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ABSTRACT 

In any computer system primitive functions are needed to 
control the actions of processes in the system. This thesis 
discusses a set of six such process control primitives which 
are sufficient to solve many of the problems involved in 
parallel processing as well as in the efficient multiplexing 
of system resources among the many processes in a system. 
In particular, the thesis documents the work performed in 
implementing these primitives in a computer system, the 
Multics system, which is being developed at Project MAC of 
M.I.T. During the course of work that went into the 
implementation of these primitives, design problems were 
encountered which caused the overall design of the programs 
involved to go through two iterations before the performance 
of these programs was deemed acceptable. The thesis 
discusses the way the design of these programs evolved over 
the course of the work. 
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Implementing Multi-Process Primitives 
in a Multiplexed Computer System 

CHAPTER ONE 

Introduction 

A computer system is a vehicle in which various tasks 

or processes are executed. In all computer systems, at 

least two primitive process control functions exist. These 

are: 

1. The ability to create or introduce new processes. 

We will call this the process creation primitive. 

2. The ability to forceably halt the execution of a 

In 

process. This ability rests in some force or power 

outside the process (possibly in another process). 

We will call this the process destruction primitive. 

a sense these two functions are implemented 

implicitly in the hardware of the computer system. The 

first is implemented in the hardware that allows information 

to be input into a "cold" machine. The second is 

implemented by the existence of a switch to turn off the 

electric power. Clearly most computer systems provide more 

elaborate implementations of these primitives however sight 

should not be lost of the fact that their implementation is 

7 



8 INTRODUCTION 

inherent in the nature of a computer system. 

In addition to the above two primitives most 

for reasons of efficiency and convenience provide 

primitive function: 

systems 

a third 

3. The ability for a process to declare that it 

finished and ought to be terminated. We will 

this the suicide primitive. 

has 

call 

Many traditional computer operating systems are based 

on just these three primitive functions. Processes are 

begun using the process creation function and run until they 

either declare themselves finished (suicide function) or 

until someone or something decides that they should be 

terminated (process destruction). These three primitives in 

a system allow for the specification and implementation of 

serial (non parallel) computations in that system. 

J.H. Saltzer in his thesis, "Traffic Control in a 

Multiplexed Computer System", (reference number 1 in the 

bibliography) proposed four additional primitives, one of 

which includes the suicide primitive. They are: 

1. The block primitive which includes suicide. 

2. The wakeup primitive. 

3. The reschedule primitive (originally named restart 

by Saltzer). 
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4. The stop primitive (originally named quit by 

Saltzer). 

These four primitives make up what Saltzer calls the Process 

Exchange. 

The first of these, block, provides the ability for a 

process to declare itself unable to continue execution until 

some event has taken place. The wakeup primitive allows one 

process to signal another process about the occurrence of an 

event and thereby cause the return to execution of a blocked 

process. In a system without the wakeup primitive, block is 

synonomous with suicide. As Saltzer states, the block and 

wakeup functions are all that are necessary to solve the 

"intrinsic" problems associated with simple parallel 

processing. 

The third of these primitives, reschedule, is intended 

to help solve the problem of processor multiplexing among 

the many processes in a system. This primitive allows a 

process to schedule future execution after it has had its 

execution forceably pre-empted. This primitive coupled with 

the ability to force pre-emption of executing processes 

allows a system to share a limited number of hardware 

processors among many processes. 

The fourth of the Process Exchange 

allows one process to forceably halt 

primitives, stop, 

the execution of 

another process while leaving the halted process in 

state that continued execution is possible, 

discretion of the process that ordered the halt. 

such a 

at the 

Stop is 
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10 INTRODUCTION 

basically a refined or narrowed form of the process 

destruction primitive. One can think of using this 

primitive as part of the implementation of the process 

destruction primitive, however stop has additional uses. 

For example, one could imagine stopping a process in order 

to examine various data items to determine whether 

everything was in order. For this reason stop should be 

kept distinct from process destruction. 

The four Process Exchange primitives form a logical 

group distinct from the creation and destruction primitives 

in that the former functions deal only with actual processes 

(i.e., already created and not yet destroyed) and they 

therefore have no knowledge of how or why processes are 

created or destroyed. This allows us to discuss them more 

or less independently. 

Scope £!_ Thesis 

The existence of these six primitives in a system 

provide the capability to solve many of the problems 

involved with parallel processing and the efficient 

multiplexing of system resources among many processes. For 

the past several years work has been progressing, at Project 

MAC of M.I.T., on the design and implementation of a 

computer system in which these six process control 

primitives are available. The system is known as the 

"Multics" system (the name Multics being an acronym for 

~iplexed !nformation and fomputing ~ervice) . In such a 
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system the efficiency of the modules which implement the six 

primitives have a profound effect on the overall performance 

of the entire system. In a system such as the Multics 

system, in which segmentation and paging have been 

implemented, and which is designed to support many processes 

concurrently, primitives such as block and wakeup can be 

expected to be invoked many times per second. Also in a 

system supporting many processes, new processes can be 

expected to be created frequently while older ones are being 

constantly destroyed. Clearly the efficiency of the modules 

which implement these functions are of utmost importance to 

system performance. 

The thesis presented here covers the work involved in 

designing an effective implementation for the six primitives 

in Multics and in actually implementing them in the system. 

During the course of the work the implementation went 

through two iterations. The first implementation provided 

working versions of 

tests performed 

these primitives 

on these modules 

however performance 

showed them to be 

unacceptably slow in execution. With insight and lessons 

learned from working on this original implementation, ways 

were found to redesign the modules so that the second 

iteration of the implementation brought the performance of 

these modules into acceptable limits. The thesis report 

discusses the problems encountered in implementing the 

modules and shows how the implemented modules evolved over 

the course of the work. The discussion is divided into five 
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chapters (chapters 2 through 6). 

The first of these chapters (chapter 2) is an 

introduction and review of the concepts involved in the 

ideas of a two dimensional addressing scheme (segmentation) 

background for 

be found in 

bibliography 

and a large hierarchical file system. The 

the material presented in this chapter may 

several published papers listed in the 

(references 2, 3 1 and 4) and cited in the text. 

The second such chapter serves as a review and updating 

of the ideas involved in parallel processing and the 

multiplexing of hardware processors and primary addressable 

memory among many users. In major part this chapter is a 

review of the basic ideas presented in Saltzer' s thesis, 

however several new concepts are introduced as well. 

The next chapter (chapter 4) is a discussion of how the. 

current design and implementation of the Process Exchange 

primitives in Multics evolved. For reasons of efficiency 

and performance several changes have been made in the 

internal structure of the Process Exchange although the user 

interface to the facility remains as originally designed. 

The changes include changes to the dynamic • 1oading" scheme, 

whereby information necessary for a running process is 

brought into primary memory, and also the addition of 

specially tailored versions of the block and wakeup 

functions (named the !,!ll and notify functions respectively) 

to be used exclusively by the file system of Multics. The 

original block and wakeup remain as the user interface to 
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the Process Exchange. The wait and notify functions were 

originally file system functions which served as the file 

system interface to the Process Exchange. They were 

absorbed into the Process Exchange because of the high 

volume of traffic from the file system and the need for fast 

efficient processing of this traffic. 

problems involved 

It includes a 

Chapter five is a discussion of the 

in process creation and destruction. 

definition of a process (an address space 

stateword) and a discussion of how one goes 

and a 

about 

processor 

defining 

an address space that contains a minimum set of primitive 

functions needed by a new process so that it can continue to 

expand its address space by itself. Among this minimum set 

are the Process Exchange primitives, a "map" primitive that 

allows a process to add things to its address space and a 

"linker" primitive that allows a process to refer by name to 

addresses in its space or to names not currently in the 

address space. Included in this discussion is the 

presentation of how the process creation mechanism evolved 

during the implementation work. 

The sixth and final chapter of the thesis is a sununary 

which includes the results of performance analysis tests 

performed on the implemented programs and a discussion of 

the importance of these figures to overall Multics 

performance. Specifically, minimum standards of 

acceptability for the primitives are put forNard and the 

implemented primitives are compared to these standards to 
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ascertain whether their performance is acceptable. Also 

included in this chapter is a discussion of what was learned 

in the course of implementing these programs. In 

particular, the hypothesis is put forward that without a 

well structured theory of computer systems which allows one 

to design optimum systems from scratch, such design problems 

as were encountered here are more or less inevitable. 

CHAPTER '!WO 

Segmentation, Paging, and File Systems 

Segmentation and Paging 

Segmentation is a device to allow hardware processors, 

in a computer system, to look at addressable memory as if it 

were a matrix. Each row of such a matrix is known as a 

segment. The four primary motivations for segmentation are: 

1. Segmentation along with paging {as we shall see 

below) provide a simple way for a system to simulate 

the presence of a very large amount of primary 

addressable storage {i.e., in terms of current 

hardware, core storage) to user programs. 

2. Segmentation, by segregating address spaces into 

distinct units, offers a handy way to organize a 

hardware protection scheme so as to permit differing 

access attributes to different parts of an address 

space. For example, some segments in an address 



CHAPTER TWO 

Segmentation, Paging, and File Systems 

Segmentation and Paging 

Segmentation is a device to allow hardware processors, 

in a computer system, to look at addressable memory as if it 

were a matrix. Each row of such a matrix is known as a 

segment. The four primary motivations for segmentation are: 

1. Segmentation along with paging (as we shall see 

below) provide a simple way for a system to simulate 

the presence of a very large amount of primary 

addressable storage (i.e., in terms of current 

hardware, core storage) to user programs. 

2. Segmentation, by segregating address spaces into 

distinct units, offers a handy way to organize a 

hardware protection scheme so as to permit differing 

access attributes to different parts of an address 

space. For example, some segments in an address 

space can be marked as •read only• and in this way 

the segments can be protected from errors and/or 

maliciousness. 

15 



16 SEGMENTATION AND PAGING 

3. Segmentation also allows for the sharing of proce

dure and data segments between address spaces. 

4. Each segment of an address space may be individually 

expanded in length as storage needs change 

dynamically. This allows a user to expand data 

areas without relocating or overflowing other data 

areas. 

Addresses in a segmented environment are ordered 

of integers. The first element of such an ordered 

refers to the segment (i.e., which row of the matrix) 

pairs 

pair 

and 

the second element refers to the relative word number in 

that segment (i.e., which column in the row selected). For 

example, a valid address in such an environment would be the 

ordered pair (16,29) which would be interpreted as word 

number 29 of segment number 16. 

Segmentation can be implemented in several ways. On 

the General Electric 645 computer, on which the Multics 

system is being implemented, segmentation is implemented by 

special purpose hardware in each processor. This hardware 

allows a processor to look at a standard linear array of 

physical memory as if it were a matrix. 

use of an array of "descriptors", 

point to and "describe" the 

one 

segment. 

The scheme makes 

segment, which 

This array of 

All addresses 

are handled 

descriptors is known as a descriptor segment. 

(i.e., ordered pairs) generated by a processor 

in the following way. The segment number of the address is 
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used as an index into the descriptor segment (array of 

descriptors) to find the descriptor for the referenced 

segment. Part of this descriptor is a pointer to the base 

of the segment. In order to obtain the desired word of the 

segment, the word number part of the address is added to 

base this base address. The processor is able to find the 

of the descriptor segment because of a special 

register in the processor which points to the base 

purpose 

of the 

descriptor segment. This register is known as the 

~escriptor segment Base ~egister (DBR for short). 

The way in which the descriptors describe their 

segments is by containing information as to the length of 

the given segment, and its access (e.g., readable, or 

writeable, or executable, etc.). The descriptor may also 

indicate that the given segment is not currently in core 

memory. It is through this last trait that the system can 

simulate a large addressable memory. Only a few segments 

need be kept in core memory at any time. The descriptors of 

segments not in core indicate that they are absent from core 

and references to these missing segments cause the processor 

to recognize a fault condition upon reference to the 

corresponding descriptor word. Upon recognition of the 

fault condition the processor automatically branches to a 

"missing segment fault" handler subroutine which retrieves 

the missing segment, updates the segment's descriptor word 

and restarts the processor operation at the point of the 

fault. In this way, the user of the system, who doesn't see 
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this faulting mechanism, is allowed to see a huge 

addressable memory. Figure 1 shows a descriptor segment, 

pointed to by a DBR register and itself containing 

descriptors for several segments, some of which indicate the 

absence of the segments. Note that the descriptor segment 

may contain a descriptor for the descriptor segment itself, 

meaning that this segment may appear in the address space 

defined by the descriptor segment. 

The above implementation implies that a segment be 

assigned to a contiguous block in core memory. If the 

segments themselves are potentially large, this would mean 

having to allocate large contiguous blocks of memory to 

individual segments. Such a requirement might necessitate 

needless movel!W3nt of segments in core memory whenever new 

segments are brought into memory. A solution to this 

problem would be to break segments into smaller unif orrn 

sized blocks, called pages, and to force references to 

segments to be indirected through a second level "array of 

descriptors", called a page table. In this scheme, the 

descriptors for segments point to page tables for the 

segments rather than to the bases of the segments. The page 

tables then point at the individual pages of the segments. 

