
A SIMULATOR OF MULTIPLE INTERACTIVE USERS TO

DRIVE A TIME-SHARED COMPUTER. SYSTEM

by

HCMARD JACQUES GREENBAUM

t
J

S.B., Massachusetts Institute of Technology

(1967)

; SUBMITTED IN PARTIAL FULFILIMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

October, 1968

Signature of Author ----,,--._-.-------:::-------------------::---::-::-::-;::-----
Depa rm en t of Electrical Engineering, October 1968

certified by --Thesis Supervisor

Accepted by
--------------~~--------------------------------Chairman, Departmental Conunittee on Graduate Students

A SIMULATOR OF MULTIPLE INTERACTIVE USERS TO

DRIVE A TIME-SHARED COMPUTER SYSTEM

by

HOWARD JACQUES GREENBAUM

Submitted to the Department of Electrical Engineering
on October 1968 in partial fulfillment of the
requirements for the Degree of Master of Science.

ABSTRACT

In the construction and maintenance of a Time-Shared
Computer System the need arises for a tool which can provide
a controlled, repeatable environment for the purpose of
making performance measurements.

This thesis describes the use of a small second computer
to simulate the actions of multiple interactive users over
individual communication lines. Each simulated user exhibits
responses similar to those of a "normal" interactive user.
Accordingly, the "Simulator" recognizes and verifies responses
transmitted to it by the system being tested. The Simulator
also emulates a ''think time" corresponding to a normal user's
think time between typing lines on the console. Text
corresponding to a user's console input, as well as control
information regarding think time simulation and verification
of responses from the system being tested, are retrieved from
prepared scripts which have been pre-stored on the small
computer's magnetic disc unit.

The programming package for the Simulator System has
the capability of simulating up to 12 users. For the purpose
of this thesis, however, only four users are simulated. The
Simulator System is intended to be used to test the M.I.T.
CTSS and MULTICS (Time-Shared Computer Systems). However,
it is designed to be adaptable for testing most time shared
computer systems having serial character oriented input/output
over communications lines interfacing with 103A compatible
data sets.

THESIS SUPERVISOR: Jerome Howard Saltzer
TITLE: Assistant Professor of Electrical Engineering

iii

ACKNOWLEDGEMENT

I wish to thank my advisor, J. H. Saltzer for his

guidance and for his interest in me. His numerous suggestions

were particularly beneficial.

I would also like to thank T. Skinner, J. Grochow, N. Morris,

S. Dunten, and c. Garmon of Project MAC for their help with

the many technical problems which plagued me during the

implementation of this thesis.

Thanks are also due to F. Rennie for his editorial connnents

regarding several segments of this document, and to Marsha Baker

for the careful job of typing this manuscript.

Special thanks are due to my wife, Maureen, for the exceptional

patience, understanding, unselfish devotion, and fortitude she

displayed throughout the long and arduous course of this thesis.

I would also like to thank her for the help she extended to me in

solving many of the programming impasses reached during the

implementation of the Simulator System.

v

This empty page was substih1ted for a
blank page in the original document.

TABLE OF CONTENTS

Abstract

Acknowledgement

Table of Contents

I. INTRODUCTION

A. Summary

B. Description of the Contents of this Document

II. OVERVIEW OF THE USER SIMULATION

A. Problems of Performance Measurement on Time-Shared
Computer Systems

1. An Historical Method of Performance Measurement

2. A New Approach to Performance Measurement

3. Mechanization of the New Method of Performance
Measurement

B. Brief Description of the Implementation of the Simulator

III. THE SCRIPT

A. Introduction

B. Description of the Individual Script Components

l, The Output Text Line(s)

· 2, The Verifier Line

3. Verification Time Limit

4. Think Time

c. Script Format

D. An Example of a Script

1. Introduction

2. The Example

3. The Complete Script

vii

PAGE

iii

v

vii

1

1

4

7

7

7

8

9

15

23

23

25

25

26

30

30

32

37

37

37

46

IV.

v.

SlMULATOR SYSTEM IMPLEMENTATION

A. Introduction

B. The Computer Hardware and Modifications

C. STECO - The Simulator System Symbolic Script Editor

D. The Script Loader Program

E. The Simulator Program

F, Some Observations

PROBLEMS WHICH REMAIN

A. Handling of Errors

B. Design of the Scripts

VI. CONCLUSIONS

APPENDIX A - Users Handbook to Simulator System Operation

APPENDIX B - Description of New Dataphone Interfaces for the PDP-8

APPENDIX C - STECO Command Summary

APPENDIX D - Character Set for the Scripts

APPENDIX E - Implementation of the SCRIPT LOADER Program

APPENDIX F - Implementation of the Simulator Program

APPENDIX G - Script Loader Error Messages

BIBLIOGRAPHY

viii

PAGE

49

49

50

53

54

55

61

65

65

67

69

73

93

103

107

111

145

177

181

A SIMULATOR OF MULTIPLE INTERACTIVE USERS TO

DRIVE A TIME-SHARED COMPUTER SYSTEM

by

HOWARD JACQUES GREENBAUM

S.B., Massachusetts Institute of Technology

(1967)

This empty page was substih1ted for a
blank page in the original document.

1

I. INTRODUCTION

A. Summary

The ability to evaluate the performance of a Time-Shared Computer

System (TSS) plays an important role in the implementation and maintenance

of such a system. This thesis describes a mechanism to simulate multiple

interactive users typing from prepared scripts to provide a controlled,

repeatable environment for the TSS being tested in order that meaningful

performance measurements may be made. Simulation of multiple, interactive

users is performed by a "Simulator System" implemented on a small,

inexpensive second computer, the PDP-8, produced by the Digital Equipment

Corporation.

In order to simulate normal, human, interactive users accurately,

the Simulator recognizes and verifies responses transmitted to it by the

Time-Shared Computer System being tested. In addition, the Simulator

System ~mulat~b the human user's think time between typing lines on

his console. The "Scripts", controlling the actions of the simulated

users,contain the information necessary to perform the checking and

verification of the responses from the TSS being tested, as well as

the think time emulation.

The scripts for the Simulator are prepared in advance by the

experimenter. They are encoded into a special script "language",

input into the PDP-8 and converted to magnetic tape files using the

* PDP-8 symbolic text editor STECO • In this manner an experimenter may

produce a library of scripts on magnetic tape.

*A version of the TECO symbolic text editor, designed by Dan Edwards.

2

Subsequently, the experimenter uses the SCRIPT LOADER program

of the Simulator System to move designated script files on magnetic

tape to the PDP-8 disc unit. The SCRIPT LOADER program also reformats

the scripts and performs some error detection on input script formatting.

Once the chosen scripts have been placed on the disc, simulation

of users commences, controlled by the scripts on the disc. The

simulation progresses until the scripts of all simulated users have

been exhausted, or until a "fatal" error occurs, In either case,

a message is posted at the PDP-8 on-line console giving the reason

for termination.

During the simulation, a copy of all text transmitted to and from

the Simulator is kept on magnetic tape. This tape copy may be listed

or analyzed by one of several other programs provided as part of the

Simulator System.

The initial implementation of the Simulator System, as described in

this thesis, can simulate up to twelve (12) users. However, each

simulated user requires an individual telephone communications line, and

the PDP-8 requires a special hardware interface for each additional

communications line. The initial implementation of the Simulator System

will therefore support a maximum of only four users. Additional users

may be simulated by increasing the number of communications lines and

interfaces, as described in Appendix B.

The System is designed to simulate users on either the M.I.T. IBM 7094

Compatible Time-Shared System (CTSS)~ or the M.I.T. GE 645 MULTiplexed

Information and Computing Service (MULTICS)~ It is intended that the

3

System be flexible enough to simulate users on most Time-Shared Computer

systems that use Bell Telephone type 103A compatible data-sets to

transmit and receive console input and output.

At present, research into the problem of making performance

measurements on Time-Shared Computer Systems by simulating user loads

is being carried on at at least two other installations. Workers

at the IBM Corporation are using an IBM System/360 Model 40 computer

to simulate user loads on their System/360 Model 67 Time-Shared

Computer System. Another effort is currently going on at the Carnegie

Mellon University to test their IBM System/360 Model 67 Time-Shared

Computer System by simulating user loads. At this time, no

further information is available to the author regarding other

efforts to simulate user loads to test Time-Shared Computer Systems.

4

B. Description of the Contents of this Document

The first half of Chapter II is divided into three sections.

1. An historical solution to the problems of making

meaningful performance measurements on a Time~

Shared Computer System.

2. A new approach to making performance measurements

on Time-Shared Computer Systems.

3. The mechanization of this new method using a remote

computer.

The first portion deals with the overall problem of making

performance measurements on a Time-Shared Computer System and discusses

an approach previously used to make such measurements on M.I.T. 's CTSS.

This method had the disadvantage that long periods of time were required

to obtain meaningful

in nature.

formation, since the results were statistical

The second part describes an alternate approach to solving the

problem of making meaningful performance measurements on-a Time-Shared

Computer System. Performance measurements can be made in a brief

period of time if one controls the environment of the system being tested.

In order to do this, one restricts the user community of the TSS being

tested to a selected group of users, and provides each user with a

prepared script to guide his actions at the TSS console. This procedure

provides a controlled--and more important, repeatable--environment for

5

the TSS being tested, so that meaningful performance measurements can

be made. The measurements may, then, be made in the relatively

short period of time necessary for the restricted users to run their

scripts.

The third section discusses the mechanization of this procedure

using a PDP-8 computer to simultaneously simulate this controlled user

community. Mechanization provides the advantages of the procedure just

outlined, with the added advantages that the performance measurement

experiment may be conducted by a single individual at the PDP-8, rather

than many, and the procedure is made more precisely repeatable through

the use of the second computer.

The third section also deals with the requirements of the scripts

used to drive such a multiple user simulator. In addition to the text

lines that a human user would normally type at his console, the

script also includes a "verifier line" used by the Simulator to check

and verify responses transmitted to it by the TSS being tested. The

script also includes a "verifier time limit" and a "think time". The

former allows the Simulator to check for normal operation of the

TSS during simulation; the latter allows the Simulator tomimic the

time spent in "head scratching" by a human user.

The second half of Chapter II is a brief description of the

implementation of the "Simulator System". This section outlines the

steps necessary to use the Simulator System.

6

Chapters Ill and IV deal with the use and implementation of the

Simulator System. Chapter III describes the content and exact format

of the scripts used to drive the Simulator. Chapter IV describes

the implementation of the Simulator System. Included in this chapter

are a description of the PDP-8, a description of the hardware interfaces

added to the PDP-8 to accommodate the extra communications lines necessary

for the Simulator, and a description of the programs constituting the

Simulator System.

Chapter V describes two of the problems which still remain. The

first is the problem of coping with transmission errors due to noise

and dropout on the telephone communications lines. The second is

the problem of proper design of the scripts used to drive the Simulator.

These problems must be considered by an experimenter using the

Simulator System.

One appendix, Appendix A, deserves mention in the body of this

summary. This appendix is the user's manual for operation of the

Simulator System, and provides a step by step guide to the operation

of the System.

)

7

II. OVERVIEW OF THE USER SIMULATOR

A. Problems of Performance Measurement on Time-Shared Computer Systems

A Time-Shared Computer System is a computer system in which many

users share a computer facility in seeming simultaneity. When implementing,

testing or modifying such a system, it is valuable to be able to evaluate

system performance. However, since such a system has a varied load of

users simultaneously using the resources of the facility, and the

number and work load of these users constantly changes, it is difficult

to draw mean~ngful conclusions about system perfo~mance by looking at

measurements made at any given instant.

1. An Historical Method of Performance Measurement

One method of ascertaining system performance is to take an average

of relevant system parameters and meterings over a lengthy period of time.

3 4 This approach is taken by Scherr and Hastings to amass data about the

MIT CTSS. Their effort involved making minor modifications to the

supervisor to meter various system functions. In taking their measurements

they found that it was necessary to sample ovet long periods of time

(on the order of weeks) to average out the effects of abnormal or distorted

loads on the system, which occurred sporadically.

There are two disadvantages inherent in making such a measurement.

First is the necessity for sampling the relevant meters over lengthy periods

of time to achieve the desired averaging effect. Second, the measurements

8

are at the mercy of the user community currently loading the system.

There is no real assurance that two such trials of the experiment

will yield precisely the same results, even with a lengthy averaging

period.

Clearly, if a system modification were made, it would take a

lengthy averaging period again to obtain a new measure of the system

performance. Therefore, one concludes, that this method does not lend

itself readily to making measurements in a reasonably short period

of time.

2. A New Approach to Performance Measurement

Another approach to the performance measurement problem is to completely

control the actions of the user community. By restricting the computer facility

to a special group of users for the duration of the experiment, and providing

each of the group of users with a prepared script specifying exactly the

console input to type, we would have, in effect, a controlled, repeatable

experiment. If the system were to remain the same, any subsequent run using

the same scripts would yield substantially the same results. If a system

modification were made, the control group could run using the same prepared

scripts both before and after the modification. By monitoring the relevant

system parameters and meters during both runs, a meaningful measure of

relative performance could be obtained in the short periods of time required

for the runs.

9

Comparing the two strategies, one observes the following disadvantage

of the latter scheme. The first scheme, though it takes a long period

of time, guarantees that measurements taken on the Time-Shared Computer

represent the parameters of the normally.loaded system. The second

scheme's accuracy depends heavily on the types of scripts used by

the restricted group. If the scripts used by the special group of users

do not impose a "normal" load on the system being tested, any measurements

taken on the system being tested will not necessarily reflect normal

system performance measurements. On the other hand, the second scheme

allows an experimenter specifying the scripts to load the system being

tested abnormally so as to make measurements not normally possible in

the first scheme. In either case, whether the scripts represent a

"normal" or "not-normal" load on the system being tested, the experimenter

has a controlled, repeatable experiment.

3. Mechanization of the New Method of Performance Measurement

As described previously we wish a controlled, repeatable

experimental environment to provide meaningful performance measurements

of a Time-Shared Computer System (TSS) in a relatively short period of time.

However, two problems still remain in designing this controlled experiment.

The first is the synchronization of all the users so that they start

in a coordinated fashion. The second is the elimination of the individual

idiosyncrasies of the users as they type at their consoles. If, instead

of having many human users taking part in the experiment, we use another

computer to simulate the actions of these many users, we can then at least

10

standardize, if not eliminate these problems. The use of another computer

allows precise timing and repeatability, as well as the convenience

of a fully automated procedure.

We would, therefore, like to use a computer to simulate as closely

as possible the actions of many users sitting at conventional consoles,

typing from prepared scripts. The problem of actually specifying and

performing the measurements on the TSS being tested will be considered

in this thesis only insofar as it directly influences the basic

Simulator System design. The mechanism to implement the above scheme,

will be a general purpose tool adaptable to operate on most time-shared

computer systems using Bell Telephone 103A (or 103A compatible) data sets

to receive and transmit console input and output. The Simulator, as it

will henceforth be called, is designed to test both the IBM 7094 CTSS

and the General Electric 645 MULTICS configurations at M.I.T. Project MAC.

The two underlying objectives in the design of this Simulator are:

1. The simulator must accurately mimic the actions of "normal''

interactive users as closely as possible.

2. The simulator must perturb the system being tested as little

as possible.

In meeting objective #1 above, we would expect that the scripts that

an automated simulator uses would contain more information than the script

which would be given to a human participating in such an experiment as

described in the introduction. In addition to the output text a human

11

user would normally type at his console, the Simulator needs the following

types of information to accurately simulate the actions of its human

counterpart:

1. A verifier line

2. A verifier time limit

3. A "think time" datum

These three items, explained in detail in the following paragraphs, plus

the output text line, form the body of the script for the simulator. The

exact formating of the scripts is described in a later chapter of this

thesis.

The following example illustrates the functions of the three additional

data.

This example assumes operation on M.I.T.'s CTSS. Assume also that

an operator has dialed up the data set for a "user" on the Simulator, and

the Simulator is to log the "user'r onto CTSS. The Simulator should not

commence "typingr' its login command until it has received its "RBADY" message

on the input telephone line for the user. The Simulator must have some way

of determining that the "READY" line has been received. The "verification

linerr provides the information necessary to make this determination. This

"verification line" is compared against every incoming line of text from

the communications line for the particular user, until a "match" i& found

The verification line for this example might appear as "READY" to signify

12

that the simulator is not to proceed outputting its text line, the login

command, until a line consisting of "READY'' is received by the Simulator.

Thus, if after the simulator is "dialed up" for a "user", CTSS were to

transmit the following lines to the Simulator:

MAC7Al

USERS=22

SYSTEM WILL BE DOWN TONIGHT FROM 1800 TO 2100 HOURS

READY

the simulator would not commence transmitting its login command until

the "READYrr message were received.

However, what if the system response after dialing up were:

CTSS NOT IN OPERATION

and nothing more following? We would wish some sort of indication of

this error condition. We therefore add another piece of information

to the simulator script, namely a maximum amount of time we wish to

allow to find such a match as the "READY" match in our example.

