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ABSTRACT 

The dynamic allocation of limited processor and m~in memory 
resources among the members of a user community is investigated 
as a supply-and-demand problem. The work is divided into four 
phases. 

The first phase is the construction of the working set model 
for program behavior. This model is based on locality, the con
cept that, during any interval of execution, a program favors a 
subset of its information; a computation's working set is a dyn

:amic measure of this set of favored information. A working set 
storage management policy is one that al1ocatea processors to 
a computation if and only if there is enough uncommitted space 
in main memory to contain its working set. Under such a policy, 
a computation acquires and releases storage as needed, indepen
dently of other computations; because computations are thus made 
statistically independent, it is possible to derive many detailed 
properties of such policies, both in shared and unshared situations. 

The second phase is to define and study the properties of 
system demand. A computation is regarded as the basic demand
making entity, placing demands jointly on processor and main mem
ory resources. Its system demand is a pair (processor demand, 
memory demand), where its processor demand represents its immedi
ate processor requirement (intensity and duration), and its mem
ory demand represents its immediate main memory requirement (its 
working set size). 

The third phase is to define and study the properties of 
system balance. Computations that demand resources are segre
gated into two classes: the first class, called the standby set, 
is temporarily denied the use of system resources; the second 
class, called the balance set, is granted the use of system re
sources. The system is balanced when the total system demand 
of the balance set matches the system capacity. A balance policy 
is a resource allocation policy that regulates membership in the 
balance set so that balance is maintained. Balance policies are 
formulated as· mathematical programming problems whose solutions 
are found dynamically by the scheduler. 

The fourth phase is to apply all these ideas to the design 
and administration of multiprocess computer systems. A relation 
describing the equipment configuration is derived; suggestions 
for processor and multilevel memory system design are made. Per
formance measures are discussed. 

This work is intended to be a new approach to modelling the 
behavior of ongoing computations. It is intended to be a general, 
unified philosophy about allocation and sharing. It is intended 
to spark new thinking about the design and administration of 
multiprocess computer systems. 
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NOTATION 

To prevent confusion, we list here the major notational 
conventions we have used in this thesis. 

Notation 

x E A 

A 

A~B 

B UAi 
iEI 

B nAi 
iEI 

Pr[A] 

Pr[A !BJ 

{ x lxEAi, 

£xlxEAi' 

F (u) 
x Pr[x~u] 

f (u) 
x 

d 
-d F (u) u x 

x = J u f (u) du x 

2 2 
x J u fx(u) du 

0 2 = x2- ;::2 
x 

g(x) = jg(u) f (u) du 
x 

some iEI} 

all iEI} 

~--~x 

g(x,y) = J g(u,y) f (u) du 
x 

Explanation 

x is an element of the set A. 

A comprises all elements x 
having the property P. 

the number of elements in A. 

the set A is contained in the 
set B; i.e., every element of 
A is also an element of B. 

definition of the union of sets. 

definition of the intersection 
of sets. 

probability of the event A. 

probability of the event A, 
conditioned on the occurrence 
of the event B. 

probability distribution func
tion for the random variable x. 

probability density function 
for the random variable x. 

the mean, or expectation, of 
the random variable x. 

the second moment of the random 
variable x. 

the variance of the random 
variable x. 

expectation of the function 
g(x) of the random variable x. 

expectation with respect to x 
of the function g(x,y) of two 
random variables x and y. 
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CHAPTER 1 

The Resource Allocation Problem 

1.0. Introduction to the Resource Allocation Problem 

The desire for a general purpose community computing fac

ility -- a computer utility -- has motivated recent trends in 

computer design. Just as electric power is distributed to the 

members of a community to satisfy their electromechanical needs, 

so-called computing power can be distributed to the members of 

a community to satisfy their information processing needs. 

The essence of a computer utility can be captured in one 

word: sharing. By sharing computing resources, the users dis

tribute the costs, and each pays less. By sharing information, 

one user may build on the work of others, and advance more ra

pidly in his own work. Sharing benefits the system, too, for 

the system may select from a wide range of instantaneous demands 

those that tend to improve its efficiency. Resource allocation 

is the problem of distributing limited resources among members 

of the community. 

In recent years we all have watched the evolution of soph

isticated techniques for sharing of equipment and information, 

techniques such as multiprogramming, multiprocessing, multi-
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accessing [C7,C8,D7,P2], segmentation and paging [D8], and 

traffic control [52]. Computer systems using these techniques 

have not always met expectations. For example, it has been ob

served that the efficiency of paged memory systems has often 

been much less than anticipated. There have even been instances 

of unexpected behavior. For example, it has been observed that 

it is possible to be processing a set of programs using all the 

available memory and processor resources; introducing an additional, 

average-sized program into memory can trigger a total collapse 

of service efficiency, leaving almost all the processors idle. 

This phenomenon, known as .thrashing, at first defies our intuition, 

which would instead lead us to expect gradual degradation of ser

vice as additional programs are squeezed into memory. 

What causes thrashing? When multiprogramming a memory, what 

is the smallest subset of each program that ought to reside there? 

What (perhaps unwanted) interactions take place among programs 

that compete for the same equipment? Given a set of programs, 

what should be the configuration of processor and memory resources 

to serve them best? What is the best scheduling policy? The 

best storage management policy? How does one predict the resource 

requirements of a program when nothing is known about it before

hand? How can one tell if the system is behaving properly? 

The lack of answers to some of these questions, the intense 

debate over others, and the existence of yet unasked questions, 

lead inescapably to this simple conclusion: we do not understand 

the behavior of ongoing computations. 

Thus, multiprogramming, multiprocessing, and all the other 

techniques, are not solutions to the resource allocation problem; 

they are but tools by which a solution may be implemented. 



3 

It is the purpose of this thesis to start filling the gap, 

to develop new approaches to modelling the behavior of comput

ations, to spark a new way of thinking about programs in exe

cution, to evolve a general, unified philosophy about resource 

sharing and allocation. 

I felt that an interesting and useful solution to the re

source allocation problem should be based on the ideas of supply

and-demand economics in a free-enterprise market; and this think

ing underlies my work. I wanted to formulate resource alloc

ation as the problem of selecting fairly from all user demands 

a subset whose total demand balances the supply; I wanted the 

solution to be applicable across a wide range of computer sys

tems, large and small, existing and proposed, from Multics [C8], 

to Dijkstra's harmonious society of cooperating sequential pro

cesses [Dll], to the highly parallel machines of Dennis [DlO] 

and Slotnick [S6]; I wanted the solution to be unified in the 

sense that processor and memory allocation are handled together, 

not in two separate decisions. To accomplish these goals, I 

approached the problem in four phases. 

The first phase was the construction of an abstract model 

for program behavior. This model, the working set model, makes 

it possible to decide which information is in use by a single 

computation or set of computations; intuitively, a computation's 

working set of information is the smallest collection of infor

mation that must be present in main memory for it to operate 

efficiently. The working set model is based on the concept of 

locality, the idea that a computation will, during an interval 

of time, favor a subset of the information available to it; 

the working set is a dynamic measure of this set of favored 
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information. A working set memory management policy is one 

that guarantees a computation shall receive the use of proces

sors if and only if its working set is present in main memory. 

Under such a policy, computations are made independent, the 

memory acquisitions of one computation being unaffected by those 

of another; thus, unwanted interactions among computations aris

ing from competition for memory and processor resources may be 

eliminated. Under such a policy a computation acquires more 

or less memory in accordance with its needs. 

The second phase was to define demand. Observing that a 

computation jointly demands the use of processor and memory re

sources, we defined a computation's system demand to be a pair 

(processor demand, memory demand) 

where a processor demand represents the computation's immediate 

processor requirement (intensity and duration), and a memory demand 

demand represents the computation's main memory requirement 

(its working set size). 

The third phase was to investigate system balance. We will say 

that the system is balanced when the sum total of the demands 

of active computations matches the available equipment. This 

set of active computations will be called the balance set. A 

balance policy is a resource allocation policy that regulates 

membership in the balance set so that the balance set, regarded 

as a super-computation, has known characteristics; its total 

demand is maintained within close tolerance of whatever is re

quired to match the equipment, We have been able to formulate 

the problem of deciding which computations are to be members 

of the balance set as a mathematical programming problem, whose 

solution is found dynamically by the scheduler. 
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The fourth phase was to apply all these ideas to the design 

and administration o~ computer systems. A particularly important 

result is: the proper ratio of processor to memory (that is, the 

equipment configuration) that achieves some efficiency level is 

determined not only by the statistics of program size and dur

ation, but also by the access time of auxiliary storage devices. 

We are also able to make suggestions about processor design, multi

level memory system design, and performance measurements. 
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1.1. Plan of the Thesis 

The thesis is organized into four parts. Chapters 1 and 2 

review the concepts with which we want the reader to be familiar; 

Chapters 3, 4, and 5 deal with the working set model; Chapters 6 

and 7 investigate demands, balance, and balance policies; and 

Chapters 8 and 9 look into implications the models have on sys

tem design and administration. 

The remainder of the discussion here in Chapter 1 falls into 

two categories: constraints and economics. The most important 

constraint within which we assume a solution to the resource al

location problem must function, programming generality, is the 

independence of an algorithm description from the environment in 

which it operates. One of the consequences of this constraint 

is that the computer system must predict, without outside 

assistance, the demands of the computations it executes. A dis

cussion of basic supply-and-demand economic theory is included 

to illustrate how pricing policies can be used to regulate demands. 

Chapter 2 reviews basic multiprocess computer system concepts. 

In Chapter 3 we define the working set model for program 

behavior and show that a working set memory management policy 

is the optimum of all policies that must operate without know

ledge of future reference patterns made by computations. In 

Chapter 4 the working set model is refined and a great many of 

its properties are derived. The discussion of Chapters 3 and 4 

is restricted to the case in which no information is shared; ac

cordingly we examine in Chapter 5 the effects of sharing. We 

show how dramatically sharing can improve efficiency and reduce 

the resource usage costs attributed to a particular user. 
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In Chapter 6 we present the formal definitions of demand 

and balance and discuss basic aspects of balance policies. Chap

ter 7 is devoted to formulating balance policies as mathematical 

programming problems. Such formulations have dual advantage: first, 

we need not find explicit solutions for the balance policies as 

long as we can convince ourselves that the scheduler is dyn

amically finding them; and second, we are assured that the policies 

are optimum since the objective functions are clearly stated. 

Chapter 8 deals with applications to computer system design. 

We derive a relation specifying processor-memory configuration, 

we show that pooling of hardware at a fine level of detail can 

achieve the effect of a large number of processors with a small 

amount of hardware, and we discuss organization and management 

of multilevel memory systems in light of generalized working set 

models. 

Chapter 9 deals with performance measures. Given the models 

and formulation of the solution to the resource allocation prob

lem, the performance measures are determined, so Chapter 9 merely 

collects together the majJr measured discussed in earlier chapters. 

The reader who merely wants to get a detailed overview of 

the major work of this thesis, without having to dig through the 

detailed properties of our models, need only read Chapters 1, 

3, 6, and 8, for that is where the main thread lies. 
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1.2. The Problem and Its Constraints 

We have formulated the problem in the context of a multi-

process computer system; we presume that the reader is already 

familiar with mulitprocess computer system objectives, the par

ticular details of which may be found in references [C8,Fl,P2,V2]. 

Specific implementation concepts will be reviewed in Chapter 2. 

The properties that constrain and complicate the solution to the 

resource allocation problem are discussed below. 

The specific problem toward which this thesis work has been 

directed is: 

To formulate behavior models of computations in multiprocess 
computer systems; then, using the models, formulate a unified 
approach to dynamic allocation of processor-memory resources 
among computations, balancing supply against demand under 
appropriate criteria of fairness. 

We have omitted discussion of input-output allocation for three 

reasons. First, we assume the time rate at which a user inter-

acts with his computation is relatively very much slower than 

the time rate at which execution proceeds; we are interested pri-

marily in dynamic resource allocation in the intervals between 

interactions. Second, we feel that the models are general enough 

so that generalization to resource types beyond processor and 

memory will be straightforward. Third, we feel that all the 

rich complexity of the resource allocation problem can be found 

entirely in the processor-memory problem. 

We assume the existence of two kinds of constraints: limited 

equipment and programming generality. 

The limited equipment constraints center on the existence 

of only a fixed, finite amount of processor and memory resources. 

There are N identical processors, each of which can deliver 
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information references at the rate of one per unit time; since 

the processing rate is bounded, the duration of a program's 

execution enters the problem. We assume the standard unit of 

information storage and transmission is a ~' a~d that the 

capacity of directly-addressable, main memory is M pages. 

Whenever we talk of the eguipment, or the resources, we spec

ifically mean the N processors and the M pages of main memory. 

The remaining constraints center on the issue of program

ming generality [DlO], which is the independence of an algor

ithm description from the environment in which it operates. 

Programming generality includes 

1. The ability to move a program between installations, 

either manually or automatically (e.g., via computer 

networks). 

2. The ability to use a program, without changes, des

pite changes to the hardware or to the hardware con

figurati9n. 

3. The ability to use one program in the construction 

of another -- to build on the work of others, and to 

share information dynamically. 

This third aspect implies that programs will be modular in con

struction (i.e., programs will be segmented [D8]). Once compiled, 

a program module should be usable without recompilation as a build

ing block of any program whatever. To exhibit programming 

generality, the computer system must permit a program module to: 
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1. Create data structures of arbitrary size unknown prior 

to execution. 

2. Call on further procedures unknown to the caller (which 

may call on still other procedures, etc.) 

3. Transmit arbitrarily complex data structures as arguments. 

These last three points, centering on data dependence, imply that 

a module's resource requirements not only will be unknown prior 

to its execution but also will be indeterminable. Thus, the pro

gramming generality requirement places these constraints on the 

resource allocation problem: 

1. The computer system, not the programmer or the compiler, 

must decide for itself where in the memory hierarchy 

information is to reside [D4,Dl0]. 

2. Algorithms must be configuration independent. Infor

mation references must be made by means of a location

independent addressing mechansim. 

3, Information flows upward in the memory hierarchy only 

on demand, being moved into main memory only when it is 

referenced by a computation. Information flows down

ward in the memory hierarchy as it falls out of use. 

4. Arbitrary collections of programs will demand to share 

arbitrary sets of data, Many programs will reside sim

ultaneously in main memory (multiprogramming) and many 

processes will be active concurrently (multiprocessing). 

In order to be consistent with programming generality, we 

have assumed the no-advance-information constraint, namely that 

programmers and compilers will, because of data dependence, be 
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unable to make reliable advance estimates about the resource needs 

of their own programs 1 • In addition, any advice that is obtained 

from a programmer cannot necessarily be regarded as useful advice 

even if it may be reliable: a user would intend to optimize the 

environment for his own program -- configuring resources to suit 

an individual may interfere with overall good service to the com-

munity. In order to guard against dishonest users who attempt 

to secure better service by misrepresenting their needs, the sys-

tern must monitor program behavior, and impose penalties for bad 

estimates. The additional overhead to do this may not be worth 

the cost. 

Since it is not at all clear that advice obtained from pro-

grammers or compilers can be of any real value, we have chosen 

to formulate a solution to the resource allocation problem in 

the case where there is no advice, where the computer system 

must discover for itself how programs behave. Clearly there will 

be situations in which advice aan be useful, but these are not 

of interest to us here. 

In the interest of programming generality we make the fol-

lowing distinction between the tools and the methods of resource 

allocation: 

1. The mechanisms, or machinery, of assigning and releasing 

equipment must operate on a low level in that they deal 

directly with the hardware features of the system. Some 

of these tools include multiprogramming, multiprocessing, 

segmentation, paging, interprocess communication, etc. 

1There have been attempts to do this. Ramamoorthy [Rl] for example, 
has a proposal for automatic segmentation of programs during 
compilation. 
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2. The golicies of resource allocation operate on a higher 

level, in that criteria used to determine when equipment 

is to be allocated to a c'omputation can be machine

independent. They are machine-independent inasmuch as 

no detailed knowledge of machine organization is nec

essary or even relevant. 

Such a functional separation permits changing policies without 

changing machinery, if the machinery is properly defined. 

Since many of the mechanical aspects of resourde sharing 

al_ready have substantial solutions, we begin investigation at the 

machine-independent level. Resource allocation policies may be 

grouped into classes: 

1. Short-term policies, which must be handled by the com

puter system, since decisions must be made in a time 

scale far faster than human response. 

2. Long-term policies, primarily economic, which control 

demands over long periods of time. 

In our work here, short-term policies are concerned with matching 

the demand to the supply, long-term policies with matching the 

supply to the demand. 

The bulk of the thesis is concerned with models that show 

how to define the short-term, balance policies. After a detailed 

discussion in the next section of why balance was chosen as a 

resource allocation goal, we turn attention to a discussion of 

the long-term, economic policies. 

" 
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1.3. Why Balance? 

There were good reasons to choose balance as the objective 

of resource allocation policies, rather than other criteria such 

as maximum equipment utilization or minimum response time. 

The most important reason, already stated, is our desire 

to be consistent with the ideas of supply-and-demand economics. 

The remaining reasons are the results of this thesis. We 

state them here, although many of their justifications will not 

come completely to light until Chapter 7. 

First, it is conceptually simple and mathematically tract

able, and it insures a reasonable policy with respect to criteria 

such as maximum equipment utilization or minimum response time. 

Second, we will show that its relative simplicity not only 

makes performance testing and evaluation straightforward but also 

makes clear which parameters are important. Moreover, its rel

ative simplicity makes implementation easy. 

Third, we will show that balance exercises control over the 

factors that cause thrashing; recall that thrashing denotes the 

sudden collapse of service efficiency that may occur when too 

many programs are squeezed into main memory. 

Fourth, balance compromises between the conflicting objec-

tives of fast fair service and low equipment idleness. We il-

lustrate the dichotomy. Figure 1-la shows a server, before which 

is a queue of demands for its use, the average number in the sys

tem being n; we regard n as a measure of the demand for use of the 

server. When there are no demands in the system, the server is 

idle, an event occurring with probability p
0

• The average wait 

in the system is w. Figure 1-lb shows how p
0 

varies with n. 
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Figure 1-lc illustrates that under a fair service discipline 

(i.e., one in which waiting time depends only on order of arrival) 

the expected wait varies linearly with n (see reference [Sl], 

p. 42). Figure 1-ld, showing directly the relation between w 
(service) and p (idleness), is constructed by choosing various 

0 

x and finding the corresponding wx. In general, as p
0 

decreases, 

w increases: there is an inverse relation between fast fair ser-

vice and low equipment idleness. As we will see, balance exer-

cises control over this relation. 

Fifth, we will show that a balance policy can be implemented 

in a relatively load-independent way, the amount of work needed 

to maintain balance depending on the distance of an actual load 

point to a desired load point. 

Sixth, the abstract model of a balanced computer system will 

show the relation between equipment configuration, the auxiliary 

memory access time, and balance. 
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1.4. Supply-and-Demand Economic Principles 

This section surveys aspects of the economic structure under

lying our thinking. We consider here a form of supply-and-demand 

computer system economics. 

One motivation for a multiprocess computer system is econo

mic: there is a community of users, who individually would be 

unable to afford the full services of a computer system, but who 

collectively can pay the costs. This goal -- cheap computing -

is not attainable solely within a mutliprocess computer system. 

The ability of one user to share and build on the work of others 

is a far more compelling motivation. Yet sharing complicates, 

among other things, the problem of charging users for resource 

consumption, because now the cost of a shared resource must be 

attributed to the participants in accordance with their degrees 

of participation. 

The perhaps overworked term computer utility can be misleading, 

for it is not entirely analogous to the public utilities as we 

know them. Contemporary public utilities are rather large eco

nomic systems where the average demand is known to vary slowly; 

for the immediate future, computer utilities will be rather small 

economic systems, subject to fast-changing demand. Public util

ities are relatively much larger than computing systems; in a 

computer utility, any user can easily demand every resource. 

Public utilities have physical limits on the quantity of service 

a customer can obtain (a 150 ampere main circuit breaker in his 

house, a 3-inch water main, or 2 telephones), and this need not 

be the case for computer utilities. 

From now on we shall refer to the management personnel of 

the computer system as the administration. It is the responsibility 
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of the administration to properly manage the system, deciding 

who is to use it, how prices are to be set, what additional equip

ment is to be purchased, what services are to be offered. Never

theless, the burden of managing the system lies mostly on the 

system itself; for example, it must provide automatic metering 

of resource usage and maintain data on demands. The models we 

set up will make it clear what should be metered and how, and 

what demand distributions should be determined and how. 

1.4.1. Demand Curves 

The administration can exercise economic controls over the 

demands of the user community by means of the prices it charges. 

Figure 1-2 shows an elementary demand curve, typifying the 

relation between price per unit resource and the total demand 

from the community. We observe that the higher the price per 

unit resource the less is the total community demand. Point A 

is the intersection between the amount R of resource currently 

provided by the system and the demand curve. If the price is 

less than pA the user community demand will exceed the supply R. 

If the administration wishes to hold some resource in reserve, 

leaving only a fraction a of the R available, it must raise the 

price to p8 • We do not wish to consider issues such as how to 

set price to maximize profit, what to do if the demand curve is 

time varying, how long it is until a price change is felt, or 

whether instability will result from feedback between demand 
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and price. The point is: price is a lever for controlling the 

total community demand. 

The demand curve of Figure 1-2 represents the behavior of 

some economic community in statistical steady state; therefore 

no claim can be made that at any particular time the demand curve 

is reliable. This further motivates the idea of dynamic balance: 

at any time the demand is closely regulated, known to be within 

close tolerance of the desired level. 

An essential component of a supply-and-demand pricing policy 

is the ability for a user to bid. Should a user desire improved 

service (at correspond~ngly higher prices) he may outbid his fel

lows. Should a user be unconcerned with the quality of service, 

he may underbid, obtaining poorer service at reduced price. By 

assuming the existence of a bidding mechanism, we may ignore cer

tain delicate questions surrounding the issue of user dissatis

faction; that is, we will not attempt to model dissatisfaction, 

hoping that unhappy users will raise their bids, or leave. We 

shall discuss details of bidding mechanisms in Section 1.4.3. 

Such an atmosphere of free enterprise, incorporating supply

and-demand resource allocation and competitive bidding for pri

ority, can quite possibly wreak havoc with computer system econo

mics, there being a serious threat of inflation. In terms of 

Figure 1-2, bidding gradually forces the demand curve up and to 

the right. There are two extremes of thought concerning the ad

ministration's posture toward inflation: 

1. Do nothing. Just as other public utilities do, meter 

resource usage, but allow users as much as they need. 

This means that the administration must be willing to 

expand the system, adding new equipment so long as 
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someone is willing to pay for it. It also means that 

the administration must be able to detect trends in the 

community demand so that it can decide far enough in 

advance to order new equipment. 

2. Tight controls. The administration should exercise con

trol over the total demand by allocating resource quotas 

to users, and by limiting the total number of users. 

This in so~e ways resembles the policies of parking lot 

officials, who allocate 150 stickers to fill 100 spaces, 

on the grounds that (on the average) only 100 cars will 

show up. The quotas allocated will depend on careful 

interpretation of demand statistics, and should be set 

so that the number of users trying to use the system 

at one time will present a total demand only slightly 

larger than system capacity. 

By itself, the first alternative is not workable because there 

is a physical limit to how much a particular installation may be 

expanded, and Ubers seem always to manage to find problems that 

consume the capacity of the system, no matter how large it is. 

By itself, the second alternative is not workable because it im

plies gradual degradation of service, since the system cannot 

meet the needs of the existing community. A truly flexible pos

ture is a compromise between the two extremes: the administration 

must be prepared both to enforce controls and to expand capacity. 

[But who is to insure that the administration indeed takes such 

steps, when it is the one who profits by the inflation?] 

In order to implement the compromise, the administration 

must monitor performance and detect overload. Overload may be 

defined as follows. First set tolerance limits on service, such 
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as maximum allowable response time, or minimum allowable service 

rate (that is, the fraction actually received of the resource 

demanded). Overload exists when the probability that service is 

not within the set limits exceeds some specified number; this 

probability is measured as the fraction of time service is poor. 

Even if the administration might want to decide against a 

quota system, the users may still desire some such system, for 

self-protection. By having a self-imposed quota, a user can pro

tect his pocketbook from a beserk compu.tation. Should one of his 

programs run amuck, a quota would be exceeded and execution in

terrupted, the user being asked to decide whether to continue. 

Moreover, there should be some means whereby a user controls dis

tribution, among his own computations, of whatever resources have 

been allocated to him. This is particularly useful if the user 

supervises some project and desires to control spending by sub

ordinates. 

What is to be done when total demand temporarily exceeds 

capacity? Should all jobs be given equally poor service? Or, 

should jobs be divided into two classes, one to receive good ser

vice, the other to receive no service at all? As we shall see, 

the first alternative results in a high rate of resource multi

plexing and can easily cause thrashing; the second alternative 

may result in some jobs receiving no service. Balance can be 

used as a compromise: the balance set is that subset that receives 

all the service, but the membership in it is constantly changing. 
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1.4.2. Priorities 

In general, the higher a job's priority, the better the ser

vice it obtains. Basically, there are three classes of priority 

used in today's computer systems [C3]: 

1. Bought, by paying extra for better service. An ex

ample is the bidding mechanism discussed in the next 

section. 

2. Acquired, by displaying favorable or unfavorable char

acteristics during execution. An example is the CT55 

multilevel queue [CG, 53] in which long jobs receive 

little attention. 

3. Deserved, by displaying favorable characteristics in 

advance of execution. An example, again, is CT55 

[CG, 53] which gives jobs of small memory requirement 

better treatment than those of large memory requirement. 

A given computer system may employ a combination of these three 

types of priority. 

