Figures I.C.4-5

THE PARAMETRIC CURVE AND ITS STROBE

-105-

(6) The p-curve corresponding to Figures I.C.1-5. The dynamic
display is compressed into a single static picture containing
nine selected frames, the 1st, 2nd, 4th, 8th, 16th, 32nd,
4lst, 50th, and 60th.

Figure I.C.6

THE P-CURVE

-106-

I. c. 3. PICTORIAL REPRESENTATIONS OF PATH DESCRIPTIONS
-- AN ANALYSIS

The various pictorial representations of path descrip-

tions should be compared and contrasted on at least the

following criteria:

(1) their utility as mechanisms for defining new move-

ments, and the quality of visual feedback provided

the animator during this process;

(2) the number of dimensions of dynamic information

that can be represented, and the ways in which the

dimensionality is used to advantage;

(3) their role in guiding spatial and temporal adjust-

ments to existing movements, and the naturalness

and flexibility of the mechanisms that effect these

changes; and,

(4) their capacity for meaningful conceptual extensions.

These criteria also apply to representations of selection and

rhythm descriptions.

One major concern links our discussion of these issues.

Recent experience with GENESYS has confirmed that a critical

problem of picture-driven animation is that of coordinating

various parallel actions, or concurrent dynamic activities.

The relationships between actions, between movements, are

more important than the character of each individually, for

actions are always interpreted in context. With global

-107-

dynamic descriptions an animator can easily control entire

intervals of individual movements. This chapter describes

methods (better ones are still sought) for guaranteeing that

desired constraints, or relationships between the movements

of several objects, are satisfied, both at individual frames

and over entire intervals of time. (*5)

Defining and Displaying Movements

Using static representation, such as a waveform, to de

fine a new movement requires a thorough rationalization of

the desired dynamic behavior, in other words either previsualiz

ing or making analytic the changes of picture parameters

with time. A waveform can also be used to depict the re-

lationship with time of any picture parameter in an existent

dynamic sequence. We have seen that these parameters may be

spatial coordinates, scale factors, intensity variables, or

line thicknesses. The display of a waveform highlights such

regular behavior as a constant rate of change or such

symmetries as periodicity or a perfect reversal of a given

motion.

The p-curve is the direct mimicking of a movement's

trajectory in an appropriately chosen space. The single

action of the two-dimensional p-curve is equivalent to

sketching two waveforms. Use of the p-curve facilitates a

direct transmission to the computer of an intuitive feeling

for a motion, of a bodily-sensed rather than visually-

-108-

rationalized dynamic. There are certain movements, such as

a flutter, a tremor, and a thrust, which cannot be analyzed

or formalized as easily as they can be mimicked with a hand

motion. Emotions, too, are spontaneously conveyed by human

motor behavior, as described by Arnheim in the following

passage:

Physiognomic movement is the component of bodily ac
tivity that spontaneously reflects the nature of the
given personality as well as that of the particular
experience at the given moment. The habitual firmness
or weakness, confidence or timidity of a person is
expressed in his movements. At the same time his
bodily behavior will reveal whether he is interested
or bored, happy or sad at this particular minute.

Descriptive movements are deliberate gestures meant
to represent perceptual qualities. We may use our
hands and arms, often supported by the entire body,
to show how large or small, fast or slow, round or
angular, far or close something is or was or could be.
Such gestures may refer to concrete objects or events
--such as mice or mountains or the encounter between
two people--but also figuratively to the bigness of a
task, the remoteness of a possibility, or a clash of
opinions. (*6)

Display of a two-dimensional p-curve sometimes obscures

precise temporal relationships, for it may be difficult to

see how many frames separate pairs of points along a trajectory.

The p-curve does depict clearly the temporal concurrence of

the values of the two changing parameters which are repre-

sented. This is most useful for pairs of coordinates which

are closely coupled intuitively, such as pairs of spatial

coordinates of one object. The clearest static representation

of the dynamics of a bouncing ball is a multiple-exposure,

-109-

high-speed photograph of the trajectory of the ball, and

that is essentially the parametric curve.

Experience has shown that it is difficult and unnatural

to conceive of two-dimensional spatial movements in terms of

the two waveforms that are its formal equivalent. The point-

by-point p-curve is a technique for defining such a motion

directly in the plane, without being required to mimic it.

Display of the strobe of an existing movement, as we shall

see in I.c.7., should aid the mimicking of a new movement in

relation to the existing one.

Occasionally one may wish to mimic dynamic behavior

that consists of a variation with time of one parameter only.

If the p-curve technique is used, only one of the resulting

path descriptions is needed. In I.D. we depict the flutter-

ing of a heart by rapidly varying its size. In a system with

suitable algorithmic control, the animator assigns the X [R]

coordinate of the p-curve to a parameter determining the

size of the heart, and then flutters the stylus back and

forth horizontally [radially]. Any vertical [angular] motion

of the stylus is uninteresting and is ignored.

Dimensionality

A p-curve represents one more dimension than does a

waveform. The stick figure experiment, discussed in I.E.2.,

established early in the research the utility of defining

a two-dimensional movement with a single action. On the

-110-

other hand, two dimensions can only be defined jointly if

they are closely coupled intuitively. Thus, we do not know

if the added dimension is useful in situations other than

that of pairs of spatial coordinates of the same object.

The p-curve allows a natural extension to three dimen-

. 56 . sions; one can trace a spatial path with a wand as easily

as a planar path with a tablet stylus. Sketching a spatial

waveform of two coordinates and time, on the other hand, seems

awkward, due to the difficulties in controlling the wand as

well as the lack of a suitable related feedback mechanism.

The use of additional hardware graphically illustrates

the power of the dynamic input of a multi-dimensional parametric

curve. The Computer Image Corporation has built an electro-

mechanical harness which records data about the bending of

the joints (and hence the movement) of the man who is wearing

it.29 This allows the direct transmission of life-like

dynamics, ideal for driving motions of a computer model of a

human figure or an abstract stick figure. If music is

synchronized by using it as the driving function for other

dimensions of the movement, then the animation becomes even

more energetic and life-like.

Refining existing movements

The waveform and the parametric curve each play a role

in the spatio-temporal adjustments of existing movements.

-111-

Consider a display of the waveforms of a number of related

parameters superimposed against a common time axis. Such a

representation is natural for sequencing or pacing a number

of concurrent movements. It has been useful to mark inter-

esting events, or critical instants along the time axis, with

a rhythm description, In the case where the coordinates of

the p-curve do in fact denote spatial coordinates, spatial

alignments of different objects are facilitated by use of

their parametric curves,

Conceptual extensions

The concept of the waveform may easily be extended to

other qualities of a motion such as the velocity. A similar

extension of the p-curve does not appear to be useful.

Although one could construct a p-curve plotting the changes

of one velocity against another, it would be difficult to

synthesize and conceive of a motion in these terms.

-112-

I. c. 4. SKETCHING AND RESKETCHING PATH DESCRIPTIONS

Several observations may be based on accumulated

experience sketching and resketching pictorial representa

tions of path descriptions, both statically and dynamically.

Static Sketches (Not made in real time)

The fact that the functions representing waveforms must

be single-valued may be exploited in the sketching process.

One traces back and forth over a particular region of the

curve, continuously replacing old values with new ones, thereby

refining the shape of the waveform.

A particular problem arose in ADAM, the stick figure

experiment, when sketching waveforms of rotation angles, whose

maximum and minimum values (+180°,-180°) are considered equal.

A curve can therefore go continuously from the greatest

positive values to the greatest negative values. The animator

should not have to break the continuity of his sketch in

crossing an arbitrary boundary, such as 180°. A solution

implemented in ADAM is that of identifying several regions

of the display with a single range of values of the waveform.

Specifically, while the animator continues sketching an ef-

fective 180°, 190°, 200° a copy of this segment of the

waveform appears at -180°, -170°, -160° Only when it

is convenient does he interrupt the sketch and continue it

below. Commands for scaling and windowing pictures, aug-

mented by good clipping mechanisms, would aid the application

-113-

of this technique. (*7) Such commands would also aid the

resketching of path descriptions, for one could work on en

largements of particular portions of their waveform and

parametric curve representations.

Another solution of more general interest, discussed but

not yet implemented, is that of displaying waveforms so that

the parameter being defined is represented by the identical

parameter in the picture. In the case of rotation angles,

the waveform is plotted in polar coordinates, R is identi

fied with movie time in frames, and e represents the angle to

be varied. Values of the angle that will be used in succes-

sive frames of the movie are placed at increasing distance

from the origin. Application of this technique, automatic

in the construction of waveforms of Y versus time, might also

be appropriate to the definition of X coordinate and scale

factor variations. In the former case, the waveform is

plotted from bottom to top instead of left to right, with the

X coordinate of the display representing X, and the Y co-

ordinate of the display representing movie time. In the

latter case, R is identified with the size parameter, and

with the time in frames.

We noted in I.C.3. that a parametric curve is an intui

tively natural coupling of pairs of spatial coordinates, and

hence more effective than a pair of waveforms as a vehicle

for defining two-dimension spatial movements. New parametric

curves may be constructed in real time, with a p-curve, or

-114-

not in real time, by positioning individual points of the

curve. Currently in GENESYS, if only one dimension of a

given movement need be altered, the corresponding waveform

must be resketched, A new technique, which allows this to

be done directly on the parametric curve, has been devised

though not yet tested experimentally. Specifically, the

method allows the animator to change the variation of

x(t)[y(t)J, while holding y(t)[x(t)J constant. Because a

parametric curve can be multi-valued, the animator must

designate the first and last points of the region of the

curve to be resketched. Suppose, for example, that x(t) is

to remain fixed, the varying stylus location is represented

by (x ,y), the initial point to be altered is
Si Si

and the next point along the curve within the designated

region is (x
2

,y
2

). The stylus is set down on the surface

of the tablet at (x ,y) , and the first point of the curve
sl sl

is repositioned at (x
1

,y).
s1

Sketching begins, and when the

stylus coordinate x =x
2

, the second point of the curve
s2

is

moved to (x
2

,y).
s2

Intuitively, points on the old curve are

projected directly upwards or downwards to become points on

a new curve. Since these coordinate pairs are the values of

the X and Y path descriptions at successive frames, the

variation of X with time is not altered. Because the animator

must move strictly forwards and backwards between the bound-

aries of the delimited region of the curve, multi-valuedness

is no longer a problem. The technique is formally equivalent

-115-

to sketching y(t) directly as a waveform. Intuitively, how-

ever, it is very different, because it uses a display which

depicts correctly and naturally the coupling of X and Y.

Dynamic Sketches (Made in real time)

A problem in the sketching of p-curves is that of the

synchronization of the hand to the computer in the beginning

transient of the movement. One solution is the use of a

countdown procedure. Another is to begin clocking before the

start of the movement, and in subsequent editing to chop off

the excess on the curve. In any case, editing can later be

used to adjust the initial values assumed by the path de-

script ions.

We have noted that discontinuities in a p-curve can be

introduced by lifting the stylus from the surface, since this

temporarily halts the clocking of the movement.

It is difficult, when mimicking a motion, to control

accurately its exact duration in frames. A satisfactory solu-

tion would allow the animator to sketch a p-curve without con-

cern for its duration. If its length then fails to satisfy

some other constraint imposed by the film, it can be scaled

linearly in time to the desired length.

More generally, it is difficult to control accurately

both the position and the speed of a movement. There appears

to be, as one would expect, intrinsic constraints in the

medium of hand motions. It is relatively easy, for example,

to move quickly and accurately at regions of high radius of

-116-

curvature, and then slowly at regions of low radius of curva-

ture. It is difficult, on the other hand, to do the converse.

This observation, and other evidence to be introduced, sug

gests that the capability for dynamic mimicking must be

augmented by an editing capability, a system for refining

existing movements, if we are to achieve a flexible defini

tion facility for a wide variety of dynamic behavior.

A technique has been devised, though not yet tested in

practice, for combatting the difficulty in controlling both

the position and the speed of a movement. The idea is to

control each in separate motions. One would first sketch a

p-curve without concern for the speed of the movement, con-

centrating only on the shape of the parametric curve. After

the curve is suitably defined, we would retrace it with the

appropriate dynamics, concentrating on the speed rather than

on the exact position of the stylus. The system would then

automatically project points from the new curve onto the old

curve, presumably by a technique of orthogonal or minimum

distance projection. Thus the precise spatial characteristics

of the first movement would be combined with the dynamics of

the second movement.

Another method, which we have used, is to concentrate

first on mimicking the correct dynamics. We then adjust the

spatial characteristics of the resulting curve with the

editing system. This facility for refining existing move-

ments is our next topic.

-117-

I. c. 5. EDITING AND GRAPHICALLY REFINING PATH
DESCRIPTIONS (*8)

Whereas the previous section presented methods for re-

sketching a path description free-hand, both in real time

and not in real time, this section introduces methods that

do not require a sketch. Once a path description has been

evaluated and judged not to be quite right, it is often

easier to modify it rather than redraw it. These modifica-

tions, harking back to the distinctions of I.C.l., fall under

category (2), refinements of existing pictorial representa-

tions, and category (4), indirect algorithmic specifications

in terms of existing path descriptions.

We shall describe four major kinds of editing capabilities,

operations for:

(1) scaling curves;

(2) reshaping them;

(3) algebraicly combining them; and,

(4) logically combining them, including pattern
scanning, matching, and transforming functions.

Operations of the kind described in I.C.4. and I.C.5. should

enable precise control to be exercised over the texture of a

motion.

Scaling Curves

The need to scale path descriptions is accentuated by

the difficulty noted above, that of controlling while sketch-

ing the precise magnitude and duration of spatial excursions.

-118-

Additive (multiplicative) scaling of the ordinate of a wave

form is equivalent to the algebraic sum (product) of that

waveform and a scalar or another waveform. Selective

acceleration and decelerations of portions of a motion may

be achieved by replacing "t" with a function 11 f(t)", which

we call "generalized temporal scaling." A path description

"x(t)" is thus mapped into "x(f(t))", the algebraic composi-

tion of the two time functions. All tools available for

sketching waveforms should obviously be made applicable to

the contruction and modification of scaling functions.

Our animation experience suggests that generalized

temporal scaling is a technique more powerful than would in

common practice be needed. A simple linear scaling command

is exceedingly versatile if one can arbitrarily delimit the

section of the path descriptions to be scaled. One would

frequently choose a critical point on a waveform, and then

shrink and expand by a given number of frames sections

delimited on either side of the point.

Reshaping Curves

Scaling is the simplest example of the reshaping of path

descriptions. More generally, one may take a curve, "attach"

the stylus to one of its constituent points, and move it to

a new position. A variety of algorithms can be used to com-

pute how points adjacent along the curve are altered. For

example, a vertical pull could define a deformation or

-119-

stretching whose effect diminishes (say, exponentially) on

either side of the attached point. The decay constant, or

stiffness factor of the curve, could be varied by a knob or

by a pressure sensor in the tip or on the side of the pen.

(*9) Alternatively, we may wish to maintain the trajectory

of an existing two-dimensional movement, but vary the rate

at which part of it is traced. If points along the parametric

curve are viewed as beads on a string, we reposition some of

the beads by designating one point of the string with the

stylus, and giving it a quick vertical impulse. As before,

we control the magnitude and extent of the reshaping opera

tion by several numerical parameters, which in this model

represent the mass of the beads, the strength of the impulse,

and the effects of gravity and friction.

One would actually like to control reshaping so that

certain constraints remain satisfied. For instance, if a

particular point on a given curve defines a desired exact

collision between two objects, then this point should remain

fixed. Two other simple examples are requiring a curve to

hold a given velocity in a certain region, and constraining

it not to exceed a given ordinate value. The latter condi-

tion could be used, for example, to guarantee that one object

would not penetrate another. One may wish to hold fixed the

locations and heights of certain maxima and minima while

rounding and smoothing, or sharpening and intensifying the

peaks. One may also wish to make more or less continuous

-120-

and gradual certain level transitions.

There is only one implicit constraint mechanism currently

in GENESYS, and it is heavily used. The animator may estab-

lish a Left Boundary and a Right Boundary, which delimit an

interval of frames. Any activated sketching, resketching, or

editing operation can only effect frames within the region

currently delimited. This is a good way to localize effort

within a particular interval of movie time. The feature also

provides valuable protection against inadvertently altering

an already perfected section of a movement.

Algebraicly Combining Curves

We have already seen the value of algebraic combinations

such as the negation of a path description, which defines the

reversal of a movement, and the composition of two path

descriptions, which results in generalized temporal scaling.

The sum of two path descriptions superimposes synchronized

motions. For example, one generates a cycloid from the combi-

nation of a circular movement and a straight line movement.

The difference of two path descriptions represents relative

motion. In these examples path descriptions are interpreted

as arrays of numbers, and algebraic operations are applied

element-by-element to the values at corresponding instants

of movie time.

Logically combining curves

Sections of path descriptions may also be viewed as

-121-

ordered strings of elements. Operations on strings such as

cancatenations, insertions, deletions, periodic repetitions,

delays (phase shifts), and head-to-tail inversions combine

and extend existing dynamic sequences. Cancatenation

causes one movement to follow after another. Insertion is

used to insert one movement somewhere in the middle of an

existing movement. An important special case in practice is

the insertion of a string whose elements have a constant

value equal to that of the element at the point of insertjon,

for this is a mechanism whereby holds, or pauses, are intro-

duced into a motion.

existing movement.

explained.

Deletion removes unwanted parts of an

The other operations may also be simply

One could extend the interpretation of path descriptions

as strings of symbols by providing a pattern-matching capa-

bility. Coupling this to standard scanning and pointing

mechanisms would allow one to isolate aggregates of points

satisfying criteria such as a constant velocity, accelerations

greater than a prescribed limit, or a particular kind of dis

continuity. The isolated aggregate could then be transformed

in such ways as being smoothed or having a constant velocity

transition introduced. Within this framework one could

generate particular stylized kinds of dynamic behavior.

-122-

I. c. 6. SPECIFYING SELECTION AND RHYTHM DESCRIPTIONS

Selection and rhythm descriptions are conceptually

discrete phenomena; path descriptions, continuous. Whereas

the elements of a path description are arbitrary real num

bers, the elements of a selection description are small

positive integers. A rhythm description may be viewed as a

sequence of integer values of movie time, or as a Boolean

sequence, a succession of ones that represent events and

zeros that represent the absence of an event. Techniques for

the construction of discrete dynamic descriptions are con

siderably simpler, yet conceptually similar to those used in

the synthesis of continuous dynamic descriptions.

We have used various hardware devices in the static

definition of selection and rhythm descriptions. Pictures

of the former as a sequence of levels or steps, and of the

latter as a sequence of pulses or event markers, may be

drawn and accepted by suitable stylus input routines. Such

pictures appear in Figures I.E.8, 17, and 18. It is often

quicker to type rather than to draw a sequence of choice

values, pulse positions, or intervals of movie time. In di vi-

dual pulse positions may also be accurately positioned with

a knob. Precision to the individual frame, often not essen-

tial with descriptions of continuous change, is usually

critical here.

Like path descriptions, selection and rhythm descriptions

-123-

may be dynamically defined. What is required in the former

case is the isolation of discrete positions or regions to

which the stylus position in each frame can be assigned.

One could for instance mimic in real time a line of music,

moving the pen up and down as a baton on a hypothetical

staff in the tablet surface. An appropriate algorithm would

map this action into a selection description. A direct and

simple dynamic input of a rhythm description consists of the

tapping of a push-button.

a beat such as "I II I

mimic it to the computer

What more natural way to describe

I I" is there than to actually

"I II I I I".

Tools for the editing of selection and rhythm descrip-

tions are also required. The principles behind temporal

scaling as applied to path descriptions are equally applic

able here, although the analog to waveform shaping does not

seem useful. All string operations carry over from the

continuous descriptions to the discrete ones. There are

element-by-element logical operations, such as "and" and

"not", which correspond to the algebraic functions on wave

forms.

A particularly useful discrete function is achieved by

a simple coupling of a selection description and a rhythm

description. A selection description is considered to be

time-independent, if successive elements of the data sequence

indicate only the order in which elements are to be chosen

but not the time interval over which each choice is to apply.

-124-

Thus, if there are three states of the mouth, a grin, a

smugness, and a frown, then the time-independent selection

description Sl = (1,2,3,2,3) indicates only that the mouth

undergoes the transition sequence grin-smugness-frown-

smugness-frown. This description can be altered into a

time-based selection description through the definition of

a rhythm description R = (3,2,4,1,4), whose successive ele

ments represent the intervals during which each state exists.

A system which had a suitable command and implementing al

gorithm could transform Sl and R into the time-based selec

tion description representing the frame-by-frame evolution

of the mouth, 82 (1,1,1,2,2,3,3,3,3,2,3,3,3,3). GENESYS

contains, in crude fashion, a mechanism for doing this.

The concept of the dynamic pattern is suggestive when

applied to discrete dynamic descriptions. Graphic repre-

sentations of particular recurring movements, such as walking,

kicking, and biting, appear as easily distinguishable patterns

in the selection descriptions of Figure I.E.17.

almost periodic sequences of choices from a eel

Periodic and

class are

useful in animation. So are regular sequences of intervals

between transitions or other events.

We often want to constrain sets of selection sequences.

For instance, whenever the eye of a particular cartoon figure

is closed, the lower eyebrow position would be the corre~t

choice. Discrete analogs to smoothing operations are also

meaningful. An example is the introduction of one frame of

-125-

'-~ . ~

.. '[~
:·r:,:-:-:·-r S1d.-:: ~z . ..t ~tl::>e~s--"I-q-.~,~ ~~:ttJ-:qi~-r.,.-?~t· ::t~~:.:t

,., -

-_;_'_t'

I. c. 7. COORDINATING PARALLEL ACTIONS

Two methods already presented are particularly useful

for coordinating and synchronizing concurrent dynamic

activities:

(1) Graphing dynamic descriptions along a common axis

of movie time, which is depicted in Figures I.B.l, I.E.8,

and I.E.17, aids the synchronization of one dynamic strand

to another. (*10) In practice, we place event markers along

the axis to aid the process of relating the values of several

descriptions at one instant or interval of movie time. We

can identify from the appearance of the selection description

of the eel class 'mouth', for example, those intervals in

which a character's mouth is in the fully open position. We

then use this information to refine the selection description

of the eel class 'leg', thus guaranteeing that his foot will

be in the mouth soon after it is opened.

(2) Interacting spatial movements of several objects

may be improved by graphically editing their parametric curve

representations. Symbols on adjacent curves, when viewed in

the correct correspondence, directly depict the relative

spatial position of the objects in particular frames.

We can distinguish at least three other techniques which

help achieve correct coordination:

(3) The attachment point of a eel is that constituent

point whose coordinates are precisely defined by the path

-127-

descriptions which drive the eel. When sketching p-curves

and parametric curves, the animator can better relate one

movement to another if he can control and vary a eel's attach-

ment point. For some movements of the wedge in 'SPROINGBOINGZAP'

driving the center of the wedge is appropriate; for other

movements, such as its striking the block, one should mimic

the motion of the wedge's lowest point, since it and not the

center makes contact with the block.

(4) We have developed an untested method for using the

strobe to guide the dynamic mimicking of one motion in rela-

tion to another already defined. The technique is to play

back the strobe of the existing movement while sketching the

new p-curve. The static component of the strobe, the under-

lying parametric curve, should allow one to anticipate its

trajectory and thereby better relate the new trajectory to

it. The dynamic component of the strobe, the moving marker,

should aid the synchronization of the rhythm of the new move

ment to that of the old movement.

(5) Often it is futile to work globally, over an inter

val of time, until a single critical frame is corrected.

Such frames are usually transition points--instants of colli

sion, beginning or final frames of movements, or pauses in

an activity. Our limited experience suggests strongly that

the ability flexibly to construct and adjust such individual

frames is critical to the success of a picture-driven anima-

tion system. This is because it may be too difficult, and

-128-

it certainly has thus far seemed unnatural, to establish by

global operations all the subtle interrelationships that occur

in individual frames. After perfecting a key frame, however,

we can better sketch the path descriptions that emanate for-

wards and backwards from it in time. Furthermore, we can

sometimes interpolate path descriptions between two perfected

frames.

This observation does not detract from the value of

global dynamic descriptions and operations over them. It is

simply a restatement of what should be obvious: they do not

solve all the problems of animation. Global descriptions are

useful when there is significant regularity in the changes

of some aspect of a picture over an interval of frames. If

there is no regularity from frame to frame, or if the rela

tionships within a frame are more significant than the rela

tionships from frame to frame, then it may be better to work

individually on some or even all of these frames. It is too

early to predict what mix of global and local operations would

be used by an animator fluent with GENESYS and with the way

of thinking developed in this dissertation. Ideally, he

should work both globally and locally, each where most ap-

propriate. Further details on local operations in GENESYS

are given in I.E.4.

-129-

I. c. 8. IMPLICATIONS OF THE FACT THAT
DEFINING AND REFINING DYNAMIC DESCRIPTIONS
IS AN ART

We recognize that this chapter has been rather vague

about the relative importance of the many listed techniques,

and the extent to which each is successful in aiding an

animator working on actual animation sequences. Clearly,

the experimental aspects of the ideas discussed above have

thus far been explored to a limited extent only.

On the other hand, a few additional months of experi-

mental work would still not yield precise rules for the usage

of each specific technique. What constitutes the most effec-

tive set of tools for manipulating global dynamic descrip-

tions depends heavily upon the artist, his range of exper-

ience with the medium, and the effects he is seeking to

achieve. It is therefore essential that a picture-driven

animation system be easily adaptable to the needs of the user.

Let us analyze the meaning of the desired flexibility in a

pair of important examples.

(1) A critical problem of picture-driven animation is

relating the structure of eels (form, composition, balance)

to the structure of the imposed dynamic behavior (movement

and rhythm). This problem, which arises because picture-

driven animation separates the definition of static and

dynamic structure, is related to the difficulties of coordi-

nating parallel actions. (*11) There are two aspects to the

-130-

problem: What information about eels and their interrela-

tionship does an animator need to define successful picture

dynamics? How should the animation system aid in making

this information accessible and tangible, through providing

appropriate displays?

More specifically, we ask: What should be visible when

an animator is sketching or refining a path description? How

can we combat the difficulty in utilizing the visual feed

back provided by a p-curve's display while dynamically

sketching that curve? Should the eel class under the con-

trol of the path description be concurrently displayed, or

all "closely related" eel classes, or complete frames?

Should this display be static, that is consisting of con

tents of individual selected frames, or dynamic, that is

changing to show the frame affected by the animator's action

at a given instant? Should representations of other dynamic

descriptions be visible for comparison?

Thus, when the animator dynamically mimics a movement

over the interval, frame a through frame b, what else should

be visible on the display? A possible solution is: The

current contents of frame (a-1) and frame (b+l) should be

visible, for this will aid relating the p-curve to the

structure of the frames just before and just after the new

movement. However, display of these frames may be unneces-

sary if the object's motion is independent of other objects

in the picture, may be unwise if the frames are so complex

-131-

that the scope becomes hopelessly cluttered, and may be

inadequate if it is really the intermediate rather than the

beginning or final states of the movement that must be closely

coupled to other aspects of the scene.

(2) The second example deals with the naming of struc

tures. We have already presented the need for flexible

aggregation mechanisms for eels and eel classes. There is

a parallel need for naming and manipulating arbitrary aggre-

gates of global dynamic descriptions. Such aggregates would

be useful when trying to relate movements of various eel

classes.

How do we achieve the desired flexibility? In GENESYS,

we continue to add new mechanisms and refine existing ones.

To deal with the first problem area named above, we would

provide GENESYS with commands for positioning and scaling

individual pictorial representations of eels and dynamic

descriptions, and commands for making these visible and in-

visible. To deal with the second problem area, we would

provide GENESYS with commands for grouping and naming groups

of dynamic descriptions, and extensions of existing commands

so that they apply to such groups as well as to individual

descriptions.

Thus we continue to add to the system new kinds of en

tities (new data types), and new commands which operate upon

these data types. I contend that this approach is awkward

-132-

and inelegant because of the fragmentation of the resulting

conceptual structure. GENESYS was not built with such exten-

sions in mind, and so its growth is labored.

On the other hand, controlled and graceful extensibility

may be achieved if we prepare for it by basing the system

design at a fundamental level of abstraction, with the proper

primitive structures and operators. Cels, dynamic descrip-

tions, and animation sequences are not good primitives because

they are too specialized. There are needed structures and

operators, in terms of which the existing mechanisms of a

system like GENESYS can be simply expressed, for then they

can be made accessible for rapid modification and augmenta-

ti on. Part II presents APPL, a new animation language designed

with these issues in mind. The language is low-level enough

to express the algorithms needed for picture-driven animation,

yet high-level enough that the programs implementing these

algorithms are relatively simple, and may therefore be changed

with ease. In an animation system based on APPL, the animator

could more easily comprehend how his system works and what

is required to add new features and tailor it to his demands.

The result would be a flexible, adaptable, multi-purpose

animation machine.

-133-

(*l)

(*2)

(*3)

(*4)

(* 5)

(*6)

(*T)

(*8)

(*9)

FOOTNOTES -- I.C.

Notice that in approach (4) the data sequence is com
puted from existing data sequences, but in approach
(5) it is computed directly from the movements of
existing pictures.

It is hoped that APPL will be such a system, once it
is implemented, provided with a variety of these tech
niques through definitional extension, and augmented
by capabilities to accept direct analog input.

If the X coordinate of the stylus movement is identified
with movie time, then the movement cannot also be
sketched in real time, for the value of movie time ob
tained from the stylus position will rarely equal that
obtained from the value of real time. We could, however,
augment a p-curve with two growing waveforms appearing
on another portion of the scope. In this case, the
user would still be generating a p-curve, and not sketch
ing a waveform.

I am indebted to Dr. W. R. Sutherland for suggesting
the concept of the strobe.

Using frame-by-frame techniques, the animator works on
each individual frame and thereby satisfies constraints
local to a frame. In picture-driven animation, he works
directly on sequences of frames, exercising global con
trol over entire intervals of time. This economy of
effort must not be achieved at the expense of loss of
control over the relationships between objects in a
scene.

h
. 60

Arn eim, pp. 165-166.

'Scaling' means enlarging or reducing in size. 'Window
ing' means isolating and viewing a scaled version of a
region of a picture, and usually implies that one will
scan parts of the picture by moving the 'window'.
'Clipping' means removing from the display those por
tions of lines and curves that fall outside the window.

The term 'to edit' is used in the broad sense of 'to
correct, to prepare, to arrange 1 , and not in the narrow
sense of 'to rearrange sections of photographic film',
as is often done by splicing them.

Work og the shaping of surfaces in 3-space by Steve
Coons, 1 and a related exploratory study by Tim Johnson,6 2

-134-

(*10)

(*11)

support the claim that such tools are useful.
these have yet been implemented in GENESYS.

None of

There is a strong analogy between displaying a group
of dynamic descriptions on a common time axis and what
is called a Work Book in commercial animation. The
Work Book is a linear sequence of blocks, each contain
ing information about a successive unit (such as half a
second) of the movie. It is desc~ibed in Halas and
Manvell,2 pp. 171-2:

The work Book is derived directly from the final
storyboard [the visual presentation of the idea of
the film in a series of sketches], and is an analysis
of each shot and sequence on a frame-by-frame basis.
In this way the exact timing of every individual
movement is determined, and its i~ter-relation with
all other movements fixed at any given moment.

The Work Book must also show what in a live
action film would be called the camera movement-
any movement, that is, which is the equivalent of
a tracking-in, panning or tilting shot.

It must also show how each shot or sequence is
to be punctuated, whether by a straight cut, a fade
or a dissolve.

The creation of the Work Book is the responsibil
ity of the director.

See I.C.3,, particularly Footnote 5,and I.C.7.

-135-

I. D. A DETAILED EXAMPLE OF PICTURE-DRIVEN ANIMATION-

MANY SYNTHESES OF A PULSATING HEART

The purpose of this chapter is the clarification, through

concrete illustration, of the approaches to the specification

of picture dynamics that were introduced in I.E. We elaborate

numerous techniques, mostly falling in the domain of picture

driven animation, for animating a pulsating heart.

The various techniques may not produce precisely identi

cal sequences of frames, but they produce essentially the

same movie, that is movies which convey the same general

feeling. We stress how each technique facilitates a certain

kind of control over the texture of the resulting dynamics.

The example has been chosen for the purpose of explanation

and not for its visual interest; such a variety of animation

techniques are not required for a sequence this simple. None-

theless, the techniques presented are useful in many other

situations, and, despite their number, do not exhaust the

possible methods of construction.

Each technique is summarized by listing the information,

that is algorithms, pictures, and global dynamic descriptions,

which must be supplied to define the sequence. What is done

directly by the animator is distinguished from what is em-

bedded in the system. Most dynamic data sequences are repre-

sented by static (single) pictures or dynamic (sequences of)

-136-

pictures. Conventions used in the diagrammatic representa-

tion of each construction method are explained as they are

introduced.

Approach 1 -- The Individual Construction of Frames:

Construction proceeds by directly sketching each new

element of the sequence. The result is precisely what appears

in Figure I.D.l. The " .. " indicates that the tenth frame is

followed by arbitrarily many others. To save work without

altering the effect of the sequence, we repeat some frames;

hence, there are only six new pictures in that part of the

sequence shown in the figure. There is no fixed or predeter-

mined relationship among the sizes and shapes of the first,

second, third, fifth, eighth, and tenth frames. The animator

has total flexibility in exercising dynamic control, for each

frame may be varied independently, but he also must assume

the total burden of picture construction.

Approach 2 -- The Interpolation of Sequences of Intermediate
Frames:

Direct sketching is used to create certain critical

frames of the sequence, as is shown in Figure I.D.2. The

blank mark [-] indicates the temporary omission of a frame.

An interpolation algorithm, provided by the system, fills in

the blanks. The flexibility of dynamic control depends upon

the number of frames sketched by the animator and the variety

of interpolation algorithms that exist in the system. (*l)

-137-

(1)

(2)

(1) The Individual Construction of Frames.

(2) The Interpolation of Sequences of Intermediate Frames.

Figures I. J.1-2

MA~Y SYNTHESES o~ A 0 ULSATING HEART

-138-

Approach 3 -- The Generation of Frames from an Algorithmic
Description:

The animator writes, in some language, a program which

calculates the individual frames of the sequence. (*2) One

approach he might take is to factor the construction into a

form-generating algorithm and a movement-generating algorithm.

(*3) One program could compute the heart-shaped mathematical

function called a cardioid. Another program could compute a

path description, perhaps a sawtooth function, to vary the

size of the cardioid. All frames would then be scaled ver-

sions of a single heart shape. Within this approach, the

animator has any kind of dynamic control that he can formally

and precisely, that is, algorithmically, specify.

-l39-

(3)

·- ·- . ..

l·

··- .. ··- . .. ·- . ..
,

j,,/,. ir~ le',·. :-

. .._ .. ·- ·- ..
(4)

Picture-Driven Animation--Construction of a Cel and:

(3) a Waveform.

(4) a P-curve.

Figures I.D.3-4

MANY SYNTHESES OF A PULSATING HEART

-140-

Approach 4 -- Picture-Driven Animation:

Technique 1 -- Construction of a eel and a waveform,which is
a static representation of a path description:

The animator sketches a single heart shape, and a wave-

form which defines the scale of the drawing. These are shown

in Figure I.D.3. The symbol "@" located between them signi-

fies that the system combines the heart form and the waveform

to generate an animation sequence, This is done by an algo-

rithm, embedded in the system, which is capable of varying

continuously the size of the eel. (*4) All frames are there-

fore scaled copies of the single heart. Dynamic control is

exercised by refining the shape of the static structure, the

eel, and the shape of the dynamic structure, the waveform.

