
"

' .,.,..-~---:---:.·.

THE GRAPHIC DISPLAY AS AN AID
IN THE MONITORING OF

A TIME-SHARED COMPUTER SYSTEM

by

JERROLD MARVIN GROCHOW

S.B., Massachusetts Institute of Technology
(1968)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 1968

Signature of Author

Department of Electrical Engineering, August 30, 1968

Thesis Advisor

Chairman, Departmental Committee on Graduate Students

THE GRAPHIC DISPLAY AS AN AID
IN THE MONITORING OF

A TIME-SHARED COMPUTER SYSTEM

by

JERROLD MARVIN GROCHOW

Submitted to the Department of Electrical Engineering on
August 30, 1968 In partial fulfillment of the requirements

for the Degree of Master of Science

ABSTRACT

The problem of dynamic observation of the state of a time-shared
computer system is investigated. The Graphical Display Monitoring
System was developed as a medium for this experimental work. It is

an integrated system for creating graphic displays, dynamically
retrieving data from Multics Time-Sharing System supervisor data
bases, and on-line viewing of this data via the graphic displays.

On-line and simulated experiments were performed with various

members of the Multics staff at Project MAC In an effort to
determine what data is most relevant for dynamic monitoring, what

display formats are most meaningful, and what sampling rates are

most desirable. The particular relevance of using a graphic display
as an output medium for the monitoring system Is noted.

As a guide to other designers, a generalized description
principles Involved In the design of this on-line,
monitoring device includes special mention of those
particular hardware or software system dependence.

of the
dynamic

areas of

Several as yet unsolved problems relating
monitoring, including those ·of security and
are discussed.

to time-sharing system
data base protection,

THESIS SUPERVISOR: Fernando J. Corbato
TITLE: Professor of Electrical Engineering

I i i

ACKNOWLEDGEMENTS

The author would like to express his appreciation to
Professor Fernando J. Corbato for his guidance throughout

his association with the author and particularly for
his knowledgeable suggestions and observations

on GDM monitoring experiments.

The author Is also Indebted to Prof. E.L. Glaser, now at
Case-Western Reserve University, for providing Invaluable

advice and Inspiration on many projects and especially
for his introduction to the subject of computer displays.

Thanks are also due to the many members of the Multics
development group at Project MAC who participated In the

early experiments and without whose help this thesis could
not have been completed. The author would particularly like
to thank Thomas Skinner and Noel Morris, co-workers on PDP-8

development projects, who contributed several
programs to the GDM Monitor System.

Iv

r ,

TABLE OF CONTENTS

Chapter

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF ILLUSTRATIONS
FRONTISPIECE

I INTRODUCTION

II WHAT IS THE GDM SYSTEM?
2.1 The Multics/GDM Interface

2.1.1 The GIOC Data Retrieval Program
2.1.2 The PDP-8 Dataphone Routine
2.1.3 The Address Formation Routine
2.1.4 The User Interface

2.2 The GDM Monitor System on the PDP-8/338
2.2.1 Monitor Commands
2.2.2 Monitor Display Control
2.2.3 Other Monitor Facilities

2.3 The GDM Subroutine Package
2.3.1 Data Manipulation Subroutines
2.3.2 The Display Routines
2.3.3 The Pushbutton Routine
2.3.4 The Interval Timer Routine

2.4 The Display Description Language
2.4.1 Format control
2.4.2 Data Description
2.4.3 Display Component Description
2.4.4 Display Template Address Table
2.4.5 A Sample Display and Description

III A MULTICS MONITORING EXPERIMENT
3.1 A System Overview Display
3.2 A Process Overview Display

IV OBSERVATIONS AND CONCLUSIONS
4.1 Unsolved Problems
4.2 Plans for the Future

APPENDICES

A The PDP-8/338: Structure and Programming

B Segment Addressing in Multics

C Using GDM under the OS/8 Operating System

D GDM Command and Error Swmnary

E The GDM Subroutine Package

F Macro Definitions for use with GDM

G DDL Statement Summary

H A Sample Display Template: XRAY

BIBLIOGRAPHY

v

iii
iv
vi

vii

1

3
6
8
8
8

10
10
11
13
19
19
19
20
22
22
22
23
24
25
27
29

31
33
34

39
39
41

43

47

49

55

57

63

67

69

73

Figure

1 thru 8

2-1

2-2

2-3

2-4

2-5

2-6

'2-7

2-8

2-9

2-10

2-11

2-12

3-1

3-2

A-1

B-1

C-1

H-1

LIST OF ILLUSTRATIONS

Frontispiece

GDM Subsystem Interactions

Hardware Configuration

Multics/GDM Interface

GE-645/PDP-8 Message Format

GDM Monitor System Control

GDM Monitor Display Control

Display Template Data Routine Organization

Display Control Data Dispatch Routine

GDM Monitor Clock Routines

Standard Display Types

GE-645 Display Template Address Table Format

Sample Display Format

Multics Overview Display

Process Overview Display

PDP-8 Instruction Formats

Multics Two-Dimensional Addressing

Display Template Format

The XRAY Display

vi

vii

4

5

7

9

12

14

15

16

18

2la

28

30

32

36

44

48

52

70

.•, "·

FRONTISPIECE

Figure 1. The XRAY Display

Figure 2. The Core Map Display

vii

FRONTISPIECE

Fiaure 3. The Active Procesa Tal:>l• - Pew U•er•; Light Loadinq

Figure 4. The Active Process Table Moderate Loading

viii

FRONTISPIECE

Figure S.
. _ _ ~::::;.:._>-;:: 0•--~--:~~:2:-:~-~·:,{~~~-=-;~~y·~;-:,~ .

The Activ• P~~.,..l• - ~aqi.odiftt:
Pew Users.E1i9ible

Piqure 6. The Active Process Table - HeaVi Loading

ix

FRONTISPIECE

Figure 7. The Segment Meter Table - Page Fault Times

Figure 8. The Segment Meter Table - Linkage Fault Times

x

·~ ... ·

{

..,,~

FRONTISPIECE

LEGEND

Figure l. This display is similar to that described in App~ndix H.

The user supplies the DBR, segment number, and offset, and sees

both octal and ASCII contents of the location specified.

Figure 2. Information on core page usage is displayed to get a dy­

namic picture of the properties of a demand paging scheme (See

Chapter 3.1).

Figure 3, 4, 5, and 6. This series of pictures takes information

from the Traffic Controller Data Base (See Chapter 3.2) to give

an overview of the activity of each user. The four views show

various system loadings and user activity at a particular time.

Under normal instances, when several user activity levels

approach 100%, the system becomes quite sluggish. In this

series, "MP" stands for "Multiprogramming State" which in­

dicates whether a user is eligible to run by showing 11 <> 11 next

to his number in this column. In addition, "ST" stands for

"Activity State" which shows a " <> " next to a number "1 11 if he

is running, a 112" if he is ready to run, a "3" if he is wait-

ing, and a "4" if he is blocked. Entries of "O" in this column

are empty. The bar graph shows the percentage of time that a
. ' user is ready or running, computed by weigJ\ted av.erage ove-r the
" ,,,
. .-.;,,,, previous two minutes.

Figure 7 and 8. These two pictures display time distriQutions from

the Segment Metering Table (See Chapter 3.2). They represent

the amount of time for page and linkage faults during a partic-

ular instance of system initialization.

scaling.

xi

Notice the automatic

Xll

CHAPTER I

INTRODUCTION

The Graphical Display Monitoring System (GDM) is an experimental

monitoring facility for the Multics Time-Sharing system (see ref­

erence [2))* implemented at Project MAC. It allows design, systems

programming, and operating s~aff to graphically view the dynamically

changing properties of the system. It was designed and implemented

by the author in an attempt to provide a medium for experimentation

with the real-time observation of time-sharing system behavior.

Monitoring the activity of a traditional computer system (one

with only a single active process) is a fairly simple task.

Hardware and software devices can easily be devised to keep track of

almost any parameter. Asking the question •What are you doing right

now?• to a computer system controlling multiple processes or

servicing multiple interactive users, however, proves particularly

difficult to answer meaningfully. It becomes necessary to

•snapshot• the system (record in sane manner its state at a specific

time) and output this information to the inquirer. Sinoe a basic

property of a time-sharing system is that, in fact, it is •doing

something else• a few milliseconds from now, what the inquirer

really wants to ask is •What are you doing now, and now, and

now ••• 1• Implicitly, he is also asking to be shown what is

happening in an easily interpretable format. The GDM solution to his

problem is to provide the user with a real-time, graphical output

•eavesdr<fper. •

Statistical studies of time-sharing systems have been performed

(for example, see (1), (9), and (16)) in an attempt to provide

•atter-the-fact• monitoring (in effect answering the question •What

happened before, and before that ••• •) and there have been

simulations (see (9) and (16)) in an effort to provide predictive

monitoring. One COlll>any has even produced a hardware device to

receive system status infoJ:mation over a special wired-in channel

and record the results on magnetic tape (17). There has been little

work, however, directed towards providing a general, real-time,

time-sharing system monitoring device. The GDM System is an attempt

to lead work in this direction. It is felt that while this

*References, indicated in square brackets, are collected in the
Bibliography section which begins on page 73.

l

2 CHAPTER I

implementation is particularly machine dependent, the design

principles involved and the monitoring methods explored are

sufficiently general so that the GDM System provides a framework and

a guide for other designers.

The basic goal of the GDM System was to provide a

system monitoring device for use by the staff of

time-sharing

the Multics

project. This implied that it would be on-line, that is, active

while the system was in operation -- not just collecting data for

future analysis, and would provide dynamically changing graphic

output (as well as hard copy if desired). It was to be designed in

such a way that the act of monitoring did not cause observable

interference to the time-sharing system and that it would not be
necessary to make more than a few minor changes to supervisory

procedures in order to incorporate the GDM system (as opposed to the

type of monitoring done by Scherr on the Compatible Time-Sharing

System, [16)). Since the GDM System was to be an experimental tool,

it was also considered especially important that it be easily

expandable and adaptable to new or different monitoring requests.

Coupled with these requirements was the need to involve the expected

user community as early as was possible in the project in order to

insure its continued use after initial implementation. In this

regard, many useful ideas were received as more and more of the

systems programming staff was made aware of GDM.

The current GDM System attempts to embody these goals while

making use of the existing hardware at Project MAC. A more extensive

(and less expensive) system could perhaps have been designed if it

were possible to choose both the display processor and the method of

interface to the time-shared computer. This was not, however, viewed

as a major handicap in developing a useful system.
Succeeding chapters will discuss the various components of the

GDM System in detail and will describe initial experiments as they

were performed at Project MAC. Compromises in design and other

special problems due to the particular constraints of the display

hardware or software and the Multics system to which they interfaced

are discussed in a separate chapter.

CHAPTER II

WHAT IS THE GDM SYSTEM?

The GDM System consists of four major components:

A. A procedure running under Multics to transmit data as

requested to the display computer.

B. A monitor system operating on the display computer to

facilitate the creation, storage, and retrieval of display

templates (see below) and various other housekeeping

functions.

c. A series of display computer subroutines for manipulating data

and generating command sequences for the display.

D. A language for describing desired data manipulation and

display formats C£isplay £escription ~anguage), a (planned)
compiler for translating such descriptions into display

computer assembly language programs, and a set of

macro-definitions for simplifying display computer programming

and for calling the subroutines mentioned under c.

Figure 2-1 gives a functional representation of the various GDM

subsystems showing the interaction among them, the two computers,

and the user. Figure 2-2 gives a more detailed view of the hardware

configuration.

The user of the GDM System will have his choice of several modes

of operation:

1. Demonstration mode: any of several "canned" displays may be

viewed to get a general picture of system operation at the

moment. Data used in these displays is updated periodically

according to preprogrammed instructions.

2. XRAY mode (so named because of its similarity to the XRAY

System, see [7)): the user may type the segment number and

offset of a datum (see Appendix B for a description of the

addressing scheme used in Multics) on the teletype and see

displayed the octal and ASCII character representation of its

contents, updated every second.

3. Display template mode: the user will go through the process of

creating his own display (as outlined in Figure 2-1) in order

to gain desired flexibility in data displayed, format of

display, or data sampling rate.