Figure 2 illustrates these ideas. Notice that here the 

descriptor segment is itself divided into pages and that the 

DBR register that was pointing to it in the previous figure 

now points to its page table. The above scheme requires 

only page tables to be stored in contiguous locations in 
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Descriptor Segment 
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not in core * 

descriptor for 
descriptor segment 

not in core * 

descriptor for 
segment A 
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descriptor for 
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segment A 

segment B 

segment C 

Figure 1. Implementation of segmentation 
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core memory, however since page tables are orders of 

magnitude smaller than segments this need not be a problem. 

Note also that page tables themselves, although instrumental 

in implementing the virtual memory, are not "in" the virtual 

memory and cannot be addressed directly, since they do not 

reside in any segment of the space. Just as descriptor 

words may indicate that a particular segment is not in core 

memory, page table words may indicate that a particular page 

is not in core. The absence of several pages is indicated 

in figure 2. 

For the reader interested in more background material 

on segmentation and paging, he is referred to 

The first is by J.B. Dennis of M.I.T. and 

two papers. 

is entitled 

"Segmentation and the Design of Multiprogrammed 

Systems". It was published in the Journal of the 

October 1965. The second paper is co-authored 

Computer 

ACM in 

by E.L. 

Glaser, formerly of M.I.T., and J.F. Couleur and G.A. Oliver 

of the General Electric Company. The paper is entitled 

"System Design of a Computer for Time Sharing Applications", 

and it was presented at the Fall Joint Computer Conference 

of 1965. These two papers are references 2 and 3 

respectively, in the bibliography that follows this thesis. 

Hierarchical File System 

By a file system we mean a mechanism by which we 

systematically keep track of blocks of data. In a typical 

file system, we might find entries for each logically 
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distinct block of information (file). The respective 

entries, and therefore, the files, are accessed by name. In 

such an entry we might record the physical location of the 

file, its length, a list of authorized users, etc. 

The simple file system provided a computation by a 

descriptor segment, which maintains an array of core memory 

addresses, does not suffice when it proves impossible to 

maintain all information in core. The file system which we 

briefly describe below is organized around a mechanism, 

knCMn as a directory, which in function, is very similar to 

a descriptor segment. A directory, which is itself a file 

in the system, maintains an array of entries which point to 

other files in the system. Some, all or none of the files 

pointed to by a directory may themselves be directories. 

Figure 3 illustrates the hierarchical structure of our 

file system. In the diagram, circles represent files which 

happen to be directories while rectangles represent 

non-directory files. The lines drawn between directories 

and the files represent the entries in the directories for 

the files. As can be seen, the file system has as its base, 

the directory at the top of the picture. This directory is 

known as the ~ directory. 

Within a single directory, all the entries (and 

therefore the associated files) have different names and the 

name of a file in the system is a combination of the name of 

the directory in which the file lives (the parent directory) 

and the file's entry name within this directory. The 
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A c 

Figure 3. Hierarchical File System 
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syntactic rule we will use to form names of the files will 

be to concatenate the name of the parent directory and that 

of the file, separating them by the special character " " • 
Therefore, the name of file "A" listed in directory "B" will 

be "BA". Similarly, the name of the parent directory is 

formed from the name of its parent and its entry name in its 

parent directory. Since all names within a directory are 

different, we then see each file in the entire system has a 

unique name made by combining the entry names of all the 

directories on the unique path from the root of the tree 

structured file system to the respective file. Such a name 

will be known as a "tree name". In the figure, the tree 

name of the file labeled "l" is "AB A". 

To the above file system we will add one additional 

feature. This feature is the ability to create a special 

entry in a directory (known as a link) which describes a 

file already contained in some directory (possibly the same 

one) in the system. A link serves as a shortcut to a 

located somewhere else in the hierarchy of files and 

to give the illusion that the file pointed at by the 

actually resides in the directory containg the link. 

can be implemented simply by having the directory 

file 

serves 

link 

Links 

entry 

corresponding to the link contain the complete name (e.g., 

tree name) of the file. 

The addition of links to the file system adds no new 

capabilities to the system, however it facilitates the ease 

with which the file system may be used. For example, it may 
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be desired to maintain the illusion that a particular file 

exists in a number of different directories. 

this possible without the cost of maintaining 

copies of the file. With links, we can see that 

Links make 

duplicate 

there may 

be several "paths" from the root directory to a particular 

file. It is desirable to have a name analogous to the tree 

name which includes links. Such a name will be known as a 

"pathname". 

Files and Segments 

The memory space defined by the hierarchical file 

system is the global memory space of the entire computer 

system and this space is always maintained by the 

The memory space defined by a descriptor segment 

system. 

in the 

computer system, is a subspace of the global space which is 

of interest to one or more computations (i.e., processes). 

It is a subspace in the sense that all of the data contained 

in it (that is addressable in it) can also be addressed 

directly in the global space, providing suitable pathnames 

are used. That is to say that the address space defined by 

a descriptor segment is formed by mapping several files into 

the segments of the space. For several reasons we will 

choose to map each distinct file into a distinct segment. 

These reasons include the fact that this simple mapping 

means that procedure files (segments) need not be 

"relocated" or "loaded" when mapped into segments. 
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To accomplish this mapping between files and segments, 

a data base is maintained for each descriptor segment 

defined address space in the system. This data base, known 

as the Known ~egment !able (KST) of the address space serves 

to record the correspondences made between files and 

segments in the address space. That is, the KST maintains 

information such as: file "X Y z" is mapped into segment 

#q. With such a data base available, it is clear that the 

KST serves as the principal piece of data at the time of a 

missing segment fault. 

Let us now look at the mechanisms by which files are 

mapped into segments and the mechanisms by which the 

mappings are kept track of. Let us assume that we wish to 

map the file with pathname "X Y Z" into our address space. 

To do this we need merely locate the file in secondary 

storage and assign an unused segment number to it. Locating 

the file in secondary storage amounts to searching its 

parent directory for the appropriate entry. However, to 

search this directory, the directory (itself a file in the 

hierarchy) must be mapped into a segment, if it had not been 

previously. Similarly the parent's parent must also be 

mapped into a segment. If the root directory is guaranteed 

to be a segment in the address space then the procedure has 

a finite end. Implicit in the above steps is that a record 

is being maintained in the KST that file "X" has been mapped 

into segment #i, file "X Y" has been mapped into segment #j, 

and file "X Y Z" has been mapped into segment #k. In this 
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way we will remember where to find segments (files) "X" and 

"X Y", when we want to map "X Y w" into our address space. 

Several things should be noticed about the information 

contained in the KST. The KST contains the names of each of 

the segments in the address space and the segment numbers by 

which they are addressed. In this way we can see that the 

KST effectively defines the address space. Also, the KST 

maintaining a correspondence between pathnames and segment 

numbers, defines exactly the same space that would be 

defined by a directory appended to the File System Hierarchy 

which contained a link for each segment in the space. 

Effectively the KST serves as such a directory and the 

analogue of a link name for a particular file is the 

associated segment number assigned when a file is mapped 

into the space. 

As was mentioned at the beginning of this section, one 

of the prime motivations for segmentation is the ease with 

which segments (files) can be shared between computations. 

This can be seen by the fact that the same file may be 

mapped into any number of address spaces in just the same 

way that many directories can have links to the same file. 

Segment and Page Faults 

In a manner analogous to the way an address space keeps 

track of its known segments, the system must keep track of 

which segments are currently active (i.e., have page tables 

in core memory). These records are kept in the Active 
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Segment !able (AST) which is a system wide table (i.e., it 

appears in each address space). Each activ~ segment has an 

AST entry and this entry effectively serves as the current 

up-to-date copy of this segment's directory entry. At the 

time of a missing page fault on a page of an active segment, 

its AST en try serves as the principal piece of data since 

this entry contains the information as to where the missing 

page is located in secondary storage. 

Now we can conceptually trace the sequence of events 

that occurs at the time of missing segment and pages faults. 

At the time of the missing segment fault the KST is scanned 

to determine which segment (file) was accessed. An AST 

entry is then established for the segment (if not already 

existent) and a page table consisting entirely of 

page faults is constructed. The descriptor word 

segment is then made to point to this page table. 

missing 

for this 

On any 

subsequent reference to the segment a missing page fault 

will be incurred which will make use of this AST entry to 

locate and bring into core the appropriate page. 

For the reader interested in reading further about the 

concepts involved in maintaining an hierarchical file 

system, a paper by R.c. Daley of M.I.T. and P.G. Neumann of 

the Bell Telephone Laboratories is recommended. The paper, 

"A General-Purpose File System for Secondary Storage", was 

presented at the Fall Joint Computer conference of 1965 and 

this paper is reference number 4 in the bibliography. 



CHAPTER THREE 

Processes and Traffic Control 

A process can be defined as an address space and a set 

of machine conditions (processor state). Intuitively we can 

think of a process as simply a program in execution (i.e., a 

program being executed by a processor). In our discussion 

the address space of a process is defined by a descriptor 

segment (which is in turn defined by a KST) and the 

processor state is the state of the processor executing the 

process. The machine conditions include, by definition, at 

least the value of a descriptor segment base register, an 

instruction pointer register and a current stack frame 

pointer (see below). They might also include the contents 

of accumulators, index registers, etc. There is no inherent 

reason to limit the number of processes executing in a 

single address space however throughout this thesis, in the 

interest of simplicity we will impose the limitation of one 

process to an address space. Of course many of the segments 

in any particular address space will be shared segments 

which appear in many or all other spaces. 

Along with shared segments each address space contains 

several per-process (or at least per address space) data 

segments. Among these are the previously mentioned KST and 

29 



30 PROCESSES AND TRAFFIC CONTROL 

one or more so-called "stack" segments. Stacks (call 

stacks, pushdown stacks, etc.) are areas in which procedures 

allocate blocks of space (frames) for the storage of 

temporary variables, contents of registers, and return 

points. Stacks are composed of frames which are threaded 

together. Each procedure of a program that has been entered 

(called) but has not yet returned has an associated stack 

frame which was allocated upon entry to the procedure. A 

pointer to the current stack frame is part of the processor 

state and the above mentioned threading mechanism allows one 

to locate "older" or previously allocated frames. The 

current stack frame and all previously allocated and still 

active stack frames comprise the relevant history of the 

process. In our discussion we will assume the existence of 

a system-wide table (i.e., a shared segment which appears in 

each and every address space) known as the Process Table 

which has an entry for each process. The contents of an 

entry in the Process Table include the identification of the 

process and various other data items, the need for which 

will be developed as we go along. 

Block and Wakeup 

As was mentioned above, a process is a program in 

execution. In most computing systems, in an attempt to 

achieve more efficient usage of system hardware, it is 

generally profitable to maintain more processes than 

processors. In particular most processes reach points in 
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their execution when they have no real need for a processor. 

For example, a process may have no need for a processor 

until an I/O operation is complete or a page is brought back 

to core, or perhaps until another process has completed a 

computation. In order to maintain the fiction of a process 

as always being in execution, Saltzer introduced the concept 

of a pseudo-processor which is the repositor of the 

processor state associated with a process. The 

pseudo-processor assigned to a process (there is a one to 

one relationship between pseudo-processors and processes) is 

"always executing" its process. When a process is actually 

in execution by a processor, its pseudo-processor state is 

contained in the state of the hardware processor. When a 

process stops running for a period of time its 

pseudo-processor state must be maintained until the next 

time the process executes. 

Granted that it is desirable to maintain more processes 

than processors a mechanism must be found for handling the 

orderly switching of processors between the processes of the 

system. The Traffic Controller (of which the Process 

Exchange is an important part) introduced by Saltzer, will 

serve as our model. In the following refer to figure 4 

(Program Structure of Simple Traffic Controller). 

As mentioned above, from time to time a running process 

(i.e., one currently in execution) decides that it has no 

further need of a processor for the time being. The process 

declares this by issuing a call to the system primitive 
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function known as block. The purpose of the call to block 

is to give the processor away to some 

can make effective use of it. In 

other process which 

order to be able to 

identify processes which can make use of a processor, a 

shared data base, known as the Ready List, is maintained 

which lists all the processes which currently desire the use 

of a processor. (The Ready List will be implemented by a 

thread running through the Process Table linking the entries 

of processes desiring a processor •. ) Subroutine 

called by block, makes the selection of a process 

getwork, 

from the 

Ready List and then itself calls subroutine swap-dbr. The 

purpose of swap-dbr is to record the state of the current 

pseudo-processor (i.e., the current state oJ the processor 

itself) and load into the processor the state of the 

pseudo-processor associated with the process chosen from the 

Ready List. (Note, that having saved the pseudo-processor 

state of the process which called block, we will be able to 

resume its execution at a later time.) Now with the 

processor executing the newly chosen process, we return to 

the point at which this process stopped executing some ago. 