Techniques described in I.C. are used for the construction

and modification of the waveform.

Technique 2 -- Construction of a eel and a p-curve, which is
a real time representation of a path
description:

Technique 2 differs from Technique 1 only in that the varia-

tions of the size of the eel are defined by another method.

Specifically, the scale factor is sketched in real time as

the radial coordinate (R) of a parametric curve. The p-curve,

which is the dynamic construction of the parametric curve,

is shown in Figure I.D.4. Successive values of the scale

factor are determined by the changing distance of successive

new points of the p-curve from the origin of the coordinate

system. (*5) Notice how the curve, of which frame numbers 1,

-141-

2, 4, 8, 16, 32, 41, 50, and 60 are shown, swings out and in,

out and in. The heart will consequently pulsate large and

small, large and small. Dynamic control is exercised by

mimicking one's intuitive feeling for the movement, and by

employing other techniques discussed in I.C.

Technique 3 -- Construction of a eel class and a time-based
selection description:

The animator sketches three hearts of differing size

and shape. He specifies which of the eels is to appear in

each frame by constructing the graph of a selection descrip-

tion. The graph, which appears with the eel class in Figure

I.D.5, plots the choice of one of the three hearts against

movie time. The system combines the display of static pie-

ture structure on the left with the display of dynamic

structure on the right to form a movie. The image on the

right drives the images on the left into motion. Dynamic

control is exercised by altering the eels or the rhythm of

switching from one eel to the next.

Technique 4 -- Construction of a eel class a time-independent
selection description and a static repre
sentation of a rhythm description:

All frames are again selected from the same set of three

hearts. This time we decompose the dynamic behavior, repre-

sented by the selection description, into the ''product" of a

time-independent selection description and a rhythm descrip-

ti on. The former is an ordered list of choices from the

-142-

heart set; the latter determines the intervals of time over

which each successive choice is active. The rhythm descrip-

tion is depicted by a static display of a pulse train. Each

pulse triggers the replacement of the current image with the

next choice on the list. Thus the animator specifies and the

system combines the three components of Figure I.D.6. The

representation shown in the figure defines an animation se-

quence precisely identical to that produced by Technique 3.

The decomposition facilitates the exercise of independent

control over the order of appearance of eels and the rhythm

of their appearance.

Technique 5 -- Construction of a eel class, a time-independent
selection description, and a real time re
presentation of a rhythm description:

This technique is identical to Technique 4, except we

do not use the static pictorial representation shown there

to define and refine the rhythm description. It is instead

dynamically defined, tapped out in real time on a push-button.

The reader can simulate this representation by covering the

pulse train of Figure I.D.6. with a piece of paper, and then

pushing the paper from left to right in real time. As

various points along the horizontal axis are reached, such

as the first, third, and fifth frames, new pulses appear in

the picture.

-143-

(5)

(6)

(7)

Picture-Driven Animation--Construction of a Cel Class and:
(5) a Time-Based Selection Description.
(6) a Ti~e-Independent Selection Description

and a Rhyth~ Description.
(7) a Dynamic Hierarchy.

Figures I.D.5-7

MANY SYNTHESES OF A PULSA~ING HEART

-144-

Technique 6 -- Construction of a eel class and a
dynamic hierarchy:

All frames are again selected from this set of three

he arts. The movement is determined by a dynamic hierarchy,

a combination of three selection descriptions and a rhythm

description. (*6) The result is precisely equivalent to that

achieved by Techniques 3, 4, and 5. The animator specifies

what is shown in Figure I.D.7:

{S,T,S,T,S, ..• } is a time-independent selection descrip-

tion which specifies that the animation sequence consists of

an alternating selection from two subsequences of images,

labeled S and T.

The rhythm of the alternation is defined by the rhythm

description, where each pulse triggers the change from

activity S to activity T, or from T to S.

{l,l,1,2,} and {3,3,3,3,3,} are time-dependent selection

descriptions which define the two activities, S and T. S re-

presents the activity of the expansion of the heart, the

progression from the small to the medium sized heart, while

T represents its holding the fully expanded position, the

continued display of the largest sized heart.

The decomposition into this dynamic hierarchy enables

independent dynamic control over several levels of the nature

of the picture change as well as over its rhythm. It would

be easy, for example, to modify activity S and therefore what

it means visually for the heart to expand, without altering

-145-

f&@tt£UIJOJLJ4@ .

any other aapa~t ot:. ~:he ~~'!~~-~'~----

The rhythm descriptf~n·i:jp~~f:ri~o"-.::li'e· re4undant. ThiB

is not so', c't'ierl the toildltt'rfi j~~¥tt~u"t1foli't1""1'."f: ;;)i'u.lae

arrives be!'ore al! fma'gei'''or'lr"#"lir ''lirl'W'~•1f/ th·e";;1a'l:ft¥v1t7

u t erm1 na t e ct. u a'· ·pUl:lie- tt\fii 1icftC ~.\.~ -Jj~ ~WJ 31ft1.1 ~h ""

iilagea have been di•:P1.aye~. 'tlie~ T'Jw'\":: 11h1te iJ.,"iJ.1~ :;ils:ib'i3e"'";
X: .• -.. ·• - -

t .-

..>.._::

- - ~ '~ ../-, --

FOOTNOTES -- I.D.

(*l) GENESYS contains no interpolation algorithms. APPL
would gracefully accept the embedding of such
algorithms.

(*2) This can be done in APPL, but not in GENESYS.

(*3) Note the parallel between this decomposition and
picture-driven animation's fundamental separation of
static picture structure from dynamic descriptions.

(*4) Since GENESYS currently lacks this algorithm,we have
simulated its effect by hand.

(*5) See Footnote 4.

(*6) Dynamic hierarchies cannot yet be established in
GENESYS. Scale changes controlled by path descrip
tions (Techniques 1 and 2), p-curves whose coordinates
may be identified with arbitrary picture parameters
(Technique 2), and dynamic hierarchies (Technique 6)
may be easily implemented in APPL.

-147-

~ ::!Titi-11- '· .4: f. '::.Lc,·q~_');.rnl: 0!1 tiIIlB~ilO·:l Srl!'.8-:!ilia-0 (.[It)

I.E.

,; ,.. ·,,, ,,,:·m,, to:.: ;t ::tq6'.:l:Jc» "t.t: £u'to~A'lt:!! bill<>"
. a1iuu 1; '!:Oil$

&XPJtN11J •M08tA10ClllJ.--.~.
'_,;-;,, rml:tl2,::>i:;:-11:o'>sl'l <l !ll.1 itt;lt.1iJ:e.4 i~IL•~·•i;t _,;j!(t ~.toi

-''""''.''•2· · c,J :•:<::;;;lc;•(r" ;;e' rr-0J:J',$ail.1n11 l't-!tYf'IJ.P•'!!'."Lg-:t!li;q
'·., '.o<:,:- "·' lfi.<·-· ~ w:··r t ~:t.IJ:t~,.ll"t.;f'!t s-i;,i;r;t":lJ;q ::;J:J.$;;t~1

(s;•)

(E *)

(- """~. 'i!:t;;;zi"f'tU:<> l2''f8:!Ll!l:O e:?nJ;:l fli*)
.P.a;;..i ;:d' ;t::i£>'l't" a,tl b•.t•.J;,1;m:la

oc .>:: B ~ L:.f :' 2 "rf S"'~ ;t,;ttit4·ft &'!!t!Q!>'!!S'!.S.J:;i $:1,l!Ulll~ ((lit~'
- -l., r,;:Ji· :fJ: .~ ~,-d .b:~. t:c~~1r-~o~ -~an-4-!1 aJ:aD-8 .8!'83'.iti{t ~.,;

~;>~,,;;r .. ·,;,:; ·- c1(J"!W '! 'i'"1U:;-J 4 (':: .fi~,tt J: iil!iJ~pla;ri:!:!ltlf' $-ll(}l:t
;_·--· '"il'i''!S.q '.:»-n,1.;h q ;"rn;:.:-!'1''1:-.& d}l:V ll19l).i:iftt~.1 tHI: tMI

'"'>';"«i::>'.'>'l') 23i :''PJ'.t!i>l11 ~(Jlr..$J.tl;b ii*a .{~ !lcli!-Jll,i:~.cuiT)
.J"l"!A d ~itt;l:M•!q,r.t 1'!J:Jif .. ~4 ~

\

I.E.1. CONSTRUCTION, VIEWING, AND
FILMING MOVIES ON THE TX-2

Three special-purpose picture-driven animation systems

have been implemented on the M.I.T. Lincoln Laboratory TX-2

computer. A common feature is that each has a construction

or editing mode, a playback or viewing mode, and a filming

mode.

In the first mode the animator may begin work on new

pictures and global dynamic descriptions, or may recall and

continue the construction of pictures and descriptions saved

from other sessions. Algorithms embedded in the systems then

compute display files, in which sequences of frames composed

of points, lines, and conic sections are encoded for display

by a TX-2 cathode ray tube.

The image files are displayed as they are computed.

They may then be repetitively displayed by the playback

program, which simulates a variable-speed, bi-directional,

video tape recorder. (*l) The program normally sequences

through the display file representation of successive frames,

making each in turn visible for l/24th of a second. Con-

tinuous cycling through the movie, or the simulation of a

tape loop, is one useful option that may be requested. The

animator may at any time set or alter the direction and speed

of playback by flicking toggle switches located next to his

console.

-149-

When the animator has prepared a satisfactory sequence,

he need no longer view it directly on the scope, but may in-

stead want to record it on film. A pin-registered movie

camera can be mounted in a light-tight box to a TX-2 scope.

Its shutter is always open. The filming program (a variant

of the playback program) "paints" an image on the scope.

After a sufficient time interval to allow the decay of the

phosphor, approximately 1/5 of a second, a signal from the

computer advances the camera. A return signal upon the com-

pletion of the advance triggers the display of the next frame,

The camera can be operated on one scope while we work at a

tablet with another scope. Excellent film quality, with

high contrast and low jitter, can be produced with the system.

We can expose film at 4 or 5 frames per second, a rate

limited by the decay time of the phosphor. Since the TX-2

presently has no color scope, black-and-white movies are pro-

duced. If full color were required, this may be obtained by

the generation of three copies of each frame, one containing

the red information, a second containing the blue, and a third

the green, followed by the expensive photographic process of

optical superposition through color filters.

-150-

I.E. 2. ADAM

The chronologically first system, A Qemonstration Ani

mated ~an (ADAM), allows one to animate a crude line-drawing

representation of a single human figure. This is done by

specifying, via waveforms and p-curves, the seventeen path

descriptions that define the temporal behavior of the figure's

seventeen controlling continuous parameters. These are the

three coordinates of the position of the body center and

various rotation angles that determine bending of parts of

the torso and the limbs. A model of the stick man moves in

a hypothetical three-dimensional space; what is displayed is

a two-dimensional projective transformation of the figure.

The ADAM system in March of 1967 contained tools for

specifying waveforms only. Initially all seventeen parameters

were set to zero for all time, resulting in a lifeless man

standing stiff and at attention. As each waveform was sue-

cessively sketched and refined, the figure began to move.

Complexity was added gradually--first translational motion,

then leg motion (to achieve a crude walk), then hip, torso,

and finally shoulder and arm movements. Alternatively, one

could begin with a particular motion (set of waveforms), and

alter it to form a related motion.

Surprisingly life-like walking, leaping, and flying

motions have been synthesized. Figure I.E.2. shows the set

of seventeen waveforms defining the movement of a figure who

takes five leaps forwards and then suddenly finds himself on

-151-

---. \ , . .._....__ .v.....,......,....
,· Tosr

~ .. ,/\,,. ... ,., ... -
......... ,.; _

·v .. ,,., .. ,,.;'..,, ...

fl"-T

/,......,.....,.... ,,..._,._
...

.......... , , ..

·- '"

(1) (2)

(1) The stick figure. That he has no head is purposeful-
the computer did not "drop a bit."

(2) Seventeen waveforms defining the movement of a figure
who takes five leaps forward and then suddenly finds
himself on a horizontal conveyor belt moving backwards.
The curve in the top left represents his horizontal motio
plotted against time, the curve below it, his vertical
motion. The second curve from the top in the second
column represents the swinging hip movement. Motion of
the legs is defined by the four curves in the fourth
column.

Figures I.E.1-2

ADAN.

-152-

a horizontal conveyor belt moving backwards. One frame from

this motion is shown in Figure I.E.l. The synthesis of such

an action was possible despite the crudeness of the system

and even though the figure was controlled by what has proved

to be an awkward and excessively large set of parameters.

(See below.) Consequently beginning efforts at constructing

movements were incredibly painful. W~th only a tool for

individually sketching and resketching each waveform (super

imposed, if so desired, on plots of other waveforms), and with

no prior thought or preparation, synthesizing and refining a

motion such as the one in Figures I.E.1-2 could take several

hours of console time. The task became somewhat easier with

the addition of tools for copying waveforms, and for repeat

ing them periodically and shifting them through time, thus

aiding the introduction of symmetry and phase relations into

the figure's movement.

Movement definition in ADAM was also facilitated by the

addition in December of 1967 of a p-curve capability. The

translational motion of a series of leaps could be obtained

merely by mimicking the leaps with the stylus. This was in

fact the technique used in the animation sequence of

Figures I.E.1-2.

The most interesting observation was the result of an

accident. Just for fun, I applied to ADAM several random

collections of path descriptions (waveforms), defined by the

p-curve technique for use in animating EVE. Only individual

-153-

fragments of the resulting motions were realistic; the se-

quences as a whole were energetic, wild, and non2ensical.

Yet almost all movements appeared fully alive and life-like.

Viewers perceived the movements as life-like even though

they were obviously not physically realizable. i:'his life-

like quality was not apparent when all neth descriptions

were ob~ained by sKetcDiLf, waveforms.

I regard this result as rather striking visual evidence

of the power of clocked hand-drawn dynamics, more fundamentally,

of tho approach of the dynamic mimicking of animated behavior.

The result is ~lso not as surprising as jt may seem. If the

same physical, physiological, and neurological principles

determine the "style" or "character" of the motions of all

human limbs, then the possible dynamics of a hand movement

would be "similar to" the possible dynamics of a leg move!'lent.

A mathematical model might attempt to abstract the differ-

ences in hand and leg movements by different constant para-

meters of equations that otherwise have the same form for

both limbs. A paradigm for this approach is the work of

Mermelstel·n and Eden, 63 • 64
who, "d · 1 th cons1 er1ng on y e process

of handwriting, discovered that:

"It is found that the strokes of the writing
may be classified into topologically similar cate
gories generally independently of the writer pro
ducing the strokes. .the representation of the
letter in terms of stroke category sequences may
be made independent of the writer as long as small
variations are allowed for the average parameter
values of each category." (*2)

-154-

The technique of editing and refining existing wave-

forms has proved to be a sensitive and powerful one. slight

modifications to waveforms resulted in significant altera

tions to the character of an extended interval of a movement

--a normal walk was made into a jaunty saunter by the addi

tion of more bounce to the vertical coordinate pathdescription.

An animator working with traditional media must laboriously

"reconstruct" each frame if he is to make such a modifica-

ti on. The addition of one more command to ADAM would allow

one to accelerate or decelerate any "dimension" of the move-

ment. Hence I stress once more that the use of global

dynamic descriptions in representing movies may reduce the

amount of repetitive labor in animation, for it may be

quicker to modify an existing sequence through its set of

movement descriptions than to begin construction of a new

one. Another example of such modification, taken from the

use of GENESYS, is depicted in Figures I.A.5-10.

Work with ADAM also demonstrated that the following

should be closely intertwined--the model of static picture

structure, the choice of representation of picture dynamics,

and the tools for the specification of dynamics. We noted

before that the choice of parameters for the model of the

stick figure has proved to be an awkward one. ADAM always

had trouble keeping his feet on the ground--he had unknowingly

been designed to fly. Specifically, there was no easy way to

anchor his foot to the ground at the appropriate times during

-155-

a stride. The effect could only be achieved by laboriously

adjusting the forward motion of the body, the swinging of

the hips, and the rotational motion of the legs. This is

because coordinates of parts of the body were measured rela-

tive to the body's center. If it were possible to define a

coordinate of the foot directly, then it would be easy to

anchor it. The particular choice of ADAM's parameters were

well-suited for constructing swinging arm motions, but were

ill-suited for describing a movement of stretching out the

arm to retrieve an object, for the same reason that they

were poor for anchoring the feet.

The "best" choice of parameters also depends upon the

set of techniques available for the specification of their

path descriptions. We recall from I.C. that p-curves can

be usefully applied to pairs of rectangular coordinates from

a particular joint or part of a figure. P-curves could

have better been exploited by changing the static picture

model so that the hip position relative to the foot were

used instead of the two rotation angles that defined the

two degrees of freedom of a leg motion.

More fundamentally, this reduces to a constraint satis-

faction problem. A viable special-purpose solution would be

to build a stick figure system in which leg motions could be

defined in terms of variations of a redundant set of para

meters, including rectangular coordinates of hip, knee, and

foot, as well as rotation angles. The system would allow

-156-

the assignment of path descriptions to parameters over inter-

vals of time, and would evaluate the constraint situation

(overconstrained and inconsistent, consistent, or undercon-

strained and hence not well defined) existing in each inter-

val. This computation would be straightforward for the stick

figure model used in ADAM.

In conclusion, it is obvious that inputting stick figure

motions by the sketching of 17 waveforms (or fewer p-curves)

is a technique vastly inferior to mimicking a movement while

wearing the Computer Image harness described in I.C.3. Yet

the harness is only a transducer which maps a real human

motion into a collection of waveforms, and must be supple-

mented with the capability to manipulate and modify the wave-

forms. The ability to transform existing dynamic behavior

and distort it at will is essential, because many cartoon

motions cannot be mimicked or only so with difficulty--they

are purposeful exaggerations and caricatures of real movements.

Halas and Manvell explain this in detail: 3

"The difference between cartoon animation and real
life lies in the application of certain principles
which are most appropriately called aesthetic.

"
"As the figures in cartoon films begin to approach

actuality more closely, the physical laws affecting
their counterparts must be more strictly applied, even
though they are still fantastically caricatured. The
graphic beings in U.P.A. 's films . maintain an
existence which is far from actuality in their quaint
and angular outlines. Their movements are simplified,
mechanized, grotesque. But they are funny because they
nevertheless bear a direct relation to the human beings

-157-

and animals that they caricature. Their legs may
rotate like cog-wheels, their bodies may glide and
wave like cloth--but through these grotesqueries of
movement shines the light of human observation, the
comic realization of the problems of human mass and
weight, gravity and friction, the physical laws of
nature. The aesthetic and the physical meet on a
sublimated plane of comic imagination.

"
" It is fruitless, uneconomic, inartistic

and very exasperating to undertake the laborious
process of animation in order to tell a story in a
manner which could be achieved just as well or even
better through a live-action film. A cartoon's vir
tues lie in simplification, distortion and caricature.
It distorts for its own purpose and affects both
character and behaviour. It observes the physical
laws of nature only to defy them. It conforms wholly
to naturalism at its peril, because it then invites
comparison with something fit to be reproduced only
by the live-action camera. As the animator draws
away from naturalism the powers of his medium increase;
there is nothing but the limits of his imagination and
his technical resources to hold him back." (*3)

-158-

I.E.3. EVE

The chronologically second system, !valving Yisual

!nergy (EVE), allows one to animate in two dimensions a set

of points linked by "rubber band" straight lines, which we

call the "serpent" or snake." Except for the picture being

animated, the EVE system is identical to the ADAM system,

for it was in fact grafted and grown out of the latter.

Seven points move together under the application of one

planar motion, defined by one p-curve or two waveforms.

Each point also executes an independent relative motion.

These are defined by seven p-curves, or fourteen waveforms.

Thus the movement of each point is the sum of the movements

produced by the main driving function and its own individual

driving function. The seventeenth waveform defines the

scale, or size, of the snake and the scale of the local

driving functions. It is also possible to couple the rela-

tive motions of the points.

EVE is an exercise in abstract dynamic art constructed

to illustrate the simplicity and power of applying a dynamical

ly sketched parametric curve, or p-curve, to define a movement.

The motion of the stylus is immediately mirrored in some

aspect of the dynamic of the snake, One is in some sense

executing a "sculpture in time," or generating dynamic

sculpture. Complex, interesting, and "beautiful" movements

have been achieved with a system again limited to the manipu-

lation of path descriptions. A movement appears to exist in

-159-

(3)

(5)

(4)

(3) A pair of snakes (rumored to be preparing for a long sea
voyage with, among others, a pair of crocodiles).

(4) A typical parametric curve (the
involved in the definition of a snake
smooth and graceful the movement is.
cluster at pauses in the motion.

last frame of a p-curve)
motion. Notice how
Observe how points

(5) A waveform depicting the temporal behavior of one
coordinate from a p-curve similar to that shown in Figure
I.E. 4.

Figures I.E.3-5

EVE

-160-

three,; it!~~s~iC»J'J&, •YIMl tll'.CHilh.; J.,t;,¥*.·if .• QWl' e.ee~iin ot!ii:t .. :a

plane. Figure l.E.4 shows a typieal p·~iu•ve 04. figure I.E.5
:'.;t ,~,,.;· ~:~ :~y:~,: ;,,·rt,;·:;~·i \f..;~.C?"'.:il~c·-2_r}!l~·c'.'(;f!) ':li''fT

shows a typical wavef'o:ra involved ia th• def'1n1tion o't one of

EVE's motions.
.__..: -_~j'.;:.:.;.:.1:::.'.J_A ~t_ti1':f.li:~~-i;:xe ;t-$ ·;rt;~~l ;~·1c.I;~

One traae 'troa the .••q:ll .. O•• 1• W!la.icb IVE
., L:~~.(~~ 7_ .,.,~~.::i-~\,. :~L ;rl ,aJ:ttJ.ti'!-,:~ ~~:oi,-':~tun:Jtu.~ ~~?c·

appears twice. is ahovu in Figure I.J.3 •

'~~;·

l'lf·.·" . ,... '.i;

~
~' 'x

- : .. L ·~

. ' r

. " {" .:

-161.-·

'\..,.

I.E. 4. GENESYS -- THE GENERALIZED-CEL ANIMATION SYSTEM

The chronologically third system, unlike the first two,

is more than an experiment. Although it too is a special-

purpose animation system, it is versatile enough to be used

in the generation of a broad class of two-dimensional dynamic

images. This section fills in remaining details about the

operation of GENESYS that have not been discussed in pre-

vious chapters.

GENESYS contains three basic types of commands, those

that:

(1) Generate and modify static pictures;

(2) Define and refine global dynamic descriptions; and,

(3) Save and restore static and dynamic picture data,

structure the display of existent pictures (includ-

ing their playback), and set and change various

modes of system operation.

Unlike ADAM and EVE, GENESYS allows the animator to construct

his own static images by sketching them free-hand.

Two of these modes affect the meaning of all operations

upon static pictures, frame-mode, in which each picture is

assigned to a unique frame, and eel-mode, in which each pie-

ture is assigned to a unique eel in a unique eel class.

Specific commands set the mode and the current pictorial

context of the system. Thus, following the command

"EVITFRAME 5 . "
' '

any newly-sketched picture is made part of

-162-

This picture, "drawn" by the author, illustrates the variety
of line and texture that may be included in a GENESYS eel as
of December, 1968. Free-hand sketches are portrayed by points
spaced at an arbitrary, user-controlled density. Straight
lines can be solid or can be dotted, over the same range of
densities. Sections of circles, ellipses, parabolas, and
regular ploygons may be included. Arbitrary subpictures may
be copied, translated, rotated, and scaled along two independ
ent dimensions.

Figure I.E.6

PICTORIAL FRAGMENTS FROM GENESYS

-163-

the fifth frame. Furthermore, following the command

"FORMCEL 5 .{_n ;the d'.a-O-O P.HEAD;", a new sketch is assigned

to the fifth eel in the eel class named 'P.HEAD'. A selec-

tion description associated with the eel class determines in

which frames the eel is visible. All pictorial operations,

such as additions, deletions, and transformations, are essen

tially identical in frame-mode and eel mode, but apply to the

current pictorial context associated with the active mode.

The animator may sketch, copy, translate, rotate, re

flect around axes, and scale two-dimensional subpictures con-

sisting of points, straight lines, and conic sections. Free-

hand sketches are displayed as a trail of dots whose density

is under user control through a number of toggle switches.

He may erase by "picking up," or pointing to, individual

picture elements with the stylus. Alternatively, he may

request that the last pen stroke of a sketch be deleted or

the entire context cleared. A variable-density rectangular

grid is an aid to constructing regular line drawings. If

the grid is activated, then the endpoints of all new straight

lines will be constrained to lie on grid locations. The

construction of the solid and the dotted straight lines in

Figure I.A.13. was simplified by this feature. Arbitrary

projective transformations may be directly applied to eels.

All these capabilities are operational in the current version

of GENESYS, and are illustrated by Figures I.A.13. and I.E.6.

The techniques used are standard and well-known in the inter-

-164-

(7) (8)

(7) The crocodiless hops across the screen, delighted with
her recent creation at the TX-2 console. The artist, Miss
Barbara Koppel of Chicago,had little animation experience, no
computer experience, a brief introduction to GENESYS, and
assistance in using it from the author.

(8) The four selection descriptions generate the movements
of the jaws, tail, legs, and body of the crocodiless. Her
translational motion is defined by the two path descriptions
below. The oscillatory waveform is the vertical coordinate,
the waveform sloping downward the horizontal coordinate.

Figures I.E.7-8

SYNTHESIS OF A CAVORTING CROCODILESS

-165-

active computer graphics of still pictures.

GENESYS also contains a limited number of tools, pat

terned after the discussion of Chapter I.C., for the specifi

cation and manipulation of static and dynamic pictorial re-

presentations of global dynamic descriptions. P-curves may

be generated in real time with the stylus; rhythms may be

mimicked in real time with a push-button. The system cur-

rently expects construction of two path descriptions and

one selection description to drive into motion each activated

eel class. It is customary to establish a rhythm description

marking interesting events by aligning vertical lines with

the correct frames using a knob. GENESYS then replaces the

lines with arrows such as appear in the middle of Figure

I.E,17. The complementary role of eel classes and movement

descriptions in the synthesis of two short animation se

quences is illustrated by Figures I.E.7-12.

The refining of global dynamic descriptions often pro

duces a movement with the desired quality globally, that is,

over the duration of the sequence, but with occasional

errors locally, that is, in individual frames. For example,

the overall bounce of a ball may be correct, but its loca

tion at the instant it hits the ground may require modifi-

cation. Local adjustments may be made in frame-mode, by

calling up one particular frame and adjusting the values of

the driving path descriptions in that instant only. The

animator can also experiment with alternatives to the

-166-

(9) (10)

(11) (12)

The 1st, 7th, 13th, and 19th frames of the take-off of a
bird are shown. The figure is superimposed on the parametric
curve (the final frame of the p-curve) which defines its
path through space. The animator, Mrs. Nancy Johnson of
Waltham, Mass., has mimicked the motion by sketching the
p-curve; the bird then reproduces this movement. Observe the
switching among discrete shapes and positions of its eye,
wing, and feet.

Figures I,E.9-12

A P-CURVE DEFINES A MOVEMENT

-167-

selections of eels from eel classes that have been made in

that frame. Specifically, the system first displays light

buttons (stylus targets) listing all eel classes, Whenever

the animator points to a particular eel then visible in the

frame, it is replaced by the next eel in the class. When he

points to the last eel, it is replaced by the zeroth eel,

that is the empty or invisible eel. When he now points to

the name of the class, its first eel is again selected and

displayed. The light buttons also serve another function.

Pointing to a particular button "connects'' two knobs to that

eel class, such that turning the knobs will readjust the

position of the eels belonging to that class (all the eels,

not just the one currently visible).

given in Figures I.E.13-14.

Further details are

Miscellaneous commands exist to restart the system,

to exit from the system, to name and save an animation se

quence, that is a complex of eel classes and movement descrip

tions, to recall for further work an existent sequence, and

to play back the current sequence. There are modes which

determine whether straight lines are drawn solid or dotted,

and whether a grid is activated or not, and instructions for

establishing the density of the grid. There are commands to

display all members of all eel classes belonging to a parti

cular movie, to display the movie in frame j while eel k of

class 'abed' is under construction, to display the next or

the previous frame, to show or hide the picture of the para-

-168-

(13) (14)

(13) All eels used in the animation of Oopy--he flaps his
ear, winks, and sticks out his tongue--are shown superimposed.
These sketches were also done by Mrs. Johnson.

(14) GENESYS is in frame-mode. The current state of a
particular frame is displayed. Also visible are "light
buttons" representing eel classes (mouth, tongue, eye, ear,
brow). The animator may alter the current frame, switching
the selection of a eel from a class by pointing at it, or
changing its position by turning knobs located under the
scope. The underlying movement descriptions are automatically
updated by GENESYS.

Figures I.E.13-14

CELS AND CEL CLASSES

-169-

metric curve of a eel class, and to call the editing system

with which one refines movement descriptions. (*4)

The system has been used in the construction of short

cartoon and abstract dynamic sequences by several individuals

with varying degrees of artistic skill and training in anima-

ti on. One cartoon with a particularly interesting evolution

is described in Figures I.E.15-18. All users were delighted

with the responsiveness of the medium, with the immediate

display of their animation. All were discouraged by the

unreliability of the system. Despite numerous system

crashes and program bugs, sequence of 5 to 10 seconds dura

tion were composed, often with little advance preparation,

in 1/2 to several hours of console time. Except for that

shown in Figures I.E.15-18, all these sequences were exceed

ingly simple, and usually involved no interaction between

objects. Undoubtedly, animation with GENESYS would be much

faster if the system were engineered more smoothly, more

completely debugged, and then stabilized, if the animator

were accustomed to working with it, and if he were working

on a longer sequence where the same eels could be used again

and again.

-170-

A man, tripping blithely along, kicks a dog lying in his path.
The dog rises and trots off to the right (shown above). It then
returns, teeth bared (shown in Figure I.E.16), and bites the man.
The man jumps and runs away. The dog first follows, then re
turns once again to rest. The duration of the sequence is
approximately 20 seconds. (Please turn to Figure I.E.16.)

Figure I.E.15

A SHORT CARTOON--WHAT THE VIEWER SEES

-171-

Mr. Ephraim Cohen of Orange, New Jersey, a mathematician and
programmer who is also a skilled caricaturist, completed the
eels for his cartoon one week-end afternoon at the TX-2. The
system then crashed, and he was forced to return home. He sent
me through the mail four selection descriptions, to choose eels
from the classes "man's head", "man's legs", "dog's head", and
"dog's body", and two path descriptions, to drive horizontally
the man and the dog. I input the dynamic descriptions, viewed
the result, and then refined the movie by several iterations
of editing the descriptions and viewing the sequence. (Please
turn to Figure I.E.17.)

Figure I.E.16

A SHORT CARTOON--HOW IT WAS MADE

-172-

(18)

(1 7)

(17) The dynamic descriptions defining Mr. Cohen's cartoon
as of January, 1969, are shown above. The selection descrip
tions, from top to bottom, belong to the man's head, the man's
legs, the dog's head, and the dog's body. There are 4, 8, 8,
and 4 eels in each class, respectively. The two waveforms
represent the changes with time of the horizontal coordinates
of the man and the dog.

(18) The man's waveform is shown superimposed on rhythm
description representing critical instants of time. This
display was used in the process of resketching the waveform
to refine the dynamics of the film.

Figures I.E.17-18

A SHORT CARTOON--WHY IT WORKS

-1 73-

(*l)

(*2)

(*3)

FOOTNOTES -- I.E.

A discussion of the practical problems involved in
achieving real-time computation and playback of anima
tion sequences appears in III.B.

Mermelstein and Eden, 64 p. 268.

Halas and Manvell, 3 pp. 61-68. They explain further:

"
"Exaggeration in cartoon is largely born

of function. The gesturing parts of the body
--legs, arms, hands, feet--demand enlargement,
and above all so does the head, as the princi
pal feature in either human or animal kind.
Within the head itself, the mouth demands en
largement through the gesture of speech, and
so does the eye, because it is the most impor
tant means whereby mood, emotion and character
may visually be demonstrated.

"Finally, there is a technical reason in
cartoon film-making for exaggerations and
simplifications. When drawings have to be pro
duced in large numbers and by various hands,
some form of graphic economy through the empha
sis of certain characteristics is essential to
enable the nature of a figure to be maintained
without any unwanted deviations which would be
likely to confuse the clear markings of charac-
ter.

"
"When inanimate objects assume life in the

pursuit of humour, the need for exaggeration be
comes even more pronounced. For example, the
cartoonist may want to give an automobile the
characteristics of a dog in its attitude to the
fuel that its owner offers it. When it shakes
its shaggy head in refusal to tank up with the
wrong brand of spirit, then the whole body of
the car must shake like a neurotic Saint-Bernard,
and its head-lamps must become great eyes filled
with a pathetic dismay.

"In instructional films where comic exaggera
tion is needed for some emphasis of fact, even
diagrammatic models may be permitted to acquire
human or animal personalities, though exaggeration
of this kind is only used to help make some
important teaching point.

-174-

(*4)

"Visual symbols may have to be introduced
to emphasize what cannot in real life be seen
but only felt. The wind may enter the action
in the form of the moving lines familiar in the
strip cartoon; hot and cold may also require
some kind of symbolic indication made by lines
which surround a figure in order to indicate
shivering or sweating, The exaggeration here
lies not only in the experiences shown through
the reaction of the characters, but in the way
the graphic symbols are introduced and animated.

"
"The basic aesthetic principle in cartoons

of graphic distortion is supplemented in enter
tainment cartoons by the fun that can be had at
the expense of the physical laws of motion.
The exploitation of actions which go beyond all
normal physical possibilities in the real world
have a powerful effect on any audience.

"
"Time is also a plaything in the cartoon-

an action can be speeded to such a degree that
round the world in eighty days becomes round the
world in as many seconds. The chase motif of
movie drama develops into a paroxysm of speed
with a fine graphic flourish in perspective-
the minute dots on the horizon hurtle with
rhythmical abandon into vast blown-up propor
tions in the foreground all within three or four
seconds. The cartoon uses slow motion far less
than quick because its peculiar dynamic usually
makes it move faster than life in everything
it does.

"For instructional animation, however, a
slow speed is often desirable; the stripping
down of a complex diagram to its inner sections
may well require a slower-than-life rhythm--that
is, were the sections of real machines being
lifted apart for inspection. The diagram un
peels in synchronization with the commentary
to meet the demands of clear and well-timed
exposition. ,, "

Seeing frame j while constructing eel k of the class
'leg' facilitates drawing a position of the leg so that
it kicks the soccer ball in that frame, This illus
trates one feature of GENESYS designed to combat the
problem, discussed extensively in I.C.7. and I.C.8.,
of relating the simultaneous motions of several objects.

