
.. .. ,...
!

.I

A PORMAL SYS'l'IX
FOR DEPIKIBG THI SYB'l'AX ABD SBJIAB"J.'ICS

OP COKPlJTIR LASGU'AGIS

HEBRY FRAICIS LBDGARD

· B.S. 1 Tutts UniTersit7
(1964)

S.M. 1 Massachuaetta Institute ot Technolo&1'
(1965)

E.E. 1 Massachusetts Institute ot TechnoloSJ'
(1967)

SUBMITTED IX PARTIAL FULFILLMEBT
OF THI RBQUIREXBBTS FOR THI

DIGREI OP DOCTOR OP
PHILOSOPHY

at the

MASSACHUSETTS IBSTITOTB OP
TBCBBOLOGY

Pebruar7 1 1969

Signature ot Author $<, ~ 1f ,.Y' ..11.Ll,,,.,/
D7rtaent o'il'i.~i1il1ineerin1

0 L 9 Pebruar7 2, 1969
_,,~~•'~I

Cert i tied b7 ---.AJ.:..,..'---......_--.:.Y""_W..,~""~•·--r.;oi;.J51.-----""!'"""----,..-
~ ~ Thesis Supervisor

Accepted b7 ______________________ _.... __ .._. ____ _...,_,.,.._.....,,._ __ ...,. __

Cbair••·· tieiart;;#t•1 co .. ittee
on Graduate Students

A FORMAL SYSTEM

FOR DEFINING THE SYNTAX AND SEMANTICS

OF COMPUTER LANGUAGES

by

Henry Francis Ledgard

Submitted to the Department of Electrical Engineering on
February 24, 1969 in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

ABSTRACT

The thesis of this dissertation is that formal definitions
of the syntax and semantics of computer languages are needed.
This dissertation investigates two candidates for formally
defining computer languages:

(1) the formalism of canonical •Ystems for defining
the syntax of a computer language and its translation into
a target language, and

(2) the formalisms of the A-calculus and extended
Markov algorithms as a combined formalism used as the basis
of a target language for defining the semantics of a computer
language.

Formal definitions of the syntax and semantics of SNOBOL/l
and ALGOL/60 are included as examples of the approach.

Thesis
Title:

Supervisor: Edward L. Glaser
Associate Professor of Electrical Engineering, M.I.T.
{currently Chairman, Department of Information and
Co.mputer Sciences, Case Western Reserve University)

2

~· .- " ...

ACK?WWLEDGEMENT

T~ Professor Edward Glaser, whose-insight and imagination

have sparked my enthusiasm and prompted many major develop-

ments throughout this dissertation;

To Professor John wozencraft, whose warm guidance and

penetrating criticisms have motivated a standard that this

dissertation can only approximate;

To Professor Robert Graham, whose practical understand-

ing of computer languages has helped initiate and direct

this dissertation;

To Peter L~ndin, who patiently devoted hours teaching me

his ideas on computer languages;

To Professor John Donovan, for bis collaboration on

canonic systems;

To Calvin Mooers, for many lively discussions on key

issues;

To Leon Groisser, for bis wise and thoughtful coJlllDents on

my life as a student;

And to my parents, whose lifelong support bas been in-

valuable.

"Work reported herein was supported (in part) by
Project MAC, an M.I.T. research program sponsored
by the Advanced Research Projects Agerief~ l>epart
ment of Defense, under Ottic'e ot'.hY.al :Research
Contr•ct luaber lonr,-4J.02 (0.1). ·B.ep~Q;duction in
whole or in pa.rt is P•r•i tte~. tor .any p,ur;p.ose of
the United States Governaen~."

A Virtuoso Typist: Mrs. Lila s. Hartmann

3

STATEMENT OF ORIGIN

I gratefully acknowledge the following men, upon whose
work this dissertation is heavily based. In particular:

a. The formalism of canonical systems is due to Emil
Post and RaY11ond Smullyan.

b. The application of "canonic" systems to specify the
syntax of a computer language was first made by
John Donovan.

c. The notion of a defining canonical system and its
use in formalizing derivations appeared earlier in
works by Smullyan and Donovan.

d. The formalism of the A-calculus is due to Alonzo
Church.

e. The application of the A-calculus to define a por
tion of the semantics of a coaputer language was
first made by Peter Landin.

f. The characterizations of the semantics of ALGOL/60
and of the evaluator for the target language are
based in part on similar characterizations by Landin.

g. The formalism of Markov algorithms is due to A. A.
Markov.

h. The notion of adding string variables to Markov
algorithms is due to A. Caracciolo.

The application and integration of the above work to
define the syntax and semantics of computer languages is the
principal contribution of this dissertation. In particular:

a. The application of canonical systems to define the
translation of computer languages is due to the
author.

b. The application of defining canonical systems to de
fine notational abbreviations is new.

c. The notation for canonical systems and the uniform
notation for defining canonical-systems are for the
most part new.

d. The application of the A-calculus and (extended)
Markov algorithms to define the primitive tunctions
in a computer language is new.

e. The application of (extended) Markov algorithms to
define the operation of an evaluator for the target
language for characterizing semantics is new.

f. The definitions of the syntax and semantics of
SNOBOL/l and ALGOL/60 are new.

4

TABLE OF COITENTS

I. INTRODUCTION • • 9

II. CANON:DL SYSTEMS: A SELF-EHElfDIIIG PORMALISM
FOR SPECIFYING THE SYITAX OF A COMPUTER LAKGUAGE
AND ITS TRANSLATION INTt> A TARGET LANGUAGE • 12

III.

1.

2.

3.

Canon:lc&l Systems. • • • • •
a. The Basic Formalism ••
b. Application to Specify
c. Application to Specit7

.
Syntaz. •
Translation •

Def'ining Canonhl Systems. • •
a. The ~otion of a

De:r'ining CanoniCBl. System. • • • •
b. Application to Derive Syntactically

Legal Programs and Their Translations ••
c. Ap.p.lication to Specify

Notational Abbreviations •••.•.•

Discuss.ion • • • • ••

EXTENDED MARKOV ALQORITHMS AND >.-CALCULUS:
A COMBINED FORMALISM USED·AB THE BASIS OF
A LANGUAGE FOR DEFINING SEMANTICS. .
1. The Target Language.

.a. Extended Markov Algorithms . . .
'b .• The ;>..-Calculus
c. The Marriage ot Exten:ded Markov

Algorithms to the >.-G;alculus
d. The Target Langusge • . .•

2. An Evaluator for the Target Language .•

3. Discussion
IV. A SPECIFICATION OF THE SYNTAX

15
15
22
28
32

32

34

39

44

49

"51
'51
.60

63
T4

84
100

AND SEMANTICS OF SNOBOL/l •••••••••••• 103

V. A SPECIFICATION OF THE SYNTAX
AND SEMANTICS OF ALGOL/60. • 122

VI. DISCUSSION • • • • 161

REFERENCES • • 191

BIOGRAPHICAL NOTE. • • • • 203

5

APPENDICES

1. CANONICAL SYSTEMS
l.~ Canonical System Specifying the

Syntax of a Subset of ALGOL/60. • • • • • • • 168
1.2 Canonical System Specifying the Translation

of the Subset into Assembler Language • • • . 169
1.3 A Defining Canonical System for the Subset •• 170
1.4 Derivation of a Syntactically Legal Program

and its Translation into Assembler Language • 172

2. THE TARGET LANGUAGE
2.1 Canonical System Specifying the Translation

of the ALGOL/60 Subset into the Target
Language •.•••••.•••••••

2.2

2.3

• 173

. 173
Definition of the Primitive
Functions in the Subset • • •
Defi~ition of an Evaluator
for the Target Language • • . . • • 174

3. SNOBOL/l
3.1 Canonical System Specifying Syntax •••••• 176
3.2 Canonical System Specifying

Translation into the Target Language ••••• 177
3.3 Definition of Primitive Functions •••••• 178

4. ALGOL/60
4.1 Canonical System Specifying Syntax •••••• 180
4.2 Canonical System Specifying

Translation into the Target Language. . • 183
4.3 Definition of Primitive Functions. • . • 185

5, THEORETICAL BACKGROUND OF CANONICAL SYSTEMS.

ILLUSTRATIONS

Cartoon Based on "Machines Should Work, People
Should Think," Slogan from IBM Television
and Magazine Advertisements

Vending Machine of the Future ••

6

• 189

8

204

DEFINITIONS

The following words are used like household words in
this dissertation:

Symbol:

Alphabet:

String:

Language:

Syntax:

A character or any indivisible sequence of
characters.

A set of symbols.

A sequence of symbols on an alphabet.

A set of strings.

The set of rules specifying the strings in a
language.

Semantics: The set of rules relating the strings in a
language to the "behavior" or "objects" that
the strings denote. For a computer language
implemented by translating the strings 1.n the
language into str.ings tn ·a target language,
the behafior or obj~ct~ that a string denotes ,
is defined by the corr.esponding target lan
guage string, whose meaning is presumably
understood. ·

Translation: A function mapping one set of strings into
another set of strings.

Abbreviation: A bijective function mapping one set of
strings (the unabbreviated. st:rings) into
another set of strings- (the abbreviated
strings). The bije<:tiveness of the ·f'unc.tion

·insures the unique ''reversibiilty of the map
ping.

7

* Machines should work, people should thlnlc.

8

-·----~- -"'~

CHAPTER I

INTRODUCTION

This dissertation has a thesis: that formal defini-

tions of the syntax and semantics of computer languages are

needed. The formal system presented here was developed as

a step towards meeting this objective.

There already exist formalisms, languages, and techniques

for defining syntax and semantics. To be successful, a de

fining mechanism (or for that matter a computer language)

should be simple, do clever things, and at the same time dis

play fundamental principles about the objects being defined.

Most methods for defining computer languages do not satisfy

these criteria. The objective of this dissertation was to

attempt to meet these criteria, to develop a lucid and uniform

method for defining computer languages. A formal approach to

language definition was taken in the hope that this approach

would gain a degree of precision, simplicity and theoretical

power. Although these virtues are not completely satisfied

in this dissertation, I believe the formal system presented

here excels existing methods for defining the syntax and

semantics of a computer language. The shortcomings of this

approach to language definition and recommendations for

future research in removing these shortcomings are discussed

in the conclusions of Chapters II and III and in Chapter VI.

9

-·--------,,---~--- .. __,__." ___ .----~· ----·--:"--.--...---- .------:-·

Research generally progresses in two directions: in

the development of new theories, and in the application and

simplification of existing theories. This research is a

study in the second direction. In particular, an attempt

has been made to keep the notation and terminology of the

formal system as simple as possible. It is natural for the

author of a work to introduce notation, terminology, and

conventions that became convenient for him to use, but which

often obscure the work and its contributions to others. This

author has tried to avoid this temptation.

The formal system for defining syntax and semantics will

be given in two parts. First, Chapter II presents the for

malism of canol'fu:al systems, which will be used to define the

syntax of a computer language and its translation into an

arbitrary target language. Second, Chapter III presents the

formalisms of extended Markov algorithms and the A-calculus,

which will be used as the basis for a particular target

language for defining the semantics of a computer language.

The semantics of the target language are specified, in turn,

by giving an extended Markov algorithm definition of a func

tion fo~ mapping a string in the target language into a

string denoting its value.

Chapters IV and V illustrate the formal system by de

fining the syntax and semantics of the computer languages

SNOBOL/l and ALGOL/60. In particular, Chapter IV describes

SNOBOL/l in the spirit of providing a reference manual for

10

SNOBOL/l, and is directed to the reader who wishes a detailed

knowledge of the language. Chapter V not only explicates

the formal definition of ALGOL/60 but also relates the formal

definition to other languages and other methods of language

definition. Finally, Chapter VI contains a discussion of the

utility of the formal system in defining computer languages.

11

CHAPTER II

CANONI<liiBYSTEMS: A SELF-EXTENDING FORMALISM

FOR SPECIFYING THE SYNTAX OF A COMPUTER LANGUAGE

AND ITS TRANSLATION INTO A TARGET LANGUAGE

This chapter presents the foraalisa of canoulml. systems

and its application to define the syntax of a computer language

and its translation into a target language.

The mathematical underpinnings of canonical systems are due

1 2 to Emil Post and Raymond Smullyan. Canoriical systems can be

2
used to specify any "recursively enumerable" set. The set

of strjngs comprising all syntactically legal programs in a

computer language and the set of pairs of strings comprising

all syntactically legal programs in a computer language and

their translations into a target language are Just two examples

of recursvely enumerable sets. Presumably, canonical systems

can specify any translation or algorithm that a machine can

perform. Heuristic evidence that this statement is true is

due to the works of Turing30 • 31 and Kleene. 32 In these works

the notion of functions computable by a Turing machine were

asserted 30 to comprise every function or algorithm that is

intuitively computable by machine, and the functions comput

able by a Turing machine were shown equivalent 31 • 32 to the

set of all "general recursive" sets, which are encompassed by

canonica.l.systems.

The application of a logically modified variant of the

1 2 38 formal systems of Post, Smullyan, and Trenchard More to

12

specify completely the syntax of a computer language was first

made by John Donovan. 3 • 5 Donovan app~ied bis formal system

to specify the set of legal programs in a computer language.

including the specification of allowable character spacing.

and more importantly, the specification of context-sensitive

requirem.ents on the set of legal progra•s, like the require-

ment that all statement labels in a program be different.

Donovan introduced the term "canonic systems~ (in recog

nition of Post's work1) to describe his formal system. Al-

though Donovan's formal system is not used here, many ideas

and techniques presented here have ste-ed from Donovan's

work. The name "canonical systems" ts usei to distinguish

the formal system presented in this dissertation from the

formal systems of Post, Smullyan and Donovan. A discussion

of the theoretical background for canonical systems (as pre-

sented here) is given in Appendix 5. The terminology for

1 canonical systems presented here is due to botb Post and

2 Smullyan. The notation for canonical systems presented here

is due in part to Post, 1 Smullyan 2 and Donovan, 3 and 11 in

large part new. Many hours were spent in developing the nota-

tion presented here in the hope that the notation wou1d be

well-suited to computer languages. Discu~sions with Calvin

Mo~ers have had a major effect on the notation.

To illustrate by example the techniques used in speci r·y-

ing the syntax and translation of a computer language with

canonical systems, a small and rather useless subset of subset

of ALGOL/6028 will be taken as a source language, while IBM

13

System/360 assembler language42 will be taken as a target

language. The Backus-Naur form specification of the ALGOL/60

subset is given below:

<DIGIT> : : = 112'3
<VAR> : : = A B

<PRIMARY> : : = <DIGIT> I <VAR>
<ARI TH EXP> : : = <PRIMARY> I <ARI TH EXP> + <PRIMARY>
<STM> : : = <VAR>:=<ARITH EXP>

<TYPE LIST> : := A J B I A9 B
<DEC> : : = INTEGER< TYPE LIST>

<PROGRAM> : : = BEGIN <DEC> ; <STM> END

This subset allows programs containing only one declaration

and one limited type of arithmetic assignaent statement.

The rules for constructing a canoni:sl.system definition

of a computer language. the rules for abbreviating a canonical

system. and the rules for deriving strings defined by a

canon:lcal system wi 11 be presented informally in Sect ion 2 .1

of this chapter usint the English language. In Section 2.2
these rules will be formally stated using the notion of a

defining canon1calsystem. In particular, each underlined

expression in the next section will be defined formally in

Section 2.2 with a defining canonlCal.. system. I now proceed

to the informal definition of canol'lbil systems and the appli-

cation of this formalism to specify the syntax and translation

of a computer language.

14

.,

2 .1 Canonical Systems

2.la The Basic Form•lism

A canonical system consists of a collection of the follow-

ing items:

(1) An alphabet A, called the object alphabet.

(2) An alphabet P, called the predicate alphabet. Each
predicate in the predicate alphabet is assigned a
unique positive integer called its degree.

(3) An alphabet V, called the variable alphabet.

(4) Another alphabet, which consists of six punctuation
symbols, the implication sign, conjunction sign,
tuple sign, delimiter sign, left bracket sign, and
right bracket sign.

(5) A f'inite sequence of strings that are well-formed
productions, according to the definition given
below.

In a well-f'ormed production, it is necessary to be able

to determine the alphabet from vhich each symbol is drawn.

Accordingly, I will use {a) lover case English letters (pos-

sibly subscripted or superscripted) for variable alphabet

symbols (b} strings of capital English letters, digits, and

spaces, each separated by a tuple sign, for predicate alpha-

bet symbols (c} the symbols

-+ implication sign

'
conjunction sign
tuple sign
delimiter sign

< left bracket sign
> right bracket sign

for punctuation symbols, and (d) symbols not in alphabets (2),

(3) and (4) for object alphabet symbols.

A well-formed term consists of a sequence of variable

and object alphabet symbols (e.g., "a+p" and "uv"). A

15

well-formed term tuple consists of a sequence of terms each

separated by a tuple sign and enclosed by a left and right

bracket sign {e.g., "<a+p:uv>"). A well-formed atomic formula

consists of a predicate alphabet symbol followed by a term

tuple {e.g., "ARITH EXP:VARS<a+p:uv>"}. A well-formed pro

duction consists of (a} an atomic formula followed by the

delimiter sign (e.g~, 11 ARITH OP<+>;") or {b) a sequence of

atomic formulas each separated by the conjunction sign and

followed by the implication sign, another atomic formula, and

the delimiter sign (e,g., "PRIMARY:VARS<p:v>,

ARITH EXP:VARS<a:u> ~ ARITH EXP:VARS<a+p:uv>;"). An atomic

formula occurring before the implication sign is called a

premise. An atomic formula following the implication sign

or occurring alone is called a conclusion, A production con

taining no premises is called an atomic production.

In the specification of written expressions in computer

languages, it will often be necessary to include English

letters, digits, spaces, and the punctuation symbols as mem

bers of the object alphabet. Since predicate alphabet charac

ters, the implication sign, conjunction sign, and delimiter

sign cannot occur within the brackets of a term tuple, I

adopt the convention that these symbols can be used in a term

tuple as object alphabet symbols. Furthermore, let the quota

tion marks "'" and 11
•

11 be symbols not contained in the object

16

alphabet. Strings containing variable alphabet symbols, the

tuple sign, lettbracket sign and right bracket aigti. can

also be used as members ot the· object alphabet provided that

the strings are enclosed by the quotation marks when used

within a production. For e:acample, consider the following

productions:

VAR<A>;
VAR<'x"">;
VAR<v>
VAR<v>, ARITH:VARS<a:u>

-+ ARITH EXP:VARS<v:v,>;
+ ARITB EXP:VARB<a+v:uv,>;

Here, the symbols {A x + ,} enclosed in angle brackets are

object alphabet symbols. The symbols {a v u} are variable

alphabet symbols.

A derivation is a string that can be obtained trom a

canonbU.system using the following two rules:

(1) If c; is a production containing no premises, then
the string c can be deri vecl from the <ranoniml sys
tem.

(2) It p-+c; is a production with premises p, and ·q+d;
is an instance ot this production with each variable
in the production replaced by some object string,
and each premise in q has been prerl-ously derh''d'
then the string d can be derived from tµe canonic
system.

These rules can be applied to the previously given production

to derive the strings

VAR<A>
ARITH EXP:VARS<A:A;>

VAR<x>
ARITH EXP:VARS<A+x+A:A,x,A,>;

The strings derivable from a canon1cal.,system will be inter-

preted in the following way. A predicate will be interpreted

17

as the name of a set; the term tuple following a predicate

will be interpreted as a string that is a member of the named

set. In the above case,

the strings "A" and "x".

the set "VAR" contains two members,

The set "ARITH EXP:VARS" contains

an infinite number of members, some of which are "A:A," and

"A+x+A:A,x,A,". Furthermore, I will follow the convention

that each string of predicate characters separated by a tuple

sign will be called a predicate part, and that predicates

of degree k will consist of either one or k predicate parts.

In the case where a predicate of degree k consists of k predi

cate parts (e.g. ,"ARITH EXP:VARS"), each predicate part of the

predicate will be some mnemonic describing the intended in

terpretation of the corresponding term in the associated term

tuple (e.g., in the atomic production "ARITH EXP:VARS

<a+p:uv>" the string "a+p" is interpreted as an arithmetic

expression and the string "uv" is interpreted as the list of

variables used in the arithmetic expression). The predicate

parts and terms occurring after the tuple sign in an atomic

production will be called "auxiliary" predicate parts and

"auxiliary" terms (in the above case the term "uv" is the

auxiliary term for the auxiliary predicate part "VARS").

For example, next consider the following canonical.. system

specifying a set named "ARITH EXP:VARS", consisting of all

pairs of strings such that the first element of each pair

is an arithmetic expression in the subset of ALGOL/60, and

the second element of each pair is a list of the variables

18

occurring in the arithmetic expression:•

1.1 DIGIT<l>;
1. 2 DIGIT< 2>;
1. 3 DIGIT< 3> ;
2.1 VAR<A>;
2.2 VAR;

3.1 DIGIT<d> + PRIMARY:VARS<d:A>;
3.2 VAR<v> + PRIMARY:VARS<v:v,>;
3. 3 PRIMARY: VARS<p: v> + ARI TH ·EXP: VARS<p: v>;
3.4 PRIMARY:V.ARS<p:v>, ARITH EXP:VARS<a:u>-+ ARI.TH EXP:VARS

<a+p:uv>;

These productions can be interpreted:

1.1 The symbol II l" is a member of the set named "DIGIT".
1. 2 The symbol !f 2 II is a member of the set named "DIGIT".
1. 3 The symbol "3" is a member of the ·set named "DIGIT".
2.1 The symbol "A" is a member of the set named "VAR".
2.2 The symbol "B" is a member of the set n8,Jlled "VAR".

3.1 If "d" represents a member of the set named "DIGIT",
then the pair of strings denoted by "d:A" is a member of the

set named "PRIMARY:VARS".
3.2 If "v" represents a member of the set named "VAR",

then the pair of strings denoted by "v:v," is a member of the
set named "PRIMARY:VARS".

3.3 If the pair "r:v" represents a member of th~
set named 1 PRIMARY:VARS",

then the pair of strings denoted by "p:v" is a member of the
set named "ARITH EXP:VARS".

3.4 If the pair "p:v1' represents a member of the set named
"PRIMARY:VARS",

and the pair "a:u" represents a member of the set named
"ARITH EXP:VARS",

then the pair of strings denoted by "a+p:uv"
is a member of the set named

"ARITH EXP:VARS 11
•

or more informally:

*The symbol "A" denotes the null string, i.e., if P is a
string then

PA = P = AP

19

~~--- -------- -- ... ····•· ·---

1. The symbols "1", "2" and "3" are digits.
2. The symbols "A" and "B" are variables.

3.1 If "d" ls a digit,
then "d" is a primary with a null list of variables.

3.2 If "v" is a variable,
then "v" is a primary with a list "v," of variables.

3.3 If "p" is a primary with a list of variables "v",
then "p" is an arithmetic expression with the same list of

variables "v".
3.4 If "p" is a primary with a list of variables"v",

and "a" is an arithmetic expression with a list ot
variables "u",
then "a+p" is an arithmetic expression with a list of
variables "uv".

The rules for deriving strings specified by a canonical

system can be applied to these productions to conclude that

(a) the set named "DIGIT" consists of three members, the

symbols 11 1", 11 2" and "3", (b) the set named "PRIMARY:VARS"

~onsists of fiYe members, the pairs of string "l:A",

"2:A", ~:A", "A:A,", and "B:B,", and (c) the set named

"ARI-TH EXP:VARS" contains an infinite number of members,

some of which are "A:A,", "1+2:A 11
,

11 A+B:A,B,", and

11 A+l+2+A+B:A,A,B,".

Abbreviations to the Basic Notation:

Using only the basic notation for a canonXal. system, a

specification for a computer language often becomes lengthy.

It will be convenient during the course of this dissertation

to abbreviate some canon:k:al. system constructions. Here, I

introduce four simple and useful abbreviations, the first

two of which are due to Donovan. 3 • 5 The ability of canonical

20

systems to define abbreviations formally will be discussed

in Section 2.2c.

l.a If c1 , c 2 , ••• and en are conclusions with identical

premises p, the productions

can be abbreviated

c •
n'

l.b If c
1

, c 2 , ••• and en are conclusions with no premises,

the productions

can be abbreviated

c •
n'

c •
n'

2. If <t
1

>,<t 2>, ••• and <tn> are term tuples denoting

members of the same set S, the atomic foraulas

S<t >,
1

can be abbreviated

S<t > <t >, 1 , 2

, S<t >
n

,<t >
n

3. If p 1 , p 2 , ••• and p
0

are premises with the same

conclusion c, the productions

pl+c; p2+c;

can be abbreviated

P +c·
n •

4. If a and bar~ different variables, and P and R are

predicates, the productions

21

P<a> + R<a>; P<a>, R + R<ba>;

can be abbreviated

P<a> + R<SEQ(a)>;

Thus, the productions•

(a) DIGIT<l>; mGIT<2>; DIGIT<3>;
(b) DIGIT<p> CHAR<p>; LETTER<p.> + CHAR<p>;

MARK<p> + CHAR<p>;
(c) DIGIT<d> + DIGIT STR<d>; DIGIT<d>, DIGIT

+ DIGIT STR<sd>;

can be abbreviated

(a) DIGIT<l>,<2>,<3>;
(b) DIGIT<p> I LETTER<p> I MARK<p> CHAR<p>;
(c) DIGIT<d> +DIGIT STR<SEQ(d)>;

STR<s>

The abbreviated productions may informally be read:

(a) The symbols "l", "2", and "3" are digits.
(b) If p is a digit, or p is a letter, or p is a mark,

then p is a character. ~
(c) If d is a digit, then a sequence of digits is a digit

string.

2.lb Application to Specify Szntax

I define the syntax of a language as the set of rules
the

specifying ,1\trings in a language. The syntax of ALGOL/60

has the requirement that the type of each variable used in

program must be declared. This requirement is not handled

by the Backus-Naur form specification of the ALGOL/60 subset

*Productions (b) and (c) are from the canonioa.l system defining
the syntax of ALGOL/60.

22

given previously. For example, the syntactically illegal

string

BEGIN INTEGER B; A:=l END

can be derived using this specification. This requirement

can readily be handled with a canonl.cal system definition of

the subset by

(a) specifying with each statement an auxiliary term
specifying the list of variables used in the
statement,

(b) speci.fying with each declaration an auxiliary term
specifying the list of variables declared, and

(c) adding a premise to the production for a legal
program specifying that each variable occurring
in the list in (a) must be contained in the list
in (b).

The canonical system for the subset of ALGOL/60 is given

in Appendix l.la. There the second element in the term tuple

for a primary, arithmetic expression, statement, and decla-

.tion specify the list of variables used or declared in the

corresponding source language string. The restrictive premise

"IN<u:v> 11 (production 5) insures that each of the variables

in the list "u" is contained in the list of declared variables

"v". For example, the following pairs of lists are members

of the set named "IN" (productions6)

<A,:A,B,> <B:A,B,> <A,B,:A,B,> <A,B,A,B,:A,B,>

Thus the string

23

BEGIN INTEGER A; A:•.l. END

is specified by this canon.1.cal system, whereas the illegal

string

BEGIN INTEGER B; A:•l END

is not specified by this canon.:1.ca.lsystem because the pair

<A,:B,> is not a member of the set named "IN".

An Abbreviation for Specifying Syntax:

In the specification of computer languages, it will be

frequently necessary to write productions that specify auxil-

iary lists with a given source language construction. For

example, consider the productions from Appendix l.la

3.1 DIGIT<d> + PRIMARY:VARS<d:A>;

3.4 PRIMARY:VARS<p:v>, ARITH EXP:VARS<a:u>
+ ARITH EXP:VARS<a+p:uv>;

Here the auxiliary terms corresponding to the predicate part

"VARS" specify the list of variables used in each construction.

Productions like these, in which

(a) an auxiliary term for an auxiliary predicate part
in a conclusion is given as "A", and the auxiliary
predicate part, does not occur in a premise (e.g.,
the auxiliary term "A" for the predicate part
"VARS" in production 3.1), or

(b) an auxiliary term for an auxiliary predicate part
in a premise is a variable, and the auxiliary term
tor the same predicate part in a conclusion con
tains one occurrence of the variable (e.g., the
variables "u" and "v" for the predicate part "VARS"
in production 3.4).

24

occur frequently in canonl.cal systems tor computer languages.

It is convenient not to have to specify explicitly the auxil-

iary terms and their predicate parts in these cases. I

therefore introduce the following abbreviation:

{a) If p is an auxiliary predicate part occurring only
in the conclusion of a production,

and the term t corresponding to p is given as null,
then ":p" and ":t" can be deleted from the production.

{b) If p is an auxiliary predicate part occurring in a
premise and a conclusion,

and the term t corresponding to the occurrence of
pin the preaise is.given as a variable,

and the term u corresponding to the occurrence ot
p in the conclusion contains one occurrence
ot the variable,

and the variable does not occur elsewhere in the
production,

then the occurrence ot ":p" and ":t" in the premise
and the occurrence ot the variable in the con
clusion can be deleted.

Thus production 3.1 above can be abbreviated

3.1 DIGIT<d>
3.1 1 DIGIT<d>

+ PRIMARY:VARS<d:A>;
+ PRIMARY<d>; .

and production 3.4 above can be abbreviated

3.4 PRIMARY:VARS<p:v>, ARITH EXP:VARS<a:u>
+ ARITH EXP:VARS<a+p:uv>;

3.4 1 PRIMARY<p>, ARITH EXP:VARS<a:u> + ARITH

{use abr a)

EXP:VARS<a+p:u>;

3.4" PRIMARY<p>, ARITH EXP<a> +

3. 4111 PRIMARY<p>, ARI TH EXP<a> +

AR ITH
{use abr b)

EXP:VARS<a+p:A>;

ARITH EXP<a+p>;
{use abr b)
{use abr a)

To obtain the unabbreviated equivalent of a production

to which this abbreviation has been applied, one can

25

(a) Write down the abbreviated production.

(b) Write down the corresponding unabbreviated predi
cates used in the production.

(c) Specify for each predicate part occurring only in
the conclusion a corresponding null term.

(d) Specify for each predicate part occurring both in
a premise and in a conclusion a term that consists
of a variable that does not occur elsewhere in the
production.

Using rule (c), the production corresponding to

(prod 3.1 1)

(predicates)
DIGIT<d>
DIGIT

can be unabbreviated

-+ PRIMARY<d>;
PRIMARY:VARS

3.1 DIGIT<d> -+ PRIMARY:VARS<d:A>;

Using rule (d), the production corresponding to

(prod 3.4 111)

(predicates)
PRIMARY<p>,
PRIMARY:VARS

can be unabbreviated*

ARITH EXP<a> -+ ARITH EXP<a+p>;
ARITH EXP:VARS ARITH EXP:VARS

PRIMARY:VARS<p:v>, ARITH EXP:VARS<a:u> -+ ARITH EXP:VARS<a+p:uv>;

To insure the unique reversibility of this abbreviation, the

first predicate part of each different predicate must be

different, and the order in which added variables occur within

the conclusion must be immaterial.

*The variables "u" and "v" added to production 3.4"' need not
be identical to those given in production 3.4. A production
with different variables is equivalent2 in that each defines
the same set of strings.

26

Using this and the previously given abbreviations, the

canon:icalsystem of Appendix l.la has been abbreviated into the

canon~&system of Appendix l.lb. The abbreviated canonical

system can be viewed quite differently from its unabbreviated

equivalent. For example, consider the abbreviated productions

3.2' VAR<v> + PRIMARY:VARS<v:v,>;
3.3' PRIMARY<p> + ARITH EXP<p>;

and their unabbreviated equivalents

3.2 VAR<v> + PRIMARY:VARS<v:v,>;
3.3 PRIMARY:VARS<p:v> + ARITH EXP:VARS<p:v>;

In production 3.2, a new auxiliary term "v," is specified for

the auxiliary predicate part "VARS" and this auxiliary predi-

cate and term are specified in the abbreviated production

3.2'. In production 3.3, however, the auxiliary list of

variables is carried unchanged from the premise to the con-

clusion, and this list is ~ specified in the abbreviated

production 3.3'.

Furthermore, consider the production

5. STM:VARS<s:u>, DEC:DEC VARS<d:v>, IN<u:v>
+ PROGRAM<BEGIN d; s END>;

Here the auxiliary lists of variables "u" and "v" are con-

strained by the premise "IN<u:v>", and hence the auxiliary

predicate parts and terms for these lists occur in both the

abbreviated and unabbreviated productions.

27

Thus the auxiliary terms referring to the lists of vari

ables and their associated auxiliary predicate parts are explicitly

specified only when a new variable is added to the list (produc

tions 3.2, 3.5 and 4.2) or when the list is required to have

certain properties (production 5.). In languages like

SNOBOL/l and ALGOL/60, where the number of auxiliary terms is

large, the abbreviation just given markedly reduced the size

of their canon:fr:B.l. systems specifying syntax.

2.lc Application to Specify Translation

I define the translation of a language as the function

mapping the strings in the language into strings in some

other language. This function can be specified by a canonical

system specifying a set of pairs of strings, where the first

element in each pair is a legal string in the source language,

and the second element is a corresponding string in the

target language.

As in the previous section, I will illustrate this use

of canonral systems by example. The specification of the syn

tax of the ALGOL/60 subset has been modified to specify not

only the legal strings in the subset but also their trans

lation into IBM System/360 assembler language. This specifi

cation is given in Appendix l.2a. There the term to the left

of each" •• " specifies some string in the ALGOL/60 subset,

the term to the right of each" •• " specifies the representa

tion of the string in the target language. For example,

28

the following pair of strings is a member ot the set named

"PROGRAM":

BEGIN INTEGER A; A:=l END •• *ASSEMBLER LANGUAGE PROGRAM
BALR 15, 0 *S,ET BASE REGISTER
USING *,15 *INFORM ASSEMBLER
L l,•F'l' *LOAD l
ST l,A *STORE RESULT IN A
SVC 0 *RETURN TO SUPERVISOR

*STORAGE FOR VARIABLES
A DS F

END

Note that this canon~alsystem includes the specification of

the comment entries in the assembler statements so that (hope-

fully) the reader will not have to be familiar with the assembler

language to understand the translation.

An Abbreviation for Specifying Translation:

Except for the specification of strings in assembler

language, the canonical system defining the translation of the

subset is identical to the canonia.11 system defining the syntax

of the subset. In general, since a definition of the syntax

of a language specifies the legal strings in a language and

a definition of the translation of a language specifies the

legal strings as well as their representation in some other

language, the definition of the translation of a language will

encompass the definition of the syntax of a language. This

similarity leads to the following abbreviation.

Let numbers be placed on the productions of the canonical

systems for the syntax and translation so that a production

29

specifying the translation of a string is given the same

number as the corresponding production specifying the syntax

of the string, Let ps and pt be identically numbered produc

tions from the canoniceJ.systems specifying respectively the

syntax and translation.

(a)

(b)

(c)

If ps and pt are identical, then pt can be omitted,

If a premise in p and pt are identical, then the
premise in pt cansbe omitted,

If an auxiliary predicate part and corresponding
term of atomic formulas with identical first predi
cate parts in ps and pt are identical, then the
auxiliary predicate part and term in pt can be
omitted,

For example consider the production from the syntax of

the ALGOL/60 subset

5. STM:VARS<s:u>, DEC:DEC VARS<d:v>, IN<u:v>
+ PROGRAM<BEGIN d; s END>;

and the corresponding production from the translation of the

subset

5.' STM:VARS<s,.s':u>, DEC:DEC VARS<d,,d':v>, IN<u:v>
+ PROGRAM<BEGIN d; s END,.a>;

where a represents the string that specifies the translation

of the program. Here, using rule (b), the premise "IN<u:v>"

can be omitted from the translation production, and using

rule {c) the auxiliary predicate parts and terms for the

lists "u" and "v" of variables can be omitted to yield the

abbreviated production for the translation

30

5. 11 STM<s •• s'>, DEC<d •• d 1 >-+ PROGRAM<BEGIN d; s END •• a>;

To obtain the unabbreviated equivalent of an abbreviated

canonical system defining translation, one must add to the

canonical system defining translation (a) the numbered pro-

ductions that occur in the canonical system for the syntax

but do not occur in the canonical system for translation (b)

the premises that occur in a production for syntax but do not

occur in the identically numbered productions for translation,

and (c) for atomic formulas with identical first predicate

parts, the auxiliary predicate parts and corresponding terms

that occur in a production for syntax but do not occur in the

identically numbered production for. the translation.

For example, consider the abbreviated translation pro-

duction just given

5. 11 STM<s .• s'>, DEC<d •• d'>-+ PROGRAM<BEGIN d; s END,.a>;

and the corresponding production for the syntax

5. STM:VARS<s:u>, DEC:DEC VARS<d:v>, IN<u:v>
-+ PROGRAM<BEGIN d; s END>;

Here, the premise "IN<u:v>" occurs in the production for the

syntax but not in the production for the translation, and the

auxiliary predicate parts and corresponding terms for the pre-

dicate parts "VARS" and "DEC VARS" occur in the production

for the syntax but not in the production for the translation.

Adding this premise and these auxiliary predicate parts and their

31

-- --~··-----------·- - - ---· ..,._... ----..--.--<· -..-,-~---J.-------~-~--- --

terms to the abbreviated production 5." tor the translation,

we obtain the unabbreviated production

5.' STM:VARS<s •• s':u>, DEC:DEC VARS<d •• d':v>, IN<u:v>
+ PROGRAM<BEGIN d; s END •• a>;

·- --~-..J-

The abbreviated canordea.l system specifying the transla-

tion of the ALGOL/60 subset is given in Appendix 2.lb, The

abbreviated canonical system of Appendix 2.lb can be viewed

quite differently from its unabbreviated equivalent. The

abbreviated canonical need specify only the new terms that

must be added to the canonical eystem specifying the syntax

in order to convert the canonical system specifying syntax

into the canonical system specifying translation. In writing

the abbreviated canonical system specifying translation, the

requirements needed to insure the ~yntactic legality of a

string whose transla:tion ·is be:i:ng specified can be omitted.

These requirements are assuaed ·.to have been specified in

the canonical system tor the syntax. In languages like

SNOBOL/l and ALGOL/60, where the number of syntactic require-

ments is large, this abbreviation greatly reduced the size

of the canonical systems~defining the translations of the

languages into the'target language,

2.2 Defining Canonical Slstems

2.2a The Notion· of· a.~efining Canonical System

The previous sections have been devoted to developing

32

canonical systems specifying sets of strings. The strings

represented syntactically legal programs in a subset or ALGOL/60

and their counterparts in assembler language. The rules for

forming and using the canonical systems for these sets were

described informally in the text in English. The string repre-

senting a canonical system and the rules tor using the canoni-

cal system can, in turn, be specified formally by another

canonical system. In cases where a conflict would arise in

distinguishing the strings of the first canonical system in

the productions of the defining canoni~al system, the strings

of the first canonical system can be enclosed by the quotation

marks "'" and "'".

The productions specifying the rules tor constructing

another canonical system are given in Appendix l.3a. These

productions specify the alphabets of object symbols, predicate

symbols, and Tariable symbols, and the rules tor constructing

well-formed terms, term tuples, atomic formulas, premises,

conclusions, productions, and finally, canonical systems.•

The logical notion of using a second canonical system

to formalize the rules for constructing a canonical system

•In the productions of Appendix 1~3, the quotation marks have
been omitted tor matching pairs of left and right brackets
that occur as object symbols. For example, in the atomic
formula "WF TERM TUPLE<<t>>~~ quotation marks have been omitted
from the second and third .brackets. In atomic formulas of
this type, the scope of the left bracket sign extends to the
matching right bracket sign, and all brackets thus enclosed
are considered as object symbols.

33

was first presented by Smullyan2 and later by Donavan. 3 In

the works presented by Smullyan and Donavan, a notation dif

ferent from the basic notation is used in a defining canonical

system. The advantages of using quotation marks to distinguish

symbols in the defined canonical system from symbols in the

defining canonical system are that (a) the same notation is

used for all canonical systems, and (b) definitions and rules

formalized in one canonical system can be copied and applied

to other canonical systems independently of their position

in a series of defined and defining canonical systems (this

point will be discussed in section 2.2c).

2.2b Application to Derive Syntactically Legal Programs

The rules for deriving strings specified by a canonical

system can also be formalized with a defining canonical system.

These rules are given in Appendix l.3b. By adding a production

of the form "CANONJ::AL SYSTEM STR< c>; '', where c is some well

formed canonical system, these productions define the rules

for deriving strings in the canonical system c.