In our work here we shall consider only bought priority, 

and ignore acquired and deserved priorities. We ignore acquired 

priority because we deal with only completely fair resource al

location policies. We ignore deserved priority because we assume 

there is to be no advance allocation information. 
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l. 4, 3. Bidding 

We shall adopt the point of view that the bidding mechanism 

is a method by whicb a user purchases priority from the computer 

system (Kleinrock uses the more colorful term bribing [ K2]). ·The 

cost of priority will be added to a user's resource-consumption 

costs. If a user buys higher than average priority, the cost is 

positive (his bill is increased); if he buys lower than average 

priority, the cost is negative (his bill is reduced). By adop-

ting this view, we insure that inflation due to bidding is on 

the cost of the priority and not on the cost of the resources 

themselves. 

Let (p1 ,p2 ) be an interval of the real line; any point p 

in (p
1

,p
2

) is a possible priority. If a user takes no action 

to obtain priority, he is assigned some standard priority p
0

• 

Otherwise he selects some priority p from (p1 ,p 2 ). 

a cost-of-priority function G(p,t) satisfying 

G(p,t) > 0 

There is 

( l. 4.1) G(p,t) 0 if p at time t 

G(p,t) < 0 

Let Ck(I) represent the resource-consumption cost for user k 

in the real time interval I; then user k would be billed 

( l. 4. 2) Ck (I) + f G ( p, t) d t 
I 

There is clearly an incentive for a user to underbid his fel-

lows, and a restraint against his overbidding. 

Let q 1 , ••• ,qn be the priorities of each of then users at 

a certain time, and define the average pciority to be 

( l. 4. 3) q 
n 
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An interesting example of a cost function is 

p 
G(p) (1.4.4) G(p,t) h(p) -q 

for suitable constants C
0 

and A. The reader can verify that G(p) 

satisfies properties (1.4.1). Since G(p) increases exponentially 

with the deviation from the mean q, it is possible to penalize 

a user severely for large deviations. This discourages those 

who would outbid the entire community and pre-empt all service 

for themselves. Observe, however, that if everyone bids high, 

q increases and the relative cost of a high bid is less. Thus 

inflation can be a serious problem (but note: the inflation is 

on the cost of priority, not on the cost of resources, and is 

not as serious as inflation of the resource costs themselves). 

The administration can control inflation by replacing q with p
0 

-in eq. 1.4.4, and making p
0 

smaller than the existing q. 

We do not want the purchased priority to modify the demand 

of a job, for a simple reason~ Should priority be allowed to 

modify a job's demand, operation of a balance policy would col-

lapse: the scheduler would fail to keep the balance set demand 

at the desired level because the demands of its members were not 

accurately reported. 

The position of a job within its queue depends on the part-

icular interpretation of the priority p it possesses. The two 

possibilities are: 

1. Fixed priority. An incoming job of priority p is placed 

ahead of any job with priority less than p, but behind 

any job with priori~y greater than or equal to p. 
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2. Percentile priority. If the priority range Cp1 ,p2 ) is 

taken to be (0,1), then p may be interpreted as a per

centile. That is, the user wishes to be always ahead 

of lOOp per cent of the jobs. An incoming job of pri

ority p, arriving to a queue of length n, is placed a 

distance (1-p)n from the front of the queue. 

The fixed priority interpretation will in general mean that a 

user experiences different degrees of improved (or degraded) ser

vice, depending on the instantaneous demand of his job. For 

example, suppose his job oscillates between two demand classes, 

designated A and B, and there is a separate queue for each class. 

Let pA denote the largest priority of a class A job., p8 the smal

lest priority of a class B job, and pA<p8 • Suppose the user hap

pens to choose his priority to be p such that pA<p<p8 • When in 

class A, he receives the best of service; when in class B, the 

worst, The percentile method circumvents this difficulty, always 

giving the user the same improvement (or retardation) relative 

to other users. 

We conclude by noting an interesting way to implement bidding. 

Each console is provided with a potentiometer, calibrated on the 

range Cp1 ,p2 ); the user may continuously adjust his priority. 

This can be enhanced by supplying a meter, also calibrated on 

the range Cp1 ,p2 ), which indicates the current average priority 

q across all users, and the particular user can adjust his own 

priority with respect to the average. The existence of such a 

meter constitutes instantaneous feedback between an economic sys

tem and the competitors: some very interesting inflation and de

flation effects could occur, perhaps even resulting in conditions 

very similar to those in the stock market in 1929. 
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CHAPTER 2 

The Environment 

2.0. Introduction 

The environment, consisting of the hardware and the software 

operating system plays an important role in the resource alloc-

ation problem. The reader should already be familiar with the 

concepts of virtual computer, of segmentation and paging [DB], 

of program and address-mechanism structure [AlJ, of a process 

and parallel processes [09], and of virtual time. We shall re

view these concepts here in order to establish the complete pic

ture (as we see it) of a multiprocess computer system. 
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2.1. The Basic System 

For ease of understanding both operation and design, it is 

usual to view the processing function and memory function separ

ately in a computer system. The processing function performs 

transformations on information stored by the memory function. 

The processing function is usually implemented by one or more 

processors, and the memory function by one or more memory modules. 

To satisfy the system objectives requiring expandability, 

reliability, and continuous availability, modular hardware con

struction is common: the processing function becomes a pool of 

identical processors with f~ee and unrestricted access to a pool 

of identical memory modules. Removing (adding) a device from 

(to) a pool reduces (increases) the capacity of the pool. Within 

a pool each device is anonymous, there being no i!. priori assign·

ment of any particular task to any particular device. 

The high cost of directly-addressable memory forces memory 

systems to consist of at least two levels: 

1. main memory. No information can be processed unless it 

is present in main memory. Main memory is usually a 

magnetic core memory, though it could just as well be 

any other directly-addressable storage device, such as 

a thin-film memory. Other terms for main memory are 

primary memory and execution store. 

2. auxiliary memory. Information which for one reason or 

another cannot be stored in main memory stored in aux

iliary memory. Examples of auxiliary memory are drums, 

disks, and tapes, although a slow-speed core memory might 

also be used for this purpose. Other terms for auxili-

ary memory are secondary memory and backup store. 
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Main memory has relatively high cost, but also has rapid access 

time; auxiliary memory has low cost, but also has slow access 

time. 

Initially we shall restrict attention to a computer with a 

two-level memory system, indicated by Figure 2-1. After having 

studied program models, we shall generalize to multilevel memory 

systems; this will be done in Chapter 8. 

We assume that the unit of information storage and transfer 

is the~· We suppose the capacity of main memory is M pages, 

and the capacity of auxiliary memory is infinite. 

The N processors and M main memory pages will be called the 

equipment. For generality we assume that only a fraction a, for 

O~a~l, of the N processors are available, and that only a frac

tion B, for O~B~l, of the M memory pages are available. The aN 

processors and the BM memory pages constitute the available 

equipment. It is against the available equipment that we want 

to balance demand. 

We suppose that each processor can deliver one reference 

per unit time, and that each item in main memory can be refer

enced no more than once per unit time, so that the processor and 

main memory speeds are matched. This unit of time will be called 

a virtual time unit (vtu). 

There is a time T, the traverse time, involved in moving 

one page between memory levels. T is measured from the moment 

a page is found to be missing from main memory until the moment 

the missing page has been placed in main memory ready for use. 

T is actually the expectation of a random variable composed of 

waits in queues, access times, mechanical positioning delays, 

and transmission times. We shall regard the traverse time T as 

beinq the same regardless of which direction a page is moved. 
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Dividing memory into two levels creates the first allocation 

problem: storage management, the problem of deciding which infor

mation is to reside in main memory, which is not. Generally, 

the least-used information must be stored in auxiliary memory; 

the most-used information must be ready for use in main memory. 

When a processor makes a reference to a page not in main memory, 

a~ fault occurs, initiating action to secure the missing page 

from auxiliary memory. We thus assume pages are brought into 

main memory £!l demand only. Because not every useful page may 

reside in main memory, there will be a flow of information 

called ~traffic -- along the channel bridging the two levels. 

The activity of moving pages in and out of main memory is called 

page-turning, or simply paging. 

Nowhere irt Figure 2-1 have we indicated the existence of 

input-output equipment, the media used by programs to commun

icate with the outside world, because we are not concerned with 

this type of allocation in this thesis (see Section 1.2). 
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2.2. Multiprocess Computer System Concepts 

Two basic principles in the design of multiprocess computer 

systems are the abstractions of the notions ~ space from 

memory, and process from processor, In the interest of program

ming generality, a user is given the illusion that he is dealing 

with a (configuration-independent) virtual computer. The virtual 

computer comprises one or more virtual processors each having 

most of the capabilities of a real processor, and a virtual mem

ory having many times the capacity of the real memory. Because 

the virtual memory has so large a capacity, the user sees no 

auxiliary memory; for this reason virtual memory is often called 

a one-level store [Kl]. It is the task of the operating system 

both to simulate virtual memory by paging information into real 

memory, and to simulate virtual processors with real processors. 

In Multics, the traffic controller mechanism [S2] handles assign

ment of real processors to virtual processors, and communication 

among virtual processors. 

The first abstraction, ~ space, is the set of names 

(addresses) available to a virtual processor for use as data 

identifiers. 

For convenience (to the user) the name space is divided 

into segments, of arbitrary size. To reference a datum, a two

component address (S,W) is given, S being the name of a segment, 

and W being the name of a word within S, Because names have two 

components, the name space is often called two-dimensional. 

There is no ~ priori relation between a name in name space and 

the location of the corresponding datum in physical memory; this 

correspondence is established dynamically by the address-mapping 

mechanism [Al], 
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For convenience (to the system) in mapping segments of ar

bitrary size into a memory of fixed size, segments and real mem

ory are divided into equal-size blocks, called pages. The page, 

invisible to the programmer, is the standard unit of information 

storage and transmission. We may thus regard the name space as 

being sliced into equal-size regions. 

Associated with each segment is a~ table (itself a page) 

listing each page of the segment. If a page is not in main mem

ory, an in-core bit of the corresponding page table entry is OFF; 

an attempt by a virtual processor to reference such a page auto

matically causes a missing page fault, which interrupts execution 

of the virtual processor and initiates action to secure the mis

sing page from auxiliary memory. After a lapse of at least one 

traverse time (T) the page has been placed in main memory and is 

ready for use; the proper page table entry is set to point to 

the physical memory location of the start of the page, the in

core bit is turned ON, and execution of the interrupted virtual 

processor is resumed. Later on, when the page is removed from 

main memory, the in-core bit of the corresponding page table entry 

is again turned OFF. 

It is apparent that pages are on a lower level of abstrac

tion than segments. The operating system should not attempt to 

have each page of a segment in main memory; it should instead 

attempt to have each useful page in main memory. For it is pos

sible that only some of a segment's pages are in use, and there 

is no need to strain main memQry resources by keeping useless 

pages there. Roughly speaking, a working set of pages is the 

smallest collection of pages that must be present in main memory 

for a program to operate efficiently. Storage allocation should 
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attempt to keep at least the working set of each running program 

in main memory. 

The second abstraction, process, is the notion of a program 

in execution by a virtual processor. In our work here, we use 

the equivalent definition: ~process is fill ordered sequence of 

references !£ information in name space, under the control of 

an instruction stream. A process is sometimes referred to as 

a thread of control through an instruction sequence. A process 

has four states of existence in real time: 

1. running, meaning that is is receiving the use of a real 

processor; alternatively, that a real processor is as-

signed to its virtual processor. 

2. ready, meaning that it is demanding, but not receiving, 

3. 

the use of a real processor; alternatively, it is sus-

pended only because no real processor is currently as-

assigned to its virtual processor. 

~wait, meaning that 

cause a page is missing 

it i's temporarily 

from ~ain memory. 
I 
I 

syspended be-

Execution is 

resumed as soon as the missing\page has been placed in 

main memory and a processor is available. We take the 

duration of a page wait to be the traverse time T. 

4. blocked, meaning it has no use for a real processor be-

cause it is awaiting the occurrence of some (expected) 

external event, such as a message or signal from another 

process, from a device, or from a user at a console. 

Figure 2-2 illustrates the possible transitions among these states. 

The transition from running to ready under a pre-emption means 

that the operating system has required the real processor for 

some other use, for example to execute another process. The 

transition from ready to running under go-ahead means that the 
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Figure 2-2. States of a process. 
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operating system has decided to return the processor to this 

process. 

In Figure 2-2 we have indicated a transition from page wait 

directly back to running, when in fact this need not be the case. 

It is the case if a processor is dedicated to it, being immedi

able to resume execution when the process returns from page wait. 

But, if the page wait time T is larger than the time it takes 

to switch the processor to another process, it is uneconomical 

to dedicate a processor to a single process, and in this case 

a process returns to running status via ready status. In our 

work here, we assume a sufficiency of processor resources, so 

that at worst a negligible delay is experienced by a process as 

it passes through ready to running. This is the justification 

for the direct page-wait to running transition shown in Figure 2-2. 

When talking about processes we shall make a distinction 

between virtual time (vt) and ~ ~· Virtual time is time 

as seen by a process as if it were never interrupted; that is, 

the total accumulated time in the running state. Virtual time, 

also called execution time or process time, is measured in vir

~ ~units (vtu), usually memory cycles. Put another way, 

a virtual time unit is the interval between any two of the suc

cessive information references that constitute a process. We 

shall usually regard virtual time as being continuous, even though 

it is actually finely divided into small units. Finally, ~ 

time is virtual time with page wait, blocked, and ready delays 

inserted appropriately. 

When we talk about the virtual ~interval (t-•,t) we shall 

mean the •information references prior to the real time·instant t. 
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Because a process is an ordered sequence of imformation re

ferences it is often called a sequential 12rocess [Dll]. In a 

multiprocess computer system, many processes may be executed con

currently, or in parallel. Thus, we may speak of parallel~

guential processes. 

We define a computation to be a collection of mutually co

operating processes and information, all operating in the same 

name space. In Multics [CB, S2, V2] every computation is a 

single-process computatibon, since there is a one-to-one cor

respondence between a process and a name space; however a pro

grammer can execute a program with parallel processes by setting 

up a collection of single-process computations with isomorphic 

name spaces. IBM System 360 [R3], RCA Spectra 70 [02], and THE

Multiprogrammed System [Dll] are other examples of systems using 

single-process computations. The Illiac IV [S6] is an example 

of a system using multiprocess computations. 

The constraints among the member processes of a computation 

are~ from the resource allocation viewpoint, unspecified and must 

be considered arbitrary. For the very same reasons that compilers 

and programmers cannot specify before hand the resource needs 

of their pi:-ograms (because of arbitrary timing of parallel pro

cesses and data dependence), compilers and programmers cannot 

predict the constraints among parallel processes. 

By the term contemporary computer system we shall mean a 

Multics-like system, characterized by single-process computations. 

Such systems are not geared for a high degree of intra-computation 

parallel programming because in them the tables specifying a 

computation are so ponderous that the cost of spawning new pro

cesses is prohibitive. 
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We assume that the operating system allocates resources to 

computations, rather than to processes individually. Thus a 

commitment must be made to grant a computation all the processors 

and .211. the memory it needs. In a contemporary computer system, 

the notion of scheduling a process is the same as this more 

general notion of scheduling a computation. 
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2.3. Summary 

We have reviewed the basic concepts of the computing en

vironment, presuming familiarity with such common notions as 

segments, pages, demand paging, page traffic, virtual computer, 

virtual processor, and virtual memory. Terms whose meaning is 

important in this thesis are: 

1. process: a sequence of information references. 

2. states SJ!.~ process: running, ready, page wait, blocked. 

3. virtual time: time seen by a running process. 

4. computation: a family of cooperating processes and 

information within the same name space. 

We turn attention in the next chapters to the definition 

and characterization of the working set model for program behavior. 

-1- ---- ------------- --
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CHAPTER 3 

The Working Set Model for Program Behavior 

3.0. Introduction 

We introduce and justify here the most basic concept in 

this thesis: the locality of information references. This is 

the property of program behavior that, during any interval of 

execution, the program favors a subset of its information. A 

working set of information dynamically measures this set of 

favored pages. A working set memory allocation strategy guaran

tees each runnir:g process that its working set shall be present 

in main memory. We shall show that working set strategies are 

optimum in two senses: minimum cost and minimum sensitivity to 

thrashing. 

First, we will say that a strategy is optimum when it pro

duces minimum cost (the product of memory space and time). After 

discussing various strategies, we show that working set strate

gies result in minimum cost. The proof is based on certain con

vexity properties, which follow from locality, of the cost function. 

Second, we investigate the causes of thrashing, and show 

that working set strategies minimize the possibility of thrashing. 

We conclude the chapter with a survey of the literature, 

best done in the light of the working set model. 
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3.1. Locality and Working Sets 

3.1.1. Definition and Justification 

Throughout this thesis we shall assume that locality is a 

fundamental property of program behavior. Locality is the pro

perty that, during any interval of execution, a process will favor 

some of its pages more than others; during disjoint virtual time 

intervals, the set of favored pages may be different. Put an

other way, if one observes a process's reference pattern for some 

virtual time interval, he will see that the process does not 

scatter its references uniformly across its information. There 

are at least five factors motivating this assumption: 

1. Sequential instruction steams. Both programmers and 

compilers tend to organize sequentially the instructions 

that direct the activity of a process; this is especi

ally true in single-address machines (i.e., t~ose with 

a program counter). If a process fetches an instruction 

from a given page, it is highly probable that it will 

soon fetch another instruction, in sequence, from the 

same page. 

2. Functional modularity. Program modules are organized 

and executed by function. 

3. Content-related ~ organization. Information is us

ually grouped by content into segments, and is normally 

referenced that way; thus, references will occur in 

clusters to a content-related region in name space. 

4. Looping. Programs often loop within a set of pages. 

5. People. Realizing that their programs will run on a 

paged machine and that page transfers are costly, pro-
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grammers tend to organize their algorithms so that ac-

tivity is localized within subsets of their information. 

Moreover, people have been studying methods of minimizing 

interpage references at execution time; see refer

ences [Bl,B2,C5,Ml,Ol,Rl]. 

Experimental evidence suggests that this assumption, locality, 

is a very good assumption. Suppose to the contrary that, during 

every virtual time interval, a process scatters its references 

uniformly 01Ter its information. Suppose that a fraction s 

(O~s~l) of its pages have been placed in main memory. Let 

µ(s) be the fraction of its references the process makes to the 

set of pages !!Qi in memory; since the references are uniformly 

scattered, it follows that 

µ(s) 1 - s 

Experimental evidence, illustrated in Figure 3-1, contradicts 

this [Bl,Vl]. As measured, µ(s) actually follows some curve that 

lies below the curve µ(s)=l-s. It has been observed that there 

is some number s and constant k>l, such that if s<s then 
0 - 0 

µ(s)=l-ks; that is, the process is scattering its references 

uniformly over only a subset of its information. The numbers 

s
0 

and k depend on the particular program and the particular 

storage management rule used to decide what information is to 

reside in main memory. 

We will therefore assume that locality is a property of 

program behavior. 

We define the working set of information Wp(t,•) of process 

p at time t to be the set of pages that process p has referenced 

during the virtual time interval (t-•;t). The idea is illus-

trated in Figure 3-2. 

• 

.. 



µ(s) 

1 

0 
s 

0 

Figure 3-1. 
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Evidence supporting locality. 



r-T 
t 

virtual time 
for process p 

pages referenced in this 
interval constitute W (t,~) p 

Figure 3-2. Definition of a working set. 

ii:. 
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The validity of the working set model rests on the concept 

of locality. A working set W Ct,•) measures the set of pages 
p 

process p is favoring at time t. Assuming that process p is 

not likely to abruptly change its set of favored pages, the 

working set W Ct,•) constitutes a reliable estimate of p's 
p 

immediate memory needs, To put it another way, we are assuming 

that, on the average, 

Pr[page i referenced next l i 6 W (t,•)] 
p 

Pr[ page i referenced next Ii ¢ 

> 

w Ct,•)] 
p 

The workihg ~ parameter • should be chosen as small as 

possible, and yet assure that Wp(t,•) contains p's favored pages. 

Thus, • may vary from program to program, and from time to time. 

We shall discuss details of choosing • in Chapter 4. 

We assume that the page size (i.e., the number of words in 

a page) is chosen small enough so that the working set W Ct,•) 
p 

always consists of at least several pages. Indeed, if in a 

particular computer system we observed that working sets often 

consisted of only one or two pages, we would begin to suspect 

that a smaller page size might result in smaller working sets 

and in smaller memory requirements for programs. 

Intuitively, a working set is the smallest set of infor-

mation that ought to reside in main memory so that a process can 

operate efficiently. A working ~memory management policy is 

one that permits a process to be running if and only if there is 

enough uncommitted space in main memory to contain its working set. 

Define the random variable x to be the virtual time interval 

between successive references to the same page. These inter-

reference intervals x are useful for describing certain program 
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properties, which we will do in detail in Chapter 4. Let 

F (u) ~ Pr[x:::;_ul denoto its distribution function and let x 
x 

deonte its mean. A working set is the collection of a process's 

pages whose current interreference intervals (in virtual time) 

satisfy x<T. 

By a program we mean the set of information to which a 

process directs ils references. There is a relation between the 

size of a program and the lengths of the interretercnce intccvals 

to its component pag0s. Let process 1 be associated with program 

P1 and process 2 be associated with program P2 , and let P1 be 

larger than P
2

. Then process 1 has to scatter its references 

across a wider range of pages than process 2, and we expect that 

the interreference intervals x 1 of process 1 will be longer than 

the interreference intervals x
2 

of process 2. 

than P
2 

implies i 1>i
2

. 

That is, r 1 bigger 

3.1.2. Pictorial Representations 

It is useful to develop some pictorial representations for 

the notions of working set and locality. Let C be a computation 

and ~ be the name space used by C; we may imagine lhat elements 

of~ have been grouped together, by pages. We may associate with 

C a process space J:.. whose clements are the processes (sequences 

of information references) of C. If C is a single-process com-

putation, £ contains just one sequence. lf C is a multiprocess 

computation, .£contains several sequences. In Figure 3-3 we show 

a process p in £; the directed line suggests the ordering of the 
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Figu:ce 3-3· 

w (t,~) 
p 
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information references constituting p; two of the information 

references, one at time t, the other at time (t-•), have been 

singled out. We may imagine that Wp(t,•) .is a projection of the 

virtual time interval (t-•,t) into .t!· Adjacencies indicated in 

Jj (i.e., the content of W (t,•))should not be construed as ad-
p 

jacencies of address values; they are simply adjacencies of re-

ferences in virtual time. 

Figure 3-4 depicts the assumption that the content of 

Wp(t,•) is not fast-changing. For small time separations a, we 

expect a large intersection between W (t,•) and W (t+a,•). For p p 

large time separations B (with B>>a and B>>•) we do not expect 

an intersection between W (t,•) and W (t+B,•) because p has had 
p p 

ample opportunity to finish the work of time t by time (t+B). 

Put another way, we expect a working set W (t,o) to be a reliable 
p 

estimate of p's memory needs only over a short interval. 

Figure 3-5 illustrates the situation for a multiprocess com-

putation c. Let P(C,t) denote the processes in C at time t that 

are running or in page wait (i.e., receiving the use of resources). 

The information that should be in main memory is 

u 
psP(C,t) 

w (t,•) 
p 

Note that some of the working sets may overlap, because processes 

may share information. 

Note further that P(C,t) may be regarded as a working set 

of processes in the process space Ji:.· 
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process space E 

t+cx. 

name space f!. 

w ( t +ex. ' 'I ) p 

Figure 3-4. Time movement of a working set. 
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process space f, 

P(C,t) 

name space l:J 

w Ct,-r) 
Pn 

P1gure 3-5. Working sets for multiprocess computation c. 
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3.1.3. Interactions 

The foregoing discussion deals with locality concepts during 

virtual time intervals that contain no interactions. An inter-

action is an instant in virtual time at which the process stops 

to wait for a message. What happens to our definitions if the 

virtual time interval contains an interaction? 

When a process stops (blocks) for an interaction, it seeks 

a message or signal from another process, for a device, or from 

a user at a console. An interaction has two properties of 

interest to us: 

1. The process enters the blocked state where it may remain, 

unpredictably, for a long time. 

2. The message received by the process may affect its 

behavior following the interaction. 

This second property means that, if t. is an interaction instant, 
i 

the working set W (t. ,T) may not be a good estimate of any working 
p i 

set W (t,T) for t>t., because the message may seriously alter 
p i 

p's behavior. 

What we will do is assume that the working sets before and 

after an interaction intersect, though not completely. We believe 

that the expected size of the intersection will tend to decrease 

with long blocked-intervals, because in longer time intervals, 

for example, a user will have more opportunity to change his mind 

and alter the behavior of his process. Conversely, the shorter 

the duration of a blocked-interval, the greater the expected size 

of the intersection between the working set before and after the 

interaction. 



51 

An example is helpful. Figure 3-6 illustrates a program 

organization likely to be typical of modular, interactive programs. 

The user sends requests to the interface procedure A; having 

interpreted the request, A calls on one of the procedures 

s 1 , ••• ,Bn to perform an operation on the data D. The called 

B-procedure then returns to A for the next user request. Inter

actions occur whenever the process enters A to await a message. 

A program organization such as this might be used (for example) 

in an editing program. Just before the interaction, the working 

set will contain A, D, and one B-procedure. Just after the in

teraction, the working set will contain A. The intersection is 

just A. 

A study of intersections of working sets before and after 

interactions is needed in order to assess the value of look-ahead 

when a process unblocks. 

Because we are not interested in input-output allocation 

in this thesis, we will no longer be concerned with the effects 

of interactions on program behavior; from now on we assume that 

virtual time intervals contain no interactions. This problem 

has been studied in reference [DS]. 
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Figure 3-6. 
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Organization of an interactive modular program. 
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3.2. Convexity [W2, p.563] 

We shall prove a theorem about convex functions which will 

be of great importance in the following sections. 

A function f(x) is strictly convex on an interval I if its 

second derivative is negative: 

f"(x) < 0 x E I 

and f(x) is strictly concave if its second derivative is positive. 