3

4

User's DDL
Program

®

GDM Macro
Definitions

®

User
Interaction

Data/Display
Subroutines

©

CHAPTER II

---~.i DDL Compiler"-1--.. • Assembly Program
with Macro Calls

0

Standard PDP-8
Assembler

Data Manipulation
Programs, Display

Template

- GDM D~y -- Monitor ~
System

(PDP-8/338 ~Request f
Display

Computer)

GE-645 DP-8

Hultics
Time-Sharing ~--­

System

(GE-645
Computer)

Multics/GDM
Interface
Procedure

'© I
I

or Data

Figure 2-1. GDM Subsystem Interactions

WHAT IS THE GDM SYSTEM?

r--------------------1
I CPU I

GE-645
I I
I I
I I
I I
I I
I I

I 2400 bps l
I ~~~~ I
L_________ _ ________ _J

Voice Grade
Telephone Line

5

,----------------------,
1

I
I
I
I
I
I
I

PDP-8/338

Display
Processor

2400 bps
oataphone

Magnetic
Tape

I
I
I
I
I
I
I
I
I

L _____ _ _____________ _J

(Single lines represent data transmission; double lines
represent transmission of status information and interrupts)

Figure 2-2. Hardware Configuration

6 CHAPTER II

Display template mode, the most general use of the GDM System,

will require the most work on the part of the user. He must decide

what data items to display, how to display them, and how often to

sample them. He must then create the data manipulation routines and

display template, either directly in PDP-8 Assembly Language or

using DDL, for input to the GDM Monitor. It is in this mode of

operation that all the facilities of the GDM System come into play

and in which the most fruitful experimental work can be performed.

The following sections of this chapter will describe the GDM

subsystems in sufficient detail so that the user will be able to

derive full benefit from the display template mode of operation.

2.1 THE MULTICS/GDM INTERFACE

The GDM System is designed for use in a symbiotic relationship

with a time-shared computer. The environment must be capable of

supporting an attached display processor functioning basically

independently of the time-sharing system but occassionally

interjecting requests for data transmission.

The Multics environment is particularly friendly to this type of

system as it is possible to make data requests through the

input-output controller {called the GIOC on the General Electric 645

Computer, see [15]} without interrupting the central processing unit

{see Figure 2-2 for a diagram of the hardware configuration). It is

necessary, however, to dedicate two GIOC channel pairs {one for

transmitting and one for receiving) to the display processor. This

is not viewed as a major drawback as there are 4096 channels on each

of two GIOC's on the Project MAC GE-645 computer. Those problems

that are introduced by this relationship are discussed in a later

chapter ("Unsolved Problems").

The Multics/GDM interface must then be capable of providing the

following services:

1. Accept address requests by segment number and offset of data

to be displayed.

2. Convert this address to an absolute memory location for

interpretation by the GIOC.

3. Transmit the datum from the GE-645 to the PDP-8.

Figure 2-3 shows how these services are distributed between

procedures in both computers.

The currently implemented interface can be divided into four

parts:

-------~---------------------------~------------ ------

WHAT IS THE GDM SYSTEM?

{ GDM

Monitor

Called by data manipulation routines

GE645
Called by GE645: retrieves segment

FETCH descriptor word and page table word
to form absolute address

DPIO
Called by FETCH to perform dataphone

201B
Data phone

Telephone
Lines

Receive

201B
Dataphone

Transmit

Character Synchronous
Adapter in GIOC

GE-645 Hemory

GIOC Channel Command Program

Figure 2-3. Multics/GDM Interface

7

I/O

8 CHAPTER II

l. A GE-645 GIOC procedure.

2. A PDP-8 routine for using the dataphone.

3. A PDP-8 routine to simulate the GE-645 addressing mechanism

(see Appendix B).

4. A GDM subroutine to interface with the user.

2.l.l The GIOC Data Retrieval Program

The GE-645 procedure is a modified version of the program used by

the XRAY System [7]. It is a part of the Multics library and is

called to initialize the two GIOC channel pairs dedicated to the

PDP-8 whenever Multics is in operation. It is not necessary that the

PDP-8 be active or even turned on at this time. Both channels are,

however, always in operation: the receive channel waiting for

synchronization characters followed by an 18-bit address (this only

allows addressing of a 256K memory but can be expanded 6-bits at a

time as necessary): the transmit channel transmitting the contents

of whatever memory location is specified in its buffers as fast as

the dataphone will allow (see Figure 2-3).

2.l.2 The PDP-8 Dataphone Routine

The PDP-8 dataphone routine simply sends a message whenever it

wants data and waits for that data to be transmitted from the
GE-645. A "key" is transmitted after the data address so that

proper synchronization of sending and receiving can be accomplished.

The key indicates completion of the address and is sent back to the

PDP-8 along with the datum (Figure 2-4 shows the message format). If

the sent key and the received key do not match, then the data

transmission started before the GIOC had completely received the new

address and the data is not wanted. If this is the case, the

dataphone routine will re-synchronize and try again. Because the

dataphone is only capable of 2400 bit per second full duplex

operation, this method of transmission limits the actual number of

data requests to a maximum of twenty per second.

2.1.3 The Address Formation Routine

The process of address formation from segment number and offset,

called "appending," involves two data requests (in addition to

retrieval of the data item itself): one for a descriptor segment

word and one for a page table word. The GDM appending procedure has

been designed to save the previously fetched DSW and PTW in an

effort to cut down on the total number of data fetches required for

a display. The incorporation of this small "associative memory" has

WHAT IS THE _M SYSTEM?

PDP-8: Transmits r<eceives

GE-6 45: Rccci ves Transmits

26 KEY

26 C(l-6)

A (1-6) C(7-12)

l"\(7-12) C(l3-18)

A(l3-18) C(l9-24)

KEY C(25-30)

177 C(31-36)

377

A(x-y)= bits x through y of the address

C(x-y)= bits x through y of the contents

All messages are eight bits long. Where less than eight bits

are specified, additional zeroes are sent at lhe beginning of

the message.

Figure 2-4. GE-645/PDP-8 ~essage Format

9

10 CHAPTER II

proven very useful as there are of ten requests for several data

items from the same segment (kli, klj, kll, etc.) and sometimes for

consecutive data items (kli, kli+l, kli+2, etc.). (The GE-645

hardware actually contains a 16 location associative memory for this

same purpose.)

2.1.4 The User Interface

The structure of many of the data bases in Multics is such that

entries are often linked together in a list, or such that entries

are really pointers to other data items. For this reason, the user

interface to the various data-fetch routines allows several types of

requests:

1. Fetch n words starting at location kll.

2. Fetch the word at kll. Take the left 18 bits as a new offset,

j, and fetch n words starting at klj.

3. As in 2 but take the right 18 bits as j.

4. Fetch two words, kll and kll+l. Take the left half of kll as a

new segment number, if take the left half of kll+l as a new

offset, j. Fetch n words starting at ilj. (This is the format

of the so-called "ITS-pair" used for indirect addressing in

the GE-645.)

These four options have been found to cover all but a few obscure

cases of data requests. The user can, if he wishes, nest indirection
by asking for a data retrieval and using the result as input to

another retrieval request.

A general description of the use of this GDM subroutine is

included under "The GDM Subroutine Package" later in this chapter.

A detailed description of the calling sequence is found in Appendix

E.

2.2 THE GDM MONITOR SYSTEM ON THE PDP-8/338

The GDM Monitor provides a convenient interface between the user

of the GDM System and OS/8 File System (see Appendix C). By typing

simple commands on the PDP-8 teletype, the user can cause display

template tape files to be created or loaded, tape "snapshots" of

displays to be taken or displayed, display data dispatches to be

initiated, and various other miscellaneous functions to be

performed. A summary listing of the commands is found in Appendix D.

WHAT IS THE GDM SYSTEM? 11

2.2.1 Monitor Cornrnands
The GDM command format is as follows ("(NL)" indicates the "new

line" character):

tape_unit cornrnand_narne arg_l arg_2 arg_3 (NL)

where tape_unit is an optional argument indicating which unit number

(1-8) is to be regarded as the current tape unit (default setting is

tape unit 1). The command name is one or two letters and the number

and type of arguments depends on the command.

To load a display template file from a tape and initiate the

display, two commands are required:

LN file name display_narne (NL)

display_name (NL)

The LN command (mnemonic for "load and !!_ame") will look for file

'file_name M' on the current tape unit and will load it onto the

disc. Display_narne (one or two letters) will be added to the command

table so that the display can be started by simply typing its name

(as in the second command line above). The LN command accepts

eight multiple argument pairs on a single line and can store up to

templates on the disc at a time. The "C" command will clear

disc and the display command name table if it is desired to

anew.

the

start

Once a display has been initiated by typing its name, the

teletype is no longer active. Depressing the "manual interrupt"

button on the display pushbutton box will temporarily suspend

"execution" (data retrieval is halted) and allow commands to be

typed on the teletype. An "R" command will resume the data dispatch.

If it is desired to stop the display at some particular point in

its execution in order to study the display or photograph it, it is

only necessary to depress the manual interrupt button. The "SN"

command will save the display in a special tape file so that this

"snapshot" may be viewed later. Typing the "SH" command will

accomplish this.

Auxiliary commands are also provided to set the date display and

reset the interval timer provided by the system (DD), print the

current command and display names (P), and return to the OS/8

Operating System (Q). Cormnands to create display template files are

discussed in Appendix C, "Using GDM under the OS/8 Operating

System." Figure 2-5 is a general flow chart of the Monitor System

Control.

-- --- -- - -----------J--. - ---·----------..... ---------·--~7-·------------~-~-~-~----~

12

START

I/0 Initialization

Program Initialization

CHAPTER II

Manual
Interrupt

Listen for Command Line i.---.- -'4- ------- - -•
I

Execute
Command

Initiate

I
I
I
I
I
I
I
I
I
I
I

Start
Display Data Dispatch

~----1 Error: Unknown

Figure 2-5. GDM Monitor System Control

WHAT IS THE GDM SYSTEM? 13

2.2.2 Monitor Display Control

A major portion of the GDM Monitor is devoted to display control:

that is, the "execution" of the particular display in accordance

with the various data requests. This is the process that is

initiated by typing a display name on the teletype. Figure 2-6 is an

overview of the activities required to execute a display after it is
brought into core memory.

Before continuing with a discussion of the display control

system, it will be advantageous to describe a typical set of

instructions for retrieving and manipulating the data to be

displayed (see Figure 2-7).

The display template instructions are divided into "data

routines." A data routine usually contains the instructions for

retrieving, manipulating, and displaying a single data item or a

group of related data items. Data routines may also be provided to

perform initialization (these might not reschedule themselves) or

set the interval timer counting rate.

A typical data routine might perform the following tasks:

1. Reschedule itself according to data sampling rate required.

2. Check for a pushbutton signal (for triggering purposes).

3. Request appropriate data fetches from the GE-645.

4. Mask or scale the datum to extract the relevant information.

5. Cause the item to be displayed in whatever format is desired.

Any routine mentioned in the "data dispatch list"

2-7b and below) will be called initially but the routine

the scheduler if it is to be called again.

(see Figure

must call

Subroutines are provided to perform most functions related to

data retrieval and display. These are discussed under "The GDM

Subroutine Package."

The data dispatch routine initiates the display data dispatch by

calling all routines mentioned in the data dispatch list (see

Figures 2-8 and 2-7b). Once all these routines have been called and
executed (each is run to completion), the dispatch routine checks

the ready list for further work. If the ready list is empty, the

dispatch routine will wait for work by constantly checking the list

and executing whatever routine appears on it.

There is a possibility of a ready list overflow under this system

only if (a) a routine schedules itself more than once~ or (b) a

routine schedules another routine in addition to itself. The

dispatch routine will signal an error on the overflow condition and

return to command level. Redesigning the display data routines with

14

From System Control

DATA DISPATCH ROUTINE

~ Get Data Routine ..
r Address

I

r+ Call Data Routine

No more?

NO: Get next

YES: Get Data Routine 14-
Address from
Ready List ~\

Ready List empty? \
\

I YES: Wait
\

\

I \

7 NO: Call Data Routine

I Get next I I-'
I
I
I
I DATA DISPATCH

LIST I
'----1 --- --1

I . I . . I .
I

7777 I
I
I
I

TYPICAL DATA ROUTINE I
__. t------1 ' "-:J Call SETCLK .

Call G°E645 .
Call GE645 .
Return

,...

r
I
I
I
I
I

~ I
\

' I
' I
1
w

CHAPTER II

CLOCK ROUTINE

SETCLK

Put event on Wait List
I-

CLKTRP

Event time elapsed?

NO: Return

YES: Put Event on
Ready List and Return

,------
READY I WAIT LIST
LIST I

I Event
I Next pointer

I Time . . .
I . .
I

. .
Event L _ _,

7777 Next pointer
Time

. .
Event

0
Time

DATA REQUEST HANDLING

GE645 ---
FETCH ---
DPIO -- t

Synchronization
~Wai.
~Wa J. t

Wait

Figure 2-6. GDM Monitor Display Control

---·-·------

I

WHAT IS THE GDM SYSTEM?

GDM Subroutines

Reschedule data routine -- SETCLK

Check for pushbutton hit -- PBHIT

Fetch datum from GE-645 -- GE645

Mask and scale appropriately -- MASK, SCALE, ADD,

Put

Return

Data

Dispatch

List

list

SUB, MOVE

NPLOT, CPLOT, HPLOT,
VPLOT, BPLOT

(a) Typical Data Routine

Pointer to A
Pointer to B
Pointer to c
. .
Pointer to z
7777

A: Initialization

B: Interval timer call

C: Data Routine

.