In particular, productions 9 specify the rules for

extracting productions from the member of the set "CANONICAL

SYSTEM STR". Production 10 specillee the rule for substitut

ing strings in the object alphabet in place of the variables

in the productions to obtain instances of the productions.

Productions 11 specify the rules tor deriving strings specified

by the production instances.

34

Productions 10 and 11 can be viewed as a formalization

of the two logical rUJes of inference "substitution" and "modus

ponens" for deriving strings specified by a canonical system.

The substitution of object strings for variables in a produc-

tion occurs through the predicate "SUBST". The predicate

"SUBST" define a set of 4-tuples, where the first element of

each 4-tuple is a production, the second element is a variable,

the third element some string of object alphabet symbols, and

the fourth element the production with each occurrence of the

variable replaced by the object string. For example, using

the canonical system of the syntax of the ALGOL/60 subset as

a member of the set "CANONJCAL SYSTEM STR", the following 4-

tuple can be generated as a member of the set "SUBST"

<DIGIT<d>+PRIMARY:VARS<d:A> d 1 DIGIT<l>+PRIMARY:VARS<l:A>>

The application of modus pon~ns to the production instances

of a canonical system occurs in production 11.1.

11.1 DERIVATION<A>;
11.2 DERIVATION<d>, PROD INSTANCE<c;>, WF CONCLUSION<c>

+ DERIVATION<d c>;
11. 3 DERIVATION<d>, PROD INSTANCE<p+c; >,

PREMS:DERIV CONT PREMS<p:d> + DERIVATION<d c>;

These productions can be read:

11.1 From no premises, the null string can be derived.
11.2 If the string d has been derived,

and c; is an instance of a production that contains no
premises,

then the string c can be added to the string d.

35

-----~-__,.,...----~----·--- --- ----~----,···------~~~-

11.3 If the string d has been derived,
and p+c; is an instance*ot a production with premises p,
and the premises p are contained in the string d,
then the string c can be added to the string d.

For example, by successively using the following production

instances

DIGIT<!>;
DIGIT<l> + PRIMARY:VABS<l:A>;

·PRIMARY:VARS<l:A> + ARITH EXP:VARS<l:A>;

the following member of the set "DERIVATION" can be generated

DIGIT<!> PRIMARY:VARS<l:A> ARITH EXP:VARS<l:A>

Another example of a member ot the set "DERIVATION" is

generated in the right-hand column of Appendix l.4a. By simply

asserting that the canonical system defining the syntax of the

ALGOL/60 subset is a member of the set "CANONDL SYSTEM STR"

(i.e., by simply adding the production "CANONIC][, SYSTEM STR

<'DIGIT<!>; IN<y:!> + IN<xy:t>;->; 11 to the productions

of Appendices l.3a and l.3b), Appendix 1.3 defines the rules

for deriving syntactically legal programs in the ALGOL/60

subset. The derivation of Appendix l.4a specifies that the

string BEGIN INTEGER A; A:=l END

is a member of the set "PROGRAM".

Yet another example of a member of the set "DERIVATION"

is generated in the right-hand column ot Appendix l.4b. By
*An instance of a production P is the production P' obtained

from P by applying substitution to .!..!!. of the variables in a
production.

36

asserting that the canonical system defining the translation

ot the ALGOL/60 subset is a member of the set 11 CA1'0Jlr!l(,SYSTEM

STR", Appendix 1.3 defines the rules tor deriving syntactically

legal programs and their translation. The derivation of

Appendix l.4b specifies that the str~ng

BEGIN INTEGER A; A:=l END •• *ASSEMBLER LANGUAGE PROGRAM
BALR 15,0 •SET BASE REGISTER
USING *,15 *INFORM ASSEMBLER
L l,•F'l' *LOAD l
ST l,A *STORE RESULT IN A
SVC 0 •Rr?URN TO SUPERVISOI

•STORAGE FOR VARIABLES
A DS F

END

is a member ot the set ''PROGRAM''.

Thus by simply adding a production asserting that some

well-formed canonical system is a member ot the set "CANONICAL

SYSTEM STR", the productions of Appendix 1.3 can be used to

generate all strings defined by te canon.irca~ system.

Structural Description of Derived St-rings:•

A derivation provides a "structural uescription" of a

derived string. By a structural d«acription 35 of a string,

I mean the sequence ot rules (here the sequence otproductions)

used in generating the string. The sequence of rules used in

generating a string provides information about the structure

of the string.

*This application is not used in the other sections of this
dissertation.

37

For example, consider the derivation of Appendix l.4a.

If we consider only the first term of each derived term tuple,

the derivation provides a structural description for the string

"BEGIN INTEGER A; A:=l END" that may.be represented in the

form of a syntactic tree:

DEC STM END

/~ /T~
INTEGER TYPE LIST VAR := ARITH EXP -, I

A A PRIMARY

I
DIGIT

1

The tree can be constructed by scanning the derivation

from bottom to top and constructing the corresponding tree

from the top down. The leaves of the tree are symbols from

the object alphabet. The nodes of the. tree are the partial

predicate names occurring in derived conclusions. The branches

joining a node are determined by the basic symbols and the

previously derived conclusions used to construct the newly

derived conclusion.

38

Using a canonical. system for the translation of a language,

a derivation can be used to construct a structural description

of a target language string. The System/360 assembler language

is not a "structured" language and hence the derivation of an

assembler language program is not of concern. However, canon-

4
ical systems have been used to obtain structural descriptions

of strings in a target language where knowledge of a string's

tree-like structure is important for its analysis,*

2,2c Application to Specify Notational Abbreviations

I define an abbreviation as a bijective (one-to-one and

onto) function mapping one set of strings (the unabbreviated

strings) into another set of strings (the abbreviated

strings). The bijectiveness of the function insures that we

can recover the unabbreviated equivalent of each abbreviated

string. I have introduced six abbreviations to the notation

for canonical systems, four to the basic notation, one for a

canonical system specifying syntax, and another for a canoni-

cal system specifying translation. Each of these abbrevia-

tions can be specified by a defining canonical system speci-

fying a set of ordered pairs, where the first element of

each pair is an abbreviated canonical system, and the second

element is the corresponding unabbreviated canonical system.

*A canonical system derivation can lead to much more compli
cated structural descriptions than those that can be repre
sented in tree-like form. I have not studied this issue,

39

~~--~------------- -
----~--;---------··,--- _,_ ------- ··. -- ~.-----------"----~~-·--

The productions specifying the six abbreviations intro-

duced to canonical systems are given in Appendix l.3c. For

example, productions 15.1 and 15.2 in

15.1 WF PROD<p+c;> + ABRl P : P <p+c ; : p+c ; > ;
15.2 WF PROD<p+c;>, ABRl P:P<p+s; :t> + ABRl P:P<p+c,s;:p+c;t>;
15. 3 WF ATOM PROD<c;> + ABRl AP:AP<c;:c;>;
15.4 WF ATOM PROD<c;>, ABRl AP:AP<s;:t;>

+ ABRl AP:AP<s,c;:t;c;>;
15.5 ABRl CS:CS<A;A>;
15. 6 ABRl CS:CS<c:d>, ABRl P:P<p:q> + ABRl CS:CS<cp:dq>;
15. 7 ABRl CS:CS<c:d>, ABRl AP:AP<p:q> + ABRl CS:CS<cp:dq>;

specify a set of ordered pairs "ABRl P:P", where the first

element is a production of the form'~+c 1 , c 2 , ••• , en;" and

the second element is the corresponding unabbreviated pro-

ductions "p+c · p+c · 1, 2' p+c ;". Productions 15.3 and 15.4
n

augment this set to include atomic productions, and produc-

tions 15.5 through 15.7 specify the abbreviation for an entire

canonical system.

Similarly, productions 16 through 20 specify the other

five abbreviations to canonical systems.* Productions 21 and

*To apply abbreviation 20, the abbreviation for a canonical
system specifying syntax, a production of the form "cs PREDI
CATES<p1,p2, ••• , p >"where the pi' l<i<n, are the unabbre
viated preaicate 1brnthe canonical system7 must be added to
productions 20.

To apply abbreviation 21, the abbreviation for a canonical
system spec.ifying translation, (a) the productions and pre
mises occurring in t.he .canonical system for syntax but not in
the canonical system for tran~lation must be added to the
canonical system for translation, a.n~d (b) atomic formulas vi th
identical first predicate parts from identically numbered
productions from the canonical systems for the syntax and
translation must be written together in the canonical system
for translation and separated by "//".

40

22 specify abbreviations used in defining ALGOL/60 and will

be discussed in the chapter on ALGOL/60. Finally, production

23 specifies the rule for converting some string (presumably

a well-formed abbreviated canonical system) that is asserted

to be a member ot the set "ABR CA~ONJDILSYSTEM STR" into the

corresponding member of the set "CAROBTJI, SYSTEM STR" (the 11JL-

abbreviated equivalent ot•the abbreviated canonical system).•

For example, by ~sserting that the abbreviated canonical

system of Appendix l.lb is an abbreviated canonical system

(i.e., by adding the p.roduction asserting that the canonical

system of Appendix l. lb is ,a member of the set "ABR CANONICAL

SYSTEM STR"), the productions of Appendix l.3c can be used to

derive the conclusion that the canonical system of Appendix

l.la is its corresponding unabbreviated equivalent (i.e., the

canonical system of Appendix l.la is a member of the set

"CANORICALSYSTEM STR"}. Similarly, by asserting that the

canonical system· of Appendix l.2b is a member of the set "ABR

CANONICJILSYSTEM STR", production 24. can be used to derive the

conclusion that the canonical system of Appendix l.2a is its

unabbreviatedequivalent.•• In general, by

*The order in which abbreviations are removed from an abbre
viated canonical system will generally depend on the abbrevia
tions introduced. Production 23. defines one order in which
the abbreviations introduced in this dissertation can be
removed. Furthermore, any premise in production 23 that
refers to an abbreviation not used in a particular abbreviated
canonical system can be removed.

**As mentioned previously, an atomic production specifying the
unabbreviated predicates of an abbreviated canonical system
specifying syntax must be added to the defining canonical
system to generate the correct unabbreviated (cont. next page)

41

(a) specifying the sets of ordered pairs defining
some abbreviations, and

(b) adding a production like production 23 defining
the rule for converting an abbreviated canonical
system into its unabbreviated equivalent.

a defining canonical system can be used to generate the un-

abbreviated equivalent of any abbreviated canonical system.

Moreover, having generated theEq,uivalent unabbreviated

canonical system, the productions of Appendix l.3a and l.3b

can then be used to derive strings specified by the canoni-

cal system.

The productions of Appendix 1.3 are written using only

the first two abbreviations to the basic notation. To define

Appendix 1.3 using only the basic notation, the user could

write a third canonical system, which would consist of simply

(a) a production asserting that the canonical system of Appen-

dix 1.3 is a member of the set "ABR CANONICAL SYSTEM STR",

(b) productions 15 and 16 of Appendix 1.3 (these productions

contain no abbreviations), and (c) the production "ABR CANONICAL

SYSTEM STR<a>, ABR2 CS:CS<a:b>, ABRl CS:CS<b:c> ~CANONICAL

SYSTEM STR<c>;". The user would then have a series of three

canonical systems. The first (abbreviated) canonical

system (e.g., Appendices l.lb or l.2b) would define the allow-

able strings in some source language. The

**(Cont. from P• 41) canonical system, and the productions
of the abbreviated canonical systems specifying syntax and
translation must be combined (according to the rules given
earlier) to generate the complete unabbreviated canonical
system specifying translation.

42

second canonical system would define the rules for forming

the first canonical system, the rules for deriving strings

specified by the first canonical system, and the rules for

converting the first canonical system into the basic notation.

The third canonical system would define the rules for convert

ing the second canonical system into the basic notation.

Thus, the series of canonical systems would ultimately be

defined using only the basic notation. In general, a us~r

may write a series of canonical systems to define the rules

for constructing and using other canonical systems; in order

for the series to be defined using only the basic canonical

system notation , only the last member of the series need be

written in the basic notation.

Note that productions 15 and 16 of Appendix 1.3 could

be copied unchanged in the third canonical system. These

productions formalize rules that are applicable to two

canonical systems independently of their relative positions

in a series of canonical systems. In fact, these productions

can be copied and applied to the canonical system in which

they themselves are given.

User-Coined Abbreviations:

Defining canonical systems provides a writer of a canoni

cal system with a forma~ mechanism for introducing his own

abbreviations to the notation. For example, consider the prod

uctions (from the canonical system of ALGOL/60):

43

r----·-- --~ -----· ·----~------~----·--- ~--- ---- .,----------.--~---..---· ·" ' ,--

PRIMARY<p>
PRIMARY<p>, MULT OP<m>,

+ TERM<p>;
TERM<t> + TERM<tmp>;

The user may wish to abbreviate these productions:

PRIMARY<p>, MULT OP<m> + TERM<ALTSEQ(p m)>;

Productions 21 of Appendix l.lc specify this abbreTiation (as

well as other variants of this abbreviation). Thus by simply

adding new productions to the canonical system defining the

conversion of a abbreviated canonical system to unabbreviated

form, the notation for canonical systems can be tailored to

fit a particular application.

2.3 Discussion

Canonical systemsl'Bve placed under a single framework

the complete definition of the syntax and translation of a

language. The formalism was used to specify all legal pro-

grams, their translations into assembler language, the rules

for deriving legal programs and their translations, and the

rules for removing abbreviations from the specifications.

Not once was it necessary to introduce concepts outs~de

canonical systems;although some complexity was added to the

formalism by introducing abbreviations to the basic notation,

even the abbreviations were ultimately defined in terms of

the basic formalism.

It is important to develop languages whose descriptions

are concise, The Backus-Naur form specification of the ALGOL/60

subset and the English sentence describing the context-sensi

tive requirement provide one very concise and easily under

standable description of the syntax of the subset. The

canonical system of Appendix 1.1 has, in fact, been modeled

after this description. Productions 1 through 5 correspond

(except for the auxiliary elements generating the lists of

used and declared variables) to the Backus-Baur form pr.oduc

tions; the premise "IN<u:v> 11 in production 5 and the defini

tion of the predicate 11 11•• formalize the context sensitive

restriction stated in English.

The canonical sy_stem of Appendix 1.1 is not much more

lengthy than the Backus-Baur form definition 0£ the subset

and the associated English senten~e describing the context

sensitive restriction. Like Backus-Naur form, the language

of canonical systems is readable. On the other hand, canoni

cal systems have the added power to characterize completely

both the syntax of a language and its translation into a

target language, without resorting to the Eng1ish Language.

Moreover, the notation for canon:icalsystems is not fixed.

By changing or adding productions to a defining canonical

system, -the user can alter or abbr~viate the notation for a

defined canonical system to fit a particular language.

I wish to point out two additional features of the

canonical systems of Appendices 1.1 and 1.2. First, barring

any inadvertent errors, the canonical systems describe a set

of ALGOL/60 programs and assembler language programs that

45

will run on a computer when translated by an ALGOL/60 compiler

or System/360 assembler. Second, the specification of the

comments entries in the assembler language statements was

provided not only to aid the reader. The comments are meaning-

ful context-sensitive strings in the English language. The

specification of these strings was handled as easily as the

specification of the strings in assembler language. The

specification of the strings in the English language illus-

trates the use of canonical systems to specify the entire

operation of a translator, including the specification of

meaningful comments. Moreover, it suggests the capacity of

canonical systems to define string transformations in lan-

guages other than computer programming languages.

One use of canonical systems is in the development of a

generalized translator for computer languages, i.e., a trans-

lator that is independent of both source and target languages.

Canonical systems define a set by specifying rules for

generating its members. To use a canonical system as a lan

guage for writing translators, an algorithm to recognize

strings specified by a canonical system and output associated

strings is needed. No algorithm for recognizing and construct-

ing strings specified by a canonical system is presented in

this dissertation. However, one algorithm for canonical

systems has been devised and implemented by Alsop. 36

Several important issues for using canonical systems in

a generalized translator have not been studied. One critical

46

issue is the development of a restriction on canonical

systems to define only recursive sets rather than recursively

enumerable sets. Theoretically, an algorithm for recognizing

a string defined by a canonical system exists only if the set

of strings defined by the canonical system is recursive.

Other critical issues include speed of translation, recovery

in case of an error in a source language program, and code

optimization of target language programs. I expect that

modifications to the basic formalism presented here will be

necessary to use canonical systems in a generalized trans

lator.

The notion of defining canonical systems unfolds several

possibilities for using canonical system as a tool for working

with computer languages. Just as a canonical system allows

a user to change a source or target language construction by

simply changing the productions specifying the construction,

a defining canonical system allows the user to change the

definition or use of a defined canonical system by simply

changing productions of the defining canonical system. Al

though only rules for removing abbreviations from a canonical

system and rules for deriving strings specified by a canoni

cal system have been defined here, defining canonical systems

may provide a flexible mechanism for embedding many other

rules for defining and manipulating computer languages.

As mentioned earlier, the results of this chapter apply

to any recursively enumerable set. Any function or relation

47

- ---------·-·-· ---·---.-----,..__.._... ______ ~-~·~~·-----·-~-.~-:··~~----------------------------~

that is recursively enumerable can be specified by a canoni

cal system. Canonical systems can be used to express algo

rithms and string transformations of a much different nature

from those given here. The notion of defining canonical

systems adds to the basic formalism a facility for allowing

a user to formalize his own rules for defining and manipulat

ing strings and their canonical systems. The modifications

to the basic formalism presented here have been directed

towards the application of canonical systems to define the

syntax and translation. of a language. But more importantly,

canonical systems provides a definitional facility that the

user has the freedom to tailor according to his own applica

tion and style.

48

. CHAPTER III

EXTENDED MARKOV ALGORITHMS AND A-CALCULUS:

A COMBINED FORMALISM USED AS THE BASIS

FOR A TARGET LANGUAGE FOR DEFINING SEMANTICS

This chapter presents a formal language (henceforth

referred to as the target language) quite different from con

ventional machine or assembler language for defining the

semantics of a computer language.

The semantics of a language can be defined as the set of

rules relating the strings in a language to the behavior or

objects that the strings denote. The behavior or object that

a string denotes can be described by a string in some other

language whose meaning is presumably understood. This approach

to defining the semantics of computer languages will be t·aken

in this chapter, namely, the presentation of a single language

(whose meaning is presumably understood) for defining the

semantics of multiple other languages. The semantics of a

given source language will be specified by defining the trans

lation of the language into the target languace.

The semantics of the target language, however, will not

be left to an English language explanation in the text. The

semantics of the target language vill be further explicated

in Section 3.2 by giving a formal definition of a machine•

that performs the computation indi.cated by a target language

*"Machine" in the sense of a ~et of logical rules.

49

:...,-·

string and produces the string denoted by the target language

string. (In defining the semantics of a computer language,

the word computation can be considered synonymous with the

word "behavior'' and all "objects" in a computer language can

be considered as strings.) Thus the appeal to understanding

the semantics of a c·omputer language will be ultimately re-

duced to understanding the formalism in which the operation of

the target language evaluating mechanism is expressed.

Generally, the semantics of different languages will be

specified by giving different translations into the target

language while leaving the definition of the target language

evaluating mechanism unchanged. On the other hand, the defini-

tion of the evaluating mechanism can be changed to define

source language constructs that appear difficult to define in

the target language.•

The target language presented here is based on the

formalism of Markov algorithms, 9 an extension to Markov algo-

10 11 12 rithms due to Caracciolo, ' ' and the formalism of the

A-calculus of Alonzo Church. 17 , 18 Extended Markov algorithms

are used to define the primitive functions in a computer

language, the A-calculus is used to define new functions from

the primitive functions. In a sense, the target language

draws upon the best of each formalism. Markov algorithms

explicate the notion of an algorithm operating on a string

*This was done to define indirect addressing in SNOBOL/l.

50

and are especially well-suited to the definition of primitive

functions transforming strings into new strings. The A-

calculus explicates the notion of a function and is especially

well-suited to the definition of new functions from the primi-

tive functions.

The target language has several important properties.

The language is formally based, and theorems regarding the

completeness of the formalisms to define the set of all "com

putable" function exist.31 • 32 The language is independent of

the characteristics of existing computers. The basic notation

for the target language is simple. Probably most importantly,

the correspondence between many computer languages and the

target language is somewhat simpler than the correspondence

between computer languages and conventional machine or

assembler languages.

3.1 The Target Language

3.la Extended Markov Algorithms

Markov Algorithms:

Let A be an alphabet of characters, called the object

alphabet, and let 11 -+", "•" and "A" be characters not in A.

A Markov algorithm is a finite list of substitution rules of

the form
sl -+ (•) tl

s2 -+ (•) t2 . .
s -+ (•) t

n n

51

r---------·------· -·---~-~----------~~-

wher-e the si and ti' l~i:;_n, are either "A" or strings of

object alphabet characters, and"(•)" indicates the possible

occurrence of a "•" after the 11 + 11 • The symbol "A" 4enotes

the null string.

A Markov algorithm of the above form when applied to an

object string X is taken to mean:

(a) Look dow.n among the substitution rules for the
first rule such that si occurs in X.

(b) If such a rule is found, replace the leftmost occur
rence of Bi in X by the string t .• If a"•" occurs
after the 11 + 11 in the substitutio~ rule, terminate
the algorithm. Otherwise repeat the application of
the alsorithm to the newly formed string.

(c) If no Buch rule is found, terminate the algorithm.

For example, the Markov algorithm

B + D
C + F
0 + I

transform$ the string "COBBLER" into the string "FIDDLER",

whereas the Markov algorithm

B + D
C +• T
0 + I

transforms the string "COBBLER" into the string "TODDLER".

Consider the following Markov algorithm for taking a

parenthesized string of letters from the alphabet {I,O,N,X}

and producing a string where the initial letters are reversed.

(Here the character "•" is used as a marker, and the object

alphabet consists of the characters {ION X () .}.)

52

II* -+ I*I
IO* -+ O*I
IN* -+ N*I
IX* -+ X*I

OI* -+ I*O
00* -+ O*O
ON* -+ N*O
OX* -)- X*O

NI* -)- I*N
NO* -+ O*N
NI'!* -+ N*N
NX* -+ X*N

XI* I*X
XO* + O*X
XN* -)- N*X
XX* -+ X*X

(1* -+ I (
(O* -+ 0 (
(N* -)- N(
(X* -+ X(

() -+ • A
) -+ *)

A Markov algorithm for reversing a paranthesized
string of letters {I 0 N X}

53

This algorithm when applied to the string "(NOXIN)"

successively transforms it into the following strings

(NOXIN) -+ (NOXIN*) -+ (NOXN*I) -+ (NON*XI) -+ (NN*OXI)
-+ (N*NOXI) -+ N(NOXI) -+ N(NOXI*) -+ N(NOI*X)
-+ N(NI*OX) -+ N(I*NOX) -+ NI(NOX) -+ NI(NOX*)
-+ NI(NX*O) -+ NI (X*NO) -+ NIX{ NO) -+ NIX(NO*)
-+ NIX{O*N) -+ NIXO(N)-+ NIXO(N*)-+ NIXON(}
-+•NIXON

Even quite simple algorithms like the above become exceed-

ingly lengthy when expressed in the Markov formalism. If the

alphabet above included all 26 letters in the English alphabet,

the Markov algorithm for reversing the letters in a string

would require 704 substitution rules. To alleviate this

growth, Caracciolo di ForinolO,ll,l 2 in developing a Markov

algorithm based language called PANON introduced the notion

of a "string variable" as an extension to Markov algorithms.

Extended Markov Algorithms:

Let A and V be disj-0int alphabets of characters, called

respectively the object alphabet and variable alphabet, and

let "-+", "•" and "A" be characters not in A or V. Let each

variable in V represent some pre-specified (possibly infinite)

set of object alphabet strings. The case where different

variables can represent different sets of object alphabet

strings is not excluded. An extended Markov algorithm is a

finite sequence of substitution rules of the

54

sl -+ (•) tl

s2 -+ (•) t2

.
s -+ (•) t

n n

where the s. and t., l<i<n, are either "A" or strings of object
1 1 - -

alphabet and variable alphabet characters such that each vari-

able int. occurs also ins .•
1 1

A string s. represents the set of object alphabet
1

strings computed by concatenating in order from left to right

each of the object alphabet characters in

alphabet string represented by a variable

s. with any object
1

in The set rep re-

sented by s. is constrained in that each occurrence of the
1

same variable in s. must be set to the same object alphabet
~~- 1

string in computing the set of concatenated object strings

that s. represents.
1

For example, if i is a string variable

representing any member of the set {V W} and m is a string

variable representing any member of the set {Y ZZ} the string

"iAmAi" represents any member of the set {VAYAV VAZZAV WAYAW

WAZZAW}.

A string s.
1

is said to occur within an object string X

if one or more of the strings represented by s. occurs within
1

X. The "leftmost" occurrence of s. in Xis the string such
1

that first, (of the occurrences of s. in X) the occurrence
1

begins with the leftmost object alphabet character, and second,

the occurrence is as short as possible.

An extended Markov algorithm of the above form when ap-

plied to an object string X is .taken to mean:

55

(a) Look down among the substitution rules for the first
rule in which s. occurs in X.

1

(b) If such a rule is found, replace the leftmost oc
currence of si in X by the string obtained from ti
by replacing each variable in ti by the string
used in place of the variable in si• It a "·"
occurs after the "+" in the substitution rule,
terminate the algorithm. Otherwise repeat the ap
plication to the newly formed string.

(c) If no such rule is round, terminate the algorithm.•

It will be convenient to introduce a special symbol after t&e

si to mean that the string matched to si must extend to the

last character of the object string. I will 'use the symbol

"·" for this purpose.••

For example, let s an~ s 1 be string variables represent-

ing any string of English letters. The extended Ma,rkov

algorithm

(1) sI + sO

transforms the string "BINGO" into the string "BONGO", the

extended Markov algorithm

(2) XsXs'X + ss'

*The transformation specified by a substitution rule of an
extended Markov algorithm is computable only if the string
variables represent recursive sets. This requirement is
discussed in detail by Caracciolo (Chap. 5, ret. 11). In
this dissertation all sets defined for string variables are
recursive.

**This convention can be viewed solely within the framework of
extended Markov algorithms by (a) replacing each""·" after
the si by a special character not in the object alphabet (b)
replacing each corresponding ti with t 1 followed by the spe
cial character (c) appending to each ooject string X the
special character, and {d) applying to the transformed object
string an algorithm that simply removes the special character.

56

transforms the string "XABXCDX" into the string "ABCD", the

extended Markov algorithm

(3) sXs X

transforms the string "QABXAB" into the string "QX", and

the extended Markov algorithm

(4) Xs. A
sx x

transforms the string "?VWXX?XBC" into the string "?XX?".*

More precisely, an extended Markov algorithm will be

specified in three parts:

(a) A statement listing some string variables and the
names of the sets whose members the variables
represent.

(b) A formal definition of the sets named in (a).

(c) A list of extended Markov algorithm substitution
rules including possible occurrences of the de
fined string variables.

I will use statements of the form" I a 1 ,a2 , ••• aR.£A I b1 ,b 2 , •••

b EB I m

are variables and the A, B, ••• , and P are the names of the

sets, to denote that a 1 represents members of the set named

A, a 2 represents members of the set named A, etc. I will use

canonical systems to define the named sets. Using this nota-

tion the above extended Markov algofithms are more precisely

*Note that the character "?" is not an English letter.

57

stated

I s,s' E LETTER STR I
LETTER STR<A>,, '<Z>;
LETTER STR<a>, -+ LETTER STR<ab>;

(1) sI -+ so

(2) XsXs'X -+ ss 1

(3) sXs -+ x

(4) Xs. -+ x
sX -+. x

Consider again the algorithm for reversing any parenthe-

sized string of letters from the alphabet {I 0 X N}. Using

the following variable and set definitions

I c,d e: LETTER I
LETTER<I>,<O>,<N>,<X>;

the extended Markov algorithm for this string transformation

can now be simply given

cd• -+ d•c
(c• -+ c(
() -+• A

) -+ *)

Note that by simply augmenting the set named "LETTER" (and

the object alphabet) to include all the letters of the English

alphabet, the same four extended Markov algorithm substitution

rules define the algorithm for reversing a string containing

all English letters, whereas 704 substitution rules are re-

quired to define this transformation with a Markov algorithm.

58

Even with the extension to Markov algorithms given

above, algorithms expressed in the extended Markov formalism

often become exceedingly lengthy. One frequently occurring

source of this lengthening is a requirement to construct the

functional composition of two or more algorithms. Although

Markov's monograph defines the additional substitution rules

for taking two Markov algorithms and constructing the Markov

algorithms defining their functional composition, the number

of resulting substitution rules can be enormous. For example,

for 2 Markov algorithms over an object alphabet consisting of

all English letters, 1,457 substitution rules (Section 3.3,

ref, 9) must be added to the algorithms to produce the alga~

rithm representing their functional composition. Although

by using the extension to Markov algorithms the number of

additional rules could be reduced to 7, an algorithm composed

by several functional compositions would quickly require many

substitution rules and would be correspondingly difficult to

understand.

17 18 On the other hand, Church's A-calculus, • a formalism

that makes precise the notion of a function and its properties,

is ideally suited to handle the concept of functional composi-

tion. The next section presents the formalism of the A-

calculus, and the subsequent section discusses the embedding

of the formalism of extended Markov algorithms within the

formalism of the A-calculus, This combined formalism

59

will provide the heart of this dissertation's target lan-

guage for defining semantics.

3.lb The A-Calculus*

The A-calculus is a formalism for writing certain classes

of expressions. One interpretation (the interpretation taken

here) of the formalism is as an explication of ideas about

the specification and application of functions. Let C and

V be disjoint sets of symbols, not including the symbols

{A • Q}, where "o" denotes a string of one or more blank

spaces. The set C will be called the set of constants. The

set V will be called the set of variables. A well-formed

expression in the A-calculus is any string defined (recursive-

ly) by the following rules:

(a) If p is a variable, or p is a constant, then p is
a well-formed expression.

(b) If E ~nd Fare well-formed expressions, then (E F)
is a well-formed expression.

(c) If v is a variable and E is a well-formed expres
sion, then Av.E is a well-formed expression.

For example, if C comprises the symbols {3 SQ} and V comprises

the symbol {X}, some example expressions are "3", "(SQ 3)"

and "AX.(SQ X)". An expression of the form (E F) is called

a combination, and the expressions E and F in (E F) are called

respectively the operator and operand of the combination. An

expression of the form AV,E is called a A-expression, and the

*The terminology in this chapter is due mostly to Church and
Landin.

60

expression E in AV.E is called the body of the A-expression.

Here, a A-expression of the form AV.E will be interpreted as

a representation of the function mapping the variable v into

the expression E.

An occurrence of a variable in a well-formed expression

i~ distinguished as "free" or "bound" according to the fol-

lowing rules:

(a) If E is an expression consisting only of a variable,
the occurrence of the variable in E is free.

(b) If E and F are expressions, an occurrence of a
variable in (E F) is free or bound according as it
is free or bound in E or F.

(c) If v is a variable and E is an expression, all oc
currences of v in Av.E are bound while an occurrence
of a variable different from v in AV.E is free or
bound according as it is free or bound in E.

For example, in the expression "lX.(F X)", where "F" and "x"

are variables, the occurrence of "F" is free and the occur-

rences of "x" are bound.

Church introduces rules for transforming expressions.

Using these rules, some expressions can be transformed into

a "principal normal form." The principal normal form of an

expression may be viewed as a "canonical" or standard repre-

sentation of the value of the expression. Because of the

introduction of assignment and goto expressions into the

target language to be presented later, the rules for trans-

forming a target language expression into normal form will

not always hold. Instead, the value of a target language

expression will be defined in this dissertation by an

61

extended Markov algorithm specification of a machine that

mechanically converts an expression into a canonical repre

sentation of the value of the expression.

This machine will be defined formally in section 2 of

this chapter. The operation of this machine for evaluating

A-calculus expressions will be presented informally in this

section.

In general, the value of a constant or free variable is

the object denoted by the constant or variable. A list of

the values of the constants and free variables is called an

"environment." The value of a A-expression is called a

''A-closure" and consists of two parts: (a) the expression

itself, and (b) the environment in which the A-expression

occurs, i.e., the list of the values of the constants and

free variables in the expression.

The value of a combination is the object computed by

evaluating its operand, evaluating its operator (using the

values of constants and free variables given by the environ

ment of the combination), and then applying the value of the

operator to the value of the operand. If the operator of a

combination is a A-expression, the result of applying the

A-expression to its operand is computed by (a) coupling the

bound variable of the A-expression with the value of the

operand to which the A-expression is being applied (b) add

ing this couple to the environment of the A-expression, and

(c) evaluating the body of the A-expression using this new

environment.

62

Some example A-calculus expression are the following:

If

3

(SQ 3)

x

"2". "3" and

integer two, the

integer into its

the integer
three

the integer
nine

some object
x

AX. (SQ X)

AX.X

(AX.3 2)

(AX. (SQ X) 3)

(AX.X 3)

"SQ" are constants denoting respectively

integer three, and the function mapping
above

square, the nine expressions/denote

the function mapping X
into the integer three

the function mapping X
(presumably one integer)
into its square

the identity function

the integer
three

the integer
nine

the integer
three

3.lc The Marriage of Extended Markov Algorithms to the
A-Calculus.

the

an

This section combines the formalism of extended Markov

algorithms within the formalism of the A-calculus. The wedding

of these two formalisms will form the basis for the target

language that will be presented in Section 3,ld.

Let E be a set of strings representing extended Markov

algorithms, where the characters {[,],I, and ''}do not occur in

E. Let L be another set of strings, called the set of

literals, where the character ' does not occur in L. Let C

be a set of basic symbols, called the set of constants, where

63

each constant is either a string from E enclosed by the

brackets [and] or a string from L enclosed by the quotation

marks ' and'· Let V be another set of basic symbols, ca~led

the set of variables, where each variable contains no occur-

rence of{[,], or'}. (Thus the sets C and V are disjoint.)

An expression in the combined formalism will consist of any

expression M such each occurrence of a variable in M is bound

in M.

The extended Markov algorithms will be interpreted as

definitions of primitive functions, the literals will be

interpreted as representations of the objects upon which the

primitive functions operate, and the variables will be inter-

preted as names of primitive functions, literals, or functions

of the primitive functions and literals. In the examples in

the text, the quotation marks will often be omitted from

constants that represent integers.

Expressions in the A-calculus are strings of basic

symbols, and hence to include an extended Markov algorithm

in the A-calculus, it is necessary to have a linear repre-

sentation of an extended M~rkov algorithm. An extended

Markov algorithm of the form x

D

Bl -+ (•) tl

s2 -+(•) t2
.

s -+ (•) t
n n

64

where X is the statement listing the string variables in the

algorithm, and D is the definition of the sets named in X,

will therefore be represented

-+(•) t]
n

For convenience, however, the statement X and the definition

D will generally be given separately from the list of sub-

stitution rules in the algorithm. For example, cons~der the

following expression:

la.([B-+DIC-+FIO-+I] a)

This expression can be used in combination with other expres-

sions to transform strings. For example the axpression

(la.([B-+DIC-+FIO-+I] a) 'COBBLER')

successively takes on the values

([B-+DIC-+FIO-+I] 'COBBLER')

and finally

FIDDLER

In defining the semantics of computer languages, it

will be convenient to consider the symbols{-+• A [) ll as

object alphabet symbols in an extended Markov algorithm. I

therefore adopt the conventions that any stririg (not includ-

ing the symbol 11) enclosed by the quotation marks
II and II

65

in an extended Markov algorithm is to be considered as an

object alphabet string. This use of quotation marks allows

us to consider extended Markov algorithms whose object

strings are themselves extended Markov algorithms. This

point will be discussed in the definition of the primitive

function "CAT", to be presented shortly.

The basic notation for the combined formalism is not

especially suited to digestion by humans. To make the nota-

tion more palatable, I will introduce a series of alternate

notations for writing expressions in the combined formalism.

The alternate notations will be given for convenience and

conciseness in communicating the expressions to humans. The

alternate notations for the A-calculus, and the A-calculus

definitions for conditional expressions and recursive func-

tions are for the most part due to Landin.

Alternate Notations for Extended Markov Algorithms:

The linear representation of an extended Markov algorithm

is difficult to visualize. Accordingly, I will generally use

the notation

sl -+- (•) tl

s2 -+- (•) t2
.

s -+- (•) t n n

(where the variable and set definitions for the algorithm

will be given separately) in plac~ of the strict linear

66

representation of an extended Markov algorithm in the A

calculus. For example, the expression

will be written

The Function CAT:

Let s be a string variable representing any string of

characters and consider the following expression

Aa.([s. +•"[A+•" s '"]"]a)

This expression defines a function mapping the value of the

variable a into the extended Markov algorithm [A+• a],

where "a" here denotes the value of the variable a. This

extended Markov algorithm when applied to an object string

concatenates the string value of a to the object string. The

function above will be called "CAT". For example, the expres

sion ((CAT 'HELLO') 1 THERE') successively takes on the

values:

67

((la.([s. +• "[A+•" s"]"] a) 'HELLO ') 'THERE')

(([s. +•"[A+•" s "]'']'HELLO') 'THERE')

([A+• HELLO] 'THERE')

HELLO THERE

Similarly, the expression ((CAT ((CAT 'HOW') 'ARE ')) 'YOU')

takes on the value 11 HOW ARE YOU". Note that the extended

Markov algorithm [s. ·~ "[A+•" s "]"] maps its object string

into another extended Markov algorithm, and thus extended

Markov algorithms have the ability to detine tunctionals,

i.e., functipns mapping an argument into a new tunction.

In defining the semantics of a computer language, it

will frequently be necessary to concatenate strings to pro-

duce a string that represents an extended Markov algorithm

or a string to which an extended Markov algorithm is applied.

It will be co~ve~i~nt not to state explicitly the concatena-

tion of strings in these cases, and I therefore introdu,ee

the following alternate solution.

Let 11 diA.T" be the function as 'd~fined above,
let Xt 1 l.!_i.!_n be expressions, and
let ((~AT ••• ((CAT({'CAT X1) .X2)) · x3)) ••• Xn) be
an e~p1iession whose value 11 ·an ext.ended Markov
algoritha or a string to whi~h an'~xtended
Markov algorithm is applied. The Xi can be
written directly in the form of the extended
Markov algorithm or the concatenated string to
which an extended Markov .algorithm is applied.

Thus, for example, .the e.z:preasions

68

An.Aa.AB.(((CAT((CAT((CAT((CAT '[TRUE+•') a)) 1 FALSE+•'))

a))']') n)

Aa.Ae.([TRUE/TRUE +• TRUE I TRUE/FALSE
FALSE/TRUE +• FALSE FALSE/FALSE
((CAT ((CAT a) '/')) a))

can be written

An.Aa.AB.([TRUE +• a I FALSE+• a] n)

+• FALSE I
+• FALSE]

Aa.AB.([TRUE/TRUE
FALSE/TRUE

+• TRUE I TRUE/FALSE +• FALSE I
+• FALSE FALSE/FALSE+• FALSE) a/a)

or further rewritten using the previously given alternate

notation

[
TRUE +• al

Aw.la.AB.(FALSE+• ~w)

[

TRUE/TRUE
TRUE/FALSE

Aa.AB.(FALSE/TRUE
FALSE/;F'ALSE

+• TRUE~
+• FALSE
+• FALSE
+• FALSE

a/a)

The first expression defines a function• that when successively

•Greek letters will generally not occur as object strings for
extended Markov al--gorithms. I will therefore use Greek
letters in an extended Markov algorithm or the string to
which it is applied to denote the symbols that are bound
variables. Thus, in writing the strict representation of
the algorithm or its object string in terms ot A-calculus
expressions, strin$s not containing Greek letters a.re to
be quoted and the Greek letters a.re lli to be quoted.

69

applied to three arguments produces the value of the variable

a if the value of the variable TI is "TRUE" and produces the

value of the variable S if the value of the variable TI is

"FALSE". The second expression defines a boolean-valued

function that when successively applied to two boolean valued

arguments produces the value "TRUE" if both arguments have

the value "TRUE" and produces the value "FALSE'' if either

argument has the value "FALSE". The first expression will

later be used to define conditional expressions. The second

expression will later be used to define the function for pro

ducing the logical ''and" of two arguments.

Note that the first expression above constructs an

extended Markov algorithm from literal strings and bound

variables. The notion of a bound variable lends itself im-

mediately to extended Markov algorithms embedded within the

A-calculus and allows the construction of extended Markov

algorithms that depend on the values of the variables to

which the algorithms are applied. This compatibility be-

tween the married formalisms greatly simplified the defini

tions of the -primitive functions for SNOBOL/l and ALGOL/60.