-175-

I. F. CONCLUSION -- THE REPRESENTATION OF DYNAMIC INFORMATION

-- THE CONCEPT OF A DYNAMIC DISPLAY

Thus the essence of picture-driven animation is:

(1) That one may formally isolate aspects of picture

change which recur over extended intervals of time, and de

fine picture-transforming algorithms which produce this

change;

(2) That there exists a set of abstractions of dynamic

information, data sequences which drive these algorithms to

produce a large and interesting class of animated displays;

and,

(3) That these abstractions may in turn be modeled,

generated, and modified by static as well as animated pic

tures, modeled in the sense that the picture structure

represents the data sequence, generated and modified in the

sense that the picture represents the process of synthesis

as well.

The three kinds of dynamic descriptions constitute a

rich, expressive, intuitively meaningful vocabulary for

dynamics. Each type abstracts an important category of

dynamic behavior--flow and continuous change (path descrip

tions), switching and repetitive choice (selection descrip

tions), and rhythm and synchrony (rhythm descriptions).

The vocabulary is economical, flexible, and general in the

-176-

sense that it can characterize the dynamic similarities that

exist in seemingly diverse animation sequences.

The use of dynamic descriptions couples picture defini

tion by sketching and by algorithm; it furthermore allows

both local (of the individual frame) and global (for an

interval of time) control over dynamics. We have chosen to

stress the latter and adopted the term "global dynamic descrip

tion," for it is the capacity for global control that results

uniquely from the use of the computer as an animation medium.

Yet a dynamic description is not only a representation over

an interval, but a sequence of single elements whose modifi

cation also provides local control over individual frames.

Both local and global control are vital to the successful

synthesis of movement. He who accidentally crashes into a

wall while running from the police is going from the contin

uous to the discrete, from a global motion to a local event.

He who aims to scale the wall is interpolating the continuous

between the discrete, adjusting the global to fit the

constraints of the local. We have seen how GENESYS facili-

tates global control (Figures I.E.8-12) as well as local

control (Figure I.E.14).

The naturalness and power of the vocabulary is increased

by the ability to manipulate it in an interactive graphics

environment. There exist, for each kind of data sequence,

static pictorial representations such as the waveform and

the parametric curve which provide a global view of and

-177-

facilitate precision control of the temporal behavior implied

by the sequences. There exist, for each kind of data sequence,

methods of dynamic specification such as the clocked sketch

ing of a parametric curve and the tapping of a rhythm which

allow the animator's sense of time to be transmitted directly

through the medium of the computer into the animated display.

We use the term "global dynamic description'' and the names

of the three types somewhat loosely in referring both to the

underlying dynamic data sequences and to their corresponding

pictorial representations. The imprecision is purposeful,

for it is very significant that, in an interactive graphics

environment, one can easily traverse in either direction any

leg of the triangle {Dynamic Data Sequence, Static Pictorial

Representation, Dynamic Pictorial Representation}. What

results is an important plasticity in the representation of

dynamics. Characterizations of change can be manipulated

(shifted, stretched, superimposed, ,) within and between

the domains of the static and the dynamic. Several animation

sequences can readily be related, coordinated, or unified,

regardless of whether or not they ever occur concurrently.

Dynamic behavior (data) can readily be transferred from one

animation subsequence (including the animator) to another,

from one mode of representation or embodiment in a picture

to another.

Our concept of a dynamic display is a broad one, and

purposely so. For as we stress in Part II, a computer-

-178-

mediated display is not only what is visible but what is

contained in its model in the computer system. And the system,

i.e. an interactive animation system, includes not only

disks and core but an animator and perhaps an ongoing physics

experiment as well as a tape-recorded speech. This system

evolves continually through real time. Occasionally there

occurs a particular reorganization of the system which re

sults in the transfer of information from the animator to the

pictorial data base, or in a computation on the data base

which results in a sequence of visual images, that is, data

directly convertible by hardware into visual images. Thus,

as we have stressed before, the act of mimicking dynamics is

a (user-driven) dynamic display. This unification of the

roles of picture and action, as equivalent components of

displays, is important. A flexible interactive computer-

mediated animation system must model the animator and his

actions (input), dynamic data (storage), and static and dyna

mic pictures (output) as interchangeable representations of

movement and rhythm, all mediated by the computer through

its store of algorithms to produce animated system behavior.

The greater is the number and generality of available

models of pictures and of processes of picture construction

(actions), the more flexible and powerful is the animation

system in its ability to deal with dynamic information. The

previous chapters summarize our experience with special-purpose

animation systems that present the user with a fixed set of

-179-

such models. The multi-purpose language of Part II allows

the animator himself to synthesize new models.

With such a language one can describe arbitrary action

picture interpreters that extract dynamic descriptions from

the animators use of system devices and transform them and

existing static and dynamic displays into new static and

dynamic displays. In Part I, particularly in I.C., we have

seen some simple yet useful examples. Two others follow:

(1) Another recent innovation at Computer Image

Corporation 29 is a techniQue that converts a speech waveform

into the appropriate selection description to drive a pie-

torial model for the mouths of cartoon characters. The data

seQuence selects from among seven standard mouth shapes and

positions, which may be found in typical animation handbooks

such as Halas and Manvell. 3 Some observers have claimed that

this is done so well that one can identify the language that

is being spoken by observing only the visible movements of

the mouth. Their interpreter which carries out this task

has been implemented in hardware, but the goal, transforming

dynamic information from one representation to another, is

the same.

(2) A second potential application is multi-animator

animation. A program could interpret the actions from var-

ious sets of devices (styli, togs, etc) and the pictures on

numerous scopes. Several animators could mimic interesting

roles, aiding the achievement of the desired pacing, give-

-180-

and-take, and synchrony required for certain classes of

films.

Finally, the use of dynamic descriptions helps estab

lish a conceptual framework which facilitates efficient use

of the resources of the animation system: animator, soft-

ware, and hardware. The process of animation may easily be

factored into the synthesis of various dynamic strands.

We shall see in III.B. that a sequence will be constructed

in multiple passes in which the computation of some strands

can aid the later synthesis of other strands. The repre-

sentation of dynamics by pictures has a valuable by-product

--all system tools for the construction of animation images

may be made applicable to the specification of dynamic infor-

mat ion. And, lastly, we shall present, in Chapter III.B.,

hardware additions suggested by the utility of movement de

scriptions, additions which when incorporated in an animation

scope should reduce the overall cost of computer-mediated

animation.

We have seen that there are advantages and disadvantages

to each of several approaches to the definition of dynamic

pictures--the construction of individual frames, the algo

rithmic generation of sequences of frames, and picture-driven

animation. This suggests that a flexible animation system

would allow the harmonious blending of all these techniques.

Here GENESYS fails a priori, for it makes inaccessible the

full computational power of the computer. Within the language

of GENESYS one cannot implement algorithms by writing programs.

We have also seen that the GENESYS is inadequate because it

presents the animator with a fixed set of commands and tools,

with fixed mechanisms of control, and with fixed models of

pictures and of processes of picture construction. A suit-

ably skilled animator may himself determine these aspects of

his animation system, his animation-machine, only if the

system is not a fixed set of commands but an extensible,

truly open-ended programming language.

Strong constraints need be applied to such a language.

Its domain of discourse must include algebraic computations,

the manipulation of structured data and pictures, the genera

tion of displays, and the monitoring of user interaction.

Yet, unlike most programming languages, it must develop

these constructs in a clear and simple manner that is har

monious with a layman's intuition about pictures and the

construction of pictures. (By laymen we mean animators,

-182-

Part II ot th• 41aaerta~1~a.

~1A ·~L1 \!~_:'.~:·:;~; 2'_.:!f- ;_-•:, :,;GtT::HJQ-OJ!.T'l!I
----~t\·---:r- t·;~~!~~~-. ·,·-:,~~:~:qyy --I:i, ~ ~-

~:I~ }2 -~$-~~: lrir~_G-a,.,,._. ~~~.;..r. .. 1.cr~"'-..-..;;:.....,........,_

.A. II

r~~..:~~~~'.·"' ~~ ~"".-

1

II.A.

. "'\'!',-'1"'.'l'~:~.f''!i·"~i"""':~ .. '!""'-1~-"~~,,"' .,_.,,_.,,""',
.f
-i

II.A.I. THE ESSENTIAL FEATURES
OF SKETCHPAD, BEFLIX, AND CAFE

The purpose of this chapter is further to motivate aspects

of the design of an open-ended, multi-purpose interactive

computer-mediated animation system. The system components

that enable interactive computer-mediated animation were de-

tailed in Chapter I.A. and are restated briefly here:

(1) a general-purpose digital computer;

(2) a hierarchy of auxiliary storage;

(3) an input device which allows direct, real-time,
drawing to the computer in at least two spatial
dimensions;

(4) an output device which allows direct,real-time,
viewing of animated displays;

(5) a "language" for the construction and manipulation
of static pictures;

(6) a "language" for the representation and definition
of picture change and the dynamics of picture
change;

(7) mechanisms for converting the specifications of
static picture structure and picture dynamics into
a sequence of visual images; and,

(8) mechanisms for storing, retrieving, and displaying
this sequence of visual images.

Yet such a description provides only a general founda-

tion upon which specific designs can be based. Several con-

crete realizations, special-purpose animation systems, were

described in Chapter I.E. Guidelines for a more general and

comprehensive approach emerge from experience with these

systems and from the experience of others. We shall therefore

-185-

discuss in some detail three particularly interesting and

relevant nieces of work: SKETCHPAD (1963), the first syste-

matic and comprehensive system for on-line graphical man-

machine communication; 39 BEFLIX (1964), the first programming

language for t . t. 5' 6 -compu er anima ion; ana CAFE (1968)' an on-

26
line typewriter-controlled animation command language. The

The design of APPL, a new Animation and Picture Processing

Language, draws heavily upon observations about SKETCHPAD,

BEFLIX, CAFE, and GENESYS.

SKETCHPAD is significant because it presented numerous

techniques for man-machine graphical communication which

were based upon some powerful new abstractions. SKETCHPAD

demonstrated that the computer could be an active partner in

the processes of sketching pictures and defining their

structure. A command language of demonstrative light-pen

movements and push-button signals is used to control the

construction and selective deletion, replication, and modifi-

cation of picture parts. Geometrical relationships can be

imposed implicitly through the application of constraints,

such as the parallelism of lines or the colinearity of points.

Thereby SKETCHPAD can turn certain sloppy sketches into

precise ones. SKETCHPAD stores explicit information about

the topology or structure of pictures. This facilitates the

specification of complex commands through the recursive appli-

cation of a simple command (such as "move") on the various

elements of a hierarchic picture structure.

-186-

Economy in the effort of picture construction is aided

by repeated use of existent pictures and structures. The

copy function duplicates pictures and constraints and leaves

the copies free for arbitrary modifications. The instance

function also duplicates pictures, however allows the copy

to differ from the master in position, orientation, and scale

only, and preserves the link between them such that changes

in the master are reflected in changes in its instances.

Yet in his ability to model, assemble and disassemble,

and name picture structures, to undo the effect of previous

operations, and to extend the effective command power of the

system, the SKETCHPAD user is quite limited.

these limitations are now suggested:

Four sources of

(1) SKETCHPAD is not a programming language. It is a

command language, in which each command is executed as soon

as it is invoked, and thus at each step the user determines

the flow of control from command to command. The exception

is in the application of constraints, in which SKETCHPAD

simulates a descriptive (non-procedural) language capable of

solving certain implicit specifications of picture geometry.

However, the user cannot command SKETCHPAD to compute an

arbitrary function on pictures.

(2) SKETCHPAD is a fixed system of commands, a closed

system, lacking the capacity for definitional extension of

the command structure, or the hierarchic definition of new

concepts in terms of existent ones. Only sets of data items,

-187-

picture and constraint complexes, may be coalesced and used

as units. The instance simulates a procedure-writing capa-

bility that is restricted to programs that generate fixed

geometry subpictures, and whose four parameters are the horizon

tal and vertical positions, the orientation, and the scale.

Instances cannot simulate the effect of procedures that

generate variable-geometry or-topology pictures. Yet instances

are the only structures that may be embedded hierarchicly to

arbitrary depth.

(3) The allowable topology or structuring of pictures

is built into the system and is often not general enough or

powerful enough. Relationships between arbitrary picture

elements can only be established by including them in the

same master picture, yet an element can only be a member of

one master. The characterization of pictures is too dependent

upon what is reQuired for their immediate display. The ability

to change a picture is too dependent upon the structure imposed

during picture generation. It may therefore become difficult

to undo or alter what one has done, I.E. Sutherland noted

that " ... there is a definite need for a general-purpose

function for making topological changes to a drawing •.. , 1139

What is reQuired is a richer user language for establishing

and manipulating picture structure.

(4) Finally, the ability to name and retrieve picture

parts is limited in SKETCHPAD to pointing and to the designa

tion of numbers assigned in the course of picture construction.

-188-

There is no way to isolate subpictures by a citation of their

identifying properties, by an implicit description such as

~11 those picture parts to the left of the rectangle and inside

the circle.' One source of rigidity in making picture changes

is the difficulty of naming through enumeration all the sub

pictures involved in the change.

BEFLIX's significance stems from its pioneering of the

use of the computer in animation and its existence as the

first programming language for the specification of picture

dynamics. (*l) A written language embedded in MACRO-FAP,

BEFLIX constitutes an open-ended system which may be extended

by the user. The animator constructs a picture by symbolically

paointing intensities on rectangular elements of one of a

number of finely-divided surfaces or rasters, and directing

an imaginary camera at a particular surface. This causes a

picture of the surface to be recorded on microfilm. After

the picture is modified to form the next frame, the camera

again records its state.

this cycle.

A movie can be made by repeating

The language consists of a "scanner language" and a

"movie language." With the scanner language, the user mani-

pulates bugs or scanners over the picture raster, performing

tests on the positions and the intensities of the covered

elements. The results of these tests determine subsequent

changes to bug positions and element values. With the movie

language, most of which was implemented in the scanner language,

-189-

one controls the output or temporary storage of pictures,

performs static or dynamic drafting operations, and modifies

the contents of rectangular areas. Dynamic operations are

interrupted during the output of intermediate frames. The

operations upon rectangular areas provide powerful control

over texture, a feature exploited to advantage in the BEFLIX

films of Vanderbeeck.
21

CAFE is a command language for the on-line construction,

editing, and display of figures consisting of collections of

straight line segments, The work, like ours, has been carried

out within the past two years at the M.I.T. Lincoln Laboratory.

"On-line" in CAFE means typewriter communication in a time-

shared environment. Static pictures are constructed by in-

voking commands to assign coordinates to points and lines,

and then group them into "objects" and further into composites

called "graphs." Graphs are further grouped into dynamic

units called "elements," each of which has its own independent

motion description. A motion description is defined by speci-

fying a sequence of 11 scenes." Each scene has its own time

interval, and consists of a sequence of translations, rota-

tions, and scale changes. The motion of elements may be

related by establishing a hierarchic dependence, causing one

element to follow another (add the second element's motion to

its own) • Picture and scene descriptions are kept symbolically

for further modification. Output is either to a microfilm

recorder or to a scope for direct viewing, but the environment

-190-

of a aovie.

II.A.2. SOME SPECIFIC ISSUES RAISED
BY BEFLIX, CAFE, AND GENESYS

Several comparisons of BEFLIX, CAFE, and GENESYS are

relevant to the design of a new computer animation system:

(1) BEFLIX's off-line operation and CAFE's on-line

typewriter control contrast sharply with the direct graphical

communication of SKETCHPAD and GENESYS. (*2) Ways to exploit

an interactive environment in animation have been developed

in Part I of the dissertation; Part II explains how APPL's

design facilitates the flexible application of these concepts.

(2) BEFLIX and CAFE differ significantly in the power

of the resulting animation language. BEFLIX is a complete

programming language in which one can in principle express

any computable function. Macro-definitions, which may be

nested to arbitrary depth, allow definitional extension of

the command structure of the language. CAFE and GENESYS are

command languages, incapable of expressing arbitrary comput-

able functions. Like any good on-line system, CAFE allows

the saving, copying, and modification of files describing

particular static pictures and the scenes that generate dyna-

mies; GENESYS allows the saving, copying, and modification

of pictures and dynamic data sequences. Hierarchies of CAFE

files, which could simulate nested calls of picture-defining

subroutines, cannot be established. Thus, as in GENESYS,

definitional extension is impossible; the command structure

is fixed.

-192-

(3) BSFLIX, CAFE, and GENESYS differ in the mechanisms

of control they provide over the temporal dimension. The

BEFLIX animator specifies an algorithm that determines the

picture at successive instants of time. The CAFE animator

defines an ordered succession of scenes, specifying the dura

tion of each one and the set of transformations to be applied

during that interval. The GENESYS animator defines, through

the sketching, mimicking, and graphical editing of pictures,

data sequences that control movement and rhythm in an anima-

tion sequence. Only in BEFLIX can the lengths of phases of

the activity or the nature of the constituent picture change

be made to depend upon a computation of some aspect of the

sequence; in CAFE and GENESYS this must all be expressed

explicitly in advance.

(4) Two kinds of picture change occur in the process

of animation; one yields successive stages in the construc

tion of a static picture, the other produces the actual dyna-

mies to be recorded on film. In BEFLIX one language is used

for both tasks. The effect of a sequence of statements that

alter a picture depends upon whether or not the instructions

are accompanied by "camera" calls, whose result is the output

of frames to the microfilm recorder and the advance of movie

time. If camera calls are included, a dynamic sequence is

formed; if there are no camera calls, a new static image is

formed. In CAFE and in GENESYS, on the other hand, there is

a strict separation between static picture definition and

-193-

the imposition of dynamics. Thus there are in CAFE two opera

tions which translate pictures, a shift command (static) and

a move command (dynamic).

(5) Finally, there is the significant issue of

parallelism or the description of concurrent dynamic activity.

BEFLIX is a language with strictly SeQuential or explicit

flow of control, including transfer of control through standard

mechanisms of subroutine calls. Camera calls must be moved

within the program if additional concurrent picture changes

are added. CAFE and GENESYS allow the independent definition

of concurrent strands of dynamic activity, parallel actions in

a scene, allowing new strands to be specified without altering

existent ones.

Our conclusions are that we desire: (1) direct graphi-

cal interaction; (2) an extensible programming language;

(3) flexible control over the dimension of movie time; (4)

uniQUe mechanisms for producing picture change; and, (5) the

independent definition of concurrent strands of dynamic

activity. These and other criteria in the design of APPL

are expanded in the next section.

-194-

II.A.3. ESSENTIAL FEATURES IN THE DESIGN OF APPL

This background has motivated the following aspects of

the design of APPL, a new Animation and Picture ~recessing

.!:_anguage:

(1) Like any interactive computer graphics system, APPL

contains commands which are immediately executed when desig

nated. These commands can also be grouped into procedures

whose execution is delayed until the name of the procedure

is activated.

(2) APPL is capable of definitional extension, through

the nesting of these procedures to arbitrary depth. To

facilitate the nested and recursive application of procedures,

they are allowed to take arbitrary numbers of parameters, and

reasonable conventions regarding the scope of variables and

the sharing of procedure data are adopted.

(3) APPL is a complete programming language, in which

it is possible to express any computable function, as well

as powerful animation and picture processing operations. It

attempts to achieve these goals in the simplest, most direct,

and most general way possible. Thus, included in the base

system are only one distinct numerical data type, the SCALAR,

and one distinct pictorial data type, the POINT, augmented

by powerful mechanisms for aggregating these units and for

defining complex picture types in terms of simple ones.

These three criteria guarantee that the system is open

ended in such a way that significant extensions to the

-195-

command structure may be expressed within the system. The

continuity between immediate execution mode and procedure

definition mode, characteristic of conversational, JOSS-like

languages, should aid the system utilization of those with

little or no programming experience, for portions of poten

tial programs can easily be tested as they are devised.

(*3)

(4) I.A.2. proposed that a single set of APPL commands

produce the picture change that sometimes yields successive

stages in the construction of a static picture, and that

other times yields successive frames to be included in the

movie itself, These commands are called PICTORIAL OPERATIONS.

They cause the introduction, replication, and deletion of

pictures, and the modification of both their directly visible

properties, such as location and intensity, and the structure

of their internal representations such as picture-subpicture

relationships.

(5) Picture changes that result in dynamic sequences

must be organized with respect to a scale of movie time or

simulated time. APPL contains mechanisms to trigger and

control the passage of movie time. Because the user may

interrupt the passage of movie time, and may start and stop

it at will, these mechanisms are more complex than the cor

responding ones in BEFLIX.

(6) APPL provides for the definition and use of global

dynamic descriptions within the framework established for

-196-

controlling the passage of movie time. The desired goal is

the flexibility and plasticity in representing and using

dynamic information that was discussed in I.F. Therefore,

commands that construct and manipulate pictures of dynamic

descriptions are implemented via definitional extension of

the language, so that their meaning can easily be changed by

the user.

(7) The animator is as an integral component of

animated system behavior. APPL includes constructs for

monitoring the animator's use of the stylus, toggle

switches, push buttons, and other devices. This aspect of

the language design must be clean and simple, for it will

be used to construct the control features of interactive

graphical procedures. If large parts of an animation system

are their implemented via definitional extension, the animator

can easily control his style of interaction with the system.

(*4)

(8) APPL allows quasi-parallel flow of control during

the passage of movie time. This facilitates the independent

specification of the parallel dynamic strands representing

concurrent activities of several objects in one movie.

Mechanisms exist for communication between programs imple-

menting these activities. We distinguish between the master

copy of a program and its use, or activation as part of an

animation sequence. Several instances of one program may

-197-

run concurrently through an interval of movie time.

(9) The ability to impose structure on pictures is

provided by the language. A data structure called the

AGGREGATE facilitates the modeling of global dynamic descrip

tions and of complex sequences and hierarchies of pictures.

The APPL user can define new picture types as structured

composities of existing picture types; recursive definitions

are allowed,

(10) APPL allows the user to talk about the characteris-

tics of pictures. Pictures are characterized by a set of

ATTRIBUTES, including 'type', taking on values called

PROPERTIES, The user can enlarge the set of picture attributed

by definitional extension of the language. When a picture

possesses certain properties, this will be said to define a

picture state. Tests for the existence of picture states,

called pictorial conditions, will control the evolution of

an animation sequence.

The last two criteria guarantee that a rich picture

description capability may be implemented via definitional

extension of APPL. There may be developed a coherent family

of animation languages, all grown from the common base, or

core language, each uniquely suited to the manipulation of

a particular kind of picture, and each capable of being made

still richer through further extension. (*5)

-198-

II.A.4. A SCENARIO ILLUSTRATING SOME USES OF APPL

To illustrate the process of animation in an interactive

programming environment, we present a scenario, The example

could be executed with a system that is an extension of the

APPL base language described in the following chapters.

Specifically, we assume that the base language has been

extended so that it provides a capability for picture-driven

animation such as exists in GENESYS. What follows is in-

tended as a general picture of how APPL may be applied, and

therefore does not indicate all of the specific mechanisms

necessary to create the effects described.

The animator, having completed 'SPROINGBOINGZAP' as

described in I.A.3., desires to experiment further with the

motif of a moving triangle. Specifically, he intends to con-

struct various static patterns and textures composed of

triangular parts, and then use these as backgrounds and masks

against which and through which a few dynamic triangles dance

and cavort. Therefore, he will extend APPL to facilitate

the construction of triangles and patterns formed of

triangles, and the definition of both isolated and coordin

ated movements and deformations of collections of triangles.

(*6)

-199-

How it is done:

Step 1--The construction of a single triangle, first by the
animator, then by the system:

USER(U): CALL APPL;

APPL(A): HELLO, THIS IS APPL;

(APPL is entered at the "command mode" level. Designat-

ing a command while the system is in this mode causes its

execution to begin immediately.)

U: NEWPT PT.A a.t ... ;

(After activating the command NEWPT, and entering a

name for the point, 'PT.A', the animator touches the stylus

to the location whose x coordinate is 0.0 and whose y

coordinate is 0.2. (*7) A point is created at that location.)

U: NEWPT PT.B a.t

U: NEWPT PT.C a.t . ..

U: CONNECT PT.A to PT,B;

(After activating the command CONNECT, he points at the

two points named PT.A and PT.B. Since APPL expects points

as arguments for the command, these have become active targets

for the stylus. A line then appears between PT.A and PT.B.)

U: CONNECT PT.B to PT.C;

U: CONNECT PT.C to PT.A;

(Construction of the triangle is now complete.)

-200-

(Rather than carry out this sequence of steps whenever

a triangle is to be constructed, the animator will extend

APPL so that it aids future construction.)

(He invokes the system meta-command DEFINE, and enters

'BUILDATRIANGLE' as the name of the command to be defined.

This puts the system in "definition mode." When a legal

command is now designated, it is not immediately executed,

but rather placed in an ordered, numbered, list of commands

whose execution is delayed until later activation under the

command name BUILVATRIANGLE.)

U:

VEFI NE
. 01
. 02
. 03
.04
• 0 5
. 06

ENV;

BUILDATRIANGLE;

NEWPT PT.A at 0.0,0.2;
NEWPT PT.B at 0.1,0.0;
NEWPT PT.Cat -0.1,0.0;
CONNECT PT.A to PT.B;
CONNECT PT.B to PT.C;
CONNECT PT.c to PT.A;

PROGRAM #1

(The definition, whose conventions are explained in more

detail in II.B.2., is terminated by the system meta-command

ENV. Now there is a new APPL command; the animator checks

its meaning by activating it.)

U: BUILVATRIANGLE;

(A triangle, identical to the one constructed before,

appears in the working area of the scope. Thus, APPL has

been extended to include a triangle-construction command.)

-201-

Step 2--The construction of two APPL programs which aid the
interactive generation of more triangles:

(BUILVATRIANGLE is useless, for it always constructs the

very same triangle. Hence the program is now made a paradigm

for defining two new commands which will aid the generation

of many triangles.)

U:

DEFINE FORMTRIANGLE

.01 CONNECT PT.l

.02 CONNECT PT.2

.03 CONNECT PT.3

ENV;

among PT.l

;to PT.2;
;to PT.3;
;to PT.l;

and PT.2 and PT.3; PROGRAM #2

(Suppose that PT.D, PT.E, and PT.F are arbitrary points

visible on the scope. To check the definition of the new

command, the animator selects these three points with the

stylus, thereby designating them as parameters for

FORMTRIANGLE.)

U: FORMTRIANGLE among PT.D and PT.E and PT.F;

(The three points are automatically connected to form a

triangle.)

U:

DEFINE

. 01

.02

. 03

. 04

ENV;

DRAWTRIANGLE;

NEWPT PT.4 a;t STYLUS;
NEWPT PT.5 a;t STYLUS;
NEWPT PT.6 a;t STYLUS;
FORMTRIANGLE among PT.4 and PT.5 and PT.6;

-2 02-

PROGRAM #3

(This program differs from the others in two ways.

First, it includes a command itself defined by another pro-

gram, thereby demonstrating APPL's open-ended character noted

in II.A.3. Once defined by language extension, a command is

indistinguishable from those included in the base language,

except that its meaning can easily be changed.

Second, the program includes a command whose argument

must be supplied by the user during execution. Before generat-

ing a point, the system waits for the stylus to be positioned

on the tablet surface, just as it waits for an argument when

the NEWPT command is directly activated by the user.)

U: VRAWTRIANGLE;

(After activating this new command, the user positions

the stylus three times at arbitrary locations on the surface;

points appear at these locations, and automatically become

the vertices of a triangle.)

Step 3--The construction of dynamic triangles using picture
driven animation, followed by augmentation of the
basic algorithm of picture-driven animation:

The animator experiments with moving triangles, using

the APPL facilities for picture-driven animation. Suppose

that, as in GENESYS, the system currently allows continuous

translation of eels, but not continuous scaling. In contrast

to GENESYS, however, the problem can here be solved smoothly

within the system. We recall that the basic algorithm

-203-

implementing picture-driven animation is one which transforms

eels, and selects among them, according to successive values

of a set of data se~uences called global dynamic descriptions.

In APPL, this algorithm is expressed as a simple APPL program,

and hence is easily modified on-line. (Recall Features 5 and

6, in the previous section.) Modifications might be made,

for example, so that eels can be transformed continuously

through scaling and rotation, being driven by path descrip-

tions, and discretely through reflection about the horizontal

axis, being driven by a selection description which deter-

mines whether the triangle is pointed 'up' or 'down'.

Step 4--The algorithmic definition of a particular movement:

Tools for the free-hand sketching of dynamic descrip-

tions are implemented in APPL through language extension.

The animator now wants to see the effect of a regular varia-

tion, such as a sawtooth function, when it is applied to the

scale factor of a triangle. Thus he writes in APPL a routine

which computes this path description.

Step 5--Additions and modifications to the subsystem for
defining and refining global dynamic descriptions:

In APPL, unlike GENESYS, the user has full control over

the interpretation of the motion of the stylus, since he can

write programs which monitor its behavior. (Recall Feature

7 in the previous section.) A library of routines for con-

structing and editing pictorial representations of dynamic

-204-

descriptions may therefore be written in APPL. The animator

can then take an existing program which accepts p-curves and

modify it, for example, so that the resulting path description

is defined as the variation of the radial coordinate rather

than that of the horizontal coordinate. (*8) He can also

tailor to his own specifications such conventions as the

signals he gives the system when he wants to start and ter-

minate the real time sketch.

Step 6--The construction of a subsystem for the generation of
complex static patterns of triangles:

As the animator works, he calls again and again, with

varying parameters, the same triangle-generating and triangle-

modifying commands. Often he activates a function with only

one of its arguments varied from the previous call, but must

awkwardly specify its complete argument list again. He also

designates certain command sequences with regularity, but

must awkwardly repeat the same actions each time. He there-

fore writes a smaJl control program in the animation language,

one that automates many of the time-consuming aspects of re-

designation of parameters and command sequences, and defines

the flow of control among commands. Parameters are stored

in the control program's local data base; commonly executed

command sequences are made subroutines of the program. Use

of this language extension speeds the search for interesting

patterns, which are stored in the system-wide (global) data

base when the control program's execution is terminated. (*9)

-205-

Step 7--Extension of APPL to facilitate operations over
triangular patterns:

Operations over complex patterns are facilitated by a

language with which one can name, describe, and characterize

subpatterns. The animator establishes a standard data struc-

ture with which to model triangles and defines a set of

attributes which characterize them. (Recall Features 9 and

10 in the previous section.) These definitions allow him to

communicate with APPL about a pattern in terms of such con-

cepts as its center, its area, the number of triangular sub-

patterns, and its state of geometrical inclusion or exclusion

with respect to other patterns. The animator may then refer

implicitly to a set of triangles as "all those enclosed by

triangle A," and need not always resort to naming explicitly

or pointing to each one. (Recall the fourth limitation of

SKETCHPAD listed in II.A.l.) This is particularly useful if

the set of triangles varies in a complex manner throughout a

film. As APPL becomes richer through the addition of new

picture structures and attributes, it becomes possible

flexibly to construct, retrieve, and manipulate complex

pattern configurations.

Step 8--Construction and activation of APPL programs that
generate complex dynamic patterns of triangles:

Some of the desired dynamic effects are achieved with

eels, dynamic descriptions, and the picture-driven animation

algorithm. Others, where the eventual evolution of an animation

-206-

subsequence depends in some complicated manner upon earlier

aspects of the sequence, are defined directly by new APPL

programs. This is done by using the APPL constructs that

control the advance of movie time. Given a number of such

programs which compute parallel actions in a movie, any or

all of them can be activated for quasi-parallel execution,

which is synchronized automatically by APPL. (Recall Feature

8 in the previous section.) Thus the animator controls which

aspects of the movie are computed and/or displayed concur-

rently. Computation or playback may be interrupted at any

time to allow redefinition of both pictures and programs.

The ability to decompose the construction of a sequence, to

synthesize it piece-by-piece, in modular fashion, facilitates

effective real-time interaction by reducing the short term

computation and display demands on the system.

-207-

II.A.5. IMPLICATIONS OF THE SCENARIO

The example illustrates the diversity of possible uses

of APPL, including:

(1) The mediation of direct user requests to construct or

modify pictures, such as the first triangle in Step l; the

algorithmic definition of dynamic displays, as is done

directly in Step 8, and is done in part by:

(a) The algorithmic definition of static pictures,

such as the second triangle in Step l;

(b) The algorithmic definition of picture dynamics

expressed by movement and rhythm descriptions, such as

the sawtooth function in Step 4; and,

(c) After significant extensions to enrich the descrip

tive power of the language, the manipulation of a parti

cular class of structured pictures, such as the

triangular patterns in S~ep 7. A version of APPL that

has been augmented in this way is one of the coherent

family of animation languages that was mentioned at the

end of II.A.3. In the example at hand, APPL is made

into a language well-suited for the animation of triangles

and triangular patterns.

(2) The building of a set of tools for interactive computer

mediated animation, such as:

(a) A set of .programs that aid the construction of

-208-

static pictures, such as the triangles of Step 2;

and,

(b) A set of programs that interpret complex stylus

motions as definitions of movement and rhythm, such as

the one in Step 5. The programs constitute a subsystem

for defining and refining global dynamic desc~iptions,

which may be written in APPL.

(3) The construction of special-purpose animation subsystems,

such as the picture-driven animation subsystem in Step 3; the

building of special-purpose subsystems, such as the one in

Step 6, which aid particular picture definition tasks by

facilitating the execution of repetitive actions and the

calling of existing routines with suitable parameters.

We have also seen, in Step 8, that APPL allows the acti

vation, for concurrent (quasi-parallel) execution, of sets of

programs that compute new animation subsequences and display

(play back) existent ones.

-209-

II.A.6. WHAT IS TO COME, AND WHAT IS NOT TO COME,
AND WHY

This chapter has motivated and established guidelines

for the design of APPL, an open-ended, multi-purpose, inter-

active animation programming system. The next four chapters

present an informal outline of the proposed system and the

programming language embodied in it. Our major purpose is

to suggest some linguistic constructs with which one can

directly manipulate structured pictures at an interactive

console, and with which one can express algorithms that dynami-

cally transform these images. We have attempted to develop

constructs that appear most natural and powerful in aiding

interactive computer-mediated animation, and in realizing

the guidelines established in II.A.3.

In order to write down a description of APPL, we have

had to adopt a precise form in which statements could be

expressed, and a particular set of commands to constitute a

base language. These are not to be regarded as fixed, for

further modifications of such design details will accompany

an implementation and empirical evaluation of APPL, activities

which are beyond the scope of the dissertation. The disserta-

tion also does not include an extended-BNF, canonic system,

or similar formal presentation of the syntax and semantics

of the language, since this would be premature and of little

enduring value.

-210-

Aspects of the design are closely related to several

areas of current research in programming languages--techniques

for language extension, simulation languages, and complex

data structures. There are many difficult problems in these

areas that have not yet been solved and that are not solved

in this dissertation. We supplement pointers to the relevant

literature with an attempt to demonstrate, through intuitive

arguments and simple programming examples, the relevance of

these issues to computer animation and to the design of APPL.

We indicate where important areas of detail have been left

incomplete, for example, whether or not there should be run

time block structure, which activity scheduling mechanisms

are most useful for animation, and how the chosen data

structure can be efficiently implemented, The next researcher

will have to tackle these questions; we seek only to justify

that these are the ones he should ask.

-211-

(*l)

(*2)

(*3)

(*4)

(* 5)

FOOTNOTES -- II.A.

BEFLIX has been used primarily in the production of
computer-animated technical and expository films,
such as References 6, 15, and 20.

In the case of CAFE, and most likely also in the case
of BEFLIX, economic constraints ruled out a system
having direct graphical interaction. Nolan and
Yarbrough explained their goals as follows:

There are a number of limitations to this
experimental system, perhaps the greatest of
which is the lack of graphical interaction with
the construction process. This limitation is
imposed by a design requirement that the expen
sive direct-view CRT not be a part of the 26
minimum hardware needed to run the system.