A process that has given up a processor by calling block is 

said to be in the blocked state, while a process which is 

executing is said to be in the running state, and a process 

on the Ready List is said to be in the ready state. 

The only needed piece now, is a meChanism whereby a 

blocked process may become ready. This facility is provided 

by the system primitive known as wakeup. When a process 
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(process A for example) discovers some event that has 

occurred which is of interest to some other process (say 

process B) process A calls wakeup passing as an argument the 

process identification of process B. The function of wakeup 

is to place process B on the Ready List and redefine its 

execution state to the ready state, if process B is 

currently blocked. The current state of B (running, 

blocked, or ready) is maintained in the Process Table entry 

for B. 

The dynamic operation of a simple system containing the 

block and wakeup primitives can be visualized. Running. 

processes would execute until they reached points from which 

they could not immediately continue. They would call block 

to give CNay their processors to processes which were listed 

for them on the Ready List. Wakeup, when called on behalf 

of a blocked process would change the state of this process 

to the ready state and would append the process to the Ready 

List to await the appearance of a processor. Wakeup, when 

called on behalf of a running or a ready process would have 

no discernible effect. 

A potential race condition would exist if block and 

wakeup were implemented exactly as described above. 

Consider the case where process A decides to call block if a 

particular condition is not met. Process A tests the 

condition, finds it is not met and proceeds to call block. 

Before A reaches block, process B reverses the state of the 

condition that A was waiting for and calls wakeup for A. 
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Because A is running (on the way to calling block) the call 

to wakeup has no effect. A meanwhile reaches block gives 

away its processor possibly forever. 

This race condition can be resolved by having wakeup 

set on a switch or flag belonging to the process on whose 

behalf wakeup was called, no matter what state the process 

was in at the time of the call. If this had been the case 

in our example above, process A would have discovered the 

switch set on by process B's call to awaken A and A could 

have returned from block inunediately instead of giving away 

its processor. This per-process switch will be known as the 

"wakeup-waiting" switch and will be maintained in the 

Process Table entry of each process. 

Given this discussion we can present flow diagrams (see 

figure 5) for each of the subroutines discussed and 

understand their use and relationship. 

Time Sharing, Pre-emption and Reschedule 

In attempting to satisfy the processor requirements of 

a large number of processes in a system, it is necessary to 

have the ability to temporarily halt or interrupt the 

execution of a running process in order to give its 

processor to a more "worhty" process. This ability can be 

realized by using a hardware mechanism, an interrupt, and a 

software mechanism, an interrupt handling subroutine. The 

meaning of this interrupt to a running process will be that 

it has used up its current allotment of processor time and 
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that the process should prepare to give up control of the 

processor. This interrupt will be known as the timer-runout 

interrupt. 

The interrupt handling subroutine, known as reschedule, 

is similar in function to block, except that reschedule 

schedules future processor use for the process and places 

the process onto the Ready List directly, in addition to 

calling getwork to give away the processor. 

One can imagine the changes in execution state that a 

process might go through. A running process may go blocked 

waiting for I/O or it may go into the ready state because it 

ran out of time. Similarly, a blocked process may enter the 

ready state as a result of a call to wakeup and a ready 

process may enter the running state as a result of being 

chosen to run by subroutine getwork. 

Stop, Start and !stop 

The ability to forceably halt the execution of a 

possibly run away process is essential. This ability is 

provided by primitive stop. Subroutine stop, called with 

one argument, effectively for·ces the process identified by 

the argument to call (or appear to call) subroutine istop 

and thereby enter the stopped state. Once in this state the 

process is dormant. It does not execute and calls to wakeup 

for it have no effect. The only way to bring the process 

back to "life" is for come other process to call procedure 

start. !stop and start are very similar to block and wakeup 
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in function, differing only in the execution states with 

which they deal. Figure 6 gives a picture of process 

execution state transitions including the stopped state. 

The method by which subroutine stop actually brings a 

process to a halt, depends on the execution state of the 

process to be stopped, at the time of the call to stop. 

Stop operates by first turning on a flag in the Process 

Table entry of the process to be stopped (stop-pending flag) 

and then testing to see whether the process is currently 

running, ready, blocked or stopped. If the process is 

running, an interrupt is sent to the processor on which the 

process is executing. The interrupt will cause the process. 

to call istop. If the process is ready or blocked, stop 

redefines the state to stopped and (if necessary) removes it 

from the Ready List. If the process is stopped at the time 

of the call, clearly nothing need be done. The stop-pending 

flag is of use as a running process to be 

masked against stop interrupts. Figure 

diagrams of stop, start, and istop. 

Conditions and Events 

stopped may be 

7 contains flow 

As has been mentioned, the Traffic Controller 

primitives, block and wakeup, allow a process to relinquish 

a processor when the process cannot proceed with its 

execution. The reason that a process cannot proceed is that 

one or more "conditions" are not satisfied. An 

understanding of the concept of a "condition" and the 
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closely related idea of an "event" are useful when trying to 

understand the problems involved in implementing the Traffic 

Controller primitives. 

A condition is a discrete valued function of one or 

more variables. The variables which make up the domain of 

the condition are functions of time which makes the 

condition also a function of time. The value of the 

condition at a point in time is known as the state of the 

condition. The state of a condition can only change at 

discrete instances of time and the state of the condition 

remains constant in the intervals between these discrete 

instants. Finally, an event is said to occur whenever a 

condition changes state. 

An example of a condition is the function defined on a 

particular word of memory which is equal to zero whenever 

the word is equal to zero and equal to one otherwise. That 

is, if we denote the word by w and the condition by c, then: 

C(W) = 
0 if w = 0 

1 otherwise 

Whenever the value of C goes from one to zero or from zero 

to one, an event occurs. If the value of W changes without 

changing the value of c, (e.g., W goes from 3 to 4) no event 

for condition C occurs. However this change in the value of 

W might denote an event for some other condition defined on 

w. 

Another example of a condition is the condition defined 

to be equal to one whenever a particular page of a 
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particular segment is in core memory and zero otherwise. To 

be more precise, this condition is a function of the page 

table word for the page and is equal to one if the page 

table word indicates the page is in core and is equal to 

zero if the page table word contains a fault or if the page 

table word itself does not exist (segment not active). 

In general computations and processes are interested in 

the states of conditions and they are interested in events 

only in so far as the events indicate the current states of 

conditions. For example, given a condition that changes 

state (from zero to one) once and only 2!!£!. for all time, 

the fact that an event of the condition has occurred, tells 

us implicitly that the state of the condition for all time 

after the event has occurred is equal to one. Whereas, 

given a condition capable of chan9ing its state after each 

unit of time, the occurrence of an event does not insure the, 

future state of the condition for anything but one unit of 

time. Using the above examples we can divide the set of 

conditions into two classes: simple conditions those 

whose current states can be implied by a given observer from 

knowledge of a single event that has occurred in the past 

(not necessarily the last) and complex conditions those 

whose current states can only be ascertained by a given 

observer by explicit testing. A particular condition may be 

a simple one, to one observer, and very complex to another. 

It is possible to analyze conditions to see where this 

inherent property of simplicitly or complexity comes from. 
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Briefly, a condition is a simple condition to a particular 

observer if the observer is the only one who can control the 

state of the condition. If others can independently cause 

the condition to change state then the condition is complex 

to the observer. 

The Traffic Controller primitives block 

provide processes with the ability to wait 

occur and to communicate the occurrence 

and 

until 

of 

wakeup, 

events 

events. 

Processes wait for events to occur by calling block and they 

signal other processes that events have occurred by calling 

wakeup. A process calls block to wait for an event of a 

condition whenever the state of the condition is such that 

the process cannot proceed. The rationale behind this is 

that after an event has occurred, the condition is more 

likely to satisfied. Of course if the condition is a simple 

one, it will be satisfied after the event with certainty. 

As an example of the above ideas let us consider an 

algorithm that one might use in implementing a procedure 

that is used to interlock data. In a system making use of 

shared data bases, it is sometimes necessary to limit access 

to some of the data to one process at a time. This is done 

using so-called "interlocks". An interlock is a word (or a 

group of words) associated with a particular data base that 

serves as a flag to warn processes whether the shared data 

base is currently being accessed. By convention when the 

value of the interlock is non-zero, the data is being 

manipulated whereas when the value of the interlock is zero, 
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the data is not being accessed. A process locks the data 

base by storing a non-zero value into the lock, at a time 

when the lockword is equal to zero. This operation can be 

done if hardware is available which allows a processor to 

read the lockword and store into it if and only if the word 

is zero. By convention the non-zero value that a process 

stores in a lockword is its own process identification. 

After a process is finished with a data base, it stores a 

zero into the lockword, thereby opening the data base up to 

be used by others. The loc;ker procedure will be called with 

one argument: a pointer to the word serving as the lockword 

and the locker does not return until the lockword contains 

the value of the caller's process identification. From the 

point of view of the caller to the locker, the caller is not 

willing to proceed with the computation until the value of 

the lockword is equal to the process identification of the 

caller. We can define a condition that describes this 

situation. This condition is a function of the value of the 

lockword (denoted by Lin the following). We will name the 

condition F and define the function as follows: 

F(L) = 
1 if L = process-id of this process 

O otherwise 

This condition is a simple one since only this process will 

ever place this process identification into the lockword 

(i.e., set F(L) = 1) and then subsequently place a zero in 

the lockword (i.e., set F(L) = 0) after the data base is no 

longer needed. Before the call to the locker, the process 
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knows that the state of F is zero since the process 

executing in a serial fashion knows that it has not locked 

the data. Upon return from the locker, the process knows 

that the lockword has been locked and that F (L) = 1. Return 

from the locker can be considered the signalling of an event 

in th,e condition F to the caller of the locker. This 

condition is a simple to the caller, therefore it can 

determine the state of F. 

Inside the locker procedure condition F is of little 

interest. The locker is interested in storing the value of 

the caller's identification in the lockword if the current 

value of the lockword is zero. In other words, the locker 

'is' interested in the condition, G, defined on the lockword, 

L, ·in the following manner: 

G (L) :: 
l if L = 0 

O otherwise 

Condition G is a complex condition, to the caller, since 

other processes are capable of changing the state of G (by 

storing their process identifications in L, for example). 

Therefore the only way that the locker can be positive that 

the condition G prevails is to test it explicitly (by means 

of the special hardware described which will store into the 

lockword only if the word is zero before the store). 

Basically, the locker is programmed as a loop waiting for 

the lockword to go to zero whereupon the caller' 

identification will be stored and a return will be executed. 
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Instead of looping, more efficient use can be made of 

the processor by making use of the Traffic Controller 

primitives and giving the processor away whenever the locker 

finds the lockword already locked. That is, if a process 

executing in the locker finds the particular lockword locked 

to another process (state of condition G = 0) the former 

process should somehow pass its name (identification) to the 

latter process and then call block. After the latter 

process unlocks the data base (i.e., causes state of G = 1), 

it can pick up the list of all the process identifications 

passed to it (including that of the former process above) 

and call wakeup for each and every such process to signal 

them of the occurrence of the event in condition G. Upon 

return from block our original process will 

condition G and attempt to lock the lockword if 

again test 

it equals 

zero. If the lockword is again locked to someone else, we 

again pass the process identification to the current process 

which has the lock set and call block again. 

Another example of how conditions are defined and used 

is seen in the way I/O operations are usually handled. In 

the case of input, a buffer is assigned into which data will 

be read. Associated with the buffer is a flag that is set 

to zero before the input operation is begun and then set to 

one after the input operation is ended. The simple 

condition: 

I (F) = F 
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where F denotes the flag, is the condition that the 

waiting for the input is interested in. The process 

loop waiting waiting for condition I to change state 

47 

process 

could 

or it 

could block to wait for the event of I's changing state to 

occur. 

A third and final example of an interesting condition 

is the one associated with the residence in core of a page. 

Each time a processes accesses a page, it must explicitly 

test the condition by referring to the page indirectly 

through the page table word. The process (through its 

processor) may never take for granted the fact that the page 

is located at a particular place in memory. When a needed 

page is not in core, the process waits for an event to occur 

associated with the particular condition defined on the page 

table word, knowing that after at least one such event has 

occurred it is more likely that the page will be in core. 



CHAPTER FOUR 

Evolution of the Traffic Controller 

Hindsight shows that in designing the original 

implementation of the Traffic Controller several assumptions 

and policy decisions were made. These include: 

1. It is always "desirable" to allow processes to do as 

much as possible by themselves. That is, among 

other things, processes should "load" (the idea of a 

loaded process will be defined later) themselves and 

schedule themselves. 

2. The interlock strategy to be followed in the Traffic 

Controller would be to use numerous interlocks, 

rather than a single global interlock that limits 

access to the Traffic Controller to one process at a 

time. Such a strategy would permit numerous 

processes to execute in the Traffic Controller 

simultaneously and prevent the Traffic Controller 

from becoming a bottleneck. 