Alternate notations for the A-calculus:

The basic notation for defining and applying functions

in the A-calculus is somewnat awkward for those accustomed

to writing functions in the conventional mathematical nota-

tion. I thus introduce the following alternate notations.

70

Let F, V1 , V2 , ... Vn be variables and M, Q, E1 , E2 ,

E be expressions. Expressions of the form
n

(c) (... ((F E1) E2) ... En)

can be written

(a) LET Vl,V2, v El,E2, ... E
IN n n M .

(b) LET F(V
1

,v
2

, v) = Q
IN n

M

(c) F(E
1

,E 2 , ...
'

E)
n

, or E are enclosed in parentheses,
n

the parentheses can be dropped. Thus, for example, the

expressions

(t.X.('SQ' X) 3)

((t.X.AY.(('CAT' X) Y) 'HELLO') 'THERE')

(t.COND.(((COND 'TRUE') 0) 1)

can be written

71

fi'RuE -+•a]
A-rr. t.a. t.B. (E'ALSE-+• B TT))

LET x = 3
IN 'SQ' x

LET X,Y= 1 HELLO ' 'THERE' ' IN (('CAT' X) y)

LET CO~D(.... ~) • (kRUE +• :] 'Ir)
IN COND('TRUE',O,l FALSE +•

Conditional Expressions:

Consider the function COND defined previously

fTRUE +•
COND(n,a,a) = ([_FALSE+•

This function selects the value of a if the value of n is

"TRUE" and the value of ~ if the value of w is "FALSE". For

example, the value of COND('TRUE',O,l) is the string "o".

Next consider the following expression from ALGOL/60

IF A=O THEN B•A ELSE B/A

and the (loosely written) expression in the combined formal-

ism

COND(A=O,B•A,B/A)

where COND is defined as above. This expression does not

correctly mirror the ALGOL/60 expression. In ALGOL/60 the

expression B•A is evaluated only if the value of A is equal

to zero, and the expression B/A is evaluated only if the

value of A is not equal to zero. This order of evaluation

72

insures that B/A is not evaluated if the value of A is zero.

Now consider the following (loosely written) target language

expression

where v is a dummy variable. In evaluating this expression,

the function COND will be applied to its arguments, one of

the A-expressions Av.B•A or Av.B/A, will be selected and then

the selected A-expression will be applied to the operand 'A'.

Thus only the body of the selected_ A-expression will be

evaluated.* The use of the dummy variable serves as a delaying

mechani~m in evaluating expressions.

Conditional expressions of the above:lt>rm will be used

repeatedly in defining the semantics of computer languages.

I therefore introduce the following alternate notation.

Let s 1 , s 2 , t 1 , t 2 , and t
3

be expressions. Expressions

of the form

and

can be written

*Note, in forming a A-closure, the body of the A-expression is
!!..Q.1 evaluated.

73

and

Similarly, this alternate notation ~an be extended to include

an arbitrary number of nested conditional expressions.

For example, the expression

can be written

A=O => B•A
ELSE => B/A

3.ld The Target Language
'

The coabined formalisa of extended Markov algorithms and

the A•Calculus presented in the preTious section appears suf-

ficient to define fairly concisely many constructions in

computer languages. HoweTer, two common features of many

co•puter languages, that for assigning new values to variables

and that for transferring control to another statement in a

program, have evaded characterization in the combined~rmalism.

To handle this circumstance, the combined formalism will be

augmented with new expressions to mirror directly the assign-

aent of new values to variables and the transfer of evaluation

fro• one expression to another. The augmented version of the

combined formalism will co•prise the target language of this

dissertation.

74

Sequences of Expressions:

Before discussing the rules for forming well-formed

expressions in the target language, let us consider a mechan-

ism for defining a sequence of expression·s, where .each expres-

,E in the sequence ls to be evaluated in the
n

nu•erical order indicated by its numerical subscript. Using

the rule for evaluating t:be opera~d ot a co.mbination before

the opera.tot' of a combination, the tal'g~t language proTides

a device fol' handling. a sequence· o·f exp:ressiGJds.

Let X, E ,E1 ,E 2
, • • • , and En be •xpressions, and consider

the tolloving >.-expTesa:iou 1 c&-11.ed 'f

WheJ1 evalua·ted,- the eosbin-ation ('t E) results in t1r·st evalu-

&t:fns the expressioo E and t;h~n ret11r.,;.:tna the value ot the

>.-closure for >.e.(e a), where 11 :1• oottple4 with the valu• ot

E. Next c.onsider the co•bina<tion

[(T E) >.1' • J'.}

where square bra.ckets have been useci he:re (p;;r convenienc•)

in· place of parentheses. et 'J!bis combination is evaluated as

follows:

1. The >. closure· for Aw. X is computed

•square bi"a.Okets wil1 l,)e use\i :trequently in this sectien.
Strictly speaking, all sqll&r:te br.act:tets ebould be replaced
by p-e.rentheses.

?5

2. The combination {T E) is computed, resulting in
first evaluating E and then returning the A-closure
for Aa.(a a), where a is coupled with the value of
E.

3. The value of the expression in 2 is applied to the
value of the expression in l, resulting in applying
Aw.X to E, which returns the value of X.

In particular, if Xis the expression ".,..", this combination

results in returning the value of E.

Next consider the expression

This combination is evaluated as follows:

1.

2.

3.

The A-closure for Aw.[(T E2) A'lr.n] is computed.
Note that the value of E2 is not computed in forming
the A-closure.

The combination (T E1) is computed, resulting in
first evaluating E

1
and then returning the A-closure

for Aa.(13 a)

The value of the expression in 2 is applied to the
value of the expression in 1, resulting in return
ing the value of [(TE) A'lr.'11"]. This evaluation
results in first compu~ing the value of E2 and then
returning the value ot E2 •

Thus the evaluation of this expression results in first

evaluating E1 , then evaluating E2 , and finally returning the

value of E2 •

Similarly, consider the expression

[(T E
1

) A'lr.((T E
2

) A1r.[(T E
3

) h.'11"]])
t t t
l 2 3

When evaluated, this expression results in successively

76

evaluating E
1

, E2 , and E
3

and then returning the value of E
3

•

This expression, however, has the following important property,

which will be used in the definition of the transfer of con-

trol to some labeled expression in a sequence of expressions.

Let c1 , c2 , and c
3

be the combinations that are given by the

matching paris of square brackets indicated by the numbers

1 1 2, and 3 above. The evaluation of c1 results in succes

sively evaluating E
1

, E
2

, and E
3

and returning the value of

E
3

; the evaluation of c2 results in successively evaluating

E2 and E
3

and returning the value of E
3

; the evaluation of c
3

results in evaluating E
3

and returning the value of E
3

•

More senerally, an expression of the form

[(T E1) An.[(T E2) ••. An.[(T E) An.n].,,]]
+ + + n
1 2 n

when evaluated, results in suc'cessively evaluating E1 , E2 ,

•.• , and E and returning the value of E. Moreover, the
n n

evaluation of any combination Ci beginning with the square

bracket denoted by the integer i results in success~vely

evaluating the expressions Ei' Ei+l' ••• , and E and return
n

ing the value of E • This later effect leads us to the notion
n

of a "labeled" expression.

Labels and Label References:

Let V be the set of variables (as described earlier) and

let L be the set obtained from V by affixing a tt:" to each

77

--- •• --· c - ---...·---· ~ -~--- ----------~·-·--:---~~-

variable in V. The set L will be called the set of' labels.

Consider an expression ot the form

where the ti, l~i~n indicates the possible occurrences ot

labels, each ot which must be different. An expression ot

this form will be called a "sequence" of the expre.••ions E1 ,

••• , and E •
n

If we ignore the labels in an evaluation,

the evaluation ot any combination Ci fo1lowing some label

ti, l!,i!_n, results in successively evalua.ting Ei, Ei+l' ··- •

and En and returning the value ot En.

A sequence of the above fora may occur within the body

ot some 1-expression~ which in turn may occur within a se-

quence in the body ot some encompassing 1-expression, and so

on tor further encompassing 1-expressions. In the target

language the transfer or -0ontrol to some labeled expression

will be designated by expressions of the form (GOTO. E},

where E is an expression referring to some label. A label

reference will be a string of the form .1 , where t: is a

label. The ~alue of a label reference .1 will consist of

two parts: (a) the combination in the innermost encompassing

1-expression such that the combination is prefixed by the

label 1: , and (b) the environment within which the combina-

tion is to be evaluated. The evaluation of a label reference

will be called a "label-closure".

I now proceed to a presentation of the target language of

the dissertation.

78

Target Language Expressions:

An expression in the targe.t llanguage is defined as

follows. Let C, V, ancf L be se.ts of symbols, c·•lled the sets

of constants 1 variables, and label.a,, a'.8 d'escri bed earlier.

(a) If p is a variable or p is a: constant, then p is
an expression.

(b) If E and F are expressions, then (E F} is an
expression.

(c) If v is a variable and E is an expression, then
~v.E is an expression.

(d) If v is a variable and E is an expression, then
(v ASSIGN. E) is an expression.

(e) If S is a sequence, then S is an expression.

(f) If E is an expression, then (GOTO. E) is an expres
sion.

Expressions of type (a), (b), and (c) are expressions in the

combined formalism as introduced previously. Expressions of

type (d), (e), and (f) are new. The evaluation of an expres-

sion of the form (v ASSIGN. E) will result in first changing

the value of the variable v to the value of the expression E

and then returning the null string :as .the value of the

expression (v ASSIGN. E). If the lab.els in an expression of

type (e) are ignored, the evalu&tion of a sequence results in

successively evaluating each of the component expressions E
1

,

E2 , and E in the sequence and returning the value E • If E
n . n

is an expression of the form .1 , where 1: is a label, the

evaluation of E will result in forming• the label-closure for

.1 and the evaluation of an expression of the form (GOTO. E)

79

within some sequence will result in (a) stopping the evalua-

tion of the expression in which E occurs and (b) continuing

by evaluating the combination designated by the label-closure

for .i within the environment specified by the label-closure.

Note that this mechanism allows transfer of control only to

expressions within the same sequence or expressions in a

sequence in some encompassing A-expression. The previously

given notation for defining a sequence of expressions is

awkward. I thus introduce the following alternate notation

in place of the strict representation of a sequence. Let E

be a sequence of the form

where the i., l<i<n, indicate the possible occurrences of
l. - -

labels. A sequence of this form will be alternately written

i E
n n

The addition of expressions of type (d), (e), and (f)

take effect when it is desired to construct a sequence of

expressions to be evaluated one after another or to interrupt

the evaluation of a sequence and to continue the evaluation

at some other labeled expression.

For example, consider the expression

LET A= 5
IN (A ASSIGN. (+(A,l)));

(GOTO. • P);
(A ASSIGN. l);

P:A

80

where "+" is a free variable whose value is the function for

computing the arithmetic sum of two integers. The evaluation

of this expression is as follows:

(1) The value of the bound variable A will be set to
five and the body of the A-expression evaluated.

(2) Since the body of the A-expression is a sequence
of expressions, each of the component expressions
will be evaluated in order.

(3) The first expression in the sequence results in
updating the value of A to six.

(4) The second expression results in transferring the
evaluation to the expression labeled P.

(5) The evaluation of the expression labeled P results
in returning the value of A, which has been set to
six.

Recursive Definitions:

Consider the following (loosely written) expression

defining the factorial function and its application to the

integer five:

LET FACT(N) = EQ(N,O) ~ 0
ELSE :::::p> N•FACT(N-1)

IN FACT(5)

where EQ is a boolean valued function for testing the equality

of two integers. The function "FACT" when applied to the argu-

ment "5" will not evaluate to five factorial. The difficulty

here arises in the definition of the function "FACT" where

the variable "FACT" itself occurs as a free variable. This

incorrect rendering of a recursive function can be corrected

81

through the notion of a ~fixed-point operator." 20 • 2 5 One

fixed-point operator for target language expressions is the

expression

Y = lP. LET w•'A'
IN (w ASSIGN. (P w)); w

If M is an expression and F=E is a recursive definition of the

function F, an expression of the form

LET F = E
IN M

where E contains free occurrences of tbe variable F, can be

correctly written

LET F • (Y lF.E)
IN M

To avoid this somewhat awkward method for writing recursive

functions, the following alternate notation is introduced.

If F is a variable and E and M are expressions, an
expression of the form

LET F = (Y lF.E) IN M

where Y is the fixed-point operator given above, can
alternately be written

LET REC F=E IN M

Thus the definition of the factorial function can be correctly

written

LET REC FACT(N)

IN FACT(5)

= EQ (N , 0) .=> 0
ELSE ':::::;> N•FACT(N-1)

82

The above fixed-point· operator ia sufficient to handle

recursive definitions of single tunctiona but not aiaultaneous

recursive detinition of two or aore tunctiona. In this dis-

sertation simultaneous recursive definitions will not be

needed until the aeaantics ot ALGOL/60 procedure declarations

is defined, and the presentation ot a fixed-point operator to

bandle simultaneous recursiye definitions will be deterred

until the chapter on ALGOL/60. A detailed discussion ot

fixed-point operators is given by Wozencratt. 2 5

A Definition of the Semantics of the ALGOL/60 Subset:

The definition ot the semantics of the ALGOL/60 subset in

terms ot the target language is given in Appendices 2.1 and

2.2. The specification of the corresponding target language

expression tor a program in the subset has been broken into

two parts. Appendix 2.1 defines the translation of a program

into the target language assuing t.hat the priaitiye "+" is a

tree variable. Appendix 2.2 defines the priaitive "+". To

form the complete target lancuage expreaaion, one aust take

the target language string specified in Appendix'2.l and add

to it the primitive function definitions of Appendix 2.2 in

the form

-+-• "[A-+-•" s "]"]ca LET CAT ca•[s.
IN LET IQ(ca,B) • (a)

IN LET REC +(X,Y) • !Q(Y,O)~ 0 ELSE~ SUM(SUCC X,PRED x)·.
IR LET d' II s '

...

83

where "LET d' IN s'" is the target language string specified

by Appendix 2.l.* For example, Appendix 2.1 specifies the

following pair of strings

BEGIN INTEGER A; A:=l+2 END •• LET A= 'A'
IN (A ASSIGN. (+{'l','2'))

The string "LET A= 'A' IN (A ASSIGN. {+(1 1 1 , 1 2 1))" when used

in place of "LET d' IN s'" in expression (a) above specifies

the complete target language expression for the program

"BEGIN INTEGER A; A:=l+2 END".**

3.2 An Evaluator for the Target Language

To explain the semantics of the target language in the

previous sections, an appeal was made through the English lan-

guage. This section reduces that appeal to an appeal for

understanding only the formalism of extended Markov algorithms.

*This division of the specification of the semantics of a
computer language into a specification of a target language
string and a separate specification of the primitive functions
used in the target language string will be followed in the
definitions of SROBOL/l and ALGOL/60. Also, the definitions
of the string variables for the extended Markov algorithm
primitives are given at the beginning of Appendix 2.2. These
definitions must be added to each extended Markov algorithm
using the string variables.

**It may happen that the use of identifiers in a source language
program will conflict with the use of identifiers used to de
fine the primitive functions in the target language. To avoid
this conflict, the identifiers for the target language primi
tives strictly speaking should be given as identifiers that
are different from the source language identifiers. This con
flict can be avoided by appending to each target language
identifier a symbol {e.g., the symbol"#") not allowed in
source language identifiers.

84

The "value" of a target language expression will be defined"

in this section by an extended Markov algorithm definition of

a machine that mechanically converts an expression into another

expression, the value of the initial expression. The machine

may be viewed as a hypothetical computer for the target·lan-

guage, and extended Markov algorithms may be viewed as the

machine language for the computer. The definition of the

target language evaluator is based on a similar definition

20 24 25 given by Landin, • and Wozencraft.

The extended Markov algorithm definition of the target

language evaluator is given in Appendix 2.3. Before applying

the algorithm to a target language expression, it is neces-

sary to provide a unique index for each "1" and "(" in the

expression. Thus the expression

(lX.('SQ' X) 1 3 1)

will be indexed

The indices allow unique identification of a l-expression

or combination.

The evaluation of an expression begins with a substitu-

tion rule transforming the expression to be evaluated into

five strings: the "con~rol" string, the "result" string,

the "environment" string, the "store" string, and the expres-

sion itself. Subsequent substitution rules defin~ transform&-

85

-- ----~-- ---- ---- ,_..._...., ... ~-~~ ---~-

tions on the control. result, enTironaent, and store strings

until the Talae of the. t.arget language expression is computed.

The final substitution rule returns the value of the expres-

sion.

Generally, the control string is a string of the form

where each ai, l~i~k, is an atomic part of an expression

(e.g., a constant, variable, indexed lambda symbol, or indexed

left parenthesis). The control string is used to hold the

atomic parts of an expression b~t~re they are evaluated.

When the parts ot the control string are evaluated, their

values are placed on the store string. The store string is a

string of the form

(111. •• 1, r) . • • n

where each ri' l~i~n, is a string denoting the value of a

constant, a variable, or a A-expression, and the string of

ones before each string value provides a unique pointer to

the string value. A new store component tor a string rn+l is

obtained by (a) obtaining the string of ones representing the

pointer p to rn and (bj prefixing the string "(lp,rn+l)" to

the left ot the store string.

The result string is used to store pointers to inter-

mediate calculated values formed in the evaluation of a target

language expression. The result string is a string of the form

86

where each pi, i~l~m, is a pointer to some string Talue ~n

the store.

Let N1 ,M1 ,N 2 ,M2 , ••• ,Nk,Mk denote strings of ones, let

v1 ,v2 , ••• , vk denote variables, and let p 1 ,p2 , ••• ,pk

denote pointers to the store. The enTironment string is a

string of the form

•
where each coJllponent (Ni+.Mi vi=pi) is a st;ring such that Ni'

l~i~k, identifies the environment for some A-expression Aj'

vi identifies the bound variable v of Aj' pj is a store

pointer to the current value v, and M1 identifies the environ

ment of the enc~mpassing A-expression. The environment Mi is

said to be "linked" to the environment Ni. In general. the

environment components linked to Ni provide pointers to the

current values each of the bound variables in the A-expres-

sion Aj and its encompassing A-expressions. The list of

environment .compon.ents linked to N1 will be called the

environment Ni. For example, conaider the environment "11111"

in the environment

~ ~ ~~
(11111+11 X=llllll)(llll+ll A=ll)(lll+ll B=lll)(ll+l Y=lll)(l+l Z=l)

The environment components linked to "11111" provide store

pointers to the current values of the variables X,Y, and Z in

8'l

the A-expression vhose environment is ~dentified by "lllll".

A new component is prefixed to the environment string

each time a nev A-expression is applied. Thus each Ni at the

left of each environment component identifies an environment

for some applied A-expression, and the environment components

linked to Ni provide pointers to the values of the free vari

ables in the body of the A-expression vhose environment is

given by Ni. Since constants in the target language are

treated as literal strings vhose values are the strings them-

selves, the values of the constants in an expression are not

placed on the environment string.

The set definitions for the string variables used in

the extended Markov algorithm definition of the evaluator are

given in Appendix 2.3a. The set "STR" defines the set of all

strings that might occur within a target language expression.

The sets "CONSTANT" and "VARIABLE" define the sets of con-

stants and variables. The sets "PTR" and "INDEX" define

respectively the set of pointers to the store string and the

set of indices used in marking an expression. The set "EXP"

defines the set of target language expressions, the set "EXP HD"

defines the set of strings that can occur at the head of an

expression, and the set "EXP TL" defines the set of strings

that can occur at the tail of an expression. For example, in

the expression 11
(1 A2x.(

3
1 SQ' X) '3') 11 the string "(1 " is the

head of the expression and the string "A 2x.(
3
•sQ' X) 1 3 1)" is

the tail of the expression, and in the expression "X" the

88

variable "X" is the head of the expression and the tail of

the expression is null.

The substitution rules for the extended Markov algorithm

definition of the target language evaluator are given in

Appendix 2.3b. Three alternate notations were used in writing

these rules:

(1) Let xi and y., l~i~5, be string variables repre
senting arbitrary strings used in an extended
Markov algorithm. Generally, each substitution
rule is of the form•

<cy1 -x2ry2 -x
3

ey
3

-x4sy 4-x
5
py

5
> + <c'y1 -x2r'y2-x

3
e•y

3
-x4s•y4-x

5
p•y

5
>

where the c, r, e, s, and p are string referring to
portions of the control, result, environment, store,
and expression strings and the c', r', e', s', and
p' are the transformed portions of these strings.
Since the xi and yi occur in each substitution rule,
a substi.tution rule of the above form will be written
in the form

c c'
r r'
e + e'
s s'
p p'

(2) If one of the five strings c, r, e, s, or p is given
as null on both sides of the substitution rule, the
symbol " " can be used in place of the null string sym
bol "A".-

(3) If one of the five components c, r, e, s, or p occurs
unchanged in the right-hand side of the substitution
rule, the symbol "I" can be used in place of the
string in the right-hand side of the rule.

*The hyphen "-" is used to separate the control, result, en
vironment, store, and expression strings.

89

Th~• the substitution rule

<(iy1-x2Ay2-x3Ay3-x4Ar 4~x 5 (iht h 1t')y
5

>

+ <h' h APPLY. y1-x2Ay2-x3Ay3-x~Ay~-x 5 (iht h't')y
5

>

can be written using notation (1)

<A h' h AP.PLY.
A

A A
A A

(iht h' t') (iht h 't')

and further written uaiug notation.ll (2) and (3)

h' h APPLY.

I

Three example eval.uations of target language expressions

are given on the adjacent pages. Each of these evalllations

shows the sueces.si ve transforaa.t!ons. o·n one ot the initial

expressions:•

('SQ' '3 I) LET X='3 1

u1 ('.SQ 1 x~
LET X• I 3'
II (X ASSIGN. 1 4 1);

(GOTO. • L);
(X ASSIGN. 1 5') ;

L: X

*The constant 'SQ' in the first two expressions represents
the primitive function for squaring an integer. Strictly
speaking, all primitive functions in the target language
must be defined by conatants that are extended Markov algo
rithms.

°'

=f
c.
...

.. •
c ::

::
c .. I I

... .. f • .:. .. ~
~1

..
I . c ..

Al
~

::;
c--:: ..

'

...
~ • • ..

.: i - t ;: ,- ... '• ..
:l ~

... . :: .. .
::; c

Al
c ...

=l
....::' • • .. I• .. .,

Ar _ ..

~r
:ii

.. w•:-..
!:i . ..

! .. c

.:. ,._ = :;
c

,._
•

5
"' ::; c

..
' • ..

i
.. ..

:: 1 .. c ..
: ~ ... = ~ .. ;., ..:' • :.- I
c ;., ..

"l
c .

~ :t • ... ~ .. :: .. .

;,, .: :: ~

~
~ . ,c,

.. t ~T

.. ..
: .

:-
! .. !.-
::: .:
i -

5 . ..
~

_ ..
.. c • -

,.._ ... c -... :::~ ;;, -
c ;. - -- --.. l .. : (,.

_ .. °! .. _ c.. !' :: -- - - - ,- ;.,

..- -- •• .. - . '•
~l ::f

-1 :f ~ ...
: _ ..

91

c:o
(\)

lo\et ta n.t1 ••-ple, 4eC'l••l 4l•U• vtll 11• uae4 ID pl•e• or the eorre1poa•t•1
etrlac1 of oae1 lleaottac ator• poiat•r• ••I •••lro••••t ••••·

C1121.(3C·i ! 51 AISIGI, '•'I)

111•-'191 • 1201 •I

., •• 1Tc,, 1,aoTO •• L))
1

'io•·l 11 ! 12T 1131 A11101. '5'1l 'i•·L:l 15 c16T ll •n•·•lll
l l

']')

'21 .. '221 • 1231 •I •2••· •25•· (26• •> •21•·•29•· (291 •I

1 I 1
___.. h•l ••1)

15 5•1,11
..!., I

2,3,2 • 1, I 1 1. 11
--· (ll--1 1:•2)1

APPLJ, 118 APPLJ. APPLt. 12 11
a,-.,3;T

(l,A) r
l 11

tl11• al>O'f'e ••pJ'e1a l OD ~
• la 11

~ J.1 2c 1) (2.J)(l •A J 1

! 5 • 18 APPL!. APPL!, 11 11

-I

c•,16• 211
I

[

I ASSIGI.

(5,.)I

I

'· 3, 5.1 I
AISIGI, APPLT 'it APPL?, APPLY. 12 11
25•1211
I

I

I
[

'it APPLJ, APPLJ, 12 11
10. 2 l • I 2 I 1

-1 .J. ! ,,.)(•.•,•2 I (J,•2•1)(2,•) (l ,A) [

•19 I~ APPLJ. 12 11

3, T 13 • 1 a I 1
- 13•2 ••1)(2•1 1•21(1•1 ••11

(6,•19•211

[

I, APPLY. 12 11

3 Tl 3 •1 2 11
-1

17 •119•3 11
l

[

CT .I' 1, lz 11
r 15 1,1 1 11

- ,,., ••111
I \

l

[

<15 1, 11
' 12 I 1 -1

I

I

"""""' [l

[

1
20 '· 12 11

11,r I, 12 11 - ~··3 •·•ll3•2 ••llC2>1 1•2lCl•l ••ll

2,),2,2

-·"'· ,_._,.;;.,. '-·-'.;;..·;..5 ._1.:·;..5...;. '.:·,,;,'_· 1-r; : : 1, 11

11

[

.L GOTO, APPLT. 121 APPLJ, 1
5

I, lz 11

•1,1,1,11
(5•2 ••lHll•J t••H3•2 e•lHl•l 1•2Hl•l ••1)

6.),6,2,6.1 ' • 1, 1. 1, 11
I

[

oOTO, AfPLf 121 .. APPLJ • 1
5

I, I 2 I 1

!'·•10•5llr ·'1"'>) (6,•11•2ll ,,.) (••• ,.,ll J,•,•1) (•• •> (l ,A I

2,J ,2,s. J, ,,.1.i, T .,J,11. T ,2, ~. '•'· 2 ,s.1,,. i.s.1. T. s. ,,,.1

(t._. r•l•• •l•pl7 ••••lt la •l•etac a poiater -to tla•
e•rreat ••lue of a oa tit.• r•••lt etrla1)

12 -·
!

la Ir 12 11
a 18 Ir 11 11

~ C .. r ••2l(r•6 1•91(6.2 a•lll
!11,i28• 6 l!10,127c2 l!9,llT• 2 >

!P,<u•all
l

Initialization and Termination of Evaluation (rules 1 and 12)*

The evaluation of an expression begins (rule 1) by

initializing the control string with the head of the expres-

sion to be evaluated and the marker "1 1 ", initializing the

result string with the marker "1 1 ", initializing the environ

ment string with the string "(l+l rr=l)", initializing the

store string with the string "(1,A)", and initializing the

expression string with the expression to be evaluated. Since

the initial environment will generally contain the values of

no free variables, the initial environment string contains

the dummy variable rr whose value is a pointer to the null

string in the store. The marker " I " 1
is placed on the control

and result string to denote that the head of the expression is

to be evaluated within the initial environment 1. In general,

the subscript j of the leftmost lj in the control string de

notes that the control string variables to the left of the

lj are to be evaluated using the environment j, i.e., using

the environment components linked to the component

(N.+M. v.=p.) where N.=j.
1 1 1 1 1

The evaluation terminates (rule 12) when the control

string is null. When the control string is null, the result

*Rules 1 and 12 do not exactly follow the alternate notation
for the evaluator given earlier. These rules are strictly
given as

ht
1
+ <hj 1-1 1 -(A 1+A 1 rr=l)-(1,A)-ht>

12
<A-p-X3Y3-x4(p,r)y4-X5Y5> +

93

r

string will contain a pointer to aoae string value in the

store. .The a tr inc in the store is returned as the result ot

the evaluation. In general, the result ot an evaluation is

either a constant or a A-closure. Strictly speaking, it

~he result ot the eYaluation is a A-closure, the l-expression

and the values ot its tree variables should be returned as the

res~lt ot the evaluation. It the result ot tbe evaluation is

a l-closure, the l-ezpression an4 tll• Y&lUe's ot its tree

variables can be obtained f'to• the environaent, atore, and

expressioo stPiligs •pecitied prior to the teraination ot

•1'&-l:uatio~.

rt c· use;r ver• eyaluat"i.1;1c i.r,et lazicuace expressions

vita 1nput-ou<tput tac.lllttieal (a) the initial values o·t the

iaput ant outp.ut a.tl''ia·a• {pre;•~•abit tliose giv·en 01,1 aoae

device like a teletype Ol' car.4 rea4er) could be plac.ed in

tbe 1.nitial st9re strin1 and (b) tVO' syatea vuiaobl-u. and

p9.i•t:•• to their i~itial values could be placed on th-9

initial enviro&aent striae. The a4ditid»i or removal ot

at.rings on the inJut o:r mt.put d•Yice colll4 then be defj._.ed'

by lolpdatin:c tbe Yalu•• o"f "t;he a7ate11 variables to ~Wir i;lew

Y&l"•!I. Thia itf 1J:he aech&nl•• ~4 t:d cletiri• .inp'lri-output

ta s•080L/l (see Chapter ~V)' ••

EvaluatJ.9-n o~ Colabiiur-tion• (rt,11•1-e 2):

it: • l•'tt p•renthesis ot A co•'biilation· is at tire let't

ot the'. contt'ol ,striae, thie l.tt· parttnthesis is. remoTea troa,

94

. . f. < ~ •

the control string.• and the head ot its operand and operator

are prefixed to the control string and tbe string "APPLY." is

placed to the right ot these two strings. Subsequent rules

vill evaluate the operand and operator, and then apply the

value ot the operator to the Talue ot the ope~and to produce

the value ot the coabination.

Evaluation and Application ot A-expressions (rules 3. 8, and 11):

It the naae Ai ot a A-expression is at the left ot the

control string {rule 3), the current enTironaent J (initially

the dumay environment 1) is obtained, the string "A £ " is
i J

placed in a new coaponent at the left ot the store string,

and a pointer to the new store coaponent is prefixed to the

result string. The string "A1 eJ" represents the A-closure

tor Ai in that {a) Ai provides a naae uniquel7 identitying

the A-~xpression Ai contained in the expression string and

(b) the environaent coaponent J proTides the (linked) list ot

the pointers to the current values ot the tree Yariablea ot

the A-expression Ai.

It the string "APPLY." is at the left of the control

string. a pointer p to a A-closure. AieJ is at the lett ot the

result string. and k is the index ot the aost recently added

environment coaponent {rule 8):

•In the discussion to tollov, unless explicitly stated
otherwise, the eleaents referred to at the left of the
control string are assuaed to be deleted troa the control
string after being evaluated.

95

(a) a new component (lk+j v=p 1), where vis the bound
variable of the A-expression Ai and p' is a pointer
to the operand to which the A-expression A. has
been applied, is prefixed to the environmefit string.
(This action results in setting the proper environ
ment for evaluating the body of the A-expression Ai.)

(b) The head of the body of the A-expression Ai and a
marker Ilk are prefixed to the control string, and

(c) the pointers p and p' to the A-closure and its
operand are deleted from the result string and the
marker Ilk is prefixed to the result string.

If a marker lj is at the left of the control string and

a pointer p and marker lj are at the left of the result string,

the markers are deleted and the pointer p is left on the

result string. The pointer will point to the value of apply-

ing the A-expression to its operand.

Evaluation of Variables and Constants (rules 4 and 6):

If a variable is at the left of the control string, a

pointer to the current value of the variable is prefixed to

the result string (rule 4.1). The pointer is obtained by

(a) obtaining the index j of the current environment and

marking the environment component j with the symbol " 0
" (rule

4.3), and (b) then searching (rules 4.1 and 4.2) through the

environment components linked to j for the occurrence of the

variable.

If a constant is at the left of the control string (rule

6), a new store component containing the constant is pre-

fixed to the store string, and the pointer to the new store

96

component is prefixed to the result string.•

Evaluation of Label References (rules 5):

If a label reference .1 is at the left of the control

string (rules 5), each environment component linked to the

current environment component is searched for the occurrence

of a component such that the A-expression whose environment

is specified by the component contains a body that is a

sequence containing the label. If the label is
0

found, a

new store component hej containing the head of the expression

following the label and the index j of the environment com-

ponent is prefixed to the store, and a pointer to the new

store component is placed on the result string. The head of

the labeled expression and the environment index j provide

a representation of the label-closure for .1 in that the

head of the labeled expression uniquely identifies the labeled

combination and the index j uniquely identifies the current

environment of the sequence within which the combination

occurs.

Transfer of Control (rule 10):

If the string "GOTO. APPLY." is at the left of the con-

trol string and a pointer p to a label closure h&j' where

*In the evaluator, all constants that are extended Markov
algorithms must be enclosed by the quotation marks '· and

97

~----- -

h is the head of a labeled expression and j is the environ-

ment within which the labeled expression is to be evaluated,

is at the left of the result string

(a) all portions of the control and result strings to
the left of the markers lj are deleted, and

(b) the head of the expression tolloving the label is
pre ti zed to the control string.

This mechanism results in interrupting the evaluation of the

current expression anj continuing with the evaluation at the

labeled expression using the environaent j specitied while

evaluating the label-closure.

Application of Constants (rules 9.1 and 9.2):

It the string "APPLY." is at the lett of the control

string, and two store pointers p and p' to the strings s

and s' are at the left ot the re1ult string, the string s

is applied to the string s' (pr•suaably s is an extended

Markov algorithm and s' is the object string to which the

algorithm is to be applied). The resulting string value is

placed in a new store component, and the pointer to the nev

component is prefixed to the result string.

Assignment (rules 7.1 and 7.2):

If the string "ASSIGB. APPLY." is at the left of the

control string and two store pointers p and p' are at the

left ot tbe result string, the string value in the store

98

associated with p is changed to the string Talue associated

vi th p'.

Addition of Nev Rules to the ETaluator:

It may happen that certain source language constructions

are awkward to define solely within the target language and

that these constructions can be more easily defined by adding

new expres.sions to the target language and new eTaluator

rules to evaluate these expressions.

The rule applied to evaluate target language expressions

is specified by the numerically first rule that is applicable

to the current string values of the control, result, environ

aent, store, and expression strings. By ad4ing a rule to the

evaluator whose left part specifies a configuration ot the

control, res~lt, environment, store, and expresaion strings

that, tor the •iven configuration, provides a ditterent trans

toraation troa the initial eTaluator rules, the evaiuator can

be extendec1 to define new types ot target language expres

sions.

Generally, the rule applied by the evaluator is deter

•ined by the element at the lett of the control string. For

example, in the definition of indirect addressing in SROBOL/l,

it was d~s1re4 to add a rule to the eTaluator that would take

some string value given in store and prefix the string value

to the control string. The string Talue prefixed to the control

99

string would then be evaluated in subsequent transformations

as if the string value were itself a variable. By (a} allow-

ing expressions of the form "(LOOKUP. X)", where Xis a

variable, in the target languag~ translation of SNOBOL/l, and

{b) adding the rule

LOOKUP. APPLY~] -+ [~_sr
(p's)

-
to the evaluator, the extended evaluator defines indirect

addressing. None of the initial evaluator rules are appli-

cable to a configuration where the string "LOOKUP." is at the

left of the control string; hence the rule can be placed in

any numerical position within the initial sequence of rules.

3. Discussion

This chapter has presented a formal!~ based target lan-

guage in which the semantics of a computer language can be

defined. The semantics of the target language was, in turn,

defined in terms of the formalism pf extended Markov algorithms

by giving an extended Markov algorithm defin~tion of a machine

for evaluating target language expressions.

If used as a target language for the implementation* of

*Extended Markov algorithms have been implemented in the
source language PANON-lB.ll,12

100

a computer language, the target language allows the simple

addition of built-in machine primitives. For example, if a

computer has a. built-in primitive for computing the sum of

two integers, there is no need to define this primitive in

the target language. This primitive can be us.ed as a const.aqt

in the target language and in applying the primitive to its

arguments the machine algorithm can be used. The point of

using only extended Markov algorithms to define primitive

functions is that for implementation of the target language

the only necessary machine capability is that for implement

ing extended Markov algorithms. The fact that a given

machine has certain built-in primitives simply relieves the

person defining the semantics of a source language of defin

ing the semantics of the built-in primitives in terms of

extended Markov algorithms.

The ta~get language is undesirable in one important

sense. The computer language constructions for defining the

assignment of new values to variables and for defin~ng the

transfer of control within a program required the addition

of new expressions to the combined formalisms of extended

Markov algorithms and the A-calculus. The new expressions

add to the complexity of the target language and place re

strictions on the applicability of any theorems developed for

A-calculus expressions. Thia undesirable feature of the

target language is, in pa.rt, redeemed in that the evaluator

for the target language was completely defined within the

101

ZOl

In the sixth century B.C. written language was continuous.
There vas no conc•pt ot breaking up units ot expressions with
punctuations aarks. Kohaar Pehriad. a leading Macedonian
literary figure. bad the insightful idea ot using a saall
round dot to indicate the end of a thought unit. Convinced
ot the utility ot hi• invention. he spent alaoat thirty years
ot his lite traveling through ancient Greece. Rome, and North
Atl"id'a atteaptin1 to gain local acceptance of that small
round 4pt. Bia effort was well-rewarded. The stark sim
plicit1 ot his bril'liant idea becaae popular so quickly that
alaost every written language used today uses the little
roull4 d.ot at the end ot a unit ot ezpreasion.

Pebriad's efforts did not stop with the dot~ Recognizing
the need tor another aark to indicate pauses in the middle
of thought unite, he began using a dot with a curved descend
ing tail in an eaprellsion to indicate a pause in the thought.
This mark is, ot course. quite taailiar in our own language,
and both the co-• (l:ohaar) and the period (Pehriad) have
been named atter their diatinguished inventor.

0 A.1ois1q uo ~.1•• BJq iJat AtUJ•i~ao swq aa :iuJH
!8'8A p9J.lq&d .l9Wt{O~ oqA AOU~ noA oa

•a0Ji•i.1ass1t SJqi JO a.1aidwqo oAi ixaa aqi as1.1dwoo ttlA

aal•nia•t OA~ ase.q~ JO soJia••as paw xwiaAB aqi JO uo1i•iuas

-a.1d aq~ ·09/1on1v paw t/10KOKS qioq JO so1iuwmas aqi au1J•P

oi iaatOlJJns SJ elwnlu•t ial~•i aq~ •puwq .1aqio aqi uo

·AitnOJJJlP •Jtti 9AtOS8.l ttlA qo.19889.l a.1ninJ

i•q~ adoq I pa• saptme.1 a9.vn2hnat ~al.1•i aqi JO AOU&JOJJ•P

s1qi •ssataqi.1aAal •s•qi1.1olt• Ao~.l•K papaaixa JO us1t•m.10J

- ~'- ,;.:__ ---~----~·~--·----........._ .. __ __ --·--~----~---~

CHAPTER IV

A DEFINITION OF THE SYNTAX ARD

SEMANTICS OF SROBOL/l

In this chapter I attempt to demonstrate the thesis of

this dissertation, that there should be formal definitions

of the syntax and semantics of computer languages. As an

example computer language, I have cho&en. SllOBOL/l, as initially

defined by Farber, Griswold and Polonsky. 27 SBOBOL/l was

chosen as an example because (a) the language is simple

enough to de~cribe conveniently in a single chapter of this

dissertation and (b) the language is fairly well-known. No

knowledge of SNOBOL/l will be assumed in this chapter. Rather,

it is the intent of this chapter to define every construct

(except character spacing) in the language. The definition

of SNOBOL/l will be in two parts: (a) an informal description

of the language and of the techniques used in the formal de

finition in this chapter using the English language and (b) a

formal description of the language in Appendix 3 using the

formal system.

This chapter and the formal description of Appendix 3

may be viewed as a reference manual for SBOBOL/l. It is in-

tended for a user who wishes a detailed description of the

language.

The fcrmal definition of SROBOL/l is divided into three

parts. Appendix 3.1 gives the canollDl system defining the

103

syntax of SNOBOL/l, Appendix 3.2 gives the canoni.cal system de-

fining the translation of SNOBOL/l into the target language,

and Appendix 3.3 gives the definition of the primitive func-

tions used in the target language. In writing the formal

definition of the SNOBOL/l, it was necessary to resolve a

few issues that were ambiguously or incompletely defined by

the English language definition of the language given by

Farber, Griswold and Polonsky.*

Introduction to SNOBOL/l

SNOBOL/l is a language for defining transformations on

strings of symbols. Programs in SNOBOL/l are comprised of

a linear sequence of rules of which there are four varieties:

"input"rules for obtaining strings of symbols from some

external input device (like a teletype or card reader),

"assignment" rules for assigning names to strings, "pattern

matching" rule~ for transforming strings into new strings,

and "output" rules for writing strings on some external out-

put device (like a teletype or card reader). In general,

the behavior defined by each rule is executed in linear

order. However, rules can be labeled with names and the

*For example, it was not clear whether the authors meant to
permit or pr~hibit the use of the same variable name to
denote different types of variables in a single pattern
matching rule or whether to permit or prohibit the use of
a name both as a string name and a label in the same pro
gram. I decide to prohibit the first of these construc
tions and to permit the second of these constructions.