When this time has been exceeded before finding a match, the Simulator

would signal an error condition to the operator of the Simulator,

since something has gone wrong. This setting of a maximum time limit

before finding a match is called the "Verification time 1 imit", item 2 above.

Finally, we make the following observation. A human interactive

user sitting at his console, rarely types a response to the computer

13

immediately and at full console speed after his ready light comes on.

In general, there is some time spent in "head scratching" while

the user is sitting at his console~ A human user might do at least

some of this "head scratching" in the middle of a long line, however,

the Simulator does all its "head scratching" before transmitting a line.

This time delay between verifying a response line and transmission of

the next simulated user's output text line is called "think time'' in this

document. For example, if we wished the simulator to delay sending

its login command for 20 seconds after verifying that the "REAnyrr message

has been received, we would need another piece of information, the

"think time", in the script to signify this 20 second delay.

By implementing the Simulator on a remote computer, we can best

attempt to realize the second objective, namely not perturbing the TSS

being tested. In the present implementation, each simululated user

is to be assigned his own communications line. Another scheme using one,

two or several multiplexed communications lines was contemplated as a

possible method of implementing the Simulator. This implementation would

require no additional hardware, or at worst, considerably less than providing

an individual communications line for each simulated user. However, this

scheme would require modification of the system being tested in order

that the information could be de-multiplexed. Upon further investigation,

it was noted that such de-multiplexing could distort the performance of

the system being tested. In the case of MULTICS, the system for which the

*scherr(
3

) observed that. think times of CTSS users in a certain period
were exponentially distributed, with mean of 30 seconds.

14

Si1~rnlator is orginally intended, the distortion might make the resulting

performance measurements of questionable worth. Ry providing each

simulated user 1,Jith his own dataplwne line, the syste1.1 being tested

is required tu act: as it would with nor-rnal human users at teletypes.

All ~anipulation relating to simulation is performed externally

to the system heing tested. It is expected that the system being

tested will run as if human users were loading it.

15

B. Brief Description of the Implementation of the Simulator

The user Simulator is implemented on M.I.T.'s PDP-8 computer

at Project MAC. The PDP-8 was chosen as the remote computer for the

Simulator, since it is physically close to the two systems upon which

it will initially be used (MULTICS and CTSS). Also it lends itself

well to the hardware modifications necessary to accommodate the

datasets required for each simulated user's telephone line.

The operation of the user Simulator consists of five distinct

phases. The first phase is the design and encoding of the scripts

to be used in each simulation. The experimenter desiring to use

the Simulator must design his scripts so as to exercise the object

computer in such a manner as to make performance measurements meaningful.

The "caveat" mentioned before, namely that a simulation made with

scripts not representing the load of normal users will produce distorted

performance measurements, should be observed. Of course, this seeming

problem could be looked at as a means to produce unusual loadings on a

system for the purpose of special performance tests.

Once the scripts are designed, they must be encoded into a special

format. This format is described in detail in Chapter III of this

thesis. (See figure II-1).

The second phase of the Simulator consists of the routine inputting

and editing of the encoded scripts using a special version of the PDP-8 symbolic

text editor, TECO, to produce symbolic magnetic tape files. TECO is similar

in its capabilities to CTSS's "EDL'r symbolic text editor. It has the

distinct advantage, however, that the text being edited is displayed on the

0

0
0

0

16

ENCODED
SCRIP!'

FIGURE II-1aSor1pt des1gn and encoding, as
performed by experimenter.

17

PDP-8 CRT display uni.t, and hence is fully visible to the operator.

(See figure II-2) The use of TECO is discussed in Appendix A of this

thesis. A summary of the commands and their functions appear in

Appendix C.

Once an experimenter has established a "libraryrr of symbolic files

on magnetic tape, he must choose those scripts he wishes to use for a

particular simulation. During the third phase the experimenter uses the

"SCRIPT LOADER" program to transfer the chosen script tape files onto the

PDP-S's magnetic disc for subsequent nse by the Simulator. (See figure II-3)

The SCRIPT LOADER program performs four functions. The first is that it

allows the experimenter to specify beforehand exactly which scripts

he wishes to use for a given simulation, and make only these scripts

available to the Simulator during simulation. The second function it has

is its reformatting function. Reformatting eliminates much of the

redundant and unnecessary control characters which are present in a script

file, and thus makes the script more compact. This compactness speeds

up the operation of the simulator program since these unnecessary characters

are eliminated and less time is spent in reading scripts. The third

function of the SCRIPT LOADER is placing the reformatted scripts on the

disc. It is necessary to place the scripts on the disc for speed of

Simulator execution. Disc access time for random access is on the order

of 30-40 milliseconds. In order to randomly access a script file on magnetic

tape, roughly 1000 times more time would be necessary. The Script Loader

program also performs diagnostic and error-detecting functions on its

ENCODED
SCRIPT

18

STE CO

FIGURE II-2 1 Creation of New Script file by
STECO from encoded script
and/or old script files.

Input of con'troJ.
informatio

19

SCRIPT
LOADER

• • • • • • •

Scripts
on Disc +
Directory

Optional
MJ7
Listing

FIGURE II-31 Loading of the disc with the script
files, using the SCRIPT LOADER program.

20

script files. Checking is performed for format errors in the script,

while transferring the script information onto the disc for the later

use of the Simulator. Thus erroneously formatted scripts are detected

before simulation time. In view of this checking feature the Script

Loader program may be used independently of the Simulator to pre-check

script files for errors.

The fourth phase consists of using the PDP-8 to test a Time Shared

System. Since the scripts have previously been loaded onto the PDP-8

disc, this phase consists of loading the Simulator program, dialing

up each individual dataphone line for each user to be simulated, and

then issuing a command on the PDP-8 teletype console to start the

Simulator operation. During this phase the Simulator derives its operating

information from the scripts on the disc, performs its verification on

all input coming into it over the dataphone line, performs "think time"

simulation, and outputting of text on the dataphone lines. (See ftgure II-4)

In case of error conditions due to parity errors on the dataphone lines,

time-outs on verification, etc., appropriate messages are printed on the

PDP-8 teletype console and simulation may be terminated.

During the entire simulation, a record is kept of all input and output

received and transmitted. (See figure II-4) This record is kept in the

form of a magnetic tape file, which may be listed and/or manipulated after

simulation. The use of this magnetic tape file forms the last and optional

phase of the simulation. Thus a complete picture of the simulation may be

21

FIGURE II-4. Simulator Program and PDP-8 Configuration

DATAPHONE
INTERFACE

#.1

DATASET
#1

SCRIPTS
ON

DISC

SIMU!ATOR
PROGRAM

IN PDP-8

DATAPHONE
INTERFACE

#2

DATASET
/f 2

DATAPHONE
INTERFACE

#3

DATASET
l3

TELEPHONE COMMUNICATIONS LINES

TO TIME-SHARED COMPUTER

DATAPHONE
INTERFACE

#4

DATASET
#4

22

retrieved by examination of this tape file. The tape file is in standard

PDP-8 OS8 file format and may be operated upon by routines using the

available OS8 file system. The initial version of the Simulator will

provide two routines, one for straightforward listing of the tape file

on a per user basis, and the other to provide a picture of the response

time between "WAIT" messages on "MULTICSrr or execution time parameters

of the MULTICS "READY" messages.

23

III. THE SCRIPT

A. Introduction

The script is the external data base for the Simulator. It controls

the actions of the Simulator during the simulation runs. Before making a

simulation run, one must first design script(s) to exercise the system

being tested. Once the script(s) are designed, the operator must create

magnetic tape files of the symbolic scripts using the PDP-8 symbolic text

editor STECO. The use of STECO is described in Appendix A. The operator

then uses these tape files as input for the Script Loader. The Script

Loader is a program which translates the script files into a special

format and deposits the scripts in this special format onto the disc. It

also deposits accumulated control information for each script onto the disc.

During this translation, errors in the formatting of scripts are detected

and the operator is notified through the means of error messages on the

PDP-8 on-line console. An optional feature of this translation process

allows a copy of the scripts to appear on the Model.37 Teletype, which

may be dialed up to the PDP-8 during the script loading phase.

The scripts contain the following information:

1. Output text - those characters which would normally

be typed by a human user at his console.

2. Verification lines - information in a special code,

representing awaited response(s) from the system

being tested.

24

3. Verifier time limit - a number representing the maximum

number of minutes the Simulator is to allow to elapse

without having recognized the proper response line

from the TSS being tested as represented by the

verification time. At simulation time, if this time

is exceeded without the required recognition first having

taken place, an error condition is made known to the

operator by an error message appearing at the PDP-8 on-line

console.

4. Think time - a number representing a delay of seconds

between achieving a positive verification and before

sending the next line of text to the system being

tested.

5. Format control information - used to delimit the above

four items.

The remainder of this chapter describes the content and format

of each of the above items and finally the format of the entire

script as a unit.

25

B. Description of the Individual Script Components

1. The Output Text Line(s)

The output text line is the string of characters which a normal

human interactive user would type on his teletype console as input

to a time-sharing computer system with which he is communicating.

While a human user would have certain restrictions imposed upon him

by the system he is using, in reference to content and syntax of the

strings he would be typing as input, the scripts used by the Simulator

place several additional restrictions. The first restriction is that

input text lines may be no longer than 120 characters in total. Second,

the Simulator will be emulating Teletype Model 37's (either high or

low speed, depending upon the setting of internal parameters). However,

not all the Model 37's character set will be acceptable as a character

of the text line string. The exceptions are: 11#11 , "@", "FORM FEED",

"CARRIAGE RETURN", and "DELETE". These restrictions stem not from any

intrinsic limitations of the simulator, but from the use of these

characters as special function characters for the PDP-8 symbolic text

editor TECO. An added restriction is that there be no embedded "new line"

characters within the text line since the New Line character (henceforth

abbreviated "<NI>") serves as a delimiter for text lines in the Simulator.

These delimiting <NI> characters are included in the text being transmitted.

In sunmary, an output text line may be a character string up to

120 characters in length consisting of the characters in Appendix D as

legal characters and terminating with a NL character.

26

2. The Verifier Line

In Chapter II the rationale for a verification line was presented.

In summary, it was found that some method of testing the content of lines

sent by the time-shared system being tested, was necessary to determine

when the TSS has sent its last line before expecting a response from a

user. The Simulator accomplishes these decisions by examining each "line"

sent to it from the TSS being tested (on a per user basis) and comparing

it with a "verifier" line included in the simulated user 1 s script.

If the verifier line "matches", the next text line is sent or preparations

are made for further verification on subsequent lines of text. If no

"match" is found, subsequent lines transmitted by the TSS being tested

to the Simulator are examined and a match is attempted, until such time

as either a "match" is found, or a preset "time limit", also included

in the script (described in the next section), is exceeded.

If the exact character by character representation of a response

line, sent by the TSS being tested, is known, it is trivial to provide

a "verifier" script line to match it, on a character by character basis.

However, in general, the exact format of a response line from the TSS

being tested is not known. The following two examples point this out;

1. Consider the CTSS standard 11 READY 11 message. It is of the

format "R 1.020 + 0.05211 , where the numbers represent

execution and swap time (CTSS parameters) respectively.

Of course these numbers differ, for even the same program

executed twice, being dependent on system loading. In addition,

27

each of the numbers may have zero, one, two or three or more

digits to the left of the decimal place, depending on the

length of execution time and swap time needed. We are faced

with having to verify such a line with these two independently

variable fields, and determine if the line is indeed a "ready"

message.

2. Several more problems arise from the fact that both CTSS and

MULTICS perform optimization on their input and output lines,

For example, a user may type a line beginning with 10 space

characters. However, CTSS or MULTICS may choose to convert

these ten spaces into a TAB character to conserve time and

space. How then can the simulator solve the problem of

"matching" these lines?

It is necessary that the script's verifier lines possess the capabilities

of finding a "match" for lines such as above unambiguously. Therefore

a script language for the verifier lines was developed with these and

other similar problems in mind.

It was first necessary to choose two characters which have a

special interpretation when encountered in a Simulator script verifier

line. These are 11 !" and "?". Consequently it is forbidden to use these

characters in a verifier line to obtain a direct match. These two

special characters have the following interpretation:

28

1. The 11 !" character

A "!" found in the verifier line means that the simulator should

not attempt to match against the next character of the input line.

In effect it skips the processing of the "next" character in an input

text line, but takes into account the fact that there is one character

there. The occurrence of n "!"'s in a row signify that no direct match

is to be attempted upon the next "n" characters in the input. For

example, the following input text line:

"abcdefghi.<NI>"

can be matched using the following verifier line, if all one were

interested in was the period terminating the line and the number

of characters preceding it:

" ! ! ! ! ! ! ! ! ! • <NI>"

The string "abcdefghi" would not be matched against, however the

number of characters, the period and the NL characters would, and

a positive match therefore found.

2. The "?" character

A "?" encountered in a verifier line signals the Simulator to

eliminate the matching of an unknown number of characters until it

encounters the first occurrence of a match on the character immediately

following the "?" in the verifier line, and then to continue verification

from there. For example, if our verifier line were "?.<NI>" and the input

29

line to the simulator we wish to attempt to match, as in the last

example were:

"abcdefghi .<NL>"

We would find that a "match found" condition is signalled since the

"?" character would eliminate the attempting of matching against

the characters rra, b, c, d, e, f, g, h, and i" however, the period

and the <NL> would be found and a match signalled.

The advantage of the 11 7n character over the 11 ! 11 is that one would

not have to know precisely how many arbitrary characters occur before

the "•" in this case to achieve a match. For instance, input text

lines of "abcde,<NI>" or "XyZPq.<NL>" would also produce a match

with the verifier line "? .<NI>".

If a "?" is encountered at the end of a verification line, this

is a signal to the Simulator that the rest of the line is not to be

verified. For example, one could verify the aforementioned CTSS "READY"

line with the verifier line "R <NI>". The Simulator would find a match

for the "R "(R<space>) characters of the ready line by comparing against

the "R " characters of the verifier line, and not attempt to verify

the rest of the line, due to the "?", therefore signalling a match.

Therefore the 11 ?11 is the logical extension of the 11 ! 11 character

where one does not know exactly how many characters to skip matching.

However, great care should be exercised in the use of the "?" since

erroneous lines may be verified positively in many instances. If the

exact number of unknown characters to be skipped is known, it is

advisable to use the "!" convention.

30

Finally, the simulator design only retains the first 31 characters

of any input line for matching purposes (See Chapter 5). Keeping this

in mind, one should design the verifier line so as to be able to find

a match based on the first 31 characters of any input text line. This

also implies that any single verifier line may not be longer than 31

characters, not including the terminating <NL> character.

3. Verification Time Limit

In Chapter two the rationalization for the need for a verification

time limit was presented. In summar~ we wish to place an upper limit

upon the amount of time the Simulator is to wait to verify a particular

line from the script before the Simulator signals an error condition.

It was found that this was necessary to inform the experimenter of

machine downages, and other anomalies in operation.

This time limit is placed in the script on the line immediately

before the verifier line and consists of one, two or three digits.

It must be terminated by a <NL> character. This number represents

the maximum number of minutes we wish to allow to elapse while waiting

for a match of the verification line.

4. Think Time

In Chapter 2 the rationalization for the think time before sending

a line of output text was presented. In summary, it was noted that a

user, in general, does not immediately type a response to the TSS being

tested once he is given the "go-ahead". There is a certain amount

of time spent in "head-scratching" and thinking, before and during the

31

typing of his next line of text, Although a user may spend this time

during typing of the line, the Simulator will wait, to simulate this

"think time", before transmitting the next text line.

Therefore, a number is placed in the script representing the

number of seconds we wish to have the Simulator wait after having

determined that it is to transmit its next line, by having found a match

a.gainst to its verifier line. This number is represented in the script

as a one, two or three digit (decimal) number representing the number

of seconds of "think time" we wish to elapse before the transmission

of the text.

32

C. Script Format

The individual components of a script have now been defined and

their internal format explained. Composing a complete script from

these components is the topic of the following discussion.

A complete script consists of subsections in one of three modes:

verifier mode, text mode, and comment mode. Ignoring momentarily

the comment mode subsections, the script is composed of alternating

subsections of verifier and text modes. Each script mus't begin with

a verifier mode subsection, and each verifier subsection must be

followed by a text mode subsection, and this in turn must again be

followed by a verifier mode subsection. A script may terminate at

the conclusion of any of the three modes. Comment mode subsections

may be inserted between subsections of either modes, and are ignored

by the script loader. Comment mode subsections may not be inserted

in the middle of any parti:::ular. mode other than ctnother comment mode

subsection.

A verifier mode subsection consists of "n" couplets of lines

where "n" must be greater than or equal to 1. There is no upper

limit on the number of couplets which may comprise a verifier

mode subsection, the only restriction being that there is sufficient

room on the PDP-8 magnetic disc to accomodate all the information.

The first line of a couplet is the Verifier Time limit, discussed

previously, which limits the amount of time allowed to elapse before

a match is found on the following verifier line. The second line

33

of the couplet is the actual verifier line used. Each of these

lines must be delimited on the right by the <NI> character.