APPL is more general than Joss, 65 however, in that the
latter does not allow defined commands to be used in
higher-level commands. A new conversational language,
with excellent, carefully documented design goals
akin to thqse of APPL, is described in Reference 66.
Weizenbaum67 and Licklider68 have supplied articulate
introductions to the potentialities inherent in the
use of conversational languages.

This goal is essentially that expressed by Roberts in
Reference 69.

Thus we transform what Licklider
68

calls a 11 procedure
orieDted language" into a number of different but
related "problem-oriented languages." This is how
APPL meets the need noted by Knowlton and Huggins70
for "either an overall complete language for computer
animation or a consistent set of intercommunicating
modules, with well-defined and rigorously described
interfaces between them." With Cheatham, et al, 7l we
feel that all aspects of such a language cannot be
planned in advance, that the so-called "shell approach"
is a priori doomed to failure. As in ELF7l we adopt
the "core approach , " a 11 owing the def in it i on o f a
family of languages through appropriate extensions of
the core, or base language, of APPL. The first part
of Reference 71, and Reference 72, are readable dis
cussions of the philosophy of language extension.

-212-

(*6)

(*7)

(*8)

(*9)

The use of an example involving regular abstract figures
does not imply that APPL is a priori better suited for
this application than for one involving free-hand
sketching. The examples throughout Part II underscore
this point.

It is immaterial whether the command is specified by
typing its name or an abbreviation for it, bB writing
the abbreviation to a character recognizer,5 or by
selecting one of a menu of light buttons located some
where on the scope. We recall the problem of the
geometrical layout of these stylus targets on the dis
play surface, discussed in I.A.3. and particular in
Footnote 5--I.A. The problem is more severe in APPL
than in GENESYS, because the open-ended character of
the system requires that the light buttons be augmented
whenever a new command is defined. Paging may be the
only viable solution.

We have seen one application of such a program in the
syntheses of the pulsating heart, I.D., Approach 4,
Technique 2.

Here the terms 'local' and 'global' refer to the scope
of a program variable, or the range of program state
ments where the variable's name is bound to a particu
lar value, as is explained in II.B.3, rather than to
the relative number of frames of a dynamic sequence
that are affected by a pictorial operation, as in
'global dynamic description.'

-213-

p4$4kEM
I.