104

ordinary sequence of execution interrupted and continued at

some other labeled rule.

Introduction to the Techniques Used in Describing SNOBOL/l

The parts of this chapter will each describe some con

struct in the SNOBOL/l, e.g., a string, an arithmetic expres

sion, a rule, or a statement. Each of these parts will con

sist of {a) portions of the productions from the canonical

system of the translation (Appendix 3.2) of SNOBOL/l, {b)

examples of the SNOBOL/l constructs and their corresponding

target language translations, and (c) an English language

explanation of these constructs and their semantics as de

fined in the target language.

Theoretically, the (abbreviated) canodcal. system of the

translation of SNOBOL/l must be combined with the canonical

system of the syntax of SNOBOL/l to obtain the complete

canoni.calsystem defining the set of legal programs and their

target language translations. Nevertheless, except for the

.context-sensitive requirements on SNOBOL/l, the abbreviated

canonic:alsystem of the translation of SNOBOL/l provides a

synopsis of a cont~xt-free specification of the language and

its semantics in terms of the target language. Accordingly,

the productions from the (abbreviated) canonlml system of the

translation will be used in the text to define the syntax

and semantics of SNOBOL/l, and the specification of the

context-sensitive requirements on syntax will be discussed at

the end of the chapter.

105

----~---~,-- ~---------·---_..._..---·-·---~--- - ~ -- ~- ----~~_.-_. ,,,,,------·~~--'-.-.-.. -.---·---::-~-~-~-----,,..-- ----------;!--

As mentioned in the previous chapter. the first term of

each term tuple in the specification of the translation of a

language is generally of the form "s •• t" where "s" represents

some string in the source language and "t" represents the

corresponding target language translation. The example

SNOBOL/l strings and their target language translations

given in the text follow this notation.

Strings

DIGIT<O> .<l> ••• • <9>;
LETTER<A> • • • • • < Z>;
MARK<%>.<.>.<=>• ••• l</>;
DIGIT<p> I LETTER<p> MARK<p> + BASIC SYMBOL<p>;
BASIC SYMBOL + BTRXIG<SEQ(t)>;

Example Strings:

ABC123%
HESSE.KAFKA.MANN

A ROSE IS A ROBE
ALPHA

The basic symbols in SIOBOL/l are the decimal digits,

the capital English letters, and a vaTiety of other symbols

like "%". 0
.• and "=". A string. the basic data type, con-

sists of any linear sequence of basic symbols.

Names

DIGIT<p> I LETTER<p>
NAME<m>,<n>
IAME<n>
BAME<n>
NAME<n>

+ NAME<p>;
+ NAME<mn>,<m.n>;
+ STR HAME<n •• n>,<$n •• (LOOKUR n)>;
+ VAR NAME<n>;
+ BACK REP IAME<n>;

106

Example Bases:

ALPHA
ABC.EFG
$BETA

1234
12.3
$1234

A string can be assigned a name and the name used in

place of the string. A name consists ot a sequence ot decimal

digits and English lette.rs, possibly including me di.al periods.

Besides designating a string, a name can be used in two

other contexts, that ot a string "variable" and that ot a

string "back reference." These three uses of names shall be

distinguished by calling a name that designates a string a

"string name," a name that designates a variable a "variable

name," and a naLme that designates a back reference a "back

reference name." A string name is treated as a variable in

the target language.

A string name can be indirectly referenced by prefixing

a string name with a dollar sign. The string value of a

string name prefixed by a dollar sign is the string whose !!.!!!..!.

is the string value ot the name prefixed by the dollar sign.

For example, if the string value or the name "BETA" is the

string "A ROSE IS A ROSE" and if the string value of the name

"A" is the string "BETA", th• string value of "$A" is the

string "A ROBE IS A ROBE". The primitive function "LOOKUP."

is used to handle indir~ct addressing in the target language.

"LOOKUP." is defined by an extended Markov algorithm substi

tution rule (Appendix 3.3d) that must be added to the target

107

language evaluator.• When evaluated, this substitution rule

inserts the string value of a name at the left of the control

string. Thus the string is treated as if itself were a

variable to be evaluated in subsequent steps taken by the

evaluator.

DIGIT<d>
DIGIT STR<s>
INT<i>
STR NAME<n •• n'>
ARITH OPERAND<a •• a'>,<b •• b'>

Example Arith Operands:

"65"' •• '65'
"-65"' •• '-65'

A •• A

+DIGIT STR<SEQ(d)>;
+ INT<s>,<-s>;
+ ARITB OPERAND<•i• •• 'i'>;
+ ARITH OPERAND<n •• n'>;
+ ARITH EXP<a+b •• (+(a',b')}>,

< a-b •• (- (a' , b'))>,
< a•b •• (• (a' , b' })> ,
< a/b •• (/ (a' , b' })> ;

Example Arith Expressions:

A+B •• (+(A,B))
A+"65'" •• (+(A, '65'}}
A•"-65" •• (•(A, '-65 1 })

SNOBOL/l allows a limited type of arithmetic on strings

whose contents are integers. An integer can be used directly

as an arithmetic operand by enclosing the integer in the

" ... quotation marks and • A name whose string value is an

integer can also be used as an arithmetic operand. An

*As mentioned in the chapter describing the target language
evaluator, it may occasionally be cortvenient to define some
source language constructs by adding rules to the evaluator
rather than by defining the constructs solely within the
target language. To define indirect addressing in the target
language would require complicated additions to the canonical
system of the translation of SNOBOL/l

108

arithmetic expression consists of an arithmetic operand

followed by one of the arithmetic operators "+", "-", "•",

and "/" (defined in Appendix 3.3b) followed by another arith-

metic operand. The string value of an arithmetic expression

is the string computed by applying the arithmetic operator

to the integer value of the two operands.

String Expressions

STRING EXP<A •• 'A'>;
STRING<s> + STRING
STR NAME<n •• n'> +STRING
ARITH EXP<a •• a'> + STRlllG
STRING EXP<s •• s'>,<t •• t~> +STRING

Example String Expressions:

EXP< s •• 's '> ;
EXP<n •.• n' >;
EXP<a •• a'>;
EXP<sOt •• ((CAT s') t•)>;

A •• 'A'
"ABC123%• •• 1 ABC123% '
A •• A

NAME iEVERBE •• ((CAT NAME) REVERSE)
~ABC• A •• ((CAT 'ABC') A)
X Y Z •• ((CAT ((CAT X) Y)) Z)

$A •• (LOOKUP. A)

A string expression in SNOBOL/l is an expression whose

value is a string. A string can be used directly in an arith-

metic expression by enclosing the string in the quotation

marks~ and~. A string name or arithmetic expression can

also be used in a string expression. A sequence of string

expressions each separated by one or more spaces* comprises

a complete string expression. The value of a string expres-

sion is the string computed by concatenating the string values

of each of the component string expressions.

*The symbol "o" denotes one or more space~.

109

•

.. - - - -·-·--··---·---~--·--- -~-·---.-~--·~-~--·--"""'---.~----- ...

Patterns•

STRIBG<s>
STR BAME<n •• n 1 >
VAR IAME<n>
VAR IAME<n>
VAR IAME<n>, DIGIT STR<d>

BACK REF IAME<n>
PAT EXP<p •• p 1 >,<q •• q 1 >
PAT EXP<p •• p'>

Example Patterns:

"ABC" •• 'ABC'
X Y •• ((CAT X) Y)

+PAT EXP<Ms" •• 's'>;
+PAT EXP<n •• n 1 >;
+PAT EXP:SPECS<•n• •• 'n' : n£STRI>;*
+PAT EXP:SPECS<•(n)• •• 'n' : n£BAL STRj>;
+PAT EXP:BPECS<•n/d• •• 'n'

(n,d)eFIX LB STRI>;
+PAT EXP<n •• 1 n 1 >;
+PAT EXP<p q •• ((CAT p 1) q')>;
+ PATTERB<p •• p 1 >;

•IAME• •• 'BAME' : BAMEeSTR I
•BAME• •,• •• ((CAT 'IAME') ',') : NAMEeSTR I
•X• ' 6 ABC 9 •(Y)• •• ((CAT((CAT 'X') 'ABC')) 'Y')
•X• Y x •• ((CAT((CAT 'X') Y) 'X') : XeSTR I

X£STR I Y£BAL STR I

A pattern in SBOBOL/l is the basic unit through which

string transtormations are accomplished. A pattern can be

viewed as an expression representing a set ot strings.

A string enclosed by quotation marks is a pattern expres-

sion representing the set of strings containing one member,

the string itself'. A string name is a pattern representing

the set of strings containing one member, the string value of'

the string name. A variable name enclosed by asterisks is a

pattern expression representing the set of' all strings of'

basic symbols. A variable name enclosed by parentheses and

further enclosed by asterisks is a pattern expression repre-

senting the set of all strings containing balanced pairs of'

*The use ot the auxiliary term for the predicate part "SPECS"
will be discussed shortly.

110

parentheses. A variable name followed by a slash and a

positive integer and enclosed by asterisks is a pattern expres

sion representing the set of all strings whose number of basic

symbols is given by the integer following the slash. A name

that occurs elsewhere in a pattern as a variable name is a.

pattern expression representing the same set of strings re

presented by the variable name. A name used in this context

is called a back-referenced name.

A sequence of patterns of pattern expressions each

separated by one or more spaces comprises a complete pattern.

A sequence of pattern expressions represents the set of all

strings composed by concatenating representative strings from

each of the sets represented by tbe component pattern expres

s ions. This set is restricted in that a string used in

place of a back reference name must be identical to the

string used in place of the corresponding variable name.

A pattern is used.to scan a given object string for the

existence of one of the strings represented by the pattern.

If more than one string represented by the pattern occurs

within the object string, the member M such that (a) each of

the strings (except the last) concatenated to form M is, from

left to right, as short as possible and (b) the last string

concatenated to form M is as long as possible is taken as the

occurrence of the pattern in the object string.

111

Pattern Matching Rules

STR NAME<n •• n'>, STR EXP<s •• s 1 >, PATTERN:SPECS:VAR REFS
<p •• p':c:v> + PAT MATCH RULE<nOp=s ••
(MATCH AND ASSIGN(n' p' A1f.s 1 'c' 1 (v)'>· - - ' , , , ,

Example Pattern Matching Rules:

x '°'ABC"'= •• (MATCH_AND_ASSIGN(X, 'ABC'' A1f. 'At' I I' I ()I))

X •NAME• -,•= •• (MATCH_AND_ASSIGN(X, ((CAT 'NAME') ',')

,A-rr.'A', 'NAMEe:STR I'. '(NA.ME,)'))

X ALPHA = BETA •• (MATCH_AND_ASSIGN (X, ALPHA•). 1f. BETA, 1 ' 1 ()
1

))

A pattern matching rule consists of a string name followed

by pattern, an equal sign, and a string expression. The execu-

tion of a pattern matching rule results in the following se-

quence of actions:

(a) The string value of the string name is scanned for
the occurrence of the pattern.

(b) If the occurrence of the pattern is found

(i) each string variable in the pattern is
assigned the value of the substring used
in matching the variable to the object
string,

(ii) the string expression is evaluated (using
the new values of the string variables), and

(iii) the occurrence of the pattern in the object
string is replaced by the string value of
the string expression and the string name
is assigned the value of this newly formed
string.

(c) If the occurrence of the pattern is not found, no
action is taken.

The pattern matching capability of SNOBUL/l ls nanaled

in the target language through the function "MATCH_AND_ASSIGN",

112

(see Appendix 3.3c) which essentially forms an extended Markov

algorithm that reflects the same transformation defined by

the pattern. In the formation of the extended Markov algo-

rithm, the variable and back reference names are treated as

extended Markov algorithm string variables. Hence the trans-

lation of a variable or back reference name is given as a

constant (see definition of patterns given previously), the

variable names are specified as extended Markov algorithm

string variables representing members of one of the sets

11 STR", "BAL STR 11
, and "FIX LN STR" (see the auxiliary term

for the predicate part "SPECS" in the definition of a pattern)

defined in Appendix 3.la, and the lists of variable names*

and their set specifications are passed as arguments to the

function ''MATCH_AND_ASSIGN". The evaluation of the function

"MATCH_AN'D_ASSIGN" results in the following actions:

(a) An attempt is made to match the pattern to the
object string.

(b) If a match is found, the values of the variables
are updated, the value of the string expression
is computed, the name to which the pattern has
been applied is updated to its new value, and the
string "TRUE" is returned.

(c) If no match is found, the string "FALSE" is re
turned.

*The list of variable names is given by the auxiliary term
for the auxiliary predicate part "VAR REFS" generated in the
canon:icaJ.system for the syntax of SNOBOL/1. This auxiliary
term is also generated in the complete (unabbreviated)
canon:icaJ..system of the translation of SNOBOL/l and is used
to specify the translation of SNOBOL/l as indicated above.

113

Input Rules and Output· ·Rules

PATTERN:SPECS:VAR REFS<p •• p':c:v>
+INPUT RULE<SYS .READ p •• {MATCH AND ASSIGN

(READERl,p',Aw.'A','c',(v),'v'})>:-
STRING EXP<s •• s 1 > + OUTPUT RULE<SYS .PRINT s ••

(PRINTERI ASSIGW.((CAT PRINTERI) s'))>;

Example Input and Output Rules:

SYS .READ •X• •• {MATCH_AND_ASSIGN(READERI, 'X', Aw.'A',
1 X£STR l','{X,)', 'X,'));

··,~--~

SYS .PRINT REVERSE •• {PRINTERI ASSIGN. {(CAT PRINTER#) REVERSE))

An input rule consists of the string "SYS .READ" followed

by a pattern. An output rule consists of the string

"SYS .PRINT" followed by a string expression.

The input and output ot strings troa some external input

device is defined in the target language by assuming that

there are two system variables "READER#" and "PRINTER#" that

contain the initial Talues of the input and output strings.•

When a string is input into a program, the value of the system

variable "READER#" is changed to the string computed from the

current value by deleting the string to be read in, and the

Talues of the string Yariables in the pattern are updated.

The pattern matching and updating of variables are handled

through the function "MATCH_AND_ASSIGN" described previously.

•The initial values of these variables can be added to the
initial environment named A1 in the target language evaluator.

114

When a string is out~ut from a program, the value of the

system variable 11 PRINTERI" is updated by appending the string

value of the string expression.

Assignment ~ules

STR NAME<n •• n'>, STR EXP<s •• s 1 > + ASSIGB RULE
<n•s •• (n' ASSIGN. s')>;

Example Assignment Statement:

REVERSE• X REVERSE •• (REVERSE ABSIGB. {(CAT X) REVERSE))

An assignment rule consists of a string name followed

by &n equal sign and a string expression. The execution ot

an assignment rule results in assigning the string Talue of

the string expression to the string name.

Rules

PAT MATCH RUtE<r •• r•> I INPUT ROLB<r •• r'.> I OUTPUT RULE<r •• r'>
ASSIGN RULE<r •• r 1 > +UNLABELED RULE<r •• r 1 >;

UNLABELED RULE<r •• r 1 > + RULE<lr •• r'>;
UNLABELED RUµE<r •• r 1 > 1 NAME<n> + RULE<n~r •• OnO~'>;

Example Rule·s:

IAM'E •NAME REVEllSE •• (REVERBE ASSIG•. ((CAT IAME) !EVERBI)
L4 NAME• NAME REVERSE •• ~4: (REVERSE ASSIGN. ((CAT BAME) lKVERSE)

A rule must be prefixea by a sequence o.t bl&llk spacee or

a name. A na•e prefixing a rule is called a ~abe1 and is

used to identify a rule when the normal or~er ot •Taluatio•

is to be interrupted and to be continue~ at the labeled rule.

115

Statements

NAME<n> -+- LABEL EXP<n. • • nl> ;
STR NAME<n> -+- LABEL EXP<$n •• (LOOKUP. ((CAT 1

• 1) n))>
RULE<r •• r 1 >, LABEL EXP<t •• t•>,<m •• m'>

-+- STM<r •• r'>,<r/(1) •• r';(GOTO. t')>;
< r / S (1) •• r' => (GOTO. 1 ') ELSE ==> ' A ' > ,
<r/F(m) •• r' => 'A' ELSE::::> (GOTO. m')>,
<r/S(t)F(m) •• r' ~ (GOTO. 1') ELSE => (GOTO, m')>,
<r/F(m)S(t) •• r' .:::;> (GOTO. t') ELSE ~ (GOTO. m')>;

Example Statement:

L3 REVERSE = ~," NAME REVERSE /(L2)
L3: (REVERSE ASSIGN. {(CAT ((CAT ' , ') NAME)) REVERSE));

(GOTO. .L2)

A label expression in SNOBOL/l is an expression whose

string value is a label. A label can be referenced directly

by giving the name of a label or by giving a string name whose

value is a label and prefixing the string name by a dollar

sign.

A statement consists of one of the strings "r", "r/(t)",

"r/S(t)", "r/F(m)", "r/S(t)F(m)", or "r/F(m)S(t)", where r is

a rule and 1 and m are label expressions. The execution of

a statement of the form "r/(t)'' results in executing rule r

and then transferring control to the statement designated by

the label expression 1. The execution of a rule of the form

"r/S(t)" results in evaluating rule r and then transferring

control to the statement designated by the label expression

1 if the rule (presumably a pattern matching rule or input

rule) succeeded in matching the pattern in the rule to its

116

object string. Similarly, a statemen~ of the form r/F(m)

results in transferring control to the statement designated

by m if the execution of rule r tailed to match the pattern

in the rule to its object string. Finally, statements of

the form "r/S(&)F(m)" or "r/F(m}S(&)~ result in transferring

control to one ot the statements designated by 1 or m if the

execution of rule r succeeded or tailed in matching its pattern

to its object string.

Statement Sequences*

STM<s •• s'>
STM SEQ<q •• q'~, STM<s •• s'>
STM SEQ<q •• q'>, STRING<s>

Example Statement Sequence:

L4 REVERSE = X REVERSE

SYS .PRINT REVERSE

+ STM SEQ<s •• s 1 >;
+ STM SEQ<q•s •• q 1 ;s 1 >;
+ STM SEQ<q\•s •• q'>,<•s~q •• q'>;

L4:(REVERSE ASSIGN.((CAT X)
REFERSE));

(PRINTER# ASSIGN.{(CAT
PRINTER#) REVERSE));

A statement sequence consists of a list ot statements

each on a new line. The statements are executed in order

unless a statement explicitly specifies a transfer of control.

Arbitrary character strings prefixed by an asterisk can be in-

serted among statements. The character strings provide com-

ments for the programmer and are not evaluated.

*The symbol "~" denotes a new line.

117

-~-----------------~-----~~----------...... ·-·--------_.._.,-~-ft·,--~-..,.-,.,-,-,-~-

SMOBOL/l Programs*

STM SEQ:STR REFS<q •• q' :sr>' IAME<n>, LIST:BVS.:CORR NULL LIST

<sr :vb: R.> + SIOBOL PROGRAM<q UD n •• LET vb •.t. IB (GOTO. 1 n 1); q' >

Example Program:

Ll SYS
L2 X
L3 REVERSE
L4 REVERSE

SYS
EID Ll

Translation:

.READ •X•
•NAME• If," •
• -.• NAME REVERSE
• X REVERSE
.PR?IT REVERSE

LET X,NAMZ,REVERSE • 'A','A','A'

/s(L3)F(L4)
/(L2)

II (GOTO •• Ll h
Ll: (MAT·CB AlfD ASSIG11(,R.EADER#,'X',Air.'A 1 ,X£STR I·~ '(X,)'));
L2: CMA~cH:An:Ass1axCx,cccAT '•AilE) • ,'),h. 'A'.

. 'l'AME£S'l'R I ' • I (NAME t) '))

'::::> (GOTO •• L3) ELSE ~ (GOTO •• L4);
L3: (REVERSE ABSIGI. ((CA! ((CAT ',') IAME)) REVERSE));

{GOTO •• L2};
L4: {UYERSE ASSIGB. {(CAT X) REVBBSE));

(PRINTER# ASSIGB. ((CAT PRIJ!ERI) REVERSE));

*Like the list ot variable naaes, the list or string names
used in a SIOBOL/l.is generated in the canonical system for
eyntax and is used in the ca.nonical s7et,e• t.o:r the t.ransla
tion to tora the lJst .ot bound variables tor the target
language translation ot a program.

The predieat~ "LISTJIYS:P9RR IULL LIST" names a set of
oiodered t.riples, where the tirst eleaent ot each triple is
a list ~>f uamea {e.1. • X,Y .• ~,ALPH,1.,:r,), tbe secoud ele•ent
is a naa• _list containing one occurrence <;1t ••ch naae in
the tiret list (~•I.•, X,~ 1.ALPHA.) 1 and the third ela•ent is
a list ot null strings with the aaae nuaber ot elements as
the eecond list (e.a., "A~ 1 "A" 1 "A"). Thia predicate is used
to set the list or string n.-es in a program to bound vari
able• e&eh with the initial Talue ot a null strins.

118

A SIOBOL/l program consists ot a statement sequence

followed by a statement ot the tor• "EID n", where "EID" is

a label and "n" designates the label ot soae statement in

the statement sequence. The execution ot a program begins

by initializing the string values ot the string names in the

program to null and then executing the statements in the pro

gram beginning with the stateaent labeled by "n".

The example prograa above reads in a string trom the

input device and outputs the string computed trom the input

string by reversing the order ot each aubstring separ~ted by

a comma. For example, it the string "HESSE, KA~KA, MAii"

is on the input device, the string "MAii, ~FKA, HESSE" is

printed on the output device.

Context-Sensitive Requirements on the Syntax ot SIOBOL/l

There are a few context-sensitive requirements on the

syntax ot SIOBOL/l:

(a) The variable names in a pattern must each be
ditterent'

119

(b) The back-reference names in a pattern must be
identical to the variable names and different from
the string na~es.

(c) The labels in a program muat, each be different and
each reference to a label in a label expression
must refer to a name that actually occurs as a
label.

These requirements are specified in the canonfcal. system for

the syntax of SNOBOL/l by specifying with each construct.

(a) the lists of names used as string names, variable
names, and back ref'er.ence names (productions 3 of
Appendix 3.1).

(b) the lists of names used as labels (production 11.3}
and names used to refer to labels (production 12.1),

and specifying

(a)

(b}

that the list "r '' of variable names in a pattern
must contain namls each of which is different (the
premise "DIFF NAME LIS,T<r >11 i·n production 6.8),

v

that the list "rb" of back reference names in a
pattern must be contained within the list "r " of
variable names and that the list "rs" of strl'ng
names in a pattern mus~ be disjoint from the list
"r " of variable names (the premise 11 Ll:L2:INTERSEC
<rbv:r :rb>,<r :r :A>" in production 6.8}, and v s v

(c) that the list of labels in a program must contain
names each of which is different and that each
label reference must be contained in the list of
labels (production 14).

The addition predicates 11 DIFF NA.ME L!ST" and "Ll:L2:INTERSEC"

are defined at the end of Appendix 3.1.

This chapter has attempted to describe in detail the

syntax and semantics of' SNOBOL/l. It is intended that a

reader, having digested this chapter, would have sufficient

120

knowledge of SNOBOL/l and its formal definition to be able

to use the compact, formal definition to answer further

questions concerning the syntactic legality or meaning of

a given SNOBOL/l construct.

has served that objective.

It is hoped that this chapter

121

CHAPTER V

A SPECIFICATION OF THE SYNTAX AND SEMANTICS

OF ALGOL/60

This chapter exercises the formal system presented in

this dissertation to specify the syntax and semantics of

ALGOL/60, as defined in the official ALGOL/60 report edited

28 by Peter Naur. The intent of this chapter is not only to

explicate the formal specification of ALGOL/60, but also to

relate the techniques used in the formal specification of

ALGOL/60 to other languages and to compare the formal system

presented here to other methods of language specification.

A knowledge of ALGOL/60 is assumed in this chapter.

It is surprising that, although ALGOL/60 is the official

publication language of the Association for Computing Machinery

and is accordingly widely-publicized, the author knows of no

implementation of the complete language. Probably the most

important factor in this circumstance is the complexity of

ALGOL/60. Indeed, in writing this chapter I frequently found

myself in the difficult situation of first attempting to under

stand ALGOL/60 and then attempting to characterize the language

with the formal system. There are many interrelated program

constructions and a complicated variety of restrictions on

programs that make the language difficult to understand and

define. Nevertheless, as an example of the formal system,

applied to a somewhat complex computer language, a specification

122

of the syntax and semantics of ALGOL/60 is presented in Appen-

dix 4.*

Previous Work by Peter Landin:

In his paper 21 "A Correspondence Between ALGOL/60 and

Church's Lambda Notation," Peter Landin described the semantics

of ALGOL/60 in terms qf a modified form of Churc~'s A-calculus,

called "imperative applicative expressions" or "IAEs". The

target language presented here is similar to Landin's impera-

tive applicative expressions in that the A-calculus was

augmented to directly handle assignment and transfer of

control features of ALGOL/60. The target language differs

from imperative applicative expressions in that (a} the

mechanism to handle transfer of control here is different

from that of Landin, and (b) Landin's (SECD) machine to

evaluate imperative applicative expressions is specified by

a A-calculus expression, whereas the machine to evaluate

target language expressions here is specified by an extended

Markov algorithm.

The specification of the semantics of ALGOL/60 given

here is heavily based on Landin 1 s definition. On the other

hand, the dissertation here not only includes a specification

of the semantics of ALGOL/60 1 but also a specification of

syntax and a definition of the primitive functions used in

*The specification of characte~ spacing and of the use of
exponents in numbers is not included.

123

specifying the semantics. The primitive functions used to

specify the semantics of ALGOL/60 are defined only by example

in Landin's paper.

The Syntax of ALGOL/60

The canonical system specifying the syntax or ALGOL/60

is specified in Appendix 4.1. The first term in each speci

fied term tuple describes some string in ALGOL/60. If the

auxiliary predicate parts and terms are deleted from this

. _-,. . :• ... _,-r-

specification, Appendix 4.1 can be viewed as a partial (context

free) specification of the syntax. A context-free specifica-

tion of ALGOL/60's syntax exists in the ALGOL/60 report and

the specification of Appendix 4.1 closely parallels the

specification in this report. Although it does not completely

specify the syntax of the language, the context-free specif!-

cation of ALGOL/60 is fairly straight-forward and the presen

tation of the canonical system of ALGOL/60 will therefore

focus on the context-sensitive requirements.

Context-Sensitive Requirements on the Syntax of ALGOL/60

There are myriad context-sensitive requirements on the

syntax of ALGOL/60. Among these requirements are

(a) The type of each identifier in a program must be
declared.

(b) An identifier cannot be used in conflicting con
texts in the same block. There are many variants
of this requirement. For example, an identifier

124

used as a real variable in a block cannot be used
as a boolean variable, an array identifier, a pro
cedure identifier 9 or a switch identifier.

(c) Any use of an array identifier must occur with a
subscript list of the same dimension as that of
the bound pair list in the array declaration.

(d) The bound pair list in an array declaration can
depend only on variables that are non-local to the
block in which the array declaration is given.

(e) All statement labels in a block must be different.

(f) The uses of actual parameters in a function desig
nator must be compatible with the uses ot the cor
responding formal parameters in the procedure
declaration. There are many, many variants of
this requirement. For example, an actual parameter
that is declared to be a real variable cannot cor
respond to a formal parameter that is used as a
boolean variable, an actual parameter that is a
procedure identifier must correspond to a formal
parameter that is used with arguments that are
consistent with the procedure declaration, and an
actual parameter that is an arithmetic expression
cannot correspond to a formal parameter that is
called by name and assigned a value in the procedure
declaration.

The context-sensitive requirements on the syntax of

ALGOL/60 occur in many other computer languages besides

ALGOL/60. The restriction (a) that the type of each identifier

must be declared occurs in many computer languages. For

example, in PL/l each occurrence of an identifier used to

name an object must be declared, either explicitly, contextually,

or implicitly. An explicit declaration of an identifier is

given through a DECLARE statement, whereby an identifier is

given an attribute restricting the use of the identifier to

statements operating on certain classes of data, e.g., fixed

point numbers, character strings, or files. A contextual

125

declaration of an identifier is given when an identifier

occurs in a context where only one class of data objects can

occur, e.g., in the statement "GET FILE (X) DATA" the identi-
'

fier hx" is contextually declared as a member of the class

file in that only a file name can occur after the string "GET

FILE" in a GET statement. An implicit declaration of an

identifier is given when an identifier is associated with

other declared identifiers {e.g., in the statement

"T = A • B", if "A" and "B" are declared as fixed point num-

bers, the identifier T may be implicitly declared as a fixed-

point number). Programs not specifying a unique declaration

for each µdentifier are illegal.

The restriction {b) that identifiers cannot be used in

conflicting contextx occurs in almost every language where dif

ferent cl~sses of data objects are distinguished. For example,

although PL/l allows some identifiers to be used in different

contexts, many cont~xt~ of declared identifiers are considered

illegal, e.g., if "X" is explicitly declared as a bit string,

the statement "GET FILE (X) DATA" is illegal since the GET

statement c6ntextually declares "X" as a file.
\

The restriction {e) that all statement labels in a block
\

must be different occurs in almost every language allowing

statements tb be labeled and control to be passed to a labeled

statement. The labels must be different in order for the

destination of the transfer of control to be unique. For

exam~le, in Fprtran IV no two statements may be labeled with

the same statement number.

126..

The restriction (f) that corresponding actual and formal

parameters must be compatible likewise occurs in many lan-

guages and can become complicated, especially in languages

allowing nested procedure definitions and applications like

ALGOL/60.

The author knows of only one major computer language

where a complete formal specification of its syntax has been

given. In particular, the simulation language GPSS has been

specified completely by Donovan, 3 using canonic systems.

Otherwise, the syntax of many computer languages has been

specified either informally or has been partially formalized,

usually with a context-free grammar.

Before discussing the specification of the context-

sensitive requirements on the syntax of ALGOL/60, the reader

is reminded that the auxiliary predicate parts and terms in

a production generally specify the lists of identifiers,

labels, variables, etc., that are used within the sour~e

language string specified by the first term in the production.

These lists will be referred to repeatedly in the productions

to follow.

Specification of the Requirement that the Type of Each Variable
Must be Declared:

Consider the (abbreviated) production* from the canonical

*The productions given in the text will generally be only por
tions of the corresponding productions given in Appendix 4.
Portions of productions are given in the text to illuminate
better the particular construction under discussion. An expli
cation of the complete canonical system for ALGOL/60 will be
given later in the chapter.

127

system of the syntax of ALGOL/60:

ID<i> + REAL VAR:R VARS<i:i,>;

If "i" designates a string that is an identifier, the term

tuple "<i:i,>" designates a pair where the first element is

an identifier used as real variable, and the second element

designates the addition of the identifier to the list of

identifiers used as real variables in a program. Consider

also the production

IDLIST<t> + TYPE DEC:DEC R VARS<REAL t:t,>

If "t" designates a string that is a list of identifiers,

the term tupl.e '"<REAL t:t,> 11 designates a pair where the first

element is an ALGOL/60 declaration of a list of identifiers

as real variables, and the second element designates the addi-

tion of the list of identifiers to the list of identifiers

declared as real variables.

Next consider the production

STM SEQ:R VARS<s:vr>, DEC SEQ:DEC R VARS<d:vrd>,

Ll:L2:REL COMP<v :v d:v'> r r r

Here, if

(a)

(b)

+ BLOCK:R VARS<BEGIN d;s END:v'>;
r

"s" is a statement sequence with a list
identifiers ~ as real variables

"v " of r

"d" is a declaration sequence with a list
identifiera d~cl~~ed as real variables

"v " of rd

128

(c)

then

(d)

"v'" is the list computed from "v " and "v " by
f'otming their relative complementr(i.e., "t! - vrd")

"BEGIN d;s END" is a block with a list "v'" of'
identifiers that are used as real variabl~s in the
block but not declared within the block

Finally, consider the production

PROGRAM STR:R VARS<p:A> ~ ALGOL PROGRAM<p>;

Here, if' (a) "p" is a string that is in the form of' a program

and (b) the list "R VARS" of' identifiers that are used in the

program as real variables but are not yet declared is given

as null, then the string "p" is specified as a bone fide legal

ALGOL program.

In this manner (a) each identifier in a program~ as

a real variable is added to the list of' used real variables,

(b) each identifier declared as a real variable is added to

the list o~ declared:Nal variables, (c) each identifier de-

clared in a block as a real ~ariable is removed from the list

of' identifiers used as real variables, and (d) a string is

specified as a legal program only if' the list of' used (but

as yet undeclared) real variables is given as null.

Specification That Identifiers Cannot be Used in Conflicting
Contexts:

Consider the following production

129

STM SEQ:R VARS:B VARS<s:vr:vb>'

DISJ ENTRY LISTS<(vr)(vb)> ~

DEC SEQ<d>,

BLOCK<BEGIN d;s END>;

where the predicate "DISJ ENTRY LISTS" specifies a set con-

sisting of one or more identifier lists each enclosed in

parentheses such that each list is disjoint from the others.

If "v " and "v " specify the lists of identifiers used re-
r b

spectively as real variables and boolean variables, in a

statement sequence, the premise "DISJ ENTRY LISTS<(vr)(vb)>"

insures that the string "BEGIN d; s END" is a legal block

only if the lists "v" and "v" are disjoint, i.e., not used
r b

in conflicting contexts.

Specification That Actual and Formal Parameters Must Be
Compatible:

The requirements on the uses of actual and formal para-

meters of ALGOL/60 procedures is complicated. For example,

let "P(X,A)" be a declared procedure with two formal parameters

"X" and "A", where in the declaration of "P", "X" is used as

a real variable and "A" is used as an integer array of dimen-

sion three. The function disignator "P(3.l,Q)", where "Q"

is a declared integer array of dimension three would consti-

tute a legal activation of the procedure "P", whereas the

function designator "P(TRUE,Q)" would not be legal since the

type "REAL" of "x" and the type "BOOLEAN" of "TRUE" are not

compatible.

130

To specify the context-sensitive requirements on proce-

dures, a number of additional predicates are defined. For

simplicity, in the discussion to follow I will assume that

ALGOL/60 has only three data types: real variables, boolean

variables, and integer arrays. Consider the following pro-

duct ions:

DIMM<l>;
DIMM<m> + DIMM<ml>;
SPEC<REAL>,<BOOLEAN>;
DIMM<m>
SPEC<s>
SPEC<s>, SPEC LIST<t>

+ SPEC<INTEGER ARRAY(m)>;
+ SPEC LIST<s>;
+ SPEC LIST<t,s>;

Here the predicate 11 SPEC 11 specifies a set comprising the

strings {REAL BOOLEAN INTEGER ARRAY(l) INTEGER ARRAY(ll)

INTEGER ARRAY(lll) ••. },where ea.ch string specifies the use

of some formal para.meter in a procedure declaration. The

predicate "SPEC LIST" specifies a set where each member is

a string of parameter specifications ea.ch separated by a

comma.

For example, if "P" is a procedure declared as above,

the specification list for the formal para.meters of "P" would

be 11 REAL,INTEGER ARRAY(lll) 11 • Similarly, if 11 P(3.l,Q)" and

11 P(TRUE,Q) 11 are function designators where "Q" is declared

as an integer array of dimension three, the specification

list for 11 P(3.l,Q)" would be 11 ARITH EXP,INTEGER ARRAY(lll)"

and the specification list for "P(TRUE,Q)" would be "BOOL

EXP,INTEGER ARRAY(lll)". In the ~pecification of the syntax

of ALGOL/60, a predicate "SPEC MATCH'' is defined. The ordered

131

pair "<ARITH EXP,INTEGER ARRAY(lll):REAL,INTIGER ARRAY(lll)>"

is a meaber ot this predicate, and thus, by usin& this predi

cate as a premise in the canonical system tor ALGOL/60, the

function designator "P(3.l,Q)" is allowed as a compatible

tunction designator with the above indicated declaration ot

"P". On the other hand, the ordered pair "<BOOL EXP,INTEGER

ARRAY(lll):REAL,INTEGER ARRAY(lll)>" is not a member ot this

predicate, and thus the tunction designator "P(TRUE,Q)" is

E.2!, allowed as a compatible function designator tor "P".

Since the n'"'ber ot data t;rpes in ALGOL/60 is much greater

than the number ot types assumed in the examples just given,

the actual specitication of the context-sensitive requirements

is much more complicated than indicated in the previous para-

graphs. A detailed discussion of the complete canonical

system sRecification of the context-sensitiv~ requirements

on ALGOL/60 procedures is given at the end of this chapter.

The Semantics ot ALGOL/60

It seems that much less work in computer science has been

directed to formalizing semantics than in formalizing syntax.

While many methods tor characterizing {at least in part) the

s;rntax ot computer languages have been successfully developed,

few methods tor characterizing semantics have reached a

development where entire languages have been characterized.

21 An appl~cation ot the A-calculus has been used by Peter Landin

and John Wozencrart 25 to characterize respectively the seman-

132

tics of ALGOL/60 and the classroom language PAL. The charac

terization of semantics given in this dissertation is in

part based on these efforts.

A quite different approach to characterizing semantics

has been taken by the IBM Vienna laboratory, which has under

taken the formidable task of characterizing the semantics of

PL/l. This group has used portions of LISP, the predicate

calculus, set theory, and other constructs of their own inven

tion to characterize the semantics of PL/l. Their work has

been described in several lengthy IBM technical reports. A

judgment of the utility of their approach awaits a more

digestible presentation of the formal s7stem and the tech

niques used within the formal system.

The specification of the semantics of ALGOL/60 in terms

of the target language presented here is given in Appendix

4.2. Much of the semantics of ALGOL/60, e.g., arithmetic

expressions, boolean expressions, designational expressions,

conditional statements and statement sequences, are straight

forwardly defined in the target language and in part have

been discussed in previous chapters. I will therefore focus

the discussion of this chapter on some constructs in ALGOL/60

whose semantics are not quite as obviously exp~essed in terms

of the target language.

The table on the following pages lists several example

ALGOL/60 expressions and their translations into the target

language. In the discussion to follow, the reader may find it

helpf~l to refer to theije examples.

133

·?<·

El'AllPl.I ALDOL/6o •IPJllSSJOaS A•D THEJJI TIAICLATJOIS

IITO 'l'H 'l'AIGrt' LAIGUAO!

IDtl Al

1011 65

11111 -65

IUll 65. 32

ID A

ID I

YA• A

TAI a[l,1J

PCI DSll P

PCll o•• Q(1.r.z.z>
AIITI llP A+leC

'65'

(IEGAT! 1 65 1)

(+(TIAft_llT '65 1 1 Tl&IS_FRAC 1 32'))

..
A

(Grt'_ILl[colV_TO_IIT 'l' >_(COIV_To_llT •}).•ll

(P 'A I)

(Q(h.X,J.•.Y ,Aw. <.Cz,z))))

(+(A,o(l,C)))

UITI llP

Diii llP

JP B T•SI 0 ILi! l B .. 1 0 1 ELS! 4- 1 1'

Dll llP

DD llP

C0-1'1' ITll

OOTO 1'1'11

AIGT ITll

AIO'I' 8'1'11

POI Lil'I' IL

ro• 1'1'11

'l'TPI DSC

'l'YPI llC

our DIC

&ll&f NC

IV DIC

PllOC Die

ILOCC

ALPH

009

S[IJ

co.UT TllIS IS
A CO-H

GO TO 009

p ,. I'

A t• B a• I

I STIP l UHIL 5

ALPIA 1 GO 'l'O <ID9

IP B•TIUI
THI GO TO ALPIA

int x.r ,z

on ·~L 1.1,z

.ALPIA

.9

((GCT_IL(COIV_TO_IIT I, S)) 'I.')