The start of a verifier mode subsection is signalled by the

character string:

":V<NI>"

Thus a verifier mode subsection to verify the line

11xxxxxxx:pqr<NI>11

in a maximum of three minutes might appear as:

:V<NI>

003<NL>

?pqr<NI>

(where <NI> signifies the New Line Character).

The <NI> character delimiting the verifier line on the right is

included as a character in the verification procedure. However,

occasionally one wishes to attempt to match a line not terminated by

a <NI> character. This exception occurs, for instance, on CTSS during

the use of QED, when a corrunand is issued to write a file using a name

for which a file already exists. QED requests permission to delete

the old file name before writing the new file and expects an answer

on the same line as its query. The line appears as:

Do you wish to delete this file?

There is no <NL> character following this line, and hence the verifier

line to match this line may not contain a <NL> character. However,

the syntax of the verifier line is such that every verifier line

34

must be delimited on the right by a <NI> character. To accomodate this

exceptional case and others of the same ilk, the following convention

is established:

If a verifier line is terminated on the right by the

string"\<NI.>11 (<backslash> <NI>), instead of just "<NI>",

the verifier line will not include the <NI> character

as part of its matching procedure.

This convention, of course, precludes directly matching a line which

ends with the string "\<NI>". This line however, can be matched by using

the "! 11 or "?'r convent ions. This convent ion only applies to the occurence

of the string '\<NI>" which terminates the verifier line. The 11 \ 11 (backslash

or escape) character may be used in the normal manner within the verifier

line.

Text mode subsections are similarly constructed. Each text mode

subsection consists of "n" couplets, where n is greater than or equal to 1.

Each couplet consists of a "think time" of one, two or three decimal

digits terminated by a <NI> character, followed by the text line to

be transmitted, also terminated by a <NL> character. The <NL> character

terminating the text line is included in the text to be transmitted.

The start of a text mode subsection is designated by the character

string rr:T<NL>". A text mode subsection to transmit the character string

for a simulated user of the following characters:

"HOW ARE YOU?<NI>"

after waiting for 23 seconds to simulate think time would appear in the

script as:

:T<NL>

23<NL>

35

HOW ARE YOU?<NL>

where the characters rr<NL>" again signify the presence of a New Line

character.

The comment mode subsections are available for documentation purposes

in the script, but do not influence the actions of the Simulator. A

comment mode subsection may be inserted in between subsections of the

other two modes, but may NOT be embedded within the body of one of

the other two modes.

The start of a comment mode subsection is signified by a ":C<NT>"

string, and a comment mode subsection continues until the occurrence

of either the •r:V<NT>'r delimiter string or the ":T<NL>" delimiter string.

These delimiters must occur on new lines, i.e. nothing else may appear

with these delimiter strings on a line.

A comment mode subsection may be of any length and contain any

characters with the exception of the verifier and text mode subsection

de 1 imiter s , " : V<NL>" and 11 : T<NI>".

Table 1 contains a BNF description of the syntax of the Script

Language introduced in this chapter.

36

TABLE 1: BNF DESCRIPTION OF THE SCRIPT LANGUAGE

<script> ::=<script unit> I <script> <script unit>

<script unit>::= <comment> :VNL <ver sect> <comment> ~TNL <text sect>

<comment>::= :CNL <any string> NL <comment> I <NULL>

<NULI> ::=the empty string

<any string>::= any string of legal characters on the M37
listed in Appendix except those containing
the folowing substrings:
''NL: TNL" or ''NL: VNL"

<ver sect> <verifier couplet> <ver sect> I <verifier couplet>

<verifier couplet>::= <max time> NL <ver sect> NL

<max time> : := <digiq

32
<ver string>::= <string of characters listed in Appendix&>

1

<text sect> <text couplet> <text sect> I <text couplet>

<text couplet> ::=<think time> NL <text string> NL

3
<think time>::= <digit>

1
120

<text string>::= <string of characters listed in Appendix E>
0

D. An Example of a Script

1. Introduction

37

This section provides the reader with an example of a script.

This example is presented as an effort to tie together the ideas of

the previous sections of this chapter in a simple yet comprehensive

example. This example is taken from a short console session on the

MIT CTSS. The console listing as a human user would normally see

it appears in Figure III-1. Note, however, that the left hand

margin contains line numbers which are not part of the CTSS console

printing. These line numbers have been added to facilitate references

to lines in this example.

2. The Example

The example session chosen is very simple. It consists of:

a. "Logging in" on CTSS, to gain access to the system.

b. Some simple editing using the CTSS editor QED.

c. Logging off CTSS, thus disconnecting the console

from CTSS.

In the explanation of this example, only superficial knowledge of the

operation of CTSS and QED will be assumed.

a) Logging in on CTSS

Lines 1-11 of the example of Figure III-1 represent the

"logging in" function onto CTSS. Aftl!!r the human user has

dialed up his console to CTSS, lines 1, 2, and 3 are typed by

CTSS. Line 1 is an indication of system capacity and loading.

38

FIGURE III-1. The Sample console Session

1 MAC7 A3: USERS= 8, MAX= 30.
2 READY
3
4 login t234 greenb
5 w 1201. 9
6 Password
7 'T0234 5134 LOGGED IN 08/10/68 1202.0 FROM 20000.
8 LAST LOGOUT WAS 08/10/68 1201.3 FROM 20000.
9 CTSS BEING USED IS MAC7A3

10 R 4.083+.783
11
12 qed
13 w 1203.0
14 QED
15 i
16 This is dununy line 1
17 This is dummy line 2
18 f
19 1,$p
20 This is dununy line 1
21 This is dununy line 2
22 q
23
24 R .833+2.083
25
26 logout
27 w 1205.2
28 T0234 5134 LOGGED OUT 08/10/68 1205.2 FROM 20000.
29 TOTAL TIME USED= .1 MIN.
30

39

Line 2 signifies that following line 3 the user should type

in this "login command. Line 3 is a single <NI> character

typed by CTSS, and merely spaces the "READY." message of line

2 apart from the user's response on line 4.

Line 4 is the user's response, after having seen the "READY."

message of line 2 and the <NI> of line 3. The user types:

login t234 greenb

followed by a <NI> character to log himself in. The first word,

"login" is the command, the latter two, the user's identification,

in this case the author's. After typing line 4, the user waits

for the ''W" or "wait" message, telling him the system is evaluating

the line he has typed. After CTSS types the wait message, line 5,

it types line 6, requesting the user's "secret" password. This

password is not printed on the console when it is typed by the

user to preserve its secrecy. If printed it would appear between lines

6 and 7 of the listing. In this example we will represent the password

as:

The user terminates his password with the <NI> character, and CTSS

evaluates this. If the password is accepted, as it has been in the

listing of Figure III-1, CTSS prints out some information pertaining

to the user and the current message of the day, if any.

40

Lines 7, 8, and 9 are these lines. After printing this

information CTSS signals that it is ready to accept console

input by typing its ready message, line 10, followed by a blank

line consisting of a single <NI> character. The ready message

is a different type from the first ready message. It consists

of the characters "R" (second character is a blank) followed

by two "real" numbers. The first of these is the execution time

of the preceding step, in this case the login command. The

second number is the "swap" time, a system parameter of interest

since the user is billed according to both these numbers. These

two numbers are separated by a"+" (plus sign). Each of these

numbers has the following format:

i) None, one, two, or more digits representing seconds

ii) a decimal point

iii) three digits representing tenths, hundreths and

thousandths of seconds respectively

We will now construct a script segment to perform the

manipulations just explained for logging in. In the previous

part of the chapter it was stated that all script lines ~

be terminated with a <NL> character. In our example, however,

these terminating <NL> characters will not appear as the

string "<NL>" as in previous sections. They will be represented

as they would be in a normal script listing as a new line. The

single exception to this is when a script line consists only

41

of a <NI> character. In this case the string "<NL>" will be typed

to signify this type of line, as well as moving to the next line.

In the following script, "think time" numbers will be arbitrary,

and verifier time limits only a guess. In most cases, verifier

lines are not unique, but only exemplary.

As described in a previous section of this chapter dealing

with script format, all scripts must begin with a verifier mode

subsection. Since CTSS first responds with lines 1,2, and 3 which

of these should one verify. Line one, for this example, will not

be verified although it could have been. In this example, lines

2 and 3 will be verified. The following verifier subsection accomplishes

the matching for lines 2 and 3.

:V
2
READY.
1
<NI>

The example script segment allows a maximum time for verification

of line 1 of 2 minutes. On each line transmitted to it by CTSS it

attempts a character by character match on the characters:

READY.<NI>

where the string "<NL>" represents a new line character. Since

line 1 doesn't match this verifier line, line 2 is tried. A

match is found, hopefully within the 2 minutes maximum allotted

for this match to take place. Once this match is found, the

42

next couplet, consisting of a 1 minute maximum time and a single

<NI> character is used for matching against subsequent lines.

Since the next line on the console is a single <NI> character,

it too is matched.

The next step would be taken by the user; he must type the

"login" command. This is represented by the text mode subsection:

:T
30
login t234 greenb

We have arbitrarily placed a 30 second wait time before the

"typing" of this line.

The CTSS response to the typing of this line is lines 5 and

6. For this example line 5 will not be verified. Line 6 will

be verified by the following verifier mode subsection:

:V
2
?password?

if the response from CTSS, line 6, arrives within 2 minutes.

Note the presence of the two 11 ?1t's. These are necessary since

line 6 is typed in red, They take into account the control

characters necessary to perform the red and subsequent black

shifts for this line.

Once the match on the "password" line is found, the user must

type his password. This will be represented here as"******"·

The following text mode subsection accomplishes the typing of

the password after a 10 second "think time":

:T
10

43

Once this line is sent, CTSS responds with lines 7, 8, 9, 10, and 11.

Since we have already noted that we cannot depend on the placement

nor content of lines 7, 8, and 9, we will only attempt to verify

lines 10 and 11. This verification is accomplished by the

following verifier mode subsection:

:V
5
R ?.!!!+?.!!!
1
<NL>

Again the time portion of each couplet is arbitrary. Lines 7, 8,

and 9 will not "match" against the first verifier line. Line 10,

however, will. Referring back to the previous discussion of this

ready message, we find that it always begins with the two

characters "R" and a space. Following this is a real number

which may have none, one, two or more digits to the left of

the decimal point. The n? 11 will eliminate direct matching on

these and forces searching only on the decimal point which

immediately follows it in the verifier line. Once the decimal

point is found, three more characters are skipped, due to the

verifier line substring "! ! ! 11 • Immediately following these three

characters, a "+" must occur. This does, indeed, occur in line 10.

The "?" following the "+" in this case causes no action since no

characters occur before finding the decimal point. The decimal

point, is matched, three characters are again skipped since the

verifier line contains "! ! ! ". Then the concluding NL character is

matched,

44

b) The QED text editing section

The second portion of the CTSS session spans lines 12 through 25,

inclusive. After having logged in successfully in the last

section, we first issue the CTSS command to call the text editor

QED. The human user would type "qed<l'II>" as on line 12. CTSS

responds with the "wait" message on line 13. Once CTSS loads and

transfers control to QED, QED responds by typing line 14 on the console.

For this example, we will simply enter a two line text into one of

QED's buffers and request that QED print it. This is done by

typing lines 15 through 19, inclusive, on the console. QED will

then list the buffer. This listing is lines 20 and 21. When QED

has finished typing these lines we wish to terminate operation of

QED. This is done by typing a "q" on the console, line 22 of Fig. III-1.

This returns control to the CTSS monitor, which then responds with

lines 24 and 25, the ready message, as before.

The script segment to accomplish these manipulations follows:

:T
15
qed
:V
2
QED
:T
5
i
10
This is dummy line 1
100
This is dummy line 2
33
\f
29
1, $p
:V

45

4
This ? line 1
1
This is dumm! line 2
:T
30
q
:V
3
R ? . ! ! !+?. ! ! !
1
<NL>

As before, both think and verifier times are arbitrary. The

first text mode subsection waits 15 seconds, then causes the

simulator to type "qed". The following verifier mode

subsection awaits the response from QED of "QED<NL>'', and

ignores the wait message line. The next text mode subsection

causes lines 15 through 19 of Fig. 111-1 to be typed. The

following verifier mode subsection is just one of countless

ways to verify the response from QED, i.e. lines 20 and 21 of

Fig. 111-1. After this, the text mode subsection causes the

issuing of the quit character "q" after a 30 second wait.

The final verifier mode subsection, verifies the reception

of the ready message from CTSS and the following <NL>

character as in the previous section.

c) Logging out

The script constructed so far accomplishes the login procedure,

and some simple text input using the symbolic text editor QED.

To conclude the session, a user must log out. After having

recognized the ready message in the last section, a user at the

46

console then types "logout<NL>11 • This terminates his interaction

with CTSS. The system responds with lines 27 through 30, giving

the user some indication of his status on CTSS. Then, CTSS

automatically disconnects (hangs up) the console dataphone.

The script segment for the Simulation to accomplish this

logout procedure must first contain a text mode subsection to

transmit the logout line to CTSS. It may also contain a

verifier mode subsection to test the subsequent lines to test

if the logout was successful. In this example, only line 29 will be

tested for. The script segment for logout is:

:T
10
logout
:V
4
TOTAL TIME USED =?

This completes the script.

3. The Complete Script

Figure III-2 is the complete script constructed in the last section.

It contains, in addition to the text and verifier mode subsections

constructed previously, several comment mode subsections. These

comment mode subsections are included to demonstrate their proper

placement and format in a script.

47

FIGURE III-2. The Complete Script

:C
This script is an example of a "typical" script for use with
the simulator.
:V
2
READY.
1
<NL>
:C
The previous verifier mode subsection waits for the CTSS
preliminary "ready'' message. It allows a maximum of 2
minutes to find the ready message, and 1 minute for the
second following NL (new line) character. The following
text mode subsection issues the login command.
:T
30
login t234 greenb
:C
Having issued the login command we must wait
request the simulator to type its password.
verifier mode subsection will wait 2 minutes
to request the password before signalling an
:V
2
?password?
:C

for CTSS to
The next
for CTSS
error condition.

Since the password request has been by now issued, the
simulator must reply with the proper password, represented
here as "******"·
:T
10

:C
The Simulator will now wait for the standard CTSS ready
message for 5 minutes maximum.
:V
5
R ?.!!!+?.!!!
1
<NL>
:C
The following section requests CTSS to load and pass control
to QED, the text editor.
:T
15
qed
:C
The simulator must now wait for QED to print out its own acknowledge
ment "QED".
:V
2
QED

48

:C
The simulator now enters two lines of text into QEDis
buffers and requests that these be printed out.
:T
5
i
10
This is dummy line 1
100
This is dummy line 2
33
\f
29
l,$p
:C
Having requested the printout of these two lines, the
Simulator now waits for them to be typed out by QED.
Note that this verifier subsection is different from
the one previously presented in the example. This
version requires an exact match on every character.
:V
4
This is dummy line 1
1
This is dummy line 2
:C
Next, the simulator is to transmit a quit for QED.
:T
30
q
:C

We must now wait again for the CTSS ready message
:V
3
R ?.!!!+?.!!!
1
<NL>
:C
The simulator is now to log off from CTSS.
:T
10
logout
:C
After issuing the "logout" command, the simulator is
to wait for the "TOTAL TIME USED =" 1 ine.
:V
4
TOTAL TIME USED =?
:C
The script ends here. No special termination is required.

49

IV. SIMULATOR SYSTEM IMPLEMENTATION

A. Introduction

This chapter contains a description of the implementation of the

Simulator System. The Simulator System is implemented upon the PDP-8

computer at Project MAC, M.I.T. The first part of the discussion

in this chapter concerns itself with the organization of the PDP-8

computer, in order to put the rest of the chapter into proper perspective.

Following the discussion of the PDP-8 organization, a description of the

hardware modifications made to the PDP-8 computer to accomodate the Simulator

System is presented. The remainder of the chapter is devoted to providing

an overview of the operation of the programs comprising the Simulator

System. It is impractical to present a completely detailed description

of the operation of the programs comprising the Simulator System.

Therefore, the detailed description of all programs is relegated to the

appropriate appendices of this thesis. In these appendices the reader

will find flowcharts and descriptions depicting the step-by-step operation

of each of the programs of the Simulator System.

50

B. The Computer Hardware and Modifications

The Simulator System is implemented upon the DEC PDP-8 computer

situated at M.I.T. 's Project MAC. The M.I.T. PDP-8 is a small, general

purpose computer with 8,000 twelve bit words of primary core storage,

32,000 twelve bit words of secondary disc storage, two magnetic tape

drives, a CRT display unit and a ASR33 teletype console. The PDP-8

was chosen for the implementation of the Simulator since it allows easy

hardware modification. The original PDP-8 hardware configuration is

pictured in figure IV-1.

A stated objective in chapter III was to allow each simulated

user to have his own dataphone line. The original PDP-8 configuration

had one hardware interface for a dataphone. Since the aim of the initial

implementation of this Simulator is to support a simulation of up to

four users, three additional hardware interfaces for dataphones were

constructed and integrated into the PDP-8. This allows one dataphone

* line for each of up to four users to be simulated. A complete description

of the modifications necessary for these interfaces is included in

Appendix B. It should again be noted that the Simulator System programs are

capable of supporting the simulation of up to twelve users. In order to

accommodate this number, additional hardware interfaces must be constructed.