3. The user interface to the Traffic Controller (i.e., 

the block-wakeup primitives) should remain ignorant 

of the various "customers" of these primitives. 

This was done in an effort to remain modular. 

48 
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Performance analysis tests of the Multics system 

containing the original Traffic Controller showed that each 

of the above decisions was very costly for various reasons. 

As a result, a reworked implementation of the Traffic 

Controller was prepared and this second implementation was 

shown to be a marked improvement over the earlier version. 

Appendix I contains flow charts of the subroutines of the 

original implementation~ It is not necessary for the reader 

to understand each step of each program. Rather these flow 

charts are meant only as a basis of comparison for the flow 

charts of Appendix II wherein the final implementation is 

illustrated. The remainder of this chapter describes why 

the Traffic Controller evolved in this way. 

Original Traffic Controller Implementation 

The traffic Controller originally implemented was 

basically the one described in Saltzer's thesis. There was 

one major point of difference between them and the 

difference was motivated by a logical problem that is not 

mentioned in the thesis presentation. This problem is known 

as the "lost wakeup" problem and it arises from the fact 

that the block primitive has two distinct customers in 

Multics (the user program and the basic file system) and 

that the memory provided by the wakeup-waiting switch is not 

sufficient to keep these customers from interfering with 

each other. The wakeup-waiting switch, as defined by 

Saltzer, is capable of remembering whether any wakeups have 
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been received since the last (chronologically) call to block 

by a process. Since at any time while executing in user 

programs a process may experience missing page or segment 

faults which result in "concealed" calls to block, the last 

logical call to block by a process (i.e., the last time a 

user program called block) is not always equivalent 

last chronological call to block. An example will 

this point. 

to the 

clarify 

Suppose process "A" cannot proceed with its execution 

until condition X is met. A takes the following steps: 

1. Test if condition X is met. If yes go on to step 4. 

2. Call block since condition X has not been met. 

3. Go to step 1 to test again. 

4. Continue •. 

Suppose further that process A completes the test in 

step 1, finds that condition X is not met and proceeds to 

step 2. While executing step 2, (i.e., calling block) but 

before step 2 is complete, process A experiences a missing 

page fault that results in a call to block from within the 

missing page fault handling subroutine. Having called 

block, process A gives up its processor until some time 

after the next call to wakeup. However, in this case, 

suppose that two wakeups are received before process A 

resumes its computation: the wakeup signaling an event in 

condition X and the wakeup signaling the arrival of the 
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missing page. These two wakeups leave the wakeup-waiting 

switch~ however upon return to the caller of block (i.e., 

the page fault handler) the switch is turned off. Since the 

page has been retrieved, process A resumes its execution of 

step 2 above and completes the call to block. In this case 

block finds the wakeup-waiting switch off even though an 

event in condition X has been signaled. The reason is that 

the last logical call to block, which occurred before the 

execution of step 1, was not the last chronological call to 

block. 

The way that this problem was solved in the original 

implementation of the Traffic Controller involved two steps. 

First a wakeup-waiting count was substituted for the 

wakeup-waiting switch. Second, in addition to wakeup 

incrementing this count on each call, block was 

the ability to selectively increment the count 

also given 

in special 

cases. The change to wakeup was trivial, the count was 

incremented instead of the switch being turned 

change to block was more fundamental. Block was 

on. The 

provided 

with an argument that was used in the following way: 

1. Arg = 0. 

2. Test is condition is met. If yes go to step 5. 

3. Call block (Arg). 

4. Go to step 2. 



52 ORIGINAL IMPLEMENTATION 

5. Continue .•. 

Whenever block returned, the value of Arg was set equal 

to the value of the wakeup-waiting count prior to its being 

decremented by block. If a process returned from block and 

upon testing the condition in step 2 found it had still not 

been met the recall to block would transmit a non-zero value 

of Arg to block. Block would notice this and interpret this 

to mean that a caller to block received a return when in 

fact its condition had not been met. Therefore the 

wakeup-waiting count should be incremented by 1, in 

not to lose track of the wakeup that was decremented by 

incorrect return from block. After having incremented 

order 

the 

the 

count the value of the count is compared to the value of Arg 

(which ~ the value of the count at the time of the last 

logical call to block). If the count is greater than Arg, 

wakeups have been received since the last logical call to 

block and return should be immediate whereas if the count is 

equal to Arg, no wakeups have been received since the last 

logical call and the process should give the processor away. 

Other known solutions to the lost wakeup problem exist. 

One such solution would, in fact, allow the block primitive 

to be implemented in exactly the way described by Saltzer. 

This solution, however, would force some users of the 

block-wakeup facility to exercise the facility in a slightly 

different way than has been previously stated. Specifically 

all those procedures, using block which might be invoked 

because of a fault condition (e.g., the missing page fault 
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handler) would be required to turn on the wakeup-waiting 

switch, explicitly, after each successful return from block. 

That is, such procedures would be required to use the 

following algorithm to go blocked. 

1. Test if condition is met. If yes go to step 4. 

2. Call block. 

3. Go to step 1. 

4. Turn ~ wakeup-waiting switch and continue. 

Use of this algorithm would solve the lost wakeup 

problem because concealed calls to block would always result 

in the wakeup-waiting switch being left on. This algorithm 

would also mean that many returns from block would be in 

cases where wakeups had not been received, but rather that 

page faults occurred between two logical uses of block. 

One other difference between the Traffic Controller 

described by Saltzer and the original implementation is that 

the implemented one had an elaborate interlocking mechanism 

which allowed any number of processes to be executing in the 

Traffic Controller simultaneously. This meant that several 

intermediate execution states 

and 

(i.e., 

stopped 

in addition 

states) had ready, running, blocked, 

defined and detectable. An example of such a state 

to the 

to be 

is the 

state that occurs after a process defines itself to be ready 

(in reschedule) but before it can give away the processor in 

swap-dbr. Another such state occurs after a ready process 



54 ORIGINAL IMPLEMENTATION 

has been chosen to run (by some other process executing in 

getwork) but before it is actually given control of a 

processor. In the flowcharts presented in Appendix I the 

reader sees all the logical complication introduced by this 

strategy. (It is not necessary to understand the 

interlocking mechanism for one to continue reading and 

therefore the reader is advised not to laboriously pore over 

these flow charts to gain such an understanding.) 

A 

A further point should be mentioned before 

loaded process is defined as one that 

proceeding. 

has enough 

information in core memory so that the process can be given 

a processor. Operationally in Multics, this means the 

process has, in core storage, a descriptor segment and also 

another segment known as the Process Data ~egrnent (PDS) 

which contains a special stack (known as the concealed 

stack). This stack is only used, by a process, when 

executing procedures which cannot tolerate page faults. An 

example of such a procedure is the page fault handler 

procedure. The strategy, with regard to unloaded processes, 

adopted in the original Traffic Controller was that 

processes were to "load themselves". That is, when called 

upon to switch to an unloaded process, an interim descriptor 

segment and an interim PDS were created for the unloaded 

process and this process was switched to and made to use 

these interim segments. The process was forced to branch to 

subroutines (process bootstrap module) which recreated the 

original descriptor segment and retrieved the original PDS 
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to core storage. Having thereby loaded itself the process 

then switched from its interim segments to its actual 

segments and discarded the interim versions. 

This approach to the problem of loading processes 

actually solves the problem not by allowing the process to 

load itself, but rather by effectively creating a new 

process manifested by the interim segments, which accomplish 

the loading. This new process however executes in the 

address space of the unloaded process. 

Finally, one may notice references in the flow charts 

of Appendix I to programs not mentioned previously in the 

text. All of these programs are ones which disappear from 

the second implementation. They include ready-him (see 

figure I.10) which implemented the ability to switch to a 

process' address space in order that the process schedule 

itself at the time the process was awakened; setup-proc 

(and unsetup-proc) used to create (and destroy) an interim 

process; and ready-ds (and unready-ds) used to create (and 

destroy) an interim descriptor segment for a blocked, 

unloaded process that was awakened. 

Reworking the Original Implementation 

The performance of the original implementation of the 

Traffic Controller in action was analyzed and found to be 

deficient in several ways. In the first case it was too 

slow in execution. In the second case, the size of the 

programs (which were required to be permanently resident in 
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core storage) was large. Several 

improvements were incorporated in the 

the Traffic Controller which 

logically 

second 

independent 

iteration of 

improved performance 

substantially. However since these improvements are 

logically independent they are presented as if they were 

implemented in a serial manner, one by one, instead of all 

at once. This allows us to discuss them independently and 

to understand the motivations behind each of the changes. 

Interlocking Changes 

From just a casual perusal of the flow charts in 

Appendix I, one can see that a large portion of each flow 

chart is devoted to implementing the complicated interlock 

strategy. In point of fact, more than 30 per cent of the 

machine instructions in the original Traffic Controller were 

there for this purpose alone. For this reason and for 

several others, a simple strategy was incorporated into the 

second implementation. The simplified scheme works as 

follows. Only one processor is ever allowed to execute in 

the Traffic Controller at any one time. This is 

accomplished by the use of a single global interlock. Since 

a processor can be forced to attempt to call subroutine 

wakeup by the receipt of an external interrupt to the 

processor, all interrupts must be masked by the processor 

executin% inside the Traffic Controller to prevent a 

processor from looping forever on a lock that it had set 

itself. The scheme is implemented by providing code at each 
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external entry into the Traffic Controller, whereby the 

processor masks itself and then attempts to lock the global 

interlock. If the interlock is already locked, the 

processor loops, waiting for it to become available. Use of 

this strategy does away with the need to worry about 

intermediate execution states of processes, since these 

states are now invisible behind the global interlock. 

As was mentioned above, there are several valid reasons 

for abandoning the complex interlock strategy. The first 

one is that the complex strategy costs alot and buys little. 

The only gain experienced from this strategy is that the 

Traffic Controller is prevented from being a bottleneck that 

processors continually bang into. A paper presented to the 

national conference of the Association for Computing 

Machinery in August of 1968, by Stuart Madnick (reference 

number 5), discusses this problem of processor time wasted 

in looping on global interlocks. Madnick's conclusions show 

that in a system with a small number of processors (e.g., 

five or less) the probability of encountering a locked 

interlock is roughly proportional to the number of 

processors in the system and to the fraction of time that a 

processor spends executing such interlocked code, compared 

to total execution time. That is, if processors on average 

spend two per cent of their time executing such interlocked 

code and if the system contains three processors, then 

approximately six per cent of the time a processor will 

encounter such an interlock locked. Since the Multics 
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system currently contains only two processors (and can never 

have more than seven due to hardware limitations) it seems 

as though the Traffic Controller even with a global 

interlock, is in no danger of becoming a bottleneck. 

Secondly, use of the complex scheme means that extra code is 

executed on each pass through the Traffic Controller. As 

stated above, approximately 30 per cent of the original code 

was devoted to implementing the complex strategy. Since 

there are no loops to speak of, in these programs, we can 

assume that the average running time of Traffic Controller 

programs was increased by approximately 30 per cent as a 

result of the extra code. The simple strategy tends to 

increase the average running time of the Traffic Controller 

by locking out processors for periods of time, however as 

stated above, until we introduce a large number of 

processors into the system, this increase in average running 

time does not approach this 30 per cent figure. Therefore 

the only possible motivation for the complex scheme is not 

justified in our case. 

The second major problem with the complex scheme is in 

maintaining it. Even minor changes to Traffic Controller 

modules mean that the interlock strategy would have to be 

scrutinized to assure that no bugs had been introduced. 

Because of the complexity of the scheme, such scrutinization 

is difficult and would effectively rule out changes to the 

Traffic Controller once it was "completely debugged". 
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Surrnnarizing these reasons, we see that the original 

scheme suffered from: 

1. Wasted space devoted to instructions realizing the 

complex interlock strategy. 

2. Wasted time spent executing the above instructions. 

3. Difficulty in maintaining and debugging this scheme. 

4. No real need for such a scheme. 

Changes in Wakeup Scheme 

In the flow charts of Appendix I presented for 

subroutine wakeup and ready-him, we see that calls to wakeup 

for blocked processes result in a processor switch to the 

address space of the blocked process in order to call the 

scheduler in that address space. The original motivation 

for such a strategy was that each process could potentially 

have its own scheduler procedure and that such a scheduler 

could most sensibly make any decisions necessary in the 

address space of the process. For example, private data 

bases of that address space could be used in 

decisions. However, the decisions that must 

arriving 

be made 

at 

in 

awakening a blocked process (such as where in the Ready List 

the process should be inserted, what priority, etc.) need 

not be made at the time of the call to wakeup. They can be 

made at the time that the process puts itself into the 

blocked state and the data can be left in a shared data 
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base. Then at the time of the wakeup no decisions need be 

made. The process need merely be placed on the Ready List 

at the point indicated by the data left behind. In this way 

the work (and the expense) associated with switching address 

spaces at the time of wakeups can be dispensed with. 