'A'

(GOTO •• 9)

LIT ••(COIV TO IIT I) II (Pl ASSIOI. • l
It r 1• an-in'te1er proeed-.re 14-.ntitt•r

L!T ••(COIY_TO_IJT I) IR tii ::: ~= ~= !;;~~:: :~;
It A and I are tnte-cer ••r•

ALl'U: (GOTO •• 9)

(•(I, 'TftU!')) .. (GOTO •• ALPHA) ELSE 9' 'I.'

llAL AHAi A[~:~g 1 A• (11Al!_UST(f).•.•1iofl'+'1$(10•+•1o!J

OWi IU.L AD.&? A• (1tSllT_LIH(All.f1•.•1if'1•.•1.:Jl1o•+'lOJ>
A[lrl0,1:10)

IVITC• la•A.LPU.,009 8 • CIIDE~_LlST(1 1 1 .{aLPHA ••• ,

lll:&L P.c>Cl:DUll PCX.? P(l,Y) .• Lft r•.x • 'A' ,(UISl&ffl (I •A•))
TALUS J; P:•l+'f I• LIT w•(CORY TO ftl'.'AL (+(l,(T 'A')))

••at• JUL a,r1
I t• I t• l;
& t• l•I

IH

u (Pl &ssYaw7 •Ji Pl

LIT llC X,?• 1 f,' 1 'A'
ta LIT ••(COIY_TO_Rl.AL '3') I• LIT "J•Y II (a &SSIOI. • h

LET .. r I• (a ASSIQI. •};
LH ••fCHV_TO_JtEAL (•(X,r)) ti LET •A ti h ASStO•. •)

ALGOL PIOOIAll HOH llAL A ,11
&tL P(l,T)& , U:T .RIC A,t,P'(J,r)•'A',''•'1LIT r1,X•'t.·.cu1cHARE (J 'J.'))

11 ~r (;~c~~~r~~:-·!t;<;~1,<1m 'A'),•2•n11
, ta .l+!/2;

A :• J&
I 1• &+P(k,A)s

DD

II LIT ••(COIY_TO_JIJIAL 'l') II LrT ct•A. II fu AS&IOI. •h
LST ••(COIY TO RIAL (•(A.P(Aw.•a.•,J•.A))))

JI LET ;.9-tl I• ASS I GI. •)

134

Primitive Functions Used to Define the Semantics of ALGOL/60:

Appendix 4.3 defines the primitive functions used in

defining the semantics of ALGOL/60. Appendices 4.3a and 4.3b

define miscellaneous primitives, like the function "NEQ" for

negating a boolean value, the function "HD" for computing the

head of a list, and the function 11 ABS 11 for computing the

absolute value of a number. Real numbers in ALGOL/60 are

represented in the target language by their fractional equiva

lent. A fraction in the target language is a string of the

form "xDy", where x and y represent respectively the numerator

and denominator of the fraction. For example, the real number

"1.5 11 in ALGOL/60 is translated into the target-language

string "3D2" denoting the traction three-halves (3 Divided by

2). Appendix 4. 3c defines the primitives 11 TRANS_INT 11 and

"TRANS_FRAC" for converting real numbers to their fractional

representation and the primitives 11 CONV_TO_REAL 11 and "CONV_

TO_INT" for converting integer numbers to real numbers and

real numbers to integer numbers. Appendices 4.3d and 4.3e

define the arithmetic and boolean primitives.

Appendices 4.3f and 4.3g define the primitives used in

defining the semantics of for statements and arrays and will

be discussed later in the text.

Primitive functions similar to those given for ALGOL/60

can be used to define the semantics of many languages used

for numerical processes. For example, in FORTRAN IV, the

arithmetic and boolean primitives almost exactly parallel

135

·---,-,---.... -- --·--··~··- ··--~-~-

those for ALGOL/60. Although FORTRAN IV allows the user to

(·a) specify one of two precisions for real number arithmetic

and (b) specify arithmetic for complex numbers, these facilities

can be readily specified in the target language by (a) defin-

ing a primitive that converts target language fractions to the

desired precision as real numbers and (b) defining the arith-

metic operators for complex numbers in terms of those given

for real numbers. Similarly, the FORTRAN IV facilities for

arrays and DO statements closely parallel the ALGOL/60 facili-

ties for arrays and for statements.

Assignment of Values to Variables and Procedures:

Consider the following ALGOL/60 assignment statements:

A := X

F := X

A := F := X

where "x" is an integer variable, "A" is a real variable, and

"F" is a real procedure identifier. The corresponding target

language expressions for these statements are:

LET n = (CONV_TO_REAL X) IN LET a = A IN (a ASSIGN. n)

LET n = (CONV_TO_REAL X) IN '(Fl ASSIGN. n)

LET n = (CONV_TO_REAL X) IN (Fl ASSIGN. n);
LET a= A IN (a ASSIGN. n)

136

The expression on the right side of an assignment state

ment must be evaluated only once. Therefore, the translation

of the right-hand expression is evaluated once and is linked

with the dummy variable 11 ir 11 and the value of ir is used in

each target language assignment expresBion. The primitive

"CONY TO REAL" is applied to "ir" before the assignment to

convert the value of 11 1T
11 to a real number.

Assignments in the target language can only be made to target

language variables. The ALGOL/60 variables in the left side of the as

signment statement are linked with the dummy target language variable

"a" to handle the case where the ALGOL/60 variable is a formal

parameter called by name and the ALGOL/60 variable must be

translated into a target language expression that is .!!.21 a

variable. {This point will be discussed shortly.) By linking

the dummy variable a with the translation of expression re

presenting the ALGOL/60 variable, an assignment to a will

also result in an assignment to the corresponding ALGOL/60

variable.

The assignment of a value to a procedure in a procedure

declaration is handled by affixing the mark 11 #11 to the proce

dure identifier and assigning the value of the right-hand

expression to this newly formed identifier. The "#" is affixed

to the identifier to avoid conflicts with the use of the pro

cedure identifier in a recursive call to the procedure. In

the translation of the entire procedure declaration, the

137

translation of the last statement in the declaration is

followed by the statement "F#", where F is the procedure

identifier. Thus the evaluation of the procedure will return

the value currently assigned to the procedure identifier.

Parameters Called by Name and Called by Value:

Consider the following ALGOL/60 procedure declaration:

PROCEDURE F(X,Y); VALUE Y;
BEGIN

END

Y := Y+Y;
X := Y*Y;

In this procedure declaration the formal parameter "X" is

called by name and the formal parameter "Y" is called by

value. If "A" and "B" are real numbers whose current values

are 11 1 11 and "2", the evaluation of the procedure statement

F(A,B);

results in changing the value of "A" to "4" while leaving the

value of "B" unchanged.

Next consider the following target language translations

of the procedure declaration given above and procedure state-

ment "F(A,B)":

LET F(X,Y) = LET Y = (UNSHARE (Y 'A'))
IN LET n = (CONV_TO_REAL (+(Y,Y)))

IN LET a= Y IN (a ASSIGN. n);

LET n = (CONV_TO_REAL (*(Y,Y)))

and IN LET a= (X 'A') IN (a ASSIGN. n)
F(h.A, h.B)

138

Here, the translations of the actual parameters "A" and 11 B11

are given as functions mapping the dummy variable 11 7T
11 into

the variables of "A" and "B". In the evaluation of the pro-

cedure statement 11 F(A,B)", the function 11 1TI.B 11 will be applied

to the null string (causing the evaluation of "B") and the

function "UNSHARE" (Appendix 4.3a) will be applied to this

value (causing the formation of a new cell in the store for

the value of "B". Thus subsequent assignments to the formal

parameter "Y" will not result in changing the value of "B".

On the other hand, the function "UNSHARE" is ~ applied to

"X" and the assignment of a value to "X" will result in

changing the value of the corresponding actual parameter "A".

Lists in ALGOL/60:

In defining the semantics of ALGOL/60, it will be con-

venient to define primitive functions operating on lists of

strings. I will use the notation

where the s., l<i<n, are strings, to denote a list. If
1 - -

,X are expressions whose values are the strings
n

,sn' the expression

(1) ((CAT • . . ((CAT ((CAT ((CAT x1) '+ 1
)) x 2)) '+ 1

)) • • • xn)

will result in forming the list

139

The concatenation of expressions to form lists will occur

frequently in the formal definition of ALGOL/60. For conven

ience, I will generally omit the explicit specificatioh of

the concatenation of the component expressions of a list and

write list expressions of the form (1) in the alternate nota

tion

Arrays and Switches:

An arrai in ALGOL/60 is treated in the target language

as an indexed linear list, where th~ number of elements in

the list equals the number or elements in the ~rray. For

example, an array with a bound pair list

(1:2,1:3]

is translated into the string

where the symbol "A" specifies an initial null value for each

element of the array. The translation of arrays into lists is

handled through the function ''MAKE_LIST" (Appendix 4. 3g), which

converts the bound pair list of the array into a linear list

ot array elements ea~h with an initial null value. An element

of an array- is obtained tbrough the function "G!:T_EL",

140

(Appendix 4.3g), which, given a subscript list and an array

identifier, obtains the appropriate array element. The

elements of an array are updated with new values through the

function "RESET_LIST 11 , which resets the value of one of the

array elements in the array list.

Switches are also treated as linear lists. For example,

a switch with a switch list ~L,M,N" is translated into the

target language string "R1,Air •• L)+(2,Air •• M)+(3,h •• 1i)J The

elements of the target language list are given as dummy

variable functions so that an element of a switch list is

~ evaluated unless the element is selected by a design&-

tional expression. The translation of switches into lists

is handled through the primitive function 11 INDEX_LIST" (Ap

pendix 4.3g), which forms an indexed list of switch elements.

An element of a switch list is obtained by applying function

"GET_EL" to the switch list and then applying the selected

element to the null string. This application results in

forming the proper label-closure for the label.

Own Variables:

Consider the following outlined ALGOL/60 program:

BEGIN
REAL X,Y,Z;
PROCEDURE F(A); BEGIN OWN X; ••• END;

END

141

and its target language translation

XIII = I A I LET
IN LET RE ·c X Y Z F(A) - 'A','A','A',LET X =XIII IN ..• , ' , -

IN

The variable "x" in the ALGOL/60 procedure "F" is an own

variable, and hence on successive calls to the procedure "F"

the value of "x" is not re-initialized to a null value but

maintains the value last assigned to "X" on the previous call.

In the target language translation of the program, a new

global identifier "XIII" is created, and on each call to "F"

the value of "x" is set to the value of "X#l". In this manner

an assignment to the value of "x" will also result in an

assignment to "X#l". Since "X#l" is global to the entire

target language expression, "X#l" will maintain the value

last assigned to "X" and subse~uent calls to "F" will result

in resetting "x" to its last assigned value.

The mark "II" and positive integer are affixed to the

global own identifiers so that these identifiers will not

conflict with other identifiers in the target language

expression.

Own arrays are treated similarly to own variables in

that the own array identifiers are coupled with corresponding

global identifiers. The global array identifiers are ini-

tialized with null values. Upon each entry to a block with

an own array,

142

(a) the value of the global array identifier is updated
to the value computed from the current value of the
global identifier by (1) retaining the values of
the array elements whose indices, as specified by
the current value of the bound pair list, occur in
the array list for the global identifier, and (2)
setting to null the values of the array elements
whose indices do not occur in the array list for
the global identifier, and

(b) coupling the value of the own array identifier with
the value of the corresponding global array identi
fier.

Thus, upon the first entry to the block, each element of the

own array will be given as null. Since updating the value

of the local own array identifier will also result in up-

dating the value of the corresponding global array identifier,

subsequent entry to the block will result in resetting the

values of the previously given elements of the own array

identifier to their previous values and setting the value of

each array element not included in the previous bound pair

list to null.

Own variables ~nd own arrays have generally caused prob-

lems for those implementing languages with own variables in

that special programs and storage areas have been needed to

properly implement own variables. The above mechanism for

handling own variables in the target language is quit~

straightforward and avoids the complexity generally associated

with own variables

Goto Statements:

A statement of the form "GO TO L" in ALGOL/60, where L

143

is a label reference, will result in interrupting the normal

order of evaluation and continuing by evaluating the statement

labeled by L in the same sequence or in the first encompassing

block containing a statement with a label L. The mechanism

for transferring control to a target language expression in

the same or an encompassing sequence has been discussed in

the chapter III.

On the other hand, a more complicated situation for

transferring control occurs when a label is passed as an

argument to a procedure.• For example, consider the procedure

statement

F(L)

and the procedure declaration

PROCEDURE F(X); LABEL X;
BEGIN

GO TO X;

END

Since in the target language, the procedure statement is

translated as

F(h •• L)

where .the 1-closure for "lw •• L" is evaluated relative to the

•Formal parameters that are labels called by v~ are excluded
according to the ALGOL/60 report.

144

;;--. __ _

environment within which the procedure statement occurs and

the GO TO statement is translated as

{GOTO. { X ' A'))

the label-closure for X will refer to the labeled statement

in the block in which p~ocedure statement occurs {or to a

labeled statement in an encompassing block) and the environ-

ment given by the label closure will refer to the environment

of the block specified at the time when the procedure state-

ment was evaluated.

Furthermore, consider the ALGOL/60 program:

BEGIN INTEGER A,B;
PROCEDURE F(I,X);

BEGIN M:

A := B := O;
F(A,Ll);

Ll: A := A•A
END

LABEL X; VALUE I
B := B+l;
I := l+l;
IF B=4 THEN GO TO Ll;
IF B=3 THEN GO TO X;
IF B•2 THEN F(I, X);
IF B•l THE1' F(I,M). END F;

Here F is a recursive procedure that is called three times.

On the second call to F the local label M is passed as an

argument; the label-closure for M will specify an environment

within which the value of I is 1. On the third call to F the

GO TO statement "GO TO X" will result in resetting the environ-

ment within which the value of I is 1, and upon exiting from

the procedure the value of I will be 2, and ~ 3.

145

-- --- - --•· - .._-.. ,-... ,· ·-•• -.--------~-·~·-·----.---w~--·--.-~·-------·---··- --~

Recursive Definitions:

ALGOL/60 allows the declaration ot variables~ arrays,

switches, and procedures that can depend on each other. For

example, the following declaration sequence can occur within

a block

REAL PROCEDURE Hl(Xl); IF Xl•O THEN 1
ELSE Xl•B2(Xl-l);

REAL PROCEDURE H2(X2); IF X2•0 THEN 1
ELSB X2•Hl(X2-l)

These declarations constitute a simultaneous recursive detini-

tion ot the factorial function (e.g., the value ot the function

designator "Hl(4)" is "24").

If El, E2, and S are statements, and Hl and H2 are proce-

dure identifiers that are (possibly) defined simultaneously

recursive, the ALGOL/60 block

BEGIN
REAL PROCEDURE Hl(Xl); .El;
REAL PROCEDURE H2(Xl); E2;
s
END

can be correctly defined by the target language translation

where el, e2, and s are the target language expressions tor

the ALGOL/60 statements El, E2, and S and the fixed point

2 operator Y is

~F. LET wl,w2='A','A'
IN LET Z=((F wl) w2)

IN (wl ASSIGN. HD Z);
(w2 ASSIGN. TL Z);
z

146

Extending the alternate notation tor recursive definitions

given earlier, an expression ot type (1) will be alternately

written

LET REC Hl,H2•AXlwel,AX2.e2
IN s

and further rewritten

LET REC Hl(Xl),H2(X2)•el,e2
IN s

More generally, if Hl, H2, ••• , Hk are declared variables,

arrays, switches, or procedure identifiers whose target lan-

guage translations are the expressions tl, t2, ••• , tk, and a

is the target language translation ot the a statement, an

expression ot the form

(2) (Aw.(AB1.(AH2 ••• (Hk.& (1st w)) (2nd w)) ••• (kth w))
(Yk AHl. AH2 ••• Allk.ffik+ •• •+ t2+ t1j))

where

and

lat 'If • {)ID 1f)

2n4 w • (HD (TL w))

kth w • (SD (TL (TL ••• w).,.))
Y lt •). P'. LE'!' t' l , w 2 • • " • , 1t k.• t A • , ' A ' , • •• , ' A '

IB Llf Z•(••• ((F wl) w2) r•• wk)
II (wl ASS I GR• (Bl> Z)};

(w2 ASSIOI, (HD (TL Z))); .
(wk ASSIGJ. (HD (TL (TL •• w) ••));
z

it Ht, lj.i~k• is a procedure definition of j variables
Xl,X2, ••• , Xj

th•n the expreasion ti is civen as AXl. AX2 ••• AXk. ei, wbere
ei is the target l~nguage translation of the procedure
body,

147

will correctly define the (possibly simultaneous recursive)

definitions in s.

Further extending the alternate notation for k simul-

taneous recursive definitions, an expression in the target

language of form (2) will alternately be written

LET REC Hl,H2, ..• ,Hk~tl,t2, ••. ,tk
IN s

Furthermore, if Hi, 12i2k, is a procedure definition of j

variables Xl,X2, ••• ,Xj, then Hi and ti will be given as

Hi(Xl,X2, ..• ,Xj) and ei, where ei is the target language

translation of the procedure body,

148

For Statements:

Consider the following ALGOL/60 for statement:

(1) FOR X:=l, 2 STEP 2 UNTIL 7 DO X:=X+l

Here, since the control variable is itself updated in the

statement "X:=X+l", the statement "X:=X+l" is evaluated only

three times, for the values of the control variable "X" equal

to 11 1 11
,

11 2 11 and 11 511
• The critical point in this evaluation

is that the increment for the control variable "X" ia del•ted

until the statement following the 11 DO" is executed, possibly

changing the current value of the control variable. Similarly,

the evaluation of a for statement of the form

(2) FOR X:=Q, U STEP V UNTIL W DO s;

where "s" is some statement, can result in changing the

values of "X", "U", "V", or "W" before each iteration of the

statement. The delay in the evaluation of tor list elements

is handled through the use of dummy variable functions. For

example, consider the following function definitions:

REC STEP(A,B,C) = LET
IN

A' ,B' ,C' = (A 'A'),(B 'A'),(C 'A')
(B'>O)A(C'<.A. 1) :Q 'A'
(B 1 <"0)1\(A 1 <C 1) ::::> 'A'
ELSE ~ (A 1 +l1f. (STEP(A1r •

(+(A' ,B')), B,C) fl

149

-·----- - - .- ·---··-----,--~----..---·-

REC DELAY_CAT L • LET H,T • HD L, TL L
H' • (H 1 A 1) I• LET

Ill {'1' a •A 1) .:::::::;> H'
(H' • 'A') ..=;> (DELAY CATT)
ELSE .=;. (HI+ T] -

REC FOR(V,L,S) • LET H.T • HD L, TL L
IB (L • • II. •) ==> I A •

ELSE ~ V :• H; (8 1 A 1);

FOR(V, {DELAY_CAT T),S)

and the following target languace translation of' the> tor state-

ment (2)

FOR(X,(DELAY_CAT ~11'.Q+1•.(STEP(A• .. U,J.11'.V,A11'.W))), et) •

Here the function "DELAY_CAtt", when applied to the list· of'

dummy variable functions in a tor li•t, produces .(a) the null

string or (b) the evaluation of the next el.ement in the tor

list t'olloved b7 the duma7 variable functions representing

the reaaining elesents in the tor list. The function "FOR"

successively eYaluates the s~ateaent within the tor statement

t'or each of the sueceasively computed elements in the tor list.

The se•antic con.structs in ALOOL/60 are siailar t.o those

in mainy otaer coapu:ter l.anguages tor ~rtorming num.erical

calculations, e.g., l"OR'l'RAB, MAD, AZD aa• portions of' PL/l.

The semantic CO·n•tructs in S·IOBOL/l, c!et'ined in the previous

chapter, appear ia> part in several languages tor string

manipulation, e.g •• PJl!NGl/lB, TRAC and CONVERT. The charac-

terizati.on of' certain iapoiota:at linguistic features, like

•s • repreaents the targ'9t languag·e traoslation of' the source
languag~ statemettt s.

150

structures in PL/l and AMBIT/G and real-time operations in

PL/l, has not yet been -atteapted with the target language

presented in this dissertation. I suspect that the delay

teature in evaluating target language expressions will prove

usetul in detining real-time operations and that modifications

to the target language will be needed to characterize conven-

iently operations on structured data. Nevertheless, the

characterization ot SNOBOL/l and ALGOL/60 have provided

significant tests ot the target language in defining semantics,

and it is expected that tuture research will yield moditica-

tions and extensions ot the concepts presented here to detine

more varied computer languages.

Since the discussion in this chapt~er has to-cused on a

simplitied exposition of certain constructs in ALGOL/60, the

remainder ot this chapter will be devoted to a detailed

explanation ot the complete tormal definition of ALGOL/60,

as given in Appendix 4.

Two Abbreviations tor the Canonical Syste·ms of ALGOL/ 60: •

Besides the abbreviations introduced earlier, two abbre-

viations have been added to the notation tor canonical systems

in writing the canonical systems for ALGOL/60. The first of

these abbreviations allows the user to abbreviate construe-

tions defining an alternating sequence of two other

*The remaining portions of this chapter are for those who wish
to study in detail the tormal definition of ALGOL/60 given in
Appendix 4.

151

constructions (for example, defining a "for list," which con

sists of a sequence of for list elements each separated by a

comma). Examples of the variants of this abbreviation are

given in examples 7 in the table on the following page. The

formal definition of this abbreviation is given in productions

21 of Appendix 1.3.

The second of these abbreviations generally allows the

user to use a slash to abbreviate productions that are re

peated for each of the constructions defining real, integer,

and boolean quantities in ALGOL/60. An example of the use

of this abbreviation is given in example 8 in the table on

the following page. The formal definition of this abbrevia

tion is given in productions 22 of Appendix 1.3.

Notes on the Canonical System Defining the Syntax of ALGOL/60:

Predicates Needed to Specify Context-Sensitive Requirements:

To specify the context-sensitive requirements on the

syntax of ALGOL/60, a number of additional predicates (S31

through S41) are used. The predicate "TYPE" (S31.l) defines

a set of three members, the strings 11 REAL 11
, "INTEGER", and

"BOOLEAN". The predicate "DIMM" defines a set consisting of

strings of ones, where the number of ones in a string gives

the dimension of an ar:r"ay. The predicate "SPEC" defines a

set of strings, where each string specifies the use of some

formal parameter in a procedure declaration. The predicate

152

...
CTI
~

Ta.

Tit.

1•·

T4.

r..

a.

llAllPLIB OP lBlllYIATIOIB USID 11 Tll CllDIIC 8!8'1'1118 or ALGDL/60

UIAlll PllDOB POii LI8T IL< e> .. POI LI8.T< e> I
POI L11'1' IL< e>, POI LIH<l> .. POI Lii Tc l , e> I

AH PIDDI POI LIH IL<e> .. POI LIIT<ALfalQ(e ,)>1

UHll J'IDDB PIIll<p> .. 'l'llll<p> I
PIIll<p>, llULT DP<•>, TIJlll<t> .. Tllll<t.,> I

AJll PIODB PIIll<p>, llULT OP<•> .. tllll<l~TllQ(p al> I

UIAlll PIDDB POI LllT IL<e,.e•> .. rOll Lil'1'<e,,e'>1
POI LllT IL<e,.e'>, POii LIBT<l,,l'> .. POJ LI8'1'<l,e,.l,e 1 >1

AH PIODB POI LIIT IL<e •• e 1 > • PGll LIIT<AL'1'81Q(1 ,),,ALTSIQ(1' • »1

UIAlll PIDDB PIIll<p,.p'> .. T'llll<p •• p'>1
PIIll<p,,p••, llULT OP<•>, Tllll<t,,t•> .. '1'llll<t•p,,(a(t',p'))>1

.AH PIODI PIIll<p,,p'>, llULT OP<a> + TlllM<ALTBIQ(p a),,APPLIC(p' a)>1

UIAlll PIODI IOOL llCca,,1•> • BOOL PAC<1 •• 1•>,
laOOL ••c········ IDOL PACcr •• r•> .. IDOL PAC<tA1 •• (A(t•,.•))•1

Alll PIDDI IDOL llC<e.,1•> • IDOL PAC<At.TBIQ(1 A) •• APPLJC(1' Al>;

UIAH PRODS ID<1> .. llAL Y.Al1I Yl18<111,>1
ID<1> .. S•T VAltI YA81<11i,>1
ID<1> .. JOOL YAl1I YAll<11i,>1

All PRODS ID<i> .. llAL/11'1'/IOOL VAiii/I/i Ylll<l:i,>1

r-·---... ----..,,.... ..,..__ - -----------~--·.--

"SPEC LIST" defines a set where each member is a string of

parameter speci~ications each separated by a comma. For

example, if "P" is a declared procedure with two formal para

meters "X" and "A", and "X" is used ~s a real variable and

"A" is used as an integer array of dimension three, the speci

fication list for the occurrence of the procedure declaration

is "REAL,INTEGER ARRAY(lll)".

The predicate "SPECl:SPEC2:COMB" (S33) defines a set of

triples, where the first element is a parameter specification

designating some use of a formal P•rameter, the second element

is a parameter specification designating soae other compatible

use of the parameter, and the third element the parameter

specification designating their combined use. For example,

if the formal parameter "x" were used in three contexts, as

a real variable in an arithmetic expression, as a real vari

able in a subscript list, and as a real variable that is

assigned a value in an assignment statement, the following

triples could be generated

<A:REAL:REAL> <REAL:REAL:REAL> <REAL:ASGNED:REAL ASGNED>

designating the combined use of "x" as a "REAL ASGNED" vari

able. Note that if X is used both as a real and a boolean

variable, there is .!'!.£way to combine the specifications "REAL"

and "BOOLEAN" to obtain the specification of the combined use

of'~". In the generation of legal programs, the use of this

predicate prevents the generation of illegal procedure

154

declarations containing such incompatible uses of' f'ormal

parameters.

The predicate "SPEC MATCH" (S34) detines a set of ordered

pairs, where the tirst element is the parameter specification

ot an actual parameter, and the second element is a compatible

parameter specification ot the corresponding formal parameter.

The predicate "SPEC LIST MATCH" augments this set to include

lists of parameter specifications. For example, it "P" is a

procedure as defined above and "Q" is a declared integer

array of' dimension three, the function designators "P(3.l,Q)"

and "P(TRUE,Q)" would have specif'ication lists "ARITH EXP,

INTEGER ARRAY(lll)" and "BOOLEAN EXP,INTEGER ARRAY(lll)".

The specification list "REAL,INTEGER ARRAY(lll)" would match

the specif'ication list "ARITH EXP,INTEGER ARRAY(lll)" but

would !!.2!_ match the specification list "BOOL EXP,INTEGER

ARRAY(lll)". Thus the use of' this predicate prevents the

use of' incompatible f'ormal and actual parameters.

The predicate "USES:PARS WITH SPECS" (835) defines a

set of' ordered pairs, where the first element of' each pair

contains several lists of' formal parameters with each list fol-

lowed by a parameter specification enclosed in parentheses•

(e.g., "X,Y,Z,(REAL) A(lll),B(llll),(BOOLEAN ARRAY))", and

*If the f'ormal parameter is an array identifier, the identi
fier may be f'ollowed by the dimension of' its subscript list;
if the formal parameter is a procedure identifier, the
identif'ier may be followed by the specification list f'or
its actual parameters.

155

the second element contains the list of formal parameters

with each formal parameter followed by its parameter specifi

cation (e.g., "X REAL,Y REAL,A BOOLEAN ARRAY(lll),B BOOLEAN

ARRAY(llll)"). The predicate "PARS:USES:SPECS" defines a

set of triples, where the first element is a list of formal

parameters (e.g., "X,Y,A,B"), the second element is a list

of the uses of the parameters (e.g., "X REAL,Y REAL,A BOOLEAN

ARRAY(lll),B BOOLEAN ARRAY(llll)"), and the third element

the parameter specification list for the parameters (e.g.,

"REAL,REAL,BOOLEAN ARRAY(lll),BOOLEAN ARRAY(llll)"). This

predicate is used to generate the specification list for the

formal parameters in a procedure declaration.

The predicate "ENTRY" (S36) defines the set of elements

that can occur as auxiliary lists in the canonic system for

ALGOL/60. An entry is either an identifier, or an array

identifier followed by the dimension of the subscript list

given with the array identifier, or a procedure identifier

followed by the specification list of the actual parameters

given with the procedure identifier. The predicates "DIFF

CHAR", "DIFF STR ", "DIFF ENTRY", "IN", "NOT IN" t "NOT CONT",

"DIFF ENTRY LIST", 11 DISJ ENTRY LIST", "Ll:L2:INTERSEC" and

"Ll: L2: REL COMP" are, similar to those given for SNOBOL/l.

One important exception in the similarity for the ALGOL/60

predicates and the SNOBOL/l predicates occurs in the defini

tion of the predicate "IN" (838.1). An entry is considered

to be contained ,!E. a list of other entries only if the

156

dimension of an array identifier or the specification list

of a procedure identifier matches each of the dimensions of

other identical array identifiers or the specification lists

of other identical procedure identifiers.

Specification of the Context-Sensitive Requirements:

In general, the context~sensitive requirements on the

syntax of ALGOL/60 are specified by specifying a number of

auxiliary lists with each syntactic unit and later specifying

that each of these lists has certain properties. The lists

specify (a) the identifiers dec1·are'd as real, integer, boolean,

or switch variables (S24 and s26.2), (b) the identifiers

~as real, integer, boolean, or switch variables (SB.3,

s9.1 and Sl2.2), (c) the identifiers d~~lared as real, integer,

or boolean arrays (S25.9 and 825.10), (d) the identifiers

~as real, integer, or boolean arrays (s8.4 and S9.3)

(e) the identifiers declared as real, integer, boolean, or

non-valued procedures (S27.12) (f) the identifiers ~as

real, integer, boolean, and non-valued procedures (s9.2, S9.9

and 89.10) (g) the labels* (620.2 and 821.3) and label refer-

ences (612.1), (h) the procedure identifiers and variables

*Leading zeros in a numeric label do not effect the value of
the label. For example, the strings "00149", "0149", and
"149" each denote the label with value 11 149". Thus, a label
is defined (s4) in the cano~system by a set of ordered
pairs, where the first element is a label and the second
element is its value. The auxiliary lists of labels and
label references contain the ~alues of each lab~l string.

157

·~~----.,..--~-- -·-·------

that are assigned a value in an assignment statement (818.1

and 818~2), and (i) the variables used in the arithmetic

expressions in an array declaration (825.1).

The specification of the restrictions on each of these

lists is complicated. The lists of formal par~meters, para

meters called by value, and labels in a procedure declaration

must contain identifiers each of which a different (predicate

"DIP'F ENTRY LIST" in S27.12). The lists of formal parameters

used as real, integer, boolean and switch variables, the lists

of formal parameters used as real, integer, and boolean arrays,

the lists of formal parameters used as real, integer, boolean

and non-valued procedures, the lists of formal parameters

used to reference labels, and the lists of assigned procedure

identifiers must e•ch be disjoint (predicate "DISJ ENTRY

LISTS" in 827.12). The lists of declared identifiers and

labels in a block must each contain different i.dentifiers

(predicate "DIFF ENTRY LIST" in 829). The lists of identi

fiers used as variables, arrays, procedures, and labels must

each be disjoint (predicate "DISJ EBTRY LISTS" in 829).

The lists of identifiers used in a procedure declaration

but not specified as formal parameters (the primed variables

in 827.12), the lists of identifiers used in a block but not

declared in the block (the double primed variables in 829),

and the lists of identifiers used in the bound pair list of

an array declaration (the variables vith a subscript "m" in

829) must be obtained and specified as used identifiers in

158

the procedure declaration or block. Furthermore, with each

declaration (825.4) or use (88.4 and 89.3) ot an array identi-

fier, the dimension m ot the associated bound pair list or

subscript list is kept with the identifier in the auxiliary

lists of declared and used arrays. Similarly, with each

procedure declaration (827.12) and function designator (s9.2,

S9.9 and 89.10), the specification list x of the formal or

actual parameters is kept with the identifier in the auxiliary

lists of declared and used procedures. The specification list

tor a procedure declaration is obtained through the predicate

"PARS:USES:SPECS" discussed earlier. The restrictions that

the dimension of each use of an array identifier must match

its declared dimension and that the actual and formal para-

meter lists must be compatible are specified through the

predicates "PARS:SPECS:USES'', "Ll:L2:REL COMP" and "Ll:L2

:INTERSEC" as discussed earlier.

Finally, a string is defined as a syntactically legal

program only if the lists of used but not declared variables,

arrays, procedures, labels, label references, and assigned

procedure identifiers are each given as null (830.3).

Notes on the Canonical System Specifying the Translation
of ALGOL/60

Three additional predicates (T42) are used in the specifi

cation of the translation of ALGOL/60 into the target language.

The predicates "LIST:CORR NULL LIST", "LIST:CORR URSHARE LIST",

159

and "LIST:CORR INDEXED LIST" define sets of ordered pairs

where the first element of each pair is a list of identifiers

(e.g., "X,Y,Z,") and the second element of each pair is

respectively (a) the corresponding list of null strings (e.g.,

"'A','A','A',")• (b) the corresponding list of expressions

applying the function "UNSHARE" to each identifier (e.g.,

"(UNSHARE (X 'A')),(UNSHARE (Y 'A')),(UNSHARE (Z (Y 'A'),",

and (c) the corresponding list of identifiers each followed

by a"#" and a positive integer (e,g, 1 "X#l,Y#l,Z#l, 11
).

*In the target language these lists are used in expressions
like "LET X,Y,Z, = 1 A','A', 1 A1 , IN ••• ". Strictly speak
ing, the last comma in each list should be removed,

160

CHAPTER VI

DISCUSSION

This thesis describes a formal system for defining the

rules for writing programs in a computer language and for

defining what these programs mean. The author strove for

simplicity of the formal system, and then applied the formal

system to define two complete computer languages, ALGOL/60

and SNOBOL/l.

Besides simplicity, such attendant qualities like

naturalness, perspicuity, and communicativeness have been

accorded due allowance. Necessarily, I have used my personal

discretion in weighing these qualities. It is inevitable

that further research will refine the optimal balance of

these qualities. Admittedly, there exists no known metrics

for measuring these qualities precisely. They are subject

to a latitude of interpretations. This fact should not be

surprising. Indeed, almost every computer language has at

least the theoretical capability of defining any computable

algorithm. Why so many computer languages? It is more

natural or more concise to define an algorithm in one lan-

guage than another

Canonical systems were used here to define the. syntacti-

• cally legal strings in a computer language and the transla-

tion of the legal strings into strings in some other language.

Not once was it necessary to step outside the formalism to

161

define the syntax or translation of a language. Although

some complexity was added to the for•alism by introducing

abbreviations to the basic notation, eTen the abbreviations

were ultimately defined.in terms of the basic formalism.

Extended Markov algorithms and the A-calculus

were u.sed as a basis tor defining semantics. Prior to this

effort, work has been done by others in using formalisms

like recursive function theory, Markov algorithms, formal

graph theory, and the A-calculus to characterize computational

processes. How.ever, the marriage of extended Markov algo

rithms to the A-calculus is to •7 knowledge the first attempt

wbere two formalisms have been intimately combined to charac

terize computational processes. Almost every construction

in SNOBOL/l and ALGOL/60 was solely within the combined

formalism. The introduction of new expressions to the

combined formalism to mirror the assignment and transfer of

control constructions in SNOBOL/l and ALGOL/60 appeared un

avoidable. Nevertheless, these additions accomplished com

plete definitions of the semantics of both languages. More

over, the entire target language was eventuall.Y defined by

an extended Markov algorithm defining a machine for evaluating

strings in the target language.

The extended Markov algorithm definition of the target

language evaluator not only reduced the definitions of

semantics to a single formalism, but also demonstrated that

a computer possessing only the characteristics needed to

162

evaluate an extended Markov al1orithm 1• autti.cient to

execute source language programs t~~R•la~ed into the target

language. The conventional machine taci1ities existing in

aost computers, like those tor pertoraing arithmetic and

logical operations and those tor t~anaterring control within

a prograa, are not needed to evaluate target language pro

grams, although they- :may be conTenient. On the othe·r hand,

such horribl7 detailed aachine facilities, lik• those tor

shitting bit• or branching on the aettin1 ot aaaak.- app••r

to be useless in evaluating tar.get lanaua1e prograas. The

ability to use extended Markov algoritha• as the basic

evaluating aechanism tor coaputational processes aug.ests th•t

machine languages quite Ut,ttrent. f'roa thoe4 c01JT~fo11·a;t1.y

used might be aore ettecti ve tor def'iniag coJll>lr-tatid!utl

processes. However. it)l~•· subJ ect is I at least. worth aa .. t:h-er

doctoral 4iseertatitin.

One aa7 ve11 ask: Wby wa& one toraalisa, canonical

syate~s, 11aed to de.tine the s;rntax a'ttd· t1'~1&tioo 9-'! ,. 16n-

1uaae·T Why, wa anot-•r pair of' tor11aliaaa, .extN4•' •rl'.c:>.,

alsor'Hbaa •n4 the A-cfalciilu•• u....i M>. 4etia•· the ae .. t!cf

ot a l&nguaget And vh7 wr.• Juitt· e~entlecl Mark.oT algori th••

uae!i to detine the ~••t 14.JlCuJI• iva~uatorJ Tee tollo1'1·n•

are ay •}1-'BYe:l'.a. Pi rat,, it 6ppJ&J'B C.onY'en;ieat t• --~iae t-he

ay11t._ . .._fr translation of' a l-a~&*t•a~ •lit.ti· f. OQr•U~ 'r.a•'e:r

(vhitfh canoDi~l· ·a:r•t••IF pro:ri-4.ef tllci't; tr••• the la_(tlJia.C•

designer from the details of specitying a scanning algorithm

for determining whether a sou~ce language string is accept

able. Second, a computer language generally specifies some

well-defined algorithm for performing a computation, and

hence it seems somewhat natural to define the semantic~ of

a computer language with some simpler algorithmic formalisms

(like extended Markov algorithms and the A-calculus).

Third, extended Markov algorithms alone were sufficient to

define the target language eTal~ator. Fourth, the considera

tions of naturalness and pe~specuity arise again. The

formalism of ~ano~ical systems seemed •ell-suited to define

the syntax and translation of a langua.ge, the combined forma-

lism of extended Markov algorithms and the A-calculus

readily lent themselves to defining what a language means,

and extended Markov algorithms provided the desired concise

definition for the target language evaluator. In short,

different formalisms model different processes with different

degrees of complexity.

I have attempted to separate the specification of the syntax

and semantics of a language into three parts: (1) the specification

of the legal strings in a language, (2) the specification of ·the transla

tion of the legal strings into the target language, and (3) the specifica

tion of the primitive functions used in the target language. Although

each of these specifications must depend on the others for their cor

rectness, the specification of the primitive functions in the target ·

164

language were written for the most part after the specification of the

translation of the source language into the target language and re

sulted in few changes to the definition of translation. On the other

hand, it is unfortunate that the specifications of the syntax and transla

tion depended heavily on each other. A change in the specification of

the syntax often required a change in the specification of the transla

tion, and vice versa. It would certainly be valuable to develop a con

vention that would better isolate the specification of the syntax and

translation.

Although the semantics of a source language was formally

defined here by the target language, and although canonical

systems specify only the srntax ot a language, a large portion

of the semantics of the source language was somewhat impercep

tively defined in the canonical system defining only the syntax '

ot the language. By using descriptive predicate names like

"ARITH EXP", 11 COND STM", and 11 LABEL", a correspondence wit_h

the English language was made to aid the reader's understand

ing of what was being talked about, i.e., the semantics of

the constructions being defined. A similar use of the

English language occurs in a Backus-Naur form specification

of a computer language. The use of metalinquistic variables,

like "ARI TH EXP", "DIGIT'', and "PRIMARY" in product ions like

11 <ARITH EXP> :: = <DIGIT> I <PRIMARY>", does convey some idea

of what the specified strings mean, although strictly speaking

the productions define only certain legal strings in a

165

language. In this wa7 both canonical s7stems and Backus-Naur

form make good uses of one of the most popul.,r meta-languages,

the English language.

There are several iJllJll.ediate uses of the formal system

presented here. First, when developing a langua,ge, it would

be desirable to have a formal detinitio.n specifying precisely

what strings are allowed in the language ancl what the strings

mean. Such a formal definition coulcl be •iven tQ others for

their analtsis and voul4 sharpen the debate over whether the

convenience ot eacb c.ollstruction in the language would be

worth the difficulty in ~xplainin1 or iaplementing the con•

struct1o·n. Seco'nd, a"fter tlie designers agreed upon the con

s·truct,ion.s in the lan1ua•e, the t:or•al definition would be

T:41~ble t·o tlt~11e i•pleaentins the language or those prepar•

.ing the 1angl,la.ge aanual.1 in that- they would know un&mbiguously

Vhat W'as inten<Wd by the language 4e.signer ..