. .
Z: Data routine

(b) Data Dispatch List

Figure 2-7. Display Template Data Routine Organization

15

16

START

Initialization

Get address from
Data Dispatch List

yes

,. ".!%

CHAPTER II

--~---~ Get address from
Ready List

,,_o;:;....~~~~~~"""'"4 Execute data routine

Initialize
Ready List

Figure 2-8. Display Control Data Dispatch Routine

WHAT IS THE GDM SYSTEM? 17

fewer event reschedulings will eliminate this problem.

Another situation, equally as bad, is caused by rescheduling an

event with a "sleep" time shorter than its execution time. As this

event will always be put on the ready list, it will monoplize the

processor after a short period. This can only be detected by

noticing that certain parts of the display do not change (for

instance, the interval timer!). Redesigning the offending routine

with a longer sleep time or with the call to reschedule performed

before exiting rather than after entering (essentially adding the

execution time to the sleep time -~ as in Figure 2-7a with dotted

line) will cure this situation.

The clock routines provide the facility for scheduling events and

signalling that an event is ready to be dispatched. They do this by

keeping two lists: the "wait list" of events waiting for a certain

period of time to elapse1 and the "ready list" of events waiting to

be dispatched (see Figure 2-6).

The "SETCLK" routine (see Figure 2-9) maintains the wait list as

a thread of events in order of increasing time intervals. Times are

stored such that the sum of the times in all blocks up to and

including the one in question is the amount of time to elapse before

the event is put on the ready list. A maximum of fifteen events are

allowed on the wait list at one time and an error will be signalled

if an attempt is made to add to a full list. If this occurs, several

events should be consolidated into one so that less than the maximum

of fifteen will be scheduled at one time.

The PDP-8 clock is set to interrupt the computer every hundredth

of a second. The "CLKTRP" routine is called at each interrupt to

determine if any event timers have run out. All events for which

this is the case are put on the ready list to be executed in turn.

If no events are ready, the current timer is decremented and control

is returned to the interrupted process.

The limitation of 12-bit memory words in the PDP-8 and the desire

to cause clock interrupts no less fequently than every hundredth of

a second, puts bounds on event times of .001 second and 40.96

seconds. It should be noted that while events may be scheduled

every hundredth of a second, it takes approximately a twentieth of a
second to perform a data transfer from the GE-645 and rescheduling

faster than this will cause one routine to monopolize the processor

(as mentioned above).
An example of the use of these routines is in the interval timer

control. Aside from the octal to decimal conversion, the routine

does little more than count and reschedule itself to be called in

one second.

18

CLKTRP

Decrement
timer

Put event on *
Ready List

Return event block
to free storage

Get next event and
set timer

Return•-------'

CLKINT

Initialize registers

Thread free storage list

SETCLK

Get block from
free storage

Subtract current
block event time
from event time

CHAPTER II

*

Get next
block

Thread new
block into
list at
this point

Return

Return *Check is made for list over-
flows at this point and errors
are signalled if necessary

Figure 2-9. GDM Monitor Clock Routines

WHAT IS THE GDM SYSTEM? 19

2.2.3 Other Monitor Facilities
The GDM Monitor also contains routines to process all computer

interrupts, interface with the OS/B File System in writing tapes,

and manage display templates assigned to the disc. These routines

are not called directly by the user, but rather indirectly in the

course of processing a GDM command.

2.3 THE GDM SUBROUTINE PACKAGE

It is reasonable to assume that an intended user of the GDM

System will learn the basics of operation and display template

preparation in order to conduct his own monitoring experiments. It
is not reasonable to assume that he will be desirous of learning all

of the peculiarities of PDP-8 and 338 Display programming.

Subroutines to perform most of the basic data manipulation and

display functions are, therefore, provided by the GDM System.

(Appendix E gives specific information on calling procedures.)

2.3.l Data Manipulation Subroutines

Six subroutines are provided to handle data retrieval and

manipulation. "GE6 45," the routine which controls data transfers,

was discussed under "The Multics/GDM Interface" above. In general,

it is only necessary to specify the type of request (direct fetch or

any a the indirect types) and the display template address table

locations of the segment number and offset of the data item. GE645

will always return the data item to three consecutive words (high

order bits in the first word, etc.) starting at a prespecified

location (referred to as "DATA" in the GDM macro definitions).
Display subroutines all assume that the information in DATA is in

a format suitable for the display specified. In order to accomplish

this, the user can call upon routines "SCALE" and "MASK" to shift

the data item and retain only the relevant bits. The display

subroutine descriptions in Appendix E indicate the data format

expected.
Certain data items are more meaningfully displayed after

comparison with other items. Three subroutines facilitate such

manipulations. "ADD" and "SUB" perform the addition or subtraction

of two data items (or constants) and return the result to locations

"DATA" for plotting. Because GE645 always uses the same area for

data transfers, the "MOVE" subroutine is provided for storing data

in temporary locations.

20 CHAPTER II

If, for instance, it was desired to plot the difference of the

left half-words of two data items, A and B (this might be the

relative length of a storage area

beginning and end of the area),

necessary:

computed from

the following

pointers to

actions would

the

be

Call to GE645 to retrieve data item A.

MOVE to store A temporarily in AA.

GE645 to retrieve B.

MOVE to store B temporarily in BB.

SUB to subtract AA from BB (result in DATA).

SCALE to shift result to right half word.

MASK to extract number of bits needed for plotting.

2.3.2 The Display Subroutines

Several different types of displays can be plotted using the

display subroutines. These conform to
Display Description Language (see below)

display requests.

the types
and seem

allowed by
to cover

the
most

The simplest display shows all or part of the octal or ASCII

character representation of the data i tern. Calls to "NP LOT" and

"CPLOT" will accomplish this. NPLOT displays the number of octal

digits specified, taking them from the rightmost part of the word

(here is where scaling and masking can be used to cause display of

only certain bits). CPLOT interprets the appropriate number of

9-bit groups (starting from the high order or leftmost part of the

word) as ASCII characters. If a control character or a non-existant

character is detected, a special symbol is displayed.

Another useful display type is the bar graph. The 338 hardware

makes it especially easy to plot such graphs by providing a "vector"

plotting mode. Routine "BPLOT" will handle the mechanics of placing

the data item into the display list appropriately.

The plotting of "versus-time" graphs and "multiple-state" graphs,

as in Figure 2-10, is accomplished through a special use of the 338

Character Generator (see Appendix A) • Character codes for drawing

lines of different lengths and skew have been appended to the

standard character codes for use in these graphs. "HPLOT"

(horizontal plotting) and "VPLOT" (vertical plotting) are used to

simplify the procedures. By keeping track of the magnitude of the

previous item, they will compute the code of the appropriate

character needed to display a continuous graph. HPLOT also has a

facility for directing non-intensified horizontal movement of the

CRT beam needed for certain types of graphs.

I Specified by:

N 6

NUMBER TITLE 000000 I
____________ ! ____ _

I
I ASCII TITLE AAAA A 4

-------------t-- ---
BOTH 000000 AAAA 1

NA 6 4 ____________ T ____ _
TITLE LINES I

0123456789 I
UNITS

BH

--- -1-----
6

5

NUMBER

UNITS

\!
TITLE LillES

1

I
I
I
I
I
I
I

BV

TITLE

S4

S3

S2

Sl

0 l 2 3 ' 5 6 7 8 9
TIME UNITS

I Specified by:

I MS '

I
I
I
I
I
I ----:T:- - --- --1--:v~--

S4 t--- -- - I
S3

S2

Sl

0 l 2 3 4
TIME UNITS

5 6 7 B 9

I
I
I
I

--------------~-----
TITLE

' 3

DATUM 2

UNITS 1

0 I I I I I I I I I I

0 1 2 3 ' 5 6 7 8 9

TIU UllITS

!
I
I
I
I
I
I
I

G

Figure 2-10. Standard Display Types

~
~
1-1
(/l

1-3
:i::
tz:I

Ci)
0
3:
(/l

><
(/l

1-3
tz:I
3:
'"

"' I-'

·" ?

22 CHAPTER II

It should be noted that while the 338 hardware and the GDM

software are capable of displaying any conceivable form, those

provided by the display subroutines appear to be a reasonable

selection. If further experience indicates the advisability of new

display types, it is a very simple matter to incorporate them into

the system.

2.3.3 The Pushbutton Routine

Routine "PBHIT" controls triggering of display data requests if

this is desired (see below, "The Display Description Language"). If

pushbutton 0 is on (lighted), all displays that call PBHIT will get

the "no hit" return (see Appendix F) unless the specified pushbutton

is also lighted. Turning off pushbutton O will cause PBHIT to

return to the "hit" return no matter what the state of the specified

pushbutton.

Figure 2-7 indicates that calls to PBHIT be made after calls to

reschedule. This has two implications in triggering mode (pushbutton

0 lighted): (1) the routine will be recalled even if the specified

pushbutton is not lighted; and (2) the specified pushbutton will

only be interrogated every n seconds, where n is the rescheduling

time. These facts should be considered when planning displays with

critic al timing.

2.3.4 The Interval Timer Routine

The GDM System provides both a date display and an interval timer

display in the upper right corner of the screen. As has been

mentioned above, the date is set and the timer reset from GDM

command level by the "DD" command. The timer routine, however, is

initiated by a simple data routine in the display template (an

example of this can be found in Appendix H). Once initiated, the

timer will count every second, thus providing a record of relative

time in a particular monitoring session. Both date and timer will be

saved whenever the "SN" command is used to save the current display.

2.4 THE DISPLAY DESCRIPTION LANGUAGE

The Display Description Language (DDL) of the GDM System provides

a comprehensive yet well defined way of communicating the user's

desires to the rest of the system in the form of a display template.

Statements in DDL are of three types: (1) format control; (2)

data description; and (3) display component description. Display

components may also be of the following types:

WHAT IS THE GDM SYSTEM?

1. numeric information

2. alphabetic information

3. horizontal bar graphs
4. vertical bar graphs
s. "multiple-state time bars"
6. • ••• versus time" graphs

23

Each display component statement, along with its referenced data
description statement, will cause assembly code to be generated for
both a data routine and a portion of a display list (command program

for the display). Display initialization sequences and the data
routine dispatch table are also generated by the compiler.

The syntax for all three types'of DDL statements is explained in
detail in the following sections. A DDL •program" consists of any
number of type l statements and up to 100 each of type 2 and type 3

(several type 3 statements may refer to the same type 2 statement)
followed by: END.

2.4.l Format Control
The object of a DDL program is to provide a complete description

of a display. Format controls serve to position the various graphs,
numbers, and text strings i~ a manner pleasing to the eye. Format

controls in DDL are separate statements (terminated by a semicolon)
and may appear anywhere throughout the program.

The display screen on the 338 is 9-3/8 inches square. This is

equivalent to approxi~ately fifty lines of seventy characters each
(space between lines is equal to 3/7 of a character). All display
commands can be thought of as positioning the cathode ray gun. When

an instruction to "intensify" is given, electrons are fired from the
gun and an image of the movement is seen. The CRT beam is initially

positioned to plot the first character on the first line (upper left
corner). Format controls cause non-intensified beam movement
(positioning) or text plotting (the beam traces the characters and

is then positioned after last character plotted).

The DDL statements indica.ted below cause beam movements on n
characters. If no •n• is present, one charac,ter is plotted:

NL n;

SP n1

HT nJ

(new line)

(space)
(horizontal tab -- 10 spaces)

24 CHAPTER II

A text plotting statement takes the form:

'l' 'text';

Because of limitations in the character generation routines, low.er

case letters are mapped into the corresponding upper case characters

for plotting. If the leading "T" is replaced by "SP," "HT," or

"NL," a space, horizontal tab, or new line, respectively, will be

plotted before the text string. This option is also available in
display description statements wherever a "T" control character is
indicated.

2.4.2 Data Description

A data description statement consists of a label, a data unit,
and a terminator:

<label> :<data unit>;

A <label> is any two-digit (decimal) number, thus allowing one

hundred data unit statements per display description.

Display component descriptions refer to data units as the

information to be displayed. Data units are described by DDL

statements according to the following syntax:

<data unit>::=<:scaled datum>l<scaled datum><op><data unit>
<scaled datum>: : =<datum> C<datum>,<sign><:Jcale factor:;:>,<mask>

<op>: :=<sign>I,

<datum>::=<octal constant>l<GE-645 word>
<sign>::=+l-

<scale factor:;:>: :=O I 1I2 I 3· •• 142143 (octal)
<Jllask>: := scale factor>

<octal constant>::=ol1l213 ••• 7777777777761777777777777 (octal)

<GE-645 word>::=GllG21G3 ••• G631G64

A <GE-645 word> is a 36-bit binary number retrieved from a

specified location in the GE-645 memory. The memory locations

corresponding to the <GE-645 word>'s in the display description are

specified separately by the user (see the section on "Display
Template Address Table").