If the second derivative is zero on an interval, we regard the 

function as being either convex or concave on that interval. 

Since f is convex if and only if -f is concave, we may restrict 

attention to convex functions. Figure 3-7 shows a strictly con-

vex function; note that every line segment connecting two points 

on the curve lies below the curve. 

Theorem 3.1. Suppose x is a random variable on an interval I, 

where its probability density function p (u) satisfies x 

J u p (u) du x 
I x 

Suppose also that f is a strictly convex function on I. 

Then 

f(x) ~ f(x) 

and equaltiy holds if and only if px(u) 

impulse function). 

o(u-x) (the 

-Proof. Since x is a fixed number we may expand f(x) around the 

point x using Taylor's expansion: 

f(x) fcX) + (x-x) f' <X> + (x-x>
2 

f'' (z) 
2 

some zEI 
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Since f''(z)<O for zc~, 

f ( x) < f( x) + ( x-x) f' ( x) 

Taking expectations on both sides, and noting thctt f(x) 

ctnd f'(x) are constant, 

±(x) < t(x) + cx-x) ±'Cx) 

but since (x-xl-0, we have 

1c:xi 

The equality clearly holds if and only if x~x with prob

ability l. 

QE;D. 

In Figure 3-7 we show ct geometric interpretation of the theorem 

for the simple case 

p ( u) 
x 

and it i~ clear that 

{ 1~2 
otherwise 

f(x+s) + t(x-,c:) 
fCx> 

2 

Observe from lhe definition and the figure that, for f to be 

convex on an interval I, it ic; sufficient that 

f(x+c) T f(x-c) < 2 f(x) 

for all choices of x ctnd E such that (x+E) and (x-s) are in J. 



f(x) 

t 
f(xl 

I 
I 
I 
I 
~ 
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-x 

I 
I 
I 
I 
I 
I 
I 
I 

s ----!~-

f ( X +S) + f ( x-C) 

2 

Figure 3-7. Illustrating convexity theorem. 

x 
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3.3. Working Set Size 

Let W(t,T) be~ working set. Define the working set size 

w(t,T) to oc: 

w(t,T) NuMber of pages in W(t,T) I W( t' Tl\ 

We assumP that the worki'.13 set size w(t,T) is a stationary sto-

ch,1sti.c process. so Lhal the Lime expecl:al:ion w(t,T) is inde-

pendent: of t, dnd we mdy write 

w( T) w( l:, L) 

where we U'.1derstand overl,ar to r;iean time expectal:ion. 

Theorem 3. 2. The expected working se~ size w(T) has these 

propertie:: 

l. w( T) < 1, 

2. w\0) 0 

J w(T+:\) '> w( T) ·'• :\?:_0 (non-decreasing) 

1. w(T) is convex, 

Proof: Since the maxirnw1 number of distinct references that can 

occur in T vtu T, we have w(t,T)~T and hence w(T)~T. 

That w(O) -J is clear since no pages can be referenced in 

zero time. 'l'ha.t 'w'(T+/,)2:_w(T) is dlso clear since more paqes 

can be referercced in longer intervals. To show that w( T) 

is convex, we will show that for all choices of rand E such 

that (T-c).2_0, 

2 W(T) 2_ \ti''. TIC) I W ( T-E) 

30 1 let·~ ~nd Ebe arbil.rari ly ven, 1rJi. th ( T-c) 2:,0. 

l:o Figure 3-8. 

VJ(t,Ti LJ•vi(t-T,T) W(t, L-slU v•l(t-(i:-s),c-,.s) 

llsing !xUY! I xJ + for any sets X and 

Y, we have 
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wCt,•-E) + w(t-(•-E),•+E) 

+ !Al - I 8 1 
where 

A W(t,•) nw(t-•,•) 

B W(t,•-E) nw(t-(•-E) ,•+E) 

taking the time expectation on both sides, 

We claim lAf - !BT~ O. 
and jBI ~ w(•-E), so jAj 

To see this, note that jAI ~ w(•) 

is potentially bigger than jBj. 
During the operation of averaging over all t, any page that 

appears in B must also appear in A. Thus, on the average 

at least as many pages appear in A as in B; hence we have 

TAT - lBf ~ 0 and the required inequality follows. 

QED. 

Note that properties 1-3 of Theorem 3.2 apply also to the random 

variable w(t,•) itself, but property 4 applies only tow(•). 

In Figure 3-9 we have sketched w(•) for two kinds of pro-

gram. A ~' or incompressible, program is one with a well-

defined set of favored pages; a .§..Qf.t, or compressible program is 

one with a fuzzily-defined set of favored pages. A hard program 

tends to scatter most all of its references uniformly over some 

set of •
0 

favored pages, so that for any interval ·~•0 we expect 

to see mostly distinct pages referenced, and w(•) increases 

(almost) linearly with •· For such programs we want to choose 

·~•o· An example of a hard program is the so-called stream

processing program, whose algorithm is contained wholly in a 

set of •
0 

pages, and occasional references are made to a sequence 

of data pages; after only a few references, each data page is 

discarded forever. If •>>• , the working set will contain many 
0 



w ( i;) 

0 i; 
0 

Figure 3-9. 
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hard 

Expected working set size. 
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useless pages. Choosing • close to • will not affect the 
0 

program's operating efficiency, but will diminish the amount of 

memory it occupies. 

Recall the definition of the interreference intervals x 

(the vt intervals between successive references to the same page), 

with distribution function Fx(u)=Pr[x.::;_u], and density function 

f (u)=dd F (u). We shall assume F (u) is convex. This is not x u x x 

unreasonable since it requires only that fx(u) be decreasing, 

which is consistent with the concept of locality. In fact, there 

is strong evidence that that this type of interarrival distri-

bution is modelled nicely by a hyperexponential distrjbution 

[C4,F4], which is convex. 

We define the missing-page probability A(•) to be the prob-

ability that a process directs its next reference to a page not 

in the working set W(t,•); under a working set memory allocation 

strategy, such a page may be missing from main memory. 

Theorem 3.3. Let A(•) = Pr[process references a page not in W(t,T)]. 

Then A(T) = 1-F (T). 
x 

Proof: The probability the page referenced is not in W(t,•) is 

just the probability its most recent interreference inter

reference interval satisfies x>•, so A(•)=Pr[x>•]=l-Fx(•). 

QED. 

We will need the following two theorems to prove that a working 

set strategy is optimum. 

Theorem 3.4. Suppose • is varied on some interval, with mean •· 

Then the average missing-page probability is increased: 
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Proof: Since we assume F (u) is convex, A(T) = 1-P (T) is con-
x x 

cave, and by Theorem 3.1, we have A(T) .2_ A(~). 

QED. 

Theorem 3.5. Suppose Tis varied on some interval, with mean T. 

Then the average working set size is decreased: 

w(T) _:::;_ w(T) 

Proof: By Theorem 3.2, w(T) is convex. By Theorem 3.1, we have 

w(T) _:::;_ w(T). 

QED. 

Varying T increases the probability that a missing page will be 

referenced, as well as diminishing the average memory share held 

by a process. That is, varying T with mean T on some interval 

has the same effect as holding T fixed at some T <T such that 
0 

w(T ) 
0 
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3.4. Storage Management Policies 

Storage management policies for multiprogrammed memories 

may be regarded as operating in two provinces: 

1. Fetching (page in): Locate the required page in aux

iliary memory, and load it into main memory; turn the 

in-core bit of the corresponding page table entry ON. 

2. Replacement (page out): Remove some page from main 

memory, turn the in-core bit of the corresponding page 

table entry OFF. The policy rule that decides which 

page to remove is called the replacement rule. 

Management algorithms may be classified according to their me

thods of fetching and replacement. 

Fetch strategies may load pages before they are needed 

(pre-paging), at the moment they are needed (demand paging), or 

even later. Many strategies use demand paging; that is, no ac

tion is taken to bring a page into main memory until some process 

attempts a reference to it. Demand paging is usually preferred 

to pre-paging because it is much cheaper to implement, and be

cause it is not clear that pre-paging improves performance sig

nificantly. As we have stressed, advance information is often 

non-existent because there is no reliable source of allocation 

information. In fact the only major argument favoring pre-paging 

is the possibility of moving large contiguous blocks of pages 

from auxiliary memory so that the accumulated traverse time is 

reduced in the long run. Although traverse time reduction is 

(in some sense) a valid argument for pre-paging, we feel that 

it is also a more powerful argument for better, faster, aux

iliary memories. 

It may be argued that a working set, a supposedly reliable 

estimate of a process's immediate memory needs, is the ideal 
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set of pages to pre-load. Because the records required to keep 

track explicitly of which pages belong to which working sets may 

easily become so complicated that any benefits resulting from 

pre-paging may be lost, we prefer to assume that fetching occurs 

on demand only, via the page fault mechanism. 

The major problem in memory management is not deciding which 

pages to load; it is deciding which pages to replace1 • A storage 

management policy should attempt to keep in main memory the pages 

most likely to be used. Thus, the best choice for replacement 

is the page with the least likelihood of being reused immediately. 

Debate has arisen over which replacement, or page-turning, 

strategy is best. 

The cost of operating a program under a given strategy will 

be defined (Section 3.5.1) to be the amount of memory used times 

the duration of such use. We will say that the optimum strategy 

is the one that results in the lowest cost. In Section 3.5.1 

we will show that low missing-page probability is equivalent to 

low cost. We shall therefore use the missing-page probability 

as a measure of performance for a paging policy; this will be 

done in Sections 3.5.2 and 3.5.3. 

1If a page has been modified since being placed in main memory, 
replacing it involves transferring it into auxiliary memory; 
an unmodified page is simply overwritten, provided there is 
a copy in auxiliary memory. 
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Allocation of pages in multiprogrammed memories can be han

dled on either a fixed or variable memory basis: 

1. Fixed share. Before being run, a program is granted a 

share of the memory for its private use. 

2. Variable share. Programs are allowed to compete freely 

for memory space. In principle, more aggressive pro

grams should be able to obtain a greater share of the 

memory. In principle, as a program expands or contracts, 

its share increases or decreases accordingly. 

In Section 3.5.2 we shall prove that variable-share strategies 

yield smaller missing-page probabilities than fixed-share stra

tegies, all other things being equal. Policy rules for replace

ment (which may be used with either fixed or variable share basic 

strategies) fall into the following three classes, ordered in 

terms of the intrinsic increase in the logic required to im

plement: 

1. Static rules, which use no information about page use; 

these rules are very simple to implement. 

2. Usage rules, which use information about page use, gen

erally measuring time intervals since the last reference 

to each page. 

3. Demand rules, which attempt to predict, on the basis 

of recent reference patterns, the set of pages most likely 

to be used immediately. A program is given more or less 

space according to its demand for space. 

We shall show in Section 3.5.2 that the static rules lead to 

the highest missing-page probabilities, the demand rules the 

lowest. 
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There are two static rules of interest: 

1. Random (RAND). Whenever a fresh page of memory is needed, 

2. 

a page is selected at random to be replaced. Imp le-

mentation is simple, requiring only a random-number 

generator. 

First-in, First-out (FIFO). Whenever a fresh page of 

memory is needed, the page least recently paged in is 

retired and another page brought in to fill the newly 

vacated slot. Whereas RAND requires a random number 

generator, FIFO requires only a counter, and implemen-

tation is even simpler, as follows. The pages of main 

memory are regarded as a cyclic group; suppose the M 

pages of main memory are numbered O,l, ••• ,(M-1) and a 

th pointer k indicates tha~ the k page was most recently 

paged in. When a fresh page is needed, [(k+l) mod M]-.k, 

and page k is retired. 

The principal argument for these two rules is their simplicity 

of implementation. Yet the experimental evidence [Bl,B2,Vl] 

indicates that usage rules, despite higher overhead, significantly 

outperform the static rules, 

There are two usage rules of interest, LRU and FINUFO: 

3. Least recently used (LRU). Whenever a fresh page of 

memory is needed, the page unreferenced for the longest 

time is removed. Each page table entry contains a ~ 

bit, set ON each time the page is referenced. At per-

iodic intervals, all page table entries are searched, 

use bits reset, and usage records updated. 

Unfortunately, implementation of an LRU rule may become co~pli-

cated, and it is not clear whether an overall improvem,~nt would 
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result. A very interesting rule 1 combines the simplicity of FIFO 

with the sophistication of LRU: 

4. First-in, Not-used, first-out (FINUFO). Implementation 

is almost exactly that of FIFO, but now the use bits 

come into play. Let k be the pointer that cycles through 

the M pages of memory. Whenever a fresh page is needed, 

k is incremented until a page is found with use bit OFF; 

this page is retired. When k passes a page with use 

bit ON, the use bit is turned OFF. 

It is interesting to note that FINUFO is much closer to a demand 

rule than to a usage rule, because when demand for main memory 

is high, FINUFO will have difficulty in finding a page to remove 

(many use bits ON). Whereas FIFO and LRU will always find a page 

to remove, FINUFO may not. It is therefore a stable rule. 

Another usage rule, primarily of academic interest, is: 

5. ATLAS loop-detection. The Ferranti ATLAS computer [Kl] 

had a paging strategy that attempted to detect loop 

behavior in page reference patterns, then minimize 

page traffic by maximizing the time between page trans

fers; that is, by removing pages not expected to be need

ed for the longest time. Performance was satisfactory 

for programs exhibiting loop behavior; unsatisfactory 

for programs exhibiting aperiodic reference patterns, 

because the algorithm attempted to predict loops when 

there were none. Implementation was costly. 

Two kinds of demand rules warrant investigation, biased 

rules and working set rules: 

1Reported (by J. H. Saltzer) to be used in Multics. 
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6. Biased replacement rules. In round-robin fashion, each 

program is favored for an interval of time. During its 

f d . t 1 f 't 1 d d avore in erva , none o i s pages are remove an 

it may acquire new pages without hindrance. After its 

favored interval, it will be forced to give up pages in 

deference to other programs.· When a page is to be re-

tired, any of the rules discussed above may be applied 

to the non-favored pages. 

Belady [B2] reports that a biased FIFO rule on the M44/44X com-

puter improved performance significantly. The arguments given in 

Section 3.5.4 may be used to show that biased rules will perform 

better than non-biased rules (except the working set rule). In-

tuitively this makes sense, because large programs will have op-

portunity to expand into memory shares more matched with their 

needs. 

7. Working set (WS). Guarantees that a computation re-

ceives the use of processor if and only if there is 

enough uncommitted space in memory to contain its work-

ing set pages. Thus, every page belonging to the work-

ing set of some running process must be kept in main memory. 

Pages in no working set are subject to removal, though 

need not be removed until the space is needed. A com-

putation acquires more or less memory in accordance with 

fluctuations in its working set size. Should the total-

ity of working sets exceed memory, some program (perhaps 

the one present there for the longest time) is removed 

in order to clear space. 

1This complicates implamentation, because now i~entification of 
pages by program is required. 
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These seven are a portfolio of the most interesting and most 

important rules. 

In the next section we will compare all these strategies 

and show that WS is optimum. 
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3.5. Working Set Strategies are Optimum 

The following demonstration that working set strategies are 

optimum is based on the concept of locality, because we shall 

rate strategies by their ability to retain a process's favored 

pages in main memory. 

First we show that the missing-page probability is a valid 

measure of performance for a paging policy. Then, using the 

convexity properties of working set size and missing-page prob-

ability (Theorems 3.4 and 3.5) we show that the working set 

strategies have the lowest missing-page probabilities. For ease 

in discussion, we start by studying the algorithms operating on 

one program in a cramped memory. We then generalize to the case 

that many programs reside together in memory. 

3.5.1. The Cost of a Strategy 

Suppose h(t) is the number of pages of memory held by a cer

tain program at time t. Define the cost C(I) for memory usage 

over the real time interval I to be 

(3.5.1) C(I) J h(t) du 
I 

which is the space-time product of memory usage. We will say 

that the best strategy is the one that produces minimum cost. 

C(I) includes page wait times in the interval I; even though the 

process is not running, its information still occupies space 

during page waits. 

For convenience, we shall deal with the cost per ~ 

virtual time, G, which we define to be 



(3.5.2) G 
C(I) 
v(I) 
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where v(I) is the amount of virtual time contained in I. We 

are interested in the paging policy with smallest G. 

We consider a certain program consisting of r pages, which 

is operating in a space of s memory pages. The missing-page 

probability µ(s) is the probability that the process references 

a page not in main memory, whens pages are in main memory; 

clearly, µ(s) depends on the pa.ging algorithm1 

It is important to note that µ(s) is an average. To measure 

µ(s) experimentally, one would run a program in a space s, using 

a given paging algorithm, for a virtual time interval of length V. 

If he observed R references to pages not in memory, he would 

R assign µ(s)=v· Thus, µ(s) is also the rate at which page faults 

occur, for in a virtual time interval of length v, we expect 

Vµ(s) page faults. 

We have sketched µ(s) in Figure 3-10 for two strategies, 

which we shall call 1 and 2 (cf. Figure 3-1). 

The cost per unit virtual time G(s) of a strategy, as a 

function of the number s of pages in main memory, is related to 

µCs) as follows. Suppose the program has executed for V vtu, 

and suppose µCs) is constant over this interval. The expected 

number of page waits is Vµ(s), and so the total elapsed real 

time is 

(3.5.3) t 
r 

V + Vµ( s) T V(l+µ(s)T) 

where each page wait costs one traverse time T. The memory 

1When the missing-page probability is a.function· of 
s, we will write it as µ(s). When it depends only 
set parameter•, we will write it as ~(~). 

memory space 
on the work-
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Figure 3-11. Cost per unit virtual time for two strategies. 
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space s is constant for this interval, so the cost is 

(3.5.4) sV( l+µ( s) T) 

and the cost per unit virtual time is 

(3.5.5) G(s) s(l+µ(s)T) 

We have sketched G(s) for the two strategies, 1 and 2, in 

Figure 3-11. Because µ(s) for strategy 2 is flatter than for 

strategy 1, the optimum memory ~ sopt is smaller for stra

tegy 2 than for strategy 1. Moreover, because 

(3.5.6) 

it follows that 

(3.5.7) 

We therefore obtain two important conclusions. First, 

the smaller the average missing-page probability, the cheaper 

is the policy. Missing-page probability is'therefore a valid 

performance measure. Second, the smaller the average missing-

page probability, the smaller is the optimum memory space sopt" 

Hence, under better strategies, more programs can be placed in 

memory. 

If the working set parameter 't' is properly chosen (Chapter 4), 

it is possible to cause a working set strategy to operate at 

or near its current value of sopt" 
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3.5.2. Single Program Case 

Imagine an experiment (depicted in Figure 3-12) in which 

the same program is executed in memories A, B, c, and D; memory 

A uses RAND r~placement, B uses FIFO, C uses LRU, and D uses 

FINUFO. Let µ(s) denote the missing-page probability when a 

fraction s (O~s~l) of the program is in memory. We claim that 

µA(s) ~ µc(s) 

µB(s) ~ µc(s) 

µD(s) ~ µc(s) 

Since we assume locality is a basic program property, the ques

tion is: How well do RAND, FIFO, LRU, and FINUFO keep a program's 

favored pages in memory? 

To answer the question we imagine that we are trying to 

measure µA(s), µ8 (s), µC(s), and µD(s) by observing the rate 

at which page faults occur. 

Since a process references its favored pages most often, 

we expect that the least recently referenced pages in memory are 

the least favored; thus, LRU tends to retain favored pages. RAND 

may very easily select a favored page, even one that LRU would 

not; thus, we expect RAND to induce more page faults over an 

execution interval than LRU, and so µA(s) ~ µC(s). Under FIFO, 

it is certain that every page will eventually be removed; thus, 

we expect FIFO to induce more page faults over an execution in

terval than LRU, and so µ 8 (s) 2. µC(s). 

We make no claim that one or the other of RAND and FIFO 

is better. On the one hand, there are cases in which RAND is 

better than FIFO (e.g., an unchanging set of favored pages 
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FIFO eventually removes every one of them, whereas RAND may not). 

On the other hand, there are cases for which FIFO is better than 

RAND (e.g., a process which changes its set of favored pages 

completely before FIFO completes a cycle FIFO removes the 

old pages first, whereas RAND may select some of the new favored 

pages). FIFO, of course, is cheaper to implement. 

The FINUFO algorithm operates nearly the same as LRU, there 

being little difference, except in cost of implementation. If 

all the use bits have been set, FINUFO will do worst than LRU 

for the following reason. On its first cycle through memory, 

FINUFO finds all use bits ON, and clears them; since the process 

is in page wait, the use bits remain OFF, so on its second cycle 

through memory, FINUFO will select the first page whose use bit 

it cleared on the first cycle. Thus, FINUFO essentially selects 

a page at random. Assuming correlation between age and useful

ness, we expect that there are situations in which LRU induces 

fewer page faults during an execution interval than FINUFO, and 

so on the average µD(s) ~ µC(s). 

In Figure 3-13 we show µ(s) sketched for memories A, B, 

C, and D in our conceptual experiment. In Region I, all three 

policies behave equally poorly, because too few pages are in 

memory. In Region II, the differences become apparent. At s=l, 

all three policies are again the same, since the program is en

tirely present in memory. 

To complete the discussion, we must show that WS is better 

than LRU. 
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We imagine a second experiment, to compare LRU and WS, 

shown in Figure 3-14. Memory A, of size M, is run under LRU. 

Memory B, of variable size, runs under WS with • fixed at •
0 

such that the average working set size is w(• ) = M. Note that 
0 

LRU and WS are very similar in operation: LRU keeps the M 

most recently used pages in memory, whereas WS keeps the wCt,•
0

) 

most recently used pages in memory. 

Figure 3-15 compares the behavior of the two policies. 

Figure 3-15a shows • fixed at • o' at two times tl and t2 the 

working set size is wCt1,•o) = wl and w<t2,•o) = w2' and so the 

size of memory B varies at least over the range (wl,w2). 

Figure 3-15b shows that memory A does not vary, is fixed at M. 

Hence at the times t 1 and t 2 memory A is operating at • 1 and 

• 2.respectively. That is, we may hold the working set size 

fixed at M by varying • so that the working set is always exactly 

contained in memory A. 

Thus, memory A is simulated by a working set strategy with 

•varying around mean •
0 

on the range C•1 ,•2 ), and memory B has 

• fixed at •
0

• Writing the missing-page probability for WS as 
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A(~), and recalling Theorem 3.4, 

and so WS is at least as good as LRU. 

Intuitively this makes sense. Suppose the program is con

stant at size M throughout execution except for a single refer

ence to the (M+l)st page. If it is in memory A, the .reference 

to the (M+l)st page displaces some other page in A, which must 

be recalled. 

Note that we have also shown that a variable size share of 

memory is superior to a fixed size share of memory. This makes 

sense since: 

1. As we have stressed, advance knowledge of program size 

is often non-existent, and indeterminable. The share 

cannot be chosen optimally in advance of execution. 

2. If each program gets a fixed share of memory, we cannot 

guarantee that memory is densely packed with the most 

useful information. A small program operating in too 

large a space is occupying space it does not need, space 

which could and should be given over to a large program 

operating in too small a space. Using variable shares 

permits allocating space on the basis of need. 

If the programs in question do not satisfy locality, the 

arguments above fall apart. Consider, for example, the case of 

an (n+l)-page program which cycles endlessly through the (n+l) 

pages; operate this program in a memory of size n. Clearly, the 

least recently used page is the one about to be referenced, so 

LRU makes the worst possible decision. Similarly, FIFO and FINUFO 
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remove a page just before it is referenced. Only RAND has non

zero probability of not making a mistake, and is the best of the 

four. If the working set parameter is ~~n, the working set 

never contains the page next to be referenced, and so WS is 

poor in this case too. 

3.5.3. Multiprogrammed Case 

How do programs interact with each other, if at all, under 

each of these strategies? How can the memory demands of one 

program interfere with the execution of another? We can obtain 

answers to these questions by examining the missing-page prob

ability. 

The missing-page probability µ is the probability that a 

process makes a reference to a page not in main memory. In the 

multiprogrammed case, we expect it to be a function of the pro

gram size r Cr is the number of pages in th-e program), of the 

number n of programs simultaneously resident in main memory, and 

on the main memory size M: 

(3.5.8) (missing-page probability) µCn,r,M) 

In the following discussion we assume that locality is a basic 

behavior property. 

Suppose there are n programs in main memory; intuitively 

we expect that if the totality of working sets does not exceed 

the main memory size M, then no program loses its favored pages 
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to the expansion of another 1 . That is, as long as 

n 

(3.5.9) 2: Uli ( t , i; i) ~ M 

i=l 

there will be no interaction among programs, and we expect the 

missing-page probability to be small. But when n exceeds some 

critical number n , the totality of working sets exceeds M, the 
0 

expansion of one program displaces the favored pages of another, 

and so the missing-page probability increases sharply with n. 

Thus, we have 

(3.S.10) 

This is illustrated in Figure 3-16. In other words, it costs 

more to operate a program in a crowded memory than to operate 

it in a roomy memory. 

If a paging algorithm operates in the range n > n
0

, we 

will say it is saturated. 

Next we want to show that the RAND, FIFO, LRU, and FINUFO 

algorithms have the property that 

(3.S.11) 

That is, a large program is more likely to lose pages than a small 

program, when the algorithm.is saturated. Put another way, it 

costs more per page to operate a large program in a crowded mem-

ory than to operate a small program in a crowded memory. 

To see that this is true for RAND, observe that a large pro-

gram occupies more space in memory than a small program, and so 

1 Though it may lose favored pages because of foolish decisions 
by the replacement rule; for example, RAND or FIFO. 
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has more pages as candidates for random selection to choose from. 