'lite ~·•r•al sys.tea presented here opelis several ave~es

to~ future res>earca. A.a previously menti.c>J:ied,. st.nee canonictU

•Y•teJ&8 cat'l 4•t'1n• preci .. el,- both th~ synte.x a:sid translatiOJi

ot tt l•opace. c•noni.cal systeae aigbt be used as the bash

far f.Ut·oaatic t-ra.n•l-atien b•t•ee:at coai>uter l•l11••s••. It an

ef'tictent &lgoritbtl ectal.4 b• d•V•lope4 io reco1nize •"triage

spe<riti~ by· a c)Lnoni~al s7•tea and aene:t&te' il•i:t tr•nslation,

a caoon.to'.al •1•tn 4e,tini t·ioG ot a Ia.ecuageo could be imme

cliat.ei,- u••4 f;o -et-a.tr.elate le1al 1>1'01:11._. iD. tl\e Iancuase into

another lanaua,ge.. Anot'hel" uee oot the formal e,.st~JI llight be

166

in the implementation of "extensible" computer languages.

By simply adding or changing the productions defining the

syntax and semantics ot a language, the new productions could

be given to the algorithm for translating string• specified

by a canonical STstem, thereby iapleaenting the extended

language.

The author has attempted to integrate and adapt three

known formalisms to define computer languages. These formalisms

have been blended into a formal system for defining computer

languages rigorously and somewhat concisely. The most signifi

cant portions of the attempt here are the application of

canonical systems, the marriage ot extended Markov algotithms

with the A-calculus, and the application of extended

Markov algorithms to define an evaluator tor the target lan

guage. It is hoped that this work is a progressive step in

achieving the thesis of this dissertation, to meet the aeed

for formal methods for completely defining coaputer languages.

167

AppeaUa l.l CAllO!lCAL IYH• IPICI! .. 119 t!I UUAI or A IU!llT or ALO!L/60

(a) •••1• DO\a\10D OD11

1.1 Dill1S'
Lt
1.3
2,1 VAii
2.2

3. l PllillAllt u Alli'R UP

'·' 3. 5 SS'•

'·l TTH LISS'
'·2
k.J
k.~ DliC

PllOOllAll

6.1 II
6.2
6.3
6.k
6.5

l. DIGIT
2. 'All

3·.1 PAIJIUt
3,2
3.3 AIITI UP

'·' ,,, 8Tll

'·l TTPI LIST

'·' HC

5, PllOGRAm

,,1 II
6.2

DIGI,,-<l> I
llIOI'fct>;
DIGIS'•3>;
Tll<A> I
TAii<~;

DIGIS'<4> • PBIDll!1TAlll<.41A>1
TAll<T> • PII~T1TAll8•T1T,•1
PRillAIT1TA118<p1T> • AllIS'I llP1TAll8cp1T>;
PIImAllT1TAllB<p:T>, AllIS'I llP1YA118ca1a> • A8ITI llP:YARB<a+p:aT>;
ARITI lllP:TAllB<a1a>, TAl<T> • ITX1Y~lll<T1•a : T,R>I

TTPI LIIT<A>;
TTPI LIIT<I> 1
lr'fJ'I Ll9T<A,1> I
TTPI LIIT<I> • DIC1DIC TAlll<IITIGlll 11&,>1

8Tm1YAR8<11a>, DIC1DIC TAl8<41T•, Il<a1T> • PROGRAm<llGII 4;1 llD>1

IWc&. tA 9 >;
IS-cl. :r:B.:. t
Il<A,1A,l»1
II< la :A.la> &
Ilca1I•, Il<71I> • Il<ll;J':I>;

DIGIS'<l>,cl>,<3>;
YO<A>.<I>;

1'IGI'l'<4>; .. PHJIUI<4>;
'ld<T> .. r•I.ut1TAR8<T1T,>j
PBillAII<p> . llITI llP<p>;
nillABT<p>, Allift IZP<a> + AIIft llP<a+p•;
Anft •zr•a>, TAltcT> . ITlltTAR8<T 1• •••·>'
TYPI L?lfcA>.<l>.<&9 9>;
TTl'I L?ft< I> + DSC1DIC TAlll~IUllOSI 111,>;

8TK:Til8<11a>, DIC1DIC YAll<41T•, I••u.tT> ..
Il<A 1 tA 1 > 1 <& 1 1& 1 1 1 >• <1 1 tl 1 > 1 <l 1 1A1l 1 > I
Il<atl>,<711> + Il<SJ1&>1

168

PROORU<llGII 4; I llD>

,,, 1.1 !!4FIJW IUD' Vffl"P' • !WWff' or
m ewp • ·-·•'·pp•

Ca) ... ,. •-'•'I•• eair

1.1 llHft
1.1
·1.,
1.1 YU
I.I

,,1 PUJIUT
J.I ,,, Allft ...

'·'
'·' Hll

•.1
•.1

ftPI lolJ' .. ,
••• ..
'·
,.1 Jll

'·· '·' '·' '·'

J.l , ..
'·' , ..
'·'

.. man

Allftll aP

nenc1•1
llHftcl>&
MeftcS>a
Y.Uca>1
Y.Uca.1

9J~cl• • '9llllSl1Y ... ct •• •P'l'1A>1
•&acw> • fJ9DllllT1Taa9c••••••e>& •
~1YAll~·••'•P +· Aalft ... , c,,, L 1,p' •LOO,~,
.. ~ •• ~......... Allft ~ ••••••••

• Mrlll . ..,, , a 1,,. •an t••••a
AaJft ... 1YA11ca,.a•1p, ygcp

• lft•YAllC• ,. •··•'• n 1,• enon mlrL!' n •••·••1
.nn Llftca •• a • r> 1
nn ·lolftc• •• • • r>1
nn ~ , • "• • r>a
I'm lol8'C&,,& 1 • • lllG11SC.YAll9cJ~ 1 •• 1•11,•1

lft1Y&lilca. ••' •P, -·- •aascc. ~·· •••, J•c•1P .
• ~-- I& • m .. •-= WllWea ~MUI U,1
._ ... -··.. l9De ·~lS 8IDOall ... -•let IYC 0
..... ~ '91 YAalAKm,

nc&,1&,•1
nca,1•,•1
nca,aa.a •• 1 D4,, ,
Jltc•t&•, Der••• • Dcllf••••

ltHftct> ,_...., ..•..
••:. ·•'•, ~ lllPca .. •'• ... • c .. ._.n .. ,

• n.-c •..••••••. ,
• ftlmal••••Yl'I
• AQll llPc•·. .. lof' ·tsma ,.. ,
• atts -..... ••• • .1.~-- .. ' • •• ••••• • <l••

•.1 r.lft nn s.!8'C& .. a • r>,•a .. 1 • ,..,ca,a .. a • "8 • P>a,
•• I ftPS 1.19fc&, ,& '> • lllCc~ I• o& '•I

'·
.... .,...1 ., - u ...

169

........ l.J W!!JW '!!W RPI!!!!!• ••
IOI COfUl!m!t Ml !!!!!I - 9'$Mftl. -

l. ON ALPIA
a.1 PUI CUI
2.1 PllD PUT
2.3
2. • PIU ALPIA

'·'
3.1 YAll ALPllA
3.2
3.3

• .1 VP 'flllll •.2 .. ,
••• •.s VP 'ISllll ~PLI
•.6
S. VJ' Atoll J'OU

6.1 VP Plllltll
6.2 11P COllCLlllJOI

T.l 1IP AIOI! ROD
T.I 1IP PIOD
T.3 T.•

.1

.2

!1.1
11.2

o.

l.l
I.2

i.J

a.1
2.2
2.3 a.• .. ,
2.6
I. T

1,8

3.1
J.I

lJ,3 u.•
•.1

H.a

PIOD

PIOD IlllTAICI

DDIYATIOI

OllJ ITI .. .,,_

AR1Dtl'J' YAll

ann

,._,DDn con ,._

OU ALPl.aco>.cl> ••••• cf».cA>e• c1>.c1••.ca1o. ••• •.•1
•m ca&•c0> 9 c1,. • ••• ,ct> ,cA> .•:I>, ••• ,•l>t
PllD Cllil<a> PllD P&nca> I
PID caAll•••• PID PAIT<p> • PID P&nc .. •1
PID PAIT<p• • PID ALP9A<p>1
PID PAllT<p• ... PJllll)c•• • Piii» A1.P11Acp•1•••1

Y&a ALPIAc'a•> ,c .. lt""> • ••• ,c ,. I .
IQ 01 S8P-caJnc0> ,c1>, •• ;,ct"!'•.'tl •c->, ••• ,c.•,c•1o1
TU ALPL\<y> • 1111 OI lllPlllllCIJnc•• • IU ALPllA<T8• I

TDll<A•1
II AJ.PL\<a•
Al ALPU<a>

mlfc'l>,<•>

1QO 'lllll• •• '
• .. Thll<••1
• WP !Jilltct;r•1

TUii<'•
~<t.>,

... ftllll tuPlo&c•,••1
vr 'Tiii• !'UPI.acer>> ~ .,.. ... cc•'1•t.•>1

VP mil "1'Llcb •· 1IP A- fO!llcp\•1

A70JI PllOllc p• • llP PJllllQJ<p• &
~ , .. • WP C'OllCJ.Valotcp•1

CUOS.WIOl<e•
Atoll PIOD<p•

• 1IP ATO•P11011Co1>1
WI' PIOll<p>1
11P PIOJl<p-1>1 PllJlllill•p•. 1IP COICLDllIOJce•

PIOll< •-P • 111' Pl•lll<p• • 11P PIOll<e.p .. 1•1

PIOD<p>
PBOD<p> 1

• .. CAIOllCAL lr8'Sli•p>1:
WI' CAIOIICAL l!ITlll<o> • WP CAIOllUL,...q• 1

OIZCAL HITlll I'll<•>, VP CAIOllCAI. ""9ce• • GAIOIJCAi. Int-•> I
ICAL lllTlll<ap\>• VP PIOacp• • PIODcp•1

I
STI IHI IO TAU••> • HOD IHftllac.>1

111.IY.ATlOlcA> I
11P COllCWISl~<e> . 1'.YATJUc .. • PIOD llft'AIP.01•.

• .DWlllTATl01c4 ••1
DITATtOI•«•, Pioli tUTAICS•ro p,

• DlllTATIOl•4 0•1
..... 1a1. GOft

• OU S9t••>1
4LPllA•a> • OllJ 8Tl•e> • ON 9ftcaa• 1
~"~ ·~ 'Al-'C•>•c .. 1 .. ,.a<~~ .. ,..~,>"">1
........ + Hit 1'tn IO.., ~.,.. +.,.. -
trnw·•IO YUi•••,•\• • Hit Vlft -..

Al CIAJlrDirP YU C&Dca1•>·C·aie> 1 •••• ·q~tc0 t 1>.c0 1 1•1 • ••1
c•1a»1

Al A&.PWA•eoa>,••'7•. TAI CIAl•DtPP TAii Cllil••••·
• YAl1IXPP TAll<aea1•'7•1

Al ALPU<T•• ON STlce>
TAI 4LPU<T•• Oii St'l<a> 0

Al ALPU•T•, ON llTI••• •
-Tc•1•1a11» 1 cY1•1•' IJ"'>

• IBft<•1e1Y1•>;
lt'I lrJft IO TAii .. ~> awncTtt 1t ,
TA111DJPP TAll<TtW> • SlllH•T1•1w1w•1

11raaorc , .. 1 ,,.,. •• ,

170

1$.l
15.t
15.J u.•
1'.5
1'.6

·u.1

16.1
16.2
16. J
16..
16.5
16.6
16.1

1'.1
11.2
11.J
1 T.•
1T,5

1•.1

1 a.2
1 A,3
18.•

ja112 CBtCS

jlllJ CltCI

19.1 jl.11s es.cs

19.2

19,]
19,•
19.s
19,6

20,1 jlH6 CB<CB
20.2

20. 3

20.•

20.5
20,6
20.1

21.l ~HT CB:CS

21.2
21,J 21.•
22.1
12.2
22.3 H.•
22.s
22.6
H.T
22.8
12.9

n.

lft8 CBtCS

~DUCAL
~ •• , .. Iii

VP PIODcroa>
., PIOD<r•&>. A•ltl PtP<p•apt;>
VP Atoll HOD<o1•
VP ATOM PIO»ce-1>, Alll APaAP<aart.1>
&I'll C11ncA1A>1

+ illl ,,pcr•a•••ep&
+ Alll PtP<t ... •&tP+el°'l"I
• ... 1 AP1.lflC•1u1>1
+ A.Ill At1AP<a.e11t1c1>1

An:l C81Clce1I>, Alll P:P<p:q,> + Alltl C81Cl<e,1t,>&
Pll C:B:C1ce1I>, Alltl AP1AP<pt'> + AUl Cl1Cl<tJl4'.>&

CS ltBLI•t!'IRc ,>I
ea HLntlTllt<•> I
Cl JisLJJtt'fbc I> I
WP A'l'Oll noDcpctu + llJI- STl1Hl<pct;>1pct;n·1
n ATO• PIOl)cpc\>> 1 Alll2 8Tlhlflt<pcr>1a> • All2 ITl1lft<p<r>,ct.>1a,.ct>>1
Ull2 CStCB<AIA"&
AU2 eltC8<e14,., AU2 l'l'lt1BTl<a1t.>, Cl DSLtll!fD<a> • Ah2 Cl1Cl<ea•1•:&a>1

ff ATOii PltOJ>cp>,ce> • All] PtP<••e11p•a1>1
VP ATOM PIOD<p>, Allll PrPca•crt> • All3 P1Pc•l•+e1..,e1~>1
All] Cl1Clc.A1A>1
A•Rl Cl1Clca1d>• AIR) P1P<p11> • All3 ClrCl<op14,>J
Al113 C81Cl<o1d>• VP PllOJ>cp>• •OT I•c I 1p> • UIJ fttCl<op14,>J

PllU PAH<J>•<•> 1 'f'AR ALPU<a>.c'b>• DlPP lft<atlt>
• URIJ P:Pcp<a>•qclZCl(a)>1 I p<a>+•c•>.1 P<•>• tc,lt>.q,<•'lt>a>J

~~li Cl1ClcAIA>1
~~Ill Cl:Clcc1I>, A•Rli. P1Pcpq> • .&aa• C81C11c_,1.4>1 l&•ala Cl1C8ce:I>, VP PllODcp>, •OT COl!'clElil(ip> • All• C81Cf<ep14'1>1

PRID PAJtTcz> .cp,., VP' TIR•cta"• AUJ: PIJ:D:HlllUS<p1 :t1
>,cp2 1t1>•

BfRca,. • Allt5 P:Pc1•ap1 p 2ctatl t 2> I : 1+apl"' s "pp1 ct..t.1 '"' 1 "At.2 >1> I

PID P&nca>,<7>, VP ftDct. •• ct
1

>, AUi PllllJ1Tlll•cp1t.>,c,
1
ir

1
>.

cq2 sr2 >,cp1 rt 1>,cp 2 1t2" STR<a>,<a'>, YAI ALPllc•>• •OT COit

<•1 •• 't.at.
1

r 1 r 2t 1 t. 2 :. • A.aas P1P<e ,,1 q2 ct.
1

r 1 r 2>a '•ZJ1
1

pp
2

ct.•t.
1
t.t

2
>1

u 7 '1ff1<t•rl .. 1 "•r2>•'•J1P1PP2<tatl tTt.2> I> I.
ABJl5 P1Pcp1q>,cq1r" • AIR3 P1P<p1r>1
Alll' 081Cl'l<Atb 1
&•RS CBtCS<eab. VP PllODcp", PliSDJCATD llATCl:<P> •UIS C8:Clccp14p>1
AIR' C81C8cc1b. VP PllODcp•. A.1115 P:Pcpsp, PJIDJCATll JIATC&c•> • Alll Ca1C1cep1d.q>;

PRZD PA•T"'Jll"• VF TEJtV.ca>,C\" .. AP 1r•1AP_n1conc, ~1p<t>1p<t.»1
AP BTltAP Tll:CODcpc1> :qct> :re•>>, AUJ: P1tU1TDa<i1•a

•AP 8Y•1AP Tll=COD<p4<aa11,t<t••1,t<•>>;
AP IY•sAP ~l:COdcpca>14ct>u<•>> 1 AVZ PID11' c•1•>, •OT COU<l1p>

•AP .&T•1AP T•1COD<plce•>1qct>1rtcu>>1
AP st•1AP t'JltC0111cpc-.>1qct>1r<•>>,. AU PRD1t'U•c:t.1a>, IOt aoft<41:t>

•AP IY•tAP T1hCODcpca>1q4<t•>:r4<u•»;
Alll6 Cl1Cl<A:A" 1
.&•Ill~ C81CSce14>• VP ATO• P80D<p> 1 Cl DILI.llITIRc•> • &••' et1C1ce .. 1 ... >t

faa16 Cl1C8ce14>, AP lt•:AP T!hCOlll<a:t:b>• CB Dll.IllJ:f'iaca> • ... , Cl1CSce•//\a1tlt.>;

PllSD ?Aftcp>,<q,,..cr>, VAii ALP•.tcu>,cr>,<w>.<u'>•<••>,cw'>• OIJ
Al.PIA<•> DIP'F STlt<v:u>, cv1•'> .c•ru'>, cv1Y' > ,c•1••,. ,cw• 1•> ,cw* 1T>,

<v 1 1u'> ,cv• tT•> • A8RT P1Pcpcu> • ca<ALTllfa(• •»1 : p<•>••<•>1p<•>,
q<•:. • qcva•:.;•.cpcu> 1rcw>~.cAL'fllQha v)>; 1 p<•>•4c•>1p•a>, r<w>,
q<•>•qc•vu> p • cpcg •• •' >•q<ALTISQh1 •) •• ALTl!ISQ(" 1 a)>; :cpctl. ·•'>
•'l<u •• u' > ;pcu. •• u. '> ,qc• •• •'>+qc-.av. •• T'au 1 > ;> ,cpc•• ·•'> .. <A.I.ft .. (• a)
•• APPLIC(11' a)>; -t p<11 •• u'>•qc\l•••'>;p<u •• u•>.it<••·•'>
•qcysu. •• ((ar' hl')> 1>,<pc\l •• u 1 >,r1w •• w'•••<ALHSCl(w w) •• A-PPt.S'C
h1 1 v 1)>1 t p<u •• u'>•q<a •• v.•>5pc11 •• •'"•rcw •• w1 >,4c• •• •'>
•q<•wu.". ((w• •')u.'):. 1>;

.llltT CltCBcA:A>;

:::~ g::~::::::: ::·~~~~;~:·;OT COl1'<.ltTIK(l1p>: mt~~~\!~~\;~~
~~lt8 P1Pl11lSST<A:A1&>1
~~lt8 PtPl:ltSBTcp:q:r>~ STR<a,., IOT CO•Tc/u> + A8d P1Pl1•atc••t'118tl'I>&
jAa1t8 P1Pl1llD'fcp:Qtr"• tDSTRct>• B'fltct/ii>,. IOT COn<Du> + Al•I •1Pl1-~pl/•1•l1ra>a
&alll P:Pl:lllSTcpscpr" • AUi PsH1al9l'c•1•1r1>l

~::: ;~;::::;:~:::~:: =~~;:;,:!"' P1P81•&1T<r:4
1
tr
1

> : :-.: :!~~~::C••••'••'>&
i:::: ::~::::::: VF PltOl><p>. IOT COIT</lp> • Ull •1CSC•••~I
ia-11• C91Cl<c:4>, VP' PltOJ)cp>, COIT</1p>, Al•T P1Pcp;•> •Ant Ol1CSce.1&•>1

AaCllQllCAL IYBTlll ITltca>, All6 Cl1Cl<a1l», Ull C81Clc-u>•
A•llT Cl:Clccit>, Allt!J Cl1C8~•1•>, Al'R1 Cl1Cflce:r>, Ul.5 Cl1CS<r1c>.
A8112 Cl:CB<-&tb>, Alltl CB1Cl<lt:l> • CA90IJCAI. &IBID lft<l>;

c•A••A>. cl,. ••••• <Z>. < •• ":o ,< .. "b"" •••• ,<"'• .. ,. • cO> ,cl>, ••• ,•9>, <,> ,••>. • ••• C•>'
l'fltcA>;
ITJlca> 1 Cll<ce> • S'rll<ac•'
DJPP' CIAltcA:l'"•"A:C>, n t/"'t
l'f11caae>,,ca7t:o • DIPP CIAJI:· x:J» • Dtf'P ITl<aaa> ,ca,-t.>·1
CIAltcc:.. ITRcact,. • CO•T<ctact"&
8Tltca> • •OT COITc.u&.>1
IOT COftcaut>, DIPP' CIAJt<~tJ> + IOT C:O•Tcaa1\r>a
IOT COftcaaatty>, DJPP' CIAlt<a:;p • IOT COR•a•a1t,-a>-;
C'I DSLJllJTD<11> 1 <•>.c;>;
AUi PltaD1TIRJel<AtA"1.
AUi PalDrna•cp1t>, PlllD PAlt'l'<tp, VP TSaK<r> • AV:I Pll•D1m.l<• .. •"•1\ .. 1"r>1
P .. DJCAHS llATCl<A>
PIP,DJC&Tll ICATCl<a,., VP ATOK PltODcpctu. C9 D•Lilllmca>•

CS PaDJCA'Tlfl:cq'", COIT-cop, 1q> • PJtll>tCATll IUTClc~t>a>_i_

171

AppenCia 1.- DllIYAflOI 91 A lrll&L "!
ITI w11wto• Jm ••m Y!IUA''

R11le 11
ll111e 21
11111. 11

DlllIVATIOI• A•;
DlllIYATIOl•4•, PROD IllTAIC:l••1•. vr C:OICLUllOl•e• • 1811TAllOll•• •• ,
DllIYATIOl•e•, PllOD IllTAIC:l<p•e;•, , ... ,,COIT Pl ... cp1•• • lllalYAIStll•• ••1

Pro•11e\1on
..... s ••• troa Coaolaetoa ••••• to ••rl•atioa

App, 1.1•

cl 1,1 DICIT<l•

ca 2.1 YAll<A>

c, c2 l.1 PllillCAllY1YAll<l1A>

c. cl l.l AllITB IZP1YAll<l1A>

c, c1,ci. l.5 llTlhYAll<A1•1 I A.:to

c, lo,1 TYPI LllT•A>

CT c6 lo.lo DICrDIC YAll<IITIOll A1A,•

C9 6.1 I ll•A, 1A,•

c9 l c5,cT,c8 5, I PIOOIAll<llOII llTIOll A1 A1•l llD>
J_

(b) DerlY&\1oD or a 17ntaetteall7 la1•1 pro1raa ••• 1\1 \raaalatloa lato
•••••bler lane••••·

T Pro•11eUoa
Pr .. 11e1

1
froa

: App, 2,la
Coaola1loa to ••rlYa\loa

c1 1.1 DIOIT•l>

c:, 2.1 YAl•A>

cl c2 1.1 PllllAIT1YAIS<l,,•P'l'1A>

c. cl l.3 AIITI IZP1YAll•l •• L 1.•r1 11 •LOAD l1A>

c, c1 ,c• 3,5 ITlhYAU<A1•l. • r. i.•r•1 1 •LOAJI 1
IT 1,A ••tou uavr.t II A1A,>

c6 lo.1 TTPI LIH•A •• A .. ••
CT I c6 •.lo

I
DIC1DSC YAll•IITIOll "··· .. ''"»

Ce
I 6.1 l!cA, :A.> I

c9
I 5. PIOOIAll<IHII IllTSOll A1 A1•l llD, • 'c5,c:T,c:8

•ABllDLD LAIGVAOI PIOllAll
IALll n.o •II! 1481 llOllTSll
UlllG •,u •11Po• u1m1.11
L 1.·••1 1 •LOAD 1

" 1,A 8ft011 IDVLT II A
IYC 0 •1nvu TO IUl'DYllOI

.. TOIAOI POii YAIIAILll
A 118 ,

UD•

172

App•••l• 2.1 CAllO•IC&L ltlTI! IPICIPtI•q "' T14!!J.ATIO• or
TH ALOOL/60 IVMU Im TH TAl!U! LA119!!!Q

3.1 PlllllAllt DIOIT•t> • PlllUll'l'••··•'•1

3.2 1'AJtcy> • PlllUllt•T .. Y•1 ,_, Alllft DP PlllUllt< p •• p' > • Allft DP•p .. p'•1
,.~ PlllUllt • p •• p 1 > , Alllft ID'< a •• a 1 > • Allftll IJP< a•p t(• (a 1 , P'))> I

3., ITll AIIYI SXPca •• a•>, YUCT> + STlfCYt•a •• (y AllIOI.

~.l 'l'TPI LIIT 'l'TPI Lll'l'<A •• •A 1 > ,.c:• •• •A 1 > ,cA,I •• 1 A1
, 1 A1 > I

~.2 'l'TPI Lll'l'•I •• 1 '> .. DllC<ll'l'IOl9 1 •• 1•1'•1

'· PIOOIAll ST•<•.·•'>' DBC<• • • I'> • PllOGIAJl<llllD .,. ISD •• LU 4'

Appea4lz 2.2 DSPillTIO• OP PII!!ITIJI FUICTIOll POI IUl!lr'l'

Set 4et1aitioa.. tor. 1trl11 Ytrla•let r,1 c l'l'lt

CB.lit DICJil'I: 0 >1 <l >, • • • 1 c9 >a
LIT'l"D <a>, <I>, ••• ,cz>;
OllE<,> ,c • >, ••• , <a>•
DIGIT <P. I LIT'l'll•p. 1 llAlllC•p •• CKAll•p• I

BTll 8'1'1 • &>1
S'l'ltc1>, CBAlt<e>. 8Tlt<ae>s

DetlnlUon of 1£111t!•• £!actloa1

Cl'l' • [.. ·r •,•r·] •

IQ(a,I) [•I~. 'l'IUI] .,. •II. PALBI

COID(•,a,I) ['l'IUI •] • PALH I

['"''·
alr

l /ol/r. •fr
succ • /a/

/18/r. •Pr
/•P/r. lo/Or
/Ir. lr

r· 0 l /l/PT. ,,
PlllD •

110/r. /11Pr

'"' /1llr. 10r
/12/r. alr
ldlr. l. 1llr

RllC +(Z,tl ICllt, •o• l wt>z
ILll .. IVll(IUCC z,.HID I)

173

•')>1

u •. ,.,

Appeatls 2.l DIPIIIfIOI OP Al ..,6L!!.l!O. POI ·!J! fA!Of! L&ll!UA!I

(a) let ••tlaltloaa tor atrl•1 Yaria\l••• r•r' 1 a 1 a•,s1 ,71 , ••• ,s,,75 • lfl
1,?, Tt1I.a.L1 ,,,. • rn I t,J,k • 11»11 I 11,11• • 1:1P ID I t,t• • l:IP tL

II·· • '" ID I '• • '" t:r. I ••••• Jo.a.IL lft I

DI!If
Llftlll
llAlll:
C:IAI

HI

COlllTAlf
TAIIASLI

n1
IIDll

La.IL HI

llP

lllCl

llP ID

l:IP fL
lllCl ID, llQ t:r.

DI!If•0•,•1• I ••• -,<9>1
LS!T&a<A>.<I>• ••• 1<1>.co>•c•>•<•>&
11&11:<.> ,c+>' • • • ,-c J> I
DI!If•p• I LlffSl•p• I llAlll:•p• + C:IAl•p•1

C:IAl•e>
lft•A>1
SH<•>•

Pft•l>1
Pn•p>
DIG If ct•

lfll CIAl<e>

COlftAlf•'•'•;
TAIIAIL1cllq(e)>1

Pft<lp>1
IIDll•llCl(A)> I

La.IL lftc4>1
LAllL lfl•a•, TAIIAILI•&> Jo.a.IL lfllca&Y. I

C:OlllfAlf<p•
SIP-ce> ,cf>,
TAIIASLl•T>,
TAllIAILl•Y•,
Ille<••

I TAIIAILl•p•
IIDll<i>

l:IP<e•, IIDll•i•
l:IP<e•, IIDll<i•

l:IP•e>, IIDli<i>

Il»ll<i•,<J>,<k>
l:ZP<e>, TC:\>, JSUZci>,<J>,ck>
llt<•>, TAIIAILI<&>

llP•p• 1
IZPc(1a tl>1
l:IP<A1•·••1
llP<(1Y AllIOI. e)•1
l:IP<••.
l:IPc(l.ooto. a)> I

llQ<•>, T<t>, SJP<e>, l•DSX<l>,c,>,<k>

C:Ollftlf<e>, TilIAILl<'t>, ?IDU•l>

lllJ'<llt> I l:IP llJl<JI>
Till.a.LI•&>, IJP<e>, lllCl<ll•~ll,•

174

(b) Sub•t.itutioa rulu

b I 1

I 1
b\ (l•l l'•l)

(1,)

•control

••••ult

•JnYironaent.

•store

•••P••••lon ht

'•'

(p,•)

APPLY,

• • •
<•

(p,>.i f. J)

lJ•.q,tlt

GOTO. APPLY.

[

l

~. 3 -
J•

ITalua\e
Vartabl• :

6. lp

[l••lY.ate (lp r)I
Coa•\aat •

• In
8. 1,.

(l .. J Y•p')
ApplJ
l-eap

•IJ • I J
• •I J 10. IJ

(p,bit J) Appl:r I
Goto

, l

J···
(p,rh(p' ,>.

1
.:J)

11y•h9q,l1q
1
bt '•

ASS IOI. APPLY, ...
APPLY.

• ••

b Af'PLY

~.l •
(J•i •••) , ..

....... tt

.!:•it (l'P1h1:J)I

l

[

A

7 .1 l

Appl.J (p r')o (p r') A•• ten • •

(p,r)l(p',r') ~::!~ant (lp,r APPLY r 1 U
I

IJ} ' I J u.

lalt
: ro• l-eap

175

],

.s•·t
~.2

r l•k J•l r t••1r.
o, tr7·
•st ea.Y

·' ..
,.2

JO•i r ••• J+i r i 0 •k

ABBlGI • APPLY ·i l
P p' T .2

(p' ,r' h(p,r) :::!~n (p' ,r•)a(p,r') . .

A} r 12. --· (p r) •turn
' al Vie

r-......_--- .-------~--··-----·-----

Appendls J.l CAIOIICAL SYSTIM 8PICI?Yll9 Tfl !![!Al OF llOPOLll

1.1 DIGIT
1.2 LITTlll
1.3 llAlllC
l.lo. BABIC SYMBOL

2. STllISG

3.1 IAD
3.2
3 • 3 STlt IAllZ
3.lo. YAP UllZ
l.5 BACK ltlF IAllZ

lo..l DIGIT STlt
lo..2 IJT
lo.. 3 Al!ITll EXP
••• •.5
5.1 STRIIO EIP
5.2
5.3
5,.
5,5

6.1 PATTIJll
6.2
6.3
6.•
6.5
E.6
6.T
6.8

T. ASSIGI RULE

DIOIT<O>,cl>, ,<9>'
LITTlllcA:>, c I>, • • • ,c Z>'
llAll<'> •" .> ,<•> •••••• />'
DIGIT•p> I Ll'l'Tllt•p> I MAltl<p> • BABIC 8JMIOL<p>1

IAIIC BYKIOL • 8TllIIG<81Q(b)>1

DIGIT•p> I
IAMl<•> 1 <n>
IAMl<a>
IAU<a>
IAD<n>

LITTIR<p> • IAMScp>1

DIGIT<4>
DIGIT STlt<o>
llT<I>
ITlt IAlll< a>

• IAICl<•a>,<•••>1
• STlt IAllZ1STlt HPl<Bla,> ,•htn,> I
• YAI! IAI01YAI! lllPl<atn,• I
• IACI ltlr IAllltlACI lllra•a:a,•1

DIGIT ITll<l1Q(•l•1
IH<a> ,c-a>;
AllITB OP!ltAIDc•1••1
AlllTI OPZl.AID<n>,cln>

ARITI OPIRAID<a>, AlllTI !IP<&+,>,<&•b>,ca•b>,ca/b>

ST'11G IXP< A> I
ITl!IllO< 1>
&Tit IAl!l•n>
ARITll !IP< a>
STllllO IXP<a> ,ct>

• STRIIG llP<~a•>,
• ITllllO llP<a>,
• STltIIO llP<a•1
• STRIIG IXP•ollt>;

STftIIG<•> • PAT IXPc•1~>,
STlt IA~l<n> • PAT IXP•n>1
YAft IAl'l<a> • PAT !P.c•n•> &
VAii IAMl<n> • PAT llt••(a)••
'Ult IAMl•n>, Dt<IIT 8Tlt•4• • PAT 11Pc•n/4•>1
IACI RIP ltAKl•n> • PAT l~cn>1
PAT lll'<p•,•q> • PAT IXP•pll<t•1
PAT lll"tSTlt ltlratYAll ltlFB:BACK RIPl•~·r.•• trb•· DIPP IAMI LIST•r •,

Ll:L2:IITIRBEC<rb:r
9
:rb>,,r

1
:r

9
:A> • PITT&al18TR RIFS:YAI 111rslp1r8rytr~~1

STR IAMl<n>, STllllG llP<•> • AISIOI IULlc•••>&

8.· P,\T MATCH RULi STll IAlll<n>, STllIRG IXP•I>, PATTElll•p,. PAT ~ATCI llULlcni1p•1>1

9. UIPUT llUL!

10. OUTPUT llULI

11.1 llULI

11.1
11.3

12.1 LABEL !IP
12.2
12.3 STll

13.1 STM SIQ
13.2
13.J

ii.. llOaoL
PIOOltAll

15.1 IAlll LIIT
15.2

16 .1 DirP' CIAlt
16.2 Dirr SH
16.3 DI" IAKI

17.1 ts
17.2
lT.3 IOT II
lT.•

1e.1 IOT COllT
16.2

19.1 DIPF JAMI LIST
19.2

20.1 Ll:L2:IITUSIC
20.2
20.1

STllIIG IXP<o>

ABSIGI ltULl<r> I
OUTPUT ltULl<r•

UILAllLID llULl<r>
UILAllLID llULl•r•,

• IIPUT ltULl•SYI .PIAD p•1

• OUTPUT llULl••tl .PltIIT 1•1

PAT llATCI llULl•r• I IIPUT llULl•r>
• UllLAllL!D llULl<r•1

• JUILE< Or> ;
IAJllcD> • JtULl1LAalLlcaQr:n,>;

IAlll<n> • LAllL IXPtLAllL Rlra<atn,•1
STI IAlll•n• • LAllL IXP•ta>
llULl•r•, LAllL IXP•t•,••• • STM•r•,cr/(t)•,•r/8(&)•,•r/S(t)r(a)•,•r/r(a)•,•r/P'(a)Sftl•1

STl<a>
STN SIQc1>, STJI<•>
STM SEQ<q>, STlllWr.c1>

• STM IQ< e> I
+ IT'ii SQc1le>;
• STM SICl:<ql•a>,c~•tq>1

ITll SIQ:LAllL11LAm!L ,,,,,r'• DIPP IAlll LIST•llD,t>1
LltL2tIITllBIC•llD,&:a,&r• .. D,&>. 19010L •Pno1tAK•,\111 ••1

IAMI LIST< A>;
IAU LISTct>, IAMlotD> • IAd LJ:8Tca,t>1

DIPP CIAW<A1B>,cA1C>, ,<•1•>;
DIPP CIAl<a:7>, CIAft 8Tlceaa

1
>,ca7•a> • DJPP ITR<esa 11aF•2>a

IAllS<n> ,<•>. Dirr 8Tl:<n1•> l>I,., IAJIS<•1•>'

+ JJcata,>; IAltl<a>
Il<a:t>,
WAMl<n>

IA•I<•> • ll<a:•,&>,<a:&•,>i

IOT IW<n:t>,
• IOT Il•a:A>1

DIPP IA11t<a1•> • IOT Il<at•,&~;

CIA~<c> • IOT COIT<ctA>;
l~T enlT<e:•~. DIPP CIAR<c:4> •• .,,. COIT<et••>a

PlPP IAlll LIST<A>1
Dirr IAll! LIST•t>, IAlll••·· IOT ll<n1l> • DIP'P IAMI LJIT•n,t•1

IAMI LIST<l> • Ll:L2:IITllt81C•AtltA>;
Ll:L2tIITUBBC•t1 1121i>, IAlll<a•, H•••!,• • LltL2tIITDllC•a,&1 u 11a,i>i
Ll1L2tiltTlllSle•t1:l2:l•, IAllZ•a•, IOT Jl"n1l2•. Ll1L2tillTlallC••~l1''1•l•1

176

3. 3

k.3
k.k
k.S

s.1
s.2
s.3
s ••
s.s
6.1
6.2
6.3
6.k
6.s
6.6
6.7
6.8

7.

8.

9.

10.

11.1

11.2
11. 3

12.1
12.2
12.3

13.1
n.2
13.3

lk.

22.1
22.2

22.3

Appea41• 3.2 CA!O•ICAL l!l!!J! IP1£1PJI•t. YI! tlAllLAtIO.

IU IAllS

Allitl IXP

snuo. IXP

PATT!ll•

ASBIIJI llULll

PAT MATCH llULI

UPUT llULI

OUTPUT RULE

!tUL!

LAllL EXP

STll

STll BJ:Q

SIOBOL l'llOOP.All

LIST: BYS I CO!lll
IULL LIST

OP S•OBOL/l IITO Yll TAllOI! LAIOUAOI

SAWl<n> .. I'll IAO<n •• a>.<tn •• (LOOKUP. n)>;

IITc t > • AJtITB OPllllAID<..,t" •• • t 1 >;
STiii IAMlcn •• n'> • APITa OPl1tASD<a •• a'>&
AJU'TR OPSltAID<a •• a'>•<'b.,lt'> .. AJIITH IXP<a+l> •• (+(a','b'))>,

<a-b •• (-(a' ,b'))> ,ca•b •• (•(a' •'b'))>•"•lb •• (/(a' ,'b'))>;

..STRil'l IXP<A •• 1 A'>;
BTftIIG< •> .. ST!tilfJ IXP< I. I>'
STll IAMl<n, .n 1 > • STPI•fl SXP<n •• a'> a

::~i:r-1~~:-;:~~:,,,ct .. t•,, : :i:~:g :::::ai~:(leaT
STRiln.c •>
STiii IAMl<n •• n'>
VAii: IAlflc n>

•PAT IXP<"""a'" •• '1'>;
•PAT IXP<n •• n'>;

YAlt IAH<n>
VAi IAllll<a>, DIGIT STl<4>
IACIC lllF IAlll< n >

•PAT EZ?:SPICS<•a• •• •n• . n18TA I>;
•PAT ll1P1SPICl<•(n)• •• •n• : ••BAL STll 1>1
• PAT llP1SPICs<•n/4• •• •a• , (a,•)cFIX LS Sta I•;
•PAT IXPcn ••. 'n'>;

PAT llP<~ •• p 1 >,cq •• ~ 1 >
PAT EIP<p •• n'>

• PAT IXP<oQq •• ((CAT o') ~·1·1
• PATTl:fll<p •• p'>a •

STI: IA.Mien •• a•,.., BT!': BXP<a •• 1'> • ASSIOI JIULE<n•a •• (a ASStOa. '•')>;

STJt IAMl<n •• a 1 >, ST' IXP<a •• 1'> 1 PATTIRl:SPICS:YAR R&PS<p •• p':c:y>
.. PAT JCATCtl.JtULl<nD,, •••• c.uTCH_AID_ASSJt;Jl(n•. p', a ••••• 'c', '(•)')>;

PATTlftl:SPICB:VAR lllPl<p •• p':e:T>
• IlfPUT RULl<STS .READ p •• (MATCR_AWD_J.SSJOl(RIADIJtl, p', At1.'A' 1 'c', '(•)')>;

BTftII"- IXP<o •• o'> • OUTPUT ftULE(STS .PftI'T ••• (P!IIITllll A~sro.1. ((CAT PJtlTIP.I) •'))>;

ASSIOI RULE<r •• r'> I PAT MATCH P.UL!<r •• r'> I IIPUT fWL••r •• r'JO
I OUTPUT RULE<r •• r'> .. UILABELED ,ULE<r •• r'>t

UILABILID JtULl<r •• r'> .. RULl<Qr •• r'>;
UILABILED ~ULl<r •• i-'>• llAMl<n> • l'ULl<nQr •• a :i- 1 >;

•AJ'l<n> • LAllL EIP<n ••• D>;;
BTft IAMl<n •. n'> • LABIL !IP<tn •• (LOOlUP. ((CAT',') a));
RULl<r •• r'>, LABEL EIP<l •• 1'>1<•··•'> .. STM<r •• r'>,<rt(1)

<r/0(1) •• r' • (IJOTO. I') ELSE• 'A'>,<r/o(l)P(a) •• r• ~(GOTO.
~(GO'l'O •

<r/r(a) •• r• •'A' J:LSI • (r.OTO. 1•)>,cr/r(a)o(l) •• r• •<ooTo.