Certain display component specifications

data unit specifications (i.e. request for
word: <scaled datum>,<scaled datum>).

require certain types of

more than one GE-645
The display component

description will indicate if an unusual data unit is required.

WHAT IS THE GDM SYSTEM? 25

Data scaling, when specified, is accomplished as follows: the
36-bit datum is shifted right (+) or left (-) by the specified

number of bits and padded with zeros as appropriate. The mask is

then applied to extract the indicated number of bits from the right

(low order) end of the 36-bit number.

performed by calls to GDM Subroutines MASK

(These functions are

and SCALE.) Displays

which require a certain number of bits of precision (six bits for

sixty-four possible variations, three for eight, etc.) will take

them from the rightmost (low order) end of the 36-bit word. Scaling

and masking, therefore, should be specified as required by the

particular display COJli>Onent referencing the data unit statement.

2.4.3 Display Canponent Description

Display component descriptions should specify sufficient

information to the DDL canpiler for it to (1) form the portion of

the display list relating to the particular conponent and (2) set up

reference locations for data to be inserted in the display by the

referenced data routine. (Because several display

reference the same data description, the

the data routines until all references

compiler

have been

appropriate instructions added to the routine.)

components may

cannot complete

found and the

Each display component statement consists of several basic

arguments and special arguments as necessary:

type title data rate trigger optional_args;

The display type is one of the following (see Figure 2-10):

N n numerical display of n digits

A n ASCII display of n characters

NA nl n2 nl digit numerical display followed by an n2 digit

ASCII character display

BH horizontal bar

BV
MS n

MV n

G

vertical bar
type •a• multiple

type .b. multiple

• ••• versus time•

state

state

graph

time bar of n states

time bar of n states

Interpretation of these codes by the compiler will cause the

appropriate display list to be generated and appropriate links to be

established to the data unit referenced later in the statement. As

the compiler makes use of the GDM Subroutine Packa9e, scaling and

masking should be specified in the data unit statement according to

26 CHAPTER II

the display types referencing it.

Numbers to be plotted are taken from the rightmost octal digits

of ~he word (as mentioned above). A request for 6 digits, therefore,

would cause the right half of the word to be plotted. Character

displays, on the other hand, take bits starting from the left end of

the word. A request for 2 characters would cause the 18 bits in the

left half of the word to be interpreted as characters. Because the

subroutines only look at the indicated bits, no masking or scaling

is normally necessary. If, however, it is desired to display a

single digit from the high order portion of the data item, the word

must be scaled first (by appropriate indication in the data unit

specification).

Bar graphs have 512 possible positions (taken as the low order 9

bits of the data item). A chanse of eight in the data item will

cause a 1/4 inch change in the bar length. Data should be shifted

(and masked!) to take advantage of this.

As was indicated, multiple state time bars are of two types: (a)

single datum (MS); and (b) multiple datum {MV). The single datum

must be scaled so that the number of bits remaining will give the

desired number of states: e.g. three bits will allow eight states;

two bits, four states; etc. In multiple datum specifications, there

must be as many data unit components (separated by commas in the

data description statement) as states. An intensified line will be

plotted next to any state whose data item is non-zero at the

sampling time. If it is zero, the CRT beam will be moved but no

image will be displayed. It is possible to monitor any bit of the

data item in this manner if appropriate scaling and masking are

used.

The title is specified as a standard text string:

T 'text'

while the data unit number is specified as:

D n

where •n" is the label of the data description statement (1 to 100).

As mentioned above, each data unit reference causes information to

be added to the specified data unit routine. This information will

be combined with generated labels in the display list to ensure

proper placement of data items for plotting.

WHAT IS THE GDM SYSTEM? 27

Sampling rate is specified in hundredths of seconds, 1 to 4096:

s n

This specification causes information to be added to the referenced

data routine so that calls to •sETCLK• can be made with the

specified rescheduling time.
The triggering argument is either:

X n

or R

If an •R• is specified, the display is •repeating• and no further

action is taken. An •x• specifies triggering by pushbutton "n." A

call to "PBHIT• is added to the referenced data routine as shown in

Figure 2-7.

Optional arguments are always to specify additional

spaces between graph markings. The DDL summary in Appendix

the complete format for each type of statement.

2.4.4 Display Template Address Table

labels or

G gives

The address table of GE-645 words (see under "Data Description")

must be specified independently of the DDL display description. It

is expected that this design deficiency will be corrected in the

near future. A general description of its format should, however,

clarify its relationship to the rest of the display template.

Each segment number or offset is specified in two PDP-8 words as

shown in Figure 2-11. The 18-bit nwrber is placed with the high

order bits in the right half of the first word and the low order

bits in the second word. The left six bits specify control

information in accordance with the different data request types

mentioned under "The Multics/GDM Interface.• Bit O indicates that

the GDM Monitor can replace these two words with an absolute address

if necessary. (This means that the DSW and PTW need only be

retrieved once for this item. See Appendix B.) Bit 1 indicates
whether this is an offset or a segment number and the remaining bits

specify indirection as indicated in the diagram.

The address table has a particular position
template (see Figure C-1) and will, as noted above,

in the display
eventually be

put there according to DDL language statements. An assembly language

file, created according to instructions contained in Appendix C,

should be used until then.

.. ~~- -----~-~~~-~~-·-- --~ - -~--- - --~ -~·---- ~--~--~ ~--~----~.....__,..-

28

O= not replaceable,

O= segment number en

O= direct fetch, l=

l= indirect through

l= left half as new

1 = right half as ne

I
18-bi t segment numbe

I I
TT!TTTT

011 12:3•415161 11 0 11
ll1lll 1

Word 1 Word 2

CHAPTER II

l= replaceable*

try, l= offset

indirect fetch**

ITS pair***

offset***

w offset***

r or offset

* If an entry is replaceable, it will be replaced with an
absolute address after the first reference. Bits 0-5 will
be set to 111111, an otherwise illegal bit pattern.

** Information on indirection is contained only in the
"offset" entry.

*** Only one bit in the group 3, 4, and 5 should be on at
one time.

Figure 2-11. GE-645 Display Template Address Table Format

WHAT IS THE GDM SYSTEM? 29

2.4.S A Sample Display and Description

A number will vary continuously between 0 and 77 (octal). We wish
to display both a horizontal bar and an eight-state time bar as well

as to display the actual number. We wish the numeric and bar

display to be repeating and the time bar to be triggered by

pushbutton 6. (See Figure 2-12.) See Appendix G for further

explanation of the display component statement format. (Line

numbers in parentheses are for reference and are not part of the

program.)

(1) NL;

(2) HT 2; T 'RANDOM NUMBER'
(3) NL 2;

(4) N 2 T'NUMBER= 1 Dl SlOO R;

(5) NL;

(6) BH T '64 POSITIONS' Dl SlOO RMB 'TEN CHANGES.';

(7) NL;

(8) MS B HT'B POSITIONS' NL'SEVENTY' NL'SIXTY' NL'FIFTY 1

NL'FORTY 1 NL 1 THIRTY 1 NL'TWENTY' NL'TEN' NL'ZERO'

D2 SlOO X6 Ml 'TIME IN UNITS';

(9) 1: [Gl, O, 6);

(10) 2: [Gl, 3, 3];

(11) END.

Lines 1, 2, 3 1 5 1 and 7 are format control statements. Line 4

indicates that the datum requested (specified in line 9) should be

displayed as a two-digit number while line 6 indicates that the same

datum should also be displayed as a bar graph. Line 6 is the

specification for the multiple state graph with labeling as shown in

the diagram. It should be noted that while data item "Gl" is still

displayed (line 10 reference), it is scaled and masked differently

than for the numeric or bar graph display. The fact that "Gl" is

referenced in both lines 9 and 10 will assure that the same item is

displayed (only one fetch is made).

30 CHAPTER II

DATE 00/00/00
TIME 0000

RANDOM NUMBER

NUMBER= 00

64 POSITIONS

0 1 2 3 4 5 6 7 8 9
TEN CHANGES

8 POSITIONS

SEVENTY

SIXTY

FIFTY

FORTY

THIRTY

TWENTY

TEN

ZERO

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
TIME IN UNITS

Figure 2-12. Sample Display Format

CHAPTER III

A MULTICS MONITORING EXPERIMENT

One of the .more difficult problems
monitoring system is in determining just
hardware monitoring device is used then

in designing a computer
what to monitor. If a

this is an especially
important decision as it is relatively final: redesign will be
costly (see (17] for one solution). Where little special hardware is
required, as in GDM, care must still be taken to ensure that massive
reprogramming is not required when monitoring requirements change.

With this in mind, very few restrictions were put on the GDM
System. In particular, almost every system wide data base in Multics
can be monitored and many "per-process" data bases are also

accessible to GDM observation. As a matter of fact, the contents of

any location in core memory may be observed if the GDM user knows
what he is looking for! (This points out a problem of security which
is discussed further in Chapter IV. It also shows how an experiment
might be performed to determine how often a particular core memory
page is changed.)

With this flexibility available to any user, the design of useful
displays for the GDM demonstration mode is complicated: the data
they display must have particular relevance to the observation of
overall system performance.

Demonstration displays are, of course,
same way as any user display (see

created
Figure

in exactly
2-1). There

the
are

instructions within the system, however, to automatically load these

displays when GDM is initialized. XRAY mode of operation is just a
special case of demonstration mode in that the XRAY display is also
loaded at initialization but is a special interactive display (see

Appendix H for a description of the XRAY display).
Several criteria were used in determining which displays would

serve as demonstrators. They would, first of all, display as many
features of Multics operation as possible. They would attempt to
give overviews but would supply details where these would give a
better idea of system performance. Finally, demonstration displays
were to be designed to show off as many features of GDM displays as

possible without cluttering up the picture.
Two basic displays were decided upon for the initial version:

(1) a system overview and (2) a process overview.

31

32 CHAPTER III

DATE 00/00/00
TIME 0000

MULTICS IN OPERATION

STARTED AT 000000000000 (LOW ORDER CLOCK)
SYSTEM PROCESSORS GIOCS DRUMS

2 2 1

SYSTEM LOAD
ACTIVE PROC

CORE LOAD
FREE PAGES
REPLACEABLE
TEMP WIRES

0 5 10

t---i

0 1 2 3 4
TENS OF PAGES

FAULT METERING IN PROGRESS

5

15

6 7 8

PAGE 0 SEGMENT 1 LINK 1 RING X 0
ID OF METERED PROCESS 000000000000

20

FAULT PROCESSING TIME
700

600

F
A 500
u
L 400
T
s 300

200

100

0
TIME
IN
MS.

04813612
62536

12
PAGE

04813612
62536

12
SEGMENT

04813612
62536

12
LINK

25

9

04813612
62536

12
RING X

Figure 3-1. Multics Overview Display

A MULTICS MONITORING EXPERIMENT 33

3.1 A SYSTEM OVERVIEW DISPLAY

A system overview must provide not only a picture of what is

happening in the system, but what the system isl The first Multics

overview display (Figure 3-1) attempts to show these things by

selectively displaying data from the following Multics data bases:

1. Major Module Configuration Table (MMCT) -- information about

the hardware modules (memory, CPU, GIOC, drum, etc.) currently

attached to the system.

2. Core Map (CORMAP) -- tables showing the current usage of each

page of core memory.

3. Active Process Table (APT) -- contains an entry for each

process in the system.

4. Segment Meter Table (SMT) -- a variety of statistics collected

for independent metering experiments but contained in very

neat core buffers.

Items taken from the MMCT do not change and so are retrieved from

the GE-645 only once. The core map, however, is very volatile and

is sampled as often as is practical (about every second in the

present version). Similarly, the number of active processes is

determined every few seconds. SMT entries are sampled according to

their volatility (the system start-up time, for instance, need only

be checked once!).

The core map is a source of particularly interesting information.

A good indication of system lvading is provided by observing the

number of core pages with wired-down, replacable (liable to be paged

out), or free status. The CORMAP segment contains header

information (in addition to lists of pages) which gives the total

number of pages in each of these and several other categories. These

are displayed as bar graphs scaled to commensurate levels for easy

viewing. Pushbutton display control is also available.

Any instruction on the GE-645 may cause one of the following

faults:

1. Page fault -- the page containing the word requested is not in

core.

2. Segment fault -- no part of the segment containing the word

requested is in core.

3. Linkage fault -- the segment number of the segment

(symbolically) requested must be determined before the

instruction can continue.

34 CHAPTER III

4. Protection fault -- the segment requested is in a protection

ring other than the currently operating procedure (see[ll]for

a complete description of the Multics protection mechanism).

The segment metering process simply records in the

faults of each type as they occur and the time for

The demonstration display will allow viewing the

metering via a pushbutton controlled vertical

SMT the number of

processing each.

results of this

bar graph. By

depressing the appropriate button, the graph will record the SMT

table entries, as they are made, for one or more of the fault types.