To see that this is true for FIFO, observe that a large program 

tends to execute longer than a small one, and is thus more likely 

to be still in execution when FIFO gets around to replacing its 

pages. To see that this is true under LRU, recall that if pro-

gram P1 is bigger than P2 , then the interreference intervals 

satisfy x1>x2 -- the large programs are the ones that tend to 

reference the least recently used pages. To see that this is 

true for FINUFO is more difficult. If n>n
0

, all the use bits 

are ON, until some program stops for a page wait; since it can 

no longer set its use bits, such a program will tend to lose all 

its pages. Inasmuch as large programs have more pages, a large 

program will suffer more when it enters page wait. 

By definition, a WS algorithm makes the missing-page prob-

ability independent of n and M, since eq. 3.5.9 is assumed to 

be satisfied. In fact, Theorem 3.3 shows that the missing-page 

probability depends only on~ in this case: A(~) = 1-F (~). x 

Thus, the RAND, FIFO, LRU, and FINUFO policies result in 

higher costs when the memory is crowded. By avoiding crowding, 

WS results in lower cost. 

If we ask the question: How well does each strategy fare in 

keeping the working set of a process in memory? We again see 

that FIFO and RAND are worse than LRU, which in in turn com-

parable to FINUFO. If we regard the entire memory contents as 

a large multiprocess computation, the same arguments of the 

preceding section show that WS results in lower missing-page 

probability than LRU. If FINUFO is kept away from saturation, 

it should perform nearly as well as ws. (FINUFO is nearing sat-
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uration when it cycles once through the memory in a time com-

parable to the traverse time T.) 

It might be argued that our comparison of LRU and WS (at 

least in the single program case) is not strictly valid because 

WS operates with surplus memory. That is, a larger memory is 

needed in order to provide buffer space to absorb working set 

expansions. This is quite true of one program only is using 

memory. In the multiprogrammed case WS shows its superiority: 

1. WS makes pro:Jrams independent in the sense that the 

expansion of one program cannot displace working set 

pages of another. 

2. When the size of the memory becomes large, the fractional 

requirement for buffer space to absorb working se.t ex-

pansions becomes small. This is shown in Chapter 8. 

3. If ~ is properly chosen, each program operates in the 

vicinity of its optimum cost size (s t in Figure 3-11) op 

-- thus it is possible to fit more programs cheaply 

into memory under a WS strategy than under any other 

strategy. 

3.5.4. Use of Biased Replacement Rules 

Belady has shown that biasing the FIFO rule (see Section 3.4) 

on the M44/44X computer improved performance significantly [B2]. 

We wish to show that this is true in general: by slowly varying 

the memory share of a program the probability of referencing a 
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missing page is reduced. A WS strategy is still superior be-

cause it varies the memory share exactly in accordance with need, 

whereas the biased rules do not guarantee that the memory share 

enlarges at the times the program would like to see it enlarged. 

We shall show that biasing the LRU rule improves performance, 

but not to the point of WS. Since LRU is better than RAND or 

FIFO, it follows that biasing RAND or FIFO produces corresponding 

improvements. Since a non-saturated FINUFO rule behaves very 

much like a WS rule, there is little point to biasing it. 

To show biasing improves LRU we shall show biasing increases 

the average value of c for each value of the random variable 

w(t,•). Suppose w(t,c) is known; choose•=• such that c 
0 0 

-1 1 w (t,M), where Mis the memory size and w- is the inverse 

function of w(t,c) with respect to '· Now let the memory size 

be s, and let s vary such that s~M. -1 Since w (t,•) is concave 

(see Figure 3-9), we have from Theorem 3.1 

that is, 

-1 w (t,s) 

c > c 
0 

-1 w (t,M) 

Since the average value of ' has been increased, the missing-

page probability A(c) must decrease: 

Of course, since the memory variation is out of phase with the 

variation of w(t,c), a pure WS strategy is better. 
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3.6. Thrashing 

It has been observed that even the slightest attempt to 

overuse memory may trigger a total collapse of service efficiency, 

rather than the moderate degradation that might be expected. 

This phenomenon is known as thrashing. We show that thrashing 

is caused by the large value of the traverse time T. 

In this section we write µ for the missing-page probability. 

3.6.l. The Causes 

Suppose that a certain process has executed for a virtual 

time interval of length v and that the missing-page probability 

µ is constant over this interval. The expected number of page 

waits is then (Vµ), each costing one traverse time T. We define 

the duty factor T)(µ) to be: 

(elapsed virtual time) 
T) ( µ) 

(elapsed virtual time) + (elapsed page wait time) 

v l 
(3.6.l) 

V + VµT l + µT 

T)(µ) measures the ability of a process to use a processor. 

Figure 3-17 shows T)(µ) sketched for five values of T: 

T l, 10, 100, 1000, 10000 vtu 

If 1 vtu is taken· to be 1 microsecond, and the rotation of the 

fastest existing rotating auxiliary storage devices is taken to 

be 10 milliseconds, then T=lOOOO vtu may be regarded as typical 

for existing computer systems. 
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The slope of ~(µ) is 

T 
(3.6.2) ~' ( µ) 

(1 + µT) 2 

which for small µ and T>>l, is extremely sensitive to a change 

in µ. It is this extreme sensitivity of ~(µ) to changes in µ 

for large T that is responsible for thrashing. 

To show how the slightest attempt to over use memory can 

wreck processing efficiency, we perform the following conceptual 

experiment. We imagine a set of (n+l) identical programs, n of 

which are initially operating together in a memory, at the verge 

of saturation (i.e., n=n in Figure 3-10) with no sharing. Then 
0 

we examine the effect of introducing the (n+l)st program. 

Let 1,2, ••• ,(n+l) be this set of (n+l) programs, each of 

size r. Initially, n of them occupy the memory, so that the 

memory size is M=nr. Let µ
0 

denote the missing-page probability 

under these circumstances, assume µ
0

<<1, and that ~(µ0 ) is. 

reasonable (i.e., it is !!.Q.i true that ~(µ0 )<<1). Then the 

expected number of busy processors (ignoring the cost of switch-

ing a processor between processes) is: 

n 

2= 
n 

(3.6.3) ex. ~i(µo) 
1 + µ T i=l 0 

Now introduce the (n+l)st µ:- ogram. The missing-page probability 

increases to (µ
0

+6) and the expected number of busy processors 

becomes 

n+l 

(3.6.4) B 2= 
i=l 

~. ( µ +6) 
l. 0 

n+l 
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Now, if nr pages consume the memory and we squeeze another size r 

program into memory, the resulting increase in missing-page prob-

ability is 

r 1 
(3.6.5) 

(n+l)r n+l 

since we are assuming that the paging algorithm acquires the 

additional r pages by displacing r pages unifo.':)ltlly from the (n+l) 

programs now resident in memory. The fractional number of busy 

processors after introduction of the (n+l)st program is 

(3.6.6) B 
a 

n+l 

n 1 + ( µ +b) T 
0 

Now, assume T>>n>>l. 1 
we argue that b = n+l >> µ

0
• To see this, 

suppose to the contrary that 6~µ0 ; then 

1 
(3.6.7) 

1 + bT 

1 

T 1 + n+l 

n + 1 
----- << 1 
n + 1 + T 

which contradicts our assumption that, in the non-saturated 

operating region, efficiency is reasonable. Thus, when T>>n>>l 

and 6>>µ
0

, it is easy to show that 

(3.6.8) << 1 

The presence of one additional program has caused a complete 

collapse of service. 

The sharp difference between the two cases at first defies 

the intuition, which might lead us to expect a gradual degrad-

ation of service. The large value of the traverse time T is the 
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root cause. It is interesting to ·note that Smi.th [57) has 

warned of this behavior. 

3.6.2. The Cures 

To cure or prevent thrashing, we must do two things: first, 

we must prevent the missing-page probability µ from fluctuating; 

and second, we must reduce the traverse time T. 

In order to prevent µ from fluctuating, we must be sure 

that the number n of progr.ams residing in main memory satisfies 

n,Sl
0 

(Figure 3-16), which is equivalent to the condition that 

(3.6.9) ~ 
i=l 

where Cl>i (t,'fi) is the working set size of program i. In o.ther 

words, there must be space enough in memory for each program's 

working set. This strongly suggests that a working set strategy 

be used. 

In order to get the largest number of programs in memory, 

that is, to maximize n
0

, we want. to choose: 'f as small as pos

sible and yet be sure that W(t,'f) contains a process's favored 

pages. Programmers can cooperate in this effort by designing 

algorithms to operate locally on data, consci.ously keeping the 

working set small and not moving about too rapidly. A program-

mer is rewarded for this effort, because not only does he achieve 

a high operating duty factor, he also pays less for use of memory. 
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With the FIFO, RAND, and LRU algorithms, it is very diffi-

cult to ascertain n , and therefore difficult to control the 
0 

possible µ-fluctuations. The FINUFO algorithm displays some 

natural tendency to refuse to ru~ more than n
0 

programs (the 

extra ones tend to be completely unloaded). 

The problem of reducing the traverse time T is more diffi-

cult. Recall that T is the expectation of a random variable corn-

posed of queue waits, and mechanical de·lay factors. Using op-

tirnum scheduling techniques on disk and drum auxiliary storage 

devices [C2,D3,F3], together with parallel data channels, we 

can effectively remove all but the mechanical delays from T; 

accordingly, T may be made comparable to a disk arm seek time 

or to half a drum revolution time. To reduce T further would 

require reduction of the rotation tome of the device (for 

example, a 40,000 rpm drum). 

A much more promising solution is to dispense altogether 

with a rotating device as the second level of memory. A three-

level memory system (Figure 3-18) would be a possible solution, 

where between the main level and the drum we have introduced a 

slow speed bulk core storage. The analysis of Section 3.6.1 

suggests that speed ratios in the order of 1:100 (i.e., T::::::lOO 

vtu) between adjacent devices would lead to much less sensitiv-

ity to traverse times and permit tighter control over the factors 

that cause thrashing. For example: 

level tyEe of memory device access time 

0 thin film 200 ns. 

1 slow speed core 20 µs. 

2 very high speed drum 2 ms. 
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We cannot overemphasize, however, the importance of a 

sufficient supply of main memory, enough to contain the desired 

number of working sets. 

memory. 

Paging is no substitute for real main 
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3.7. Survey of the Literature 

Various studies concerning the behavior of paging algor

ithms have appeared. The earliest published study, by Fine et 

~· [F6], investigates the effects of demand paging and seriously 

questions whether paging is worthwhile at all. Their experiments, 

as well as the more discerning experiments of Varian and Coffman 

[Vl], confirm this: if a program is forced to operate in a space 

smaller than its working set, considerable paging activity may 

seriously interfere with efficiency. The remedy is not to dis

miss paging, it is to provide enough main memory. Paging is 

no substitute for real memory. 

Experience with the M44/44X computer has yielded important 

insights into program behavior [01]. Belady and his colleagues, 

noting the concavity of efficiency vs. core-share curves, were 

able to improve efficiency significantly by artificially varying 

a program's core share; this led to the biased replacement rules 

[82]. Belady has defined a unit of storage allocation, the 

parachor [B2], which is that amount of information that must be 

loaded in main memory for the program to spend no more than half 

its time in page wait. We shall discuss in Chapter 4 the re

lation between parachor and working set. Belady has also com

pared some of the paging algorithms mathematically [Bl]. His 

most important conclusion in this area is that an ideal replace

ment rule should have much of the simplicity of RAND or FIFO 

(for efficiency) and some, though not much accumulation of data 

on past reference patterns. 

Randell and Kuehner [R2] have a good survey of all the 

techniques commonly used to handle multiprogrammed memory alloc

ation, ranging from various name space concepts, across look 
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ahead and replacement rules, to problems of optimum page size. 

Oppenheimer and Weizer [02] report on simulations of the 

RCA Spectra 70/46 Time-Sharing Operating System when memory 

allocation is based on a strategy related to working sets. Their 

experiments indicate that this type of allocation markedly im

proves performance. 
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3.8. Summary 

Starting from the assumption that locality is a basic pro

gram behavior property, we developed the working set model for 

program behavior. Locality is the property that, during any 

virtual time interval, a process favors only a subset of the pages 

available ot it; a working set is a dynamic measure of this set 

of pages. Locality manifests itself as convexity in the working 

size and as concavity in the missing-page probability. Experi

mental evidence suggests that locality is a very good assumption. 

There is every reason to beleive that a programmer who keeps 

in mind a working set concept can make this property strong 

in his programs. 

A good performance measure for paging policies is the missing 

page probability, since lower missing-page probabilities result 

in lower memory usage costs. We showed that working set strate

gies achieve the lowest missing-page probabilities and operate 

dynamically in a memory space close to that which achieves mini

mum cost. 

We also showed that thrashing is directly traceable to the 

large value of the traverse time T. By minimizing the possibility 

of fluctuations in the missing-page probability, a working set 

strategy can markedly decrease sensitivity to thrashing. 

Thus, a working set strategy has three advantages. First, 

it results in lowest costs of operating programs in memory. 

Second, it reduces sensitivity to thrashing. Third, it makes 

programs independent of one another, in the sense that memory 

acquisitions of one program do not interfere with the working 

set holdings of another. Because of this, analysis will be simple. 
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In the next Chapter we refine the working set model and 

derive detailed properties, in the case of no sharing. In 

Chapter 5 we give attention to the case of sharing, when working 

sets overlap. The reader who is interested in the ideas of 

demand and balance should turn directly to Chapter 6. 



CHAPTER 4 

Further Properties of the Working Set Model 

4.0. Introduction 

Having seen the basic concepts beneath the working set model, 

we are in a position to investigate its properties more thoroughly. 

Here in this chapter we shall refine the working set model in 

the very simplest case: single-process computations ~ !!Q. infor

mation sharing. In Chapter 5 we shall investigate the additional 

complications that arise from multiprocess computations and over

lapping working sets. 

One of the properties of a working set memory management 

policy is the statistical independence of working sets: the ex

pansion of one working set cannot displace pages of another. 

Because of this, we may analyze the behavior of a single process 

and its working set, and then extend the results in a simple way 

to collections of independent processes with non-overlapping 

working sets. 
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The quantities we shall derive here in this chapter are 

described in the following table. 

guantity symbol 

missing-page probability A(T) 

paging rate p(•) 

expected working set size w(T) 

variance of working set size a~(T) 

duty factor ~(•) 

•-sensitivity s(T) 

description 

probability that a process, 
when making an information 
reference, directs the re
ference to a page not in 
the working set W(t,T). 

number of pages per unit 
real time re-entering a 
working set W(t,T). 

expected number of pages 
in working set W(t,•). 

fraction of time a running 
or page wait process spends 
running. 

rate of increase of missing 
page probability to decrease 
in •· 

The interreference distribution Fx(u) plays a key role in the 

analysis, since all these quantities may be expressed in terms 

of Fx(u). 

We begin by deriving an important result: the mean inter-

reference interval is also the mean program size. An interesting 

consequence of this is that the expected working set size depends 

only on the interreference distribution. We derive, one by one, 

the quantities listed in the table above; then we show how each 

of these quantities is useful in determining the allowable range 

of •-values to be used; we discuss the problem of predicting 

working set sizes; and finally we discuss how a working set memory 

allocation strategy might be implemented. 
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During the remainder of this chapter we assume: 

1. No sharing. That is, working sets do not overlap. 

2. Single-process computations. 

3. Only working-set pages ~ in memory. Any page which 

leaves a working set is automatically removed from 

main memory. 

4. Unlimited processor-memory resources. But, since only 

a finite number of processes, each with a finite working 

set, are active, only a finite amount of each resource 

type is in use. 

The third assumption is a worst-case assumption, in the sense 

that a working set strategy would not normally retire a non

working-set page until there was need for the space it occupied. 

The fourth assumption allows us to ignore for the time being 

whatever additional problems arise from lack of equipment. We 

shall discuss these problems in Chapter 8, when we examine the 

equipment configuration. 
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4.1. The Relation between Proaram Sizes and Interreference Intervals 

As before, we define the random variable x to be the virtual 

time interval between successive references to the same page. 

Thus, these intervals x are the interarrival times between re-

ferences. 

The distribution function is Fx(u) = Pr[x,S.u]. The density 

function is. fx(u) ~ F x(u), The mean is 

(4.1.l) 

where this latter integral can be verified by integrating the 

former by parts1 • The second moment is 

(4.1.2) 

and the variance is a! = x 2 x2, We assume both x and x2 . are 

finite (that i is finite is shown shortly in Theorem 4.1), 

1The formula is: Jy dz = yz - Jz dy. In eq, 4,1,l let y=u, dy=du, 
dz=fx(u) du, z=Fx(u). We integrate from 0 to a, and let a tend 
to infinity when we are done. Then 

~u fx(u) du = yz J~ - ~z dy = uFx(u) I~ - ~x(u) du - a + ~du 

where we have added and subtracted a = ~du. Noting that 
uFxCu>I~ = aFx(a) and regrouping terms, 

~u fx(u) du = ~(1-Fx(u)) du - a{l-Fx(a)) 

To complete the pro~, we must show a(l-Fx(a)) tends to 0 as a 
tends to infinity, when x has finite mean. Now, a(l-Fx(a))~O 
if and only if (l-Fx(a))/(l/a)-.o if and only if (L'Hospital's 
Rule) fx(a)/(l/a2)-.0 which is exactly the condition that i be 
finite. 
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By a program Z(t) at time t we mean the set of pages toward 

which a process directs its information references 1• The program 

size is z(t) = jz<t>I • We assume that z(t) is a stationaz:y 

stochastic process, so that we may write z instead of z(t), and 

z instead of zrrrt. The program size distribution is F z ( u) , 

across the ensemble of all programs. 

We must be careful not to confuse a program Z(t) with a work

ing set W(t,~). A working set W(t,~) is related to a program 

Z(t), thus: 

(4.1.3) W(t,~) C u Z(s) 
se;(t-~,t) 

Z(t,~) 

where (t-~,t) is a virtual time interval. Because of our assump

tion of locality, we assume also that the content of Z(t) .does 

not change appreciably over intervals of length ~, so that the 

size of Z(t,~) is described by the random variable z. Thus, 

we assume 

(4.1.4) z 

Recalling the definition of the working set size w(t,~), we have 

(4.1.5) w(t,~) ~ z 

and hence 

(4.1.6) w(~) -
~ z 

1A more detailed view would note that a program contains the 
instruction stream that directs the activity of a process, 
together with the data used. However, we do not require this 
much detail in our analysis. 
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Theorem 4.1. Let x be the interreference intervals, with mean x. 

Let z be the program sizes, with mean z. Then x = z. 

Proof: Refer to Figure 4-1, where we have shown a set of z 

pages consitituing a certain program. Let 

(4.1.7) 

then, 

( 4.1. 8) 

Now, let 

(4.1.9) 

p. 
i 

Pr [process referer:ices. page i ,l 
when program size is z J 

1 

[
interreference. int~rval to page i '] 
when program size is z. 

In a sequence of independent trials, with Pr[success]=p., the 
i 

expected waiting time until success is l/pi. Thus, 

(4.1.10) Cxlzli 
1 
pi 

For the entire program, 

z z 

(xjzl 2: 2: 1 (4.1.lll (x lz\ pi pi z 

i=l i=l 
pi 

Now, taking the expectation on z, 

(4.1.12) x z 

QED. 

Corollary 4.1. Let 2 1 and 2
2 

be programs; let x 1 be the inter

reference intervals to 2
1 

and x
2 

be the interreference in

tervals to 2 2 • If 2 1 is bigger than 2 2 , then x1 > x2 • 

We have 

> 
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stream of references, 
at rate l per vtu 

pages 

l 

2 

z 

Figure 4-1. A simple program model. 
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Note, however, that we cannot also claim F (u)~F (u); i.e., 
z x 

that the interreference distribution is also the program size 

distribution. In a given computer system, there will 

be some largest program size z
0

• It is unreasonable to assume 

(4.1.13) Pr[x > z ] 
0 

0 

because even the largest program may contain pages it uses only 

rarely. Thus, we expect that the variance o 2 of interreference x 

intervals will be greater than the variance o 2 of program size. z 
Since Fx(u) and Fz(u) describe the ensemble of all programs, 

we can make no claim that any given program is reliably described 

by Fx(u) or Fz(u). We can, however, claim that a balance set 

of programs, being large, is representative of the ensemble; thus 

the quantities we shall derive in the next sections, expressed 

in terms of F {u), are applicable to balance sets of programs. x 

A question which may have occurred to the reader is: How 

does page size (number of words to a page) enter into our con-

siderations? Page size is accounted for implicitly in the defin-

itions of the interreference intervals x and the traverse time T. 

On the one hand, halving the page size makes the same program 

comprise twice as many pages; from Theorem 4.1, we see that the 

interreference intervals become twice as long. That is, smaller 

pages are referenced less often. On the other hand, the traverse 

time T contains a component due to page transmission time, which 

depends on page size. 

Thus, provided that pages are sufficiently small that work-

ing sets contain several pages, all our results are independent 

of the page size, 
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4.2. Missing-Page Probability 

We showed in Theorem 3.3 that the missing-page probability 

depends on Fx(u): 

(4.2.1) 

and is just the probability that the page referenced satisfies 

x>T. The next theorem shows that A(T) may be regarded as the 

rate, in virtual time, at which pages re-enter the working set 

W(t,T); that is, l/A(T) is the expected virtual time interval 

between references to a page not in W(t,T). See Figure 4-2. 

Theorem 4.2. Let A(T)=l-Fx(T) be the missing-page probability. 

Then A(T) is also the number of pages per unit virtual 

time re-entering W(t,T). 

Proof: Let Z(t) be a program. We consider first the behavior 

~f a typical page in in Z(t) and then obtain the behavior of Z(t) 

by summing the behaviors of its component pages. 

Let {tn}n~O be a sequence of virtual time instants at which 

references to page i occur (Figure 4-3). The nth interreference 

interval is 

(4.2.2) x n t -t n n-1 

Now, we assume the interreference intervals {xn}n~l are statis

tically independent1 , so that for all n~l: 

(4.2.3) 

A re-entry point is a reference instant that finds the page not 

in W(t,T): at such an instant the page re-enters W(t,T). Observe 

1This assumption does not contradict the ~ssumption of locality. 
Locality implies only that the favored pages have short inter
reference intervals. 
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pages entering W(t,T) 
for the first time 

working set W(t,T) pages re-entering 

pages leaving W(t,T) 
for the last time 

working set 

~(T) vt rate 

p(T) real time rate 

Figure 4-2. Illustrating the meaning of re-entry rates. 
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that t is a re-entry instant if and only if x >~, independent n n 

of other reference instants. Suppose t is a re-entry; we are 
0 

interested in nn' the probability 

(4.2.4) Pr[tn is first re-entry after t
0

] 

The probabilities {n} are distributed geometrically: 
n n~l 

(4.2.5) (F (T))n-l(l-F (T)) 
x x 

That is, tn is the first re-entry after t
0 

if and only if each 

of the intervals x 1 , ••• ,xn-l satisfies x 1.::;,•, ••• ,xn_1.::;,• and xn 

satisfies xn>~. The expected number of references until the 

re ... entry is 

-(4.2.6) n 

CD 

2:n nn 
i=l 

1 

1 - F ( T) x 

Each interreference interval x is of expected length x, so the 

expected time between re-entries is 

x 
(4.2.7) - -n x 

Let us define the virtual time re-entry~ A.(~) for page i 
J. 

in Z(t) to be: 

(4.2.8) -x 

Next, suppose Z(t) contains z pages. Given z, the total re-entry 

rate for Z{t) is: 

z 

(4.2.9) 2: 
i=l 

A. ( T) 
J. 

Then, taking the expectation on z, 

(4.2.10) 

z 
1 - F (T) x 

-x 

1 - F ( T) 
- x z -x 



But, since z 

(4.2.11) 
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x (Theorem 4. 1), we obtain finally 

= 1 - F (i;) 
x 

QED. 

Since Fx(i;) is a non-decreasing function of i:, A(i;) is a non-

increasing function of i:. Thus, decreasing T can never result 

in a decrease in the missing-page probability. 
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4.3. Paging Rate 

Assuming that the memory management mechansim guarantees 

that a page resides in main memory if and only if it is in a work-

ing set, every re-entry point in virtual time coyresponds to a 

page wait in real time. Thus, every page re-~tering W(t,~) must 

be recalled from auxiliary memory, and contributes to page traffic. 

Define the paging rate p(~) to be the number of pages per 

unit real time re-entering the working set W(t,•). That is, 

l/p(~) is the expected real time between re-entries. See Fi~ure 4-2. 

Theorem 4.3. Let p(•) be the paging rate. Then 

(4.3.1) 

where T is the traverse time, and A(~) is the missing-page 

probability. 

Proof: The expected virtual time between re-entries is l/A(~), 

by Theorem 4.2. Then the expected real time between re-entries 

is 

(4.3.2) 

so that 

1 
p(~) 

1 
A(~) + T 

Observe that p(~) may be interpreted as 

number of re-entries 
(4.3.3) 

elapsed real time 

QED. 
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because, in a virtual time interval of length v, there are VA(T) 

re-entire~; each costs one traverse time T, so the elapsed real 

time IBUSt be (V + VA( 't) T). 

With a balanced memor~ (i.e., the totality of working sets 

constituting the balance set B does not exceed memory), process j 

in the balance set B contributes pj(T) to the total returning 

~traffic Y(<t): 

(4.3.4) Y( 't) ~ Pj ( T) 

je:B 

so that Y(<t) estimates the tutal traffic of pages being recalled 

to memory, and is therefore a lower bound on the capacity required 

of the channel bridging the two levels of memory. 

The rate Y(T) does not include page traffic resulting from: 

1. computations entering and leaving the balance set B; 

2. pages being referenced for the first or last time by 

processes in B (see Figure 4-2). 

Given the rate at which each of these occurs, one can estimate 

the true total paging rate. These adjustments are straightfor-

ward, so we shall not pursue the matter further. 

We must emphasize that the rates p(T) and Y(T) are estimates 

of steady-state behavior, under the assumptions of Section 4.1. 

The important point is: starting from the interreference dis-

tribUtion Fx(u) and the definition of W(t,T), it is possible to 

estimate these rates. 