This revised strategy brings savings in two ways. 

First two subroutines disappear: ready-him and ready-4s. 

Second, the time spent in awakening blocked processes 

(particularly unloaded ones) is decreased. This revision 

meant minor changes to block and wakeup. In block this 

revision-amounts to computing the priority to be given the 

process when it is awakened. The criteria for making this 

decision will be ignored for the present. In wakeup the 

change amounts to having wakeup directly place the awakened 

process on the Ready List at the appropriate place. 

Changes to Loading Scheme 

The next major logical change to the Traffic Controller 

comes in the area of loading processes. in the original 

implementation, unloaded processes loaded themselves when 

they were chosen to run by subroutine getwork. The process 

choosing the unloaded process to run had to provide the 

unloaded process with an interim descriptor segment and an 

interim PDS in order for the unloaded process to be able to 

load itself. That is, the choosing process had to 

effectively create a new process that would perform the work 

of loading the unloaded process. In addition, the unloaded 
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process, once switched to, had to choose a candidate for 

unloading (i.e., a loaded process to be unloaded) if by 

loading itself, the number of loaded processes would cross a 

threshold. This scheme had several drawbacks. 

1. Some of the procedures involved in process loading 

were required to be always resident in core because 

these procedures were called directly by the Traffic 

Controller at a time when page faults could not be 

tolerated. These procedures included the file 

system procedures which prepared the interim 

segments and discarded them after use (setup-proc 

and unsetup-proc) . 

2. During the execution of process loading, the loading 

process ties up twice as much core storage as does 

an ordinary process. It has two descriptor segments 

(interim and real) and it has two PDS segments 

(interim and real). 

3. The above solution for the loading problem means 

that loading decisions be made during execution of 

the Traffic Controller, in getwork and swap-dbr 

specifically. In a Traffic Controller using a 

global interlock strategy, serious bottleneck 

situations could develop if such decisions involved 

much computation. 
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Once it is observed that the above loading scheme 

effectively creates (and later destroys) a new process for 

each loading operation, a more efficient solution to the 

problem immediately comes to mind. Why not provide a system 

process dedicated to loading and unloading other processes? 

The revised Traffic Controller makes use of such a special 

system process devoted to loading and 

This special process, referred to as 

unloading processes. 

the "loader-daemon" 

process, spends its life executing in a loop. Whenever the 

loader-daemon is awakened, this process peruses the Traffic 

Controller data bases, makes decisions as to whom to load 

and unload and actually performs the loading and unloading. 

The loader-daemon then calls block before perusing the data 

bases again. The mechanism whereby the loader-daemon is 

periodically awakened and the actual algorithms whereby the 

loading decisions are made will be ignored for now and will 

be presented in a later section. 

revised loading scheme to the 

The consequences 

modules of the 

of the 

Traffic 

Controller are manifested in the immense simplification to 

subroutine swap-dbr. 

Block-Wakeup Facility Environment 

The block-wakeup primitives provide the capability 

whereby one process can signal a second process about the 

occurrence of an event of a condition that this second 

process is interested in. 

provided before such a 

The extra mechanism that must be 

facility becor.1es useful is the 
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mechanism whereby this second process can inform the first 

process that it is interested in the condition. for 

example, suppose process A goes blocked waiting for a 

missing page to be returned to core storage. When the I/O 

request for the page has been completed, some other process 

will notice this event and must be able to ascertain that 

process A must be awakened. 

To handle the communication problem between processes 

executing in the file system, a module, known as the Process 

~ait and ~otify (PWN) module, was designed. This facility 

allowed processes to post messages to all other processes. 

Sample messages might say in effect: "Process A is waiting 

for page X". The facility was organized around a data base 

known as the Process Wait Table {PWT) . The PWT was required 

to remain in core at all times. 

Basically the PWN facility maintained a finite number 

of lists in the PWT. The number of lists was a system 

constant. The lists were referred to by the numbers 1, 2, 

... , N where N is the number of lists. Each element on a 

list was conceptually 

facility operated in the 

a process 

following 

identification. The 

way. Each possible 

condition of interest in the file system was associated by 

convention with one list. Several different conditions 

might all be associated with the same list but one condition 

could not be associated with several lists. When a process 

decided to go blocked to wait for a condition to be met, the 

process merely allocated an entry in the PWT, wrote its 
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process identification into this entry and threaded the 

entry onto the list associated with the condition. The 

process then called block to give away the processor. When 

a process noticed the occurrence of an event of a condition 

it would pick up the entire list associated with the 

condition and call wakeup for each process on the list and 

deal locate all the entries on the list. 

The PWN facility offered its users four entry points: 

addevent, delevent, wait, and notify. Addevent allowed a 

process to allocate an entry and to thread the entry onto a 

particular list. Delevent allowed a process to unthread 

itself from a list and deallocate its entry. Wait allowed a 

process to check that it was still on a given list. If the 

process was still on the list wait called block. If not, 

wait returned. Notify allowed a process to pick up an 

entire list, call wakeup for each process on the list and· 

unthread the entries from the list. 

These entries were exercised in the following way. A 

process desiring to wait for condition X would: 

1. Test to see if X was met. If yes go to step 7. 

2. If X was not met, call addevent(X) to thread the 

process onto the list associated with condition X. 

3. Test X again. (The reason for the retest is that an 

event of X may have occurred after step 1 but before 

step 2.) If yes, go to step 6. 
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4. If retest fails, call wait(X). This may result in a 

call to block. 

5. Upon return from wait go to step 1. 

6. Control comes here only from step 3. In this case 

call delevent(X) to unthread process from list. 

7. Control comes here from steps 1 or 

case, X has been met so the 

continues. 

6. In 

process 

either 

merely 

The above described PWN facility was implemented in 

Multics and was found to be exceedingly inefficient in 

operation. In studying ways to improve the performance of 

this critical module, a redesign of the inner workings of 

the PWN module was put forward which essentially 

incorporated the PWN facility into the Traffic Controller. 

The implementation of this new package has improved the PWN 

performance by about a factor of ten. 

The decisions that led to the redesign of the PWN 

module were made after several facts became clear. 

1. If the PWN entry wait is only executed while the 

Traffic Controller global interlock is on, then wait 

need not call subroutine block to give away its 

processor, it can call getwork directly. 

2. Similarly if entry point notify is only executed 

while the global lock is on then it need not call 
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wakeup for each process on a list, 

put the waiting processes on 

directly. 

it need merely 

the Ready List 

3. The time spent allocating and deallocating entries 

in the old PWT was almost compleLely unnecessary due 

to a combination of two factors. First, processes 

in the file system never wait for more than one 

thing at a time. Therefore, a process never needs 

more then one entry in the PWT at any one time. 

Second, a table already exists (permanently in core) 

which has one entry per process: the Process Table. 

If the lists previously in the PWT, were instead 

implemented as threads running through the Process 

Table then a considerable savings could be affected. 

Space would be saved as the PWT would become 

obsolete and time would be saved as the need for 

allocation and deallocation of entries would no 

longer be necessary. 

4. If wait is altered so that it no longer calls block, 

then block can be simplified. Recall that it was 

only because of file system use 

that the "lost wakeup" problem 

block can now return to the 

proposed by Saltzer. 

Given these 

of the 

arose. 

simple 

primitive 

Therefore, 

subroutine 

performance, the PWN 

Traffic Controller. 

insights 

facility 

into how to improve 

was incorporated into 

PWN 

the 
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Design of New PWN Facility 

The intent in redesigning the PWN facility was to 

essentially preserve the original PWN interface but to 

provide a more efficient implementation for it. 

The redesigned implementation is still organized around 

the idea of a finite number (N) of lists or threads. The 

method adopted for implementing these lists is the creation 

of a table known as the Active Thread Table (ATT). Each 

such thread has an entry in the ATT. An ATT entry consists 

of two pieces of data: a single bit wnich indicates whether 

the associated thread is active (bit = 1) or inactive (bit = 

0) and a pointer which is only valid if the thread is active 

and which then points to the Process Table entry of the 

first process threaded on the list. If a thread is active 

and no processes are as yet on the thread, the value of the 

pointer is that of a null pointer. The ATT entries each 

occupy a single word of core storage so that the entire 

storage requirements for the ATT is N words. 

The four PWN subroutines in redesign, turn out to be 

very simple affairs. In fact one of them, delevent, simply 

disappears and becomes an alternate entry for notify. All 

of the subroutines are called with one argument: the "name" 

of the condition. A name is assigned to a particular 

condition by conventions honored 

interested in the particular condition. 

by the procedures 

Condition names 
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need not be unique (i.e., two distinct conditions could have 

the same name) however, all references to any particular 

condition must use the same name. Each condition name is 

automatically associated with a particular thread by a 

simple mapping scheme used by each of the PWN subroutines. 

Subroutine addevent is the simplest of all. The 

function of this subroutine is simply to "activate" the 

thread associated with the condition named by the argument 

to addevent. That is, addevent associates 

with a thread by mapping the condition name 

into one of the integers between 1 and N. 

the condition 

passed 

Then 

to it 

addevent 

simply turns on the bit item in the ATT entry associated 

with the chosen thread. If this thread was active before 

the call to addevent, then addevent has no discernible 

effect. Subroutine addevent is used in exactly the same way 

in which the old subroutine named addevent was used. That 

is, it is called in step 2 of the table presented earlier. 

Subroutine wait is called when a process desires to 

give up the processor because a particular condition has not 

yet been satisfied. The actions of wait are also simple. 

If the thread associated with the condition passed to wait 

is active, then wait threads the calling process onto this 

list and calls getwork to give away the processor. If, on 

the other hand, the associated thread is inactive, then wait 

immediately returns to its caller. Since a process calls 

wait only after explicitly calling addevent, this thread can 

only be inactive if an event of the condition has been 
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notified after the call to addevent but before the call to 

wait. 

Subroutine notify is called when a process notices the 

occurrence of an event of a condition. The results of a 

call to notify are that the associated thread is left 

inactive and each process previously listed on that thread 

are put onto the Ready List. Notify accomplishes this in a 

straight forward way. Upon entry, the ATT entry associated 

with the thread is picked up and its value is saved, while 

the ATT entry itself is reset to the inactive state. That 

is, the bit is set to zero and the pointer is set to the 

null value. Then the saved contents of the ATT 

examined. If previously the thread was active 

entry 

then 

are 

the 

pointer points to the head of a list of processes. The last 

process on this list has a null pointer to indicate the end 

of the list. Therefore, notify simply goes down the list 

putting each successive process on the Ready list until a 

null pointer is encountered. If the thread was inactive 

before the call to notify then notify has no tangible 

effect. If the thread was active but its list was empty, 

notify will leave the thread inactive. 

Subroutine delevent, in the old scheme, was the inverse 

of the old addevent. A strict inverse of the new addevent 

would deactivate an ATT entry if its associated thread were 

empty and have no effect otherwise. From the above we can 

see that notify performs as an inverse to addevent if the 

list is empty, but if it is not empty then notify does more. 
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Because of a three way race condition that exists, we can 

show that the extra computation performed by notify is 

necessary to prevent a process from possibly placing itself 

on a list for an indefinite length of time. An example that 

illustrates this race condition makes use of two distinct 

conditions, X and Y, which both are associated with the same 

list, L, and four processes, A, B, C, and D. Suppose 

process A is interested in awaiting the occurrence of an 

event of condition X, process B is interested in the 

occurrence of an event of condition Y; process C notices the 

occurrence of an event of condition X; and process D notices 

the occurrence of an event of condition Y. Suppose further 

that the sequence of actions occur in the following order: 

1. A calls addevent(X) prior to waiting for X to be 

satisfied. This call results in thread L being 

activated. A then tests and finds X has not yet 

been satisfied. 

2. C calls notify(X) to signal the occurrence of an 

event of x. This call results in deactivation of 

thread L. 

3. D calls notify(Y) to signal the occurrence of an 

event of Y. This call has no effect. 

4. B calls addevent(Y) prior to waiting for Y to be 

satisfied. This call results in thread L being 

activated. B then tests and finds condition Y is 
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satisfied. Therefore, B will not call to wait for 

Y. 

5. A calls wait(X). Since thread Lis not active (from 

step 4) this call results in A threading itself onto 

thread L. 

6. B calls delevent(Y) to undo what it did in step 4. 

If delevent were a simple inverse of addevent, it 

would discover thread L active and with a non-empty 

list. But consider process A on this list waiting 

for an event of X which has already been signaled. 

If B leaves this list as is, then A will stay on 

this list until some process calls notify to signal 

an event of a condition which accidentally happens 

to be associated with list L. Therefore, B must 

place A on the Ready List and deactivate the thread. 