The initial implementation of the Simulator accommodates only four simulated

* The original design of the dataphone interfaces was done by Fred Luconi
as part of his Master's Thesis.5

51

FIGURE IV-1. Original PDP-8 Configuration~ .2!!. Display

PDP-8
PROCESSOR

+
MEMORY

DATA.PHONE
INTERFACE

BELL TEL.
DATA SET

BELL TELEPHONE
COMMUNICATIONS

LINE

DISC

52

users, since this number will be sufficient to exhibit proper

operation of the Simulator. Details necessary to add more

dataphone interfaces to the existing configuration may be found

in Appendix B. The present hardware configuration for the PDP-8

is depicted in Figure II-4.

The remainder of this chapter consists of an overview of the

programs which comprise the Simulator System,

53

C. STECO- The Simulator System Symbolic Script nditor

The M.I.T. PDP-8 Operating System has available to it a versatile

symbolic text editor, called "TECO". However, TECO requires the user

to type on the Teletype ASR33 which is attached to the PDP-8. The

ASR33 is an early model teletype and has available only upper case

alphabetics. Use of only upper case alphabetics is too severe a

restriction to be placed on Script files for the Simulator. Therefore

modifications were made to the original TECO program to accomodate an

external TELETYPE Model 37 over a dataphone line, so that both upper

and lower case alphabetics could be used. The initial conversion

was accomplished through the efforts of Tom Skinner of Project MAC

at M.I.T. Subsequent modifications were made by the author of this

thesis to better adapt this new TECO for use in writing and editing

scripts, such as the addition of parity bits in characters sent to the

M37, and the manipulations necessary to properly display text on the

PDP-S's CRT Display unit.

Details of operation of this new version, called STECO, are given

in Appendix A of this thesis. MAC-MEM0-191 describing a similar version

of TECO for the PDP-6 should also be useful for a beginning user.

54

D. The Script Loader Program

The function of the script loader program is to take as input

those script files chosen by the operator, reformat them, and

write the reformatted information out on the PDP-S's magnetic

disc unit. During the reformatting process, checking is done

to ensure proper input format of the scripts. In the case

of errors in the format, appropriate error messages are printed

out on the PDP-8 on-line console.

An optional feature of the Script Loader program is the

ability to list the input script files on the off-line M37 Teletype

which must first be dialed up on the PDP-8 dataphone channel ~.

A detailed description of the implementation of the SCRIPT

LOADER program complete with flowcharts may be found in Appendix E.

55

E. The Simulator Program

The heart of the Simulator System is the Simulator Program.

The Simulator program has the responsibility of simulating multiple

users. The remainder of the programs comprising the System, are

merely peripheral support to the Simulator program. While these

peripheral programs of the System are fairly straightforward in

operation, the Simulator program is relatively complex. The Simulator

program is the only program in the System which is multi-progranuned.

It has three levels of interrupt, two of which are software implemented,

since the PDP-8 has only two levels of interrupt.

The routines comprising the Simulator program may best be categorized

by the level of interrupt at which they execute. The three levels of

interrupt, and the major programs which operator at these levels are:

1. High priority interrupt level

a) The OS8 file system used to write physical tape records

b) The interrupt handling routine

2. Clock level interrupt

a) The controller ''ENTRY"

b) The dataphone read-in routine "READIN"

c) The dataphone output routine "XMIT''

3. Fully interruptable routines; the service routines

a) The disc reading routine "DREAD"

b) The verification routine "VERIFY"

c) The tape writing interface with OS8 file system "'!WRITE"

d) The tape buffer controller "TMOVE"

56

The interrupt scheme operates in the following manner. Routines

in group 3 are fully interruptable, that is interrupts of any kind

are given priority during their operation. Routines at the group 2

level are interruptable only by tape and disc interrupts. Routines

in group 1 are non-interruptable.

The remainder of this section is a brief outline of the operation

of the Simulator program. For a complete, step-by-step description

of the operation of the routines comprising the simulator program

consult the flowcharts of Appendix F.

The most important and most complex routines of the Simulator

program are those routines at the level 2 in the interrupt scheme.

These routines are the ENTRY, the READIN, and the XMIT routines.

These routines are interruptable only by DECtape and disc interrupts.

Upon detection of a clock interrupt by the interrupt handling routine,

the ENTRY routine receives control. Clock interrupts occur at three times

the bit rate. This rate is necessary to detect the "start pulse" on the

dataphone input lines. However, the transmission of new information onto

the dataphone output lines, must only occur once per bit time. The first

function of the ENTRY routine is to determine if this third time has occurred.

If it is the third clock interrupt time, the XMIT routine is called; if not

the READIN routine is called. If the XMIT routine is given control, it first

checks if the "one second" software clock for think time emulation has

reached a count of one second yet. If the one second interval has elapsed,

it updates the threaded list for think times and checks if any simulated users'

think time have lapsed. If so these users are made "active" for transmission.

57

If the software clock has not reached one second yet, or after

the think time checking has been done, XMIT prepares the next set

of bits for transmission over the dataphone output lines. Users

which are active are assigned the proper bits on their lines,

since characters are transmitted in serial-bit fashion. Non-active

users have binary ones on their lines. Lines corresponding to

"no-users for this simulation" have zeros on them. XMIT then passes

control to the READIN routine.

READIN is responsible for reading the dataphone input lines.

The function of READIN is to recompose the serial-bit characters on

all used lines. Once READIN has assembled an entire 8 bit character

for a simulated user, it checks the parity of this character, and

then calls the Work Area Manager, one of its subroutines. The Work

Area Manager (WAM) has the responsibility of keeping the first 31

characters of each input line in its work areas for later verification

by the VERIFIER. Upon each call from READIN, the WAM appends the

character passed to it to the proper work area as determined by the

user's ID number, also passed to the WAM as a parameter. Once a line

has been completed, as indicated by the presence of an ACK, New Line,

or WRU character, the WAM calls a routine to place an entry in the

verifier's queue so that this work area may be verified. The status

of this work area is now changed to "verify status" so that no further

characters will be appended to it. This work area is returned to the

pool of free work areas, after the verifier routine has performed its

verification upon its contents. When the WAM returns control to READIN,

control is in turn passed to the interrupt handler which returns control

to the routine interrupted by the clock interrupt, one of the routines

of group 3.

58

The routines of group 3 are interruptable by interrupts of any

kind. They are constructed so as to fit into the multi-progrannned

environment necessary to the operation of the Simulator program.

After Simulator initialization, control is passed to a "control loop"

aptly named "CTLOOP". The function of CTLOOP is to repetitively call

the three routines, DREAD, VERIFY, and 'IWRITE. These routines are

continually called by CTLOOP and control usurped only by means of interrupts

from the disc, tapes, or clock.

The first routine in the loop is the DREAD routine. DREAD has the

responsibility of reading script segments from the disc. It is queue

driven. Entries are put into its queue by calls from the other routines

of the Simulator program. Upon receiving control DREAD first checks

if the previously issued read, if any, has not yet completed. If it

hasn't, DREAD returns control to CTLOOP. It there was no previous

read or if the current read has completed, some bookkeeping is done

to process the new script segment just read and reset pointers for the

next read for this user. Then DREAD checks if there is another request

for a disc read in its work queue. If not, the routine is exited. If

there is, the disc read is initiated, and DREAD exits. The check for

disc read completion is checked the next and successive times DREAD is

given control.

The next routine in the CTLOOP is VERIFY. This routine is also

queue driven. Upon entry, VERIFY checks its queue if there are any

entries to process. If so the first of these is taken. Calls are made

59

to the disc subroutines to determine if there is a verifier line

available for this user. If the verifier line is not yet available,

the queue entry is placed at the bottom of the queue, and the next

entry is tried. If all entries have been checked once, VERIFY exits.

If an entry is found for which there is a verification line

available, the verifier routine attempts to "match" the characters

in the work area against the script verification line as described

in chapter III. If a match is found, a request is put into the

disc queue so that the next text or verification line may be retrieved

for furher processing. If no match is fuund, or if a match has been

found and the disc request has been consequently made, the Verifier

calls TMOVE to move the work area contents to the tape writier's

buffers for the tape copy of the simulation transactions. VERIFY then

exits to the control loop, CTLOOP.

The last routine called by the control loop is the tape writing

routine 1WRITE. This routine is not queue driven. The tape writing

routine has the responsibility of issuing calls to the 088 file system

write routines to write the tape copy. When control is passed to

1WRITE, TWRITE checks its buffer usage table, BTABLE, to see if there

are enough buffers in it to write out a complete block (4 buffers) of

tape. These control table entries are updated by the TMOVE routine when

TMOVE uses a buffer~ If there is a complete block to be written,

1WRITE calls the file system to initiate the tape write. If not,

1WRITE exits. As with the DREAD routine, checking for completion

of the tape write is done the next time the routine is called.

60

The final routine of the group 3 routines is the '!'MOVE subroutine.

The subroutine is called from many other routines of the Simulator

program. It is called with the starting address of a word area or

script segment as a parameter. The function of the '!'MOVE routine

is to move the 32 characters starting at the address passed to it

into a tape buffer, and perform some bookkeeping for lWRITE. These

32 character buffers will later be written by lWRITE onto the

magnetic tape.

61

F. Some Observations

There are still several questions about the Simulator System which

remain unanswered. In the discussion of these questions and their

answers, it is hoped that some of the problems involved with designing

and implementing such a user simulator may come to light for the

benefit of those interested in implementing a similar tool, as well

as for the curious reader.

The first question which may come to mind is "why are there five

distinct phases in the operation of the Simulator System?" One portion

of the answer lies in the fact that the PDP-8 is a small computer

and there is insufficient core memory to accommodate simultaneously

the four of the five phases of the Simulator System which require

the use of the PDP-8. Phase one, the design and encoding of the desired

scripts by the experimenter does not require the use of the PDP-8.

Phase two, the input and editing of the encoded scripts toproduce

magnetic tape files requires all of available core memory, and for

this reason, if for no other, must constitute a separate phase.

Phase three, consisting of choosing, reformatting and placing of

the chosen scripts on the PDP-8 magnetic disc unit for later simulation

requires roughly three-quarters of avialable core memory. Simulation,

forming the fourth phase requires all of available core memory. Finally,

the fifth phase consisting of the listing and/or analysis of the tape of

all Simulator transactions has no fixed amount of core memory requirements,

since this phase, in general, consists of programs written by the

experimenter to suit his own requirements.

62

Hcwever pressing the core memory requirements may be, this is not

the only reason for separating the Simulator System into several

distinct phases. Even if all programs necessary to support the

operation of the Simulator System could be accommodated in a large

core memory for the PDP-8, it would be advantageous to separate the

Simulator System into its five phases. The reason behind such a bold

statement lies in the fact that separation of the Simulator System

into its five phases represents the most flexible and easiest to use

configuration for the experimenter. Phase one,designiug and encoding

of the scripts is a function independent of the PDP-8 and would, of

necessity, be a distinct phase, much as writing a computer program down

beforehand for any other assembler or compiler would be.

Separating phase two, consisting of inputting and editing of the

scripts, allows the experimenter to produce a library of scripts

on magnetic tape at any time, independent of the use of the rest of

the Simulator System. Keeping phase three separate from the rest of

the Simulator System allows the experimenter to use the SCRIPT LOADER

program to check his script files for errors without having to go on

with the simulation. In addition, since the scripts are stored on tape

files for input to the SCRIPT LOADER program, the experimenter may choose

to load any of the script files available. Thus the subsequent simulation

may be run with any of the scripts on the library. It is, therefore,

advantageous to divide the Simulator System into the above distinct

phases.

63

The final question to be considered concerns itself with the

scripts. This question may be neatly divided into two pieces. First

"does the script contain enough information to allow accurate simulation

of an interactive console user?". Second, 11why is the script formatted

as it is?".

The answer to the first question is both "yes'' and "no". It is 11yes 11

in that all of the activities which a normal interactive console user

carries on at the keyboard of a TELETYPE Model 37 may be accurately

simulated or approximated. One non-keyboard function, that is the

QUIT activity has not been included in the script. However, there

is no intrinsic prohibition to the addition of this feature to the

Simulator System.

The script is formatted as it is for the following reasons.

First, the format was chosen to make the script relatively readable

and easy to code. Second, it contains enough redundant information,

in the form of the control strings ":T" and ":V" and the use of the

New Line characters to make checking and detection of format errors

possible by the SCRIPT LOADER program.

This empty page was substih1ted for a
blank page in the original document.

65

V. PROBLEMS WHICH REMAIN

The Simulator system described in this thesis is a tool. And like

most tools it is limited in its scope. In addition there are several

problems intrinsic and extrinsic to the use and operation of the

Simulator System. The purpose of this chapter is to point out some

of the Simulator's deficits and other problems which still remain and

are intrinsic to the operation of such a tool.

A. Handling of Errors

The Simulator provides for one dataphone line for each simulated

user. To the TSS being tested, it appears as if there is a "normal" human

user at the other end of the dataphone line. However, a human user is

equipped with many "features .. which have not been built into the

Simulator. The most important is the ability to deal with abnormal

situations which may occur at any time during the hurnan's interaction

with the TSS. There are many such abnormal situations which may occur

during operation. Some of these are:

1. Transmission errors on the dataphone lines, due to noise

or dropout.

2. System crashes of the TSS the human is conversing with.

3. Abnormal system (TSS) operation leading to "strange" or

unexpected responses.

The Simulator can detect these problems. In the case of parity errors

on the dataphone lines, the Simulator issues an error message. If the

TSS being tested crashes, or an expected response line is never received

66

because an erroneous one or none was sent, then eventually the verifier

time limit is exceeded, and a message to this effect is issued. But

detection is only half the problem. The present implementation of the

Simulator only detects such problems. What could be done to correct

these errors, if anything?

If the system crashes, obviously, the experiment should be

re~·eated when the TSS to be tested is back in proper operation. Errors

due to transmission errors and abnormal responses though, may in part

be correctable. In these cases when errors are detected, we could

salvage our experiment by having the Simulator issue a rrQUIT" over the faulty

communications line. This would cause the TSS being tested to quit

processing the current program for the user and return to command level.

Then the Simulator could either backtrack or move forward to some pre

established point in its script and begin simulation for this user anew.

Implementation of this feature is not prohibitively difficult. However

its desirability is questionable, for the following reason.

The Simulator is a tool to be used to provide an experimenter with a

means of performing a controlled, repeatable experiment on a TSS whereby

he can make performance measurements on the TSS. Implementation of the

feature above puts the repeatability of such a simulation in question.

If the above mentioned "feature" is indeed implemented, and such an

error is encountered during the simulation, the simulation made under

these conditions is most likely not repeatable. Hence one of the basic

purposes of the Simulator, repeatability, is defeated.

67

B. Design of the Scripts

The single largest problem facing the experimenter about to use

the Simulator System, is the design of his scripts. The discussion

of this problem is not intended to point out any deficit or defect

in the Simulator. Instead, the discussion will attempt to expose some

of the problems, the solutions of which are experimenter's responsibility.

Each of these component problems contribute to the problem of designing

the "proper" scripts for a given simulation experiment.

There are several tightly enmeshed problems which the experimenter

must consider before designing a script for the Simulator. These are:

1. How to make performance measurements relating to the TSS being

tested?

2, Does the simulation performed represent a "normal" user load?

3. For the purpose of an individual simulation, should the scripts

represent a normal load?

How one makes performance measurements on a TSS being tested, is a

problem •.,•ell beyond the scope of this thesis. The way in which the

experimenter makes the performance measurements on a particular TSS is a

very important problem, and may, in its own way, affect the results of the

measurements. The experimenter must make very sure that the metering

procedure he is using does not affect the functioning of the TSS being

tested. But if it unavoidable does, he must be able to take this

perturbance into account in analyzing his performance measurements.

Questions 2 and 3 above represent another side of the overall problem.

The two questions may be rephrased a slightly different way:

"How does the user wish to exercise the TSS being tested?"

68

The Simulator provides the experimenter with complete control over the

environment of the TSS being tested. Unlike measurements made by

averaging parameters of a normally operating and normally loaded

system, the Simulator may be used to put "abnormal" or unusual

loads on the TSS being tested. Thus an experimenter may design

his scripts so that they exercise one portion of the TSS being

tested heavily, or another portion not at all.

Conversely, the experimenter must be certain, that, if no

unusual loading is desired, the scripts he designs and provides

to the Simulator system do indeed represent what one might call

a "normal" load for the system.

69

VI. CONCLUSIONS

The purpose of this section is to discuss the usefulness, flexibility

and adaptability of the Simulator System described. In the previous

chapters of this thesis, an implementation of one solution to making

performance measurements on time-shared computer systems was developed.

The point was made that previous attempts at making such performance

measurements involved taking statistical averages over long periods

of time of relevant meters of the time-shared computer system to be

tested. One goal of the implementation presented in this thesis is to

provide performance measurements of a time-shared computer system in

a relatively short period of time, on the order of minutes to hours,

rather than weeks as in the previous method. Another goal of this

implementation was to produce a repeatable environment for the

system being tested, in order that different versions of the time-

shared computer system could be tested and a measure of relative

performance ascertained.