--~-
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4.4. Working Set Size 

Let Z(t) be a program, and let z(t) be the random variable 

of the size of Z(t). Starting from the assumption that z(t)~z 

is a stationary stochastic process, we shall derive expressions 

for the mean and variance of working set size w(t,•). The 
• 

importance of these results is that a program's main memory 

requirement is completely determined by its page interreference 

activity. 

Theorem 4.4. Let w(•) 

Then 

(4.4.1) 

w(t,•) be the expected working set size. 

!"<1-F (u)) du 
0 x /~A(u) du 

where A(u) is the missing page probability. 

Proof: Refer to Figure 4-4, where we have shown an interval in 

virtual time for a typical page in W(t,•). Define the random 

variable 

(4.4.2) y Clength of the interreference interval] 
containing the time instant t 

Thus, if we choose a point t at random on the virtual time axis, 

y is the length of the interval in which t lies. The density 

function f Cu) for y is not the same as that of the interrefery 

ence intervals x because, even though long intervals are less 

likely than short intervals, they occupy a larger fraction of 

the virtual time axis. A little thought should convince the 

reader that the probability that t is contained in an interval 

of length u is just the fraction of the time axis occupied by 

intervals of length u: 

(4.4.3) f (u) 
y -x 
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For a complete discussion of this property, see Feller LF2,Vol.2, 

p.lOff]. Let i denote a typical page in the progrctm Z(t). 

Define the binctry rctndom variable 

( !\. 4. 4) 
otherwise 

Refer again lo Figure 4-4, and use t=O as the left end of the 

interval. Suppose y=u; then 

Pr[y.-0] 
l 

Pr[u>T ctnd tECT,u)] 

f Pr[y.=Oly=u~ f (u) du 
U>T l y 

(4.4.S) Pr[y.=0] 
l 

f Pr[u>T and tE(T,u)] f (u) du 
u>T y 

Now, t may fall randomly on the interval (0,y), so 

( 4. 4. 6) 

then 

Pr[u>T and ts(T,u)] U-'L 

u 

~oo u-T f (u) d 
(u-T) f (u) du 

(4.4.7) Prly.-0] 
l 

,.o::i x 
J T -U- y . U J, 

carrying out this integration (by pctrts) we obtain 

( 11. 4. 8) Pr[y.-0] 
l 

where A(u)=l-F (u). 
x 

( 4. 4. 9) Pr[y. =l] 
l 

Now, observe that 

( 4. 4.10) w(t,T) 

1 - -
1-r' A(u) du 
- • 0 
x 

-
1-J' A(u) du 
- 0 
x 

2= 
iEZ(t) 

x 

Suppose ~(t~ = z. ~~en, given z, the expected working set size is 

z 

(4.4.11) (w(rJjz) w(t,T) 2= 
i=l 

Y· l 

z 

2:2r[yj=l] 

i~l 

zPr[yi=l] 



Then, taking expectation on z, 

(4.4.12) w(T) (w( T) I z) 
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z ,T /\(u) du 
- ,,/ 0 
x 

F'inalJy, from Theorem 4.1 we have z ~ x, so that 

w( T) /\(u) du 

QED. 

We should verify that the properties of Theorem 3.3 are 

satisfied: 

l. w( T) < 'L 

2. w( 0) ~ 0 

3. w(T+s) ', w(T) s>O 

4. w( T) convex. 

( 4. 4.13) w(T) ;T /\(u) du . () < ,.T du 
- Jo 

and properties 1 and 2 are su.tisiied. Since /\(u)~O, 

( 4. 4. 14) ltl( T+s) -T+s 
J 0 

A(u) du > f~ /..(u) du w( T) 

and property 3 is satisfjed. ~o verify property 4, we show 

that the second derivative of w(T) is non-positive: 

d w(T) A(T) 1 F ( T) 
rl T - x 

( 4. 4. 15) 
d2 

w( T) -f ( T) < 0 since [ ( T) > o. 
dT 2 x x 

Comparing the theorem statement with eq. 4.1.1, we observe 

also that 

( 4. 4. 16) lim w( '"C) 
T_.oo 

x z 
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And, since z x, 

2 
w ( t' i;) w( i;) + 

2 x 
-2 (4.4.22) 
x 

then 

(4.4.23) 2 2 w (t,i;) - w (i;) 
2 - 2 2 

W (t,i;) -~ (T) 

2 -2 2 
w(T) + ~ w2 (c) - ~ 

-2 x x 

Corollary 4.5. The variance o~(T) is lower-bounded by 

(4.4.24) 

x 

QED. 

Proof: For any random variable x, o 2>0 x-' so put o 2=0 into the x 

expression above for o 2 (i;). w 

Observe, from eq. 4.4.16 and 4.4.17, that 

( 4. 4. 25) 02 
x 

and that o 2 (T) attains a maximum value for some T>O. w 

QED. 
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4.5. Duty Factor 

The duty factor ~(•) of a process is the fraction of time 

it is able to spend computing: 

(elapsed virtual time) 
(4.5.l) ~(•) 

(elapsed virtual time) + (elapsed page wait time) 

~(•) measures the ability of a process to use a processor. 

Theorem 4.6. 

(4.5.2) 

The duty factor ~(•) is given by 

l 

l + A.(•)T 

wh~re A.(•) is the missing-page probability, and T is the 

traverse time. 

Proof: Suppose the process has executed for V vtu, with no 

interruptions other than page waits. The time spent in page wait 

is then (VA.(•)T) and so 

v l 

V + VA,(•) T l + A.(•)T 

QED. 

The duty factor has already appeared in Section 3.6, on thrashing. 

We may interpret ~(•) as the probability that, if we look 

at a process at some random time, we find it running. 
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4.6. T-sensitivity 

It is useful to define a sensitivity function s(T) that 

measures how sensitive is the re-entry rate A(T) to changes ln T. 

We define the T-sensitivity s(T) of a working set W(t,T) to be 

(4.6.1) s(T) d A(T) 
dT 

f (T) x 

That is, if Tis decreased by dT, the resulting increase in 

re-entries to W(t,T) is s(T) dT. It is obvious that s(T)~O: 

reducing T can never reduce the page traffic. 

Observe that s(T) is the negative second derivative of w(T), 

and is therefore a measure of the convexity of w(T). 

s(T) may be useful in deciding how small a value of T to 

choose. If fx(T) has the shape shown in Figure 4-S, curve A, 

a good choice for T is T=TA since T>TA has little effect on 

reducing s(T). If f (T) has the shape of curve B we should have 
x 

to choose T=T 8>TA in order to have the same T-sensitivity. There 

is good reason to believe that in practice fx(T) is approximately 

hyperexponential, in which case curve A is more representative 

than curve B. 



s ( 't) 
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f ( 't) 
x 

Figure 4-5. 
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Using s(T) to choose T. 
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4.7. Choosing -r 

Ideally, the working set parameter 't should be chosen as 

small as possible and yet assure that the working set W (t,-r) of 
p 

process p contains p's favored pages. In principle, then, 't should 

be variable, from process to process and from time to time. 

In practice, it will be necessary to choose non-ideal values 

for -r, because the optimum value for 't may be indeterminable, 

or because too much mechanism may be needed either to decide 

on the required value of 't or else to vary 't dynamically as 

required. Thus, system parameters, as well as program para

meters, will play roles in choosing -r. 

Should 't be too small, the favored pages of a process will 

be removed, resulting in high missing-page probability, h~gh 

memory-usage costs, high page traffic, and low efficiency (i.e., 

duty factors). Should 't be too large, pages may remain in mem

ory long after last being used, thus wasting memory and again 

resulting in high memory-usage costs. 

We shall attempt to clarify the nature of the tradeoffs 

among all these factors. 

Strange as it may seem, there may be a worst value for -r. 

Suppose the process in question has executed for V vtu. '!be 

expected number of page waits is VXC-r), the expected time spent 

in page wait is VXC-r)T, and the expected elapsed real time is 

(4.7.U V + VX( 't)T V (l + h('t)T) 

During this interval v, the expected working set size is w(~), 

so that the expected cost per unit virtual time is 

(4.7.2) H( i;) 
w('t) V (1 + h('t)T) 

v 
w('t)(l + X('t)T) 
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In Figure 4-6 we have sketched w(•), (l+A(•)T), and the product 

H(•). It is clear that H(•) attains a maximum for some •
0

>0, 

if (l+T)>x. If T>>l it is not hard to see that •
0 

is very small, 

and the value of • chosen to permit inclusion of at least the 

favored pages will satisfy •>>•
0

• There are values of T satis

fying (l+T)~x such that H(•) has no maximum for finite •, in 

which case we need not worry about a worst value of •· 

Note that H(•) has a maximum at • , whereas the cost function 
0 

G(s) of Section 3.5.1, as a function of memory space s, has a 

minimum. The apparent discrepancy is resolved if we note that 

H(•) cannot account for a memory holding larger than the expected 

working set size w(•), whereas G(s) can. The functions G(s) 

and H(•) are not the same cost function. 

The remaining tradeoff issues fall into classes: those that 

depend on the behavior of the program, and those that depend on 

system requirements. The program-dependent considerations are: 

1. Hard vs. Soft Programs (cf. Section 3.3, Figure 3-9). 

Choose • as small as possible, yet allow W(t,•) to 

contain the favored pages. A hard program has a well-

defined minimum value of •, whereas a soft program does 

not. 

2. •-sensitivity (cf. Section 4.6). •can be chosen so 

that s(•) is at some desired level, or that • is at 

the start of a flat region of the s(•) curve. 

The system-dependent considerations are: 

1. Paging rate (cf. Sections 4.2, 4.3). •can be chosen 

so that the virtual time between page faults is compar-

able to T; that is so that l/A(•) = T. This is 
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equivalent to the condition 

"' ( 't) 1 p( 't) 2T l + h('t)T 

2. Dut~ factor (cf. Section 4.5). i; can be chosen so that 

a given duty factor ~(i;) is attained for each comput-

a ti on. 

Of course, i; should never be chosen less than whatever is re-

quired to satisfy the program-dependent criteria, conditions 1 

and 2. In most contemporary systems Tis so large (Ts=lOOOO vtu 

= 10 ms.) that 't must be chosen to satisy the system-dependent 

criteria, conditions 3 and 4; this will generally cause i; to be 

an order of magnitude or more greater than program-dependent 

cr.iteria would require. 

Ideally we should like to have the flexibility to choose i; 

according to the program-dependet criteria, without regard to 

the system-dependent criteria. It should be clear that this is 

achievable only when T becomes much smaller than is normal in 

cont .. porary systems; for example, T less than 100 vtu. The 

use of bulk core storage or some other non-rotating device for 

the second leYel of memory can achieve this. we shall return 

to th••• i••u .. in Chapter a. 
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4.8. Prediction 

On several occasions we have noted that a working set 

W(t,T) is a reliable prediction of the working set W(t+a,T), if 

a is not too large; similarly the working set size w(t,T) is 

a reliable prediction of the working set size w(t+a,T), if a 

is not too large. Without going into great detail we want to 

indicate how these ideas can be made more precise. 

The prediction problem for working set sizes is: 

given: w(t,T) for tsI 

want to estimate: w(t+a,T) for atI 

the estimate is to be: ~(t+a,T) = G(w(s,T)) for ssI 

Here, I is a set of time points at which the value of w(t,T) is 

known. This set I could consist of one or more distinct points, 

of a time interval Ct 1 ,t
2

), or even the entire time history since 

The transformation G is to be chosen so that ~(t+a,T) is 

an optimum (in terms of a given criterion) estimate of w(t+a,T). 

We assume that w(t,T) is a stationary stochastic process; 

hence we can write its expectation independent of time: 

(4.8.1) w(T) w(t,T) 

and we can define the autocorrelation function between w(t,T) 

and w(t+u,T) to be 

(4.8.2) R(u,T) w(t,T) w(t+u,T) 

depending only on the separation u of the two times. 

The most common form of prediction is least ~ sguare 

prediction, used because it is particularly easy to analyze. 

Define the ~ of the estimate to be 
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thus, 

(4.8.3) e(a) w(t+a,•) - G(w(u,•)) UEI 

The problem is to choose the transformation G such that the mean 

square error, e 2 (a), is minimum. Clearly, the smallest mean 

sqaure error can be obtained if we impose no restrictions on G 

(non-linear mean square prediction). This, however, leads to 

practical and analytic difficulties, so G is usually restricted 

to be a linear operator. When G is a linear operator, the mean 

square error e 2 (a) is minimum if and only if the error e(a) is 

orthogonal to all the given data (this result is well known; see, 

for example, reference [Pl, p. 389]); that is, 

(4.8.4) 0 for each VEI 

The most convenient linear operator is a linear combination 

of a finite number of data. That is, w(t,~) is known at the 

time instants t 1 , ••• ,tn' and the estimate is to be a linear 

combination 

(4.8.5) ~ 
w(t+a,•) 

The constants A1 , ••• ,An+l must be chosen to satisfy eq. 4.8.4; 

that is, so that 

(4.8.6) 

for i=l, ••• ,n, and 

(4.8.7) 0 

If one expands these for each i, one obtains (n+l) equations in 

(n+l) unknowns (the Ai) with coefficients of the form 

0 



(4.8.8) w(ti.,T) w(t.,T) 
J 

which follows from eq. 4.8.2. 
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R(t.-t.,T) 
l J 

We hope to have indicated with this overview how the prob-

lem of predicting working set sizes might be made more precise, 

and how an error can be determined for a given estimate and time 

separation a. We refer the reader to the literature for further 

detail [Pl, p. 385ff.]. 
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4.9. Example 

It is interesting to examine the results of the previous 

sections in the case of exponentially distributed interreference 

intervals: 

F (u) 
x 1 -

-Bu 
e 

we have, for the major expressions: 

missing-page probability 

mean vt interval 
between re-entries 

mean real time 
interval between 
re-entries 

duty factor 

expected working set size 

symbol 

A. ( i;) 

1 
A.Ci;) 

1 
p ( i;) 

T] ( i;) 

w ( i;) 

Now, suppose we have chosen i; so that 

then 

1 
A. ( i;) T 

i; x ln T 

For this choice of i; we have 

p ( i;) ..L 
2T 

T] ( i;) 
1 
2 

w ( i;) - ( T-1) x 
T 

B _1_ 

x 

Result, exponential case 

-Bi; 
e 

Bi; 
e 

1 

1 + Te-Bi; 

x(l-e-Bi;) 
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4.10. Working Sets and Parachors 

Belady has defined a unit of storage allocation, the p~ra

£h.Q!:. [B2], which is that amount of information that must be in 

main memory so that a program spends no more than half its time 

in page wait. If we choose 't so that 

1 
A.C ,;) T 

we find that the duty factor is ~(,;) 
1 2• Hence the expected 

working set size for this value of 't corresponds to one parachor. 

In the exponential case, this is 

w( 't) 

Alloca.ting one parachor to each program is the same as allocating 

enough space for its expected working set size. The parachor 

is a static unit of allocation, whereas the working set size 

wCt,i;) ·is a dynamic unit of allocation. Our results in Chapter 3 

show that working set strategies should perform better than para

chor strategies (a parachor strategy is one that runs a process 

if and only if there is at least one uncommitted parachor of 

main memory) • 

• 
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4.11. Implementation of Working Set Memory Management 

According to our definition, W(t,T) is the set of pages 

a process has referenced within the last T vtu of its execution. 

This suggests that memory management can be controlled with hard-

ware mechanisms, by associating with each page-block of main 

memory a timer. Whenever a page is referenced, its timer is set 

to T and begins to run down; if the timer succeeds in running 

down, a flag is set to mark to page for removal from main memory 

whenever the space is needed. 

Unfortunately matters are not so simple. According to the 

definition of W(t,T), the timers must run down in virtual time. 

Virtual time coincides with real time only when the process is 

running. More precisely, the timer behavior should be as follows, 

for each process state: 

1. running. A timer may run down in real time. 

2. ~wait. Since the process is temporarily suspended, 

all timers on its working set pages must be stopped, 

else they amy run down and working set pages may be 

removed during a page wait. 

3. ready and blocked. If a process is pre-empted by the 

operating system, or blocks, its timers may continue to 

run down in real time; then, within T vtu, the memory 

it formerly occupied will be freed. 

We can see that it is the page wait state that gives the trouble. 

' Whenever a process enters page wait its page timers must stop 

until the new page is acquired. For other process states, the 

page timers may run in real time. Therefore we shall associate 

with each page-block in main memory the name of the process 

that has most recently referenced it; when the process enters 
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page wait, all its pages can have their timers suspended. 

The following procedure is useful in a software as well as 

a hardware implementation, and is therefore potentially applic

able in contemporary systems. The procedure we propose here 

samples .!:!§.g_ bits associated with each page; these use bits may 

be part of a page table entry or part of a hardware register. 

Sampling occurs at intervals of cr vtu, cr being called the 

sampling interval, where a=•/K, and K is an integer constant 

chosen to make the sampling intervals as fine as desired (K=2 

or 3 should be sufficient). On the basis of page references 

during each of the last K sampling intervals, the working set 

W(t,Kcr) can be determined. 

There is a sequence of use bits u
0

,u1 , ••• ,uK associated 

with each page. Whenever a reference occurs, l-+u
0

• At the 

end of each sampling interval, the bit pattern contained in 

u
0

,u1 , ••• ,uK is shifted one position, a 0 enters u
0

, and uK 

is discarded: 

uo -+ul 

0-+u 
0 

Then the logical sum U of the use bits 

is U=l if and only if the page in question has been referenced 

during the iast K sampling intervals; of all the pages associated 

with a process, those with U=l constitute its working set W(t,Kcr). 

-~------ -- --------------------



132 

Figure 4-7 shows how this idea might be implemented in 

hardware. If process j is currently using the page, the n-field 

of the page register contains an identifier to j. The PW bit is 

0 if and only ~f j is in page wait. The PT-field points to the 

page table entry designating this page. The o-bus is pulsed 

once every o vtu; these pulses cause a shift in the use bits 

if and only if PW=l (the process is not in page wait). Whenever 

the logical sum U of use bits becomes O, a mechanism (not shown) 

may (not must) remove the page from main memory; this mechanism 

will dispatch the page to auxiliary memory (unless it has not 

been modified and there is a spare copy alreauy in auxiliary 

memory), and then (using PT) find the page table entry for thi& 

page and set the in-core bit OFF. All this is done without 

troubling the operating system. 

This mechanism maintains a count of the working set size 

for each process as follows. Whenever a fresh page of process 

n is loaded by the operating system (in response to a page fault), 

increment a counter for the process n. Whenever the logical 

sum U of use bits becomes 0 for some page marked as belonging 

to process n, decrement the counter for process n. 

It is interesting to note that ~=KO may be varied if 

desired by varying o. The operating system thus has control over 

the current value of ~. 

This basic scheme can also be realized in software, as 

suggested by Figure 4-8. All processes in the running state 

are identified in the running .11§.!.. Up,911 entry to the running 

state, process i is assigned some quantum qi. A process cycles 

through the list, receiving a burst o (O is the sampling interval) 

at each pass; the quantity Yi records its time used. There is 
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a special process, the checker; whenever run, the checker looks 

at the page tables of processes run since the last time it was 

run, and performs the use-bit shift discussed above (the use 

bits u
0

,u1 , ••• ,uK are stored in the page tables, so then, PW, 

and PT fields of Figure 4-7 are no longer necessary). 

Associated with each process is a counter w. giving its 
l 

current working set size. At each page fault for process i, 

wi is increased by one. If the checker observes a page leave 

the working set of process i, wi is decreased by one. 

It should be clear that, if the length of the running list 

is n, the checker samples page use bits only every no seconds, 

not every o seconds. 

This implementation is also discussed in reference [D4]. 
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4.12. Summary 

We refined the working set model, deriving expressions for 

the missing-page probability A('t"), the paging rate p('t"), the 

expected working set size w('t"), the variance of the working 

set size o~('t"), the duty factor ~('t"), and the -.~sensitivity s('t"). 

Each of these depends on the interreference distribution F (u), x 
and some of them depend also on the traverse time T. We showed 

how each of these plays a role in selecting a value for -.. 

We discussed the problem of prediction, showing general 

methods whereby errors may be determined precisely for a given 

mode of estimation. 

We discussed implementation of working set memory allocation 

strategies, both for hardware and software. 

All this was done in the absence of sharing. In the next 

chapter we investigate the effects of sharing and show quantita

tively that great benefits are attainable. 
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CHAPTER 5 

Multiprocess Information Sharing 

5.0. Introduction 

In .this chapter we complete the characterization of the 

working set model, by investigating the effects of sharing. 

Intuition already tells us that sharing should produce an all-

around inprovement. Our purpose here is to give quantitative 

justification to this well known premise. 

Under the existing definition, working sets will overlap 

when their processes share information. This complicates the 

problem of charging for main memory usage of shared information, 

because the number of overlaps among shared working sets (there 

n can be as many as (2 -1) overlaps among n working sets), their 

sizes, and their contents, may be unknown or at best exceedingly 

difficult to determine. A minor modification of the definition 

makes working sets disjoint, thereby relieving these difficultieS. 
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We consider a slmple conceptual experiment: n independent 

processes referencing n identical programs compared to n inde-

pendent processes referencing one progrdm. We derive expressions 

for working set size, missing-page probabillty, paging rate, and 

duty factor. We show that sharing produces improvement in each 

of these quantlties. 

The discussion here in this chapter is not intended to 

solve the problems of sharing information. We only hope to shed 

light on the difflculties of the problem and to give insights 

into possible solutions. 
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5.1. Sharing 

5.1.1. General Aspects 

The smallest unit of information that can be shared is, 

from a process's point of view, a segment, because the protection 

mechanism operates on a segment level. The smallest unit of in

formation that can be shared is, from the system's point of view, 

a ~' because memory allocation is handled on a page level. 

We follow Arden's suggestions for program structure [Al]. 

If a segment is shared, there will be an entry for it in the 

segment table of each participating process. Each such entry need 

not assign the same name to the segment. Each such entry, how

ever, points to the~ page table. Thus, each physical segment 

has exactly one page table describing it. 

The problem of charging participants for the use of shared 

information can be handled at two levels: shared information in 

main memory, and shared information not in main memory. 

Ideally, we should like each participant in sharing of in

formation which resides in main memory to be charged in accor

dance with his degree of participation. Even though this may 

not be easy to implement, an extension (Section 5.1.2) of the 

working set concept can give insights into how this might be done, 

and how an implementation can approximate this ideal. 

When working sets overlap, the existing working-set defin

ition leads to the following difficulty. Suppose computation C 

contains two processes, designated 1 and 2, which are sharing 

information. Then 
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where ¢ is the empty set. Then the joint working set for 

computation C is 

and the working set size of C is 

Thus, measuring the individual working set sizes of the compon-

ent processes of a computation will lead to an overestimate of 

the true joint working set size. When there is much sharing, 

working sets will be very nearly coincident; summing the sizes 

of each process's working set will grossly overestimate the 

true joint working set size. This can seriously complicate the 

problem of attributing memory-usage charges to the participant$. 

In the next section we shall introduce an alternative work-

ing set definition that facilitates the accounting and billing 

procedures by making working set always disjoint. 

The method most frequently proposed for handling charges 

on the non-main-memory shared information is based on a concept 

of ownership. Each segment is assigned exactly one owner. Any-

one wishing to use another's segment must make arrangements to 

do so with the owner. The owner is charged for use of the seg-

ment, regardless of who is actually using it; he is in turn 

paid royalties by borrowers, these fees fixed to defray those 

expenses charged to him because borrowers have used his segment1 • 

1The owner method of charging for sharing very much resembles 
copyrights. A similar problem is the so-called proprietary 
software problem, in which a firm or user may lease programs 
to other firms or users. 
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One of the chief motivations for this method is simplicity of 

implementation: because an arbitrarily large and unpredictably 

varying number of processes may wish to share a single segment, 

it can become unbelievably complex to keep track of, and attri-

bute charges to, every participant. If this method is used for 

information shared in main memory, the following inequity will 

result. Two users sharing the same segment both pay the same 

fee to the owner (there is no way to determine in advance how 

much a given user will use it); yet one user may use it spar-

ingly, the other heavily. Thus, costs of sharing may not be 

distributed fairly. 

It is apparent that, if the owner method is used, it must 

be augmented in order to distribute main memory costs more 

equitably. 

5.1.2. Refinement of The Working Set Definition 

The basic idea we use here is: rather than associate with 

each process the pages it has most recently referenced, we 

associate each page with the process that has most recently 

referenced it. 

Page i belongs to the working set W (t,c) of process p 
p 

if and only if: 

and 

Thus, 

1. p has referenced i most recently at time s in its 
virtual time interval (t-c,t). 

2. no other process has referenced i in p's virtual time 
interval (t-s,t). 

w ( t, cl 
p 

fi !the most recent reference to i originated} 
\ from process p, in p's vt interval (t-~,t) 
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This definition has two consequences: 

1. Disjoint working ~· A page is in at most one working 

set. Therefore if w Ct,") is the working set size for each 
p 

process p, and if Q is any collection of processes, 

then the size of their joint working set is 

w Ct,") 
p 

We may therefore compute the memory demand of any 

collection of processes simply by adding their working 

set sizes. 

2. Fair distribution of~· Suppose processes p1 , ••• ,pr 

have been sharing page i, independently, for some in-

C5.l.l) 

terval of time, and let n. denote the number of refer
J 

ences process pj made to page i. Then, on the average, 

page i spends a fraction 

n. 

of its time in the working 

tributed f. to the size of 
J 

set W Ct,"), and has con
pj 

p.'s working set. Thus, 
J 

a participant is charged in accordance with his degree 

of participation. 