In other words we see that delevent and notify have 

the same function and should be merged. The reason 

that this race condition did not come up in the old 

PWN was that in the environment a process could 

have several entries in the PWT and be on several 

lists concurrently. In that scheme the addevent of 

step 1 above would have created a new entry for 

process A on thread L which would have been explic

itly deleted by the notify of step 2. 

As was stated above, this new implementation of the PWN 

facility solves the lost wakeup· problem. However, a 
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skeptical reader might object that this is not clear. At 

first glance the lost wakeup problem might appear to have 

been replaced by a "lost notify" problem. That is a process 

can now get a fault on the way to calling subroutine wait 

and the fault handler may itself call wait. However, such 

is not the case as can be seen after careful analysis. As 

was stated previously, the old lost wakeup problem could 

have been solved by having all file system users of block, 

explicitly turn on the wakeup-waiting switch after a 

successful interaction with block. This is in effect the 

way the "lost notify" problem is solved. We can show that 

in effect, the single bit data items in each ATT entry serve 

as wakeup (or notify) waiting switches. However, they 

differ from the actual wakeup-waiting switches in two ways. 

First, they do not belong to individual processes but rather 

they are shared among all processes. Second, we will say 

that such a switch is on when its contents are zero and that 

it is off when its contents are one. Then we can 

reinterpret the actions taken by a process about to call 

wait for condition X in the following manner. 

1. The process calls addevent(X). This results in the 

associated thread being activated. That is the bit 

associated with the thread is turned on. In our 

re-interpretation we say that the system wide 

notify-waiting switch associated with this condition 

is explicitly turned off by this action. 
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2. The process calls wait{X). If the thread is still 

active the process puts itself on the list and calls 

getwork. Re-interpreting, if the system wide 

notify-waiting switch associated with this condition 

is still off then give the processor away. On the 

other hand if the thread is inactive wait 

immediately returns which can be re-interpreted to 

mean that the system wide notify-waiting switch is 

on and therefore wait returns. Notice that wait 

leaves this notify-waiting switch on {bit = 0) when 

it returns, therefore, we get the effect of leaving 

such a switch on after successful interaction by 

default rather than by explicit action. 

3. Calls to notify deactivate threads which can be seen 

as turning on notify-waiting switches. 

Since these subroutine effectively 

solution to the lost wakeup problem, we see 

problem exists. 

Loading and Unloading of Processes 

implement 

that no 

this 

such 

Until this point, the mechanism whereby processes are 

loaded and unloaded has only been alluded to. With the 

description of this last piece, the entire logical structure 

of the Traffic Controller will have been presented. 

In many phases of human endeavor one seems to function 

at levels substantially below one's capacity when one 
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attempts to function above this capacity. 

statements (although not proved theorems) can be made 

Similar 

about 

computing systems. That is, if you attempt to do more work 

then the system is intrinsically capable of performing, you 

will wind up accomplishing less than the system is capable 

of. A qualitative example drawn from the Multics system 

should clarify this. Suppose that in a typical system we 

have lOOK of core storage available for user processes. 

Further suppose that on average, a process needs about 25K 

of core storage for its own needs. This storage is used for 

procedures, private data segments, etc. If the system 

attempts to multiplex the hardware resources between eight 

processes at a time, then it is clear that a considerable 

amount of system capability will be expended by processes 

trying to keep their own pages in core by removing pages 

belonging to other processes. It is important that the 

loading-unloading scheme we use be capable of preventing 

such wasteful thrashing. 

With this brief introduction we are able to present the 

three independent groups of processes on which the Multics 

loading scheme is based. The first is the group of 

processes listed on the Ready List which is a list of those 

processes which want to execute. It is not necessarily the 

list of processes that the system is willing to run, but 

merely those wishing to run. This distinction is important. 

The second group is the group of loaded processes. The 

processes in this group are capable of running if given a 
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processor, in that they have enough information in core 

storage to be able to handle all fault conditions (e.g., 

missing page faults, etc.). Although all loaded processes 

are capable of running, only those concurrently on the Ready 

List actually wish to run. The third group is called the 

eligible group and consists of those processes that the 

system is actually willing to run at any one time. That is, 

a system wide limit is set on the number of processes that 

the system is willing to multiplex between at any one time. 

The factors entering into the setting of this parameter 

include the amount of core storage available to the system 

and the average amount needed by a typical process. The 

algorithm used in subroutine getwork whereby it chooses 

processes to run can be seen to be simply: choose the first 

process on the Ready List which is also loaded and eligible. 

There is always at least one such process on the Ready List 

due to the existence of so called "idle" processes, one per 

processor in the system, which serve to soak up excess 

processor capacity when no other customers are available. 

The task of the loader-daemon process can now also be stated 

briefly. Its task is simply to keep all eligible processes 

in the loaded state. This of course may involve unloading 

previously eligible processes which have lost their 

eligibility. 

The scheme is simple and works in the following way. A 

running process upon giving away its processor decides 

whether or not to give away its eligibility. If it does so 
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decide, then this retiring process bestows its forsaken 

eligibility upon the most "worthy" process in the system. 

By definition, the most worthy process is the first process 

on the Ready List which is not eligible. If by chance, this 

newly eligible process is not currently loaded, then the 

retiring process informs the loader-daemon process of this 

by waking it up. It is the task of the loader-daemon, upon 

awakening, to determine that an eligible process needs 

loading and then to load it. 

Given this definition of most worthy, one small problem 

crops up. What happens if no such worthy process exists at 

the time eligibility is forsaken because all ready processes 

are already eligible? This is a problem since, a previously 

blocked process which has lost its eligibility may at any 

moment appear on the Ready List and be entitled to -

eligibility which is available. The problem is solved by 

having all subroutines which add processes to the Ready 

List, such as wakeup, compare the number of currently 

eligible processes to the maximum permitted number of 

eligible processes whenever a process is added to the Ready 

List. If the current number is less than the maximum number 

(this implies all ready processes are eligible) and if the 

process being added to the Ready List is ineligible, then 

eligibility is automatically conferred upon this process, 

since by definition it is the most worthy (in fact the only 

process on the Ready list not eligible). If this process is 

unloaded, then a wakeup is sent to the loader-daemon process 

and it will load this newly eligible process. 
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The only piece not yet presented is the algorithm 

whereby processes give up their eligibility. If the call to 

give away the processor originated because the process has 

used up its allotted time quantum or if the process called 

to block itself, then the process gives away its 

eligibility. Calls to subroutine wait are always performed 

by a process executing in the file system. The process is 

executing in the file system because of a deliberate call to 

a file system primitive, or because of 

fault. In the first case it is not 

a page or segment 

wise to take the 

process' eligibility away in that the process may have one 

or more system wide interlocks locked. In the second ~ase 

it is not wise to remove its eligibility because then the 

process, whose page will be in core in a very short time, 

would not be able to execute when its page or segment is 

brought back to core storage. The alternative to this 

policy would lead to a thrashing situation. Stated simply 

then, calls to reschedule and block result in loss of 

eligibility while calls to wait do not. Of course, calls to 

reschedule and block by the loader-daemon and the idle 

processes do not result in loss of eligibility since these 

special processes are guaranteed to be eligible always. 

Operationally these processes can be identified by a flag in 

their respective Process Data Segments. The flag, known as 

the special-process flag is examined on each trip through 

reschedule and block. If its value is zero this indicates 



78 LOADING AND UNLOADING 

The caller is an ordinary process which should relinquish 

its eligibility. If the flag's value is one however then 

this indicates the caller is a special process which should 

retain its eligibility. 

Some people might protest that the above criteria for 

giving up eligibility might lead to needless thrashing in 

certain instances. For example, suppose we have a process 

which is reading (or writing) records from (onto) a tape. 

This process blocks itself and is awakened very 

due to the high volume of I/O being transmitted. 

frequently 

One might 

think that with the above criteria, this process is liable 

to be unloaded after each call to block. However, if the 

maximum number of loaded processes exceeds the maximum 

number of eligible processes, such need not be the case, 

since in this case, a process will probably not be unloaded 

unless it were blocked for some length of time. As soon as 

the process was awakened it would be likely to regain its 

eligibility inunediately. 

In the implementation of this scheme the state of a 

process as to whether it is loaded, unloaded, eligible, or 

ineligible is defined by the value of a variable maintained 

in the Process Table of the process. The variable, known as 

the runability-state variable, can take on values between 

one and four. They are interpreted as follows: 

1. Variable equals one means that the process is 

unloaded and ineligible. 



LOADING AND UNLOADING 79 

2. Variable 

unloaded 

equals 

but 

two means 

eligible. 

that the process is 

This state prevails 

immediately after an unloaded process has been 

granted eligibility but before it has been loaded. 

3. Variable equals three 

loaded but ineligible. 

means that the process 

This state occurs after 

is 

a 

process gives up its eligibility. 

4. Variable equals four means that the process is both 

loaded and eligible. 

In subroutine getwork the choice of a process is made 

by looking for the first process on the Ready list whose 

runability state is equal to four. The length of such a 

search tends to be short since processes in this state are 

usually near the top of the Ready List. Candidates for 

unloading can be found through use of the Blocked List, 

which lists all blocked processes in the order in which they 

went blocked (oldest blocked process last) , and the Ready 

List. One merely scans the Blocked List backwards to find 

the oldest blocked loaded process. If no such process is 

found, then one scans the Ready List backwards to find the 

lowest priority loaded, ineligible process. Candidates for 

unloading are needed whenever the total number of loaded 

processes is equal to the maximum number and eligibility has 

just been granted to an unloaded process. 

least one loaded process is ineligible 

At such a time at 

since clearly the 

maximum number of loaded processes is at least as great as 



80 LOADING AND UNLOADING 

the maximum number of eligible processes and the only reason 

that eligibility has been conferred on an unloaded process 

is because some previously eligible process has just given 

it up. 

How one chooses the maximum numbers of loaded and 

eligible processes permitted is an interesting question. At 

present these are constants set at the time the system is 

initialized and little thought has been given as to 

algorithms whereby they might vary dynamically during system 

operation. 

Block and Scheduling 

As was mentioned previously, the decision to forego 

scheduling at the time of a call to wakeup meant that some 

form of scheduling occurs in block. To understand the 

following discussion it is important to know the structure 

of .the Ready List. 

The Ready List is actually an ordered collection of 

lists, known as queues, strung together. The queues are 

numbered from 1 to N, where N is the number of queues. Each 

process maintains two data items in its Process Data 

Segment: the number of the highest queue which it is 

allowed to be in and the number of the lowest queue which it 

is allowed to be in. For example, an idle process has both 

of these data items set to N, the lowest queue, since this 

process is supposed to permanently occupy the bottom of the 

Ready List. On the hand, the loader-daemon has both of 
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these items set to 1 to indicate that when ready, this 

process always has high priority. User processes might be 

expected to have these set to 2 and N-1. Associated with 

each queue is a time limit, which is the amount of time a 

process is allowed to remain at that level. At the end of a 

time limit a process goes down one queue level until it 

reaches its lowest level where it remains. If something 

known as an "interaction" occurs however, a process is moved 

back to its highest level from wherever it was. A process 

maintains its current queue level in its Process Table 

entry. At the time of a call to wakeup for a blocked 

process, it is this queue in the Ready List, onto which the 

process is entered. At the time of a call to block, it is 

possible to tell whether an interaction has occurred and 

therefore, whether the process queue level should be set to 

the highest level. This information is passed to block via 

an argument, known as the interaction switch, from the 

·caller to block. It should be mentioned that all calls to 

block are filtered through a supervisor program known as the 

"wait coordinator". It is this supervisor program, not the 

user program, which makes the determination as to whether an 

interaction has occurred. 

This then concludes our discussion of the 

implementation of the Traffic Controller. As mentioned 

previously, the flow diagrams of each of the Traffic 

Controller subroutines as well as the flow diagram of the 

driver program executed by the loader-daemon are presented 
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in Appendix II. These flow charts represent the completely 

evolved Traffic Controller as implemented ana working. 



CHAPTER FIVE 

Process Creation and Destruction 

Introduction 

As has been stated previously, a process may be defined 

as the combination of an address space and a set of 

processor conditions. Creating a process (assuming one 

process per address) means creating both these pieces, of 

which the creation of the address space is by far the more 

formidable task. Destroying a process means destroying 

these pieces plus all the no longer needed segments (files) 

that the process created in its lifetime. As was the case 

with the Traffic Controller, the process creation 

implementation has gone through a major revision to improve 

its performance. An understanding of the problems involved 

in process creation in Multics demands at least some 

familiarity with several parts of the Multics system. In 

particular, the reader should have some knowledge of how the 

"dynamic linking" mechanism of Multics works. For a 

detailed description of this mechanism, the reader is 

directed to a paper by R.C. Daley and J.B. Dennis of M.I.T. 

entitled, "Virtual Memory, Processes, and Sharing in 

Multics", which was presented to the Symposium on Operating 

System Principles held in Gatlinburg, Tennessee in October 

83 
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of 1967. The symposium was sponsored by the Association for 

Computing Machinery. This paper is reference 6 in the 

bibliography. We present here a brief review of the 

subject. 