~ .. - ... ·'·"'""'XLU& ... 4@£JJJ1J.~JM.li& @#¥444 . ·.. f

_,;.,-

--'~':· 1:-~:/~ :~~r.3 ;.'}_;:-1~2~~,;Ji.q:::;-r.: .r,:_,;~

~~~' \-~;{ ..,"" ~~ ~ :·::t:~'?I;-'?~ ~· J:f ~ ~p: i £! c :': ~ 

.. ~J~; -_; :1rl-J ·;, '!'!~~{:J"·3rfv J...a,: "l:5J,$AfJj} a 
·~"~i ?,<:ids ef,lt. "t~ t!htU!fl :i-5 t p~ 1"\'..-'.'.'" 

.. , 
~~-~A .~1 ~1ST9S ~~o~ al 

··."1-:z-::>1 1~~~,~r~- ...... ~-~·~::~- :_~rt:~ e-;a,;•~ll!-d .aY~D3:f! nJ:- "."~r~.; 

'-l 

..,,1_ 0.t. aJ t!t~MS:.'.J') ~,.;·_~f{ $ 't-$VSfi·~·~-fw 

... rro-·!'-"g:lo* ~.I~-1.iBi:1' »~: .. r1:; 

t)Q[J'.M\~:l:!q-«,...s ~J.'1;.) !!-&~ii :;;y..ad t-i>i 
~:-:.tSi;-6tR~1· ~'H°!«t "!o a;._~,~:!"'!'.«.\? 

,S ~f'f!Hi" 

:: i L~~ ~ [il!?O.l ~ ~~"'f~j: e . .ci:t ::.-\'!9:I 
,;;;.;c ~- ,eJc.fs.('t,s··: •;,i:~c'lq " ·io 

.. ;m,.3n ~"ffl~.f~l-'"!#V' sif-~ -el':~rfli n-:Y 1 ~~-;c 

.10.· :.:i i:>Jll·lj0i"!1'@ &l $4" ,sJJ.£$!V '.;.!![ 

·~. :-:">Ill£ 'l 'tc 'li!!t'111un: ~vl-111Jl$~ <:liJ 
-?~~· ~- ~;il~.ct~ q a ~d .•&3~5i~a ~~~ S~d1 

1 ,£~~:. J:_;l""tti~trfi ~tm:.l'Hl"{b .. LtHJGl¢t 



II.B.l. COMMANDS AND PICTORIAL DATA IN APPL 

APPL, like SKETCHPAD, GENESYS, and other interactive 

computer graphics systems, permits the user to add and delete 

points, lines, and other picture items to and from a pie-

torial data base. What is visible on the scope is changed 

by commanding the computer to alter the representation of the 

picture in the data base. A data base is constructed in a 

working session with APPL, and may be saved and restored 

from one session to the next. 

More specifically, a pictorial data base consists of 

a structured collection of data items (DATA) and a collection 

of relations (ATTRIBUTES) which establish some data as 

PROPERTIES of others. The data base contains what is con-

ventionally called the inner or fundamental or structural 

representation of a picture, consisting of all the informa-

tion about the picture that is stored in the computer. There 

is usually another distinct pictorial data base in a computer 

graphics system, one we shall not consider here, containing 

the outer or visual representation of a picture. This con-

sists of only that information that is required by the hard

ware for the immediate display of the picture. 

Data in APPL are of two kinds, pictures and numbers. 

Pictures may be either pictorial primitives or pictorial 

aggregates; numbers are represented by scalars and scalar 

aggregates. 

-215-



A PICTORIAL PRIMITIVE is a fundamental picture building 

block, such as a POINT, which is included in the APPL base 

language in the sense that there are commands for its creation 

and deletion and for the assignment and modification of its 

properties, A PICTORIAL AGGREGATE is a structured collection 

of pictorial primitives. To simplify the following presenta-

tion, the only picture "type" represented by a pictorial 

primitive in the APPL base language will be the POINT; all 

other picture types, such as a LINE, will be represented by 

pictorial aggregates as defined through extensions of APPL. 

A SCALAR is a single number. We shall for simplicity 

consider all scalars as real numbers, since the customary 

computer distinction among integer, fixed-point, and rloating

point numbers is well understood and its inclusion would add 

nothing to this discussion, A SCALAR AGGREGATE is a struc

tured collection of scalars. (*l} 

APPL, therefore, is a medium through which the animator 

creates and manipulates data items--pictures and numbers. 

The ability to manipulate a datum requires the ability to 

reference or retrieve it, and this raises the issue of naming 

data items. Names are created by associating text-strings 

(sequences of characters) with existent or newly created 

data. For instance, APPL contains commands which generate 

new pictures and aggregates. NEWPOINT (abbreviated NEWPT), 

NEWPICTLJRE (NEWPIX), and NEWAGGREGATE (NEWAGG) each may take 

a text-string as an argument. (*2) Ir the identifier 

-216-



(text-string) is already bound to an existing structure, 

that is, names that structure, then the binding is detached 

without destroying that structure; in any case, a fresh 

point, null picture, or null aggregate with the identifier 

as its name is created. A picture or an aggregate may have 

several explicit names, as well as being implicitly identi-

fiable by virtue of its position in some aggregate. A datum 

ceases to exist if all its explicit and implicit references 

are destroyed. (*3) 

To increase the legibility of commands and programs, 

and to remove the need for separate type declaration of names, 

we adopt the following rules: The name of a scalar consists 

of a string of small letters, possibly including numbers, 

such as 'x', 1 yloc', 'rr', 'al', and 1 g0 1 • The name of a 

scalar aggregate consists of a sequence of capital letters, 

possibly including numbers, such as 'XX', 'YPATH', 'SELEC-

TIONS', and 'RHYTHMO'. The name of a picture consists of 

two sequences of characters separated by a period ( '.'), 

such as 'PIX.O', 'P.PCURVE', 'P.XWAVEFORMS', 'PT.O', and 

'PT, CENTER'. As will be explained more fully in II.E., the 

prefix of a picture name, that is the character string be

fore the period, often denotes the "type" of the picture. 

Specifically, the prefix for a point is 'PT' and for an 

arbitrary picture is 'P' \ 'PIC', or 'PIX' 

Typical commands names are" WAIT;", "NEWPT at ... 

-217-

" 



11 SET ••• .to ••• "PUT -<-n.to •II 

' 
"SHI FT by ••• II 

and "FORMTRIANGLE among and . and II Command names 

are assumed to be uniquely identifiable from the first 

capitalized word. The words in small letters are optional 

dummy separators. They may be spread throughout a statement 

between its parameters, for the purpose of aiding its compre-

hensibility. Each omitted parameter is indicated above by 

Since command names are considered "reserved words" 

by the system, they are distinguished in their written form 

by the use of italics. 

A COMMAND is the designation of a command name followed 

by its required number of parameters, which can be zero or 

arbitrarily many. A variety of techniques can be used to 

specify parameters in an interactive environment. For in-

stance, parameters that are visible pictures may be desig-

nated by pointing at them with the stylus; if invisible, their 

names may be typed into the system. Examples of typical com-

mands are "WAIT;", "NEWPT PT.A a.t 0.0,0.2;", "SET x .to 0.5;", 

"PUT P,A in.to P.B;", "SHIFT P.C by 0.5,0,5;", and 

"FORMTRIANGLE among PT.A and PT,B and PT.C;". 

-218-



II.B.2. EXTENDING THE COMMAND STRUCTURE 

Pictures are constructed by directing the system to 

execute some of its library of commands. The example in 

Step 1, II.A.4., illustrates the production of a triangle by 

the direct designation of a sequence of six commands. Since 

the construction of a triangle is to occur again and again, 

APPL should have single commands to facilitate this operation. 

If these do not currently exist, the user can increase the 

system power by defining them. 

Three such extensions of the command structure are 

listed in II.A.4. The user designates an ordered, numbered, 

sequence of commands and requests that they be saved as a 

unit for execution at a later time. These units are called 

PROGRAMS, and more specifically PROCEDURES, Commands which 

may be designated for deferred execution include those which 

may be immediately executed. Hence the system must be in-

structed when to leave execution mode and when to enter 

definition mode, and when later to begin direct execution 

again. This is done by giving the system meta-command 

VEFINE, followed by the program name and its definition, 

followed eventually by the system meta-command ENV. (*4) 

Much of a practical animation system may through such 

definitional extension be written in the base language. 

Commands thus defined are readily available for modifications 

to suit the demands of individual users. We reiterate the 

-219-



claim, which the sample programs should substantiate, that 

the base language is low-level enough that one may flexibly 

control his style of interaction with the system, yet it 

can smoothly grow to be high-level enough that one may easily 

write and draw interesting animated displays. In the examples 

of II.A.4., the basic triangle construction algorithm ex

pressed by Program 1 is adapted in Program 2 to allow triangles 

to be built on arbitrary existent points as vertices, and in 

Program 3 to allow new points to be generated and positioned 

as well. 

The three commands that constitute Program 2, FORMTRIANGLE, 

are not expressed in terms of three specific real points in 

the pictorial data base. Instead they are expressed in terms 

of dummy parameters, names that are bound to real pictures, 

and only then have meaning or value, when the program is 

called, or activated. Hence the constituent commands will 

operate upon whichever three points are designated as the 

program's real parameters. If "FORMTRIANGLE among PT.U 

and PT.V and PT.W;" is activated, then within the body of 

the program, that is while the constituent commands are being 

executed, PT.l stands for PT,U, PT.2 for PT.V, and PT.3 for 

PT.W, 

All program statements are given unique identifying 

numbers, or labels. These are expressed as fractions between 

0 and 1, ordered according to increasing numerical value. 

The labels, sans decimal point, may equivalently be viewed 

-220-



as digit seQuences, ordered lexicographically from left to 

right . Hence, the following seQuence is in correct order: 

. 03, .12, .121, .122, .13, .130, .131, .21, .45, .99, .999, 

• 9999. 

Since the system is open-ended, the command FORMTRIANGLE 

can be designated for immediate execution, and can also be 

used in defining higher-level commands. One example of this 

is Program 3, VRAWTRIANGLE. That commands can be nested to 

arbitrary depth in programs defining new commands implies 

that in APPL the command language and the programming language 

are harmoniously integrated. It also implies that we must 

consider the issue of the "scope" of the names of data items, 

which is therefore our next topic. 

-221-



II.B.3. THE SCOPE ISSUE 

The scope of a program name is the set of program state

ments in which it has the same meaning, that is, points to 

the same scalar, picture, or scalar aggregate. A name may 

in general have several scopes within a set of subprograms. 

A name whose scope is the ''entire set" of subprograms is 

called a global variable, and one with several scopes is 

called a local variable, for its meaning is local to a parti

cular subset of subprograms. (*5) 

At least four possibilities exist for dealing with the 

problem of scope in a programming language. (1) All vari-

ables may be made global. (2) There may be global variables 

and variables local to only the particular subprogram in 

which they are defined. (3) The scope of local variables may 

be extended according to the compile-time block structure of 

the master program. (4) The scope of local variables may be 

extended according to the run-time, or dynamic block struc

ture, that is, the meaning of local variables of any program 

calling another is passed on to the called program. 

The first possible solution fails because of the frame

word of program calls that is developed in the next chapter, 

since several copies of a particular program may be active 

concurrently at execution-time. The third possible solution 

fails because it appears cumbersome to impose a concept 

of compile-time block structure on a conversational lan-

guage. It is at this stage of the research not obvious 

-222-



whether the sizeable implementation difficulties of dynamic 

run-time block structure are warranted for the purposes of 

computer animation. Thus the choice between solutions (2) 

and (4) remains an open question. (*6) In either case, 

there must exist both global and local pictorial data bases. 

Individual programs or sets of programs will contain private 

(local) pictures and aggregates whose existence need only 

be temporary. Yet when the process of animation is termi-

nated, the global pictorial data base will have been 

augmented, that is movies will have been made. 

Pictures and scalar aggregates are global and exist 

forever, even from session to session if they possess at 

least one global reference. Local names may appear in a 

directly executable command given by the user, including 

their possible use as a direct program parameters, or within 

programs. In the former case, since the user functions as 

the main program, the name has the same meaning in all direct 

commands. An element with only such a name, however, would 

disappear at the end of a session. A local name within a 

program would be reclaimed when the program was terminated. 

If the named datum were located somewhere in the structure 

of an aggregate with a global name, the binding of the local 

name would disappear but the entire structure would remain. 

So that the user can implicitly declare which names are 

global and which are local, a distinction in their naming 

-223-



<tOHUtiGn•. :tit ,~4l,qlt~~d. , ;'4 ~~i--~ r·4i.,lcj;nq\:J!Mri~ 

'l!)l.i s ~X\~ltMt•"~oa G!f' ,,..,ff e~1t111B;1ietb ~~j,.\~J;l!IO\ru1t•-H4lh1 

···f 

. cu 

' ·~ . 



(*l) 

( *2) 

( *3) 

( *4) 

( * 5) 

( *6) 

FOOTNOTES -- II.B. 

The AGGREGATE mechanism, used for structuring both 
collections of pictures and collections of numbers, 
is the topic of II.D. 

Other commands which assign names to data items will 
be described in II.D.2. 

This leads to the implementation problem known as 
"garbage collection." The system must be responsible 
for deleting from the data base those items whose 
explicit and implicit names have all disappeared, for 
they can no longer be referenced and hence manipulated 
by the user. 

Also compatible with this framework is what I call 
"procedure writing after the fact," that is, recalling 
recent sequences of immediately executed commands and 
designating them post-facto as procedures. Such a 
capability would require a mechanism that monitors 
direct commands, including interactive input from the 
stylus and other devices, and then transforms its 
representation of these events into a sequence of 
written APPL commands. It would further require a 
mechanism whereby the user could replace the names of 
certain objects transformed by these commands with 
dummy procedure parameters. For the results of a 
current investigation into the problem of monitoring 
interactive input and converting it to a written form 
for subsequent reuse including possible modification, 
see Reference 73. 

We stress again what was noted in Footnote 9--II.A., 
that this use of the terms 'global' and 'local' differs 
from their use in expressions such as 'global dynamic 
description.' 

Adoption of run-time block structure leads to diffi
culties when programs call themselves recursively, 
unless explicit stack mechanisms are included in the 
language. Another approach, which avoids this problem, 
is that which in many simulation languages allows the 
explicit linking of one program to the local data base 
of another program. We refer further to work on simu
lation languages in II.C. 

-225-



:::.: t: 

.~:···--:~; ltil+;!:~: . .!Lf~rf!''.;; 11'fi~ .. ~JS·~~r{}j~ ,·•:,i',· 

~a ~~·tuJ~Iq ~o 3~ott~~ll0~ 

.. a .. !t tt• ~-b!e~ ~::r:r .. ~.,;: 

t:. ;-~-;:·:~:.::'! ~1:i ~::~~i:n;; :1.a r;~;!; ~.,,'-;i-:1 

"7ti:-;l!.{ ~rt ."i .{'.'~ 

;'.Ffi'.?"''"' '<.:.rLt .:i!:tW ill>il;}J:;t.i;~o~ ~<:;.A 

_,:,:: e-·ri J ·i-r;:.:71.a !n::r.t'lw g~~b-~~i:;·., ·1 11 

··-~$ajb~~~! ~o -~~~sa~•F ~~~~e: 

.,dr aat;au~l·-~ 
Pt1unor · "'HJ:l:esq.i;'.} 
, r..fieJa>10.o;;.0!1 ~')"'"' 1: 6 

'-i-~'?~:3 :3!1S.A-;;4' to f1¢.1.:t-S~i'-i~&~-:i. ... "';t:-'~ 
...... ~ . t!ia~ilt,o:; ~q~A :£!.'\: _; f""1:\.1 

~:".'~n~' ~cl;:!" xJ.;,,~~rr"W l3~!:.::t.z~~")'.5L!'t 

~~L~c~gtt¥~j ~~~~tdo ul~~,~~ 

:-. ~--:t-:-,.-1;~.15~8-'! !!"1~i:.~C~1:\{ "'~~;.:{ 
~Jn~ aeJti~lJ~~••l !~~~~~-

".'1/ !-,..~·t::~;~ .e.t?~ J;;q::l ~-'\i.-J:-,t;J,$'!~-~~: 
~-~~ ..... ~£3r0:~ ~!~~~~ -~1~ 9aue1 t~~ap~a4•3 ~o' 

.Er •~nu~e?~S q~~ 

nl ~t~m 3SW lsrl~ Bl••~ •«•~~B ~~ 
~. ;~..:r :··- t'"' ~ ~ e.sr:-.. t-e.J 1~Hi 6 -'?:-:,;; ~ e: lt fl 1: cL~ ~Ji i~ .:t 

-.~.:· :4·::i.-: .::z·::'-:;f~~ ~11 ""jl.€tl: ::l£:rf1' m.:.~'1
4

~ 

s ~ au!~;l:"!~.f.;"!. ... b 

.-.·-:'f ~.~.r-;;-r;;~-> .:~~ Js-4J3"'!~~~~r :i.-~v ~'*~,:tlr!~ 

.... ", ~,, ::·~,-"?_r;;,~ 't>e!E io1':~ J'-J::~-1-ic.!;~$" --t.let-.Iilr.f 

'>: ;o; • • • , i'.'5•:.''!<!~41' '!SJf;t.::;rrA -~~";l!Olill' f 
'!"'·~.--._, ~,·~y 1""!)J::.t;. ~tt1!!1e -·t_tnt~ tlt a-:=:,1r-fy :!':ttrl7 !~i: 

' ... : _< 

(1 '" -~ :) '; 

.. ~ ~.::..-·. '! 'E ".'.'.:'ti.: .e:f!-0 
' ~-·j .! ~.1 ,,,_ "w 

.. - . :;: I 

,0 attf~n~l ~ln~i~~~ 
"~.B'!»~~f.r: ud.J-nn-~ ""': _; 
al 23~s~sa•! tl0::~£ 



II.C.l. THE INDIVIDUAL CONSTRUCTION OF EACH FRAME 
IN THE SEQUENCE 

The most straightforward way to apply the methods of 

static picture construction to the definition of dynamic 

pictures is through the first approach of I.B., the indivi-

dual construction of a sequence of frames. The animator 

invokes a sequence of direct console commands such as: 

NEWPIX P.l; 
ACCEPTSKETCH P.l; 
NEWPIX P.2; 
ACCEPTSKETCH P.2; 

where ACCEPTSKETCH is implemented in the animation language: 

VE FINE 
.11 
• 21 
.22 
• 23 
.31 

ENV 

ACCEPTSKETCH P.O; 

SETCONTEXT P.O; 
STOPIF STYLUSUP; 
IF STYLUSOFF then RETURN; 
NEWPT PT.Oat STYLUS; 
GOTO #. 21; 

PROGRAM #4 

"NEWPIX P.1; 11 creates a fresh empty picture with name P.l. 

"ACCEPTSKETCH P.1 11 activates the routine with P.l passed as 

a parameter. This call on ACCEPTSKETCH allows the animator 

to sketch a picture of dots (points) free-hand. He can cause 

the program to terminate when the sketch is completed. The 

next NEWPIX command may then be given. 

Statement .11 (from now on, we shall use the abbrevia-

tion #.11) is executed as "SETCONTEXT P.1. 11
• Its effect is 

to guarantee that any points or new pictures to be created 

-227-



are included in Picture P.l. (This statement will be refined 

in the next chapter.) The function of the loop of #.21-.31 

is to track the positioning of the stylus and reco~d it by 

a sequence of points deposited at stylus locations. We assume 

the use of a Sylvania tablet 54 with three vertical levels, 

STYLUSVOWN on the surface, STYLUSLJP in the air, and 

STYLUSOFF, raised high above the surface; alternatively, 

three states may be simulated by any tablet stylus and a 

pair of switches. Execution is suspended at #.21, if the 

stylus is lifted to the UP state. If it is next returned to 

the surface, looping continues; if it is next lifted to the 

OFF state, execution of the program terminates (#.22). The 

program would be more realistic if rather than terminating 

directly at #.22, it first passed P.l to another program 

which would thin and smooth the sequence of points. 

A somewhat more sophisticated approach automates the 

advance from the construction of one frame to the next: 

VEFINE ACCEPTSKETCHES P.SEQO; PROGRAM #5 

.11 NEWPIX P.SEQO; 

.21 NEWPIX P.O; 

.22 PUT P.O ~nto P.SEQO; 

.23 ACCEPTSKETCH P.O; 

.24 GOTO #.21; 

ENV 

Activation of this program with parameter P.SEQ results in 

the formation of a picture P.SEQ (#.11). It is in turn filled 

with a sequence of pictures (#.22), those successively gener-

ated and bound to the name 'P.0 1 (#.21). Each of these pictures, 

-228-



which may be interpreted as a frame, is individually sketched 

as above (#.23). The program is simplified and defective in 

that no way of exiting from the loop is provided. If this 

were added, then although an individual frame would no longer 

be bound to a unique name, it would continue to exist by 

virtue of its inclusion in the pictorial aggregate P.SEQ. 

The reader will recall the claim, made in II.A.4. and 

II.A.5., that APPL can be used for system-building as well 

as for directly generating dynamic displays. ACCEPTSKETCHES, 

a simple program written in APPL, when supplemented with a 

program that plays back P.SEQ, constitutes an elementary, 

special-purpose, interactive animation system. 

-229-



II. C. 2. THE GENERATION OF FRAMES FROM AN ALGORITHMIC 
DESCRIPTION OF THE SEQUENCE--THE CONCEPT 
OF MOVIE TIME 

The following program illustrates the algorithmic speci-

fication of a changing display, in which a triangle grows 

through the upward movement of its top vertex (*l): 

VEFINE 
.11 
.12 
. 13 
. 21 
. 31 
.41 

ENV 

GROWINGTRIANGLE; 

NEWPT PT.l at 0.0,-0.9; 
NEWPT PT.2 at -0.1,-1.0; 
NEWPT PT.3 at +0.1,-1.0; 
FORMTRIANGLE among PT.l and PT.2 and PT.3; 
MOVE PT.l by 0.0,0.l; 
GOTO #.31; 

PROGRAM #6 

In addition to its lack of a mechanism for termination, this 

program is a fundamentally deficient definition of an anima-

tion sequence. It contains no mention of time, or of the 

speed of the picture change. The speed at which the triangle 

grows apparently depends upon the time it takes the processor 

to execute #.31-.41, a very restricted and machine-dependent 

interpretation. Intuitively, what we want to do is control 

the speed of the computation so that each pass around the 

loop takes, for example, l/24th of a second. Although many 

complex calculations cannot be so quickly and reliably com-

pleted, the ramifications of this suggestion should be 

explored. 

We define a scale of simulated, or movie time, and con-

trol the dynamics of an animated display by organizing picture 

-230-



change with respect to this scale. In Program 6, we consider 

it a static program, and call it a PROCEDURE. It is static 

in the sense that the dynamically varying state of the display 

can only be regarded as a means to achieve a final static 

picture, that which results when the program terminates, 

because the user has no control over the intermediate states. 

Suppose that we add to Program 6 the statement 

.32 PAUSE no~ l; 

The processor executing the augmented program suspends the 

calculation at #.32, and pauses for 1 unit of movie time to 

elapse. It then computes until the PAUSE statement is next 

encountered, and waits again. Now there are well-defined 

intermediate states of the display, specifically, the pie-

tures at successive integer values of movie time. We call 

these pictures frames. Hence we say that movie time is 

clocked in frames, that is, one unit of movie time is also 

called a frame. A program containing references to the 

passage of movie time, which are used to organize the dyna

mics of picture change, is considered a dynamic program, and 

is called a PROCESS. 

How long is one unit of movie time~ He who activates 

Program 6 presumably expects that the sequence of frames 

resulting from the computation will be displayed concurrent 

to their generation at a rate ''reasonable" for viewing, and 

that the sequenae will be available for later reviewing or 

-231-



"playback." He may designate his own reasonable rate with 

the command SETCLOCKRATE n m~ec. The rate is usually held 

constant for a calculation, and is often (1000 msec/24 frames) 

= 41 msec. This rate is the desired relationship between 

movie time and real computation time. If the program is 

simple enough, the desired correspondence can be achieved, 

and the processor waits during each cycle for a full 41 msec 

to elapse. However the actual relationship often deviates 

from this in an unpredictable, computation-dependent manner, 

since movie time cannot advance from unit to unit until the 

new frame is computed or retrieved, displayed, and its image 

appropriately recorded for future playback. 

What happens if the actual speed at which each image 

is updated to form a new frame differs erraticly from the 

desired speed established by SETCLOCKRATE? In the case of 

GROWINGTRIANGLE, the animator can still evaluate the correct-

ness of his program, which is a major goal in viewing directly 

the results of the computation. Consider, however, the fol-

lowing program, obtained from ACCEPTSKETCH by the addition 

of one statement: 

VEFINE 

.11 

. 21 

. 22 

. 23 

.24 

. 31 

ENV 

ACCEPTPCURVE P.O; 

SETCONTEXT P.O; 
STOPIF STYLUSUP; 
IF STYLUSOFF then RETURN; 
NEWPT PT.Oat STYLUS; 
PAUSE 6 ott 1 ; 
GOTO #.21; 

-232-

PROGRAM #7 



This is a process that accepts dynamic sketches of parametric 

curves, or p-curves. It is obviously useless if arbitrary 

and unpredictable delays are encountered while generating 

successive points of the curve. Hence, while computing the 

p-curve, the system records the real time intervals between 

successive executions of the PAUSE statement. Suppose that 

these are 60 msec., 90 msec., 50 msec., 75 msec., etc., and 

that the clock rate has been set at 41 msec. The processor 

introduces artificial delays so that the computation cycle 

time will appear to equal the maximum value of the clock time 

and the cycle times already encountered in calculating the 

sequence, If, as occurs in this example and often in practice, 

there is regularity in what is computed from frame to frame, 

then the cycle time will appear uniform although slow. 100, 

even 200 msec. may be satisfactory for ACCEPTPCURVE, provided 

the user is certain that the time will be approximately 

stable from point to point, from frame to frame. These con-

siderations are fundamental for all dynamic ("real time") 

interactive input. 

We have remarked in passing that successive frames are 

automatically saved for future playback. Of course one can 

compute and then play back sequences of images without using 

a process. Consider the procedure ACCEPTSKETCHES as an 

example. It directly defines a sequence of pictures. One 

can easily write in APPL a routine which plays back these 

pictures. When a process is used to compute an animation 

-233-



sequence, on the other hand, the system automatically forms 

and stores the sequence of images that exist at each frame 

of movie time. By associating a name with the computation, 

we associate that name with the resulting sequence of frames, 

and can request playback of the movie simply by referring to 

its name (*2) As in BEFLIX, this sequence of frames is also 

what is eventually recorded on photographic film. 

In conclusion, what distinguishes the use of the concept 

of movie time in interactive computer-mediated animation (APPL) 

from its use in off-line animation (BEFLIX) is the attempt 

to control in real time a display of successive frames of 

the movie, both during computation and playback. Given any 

hardware and software configuration, however, this attempt 

will often fail. There will be "compute-bound" movies, 

where processing and retrieval times are too long for effec-

tive real-time viewing during sequence construction. There 

will be "retrieval-bound" or "display-bound" movies, where 

retrieval and display times are too long for effective 

real-time viewing during playback. If, for a particular 

movie, the real-time display of either computation or play

back succeeds, then the interaction will be valuable. If 

both fail, the only remedy is to factor the algorithms or 

pictures into smaller pieces. (*3) Factoring algorithms is 

discussed in the remainder of this chapter, factoring pic

tures in the following two chapters. 

-234-



! 

"""- :;·,~'':" ""> ,.:.•~ 

a aoTie is to define separately the vario•s concurrent dynamic 

acti•,1~1•• &f',1'11:1dlt' 11P1's effll!J•li,-•~ '.>Ctw<UdiliHJ~Of''~here

' ttSJl•<E is tiil•''~ao~11la,;~o•-"'••HileJJi:cl•'bilttahO:I tjeJf,:l:l•lP•c"':i 

r: ... L:) 

:;. •"\ -' " ; ... 

·'· .. 

.:~ J 



II.C.3. THE MODULAR DEFINITION OF CONCURRENT 
DYNAMIC ACTIVITIES 

Concurrent dynamic activities are actions which may 

be conceptualized as occurring "in parallel." Mother knitting 

in the rocker, Father snoozing in the easy chair, and Brother 

under the couch twisting Sister's arm are concurrent dynamic 

activities, for they are distinct pictur~ changes which 

take place over the same extended interval of movie time. 

The independent synthesis of parallel dynamic strands may 

at some stage require coupling and coordination; Brother with-

holds his affection for Sis's arm until Dad's nodding head 

attains the requisite resonant frequency. Adoption for use 

in APPL of the structure of program control known as QUASI-

PARALLEL PROCESSING may be supported by analogies to simula-

tion languages and by an analysis of alternative program 

structures expressing one set of concurrent dynamic activities. 

The argument we now present suggests that an approach to 

language design should facilitate the expression of concurrent 

activities, notes that many of the requisite constructs may 

be adapted from the domain of simulation languages, and 

illustrates how quasi-parallel processing is superior to 

standard sequential processing. 

We have seen how the design of GENESYS facilitates the 

addition of new parallel strands of picture activity. A new 

eel class and its global dynamic descriptions may be defined 

without altering existent eel classes or dynamic descriptions. 

-236-



GENESYS also provides a mechanism that facilitates the 

communication between and the coordination of these strands, 

the rhythm description. 

Simulation is the verbal or mathematical dynamic model-

ing of a hypothetical or real system; animation is the 

pictorial dynamic modeling of a hypothetical or real system. 

Thus many of the concepts and linguistic constructs developed 

in the five-ten years of research on programming languages 

for model-building (simulation languages) can fruitfully be 

applied to computer animation. (*4) In a statement that 

reflects the current state of the art in simulation languages, 

Jones argues, 

Normal collections of interacting programs find 
the subroutine call mechanism adequate for managing 
the flow of control between the oarts of the program 
(e.g., subroutines). Even complicated heuristic 
programs do not require a special calling mechanism, 
although the flow of control is certainly far from 
predictable in these programs. What is different about 
simulation programs? Why is the subroutine calling 
mechanism not adequate for them? 

It is because a simulation model is not just one 
program, but several programs operation in parallel. 
Each activity in a simulation model is conceptually 
executing in parallel with the other activities in 
the model. 

Thus, simulation systems need to have a mechanism 
for allowing separate programs to be run sequentially 
but appear to be running in parallel. A mechanism is 
needed for allowing these programs (e.g., activities) 
to transfer control among themselves, in a completely 
unpredictable manner. This is necessary because simu
lation programs may contain stochastic elements in 
them which determine when they want to run and for 
how long. Thus, it is impossible in general to pre
dict when one program may wish to run, and how long 

-237-



its execution will take, If both of these factors 
were fixed it would be possible to specify a sequence 
of calls from one program to the next program and 
the stand~rd subroutine calling mechanism would 
suffice.7 4 (Emphasis added) (*5) 

The mechanism to which he refers may take several forms; we 

shall, adopting the terminology of SIMULA, 75 call it QUASI-

PARALLEL PROCESSING, 

The necessity for such a mechanism may be supported by 

an analysis of a concrete example from the domain of inter-

active computer-mediated animation. Consider the process 

RECORVRHYTHM, as expressed by the following program: 

VEFI NE 

.11 

. 12 

.21 

.22 

. 23 

.24 

.25 

END 

PROGRAM #B 

RECORDRHYTHM on buttonnumber a~ RHYTHMDESCRIPTION; 

NEWAGG RHYTHMDESCRIPTION; 
WAIT; 
WAITUNTIL BUTTON buttonnumber OR TOG buttonnumber; 
IF TOG buttonnumber then RETURN; 
PUT MOVIETIME into RHYTHMDESCRIPTION; 
WAITUNTIL NOT BUTTON buttonnumber; 
GOTO #.21; 

RECORVRHYTHM accepts the rhythmical tapping of a push-button 

and records it as a scalar aggregate representing a rhythm 

description. The WAIT command, defined in the next section 

with greater precision, signals the system that the routine 

is a process, holds execution in abeyance until the user 

signals that he is ready by giving the direct command GO, 

and then turns on the clock of movie time. (*6) In writing 

the program we have assumed that the console has an array of 

push-buttons and that the scalar parameter 1 buttonnumber 1 , 

when rounded to the nearest integer value, identifies 

-238-



one of them. Execution is suspended at #.2l until the 

selected button is depressed or the corresponding toggle 

switch is set. In the latter case, execution is terminated 

( #. 22). In the former case, the value of the clock in units 

of movie time is recorded in the scalar aggregate 

RHYTHMDESCRIPTION (#.23). The second WAITUNTIL command 

guarantees that one must press and release the button before 

a new value is recorded. Movie time advances concurrently, 

independent of the position of the button. 

A natural question arises--what happens if one is 

tapping with several fingers on several buttons, or if 

several animators are thereby recording their rhythmical 

interactions? The transfer of control among programs re-

cording each button's behavior is certainly "completely un-

predictable." Quasi-parallel processing allows the rhythms 

to be multiplexed by activating a number of copies of this 

process to accept input from distinct buttons, that is, by 

calling it with different values assigned to the dummy 

parameter 'buttonnumber'. Nothing could be simpler! Alter-

native approaches, without quasi-parallel processing, require: 

(1) The construction of a single routine that processes 

aggregates of buttons with an elaborate scanning mechanism 

to identify which are depressed at a given instant; 

(2) The construction of a cyclic set of routines, 

needing modification with the addition of a new button, each 

-239-



of which would call the next until the last were reached, 

movie time were updated, and control were passed back to the 

first routine; or, 

(3) The construction of a "main program," needing modi

fication with the addition of a new button, which would keep 

track of and control the cyclic execution of a set of indivi

dual button-interrogating routines, 

Each alternative, particularly in the more difficult 

situations which occur when the parallel activities are not 

copies of a single process, is decidedly unattractive com-

pared to quasi-parallel processing. Hence we shall proceed 

to its exposition without further justification. 

-240-



II.C.4. THE FLOW OF CONTROL AMONG INTERACTIVE APPL PROGRAMS 

The first feature of quasi-parallel processing that 

distinguishes it from conventional sequential processing is 

the importance of a strict separation between the definition 

of a program and its use, and the possibility of the concurrent 

existence of several instances of the same program. Each 

instance has its own private local data base. A use of a 

procedure is called an EVENT; a use of a process is called 

an ACTIVITY. ( *7) 

Consider the following application of the routine 

RECORVRHYTHM. An animator, programmer, and educator are 

collaborating on a film. While viewing the current version 

of one constituent sequence, the picture called P.SCENE, 

each wishes to record, without interrupting the playback, 

the frame values of key points that interest him. To achieve 

this, three copies of RECORVRHYTHM are to be run in quasi-

parallel execution with a playback routine, one which is 

implemented in the language as follows: 

VEFINE VIEWSCENE P.SEQUENCE; PROGRAM #9 

.11 SHOW 'THIS MOVIE IS' P.SEQUENCE at xtitle,ytitle; 

.12 WAIT; 

.21 FOREACH P.O ~n P.SEQUENCE VO PART 21; 
.211 SHOW P.O; 
.212 PAUSE 60~ l; 
.213 HIVE P.O; 

ENV 

#.11 will produce a display of the title, "THIS ~OVIE IS 

-241-



P.SCENE," at the coordinate values bound to the scalar names 

'xtitle 1 and 'ytitle 1 • The FOREACH statement will step 

through the pictorial aggregate P.SCENE, executing Part 21, 

that is, #.211-.213, upon each picture in the aggregate. 

(Part abc, where a, b, and c are digits, consists of all 

statements with labels of four or more digits such that the 

first three digits are a, b, and c. Part 21 may therefore 

include #.210, #.210000, #.211, and #.2199999999.) The SHOW 

command makes the designated picture visible, the HIVE command 

makes it invisible. 

The following five commands must now be given directly 

to the system: 

VIEWSCENE P.SCENE; 
RECORVRHYTHM on 1 a~ RDl; 
RECORVRHYTHM on 2 a~ RD2; 
RECORVRHYTHM oo 3 a~ RD3; 
GO; 

The first four commands activate processes; the fifth one 

triggers their quasi-parallel execution. The system knows, 

from the program's definition, that VIEWSCENE is a process. 

However, its activation must not cause the playback to begin 

before all the button-monitoring routines are active. A 

mechanism is required to enable the designation of several 

activities before the dynamic phase of their combined 

execution begins. We adopt one such mechanism, patterned 

after the sequencing set of SIMULA and the agenda of OPS, 

which we call the AGENDA. 

-242-



Designation of the first activity triggers the execu

tion of all its statements encountered prior to the WAIT 

command. In this case a single statement, #.11 of VIEWSCENE, 

produces the title on the display scope. The system is then 

ready to accept a new command. Designation of the next three 

activities, all instances of RECORVRHYTHM, has a similar 

result--only the NEWAGG commands are executed. A good in-

tuitive model is a racetrack where horses can be brought into 

their starting gates only one at a time, although all must 

be entered before the race can begin. This phase of the 

construction of an animation sequence is called the static 

phase, for complete executions of events constructing static 

pictures, as well as shifts into define-mode producing new 

procedures and processes, may be interspersed among initiali-

zations of activities. In a static phase the clock of movie 

time is not running, and the user controls the system through 

the direct designation of commands. 

The GO command turns on the clock and triggers the 

dynamic phase. Processes are now executed as simulated time 

advances. Under certain conditions, execution is halted and 

a static phase re-entered. Alterations may then be made to 

static pictures and programs. The dynamic phase may be re-

sumed by a CONTINUE command; alternatively, a new dynamic 

phase may be initiated by repeating the GO command, which 

turns on the clock after resetting it to zero. 

-243-



The agenda controls execution during a dynamic phase. 

Each process activation has placed the corresponding activity 

at the end of the ordered agenda of current computations. 

Execution after the GO signal proceeds in round-robin fashion 

as primarily determined by program positions on the agenda. 

A scan of the agenda uniquely determines the next potential 

computation, thus avoiding the indeterminacy possible in so-

called "parallel" processing. The agenda scan guarantees 

that all computations relevant to the current instant of 

movie time are completed before its clock is advanced. The 

agenda is an intermediary which automates the cyclic book

keeping to which we alluded at the end of the previous section. 

In the static phase of the above example, four activities 

are placed, in the order of their designation, on the agenda. 

After receiving the GO signal, the system begins to compute 

the VIEWSCENE activity. It displays the first picture of 

the sequence P.SCENE at #.211, and suspends the routine's 

execution at #.212. It then considers the next entry on the 

agenda. #.21 of RECORVRHYTHM causes it to check the states 

of the first push-button and toggle switch. If the switch 

is ON, the activity terminates and is removed from the agenda. 

If the button is depressed, the value 1 (the clock time) is 

recorded in RDl. Execution of this activity is eventually 

suspended at #.21 or at #.24 and the system considers the 

next agenda entry. Both it and the third RECORVRHYTHM com-

mand are similarly processed. The system then compares the 

-244-



execution time since the GO signal was received to the last 

previously designated "clock rate." If that interval of 

time has not yet elapsed, the system continues scanning the 

three button-monitoring programs, looking for an opportunity 

to continue their execution. If no opportunity arises 

before the requisite time elapses, the movie clock is advanced 

by one unit, and the agenda scan begins anew. 

resumes at #.213 of VIEWSCENE. 

Execution then 

The user may at any time push a HALT button and begin 

a new static phase. The contents of the agenda are not 

affected by the HALT command. Clearly a DEACTIVATE command, 

which removes items from the agenda, is also required. The 

command "DEACTIVATE ALL;" clears the agenda. The command 

"DEACTIVATE FIRST RECORDRHYTHM;" removes the first copy of 

this process. If the command sequence, "HALT; DEACTIVATE 

FIRST RECORDRHYTHM; CONTINUE;", were given the dynamic phase 

would continue with only two push-buttons active. 

An alternative method of termination consists of includ-

ing DEACTIVATE calls in the processes themselves. This has 

already been done in one way. The RETURN command of #.22 of 

RECORDRHYTHM is equivalent to the command "DEACTIVATE SELF;". 

If #.22 were changed to 

.22 IF TOG buttonnumber the~ DEACTIVATE ALL; 

then the agenda would be cleared whenever any of the three 

users turned on his toggle switch. Somewhat more useful would be 

-245-



.22 IF TOG buttonnumber ~hen HALT; 

for it allows immediate resumption, via the CONTINUE command, 

without restructuring the agenda, 

A fuller description of quasi-parallel processing and 

of the role of the agenda requires specifying in detail the 

conditions that can interrupt the execution of activated 

programs, the response of the system to each interruption, 

and the effects that one program may have on the execution 

of another, Although a full analysis is beyond the scope of 

the dissertation, we conclude this chapter with a sketch of 

the relevant issues, 

One source of complexity arises because activation of 

a procedure does not necessarily result in its immediate 

execution to completion. A number of conditions may cause 

the interruption of the event's calculation. The value of 

a program parameter or referenced variable (name) may not be 

suitably defined, (It may itself be undefined, or it may be 

bound to another name which is undefined,) A program called 

within the procedure may not yet be defined. Finally, further 

execution may require user interaction such as the positioning 

of the stylus on the tablet surface or the setting of a 

toggle switch to a particular state or to a new state. 

Depending upon the nature of the interruption, either all 

execution is stopped until new input is provided, or only 

the interrupted event is suspended, placed on the agenda, and 

its state preserved for future resumption. We shall not here 

-246-



decide which action is a more appropriate response to each 

of the variety of interruptions that may occur. The choice 

is not critical with respect to a static phase, for in either 

case the user can be immediately notified of the unbound 

datum name or program name or of the missing input, 

In a dynamic phase, however, stopping the execution of 

only the interrupted program results in significantly differ

ent system evolution than does stopping all execution. In 

the former case, one entry is suspended from the agenda, but 

cycling and the advance of movie time continue. In the 

latter case, some user input is required before any further 

processing can take place. Examples of the furmer kind are 

"PAUSE 6otr. 3;", which suspends the process for 3 units of 

movie time, and the WAITUNTIL commands of RECORVRHYTHM. An 

example of the latter kind, parallelling WAITUNTIL, is 

"STOPIF TOG 4;", which stops all execution when the fourth 

toggle switch is set. Notice that, since events as well as 

activities may be placed on the agenda, a STOPIF command may 

also appear in a procedure. 

Thus the system in a dynamic phase computes on all 

active programs until it has completed at least one total 

agenda scan, and until a real time interval greater than the 

"clock rate" has elapsed, It then increments movie time by 

one unit, and scans the agenda anew. If any program is stopped, 

all are stopped until one of the four following conditions 

occurs. (1) The cause of the interruption may be removed 

-247-



directly, by designating a target, for example, if a target 

is awaited; execution then resumes as if the stop had never 

occurred. (2) If some other input is given, a new agenda 

scan searches for a previously suspended activity which can 

now be resumed. If it finds one, and that also resumes the 

stopped activity, all execution proceeds; otherwise, it stops 