This last relation, eq. 5.1.1, holds only if p 1 , ••. ,pr behave 

independently. If the shared information is modifiable and 

protected by interlocks, then the likelihood of correlation is 

very high. In general, there is no easy way to determine how 

an interlocked, modifiable piece of data will affect whatever 

processes attempt to use it, because of data dependence and 

arbitrary timing. 
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5.1.3. Implementation 

The implementation of Section 4.11 and Figure 4-7 remains 

unchanged. Refer now to Figure 5-1. The n-field shown there 

in the page register, whose contents designate the process whose 

working set contains the page, now is loaded at each reference 

with the name of the process making the reference. 

To be more precise, an information reference is a pair 

(i,p) where i is the name of the page being referenced and p is 

the name of the process making the reference. The only modifi

cation of Figure 4-7 is simply that p is loaded into the n-field 

of the page register as the reference is made. 

If •<T, the following difficulty arises. If the process 

named in the n-field enters page wait, we must be sure that 

another process does not borrow the page and then discard it 

before the n-field process completes its page wait. For example, 

suppose at time t process 1 enters page wait. If pro-

cess 2 (which is not in page wait during the interval (t,t+T)) 

references a page in process l's working set just once in 

the interval (t,t+T-•), the page will exit process 2's working 

set before process 1 terminates page wait, and will not be 

available for use by process 1. 

There is no easy solution to this difficulty. One possib

ility is to choose •>T; but if T depends on the rotation time 

of a device, this may result in undesirably large values of •· 

Another possibility (shown in Figure 5-1) is to prevent a change 

in the contents of the n-field when the process named thQre is 

in page wait; but then other processes may obtain references 

without paying. 
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System 1 represents the completely unshared case, and is 

the poorest performance situation. System 2 represents the 

completely shared Cdse, the best performance situation. 

In the following sections, we evaluate the quantities 

described in the following table. 

quantity symbol 

expected working set size w( i;, n) 

missing-page probability A.Ci;,n) 

paging rate p ( i;' n) 

duty factor T)(c,n) 

description 

expected number of pages 
in the joint working set 
W(t,i;,n) of n processes. 

probability that a pro
cess references a page 
not in the joint working 
set W(t,i;,n). 

number of pages per unit 
real time re-entering 
W(t,i;,n) on behalf of 
one process. 

fraction of time a run
ning or page wait pro
cess is running, when 
(n-1) others share the 
program Z with it. 

In each case we show that sharing is an improvement. That is, 

for n>l and c>O we show that 

and 

;\.( T, n) 

p ( i;' n) 

T) ( T, n) 

w(T,n) 
n 

< ;\_(i;,l) 

< p( T, 1) 

> T)(i;,l) 

< w(T,l) 

This last relation differs slightly from the others for the 

following reason. There may exist a shared page that no one 

references often enough to keep continuously in main memory, 
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but that, together, the n processes reference often enough to 

keep it continuously in mdin memory. Thus, the joint working 

set will be ldrger than ~y single working set: w(T,n) > w(T,l). 

In the shared case, however, each process pays for l of the mem
n 

w(T,n) 
ory used, so his expected cost depends on 

n 

w(T,n) < w(T,l) we show that sharing reduces costs. 
n 

By showing 
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5.3. Shared Working Set Size and Memory Costs 

In Figure 5-2, let W(t,T,n) denote the joint working set 

of then processes, and define 

(5.3.1) w(T,n) expected size of W(t,T,n) 

When n=l, w(T,l) is exactly the expected working set size dis

cussed in Section 4.4. We shall obtain an expression for w(T,n) 

and show that the expected memory cost w(~,n) for one process 
n 

is diminished for increased n. 

Theorem 5.1. Let n statistically independent processes be sim-

ultaneously sharing the same program z, whose size is fixed 

at z. The interreference distribution F (u) is the same 
x 

for each process, and is unchanging. Define the integral 

(5.3.2) I(~) ~1- JT (1-F (u)) du 
- 0 x x 

Then the expected size of the joint working set of the 

n processes is 

(5.3.3) w(T,n) 

Discussion: Note that, for n=l, we have 

w(T,l) z [l-(1-I(T))J = z I(T) ~ J (l-F Cu)) du 
0 x 

-where we have used z=x from eq. 5.2.1 (and Theorem 4.1). Thus, 

the expression reduces to that of Theorem 4.4, in the unshared 

case. 
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Proof of Theorem 5.1: We follow an argument similar to that of 

Theorem 4.4, in which we derived the expected working set size 

for one process. Let W Ct,•) be the working set of process p., 
pj J 

and let w Ct,•) be its size. Define the binary random variable 
Pj 

(5.3.4) 
if page i in W (t,•) 

Pj 
otherwise 

Observe that yi=l if and only if pj referenced page i in (t-•,t). 

Then 

(5.3.5) 

and 

(5.3.6) 

Now, from eqs. 4.4.8 and 4.4.9 we have 

(5.3.7) 
Pr[y.=0] 

l 

Pr[y.=l] 
l 

where I(•) stands for 

(5.3.8) ~ J~ (1-Fx(u)) du 
x 

z Pr[y.=l] 
l 

x 

Now, let W(t,•,n) stand for the joint working set of the 

n processes, and w(t,•,n) denote its size. Define the binary 

random variable 

(5.3.9) 0. 
l {~ if page i in W(t,•,n) 

otherwise 

Observe that Oi=l if and only if some one of the processes 

p 1 , ••• ,pn has referenced page i in the interval (t-•,t). Then 
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and 

( 5. 3. 11) w(T,n) 
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w(t,T,n) ~ Pr[o.=lJ 
l 

We must find Pr[O.=lJ. Now, then processes are statistically 
l 

independent; then 

Pr[0.=0] 
l 

P [no reference from any of n processes] 
r to page i in the vt interval (t-T,t) 

(
Pr [no re~e:ence from. one process to l)n 

page i in the vt interval (t-T,t~ 

(5.3.12) Pr[0.=0] 
l 

(Pr[yi=O]r 

(1 - I(T))n 

thus, 

(5.3.13) Pr[o.=lJ 
l 

1 - (1 - I(T))n 

putting this into eq. ~.3.11, we obtain 

w(T,n) z [l - (l - I(T))n] 

QF:D. 

Define the expecteci memory usage of one of the n processes 

to be 

( 5. 3. 14) m(T,n) w(T n) 
n 

so that m(T,n) measures the expected cost per unit virtuu.l time 

attributed to one of the n processes. 
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Let m(~,n) ~ w(~,n) be the expected memory usage 
n 

of one of the n processes, where w(~,n) is given by Theorem 

5.1, and depends only on the interreference distribution 

Fx(u). Then for ~>0 and n>l, 

(5.3.15) m(~,n) < m(~,l) 

Discussion: Theorem 5.2 asserts that sharing reduces costs. 

This result is very strong, for it depends only on the arbitrarily 

given distribution Fx(u). In other words, whenever two or more 

processes are sharing the same program Z: provided that Z re

mains fixed, that F (u) remains fixed, and that the processes x 

are run concurrently, the shared expected memory usage costs 

are always less than the unshared memory usage costs. Put 

another way, sharing is always an improvement under the stated 

conditions, regardless of program behavior 1 • 

1The reader might think there are counterexamples. For example, 
let the n processes share an interlocked section. A process 
tests the interlock: if the interlock is ON, the process creates 
an enormous amount of data; if the interlock is OFF, the process 
turns it ON and works in the interlocked section. It is clear 
that n distinct copies require less memory than one shared copy, 
because in the shared case (n-1) processes will find the inter
lock ON, whereas in the unshared case no process finds the 
interlock ON. This violates the assumptions of the theorem, 
because the program size is not fixed in both cases, and because 
the interlock violates the assumption of statistical independence. 
Thus, this is not a counterexample. 
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Proof of Theorem 5.2: To prove m(T,n) < m(T,l) we rm_:st sho1;1 thdt 

( 5. 3. l 6) 
It! ( T n) 

< 
Il 

w( T, J) 

from Theorem 5. l, this is th Ee :~ ,une a.s showing 

I - (1 - T(T))n 

( 5. 3. l 7) < I(T) 
n 

This requices thal 

l - (1 - I(T))n 
( 5. 3.18) l -

n I(T) 

or equiv~lently thal 

l - (l - I(T));i 

(5.3.19) 1 -
n( 1-( 1-I(T))) 

This expressicn1 is of the form 

1-fl.'1 

( 5. 3. 20) > 0 
n ( l -i\) 

Now, using the facl lha.l 

( 5. 3. 2 ! ) -t- A + • • • 

which fo I I c11tn; frum A<~, \'1C huve 

( 5. 3. 22) l -
l-A 

and the inPoualitv is proved. 

> 0 

> 0 

A 

n-1 
' A 

0 

all T>O, n>l 

1-I(T) < l 

< 

QED. 

In Figure ~1-2, defi~1e rF:
1 

to :ie the tol:ctl e>xpccted memory 

requiremen L in :c;v:~ tern 1, ilnd M,, tc Le the totd.l expected memory 
c 

requirement in ~·;ysLc_:-~rn 2. 'r.Jc, hu.ve the foll owing rathe.c ohvi ous 

coroL 1::1ry to 'T'heur ein '~. 2. 
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Corollary ':>.2. I\ > 2· 

Tly ~·he or em 

> V1 ( T, l1) 

QED. 

Corollary 5.2 asserts simply Lhat sha~Lng reducPs the over~ll 

memory usage, resulting in more rremory fer other, prrnJrams to use. 
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5.4. Missing-Page Probability 

Define the missing-page probability to be: 

(5.4.1) Pr[a given process references a missing page;-] 
when (n-1) others share the same program J 

Thus, A(•,n) is the probability that a process directs a refer-

ence to a page not in the joint working set W(t,•,n). Using 

reasoning similar to that of Theorem 4.2, we can see that A(T,n) 

may be regarded as the number of pages per unit virtual time 

re-entering the joint working set W(t,•,n), on behalf of one of 

the n processes. That is, the expected virtual time interval 

between the page faults of one process is l/A(•,n). 

Theorem 5.3. Let A(•,n) be the missing-page probability as 

just defined, and let Fx(u) be the interreference dis

tribution. Then 

(5.4.2) 

and 

(5.4.3) 

where 

(5.4.5) 

1 - F (•) x 

~ J~ (1-Fx(u)) du 
x 

Proof: From Theorem 3.3, the single-process, unshared missing-

page probability is A(o) = 1-Fx(•) = A(•,l). To find A(•,n) we 

note 
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p [given process, say p, references page] 
r at time t and finds it missing 

{

p's most recent reference interval x to } 
Pr the page in question satisfies x>c, and 

the (n-1) other processes made no refer
to the page in question during (t-c,t). 

Since the processes are statistically independent, this last 

probability becomes 

(1-F (c))(l-I(c))n-l 
x 

A(c,1)(1-I(c))n-l 

where the probability (1-I(c)) is obtained from the arguments 

given in Theorem 5.1. 

QED. 

The next theorem asserts that sharing reduces the missing-

page probability. 

Theorem 5.4. Under the given assumptions (Fx(u) unchanging, 

processes running concurrently) the missing-page probability 

~(c,n) is reduced by sharing: 

( 5. 4. 7) ~(c,n) < A(c,l) if T>O, n>l 

Proof: n-1 Since (1-I(T)) < 1, if T>O it follows that (1-I(c)) < 1, 

n-1 and thence A(c,n) = A(T,1)(1-I(c)) < 1. 

QED. 
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Recalling the di3c~ssion of Chapter 3, in whicn we showed 

that lower missing-pdqe pro~abilities arc equivalent to ower 

rnernory-usdqe costs, 'l'hecir-crn 5.4 verities that sharinq reduces 

memory-usage cc~sts. lnclced, in rnar.y circumstances it wi 11 be 

true that 

that ls, sh3rinq is ,i pronounced improvement. 
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5.5. Paging Rate 

Define the real time paging rate to be: 

(5.5.1) p('t,n) [
real time paging rate of one process when] 
(n-1) others are sharing the same program 

That is, one process expects to see a real time interval of 

length l/p('t,n) between page waits. 

Theorem 5.5. Let p('t,n) be the real.time paging rate as de-

fined above. Then: 

A.C't,n) 
(5.5.2) p( 't' ,n) 

1 + 11.('t',n)T 

where 11.('t',n) is the missing-page probability, defined in 

Theorem 5.3, and Tis the traverse time. 

Proof: In a virtual time interval of length v, one process 

generates V information references and expects to encounter 

VA.(i;,n) page waits. Therefore: 

(number of page waits) 
p(i;,n) 

(virtual time) + (page wait time) V + VA.( 't' ,n)T 

QED. 

If n=l we obtain p('t',l) = p('t), must like Theorem 4.3. 

Let us compare the total page traffic in the two cases. 

In Figure 5-2, let the total paging rates be denoted by 

(5.5.3) 
n p('t',l) 

n p('t',n) 

We wish to show that sharing reduces page traffic. 
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Theorem 5.6. Let ~1 (T) = np(T,l) be the unshared total page 

traffic, and let P2 (T) = np(T,n) be the shared page traf

fic. Then 

( 5. 5. 4) 

Proof: We must show p(T,1)-p(T,n) > 0 if n>l. Consider-

;\(i;,l) ;\(i;,n) 
p(T,l) - p(T,n) 

l + ;\(T,l)T 1 + ;\(T,n)T 

;\(T,l) - ;\(T,n) 

(1 + ;\(T,l)T)(l + ;\(T,n)T) 

> 0 

where we have used ;\(T,1)-;\(T,n) > 0 from Theorem 5.4. 

QED. 
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5.6. Duty Factor 

Define the duty factor to be 

(5.6.1) ~(•,n) [
duty factor of one process when it is] 
sharing its program with (n-1) others 

Recall that ~(•,n) is the fraction of time a process is in the 

running state as opposed to the page wait state; thus, ~(•,n) 

measures the ability of a process to use a processor. 

Theorem 5.7. Let ~(•,n) be the duty factor, as defined above. 

Then 
1 

(5.6.2) ~(•,n) 
1 + A(•,n)T 

where A(•,n) is the missing-page probability (Theorem 5.3), 

and T is the traverse time. 

Proof: In a virtual time interval of length v, the process 

encounters VA(•,n) page waits. Then 

(virtual time) 

(virtual time) + (page wait time) 

v 

QED. 

If n=l, we have ~<•,l) ~(•), just like Theorem 4.6. 

Theorem 5.8. Sharing increases the duty factor: 

(5.6.3) ~(•,n) > ~(T,l) 
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Proof: Slnce ;\.(T,l) > A(T,n) we mu~·t hdve 

1 + ;\.(T,l)T > 1 + A(T,n)T 

hence 
l 1 

< 
1 + Al'c,l)T l + ;\.(T,n)T 

QED. 

Again, under many circumstances ;\.(T,l) >> ;\.(T,n) and it is 

not difficult to obtain TJ(T 1 n)~l, even for small n. Thus, 

sharing can result in markedly increased processing efficiency. 
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5.7. Variable Number of Participants 

It is often the case that the number of participants in 

a sharing problem is not fixed; instead, the number is a random 

variable. The convexity theorem (Theorem 3.1) enables us to 

obtain bounds on w(•,n), m(•,n), A(•,n), p(•,n), and T](•,n) 

when the average value n of n is known but the distribution of 

n is not. These bounds are summarized in the follow':ing table. 

guantity 

expected working 
set size 

one-process 
memory demand 
(pages) 

missing-page 
probability 

paging rate 

duty factor 

symbol convexity 

w(•,n) convex 

m(•,n) convex 

A(•,n) concave 

p(•,n) concave 

TJ(•,n) convex 

(in n) bound 

w(•,n) ~ w(•,n) 

m(•,n) ~ m(•,n) 

A(•,n) .2:. A(•,n) 

p(•,n) .2:. p<•,il> 

T](•,n) ~ ri(•,n> 

In the most general n-process sharing problem, information 

can be in use by any combination of processes, and each possible 

combination will be sharing different subsets of information. 

Suppose Z is the program in use by processes p 1 , ••• ,pn. We can 

partition Z into as many as 2n-l blocks, such that exactly some 

subset of p1 , ••• ,pn is using each block. Each block associated 

with just one process behaves as system 1 in Figure 5-2. Each 

block associated with more than one process behaves as system 2 

in Figure 5-2, having higher per-process efficiency, lower per-

process memory-usage costs, and lower paging rates. Therefore 
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the net effect across the program Z is better than the situation 

when p1 , ••• ,pn share nothing at all. Thus, system 1 represents 

the worst case behavior and system 2 represents the best case 

behavior; any actual system would fall in between these two 

extremes. 
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5.8. Summary 

When working sets are defined so that a page belongs only 

to one working set at a time, namely the one of the process that 

most recently referenced it, memory usage costs tend to be dis

tributed among participants in accordance with their degrees of 

participation. Implementation is straightforward. 

Using a simple model with complete sharing we were able to 

obtain strong results that quantitatively verify intuitive ideas: 

providing processes are run concurrently and the interreference 

distribution is unchanging, sharing always improves performance, 

regardless of the particular interreference distribution. In 

many situations the improvements can be very pronounced. 

Processes sharing information must be run concurrently 

(requiring multiple processors) whenever they are not blocked 

because 

1. If run at widely separated intervals, the same infor

mation must (unnecessarily) be reloaded. 

2. It is only when references are arriving concurrently 

to shared information that the benefits obtain. 

The results obtained here apply to a collection of n statis

tically independent processes, without regard to whether they 

are components of multiprocess computations or single-process 

computations. Thus, it should be clear that multiprocess com

putations, by permitting interprocess information sharing, can 

be very efficient, provided that processor-switching time is 

small and there are enough processors to permit the parallel 

operation of many processes. 



166 

CHAPTER 6 

Demands and Balance 

~.o. Introduction 

We regard a computation, a collection of mutually cooper

ating processes and information operating within a common name 

space, as being the fundamental demand-making entity in a com

puter system. A computation manifests itself by demanding the 

joint use of processor and memory resources. 

Because we want a computation to operate effectively as a 

unit, we believe it is necessary to allocate resources to a com

putation as a unit. We therefore assume that the entities being 

scheduled for service are computations. This is a generalization 

of existing scheduling philosophies, which call for scheduling 

of processes. 

Let C be a computation, with working set WC(t,•). The 

working set size wc(t,•) will be used to define C's memory demand. 

If, on the one hand, C is a single-process computation, its 

expected running time beyond the present will be used to define 
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its processor demand. If, on the other hand, C is a multiprocess 

computation, the number of active component processes will be 

used to define its processor demand. We make this distinction 

because in multiprocess computations the number, rather than the 

duration, of processes is important, whereas in single-process 

computations the duration of the process is important. 

Each computation will be assigned a system demand consisting 

jointly of its processor and memory demands. Computations re-

quiring the use of system resources will be segregated: those 

in the standby set temporarily receive no service, whereas those 

in the balance set receive service. The system is balanced when 

the total demand of the balance set matches the available equip

ment1. A balance policy is a resource allocation policy that 

regulates membership in the balance set so that the system re-

mains balanced. 

We shall study all these concepts in more detail, then 

examine general properties of balance policies, and conclude 

the chapter with a survey of the pertinent literature. 

1Recall that the N processors and M pages of main memory cons
titute the equipment. Because we may wish to hold some equip
ment in reserve, we assume that constants a and B have been given 
(we shall discuss how in Chapter 8), where O~a~l and O~B~l, and 
we will say that aN processors and BM main memory pages cons
titute the available equipment. 
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6.1. Memory Demand 

We have defined a working set memory management policy to 

be one that permits a process to run if and only if there is 

enough uncommitted space in main memory to accommodate its 

working set. Working set pages fill these uncommitted slots on 

demand. Thus, the working set size w(t,~) is a useful measure 

of memory demand. 

Let C be a computation consisting of processes p 1 , ••• ,pn. 

If W Ct,~) is the working set of process p., then the working 
pj J 

set of C is 

n 

(6.1.1) u 
j=l 

If we use the working set definition given in Section 5.1 

(a page is in the working set of whatever process most recently 

referenced it), working sets will be disjoint, and their sizes 

add: n 

(6.1.2) ~ 
j=l 

We define the memory demand mc(t) of computation C at time t 

to be: 

(6.1.3) 

where M is the number of pages comprising main memory, and 

wc<t,~) is the size of C's working set. 

Clearly, mc(t) represents the fraction of the memory re

source demanded by C at time t. If C's working set WC(t,~) 

contains more than M pages (it exceeds memory) we regard its 
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memory demand as being mC(t)=l because it is demanding the entire 

resource. Presumably M is large enough so thctt the probctbility 

Pr[mC(t)=l] (over the ensemble of all computations) is very 

small. 

The definition of memory demand applies to any compulation, 

whether it be single-process or multiprocess. 
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6.2. Processor Demand 

We assume that the processor demand of a multiprocess com-

putation depends on the number of processes, whereas the proces-

sor demand of a single-process computation depands on the dur-

ation of the process. 

In contemporary computer systems, the page wait time T 

depends mostly on the rotation time of a device. Because the 

switching time of a processor is relatively much smaller than T, 

it is worthwhile to switch a processor to a second process during 

a page wait of the first. 

To be more precise, let S represent the time required to 

switch a processor from one process to another. S is actually 

the expectation of a random variable composed of electronic 

switching times and scheduling delays. If T>S, it is not eco-

nomical to dedicate a processor to a process during a page wait, 

whereas, if T:::;,s, it is economical to do so. 

Define the binary random variable n(t) for a given process 

at time t to be: 

(6.2.1) 
if a processor is assigned to the pro
cess at time t 

otherwise 

This quantity n(t) is related to the processor demand of a pro-

cess. The relationships among process states, memory demand, 

n(t), the traverse time T, and the processor switching times, 

are summarized in the following table. 
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12rocess state memory demand 12rocessor demand 

blocked m( t) 0 n; ( t) 0 

ready m(t) > 0 n;( t) 0 

running m(t) > 0 n; ( t) 1 

page wait 
m(t) > 0 n;( u) 1 if T~S 

} uc( t, t>T) during (t,t+T) and 1 
or 

m(t+T) m<tl+M' n;( u) 0 if T>S 

We have assumed that the entities to be scheduled (here-

after called jobs) are computations -- specific sets of processes 

rather than individual processes. Thus, we assume that all a 

computation's non-blocked processes are running (or page wait), 

or else all such processes are ready. We define the states of 

~computation to be: 

1. enabled: all non-blocked processes are running or 

page wait. 

2. standby: all non-blocked processes are ready. 

3. disabled; all processes are blocked. 

In our work here, only these states are permitted. 

Correspondingly, we define the working set of 12rocesses 

P(C,t) of a computation C at time t to be: 

{ 

{
non-blocked processes} 

( 6 2 ) ( t) = in C at time t .2. pc, 
¢ 

if C enabled 
or standby 

if C disabled 

where ¢ is the empty set. Note that P(C,t) is well-defined 

even if C is a single-process computation. 

Using these ideas, we shall define processor demand in 

both the single-process and multiprocess computation cases. 
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6.2.1. Multiprocess Computations 

In this case, the processor demand is concerned with the 

number of processes in a computation, because the computer sys-

tern must know how many processing units to assign. 

Let C be a multiprocess computation. We define C's 

processor demand pc(t) at time t to be: 

(6.2.3) Pc(t) ( 
IP(NC,t)!) min 1, 

where N is the number of processors, and P(C,t) is the working 

set of processes in C (eq. 6.2.2). 

It is clear that pc(t) represents the fraction of the 

processor resources needed by C at time t. Presumably N is 

large enough so that the probability Pr[pc(t)=l] (over the 

ensemble of all computations) is very small. 

Note the symmetry between the definitions of processor 

and memory demand (eqs. 6.1.3 and 6.2.3), in the case of multi-

process computations. 

6.2.2. Single-process Computations 

In the case of single-process computations, P(C,t) con-

tains at most one process; so we must be concerned with its 

duration in order to know how long to assign a processor to it. 

Thus, computer systems in which single-process computations pre-

dominate (systems such as Multics or IBM System 360) must use 

a somewhat different definition of processor demand. Because 

of this, we are unable to completely preserve the symmetry 

between the definitions of processor and memory demand. 
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We should like to define processor demand in the single-

process case so that a processor demand has a meaning in the 

time domain analogous to the meaning of a memory demand in the 

space domain. A useful method (by no means the only one) is 

described in the following paragraphs. 

Let the random variable q denote the virtual time interval 

between interactions. It has been found [C4 1 F4] that the prob-

ability density function for q, f (u), may be modelled by a 
q 

hyperexponential distribution: 

( 6. 2 .1) f (u) 
q 

cae-au + (1-c)be-bu 0 < a < b 
0 < c < 1 

f Cul is diagrammed in Figure 6-1; most of the probability is 
q 

concentrated toward small q (i.e., frequently interacting pro-

cesses), but f (u) has a long exponential tail. 
q 

Given that it has been y vtu since the last interaction, 

the conditional density function for the time beyond y unti 1 

the next interaction is 

( 6. 2. 5) f I Cu) q y 

f (u+y) 

f"" f (v) dv 
y q 

u > 0 

which is just that portion of f (u) for cQ_y with its area nor
q 

malized to unity. The conditional expectation function Q(y) is 

( 6. 2. 6) Q(y) JCX> u f (u) du 
0 QIY 

£.e-ay 
a 
ce-ay 

1-c -by 
+~ 

+ (1-c)e-by 

Q(y) is the expected time beyond y until the next interaction; 

it is illustrated in Figure 6-2. It starts at 

( 6. 2. 7) 0.(0) c 
- + 
a 

1-c 
b 



~·i~r1re 6-J. 

Q(y) 

1 
I c (a)) r - -

I 

y 

174 

---------------~i-1 

Probability density functlon f (u). 
q 

L-----~--
Pi9u;c 6-2. Conditional expectation function Q(y). 
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and rises toward a constant maximum 

(6.2.8) l 
a 

Q(ro) 

Note that, for large y, the conditional expectation Q(y) becomes 

independent of y. 

The conditional expectation function Q(y) is a useful pre-

diction function -- if a process has consumed y vtu since its 

last interaction, we may expect it to consume an additional 

Q(y) vtu before its next interaction. 