STM<a •• I'>

STiii SIQ< 1 • • q' > •
STJI SEQ<q. ·f'.t'> I

•cooTo,
• STM SIQ < • •• •' > t

STM< • •• •' > • STM SIQ< 11 I. • 1 ~ t • '> ;
STRIIG<S> • STJI S!'Qcql•1 •• 0'> 1 <•U.q •• t1'>;

I') ILSI
•. ».
I') ILSI
•')"'i

BTM SIQ:BTll lllFl<q •• q':o >, IAlll<a>, LIST1BV81CORR •ULL LIST•or:•-:1>
• llOBOL PllOORAM<qJll5 a •• L!T Tb•I II (GOTO. 'n'); q'>;

IAJll<a> .. LIST:aYlzCOltR ·•ULL LlST<a:a:'A'>;
LIST:•Vl:COllll IULL LIST<l:b:s>, IAMl•a>, Il<a:l>

• LlST:BVS:CORft IULL LIB'f<l,a1b:s>1
LIST:IV81CORft !IULL LIST<1:lt:s>, IANl:<a>• WOT Il<a:t>

• LIBT:BVS:COllll IULL LIST<1,n1b:s,'A'>1

177

Appea41a J.J DIPlllTIOI or Pll!l!lJI rp!F!lp!I rpa f'P'OLll

Set 4•fln1t1011 tor 1tr111 Y1rl1\le11 r,• l'l'I I 1',o IAL HI

CIAI

l'l'I

IAL ITI

DIOITcO> a<l> • ••• •<9>;
Lrf'Tl8<A.> 9 a ••• e<l>a
'MAiie+> • <-> • • •. a<T> f
DIGtT<p> I LSTTll<p> llAJll•p>

STl<A>i
STl<1>. CBA.l<c> + 8Tl<1c>a

ITl•o>, IOT CGIT<(10>,•)1e>
BAL ITll<1>a<t>

• CUJl•~1

+ .u. ,
+ IAL lft•(e)> 1 <at>1

FIX LI ITI FIX LI 8Tl•A10>1 t
FIX LI STR<o1•>, SUCC•a1•>, Cl.ut<o> + FIX LI ITl<oe1a>;

IOT COIT

8UCC

Dirr CIAl<A1B>.cA.1C> • ••• • ct1•>a
CllAI< e> + IOT COllT<e 1l>1
IOT COIT<e11>, DIFF CllAl<e14> + llO'f COllT•e•a4>1

BTI or IIl181ZllOB•,10>1
BTI or IIllB1lllOB••1r> 1111 or 111181ISIOl••,•r0•1
STl<a>
STl<e>a

+ IVCCc•O•al>.cel:el>• ••• .cel1et>1
an or 11m11•-·••r• • avc:c•••17•.••0.••17»•al•ta27•, ••• _xe•l•tafF•1

(a) li•o•l!lllRll ~1111 IEl•li&111
CAT . . [.. •[A+•• I •J•] •
IQ(a,I) • [a/I. TllVI] .,. e/J. PALll

llQ(e,I) • [a/I. FALll] .,. a/I. TIVI

COID(w,e,I) • [THI •] • FALBI I

[TIVl/TIUI TIUI] AllD(e,I) • TIUl/PALBI r.1.LS1 a/I PALBl/TIUI rALBI
FALH/PALH rALBI

ID a • [('llli) ... J • A

TL • • [('llli) •] ·• ()

(1') ~£&t•1•tl! IElll!IT••

All a [-·· •] • ..
llCATI . . [-·· J • .. -·
Ill_F08 . . [-·· PALBI] • .. TIUI

IB_llC ... [-·· TIUI] • .. FALBI [, .. , .. olr

l /al/r. •2r
succ • • I•/

/al/r. •!Ir
/d/r. /o/Or
/Ir. lr

[/OJ.
0] ,., /1,, !Ir

/10/r. /•"r
PllD • • /al/r. oOr

/"2/r. •lr

l•,/r. 18r

178

RIC !(l,J) •

RIC SU•(X,J) •

BIOB(X,J) •

Ll88(X,'f) •

Dirr(X,J) •

SQ(J, 'O') ::. x
ILH =;> !(PHD X, PlllD J)

IQ(J, •o•) • x
IL81 • BP(SUCC X, PllD X)

llD(I8 POI X, 18 P08 'f) ... 'A'
llD(Il-POI I, 18-HG 'f) .. ·-· ABD(H:Ho_x. 11:Pos 'fl ~ ·-· IL81 ::0 'A'

BIG(!('f,X), 'O')

LllB(X1r) IQ(l,J/
IL81

• BICIA'fl(!('f ,X))
=> •o•
.. !(l,J)

RIC PROD(l,'f) • IQ('f,'0') ,,_ 'O'
SL81 • BP(I, PllOD (I, HID X))

RIC QUOT(l,Y) • LIBl(X,'f) o0 '0 1

ILll _. IP('l', QUO'l' (!(X,Y), 'f))

+(X,J) • llD(II POI I, II POI 'f) • IP(X,'f)
llD(Il-POI X, IB-HG Y) - DIPr(X, AU J)"
AID(Ill-HG I, II-POii 'f) tO DIPr('f AU I)
IL81 - - • HGA'!l(BP(AU X, AU J))

-(1,J) •

•(J,J) •

/(J,'f) •

+(X, HGATI 'f)

LIT l•llIGl(X,'f) II CAT(I, PROD (AU X, All 'f))

LIT l•IIGB(X,!) II CAT(I, QUOT (AUX, All!))

(c) ltele patttra 9t''''ll r11st&ep

RIC AIGB_LIIT(L,K) • LIT I T • ID L,TL L
IB scaf1, 1 A') ~ 'A'

ILBI .. LIT •l•(LOOIUP. I) IB (d lllIGI .• (ID I)):

UTCB_llD_AllIGl(IAKI, "'· an_IJP,llT_IPICl,YAll)
AIGl_LIIT(t, (TL•))

LIT •• ((! ::-:?c• ... (TAll,,(e),(t),)] IPI)
a. •• A

II IQ (•,'A') • 'PALll'"
ILll _. Lit •l,112,•3 • ID •• iD (TL •), ID (TL (TL w))

II AIOI LI11'(TAll,•l)1
LIT -.n 111 • (lft 111 'A')
II [Ilia AlllGB, T!CAt((CAt •I) lft_IJP)) •JJi

•nua•

(4) Detlaltlo• or LOOIUP. to)• attsf to tztl1t>•r

LOOIUP. APPL!'] [
P T.l A ---(p,a) I

- -

179

Anea&ta Ja.1 CpMIQL lllfW IPIClnllt !II !Intl or e'Wtfo

1,1 Hilt
1.1 Uftll
l.J 111111 i.• nu
1,1 Ill ITI
t,t Ln lfl
t,J 11 an

'·' '·' t.6 HI

'·'

DHH•t•
LSftllcl>
LftTDc&>

• DH 8ft•8111(t)• 1
• Lft 8ft•8111(&)> I

ll•l>• Ll'l'TllCI>
JD•t»• llOttct•
lft•I• a

• la lt'lc&>1
.. ID lh•U>1
• ?D lft•lt>1

C•All•e> • lft•llt(e)>1

J,1 PH DILH PU DILH•,•1
J.I Lft lft•l• • PA• DSLIM•)•"'1'"(>1

•.1 LAllL1YAL

'·' .. ,
'·'
,,1 .UD OP
5.1 llULT OP
,,, an or

6,1 nu11 1n

'·' UlllJG• 1'1111 6,J 111 6.• au•
T.l ID
T,f IDLllf

1.1 'fH
l.t
l,J

•••
9.1 rea DU

'·' p,J

'·' ,,,
t.6

'·' '·' ••• 9.lC
t.1

10.1 &aftftP
10.2
lO.)
10.•
10.s.
10.6
lO,T

u.1 _, llP

11.1
11.J
11.•
11.s
11.6
11.T
11.1
11.9

!!:~:
11.1 •• llP
11.1
lll.J 11.•
11.,

u. llP

JD lftc1> • L.&aSL1YAlr•u1>1
LAaSL1Til•l tl> I •212" •••••• ,.,.I
LAJ.at.1YAL•lr .. > 1 DIOIT•t> • L&1•L1,AL•ltn·t1o1
LA•IL1YAL•&s•> 1 DIGIT lft•h • LA•SLtYAL•Olt••1

UD OP••> 1 •-•1
.,, orca>,c'/••,ct•1
llL OP•"" c '"> ,c~,. ,c•> ,•,&..• ,c"' >'">,•Iii> I

11111 lft•••
Diet! lft•1> 1 -c\>
n1ru tnct ..
••IR atnlc•>

• UlllOI l•fc•> I
• UllSJU lumc•>•c.t>,c•.t>1
• l•TCt> ,c•r• •"•i" 1 • •lmc••, c••", c.a» l

ID ITlcl> • 1•"1" &
INTlct> • t•LllTc&L1'1Qh ,)» 1

&•lft &IPca• .. SVSICltlff L11rsllmlc•1l»1
AIJft IZP"a> 1 IUllC•IPT LllT1Dlac11a> • IUUC91PT Lllt1D l,•t•l•1

~::::. 8UNc:tllPT Ll8T1Dl~l1•> : ==~~:~=~ ::::::~:: ::::;~!!r;i.1(a),>1
ID•t» • Act •a•a•••ce·• YU8•t1Hl!Cl,11.>1
ID•l'o 8PIO LIH'•a• •&CT P&l18PIC81l/l/•l'I P-•lllll&L/lllHOH/aGOLl&ll/-YAL PIOCDllH(l),1l(o),>1
?Del>, 81--· •&CT P&l1 .. IC81l/l/8 Uli ... l11Uio/lllT_l/_Ll&ll UHl(•),11(•),>1
l""llft/-1.(- .. • &CT P&at8PICa•Y1lllAJ.,/J-,/-LIAll,> 1
ASft 1Dca> •ACT PAlslPIC1ca1Ulft ... >1
..... mtc•• • Aft PAlslflelc•tlOOI.' UP.,•1

=·:::::,PAI m.1..:.:CT P<l!sr~·=:~-- •)•1
·rD•I> • lllAL/lft/-L/-YAL PCll an1l/l/8 Ill PIOCl•ltl0o'I
l1Dc10, &CT PU P&ft18Pllft•p1•,> • lllAJ./Jft/-L/-'f&L PCll DU11/l/I 11 PllOCa•l(p)tlhl,•1
111AJ. re• Da•t• I 1n PCll DU•t• I _, rca DU•t• I -"' PCll DU•t• • res DU•t•1

111111aa ••••• I 111&L 'f&l•p• I 1n Y&•••• I H&L rea -·•• f rn rea DU••• • r1111&n•r• 1
&llfll SIP•a• • PlllMaY•(a)>1
PllllAl!c,,., ml.I' OPca> • tlallc&Ln•<• a)» 1 ,_,., &ID.... . ,... ··~&Lftlll(• •l•1
~ sr•u u1n imtc•>,•••>,•-•• 1
ll•t.a Dlft 1Dc9> • Ulft l1Pc•>1
9001. IUc'", ll•LI &llft SD"•,.• Allh ax:Pca• • &111'1 SIPctP li TllW a SLll a> &

IOOL PllllcftU&•,cP.AJ.81>1
ll•LI Ulft SIP•a•,c••, llL Ofcp> • llLAl'IOlcar•> 1
Ht.&t111•p• I _, YU••• I _, re1 D•••• • •ooL P11 .. ,. 1
800L SIPc•• .. IOOL Pll .. (•)•1
IOOL •• 1 .. ,. • IOOL 11cc,. ,c •• ,
IOOL llC••• .. IOOL P&CcUftlt(• A)» 1 -L P&C•t> • -L -&Lftlll(t v)>1
-L -.. • -L IW•&Lft8'h .,,. I _, r•••• • arwu -L•&Ln111<1 •1• 1
ll•LI IOOLc • • • IOOL •IP"•• 1
IOOL ID•a>, c\,." ll•LI MOLc•> • 900L •.iPc J:P a TIU • •US 1» 1

LAISL1T&Lc11•> • •r•U: - llPtLA.llL ••n•la•.•a
J:Dct», &llft &a<ea» • 11• ... - llP•I Y&•cs[a)IS.»1
IU llP•t> • HWLI - l1Pc(•)•1 -....... .. -...... ,
IOOL 1Dc'"• II.LI - SXP••>, aa llPc•» .. DU SIPcJ:p.)? 'l'UI • ILU ••1

All!'' IDc•> I IOOI. llPce» I DD IJPce> .. IXP•e> 1

i•. - "" - ·-···
''· ~ lftl 1T••1>, '°" eonc,,,,. • ~ 1ncc:o-.:t •• ,

16. OO'fO IN Dll ID•t> • OOTO 1111•00 ft) t• a

lT. PIOC '"" res D••t,. .. raoc: 1rt1cr> 1

180

11.1 AIG'f ITll
u.2
11.J
11.,
u.s
U.6

19.l FO• Hll
19.2
19.J
19.,
19.S

20.1 UICOID SH

20.~

21. l COID Sftl
21.2
21.J

~a.; STM
22 .. 2 8TM SiQ
22.]

tDITlci•
a&AL/lft/MOL TAl:cl>, IDlftct>
.. &l./lft/IOOI. YAl•l [&]•
1/1/1 Lift PAJTCI,., UJft/Ulft/aoGL 1D'ce1>
a/I/I U:n PAIT•I>, 1/1/1 ASH Sftee>
1/1/1 AIOT lftlce> • MOT lftce>1

AJllTI IUc a> • J'OJ LIST IL<•" I

• I/Ill UP'f PU'f1A1•D nH JMc1tt,•1
• •111• Lat' Pdt'•Al•P· Ya.c111.>1
• •IJ/1 Lin PU'f•l [a)• 1
• •1111 &aft ,
• a/t/I AIOT lftcl 1••• 1

l.RITI IZP••." •• -........ • ru LIST IL•• •TR - UITJL ... I
AllTI llPc&>, IOOL &Uc'1,.• POI LIST SJ.ca DILi l» I
ro1 Liit st.ca• • PH Llft<llftl,(e , ,,. ,
•l&L llT Y&acy>, POI LllTc••, lft1L&9ILl1l.U&J. llF8•e1l1I •, L11L21llL CO••tr1t11;•1

DIPF UTlt Lllfcl,. • POI l'l'lhL&llLltt.AISL llncroa Yt•\"DO at111;• I

1>11,.., 1T11<0• I co_,, 11111••• I aoio lft••• I ..oc l'fll<•• I AIGT lft••• I roa ,.,.... I
ai.ocac •• I co•oun afte•• • aeon 8Tll••• a

UllCOID fftce1o, LAllL1YALc&1Y" • UICOll> 9~1hLAllJ.1ct"'a'"etY 1 "'

•OOL J:ZJ'Clli>. VICO•D ante.,. • 'cosD 1nc1r "' ftll .,. '
aooi. sue••. •CO•D lntca,.. at11c·.,. • co10 ITIC·lr ._ nl• " 11.11 .,. '
COID ITM"•.,• LAllLs'l&Lcls•> • COlll lftltLAllLSc&• I •11¥ 9 ,.&

VICOSD STiie•• I l:OID IT•c•> • IT11c1>'
ITMca> • S'l'• 81.QCl>t
IT•<1>,. ITll ISQc'> • Sftl IJ:Qcq,•>&

lat• COIWOVllD ITIC IT• llQca>• ST••e,., IOT COITc;:1>,cUD1c>,cSLSl10> • CORPOUID STll•l!GU I llD a>'

2S. l A•a&T DIC

2s.2
25.3 .,,,
o.s
2,.6
2'.1
2s.e

=t~~
26.l IV HC
26.2
2T .1 PO .. Al. PAI
21.2 P&ft
2T.l
21.•
2T. S YAl.UI PUT
27.6
21. 1 IPICJFJll
27,8 PAH

=~=~~ 21.u
21 .12 PllOC DIC

21,1 DIC
28.2 DSC HQ
28.J

1

lDLIITc'> • TfPI DIC1DIC a/II• YAalclUL/.IITIOll/IOOLlil &11,,.,
IDLlaTc&> • TIPI MC1MC alt/a fAallcOVI llALIJ•HP•llOOLl&I &1l 9 >&

AllTI lll1'11l YA•1J Y&lltl YA111I YAll1I Hl&l11I All&tltl Al .. !111 plOCl1I PllOCS1I PIOCl1I PIOCS

••••.,•• 1 ••,••• ••,.••1 ,._,•r 1•1 ''" 1•a• •c•' 1•;••l ••:••:••;••i ••• ••i' '" l'P~ •'
IOllllD PAJ11DJ•. YAll1DJ• J YAll1DJll • YAH1DI• I YAH1DJll ll &HAf11DJll J •••an
DJll I A•Ut11DJll I PIOCl1DJll I PIOCS1DJll I PIOCStlJll I •PIOCI

ca•: 4'tin.,•~••1 •i ••-••••e••:••r•~t•1 •l •-..•••• ... ~••1•i ''•'•''•'~,.•
IOPD P&ll"•" • IPt.llT1Dt•cJ11 l•'
90VIP PAI&cp•,. aPt..llT1tl ... &1m> • UJ.11Ttll ... 11p1a1•'
ULJfttDl91Chaao ,.,.,. • &IU11UUY fAll•tltht(e).•&
All&f•l(&!• • &HAT IH<l(ll•\
U•&fci I •• UUr aaec1(&)• • AllA'I llOCl.a 1 >1
..... ,. , .. ,.. • uur i.1•'1'•1• 1
OUT llec•>• DUY LJ8'1'cl> • AIMI LJIT•l.1>1

m:: t~:;::: :::::::: :; :::::: :m:~: :::::::"'~m~=~={~.m·i.~~;·:
- ISP••ao • IV LllTcllTllll:Ct .>•,
J.U•t•. IV L18Tc&> • IW DICiDSC I Y&alclVJTCa lc•lif. 9 >1

1Dlft•I> • POlllAL P&a1P&81•l1l,•l
POllll&.L PU•JI> • PAJ NLlllC•• • POallAL P&a Ll8!'c&LftQ(J1 t)>j
roau&. PU •a•T•A•a
F0-1. PAii I.HT<&> • 10-.J. PAI P&l'f<(1)>1
YALVI P&ftCI" l
lDLlft'CI> .. Y&LUI •&n1•Aa1•TALUI •i I ,,. '

ftPlcllAL>fl.....a> ,clOO&&Al• 1

g:;;::,:. Tn~rJ:~~ ~:r.:~:;. ~~;;:~:::!:: :' = ·~r~~:: ;•aoc•DD••,.. c, ••oc•Dvt•,. ~
IPICJrlU P&ft•A• 1
IHCJPUI 1.IIT•I• • IPICll'IU P&ft•llll(I)>&
IDl!'•ct•, POINML PU P&n1P&a1cf1tp. Y.U.UI Pll41'1P&Uc•1••,

IPSCI•ID P&l'T1PA11c•u• • IT111a YAIS1J 'fAll1a 'f&llsl YAl81I

&111&1111 AU&fl1I All&Utl PIOC81J PllOCl1I PIOCltl PIOCStLUILI
11.API- •IN1 A-ID Y&D1MGIU PIOC IDl"u•rt•l tw,:y1 1a,.ta11a,1f r''t. tptt.:p.: .t 1•r1t.•8 1 lpai" •

t.l1J.2'1 llTllllC1•IJ. coatc•,.•t,1 •,.,1•~· ,c•1 st,••tr••t• ,c•••r,n,tn-· •"• 81 t P '•at'•:~,
ca,.11, ••rr'•;,. • c~l 1r,1att••i" .c .. 1 r, '9-r1•b",
cp,.sf ptpl'flJ;> eCJll I fplfltlfi'' ,c1.1fJ IJltliflp ,. 1cpD t fp;paflp;> 1

Din Dft'I LllT.cf >,c :!1:!!1lrr••;•,c•~:1•1&1l;,.,cta1•f•:t••f't:.••cl···•''••sll; •• •

DJll.J UHT I.IHI• t.,,';T•u ll•_,) (•0 rll•rr11•1rll•_,I (•rt)(plt) l•t tl lp 0t) I• rt)(I ,lpu) •,

PA•l1,UllS1SHCS•t, 1 op •,,111&1.)•t t(JITIGD)•-rl IOOU&11 h 0 ,UVtTCI) •rtl UAL AJllAT >•ulllTIOll A .. At)

,,(IOOl.SAll &IUtb,.(al.U. PIOCHUH)•tt·(JHIO&I PIOClllUal)p-t(IGGLl&I PllOCIDUU)

pat(IGIYAL PIOClllUH) rt(LUIL)•plYAl.lllU,..,IAIGIUI 1a•

• PIOC DIC1DIC l/Jfl/I PlOCl1I YA•1J Y&Utl U•tl n•11 AIUTl1J &IUfSll AlftAfl1P. PP.OCS
11 P•OCS•• PIOC11I paoca1LA•ILl11.ASIL ••rsiAIG••D 'f&al1UOllD PllOC ID&
ca&&L/ll'l'IOll/9001.SU/A PMCSDUll if&••• l(a)1Y~a•&••i.••:aa~1ai1 ... 1

P~•Pi, 1p.1p~1ha.;11~11;.9 I

Tl'PI DIC<•> l ADAY •IC•t• I IV DIC<•• I PIOC J>ICc•• • DICc••'
DICcd> • DIC SIQci&•&
Dace ... , DIC BS4c•" • DIC 114••&d> I

iS'l'M llQalt Y<8;1 Y&••·• VA•S18 Y&IS:R AIRAIS11 ·a.11:aATB:I &aP.&T!:1ft PltOCS
! 11 PaOC11I PSOCStl P•OCS1LAllLl1LAllL ltlPScu•,.1Yt1•,1•1 1ar1a 1 :a~ap,.ip 1 1F-•P.•i1itr~•

!DSC llQsl Y.l.Utl ff.Utl YAU1S Y<lsll AllATltl All'llYlsl AllAYS:I PaOC:I
11 PIOCBal P•OG11I PllOCl1DIC I Yllll1DIC I ¥AH1DIC I YAl:ttlC !: VA ..

I •DIC I &al&UtNC J AIUUtDIC I HIAll1DIC I Paoea1NC J PlOCl1illC I PllOCI I 1MC I ·-·1111 • n•1DJ• ' n•1DJll I .., •• ~••IM I YAHIDtll • AIUTStDlll J AUA?C
i 1DJll I AHAH1DJll I PIOCStDlll J PllOCl1DJ• l P110CS1Dlll I PIOCltt.AllL •l~S
; c•1•;1•; ·····: ··~1·1 ••• ,.;••i ·····~ ••r• , .. 1. ••..,,, , • •1, IP 11 •P,.I ri.,
! =• ra 1•1a1•111.•• •• 1•r.1•1a19t..1•,..1P1e 1'lt•:pu 1 l; • •
flT'Rch • IOT COltc 1 u> ,clll>u> 1 •1Lllat>',

181

3:;..1 AL'10L
30. 2 PROGFIAM
30. 3

31.l '!'Yn ..
31.2 .CIHM
3LJ

32'.l SPEC
32.2
32. 3
J>.4
32 • 5 SPEC LIST

33. l SPECl :SPEC2
l).2 :COMB

JJ. 3

)It .1 SPEC MATCH
31..2
34. 3

.)Ja. It SPEC LIST
)4. 5 NATCH

35. l UStS: PARS
35.2 WITH SPECS

35, 3

JS.lo

35.5

35.6 PAltS:USES
35.7 :SPECS
35,8

J6. l ENTRY
36 .2 EITRI LIST
36.J

31 .1 Dtrr CHAR
37. 2 DIPP STB

. 31. 3 DIPF EITflT

36, l II
38.2
38. 3
38-'
38.5 IOT U
J8, 6

39,1
39,2
39. 3

•0.1
•:...2
i.e. 3
•o."
""· 5 •o.6
•0.1
•o.a

JOT COIT

DIPF EllTRl'
LIST

DISJ ENTRY
LISTS

Ll :L2
: IITERSEC

Ll :L2
:REL COMP

Ll :L2; Rl'L COJfP..:•r•; :•,..:•;> .c• t •i, n 14 ni> • ..:y'b•t,:"4 :•;>a<• 8 •; tY84 : •:> •

..:ar•;:•rtl ta;> •<•1 •i =•td: •i> •"•tt•b :•,.=ab>•

<prp;:pr4 :p;> 1 "P1Pi :pid :pi> • ..:p\lpb =•)4 ;p;> .cpap~ :pad t p:>',

c1r1;:t:t;> •

I>IP'T EftTRY LIST<y rd y td"bd" ad.•r4•1d•bo4PrdpidP'b4Padl>'

DISJ EJITR? LISTS.; {•r H• 1)(,.'b)(., •) (ar)(a 1)(ab) (pr) (pi)(pti){pn) (l)(l ;» •
..: {•r.><•rd){ 1'1.> (•id><•••) <•.4 ><•ra)(•rd.) (•1.H •1 d){J.b•) (a'btl)

c ••• i c ••• i <•,. l <•,. l <•b• l <•u l c ••• i <•.4 l>
¥BLOCK:R VARS:I VARS:& VAJIS:S VARS:R ARRAYS:! ARR.&TS:B ARRAYS:R PROCS

:I PflOCS:B PROCS:• PROCS;UBELS:LAIEt. REPS

<BEGIJI di• EID c:T;• •• :•1•1.=·•·,.=•:• •• :•;•r.:•1•1.=•b•o.

:p;pra :pf'P1a= PbPba'P:Pna=I\: a;•;
ILOCK.;p> COMPOUID STK<p> .,. PROGRAM STJI<~>;
PROGRAM STR ca>• LABEL: VAL..: i.: .,,. .,. PROGRAM STR<.;, .. : •• > ;
PROGRAM STR:FI VARS:I VARS:B VARS:S YABS:R .ARRAYS:! ARR.ll'S:B ARRA!S:R PftOCS
:I PROCS:B PROCS:ll !'ROCS:LAB?LS:L.A.JEL REFS:ASGIED PROC IDS
<a:.'.:,".;;.:/, :I. :A:.".: A: f,1 A:A:A: t.: A>
..,. A!.GOL PROGRAM< a>;

':'Y?Ec REALJ"' INTEGER> 1 <BOOLEAlf> 9
DIWM<l> i
DUtM<a> .,. DI MN< al> i

SPEC<:',> 1 < LABEL\<i:SVITCH> 1 cAJllTH EXP>, .;800L £%P> •..:ASGIED> • ..:VALUE> i
TYPE.;t.> ... SPEC..:t> 1 <VALUE t>,ot;ASGIED t>.<ASGl!D VALUE \>;
TYPE<t,., DIY.M..:a,. + SPEC..:ARRAY>,..:t ARRAY> 1 <' ARRAY(a)>.<VALUE \ ARRAY{al>i
TTPE..:t,., SPEC LIST.;&".,. SPEC..:PJtOCJ:DORE>•.:t PROCll>URE>.<t PROCIDUIJ:(a)> • ..:JOIVAL PROCJ:DURE(a.I>;
SPEC<s> .,. SPEC LIST<ALTSEQ(•. ,)>;

SPEC<a> ... SPECl:SPBC2sCOMJ..:1.a:a>•c•:a:a>;
TYP£..:p, DIMM<a> • SPECl:SPEC2: COJO..:ARRA? 1REAL ARRAJ(a) :P.!AL AllRAT(a)>•

..:t ARRAl':t ARRAY(a):t ARRAY(a)>;<t:VALUE:YALUI t>,<t:ASGIED:ASGIED t>,

.;VALUE t:ASGIE.D VALUE t>,..:t ARRAT(a)1Y.ALUE:VALUI t A1111A!(a)>;
TYPEo;t>, SPEC LIST..:•> .. SPICl :SP'EC2; C011BcPROCIDURl1IOITAL PROCIDURI{ •) zlOIYAL PROCIDUaE(a)>,

..:t PHOCIDURE1t PROCEDURE(•):t PROC!DURl(a)>;

EXP SPEC.;f,>.<VALUE> • ..:ASGllD VALUE";
SPECl:SPIC2:COJIBc•zt:c> ... SP.IC llATCB<•:t>i
!IP SPEC<a> + SPEC JIATCK<ARITB IXPu RE.&L\<i:ABITB EXP:a llTEGIR>•

<BOOL l.IPu BOOLEAl>i
SPIC llATCH<•tt> •SPIC LIST llATCB..:a:t>i
SP!.C. NATCB..:•:t>, SPIC LIST IL\TCB..:s':t'> +SP.IC LIST JIATCBc•'••:t 1 ,t>;

lDLIST..:t> ... USIS:PARS VITB SPICS.;A:l 1 >;
IDSTR<e1>, SPBC1:SPEC2;COJCl..:a:t:c> 1 USIS1PARS VITI 8PICS<i:ta:ah 1 7"

• USIStPARS VITll SPECS..:u.1(t):a1 e.7>;
IDSTR<1>, 8PICl:SPIC2:COllBo:t:c>. USBS:PAIS V_ITB SPECS<u.(t):da,7>

.. USES:PA.RS VITI SPICS..:u.1(t):•i e,7>;
llTRY<i(p)>, SPICl:SPIC2:COMBca:t(p):c> 1 USl81PARS VITll SPICS..:1i1.:ata 1 7>

.. USIS1PARS VITI SPECS..:u.l(p){t)u ic,7>;
EITRY..:1(p)>. SP1Cl:SPEC21COU<•:t(p):c> 1 USl81PABB VITB SPBCScu.h):ah.7>

+ UllS:PAIS VtTI SPECS<u.i(p)(t):d c,7>5
PARS :USES :SPICS<A 1A: &>;.
USIB:PARS VITI SPICS<u.:a> • PARS:USIB1SPBC8<A.:u.:a>;.
U>STR< 1>, PARS :USES :SPBCS<pt u.:ai 1 7> • PARS :USIS18PEC8<pi 1 :u.,->;

ID<i>, SPEC LIST..:a>• DXJQl<a> • BITRT<e1> 1 <i(•)>,<i(a)>.;
EITRY LIST<i:A>;
EITRl' LI~T<t>, llTRY<e> ... EaTRY LIST..:e.t> i

llIP'P CHAR<A.11>,<.&:C>, oao ,..:[r]>;
CHAR STR OR IULL<aa•>.o;a7t>, DIP'P CHAR<a:7> • DIPP STR<aa•:q-t>;
ID STR<i> 1 <J> 1 DIFP St'Ro;t;J", SPEC LIST<a> 1 <t> • DIPI' !ITJIT<i:,p 1 c1(•):j>,<1:~(t)"•q(•hJCt)>;

ID STR<1> 1 SPIC LIST JIATCl<•zt>. DIICll<i:a> + llTRY MA'l'CB<'lrt>.•i(a):i(t)>,..:1(a):i(•)>;
EITRY XATCHo;eu'"' + 11..:e:e' .>;
Il..:et1> 1 !ITR! llATCHo;e:e'> • Il<e:e'•t>.<e:te'.>;
tJ1..:e1t>, DIPF EITRY<i:e:e 1 > • Jlo;e:e•.1> 1 ..:e:1e 1 .>;
EITRY<e> ... IOT Il..:e:A>;
IOT Il<e:4>, DIFF EITRT<111se'> • IOT Il<e:e• ,t>;,

CHAR STR OR IULL..: a> + 101' COIT..: a: >;
IOT COITo;•a1t>, DIFF CHAR<a:y> ... BOT COIT<aa:t1>;
IOT COIT<e•aa:ty>• DIP'P CHAB<a:y> • IOT COIT..:axa:tya>,

DIPF Ell''l'RY LIST.; A>;
DIPF EITRY LlST<t,., EITRY<e>• JOT Il..:e:l> • Dil'F EITRY LIS'?..:e,t>;
EJITRl' LIST.;a. > • LIST OP LISTS: UII Qlf..: (.i ~: P 9
LIST 01' LISTS: Uft'IOI< l Hl>, llTRY LIST< l 1 > • LIST OF LISTS: UIIOI..: (i), (i') : ui. 1

" i
ENTRY LIST<4> ~ DISJ PAIR OP' LIS1S<i.:/,>;
DI3J PAIR 01' LISTS<l:l 1 >, EITRY<ee>, BOT Ilo;e:L> ··DISJ" P•IR or Lis1a :., .. '"'i
EITRY LIST< t> ... D.ISJ" EITRY LISTS.; (l)> i
DISJ EUTRY LISTS<CI>. LIST or LISTS:UIIOl..:t :u> I DISJ PAIR OP LISTS..:\.: .. '>

• DISJ !ITRY LISTS..: t (1')>;

EITRY LIST<.t> • Ll:L2:IITER:S!C:<t:A:A>1 Ll:L2:REL CQ)lfo;.l:J.:A>;.
Ll:L2 IKTIRSEC..:t:t' :.1>, ElfTR?<e> 1 Il<e:t> .. Ll :L2:IITERSECcC. :e,i' :e,i";
Ll:L2 UT!RS£Co;l:i':i> 1 J:ITftJo;e> 1 BOT Il<e:L> • Ll:L2:11TERSECci.:e,.f.':l-';
Ll:L2 REL COXP<l:t•:r>• .EITRY<e>• Ilce:l.> • Ll;L2:1t1L COJCPct:e.o.•:r--;
Ll:L2 REL COJ1po;t:i':r> 1 EITRJ<e", NOT IJl<e:l> • Ll:L2:R!L COMPo;t:e.11':e,r-'i
LltL2 lllTERSEC<t:l. 1 :1> 1 Ll1L21REL COJIP<l:l':r> • Ll:L2:11TIJISEC1REL COMP~ .. :l':i:ri;

182

T.2 UHIC• •UM

6.3 UT
6.• •UM

T.l ID

T .2 IDLIST

8.1 VAR
e.2
8.l
8.•

9.1 PCI DIS
9.2
9.l
9.•
9.5
9.6
9. T
9.8
9.9
9.10
9.ll

10.1 ARITH IXP

10.2
10.l
io.•
10.5
10.6
10.T

ll.l IOOL EXP
ll.2
11.3
11.•
11.5
11.6
11. T
ll,8
11.9
11.10
11.11

12,1 DES !XP
12.2
12. 3
12 ••.
u.5

13. IXP

H. DUMMY STM

AppenUa i..2 ~SISTI! SllCil'!l!G THI TRAJSLATIO!

or ALGOL/60 IITO TIE TARGU LAIQUAGE

DIGIT STJlca>.ct> • UISIGI IUJl<a •• 'a'>,c,t •• (TRAIS FllAC 't')>,
<a.t •• (+(TJIAIS III'•', TR.I.IS PRAC 't'))>; -

UISICI IITci> -; • IIT«i •• '1 1 >-;'<+i..'1'>,c-L.'-i',.;
UISIGI IUM<n •• a 1 > .. IUJlcn •• a•> 1 <+a •• a 1 > ,c-n •• (IEQATE n')>;.

tDSTR<i> • IJhlAlll POIUU.LS:OWI VARS<i •• itA:A>,ct •• (t 1 A1 }:1,:li.> 1

<1. .1 :A: t ,>;.
IDSTR<i> .. ItlLIST.:ALTSIQ(i ,)>i

ARITI Elf<••••'> ... SUBSCftIPT LIST< a •• (COIV TO IIT a 1) >;
~~!i~. :~~<• ..• I,.. SUBSCRIPT LIST<1 •• t I:.. .. SUBSCRIPT LIST<& ,a • .0' tTcoiv_TO_IIT • ']>;.
ID<l,.1'>, SUBSCRIPT LJST<t •• l'> : ::!t~~=i~:ggt ;:::!iit:tGET_EL (1 1

1 1 1))>5

ID<!..1 1 > •ACT PAR"i •• l•.l'>;
ID<l •• 1 1 > •ACT PAR<l •• l•.1'>;
1D<l •• 1'> •ACT PAR<l..l•.l'>;
RIAL/IIT/BOOL YAR<•·••'> •ACT PAR<Y •• lw.•'>;
ARJTH IXP<a •• a 1 > +ACT PAJl<a •• l•.•'>;
BOOL IXP<b •• 'b 1 > •ACT PAR<b •• l•.b'>;
Dll IXP<d. •• 4 1 > •AC!' PAR<4 •• h.d'>;
ACT PAR<p •• p'>, PAR DELJll<4> .. ACT PAR PART<ALTSEQ(p d.) •• ALTSEQ(p' ,)>;
ID<i..1 1 > .. REAL/JIT/BOOL/IOIVAL res DES<l •• (1' 'A')>;
ID<!..1 1 > 1 ACT PAR PART<p •• p'>•RlAL/IIT/BOOL/IOIVAL FCI DES<i(p) •• (i'(p',))>
RIAL PCI DES<t •• t'> I IIT rca. DIS<t •• f'> 1 BOOL FCI D!S<t •• t•>

I 1o•VAL rc1 DBS<r •• t'> .. re• DIS.-:r •• f'>e

UISIQI IUll<p •• p 1 > I REAL VAll<p •• p•> I IIT VAR.-:p •• p•> I REAL PCI DES<p •• p 1 >
I IIT PCI DIS<p •• p'> .. Pllll.-:p •• p'>;

ARJTH IXP<a •• a'> • PIJllc(a) •• a'>i
PRill<p •• p 1>1 llULT OP<•" • TlllJl<ALTSEQ(p •) •• COlll(p' •»;
T!Jtll<t •• t 1>, ADD OP<a> .. TERM SEQ<ALTSEQ(t a) •• COJll(t' •}>;
T!ftll S!Q<1 •• 1 1 > .. SIMPLE ARITH EIP<s •• s 1 > 1 <+s •• s 1 > 1 <-1 •• (IEGATE 1 1)>;
SIMPLE ABITB l:lf<a •• 1 1 > .. AltJTH EXP<s •• •'>;
800L ID'<'b •• 'b'), SillPLI AftlTB IXP<s •• s 1 >1 ARITH EIP·<a •• a'>

• AllTB EXP<IP 'b THEI • ELSE •' •• b 9 *i> 1• ELS! .. a'>;

BOOL PRlll<TRUI •• 'TllUI' >.<FALSE •• ' FALSE I>;
SIMPLE ARITB !IPca •• & 1 >,,b •• b'>, REL OP<r> • RELATIOJ<arb •• (r{a'..,b'))>;
RELATIOl<p •• p'> I IOOL VAB<p •• p 1 > I BOOL F:I DES<p •• p 1 > .. BOOL PflIN<p •• p 1 >;
BOOL EXP<b •• b'> .. BOOL PflIK<(b) •• b'>;
BOOL PflIMcp •• p'> • BOOL SEC<p •• p'> 1 c p •• (p')>;
BOOL SIC<•··•'> • BQOL PAC<ALTSEQ.(1 A) •• COll8f•' I\)>;
BOOL PACd •• f'> .. BOOL TEllM<AL'!'SEQ(f YJ •• COMl(t' \l}>i
BOOL TERJl<t •• t'> ... BOOL INP<ALTS.EQ(t '.1) •• COM&(t• :J)>;
BOOL IJIP<i •• 1 1 > • SillPLE BOOL<ALTSEQ(i :f) •• COJIB(i' ~)>i
SIMPLE BOOL<s •• s'> • BOOL IXP<s •• s 1 >;
BOOL EIP<b •• b 1 > 1 cc •• c')• SIMPLE BOOL<a,.a•,. .. ~OOL EIP<IF b THEii a ELSE c •• b' .if•' ELSE .,,.c'>;

LAB!LiVAL<t:y> •SIMPLE DES EIP<.t. Y"i

~~;ii~:;:.!~!™ EIP<a •• •'": ~~::t~ ~:~ ~~::U)!:~~!~ET_£L(COIV_To_IIT a',1')) 'i'.');i

SIMPLE DIS EXP<•··•'• •DE~ EJP<s •• •'•;
BOOL EXPc'b •• b 1 > 1 SIMPLE DEB EIP<1 •• a'>• DES EJP<d. •• 4 1 > .. DES EXP

<IF b TBEI • ELSI 4 •• b' _, s' ELS! •d.'>;

~RITH EJP<• •• •'> I BOOL E.IP<e •• e'> I D£S !XP<e •• e'> • EJP<e •• e'>

DUMMY STMCA •• 1 A'> i

15. COIOlllT STM STll:< 1 > .. COMNEIT STM COMMEIT< • •• 'Ii'> t

16, QOTO STM

lT, PBOC STM

18. l AIGT STM
18.2

18. 3

18.li

18. 5
18.6

19.1 POR STM
19.2
19.3
19.•
19.5

D&S EXPcd. •• d. 1 > .. GOTO STN<OO 'l"O rl •• (GOTO. 4 1)>;

rel DIS<t •• t'> .. PROC STM<t •• f');

IDSTR<t> - P./I/B LEPT PAJIT<i.,(11 ASSIGI. 11)>;.
REAL/UT/BOOL YAJlcl •• 1 1 > 1 IDSTR<l> .. R/l/B LEPT PAJtT<l •• LET 'l•i' II

(~ ASS'IGI. w)>;
RIAL/IIT/BOOL YAll<l(t] •• (GET_IL(i',1 1)> - R/l/B LEPT PART<i[C.) .. LET ~·1• 11

. l 1 ASSIIJI. (RESIT EL(t',i 1 1 w))~i
Jl/I/'1 LEPT PART<l •• l 1 > 1 ARITB/All:ITH/BOOL EXP<e •• e'> - P/I/B AZ11T ;;TJI• (.:•e.. -

LET u(COllV_'!'O_REAL/COIV_TO_UT/ILEI"' e') II 1.'~io
R/l/B LIPT PART<f. •• t'>, 'A/l/8 ASGT STM<s •• 1 1 > • R/I/B ASi;T STM·l:•s •• s';l'·;
R/I/8 ASOT 8'1111<•··•'> .. ASOT STJl<s •• •'>'

AltlTH EIP<a •• •' >
ARITH EIP<a •• a 1 >· 9 cb •• b 1 > 1 <c •• c 1 >
ARITB EXP<•• .a 1 >, BOOL IXP<b •• b 1 >
FOR LIST EL<e •• e 1 >
REAL/IIT YAR<y.'.•'> 1 FOR LIST<t •• t'>, STM<1 •• 1'>

• POR LIST EL<a •• 1.•.a'~i
• POii· LIST EL<a STEP b UITL c •• h.(STEP(h.a',lw.b',>.w.c'Jl>;
• POii LIST EL<a WHILE b,.1.w.(VBILE(lw.a',A•,b'))>e
• POR LIST<ALTSEQ{e,) •• ALTSIQ(e' +»; . t!ft'
• POR STN<POR Y:•t DO 1 •• (POll(T 1

1 D!LAY_CAT f'L!'))>;

183

------~·------~---~-- ·~ ...