Intersegment Linkage in Multics 

In Multics each program is divided into two distinct 

segments: a "pure" segment and an "impure" segment. 

pure segment, known as the "text" segment, is that part 

the program which never needs to be modified. That is, 

text segment once produced (by compiler or assembler) 

The 

of 

the 

need 

never be modified during execution. On the other hand, the 

impure segment, known as the "linkage" segment, contains all 

those pieces of the program which may have to mo<iified. 

during execution of the program. For example all external 

references to points in other programs are made indirectly 

through pointer variables maintained in the linkage segment. 

Since the addresses of external points cannot be determined 

at compilation or assembly, the values of these pointers 

must be determined at execution. The values stored in these 

pointers at compilation time contain bit patterns such that, 

a processor attempting to use them as indirect addresses 

will experience a fault condition. Such a fault will cause 

a processor trap to a subroutine designed to deal with the 

situation. During execution of the program one processor 

register (known as register Lp, linkage pointer) is assumed 

to be pointing at the linkage segment. In this way the text 
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segment can reference the linkage segment directly without 

use of modifiable storage. Generally, the text 

appreciably larger than the linkage segment and 

segment contains all the logic of the program. 

segment is 

the former 

Operationally, this mechanism can be (and is, in 

r-1ul ti cs) used in two ways. 

section can be left as at 

The set of pointers in a linkage 

compile time, to be modified 

dynamically as the program is executed. That is, a 

particular pointer variable's value can be allowed to remain 

the bit pattern that causes a processor fault, until the 

time of the first attempted access of the pointer during 

execution of the program. At that time a specially designed 

linkage fault handler can determine the address to which to 

direct the pointer variable and resume the faulted 

computation at the point at which the fault occurred. On 

the other hand, these potential linkage faults in linkage 

segments could be turned into valid pointers prior to 

execution time in an operation analogous to "loading" in a 

conventional computer system. This first method of 

satisfying intersegment references will be referred to as 

"dynamic linking" while the latter will be known as 

"pre-linking". 

Generally, shared segments appearing in several address 

spaces need not occupy the same relative locations in the 

various address spaces. That is, they need not have the 

same segment number in each space. For this reason the set 

of addresses maintained in a linkage segment are valid as 
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addresses only for one address space. Therefore, when a 

text segment is shared between two or more address spaces, 

it (usually) implies that the associated linkage segment is 

not shared between these spaces but rather each space has 

its own modifiable copy of this segment. In this way each 

address space maintains its own set of external addresses 

needed by the text segment and valid for that address space. 

Address Spaces in Multics 

As mentioned in chapter 2, an address space is defined 

by the Known Segment Table contained in that address space. 

However, since a considerable portion of the Multics 

supervisor (known collectively as the hardcore supervisor to 

distinguish it from the rest of the supervisor) is required 

to appear in each address space, it would be very wasteful 

to require each KST to have separate identical copies of KST 

entries for each hardcore supervisor segment. For this 

reason another table has been prepared. This table, known 

as the Hardcore Segment Table (HST), defines the space 

occupied by the segments which comprise the hardcore 

supervisor. The HST, which is a shared segment, effectively 

serves as the "front end" of each KST and the union of the 

two serve to define an address space. The HST is 

constructed at the time the Multics system is ini~ialized, 

and in many ways the function of the entire system 

initialization mechanism is simply the construction of this 

table. Constructed at the same time as the HST, is the 
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"template descriptor segment" which describes that 
f • 

portion 

of the space defined by the HST, that always remains in core 

storage. Since the segments described by the template 

descriptor segment always remain in core, the addresses 

appearing in this descriptor segment (which were computed at 

system initialization time) remain valid all the time the 

system is on the air. 

During the initialization of the Multics system, 

several primitive functions are needed including some sort 

of "linker" primitive. Since it is not desirable to design 

the dynamic linkage handling module as a single monolithic 

program without any external references, it is necessary to 

have a pre-linking ability available to the system 

initialization procedures. To satisfy this need, a simple 

table driven pre-linker has been designed which makes no 

external references. This pre-linker is driven by a table 

that describes a group of segments. The pre-linker is 

capable of finding and satisfying each external reference 

from one segment in the group to another in the group. It 

does this by scanning each linkage segment in the group, 

searching for potential linkage faults. With this primitive 

it is possible to pre-link all intersegment references in 

the hardcore supervisor of Multics at system initialization 

and since this portion of the supervisor as a whole is 

especially designed to have no references to. any segments 

outside this hardcore group, all external references in each 

linkage segment of the hardcore supervisor are satisfied at 
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system initialization time. Since all intersegment 

references between hardcore supervisor segments are 

pre-linked at system initialization time, the linkage 

segments included in the hardcore supervisor are not 

modified during actual system operation. Further, since the 

space defined by the HST is a proper subset of each address 

space in the system the relative addresses of points in the 

hardcore supervisor are identical in each address space. 

This means that the linkage segments contained in the 

hardcore supervisor can be shared among all processes. 

Given such an environment, no dynamic linking capability is· 

needed at system initialization time. For this reason and 

for others that will be discussed below, the dynamic linking 

module was not originally included in the hardcore 

supervisor of Multics. This decision meant that each newly 

created process in the system, which desired to execute 

outside the hardcore supervisor, had to initialize the 

dynamic linking mechanism in its own address space. This 

initialization amounted to the pre-linking of the dynamic 

linker in the new address spaces. 

Basic Process Creation 

Because a fledgling address space is defined by the 

HST, the creation of an address space for a process is a 

relatively simple matter. The only thing that needs be done 

is to create three private data bases which the process will 

need before it will be able to execute. These data bases 
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are: 

1. An empty KST which the process will use to expand 

its address space. 

2. A Process Data Segment (PDS) that is guaranteed to 

be completely resident in core storage whenever the 

process is running. This segment contains a data 

area which holds information such as the process 

identification, etc., and it also contains the 

process concealed stack, which is used whenever 

supervisor programs which cannot afford to take 

missing page faults are executed by the process. 

The data items in the data area of the PDS are ones 

that are occasionally accessed by procedures 

incapable of accepting missing page faults. 

3. A Process £efinitions ~egment (PDF) which is similar 

in structure to the PDS in that it contains a data 

area and a stack. The difference between these 

segments is that the PDF is not required to remain 

in core storage at all times that the process is 

running. What is required is that this segment 

remain active, which, as was mentioned in chapter 2, 

effectively means the page table for this segment 

remains in core at all times the process is running. 

The stack maintained in the PDF is used to process 

faults, such as the missing segment fault, which can 

tolerate missing page faults in their handling. 
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Having created these three segments and a directory 

segment in which they reside, the process directory, one has 

provided all the ingredients of a minimal address space. If 

the process were loaded, the process could now operate in 

the limited space defined by the HST. The descriptor 

segment that would be provided this new process would simply 

be a copy of the previously mentioned template descriptor 

segment. The other part of process creation is to create a 

set of processor conditions. Recall that in our earlier 

discussion of processor multiplexing, we found that the task 

of subroutine swap-dbr was to save the processor state of 

one process and to restore that of the one being switched 

to. What is required is to produce a set of conditions that 

make it appear to swap-dbr, that a newly created process has 

issued a call to swap-dbr in the past and saved the 

appropriate data. This can be done by concocting a stack 

history of a call to swap-dbr and putting this history into 

the concealed stack of the newly created process. 

The major work involved in accomplishing this task is 

done at system initialization time when a "template-PDS" 

segment is synthesized. This segment contains a stack 

history that purports to show of a call to swap-dbr from a 

procedure known as init-proc. At the creation of a new 

process, all that needs be done is to copy the contents of 

this template-PDS into the PDS of the new process. In this 

way the processor state of a new process is synthesized. 
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Given that we can now create processes at will, a 

mechanism is needed so that newly created processes can be 

directed to the task for which they were created. This is 

accomplished in Multics, by creating an additional segment 

for the new process known as the Process Initiation Table 

(PIT). The PIT contains the name of a procedure that the 

new process should call, after it begins its execution, plus 

any data which this procedure will need. Through the use of 

this mechanism, a new process can be started off in any 

desired direction. 

One last issue will conclude our discussion of basic 

process creation. That is, the new process needs an 

ordinary, paged, call stack on which it will execute 

ordinary procedures. The creation of this stack segment can 

be deferred until the time of process initialization (i.e., 

until the process reaches init-proc). 

We can now briefly outline the steps that are taken in 

creating a process and in initializing it. First to create 

it: 

1. Create a process directory. 

2. Create a PIT in this directory, which contains the 

name of a procedure that the new process should call 

upon finishing its initialization. 

3. Create an empty KST in the new process directory. 
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4. Create a PDS with a stack history purporting to shOl.\f 

of a call to swap-dbr from init-proc. Also 

initialize data items in this segment such as the 

process identification. 

5. Create a PDF segment with initialized data items. 

6. Add an entry for the new process to the Process 

Table and call wakeup for the new process. 

At some point in the future, the new process will be 

loaded, by the loader-daemon, and will begin execution. In 

order for it to initialize itself it must: 

1. Return from swap-dbr to init-proc. 

2. Create an ordinary stack segment in its Ol.\fn process 

directory, and begin to use it. 

3. Map the created PIT into the new address space. 

4. Decode the data in the PIT and call to the procedure 

named. 

Process Destruction 

The aim of process destruction is the elimination of 

all traces of a process from the system. This task is made 

simple in Multics by the existence of the special directory 

maintained for the process, the process directory, into 

which all per process segments are placed. During the 

lifetime of a process all the per process data segments such 
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as copies of linkage segments, stack segments, etc., are 

created in this directory. At the time of process 

destruction all the pieces can be found in this one place. 

In order to destroy the process it must be in a dormant 

state. Therefore, the first thing to do is to call 

subroutine stop, specifying the appropriate process. Since 

the effect of a call to stop does not necessarily take place 

instantaneously, the caller to stop must be able to 

determine when the process to be destroyed has actually been 

stopped. This ability is provided by a status subroutine in 

the Traffic Controller. This subroutine returns the 

execution state and the runability state as arguments. By 

defining a condition that a process stopping itself 

notifies, a process trying to stop another can call 

subroutine wait to wait for its target to stop itself. 

Process destruction is then seen to be simple. We call 

stop to bring the process to rest and then we wait until it 

is stopped. Then we remove the process from the Process 

Table and delete all the segments listed in its process 

directory. Finally we delete the directory itself. 

nynamic Linking in ~ Processes 

Any process in the syste~ desiring to execute outside 

the bounds of the hardcore supervisor must possess a dynamic 

linking ability in its address space. Since all external 

references within the hardcore supervisor are pre-linked no 

such capability is needed if a process never leaves this 



94 DYNAMIC LINKING IN NEW PROCESSES 

region. This capability can be provided in one of two 

distinct ways. 

The first way in which this can be accomplished would 

be to take advantage of the pre-linking capability available 

in the hardcore supervisor. That is, a new process 

initializing itself could make use of the pre-linker 

residing in the hardcore supervisor to pre-link the dynamic 

linking modules within the- address space of the process. 

The second way in which this problem can be solved 

would be to move the dynamic linking modules into the 

hardcore supervisor, although they are not required to be 

there. Such a move would mean that a pre-linked dynamic 

linking module would be contained in the space defined by 

the HST and it therefore would need no special treatment at 

the time of process initialization. A process merely by 

being handed a minimal address space would be capable of 

dynamically linking itself. 

Both of these mutually exclusive approaches have 

advantages as well as disadvantages. The first approach has 

the advantage that since each process pre-links its own 

dynamic linker module, it is possible to provide separate 

processes with different versions of the dynamic linking 

module. Such a policy would allow one to "checkout" a new 

linker module in one process while not affecting the other 

users of the system. However, this approach has one 

distinct disadvantage in that the cost of creating processes 

(more properly initializing processes) is made that much 
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higher by the expense of repetitively pre-linking a dynamic 

linker in each new address space. The second approach, 

obviously reverses these two conditions. That is, process 

creation with the second scheme is fairly cheap in that not 

rauch need be done. However, use of this scheme means that 

all processes are forced to use the same dynamic linker 

module and that routine changes to it become that much more 

difficult to debug. 

One of the major policy decisions 

planning and design of the Multics system 

made 

was 

during 

to try 

limit the number of programs required to reside in 

the 

to 

the 

hardcore supervisor. Two informal 

operationally adopted in order to judge where 

module belonged. These two criteria were: 

criteria were 

a particular 

1. A module belonged in the hardcore supervisor if the 

effect of the module executing in one address space 

could possibly be felt in all other address spaces. 

That is a module (if operating incorrectly) capable 

of "clobbering" the system belonged in the hardcore 

supervisor. An ordinary supervisor module only 

capable of clobbering the process in which it was 

executing was not to be included. 