It will also show (by indicators on the display) what type of

metering is in progress, the identification number of the process

being metered, and other relevant parameters.

The active process table contains status information about each

system and user process (see below). Determining the total number of

entries, however, requires (1) fetching the table size, (2) fetching

the empty list size, and (3) dividing by the entry size [16]. The

number of active processes is an important indicator of system load

and is displayed numerically and as a bar graph.

Initial experiments with this display have been useful in showing

the advantages of real-time graphic output of the metering

experiments mentioned earlier and have given the additional

information about core utilization that has been so long sought
after. These experiments also served as an introduction to the GDM

System for many of the Project MAC staff and as such elicited many

helpful suggestions for dynamic monitoring experiments.

3.2 A PROCESS OVERVIEW DISPLAY

Following an active process through its operation will provide

information on how much time the system spends in the supervisor, in

waiting, and in computing for the user.

Unfortunately, a demonstration display shCMing a particular

process' history would be hampered by the relatively low data

sampling rate allowable under GDM (the fastest rate, for one word

transfers, is twenty cycles per second). State changes of a process

running in Multics occur too rapidly for GDM to detect them and,

even if this were possible, the display would change too rapidly for

the eye to follow! (A further discussion of this problem is given in

the next chapter.) Instead, an attempt was made to monitor only

those state changes that take a process through "command level":

that is, the period during which a command line is typed and

executed and the time during which the process is waiting for the

A MULTICS MONITORING EXPERIMENT 35

next command to be typed. This essentially means that for the

purpose of display and monitoring several process states are merged

into one, as shown in Figure 3-2.

Previous studies have shown that the average "think time" between

commands is on the order of thirty seconds (16). A display of

approximately two minutes of console operation at a time should,

therefore, adequately portray the percentages of time spend in the

various states. The assumptions made by the display are that (1) a

process which is "blocked" (in the state named "blocked") is

awaiting console input; (2) one that is not blocked (except

"stopped") is executing a command; and (3) one that is "stopped" is

not worth looking at for the moment (a new process is found for

display). Because of the structure of the Multics process control

mechanism, these assumptions are generally valid. The "loading

state" of the process, displayed in parallel with console activity,

shows whether the process has any dedicated core memory pages (the

"loaded" state). This will usually be the case only during the

command execution period.

Associated with each active process is an entry in the Active

Process Table where this information is available. The various items

in this entry tell the identification number, state, class, ready

list level number, loading status, and descriptor base register

value of the process. Another segment associated with the process,

the Process Data Segment, contains (among other items) the current

protection ring number and the "block lock count," the number of

data bases this process has currently locked. While the particular

demonstration display does not show all these, other special purpose

displays may in the future.
The demonstration display shows several active processes

(actually, up to about twenty can be displayed at once if the extra

spaces are "squeezed out" of the picture shown in Figure 3-2) at

once in order to provide the observer with another type of system

overview. The GDM user is shown a record of console activities for

many of the user processes active in the system so that he can, at

once, see the span of activity rates and get a general, "mental"

average of system load. A display which simply showed some sort of

statistical measure of all process' activity would not adequately

portray the available information. Designers of a developing

system, such as Multics, would more than likely want to view the

individual data items than see a statistic which will tend to

obscure the presence of minor, but important, deviations from the

norm. The data sampling rate of the GDM Monitor, while limited and

generally a disadvantage, proves to be sufficient in this case to

---~-1.l __ - -~~--

36

PROCESS 000000000000
CLASS 1 (l= USER)
READY LIST LEVEL NUMBER 2

LOADED

CHAPTER III

DATE 00/00/00
TIME 0000

EXECUTE r-----i WAIT ___ __,! !.., ____ _.
_____ ___.!l

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
SECONDS

PROCESS 000000000000
CLASS 1 (l= USER)
READY LIST LEVEL NUMBER 2

LOADED
EXECUTE
WAIT

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
SECONDS

PROCESS 000000000000
CLASS 1 (l= USER)
READY LIST LEVEL NUMBER 2

LOADED
EXECU'rE 11 11 WAIT

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
SECONDS

PROCESS 000000000000
CLASS 1 (l= USER)
READY LIST LEVEL NUMBER 2

LOADED
EXECUTE II 11 WAIT

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
SECONDS

Figure 3-2. Process Overview Display

A MULTICS MONITORING EXPERIMENT 37

monitor a large number of users at once.
Initial experiments with this display have shown it to be useful

in gauging the "intensity" of console activity. The number of

commands a user issues per period of console time will be a major

factor in determining every user's average response time. Intensity

of use, therefore, is an important parameter to measure when

deciding upon the maximum allowable number of simultaneous users.

Further experimentation with this type of display is definitely

indicated.

This empty page was substih1ted for a
blank page in the original document.

CHAPTER IV

OBSERVATIONS AND CONCLUSIONS

The GDM System was developed as part of an effort to prove the
feasiblity of on-line, real-time monitoring of time-shared computer
systems. As such, it was necessary. to demonstrate its usefulness via

pre-planned displays. The System is. sufficiently •open-ended,•

however, so that the real advantages .of such a system will be seen
when the programming systems staff uses GDM to measure the effects

of installing new supervisor modules, or increasing the amount of

core memory dedicated to an individual process, or removing a memory
bank, or changing the scheduling algorithm, or any of a host of

other tasks •
The number of experiments that can be performed with GDM is

almost endless. Many of these will have to wait, in this case, for

the Multics user community to be established so that measurements
can be made on an operational (rather than prototype) system. At

other installations, it will only be necessary to modify GDM (or a
GDM-like system) to the peculiarities of the time-sharing system it
is to work with. A discussion of some of the problems encountered

at the present installation will, perhaps, aid this effort.

4.1 UNSOLVED PROBLEMS

The GDM Monitor was generally designed to

requests for display management: from creation

storage. These are fairly complete mechanisms and

accommodate all

to execution to
should suffice

for any system. The Monitor requires, h<Mever, that data requests

be compatible with the system to be monitored: the GDM subroutine

•GE64S• (discussed in Chapter II) and its associated routines, are

specifically designed to allow efficient retrieval from a computer

with two dimensional addressing, such as the GE-645 used by Multics.
This is a limitation which will require the GDM implementor to

analyze the method of data retrieval for his own system- possibly a

sizable task. A more generalized data retrieval package would

perhaps have furthered machine independence of GDM but this was
viewed as a very secondary goal.

The general problem of the interface between the time-shared

computer and the display processor deserves further investigation.

The very pragmatic approach of using available equipment was taken
in designing the current system and has worked fairly well. The

39

40 CHAPTER IV

biggest problem to date has been the "low speed" of the dataphone
interconnection. With appropriate control and synchronization
messages, a maximum of twenty 36-bit words can be retrieved in one
second (see Chapter II for a more complete discussion of the

retrieval mechanism). This, of course, keeps interference to the
time-sharing system at a negligible level but also severely limits
the type of monitoring that can be performed.

As mentioned in Chapter II, an important monitoring
would be one in which a process is traced through all of
transitions (perhaps this information could be recorded by
"played back" slower than real-time). Not only would the
of fault time (page, segment, ring crossing, or any

peculiar to the system) be measured, but the teq><>ral

experiment

its state
GDM and

percentage
other types

of fault and computation time periods would also be
relationship
determined.

This would, of course, be useful in attempting to reduce fault
and interference, a goal of all time-sharing system
most GDM subsystems are input/output bound (most of
spent in waiting for I/O completion), an obvious

designers.
their time

to

time
As

is
the

problem is to increase the dataphone speed.

solution
This and another

suggestion are discussed further below.
Another major problem, not only in GDM, but in any monitoring

system, is the determination of what access the monitor will have to

system and user data bases. Many data bases which provide useful

monitoring information may also provide information about a user or
about the system which should not be seen by everyone. This issue
of system security is an important one if time-sharing users with
proprietary information are to be encouraged. In GDM, the security

problem has been temporarily circumvented: first of all, the users
of GDM are currently the Multics design staff who, presumably, know
what information is available anyway, s·econd, user information is,

at best, transient in core and the GDM user would have a difficult
time keeping track of some item (as noted in Chapter II) 1 and third,
the GIOC channel program cannot "monitor•
preassigned access privileges-this can only

requests according to
be accomplished by a

process running under Multics and, therefore, taking CPU time (the
Multics I/O system, in fact, must postpone access checks until the
data has already been brought into its private buffers). The issue

is certainly not resolved but it is expected that the GDM System

will have to be made more secure if non-systems programming staff
are to be allowed to conduct monitoring experiments.

A partial solution to the data base protection problem was
proposed during the design of the GE-645 (long before GDM was

dreamed of I) • This was to include "memory bounds registers" in the

OBSERVATIONS AND CONCLUSIONS 41

GIOC Character Synchronous Adapter (the adapter used by the 2400 bps

dataphone), thus limiting the areas of memory which could be

interrogated. This was, however, never implemented.

In short, GDM has proven useful but could be much more so. The

next section will outline several plans that have been made with

this in mind.

4. 2 PLANS FOR THE FUTURE

The GDM System was designed and implemented as an experimental

system. It is expected that modifications and improvements will be

made as the System is used by systems programming staff and others.
Such changes cannot be predicted as only further experience will

tell what courses of action are the most fruitful. Ideas for

upgrading general system characteristics, however, are currently

being investigated.

As has been mentioned in several places above, the biggest

problem in monitoring any rapidly changing environment is in

determining how much and how often to monitor. GDM presently does

not have sufficient capabilities in either area. Experiments with

simulated data have sh<YWn that optimum sampling time, from the point

of view of producing readable displays, is on the order of one

second. For data that changes drastically from reading to reading,

somewhat slower rates should be used. This implies that a useful

device would be one that samples events at a rate commensurate with

their occurrence, but displays them at a rate suitable for human

consumption.

One suggested method to accomplish this is to build up a buffer

of monitoring information in some communications region accessible

to the display processor. In the Multics environment, this can be

accomplished by causing the event in question to record its own

occurrence in a small reserved core area in the GE-645. This data

can then be read at whatever rate the display processor interface

will allow.

The disadvantage of such a system is the necessity of inserting

extra statements in crucial supervisor procedures. The monitoring

may indeed cause a degradation of service sufficiently great one

proposed took ten per cent of the central processor time (16).

Another tack, reported in Chapter I, is to provide direct signal

paths from certain computer registers to a

records them (17). This eliminates
interference but introduces one of the

monitoring arrangement. It is felt that

hardware device that

the problem of

inflexibility

this approach

system

of the

can be

- ________ .._,_ ·-·- ----~.-.___:.,......,._ ------- --- --.- --- ---......--- - ------ ~~~--~---- ----...--~------...,------~-.- -------~·-~--

42 CHAPTER IV

fruitfully pursued in special purpose monitoring devices but is not

the path of a general device, as GDM is intended to be.

The computer interface is another area which can be improved.

Such channels range from dataphones to direct connections. The 2400

bit per second dataphone currently in use exercises the full

bandwidth of a single voice-grade telephone line. Higher speed

dataphones are available, upwards of 40,000 bits per second, for use

with several lines in parallel. This is considerably more versatile

than the direct connection, although slower, as it can be easily

transfered to another computer system. Here again, it is felt that

a higher speetl dataphone would aid the GDM effort. The

complications introduced by the direct connection would probably

prove more advantageous in other time-sharing system graphical

experiments.

These final comments are intended to serve as suggestions for

continuing work in the area of on-line monitoring of time-sharing

systems via graphic displays. The work to date has been
both as an academic problem and as a useful groundwork

projects. It is hoped that these will be forthcoming.

productive,
for future

APPENDIX A

THE PDP-8/338: STRUCTURE AND PROGRAMMING

(For more complete information on the PDP-8, see [6]; for further

information on the 338 Display, see (SJ.)

The PDP-8 is a general purpose high-speed digital computer

manufactured by the Digital Equipment Corporation. The Project MAC

installation (Figure 2-2) has 8192 words of 12-bit core memory, a

32, 768 word fixed head disc, two DECtape magnetic tape drives for

DEC fixed block length tapes, hardware multiply and divide

instruction extension, and a 12-bit programmable clock, as well as

interfaces to a 200 bit per second dataphone (103A) and a 2400 bit

per second dataphone (201B). All devices are capable of

interrupting the computer and the disc, tape, and high-speed

dataphone transfer data directly to core memory (by a system of

cycle stealing known as "three cycle data break"). The basic PDP-8

instruction repetoire contains eight operation codes:

l. Logical AND

2. Add to accumulator

3. Index memory location and skip if zero

4. Store accumulator

5. Jump to subroutine and deposit return address

6. Jump

7. Input/output instruction (IOT)

8. "Operate" group instructions

There are approximately 75 IOT's on the Project MAC PDP-8 and more

can be added as needed. The "operate" group contains multiply,
divide, shift, and skip on accumulator instructions. There are

about forty of these.