20.l UICOIV ITll

20.•

21.l COH ITll

11 •. 2

U.l

22.1 '"' 22.2 &TK BSQ
22.l

25.l AIR .. Y DSC
25.f
25.J
25.~~
25 • ._
2'.S
2,,,
25.T
25.I

=~:~oj
,,,1 av DIC

''·'
21.12 "OC DEC

21.1 DEC
21.2 DIC II~
29.)

29.)LOCI<

JO,l ALOOL
J0.2 PllOOllH
JO.)

DU181!' ITll< 1 •• 1 •,. J COIMUT n·~' ... 1 • > I OUTO ••,••.a~· I flOC . .,.... h ••'" I .& ... lntc • • • ·~"'
POI 1ftc1 •• a•> atocirc1 •• 1'> I co•ouaD STiie•··•'> .. •co•D •TJ1c1 •• 1'•1

U.COl!l 8'f'lf • • • • • • L&9az., YAL i.. U•co•D IT• ; • • • • t •• I

•'>OL l.D"-··'''"• VlftQ lflfc'11 •••• ·,. .. Wa-&s.1Y&£cl 1 t.,1>,·«&at.2.- • co•u 1t1rru.•1ucrr t
,, -(IOTO •• w J IJ.,11 .. (00TO •• Y)sy ": .. •'1• "1"'A'1• ,._ 1 75

IOOL ,., lico11t '"""'•.-•'>, 1G!.!.1•> • !&.iar.1YaLI, ••1>1.•'2'"'t., .. , •• ,,. lftltUllLScfp'
•' .. !GOTO, 'i! II.II• •1901'0 •. •,h•1•1•••1(00'f0. !... .. ,)ai~·r••'1"l' • Pn1;.2.•1 .. 1

COD ltllc1 •• 1'>• WllLtYilclt•• • COID l~t·ra •• •'" 1" 1 >&

U.COID Sh<• ••• I.. I COID IT•••· .•• >
STI"•• .1 '>
~:1c1 •• 1 1 > ITW SSCl•t·••'>

• st•"•· ·•'•a
.., ~':lfl1C1:c1.,a'>l

• ST• Slqc•l•••t' 1a 1 >;

IDLllT•l>, LllT•COll IULL LIH<lll,• •• !!!! •D1~.-~onlff! .. G•H··'onllOOLIAllllAL'11·n···.:,.·,·-··All
IDLISTcO, Lltfrcon rnsm LllTc ''•" Hr• • '··•·1,111"'

&IIl'I llPca •• a'>,clt •• b':..
aGUW.D PAilcp •• • 1 ••
IOVllD PAiiet• .a .,., IPLl9T<t. •• ab•
IPLIITct •• a ,,., IDITltd•
IPLllTd •• a 7> 1 IDeTltct,., LIIT1CO•I tSDIXD LllTct,1J.11 ,.,,.!··'"".
AIUJctfl •• t•a•, AllAY_llGca[I), ... ,,.
Ull:Af SIQca •• p•t•
AlllAT llOca.,.p•t,., A.tut 'llfcl, .aar•
l.lllJAT LllTtAll&I , •• ova x.11c1 •••• '"'"
UllA1' LllTr&alAY JlltOft Jllc1 •• 1•1A1l>

DSI llP•t •• t'• •IV LIH<&&.TIR(t ,) •• &&.tut(h.t' l•1
IDITlct,., IV LIITc& •• t'> ••• llCcRITCI t1•1 •• t•(laus_tJlf'f'!•.1•t•1

ll)STftc 1", f'OltUL P&I PAIT1PUlct1f~", YAl.U& ''";f'89"1•i-,•, ff1Clf1'18 PAP.Tee,.,

STXtl&U FOllU,Llc••·•' 1••, U1Ll1AIL COMtcflpr•.1.••"•ca1a,_1a•.- •

Ll lL~:IITlltSICca1•p1A>• L11TtC081 VlllURE LtlTc•,•l.• • P•C 1Dt9&a P~ltllALI

<llEALflSTHHfllOOLIAlll PIOCSDUIS I flH<.. 11t,l•Ln ll,io,•'A' •'•

JI •'l II ••'•&
t'IPI ucc•····· r , HC••··•'" I Sii 1&cc11 ,, J •aoc llCc ••••• ,, • DICc•·····
D&Cct •••• ,,, • UC lftc• •• llq a•7•1
D&Ccd. •• a•1> 1 DI~ &l.Q<• •• llC' a'•J''> • DIC lltlo14 •• R:SC a•·.a•7 1 ,7>;,

IT• SIQrDn YAJtltOWI ll~flc ••••• ,.,.o,•o·· DIC ... ,_ AMAr•r11c ... ,

:NC: OWi Ala.Af&ct •• d.'1'"'0••0•"'o.'•o.>• LlrL21HL.~c•e•Or• .. t•O"•
<a0aQta04 1aQ"" IT14•" • ILOCl10VI YAMtOW ._1&1-.ol&I. YUl'teLOIAL AlltATS

<llOII 411 DD••• I.IT 4' l• 1'i•Q1•01•_,.1•61•a

ILOClcp •• p•> J co.GOD 1"'411•••P'> • PIOUM ftlcP••ti'•&

::::::: :::;i.Q~~~··T=t:=t::.;.=-:-..r.=·~::~~~&LI 41 ..•• ··.·•,1A1 1A> orrr DTa LJITC•···· LllTrCOI• nu. l.Jftcy •• '·>·C•.:l.>
• U.OOL PIOU.l1fca •• Ln '··· JI •• ,..,

• lollT1COll·IULL LllTct,l;'A' .. •>1
• LIST1COll UISIUI LllTc1 1 11(UU•All U 'A')),•'"'&

RllOI llTcJ> • Ltlf1COI• I..._ Llltc1,t1llJ,•1o1

184

TIU •·

r11• •·

"' ••C''''''H tu ''''M •'IMP• I lcHIJf I ••••••lft l
•ZH'ICO> ••1>o • • • .•II> &
J,11T11c&-i,c1>, ••• ,c&>.•~•4•,•'•••• ••• c•a~>,
ual•••,c-•, ••• ,c·o>' 1101orc,.. I Ll'l'llllCr> .llAllt•r• • Clallcr>a . .,. • .,. &
alfl:ce>, Ca&J~•· • ilt'IC••·•

(al IUHtJ.1MD" .,, •w••y•
CA'I a• . (

[
[

oonc. •••• 1 • [

UD(a.a) •

ID a •

'IL a •

unuu . .
111111 I •

[
[
[

.. . ,. .,. .,.
a/1 •

""' r&J.11

/r~/
/r/

['?ri'
(..

I

..

..
•• ..

......
rua•
rua•
ftVI

• • , ,
r.u.aa
,
nn

r
I'

•
A

•
J·
j·

) a

] ., .
] .,.
] .
] •I•

] .
) /a/

(II) IMll ·Kllilllllll MA :aa.llM 111.allm

AU . . [-·· •] • .. •
lllOA'll • • [-·· •] • .. -·
IS_l'OS •• [-·· =:•] • ..
11,;.no •• [-·· ::.] • ••
11111 •• [. •) • •
DD•• [•D\. '] • •• 1

11_1n • • [.... .. ::'] ./ ..
ll&ll_llAL(•.•> • (. ,,. J .,.

185

, . .-;~·.

~) Arltb••tic coae•r•lon rrl•1t1••• (••• ar1tllllletlc prl•lt1••• tor 4etlnltloaa of + ... ,,

TllilB_IllT . . [/Ota/ , .. , J l•I /a/ •Dl

[/•40/ + , .. , ~
TUlll_PIAC .. /a4/tDr, l•/ti.t.110r I•/ //rDr. tDlr

I•/ l•ID

con_TO_HAL . . [aDt, aDt J . .. aDl

DTill J: • LIT Af I • 11V11 1,llZll J:
II I A,I)

con_TO_IllT I• DTIH(+ (J:, 'lD2'))

(4) Arithmetic 1rl•lt1•H [,.~] /al/r, a2r
succ • • /a/

/a8/r, a9r
1•9/r. /•/Or
/Ir. lr

[/0/,

0]

/l/9r. 9r
/a O/r. l•/9r

PRID 11 • /al}r. • Or /•/
/a2/r, alr

/•9/r. a8r

RIC ~(J:,Y) •

lllC SUll(J:,!) •

LIBS (J:,t) •

llC PllOD(l,t) •

DIPP (J:,Y) •

lllC· QUOT(J:, !) •

ICl(Y, '0') ... I
ILBI ::> ~ (PlllD J:, PlllD Y)

ICl(Y, '0') .. I
ILBI ~ BUii (BUCC J:, PllD ?)

1111 (~(Y,I), '0')

ICl(Y,'O') -+ 'O'
J:Lll ... IVll (I, PIOD(I, PUD Y))

Ll88(1tY) ,._. llOATJ:(~(t,I))
111(1,!I _. 'O'
ILll ~ ~(l,Y)

LIB8(1,t) '0'
ILBI ~ BUii('1· 1 ,CIVOT(~(l,Y), Y))

PII_BUll(J:,Y) • ilD(II IIT I, IB_IIT t) ..P BUll(l,t)
J:Lll - .. LJ:T •t ,11,12 ,Ill • ltlll 10 ID I, IVll t, DD Y

PllI_DIPP(J:,t) •

PRI_PllOD(J:,t) •

PllI_CIUOT(l,Y) •

II LIT I • DIPP(PIOD(ll,112)j PllOD(H,Dl))
II LIT D • PIOlflll,112

ilD(IB IllT I, IB_IIT Y)
ILBI -

II llAll_llAL(l,I)

... l>IPP(l,Y)
~ LIT ll,Dl,12,D2 • IUll I, Dll I, IUll Yt

II LIT I • DIPP(PIOD(ll,.D2),PIOD(H,Dl1)
II LIT D ··PIOD(l1,D2)

II llAli_llAL(l,D)

Dll y

ilD(IB IIT I, II Il'f t) ~ PIOD(l,t)
ILBI - - at LIT ll,Dl,12,D2 • IUll J:, Dll I, IVll t, Dll Y

II LIT I • PIOD(ll,12)
II LIT D • PIOD(Dl,D2)

II llAll_llAL(l,D)

AID(IS IIT I, IB_Il'f t) CIUOT(l,t)
ILBI - .. LIT ll,12,12,D2 • SUll I, Dll J:, IUll Y, Dll Y

II LIT I • PIOD(ll,D2)
II LIT D • PIOD(l2,Dl)

II llAli_llAL(l,D)

186

SIGl(X,r) • AID(IS POS I, IS POS T) ~ 'A'
AllD(IS-POS x, IS-HG T) _. ·-·
ARD (IS:llEG I, 1s:Pos T) ~ ' -· ELSE .=$ 'A·'

+(X,T) • AID(IS POS x, IS POS T) :4 Piil SUJl(X,T)
AID(IS-POS x, IS-llG T) ~ PRI:DIPP(X, All T)
AID(IS:IEG ll, 1s:Pos T) Piil DIPf(T, AIS ll)
ELSE ~ IEGATE(PRI_SU"(ABS I, ABS Tll

111(1,T) • LET S • SIGl(X,T)
II CAT(S, PRI_PROD(ABS I, ABS r)l

/(X,T) • LET S • SIGJ(l,T)
Ill CAT(S, PRI_QUOT(AIS X, ABS T))

-(X,T) • + (X, IEGATE T)

•ex, r > • LET S • SIGl(X,Y)
Ill CAT(S, EllTIEll(AIS (/(X,T)))

(e) Boolean pri•iti•e•

,x • llOT X

I\(X, T) •

V(X,T) •

.:>(X,Y) •

dX,Y) •

PRI_LESS(X,T) •

<(x,Y) •

•(X,T) •

~(X,T) •

~(X,T) •

!,CX,Y) •

>(X,T) •

AID (X,T)

IOT(AID(IOT X, IOTT))

llOT(AID(X, llOT T))

EQ(X,T)

LET ll,Dl,R2,D2 • llU" X, DEi X, IU" T, DEi T
!R LESS(PROD(Rl,D2), PROD(l2,Dl))

AID(IS POS x, IS POS T) => PRI_LISS(l,T)
AID(IS-POS x, IS-UG T) ~ FALSE
AID(rs:nG X, 1s:ros T) => TRUE
ELSE ~ PRI_LESS(ABS T, ABB X)

EQ(X,T)

llEQ(X,T)

V(<(X, Y), • (X,T))

llOT(<(X, T))

llOT(!,(X,T))

(t) For state•ent pri•iti•e•

REC STEP(A,B,C) •

llEC WBILE(A,B) •

REC DELAT_CAT L •

REC FOR(V,L,S) •

LET A;a:c;. (A 'A'),(B 'A'),(c 'A')
II AID(IS POS 1: L!SS(C;A')) .==>'A'

AID(IS-llEG 1: LESS(A:c•)) ~ 'A'
ELSE - =tf!i'.h.(STIP(h. (+(AIBl)),s,c)i)

LET A:B' •(A 'A'),(B 'A')
Ill IOT B' -q 'A'

ELSE ~(t.' +h.(WIILE (A,B)))

LIT B,T
IS LET

II

• BD L, TL L

L!f H 9 T •
Ill EQ(L,

ELSE

B' • (H 'A')
EQ(T, 'A') =>ff'·
EQ(HI 'A') ;;Q (DELAY CAT T)
ELSE .. IJI' +Tl -

HD L, TL _L
'A') ~'A'

~(IS IITV) .. (VASSIGI. (COIY TO IIT Ill ILSl"9
18' AllJGI, (COIV TO HAL 1ll1

(S 'A'); - -
POR (V, (DILAt_CAT T), S)

187

(g) Array and liet priaitives

GET_EL(I,L) •

RESET_EL(I,L,X) •

REC IIDEX_LIST(I,L) •

REC LAST L •

REC TRUllC L •

r(I, a)t. L

r(I, s)t. r(I ,X)t L

LET H,T • RD L, TL L
IR RULL T .=;> (I, H)

ELSE ~(I,H)+ I.IDEX_LIST(+(I,1) 1 T))

LET H 1 T • HD L1 TL L
IR NULL T =;:> H

ELSE =:> LAST T

LET H,T • HD L, TL L
II llULL(TL T) =:>HD T

ELSE =>[H+ TRUllC !I
REC ADDl(SUBSLIST,LB,UB) • LET Sl,s2,s3,Tl,T2,T3. LAST SUBSLIST,LAST LB,LAST UB,TRUftCLB,TRUNC UB

IR lfEQ(S
1

,s
3

) =;>fi'l+ (+(S
1

, •1•))J

ELSE ~~DDl(T1 ,T2 ,T 3)+ S2J

REC MAKE_LIST(I,LB,UB) • EQ(I,UB) -='>(I, 'A')
ELSE =:>(ir, 'A') +MAKE_LIST((ADD1(I,1B,UB)), LB,uBD

REC RESET LIST
(ARRAY ,J ,LB, UB)

EQ(J,UB) =:> (J, GET EL(J, ARRAY))
ELSE :::;> (cJ, GE()L(J, ARRAY)) ... RESET_LIST((ADDl(J,LB,UB)),LB,UB)]

188

.. , .. -,-

Appendix 5. THEORETICAL BACKGROUND

FOR CAION?CAL SYSTEMS

The intent of this appendix is {a) to describe and

1 relate the formalisms of Post•s formal systems and

Smullyan's "elementary formal" systems, 2 {b) to show that

the formalism of "canonical" systems presented in this

dissertation is equivalent (except for changes in notation)

to Smullyan 1 s elementary formal system, and {c) to show that

the terminology and interpretation of canonical systems

given here relate to the terminology and interpretation of

the formal systems of Post and Smullyan.

A formal system will be described by giving

{a) A set A of primitive symbols: For example, this set may
be the symbols {O 1 ••• 9} or the set 9f characters in
a computer language.

{b) A set C of auxiliary symbols:• For example, this set
may include the symbols {SQ + •}.

(c) A set S of initial statements composed from the primitive
and auxiliary symbols: The set S will be composed of
strings from AUc.••

{d) A set E of well-formed expressions: The set of well
formed expressions will generally incorporate symbols
from AVC and other symbols.

(e) A series of rules for using the well-formed expressions:
The rules will be used to derive new statements contain
ing the primitive symbols from the&'et s of initial
statements.

*All sets of symbols in the systems of Post and Smullyan are
assumed to be disjoint from each other.

**The symbol "u" denotes the binary operation of set union.

189

(f) An interpretation of the formal system: Strictly speak
ing, an interpretation is not part of a formal system.
An interpretation is placed on a formal system by a user,
who wishes to draw conclusions about the objects that
the symbols of the system represent.

POST'S SYSTEMS

(a) Primitive Symbols
Let A be a finite set of symbols {A1 A2

(b) Auxiliary Symbols
Let C be a finite set of symbols {C

1
c2 .•• Cj}.

Let L be the set AUC, the union of the sets A and C, Post
calls the set L the set of "primitive letters" and does not
distinguish the sets A or C. The sets A and C are distin
guished here to clarify the distinction between a Post system
and a Smullyan elementary formal system.

(c) Initial Statements
The initial statements Sare a set {S1 s 2 ••• Sk}, where
each S., l<i<k, is a string of letters from L.

]. - -
(d) Well-formed Expressions

Let V be a finite set of symbols {V
1

v2 ••• Vi} called
variables.

A premise is a string of symbols from LUV.
A conclusion is a string of symbols from LUV.
A well-formed expression is a string of the form

"Q1,Q2• ••. ,Qm produce,. c" where the Qi, l.::_i.::_m,
are premises and C is a conclusion such that each
variable in C also occurs in at least one Qi. A
well-formed expression is called a production.

A set E is a system in canonical form if E is a finite set
{P1 P 2 ..• P }, where each P., l<i<n, is a production.

n 1 - -

(e) Rules for Using-Formed Expressions

Rule l: A string X is called an instance* of a production P.
if X can be obtained from P. by substituting for 1

each variable in P. some stting (possibly null) of
letters from L. Tlie string substituted for each
occurrence of the same variable must be the same.

*The word "instance" is not used by Post.

190

------·----·-

Rule 2: If each premise in an instance of a production has
been derived, then the conclusion of the production
can be derived.

The statements derivable from a Post system are
(a) The initial statements
(b) The statements that can be derived from the

productions by first applying Rule 1 to obtain
an instance of the production and then applying
Rule 2 to the productioh instance.

(f) Interpretation
A production can be viewed as a rewriting rule for obtain
ing new statements from previously derived statements.
The interpretation of the derived statement$ are subject
to the interpretation of the initial letters.

Example 1: A Post System Defining the Set of Squares of
Positive Integers

(a) Primitive Symbols

(b) Auxiliary Symbols

A = {l}

C = {SQ}

L = {l SQ}

(c) Initial Statements S = {lSQl}

(d) Well-formed Expressions V = {u v}
E = {uSQv~ulSQuuvl}

(e) Derived Statements {lSQl llSQllll lllSQlllllllll ••• }

(f) Interpretation
The string of ones occurring to the left of "SQ" repre

sents the positive integer denoted by the number of
ones.

Th~ string of ones occurring to the right of "SQ" repre
sents the positive integer that is the numerical
square of the integer to the left of "SQ".

Example 2: Another Post System Defining the Set of Squares
of the Positive Integers.

~: The intent of this example is to illustrate that the
"canonical systems" given in this dissertation fit
the definition of a system in canonical form given by
Post.

191

(a) Primitive Symbols

(b) Auxiliary Symbols

A = {l}

C = { N: SQ < > : }

L = AUC = {l N:SQ < > :}

(c) Initial Statements S • {N:SQ<l>}

(d) Well-formed Expressions V = {u v}
E • {N:SQ<u:v>+N:SQ<ul:uuvl>}

(e) Derived Statements
{N:SQ<l:l> N:SQ<ll:llll> N:SQ<lll:lllllllll> ••• }

(f) Interpretation
The string "N:SQ" is the name of a set.
The string "<x:y>", where x and y are strings of ones,

are members of the set "N:SQ".
The string of ones before the 11 : 11 represents a positive

integer; the string of ones to the right of the ":"
represents the square of the positive integer to the
left of the ":".

SMULLYAN'S "ELEMENTARY FORMAL" SYSTEMS 2

Smullyan's elementary formalsystems are a descendant of Post's
toraal systems.

(a) Primitive Symbols
Let A be a finite set of symbols fA

1
A2 ••• A

1
} called

the object alphabet.

(b) Auxiliary Symbols
Let P be a set of symbols {P1 P 2 ••• }called the predi
cate alphabet. With each predicate alphabet symbol we
associate a unique positive integer called it~ degree.
Let Z be the set {, +} • The symbol 11+ 11 is called the
"implication sign and the symbol "," is called the
"punctuation" sign.
The set C of auxiliary symbols is the set PUZ.

(c) Initial Statements - None
Smullyan includes the initial statements as members of
the set of well-formed expressions.

(d) Well-formed expressions
Let V be a set of symbols {V1 v2 ••• } called the set of

va:r'iables.
A term is a string from VUA.

192

-193-

A well-formed atomic formula is a string of the form
"Pt1 ,t2 , ••• ,tk" where ti' l~i~k, are terms and Pis
a p~edicate of «egree k.

A well-formed expression is either an atomic formula or
an expression of the form xl + x2 ••• + x (assuming
association to the right; e.g., "X

1
+ x2m+ x

3
" is to

be read "X i11.plies (X iaplies X) ") wnere Xi,
l<i<m are ttomic formu~as.• A we~l-formed expression
is called a well-for11.ed formula.

A set E is an elementar7 tor•al system it E is a finite
set {F1 P2 ••• Fn} where the Fi' l~i~n, are well
formed formulas, called axioms.

(e) Rules for Using Well-formed Expressions

Rule 1: (Substitution) A formula r• can be derived from a
formula F by substitution it P' can be obtained from
F by substituting a string in A tor each occurrence
of some variable in F.••

Rule 2: (Modus Ponens) A formula F' can be derived from a
formula F by modus ponens if F is the form X + F'
and X is some previously derived atomic formula.
More generally, a formula Xn can be derived trom a
formula of the form xl + x2 + ••• + xn-1 + xn if each
Xi, l<i<n, is an atoaic formula and X1 , X2 , ••• ,X l
have each been previously derived. Ift this case, n
we refer to the xl, x2, •••• and xn-1 as premises,
X as a conclusion, and say that the conclusion X is
dirivable from the conjunction of the premises n
X X a d X iii
l' 2' ••• ' n n-1·

The "provable strings" of an elementarz formal system E are
(i) the axioms ot E
(ii) the strings that can be derived from the axioms by

a finite number of applications of rules 1 and 2.

*Note that no restriction is placed on the use of a variable
occurring in Xm but not in Xi' l~i~m-1.

**In an elementary formal system, it is not necessary to
substitute object strings tor each variable in formula to
derive strings from the well-toraed formulas. Thus we can
derive strings containing variables in an elementary formal
system. In a Post system, we must substitute object strings
for~ variable in a production before we can derive strings.·

•••It ~ variable is replaced by an object string, this
generalization of modus ponens is identical to rule 2 for
deriving strings given by Post.

193

An instance of a well-formed formula F is a string obtained
from F by applying rule 1 (substitution) to !.!!. variables in
F. A formula so obtained is called a sentence.

The "provable sentences 11 of an· elementary formal systeJD. E are
the provable strings containing E.2. variables.

(f) Interpretation
Let P be a predicate of degree k in an elementary formal
system E, and let Y be a set of k-tuples of strings from
A. We say that the predicate P represents the set Y if
the following condition holds: PX

1
,x

2
, ••• ,Xk is a

provable sentence in E if and only if the k-tuple
(X1 , x2 , ••• ,Xk) is contained in Y.

Thus an elementary formal system can be viewed as a set of
axioms used to enumerate the members of sets whose names are
denoted by the predicates.

Example 3: An Elementary Formal System Defining the Set of
Squares of the Positive Integers

(a)

(b)

(d)

(e)

(t)

Primitive Slmbols A = {l}

Aux:l:.liarr szmbols p = {R} Z={,-+}

Well-formed EXJ;!ressions v = {u v}
E = {Rl,l: Ru,v -+Rul,uuvl}

Derived Statements
{Rl,l Rll,1111 Rlll,111111111 ••• }

The derived statements given above are (in the Smullyan
sense) the atomic sentences derived from E.

Interpretation
If R is the name of a set, the ordered pairs
{(1,1) {11,1111) (111,111111111) ••• }are the members of
R. We interpret the set R as containing all ordered pairs
such that the string to the left of the "," represents a
positive integer and the string to the right of the ","
represents the positive integer that is the square of the
integer represented by the string of ones to the left of
the ",".

194

CANONICAL SYSTEMS (as presented in this dissertation)

The formalism called "canonical systems", as presented in
this dissertation, is equivalent (except for changes in nota
tion) to Smullyan's elementaryfbrmal systems.

(a) Primitive Symbols In this dissertation the primitive
or "object" alphabet is the set of characters used in
some computer language.

(b) Auxiliart Symbols The predicate alphabet P here is a
string of English letters or digits each separated by
the tuple sign ":". Each string of English letters of
digits is called a predicate part, and the number of
predicate parts in a predicate is usually identical to
the number of terms in a term tuple following the predi
cate. The separation of predicates into parts is made
(a) to give some mnemonic describing the role of each
term in a term tuple following the predicate, and (b) to
provide a convenient notation for abbreviating a canoni
cal system.

The set Z is given as{:+} rather than{,+} since
the comma "," is a character occurring frequently in
computer languages.

(d) Well-formed Expressions A well-formed formula
"x1 + X2 + ••• + Xn-l +XII is Written here as
"X1 , X , ••• ,X l + X " eo connote the meaning that
X is &erivablenfrom ancanonical system if and only if
eRch of the instances of the premises x

1
, x

2
, ••• ,x _1 are derivable. This alternate formulation is in then

spirit of Post.
The delimiter ";" is introduced here to separate the

well-formed formulas of a canonical system. The well
formed formulas in a Smullyan system are separated by
the use of appropriate spacing of formulas in a page of
text.

Furthermore, the string of terms following a predicate
is enclosed by the angle brackets 11 <" and ">" so that the
characters "," , 11 ; 11 and 11 + 11 can be used in the terms as
object symbols without the use of quotation marks.

(e) Rules for Using Well-Formed Expressions The rules for
using well-formed productions of a canonical system are
identical to the rules used by Smullyan.

(f) Interpretation The interpretation given to a canonical
system here is a hybrid of the interpretation of the
systems of Post and Smullyan

195

(i) The productions of a canonical system are viewed
as rewriting rules (Post).

(ii) The derived strings of a canonical system are
viewed as statements about the membership of n
tuples of strings in sets whose names are given
by the predicates (Smullyan).

196

REFERENCES

The following works describe the theoretical foundations of
canonical systems:

1. Emil L. Post
Formal Reductions of the General Combinatorial

Decision Problem
American Journal of Mathematics, Volume 65, pp. 197-

215, 1943.

2. Raymond M. Smullyan
Theory ot Formal Systems
Annals ot Mathematical Studies, lumber 47, Princeton

University Press, Princeton, New Jersey, 1961.

The following references describe work on applications of
canonic systems to computer languages:

3. John J. Donovan
Investigations in Simulation and Sl11tul.ation Languages,

Ph.D. dissertation, Yale University, lev Haven,
Connecticut, 1966.

This reference adapts Smullyan'~ system to specify
the syntax of computer languages, and introduces
the term "canonic systems" to describe the re
sulting variant.

4. Henry F. Ledgard
A Scheme for the Translation of Computer Languages,

Ph.D. dissertation proposal,· M.I.T., Cambridge,
Massachusetts, 1967.

This reference applies canonic systems to define
both the syntax of a computer language and its
translation into a target language.

5. John J. Donovan and Henry F. Ledgard
A Formal System for the Specification of the Syntax

and Translation of Computer Languages
AFIPS, Proceedings of the 1967 Fall Joint Computer

Conference, Volume 31, Thompson Books, Washington,
D.C., 1967.

This reference also considers the use ot canonic
systems to define the syntax amd translation of a
computer language.

197

6. Joseph W. Alsop
A Canonic Translator
MAC-TR-46, Project MAC, M.I.T., 1967
This reference describes an algorithm that uses a

canonic system specification of a language as a
data base to recognize strings specified by the
canonic system and generate their translation.

7. James T. Doyle
Issues of Undecidability in Canonic Systems, S.M.

dissertation, M.I.T., Cambridge, Massachusetts,
1968.

8. Joseph P. Haggerty
Complexity Measures for Language Recognition by

Canonic systems, S.M. dissertation, M.I.T., Cambridge,
Massachusetts, 1969.

The following is the basic reference for Markov algorithms:

9. Andrei A. Markov
Theory of AlSorfthms
Acadamy of Sciences of the USSR, Moscow, 1954, English

Translation by Israel Program for Scientific Trans
lations.

The following describe the extension of Markov algorithms
used in this dissertation.

10. A. Caracciolo di Farino
Generalized Markov Algorithms and Automata
Lecture delivered at the International Summer School

of Physics Course on Automata Theory, Ravello,
Italy, 1964.

11. A. Caracciolo di Farino and N. Wolkenstein
On a Class of Programming Languages for Symbol

Manipulation based on Extended Markov Algorithms,
Centro Sudi Calcolatrici Electroniche del C.N.R.,
Pisa Italy, 1963.

12. A. Caracciolo di Farino
String processes and generalized Markov algorithm

in Symbol Manipulation Languages and Techniques,
North-Holland Publishing Company, Amsterdam, 1968.

198

The following are other references on Markov algorithms:

13. Anton P. Zeleznikar
Some Algorithm Theory and its Applicability
American Mathematical Socfety Translations, Series

2, Volume lB, pp. 141-158, 1963. This reference
describes a 2-dimensional variant of Markov algo
rithms.

14. V. K. Detlovs

15.

The Equivalence of Normal Algorithms and Recursive
Functions

American Mathematical Society Translatjons, Series
2, Volume 23, pp. 15-82, 1963.

V. S. Cernjavskii
On a Class of Normal Markov Algorithms
American Mathematical Societ~ Translations,

2, Volume 48, pp. 1-35, 19 5.
Series

16. L. A. Kaluzhnin
Algorithmization of Mathematic Problems
Problems of Cybernetics, Volume 2, pp. 371-391, 1961.
This reference analyzes the advantages and short-

comings of Markov algorithms.

The following are the basic references on the A-calculus:

17. Alonzo Church
The Calculi of Lambda-Conversion
Annals ot Mathematical Studies, Number 6, Princeton

University PreBs, Princeton, New Jersey, 1941.

18. Haskell B. Curry and Robert Feys
Combina'tory Logic, Volume I, North-Holland Publishing

Company, Amsterdam, 1958.

The following references describe the theory and application
of the A-calculus:

19. Peter J. Landin
A Formal Description of ALGOL 60
Formal Language Description Languages for Computer

PrograDindng, North-Holland Publishing Company,
Amsterdam, 1966.

20. Peter J. Landin
The A-Calculus

199

Com utation,

21. Peter J. Landin
A Correspondence Between ALGOL 60 and Church's Lambda

Notation
Communications of the ACM, Volume 8, Numbers 2 and

3, February 1965.

22. Christopher Strachey
Towards a Formal Semantics
Formal Language De~~riptiOti Langua~es for Computer

Progra11u1dng, North-Holland Publishing Company,
Amsterdaa, 1966.

23. C. Bohm
The CWH as a Formal and Description Language
Formal Language Description Languages tor Computer

Programming, North-Holland Publishing Company,
Amsterdan, 1966.

24. Arthur Evans, Jr.
Class notes for Linguistic Structures, Subje~t 6.688,

M.I.T., Fall Term, 1966.
These notes are based on class lectures given by

Peter Landin.

25. John M. Wozencrart
Class notes for "Progralllllling Linguistics," Subject

6.231, M.I.T., Spring Term, 1968.

26. James H. Morris
Lamda Calculus Models of Programmin~ Languages, Ph.D.

dissertation, M.I.T., December 19 8.

The following references describe the computer languages
SNOBOL/l and ALGOL/60.

27. David J. Farber, Ralph E. Griswold, and I. P. Polonsky
SNOBOL, A String Manipulating Language
Journal of the ACM, Volume 11, Number 2, pp. 21-30,

1964.

28. Peter Naur (Editor)
Revised Report on the Algorithmic Language ALGOL

60
Communications ot the ACM, Volume 6, Number 1, PP•

1-23, 1963.

200

The following references have also been used:

29. Peter E. Lauer
The Formal Explicates of the Notion of An Algorithm,

Technical Report 25.072, IBM Laboratory Vienna,
February, 1967.

This reference explains and relates formalisms (in
cluding Post's systems, Markov algorithms, and
the A-calculus) related to the theory of comput
ability.

30. A. M. Turing
On Computable Numbers with an Application to the

Entscheidungsproblem
Proceedings of the London Mathematical Society,

Volume 42, pp. 230-265, 1936.

31. A. M. Turing
Computability and Lambda-Detinability
Journal of Symbolic Logic, Volume 4, pp. 153-160,

1937.

32. Stephen C. Kleene
Lambda-Definability and Recursiveness
Duke Mathematical Journal, Volume 2, pp. 340-353,

1936.

33. E. V. Detlovs
The Equivalence of Normal Algorithms and Recursive

Functions
American Mathematical Society Translations, Series

2, Volume 23, pp. 15-81, 1963.

34. Marvin L. Minsky
Computation: Finite and Infinite Machines, Prentice

Hall, Inc., Englewood Cliffs, New Jersey, 1967.

35. No~m Chomsky
On Certain Formal Properties of Grammars
Information and Control, Volume 2, Number 4, pp.

393-395, 1959.

36. Alfred B. Manaster
Class notes tor "Introduction to Mathematical Logic,"

Subject 18.886, M.I.T., Spring Term, 1967.

37. Thomas B. Steel, Jr. (Editor)
Formal Language Description Languages for Computer

Programming, North-Holland Publishing Company,
Amsterdam, 1966.

201

38.

39.

40.

42.

Trenchard More
Relations Between Simplicational Calculi~ Ph.D.

dissertations, M.I.T., Cambridge, Massachusetts,
1962.

Calvin N. Mooers
How Some Fundamental Problems are Treated in the

Design of the TRAC Language
Symbol Manipulation Lansuaaes Techniques, North

Holland Publishing Company, Amste~dam, 1968.

Joseph Weizenbaum
ELIZA - A Computer Program for the Study of Natural

Language Communication between Man and Machine
Communications ot the ACM, Volume 9, Numbex 1, pp.

36-45, 1966.

Jerome A. Feldman
A Formal Semantics for Computer Languages and its

Application to a Compiler-Compiler
Communications of the ACM, Volume 9, Number 1, 1966.

A Programmer's Introduction to the IBM System 1360
Architecture, Instructions,· •na Assembler Language,
International Business Machines Corporation, White
Plains, New York, 1965.

43. Francis J. Russo
A Heuristic Approach to Alternate Routing in a Job

Shop
MAC-TR-19, Project MAC, M.I.T., 1965.

202

BIOGRAPHICAL NOTE

Henry Francis Ledgard greeted Lowell, Massachusetts, on

February 22, 1943. He graduated from Keith Academy of Lowell

in 1960 and received a Bachelor of Science degree (magna

cum laude) from Tufts University in 1964. While at Tufts,

he was elected president of the Tufts Tau Beta Pi chapter,

which received the "Outstanding Chapter of the Year Award"

in 1963. Honors during his matriculation included the "Amos

E. Dolbear Award for Excellence in Electrical Engineering"

and the "Award for Outstanding Service to the Tufts Community."

After graduating from Tufts, the author began studies in

computer science at Massachusetts Institute of Technology,

where he received the degree of Master of Science in 1965

and the degree of Electrical Engineer in 1967. While at

M.I.T. the author was associated with Bell Laboratories and

Massachusetts General Hospital. In 1965 he became a member

of the staff of the Electrical Engineering Department, first

as a teaching assistant, and later as a research assistant

in which capacity he undertook the research presented in this

dissertation.

The author likes northwest days, snow, music, cats,

Monhegan Island, politics, working hard, and playing hard.

203

VENDING MACHINE OF THE FUTURE

......
-·~ , am••e:m•
(] [)
(] {[)
ao

81 = •

B

204

UNCLASSIFIED
Security Classification

DOCUMEMT COMTROL DATA - R&D
(Security clasailication of title, body of abetr•ct and inde1CinQ annotation must be entered when the overall report i.s c111ss;f1ed)

I. ORIGINATING ACTIVITY (Corporate author) 2•. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 2b. GROUP

None .. REPORT TITLE

A Formal System for Defining the Syntax and Semantics of Computer Languages

.. DESCRIPTIVE NOTES (Type of report and lnduahe dates)

Ph.D. Thesis, Department of Electrical Engineering, February 1969

.. AUTHORISJ (Last name, first n.,,e, initial)

Ledgard, Henry F.

o. REPORT DATE 7•. TOTAL NO. OF PAGES
Tb.

NO. OF REFS

April 1969 204 43 ... CONTRACT OR GRANT NO. ... ORIGINATOR'S REPORT NUMBER(S)

Office of Naval Research, Nonr-4102 (01)
b. PROJECT NO. MAC-TR-60 (THESIS)

NR-048-189
c. 9b. OTHER REPORT· N0{5) (Any other ni.nben that may be

RR 003-09-01
assiln•d this report)

d.

10. AVAILABILITY I LIMITATION NOTICES

This document has been approved for public release and sale;
its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
3D-200 Pentagon

None Washington, D.C. 20301
13. ABSTRACT

The thesis of this dissertation is that formal definitions of the syntax
and semantics of computer languages are needed. This dissertation investigates
two candidates for formally defining computer languages:

(1) the formalism of canonical systems for defining the syntax of a
computer language and its translation into a target language, and

(2) the formalisms of the ;\-calculus and extended Markov algorithms as a
combined formalism used as the basis of a target language for defining the
semantics of a computer language.

Formal definitions of the syntax and semantics of SNOBOL/l and ALGOL/60
are included as examples of the approach.

14. KEY WORDS

Computers Multiple-access computers Syntax and semantics
Computer languages On- line computer Time-sharing
Machine-aided cognition Real-time computers Time-shared computers

DD (M.l.T.) 1473 FORM
1 NOV 61 UNCLASSIFIED

Security Classification