again. (3) If the HALT button is pushed, a static phase is 

re-entered, from which new commands may be activated and 

dynamic execution later continued. (4) If the CONTINUE 

button is pushed, execution of the interrupted program is 

attempted again. (*8) 

An activity or event is therefore always found in one 

of seven states. At the instant of real time at which it 

is in execution, it is running. If it is on the agenda 

awaiting execution during the current instant of simulated 

time, it is active. Instances of programs must run sequen-

tially but are active in parallel. If it has been self

interrupted by a command such as PAUSE, or by a SUSPENV 

command given by another activity (see below), it is suspended. 

If it awaits necessary input such as is the result on en-

countering a STOPIF command, it is stopped. If a new static 

phase has begun, it is halted. 

execution, it is deactivated. 

If it has terminated its 

(Actually, it can never be 

found in this state, for it no longer exists.) And finally, 

as we shall now explain, if it has directly called another 

-248-



program which is currently in one of the first five states, 

it is inactive. 

The inactive state arises because procedures and pro

cesses may themselves activate other procedures and processes. 

This is done in one of two fundamentally different ways. A 

direct call causes an immediate transfer of control; the 

caller is made inactive and its further execution delayed 

until the called program terminates and returns. Alterna-

tively, an event or an activity may be scheduled rather than 

directly called. Execution of the scheduler continues; exe-

cution of the new program begins later as determined by where 

it is placed on the agenda. 

state of other activities. 

Activities may also change the 

Calls to SUSPEND and RESUME an 

activity have obvious meanings in the light of the above clas-

sification of states. Typical commands, illustrating possible 

mechanisms for referring to events and activities on the 

agenda, would be "SUSPEND SELF;", "RESUME FIRST on AGENDA;", 

"SUSPEND LAST RECORVRHYTHM;", and "DEACTIVATE ALL 

RECORDRHYTHM;". (*9) These may be included as statements 

in a program's code or may be given directly by the user 

during a static phase. 

One can view the various items on the agenda, excluding 

inactive items, as separate strands of a total computation. 

Calling a program directly from another has the effect of 

lengthening one strand; scheduling an event or activity adds 

-249-



of a single eleaent; an activit7 is a strand ~~~91~ 

eleaents. 

.. :; v; 

:-. l_· 

.'£ ! 

i. - i" 

.. i.:u -. -~ ,, ..... 

\'' 
-,, I. 



FOOTNOTES -- II.C. 

(*l) We assume here, for simplicity, that the lines of the 
triangle are somehow constrained to move with the 
vertices. 

(*2) In implementation environments such as the TX-2 system, 
where there are both inner structural and outer display 
representations of pictures, ACCEPTSKETCHES might pro
duce the more detailed representation of the animation 
sequence; the automatic feature, only a display file. 

(*3) We do not assume, incidentally, that all aspects of 
interactive animation require the full attention of the 
computer. In a time-shared environment, however, the 
animator must obtain sufficient attention for his 
dynamic interactions to be meaningful. Hence the acti
vation of a process, which requires close coordination 
between the passage of real and movie time, is a signal 
to the system that the animator must have absolute 
priority until further notice. The effects of a system 
implementation on aspects of the real-time computation 
and playback of animation sequences is further discussed 
in III.B. 

(*4) Conversely, animation could be applied to depict the 
results of a simulation. 

( *5) 74 Jones, pp. 92-93. 

(*6) WAIT commands, which for simplicity were temporarily 
omitted from Programs 6 and 7, must appear in all 
processes. In Program 6 it could be #.14 or #.22, in 
program 7, #.12. 

(*7) Our definitions of these terms reverse those of SIMULA, 75 

for we find our choices more intuitive. 

(*8) Programmers will realize that the STOPIF command may be 
used to implement a very effective generalized-break
point, "break if some condition is met." 

(*9) A more complete definition of APPL should include a 
precise specification of these mechanisms. 

-251-



\ 

pc_,. 

~r~ ~t;J jtn1i 3·1• ~~aJ.t 

-:.:i )~ ,;J-':f;Jj·J~i tP ~tr:._'.~ :J~ ;·\~-">'; 

I'.l.tw.:sra=111-,, •rm., 
; :! ·r ·'·~ t:- l L v. .:!' 1t ti .:f ~ '!' i £ • -.t ft·~~ 1-o:.n:l 11 ~s-sw-•l! . .e ;;1 o -~' j::.,.; ~ 

i: 

;j;{\ : 

. ·~ '1.; ;,; P.·~i!i' !!. !') ! "'$~ .t /'f Al 9'\.I" 1: .j ·::ii-_\.-.:·::- ~i,.,. 

~(V t6B~90tq 8 !~ 1~~tJ8Y 

..: . .t!"'.',·t 'l ;;- !t~t.~tA-q '11.ri::t :i:S~;:.;f!Hf 

.,-. ·.1 .;~'..:Jftr.~t:t-1 ~ti~t :7.~tf.t .fti.<:~ ::t~:--.,:« sr: J o-7" 
...::'~· ,,"~~;'.J;:,;,c; ·'!srL.J'r:;_~-": i.tJ:~.u "(J~"r:..:l..':Pl 

3~: ~(~ z~?&qaa ao noltaJn~~sfam.~ 
1t~$d't{..E;l.:.;'._ brr.e 

,JLI.: 

-.. 1 i·.":_:..::·-o':} -\I,•$;:--,s,a.itY.Jt<. 1 '(:taz.-x:::; .. ,,,, 

•. at;u:;il!!i~1ll!l'1! .i; '!.c i;J;,;;;-3-: 

;ly 
• :--:. :::: :;-:. c~ t._ 

: l ':I ;n J~ ~ ~":O~ rl o J .d-. < .at<tt,,£H.i!!!l ,3 _;· '1 I/:., ~t~ 

-:- fi.r:m -~ ~~·~~o":t'°1: ~o--:'1 f:.~~·-. :.:l: 

;:.- L ,.,. ..s-.1 0 fillt'l~'!~S-t.~1':<; aI ,. ~~~q:'il;);:.· r~.r 
~ ~-~ " ~ £!1.l~ -·. :0 ;"/ ,., c: 

-- . ·- ~ ·.::; -·~ :i ~ ".;. (°) .:;; ;:1 •") i "t ~ ,s1 .t '1 ~7 : 1 ·'t 

vo~ ~-~l~ti' ·i~o bQ)1 ~p ~~:i 

-. ~ 

t i:1~m~ £ qm:J ·.:t ." ~~ :z.;,.; 
1 I:. .:i .i< :".} 'i'., ci ff r :! ~'i ; :)- :-: 



II.D.l. DESIGN CRITERIA FOR A DATA STRUCTURE 

The inclusion of a data structure in a picture process

ing language requires in 1969 no elaborate justification. 

All data is in fact structured--a "programming bum'' in the 

lowest of low-level languages facilitates his own retrieval 

of aggregates of data items by mnemonic naming and by lexi

cographic coding tricks, for example, letting the variable 

names representing x coordinate values all begin with the 

letter x. A data structure is simply a mechanism whereby a 

pre-established coding schemata transfers to the computer 

some of the burden of appropriately linking related data and 

making it more easily accessible. A data structure is there-

fore appropriate for a particular class of problems insofar 

as it mirrors the patterns of relationships that exist among 

related data items, and insofar as it facilitates the specifi

cation of the most useful accessing paths through the struc-

ture. The remainder of this section describes the criteria 

that a data structure for interactive computer-mediated 

animation should satisfy. (*l) 

(l) The design goals for the data structure should be 

as independent as possible of implementation considerations. 

This is particularly important at the current stage of the 

research, since in designing the language on paper we seek to 

clarify the requisite concepts and furnish a vehicle for 

communication about computer animation. Eventually, the 

-253-



simplicity of the conceptual language described here should 

be carried through to the operational language, so that the 

user not be forced to furnish details whose only function is 

to facilitate translatin~ or running efficiently. 

(2) All manipulable substructures should appear to the 

user dynamically allocable, and capable of enlargement to 

arbitrary size. 

(3) The data structure should facilitate the processing 

of sequences of data. As we have seen in Part I, sequences 

of static pictures which form dynamic pictures, spatially or 

temporally ordered sequences of points or values, and se

quences of selections from sequences, all play an important 

role in interactive computer-mediated animation. 

(4) The data structure should facilitate the processing 

of hierarchies of data. Strong evidence for this requirement 

is found in the recursive picture processing operations of 

SKETCEPAD, 39 such as the "move" command which is defined 

recursively in terms of the moving cf subpictures. Only the 

ability to establish and manipulate complex hierarchic struc

tures will enable complex pictures to be expressed in terms 

of a few pictorial primitives. 

(5) It should be possible to include a single substruc-

turc in various (related or unrelated) superstructures. This 

results in the phenomenon known as sharing, and its function 

is to provide various paths of accessibility to the single sub-

structure. It is assumed that the system will handle the 

-254-



"garbage collection" problem, and hence data no longer acces

sible to the user will eventually disappear automatically. 

(6) The mechanisms for accessing or retrieving data from 

structures should be as flexible and powerful as possible. 

Accessing may be explicit or implicit. Explicit accessing 

consists of providing one of the possibly numerous names for 

a datum. Implicit accessing results from defining a path 

through a named structure or from defining a search for de

sired properties among elements of an explicitly named 

structure. 

(7) Finally, the mechanisms for structuring pictorial 

primitives and numbers should be as similar as possible. Not 

only will this facilitate learning the language, but it will 

promote the plasticity in the manipulation of dynamic data 

to which we referred in Part I, the ability flexibly to 

transform the representation of dynamic information among 

numerical sequences, static pictures, and dynamic pictures. 

-255-



II.D.2. THE AGGREGATE 

A single kind of data structure will be used to model 

both complex pictures and such collections of numerical data 

as global dynamic descriptions. The data structure is called 

the aggregate. Aggregates possess characteristics of (ordered) 

sets--one may test if a datum is a member of a given aggre-

gate, and, if it is a member, obtain its ordinal position. 

Aggregates possess characteristics of multi-dimensional 

arrays--one may retrieve an element embedded in a data 

hierarchy by specifying a finite number of ordinal positions, 

Aggregates possess characteristics of rings--one may access 

forward or backwards along a chain of linked data, testing 

for the beginning or end of the chain, and testing whether 

a datum is itself an aggregate, that is, a pointer to a 

lower level ring. The aggregate structure was developed 

independently, then found to parallel Balzer's excellent yet 

misleadingly-titled concept of dataless programming. 78 

Balzer describes the goal of dataless programming as 

follows: 

It conceives of a program as the specification of 
a set of manipulations to be performed on a set of 
data values, and that this specification should be 
indeuendent of the form in which these data values 
are ;epresented.78 

By form he means what D'Imperio 76 calls a storage structure, 

the real physical encoding of a logical and conceptual data 

structure. The term 'dataless' is misleading in that the 



body of a program is to be storage-structure independent, 

but not data-structure independent. There is a data structure, 

in APPL called the aggregate, which is a generalization of all 

ordered hierarchic data representations, including the array, 

list, and ring. Balzer correctly notes that a programmer 

who chooses an array early in his coding may at a later stage 

wish it were instead a list or a ring. The solution is the 

definition of a data structure so general that it includes the 

common accessing mechanisms of these ordered hierarchic data 

representations. However, it appears unreasonable to imple-

ment a correspondingly general storage structure. Balzer's 

solution is: 

Once the user has completed this programming, he 
can determine for each collection (aggregate) what data 
representation is suitable for the processing involving 
that collection.78 

Thus if the programmer discovers that all references to 

elements of a particular aggregate are expressed as ordinal 

positions, he can make the correct implementation choice of 

an array. 

The current definition of the aggregate mechanisms differs 

from dataless programming primarily in that: 

(1) There are no commands with which the APPL user can 

choose a storage structure to implement a particular aggregate, 

since issues of implementation have not yet been considered. 

In view of the first design goal stated in the previous sec-

tion, we intend to minimize the information of this kind 

that the user must give the system. 

-257-



(2) APPL has parallel and non-overlapping aggregation 

mechanisms for the domain of numbers and for the domain of 

pictures. I hope that this simplification will help the 

novice programmer comprehend the structuring of data, since 

the need for structured collections of numbers and structured 

collections of pictures should be intuitively reasonable, 

Mechanisms for associating numbers with pictures are discussed 

in II.E. 

(3) In dataless programming, the user must declare the 

hierarchic structure of an aggregate and name and declare 

each sub-aggregate at compile-time. In APPL, any aggregate 

may be dynamically grown to whatever complexity is desired. 

(*2) (*3) 

The aggregate is best defined through an enumeration of 

the constructs for its manipulation. 

for: 

These include commands 

(1) its construction and destruction; 

(2) its aggregation and disaggregation; 

(3) its reaggregation; 

(4) the access or retrieval of a datum from an aggregate; 

(5) iterative data access or retrieval; 

(6) analysis of aggregate structure. 

Finally, the process of the assignment of names to values and 

the question of structure sharing are discussed. 

-258-



(1) The construction and destruction of aggregates: 

The command "NEWPICTURE PIG.A;" (abbreviated "NEWPIX 

PIG.A;") generates a new empty picture named PIG.A. If a 

picture PIG.A already exists, it is cleared, that is, all 

its elements are removed. Similarly, "NEWAGGREGATE PATHl;" 

(abbreviated "NEWAGG PATHl;") creates a new empty scalar 

aggregate. "NEWPIX PIG.B a.-0 (PT.A PT.B (PT.G PT.D));" 

generates a new picture PIG.B, whose first element is PT.A, 

whose second element is PT.B, and whose third element is the 

aggregate whose first element is PT.G, and whose second element 

is PT.D. "VELETE PIG.A;" or "VELETE PATHl;" totally destroys 

an aggregate and all its unnamed substructures not included 

in any other aggregates. All elements of aggregates are 

actually references, or pointers, to numbers, pictures, and 

other aggregates. Thus the existence of an element is inde-

pendent of its relationship to the aggregate, unless it has 

no explicit name and is included in no other structure. In 

this case, it should be garbage collected, for it can never 

be referenced again. 

(2) The aggregation and disaggregation of data items: 

The command "INSERT PT.A a.-0 FIRST 06 PIG.G;" inserts 

PT.A ahead of all existing elements in the aggregate PIG.G. 

"JNSERT PT.A a.-0 THIRV 06 PIG.G;" leaves the first two ele

ments of PIG.G unchanged, but places PT.A ahead of all other 

-259-



elements. "PUT PT.A into PIC.C;" is an abbreviation for 

"INSERT PT.A a~ LAST 06 PIC.C;". (*4) The command "TAKE 

PT.A 6~om PIC.B;" results in PIC.B = (PT.B (PT.C PT.D)), 

whereas "TAKE PT.C 6~om PIC.B;" leaves PIC.B unchanged or 

generates an error. (PIC.B was defined above.) 

Since APPL programs will use heavily the capacity to 

hierarchically structure pictures, we adopt a pictorial 

context convention to simplify the specification of such 

commands. Execution of "SETCONTEXT PIC.E;" guarantees that 

each newly generated picture, such as a point created by 

NEWPT, automatically be included as the last element of 

the context PIC.E. "REMOVE PT.A;" is therefore equivalent 

to "TAKE PT.A 6~om PIC.E;". The context is kept in stacks, 

with a unique stack assigned to the set of direct commands 

and one to each quasi-parallel computation strand. 

"SETCONTEXT PIC.E;" pushes PIC.E onto the top of the appro

priate stack.RESTORECONTEXT pops the stack, NOCONTEXT clears 

it. (*5) The pictorial context serves as a buffer or 

working area for the assemblage of new pictorial aggre-

gates. It particularly simplifies the process of aggre-

gation according to the order of creation of new pictures; 

each is automatically appended to the sequence. 

-260-



(3) The reaggregation of data items: 

Ordering aggregate elements by their instants of 

creation may later prove unsatisfactory. Sorting routines 

can easily be written in the language. Because of its wide 

applicability, however, one automatic sorting capability is 

provided. If the elements of PIC.F are points, then the 

command "ORVER PIC.F by (±)X;" rearranges the points of 

PIC.F according to increasing (± )x coordinate. Any picture 

attribute defined on the elements of the aggregate can be the 

ordering criterion. 

next chapter.) 

(Picture attributes are discussed in the 

(4) The access or retrieval of a datum from an aggregate: 

The mechanism for accessing individual elements of an 

aggregate is called a selector. Examples of selectors are: 

FIRST, SECONV, THIRV, 6TH, kTH, LAST, THIS, NEXT, PREVIOUS, 

THIRV AFTERTHIS, 6TH BEFORETHIS, and kTH FROMLAST. These 

constructs include the usual accessing mechanisms of arrays 

and rings. The scalar "k", when evaluated in one of these 

selector expressions, is rounded to the nearest integer. 

Each aggregate, whether explicitly named or not, has an 

implicit pointer, which implements the 'CURRENT' mechanism 

of dataless programming. Relative selectors such as THIS 

and NEXT are interpreted with respect to this pointer. Upon 

creation of an aggregate, it points to the first element; it 

may also be explicitly assigned by a statement such as 

-261-



"BEGINAT LAST on PIC.G;" or "BEGINAT PT.A iVl PIC.G;". Still 

undecided in the language's design ls the choice of conventions 

and commands to aid the user's control of the movement of the 

implicit pointer. (When scanning the aggregate PIC.G, one 

would want the reference " ... NEXT ot) PIC.G ... " to move the 

pointer of PIC.G to the right, but in other circumstances 

such automatic movement would be unfortunate.) Explicit 

pointers, or bugs, may be simulated by the use of scalar 

variables as selectors, although inclusion of the 'GENERATOR' 

concept of dataless programming would be more elegant. 

Hierarchic accessing paths are achieved by cascading 

selectors. " ... FIRST o 6 kTH 06 PIC. G ... 11 retrieves the first 

element of the kth element of PIC.G. If implementation is 

not too difficult, varieties of syntactic sugar would be par-

ticularly helpfuJ here. Preferable to the bulky "SECOND 

FROMLAST oS kTH AFTER.THIS ot) alphaTH ot) PIC.G" would be 

"PIC.G (alpha, k AFTERTHIS, SECONV FROMLAST)". (*6) 

(5) Iterative data access or retrieval: 

Much of the processing of complex pictures can be 

expressed in terms of operations iterated over elements of 

an aggregate. Typical iterative commands are: 

FOR i=O STEP l UNTIL i>lO VO NEWPT PT.Oat -l.0+(0.2)x(i),O.O; 

FOR i=j STEP k VO PART 11; 

FOREACH PT.O iVl PIC.H FROM PT.A THROUGH THIRDFROMLAST VO #.211; 

FOREACH xx in -PATHA UNTIL #(xxEPAT!!A)=lO VO -xx~xx; 

-262-



The first statement places a string of 11 equally spaced 

points along the horizontal axis of the current pictorial 

context. The second statement, which has no termination con-

dition, loops if PART 11 contains no reference to simulated 

time; otherwise, it continues executing as long as the clock 

of movie time is running. The third statement causes the 

execution of #.211 on successive elements of PIC.H, beginning 

with that which is also named PT.A, and ending with the third 

from the last element. The fourth statement negates the 

values of all but the first ten scalars in PATHA, scanning 

PATHA from the last element towards the first. 

(6) The analysis of aggregate structure: 

The ability to interrogate the system about the aggregate 

aids the accessing of a dynamically changing structure. The 

primitive function "SIZE 06 ••• 11
, when applied to an aggregate, 

yields a scalar whose value is the number of elements of the 

aggregate. The functions "IF PIC.I {ISNIL/ISATOMIC/ISUNARY 

/ISMULTIPLE}. • • "test, respectively, if PIC.I is empty, is a 

pictorial primitive, is an aggregate with one element, or is 

an aggregate with many elements. "IF PIC.IEPIC.J ... "tests 

if PIC.I is an element of PIC.J. If this is true, then 

"#(PIC.IEPIC.J) ... "yields the ordinal position of PIC.I in 

PIC.J. "IF ATSTART PIC.I. .. "and "IF ATENV PIC.I. .. " test 

if PIC.I's implicit pointer is at the first or last element 

of the aggregate. If PIC.J is an aggregate containing one 



element only, then " ... +PIC.J ... " yields that element. In 

any case, " •.• +PIC.J ... " is a pictorial aggregate whose only 

element is PIC.J. 

(7) The assignment of names to values: 

Consider the problem of recording and updating a property 

of a dynamically changing pictorial aggregate. For example, 

the use of a picture called a waveform aids the editing of a 

path description, as we have seen in Chapter I.C. Imagine 

that the user requires in the pictorial data base a record of 

which picture point is the absolute maximum of the waveform 

WA VEA. Available is an attribute MAXIMUMY, a function which 

takes a pictorial aggregate as an argument and returns the 

desired point as the value. "MAXIMUMY 06 WAVEA .•• " is to 

yield PT.MAX. But what does "yielding PT.MAX" mean? What 

is assigned the name PT.MAX? 

One interpretation is that the desired point is to be 

identified, a copy made, and the copy preserved under the 

name 'PT.MAX'. This is not suitable, however, if the waveform 

is later resketched. A second interpretation is that the 

name 'PT.MAX' is bound to the maximum element of WAVEA. This 

is acceptable if resketching changes the value but not the 

ordinal location of the maximum element. It breaks down, 

however, if the new waveform shape shifts the location of 

the maximum. A third interpretation, suitable also for this 

case, is that the name 'PT.MAX'' is bound to the picture 

-264-



expression "MAXIMUMY of, WAVEA", in the sense that future 

references to PT.MAX result in a recomputation of "MAXIMUMY 

On WAVEA". (*7) 

All three interpretations should be included in the 

language. Hence "3+x;" results in the creation of a new 

scalar 3 assigned the name 'x'. "MAXIMUMY 06 WAVEA + PT.MAX;" 

identifies the desired element of WAVEA, copies it, and as-

signs to it the name PT.MAX. "SET x to y;" identifies the 

scalar named by y, and assigns it an additional name x. 

"SET PT.MAX to MAXIMUMY ot\ WAVEA;" identifies the desired 

element of WAVEA, and assigns it an additional name PT.MAX. 

If WAVEA were then deleted, its element named PT.MAX would 

still remain. "LET x be y+3;" means that future references 

to x will be evaluated as if "y+3" had been written. II LET 

PT.MAX be MAXIMUMY of, WAVEA;" means that future references 

to PT.MAX will be evaluated as if the picture expression had 

been written. 

Can one APPL expression be bound to another expression? 

We take "MAXIMUMY of, WAVEA + FIRST 06 P.PTSMAX;" to mean that 

the desired element of WAVEA is copied, and a reference to 

the copy is made the first element of the pictorial aggregate 

P.PTSMAX. We take "SET FIRST ofi P.PTSMAX to MAXIMUMY ofi 

WAVEA;" to mean that the reference, or pointer, to the element 

is copied and made the first element of P.PTSMAX. Because 

elements are references, such sharing of structures can be 

-265-



allo••AJ- :.s••n1•otarUT,1to~''.llfi'W ....... 'I~otso&U•q&i 

t~MLlH~ •,fftto4••Uea;.1 .. ,.,.llh__,..~.._f~nutt•U-

tied. 

bz '' 

; ·' '../ ·' 

-~ 

,f 
; 

' 
1 
;~ 

' 



II.D.3. AN ILLUSTRATION OF MODELING COMPLEX PICTURES 
BY PICTORIAL AGGREGATES 

This section presents a concrete illustration of the 

concept of modeling complex pictures by pictorial aggregates. 

The example is a process which implements part of a system 

for ''editing," that is interspersing fragments from several 

distinct pictorial sequences, or 'scenes'. Each scene con-

sists of a sequence of pictures, or frames. Suppose that 

these sequences themselves are included in a pictorial 

aggregate called S.SCENES. Suppose further that there is a 

pictorial aggregate called S.TAPES, each member of which is 

a picture consisting of a number of points equal to the 

number of frames in a corresponding sequence of S.SCENES. 

S.TAPES is a picture that portrays the quantity and length 

in frames of available scenes. Thus, if there are three 

scenes in S.SCENES, whose lengths are 20, 25, and 30 frames 

then there are three 'tapes' in S.TAPES, arranged in rows 

of 20, 25, and 30 points, respectively. 

-267-



The editing system is implemented by: 

VEFINE EDITINGSYSTEM; PROGRAM #la 

.11 SHOW S.TAPES; 

.12 SET PT.a to INPUT; 

.13 SET TAPE.a to t PT.a; 

.14 SET SCENE.a to #(TAPE.aES.TAPES)TH 06 S.SCENES; 

.15 SET FRAME.a to #(PT.aETAPE.a)TH 06 SCENE.a; 

.16 HIVE S.TAPES; 

.17 SHOW FRAME.a; 

.18 BEGINAT FRAME.a in SCENE.a; 

.19 WAITUNTIL BUTTON 4 OR BUTTON 5 OR BUTTON 6; 

.2a HIVE FRAME.a; 

.21 IF BUTTON 5 THEN VO PART 21; 
.211 SET FRAME.a to NEXT 06 SCENE.a; 
.212 GOTO #.17; 

.22 IF BUTTON 6 THEN VO PART 22; 
.221 SET FRAME.a to PREVIOUS 06 SCENE.a; 
.222 GOTO #.17; 

.23 IF TOG 4 THEN GOTO #.31; 

.24 IF TOG 5 THEN RETURN; 

.25 GOTO #.11; 

.31 PLAYBACK S.EDITEDSEQUENCE; 

.41 FOREACH PIC.a in SCENE.a FROM FRAME.a UNTIL BUTTON 7 
VO PART 41; 

.411 SET PTR.a to PIC.a; 

.412 PUT PTR.a into S.EDITEDSEQUENCE; 

.413 SHOW PTR.a; 

.414 PAUSE 60~ l; 

.415 HIVE PTR.a; 
.42 GOTO #.11; 

ENV 

The purpose of calling the system is to modify the 

edited sequence, the pictorial aggregate S.EDITEDSEQUENCE, 

which exists in some form prior to the call. The animator 

views the picture S.TAPES (#.11). To supply the input 

expected at #.12, he designates an element of one of the 

tapes with the stylus. (*8) The unique tape containing 

the designated point is identified at #.13. The scene cor-

responding to the tape is identified at #.14. #.15 isolates 

-268-



the frame whose position in the scene corresponds to the 

location of the point in the tape. This frame is displayed 

in place of the picture of the tapes (#.16-.17). The 

implicit pointer of the aggregate representing the current 

scene is set to point to the current frame (#.18). 

Now the animator is expected to respond again. He may 

step forwards along the scene, viewing each frame (#.21), 

or he may search backwards (#,22). He may recall the picture 

of the tapes and designate a new point on any one of them 

( #. 2 5). He may terminate the execution of the system (#.24). 

Finally, when he finds a suitable section, he can add it to 

S.EDITEDSEQUENCE (#.23). 

First, S.EDITEDSEQUENCE as now constituted is played 

back (#.31). Then pointers to successive elements of the 

current scene, beginning at the current frame (#.41), are 

inserted at the end of S.EDITEDSEQUENCE (#.412) and made 

visible for a brief interval of time (#.413-.415). This 

action is terminated by a button push (#.41), after which 

the picture of the tapes is again made visible (#.42). 

EV1T1NGSYSTEM as here defined is obviously not a com

plete editing system; at a minimum there must and can be 

added facilities for deleting frames from S.EDITEDSEQUENCE. 

-269-



II.D.4. ILLUSTRATIONS OF MODELING GLOBAL 
DYNAMIC DESCRIPTIONS BY SCALAR AGGREGATES 

Global dynamic descriptions may be modeled, or repre-

sented, directly by scalar aggregates. Thus the following 

program defines the sawtooth path description of II.A.4., 

Step 4: 
PROGRAM #11 

DEFINE FORMSAWTOOTH PATH o(\ height and period and length; 

.11 NEWAGG PATH; 

.21 FOR i=l STEP l UNTIL (i>period) o~ (SIZE 06 PATH 
= length) VO PUT (height x i/period) ~nto PATH; 

.22 IF SIZE o(\ PATH= length then RETURN; 

.23 GOTO #.21 

ENV 

The parameters of FORMSAWTOOTH ~e the name of the scalar 

aggregate representing the path description, the height of 

the teeth, the period of the teeth, and the total length of 

the path description to be computed. 

The process RECORVRHYTHM, defined by Program 8, illus-

trates the real-time formation of a dynamic description. 

Those instants of movie time at which the button is depressed 

are recorded as successive values of a scalar aggregate re-

presenting a rhythm description. 

Occasionally we have a pictorial representation of a 

path description, but require the description itself. For 

instance, execution of the process ACCEPTPCURVE, defined by 

Program 7, results in the formation of a parametric curve 

representing a pair of path descriptions. To extract the 

vertical coordinate variations from this curve, we need 

-270-



the following: 

VEFINE EXTRACTY YPATH 6~om P.PICTUREOFPATH; PROGRAM #12 

.11 NEWAGG YPATH; 

.12 FOREACH PT.O in P.PICTUREOFPATH VO PUT Y 06 PT.O 
into YPATH; 

ENV 

Y coordinates of successive points in P.PICTUREOFPATH become 

successive values of the resulting path description. The 

attribute "Y 06 ... " operates on a point and yields its y 

coordinate. The path description, once extracted from the 

picture, is represented by the scalar aggregate YPATH. The 

command EXTRACTY would also extract the a path description 

from its standard waveform representation. 

The final example is a procedure which transforms a 

time-independent selection description and a rhythm descrip-

tion consisting of a sequence of intervals into a time-based 

selection description. (Recall the definitions in I.C.6. ): 

VEFINE SPREAD SDl and RD into SD2; PROGRAM #13 

.11 NEWAGG SD2; 

.12 BEGINAT FIRST of RD; 

.13 FOREACH s in SDl VO PART 13; 
.131 FOR i=l STEP 1 UNTIL i > THIS 06 RD 

VO PUT s into SD2; 
.132 BEGINAT NEXT 06 RD; 

ENV 

-271-



II. D. 5. PICTURE-DRIVEN ANIMATION IN APPL 

In picture-driven animation, we recall, picture change 

is determined by simple algorithms operating upon collections 

of static images (eels) and collections of global dynamic 

descriptions. Commands in the language that cause picture 

change are called PICTORIAL OPERATIONS. Pictorial operations 

may be roughly distinguished as determining continuous 

alterations of value, which we call continuous pictorial 

operations, and as determining discrete alterations of pic

ture structure, which we call discrete pictorial operations. 

Individual picture changes, such as occur in the construc

tion of static images, can be produced by pictorial opera

tions with parameters that are scalars. Ongoing picture 

change, resulting in animated displays, can be produced by 

continuous pictorial operations whose parameters are suc

cessive elements of path descriptions (continuous movement 

descriptions) and by discrete pictorial operations whose 

parameters are successive elements of selection descriptions 

(discrete movement descriptions). 

Examples of continuous pictorial operations applied to 

points are: "REPLACE X 06 PT.A by X 06 PT.B; ALTER 8 06 PT.C 

by deltatheta; SCALEUP R 06 PT.D by expansionfactor;". The 

first command shifts the point PT.A horizontally and assigns 

it a new x coordinate identical to that of PT.B. The second 

command rotates PT.C around the origin by an angle 

-272-



deltatheta, The third command leaves the angle invariant, 

but multiplies the distance of PT.D from the origin by the 

scalar expansionfactor. The meaning of continuous operations 

when applied to pictorial aggregates will be discussed in 

the next chapter. 

Discrete pictorial operations include assignment state-

ments, HIVE and SHOW commands, picture generators such as 

NEWPT, and commands that alter aggregate structure, such 

as INSERT and REMOVE. Their meaning when applied to pictorial 

aggregates will also be discussed in the next chapter. 

Picture-driven animation may be implemented in APPL by 

passing eel classes, expressed as pictorial aggregates, and 

global dynamic descriptions, expressed as scalar aggregates, 

as parameters to pictorial operations. Recall, from I.A.3., 

the three critical commands given by the GENESYS animator in 

constructing the bouncing wedge of 'SPROINGBOINGZAP': 

FORMCEL 1 in th~ c!a-0-0 P,WEDGE; 
SKETCHPCURVE P.WEDGE; 
PLAYBACK; 

These commands are defined by the following extensions of 

APPL, assuming, to simplify the programs, that picture 

change is limited to the switching of eels as determined by 

selection descriptions, and to vertical translational motion 

as determined by path descriptions: 

-273-



VEFINE FORMCEL n in the cla~~ P.CLASS; PROGRAM #14 

.11 IF P.CLASSEP.CELCLASSES then GOTO #.21; 

.12 NEWPIX P.CLASS; 

.13 PUT P.CLASS into P.CELCLASSES; 

.21 NEWPIX P.CEL; 

.22 INSERT P.CEL a~ nTH 06 P.CLASS; 

.23 ACCEPTSKETCH P.CEL; 

ENV 

All eel classes are to be included in the pictorial aggregate 

P.CELCLASSES. Unless the class already exists (#.11), a new 

empty class is formed and put into the aggregate (#.12). 

Then a new eel is formed, appropriately inserted into the 

class (#.22), and finally sketched by the animator (#.23). 

(*9) 

VEFI NE 

.11 

. 12 

.21 

.22 

. 23 

ENV 

SKETCHPCURVE P.CLASS; 

NEWPIX P.PCURVE; 
ACCEPTPCURVE P.PCURVE; 
EXTRACTY YPATH 6~om P.PCURVE; 
#(P.CLASSEP.CELCLASSES) ~ n; 
INSERT YPATH a~ nTH 06 YPATHS; 

PROGRAM #15 

A parametric curve is initialized (#.11), then sketched in 

real time by the animator (#.12). (*10) The variations of 

the vertical coordinate with time are extracted to form a 

path description (#.21). (*11) The path description is in-

serted into a scalar aggregate YPATHS, whose elements are 

arranged to correspond to the eel classes in P.CELCLASSES 

(#.22-.23). 

-274-



And, finally: 

VEFINE PLAYBACK; 

.11 WAIT; 

.21 FOREACH P.CLASS ~n P.CELCLASSES VO PART 21; 
.211 #(P.CLASSEP.CELCLASSES) ~ n; 

PROGRAM #lb 

.212 MOVIETTMETH 06 nTH on SDESCRIPTIONS ~ s; 

.213 MOVIETIMETH 06 nTH 06 YPATHS ~ ylocation; 

. 22 

.23 

. 24 

ENV 

.214 SET P.VISIBLECEL ~o sTH 06 P.CLASS; 

.215 REPLACE Y 06 P.VISIBLECEL by ylocation; 

.216 SHOW P.VISIBLECEL; 
PAUSE 60'1. l; 
FOREACH P.CLASS ~n P.CELCLASSES VO PART 23; 

.231 #(P.CLASSEP,CELCLASSES) ~ n; 

.232 (MOVTETIME-l)TH o& nTH 06 SDESCRIPTIONS 

.233 HIVE sTH on P.CLASS; 
GOTO #.21; 

Corresponding to each class is also a selection description 

contained in the scalar aggregate SDESCRIPTIONS. At each 

-+ s ; 

instant of movie time, elements of the selection description 

(#.212) and of the path description (#.213) associated with 

each eel class are retrieved. The element of each selection 

description chooses a eel from the corresponding class (#.214). 

Before being displayed (#.216), its center is translated by 

the element of the corresponding path description (#.215). 

At the next instant of movie time, the currently visible 

eels are first removed (#.23), before the image for that 

frame is constructed (#.24). 

-275-



FOOTNOTES -- II.D. 

(*l) References 76 and 77 survey a variety of data struc
tures and languages for their manipulation. 

(*2) Problems of implementation will be made severe by this 
generalization. 

(*3) We also do not introduce, although we may later incor
porate, something comparable to Balzer's nice canonical 
form for data and function references, whose purpose is 
to minimize the syntactic differences between expres
sions that retrieve and compute information: 

He (the user) may also 
information should not be 
reference on a collection 
be supplied by a function 
~~. 73ries of calculations 

decide that a piece of 
supplied by a data 
(aggregate), but should 
through a calculation 
on other information. 

(*4) What should happen if the datum already belongs to the 
aggregate is an open question. We favor considering 
it an error. Thus there can be no aggregate (PT.A PT.A), 
although PIC.D = (PT,A PT.B (PT.A PT.C)) is legal. 

(*5) To preserve the simplicity of the core language, the 
CONTEXT mechanisms should not be included in it, but 
rather be implemented via definitional extension of 
APPL. 

(*6) See pp.7-8 of Reference 79 for a discussion of the 
syntactic sugar of accessing paths. 

( *7) 

( *8) 

( *9) 

( *l 0) 

(*11) 

The three interpretations correspond to the concepts of 
"call by value," "call by reference," and "call by 
name," respectively. 

In principle, he could also type a name for the point, 
or write an abbreviation of its name to a character 
recognizer. 

Recall the definition of ACCEPTSKETCH in Program 4. 

Recall the definition of ACCEPTPCURVE in Program 7. 

Recall the definition of EXTRACTY in Program 12, 

-276-



;jj;· 
J( t1rn 
~~ 
1~ 

;i-

e·--; ,:··;:-'fl;q L 

,_'-' 

--:: .•. 0 i~ -; ..• 



II.E.1. ATTRIBUTES AND PROPERTIES OF PICTURES 

The last chapter demonstrated that the ability to create 

and manipulate complex pictures is enhanced by organizing 

them into structures called aggregates. In this formalism 

the animator may express some intuitive concepts of picture 

description--the inclusion of one picture in another and its 

consequent removal, the ordering of a sequence of pictures 

and the accessing of such elements as the first, last, and 

next of the sequence, and the establishment of a hierarchy 

of embedded pictures. Many intuitive concepts of picture 

description, however, may not be expressed gracefully with 

these mechanisms--the "type," or classification, to which 

a picture belongs, its location, orientation, or size, its 

visibility or invisibility, and the distance between it and 

another picture, The purpose of this chapter is to augment 

the formalism so that the animator may extend and enrich the 

picture description capability of his language. (*l) 

The Meaning of Attributes and Properties 

The major new concepts are the attributes and properties 

of pictures. An ATTRIBUTE is a function defined on a picture, 

one that yields a single value which may be a scalar, scalar 

aggregate, or another picture. (*2) The value of an attri-

bute of a picture is called a PROPERTY. Properties may be 

retrieved as stored values, or computed from programs defining 

-278-



the meaning of attributes. Some attributes are primitive, 

that is, built-in, to the base system; others can be defined 

through language extension. 

There are, roughly speaking, three kinds of attributes: 

CONTINUOUS ATTRIBUTES, which are mappings from pictures to 

real numbers (scalars), or sequences of real numbers (path 

descriptions represented by scalar aggregates), DISCRETE 

ATTRIBUTES, which are mappings from pictures to integers 

(scalars) or sequences of integers (selection descriptions 

represented by scalar aggregates), and RELATIONAL ATTRIBUTES, 

which are mappings, that is, relations or associations from 

pictures to other pictures. Each kind will be illustrated 

by a reasonable choice of primitive attributes for a simple 

base system whose only pictorial primitives are points. 

Continuous attributes express, roughly speaking, the 

precise geometrical and textural determinants and qualities 

of a picture. Built-in to the base system are attributes 

of (intensity), X and Y (rectangular), and Rand~ (polar) 

coordinates of points. Thus "X ofi PT.A", if PT.A is a 

point, yields a scalar whose value is the x coordinate of 

PT.A. The system also guarantees that the continuous pie-

torial operations introduced in II.D.5. correctly set the 

values of these continuous attributes of points. For in-

stance, both "ALTER I ofi PT.A by I ofi PT.A;" and "SCALEUP 

ofi PT.A by 2;" result in a doubling of the intensity of PT.A. 

As we shall discuss below, geometrical coordinates of each 

-279-



point are measured relative to the position of another point; 

this is controlled by the primitive relational attribute 

"ORIGIN on ... ". 
Examples of continuous attributes that may be defined 

by language extension are the "SIZE 06" a picture, the 

"VISTANCE between" two pictures, the "AREA ln~lde" an enclos

ing figure, and the "VENSITYOFPOINTS wlthln" a region. 

The base system contains no continuous attributes defined 

on pictorial aggregates, for there appears to be no single 

interpretation acceptable for all applications. Consider, 

for example, the concept of the x coordinate, or horizontal 

position, of a picture composed of a number of points. The 

most reasonable interpretation of its location is the x co-

ordinate of the center of gravity of the figure. Another 

user, however, might wish to consider the intensities in the 

calculation, for example, by computing the "center of mass." 

Still another may prefer, in the case of a triangle, the x 

coordinate of that vertex whose horizontal position is be-

tween that of the other two. Extensions of the meaning of 

existent continuous attributes, and the introduction of 

new ones are discussed in Section II.E.3. 

Discrete attributes express, roughly speaking, classifi

cations of pictures into differing categories of structure, 

for example, primitive or aggregate, and "type'', for example, 

point, rectangle, s~uare. Discrete attributes also represent 

classifications of pictures into conceptually discrete 

-280-



abstractions of their properties, for example, growing, 

shrinking, or remaining constant in size, or outside of, 

inside of, or overlapping a particular closed figure. There 

are three primitive discrete attributes: STRUCTURE, TYPE, 

and VISIBILITY. The corresponding primitive properties and 

their interpretations are given by the following rules: 

STRUCTURE 06 PIC.TURE 

TYPE ofi PIC.TURE 

VISIBILITY ofi PIC,TURE 

ATOMIC 

NIL 

UNARY 

MULTIPLE 

POINT 
AGGREGATE 

VISIBLE 
HIVVEN 

iff PIC.TURE is a 
pictorial primitive 
iff PIC.TURE is a 
pictorial aggregate 
that is empty 
iff PIC.TURE is an 
aggregate containing 
only one element 
iff PIC.TURE is an 
aggregate containing 
more than one element 
iff PIC.TURE is a point 
iff PIC.TURE is an 
aggregate not also charac
terized by another 
defined type 
iff PIC.TURE is visible 
iff PIC.TURE is invisible 

The following abbreviations may be used: 

STRUCTURE 06 PIC.TURE ATOMIC => PIC.TURE ISATOMIC 
NIL = PIC.TURE ISNIL 
UNARY = PIC.TURE IS UNARY 
MULTIPLE = PIC.TURE ISMULTIPLE 

TYPE 06 PIC.TURE POINT = PIC.TURE IS POINT 
AGGREGATE= PIC.TURE ISAGGREGATE 

VISIBILITY 06 PIC.TURE = VISIBLE = PIC.TURE IS VISIBLE 
HIVVEN = PIC.TURE ISHIVVEN 

The interpretation of the discrete attributes STRUCTURE 

and TYPE will be developed in great detail in the next section. 

-281-



Obviously they are defined on pictorial aggregates as well 

as on primitives. A point is VISIBLE when created, HIVVEN 

after being used as the argument of a HIVE command, and 

VISIBLE once more after being used as the argument of a 

SHOW command. Because there is no single "best" interpreta-

tion of the VISIBILITY of a pictorial aggregate, its meaning 

must be defined by language extension. Extensions of the 

meaning of existent discrete attributes, and the introduc

tion of new ones are discussed in II.E.3. 

Relational attributes express, roughly speaking, asso

ciations between a picture and another picture or aggregate of 

pictures. The only primitive relational attribute is "ORIGIN 

on ... ". Execution of the command "SETORIGIN PT.A;" implies 

that PT.A will from then on be the origin of all newly created 

points. The command "MEASURE PT.B Jr.e.i'.at-lve to PT.A;" causes 

the coordinates of PT.B and all points whose coordinates 

depend upon PT.B to be recomputed relative to PT.A. Exe cu-

tion of "NOORIGIN;" determines that, from that time on, all 

coordinates of new points are measured relative to the system 

origin, an invisible, unmoveable point named SYSTEMORIGIN. 

Some useful relational attributes that could be defined 

by language extension are the "HYPOTENUSE 06" a triangle, the 

"CENTER on" a circle, and the "MAXIMUMY on" a waveform, that 

is, its absolute maximum. 

One major role of attributes is enabling the implicit 

specification of all those elements in a picture possessing 

-282-



certain properties. The implementing mechanism is called a 

picture selection function, and it may be used wherever a 

picture is expected. Two typical examples, in a hypothetical 

extended version of APPL, are" .. . ALL THOSE TRI.O in P.TRIANGLES 

auchthat AREA 06 TRI.0<9 ... ", and ''ALLTHOSE PIC.O in PIC.TURE 

SUCHTHAT PIC.O ISMULTIPLE ANV ORIGIN 06 FIRST 06 PIC.0; 

SYSTEMORIGIN ... ". Application of a picture selection function 

upon a pictorial aggregate yields a new aggregate consisting 

of all those elements from the original aggregate which 

satisfy the given criterion. The elements are ordered in the 

new aggregate as they were originally. The result may, of 

course, be nil, unary, or multiple. Execution of the state-

ment "ALLTHOSE PIC.O in PIC.TURE auchthat PIC.O ISTRIANGLE ~ 

P.TRIANGLES;" causes copies of all the triangles in PIC.TURE 

to be made and included in a new aggregate P.TRIANGLES. 

(This assumes that TRIANGLE has been defined as a new picture 

TYPE, that is, a new value of the attribute TYPE.) Upon exe

cution of "SET P.TRIANGLES to ALLTHOSE PIC.O in PIC.TURE 

auchthat PIC.0 ISTRTANGLE;", a new aggregate, containing all 