The core memory is divided into two 4096 word core "fields."

Communication between these is provided by "change data field" and

"change instruction field" instructions (IOT's). Each 4096 is

further divided into 128 word "pages" so that each instruction can

address any location on its page or page zero (see Figure A-1 for

instruction formats). Out of page references (other than to page

zero) are made through indirect words. Only single level indirection

is possible.

43

44 APPENDIX A

Memory Reference Instructions

0 1 2 3 4 5 ------11

Page address (0-177 octal)

O= page zero, l= current page

l= indirect reference

3 bit operation code (0-5)

IOT Instruction

0 1 2 3----8 9 10 11

I/O pulse 1 at event time 1

I/O pulse 2 at event time 2

I/O pulse 4 at event time 3

"Operate" Micro-coded Instruction

0 1 2 3 4 -----10 11

7

If bit 3= 1, then O= Group 2
'---- l= Arithmetic group

Each bit has a meaning dependent
on the contents of bits 3 and 11

O= Group 1, l= Group 2 or Arithmetic Group
(depending on bit 11)

Figure A-1. PDP-8 Instruction Formats

THE PDP-8/338: STRUCTURE AND PROGRAMMING

The 338 Display is a versatile stored program display

sharing the PDP-8 memory. Display instruction lists are

45

processor
stored in

memory and accessed during a memory "break" cycle occurring once

every three normal instruction cycles. The 338 has instructions to
~

interrupt the PDP-8 processor and similarly, the PDP-8 has IOT

instructions to start and stop the display, and load or interrogate

its various status registers.

The display itself has a 75 inch square programmable area of

which a 9-3/8 inch square sector is viewable at one time (1024

points in each direction). The 338 is also equipped with a light

pen, a bank of twelve pushbuttons, and a "manual interrupt" button,

all capable of causing PDP-8 interrupts or raising flags

interpretable by display instructions.
Display instructions are executed in control state or data state

with the same code taking on a different meaning depending on the

state. Control instructions perform such functions as changing the

scale, intensity, or sector, interrogating the pushbuttons or light

pen, performing jumps or "push" jumps or "pops" and, of course,

changing to data state. Data state instructions cause actual CRT

beam movements in one of seven modes: point, increment, vector,

vector continue, short vector, character, and graph plot. Character

mode uses the VC38 Character Generator to execute an efficient

dispatch to "character routines" written in increment or short
vector mode.

The GDM Monitor occupies approximately 4000 locations of core

memory, the PDP-8 File System occupies an additional 2500, the

display character generator routines, 500, and the remaining 1500

locations are reserved for the current display template and data

manipulation routines (although they seldom get that large). One

half of the disc, about 16,000 words, is available for display

template storage while the other half is reserved for the disc

resident PDP-8 Operating System. An average display template

occupies 25 tape blocks for the source file, 12 for the binary file,

and 5 for the "DT" form of a standard 1465 block DECtape. Most of

the display template is plotted in character mode with portions in

vector and short vector modes.

This empty page was substih1ted for a
blank page in the original document.

APPENDIX B

SEGMENT ADDRESSING IN MULTICS

(See [3] for further background and a more complete description.)

Each user process running in Multics has at its disposal a

virtual memory (or address space) which is mapped into core memory

by several hardware and software devices. Each address in virtual

memory has two components: a "segment number• (up to 2**14) and an

"offset" within that segment (up to 2**18). Segments are further

divided into "pages" for the purposes of efficient core memory

management but this mechanism is invisible to the user.

The "generalized address• is mapped into an actual core memory

address with the help of a "page table• for each segment and a

single •descriptor segment" (that is, one for each user). (See

Figure B-1) A hardware register, the descriptor base register, is

set to point to the user's descriptor segment. The hardware

addressing mechanism then interprets the generalized address as

follows: The segment number, k (see the diagram) , is taken as an

offset into the descriptor segment. The contents of the location

pointed to is a pointer to the page table for segment k. Pages are

1024 words long in Multics, thus the high order bits of the offset,

1, are interpreted as the page number, i (the of"fset into the

segment's page table) •

The core location specified by generalized address kll is,

therefore,' "computed" by the formula:

location • C(C(C(DBR)+k)+i)+j

where C(x) = contents of location x

i = offset into page table = [l/1024]

j = offset within page i = 1 modulo 1024

In order to simulate the hardware mechanism of the GE-645, the

GDM system must know the base address of the descriptor segment in

question. It can then retrieve the appropriate descriptor segment

word and page table word for the generalized address being converted

to a core address. If the user restricts himself to requesting data

from "wired-down" data bases (that is, data bases whose core

locations never change after Multics

computation need only be performed the

referenced.

47

initialization), then this

first time a location is

48

-------------~--~---c---.,.,,--.----,--,---~--~-~-~

Descriptor Base Register

Generalized Address

~gment 1ome~

i

Page Table for
Segment k

Core Address

i= (1/1024)

j= 1 modulo 1024

k

Descriptor
Segment

Core Address

Page i of
Segment k

APPENDIX B

Core Address

j

k/l

Figure B-1. Multics Two-Dimensional Addressing

APPENDIX C

USING GDM UNDER THE OS/8 OPERATING SYSTEM

The OS/8 Operating System is a tape oriented monitor system for

the PDP-8 (see [12] and [18] .• The GDM Monitor system and the GDM

Subroutine Package are stored as a single tape file with name 'GDM

S' ("S" indicates a "saved" file).

To resume the GDM System, simple type 'GDM (NL)' on the teletype.

The System will be loaded from tape and started at location 200 in

field 0 (GDM standard starting address). GDM will respond with 'GDM

(NL)' and wait for conunands to be typed. Issuing a "Q" conmand will

cause a return to OS/8 (a jump to the bootstrap at location 7600 in

core field O is executed).

Several other types of tape files are used by the GDM System:

x A ASCII text file. Output of editor (see below).

x B binary image file. Output o~ assent>ler (see below).

x M display template file created by GDM •oT• command from

file 'x B.'

x N display snapshot file created by GDM coanand •sN."

The OS/8 text editor, TECO, is a versatile context editor

the display. Typing 'TECO (NL)' causes it to be resumed. A

using

short

listing of TECO commands follows. For a more complete list,

[18]. For further information on the TECO proqram in general,

[8].

see

see

A "$" indicates the teletype "ALT MODE" character: typing •$$"

causes execution of a command string:

nRx$

nWx$

A

p

XR

xw
K

BJ

ZJ

!,nC

open file 'x A' for reading on tape unit n.

open file 'x A' for writing on tape unit n.

read next page from file opened for reading and append

to buffer.

write current buffer on tape file opened for writing.

Close current file opened for reading.

close current file opened for writing.

clear buffer.

move pointer to beginning of buffer.

move pointer to end of buff er

move pointer n characters fo:rward or backward.

49

so

+nL move pointer n lines up or down.

s •.• $ search for character string and move pointer.

I ••• $ insert character string at pointer.

+no delete n characters forward or backward.

+nK delete n lines up or down.

Q return to OS/8.

APPENDIX C

The OS/8 assembler, MACRO, is called by typing 'MACRO (NL)' on

the teletype. It will respond with:

R:

and wait for a tape file name to be typed. It is only necessary to

type the primary file name as MACRO always looks for text files with

second name "A" (on tape unit 1 only).

MACRO is a two-pass assembler which halts at the end of pass 1.

Pressing the "continue" switch on the PDP-8 will cause pass 2 to be

entered and the following to be typed:

W:

The primary name of the output file should be typed. A file with

second name "B" will be created on tape unit 2. After this action,

MACRO will ask again for the name of the input file:

R:

This must be the same as in pass l! At the completion of assembly, a

symbol table will be typed.

The complete MACRO Language is described in reference 4, but

certain features are of particular relevance to GDM users. The GDM

System provides a set of macro definitions (see Appendix F for a

listing) to simplify display template prograrmning. These are stored

as a separate tape file with name 'GDMMAC A' and should be used when
assembling any display template without the aid of the DDL compiler.

If 'TEMPL A' is the name of the display template file, the following

should be the appearance of the teletype printout at the end of the

assembly (user responses are underlined):

R (NL)

~(NL)

R:GDMMAC (NL)

(OS/8 ready)

(resume assembler)

(read macro definitions)

USING GDM UNDER THE OS/8 OPERATING SYSTEM

PR:TEMPL

$

(NL) (read display template file)

(end of pass 1)

(user presses •continue")

51

W:TEMPL (NL) (name of display template output file)

R:GDMMAC (NL)

PR:TEMPL (NL)
$ (end of pass 2)

(symbol table follows)

This •concatenation" of input files is caused by the presence of the

pseudo-op "PAUSE" at the end of the macro definitions file rather
than the pseudo-op "$" indicating the end of input.

Another feature of MACRO is the ability to set the core field and

location of the assembled output. Display templates should have the

format indicated in Figure c-1 (comments begin with a"/").
To create file 'TEMPL M,' suitable for display via GDM, assuming

that binary file 'TEMPL B' has been created as outlined above, the

following console session should ensue:

R (NL)

§!!:!. (NL)

GDM (NL)

Q. (NL)
R (NL)

(OS/8 ready)

(GDM response when loaded)

(return to OS/8)

LOADGO 200 TEMPL (NL) (load TEMPL, restart GDM--see below)
GDM (NL)

DT TEMPL (NL) (create file 'TEMPL M1)

(further work with GDM)

When at OS/8 command level, the following commands may also be of

general use (see [18) for a more complete list):

LOAD ab c ••• (NL)
START {x) y (NL)

LOADGO (x) ya b c ••• (NL)

The proper combination of commands will cause file 'a
~inary), 'b B', 'c B', etc. to be loaded and execution to

location y in core field x.

Any file with second name •s• (saved) may be resumed

typing its name. The most colllllonly used (in addition to

B' (for
start at

by simply

MACRO and

52

FIELD l

*3600

*3776

{
*3777

{
*4000

*4600

$

APPENDIX C

/EKTIRELY IN CORE FIELD l

The segment number and offset table used for
addressing data items is assembled between 3600
and 3775.

Length of data routine area rounded up to nearest 200.

Length of display list area.

Data routine area (up to 4577) beginning with data
routine dispatch list (7777 is terminator of list).

Display list area up to 5777.

Figure C-1. Display Template Format

USING GDM UNDER THE OS/8 OPERATING SYSTEM 53

TECO) are: COPY (copy file from one tape to another) and L (file

directory utility program).
After typing 'COPY {NL)' the program will be loaded from tape and

respond with:

T

The user types:

al bl a2 b2 a3 b3 a4 b4 • • • (NL)

The program copies file 'al bl' from tape unit l to tape unit 2 and
names it 'a2 b2' (not identical to 'al bl'); then 'a3 b3', etc.

Typing 'L (NL)• resumes (from tape) the file directory utility

command. L accepts the following requests:

wL display file directory of tape on unit w. (Tape unit

number may precede any command.)

P print file directory on teletype.

B display free block list.

Dal bl a2 b2 ••• delete the files indicated. Second name may be

"*" indicating all files with the same first name.

R al bl a2 b2 ••• rename file 'al bl' to 'a2 b2,' etc.

Q return to OS/8 conmand level.

This empty page was substih1ted for a
blank page in the original document.

APPENDIX D

GDM COMMAND AND ERROR SUMMARY

All GDM commands, system or user defined, are one or two

characters. Arguments that are tape file primary names may be up to

six characters. The general command format is:

tape_unit command_name arg_l arg_2 arg_3 ••• (NL)

where the tape_unit (a number from l to 8) may optionally precede

any command. Arguments are as specified for each command.

To initiate a display, simply type its name on the teletype. To
return to GDM command level, depress the "manual interrupt" button

on the display pushbutton box. Commands indicated with a "*" destroy

the current user display image and should not be used before an "R"

command:

P prints all known command names on the teletype.

DD xx yy zz ••• sets the date display. When no arguments are

typed, DD resets the interval timer.

C removes all user defined display names from the command

table and removes all user displays from the disc.

LN al bl ••• loads display file 'al M' and gives it command name

'bl' 1 etc.*

SN a

SH a

OT a

sv a

saves the current display in snapshot file 'a N.' Issues

an "R" command at completion (see below).

displays file 'a N' for photographing, etc.*

creates display file 'a M.' This command assumes that a

display template binary image file has been previously

loaded (see Appendix C).

creates file 'a S' containing the GDM System (see

Appendix C) •

R resume the user display after "manual interrupt" caused

suspension.

Il displays command usage information.

I2 displays a short description of all system commands.

Q returns to OS/8 command level.

55

,----------------------- -------------~---------------~--~---~- --~---------

56 APPENDIX D

GDM error messages are always typed on the teletype in the

following format:

E:xy

where 'x' is the error code (if any), and 'y' is the number of the

command line argument which caused the error (errors caused after

processing of the command will output the number of the last

argument).

Following is a list of error codes and their probable causes:

U Unknown command or display name.