A reasonable choice of quantum to allocate a process might 

be kQ(y) for some suitable constant k~l. It should be clear 

that Q(y) can be measured and updated from time to time by the 

computer system. 

We should point out that this notion -- a conditional 

expectation function to predict processor usage -- is very use-

ful and quite independent of the hyperexponential distribution 

hypothesis 1 • We have formulated it in terms of the hyperexponen-

tial because the hyperexponential is a good model and because 

the hyperexponential has the interesting property that the pre-

diction function Q(y) becomes independent of y for large y. 

Just as we are unwilling to commit more than M pages of 

memory, so we may be unwilling to commit processor time for more 

than a standard interval A into the future. This interval A 

can be chosen to reflect the maximum tolerable response time to 

a user: for if the set of processes receiving service has total 

1That is, other prediction functions might be used. The CTSS 
scheduler [C6,S3], for example, happens to use the prediction 
function Q(y)=y. 
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expected time consumption not exceeding A, then no process in 

this set expects to wait longer than A before its own interaction. 

Just as M is a space constraint, so A is a time constraint. 

We define the processor demand pc(t) of a single-process 

computation C at time t to be: 

Q(O) 
(6.2.9) Pc(t) 

NA 

where Ye is the time used by C's process since its last inter

action. 

Since N processors have NA units of time to be committed 

, among them, pc(t) is the fraction of this total that.c is 

expected to need before its next interaction. Note that this 

definition of processor demand is just the previous definition 

(eq. 6.2.3), with IP(C,t)I = 1, multiplied py the expected 

duration of processor use. It is no, longer symmetric with the 

definition of memory demand (eq. 6.1.3). 

.. 
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6.3. Syst@m Demand 

we define the system demand .sc<t> of a computation C at 

time t to be a pair 

(6.3.1) .sc<t> 

where Pc(t) and mc(t) are the processor and memory demands of c. 

That the processor demand is pc(t) tells us to expect C's 

immediate processor need to be Npc(t) processors 1 • That the 

memory demand is mc(t) tells us to expect C's immediate memory 

need to be Mmc(t) pages. 

This definition applies to C being either a multiprocess 

or a single-process computation. It expresses the dual mani-

festation of c, as a demand for processors and as a demand for 

memory • .£c(t) must be considered as a .two-dimensional random 

variable, with unknown correlations between Pc(t) and mc(t). 

1If C is a single-process computation, then Pc(t) tells us to 
expect C to require one processor for NApc(tJ vtu. 
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6.4. System Balance 

Let numbers a and B be given, where O~a~l and O~B~l, and 

let .£(t) represent the total demand presented by enabled com-

putations: 

(6.4.1) .£( t) B {
enabled } 
computations 

The computer system is said to be balanced at time t if 

(6.4.2) ,Q.(t) (a,B) 

The system is processor-balanced if 

(6.4.3) 

The system is memory-balanced if 

(6.4.4) B 

That the system is balanced means that the total resource re-

quirement of enabled computations is simultaneously for aN pro-

cessors and for BM main memory pages. 

The resource allocation problem is to decide dynamically 

which computations to enable so that balance is maintained. 

This set of enabled computations at time t will be called the 

balance ~ B. In general, the system will not be balanced at 

each instant of time; instead there will be a sequence of instants, 

called the decision points, at which the demand of Bis made to 

return to the desired demand (a,B) by admitting or removing 

computations from the balance set B. 
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One of the chief advantages of balance is simply that the 

balance set B presents (at least at decisions points) a known 

demand; that is, 

pB(t) a. 
} t (6.4.5) a decision point 

m
8

(t) B 

A major design problem, one we shall discuss in Chapter 8, 

is that of determining the balance parameters a. and B. These 

parameters will be chosen so that, just before a decision point t, 

the probabilities 

(6.4.6) 6 > 0 

are as small as desired. 

In Figure 6-3 we have diagrammed the flow of jobs (i.e., 

computations) among the states enabled, standby, and disabled. 

New jobs enter the standby ~· The scheduler regulates member-

ship in the balance set so that balance is maintained. If a 

computation becomes disabled, it enters the disabled set. These 

points should be noted: 

1. Each job in the standby set has its demand associated 

with it. When a new job enters the standby set, an 

estimate of demand must be associated with it. In the 

absence of reliable predictive information, the best 

estimate is (p,m), where pis the average processor de-

mand over all computations, and m is the average memory 

demand over all computations. 
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Figure 6-3. Job flow in balanced computer system. 
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2. In general, when the scheduler admits a new job to the 

balance set, it allocates a quantum q to the job, where 

q represents the total virtual-time processor consump

tion permitted to the job's processes. If q expires 

(at time t), the job is returned to the standby set, 

with its current demand (p(t),m(t)). 

3. The balance set contains a mixture of running and page 

wait processes, together with their working sets. 

Memory management follows a working set strategy. 

In the case of single-process computations, the following 

terminology (from Multics) is often used. Any process in the 

standby set is said to be ready, and so the standby set may be 

called the ready list. Any process in the disabled is blocked, 

and so the standby set may be called the blocked list. Any 

process in the balance set is either running or page-wait, and 

so the balance set may be called the running list. There is, 

however, a very important difference with Multics: here, a page

wait process remains a member of the balance set; in Multics, 

a page-wait process is regarded as being blocked. 
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6.5. Balance Policies 

A balance policy is a resource allocation policy that keeps 

the computer system balanced. It is implemented by the scheduler 

shown in Figure 6-3, which regulates membership in the balance 

set. Expressed as a minimization problem, a balance policy is: 

(6.5.1) {minimize jQ(t)-(cx.,B)j} 

where j.Q,(t)-(cx.,B)j stands for componentwise minimization. 

6.5.l. Demand and Usage Spaces 

To help visualize the operation of a balance policy, it is 

useful to define two spaces: the demand space X and the usage 

space JL. We regard){, and Q as being two-dimensional: a typical 

point (p,m) in either space is capable of representing the demand 

of some computation. The demand space y_ contains a set of 

specially designated points, the demand points, one representing 

the demand Jlc:<t) of each enabled computation C in the balance set. 

The demand points are time-varying in position. The usage space 

Jl contains two specially designated points: the actual demand 

point _Q(t) and the desired demand point (cx.,B). A balance policy 

tries to move the actual demand point, along some path, closer 

(in the sense of eq. 6.5.1) to the desired demand point. These 

ideas are illustrated in Figure 6-4. 

Unfortunately we must be careful not to interpret the spaces 

){,and Q as metric spaces, because the path _Q(t) follows when it 

moves toward (cx.,B) affects system behavior. If these spaces were 

metric spaces we would be able to assign a magnitude, sayµ(_£), 

to a demand .Q., which would in turn imply that system performance 
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would depend only on the magnitude of the imbalance, µ(~(t)-(a,B)). 

The following argument shows that this is not the case. 

path. 

Figure 6-5 shows how system performance wi.11 depend O! the 

1. 

2. 

The paths shown are: 

path 1. (first balance memory, then processor.) First 

examine the standby set for a subset of computations 

with memory demand 6 ; second, select from this subset m 

a computation with processor demand 6 . 
p 

In the first 

step the whole standby set is examined, so it is highly 

probable a computation with memory demand o will be m 

found. In the second step only a subset of computations 

(those with memory demand o ) is examined, so it is 
m 

less likely a computation with processor demand 6 
p 

will be found. The result is that memory usage is 

tightly distributed about BM, whereas processor usage 

is loosely distributed about aN. 

path 2. (first balance processor, then memory.) This 

has exactly the opposite effect as path 1, the memory 

usage being loosely distributed about BM, the processor 

usage being tightly distributed about aN. 

3. path 3. Balance both processor and memory simultaneouly 

by examining the standby set for a computation whose 

demand is exactly Co ,o ). This has an effect inter
p m 

mediate between those of path 1 and path 2, the pro-

and memory usage tending to be equally distributed 

about the desired points. 

Now in itself the path effect need not interfere with performance. 

But in computer systems in which the traverse time is large and 



m 

probability 

I 

__ _l __ 
,' 

I 

I 
BM 

0 
m 

185 

.-------------. (ex, B) 

I 

(0\ : 
. ~ I 
. -----~-----J 

D( t) o 
~ p 

'"--------------~-----'I~~ p 

' 

USAGE SPACE U 

' ' 

-memory 
USdge 

probability 

I 
I 

J, 
/ ' ' 

,' I \ 
I ', 
I I 
I I 

I \ 
I ' I I 

I I 

cxN 

Figure 6-5. The path effect. 

' \ 
\ 

' 
' ' ' 

processor 
usage 



186 

computations are single-process, it is extremely important to 

balance memory properly in order to avoid thrashing, and to 

avoid accumulating too many traverse times from returning pages. 

In such systems path 1 is the best path. In such systems we can 

tolerate higher imbalance in processor usage, because (see 

eq. 6.2.8) the standard interval A is a delay or response con

straint and is therefore a value judgment, whereas the memory 

size M is a physical constraint. 

Conversely, in computer systems in which the traverse time 

is not large and computations are multiprocess, path 3 is the 

best path because we are equally concerned with processor and 

memory balance. 

6.5.2. Properties of a Balance Policy 

Although we shall defer detailed discussion about implemen

ting balance policies until the next chapter, it is nonetheless 

useful to point out certain properties the implementation should 

or will have, consistent with the objectives of a multiprocess 

computer system. 

First, the balance criterion is not necessarily an equipment 

utilization criterion. If (a,B) are set close to (1,1) then 

certainly equipment is fully utilized. If (a,B) are set much 

less than (1,1), the service to users is improved because, as 

we discussed in Chapter 1, there is an inverse tradeoff between 

utilization and service. Therefore a and B can be regulated by 

the administration to meet its current objectives. 
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Second, balance significantly diminishes the possibility 

of thrashing because, by proper selection of the balance para-

meters a and B, the probability that the system actually enters 

an overload condition can be made arbitrarily small. 

Third, we shall see in Chapter 7 that an implementation of 

a balance policy can be made to have the property that the rel-

ative computational overhead required to restore balance depends 

only on the degree of imbalance (i.e., (o ,o ) in Figure 6-5) 
p m 

and not on the size of the total demand Q.(t). This guarantees 

that balance is configuration independent in the sense that 

the same basic strategy scales over a very wide range of loads. 

Fourth, the reader will recall that we have assumed fairness 

should be built in to a balance policy. We will say that a policy 

is fair if a job's waiting time depends only on its order of 

arrival relative to jobs of comparable demand, and not on its 

order of arrival relative to jobs of different demand. Many 

existing scheduling philosophies, which tend to stall long jobs 

in deference to shorter jobs, are not fair by this definition. 

In the next chapter we shall show how to incorporate fairness 

into a balance policy. 

Fifth, balance makes it possible to make jobs independent 

of one another, in the sense that an increase in the demand of 

one will not interfere with the resources in use by another. 

If the balance parameters a and B are set less than unity, then 

there will be a slack of (1-a)N processors and (1-B)M memory 

pages to absorb just such demand fluctuations. This paves the 

way to tractable analysis. 

Sixth, a balance policy should tend to run two processes 

concurrently whenever they are sharing information, in order to 

reap the benefits of sharing. 
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6.6. Survey of the Literature 

Much of the literature is devoted exclusively to problems 

of processor scheduling or to memory allocation; little of it 

is devoted to a unified treatment of both. 

By far the greatest part of the literature addresses itself 

to scheduling; a myriad of algorithms and analyses have appeared. 

Estrin and Kleinrock [El] and then Coffman and Kleinrock [C3] 

have very good surveys of the important algorithms. In refer

ence [C3] it is demonstrated that all the algorithms are sus

ceptible to countermeasures: because most algorithms favor small 

tasks (both in size and duration) either explicitly or implicitly, 

a user may significantly improve service to himself by subdivid

ing his job into a sequence of small tasks (provided no one else 

does this too). This does overall efficiency no good. 

A variety of papers report on memory allocation [Bl,B2,D2, 

D4,P4,R2]; we have already discussed these in Chapter 3. 

Not much reported work deals with interactions between 

processor and memory. The approaches most often used are either 

to regard scheduling as the primary allocation function, memory 

management as the secondary allocation function, or else to re-

gard them both as being independent. It should be obvious by 

now that in existing systems the problem of memory management 

is of far greater importance than that of scheduling, on account 

of the very large traverse time and the serious possibility of 

thrashing. Therefore, if memory is properly managed, almost 

any reasonable scheduling algorithm will function well. Con

versely, if memory is mismanaged or overloaded, the particular 

scheduling algorithm will be of little consequence. 
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No work is reported that gives insight into how scheduling 

problems are compounded by information sharing. For example, 

it is clear that scheduling algorithms should tend to run two 

processes together in time whenever they are sharing information. 

However no study reports on the extent to which a scheduling 

algorithm should tend to do this, or whether it should tend to 

do this explicitly at all. 

There has been some work on system balance. It falls into 

two classes: static balance, the problem of determining an op

timum equipment configuration for a given program mix; and dyn

amic balance, the problem of dynamically adjusting the load to 

the existing equipment. Nielsen [Nl,N2] has reported on simul

ation work for static balance which has been of considerable help 

in configuring the Stanford version of IBM System 360. Saltzer 

[S2] describes some rule-of-thumb performance measurements that 

may be used to test a system to decide whether or not it is 

statically balanced or whether it is thrashing. 

The most interesting work of all concerns dynamic balance. 

Oppenheimer and Weizer [02] report that their simulation of the 

RCA Spectra 70/46 Time Sharing Operating System verify conclus

ively that even relatively primitive notions of dynamic memory 

balance result in markedly improved performance. O'Neill, 

Belady, and colleagues [01] have been experimenting with a 

load-leveler on the M44/44X computer, and have been very pleased 

with the results. 
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6.7. Summary 

The important concepts introduced here in this chapter all 

center around the idea of supply-and-demand allocation in large 

computer systems. Memory demand is based on working set size. 

Processor demand is based on the intensity or the duration of 

processor requirements. System demand is a composite of these 

two types of demand. 

Computations requiring resources are divided into two classes: 

standby set computations, which are temporarily denied use of 

system resources; and balance set computations, which are granted 

tne use of system resources. The system is balanced just when 

the total demand of the balance set matches the available equipment. 

A balance policy is a resource allocation policy that reg

ulates membership in the balance set so that system balance is 

maintained. The demand space and usage space were introduced as 

conceptual aids to understanding properties of balance policies. 

An important property, the path effect, is the dependence of per

formance on the order in which the processor and memory resources 

are balanced. 

We distinguished two aspects of balance. The first aspect, 

static balance (controlled by the administration) is the problem 

of matching the equipment configuration to the total demand of 

the user community. We return to this in Chapter 8. The second 

aspect, dynamic balance (controlled by the scheduler) is the 

problem of matching the demand of the balance set to the existing 

equipment. We direct attention to this in the next chapter. 
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CHAPTER 7 

Implementation of Balance Policies 

7.0. Introduction 

The general structure and basic properties of a balance 

policy have been given in Chapter 6. It remains to show how a 

balance policy can be realized. 

The three most important things we are requiring from a 

balance policy are: first, that it keep the system balanced; 

second, that it be fair; and third, that it assure reasonable 

policies with respect to other criteria such as minimum response 

time. 

We distinguish two cases: the one-dimensional~ is ap

plicable to contemporary computer systems, in which the threat 

of thrashing makes memory balance so much more important than 

processor balance; the two-dimensional ~ is applicable to 

future computer systems, in which both processor and memory 

-i----
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balance will be equally important. In one-dimensional cases, 

we explicitly balance only one resource type and try to achieve 

reasonable balance of the other resource type, whereas in two

dimensional cases we explicitly balance both resource types 

simultaneously. 

The most important result of this chapter is: we formulate 

mathematical programming pcoblems whose solutions, found dy

namically by the scheduler, are almost-optimum balance policies. 

In Section 7.l we present an analysis of a single-server, 

first-come, first-served queue, because this can act as a worst 

case analysis for the behavior of the queue structures we pro-

pose. In Section 7.2 we study properties of queue structures 

that guarantee fair policies, and we find bounds on the processor 

and memory requirements needed to act as servers to the queues. 

In Section 7.3 we formulate the one-dimensional mathematical 

programming problem, and give a simple algorithm that finds the 

optimum solution in the particular case of memory balance. In 

Section 7.4 we formulate the two-dimensional mathematical pro

gramming problem, but we do not attempt to give solutions. 
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7.1. Analysis of a Single-Server Queue 

The statistics of a first-come, first-served (FCFS) single 

server queue can be used to obtain the worst case behavior of a 

balanced computer system. 

The queueing system under consideration is shown in Figure 

7-1. Job interarrival times are exponentially distributed with 

mean~· That is, if {tn}is the seq~ence of. instants at which 

jobs arrive, the interarrival times Yn = t -t are identically n n-1 
distributed according the the density function 

(7.1.1) f {u) 
Yn 

f {u) 
y 

ae-au u Lo 

Similarly) the job service times are exponentially distributed, 

1 with mean l)• The rate (a) of job arrivals remains fixed, re-

gardless of the number of jobs in the system; in other words, 

we regard the source population as being infinite. 

Our use of exponential interarrival and service times, and 

an infinite source population, requires justification. 

We are directing the analysis toward large systems, in which 

a large source population generates the service requests. In 

these systems, exponential interarrival and service distributions 

are good models for at least two reasons. First, it is well 

known that, when a large populat~on generates service requests, 

the times between arrivals from.the.population tend to be ex

ponentially distributed, even though the times between arrivals 

from a particular member of the population do not. The tele

phone system, for which it has been found that the lnterarrival 

and service distributions are very ne_arly exponential [P3, p. 281], 

is an excellent example of this behavior:. Second, there is 

considerable evidence to indicate that many interarrival and 
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service distributions are approximately hyperexponential in the 

case of not too large populations [C4,F4]; these distributions 

have exponential tails. By assuming exponential arrival and ser

vice distributions, we are modelling the tails of the actual dis-

tributions, thereby providing a worst case analysis. 

Furthermore, the exponential case, interesting in its own 

right, can yield insights perhaps not obtainable from protracted 

analysis. 

When the source population is finite and the server is sat-

urated, jobs pile up in the queue and, there being fewer reques-

tors remaining in the source population, the arrival rate slack-

ens. Because we are interested in the unsaturated behavior 

of a computer system our use of infinite source populations 

(in which the arrival rate is ipdependent of queue length) is 

not unreasonable. Assuming that balance policies keep the com-

puter system out of saturation, a job will not be seriously de-

layed in the queues, and the source population will not be ser

iously depleted. Thus, the arrival rate will not significantly 

slacken. Indeed, experience has shown that infinite population 

models approximate finite population systems with surprisingly 

little error, for population sizes as small as 20 [F2,Vol.l, 

p.143££]. 

Nevertheless, since we are in fact making approximations 

to actual behavior by using these assumptions, we can only 

interpret the results as being system averages. 

When (n-1) jobs are in the queue and 1 job is in service, 

the system is in state n. Let n denote the steady state prob
n 

ability of state n. 
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Theorem 7. 1. In the queueing system described above, the 

steady state probability of state n is 

( 7.1. 2) n: n 
rn( 1-r) n 0,1,2, ••• 

where r a The and variance of l_;"· mean n are 

r n 1-r 

02 r 
n (l-r) 2 

( 7. 1. 3) 

Proof: In a small time interval dt, the probability of a tran-

sition from state (n-1) ton is (a dt); in the same interval dt, 

the probability of a transition from n to (n-1) is (b dt). 

Therefore in the steady state we must have 

n: n-1 
a dt n: b dt 

n 

which means 

a n: b n: n-1 n 

Letting a have r b' we 

n a 
IT r IT r - b n 0 

The generating function for n is 

G(z) n n: z 
n 

_l_ 
n:o 1-rz 

Since G(l) ~ 1, we haven: ~ 1-r and thus 
0 

r < 1 

which verifies eq. 7.1.2. The mean and variance of n are given 



by the usual expressions: 

n G' ( 1) 
r 

1-r 
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G' ' ( 1) + G' ( 1) - n2 

which verify eqs. 7.1.3. 

r 

QED. 

Theorem 7. 2. Let the random variable y denote the time a job 

waits in the queue described above until it enters ser-

vice. Then the probability density function f (u) is 
y 

given by 

( 7.1. 4) f (u) 
y { 

b-a u=O 
b 

2'.(b-a)e -(b-a)u 
u>O 

b 

and the mean and variance of y are given by 

y £. 1 
b b-a 

( 7. 1. 5) 
Ci 1 

b (b-a)2 

Proof: Observe that 

if n=O Pr[y=OJ 

( 7. 1. 6) y 
otherwise 

Tl: 
0 

1-r 

Here, si is the random variable of service time for one job, 

whose density function satisfies 

-bu be u>O 
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for each subscript i. Eq. 7.l.G is obtained by noting: lf the 

job arrives to rind 11 alreddy ln the system it must wa~t for all 

n to complete service. 

Suppose n>l. We want to find f (u). the density function y,n , 

for y when n are in the system. Observe that 

f (u) du 
y,n 

Pr'- (n-1) events in u and 1 event in (u,u+du) I 

s 0 th cl t 

i (u) 
y,n 

To find fy n>l(u) 
' -

f >" (u) y,n "-

t ( u) 
y,n.2:_1 

f >l( u) 
y' fl_;_ 

(bu)n-1 
(n-1)! 

-bu 
e (b du) 

(bu)n-J -bu 
b (n-lH e 

f (u) 
y,n 

r b (1-r) 
-b( 1-r)u 

e 

a (, ) - ( b-a) u b D-a e 

~b 
n-1 

since r = 
a 
iJ• Flndlly, 

I[ 
0 

b-cl 
b 

at u=O 

::Jrcpplng lhe u:c;e of Lhe second subscript, 

{ 
:J-Cl 

u=O 
b 

f (u) 
y a -(b-a)u 

l(b-a)e u>O 
) 

~;hlch verlfies 2q. 7.1. 4. 

, n-1 
\bu) ~-bu .n(l-~) 
(n-ll! r L 
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The mean and vctriance of waiting time are 

r cxi f (u) du 
a 1 

y u 
J c y b b-a 

2 2 -2 a 1 
CJ y - y 

b 2 y (b-a) 

which verify eqs. 7.1.~. 

QEC. 

Theorems 7.1 and 7. 2 c:rn be used to find bounds 0::-1 the 

number in the :c:.y'.'.to:n ,o;n:l on the waiting tirnc. A bound on the 

number n in the system can be obtained from 

( 7. 1. 7) Prln>u 11 

:1-u+l 

;[ 
n 

and a bound on the Wtliting time y from 

( 7. 1. 8) Pr[y>uJ f 00 f (v) dv 
u y 

u+l 
r 

a -(b-ct)u 
i)"'2 
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7.2. Organization of the Queues 

The systems of queues described below are embedded in the 

standby set. They are organized so that the scheduler can quickly 

locate jobs of whatever demand it seeks. They are specifically 

intended for use in contemporary computer systems, in which the 

grave danger of thrashing makes it so overridingly important to 

balance memory. They are the queues for use in the one-

dimensional case. 

The following discussion illustrates how fairness can be 

incorporated into a balance policy. It also establishes bounds 

on the total processor and memory requirements needed to accom-

modate the balance set. 

7.2.1. An Almost-Continuous System of Queues 

Figure 7-2 illustrates a very general, one-dimensional 

queueing structure. We assume that jobs (i.e., computations) 

are arriving at random, interarrival times exponential with 

mean~· Job (working set) sizes are integers s, se;[l,s
0
], s

0 

being the size of the largest working set. The job size dis-

tribtuion (of incoming jobs) is 

(7.2.1) 

and 

(7.2.2) 

Pr[s=i] 

s 

f 
i=l 

f Ci l s 

f ( i) 
s 

1 

Let Q = {l, .•• ,k, ••• ,s
0

} denote the set of queues. A job of 

size k is placed at the end of the kth queue. 
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Figure 7-2. Sorting jobs into size classes in standby set. 
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In our work here, we require that a balance policy be fair. 

To accomplish this we have made the individual queues FCFS, and 

we will require that the scheduler keep at least one job from 

each queue in service. Thus, a job's waiting time will depend 

only on its order of arrival relative to jobs of the same size, 

and not on jobs of different size. 

Associated with the kth queue is a quantum qk. The quantum 

qk is assumed to be the same for each job in the kth queue, re

gardless of its past. 

The scheduler controls membership in the balance set B so 

that balance is maintained; that is, so that the balance set 

demand Cp8 ,m8 ) is kept within close tolerances of the desired 

C~,B). Because each job is assigned a quantum, its time in B 

is bounded, so the scheduler need only control entries to B 

(cf. Figure 6-3). 

A job (of size j) may exit the balance set B for one of 

three reasons: 

l, Its quantum expired, in which case it is entered at 

the end of the jth queue. 

2. It disabled, in which case it enters the disabled set. 

3. It quit. 

In general, a job will fluctuate in size during execution. Thus, 

if it is of size k at entry to B, it may be of size jlk upon 

exit from B. We assume a condition of statistical equilibrium, 

so that, on the average, a job of size k entering B implies that, 

within qk' ~ job of size k will exit B. 
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The arrival rate to the kth queue is 

(7.2.3) ak a fs(k) 

and, from eq. 7.2.2, 

(7.2.4) ~ ak ~ a fs(k) a 

k6Q k6Q 

We may assume that 1- is the mean of an exponential distri
ak 

bution, because ~ is the mean of an exponential distribution and 

jobs are statistically independent. The service rate for the 

the 

queue is bk' and ~ is the 
th k 

k queue. We assume that 

distribution. 

average service time for jobs in 

1- is the mean of an exponential 
bk 

The analysis of Section 7.1 can be used to estimate the 

behavior of each queue when each receives service independently 

of the others and one job at a time is serviced from each. In 

reality, more than one job from each queue may be in service, 

in which case the analysis of Section 7.1 must be interpreted 

as the worst-case behavior. 
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Theorem 7.3. Suppose B acts as a single server to each of the 

s
0 

queues in Figure 7-2. Let ak be the arrival rate to 

the kth queue, bk be the service rate of the kth queue, 

and let rk = ak/bk. Then the expected processor and memory 

demand of the balance set B are: 

( 7. 2. 5) 

Proof: Using the result of Theorem 7.1, let 

Pr[kth subsystem is empty] 

th th where the k subsystem comprises the k queue and the single 

job from it in service. Define the random variable yk: 

Thus, 

{; 
Pr[ yk=l] 

Pr[yk=O] 

th if k subsystem non-empty: Pr[yk=l] 

otherwise 

Then the random variable p8 of processor demand is 

and the random variable m8 of memory demand is 

1-TI ok 
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The expectations are: 

- 2: ~ Pr[yk=l] ~ PB yk rk 
ke:Q k 

mB 2: k yk 2: k Pr[yk=l] 2: k rk 
ke:Q ke:Q ke:Q 

QED. 