The method used to provide the performance measurements in a short

period of time, as well as to introduce repeatability of these measurements,

is to use a second, small computer to simulate the actions of multiple,

interactive console users typing at their consoles from prepared scripts.

In this way, performance measurements may be made in the short period

of time necessary to perform the user simulation. In addition, since each

simulated user is controlled by a script, the environment provided by the

user simulator is exactly repeatable.

70

The Simulator System is also very flexible, being capable of simulating

almost all the actions a human user may perform at his console. The

notable exceptions are the lack of the "QUITr' feature and the restriction

of the Simulator scripts to the character set of Appendix D. The

Simulator System may, however, be changed rather straightforwardly

to include the "QUITr feature if it is so desired. The limitation of

the scripts to the character set of AppendixD is not an intrinsic limitation

of the Simulator itself. Instead, it stems from the use of the prohibited

characters as special function characters by the symbolic text editor

STECO. Modifications to STECO to provide for different special function

characters instead of the current ones would eliminate this shortcoming.

In conclusion, the Simulator System promises to be a valuable tool

in the immediate future as an aid to the implementers of MULTICS at

Project MAC, M.I.T. It is to be used initially for two purposes.

First, it will be used to provide a controlled, repeatable load for

the purpose of making performance measurements on MULTICS, to determine

weak points and bottlenecks in the MULTICS system. In addition it will

be used as a "standard" load in the following way. Several "standard" simulations

exercising as much of the MULTICS system as possible will be devised. Following

each major system modification these "standard" experiments will be run to

determine if either system performance has improved as a result of these

changes, or if any new "bugsn have been introduced as a result of these

changes. Thus the Simulator System will provide a valuable tool to help

in the implementation and improvement of the MULTICS system.

Appendix

A

B

c
D

E

F

G

71

LIST OF APPENDICES

Users Handbook to Simulator System Operation

Description of New Dataphone Interfaces for the PDP-8

STECO Command Summary

Character Set for the Scripts

Implementation of the SCRIPT LOADER Program

Implementation of the Simulator Program

Script Loader Error Messages

73

93

103

107

111

145

177

This empty page was substih1ted for a
blank page in the original document.

73

APPENDIX A - Users Handbook to Simulator System Operation

Introduction

There are five phases to the operation of the Simulator System:

A. Script creation.

B. Script input and editing to produce symbolic

magnetic tape files.

C. Transferring the symbolic tape files from tape

onto the PDP-8 magnetic disc. During this phase,

error detecting is also done.

D. User Simulation - this phase consists of using the

Simulator Program to simulate the requested number

of users in order to test a particular time-shared

computer system.

E. Post Simulation use of the magnetic tape file of

all transactions which occurred during the Simulation.

This document provides a step by step guide to the operation of

the Simulator System. All references in this document refer to the

Master's Thesis by Howard J. Greenbaum (M. I. T.) October, 1968.

This guide assumes a working knowledge of the contents of the above

thesis.

74

A. Script Creation

The first, and by far the most important, step in the use of the

Simulator System is the design of the scripts. Several considerations

enter into the design of the scripts to be used by the Simulator.

The first consideration is how to design a script so as to exercise

the TSS so that meaningful performance measurements may be made

during operation. The solution to this problem is beyond the scope

of this handbook and depends mainly on the aims of the experimenter

using the Simulator System. The second consideration in the design

of a script, lies in the construction of the verifier lines contained

in the script. Since the verifier lines are used by the Simulator

to determine when an awaited response line from the TSS being tested

has been received, they must be rather exact in their construction.

A verifier line that is faultily constructed may cause the Simulator

to decide a line is indeed the expected line when, in fact, this

line was not the expected response line, but one which was close

enough in format to the expected line. Conversely, a faultily constructed

verifier line may prevent a match from occurring. When the verifier

time limit is consequently exceeded, an error condition is signalled

due to this lack of a match. In most cases, this would cause the entire

simulation to be scrapped since the simulated user would not behave as planned.

It is therefore up to the script designer to plan his scripts precisely,

mueh as he would design a piece of assembly coding for a program. The best

75

procedure for checking a prospective script is to actually run this

prospective script by hand on the TSS to be tested. Then, the

experimenter can determine if the script does indeed represent

the console interactions.

Once a prospective script has been designed and hand checked,

it must be coded into the format described in chapter III of the

companion Masters Thesis report by Howard Greenbaum, for later

processing by the Script Loader Program. Since comment mode

subsections may be placed between modes of any other type, it is

advised that the experimenter make liberal use of this feature

to improve readability of his scripts for documentation and

debugging purposes.

76

B. Magnetic Tape Symbolic Text File Creation on the PDP-8

1. Introduction

Once the experimenter has designed and encoded his scripts, he

must create a symbolic text file on the PDP-8 magnetic tape facility.

This is most easily done using a version of .the PDP-8 symbolic text

editor TECO, called STECO. The special version of TECO, STECO, is

available on the PDP-8. STECO accepts most of the ASCII character

set. A list of the acceptable input characters appears in Appendix D.

STECO accepts input from a Teletype Model 37 console only. Certain

characters are reserved for control functions in STECO and hence may

not be typed in as script characters. These are:

@

New Page Character (Form Feed)

Carriage Return

Delete

STECO is a versatile symbolic text editor. It accepts input

from a Teletype Model 37 console or from previously constructed

magnetic tape files, Text being inputted or edited is displayed on

the PDP-B's Model 338 CRT Display unit. Since large blocks of the

file are immediately visible at once on the Display, editing is

greatly facilitated, STECO is similar in its capabilities to the

CTSS symbolic editor EDL (or EDA), having the added advantage of the

Display feature.

77

2. Use of STECO to Produce Symbolic Script Files on Magnetic Tape

A description of the use of STECO follows. The experimenter

mounts the special tape labelled "SIMULATOR SYSTEM" on a PDP-8 tape drive

and dials this tape drive to #1. He then mounts his library tape,

perhaps initially blank, on the other tape drive and dials this

drive to #2. By this time, the PDP-8 should be powered up. The

bootstrap should be in core. If the bootstrap is not in core, the

experimenter should consult MAC Memo M-341 for details of starting

up from scratch.

If the bootstrap is in core, the experimenter should set the

PDP-8 CPU console toggle switches to "007600" (octal). He should

then press the "LOAD ADDRESS" key on the CPU console and then the

"START" key. The t~pe on drive #1 should begin back and forth motion,

indicating that the operating system is being brought into the PDP-8

core memory. When the operating system has completed its initialization,

it will type an "R" on the PDP-8 on-line ASR33 console. The

experimenter should then type "STECO" followed by a Carriage Return

character. This will cause the operating system to load STECO into

memory and transfer control to STECO.

It is very important to make sure at this point, that the PDP-8

clock is set to its FAST clock rate. This is accomplished by removing

the decorative blue cover panel from the upper right hand portion of the

PDP-8 mainframe. In approximately the center of the wiring matrix, there

is a switch controlling the clock rate, This switch must be set to its

extreme right hand position. If it is not already set to its extreme

78

right hand position, set it so. This switches the clock to its high

speed rate which is necessary to operate the Teletype Model 37 console

correctly.

After the operating system has loaded STECO into core memory,

the PDP-8 ASR33 console is no longer used by STECO. All transactions

with STECO are performed on the Model 37 Teletype console located

next to the PDP-8 until the QUIT command is issued. For this reason

it is necessary to dial up the PDP-8 dataphone channel O (zero) from

the Model 37. This may be done by putting the PDP-8 channel 0 dataphone

handset into "AUTOANSWER" mode by pressing the right hand-most button

on the receiver of channel O, and dialing this dataphone up from the

Model 37 console. At present this extension is 368. Once the Model 37

console is connected, STECO is ready to be put into operation.

The complete operation of STECO will not be described in this thesis.

However, MAC Memo M-191 does give a complete description of TECO as

available on the PDP-6. The PDP-8 STECO lacks many of the features of

the PDP-6 TECO, however, this memo will provide the experimenter with the

fundamentals for using STECO. A summary of the commands available on the

PDP-8 version of STECO appears in Appendix ~ of this thesis. Note that

these commands are a subset of the commands available on the PDP-6 version

of TECO·

There are however, three noteworthy differences between the PDP-6

TECO and STECO. First, a single character in the command buffer may

b,e deleted by the use of 11#11 convention. The deleted character is then

79

"echoed" on the printer. Second the "@" character deletes the

entire conunand buffer. Thus the use of these two characters

corresponds to the "f" and 11@11 conventions used on CTSS and MULTICS

The third difference is that instead of the "ALT MODE" character described

in Memo M-191, STECO uses the "DELETE" key on the Model 17 console. Note

that the "DELETE" character is echoed as,.... on the Model 37 typewriter.

An added feature of STECO is that conmand mnemonics may be entered

in either upper or lower case letters. However, great care should be

exercised when entering file names for script files, whether input or

output. These file names must be given in UPPER case (with the exception

of numerals, which must, of course, be in lower case shift). This

warning applies also to the script formation in that upper case and lower

case alphabetics are decidedly different characters. Careful note should

be made of this fact when constructing verifier lines.

3. Terminating Qperation of STECO

When an experimenter has finished using STECO, he issues the

quit command, which consists of typing a "Q" character followed by

two "DELETE" characters. Control is then returned to the Operating

System and _the teletype may be disconnected by "hanging up" in the

normal CTSS manner. Disconnection frees that channel 0 line for the

later use by the Simulator. However, if the experimenter subsequently

intends to perform the Script Loading phase, described in the next

section, he should leave the Model 37 teletype connected, since it may

also be used by the Script Loader program.

C. Script Loading

1. Introduction

80

Once the user has established a "library" of symbolic script files

his next step is to make these scripts available to the Simulator. A

separate step is necessary to accomplish this. This step consists

of selecting the scripts to be used in a given simulation, and using

the Script Loader program to transfer these script files from magnetic

tape onto the PDP-8 magnetic disc for subsequent use by the Simulator.

The function of the Script Loader program is to read the tape script

files, perform error checking on the format of the script files, notifying

the operator of errors, reformat the script for use by the Simulator, and

finally place the specially formatted script on the magnetic disc. It also

keeps a record of where each script starts and places this "directory" on

the first "page" of the disc (a page is 128 words long). This directory

is later used by the Simulator to determine where to begin reading the disc

for each script.

Since the Script Loader does perform error checking on the script files,

it may also be used to pre-pass scripts independently of the Simulation

to check for errors. Operation in either case is the same.

An optional feature of the Script Loader program is the ability to list

the script files on the Model 37 teletype as they are loaded. If this option

is specified, the Script Loader program prints a line-numbered listing

of the script file. If the experimenter suspects that there might be bugs

in the script file, it is advisible to use this option, since all error

messages printed by the Script Loader program refer to the line numbers in

81

the script file, which the experimenter must otherwise count manually.

In addition, if an error occurs, and the listing feature is used, the

character at which the error is first detected is underlined in red.

The drawback to using this listing feature is that the loading

progresses at the character rate of the Model 37 teletype. If the feature

is not specified, the loading occurs at a considerably faster rate. If

one has already checked his files before using the Script Loader, it is

advantageous to eliminate this listing feature.

It should be noted here that during operation of the Script Loader,

whenever the operator (also refered to as the experimenter) types at

the ASR33 PDP-8 on-line console, the standard CTSS "#" and "@" conventions

are in effect. That is, typing a rr#" deletes the last single character

typed; typing a "@" erases the entire last line typed at the console.

2. Operation of the Script Loader Program

As in the STECO phase, the tape labelled "SIMULATOR SYSTEM .. must

be on drive # 1. After bootstrapping the operating system as described

in section B.2 of this chapter, the operating system will type an '"R"

on the ASR33 on-line console of the PDP-8. The experimenter should then

type:

LOADER

on the ASR33 console, terminated by a carriage return character. The

operating system will then proceed to load the Script Loader program and

transfer control to it. The Script Loader program, upon receiving control,

will first type:

DO YOU DESIRE SCRIPT LISTING ON THE M37 TELETYPE (TYPE YES OR NO)

82

If the experimenter wishes the line-numbered listing of ~ the script

files he is about to load, the response is "YES" terminated by a

carriage return character. If no listing is desired, the response

is ''Norr terminated by a carriage return character.

If the experimenterrs response was "YES", the Script Loader will

type the line:

DIAL UP THE M37 TELETYPE ON DATAPHONE CHANNEL 0

If the M37 is not already dialed up to dataphone channel 0, the experimenter

should connect the M37 teletype to the PDP-8. The procedure to do this

is described in section B.2 of this chapter. It is very important for

proper operation of the M37 to have the PDP-8 clock set to its fast rate.

The procedure to do this is also described in section B.2 of this chapter.

If the experimenter's response to the Script Loader query on the

listing option was "NO" (no listing desired), no special action pertaining

to the clock or M37 need be taken.

At this point, the "SIMULATOR SYSTEW' tape may be dismounted from

its drive, and the experimenter's script library tape(s) mounted on the

drive(s). Be sure that the drives each are dialed to a different number.

Having the two drives dialed to the same number has catastrophic effects.

The next line typed by the Script Loader is:

NUMBER OF USERS TO BE SIMULATED:

This piece of information is requested for two reasons. First, the Script

Loader program will only process as many scripts as the response given

dictates. Second, this number is placed in a "control directory" written

on page zero of the disc and used by the Simulator to determine how many

users it is to simulate. The correct response is a single digit from 1 to 9,

83

which represents the number of scripts to be processed. If the Simulator

is to be used inunediately following the Script Loader, this number

also represents the number of users to be simulated, and, hence, for

the present implementation, must not exceed four. A carriage return

must be typed immediately after this single digit, Any characters

typed after the first character are ignored. As before, if errors

are made, the standard CTSS "IF" and "@" conventions apply for erasure

of the characters and deleting of lines.

Once the number of scripts to be processed has been entered, the

Script Loader requests the name and drive number for each of the script

files to be processed, until the requested number have been processed.

The Script Loader first asks for the script file name by typing the

following, on the ASR33 console:

FILE NAME FOR SCRIPT N:

where N is the number of the current script to be processed. The

experimenter should respond with a one to six alphanumeric character

file name for the script which is to be processed next. The file

name should be left justified, since spaces are significant. Immediately

following the last character of the file name, the operator should type

a carriage return character signify~ng the end of the line. No extra

blanks should be inserted anywhere in this response. As before, the

standard rrju and "@" convent ions apply.

The Script Loader, then requests the drive number upon which this

file is to be found, by typing:

TAPE DRIVE NO:

84

The proper response is a one digit number from one to eight representing

the drive number upon which the file is to be found. This should be

followed immedia':ely by a carriage return character. Again, the "#11

and "@" conventions apply.

The Script Loader then attempts to open the file, with the given

name, on the given drive. If the file is found and opened properly,

the loading proceeds. If an error in opening the file occurs, an

appropriate error message is typed, and the Script Loader requests

the file name and drive again; this time, hopefully, the correct

information will be supplied.

The Script Loader will keep requesting file names and drive

numbers to process script files until it reaches the number given

in the number of users request. Upon completion, the Script Loader

types:

SCRIPT CHECKING AND DISC LOADING COMPLETED!

and then returns control to the operating system.

If, in the course of processing a script, the Script Loader comes

upon an error in script format, it will print a message describing the

type of error which occured and the corresponding line number. If the

Model 37 teletype print option was specified, the character causing

the error is underlined in red in the listing. The Script Loader then

attempts to process the rest of the script as if no error had occurred.

This sometimes results in errors being indicated on lines following

the original error, where really no error exists, since the first error

threw the Script Loader program out of synchronization. However, the

85

Script Loader is designed so that it will eventually re-synchronize itself,

usually within a few lines. A list of the error messages and their

interpretation appears in Appendix G.

86

D. User Simulation

1. Introduction

Once the experimenter has loaded the PDP-8 disc unit with the

scripts to be used for a simulation, he may proceed with the user

simulation. It is during this phase of the operation of the Simulator

System that the multiple user simulation takes place, under control

of the scripts previously loaded onto the disc.

2. Operation of the Simulator

The user simulation phase of the Simulator System requires the least

amount of human interaction of the phases constituting the System. The

operator should make sure that the bootstrap loader is in the PDP-8

core memory and that the clock rate switch is in the fast rate as described

in section B.2 of this appendix. In addition, a DECTAPE preformatted and

containing only the operating system, OS8, in the first 748 blocks of

the tape should be mounted on tape drive *2· The Simulator System master

tape should be mounted on tape drive #1.

The operating system must then be bootstrapped into the PDP-8 core

memory as described in section B.2 of this appendix. Once the ready

message is printed on the ASR33 console of the PDP-8, the operator

should type "SIMULAT" followed by a carriage return. This causes the

PDP-8 operating system to load the Simulator program into core and then

begin execution.

The first action of the Simulator program takes is to open the tape

file on drive #2. This may be verified by the operator by noting that the

87

tape on drive #2 rocks back and forth several times during opening. Once

the file is opened, user simulation may begin. At this point, the

communications lines connecting the PDP-8 to the TSS to be tested must be

dialed up. The operator should dial up only as many lines, as there are

users to be simulated. The operator may dial the lines up in any order.