of the triangles that exist in PIC,TURE, is formed and called 

P,TRIANGLES. (Here, as in II.D.2., the references to the 

triangles are copied, and not the triangles themselves.) 

"FOREACH PIC.O in PIC.TURE WHTLE PIC.O TSTRIANGLE VO PART 11;" 

may be used if elements of the implicitly defined aggregate 

are to be accessed but no new aggregate is to be formed. 

-283-



This statement causes PART 11 to be executed on each tri

angle in PIC.TURE. 

How Attributes are Evaluated 

Properties, as we remarked at the beginning of this 

section, are sometimes obtained by retrieval of stored 

values, other times by computation. If the meaning of an 

attribute operating upon a particular class of picture is 

built-in to the base system, then the mechanism of obtaining 

the property is totally under APPL's control. Therefore, 

associated with each point is a data block containing the 

X, Y, R, &, I, ORIGIN, STRUCTURE, TYPE, and VISIBILITY co-

ordinates of that point. Similarly, associated with each 

pictorial aggregate is a data block containing the STRUCTURE 

and TYPE of that aggregate. The system assumes responsi

bility for maintaining correct values for each of these 

properties, For example, if the command "ALTER R 06 PT.A 

by 2.0;" is executed, then the values of X 06 PT.A and Y 06 

PT.A are automatically updated as well. (*3) 

If the attribute is defined by extension, or if its 

meaning upon a particular class of picture is defined by 

extension, then the property is usually obtained by executing 

the program which implements the language extension. For the 

sake of efficiency, however, the user should have the ability 

to request explicitly that a property be stored and until 

-284-



further notice retrieved rather than recomputed. The aspect 

of APPL which allows a user to make these requests depends 

strongly on the implementation and on APPL operating proce-

dures, and hence is not yet well defined. In III.B., how-

ever, we shall briefly discuss the problems raised. 

How Properties are Assigned 

Some properties can be assigned directly by pictorial 

operations. The meaning of "setting a value of a pictorial 

attribute" depends upon whether the attribute is continuous, 

discrete, or relational, whether it is built-in or has been 

introduced by definitional extension, and whether the pic

ture's type is primitive or has been defined by a language 

extension. Furnishing APPL with single commands that in 

each case assign properties is a difficult problem, one which 

is related to the issue of "constraint satisfaction." (*4) 

We begin our discussion here, and continue it in the next 

two sections. 

Consider the following four superficially similar 

statements: "REPLACE X 06 PT.A by 0.5; REPLACE VISTANCEFROMWALL 

06 PT.A by 0.5; REPLACE X 06 TRIANGLE.A by 0.5; REPLACE AREA 

0£ TRIANGLE.A by 0.5; 11
• The first statement is meaningful in 

the base system, for it refers to a primitive attribute of a 

primitive picture type. In order that the second statement 

be meaningful, the user must have defined by extension both 

the attribute VISTANCEFROMWALL and the continuous pictorial 

-285-



operation which sets it to a particular value. The former 

definition involves subtracting the x coordinate of PT.A from 

the x coordinate of 'the wall'; the latter definition in

volves a recalculation of the X, R, and 9 coordinates cf 

PT.A. so that it be located the appropriate distance from 

the wall. Interpretation of the third command requires 

extension of the meaning of the attribute X to apply to all 

'triangles', assuming that TRIANGLE has been defined as a 

new picture TYPE. The fourth statement is similar, requir-

ing definition of a totally new attribute. 

Prerequisite to understanding how these definitions are 

made is a better conception of the meaning of the discrete 

attributes STRUCTURE and TYPE. That discussion, to which we 

now turn, also contains an initial example cf the extension 

of meaning of an attribute, that is, the introduction of new 

values of TYPE. 

-286-



II.E.2. THE DEFINITION OF NEW PICTURE TYPES 

We begin by clarifying the distinction between STRUCTURE 

and TYPE. The tests for values of STRUCTURE, "IF PIC.A 

1SATOMIC ... ", or " ... ISNIL ... ", or " ... ISUNARY ... ", or" 

ISMULTIPLE ••• " can be used to ascertain the current "struc-

tural state" of a changing picture. One may question, for 

example, if the aggregate formed by a picture selection 

function contains no elements, a unique element, or many 

elements satisfying the desired criterion. The same tests 

can be used in exploring a complex hierarchic aggregate, such 

as one representing a picture of a maze or a network. 

The function of the TYPE attribute is to distinguish 

classes of pictures which possess individual characteristic 

features, and specialized techniques for their construction, 

decomposition, and manipulation. The concept of picture 

"type" is one to which we are accustomed and which we find 

natural--we think of 'triangles' as differing from 'rectangles', 

and of an 'isosceles triangle' as a special type of triangle. 

Searches or other iterative operations may conveniently be 

limited by indicating the type of picture to which the search 

should be restricted, e.g., " ... ALLTHOSE PIC.O ,ln PIC.TURE 

-l>uc.h;tha.;t PIC.O ISTRIANGLE ••• ", or, expressed in abbreviated 

form, " ..• ALLTHOSE TRIANGLE.O in PIC.TURE ... ". Attributes 

assume different meanings when applied to pictures of differ

ent type, e.g., the "AREA otl" a circle is defined by one 

-287-



computation algorithm, the "AREA 06" a triangle by another. 

Pictorial operations, when applied to two pictures of dif-

ferent type, may similarly require two unique interpretations. 

Consider, for example, an algorithm that shades (fills with 

some texture) a square, and another that shades an arbitrary 

closed figure which may include both convex and concave 

portions. 

To make usable a new picture class that is defined in 

terms of primitive types, the extended language must contain 

mechanisms for constructing members of the new class from 

suitable components, mechanisms for selecting distinguished 

components, that is, decomposing a picture of the new class, 

and mechanisms for testing if an arbitrary picture belongs 

to the new class. Landin
83 

has called these mechanisms 

constructors, selectors, and predicates, respectively. 

Standish,
84 

significantly advancing the work of Landin and 

others, then presented 

... a method for defining and manipulating several 
varieties of data structures. This method consists of 
embedding a descriptive notation for data structures 
within a programming language in such a way that the 
resulting language behaves as a synthetic tool for de
scribing and constructing data and programs in a 
variety of application areas. 

In order that 

•.• we can organize our transactions with computers 
to achieve multiplication of effect without multiplica
tion of effort ... , 

Standish proposed the goal that 

-288-



... This definition facility should permit the 
programmer to describe with ease the data structures 
that are critical to a task and to formulate with 
ease the operations over these data structures that 
are necessary for describing the processes he intends 
to carry out. (*5) 

Standish's method, presented in a comprehensive and convinc-

ing dissertation, seems to achieve this goal, for when the 

user defines a new data structure [a new picture TYPE, in 

our formalism], the system automatically provides the asso-

ciated constructors, selectors, and predicates, (*6) Further-

more, it is precisely these constructors, selectors, and 

predicates which are used in formulating operations over the 

new structures. Thus the power of the method stems from 

economy of specification, that is, what the user obtains 

automatically when he makes a single picture type definition. 

To illustrate the flavor of Standish's approach applied 

to the definition of a new class of pictures and expressed 

in our notation, we shall discuss one possible definition of 

a TYPE called LINE. The definition depends upon a choice of 

aspects of 'LINEness' that must be present if an aggregate 

of points is to be called a straight line. Suppose that a 

straight line must contain a distinguished start point and 

end point, and that all its constituent points must be collinear. 

Furthermore, it should be legal to define a straight line by 

specifying all its constituent points, in which case the system 

merely checks them for collinearity and records the TYPE in 

the aggregate's data block. It should also be legal to 

-289-



specify only the start point and the end point, in which case 

the system will compute, according to some algorithm, an 

evenly spaced sequence of intermediate points. To achieve 

these results, the following procedure may be used: 

VEFINEATTRIBUTE TYPE 06 PIC.TURE tobe LINE; PROGRAM #17 

.11 PIXSTRUCTURE ((STARTPT:POINT)(ANYxPOINT)(ENDPT:POINT)) 

.21 TRANSFORMEVBY 

.22 IF SECONV ISNIL THEN VO PART 22; 

.221 SET SECONV to CONNECTION 06 STARTPT a~d ENVPT; 

.222 RETURN; 

.23 IF PIC.TURE ISNOTCOLLINEAR the~ ERROR; 

.24 RETURN; 

.31 SUCHTHAT 

.32 PIC.TURE ISCOLLINEAR; 
ENV 

The introductory statement of Program 17 indicates that 

LINE is to be the 'name' of a new picture type. Its basic 

structure is expressed by #.11, which is what Standish
84 

calls an elementary descriptor and Cheatham, et a1, 71 call 

a mode descriptor. The first and third elemen~ are to be 

aggregates containing single elements, the start point and 

end point, respectively. The second element is to contain 

all other points in the line; ANY indicates that there may be 

arbitrarily many of these. The term •POINT• represents any 

picture whose TYPE is POINT. 

#.21-24 constitute what Standish calls a constructor 

modifier, This is a description of operations to be carried 

out upon an aggregate, provided that its format corresponds 

-290-



to the structural pattern of the elementary descriptor, in 

order to transform it into a LINE. There is first a test 

(#.22) if only the start point and the end point have been 

input; if this is the case, the system constructs the desired 

sequence of evenly spaced points intermediate to the pair by 

calling a relational attribute "CONNECTION ot)" (#.221). The 

four occurrences of the selectors SECONV, STARTPT, and ENVPT 

are assumed to apply to the straight line under construction, 

that is, "SECONV" is an abbreviation for "SECONV on PIC.TURE;". 

(STARTPT and ENVPT have been defined as selectors by their 

appearance in #.11.) If more than two points have been input 

in the appropriate format, then the system checks them for 

collinearity before designating the TYPE of the aggregate to 

be LINE (#.23). COLLINEAR is a predicate or picture state 

(see the next section), which is either true or false in 

describing a particular picture. Its definition, another kind 

of language extension, guarantees that" ..• PIC.TURE 

ISCOLLINEAR ••• ", " ••• PIC.TURE ISNOTCOLLINEAR ••• ", " ••• PIC.TURE 

ARECOLLINEAR ••• ", and " ... PIC.TURE ARENOTCOLLINEAR ••• " have 

the obvious meanings. 

#.31-32 constitute what Standish calls a predicate 

modifier. This is a description of tests to be carried out 

upon an aggregate, provided that its format corresponds to 

that of the elementary descriptor, to determine if it can be 

considered a LINE. Thus, in order for an arbitrary picture 

-291-



to have the TYPE LINE, it must not only satisfy the struc

tural pattern of #.11 but also the condition of #.32. 

This program functions as a declaration which results 

in an immediate augmenting of the system to include a con

structor NEWLINE, two selectors "STARTPT 06" and "ENVPT ofi'', 

and a predicate, "IS LINE". Their meanings can best be de-

duced from a series of examples: 

(1) "NEWLINE LINE.A nil.om ((PT.A)(PT.B PT.C)(PT.D));" 

results in the formation of a pictorial aggregate named 

LINE.A, whose TYPE is LINE, if the points PT.A, PT.B, PT.C, 

and PT.D are collinear; otherwise, it produces an error. 

(2) "NEWLINE LINE.A nil.Om (PT.A PT.B PT.C PT.D);" results 

in a format error. 

(3) "NEWLINE LINE.A nil.om ((PT.A)(PT.D));" results in 

the formation of a new line with a computed sequence of 

points intermediate to PT.A and PT.D. 

( 4) The selector "STARTPT 06 •.• ", when applied to a 

picture of TYPE LINE, yields its start point, that is, the 

point contained in the aggregate's first element. 

(5) The selector "ENVPT 06 ... " functions similarly. 

(6) Assuming that (1) has been successfully executed, 

" ... ((PT.A)(PT.C PT.B)(PT.D)) ISLINE ••• " is true. 

the order of the points to that in (1).) 

(Compare 

(7) However, " ... (PT.A PT.B PT.C PT.D) ISLINE ••• " is 

false. 

-292-



In the example, the system uses the pictorial format, 

or elementary descriptor, and the constructor modifier to 

form a constructor, the pictorial format to form two selec-

tors, and the pictorial format and the predicate modifier to 

form a predicate, Thus the formalism simplifies the intro-

duction of new structures through the definition of construe-

tors, selectors, and predicates by 

(1) providing a compact format in which all three can 
be expressed; and, 

(2) isolating that part of the specification, the 
elementary descriptor, which is used in forming 
all three. 

We still have much to learn about mechanisms for defin-

ing picture types. 

Currently, because of the strange format for lines which 

was adopted for the purposes of this section, the command 

"NEWLINE LINE.A £1tom (PT.A PT.D);" generates a format error. 

With some measure of the similarity of one structural pattern 

to another, an intelligent system could perhaps guess what 

was intended. Alternatively, we can go beyond Standish's 

development and assume that the system attempts to execute 

the constructor modifier even if it registers a format error 

in matching the input data to the elementary descriptor. 

Then, we add the following "patch" to Program 17: 

-293-



. 211 

. 2111 

.2112 

. 2113 

IF FIRST ISATOMIC AND SECOND ISATOMIC AND THIRD ISNIL 
THEN VO PART 211; 

SET FIRST to t FIRST; 
SET THIRD to t SECOND; 
TAKE SECOND 6nom PIC.TURE; 

#.211-.2113 will 11 fix up" the input aggregate so that 

its form is correct. By the time #.22 is reached, the picture 

will have been transformed to ((PT.A)(PT.D)). 

Further generalizations are needed. With obvious syn-

tactic conventions, "NEWLINE LINE.A 6nom PT.A to PT.E;" 

would be correctly interpreted. More difficult to achieve, 

however, is "NEWLINE LINE.A 6nom 0,0,0.0 to 0.1,0.l;", for 

the system requires a mechanism for automatically transform-

ing properties into points. Even more difficult is "NEWLINE 

LINE.A 6nom PT.A don 0.5 at +120°;", which should generate 

a point at 0.5 unit distance from PT.A, in the direction 

+120°, and then construct a line between them. This latter 

example illustrates the problem of constraints. We still 

lack a good formalism with which to specify pictures (e.g., 

straight lines) "implicitly," or "non-procedurally," and a 

corresponding mechanism which can operate upon such a spe-

cification and a collection of pictorial data to transform 

it into a line, that is, to cause the pictorial data to 

satisfy the constraints of LINEness. Stated somewhat dif-

ferently, the problem is that of finding a meta-language 

for specifying classes of picture structure by what are 

commonly called nicture grammars, and a processor which, 

-294-



liTen •"i~fto.r ._::·U•*•"'·ef'c~t(e~~~~igblt.:~.:cr 
alllCITA.U'lO lF,,A 

lines) and a particular caa4i4a~e for Ltaaa .... can determine 

11'1l.e't~:the . ...c1.-..r-..e OC'Ji~M* ~tt..la'*'8i•'te 

att«-a~.f'~'T*" ~ ris 'cl·, ~ C'-0~~-·1'9c~ 
' 

-..:,.1 _:,. '•'• ,j.;;,.,.· 

- ;-



II.E.3. AUXILIARY DEFINITIONS OF PICTORIAL ATTRIBUTES 
AND OPERATIONS 

We are now ready to pick up some loose ends. Specifi-

cally, we shall introduce methods by which the language can 

be extended to include: 

(1) new commands, such as pictorial operations; 

(2) new attributes, continuous, discrete, and re-

lational; and, 

(3) new picture states, or predicates. 

The name of the command, attribute, or state being defined 

may "clash with,'' or be identical to, that of an existent 

command, attribute, or state. The new program is then said 

to constitute an auxiliary, or augmenting definition of the 

existent entity. As auxiliary definition would typically 

be made to refine the interpretation of the entity so that 

it pertains to a new picture TYPE. A family of augmenting 

definitions of a single attribute or operation, identified 

by a unique name, is called a "procedure" in GPL 85 and a 

"generic procedure" in BASEL (ELF). 71 Our concept of aug-

menting definitions parallels that found in papers on these 

two "extensible languages." 

Auxiliary Definitions of Pictorial Operations 

We have already discussed, in II.B., the definition of 

new commands, and we further assume that the system contains 

editing mechanisms with which the user can alter the definition 

-296-



of an existing procedure or process. Under some circum-

stances, however, adding an auxiliary definition is simpler 

than modifying an existent one. Consider, for example, the 

continuous operation of shifting a picture horizontally. 

The command "ALTER X 06 PT.A by 0.2;" is meaningful in the 

base language, However, "ALTER X 06 LINE.A by 0.2; 11 is 

undefined. The most reasonable interpretation would be 

expressed by the following extension: 

VEFINE ALTER X 06 LINE.O by deltax; 

.11 ALTER X 06 STARTPT 06 LINE.O by deltax; 

.12 ALTER X 06 ENVPT 06 LINE.O by deltax; 

.13 FOREACH PT.O i~ SECONV 06 LINE.a VO 
ALTER X 06 PT.O by deltax; 

ENV 

PROGRAM #18 

If "ALTER X 06 LINE.A by 0,2;" is encountered after this 

definition is made, the system first checks the new program 

to see if it can be applied, Since the TYPE of LINE.A is 

LINE, the system descends through its aggregate structure, 

retrieving in turn each point, and calling ALTER with the 

point as an argument. Now the parameter types of the new 

definition and of the call do not match, and the system 

successfully applied the initial, primitive definition. 

Thus, "shifting a line" is defined in terms of the shifting 

of its constituent points. 

This program, however, is applicable only to straight 

lines. If the shifting of any pictorial aggregate can be 

-297-



defined recursively in terms of the shifting of all its 

constituent elements, the following program implements the 

operation of shifting any picture: 

VEFTNE ALTER X 06 PIC.TURE by deltax; PROGRAM #l9 

.ll FOREACH PIC.O ~n PIC.TURE VO ALTER X 06 PIC.O by deltax; 

ENV 

When an atomic picture is passed to this procedure as an 

argument, or is encountered in descending through a struc-

ture, the system cannot execute #.ll, and so attempts instead 

to use the first definition. 

One advantage of the formalism is that it allows the 

user to provide non-standard interpretations of such opera-

tions. Suppose, for example, that shifting a straight line 

horizontally by an amount 1 deltax' is to mean that the right-

most point be shifted deltax, the left-most point remain 

glued in place, and the intermediate points follow the moving 

one as if on a rubber band. Assuming that the "STARTPT 06" 

and the "ENVPT 06" the line are the outermost points geome-

trically, the task may be accomplished by: 

VE FINE ALTER X 06 LINE.Oby deltax; PROGRAM #20 

.ll IF X 06 STARTPT 06 LINE.O x 06 ENVPT 06 LINE.O 
THEN RETURN; 

.l2 IF X 06 STARTPT 06 LINE.O > x 06 ENVPT 06 LINE.O 
THEN ALTER X 06 STARTPT 06 LINE.O ELSE ALTER X 06 
ENVPT 06 LINE.O; 

.l3 TAKE SECONV 06 LINE,O 6~om LINE.O; 

.l4 NEWLINE LINE.O 6~om LINE.O; 

ENV 

-298-



The program recomputes the location of the moving point 

(#.12), drops the existent set of intermediate points (#.13), 

and calls the constructor of straight lines to provide a new 

set (#.14). 

Examples of pictorial operations that directly set the 

values of primitive relational and discrete attributes are 

"MEASURE PT.A Jte.f.a.t,lveto PT.B;" and "SHOW PIC.TURE;". The 

former routines has at least one side-effect--a recalculation 

of the X, Y, R, and g values of PT.A. Although the meaning 

of "SHOW PT.A;" is unambiguous, "SHOW PIC.TURE;", if PIC.TURE 

is of arbitrary structure, could have several meanings. 

Perhaps for one application all constituent points should 

be made visible, whereas, for another, only a particular 

subset of distinguished points should be shown. Hence the 

meaning of "SHOW ... " must be refined through language exten-

sion. 

Definitions of Attributes and Properties 

The problems and solutions in this domain are much the 

same as those discussed above, The attribute X, when applied 

to a straight line, could be defined by the following: 

VEFINEATTRIBUTE X 06 LINE.O; 

.11 RETURN ((X 06 STARTPT 06 LINE.O) 
+ (X 06 ENVPT 06 LINE.0))/2; 

ENV 

-299-

PROGRAM #21 



If we adopt the convention that the x coordinate of any 

aggregate is the x coordinate of the first point encountered 

in descending recursively through the first element of the 

aggregate, then the following suffices to define the meaning 

of "X 06" any picture: 

VEFINEATTRIBUTE X 06 PIC.TURE; 

.11 RETURN X 06 FIRST 06 PIC.TURE; 

ENV 

PROGRAM #22 

Totally new attributes may also be introduced, such as the 

following relational attribute: 

VEFINEATTRIBUTE MIDPOINT of LINE.O; PROGRAM #23 

.11 NEWPT PT.MID at X 06 LINE.O, Y 06 LINE.O; 

.12 SET PT.BEST to FIRST on SECONV 06 LINE.O; 

.13 FOREACH PT.O i~ SECONV on LINE.O VO 
IF VISTANCE 06 PT.Oto PT.MID< VISTANCE 06 PT.BEST 
to PT.MID THEN SET PT.BEST to PT.O; 

.14 RETURN PT.BEST; 

ENV 

This program returns that point included in the straight 

line aggregate that is closest to the geometrical midpoint 

of the line. It assumes that "X 06" and "Y 06" a straight 

line yield the coordinate values of the geometrical midpoint, 

as they would if defined as in Program 21. 

Definitions of Picture States 

We have seen that some new predicates are formed as 

by-products of type definitions. They can also be defined 

-300-



'DEFIMESTATE PJ;q.i. TOTHHlGHTOF P!C.2; PROGiWi #24 
~'h' 'ff JFo' flO~ f~9J.f'i.f.l"Pftfrf;tNlsa.J: ... ll#nffHeq.f'S ( !* ~ 
"" 'Etsf:tttftttJ ht,$@i '!J~.P ,,:•-: n'19!1-*q:--b.cu1 ailH9-.rn.-:.;i 
. ..:: .~ ' .. ~ "'I!:·~1 _: ·'') ., .;:r . ~} l _ t""t~.;. .. :: nci:.tcy.l:"!~ngf! jt~l.i 1:.>,, (; 

f:ijp "' . :.0 :: ,, .. ,:.7 '1~~31•.i ;',:;,, 'l:c• :.'·" 
r •1 ".-5;:''!.J.· ·." · l .~F: ft·-' .;::h :·~,::-1: ~ e"! 

'i./ -·. ::~ ' . 

~-, ' :0J~s0~qxa ~tit ~~i ~~~Ir~rti 

·.:~~~:~~'b 9 ~ E;tr;~m~~s ~A3J 

_ .. .:' . : i. t ·i ~:J : 'l; .t .i.i 'S 1 ·{i; ;;? r~ CJ..:_ j J:ll j '!:J ')_ & ~ H "".°~ ~· 

: ~ ;_; .- - I ~ T .. J ·:::· ""' t j .ll :'· ~> £. 2 .s ,. .; t :.,;;.. 1} t er$ 1J i1::; 

. .t ~dil~ s~~ aJ 89I~1t0 
aa•~o~~ ~it •blasl b~• 

·,.-. r ;:> t CJ,. 0-Ylt;!3::i~:qx~ l.o'l'!::,-v:::~! $!;~rl3' ~~£.' :_•~ 

:~:-.8.#i:;,·_rr;· .~.~.: 't( ~"3.·-·~~Ji:if '"5;dJ !.!'!!._,~av ettL:!' dJc_,ef 
i ·;c; .. . ~/~;,;;.,,-:' L~s~:j~E na!'.l ;!..Lrtr_;: ~.~!~;'fs't(e 

.~.- ~A:~ .. -~ Oi ·!·,:,' , l ~· f~, ff I. ,f :t'i".;: ~ '\ ,-; ''.fH_i f f~ U._,Q_ "tiJ.eJ1 ~dJ !f ;j•;)cf -:~ ,) 

·,~ 

., ;,,.:: , 1 ns l
0 

J;;!i"{f.'r.;~-~ ~ g~ i B t .. 'f..qC{:\_ !'.-P1t·H 

~ : •
0-:-.La· -i..tf!.IJ!I f.»H'>:.Le iifl!l;i-l:r1\'!Vlf 
, ·-l.~ ~~r\~. ~··12:7Llnn0~; <..1-i?l-t.1 1:.tA3 .. ~ 

~· ' -=-·. (:· ( l,. ~ 
- -~r. :.. ,:_:;"!'f_ '. 

·1& l~Judl~IJa ~- ~•Bqqm 
'"~·JP·~: I::r .t 'Jf.?., -.i:c ::t""? e ~rlj- Jt!:•iA 
-~ ~~£J~la~~~ .am~jl a~s~ 

.1~;\J es.1;;£:q.1:..r Jt ·1~£1~.:t'!ll,:W 

!•r~~$ea9~~n N9tlv•' ~Ia~ 
e~dt 1o ~aoq~uq ·ed: ~~~ 

.- ~ ·1 --:"'- :..1· -~ ~: J. ~ 2 , a~ o J" :.'l.i ·1 .t :t c; o ~ :;; ; : .: 
:~rt7 .~q~l ~~lilml~1 10 

m·3- .. 1 :-: .,_ ;: fh.a~d ~!:!.J c J ~ ,'t .... :Li rue 
~ '"';:j i"l'll.:il,l · ; "f\tI (}·1 ., "t ·1 

'·.-"I.,,..;,_ r. n .. ; . "' • 
~ "'n -~.,."""""" ~-'*' ~::.e::.11L'21'J. 



(*l) 

( *2) 

( *3) 

( *4) 

( * 5) 

( *6) 

( *7) 

FOOTNOTES -- II.E. 

. b 80,81 t• Papers on graphic data- ase systems for ques ion 
answering and pattern recognition illustrate a richer 
picture description capability ("the circle is to the 
right of and bigger than the triangle, and is inside 
the rectangle") than is customarily found in synthetic 
computer graphics systems, that is in systems for 
constructing pictures (SKETCHPAD, BEFLIX, CAFE, GENESYS). 
The value of describing pictures by a complex set of 
relations has been amply demonstrated by the ease with 
which members of the TX-2 community have written and 
modified interactive graphics programs in the LEAP 82 
Language for the Expression of Associative Procedures. 
LEAP augments the descriptive capability of a data base 
of associations with the implicit search and retrieval 
capability of associative processing ("find all those 
circles to the right of and bigger than the triangle, 
and inside the rectangle"). One of our goals is to 
place these powerful expressive tools in the hands of 
both the user and the builder of an interactive graphics 
system. This -;an succeed because APPL is the language 
of both the user and the system builder, whereas LEAP 
is the language of only the system builder. 

Here APPL is less general than LEAP, for the latter 
language allows multi-valued relations between objects, 
LEAP also considers one universe of items, which may 
appear as attributes as well as objects, whereas in 
APPL the set of attributes is disjoint from the set of 
data items, consisting of pictures and numbers, 

Whether it updates these properties immediately, or 
only "when necessary," is implementation-dependent and 
for the purpose of this discussion immaterial. 

See Footnote 5, I.B. 

Standish, 
84 

pp. 1,3,11. 

The constructors, selectors, and predicates for pictures 
of primitive TYPE, that is for PICTORIAL PRIMITIVES, are 
built-in to the base system of APPL. The constructor 
for a POINT is NEWPT, there is no selector, and the 
predicate is ISPOINT. 

For a recent survey of attempts to define grammars for 
various classes of pictures, see Reference 85, 

-302-



III.A. SUMMARY AND CONCLUSIONS 

Experience in generating animated visual displays has 

shown that a computer with which one can interact directly 

and graphically, in real time, can be a powerful new medium 

for animation. The ability to see and alter a synthesized 

''movie" immediately is striking, for it cannot be achieved 

with traditional media and techniques. Interactive computer-

mediated animation is the process of constructing movies by 

utilizing direct console commands, algorithms, sketches, and 

real-time actions. We have specified what is required for 

building interactive computer-mediated animation systems. 

We have implemented and used three such systems on the M.I.T. 

Lincoln Laboratory TX-2 computer. Thus the dissertation 

proves that the process is now technically (although perhaps 

not economically) feasible, and that it therefore deserves 

further research and development. 

A process called picture-driven animation is a special 

kind of interactive computer-mediated animation that exploits 

the potentialities of direct graphical interaction. The 

animator may sketch and refine (1) static images to be used 

as components of individual frames of the movie, and (2) static 

and dynamic images that represent dynamic behavior, that is, 

movement and rhythm. These latter pictures, which eventually 

-303-



drive algorithms to generate animated displays, depict data 

seQuences called global descriptions of dynamics. Global dyna-

mic descriptions abstract aspects of movement and rhythm 

which recur over extended intervals of time in particular 

animated displays. Picture changes that are continuous 

variations of value are expressed by path descriptions; pic

ture changes that are recurring discrete choices of pictures, 

data, events, or actions are expressed by selection descrip

tions. Rhythm descriptions express patterns of the triggering, 

pacing, coordination, and synchronizing of picture change. 

Each global dynamic description determines critical 

parameters of a seQUence of frames. Thus, with a single 

sketch or action that generates or modifies such a repre

sentation, the animator can exercise precise dynamic control 

over an entire interval of the movie. More specifically, he 

does this by (1) sketching and editing graphically static 

representations of dynamic descriptions, and by (2) mimicking 

in real time desired dynamic behavior. He communicates with 

the system about a movie in an intuitively natural "language'' 

of pictures and sketches. 

Such a '~anguage" of pictures and sketches has been im-

plemented in several closed animation systems. They are 

closed in the sense that the animator can only sketch into 

the system and command the computer to aid the sketching 

process; he cannot in this command language describe 

-304-



extensions to the language, that is, he cannot define new 

commands and their meanings. The dissertation lays the 

foundation for the design of a multi-purpose, open-ended, 

Animation and Picture Processing Language. APPL is a conversa-

tional language which accepts direct sketches, direct con

sole commands, and algorithms that control interactive dynamic 

displays. It has several features that distinguish it from 

existing on-line graphics languages: 

(1) The language can easily be augmented while remain

ing within the language; the system is, in a very 

powerful sense, extensible or open-ended. 

(2) Strictly sequential flow of program control is 

abandoned in favor of the quasi-parallel execution 

of picture-transforming algorithms. This facili-

tates the specification and coordination of 

multiple strands of dynamic activity. 

(3) A data structure called the aggregate, which is 

a generalization of all hierarchic ordered data 

representations, is used to model both complex 

pictures and global dynamic descriptions. 

(4) An extensible class of picture descriptions 

called attributes, including one which abstracts 

the concept of picture "type," may be used by the 

animator to tailor a rich picture description 

capability to his own specifications. 

(5) The animator's dynamics as expressed through a 

-305-



stylus, push-buttons, and other devices is included 

as an integral component of animated system behavior. 

The stylus, for example, is modeled just as is any 

picture point, with the exception that its loca-

tion cannot be set by a program. Thus the animator 

may write programs describing his own interaction 

with a movie as easily as he can algorithmically 

generate a movie. 

The goal of the language design is plasticity in the repre

sentation of dynamic information and flexibility in the tech

niques and conventions with which the animator interacts with 

the system. It has been verified on paper that the language 

can be gracefully used to construct dynamic displays, to build 

system tools that aid the construction process, and to imple

ment special-purpose interactive computer-mediated animation 

systems. 

-306-



I 

',.~ 

j.'.- ,-,.,. .:;- :1 .. :.ii.III 

;i.ns ·1,,.!.-.tano!I elf 

1o 'lrf~'!lil'!!il:ri ll;;.t ;,nl.\JiiSe>al • 'l1.e:1LtJ: "J£ft;.!'~~;G .~utt ( i) 

''8 
" ;e~'lO;t'I ~ul:H ... 

:"'. :.?-
.. ; -:; "au:;o.>¥:q: 't.$ 4'.<ta U :1!1',i.j.t 

I >.i ' . ') 

!!JVl.t.!ilf'.'<'.'H;A 1o ·1C'~I":'l'!·:fX:i <>d~ 'o'J; $i:Jlll:I"&~ <:£.itl.J 111d;t (T) 

s:f} 
, 8'f'\li1L1n1o't't 

i. 



III.B.l. DIFFICULTIES ENCOUNTERED IN IMPLEMENTING AND 
USING ADAM, EVE, AND GENESYS 

Specific observations and judgments shall be made on 

the strong and weak points of the TX-2 graphics environment 

for the implementation and use of ADAM, EVE, and GENESYS. 

In the hope that such documentation will assist future 

workers in the field, we shall augment the general published 

82 87-94 literature on the TX-2 system ' with remarks specific 

to the application area of animation. (*l) We consider the 

following TX-2 subsystems: 

(1) the computer itself, including its hierarchy of 

auxiliary storage; 8 9 

(2) the display processor;90 

( 3) APEX, the time-sharing monitor 91 system; 

(4) the display executive subsystem of APEX; 92 

(5) the interrupt-processing executive subsystem of 

APEX; 92 

(6) the VITAL compiler-building system; 93 and, 

(7) the LEAP Language for the Expression of Associative 

Procedures. 82 

Some remarks in this section suggest avenues towards the 

design of supporting subsystems which could better facilitate 

interactive computer-mediated animation. Some of these re-

search questions are posed in more detail in III.B.4. 

-308-



The TX-2 and its storage hierarchy 

The TX-2 is an experimental, graphically oriented 

facility, usually time-shared among up to nine users, but 

frequently available for dedicated use. The system has 164K 

of core, a Fastrand II drum for bulk and swapping storage, 

and three magnetic tape units for back-up storage. 

Asset: There are five refreshed CRT's, two storage scopes, 

and a wide variety of input devices, including two stylus

tablet-comparator units, knobs (shaft-encoders), toggle 

switches, push buttons, and typewriters. 

Asset: The hardware is prepared to add new devices, and so 

it was relatively easy to add our computer-controlled movie 

camera. 

Asset: When running in dedicated mode, a user can occupy 

over lOOK of core. 

Liability: The Fastrand II is very slow as a swapping drum. 

Delays on the order of fractional to several seconds can 

easily be encountered in animation applications. 

secondary memory is definitely required. 

Faster 

Consequence: If programs or data representing a movie exceed 

the capacity of real core, then appropriate swapping must 

occur concurrent to computation or playback. To avoid de-

lays in which the system waits for swapping, it must care

fully control the allocation of real core and the initiation 

of swapping. This can easily be done during the playback 

-309-



of a sequence of frames, as we shall discuss below. It is 

difficult to achieve during the computation of the sequence. 

To facilitate these tasks, the animation system itself, and 

the programs and data which define movies, should be factor-

able into meaningful units. 

The display processor 

Displays are refreshed, from ring-structured files re

siding in main core, by a time-shared analog signal generator 

of points, lines, conic sections, and characters. 

Asset: Points, lines, and conics are stored in a uniform 

homogeneous matrix representation. 94 

Asset: Hierarchic structures of "groups" of display items 

may be established. A group may be "used" as an item in 

other groups, and the origin of each "use" given a unique 

offset. Thus, instances of a single subpicture can easily 

be placed at several locations on the scope. 

Liability: The same beam is used for refreshing both the 

static and the dynamic portion of the display. 

Consequence: Excessive flicker results when pictures are 

complex or the system is under heavy time-shared use. (*2) 

Movies are more likely to be display-bound, which occurs when 

frames cannot be painted on the screen in l/24th of a second. 

Implication: We have variable-speed playback in order to 

view display-bound movies at a slower rate. We need mechanisms 

for factoring animation sequences into parallel dynamic 

-310-



strands, in order to reduce the complexity of the display by 

viewing separately different parts of the action in a movie. 

Asset: The hardware translates subpictures dynamically, 

through the group offset mechanism. 

Liability: The hardware has not yet been augmented to asso-

ciate a single homogeneous matrix with each use of a group, 

and to multiply it into each picture matrix before display. 

Consequence: Rotation, scaling, windowing, and clipping must 

currently be done by software. This is either costly of 

playback time, if done during playback, or costly of movie 

computation time and storage space, if done while the movie 

is being calculated, and the resulting images are stored for 

subsequent playback. 

Implication: Addition of the hardware matrix multiplication 

would enable it efficiently to carry out dynamic rotation, 

scaling, and arbitrary projective transformations. 

Asset: Since a separate channel refreshes the scope, and since 

a user's display file is frozen in core, his picture remains 

visible even while his program's execution has been inter

rupted in time-sharing. 

Liability: If the picture is a movie being played back, how-

ever, playback stops and the current frame is held on the 

scope. 

Implication: A standard format for movie display files should 

be adopted, and the concept of holding the picture on the 

display extended so that playback could continue even though 

-311-



other animation computations were interrupted, Given the 

format used by ADAM, EVE, and GENESYS, switching frames re

quires only disconnecting and reconnecting one link in the 

display file structure. Modifying the hardware so that the 

display processor could do this independently would not be 

difficult. 

The time-sharing monitor 

Asset: APEX provides services including resource allocation, 

scheduling, and protection for time-shared users. There are 

also commands with which they can manipulate files and allo

cate virtual core. 

Liability: Although a user running in dedicated mode could 

be allowed to allocate directly that portion of real core 

unused by the monitor, this is not possible under APEX. 

Consequence: Swap-bound movies are more likely. 

Liability: The scheduling philosophy does not allow a single 

user in time-sharing to request short-term absolute priority, 

even if he is willing to pay the penalty later on, 

Consequence: Movie playback can be arbitrarily interrupted 

in time-sharing. Only when input functions can be totally 

assumed by the interrupt executive can real-time monitoring 

of the animator's movements and sketches be guaranteed. 

Hence, although we have prepared animation systems and par

tially debugged them in time-sharing, we rarely animate with 

more than one or two other users on the machine, 

-312-



Liability: TX-2 programs operating under APEX have a push-

down stack of virtual memories. However, only 16 "books" 

are allowed on each "map'', or level of virtual memory, only 

one file may be put in a map, and communication between maps 

is difficult and time-consuming. 

Consequence: Partitioning, or factoring, of programs, data, 

and images is difficult to implement. 

The display executive 

Asset: This APEX subsystem provides mechanisms for initializ-

ing, naming, saving, and retrieving display files; for build

ing display items, combining them into groups, and hierarchi

cally structuring these groups; and for interrogating an 

existing file to discover its hierarchic structure. 

Liability: The structuring and accessing mechanisms are 

quite limited. A picture that appears only once on the scope 

cannot be included in more than one group of pictures. 

Although the file is ring-structured, and each group is 

stored as a ring, the ordering of items within a group is 

inaccessible to the user, and items must be referenced by 

a pair of integers, a group ID and an item ID. 

Consequence: Most of the picture structure cannot be kept 

in the display file; an additional data base is needed. Up

dating and maintaining consistency between dual pictorial 

data bases adds significantly to programming complexity. 

-313-



Liability: A display file is limited in size to one APEX 

book, or 8K registers. Only one such file can be displayed 

or referenced at a time. The executive system provides no 

mechanisms for communication between files. 

Consequence: Since movies can easily exceed BK of picture 

data, we have been forced to write our own mechanisms for 

communicating between display files, for guarding against 

overflow, and for structuring movies as groups of files. 

Since time delays occur in switching from file to file, it 

is advisable to restructure them so that all constituent 

subpictures of a contiguous sequence of frames can be found 

in a single file. 

complexity. 

This too adds significantly to programming 

The interrupt executive 

Asset: This APEX subsystem provides mechanisms for requesting 

and releasing input services, and for specifying the condi

tions under which a program should be interrupted and given 

information about a device. This information consists of 

the name and the state of the device which caused the inter

rupt, and the states of other associated devices. 

Asset: These services are provided continuously, regardless 

of whether or not a user program is running. Thus, they are 

capable of real-time monitoring of devices even under time

sharing. 

Asset: One of the services provided is the laying of a trail 

of "ink", consisting of a thinned and smoothed sequence of 

-314-



points, over the trajectory of a free-hand sketch. 

Liability: Only 256 points may be entered before the pen 

"runs out of ink". This sometimes forces an animator to 

decompose a free-hand sketch in unnatural ways. 

The compiler-building system 

Asset: VITAL, a compiler-compiler in which language syntax 

is specified in Floyd Productions and language semantics 

is specified in Formal Semantic Language (FSL), allows the 

flexible construction and modification of compilers. 

Liability: FSL is useful for the algebraic component of a 

language, but is of little help in defining the semantics of 

list and associative processing. Therefore most of these 

semantics are written in assembly language. 

Liability: VITAL produces compilers which translate programs 

into non-relocatable, non-modular code. 

Consequence: This feature, and corresponding aspects of 

APEX, make program partitioning difficult. Thus, even small 

changes to a system are time-consuming because large parts 

of the system must be recompiled. 

Implication: A compiler-building system for an interactive 

graphics environment should produce incremental compilers 

or interpreters. 

The high-level programming language 

As set: LEAP is an ALGOL-like language augmented to facilitate 

-315-



associative, display, and interrupt processing. It has been 

used for building several interactive graphics systems now 

operational on the TX-2. 33 • 36 Well-designed, high-level 

language forms allow one to structure and interrogate a data 

base, generate pictures, and monitor user input. The latter 

two tasks are achieved by LEAP's making calls on the APEX 

display and interrupt executive systems. 

Liability: Little is understood about methods to achieve 

efficient processing of large associative data bases with 

conventional digital computers. 

Liability: Data bases can be saved and recalled, but merger 

and communication is difficult because all names in a data 

base are local to that structure. More fundamentally, no 

symbolic communication between LEAP programs is possible, 

This restriction is due in part to VITAL. 

Liability: Finally, we stress again the inconvenience of 

keeping pictures in both their LEAP and their display file 

representations. 

Problems with the implementation of ADAM and EVE, and the 
solutions employed 

ADAM and EVE are written in assembly code; the corres-

ponding playback and filming programs are written in the 

algebraic subset of LEAP. In both cases, frequent calls are 

made on the time-sharing monitor, including its display and 

interrupt-processing subsets. 

-316-



Problem: Currently, the movements of a single figure in 

ADAM can be computed at a rate of only 4 frames per second. 

Solution: Effective real-time viewing does occur in play-

back, so the slow computing rate is of no consequence. 

Problem: Only approximately 100 frames of picture information, 

(12 lines per frame, from a single figure in ADAM, or a 

pair of figures in EVE) can be stored in a display file. 

Solution: Both ADAM and EVE fill sequentially a number of 

display files with adjacent frames. So that a long movie 

will not be swap-bound, the playback program reads the first 

n files into core, plays back the first one, and then begins 

to swap it out of core, replacing it with the (n+l)st while 

it plays back the second file, and so on. Despite its lack 

of direct control over real core, it can accomplish this by 

operating upon its virtual core. The success of this proce-

dure in general depends upon the size of core memory, the 

size of each frame's representation in memory, the desired 

rate of playback, the maximum desired length of playback, and 

the speed of swapping when it is occurring simultaneously 

with the display. 

Problems with the implementation of GENESYS, and the solutions 
employed 

GENESYS and its playback and filming programs are written 

in LEAP with some assembly code interspersed. Little asso-

ciative processing is used. Frequently calls on the monitor 