2. Since the hardcore supervisor was not to have any 

external references to points outside its domain, 

any primitive functions needed by the other hardcore 

modules were to be available in the hardcore. 
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Since the dynamic linker module satisfied neither of 

these criteria, the original implementation of the process 

creation module was organized around the concept of per 

process pre-linking of the dynamic linker. Such a decision 

rneant that additional logic beyond that presented in the 

section on Basic Process Creation, is needed in both the 

creation and initialization of processes. On the creation 

side the logical addition amounts to the preparation of a 

table, the pre-linker driving table, that will be used to 

drive the pre-linker in the newly created process. 

table contains a list of all segments involved in 

linking in order that all intersegment 

them may be pre-linked. In order to 

references 

provide 

such a 

dynamic 

between 

different 

linkers to distinct processes, distinct driving tables would 

be provided. On the initialization side, the logical 

addition amounts to the execution of the pre-linker. The 

pre-linker, in its execution, makes two passes over the 

driving table; the first to map each named segment into the 

space and the second to locate and scan each linkage segment 

listed in the table, in order to find external references. 

The above described process creation and initialization 

package was implemented in Multics and its performance was 

analyzed. From data gathered in experiments, it was 

determined that more than 75 per cent of the execution time 

spent in this module was directly attributable to the 

approach taken to the dynamic linking problem. With this 

result in hand, a decision was made to re-implement the 



DYNAMIC LINKING IN NEW PROCESSES 97 

module organizing it around the idea of the dynamic linker 

residing in the hardcore supervisor. This was done and very 

favorable results were realized from this move. 

The above few paragraphs tend to leave the reader with 

a poor idea of how the process creation module evolved in 

the Multics system. The ideas presented here have been 

organized in the order of their logical importance, not 

necessarily in the order in which 

developed. For example, one might feel 

they were actually 

after reading the 

section on Basic Process Creation and 

paragraphs outlining the problems of dynamic 

the subsequent 

linking, that 

the designer and implementer of the process creation module 

had all these facts and observations at hand. In point of 

fact the designer of the module was faced with a fairly 

rigid environment, before he began his task, which included 

the fact that the dynamic linker module was outside the 

hardcore supervisor. His task at that point was to design 

and implement a module that would conform to this 

environment. It was only after the original package was 

implemented and analyzed that the basic structure of the 

problem was understood and the basic inefficiency of the 

original approach was fully appreciated. Armed with the 

above observations, gleaned from the experience gained in 

working on the original design and implementation, the 

second approach seemed to be the logical way to implement 

the facility. 



CHAPTER SIX 

Analysis, SumJ!lary and Conclusions 

During the course of work documented in this thesis, 

several performance analysis tests were made on the Multics 

system to determine how well various parts of the system 

performed. Tests were made on the Traffic Controller as 

well as on the Process Creation Mechanism. 

Traffic Controller - Before 

A simple test was devised to meter the amount of time 

spent in executing the Traffic Controller primitives. A few 

extra instructions were added at the entry and exit points 

and the amount of time spent between these points was read 

from a clock. At the time of the first implementation of 

the Traffic Controller, tests were made on the block, wakeup 

and reschedule subroutines and they indicated that it took 

approximately: 

1. Six milliseconds for a processor to enter block in 

one process and return from the Traffic Controller 

in the process which was switched to. 

2. Six milliseconds for a process to enter reschedule 

and return from the Traffic Controller in a new 

process. 

98 
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3. Four milliseconds to wakeup a blocked process that 

was loaded and approximately 315 milliseconds to 

wakeup an unloaded, blocked process. 

Since the Process Wait and Notify subroutines 

(addevent, wait and notify) were not included in the 

original Traffic Controller, they were not tested in this 

way. However, other metering tests performed on the system 

as a whole, give an indication of how well the old PWN 

facility operated. The specific test involved here was to 

allow the system to operate in a normal way, but to 

interrupt its execution every ten milliseconds to determine 

exactly which subroutine was then being executed. In this 

way one could determine where the system was spending its 

time. This test was designed so that one could selectively 

meter certain parts of the system. For example, it was 

possible to meter, in this way, only during the time the 

system spent in handling missing page faults. As a result 

of just such a test it was determined that approximately 

fifteen milliseconds were spent, per page fault, executing 

in the old PWN facility. Figures are not available that 

would make it possible to determine how 

milliseconds was distributed over the 

this fifteen 

separate PWN 

subroutines, however, in general, each page fault generates 

one call to addevent, one call to notify and one call to 

wait. Since calls to wait usually result in calls to block 

and calls to notify usually result in calls to wakeup, one 

should add the tiMe spent in these two subroutines to find 
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the total cost of the old PWN facility. 

about 25 milliseconds. 

This result is 

Traffic Controller - After 

With the new implementation came a retesting of the 

subroutines. This time the PWN subroutines were tested by 

making specific clock readings. The results follow: 

l. Time to block (i.e., to block self, choose a 

successor, switch to him and return to where he 

blocked himself): approximately 1.4 milliseconds. 

2. Time spent in a complete trip through reschedule 

until the successor process returns from the Traffic 

Controller: approximately 1.5 milliseconds. 

3. Time to wakeup a blocked process (whether loaded or 

not): approximately o.9 milliseconds. 

4. Time to wait for something (i.e., put self in 

waiting state on a thread, choose a successor 

process, switch to him and return to where he called 

the Traffic Controller): approximately 1.3 

milliseconds. 

s. Time to wait for nothing (i.e., wait for a condition 

that has already been notified): approximately 0.23 

milliseconds. 

6. Time to notify a condition for which one process is 

waiting: approximately 0.34 milliseconds. 
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7. Time to notify a condition for which no one is 

waiting: approximately 0.23 milliseconds. 

8. Time to activate a thread (i.e., call addevent): 

approximately 0.23 milliseconds. 

The above results (before and after) are summarized in 

the following table. 

Nature of test Before After 

Blocking time 6.0 ms 1.4 ms 

Reschedule time 6.0 ms 1.5 ms 

Wakeup time (loaded) 4.0 ms 0.9 ms 

Wakeup time (unloaded) 315.0 ms 0.9 ms 

Block-wakeup time 10.0 ms 2.3 ms 

Wait (for something) not available 1.3 ms 

Wait (for nothing) " " 0.23 ms 

Notify (something) " II 0.34 ms 

Notify (nothing) " " 0.23 ms 

Addevent " " 0.23 ms 

Addevent-wait-notify 25.0 ms 
(with old block-wakeup) 

1. 87 ms 
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Process Creation - Before and After 

A simple test was performed on the system in which the 

original process creation module was implemented. A clock 

was turned on just before a new process was created and not 

turned off until after the initialization of this process 

was completed. The test revealed several interesting 

things: 

1. The total time to create, load and initialize the 

new process was more than 3 minutes and 50 seconds. 

2. During the course of this test, the system serviced 

1251 missing page faults and 489 missing segment 

faults. At that time in system development, 

primitive page and segment fault handlers were each 

taking on the order of about 100 millisecond~ to 

service their respective faults. 

minutes and 50 seconds was 

activities. 

Therefore, about 2 

spent in these 

The above observations indicated that process creation, 

loading and initailization took about one minute. This was 

confirmed when more effective page and segment fault 

handlers were installed in the system. With no change in 

the process creation strategy, the above tasks were roughly 

observed to take on the order of about two minutes: a 100 

per cent improvement. 
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The new process creation module which implements the 

linker module in the hardcore supervisor has been installed 

and very preliminary observations indicate that process 

creation and initialization now take on the order of a very 

few seconds. Further tests will be performed in the future, 

but it appears that the new implementation has substantially 

improved the performance of this task. 

Targets 

At this point in the discussion it is appropriate to 

explore the meaning of the above results. For example, how 

important to system performance is it that the wait-notify 

time is reduced to about 1.8 milliseconds from about 25 

milliseconds? Or how important is the efficiency of the 

process creation module to the user of the system? 

The Multics system is dedicated to multiplexing system 

resources among many user processes in an efficient way so 

that these resources are used effectively to the maximum 

possible degree. For this reason, system philosophy 

dictates that a process should give away its processor when 

waiting for a page to be retrieved from secondary storage. 

On the current hardware on which the system is 

the drum (i.e., one of the devices from which 

implemented, 

pages come 

into core), for example, has a rotation speed which is about 

34 milliseconds. Therefore the average time to wait for a 

page from this device is about 17 

original implementation of the 

milliseconds. In 

Traffic Controller, 

the 

the 
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wait-notify-block-wakeup time was about 25 milliseconds. 

That is, it took about 25 milliseconds for a process, to 

give its processor away and to be subsequently restored to 

the running state, after waiting for a page. In other 

words, in such an environment it would have been more 

economical to simply loop waiting for a page, rather than to 

be fancy and attempt to maximize processor usage. Given 

these figures, it is clear that the wait-notify time must be 

a small fraction of the drum rotation time before an attempt 

to multiprogram while awaiting pages becomes justified. The 

current figure of approximately 1.8 milliseconds clearly 

makes such multiprogramming profitalle. The processor can 

be used on average for more than 15 milliseconds of the 

expected drum wait, presuming eligible processes are 

available and willing to run. 

In regards to targets for the performance of other 

primitives of the Traffic Controller, the arguments are not 

as imperative. Since wait and notify are the most heavily 

exercised, their performance is of utmost importance. But 

the fact that all the other Traffic Controller primitives 

have comparable performance figures means that clearly their 

performance is in the acceptable range. 

A target for the process creation operation is harder 

to arrive at. This operation, although exercised less 

frequently than the above primitives, is directly initiated 

in most cases, by human users of the system, who demand 

fairly quick responses to such requests. Although the new 
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mechanism has just been integrated into the system and not 

much experience has been gained with it, it is believed that 

the actual computation needs of the new process creation 

package do not exceed one second of processor time, and 

further that the response time to such operations (which is 

greater than computation time due to page waits, etc.) can 

be brought down to the range of several seconds. These 

predictions are made from analysis and knowledge of the code 

contained in this package, and the steps needed to perform 

the tasks, rather than from actual analysis of performance 

figures which are not yet available. 

Conclusions 

After having found acceptable solutions 

problems at hand, one asks oneself why it took so 

for the 

long to 

arrive at these solutions and was there anyway to have aone 

it more quickly? One might further ask if the arrived at 

solutions are in any sense optimum? 

After being involved in designing a large system 

involving the work of many people, one gets the feeling that 

such problems as were encountered here are bound to crop up. 

The development of any large system can only remain 

manageable if distinct parts of the system remain modular 

and independent. It was in such a modular, independent 

atmosphere that the Traffic.Controller and the PWN facility 

were originally designed, by separate groups of people. As 

a result, independent, but parallel structures were 
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established in each domain. It was only after one stepped 

back and looked at the two pieces with understanding, that 

the duplication of function between the old Process Wait 

Table and the Process Tab le became clear. Similarly, the 

decisions which forced the original structure of the process 

creation module were made at a time when their full 

consequences were unknown. As a result much work 

f rorn those decision points which later had to 

This is not to say that this original work 

effort, for it was only from the insights 

proceeded 

be redone. 

was wasted 

gained in 

performing this work that it proved possible to improve upon 

it. 

Without a theory of computing systems to fall back on, 

designing of such complex systems becomes an 

than a science, in which it is impossible to 

degree to which working solutions to problems 

art, rather 

prove the 

are in any 

sense optimum solutions. In much the same way as authors 

write books, large computer systems go through several 

drafts before they begin to take shape. In the absence of a 

theory one can only cope with the complexity of the 

situation by proceeding in an orderly fashion to first 

produce an initial working model of the desired system. 

This part of the work represents the major effort of the 

design and implementation project. Once having arrived at 

this benchmark, many of the problems may then be seen in a 

clearer light and revisions to the working model are 

implemented much more quickly than were the original 
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r,10 c1u le s • r,s to the developr1ent of a theory, one gets the 

ir,1pression that it will be a long time in coming. 
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I~PLL\DIX I 

This appendix contains flow diaararns of the subroutines of 
the Traffic Control lcr us originally imp le men tcd. 
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Call block (count) 
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Call Wakeup (A) 
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Call Stop (A) 
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Call Istop 

Turn On 
In termed 
State 

Mask 

Lock My 
State 

No 

Unlock 
State 

Unmask 

Turn Off 
In termed. 
state 

Return 

Yes 
Define 
State AS 
Stopped 

Figure I. 5. I stop 

Unmask 

Call 
Getwork 

113 



114 

Call Start (A) 
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Call Getwork 
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Process J Calls Swap-dbr (A) 
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Call Scheduler 
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Call Ready-him (A) 
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APPENDIX II 

This appendix contains flow diagrams of the subroutines of 
the second iteration of the Traffic Controller 
implementation. 
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Call Wakeup (A) 
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Call Stop (A) 
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Call Istop 
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Call Start (A) 
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Call Notify (X) 
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Call Loader-daemon-driver 
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