However, only lines numbered zero (0) through n-1, where ''n" is the

number of users to be simulated, may be used. Simulation for each user

commences at the time that the lines corresponding to that user is

connected by means of pushing the "data" button on the dataphone

connected to that line.

During the operation of the Simulator program, the panel lights of

the PDP-8 should continually glow, and the copy tape on drive #2 should

occasionally move. These are indications that the Simulator program is

in operation. Error conditions are related to the operator by means of

error messages typed on the PDP-8 console by the Simulator program.

When the Simulator program has exhausted the scripts for the users

to be simulated, it signals termination of operation by typing:

"NORMAL END OF SIMULATION"

on the PDP-8 console. The tape file on drive #2 is then closed, and

control is returned to the 088 monitor.

If for any reason the Simulator should terminate abnormally or the

operator wishes to terminate the simulation before the normal end the

tape file on drive #2 will be lost, unless the operator forces closing

of the file. This is accomplished by halting the PDP-8, if it is not

88

already halted, by pressing the stop button. Then execution should

be re-started at location 602
8

in field Q. This is the start of the

tape closing routine. If this procedure is not followea, the file

will not be properly closed, as it would be if a normal termination

occurred. This renders the file unreadable by the OS8 file system.

89

E. Post - Simulation Phase

During the operation of the Simulator, a magnetic tape file is

created. This magnetic tape file contains a copy of the first 31

characters of every line of the text transmitted by the Simulator

and received by the Simulator. Thus after the simulation, the

operator may list this file using a special program described later,

to obtain a "hard copy" of all the t:cansactions which occurred during

the simulation. In the initial implementation of the Simulator, only

the first 31 characters of each input and output lines are copied.

This restriction arises due to the severe limitations on core memory

space available in the PDP-8 for buffers. This limitation, however,

is not binding, and may be changed in later implementations. This

is the same restriction which applies to verification lines, that is,

only the first 31 characters of an input line may be used for

verification purposes.

The tape file is in a very simple format, and is easily manipulated

through the use of the PDP-8 OS8 File System. The use of OS8 File System

is described in MAC Memo M-339. The file name for this file to be used

when employing the OS8 File System is

"SIMOUT"

The file consists of the PDP-8 "standard" 128 (12 bit) word blocks.

Each block is divided logically into four 32 word sections. The

first 12 bit word of each section contains the "USER ID" for the

test that follows. This is a binary number starting at "0" (zero),

th for the first user, to "n-1", for the "n " user. The next 31 twelve

90

bit words contain 31 right justified ASCII (7 bits plus parity) characters

comprising the text which was copied. Each block of 128 words contains

four such sections of an ID followed by 31 ASCII characters. If the line

which was copied was less than 31 characters long,and it was terminated

by a NL character, there will be random characters after this Nl

charac~er. If the line was equal to or greater than 31 characters in

length, no NL character will appear, and all characters should be taken

as significant parts of the text. In general, there will be lines

consisting only of an "ACK" character (MULTICS and CTSS control character

= 006 octal), followed by garbage. These lines should be ignored.

As part of this thesis, one program will be included on the "SIMULATOR

SYSTEM" tape to provide a listing of the SIMOUT tape file. This program is

called LISTER. It will produce a listing on the Model 37 Teletype console

of all the lines on the SIMOUT tape file on a per user basis. To use LISTER,

the experimenter should mount the SIMULATOR SYSTEM tape on a drive

dialed to #1. The tape containing the output file should be mounted on a

drive dialed to #2. OS8 should be loaded, and the Model 37 Teletype should

be dialed up to the PDP-8 on dataphone channel 0. The clock should be set

to its fast (rightmost) position. (The above procedures are described

in detail in section B.2 of this chapter). When OS8 responds with its ready

message "R", the operator should type:

LISTER

followed by a carriage return. This will bring the LISTER program into

core memory.

91

The LISTER program will then request the number of the user

for which the file is to be listed, If the operator wished to

list the transactions for user #3, he would respond with a "3"

followed by a carriage return. When the LISTER is done listing

the files for the simulated user requested, it will repeat its

request for another user number. If more user files are to be

listed, another number corresponding to a simulated user should

be given. When the experimenter is finished using the LISTER,

he should respond with a "Q" on the ASR33 typewriter in place of

a user number. This will cause the LISTER program to terminate

and return control to the operating system, OS8.

Programs similar to the LISTER may be constructed to analyze

instead of simply list the SIMOUT file.

This empty page was substih1ted for a
blank page in the original document.

93

APPENDIX B - Description of New Dataphone Interfaces For the PDP-8

The purpose of this appendix is two-fold. First it is designed

to explain the operation of the dataphone interfaces on the PDP-8 in

general. Second, it provides the reader with enough information to

add more dataphone interfaces to the PDP-8, should the need arise.

For the purpose of this thesis, only three additional dataphone

interfaces were added to the PDP-8. This provides the Simulator

with the facilities for simulating four users over four individual

dataphone lines, since one dataphone interface already existed,

The design of the dataphone interfaces was completed by

Fred Luconi as a part of his Master's Thesis entitled: "REAL-TIME

BRAILLE TRANSLATION SYSTEM"; M. I. T., 1964. This design was modified

slightly to eliminate an unneeded feature, the IO skip instruction.

Otherwise, the design remains intact.

The dataphone interface is a group of DEC "Flip Chips" designed

to interface the PDP-8 computer with a Bell Telephone 103A data set.

It is necessary to use such an interface, since data-set signals are

not directly compatible with PDP-8 logic levels. Exact circuit

diagrams and point-to-point wiring charts for the additional three

dataphone interfaces may be found in the maintenance files of the

PDP-8 at Project MAC, MIT.

94

Program Operation Using the Dataphone Interface(s)

Characters are transmitted over the dataphone lines in serial-bit fashion.

Character recomposition on input, and decomposition on output to achieve

this bit-serial fashion must be carried on under program control. For

output, the program places a bit of a character into a specified

bit of the AC corresponding to the specific dataphone line to be used.

The program then executes the IOT instruction for transmission, and

the dataphone line is set to its proper sense, either O or 1 depending

on the bit placed in the AC. For input another IOT instruction reads

the dataphone line(s), and places the binary representation of their

status into the proper bits of the AC. It is up to the program to

time the reception and transmission of the bits so that the proper

bit rate i~ achieved.

Background

The PDP-8 is a small computer with a 12 bit word. When an instruction

is fetched from core storage, it is placed in a 12 bit Memory Buffer.

There the first three bits are examined for the operation code. Of

the eight instruction codes possible, the one representing an octal

six(6) is the IOT instruction. Bits 3 through 8 (where the bits are

numbered 0-11) of an IOT instruction are the device select code. Bus

drivers in the processor make both the binary O and 1 output signals

of the Memory Buffer Flip Flops available to all devices over the 1/0

bus. Bits 9, 10, and 11 of the instruction control the enabling of the

IOP pulses which are also made available to the devices over the I/O bus.

(See figure B-1)

95

The Dataphone Interface Components

The dataphone interface consists of three parts. The first is the

device selector section. This section is a group of diode gates which

produce a signal only when the proper device number is present in bits

3-8 of the instruction. Since the device code for the dataphone

is 61 (octal), a signal will appear at point M, only when the Memory

Buffer bits 3-8 contain a 61 (octal). These gates are followed by an

inverter, which reverses the sense of the signal so that when the

dataphone interface is selected, a ground signal is present at

output "B". This signal is gated with the IOP4 pulse, amplified by

a pulse amplifier and is available at output "A".

The second portion of the dataphone interface is the output

subsection. Upon device selection, and having bit 9 of the instruction set to

"1" (enabling IOP-4) this subsection takes the contents of AC bit "i",

and converts it into the proper signal for the dataphone input for

transmission over the line. This subsection is duplicated for each AC

bit to be transmitted. It operates in the following manner: The device

selection signal in combination with the IOP-4 pulse, amplified by a pulse

amplifier are logically combined with the signal from the AC buffer

Flip Flop "l" output, to set the output flip flop labelled Module B in

figure B-2. The signal is inverted and changed to a level of either 0

of -15 volts by Module E of figure B-2. Module E's output is input to

Module F which converts the signal to levels of +7 or -8 volts required

by the data set. This signal is held by the Flip Flop until changed

by subsequent IOT instructions.

96

FIGURE B-1: Device Selector Sub-section

-,
I

MBl

I 3

MB
1
4

I

I

Ip N

M

I

~
MBO

I s

_-.~

0 I MB6

I MB~
s

l MB!

L _Hl7_1

IOP4
PULSE

PULSE

AMP. DEVICE
SELECTOR

OUTPUT
'A'

DEVICE
SELECTOR

OUPUT
'B'

(Grounded on
Device Selection)

97

FIGURE B-2. Single Bit Output from AC to Data Line (bit "i" of AC) ----------- --- --------

1 MODULO -15v I

I

1

I
I DEC2894

I -3-448

_J -15v
MODULE F __J

I ,-
I I

0 1

I I FLIP FLOP

SIGNAL FROM I
DEVICE MODULE B From
SELECTOR AC bit "i"
OUPUT 'A'

l
"1" output

FR(l.1 FIGURE 1 from FF

D

E

Li:ioDULIL C* _ _J

98

The third portion of the dataphone interface, is the input

subsection. Its function is to read the line from the dataphone,

and strobe this signal, properly converted to PDP-8 logic levels,

into AC bit "i". It operates in the following manner. The device

selector signal logically combined with the signal from the

dataphone and the IOP-2 pulse are strobed into the AC bit "i"

by the pulse amplifier (see Figure B-3). 'Ibis section, too, must

be duplicated for each dataphone setup.

Since there will be many dataphones used in the experiment,

there must be one input module and one output module for each

dataphone. Each input module will be logically paired with an

output module, through the use of the same AC bit. Thus a dataphone

line will be associated with an AC bit. However, there are two

different I/O instructions for input and for output, the first

enabling only the IOP-2 pulse generator, and the second, for output

enabling only the IOP-4 pulse generator. The overall logical

placement for multiple dataphones is depicted in figure B-4.

Constructing Additional Dataphone Interfaces

The Device Selector Module:

The Device Selector Module is not duplicated when constructing

additional interfaces. Its device selection signals are used to drive

many interfaces. Output "Arr, the output from the pulse amplifier

produces a 70 ma. pulse output. Each additional interface added

requires (nominally) 6 ma. input driving current, thus allowing up to

99

FIGURE B-3. Single bit input from dataphone .tJ2 Ji&. JUt .:.r

Device
Selector
Ouput 'B'
From
Fig. l

r
To
AC bit "i"
"l" Flip
Flop Input

MODULE A*

p

--

--

PULSE

AMP.

--
'-

F

100

FIGURE B-4: Overall Interface Design for Many Dataphones

DEVICE

SELECTOR

S'.ECTION

INPUT

SECTION

OUTPUT

SECTION

INPUT

SECTION

OUTPUT

SECTION

To Ac1 bit 1

from dataphone
#1 "input" line

to· dataphone
#1 "output"
line

from Acl bit 1 buffer

To AC1 bit "n"

from data.phone
#"n" "input"
line

to dataphone
#"n" "output"
line

From Acl bit "n"
buffer

101

11 additional output subsections to be connected to the one pulse

amplifier output. The output rrB", output from module labelled

Fl7 is capable of producing an 18 ma. output. The level input to

the pulse amplifier is 2 ma. load. Each additional input interface

subsection require a 1 ma. driving current. Thus 16 input subsections

can be added with no modification to the device selection subsection.

Constructing Additional Input and Output Subsections

DEC supplies Flip Chips, which in general have several duplicated

functional units per Flip Chip. For example, Flip Flops are supplied,

most economically, two per Flip Chip, and Pulse Amplifiers, three per

Chip. With this in mind, it is most economical to construct input

and output subsections in groups of three's. That is, three input

and three output subsections are to be constructed together to

minimize cost.

The following parts list enumerates those Flip Chips necessary

for constructing three input and output subsections for a dataphone

interface.

DEC FLIP CHIP QUANTITY MODULE DESIGNATION
FLIP CHIP DESCRIPTION NEEDED IN FIGS. 1 & 2

*
W600 3 Clamped Inverters 1 E

ROOl 7 Diodes 1 D
(4 still unused)

W990 Blank Board 1 F

R202 2 Flip Flops 2 B

R603 3 Pulse Amplifiers 1 A

Rl07 7 Inverters 3 c

102

It should be noted that the ROOl will have four unused diodes, so if

still more interface subsections are constructed further economics

could be realized by using these.

In addition to the required Flip Chips, other individual components

are necessary to construct the module labelled F, which must be hand

wired. These components are mounted on the W990 blank Flip Chip Board,

and the parts for 3 interfaces will fit comfortably on one W990.

The parts necessary for each additional interface are:

1 22,000 ohm resistor 1/2 watt

1 2,2QO ohm resistor 1/2 watt

1 DEC 2894-3-448 computer transistor

1 8 volt 1 watt Zener Diode

103

APPENDIX C - STECO Conunand Summary

COMMAND

A

+nC

+nD

nF

F

I $

nJ

K

+nK

+nL

N ... $

nP

m,nP

p

nR ...
s ... $

TR

TW

UR

uw

nW ...

$

$

DEFINITION

Append page from DECtape

Character, move pointer by

Delete characters

Form feed, insert at character n

(same as ZF)

Insert character string at pointer

Jump pointer to character n

Kill entire buffer

Kill n lines

Line, move pointer by

Next page, go to if string .•• not on this one

Punch (write on DECtape) n lines

Punch characters m through n

(same as ZEHP)

Read DEC tape-file with name ••• on unit n

Search for string .••

Teletype Read instead of DECtape

Teletype Write intead of DECtape

Unteletype Read (Read from DECtape)

Unteletype Write (Punch on DECtape)

Write on DECtape file with name ••• on unit n

COMMAND

XR

xw

y

< >

104

DEF II\ IT ION

Close Read file on DECtape

Close Write file on DECtape

Yank new page from DECtape (same as KA)

Evaluate ... and treat final pointer as number

Iteration form

Q quit

NOTE ON YI37: "$" is DELETE key

Commands may be in upper or lower case

ARGUMENT

digits

+

B

z

H

105

STECO Arguments

DEFINITION

decimal numbers

arithmetic operator

arithmetic operator

Beginning of text buffer

End of text buffer

separate numerical arguments

current pointer location

(same as B,Z)

This empty page was substih1ted for a
blank page in the original document.

107

APPENDIX D - Character Set for the Scripts

The appendix contains the list of characters permissible for

use as characters in the script. A supplementary list of characters

is provided of those characters which are definitely not permissible

in the script. A third list of characters used as special function

characters by STECO is provided, as well. The characters in the

third list are not permissible in scripts only by virtue of the fact

that they are used by STECO in special ways. However, one may modify

STECO so that these characters are useable in scripts, by substituting

other characters in their place.

108

TABLE I: Legal Character Set for Scripts

0 1 2 3 4 5 6 7

000 SOR STX WRU ACK BEL

010 BS HT NL VT RRS BRS

020 DLE DCl HLF DC3 HLR NAK SYN ETB

030 CAN EM SUB PFX FS GS RS us

040 Space ! " $ % &
,

050 () * + - . I '
060 0 1 2 3 4 5 6 7

070 8 9 : ; < = > '?

100 A B c D E F G

110 H I J K L M N 0

120 p Q R s T u v w

130 x y z [\] /\ -
140 ~ a b c d e f g

150 h i j k 1 m n 0

160 p q r s t u v w

170 x y z { I J ,....,

NOTE: Positions left blank are occupied by characters that are not

legal for scripts.

109

TABLE II: Characters Not Permissible in Script File

OCTAL CODE USE

003 Control character used as end of file on tape

004 Control character used to turn console off

TABLE III: Characters Used as Special Function Characters by STECO

CHARACTER DEFINITION

used as single character erase character

@ used to erase entire command line

FORM FEED used as page separator

DELETE used as STECO escape character, and string
delimiter

CARRIAGE RETURN inserted by STE CO after every NL character
to J>rovide nice lookin_g_ dis_l)_la_y_

This empty page was substih1ted for a
blank page in the original document.

111

APPENDIX E - Implementation of the SCRIPT LOADER program

This appendix is divided into two sections. The first section

describes the transformation made by the SCRIPT LOADER program as it

transfers the scripts from tape to the disc. The second section is

a brief description of the exact implementation of the SCRIPT LOADER

program complete with flowcharts.

A. Script Format on the Disc

1. The Disc Directory Format

The first type of information written on the disc by the SCRIPT

LOADER program is the Disc Directory. The Disc Directory contains

the starting address of each script loaded onto the disc. This address

requires two PDP-8 words, since a disc address can range from 0 to 32K,

and a single 12 bit PDP-8 word can only address 4096 locations. The first

of the two words contains a binary number from 0 to 7 representing the disc

"field" in which the script starts. The second word is the displacement

from address 0 of the field at which the script begins. The Diuc

Directory is used by the Simulator program during its initializaition

phase to determine where to begin reading of the disc for each simulated

user's script. Another piece of information included in the directory

is the number of scripts processed, and hence also the number of users later

to be simulated.