are made, particularly for display and interrupt services. 

-317-



Unlike ADAM and EVE, GENESYS actually computes the 

movie during playback. ADAM must precompute complicated 

effects of several rotations and translations on each limb 

of the figure. In GENESYS, the algorithm which generates 

the movie is so simple that it is built into the display 

hardware. Each eel is stored in a unique group. Translation 

is achieved dynamically by changing the offset of the group. 

The selection among eels is achieved dynamically by switch

ing eels in and out of that part of the structure which is 

made visible by the display processor. Provided that all 

the eels fit in a display file, these operations can be done 

during playback without loss of speed. If the additional 

matrix multiplication were added to the display as suggested 

above, then dynamic rotation and scaling could also be effi

ciently achieved without storing large files of images. 

Problem: Since free-hand sketches are composed of long trails 

of points, flicker is a problem and movies easily become 

display-bound. 

Solution: Movies can be factored by working on only a subset 

of the eel classes at a single time. 

Problem: The eels required for an interesting animation se-

quence can easily exceed a display file. 

Solution: Extra files must be generated according to the 

values of the selection descriptions, so that entire sequences 

of contiguous frames can be displayed without switching 

-318-



4urtag eYel'J' tr•• ean l>e •••i4e4. 
-o'!q -.;t111e"LL>J ;ih:ov ·~"'U-'!u1 'to'!: lil.it!i>'i.8 'lr'llli'l:e-i '\t.tle.l:'?id ;;;W 

;- ·_) ~. ·1.; 

'.·tl •. , • 

fl<:'"" 2 ~ ""~'" ,.J'i,:t ,,,., :;;r .j· !tO'l!lt!l!O"' JHUI! d;t J:w ;!hOY b,.ht.o• 'lt'l'EJ..titllll.-:tb 

·~:,, 
···•.aetc.::1l:'!~H"'b iilm~nv.t ~ni.cii:1!l>'l ~fl~ Jl41.rtJ"tp '1-0"!'. !ll•u.;i!.rub~.t 



III.B.2. WHAT TO DO NEXT IN PICTURE-DRIVEN ANIMATION 

We briefly review areas for further work already pro-

posed in the dissertation: I.B.10. noted that GENESYS should 

be augmented so that arbitrary projective transformations of 

eels can be applied continuously under the control of path 

descriptions, so that dynamic hierarchies can be established 

by defining "macros" of dynamic descriptions, and so that 

generalized-eels can be integrated smoothly into the system. 

As we stated in I.C.7., further research is needed on the 

problem of coordinating parallel actions in a movie. I. c. 8. 

discussed the need for more in-depth experimentation, in which 

animators would work with and comment upon the suggested 

techniques for defining and refining dynamic descriptions. 

We have constantly encountered and side-stepped the prob-

lem of constraint satisfaction. More research is needed both 

on the general problem and on specific instances that occur 

in animation. The demands of animation are severe, for the 

set of constraints can change in each frame. 

Finally, further research should pursue the discussion 

of I.F. on "action-picture interpreters," on techniques for 

interpreting actions and pictures as representations of picture

transforming algorithms as well as representations of dynamic 

data. 

-320-



III.B.3. THE IMPLEMENTATION AND FURTHER GENERALIZATION OF APPL 

We hope that our outline of the design of APPL is a step 

towards a better understanding of the role formal language 

structure can play in the construction of interactive graphics 

systems. The next step is to implement APPL. In the course 

of this implementation, some areas of the outline need to be 

made more specific, for example, language syntax, block struc

ture, and the choice of activity scheduling mechanisms. 

The base language described in the dissertation is a 

relatively "pure" algorithmic language, containing very few 

"declarative" constructs whose only function is to allocate 

storage and to aid the processor in efficiently executing 

algorithms. Thus, there is currently no way to tell APPL that 

an aggregate could be implemented by a fixed-length storage 

structure, what the upper bound is, and what kind of error 

signal should result from a reference that is out-of-bounds. 

To preserve APPL's clarity, the declarative components intro

duced in further development should be kept as distinct as 

possible from the procedural components. We shall discuss in 

the next section how this separation in the language could be 

reflected in the way APPL is used operationally. 

APPL's mechanisms for aggregation should be augmented 

so that they apply to commands as well as to numbers and pie-

tures. APPL already contains one construct that is implicitly 

an aggregate of commands, the agenda. Further generalization 

-321-



is needed to achieve the unification of the concepts of pic

ture (an aggregate of pictures) and action (an aggregate of 

commands, that is, events or activities) that was discussed 

in I.F. It should be possible to combine groups of commands 

that generate pictures in the same way that one can combine 

the pictures themselves. 

II.E.2. suggested that there should be further research 

on the difficult problems of introducing new picture types 

and of extending the meaning of picture attributes. One aspect 

of this would be the search for workable interpretations of 

the TYPE of a dynamic picture, for example, "VEFINEATTRIBUTE 

TYPE 06 LINE.O tobe ROTATINGLINE;". 

Finally, there is an issue of APPL's design that has 

thus far been ignored, but should be tackled so that an imple-

mentation can be as efficient as possible. Many animation 

sequences will be generated by several activities, or quasi-

parallel computation strands. We will compute the sequence 

once, view the result, change one strand, compute again, and 

iterate in this fashion. APPL needs constructs with which 

the user and the system can cause images and other data 

resulting from computations to be stored and from then on 

retrieved rather than recomputed. This issue was mentioned 

in II.E.l. when we considered the evaluation of picture attri

butes. 

The problem can be phrased more succintly by extending 

the concept of "time" developed in II.C.2. There are actually 

-322-



three kinds of time, real time, movie time, and take time. 

Take time measures the number of trial computations, or takes, 

that must be executed in order to refine an animation sequence 

over a single interval of movie time. We say that a picture 

[property] is static if its value is fixed over an interval 

of movie time, and dynamic if it changes in regular relation 

to the advance of movie time, In the latter case, it may be 

represented by a dynamic picture [description]. The dynamic 

picture [description] may or may not change as take time 

progresses. The problem is therefore one of identifying 

static pictures [properties], and storing them so that they 

need not be recomputed, and of identifying dynamic pictures 

[properties] that have stabilized at some point in take time, 

and storing them so that they need not be recomputed. As 

take time advances, activities defining the movie can be 

individually deactivated until none are remaining and the 

movie is complete, stored as part of the pictorial data base. 

-323-



III,B.4. HOW SUPPORTING SUBSYSTEMS, BOTH HARDWARE AND 
SOFTWARE, COULD BETTER FACILITATE INTERACTIVE 
COMPUTER-MEDIATED ANIMATION 

Some hardware additions and modifications could make 

interactive computer-mediated animation more efficient and 

hence more economical. We have already suggested that: 

(1) The display processor could be given the capacity 

for directly multiplying picture items by homogeneous matrices 

which represent projective transformations. 

(2) The display processor could be given the capacity 

for playing back a movie without executing a user program, 

by cycling automatically through frames encoded in a 

specially-formatted display file. 

Other suggestions follow: 

(3) Algorithms implementing generalized-eels could be 

stored in special high-speed read-only memories. 

(4) Dynamic descriptions could be stored and retrieved 

from a cyclic memory device such as a drum, and not occupy 

valuable core, since the data are accessed sequentially during 

movie computation or playback. 

(5) In a similar vein, a display driven by a rotating 

magnetic - 97-98 disk might be ideally suited for playing back movies. 

These have been used to drive low-cost graphic display termi

nals which operate on television principles. 97 - 99 (*3) The 

use of video tape as the movie storage and playback medium 

should also be considered, 

-324-



(6) Finally, if conventional computer displays are 

employed to play back movies, then one should consider optically 

superimposing a static image from a storage tube with the 

dynamic image from a refreshed scope, thus enabling the latter 

to be more efficiently used. 

We shall also raise two fundamental issues of computer 

design which are relevant to computer graphics generally, and 

which suggest important areas for research. 

The computers of today have not been built to facilitate 

picture processing. Integers, fixed and floating point 

numbers, bytes, and bits are all primitives; pictures are 

not. T·hus, commands to add two numbers, to shift a byte an 

integer number of places, and to take the logical product of 

two bit patterns are executed directly by current arithmetic 

units. Unfortunately, correspondingly basic operations for 

picture processing, such as superimposing two pictures, 

rotating a picture a number of units, and forming a line to 

connect two points, must all be expressed in terms of arith-

metic and logical operations. Recalling the model for points 

developed in II,E.l,, we can see that rotating a picture 

should result in an augmenting of its X and Y coordinates as 

well as its Q coordinate. In a computer designed for picture 

processing, such operations could be carried out automatically 

by the hardware. 

Another fundamental problem arises in the implementation 

-325-



of data bases which represent dynamic sequences, and the 

hardware and software mechanisms which interpret them. We 

noted in III.B.l. that maintaining dual pictorial data bases 

in current graphics systems is very awkward. What is needed 

is a single storage structure which can represent rich pic

ture descriptions (aggregates and properties), yet can contain 

as a proper subset that minimal information needed to display 

the picture. A corresponding display processor is needed 

which can generate the picture directly from the proper sub

set of the total, unified, pictorial data base. 

Next, we consider software subsystems and their rela

tionship to effective interactive computer-mediated animation. 

Again, we emphasize that the subsystems with which an 

animation system is implemented must facilitate the partition

ing of programs, data, and large files of images. 

If interactive animation is to succeed in time-sharing, 

then either the executive systems must assume all responsibility 

for generating real-time playback and for monitoring real-time 

input, or the monitor must allow an animation console to 

request absolute priority for brief intervals of time. 

Furthermore, these brief intervals cannot be assigned statis

tically; their occurrence must be predictable, granted upon 

demand, so that the animator can set himself to use the time 

effectively. 

Finally, we suggest investigation of a new design 

philosophy for an interactive graphics system, one that 

-326-



directly incorporates explicit roles for the animator, for 

the programmer, and for the computer. Suppose that the anima-

tor and the programmer could communicate concurrently with 

the system from respective and adjacent consoles. Recall the 

previous section's discussion of the algorithmic and declara-

tive components of the language. While the animator defines 

and manipulates pictorial aggregates, the programmer, under

standing the computational implications of the animator's 

activities, could furnish the system with information to help 

it allocate storage efficiently and make sensible implementa-

tion choices. Presumably the programmer would try to anticipate 

what information will be needed, although the system could also 

automatically direct queries to the programmer. The approach 

would be effective insofar as it allowed the animator to 

continue his work without interruptions and without concern

ing himself with details of the computer processing. 

-327-



III.B.5. THE FEASIBILITY OF INTERACTIVE COMPUTER-MEDIATED 
ANIMATION 

The dissertation establishes that interactive computer-

mediated animation is currently feasible on an experimental 

basis. Its economic and practical viability, present and 

future, depends strongly upon three factors: 

(1) The ability to solve certain technical problems, 

so that the resulting films will be commercially acceptable; 

(2) The ability to reduce costs through economical 

system design, and through appropriate management of a wide 

variety of human and technical resources; and, 

(3) The ability to find a common "language" for anima-

tors, artists, educators, and computer scientists. 

(1) There are many technical problems in the produc-

tion of commercially acceptable film. Some of them, such as 

synchronization of visual and sound tracks, are encountered 

in all animation processes. In this case, use of the computer 

may lead to solutions more elegant than those of the past. 

( *4) In picture-driven animation, sound track waveforms or 

rhythm descriptions obtained from them could be displayed as 

are other dynamic descriptions. 

The problem of generating color film will soon be solved 

in principle, when color scopes are generally available, al-

though accurate control of hue, saturation, and intensity 

will still be difficult. Even in black-and-white, picture 

-328-



quality will vary unless we use high-performance scopes whose 

intensity, spot size, and line thickness can be precisely 

controlled. 

We still need better descriptions and generative 

mechanisms for shape, line quality, and texture. Unless 

video playback techniques are adopted, it is difficult to 

view in real time intricate, rapidly changing shapes and 

textures. This is not necessarily a serious liability, since 

many animators strive for simple dynamic effects. (*5) 

Finally, one can consider the possibility of animation 

in three dimensions, which raises the difficult problem of 

"hidden-line elimination." It appears unwise and unnecessary 

t d 1 . h th 1 "t· f d . . t 3D lOO o ea wit e comp exi ies o rawing in rue . A 

more viable approach is to work on a stack of parallel pie-

ture planes, and to obtain the illusion of depth through 

motion, through control of the size of objects, and through 

the elimination of hidden lines. 

(2) An animation system has been designed economically 

if it allocates resources in correct proportion to the needs 

of the animator at a particular moment. Some work can easily 

be done in conventional time-sharing despite sluggish response; 

other work, as was noted in III.B.l. and III.B.4., requires 

absolute priority. The demand for response from an inter-

active graphics console is far more variable than that from 

a typewriter console. We need better models with which to 

-329-



describe, estimate, and satisfy these demands, without the 

expense of totally occupying a large computer. There should 

also be research on the possibility of using a small computer 

augmented by secondary memory with rapid parallel information 

transfer. 

We also need to find ways to organize the creative 

efforts of a wide variety of human and technical resources, 

such as animators, artists, educators, computer scientists, 

conventional digital computers, analog input devices, and 

video tape and associated television equipment. 

(3) Successful computer animation requires finding a 

common "language" for individuals whose backgrounds and ways 

of thinking are exceedingly diverse. They must be better 

able to communicate effectively their respective insights 

into the animation medium and into design features for anima

tion systems. 

I hope that APPL may be a positive step towards the 

required language. Because APPL unifies the processes of 

defining dynamic displays and defining an animation system, 

much of the medium's mystery can be removed. Users should 

better understand that the computer animation medium, unlike 

any other animation media, can to some extent adjust to their 

styles and to their needs, They should also better under

stand what aspects of a system can be changed, and what 

aspects cannot be changed, It is our hope that the continuity 

-330-



betv~ ~~~._.191'.._ :Wt!HlMPP!A'il){i -~~ t 

the creative partaerablp nt...a .. t .. 'to./~Ji:.:f~\put•r ~ 

,_ ....: . - ; ,_ . ..:1 .7: -- _L, ·~ 

.. f.•<\ 

n _,, 'i' 

-'l ... : 

··;,: 

.;J-' 



III.B.6. APPLICATIONS OF INTERACTIVE COMPUTER-MEDIATED 
ANIMATION 

We note in the Introduction the demonstrated significance 

of the computer in aiding our understanding of the dynamics 

of complex natural phenomena through simulation and display. 

With interactive computer-mediated animation we can generate 

educational films that are primarily d~awn rather than com-

puted, for use in subject domains as diverse as the humanities, 

the arts, and the social sciences. 

Various modes of educational filmmaking can be imagined. 

For example, a teacher could quickly generate with GENESYS a 

crude animation sequence, tailored to the needs of his indivi-

dual class. Then this film, or one made with APPL, could be 

used as the basis for generating a family of movies with the 

same "cast of characters." 

We still have much to learn about educational filmmaking. 

In a current paper,
101 

Huggins and Entwisle eloquently de-

scribe the role of computer animation in fulfilling the 

great untapped potential of "iconic modes of communication 

and instruction," in producing "visual images that in their 

ability to communicate ideas are superior to traditional 

graphical images on paper or blackboard. Instead of static 

images, words, and mathematical symbols," they suggest, "we 

may create dynamic signs that move about and develop in self-

explanatory ways to express abstract relations and concepts. 

-332-



... A dynamic dimension is now available that requires the 

invention and development of new conventions and visual syntax 

appropriate to this new medium if it is to be fully used for 

communication and education." Huggins and Entwisle are 

pursuing these goals in the context of producing computer 

animated films for engineering education. 27 

Generating dynamic displays interactively should benefit 

those seeking to construct and film stimuli for experiments 

on visual perception, such as the perception of movement,
102

- 103 

th t . f t' . . 1 . 104 d th e percep ion o emo ion in facia expressions, an e 

perception of causality.l05 

Colby
106 

is attempting to stimulate language development 

in nonspeaking mentally disturbed children by allowing them 

to interact with alphabet symbols and pictures of objects pre-

sented on a display, augmented by keyboard and voice communica-

ti on. He is interested in introducing motion into these 

. 107 images. 

The stick figure work suggests several extensions and 

applications. There is currently much interest in analyzing 

human body movements for bio-engineering uses such as the 

t t . . . . . b 108 d . t t' 'th cons rue ion of artificial lim s, an experimen a ion wi 

synthetic models at an interactive display might prove a use-

ful adjunct to this work. One could attempt to animate the 

outlines of figures by reducing them to a "stick figure" with 

Blum's Medial Axis Transform, 109 animating the resulting 

-333-



f3 J¥k .. t Li ,.Q, . UL L)tJ ... ££J4C3L .. 4 QJ $ .lllXJ4,J22##4¥Ql J!X,SZUJ®kJQtt+ 
! 

figures, and then taU.ng' the in'Y~t'se ttanit'o•Ji'ia.:to· toegeil.ei'ate 

an· outline. · 'lhe!'e U al•b ctiti'en1: IA•4~'t"til '1e1.nt~ collli;uter

aninted •ilc'k ttgui-eti a9 a· ilyti~hi•Hc ;~ool t.6 •ltot-e.int•>''.*10 

Finally, it' iti cbTieu 'that· 11ltff-HttY~''~oatuU1r.1;.Mat.ted 

an iaat io'h i a;: an exee11·en t· tl!taetllng'' •ia' f6j.b.MillltttU•s;'.J'1 w•·•iatt e 

they obtain 1-edi at'e f'ee4Kelt'.' ef'" ~H; Hllul.•l Mc. ihe!l.!'·1 Mrt:-!l 

,· and. ~an· at't.iapf; 47ft.•liric· ftr1&t1.itt•'"'o· Mlil•-'ea.t' "'''~68sible 
,) T ..1 - ' • .., -_-. 0 ;'.: :- ; ~, 

'-; - - ' 

-~- ,, 

-334-



( *l) 

( *2) 

( *3) 

( *4) 

( * 5) 

FOOTNOTES -- III.B. 

Reference 87 is a l969 review article on the TX-2 
experience with interactive graphics in a time-shared 
environment. Issues of the Semiannual Reports of 
Reference 88 furnish a chronological account of recent 
developments at the TX-2. 

Large display files and excessive flicker result in 
part because we have portrayed free-hand curves by 
closely spaced sequences of points, and not approxi
mated them with conic sections. For a hardware and 
software approach to the generation of approximating 
segments, see Reference 95; other software approaches 
are described in Reference 62 and 96. 

Reference 97 reviews three recent approaches to low-cost 
computer display terminals, including two which are 
based on television techniques. 

See I.B.8., particularly Footnote 7, and also I.F.'s 
discussion of the Computer Image technique for auto
matically generating cartoon character mouth movements 
which are synchronized to the speech waveform. 

Whereas the computer is ill-suited to the "Disney 
style" of animation, it is well-suited to the more 
modern "U.P.A. style." These styles are described by 
the British animator John Smith (Halas and Manvell, 2 

p. 221) as follows: 

Generally speaking, the overall aesthetic 
attitude favoured in Disney's cartoon films is 
balanced in the following way. Complexity of 
detail is matched by complexity of movement. 

For example, when a figure walks, his tongue 
may flap, his hair flop, his ears wiggle, his 
eyelids shutter, his adam's-apple oscillate, his 
whole body down to his feet fluctuate with added 
movements. The rich, even sugary colouring and 
bulbous forms are matched by movements that 
resemble a bladder of water moving (if it could), 
floppily and sensuously. The sentimentality of 
mood is matched with coy, cute, sprightly, easy 
movement, and sadism by excessive distortion 
and squashing. In general, life is portrayed as 
it might move in a land where people had brains 
and bodies of soft sorbo rubber. 

-335-



The matching of pictorial form and mood to 
design in U.P.A. films is, of course, very dif
ferent. U.P.A. 's artists favour simplicity. of 
form and simplicity of movement, the essence 
without the frills. Acid colours and sharp 
forms are matched by a movement resembling the 
way in which cane, glass and wire would move 
(if they could), springy, whippy, staccato. The 
wit and cynicism of these cartoons is acted out 
in slapstick of a high but blase kind. In general, 
this is life as it would be led in a land where 
people had brains and bodies of sheet metal. 
(Emphasis added) 

-336-



REFERENCES 

The following abbreviations are used: 

FJCC nnnn Proceedings of the nnnn 
Fall Joint Computer Conference 

SJCC nnnn Proceedings of the nnnn 
Spring Joint Computer Conference 

CACM Communications of the ACM 

IFIP Proceedings of the International Federation 
for Information Processing Global Conference 

1. N McLAREN 

2. 

Quotation in animation exhibit in the Canadian Cinematique 
Pavilion at EXPO '68 in Montreal Canada National Film 
Board Canada 

J HALAS R MANVELL 
The technique of film animation 
Hastings House New York 1959 

3. R STEPHENSON 
Animation in the cinema 
A Zwemmer Limited London A S Barnes & Co New York 1967 

4. E MARTIN 
Private communication 

5. K C KNOWLTON 
A computer technique for producing animated movies 
SJCC 19 

6. K C KNOWLTON 
A computer technique for the production of animated movies 
Bell Telephone Laboratories Film 

7. L L SUTRO 
A Model of Visual Space 
Biological Prototypes and Synthetic Systems, Volume 1 
Plenum Press New York 1962 

-337-



8. The human use of computing machines 
Bell Telephone Laboratories Symposium June 20-21 1966 

K C KNOWLTON 
Computer-Produced Movies 
A M NOLL 
Computer-Generated Three-Dimensional Movies 
F W SINDEN 
Synthetic Cinematography 
W H HUGGINS 
A Movie Language for Phasors and Signals 

9. L MEZEI 
Computers in design and communication: canadian graphics 
conference 
Datamation August 1966 

10. Conference on Computer Animation 
Education Development Center Newton Mass July 17-18 1967 

11. Proceedings of the 1967 UAIDE Annual Meeting 

12. Computer Output as Art 
1968 IEEE International Convention Record 

13. FJCC 1968 
A M NOLL 
Computer Animation and the fourth dimension 
J L SCHWARTZ E F TAYLOR 
Computer displays in the teaching of physics 
C CSURI J SHAFFER 
Art, computers, and mathematics 
J CITRON J H WHITNEY 
CAMP--Computer Assisted movie production 
N WINKLESS P HONORE 
What good is a baby? 
D D WEINER S E ANDERSON 
A computer animation movie language for 
educational motion pictures 

14. K C KNOWLTON 
Computer-produced movies 
Science Vol 150 26 November 1965 

15. F W SINDEN 
Force, mass, and motion 
Bell Telephone Laboratories Film 

16. MIT SCIENCE TEACHING CENTER 
Scattering in one dimension 
Film available on loan from the Atomic Energy Commission 

-338-



17. C LEVINTHAL 
Molecular model-building by computer 
Scientific American Vol 214 No 6 June 1966 

18. C LEVINTHAL 
Computer construction and display of molecular models 
Film 

19. E E ZAJAC 
Computer-made perspective movies as a scientific and 
communication tool 
Comm ACM Vol 7 No 3 March 1964 

20. E E ZAJAC 
Two-gyro, gravity gradient attitude control system 
Bell Telephone Laboratories film 

21. S VANDERBEECK 
Several animated films made with the aid of a computer 

22. J H WHITNEY 

23. 

24. 

Several animated films made with the aid of a computer 

Design and the com~uter 
Design Quarterly 6 /67 Walker Art Center 
Minneapolis Minn 

A M NOLL 
The digital com uter as a creative medium 
IEEE SPECTRUM October 19 7 

25. J REICHARDT 

26. 

27. 

28. 

29. 

Cybernetic serendipity, the computer and the arts 
Studio International London and New York 1968 

J NOLAN L YARBROUGH 
An on-line com uter drawin and animation s stem 
IFIP August 19 8 

W H HUGGINS D R ENTWISLE 
Exploratory studies of films for engineering education 
Department of Electrical Engineering The Johns Hopkins 
University Report to U S Office of Education 
September 1968 

T MIURA J IWATA J TSUDA 
An application of hybrid curve generation-cartoon 
animation by electronic computers 
SJCC 1967 

L HARRISON W W JACQUISH 
Private communications 

-339-



30. R M BAECKER 
Picture-driven Animation 
SJCC 1969 

31. A GUZMAN 
Computer recognition of three-dimensional objects in 
a visual scene 
Ph.D Dissertation Department of Electrical Engineering 
M I T January 1969 

32. S A COONS 
Computer graphics and innovative engineering design; 
the super-sculptor 
Datamation May 1966 

33. W R SUTHERLAND 

34. 

Computer assistance in the layout of integrated 
circuit masks 
IEEE International Convention Digest 1968 

J R LOURIE A M BONIN 
Computer-controlled textile designing and weaving 
IFIP August 1968 

35. R M BAECKER 
Planar Representations of Complex Graphs 
M I T Lincoln Laboratory Technical Note 1967-1 
6 February 1967 

36. R M BAECKER 

37. 

38. 

39. 

Experiments in on-line graphical debugging: the 
interrogation of complex data structures 
Proceedings of the First Hawaii International Conference 
on System Sciences January 1968 

v BUSH 
As we may think 
Atlantic Monthly July 1945 

J c R LICKLIDER 
Man-computer symbiosis 
Trans IRE PGHFE HFE-1 4 1960 

I E SUTHERLAND 
Sketchpad: a man-machine graphical communication system 
MIT Lincoln Laboratory Technical Report No 296 
January 1963 Also SJCC 1963 

4o. Information 
Scientific Issue September 1966 

-340-



41. J C R LICKLIDER W E CLARK 
On-line man-computer communication 
SJCC 1963 

42. J C R LICKLIDER 
Man-computer partnership 
International Science and Technology May 1965 

43. G A MICHAEL 
Pictures, computers, and input-output 
D B Bobrow and J L Schwartz Editors Computers and the 
policy-making community Prentice-Hall 1968 

44. D B PARKER 
Solving design problems in graphical dialogue 
Paper based on a chapter in On-line computer systems 
W J Karplus Editor McGraw-Hill 1966 

45. A VAN DAM 
Computer driven displays and their use in man/machine 
interaction 
Advances in computers Volume 7 1966 

46. M S WOLFBERG 
Computer displays 
Survey paper and bibliography for EE 648 The Moore 
School of Electrical Engineering University of 
Pennsylvania 17 November 1966 

47, Annual review of information science and technology 
C Cuadra Editor Contains each year a survey article 
on Man-Machine Communication 

48. I E SUTHERLAND 
Computer graphics; ten unsolved problems 
Datamation May 1966 

49. J E WARD 
Systems engineering problems in computer-driven CRT 
displays for man-machine communication 
IEEE Transactions on Systems Science and Cybernetics 
June 1967 

50. Adams Associates 
The computer display review 

51. H S CORBIN 
A survey of CRT display consoles 
Control Engineering December 1965 

-341-



52, Display systems engineering 

5 3. 

5 4. 

H R Luxenberg R L Kuehn Editors 
McGraw-Hill New York 1968 

M R DAVIS T 0 ELLIS 
The rand tablet: a man-machine communication device 
FJCC 19 

J F TEIXERA R P SALLEN 
The sylvania data tablet 
SJCC 1968 

55. K H KONKLE 
An analog comparator as a pseudo-light pen for 
computer displays 
IEEE Transactions on Computers C-17 January 1968 

56, L G ROBERTS 
The lincoln wand 
FJCC 1966 

57. L GALLENSON 
A graphic tablet display console for use under 
time-sharing 
FJCC 1967 

58, J E CURRY 

59, 

A tablet input facility for an interactive 
graphics system 
Proceedings of the 1969 International Joint 
on Artificial Intelligence Washington D C 

R LANDAU R PARDO 
Private Communication 

Conference 
May 19 69 

60. R ARNHEIM 
Art and visual perception--a psychology of the 
Creative Eye 
University of California Press Berkeley and 
Los Angeles 1967 

61. S A COONS 
Surfaces for computer-aided design of space forms 
Project MAC Technical Report MAC-TR-41 MIT June 1967 

62, T E JOHNSON 
Arbitrarily sha ed space curves for computer-aided design 
MIT 19 Summer Session Course on Computer-Aided Design 
1-12 August 1966 

-342-



63. M EDEN 

64. 

Handwriting and pattern recognition 
IRE Transactions on Information Theory Volume IT-8 
Number 2 February 1962 

P MERMELSTEIN M EDEN 
Experiments on computer recognition of connected 
handwritten words 
Information and Control Volume 7 Number 2 June 1964 

65. J C SHAW 

66. 

JOSS: Experience with an experimental computing service 
for users at remote typewriter consoles 
Proceedings of the IBM Scientific Computing Symposium on 
Man-Machine Communication May 3-5 1965 

R K MOORE W MAIN 
Interactive languages: design criteria and a proposal 
FJCC 19 

67. J WEIZENBAUM 
On-line user languages 
Nordisk Tidskrift for Informations-Behandlung (BIT) 
Bind 6 Hefte Nr 1 1966 

68. J C R LICKLIDER 
Languages for specialization and application of prepared 
procedures 
Proceedings of the 1965 Congress of Information System 
Sciences 

69. L G ROBERTS 

70. 

71. 

72. 

A graphical service system with variable syntax 
CACM Vol 9 No 3 March 1966 

K C KNOWLTON W H HUGGINS 
Some thoughts on programming languages for computer 
animation 
Unpublished paper 

T E CHEATHAM JR A FISCHER P JORRAND 
On the basis for ELF--an extensible language facility 
FJCC 1968 

D G BOBROW J WEIZENBAUM 
List processing and extension of language facility by 
embedding 
IEEE Transactions on Electronic Computers Volume EC-13 
Number 4 August 1964 

-343-



73. E L THOMAS 
The storing and reuse of real-time graphical inputs 
M S Thesis Dept of Electrical Engineering MIT June 1969 

74. MM JONES 

75. 

Incremental simulation on a time-shared computer 
Project MAC Technical Report MAC-TR-48 (THESIS) 
MIT January 1968 

0 J DAHL K NYGAARD 
SIMULA--an ALGOL-based simulation lan ua e 
CACM Volume 9 Number 9 September 19 

76. M D'IMPERIO 
Data structures and their representation in storage: 
Parts I and II 
Part I NSA Technical Journal Volume IX Number 3 
1964 unclassified 
Part II NSA Technical Journal Volume IX Number 4 
1964 unclassified 

77. B RAPHAEL D G BOBROW L FEIN J W YOUNG 
A brief survey of computer languages for symbolic and 
algebraic manipulation 
Paper in D G BOBROW Editor Symbol manipulation lan
guages and techniques North-Holland Amsterdam 1968 
also reprinted in IEEE Computer Group News Volume 1 
Nos 5 and 6 September and November 1967 

78. R M BALZER 
Dataless programming 
FJCC 1967 

79. N WIRTH 
On certain basic conce ts of ro rammin lan ua es 
Technical Report No CS 5 Computer Science Department 
Stanford University 1 May 1967 

80. R A KIRSCH 

81. 

Computer interpretation of English text and picture 
patterns 
IEEE-EC August 1964 

D 1 LONDE R F SIMMONS 
Namer: a pattern-recognition system for generating 
sentences about relations between line drawin s 
Proceedings of the 19 5 ACM National Conference 

-344-



82. J A FELDMAN 
Aspects of associative processing 
MIT Lincoln Laboratory Technical Note 1965-13 April 1965 

P D ROVNER J A FELDMAN 
An associative processing system for conventional 
digital computers 
MIT Lincoln Laboratory Technical Note 1967-19 April 1967 

P D ROVNER 
The LEAP users manual 
MIT Lincoln Laboratory Technical Note 1968-40 To be 
released 

P D ROVNER J A FELDMAN 
The LEAP langua~e and data structure 
IFIP August 19 B 

83. P J LANDIN 
The mechanical evaluation of expressions 
The Computer Journal Vol 6 No 4 January 1964 

84. T A STANDISH 
A data definition facility for programming languages 
PhD Dissertation Carnegie-Mellon University May 18 1967 

85. W F MILLER A C SHAW 
Linguistic methods in picture processing--a survey 
FJCC 1968 

86. J V GARWICK 
GPL, a truly general purpose language 
Comm of the ACM Vol 11 No 9 September 1968 

J V GARWICK J R BELL L D KRIDER 
The GPL language: user's manual and formal description 

87. WR SUTHERLAND J W FORGIE M V MORELLO 
Gra hies in time-sharin : a summar of the TX-2 ex erience 
SJCC 19 9 

88. Graphics 
Semiannual Technical Summary Reports to the Advanced 
Research Projects Agency 
Submitted by MIT Lincoln Laboratory in recent years 

89. W A CLARK et al 
The lincoln TX-2 computer 
Proceedings of the Western Joint Computer Conference 
February 1957 

-345-



90. T E JOHNSON 
Analog generator for real-time display of curves 
MIT Lincoln Laboratory Technical Report No 398 July 1965 

L G ROBERTS 
Conic display generator using multiplying digital-analog 
converters 
IEEE Transactions on Electronic Computers EC-16 June 1967 

H BLATT 
Conic display generator using multiplying digital-analog 
decoders 
FJCC 1967 

91. J W FORGIE 
A time- and memory-sharing executive program for 
quick-response on-line applications 
FJCC 19 5 

92. L G ROBERTS M V MORELLO 
MIT Lincoln Laboratory Group 23 Internal Memos on the 
Display and Interrupt Executive Systems 

93. J A FELDMAN 
A formal semantics for computer languages and its 
application in a compiler-com~iler 

CACM Vol 9 No 1 January 19 6 
L F MONDSHEIN 
VITAL compiler-compiler system reference manual 
MIT Lincoln Laboratory Technical Note 1967-12 
February 1967 

94. L G ROBERTS 
Homogeneous matrix representation and manipulation of 
N-dimensional constructs 
May 1965 Included in Reference 50 
See also the explanation of homogeneous matrices in the 
introductory survey article in Reference 50 

95. M L DERTOUZOS H L GRAHAM 
A ra hical dis la technique for on-line use 
FJCC 19 

96. H F LEDGARD 
The manipulation of approximating functions on a graphical 
display facility 
M S Thesis Department of Electrical Engineering MIT 
September 1965 

97. G A ROSE 
Computer graphics communication systems 
IFIP August 1968 

-346-



98. Magnetic disc + TV monitors = low cost graphic 
display terminals 
Information Display January/February 1968 

99. U F GRONEMANN 
Operation Manual for the CODITCON: A TV scan-conversion 
and image-storage system for computer displa~s 
Electronic Systems Laboratory Report ESL-R-2 4 MIT 
July 1966 

100. T E JOHNSON 
Sketchpad III--a computer program for drawing in three 
dimensions 
SJCC 1963 

101. W H HUGGINS D R ENTWISLE 

102. 

103. 

Computer animation for the academic community 

D C BEARDSLEE M WERTHEIMER 
Readings in perception 
Van Nostrand Princeton 1958 See especially Part III.D. 
"Perception of Successive and Changing Stimuli" 

S S STEVENS 
Handbook of experimental psychology 
John Wile and Sons New York 1951 See especially 
Chapter 32 "Time Perception" by H WOODROW 

104. R W WOODWORTH H SCHLOSBERG 
Experimental psychology 
Henry Holt New York 1954 See especially Chapter 5 
"Expressive Movements" 

105. A MICHOTTE 
The perception of causality 
Basic Books New York 1963 

106. K M COLBY 

107. 

Computer-aided language development in nonspeaking 
mentally disturbed children 
Technical Report No CS 85 Computer Science Dept 
Stanford University December 15 1967 

K M COLBY 
Private Communication 

-347-



108. 

109. 

110. 

R CONTINI H GAGE 
Human gait characteristics 

D S McKENZIE 

R DRILLIS 

Knee controls for artificial legs 
Proceedings of a Symposium on Biomechanics and related 
bio-engineering topics R M KENEDI Editor Permagon 
Press New York 1964 

H BLUM 
A transformation for extracting new descriptors of shap~ 
Symposium on Models for the Perception of Speech and 
Visual Form Boston Mass 11-14 November 1964 

A M NOLL 
Choreography and computers 
Dance Magazine January 1967 

A HUTCHINSON 
A reply 
Dance Magazine January 1967 

-348-



APPENDIX O: 

MULTIPLE-CHOICE EXAMINATION 

by Miss Patricia Lewis and Mr. Ronald Baecker 

For the benefit of academically-oriented readers, a short 
multiple-choice quiz is appended. 

SELECT THE BEST ANSWER: 

(1) ADAM does not have a head because: 
(a) very small ellipses are distorted by the TX-2 scope; 
(b) the computer dropped a bit; 
(c) in reality, his name is Ichabod Crane; 
(d) just when the head was to be included, the size of 

the program reached a file boundary; 
(e) the answer may not be ascertained from the 

dissertation. 

(2) EVE is: 
a) a snake; 
b) the original swinger; 
c) a serpent; 
d) a multiple personality; 
e) a collection of rubber-band lines. 

(3) A crocodiless is: 
a a female alligator; 
b a male alligator; 
c a typographical error; 
d a female crocodile; 
e) a female caiman; 

(f) a mythical beast. 

(4) Computers are valuable in animation because: 
a) they think; 
b) they cannot think; 
c) they are sorcerers' apprentices; 
d) none of the above; 
e) none of the below; 
f) all of the below; 
g) none of the above. 

(5) A reason for inviting artists and animators, unfamiliar 
with computer graphics, to sketch into GENESYS is: 
(a) because Mr. Baecker cannot draw; 
(b) because they are very enthusiastic; 
(c) because they are often young and beautiful women; 
(d) because they are the clients for whom this work is 

intended. 

-349-



BIOGRAPHICAL NOTE 

Ronald Michael Baecker 

Ronald Baecker was born in Kenosha, Wisconsin, on 

October 7, 1942. He attended Taylor Allderdice High School 

in Pittsburgh, Pennsylvania, and then received an S.B. degree 

in Physics with honors from MIT in 1963, and an M.S. degree 

in Electrical Engineering from MIT in 1964. Throughout his 

undergraduate years, he held a National Merit Scholarship; 

while working on his M.S., he was a National Science Founda-

tion Fellow. During the academic year 1964-1965, he was a 

Deutscher Akademischer Austauschdienst Dankstipendiat, study

ing mathematics at the University of Heidelberg, Germany. 

Since returning to MIT from Germany, he has pursued the 

Ph.D. degree in Computer Science in the Electrical Engineering 

Department. This degree will be officially granted in June of 

1969. During his doctorial studies, he has assisted in 

teaching subjects including automatic computation, applied 

modern algebra, and information theory. He has also been a 

research assistant at Project MAC, and a summer employee and 

consultant at Lincoln Laboratory. 

He is currently a Commissioned Officer in the Corps of 

the U.S. Public Health Service, serving at the Division of 

Computer Research and Technology at the National Institutes 

of Health at Bethesda, Maryland. His interests include computer 

graphics and interactive systems, animation, programming lan

guages, debugging, graph theory, applications of computers to 

education, and the effects of computers on society. 

He has recently published: Planar Representations of 
Complex Graphs, M.I.T. Lincoln Laboratory Technical Note 1967-l, 
6 February 1967; Experiments in on-line graphical debugging: the 
interrogation of complex data structures, Proceedings of the 
First Hawaii International Conference on System Sciences, 
January, 1968; Picture-driven Animation, Proceedings of the 
Spring Joint Computer Conference, 1969. 

-350-



CS-TR Scanning Project 
Document Control Form 

Report# Lr..., s -TR- G ( 

Date : J-1 J_ 11£. 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
~ Laboratory for Computer Science (LCS) 

Document Type: 

:RJ::. Technical Report (TR) D Technical Memo (TM) 

D Other: -----------
Document Information Number of pages: 350 [3s7-;{rl'\Ci0) 

- Not to include DOD forms, printer lntstructions, etc ... original pages only. 

Originals are: 

D Single-sided or 

lQ Double-sided 

Print type: 
D Typewriter D Offset Press D Laser Print 

Intended to be printed as: 

D Single-sided or 

~ Double-sided 

0 InkJet Printer ~- Unknown D Other:. ______ _ 

Check each if included with document: 

~DOD Form 

D Spine 

~ Funding Agent Form 

D Printers Notes 

~Cover Page 

D Photo negatives 

D Other: ------------
Page Data: 

Blank Pages(by-number): __________ _ 

Photographs!Tonal Material (bypagenumbefl: YI· lf 5 1 41 SJ '1-1 /o~-/0{;,J ?~ l~o 141.f 1rl 16~ lr,'J)'~ f t:,·7; 
/6 ~ 171 /) J. > J J J J ) J 

1; } J 

0 the r (nole descriplionlpag number): 

Description : 

Scanning Agent Signoff: 

Date Received: d._1 J-., If b Date Scanned: J:__ I fA-116 Date Returned: cA (] __ ! ? .( 

Scanning Agent Signature: __ __.._~-'--"-"""~"'"'j"""-"'-4d~4,_..fv~.;;....;-<irrrA~~-



~------------------------------------~---------- -

UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Secunty c1111'1111(icnt10n of title, body ol 11bstr11ct and rnde1unQ annotation must be entered when the overall repor/ ts c:/11sslf1ed) 

1. ORIGINATING ACTIVITY (Corporate tmthor) ,. REPORT SECURITY CLASSIFICATION 

Massachusetts Institute of Technology UNCLASSIFIED 
Project MAC lb- GROUP 

None 
3. REPORT Tl TLE 

Interactive Computer-Mediated Animation 

4. DESCRIPTIVE NOTES (Type of report 1md inclusive dates) 

Ph.D. Thesis, Department of Electrical Engineering, June 1969 

" AUTHOR(SI (Last name, first name, m1t1nl) 

Baecker, Ronald M. 

6. REPORT DATE 7•. TOTAL NO. OF PAGES ]'b NO OF REFS 

June 1969 352 110 ... CONTRACT OR GRANT NO. ,._ ORIGINATOR'S REPORT NUMBERISI 

Office of Naval Research, Nonr-4102(01) b. PROJECT NO. MAC-TR-61 
NR-048-189 

"'RR 
Ob OTHER REPORT NO(S) (Any olher numbers that may be 

003-09-01 ass1Qned this report) 

d. 

10. AVAILABILITY/LIMITATION NOTICES 

This document has been approved for public release and sale; 
its distribution is unlimited. 

11- SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY 

Advanced Research Projecls Agency 

None 3D-200 Pentagon 
Washington, D.C. 20301 

13- ABSTRACT The use of interactive computer graphics in the construction of animated 
visual <lisp lays is investigated. In interactive com2uter-mediated animation, movies 
are formed from direct console commands, algorithms, free-hand sketches, and real-time 
act ions (such as mimicking a movement or rhythm with a stylus or a push-button). The 
resulting movies can be immediately viewed and altered. 

In 2icture-driven animation, the animator may sketch and refine (1) static 
images to be used as components of individual frames of the movie, and (2) static and 
dynamic images that represent movement and rhythm. These latter pictures drive alga-
rithrns to generate dynamic displays. Since each such picture determines critical 
parameters of a sequence of frames, a single sketch or action controls the dynamic 
behavior of an entire interval of the movie. 

The dissertation also outlines the design of a multi-purpose, open-ended, 
interactive Animation and Picture Processing Language. APPL is a conversational 
language which accepts tree-hand sketches, real-time actions, and algorithms that 
control interactive dynamic <lisp lays. 

14. KEY WORDS 

Computers Interactive graphics On-line computers 
Computer animation Machine-aided cognition Real-time computers 
Computer graphics Multiple-access computers Time-sharing 

Time-shared computers 

DD FORM 
1 NOY H 1473 (M.l.T.) UNCLASSIFIED 

Security Classification 



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.l.T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 