O Overflow: command line too long, too many display templates,

tried to read or write a tape file which was too big.

R Ready list overflow. This is caused when the data dispatch

routine cannot keep up with the· number of requests for

processing. A display template redesign is indicated

(sampling rates should be changed).

W Wait list overflow. There are too many requests for

rescheduling of events. A display template redesign is

indicated (reduce the number of events!).

N No current display. Tried to "snapshot" before initiating a

display or tried to issue an "R" (resume display) after

executing a command that destroys the display image.

F OS/8 File System error. Usually indicates that the file

named does not exist on the tape indicated when trying

to read, or that the file already exists when trying to

write.

T Tape error. Try again or call field service engineer.

D Disc error. Try again or call field service engineer.
p Dataphone error. Reinitialize display. If this type of

occurs frequently, call the field service engineer.

error

APPENDIX E

THE GDM SUBROUTINE PACKAGE

The list of GDM Subroutines provides the following information:

1. Symbolic name and number of arguments

2. Purpose of arguments

3. Brief statement of function and usage

All subroutines are addressed through a page zero transfer table.

The addition of a new subroutine, therefore, requires only the

addition of its actual address to the transfer table and of its name

(symbolic) and transfer table address to the GDM Macro Definitions

(Appendix F).

Subroutines with only a single argument can be addressed by

making the following macro call:

DO SUBR,ARG

where SUBR is the (symbolic) name of the routine and ARG is its

argument. Similarly, for subroutines with two arguments, use the
macro call:

CALL SUBR,ARGl,ARG2

Subroutines TIME and PBHIT (discussed in Chapter II) are called by

special macros:

TIME

PBHIT number

Data Manipulation Routines:

Name: GE645 Number of arguments: 2

1. Display template address table number of segment number of datum.

2. As in l, but for offset of datum.

This routine will initiate a request for data

instructions contained in the two address table

according to

entries. The

the
data

item is returned to three consecutive locations (36-bits) beginning

57

58 APPENDIX E

at "DATA" (see Appendix F).

Name: MOVE Number of arguments: 2

1. Address of data to move.

2. Address of locations to move data to.

This routine simply transfers the three words at the location

specified by argument 1 to the three words starting at the location

specified by argument 2. It can be used for moving data before

performing additions and subtractions (see below).

Name: ADD Number of arguments: 2

1. Address of addend

2. Address of addend

Performs a 36-bit addition of the items specified. Because of the

method of addition, neither argument may be in DATA. The result is

left in DATA.

Name: SUB Number of arguments: 2

1. Address of subtrahend.

2. Address of minuend.

Performs a 36-bit subtraction by inverting the subtrahend and

calling ADD. As in ADD, neither item may be initially in DATA and
the result is left in DATA.

Name: SCALE Number of arguments: 1

1. The number of bits (in octal) to shift the datum left(+) or

right(-).

This routine will shift the 36-bit number in DATA left or right the

indicated number of bits (up to 43 octal). Vacated bit positions

will be filled with zeros. This can be used before applying a

"MASK" to get at certain bits of the datum.

THE GDM SUBROUTINE PACKAGE 59

Name: MASK Number of arguments: 1

1. The number of bits to be retained in the datum (masked).

The low-order bits (memory location DATA+2) of the data item are

logically AND'ed with the specified mask and returned to DATA+2.

The argument specifies the number of bits (from the right) to be put

in the mask and, therefore, retained in the data word. This routine

should be used before calling a plotting routine requiring a

particular number of bits of precision.

Display Subroutines:

Name: NPLOT Number of arguments: 2

l. The number of characters to plot (up to 14 octal).

2. Address of an area in the display list to put the display codes.

Will interpret the item in DATA as (up to) 12 octal digits for

display. Character codes are generated and put in the !cations

starting at the address specified in argument 2. If less than 12

digits are to be plotted, they are taken as the rightmost digits.

N arne : CPLOT Number of arguments: 2

l. Number of characters to be plotted (up to 4).

2. Address of an area in the display list to put the display codes.

Similar to NPLOT except that the item is interpreted as four 9-bit

ASCII characters. If less than 4 characters are to be plotted, they

are taken as the leftmost characters. (Special characters and

illegal codes appear as a "box" in the display).

Name: BPLOT Number of arguments: 1

l. Address of the display list location for plotting information.

Takes the low-order 9-bi ts of the i tern in DATA, appends control

information and puts this into the location specified. This routine

is for plotting either vertical or horizontal bar graphs and should

be used with display macros VBAR and HBAR (see Appendix F).

60

Name: HPLOT Number of arguments: 2

1. 0 = intensified display; l = non-intensified display.
2. Display list location for code.

Plots a horizontal line, one character space in width,
(along

time

APPENDIX E

intensified
with VPLOT

graphs and

or not as indicated in argument 1. This routine

and ERASE) is used for plotting multiple state
should be used with display macros MSBEG and MSEND (see Appendix F).

Name: VPLOT Number of arguments: 2

1. Length of vertical line (number of line spaces).
2. Display list location for code.

Plots a vertical line from 1 to 7 line spaces in length, up (+) or
down (-) as specified by argument 1. This routine should be used for

plotting multiple state time graphs.

Name: ERASE Number of arguments: 2

1. Display code to search for.

2. Display list address to start search.

Will check consecutive display locations for the code specified by
argument l and will replace all other codes found with zero. This

routine can be used to •erase• a portion of a display list, e.g. to

replot a multiple state time graph.

Miscellaneous Routines:

Name: SETCLK Number of arguments: 2

1. Rescheduling time in hundredths of a second (octal).
2. Name (label) of subroutine to reschedule.

Will put the subroutine name specified on the wait list to be called

when the rescheduling time specified has elapsed. The subroutine
will be called with the accumulator equal to zero and with no

arguments. Return will be expected at the location immediately

following the call.

THE GDM SUBROUTINE PACKAGE 61

Name: RD24 Number of arguments: 2

1. Number of octal digits to read (up to 10 octal).

2. Address of locations to put data.

Will read an octal number from the teletype and store it

right-justified in the locations specified by the first argument

(the locations specified will receive the high order digits, the

following location will get the low order). This routine can be

used to read data item addresses from the teletype.

Name: PBHIT Number of arguments: 1

1. The pushbutton nunt>er (6-11 only) indicated by the appropriate

bit (bit 6 =pushbutton 6, etc.).

If pushbutton O is on, this routine will check to see if the

pushbutton indicated is also on (has been hit). Returns immediately

following the call if not; one location after that if there has been

a hit. If pushbutton O is not on, returns immediately following the

call.

Name: TIME Number of arguments: O

Increments the interval timer and reschedules itself for a one

second "sleep.•

This empty page was substih1ted for a
blank page in the original document.

APPENDIX F

MACRO DEFINITIONS FOR USE WITH GDM

The following listing of the GDM macro definitions conforms to

the current version in all aspects except for the presence of
additional cormnents. Definitions are of two types:

x = y

which allows the use of symbolic name •x• when the value •y• is
required; and

DEFINE X Al A2 A3 <body>

which causes a macro definition to be entered in the assembler macro

definition table. The body of the macro will be inserted in the
assembly language program wherever a statement of the form indicated

below appears:

X Al,A2,A3

In the following definitions, comments begin with a slash mark

(/), commands are delimited either by a semicolon (;) or a new line,
and a combination of command as is indicated by an

All subroutine calls (the •JMS• instruction) are

apostrophe (1).

made indirectly

c•I•) through a page zero c•z•) communications region.

/DEFINITIONS USED IN DATA ROUTINES

DATA•l03
ADATA=SO

DEFINE TIME

<O
JMS I Z 47

JMP I .-2>

DEFINE PBHIT ARGl
< CLA 1CLL1CMA1 RAL

TAD (ARGl

/GE645 PUTS DATA IN 103,104,105
/LOCATION 50 CONTAINS A 103

/WILL CALL THE INTERVAL" TIMER

/STANDARD PDP-8 SUBROUTINE FORMAT
/CALL VIA COMMUNICATIONS REGION

/RETURN

/CHECKS FOR A PUSHBUTTON HIT
/INSTRUCTION TO SET THE AC TO -2

/ADD ARGl TO THE AC

63

64 APPENDIX F

DCA .+3 /PUT IN SHIFT INSTRUCTION

LSR /SET UP PUSHBUTTON MASK

0

JMS I Z 60 /CALL PUSHBUTTON CHECK ROUTINE

CMA /CHECK RESULTS

SZA!CLA /AC=O INDICATES NO HIT

/NO HIT RETURN LOCATION
>

/HIT RETURN LOCATION

/THE FOLLOWING SUBROUTINES ARE CALLED BY INCLUDING A STATEMENT OF

/THE FOLLOWING TYPE:

GE645=51

ADD=52

SUB=53

MOVE=56

SETCLK=57
SKED=57

ERASE=61

HPLOT=62

VPLOT=63

NPLOT=64

CPLOT=65

RD24=67

DEFINE CALL NAME ARG2 ARG3

<TAD (ARG2

JMS I Z NAME

ARG3>

/CALL SUBR,ARG1,ARG2

/LOCATIONS ARE INDIRECT WORDS

/ALIAS

/PUT FIRST ARGUMENT IN AC

/CALL SUBROUTINE

/SECOND ARGUMENT FOLLOWS

/THE FOLLOWING SUBROUTINES ARE CALLED BY INS.ERTING A STATEMENT OF

/THE FOLLOWING TYPE:

SCALE=54

MASK=55

BPLOT=66

DEFINE 00 NAME! ARG4

<TAD (ARG4

JMS I Z NAME!>

/00 SUBR,ARG

/PUT ARGUMENT IN AC

/CALL SUBROUTINE

/END OF DATA ROUTINE DEFINITIONS

MACRO DEFINITIONS FOR USE WITH GDM

/DISPLAY LIST DEFINITIONS

/ALL USER PORTIONS OF THE DISPLAY LIST ARE IN DATA STATE AND

/CHARACTER MODE. TO LEAVE DATA STATE, AN "ESCAPE" CHARACTER MUST

/APPEAR IN THE DISPLAY LIST. IT MUST APPEAR BEFORE THE •rop• MACRO

I (SEE BELOW) •

/SPECIAL CHARACTER CODES

BS=lO

HT=ll

SP=40

SP1=40

SP2=37

SP3=36

SP4=35

SP5=34

SP6=33

SP7=32

SP8=31

SP9=30

/BACKSPACE

/HORIZONTAL TAB

/SPACES

65

ESCAPE=l 77 /LEAVE DATA STATE, ENTER COMMAND STATE

DEFINE NL <15;12>

DEFINE DLST ART

/NEW LINE = CARRIAGE RETURN, LINE FEED

/STANDARD DISPLAY LIST START

<2011;76;0517;1107;1777;4000;1151>

/CALLS SYSTEM DISPLAY LIST SUBROUTINE, SETS BEAM TO UPPER LEFT CORNER

/OF SCREEN AND ENTERS DATA STATE IN CHARACTER MODE.

DEFINE TOP

<2001;4600>

DEFINE HBAR DARGl

<4;1;177;6360;1121;4000

DARGl, 4000

6340;1151;2;4>

/JUMP TO START OF DISPLAY LIST

/MUST BE LAST ITEM IN DISPLAY LIST

/PLOTS HORIZONTAL BAR

/MAKES USE OF SPECIAL CHARACTERS TO PLOT END LINES. ARGUMENT IS LABEL

/OF LOCATION TO PUT DATA TO BE PLOTTED.

DEFINE YBAR DARG2

<177;1141;4006;4063;6360;1121

DARG2, 4000

/PLOTS VERTICAL BAR

4000;6340;1141;4003;4066;1151>

/AS IN HBAR

66

DEFINE MSBEG DARG3

<4;1

DARG3, O>

APPENDIX F'

/PLOTS BEGINNING OF M.S.T. GRAPH

/ARGUMENT IS LABEL OF FIRST LOCATION OF' M.S.T. GRAPH DATA AREA

DEFINE MSEND DARG4

<DARG4, O;O

2;4>

/PLOTS END OF M.S.T. GRAPH

/ARGUMENT IS LABEL OF END OF M.S.T. GRAPH DATA AREA

/END OF DISPLAY DEFINITIONS

PAUSE

/USER DISPLAY TE~PLATE FILE WILL BE ASSEMBLED HERE.

APPENDIX G

DDL STATEMENT SUMMARY

The Display Description Language contains, at present, three

types of statements:

1. Format control

2. Data description
3. Display component description

The syntax for type 2 statements is given in Chapter II and is not

repeated here.
The general format for display component statements is:

type title data rate trigger optional_args;

where optional_args is of the form:

mark distance title

which specifies additional graph formatting as shown in the diagrams

(Figure 2-10).