112

Starting addresses on the disc for each script are kept track

of during the operation of the script loader. The number of users

to be simulated is input by the experimenter as a response to a

Script Loader query during operation of the Script Loader. When

the Script Loader has successfully completed processing its required

number of scripts, the last step before returning control to the

operating system consists of writing this directory out on page zero

of field zero of the disc. When the Simulator later goes into

operation, it initializes its data bases from this directory. The

format of this control directory in page zero of field zero of the disc

is:

LOCATION

0 Number of users to be simulated
1 Field of starting address of script 1
2 Field of starting address of script 2
3 II 3
4 II 4
5 II 5
6 II 6
7 II 7
8 II 8
9 " 9
10 II 10
11 " 11
12 II 12

17 Starting address within field above of script 1
18 II 2

etc.

113

2. The Reformatted Scripts on Disc

The second type of information written on the disc by the SCRIPT

LOADER program consists of the reformatted scripts. The reformatted

scripts on the disc are very similar in format to the script files

created by the user using STECO. Reformatting is done to conserve space

on the disc unit, since the storage capacity of the disc is limited to

32K characters.

The format of a single character on the disc is as follows. Each

character and binary integer occupies one 12 bit word on the disc.

Binary integers are represented in their "true" form, that is without

sign. Alphanumeric characters are stored in their 7 bit ASCII format,

right justified. The bit to the left of the first of the seven bits is

the parity bit, and also appears in the disc word for each character.

The following discussion describes the format of each of the subsections

of the script as they appear on the disc.

a) Comment Mode Subsections

One of the main function sof reformatting is to conserve space.

Since comment mode subsections of the script perform no function in

the Simulator phase, they are not included in the reformatted script

on the disc.

b) Verifier Mode Subsections

There is no special character to signify the start of Verifier

Mode Subsection (VMS). The presence of a VMS is denoted by its

location within the script body. Hence, the ":VNL" string is only

used by the Script Loader program, and does not appear on the disc.

114

Each VMS couplet is transformed in the following manner.

The first line of the VMS couplet is the verifier time limit.

This one, two or three decimal digit number is converted into

a 12 bit binary integer, which is placed on the disc. The

terminating NL character is not placed on the disc. The second

line of the couplet, the verifier line, is placed on the disc

character by character as it appears in the tape script file.

The single exception to this is if the terminating NL character

is immediately preceded by a backslash character. In this

case the NL character is not placed on the disc.

Each couplet is terminated by one of two termination

characters. These characters are the "Intermediate Terminator"

character, and the "Final Terminator" character abbreviated

"¢T" and "¢F" respectively. These terminator characters are

necessary for the Simulator program. The "¢T" terminator

character is used to terminate a verifier couplet when more

verifier couplets immediately follow it in the current VMS.

The "¢F" terminator is used to terminate the last verifier

couplet of a VMS. The presence of the "¢F" signals that the next

character following it belongs to the subsequent text mode

subsection.

In summary, each couplet of a VMS appears on the script

as a binary integer, representing the maximum verification time,

115

inunediately followed by the verification line characters. Intermediate

couplets are terminated by a "¢T"; the final couplet is terminated

by a "¢F'-. Characters following a "¢F" belong to the text mode

subsection following the current VMS.

c) Text Mode Subsections

Text Mode Subsections (TMS) of a script tape file are

transformed in a similar manner to VMS. Each couplet of a TMS

is reformatted in the following manner. The first line of the

couplet is the one, two, or three decimal digit number representing

the "think time". As is the VMS couplet, this is converted to a

12 bit binary integer and placed on the disc. The second line

of the couplet is placed on the disc exactly as it appears in the tape

script file, character by character. Since all text lines must end

with a NL character, the Simulator program, when later executed,

senses the end of a text mode couplet when it reaches the NL

character. If there are subsequent text mode couplets in the TMS,

the Script Loader program places a special character, abbreviated

here as"¢N", immediately after the NL character which terminates

the text line. This signifies to the simulator that there is

another text line to send. The last text mode couplet in a TMS

ends simply with a NL without a "¢N'' character following it. This

is a signal to the Simulator that the next character on the disc

belongs to the next VMS.

116

d) Script Termination

As explained in the discussion of a previous section of

this chapter, there is no special character which signals

the end of a script file. That is, the experimenter using

STECO to produce and edit his scripts has no responsibility

to type a special character to signify that the script ends

at a particular point. The experimenter merely ends his file

by typing the STECO conunand to close the currently open write

file. STECO, upon receiving this conunand, the "XW" conunand,

automatically inserts a special end of file character after the

last character of the text before it writes out its last buffer.

The Script Loader program checks for this special character. When

it finds this special character, it terminates its tape file reading

for the particular script it is processing. It also puts out its own

special character to signify the end of a script on the disc.

This character is called the ENDTXT and TXTEND character in this

document. It is a 12 bit word of all ones.

B. The Script Loader Program

1. Initializatiou Phase

117

When called into execution, the first action of the Script Loader

program is to request if the operator desires the "listing" option.

If the operator responds affirmatively, the Script Loader continues

in its initialization, since the program normally includes the listing

option. If the response is "NO", the Script Loader program eliminates

the calls to the teletype output routines.

Next the Script Loader program requests the operator to type the

number of scripts to be processed. The operator responds with a

single numeric character representing this number of scripts. This

number is stored for later use by the script loader as well as being stored

in the template for the disc directory. The flowchart depicting the

initialization phase appears in Figure E-1.

2. READ-the Script File 0pening, Reading and Unpacking

This section, depicted in the flowchart of Figure E-2, consists

of requesting the operator to type the file name for the current

script to be processed, and the tape drive on which this file is to

be found. Once this has been done, and the responses provided, the

script file is opened. If an error occurs during the open, the error

message is printed out, and the requests for script name and drive

repeated.

If the file is opened properly, the first three pages are read

into the tape read buffer. Since the tape files are packed five

characters to every three 12 bit words, the Script Loader next proceeds

118

to unpack the three page tape input buffer into an overlapping five

page buffer. Following this some initialization of pointers and

counters is done.

3. The GETNXT Routine

The GETNXT routine is used during the operation of the Script

Loader Program to get the next character from the unpacked buffer.

It also eliminates spurious characters from the scripts such as the

Carriage Return character, and the Form Feed character which are

inserted by STECO as format control characters in the tape files.

If a call to the GETNXT routine finds the unpacked buffer depleted,

GETNX.T calls the READ routine of Figure E-2 to read and unpack a new

three page block from the tape file. When control is returned

from the READ routine, GETNXT gets the next valid character from

the buffer and returns it to its original calling routine.

The secondary entry point to the GETNXT routine is called

"PSEUDl". This entry point is used only once for each script

file, after the first 3 page block has been read and unpacked.

It eliminates some of the bookkeeping done by GETNXT, which must

not occur for the first buffer of a script file.

If the next character in the unpacked buffer is the end of

script (003) character GETNX.T transfers control to the FINISH routine.

4. The GETHIS and GETOLD routines

The GETHIS routine is called from other routines in the Script

Loader to retrieve a copy of the character currently being processed

from the unpacked buffer.

119

The GETOLD routine is called to retrieve a copy of the character

previous to the one being processed from the unpacked buffer. Flowcharts

for these two routines are found in Figure E-4.

5. The FINISH Routine

The FINISH routine is called by GETNXT when GETNXT senses the

end of the script character (0003). The FINISH routine puts the end of

script character onto the disc after the last character processed,

and calls the UNDISC routine to update the Disc Dictionary template.

If at this time, the required number of scripts has been processed,

the disc directory is written in page zero, field zero of the

disc, the done message is printed, and control is returned to the OS8

operating system. If the required number has not yet been processed,

the current input tape file is closed, some bookkeeping is done, and

the entry "BETA" in the READ routine is transferred to, in order that

the next script file may be processed.

6. The Script Loader Control Loop

Once the Script Loader has opened, read, and unpacked a script

file, control is transferred to the entry point "RESTRT" of the

Script Loader Control Loop. The control loop is responsible for

controlling the processing of the script. The control loop examines

control character strings, and calls appropriate subroutines to process

subsections of the script. If errors in control string format and/or

placement are found, error message printing routines are called to

advise the operator of these error conditions. Then the control loop

attempts to re-synchronize itself to permit further processing of the

script. For a detailed diagram of the operation of the control loop,

see Figure E-6.

120

7. The Verifier Mode Subsection Processor

The verifier mode subsection processor is called from the

control loop after finding the string ''~: VNL". The function of

this routine is to process all verifier mode couplets contained

in the verifier mode subsection. In the case that errors are found

appropriate error messages are posted on the PDP-8 on-line console.

Two subroutines used in this routine are 11 VDISCI" and V'DISC2 11
• These

serve as the interface between the VMS processor and the disc writing

routines. In addition they keep count of the characters in a particular

verifier line and warn the operator by means of an error message if a

verifier line is too long. Operation of these routines is depicted in

Figure E-7.

8. The Output Text Mode Subsection Processor

The Output Text Mode Subsection Processor routine is called from

the control loop after finding the control string "NL:TNL''. Its function

is to process the text couplets comprising the 1MS. After processing

all the couplets of the current 1MS, control is returned to the control

loop. (See Figure E-8)

9. The Number Processing Routines

The Number Processing Routines consist of three subroutines.

The major routine is NPl, with secondary entry point NP2. This routine

processes the numeric portion of a verifier or text mode couplet. By

calling the SAVDIG and CONVRT subroutines,the one, two or three digit

number in the couplets are converted into a binary integer and put out

onto the disc. Control is then returned to the calling routine, either

OPTEXT, or VERLIN. In the event of an error, appropriate error messages

are printed. (See Figure E-9).

121

10. The Comment Mode Processor

The Conunent Mode Processor is called from the control loop upon

occurrence of the string "~: CNL'', signifying a comment mode subsection.

Since comment mode subsections are provided for documentation purposes

only, and do not influence the operation of the Simulator, they are

ignored. Therefore the function of the comment mode processor is to

ignore characters up to the next "mode-determining" string. (See Figure E-10)

11. The Disc Buffer Routine

The disc buffer routine is called from the rest of the Script Loader

routines when a character is to be appended to the disc buffer for

subsequent writing on the disc. Entry point DISCl converts the

character passed to it into the same character with parity bit added.

Entry point DISC2 retains the character in true form. In either case

the character is appended to the disc buffer. If after appending, the

buffer is full, the routine DWRITE is called to write out the buffer

onto the disc, and re-initialize the appropriate pointers. Control

is then returned to the calling routine. (See Figure E-11)

12. Disc Write Routine

This routine is called from the disc appending routine of figure

E-11 when the disc buffer is full. The function of this routine

is to write the current disc buffer onto the disc, detect disc hardware

errors and check if the disc is full. In addition, the disc directory

is updated, and re-initialization of the disc buffer pointers is done.

122

When done, control is returned to the disc appending routines of

Figure E-11. If a disc error has occurred, an error message is printed

on the on-line console. If the disc storage area has been exceeded,

the last 50 characters of the script segment causing the overflow

are printed out to facilitate re-writing of the scripts. (See Figure E-12)

13. The Disc Bookkeeping Routine

UNDISC, the disc bookkeeping routine is called upon reaching the end

of a script. The function of this routine is to force the last page

of buffer out onto the disc, so that the next user script begins on an

even page boundary. In addition, the disc directory template is

updated to reflect the starting addresses of the next script. (See Figure E-13)

123

FIGURE E-1. Script Loader Initialization

LOADER

Reques,
if M37
listing
option
desired

Accep
Response
of "YES"
or "NO"

NO

Response "YES"

YES

Reques
Number of
Users to b
Simulated

Accep
number of
Users to
Be
Simulated

Store
1n
MAX ID

Set
I=l

s

124

FIGURE E-2. Scipt File Opening, Reading and Unpacking

N::CTNAM

Reques
Filename
For
Script(!)

Accept
Filename
of 1-6
Characters

Pack file
name for
file sys.
call

Reque
Drive #
for
Script(!)

Call file
system to
open tape
file

FIGURE E-2. con't

Error in opening
script file?

OPEN OK

TREAD Call file
system to
read J pages
into buff e

CHECK Tape Read Error?

UNPACK

Initialize
UPPTR & PPT.
for
unpacking

Unpack the
J page buff
into 5
pages

Set PPTR &
LNCTR for
GETNXT
subroutine

125

YES Put error
code into
error
message

YES

Print
tape open
error
message

Load AC
'-----11.,. w1 th error

code

126

FIGURE E-3. The GETNXT Routine

GETNEW

GETNXT

Increment
Pointer
in
Buff er

.------------~------.. NO Po1hter in buff er
past end of buffer?

YES

TREAD Ref 111
Buff er &

Reset
Pointers

Get
Character
Using
Pointer

Is the.character
"Carriage Return"?

NO

er

NO

YES

YES

FIGURE E-3. con't

127

Save Previou
Character in
"OLDCH"

Put current
Character
in ''THISCH"

YES
Is current charaote~~----.-..

Increment
L1ne Counte
"NLCNTR" "New Line"?

Print
Current
Character

on M37

Transfer Switch
=1?

oa
with curren
character

Print Line
Number on

..._~ M37

YES
.__ _ _..,. Set Transf.

Switch =O

128

FIGURE E-4. The GETHIS and GETPST Routines - -

THIS

GETHIS

Loa

Clear
AC

with copy o
Current
character

"THI SCH"

GET PST

oa

Clear
AC

With copy
of previous
Character

"OLDCH" ·

129

FIGURE E-5. The FINISH ROUTINE

Load AC w
ENDTXT
Character

(7777)

UNDISC
Update
Disc
Directory

Have we done reques
ed number of scripts

NO

TCLOSE
Close curre
tape f 1le

Reset NLCNTR
(the New
Line counter

)

YES

Print "DO
MESSAGE"
on ASR33
console

130

FIGURE E-6. ~ Script Loader Control !e2E,

SLJ

RESTRT

SEARCH
FOR FIRST

COLON

GETNXT

Is 1t "C" for
Comment mode?

NO

Is it "V" for
Verifier Mode?

YES

YES COMENT

HO
ERRORG

FIGURE E-6. con't

131

YES

VD ONE

Is it "C"?

NO

Is It "T" for
Text Mode?

YES

Is 1t "NL" after
the "T"?

OPTEXT
rocess text
mode sub
section

YES

Search for
"NL1"
string

NO
ERROR I

ERRORJ

132

FIGURE E-7. 1h! Verifier Mode Subsection Processor

NO

is it "NL"?

YES

VERLIN

Is character
"backslash"?

YES

NO -----41 Is 1 t "1 "?

Load
"¢T"

YES

GETNXT

is 1t "NL"?

FIGURE E-7. con't

LOAD
"ACK"

LOAD
"¢F"

133

YES

is it "1 11 ?

LOAD
"jtT"

VDISCl

NP2

NO

134

FIGURE E- 7. con' t

LOAD
" ACK

SH"

VDISCl

GET HIS

VDISCl

FIGURE E-7. can't -----
VDISCl

Increment
Verifier
Line Length
Counter

135

Is verifier line
too long?

Pr in
t-------1~ Error

VLOK

VDISC2

Reset
Verifier
Line Lengt
Counter

Message
"K"

136

FIGURE E-8. The Output ~ Mode Subsection Processor

OP2

OPT EXT

Initialize
Text Line
Length
Counter

OP3 Increment
Text Line
Lenth
Counter

Is character "NL"?

NO
OP4 -

YES

YES

OP1

LOAD
"¢N"

NP2

NO

YES

DISC1

Is it "1"?

137

FIGURE E-9. ..!'.!!! Number Processor Routines

NP2

NPl

GET HIS

YES
Is it "NL"___,..,.

NO

Is it a digit..,._...,

YES

YES

LOAD
"1 ..

ERR ORD

Is it "NL"? J.-.......i~· CONVRT

NO

DISC2

138

FIGURE E-9. can't

s 1 t a d1g1 t? 1---~ ERR ORD

YES

Is 1t "NL"?t-~~--~ CONVRT
NO

Is 1t a d1g1t·t~---.--'

YES

Is 1t "NL"?"-~~--M

FIGURE E-9. con't

139

SAVDIG

save
Present
D1g1t

CONVRT

Convert
Saved

D1g1t(s)
Into a
Binary
Integer

DISC2

Housekeep1
for
SAVDIG

140

FIGURE E-10. The Comment Mode Subsection Processor

COMENT

GETNXT

NO
Is it "NL"? a-..., _ _.

YES

GETNXT

Is it .. :"?

141

FIGURE E-11. Disc Buffer Routines

DISC2

NOD ISP
Append

Character
to Disc
Buff er

Is the disc
buffer full yet?

YES

Reset Buff er
Pointers

NO

DISCl

Append
even parity
bit to 7 bl
ASCII char.

,.

FIGURE E-12. Disc~ Routine

YES

Hardware error
during disc write?

NO

Update disc
directory

Is disc now full?

NO

CLEAR
AC

Reset
Indicators
to return
to FIELD j1

142

Dl'TOUT
YES

D'rl'OUT

Print
11--~~~~--~Error

Message

143

FIGURE E-13. Disc Bookkeeping Routine

UNDISC

Store of
Users
Requested
in DMAXID

Flush out
disc buffe
onto disc
so that
next user
starts on
page
boundary

Store isc
Starting
Address of
next user'
Script in
Control
Directory

This empty page was substih1ted for a
blank page in the original document.

145

APPENDIX F - Implementation of the Simulator Program

This appendix contains flowcharts depicting the step-by-step

operation of the Simulator program. For a less detailed description

of the Simulator program's operation see Chapter IV Section E.

r-- ----- - I!

146

FIGURE F-1. Simulator Initializing Routine ,!!!!! Control LooE

TWINIT Open

NO

CTLOOP

SIMOUT Tape
(Call osB
Open routine)

during Open?

c OS
Interrupt
Routine for
Simulator

DREAD

VERIFY

YES Print
..... ___ .,.Error

Mes sag

147

FIGURE F-2. Simulator Interrupt Handling Routine

DECTAPE INTERRUPT?

NO

Disc read error
Interrupt ?

NO

YES

YES

YES
Disc read completion
Interrupt ? 1-~~-1~

DOK

NO

Clock Interrupt?

NO

Clear
Keyboard &
Display
Flags

YES

File System
Interrupt
Handler

Set ERROR
Flag in
Disc
Routine

Set DONE
Flag in
Disc
Routine

FIGURE F-2. con't

148

Store saved
AC and Link
contents

Store trap
Return
Address

Turn OFF
Clook
Interrupt
Perm1ss1on

Turn other
Interrupt
Perm1as1on

ON -

149

FIGURE F-3. ~-Simulator Dataphone Routine Controller ~ ~ink
Time Coordinator

ENTRY

Turn
Off
Interrupt

Get Clock
Overflow
Time

Read the
Data phone
Lines

"Write out"
the
Da.taphone
lines

Turn
Interrupt
Back ON

FIGURE F-3. con't

150

Is it time
new bits for dataphone
output?(i.e. third
time around?
YES

Reset
Counter
According
to sample
rate

ncremen
"Seconds"
counter for
Think time

second elapsed NO

YES

Decrement
Counter for
Think time
(Wait Coord)

s any user s
think time lapsed?

AWAKEN
"active

(set switch
1n XRLIST)

NO

151

FIGURE F-4. ~-!!!!:, Dataphone Lines Output Routine

XRETB

NO

XMIT

I=f

I=I+l

Is user"!" active?

XGTBIT
Get next bi
for active
user

Save bits
so tar 1n
DPOWRD

Have all user's
been assigned?

NO

YES

nactive
Users have
line set to
"1" bit

FIGURE F-4. con't

YES

152

EETBIT

NO Set "start
s "start" bit been bit sent"

transmitted yet? ~--------1~ switch

me yet to send
a "stop" bit?

NO

Ith XPTR
able entry
hows which
it to retur

Retrieve
correct bit
of character

Increment
Ith XPTR
entry for
next time

RETURN
bit retrieve

using
XPTP
entry

.Return
a "~"
(start bit
to XMIT

FIGURE F-4. con't

153

Was last character
sent a "NL" char?

YES

Set ST.A.TUB
entry for
Ith user
"not ready"

Put ent:ry i
Disc queue
for disc
read

NO

Move pointer
to disc buff
chars to
next char.

154

FIGURE F-5. READIN-The Dataphone ~ Input Routine

READ IN

Store status
of D.P.lines
at clock int
time in MQ

Initial,
Counters

Get Ith
Line's bit
From MQ

Is it start bit?=J

YES

e STATUS
table entry
for Ith
user to 7777

NO

FIGURE F-5. con't

MOISE

155

a Ith l1ne•s ~T
table entr;r • 1771?

YES.

Get Ith
Une•a bit
Prom MQ

a start bit at111
on 11•7J~b1t-.,)?

HO

ms

Set STATUS
Table entr7
tor Ith u•e
to•1•

FIGURE F-5. con't

ROT

156

YES

Get bit for
Ith user
from MQ

Rotate
positions
in STATUS
table entry

Append bit to
partial
character
accumulated

NO

was this last b1t of
Character (parity bit 111--~.

YES

FIGURE F-5. con't

PAB.CHK

IRWAM

157

CHECK
Parit1 tor
Character
ass em.bled

correct

Loa(!. char
just
assembled

APPEND
character
to work

area

I=I+l

incorrect Print
Par1t1

>---•---~Error
Message

Have all users been
processed?

Y,ES

158

FIGURE F-6. APPEND-~ Work ~.Manager Routine

YES

ompu e
location in
work area t
append
character

NO

WSETUP

APPEND

Save Char.
and ID
passed as
parameters

Search for
first empty
work area in'-~~~--M

WCTBL tabl

Initia ze
Work area
Pointers

Put user ID
into first
word of
work area

Compute
location
to append
char in
work area

one

FIGURE F-6. con't

NO

Append
Character

Increment
Pointer to
next
appending
location

159

WAPPND

Is work area
full?

YES

Overlay ast
Character in
work area
with the NL

or ACK

YES

Is the character
ACK, WRU, or NL?

NO

YES

Is the character to
be appended a "NL"?

NO

Is it "ACK"(006)?

NO

ms

VEBQ
put entry 1
verit1er

queue

Set status
of work ar
to "ver1f7"

160

FIGURE F-7. INTRET-Clock Interrupt Return Routine

Restore AC
Link to pre
clock. inter
rupt state

Turn clock
Interrupt
Permission

.Qli again

RETURN
to location
being exec
uted at time
of clock

interrupt

161

FIGURE F-Ba. ~-Disc Read Routine

DLAB2

NO

DREAD

Are all scripts
?

YES Print
r-~~~~~..i Done

Message

Is there a disc rea
currently in pregress

NO

Is current read
complete?

YES

Disc error on
Completed read?

NO

Get Start,
Address of
Current rea
Buff er

Deposit in
"DCHPI'R"

Is "DXSW"=O ?

YES

YES

NO

'.i:.'APCLS
(close tap
file)

n
Disc
Error
Message

FIGURE F-8a. con't

163

DXPROC

ese
TXTADR table
entry to
point to
start of
text

Update disc
Directory
for next
time

WCOORD
Call Wait
Coordinator

FIGURE F-8a. con't

DHERE..-~~------
Set DBLIST
entry to
BEADY status
to a1gnity
that ver1t.
line 1s
:va lable

164

Is DJM W• ?
(was ver1f line

Reaove old
entr1 trom
Disc Work
Queue

Is pointer past
end or queue?

NO

DXMIT

NO

Beset
DJMPSW to
zero

YES
Beset pointer
to top or

1-----t1-.queue

FIGURE F-8a. con't

mTMT

165

Is there another
entr7 in queue ?

YES

Issue
Disc
Read

Set DSWTCH
=ff (Read in
Progress
Status)

Set DR.LIST
Entry for
User to
"line not
available"
status

NO

Set OOWTCH
•7777
(Ho Read in
Progress
s tus

.........,...,. ----~ ... - ----··------·--11- ---:---:------, -. ' -~ -- ·-

166

FIGURE F-8b. DQPUT-M ~ entry in the Disc Work ~ for ~

Verifier Line

IQPUT2

DQPUT

Insert · ser
ID char.
before text
line

TMOVE

Is there a dlso
queue entry free?

Is
of

Increment
free entr1
pointer b7

one

NO

eaet polnte
o top of

----~ .. he queue

167

FIGURE F-8c. ..Illll1&-Retrieve ~Time~ Script~ Line

DTIME

Retrieve addr.
of think time
word of text
line in diso
buff er

DXGET

Set DXSW table
entry for user
=7777

DQPUT
put entry
n diso queu
for user

168

FIGURE F-8e. DSEARCH-~ if Verification ~ for ~ ~ Available

DSEARCH

Store ID
passed in
DUSRID

Is verif1cat1on lin
availab1e? (1s DLIST

YES

RETURN
to normal

return+1 wit
address of
verif.

line

NO

169

FIGURE F-9. VERIFY-~ Verifier Routine

Put entry
for user at
Bottom of
queue

Clear
old
Entry

ptr)

YES

NO

NO

VERIFY

Compute
of full
entries
1n VQUEUE

NO
0

VFIN YES
Has user of

entry term1->-------.-.i
nated yet?

YES

ERR ORV

YES

NO

In1t1al1ze
Pointers

FIGURE F-9. con't

FMA.TCB

f 1nal match

put entr7
1n disc queu
for next
text 1ine

VHOMCB

170

no match

intermediate
match

keep tape
COPJ of
line in
work at"ea

FIGURE F-9. con't

YES

YES

171

VERMOB

Is current characte
"I" ?

NO

es verif char
match work area

VIN CB Move po1nte
of script
char to
next char.

Move po1nter
of work area
char to
next char.

end of

NO

NO

YES

FIGURE F-9. con't

VFTQ

Is current script
char=FTERM?

NO

s it Intermediate
terminator (TERM)?

NO

Is it "?"?

NO

setup test
for "I"
character

172

YES

YES

YES

VQUEST Move pointe
to next
ver1f 1cat1o
character

VFTQ
eturn if

char is not
,FTERM,TER

Is current verif
char= "I" ?

NO

FIGURE F-9. con't

173

VL1 Move ptr.
to next
work area
character

Past en o e
work area?

NO

o the text and ver1
character match?

YES

Increment
Pointers to
Both text
and ver1f.

Past end of work
area yet?

YES

NO

Is ver1f char
Final Terminator?

NO

YES

174

FIGURE F-10. TWRITE-~ Tape Writing Routine

TWBITE

NO
as the PJ¥Tious tape

write completed? 1-'~'94

YES

Is there a full
buff er page ready?

TYES4

NOT PST

CHANGE

YES

Reset file
System
Flags

NO

175

FIGURE F-11. TPMOVE-Routine !£ Transfer .!!!E. and Script ~ ~

~ ~ Buffer

YES

TNXTCH

TPMOVE

:search for
empty tape
buff er

Move
Characters
into tape
buff er

176

FIGURE F-12. TCLOSE-.Tape Closing and Simulator Termination Routine

TC LOSE

Turn
Interrupt
Off

Close
OUTPUT
Tape f 1le

177

APPENDIX G - Script Loader Error Messages

The appendix provides a list of the Script Loader's error messages

and their probable causes. The majority of the error messages issued

by the Script Loader indicate a line number. In this appendix, this

four digit line number will be represented by "****"· It should be

noted that in several instances an error on one line may cause error

indications on subsequent lines, even though these subsequent lines

may not have errors in them.

The following are the error messages issued by the Script Loader,

and their probable causes:

1. "TAPE ERROR * TRY AGAIN"

This message is posted when a file cannot be opened by the file

system. The rr*" is replaced by the ASCII representation of the error

code. For a complete list of error codes pertinent to this type of

error see MAC Memo-191. In general this error message appears if the

file name has been misspelled, or an incorrect drive number for the file

has been specified. It is very rare that this error will be caused

by a physical tape error. The user response is to retype the file name

and drive number again, when the Script Loader requests them.

2. ''NON-DIGIT ON LINE ****"
This error message is posted in cases when the Script Loader is

expecting either a verifier time limit or think time line of a couplet.

This type or error usually results from the omission of such a line when

178

composing a script with multiple verifier or text couplets. The user

response is to correct script file in which the error occurred. This

error also occurs when a letter is typed instead of a numeral in

such a line.

3. "TOO MANY DIGITS ON LINE ****"
Both the verifier time limit and the think time lines allow a

maximum of three digits to the line. If more than three appear on a

line the above message is posted. The user response is to correct

script file in which error occurred.

4. "OUTPUT TEXT LINE LENGTH EXCEEDED AT LINE ****"
Output text lines of text mode subsection couplets may only be

of 120 characters in length. If this is exceeded the above message is

posted, and subsequent characters are ignored. The user response is to

shorten the output text line.

5. "ILLEGAL SEQUENCE OF MODES. 1 V1 MISS ING AT LINE ****"
As described in Chapter III, the script must consist of altetnating

verifier and text mode subsections, with the exception that comment

mode subsections may be interspersed between the above subsections.

The above error message is posted when the Script Loader encounters

two text mode subsections in a row. The user's response to this

indication is to either consolidate the two text mode subsections, or insert

a proper verifier mode subsection inbetween. The error could also have

been caused if a character other than a ''V11 were found after the rr:".

179

6. rrIMPROPER VERIFICATION GROUP FOR.MAT AT LINE ****rt

This error message is posted when the string ":VNL" is incorrect.

In general it is caused by the absence of the "NLrr character, due to

putting something additional on this line. The user should respond

by correcting the line by placing a NL character iilllllediately after the

":V" string.

7. '70UND N/L:T---TERMINATING N/L MISSING AT LINE ****"

This message is postied for the similar reason to #6 above. A ":T"

was found, but its terminating NL character is missing. User response

as in #6.

8. "IMPROPER TEXT LINE FORMAT AT LINE ****u

This error message is posted, as is the error message in part #S

of this appendix. This time, however, the Script Loader has come upon

a character after a 11
:" where a "T" should have been. The user response

is to correct letter after the ":" or otherwise revise his script.

9. "DISC OVERFLOW ERROR. SCRIPT TOO LONG
LAST FEW CHARACTERS WERE:"

This error message is posted when the disc capacity has been

exceeded. The user response is to either shorten his scripts, or lessen

the number of scripts and hence users to be simulated. After this message

is posted, the last fifty (50) characters in the disc buffer are printed

out, to determine where in the script the overflow occurred.

180

10. trorsc HARDWARE ERROR ;'ddd<-ldd<lf

This error message is posted if a disc hardware error occurs.

The PDP-8 magnetic disc is an exceptionally reliable device, and it

is expected that this type of error will rarely occur. If this

message is posted, disc diagnostics should be run immediately.

However, this message will also be posted for every character

processed after error message #9 above, so in this case no special

action should be taken.

181

BIBLIOGRAPHY

1. CORBATO, F. J. et al., The Compatible Time-Sharing System: A Programmer's

Guide, 1st ed., M.I.T. Press, Cambridge, Mass. 1963.

2. CORBATO, F. J, and v. A. VYSSOTSKY, Introduction and overview of the

Multics System, AFIPS Conference Proceedings, Vol. 27, Part 1,

Spartan Books, Washington, D. c., F. J. C. C., 1965.

3. SCHEER, A. L. An Analysis of Time-Shared Computer Systems, Project MAC,

M.I.T., Technical Report, MAC-TR-18, June 1965.

4. HASTINGS, T., Operating Statistics of the MAC Time Sharing System

Project MAC, M.I.T., Memorandum MAC-M-280, December, 1965.

5. LUCONI, F. L., Real-Time Braille Translation System, Massachusetts

Institute of Technology, Master's Thesis, May, 1965.

l
i

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and mdexin~ annotation must be entered when the overall report is clsssi/ted)

1. ORIGINATING ACTIVITY (Corporate author) 2•. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC 2b. GROUP

None
3. REPORT TITLE

A Simulator of Multiple Interactive Users to Drive a Time-Shared Computer System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Master's Thesis, Department of Electrical Engineering, October 1968
5. AUTHOR{S) (Last name, first name, initial)

Greenbaum, Howard J.

6. REPORT DATE 7•. TOTAL NO. OF PAGES rb NO. OF REFS

January 1969 192 5 ... CONTRACT OR GRANT NO . 9•. ORIGINATOR'S REPORT NUMBERiSl

Office of Naval Research, Nonr-4102(01)
MAC-TR-58

b. PROJECT NO.

NR 048-189
c. 9b. OTHER REPORT NO(S) (Any other numbers that may be

assigned this report)
RR 003-09-01
d.

10. AVAi LA Bl LI TY I LlMI TAT ION NOTICES

This document has been approved for public release and sale;
its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentagon

Washington, D.C. 20301
13. A8STRACT

Constructing and maintaining a Time-Shared Computer System requires a controlled,
repeatable environment for making performance measurements. This thesis describes the
use of a small second computer to simulate the actions of multiple interactive users
over individual communication lines. Each simulated user exhibits responses similar
to those of a "normal" interactive user; these are recognized and verified by the
"Simulator". The Simulator also emulates a "think time" corresponding to a normal
user's think time between typing lines on the console. Text corresponding to a user's
console input, as well as control information regarding think time simulation and
verification of responses from the system being tested, are retrieved from prepared
scripts which have been pre-stored on the small computer's magnetic disc unit.

Although the programming package is capable of simulating up to 12 users, only
four are simulated here. The Simulator System is intended to be used to test the
M.I.T. CTSS and Multics time-shared computer systems. However, it is designed to
be adaptable for testing most time-shared computer systems having serial character
oriented input/output over conununications lines interfacing with 103A compatible

....d..at..a_aet"
14. KEY WOROS

Computers Multiple interactive users Simulators
Machine-aided cognition On-line computer systems Time-shared computers
i1ultiple-access computers Real-time computers Time-sharing

DD (M.l.T.) 1473 FORM
1 NOV 61 UNCLASSIFIED

Security Classification