T 'text';

NL n;

SP nJ
HT n;

N n T'text' Dd Ss XXJ

A n T'text' Dd Ss XX;

NA nl n2 T'text' Dd Ss XX;

BH T'text' Dd Ss Xx Mm 'text'J

BV T'text' Dd ss Xx Mm •text';
MS n T'text' Dd Ss Xx Mm 'text';

MV n T'text' Dd Ss XX Mm 'text'1

67

plot text

plot n line spaces

plot n spaces
plot 10 spaces (use tab)

plot n octal digits from

the datum
plot n ASCII characters

from the datum
plot nl digits and n2
characters

plot horizontal bar graph

plot vertical bar graph
plot type •a• multiple state

time graph
plot type .b. multiple state

time graph

This empty page was substih1ted for a
blank page in the original document.

APPENDIX H

A SAMPLE DISPLAY TEMPLATE: XRAY

The following is a PDP-8 Assembly Language (MACR0-8) program

which, when assembled with the GDM Macro Definitions (Appendix F),

is suitable for use as an input to the GDM "DT" conunand (display

template creation). This particular program is the display used for

the GDM XRAY mode of operation, as shown in Figure H-1. It

illustrates a method of display design which will be automated by

use of DDL and the associated compiler. It should serve as a

sufficient example, however, to the GDM display template designer.

It also demonstrates some of the special features of GDM (such as

teletype input) that can be used if necessary to the particular

display. (Macro definitions are contained in Appendix F; further

information on PDP-8 programming can be found in Appendix A and

reference (6) .)

FIELD 1

*3600

GETBL,

*3776

DTLTH-4000

DLLTH-4600

*4000

T

INIT

PB

DISPL

7777

INIT,

ZERO,

T,
PB,

0

/SPACE FOR ADDRESS TO BE FILLED IN

/LENGTH OF DATA ROUTINE AREA

/LENGTH OF DISPLAY LIST

/DATA ROUTINE DISPATCH TABLE

/DATA ROUTINES

/INITIALIZATION

CALL MOVE,ZERO,GETBL

JMP I INIT

TIME

0

CALL SKED,62,PB

PBHIT 6

/MACRO TO SET INTERVAL TIMER

/CHECKS FOR PUSHBUTTON HIT

/HALF SECOND

JMP I PB /NO HIT

69

70

TYPE

XRAY

1234561123456

123456#

(SEGNOIOFFSET)

(ABSOLUTE)

SEGMENT NUMBER 000000

OFFSET 000000

ABSOLUTE ADDRESS 000000

CONTENTS 000000000000 AAAA

Figure H-1. The XRAY Display

APPENDIX H

DATE 00/00/00

TIME 0000

A SAMPLE DISPLAY TEMPLATE: XRAY

PBDIS,

BCHECK,

BABS,

BREAK,

DISPL,

*4200

DTLTH,

*4600

CALL RD24,6 1 DATA /READ TELETYPE

CALL MOVE,DATA,GETBL/NPLOT NEEDS DATA IN DATA

JMS BCHECK /CHECK FOR BREAK CHARACTER

CALL GE645,l,2 /FETCH DATA

CALL NPLOT,12,NUM /NUMERIC PLOT

CALL CPLOT,4,CHAR

JMP I PB

/CHARACTER PLOT

0 /MACHINE LANGUAGE SUBROUTINE CHECKS

/BREAK CHARACTER AND PLOTS

CALL RD24,l,BREAK

TAD BREAK

TAD (-336

SZAICLA

JMP BABS

TAD GETBL

/GET BREAK CHARACTER

/SEE IFI

/ASSUME

TAD (4000

DCA GETBL

/SEGMENT NUMBER ENTRY

CALL NPLOT,6,SEGNO /DISPLAY SEGMENT

CALL RD24,6,DATA /GET OFFSET

CALL MOVE,DATA,GETBL+2 /NPLOT NEEDS DATA IN DATA

TAD GETBL+2

TAD (6000

DCA GETBL+2

CALL NPLOT,6,0FFSET

JMP I BCHECK

TAD GETBL

TAD (7700

DCA GETBL

CALL NPLOT,6,ABS

JMP I BCHECK

o~o

0
CALL SKED,144,DISPL

/OFFSET ENTRY

/ABSOLUTE ENTRY

/PLOT

/TEMPOARY STORAGE

/SAMPLE AND DISPLAY DATA

TAD GETBL /SEE IF LOCATION SPECIFIED YET
SNAICLA

JMP I DISPL /NOT YET

TAD DISPL /SET UP RETURN

DCA PB

JMP PBDIS /DISPLAY

0 /TO MEASURE LENGTH

71

72

DLSTART

/DISPLAY LIST

/MACRO

APPENDIX H

/THE FOLLOWING IS MAINLY TEXT FOR THE DISPLAY. ASSEMBLY LANGUAGE

/REQUIRES A " n; FRONT OF A CIIARl\C'l'ER.

SEGtW,

OFFSET,

ABS,

NUM,

CHAR,

DLLTH,

$

NL;tJL;HT;HT;"X;"R;"A;"Y

NL;NL;NL;HT; 11 T; 11 Y;"P; 11 E

SP2; 11 l; 11 2; 11 3; 11 4; 11 S; 11 6; 11 l; 11 l; 11 2; 11 3; 11 4; 11 S; 11 6;SP3

" (; "s i II E; "G; "N; "O;" I i 11 0; II F; "F; II s i II E i "T; ") i NL; HT; SP 6

II 1 i II 2; II 3; "4; II 5 ; "6 ; II# ; SP 9 ; " (; II A; II B; tis i II 0 ; II L; II tJ i II T; II E; ,,)

NL;NL

HT; II s; 11 E; 11 G; 11 M; II E; 11
[./; "T; SP; II N; "U; II M; 11 13; II E; II R; SP 2

/STORAGE FOR SEGMENT ;HJMBEI<. DISPLAY

O;O;O;O;O;O

l'JL i H rr ; II 0 i II F ; It F ; rt s ; II I~ ; If T ; s p 8

/STORAGE FOR OFFSET DISPLAY

O;O;O;O;O;O;NL;NL

"Ai" Bi" s; "U; II Li "U; "T; "E i SP; "A; II D; II D; II R i "E; "s; "S; SP

/STORAGI.: FOR ABSOLUTL: ADDRESS

0;0;0;0;0;0

NL;NL;NL

"C; "O; "N; 11 T; "E; "N; "T; "S; SP 3

/STORAGE: FOR CONTENTS

0 ;O ;O ;O ;O ;O ;O ;O ;O ;O ;O ;0

O;O;O;O

TOP

0

/MACRO

/TO ViEAS URE LENGTH

/END OF DISPLAY TEMPLl>TE FILE

BIBLIOGRAPHY

(ACM = Association for Computing Machinery)

[l] Coffman, E.G., and Varian, L.C., •Further Experimental Data on

the Behavior of Programs in a Paging Environment,•

Communications 2! ~ ~, vol. 11, no. 7, July, 1968, pp.

471-474.

(21 corbato, F.J., and Vyssotsky, V.A., •Introduction and

overview of the Multics System," Proceedings of ,the ~ ~
Computer Conference, Las Vegas, Nevada, November JO, 1965, pp.

185-196.

[3] Daley, Robert c., and Dennis, Jack B. •virtual Memory,

Processes, and Sharing in MULTICS," Communications 2f ~ ~'
vol. 11, no. s, May, 1968, pp. J06-JJJ.

[4] Digital Equipment Corporation, PDP-8 Programming Manual,

MACR0-8, Maynard, Massachusetts, 1965.

[5] Digital Equipment Corporation, Progranwned Buffered Display

~ 338 Programming Manual, Maynard, Massachusetts, 1967.

t6] Digital Equipment Corporation, Programmed Data Processor-a

Users' Handbook, Maynard, Massachusetts, 1966.

[7] Edwards, D.J., •GE 645 Core Memory X-Ray Program," Multics

System Progranuners' Manual, Sec. BE.13, Cambridge,

Massachusetts, M.I.T., Project MAC, Internal Document,

November 22, 1966.

[8] Edwards, D.J., TECO 6, Project MAC Memorandum MAC-M-191,

Cambridge, Massachusetts, M.I.T., Oct. 29, 1964.

(9) Estrin, G., and Kleinrock, L., •Measures, Models, and

[10)

Measurements for Time-Shared Computer Utilities,• Proceedings

2f ~ ~ National Meeting, August, 1967, pp. 85-95.

Glaser, E.L., couleur, J.F., and Oliver, G.

Design of a Computer for Time Sharing

A., "System

Applications,•

Proceedings 2! ~ ~ Joint Computer Conference, Las Vegas,

Nevada, November JO, 1965, pp. 185-196.

73

r

74 BIBLIOGRAPHY

(11] Graham, Robert M. "Protection in an Information Processing

Utility,• Communications of the ACM, vol. 11, no. 5, May 1968,

pp. 365-369.

(12] Grochow, Jerrold M., and Skinner, Thomas P. "An Integrated

Disk-Tape Operating System for the 338 Buffered Display

Computer,• Proceedings £!..!:!!.!,Fall Symposium of the Digital

Equipment Users' Society, Anaheim, California, November 1967,

pp. 129-135.

(13] Jacks, Edwin L. "A Laboratory for the Study of Graphical

Man-Machine Comniunication,• Proceedings of ~ !.!.!!. ~
Computer Conference, San Francisco, California, Oct., 1964,
PP• 343-350.

[14] Kennedy, James R., "A System for Time-Sharing Graphic

Consoles," Proceedings of .!:!!.!, Fall~ Computer Conference,

1966, pp. 211-222.

[15) Ossanna, J.F., Mikus, L.E., and Dunten, s.D. •communications

and Input/Output Switching in a Multiplex Computing System,•

Proceedings £!.~~~Computer Conference, Las Vegas,
Nevada, November, 1965, pp. 231-240.

(16] Scherr, Allen L. ~Analysis of Time-Shared Computer Systems,

Project MAC Technical Report MAC-TR-18 (Thesis), Cambridge,

Massachusetts, M.I.T., June, 1965 •.

(17) Schulman, Franklin D. "Hardware Measurement Device for

System/360 Time Sharing Evaluation,• Proceedings of the

National Meeting, August, 1967, pp. 103-109.

IBM

ACM

(18] Skinner, T. P. Users' ~ ~ OS/8, Project MAC Memorandum

MAC-M-341, Cambridge, Massachusetts, M.I.T., Dec. 14, 1966.

·YNCWSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Securlly cl•••Jllcetlon ol tUle, body ol abatr•ct .. d Jnde1dn• annotation muat be enr•r•d when the overall report l • cl•••Uled)

I. ORIGINATING ACTIVITY (Corporate -.,thor) 2•. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC Zb. GROUP

None .. REPORT TITLE

The Graphic Display as an Aid in the Monitoring of
A Time-Shared Computer System

4. DESCRIPTIVE NOTES ('l)p• of report .nd lnclueh·e date•)

M.S .. Thesis, Department of Electrical Engineering, September 1968
5. AUTHOR($) (Leet n_..e, lint nim1e, Jnltl.i)

Grochow, Jerrold M.

.. REPORT DATE 7•. TOTAL NO. OF PAGES rb. NO.~; REFS

October 1968 80 ... CONTRACT OR GRANT NO. . .. ORIGINATOR'S REPORT NUMBERISJ

Office of Naval Research, Nonr-4102 (01)
MAC-TR-54 (THESIS) b. PROJECT NO.

NR-048-189
c. tb. OTHER REPORT NOISJ (Any other nwnb•• that may be

•••lfn•d thh report)
RR 003-09-01

d.

10. AVAILA91L.ITY/LIMITATION NOTICES

This document has been approved for public release and sale;
its distrib'ution is unlimited.

I I. SUPPLEMENT ARY NOTES 12. SPONSORING MILITARY ACTIVITY

None
Advanced Research Projects Agency
3D-200 Pentagon
Washil!&.ton D.C. 20301

13. ABSTRACT

The Graphical Display Monitoring System was developed as a medium for dynamic
observation of the state of a time-shared computer system. The system is integrated
to create graphic displays, dynamically retrieve data from the Multics' Time-Sharing
System supervisor data bases, and allow on-line viewing of this data via the graphic
displays. On-line and simulated e.xperiments were performed with various members of the
Project MAC Multics staff to determine the most relevant data for dynamic monitoring,
the most meaningful display formats, and the most desirable sampling rates. The par ti-
cular relevance of using a graphic display as an output medium for the monitoring
system is noted.

As a guide to other designers, a generalized description of the principles
involved in the design of this on-line, dynamic monitoring device includes special
mention of those areas of particular hardware or software system dependence.
as yet unsolved problems relating to time-sharing system monitoring, including
of security and data base protection, are discussed.

14. KEY WORDS

Computers Machine-aided cognition
Dynamic monitoring Multiple-access computers
Graphic data display On-line computers

DD FORM , 1473 (M.l.T.)

Real-time computers
Time-sharing
Time-shared computers

UNCLASSIFIED

Several
those

Security Classification