There is an interesting special case, in which the running 

time of a job of size k is inversely proportional to the prob-

ability fs ( k): 

(7.2.6) (mean running time)k 1 

bk 
1 

for some constant b. This behavior may in fact occur in some 

real situations. For example, the quantum qk could be chosen 

to be: 

(7.2.7) = 

In this case, 

(7.2.8) r 

That is, rk=r is constant for all the queues. 

Theorem 7.4. Suppose the conditions of Theorem 7.3 and eq. 7.2.7 

hold. Then the expected processor and memory demands of 

the balance set are: 

(7.2.9) 
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Furthermore, when demand is not too high, that is r<<l 

(the queues are sparsely populated), then 

s2 
0 

2 (7.2.10) 

Proof: Eqs. 7.2.9 follow directly from eqs. 7.2.5 with rk=r. 

If r<<l, then rs
0

<<s
0

, and we have 

s Cs +l) 
0 0 

2 r 
(s r) (s +l) 

0 0 

2 << 
s2 

0 

2 

QED. 

It is interesting to note that, when s is large, the distrio 

bution f (i) may be approximated by a continuous density func
s 

tion fs(u) if we regard the range [l,s
0

] of job sizes as being 

continuous. In this case we may regard the set of queues, Q, 

as being a continuum of queues, and use the notation Q(u) to 

denote the queue into which jobs of size u are arriving. The 

arrival rate to Q(u) is: 

(7.2.11) a u 
a f (u) 

s 
ue;[l,s ] 

0 

Let bu denote the service rate of size u jobs, and then 

(7.2.12) r u 
au 
b u 

By analogy with eqs. 7.2.5, 

s - J 0 PB r 
0 

(7.2.13) s - J 0 mB u 
0 

du u 

r du u 

Again, if r =r is constant, we obtain the same results as eqs. 7.2.9. 
u 
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7.2.2. The Logarithmic Queue 

When the size s
0 

of the largest job is large, it may become 

impractical to implement a large network of queues, such as that 

of Figure 7-2. Indeed, when demand is not too high, the prob-

ability that queue k is non-empty is small; such a queue struc-

ture would comprise a mostly-empty set of queues. 

A general approach to the problem of reducing the number 

of empty queues is to establish classes of comparable-size jobs, 

and to sort jobs entering the standby set into a system of FCFS 

queues, one for each class. Suppose the number of classes is 

chosen to be K. Then we must choose K size-intervals (sk-l'sk) 

in order to define the classes Sk:· 

(7.2.14) { Is is the size of some job} 
sk = s in the interval (sk-l'sk) 

Figure 7-2 may be regarded as s
0 

classes with Sk = {k}, and 

if we choose K<s , it is not hard to see that the total expected 
0 

balance set demands (p8 ,m8 l will be smaller (under the conditions 

of Theorem 7.3), because more work will be allowed to pile up 

in the (smaller number of) queues. 

One method for choosing the boundaries of the classes Sk 

is to make the arrival rate into each class be the same: 

(7.2.15) a 
K 

a f (i) 
s 

where f (i) is the probability Pr[s=i]. A much more interesting s 

method of sorting, the logarithmic gueue, has particularly use-

ful properties. 

The structure of the logarithmic queue is shown in Figure 7-3. 

Jobs are sorted by size into one of [log2 s
0

] FCFS queues (here, 



FCFS queues 

se:S 1 ~ 
1 

\ 

a I se:Sk 
Set > (qk,skr- B I j 

incoming jobs ~ 
: k \. I N size s e: [l,s

0
] 0 

co 

• 

seS[log2 sol ::='Ill 
[log2 so] 

Figure 7-3. The logarithmic queue. 
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the notation [x] means the greatest integer i~x). The classes 

are defined to be 

(7.2.16) ke:Q 

where Q = {1, •••• k, ••• ,[log2 s
0
J} is the set of queues. When 

a job of size s enters the standby set, it is placed at the end 

of queue k = [log2 s]. 

. th 
With the k queue is associated a pair (qk,sk)' qk being 

the time quantum and sk being the typical size of a queue k job. 

The probability distribution f (i) for jobs in class sk is 
sk 

f ( i) 
s 

(7.2.17) 

0 otherwise 

The average job size in class skis: 

(7.2.18) 

-and we may regard sk as being typical of the jobs in class sk. 

The arrival rate to the th k class is: 

(7.2.19) ak 2: a f (i) 
s and L: ak a 

ie:Sk ke:Q 

Again, 1.._ is assumed to be the mean ox an exponential distri
ak 

bution. The service rate for the kth class is: 

(7.2.20) b(i) f (i) 
sk 

which is the average over Sk of the rate b(i) of each job size 
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i in Sk. Again we make the approximation that 1- is the mean 
bk 

of an exponential distribution, so that we may use Theorems 7.1 

and 7.2 to provide upper bounds on queue lengths and waiting times. 

Theorem 7.5. Suppose the logarithmic queue structure described 

above is used, and that one job from each class is in ser-

vice. Then the processor and memory demands of the balance 

set are bounded by: 

(single-process computations) 

(7.2.21) 

< 2s 
0 

where s
0 

is the size of the largest job. 

Proof: If one single-process computation at a time is in B 

from each class, then at most [log2 s
0

] processes can be de

manding a processor. In class Sk the largest job is of size 

(2k+l_l); then, 

or, 

log2 s log
2 

s
0 

(log
2 

s
0 

)-2 
0 

mB ~ 2: (2k+l_l) < 2: 2k+l 4 2: 2k 

k=l k=l k=O 

( (log2 s )-2 

1) < 0 < 2s mB 4 2 
0 

QED. 

Thus, a memory of size 2s , a logarithmic queue, and 
0 

[log2 s
0

] processors are sufficient to guarantee service to 

one job from each class. 
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The advantages of the logarithmic queue are: 

1. Fairness. One job from each class Sk is guaranteed 

service, and jobs from each class are serviced in order 

of arrival. 

2. Ability to scale. The boundaries Of the classes Sk are 

3. 

invariant to s
0

, except for the upper boundary of class 

SK' K = [log 2 s
0
]. 

Small number of classes. Unless 

that [log 2 s ] << s • 
0 0 

s is 
0 

small, it is true 

4. ~processor and memory requirements. From Theorem 7.5, 

5. 

no more than 2s
0 

pages of main memory are needed, and 

no more than [log
2 

s
0

] processors are needed, to accom

modate the balance set B. 

Flexibility. Suppose an imbalance of size s appears 

in the balance set memory demand, an0 that queue j 

is the queue in which size s jobs reside. If the 

scheduler finds queue j empty, it may still satisfy 

the imbalance with 2 jobs from queue (j-1), or 4 jobs 

from queue (j-2), etc. 
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7.3. Mathematical Programming Problem, One-Dimensional Case 

We shall formulate mathematical programming problems whose 

solutions are balance policies. 

We are require three things of balance policies: maintenance 

of balance, fairness, and the ability to satisfy other objectives 

such as minimum response time. Maintenance of balance is achieved 

by the constraints in the problems, fairness is achieved by making 

the mathematical programming problem operate in conjunction with 

queue structures of the types discussed in Section 7.2, and other 

objectives may be expressed as objective functions in the pro-

gramming problems. We leave the particular objective function 

unspecified, the final choice being up to the policy designer. 

In the remainder of this section we formulate the problem, 

review alternatives for the objective function, prove a theorem 

that constrains the choice of quanta, present a solution in 

the case of memory balance with minimum-response-time objective, 

and finally discuss briefly why the formulations cannot lead to 

completely optimum solutions. 

7.3.1. The Problem 

A decision point is a real time instant at which the sched-

uler is called on the rebalance the system. Suppose that the 

balance set demand is Cp8 ,m8 ) at a decision point. Define the 

imbalance in B to be: 

(7.3.1) 
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We assume that the scheduler is called on to admit jobs 

to B, never to remove jobs from B. On the one hand, since a 

job's quantum bounds its time in B, the demand (pB,mB) must 

eventually fall below (a,B). On the other hand, the para-

meters a and Bare chosen to leave (1-a)N processors and (1-B)M 

memory pctges avallable for unanticipated expansions. 

When do the decision points occur? This ls basically a 

decision to be made by the policy designer. Possibilities are: 

decision points occur at regular, clocked intervals; they occur 

whenever a job exits the balance set B; or they occur whenever 

the imbalance exceeds some threshold. 

Define the following parameters: 

Q {1,2, ••• ,K} is the set of job-class indices. 

number of jobs from class Sk selected by the scheduler 
to enter B. 

B 
nk number of jobs from class Sk already in B. 

sk typical size of job in class sk. 

qk quantum assigned to jobs in class Sk. 

a,B ~ balance parameters. 

N,M ~ number of processors, number of main memory pages. 

A standard interval used to define processor demand 
in the single-process case (Section 6.2.2). 

~ minimum tolerable duty factor for each computation. 
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Problem definition. Find integers £nk}kgQ such that the 

objective 

F(n1 , ••• ,nK) 

is extremized, and the constraints 

(7.3.2) {nk + n~ ~ l}kgQ 

2: nk sk ~ M oB 
m (7.3.3) 

kgQ 

2: ~ 
NA OB nk qk T] p 

(7.3.4) 

kgQ 

are satisfied. 

The choice of objective function F(n1 , ••• ,nK) is discussed 

below. The constraint of eq. 7.3.2 means that at least one job 

from each class shall be in service. The constraint of eq. 7.3.3 

asserts that the total memory requirement of jobs admitted to B 

shall not exceed the imbalance of MOB pages of memory. The con
m 

straint of eq. 7.3.4 asserts that the total processor require-

ment of jobs admitted to B shall not exceed the imbalance of 

NA B 
~p processors. We have divided by the duty factor T] because 

if each job has minimum duty factor T], then N processors may 

N appear as ~processors; see Section 7.3.3. 

7.3.2. The Objective Function 

The objective function F(n1 , ••• ,nK) which is to be extre

mized (i.e., maximized or minimized) is to be specified by the 

policy designer. Some possibilities are, in order of complexity: 
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1. Minimize total wctiting time. At ct decision point, let 

th Nk denote the number of jobs in the k queue. Then 

( 7. 3. 5) 

2. 

( 7. 3. 6) 

the wait of the job at the end of the kth queue (before 

The objective becomes 

~ 
kt;Q 

but Nkqk is a constant at a decision point, so we have 

the simpler objective 

maximize ~ nk qk 

ksQ 

We shall use eq. 7.3.5 as the expression of a minimum 

response time objective. 

Minimize weighted sum of waiting times. 

be a set of weights (relative importances) of the 

waiting times in each queue. Then (by analogy with 

eq. 7.3.5) the objective becomes 

maximize ~ ck nk qk 

ksQ 

3. Minimize weighted~ of functions of waiting times. 

( 7. 3. 7) 

Let g 1 , .•• ,gK be a set of (cost) functions associated 

with the wait of the job at the end of each queue, and 

Then the objective is 

\ minimize 
6 
ksQ 

These alternatives are meant only to illustLate possibilities, 

not to exhaust them. 
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7.3.3. Choice of Quanta 

Efficiency requirements place ah important constraint on 

the value of the quanta that may be chosen. 

Theorem 7.6. Suppose ~o is given, where O~~~l, and we want the 

duty factor ~ to satisfy ~~~o for all jobs, regardless of 

size. Then the quantum must be at least linearly proper-

tional to the job size. Furthermore, not every value of 

~o in the interval [O,l] is attainable for a given choice 

of the working set parameter ~. 

Proof: th Let sk be the size of jobs in the k class, and qk be 

their quantum. Let A(~) be the missing-page probability (Sections 

4.2 and 5.4). In a virtual time interval of length qk' the 

process encounters A(~)qk page waits. In addition, at the 

start of the quantum qk' the working set must be demand-paged 

into main memory (assuming it is not already there), requiring 

an additional sk pages waits. Therefore the duty factor across 

the quantum must satisfy: 

(7.3.8) ~ 

Solving eq. 7.3.8 for qk we find 

sk~o T 

qk ~ 
l - ~ - ~ A(~)T 

0 0 

For the given ~o' in order that qk be finite, we must have 

(7.3.9) 

(For example, ~0=0.5 requires A(~)T > 1, and we must have 
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A(T)T>>l if qk is to be reasonably small). 

been fixed, the quantity 

c 
0 

is fixed, and we have 

> 

Tl T 
0 

Once T]
0 

and T have 

which was to be shown. In other words, if qk<C
0
sk, the actual 

value of T) (eq. 7.3.8) cannot satisfy ri.:::_11
0

• 

To show that not every value of T]
0 

in the interval [0,1] 

is attainable for a given choice of T, let T be given and solve 

110 < 
1 + A(T)T 

Thus, ri
0 

is upper bounded. Compare with the result of Theorem 

4.6, which gives this expression as the steady state duty factor 

when quantum starts and expirations are ignored. 

QED. 

Theorem 7.6 tells us that if we wish to achieve a certain level 

of processing efficiency, we must be willing to associate larger 

quanta with larger jobs. 
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7.3.4. Solution to the Memory Balance Problem 

The most important one-dimensional case is the memory-

balance case, because it finds application immediately in con-

temporary computer systems. In this case we place much emphasis 

on balancing memory (to avoid thrashing) and little emphasis on 

balancing processor. If the objective function is to minimize 

response time, there is a rather elegant algorithm to find the 

solution to the mathematical programming problem. 

The linear programming problem presented in Section 7.3.1 

very much resembles a classic problem, the knapsack problem [DO]. 

We are given a collection of objects, each having a certain 

weight and a certain value, and we are to pack them into a knap-

sack such that a given weight limit is not exceeded and the total 

value of objects packed is maximum. The solution to this prob-

lem gives insight into the nature of the solution to the memory-

balance problem. Formally stated, the knapsack problem is: 

The Knapsack Problem. Let Q be a class of object types, Nk be 

the number of objects of type k, wk be the weight of a type 

k object, and vk be the value of a type k object. We are 

to find integers {nk}kEQ such that the objective 

is achieved and the constraints 

are satisfied, where W is a given positive number. 
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Theorem 7. 7. Suppose in the knapsack problem we have ordered 

the elements of Q such thdt 

> > ••• > 
vk 

> •.• 

and 
vk 

suppose no two classes have the same 
wk 

the optimum solution is: 

for k-1,2,3, .•• do: 

ksQ 

ratio. 

choose the largest nk such that O.s_nk~k and 

Then 

Proof: The details can be found in Dantzig [DO], but the idea 
vk 

is very simple. The ratios ~ may be interpreted as the value 
wk 

per pound weight of each object. 'I'he algorithm merely attempts 

to reach the weight limit W by packing in all the objects with 

the highest values per unit weight. 

Qt;D, 

In the general case. we would have to assume that the 

r3.tios saLLsfy 

> > > > kcQ 

instead of the strictly decreasing situation given in Theorem 7.7. 

This complica l:es the algorithm. Since we are about to apply 

it to the memory balance problem, which will satisfy a constraint 

similar to that in Theorem 7.7, we shall not concern ourselves 

further with refinements of the algorithm. Additional solution 

~ethods are found in ~3.ntzig LDO]. 
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The Memory Balance Problem. Let Q be a set of queues, as dis-

cussed earlier. Let sk be the typical size of jobs of type 

k, qk be the quantum associated with type k jobs, and Nk 

be the number in the kth queue at a decision point. We 

are to find integers {nk}kgQ such that the objective 

is achieved and these constraints are satisfied: 

~ nk sk 
kgQ 

l}kgQ 

where M is the main memory size, n~ is the number of type k 

jobs in the balance set B, sk is the size of a type k job, 

and 08 is the memory imbalance of B. 
m 

The objective function, which minimizes response time, is the 

same as eq. 7.3.5. There is one constraint more than in the 

knapsack problem, namely that the balance set B shall contain 

at least one object of each class. There is no explicit proc-

essor balance condition because we assume a sufficiency of pro-

cessors. We shall see in Chapter 8 that we can properly match 

processor and memory resources to the given program mix; thus 

we may suppose there are enough processors as long as we abide 

by the memory constraint and do not change the program mix. 

The solution to the memory balance problem is given in the 

next theorem. 
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Theorem 7.8. The solution to the memory balance problem is as 

follows. Let Q = {1, 2, ••• , K} be the set of queue indices. 

Choose the quanta qk to satisfy 

> > > 

Let R 

l. for j=l,2, ••• ,r do: 

j 

if 2:: ski 
1=1 . 

> Mo! ill!l goto step 3 ~ nk. =l; 
J 

2. for k=K, ••• ,2,1 2£.: choose the largest nk such that 

3. done. 

Proof: Follows at once by analogy with Theorem 7.7. 

QED. 

In words, Theorem 7.8 says: first satisfy the one-job

from-a-class constraint, then keep on admitting the largest 

jobs possible until memory is full. If step l fails to admit 

jobs to the balance set, step 2 is bypassed; thus, resources 

are reserved for these jobs, in readiness for the next decision 

point. 
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7.3.5. On the Optimality of the Solutions 

At each decision point the scheduler finds a solution to 

the mathematical programming problem; but this solution is op

timum only with respect to the decision point at which it was 

made. 

Put another way, if the scheduler had a complete listing 

of balance set program sizes, together with their completion 

times, it might very well want to make a decision different from 

that which satisfies the mathematical programming problem. A 

decision which appears to satisfy the objective function at time 

t 1 may turn out to be poorer across an interval <t1 ,t2 l than a 

decision which appears not to satisfy the objective function at 

time t 1 • 

Thus, all we can claim about these mathematical programming 

formulations of balance policies is that they produce solutions 

which are optimum (with respect the the given objective function) 

across short time intervals, but not necessarily across long time 

intervals. 

We do not feel that this is a serious difficulty. The main 

function of these policies is to keep the computer system balanced 

under the given criteria of fairness. The objective functions 

incorporated into the mathematical programming problems are there 

to accomplish ancillary objectives, namely those beyond balance 

and fairness. Thus, it is not of major importance that the policy 

is only locally optimum with respect to the objective function. 

Of far greater import is: it is possible, under fair balance 

policies, to establish reasonable policies with respect to cri

teria such as minimum response time, without requiring exorbitant 

amounts of processor and memory resources. 
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7.4. Mathematical Programming Problem, Two-Dimensional Case 

We briefly generalize the ideas of the previous section, 

formulating the mathematical programming problem for the two-

dimensional case, in which it is important to balance both pro-

cessor and memory equally well. The formulation is very general 

and is presented in the continuous case. Each job in the standby 

set is now a multiprocess computation. 

Consider again the demand spacey, illustrated in Figure 7-4, 

where the region£ in the unit square is regarded as being a 

continuous two-dimensional queue. A demand is a point (u,v); 

demands may appear only in the region£· The demand density 

function f (u,v) is two-dimensional; that is, the probability pm 

a demand (p,m) falls in a differential region of area (du dv) 

at the point (u,v) is given by (f (u,v) du dv), and pm 

(7.4.1) ff f (u,v) du dv 
.9. pm 

1 

Again, a is the (exponential) arrival rate of demands into 

the standby set. The rate to the queue at the point (u,v) is 

(7.4.2) a(u,v) a f (u,v) pm 

The rate at which jobs leave the queue at the point (u,v) is 

(7.4.3) 

Therefore 

( 7.4.4) 

b(u,v) 

Pr[queue (u,v) non-empty] r(u,v) a(u,v) 
b(u,v) 

following Theorem 7.1. Assuming that each queue is treated 

independently, under a FCFS policy, the expected processor demand 
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l 

Figure 7-4. Demand space as a cont2-nuous two-dlmensional queue. 
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of the balance set is 

(7.4.5) = JJ u r(u,v) du dv 
.9. 

arid the expected memory demarid of the balance set is 

( 7.4.6) JJ v r<u,v) du dv 
2. 

These equations are obtained by noting the expected contribution 

to processor demand from the queue at (u,v) is 

(7.4.7) u ( Pr[queue (u,v) non-empty]) u r(u,v) 

and the expected contribution to memory demand from the queue 

(u,v) is 

(7.4.8) v ( Pr[queue (u,v) non-empty]) v r(u,v) 

In the special case that r(u,v)=r is constant everywhere in£,: 

(7.4.9) r 
2 

To set up the mathematical programming problem, we define 

the following quantities: 

n(u,v) 

q(u,v) 

u 

v 

w(u,v) 

number of jobs to be chosen from queue (u,v) at 
a decision point to enter the balance set B. 
Note that n(u,v)~O is a continuous distribution. 

quantum to be allocated to a job from queue (u,v). 
We assume q(u,v) depends only on (u,v). Since 
a job at (u,v) is a multiprocess computation, 
q(u,v) represents the total virtual time alloc
ated, in a pool, to all the processes in the 
computation. 

processor demand at queue (u,v). 

memory demand at queue (u,v). 

waiting time of job at end of queue Cu,v) until 
it enters service. 
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The Problem. 
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cost ±unction associated with queue (u,v) 
when the waiting time there is x. 

(a,8)-(p
8

,m
8

l is the degree of imbalance. 

Let Cp8 ,~ 8 ) be the balance set demand at a dee-

ision polnt. We are to find a distribution n(u,v) of jobs 

to enter B, such that the objective 

ff n(u,v) g(u,v,w(u,v)) du dv 
Q 

is minimized, and the constraints 

ff n(u,v) B 
u du dv < CJ b 

£ 
p 

ff n(u,v) v du dv < M bB 

£ 
m 

are s.:itisfied. 

We shall not attempt to discuss implementation issues here 

as we have done for the one-dimensional programming problem in 

Section 7.3.4. Tho solution n(u,v) to this problem is cornpli-

cated by the path effect, discussed in Section 6.5.l. We leave 

this as an area of future research. 
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7.5. Summary 

The major result of this chapter is: the balance policy to 

be used the scheduler can be expressed as the solution to a 

mathematical programming problem. 

The solutions produced by these formulations are optimum 

with respect to the objective function across short time inter

vals but not necessarily across long time intervals. These 

policies are supposed primarily to be equitable balance policies, 

secondarily to insure reasonable policies toward criteria such 

as minimum response time; thus, these policies meet the objectives 

of this thesis work. 

We showed that there exists a simple, elegant algorithm, 

which finds the optimum set of jobs to admit to the balance set 

at a decision point, which is to be used in the memory balance 

case together with a minimum response time objective function. 

This algorithm is applicable in contemporary computer systems, 

when it is important to prevent thrashing. It is based on an 

analogy with the knapsack problem, a classic linear programming 

problem. 
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CHAPTER 8 

Applications to Computer System Organization 

8.0. Introduction 

One aspect of the study of the resource allocation problem 

has been to set up behavior models for computations in order to 

provide a framework within which we can understand misunderstood 

problems. An equally important aspect of the study is to examine 

how programmers, system designers, and the computer system itself 

might all cooperate in allocating resources. 

We shall discuss three seemingly disparate aspects of com

puter system organizati~n. The first, the equipment configuration, 

is the relationship among the program mix, the amount of processor, 

and the amount of memory. The second, equipment pooling, is 

effecting large processor-memory capacity by sharing equipment 

at the finest hardware level. The third, multilevel memories, 

is showing how to make better use of memory resources. The 

relation among these three aspects is: each is concerned with 

matching the equipment to the work load. 
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8.1. Toward Better Programming and System Design 

There is every reason to believe that programmers can, 

by careful programming, create programs that run with small, 

compact working sets. They can do this, for example, by design

ing algorithms to work locally on information, and by employing 

data structures which induce highly local reference patterns. 

Programmers who cooperate in this way will be rewarded, for 

their working sets will be smaller, memory-usage costs lower, 

and running times shorter. Thus, a first guiding principle, 

for programmers, is to design programs to have small working sets. 

The remaining guiding principles, for system designers, 

are applications of programming generality (Section 1.2) and 

of our results here. 

Perhaps the single most degrading factor in contemporary 

computer systems is the inability to manipulate small quantities 

of information easily. Ideally, the unit of information storage 

and transfer, universally used throughout the entire computer 

system from the highest level of memory to the lowest, should 

be the word. This is simply not feasible in contemporary systems 

on account of the high cost of accessing an item in auxiliary 

storage. The commonly-used compromise is that of paging: each 

page comprises a block of words, the page size being chosen to 

represent a compromise among wasted memory, complexity of record

keeping (i.e., page tables, memory usage map), and cost of trans

ferring a page into main memory. And yet, the traverse-time cost 

is still so high that paged memory systems have been beseiged 

with poor performance. Thus, a second guiding principle for the 

system designer must be to make it convenient to manipulate small 
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quantities of information [let us aim for the word]. To do this, 

he must take recourse to parallelism in the data channels, and 

in the addressing and accessing mechanisms. 

Our behavior models have verified quantitatively the intui-

tively obvious fact that sharing of equipment becomes more and 

more successful when there are more and more participants. This 

generates a need for a great number of processors and for a great 

deal of main memory (much of which is wasted in contemporary sys-

terns because the large traverse time induces so many protracted 

page waits). On the one hand, multiprogramming has made it 

possible to effectively share the memory resource among many 

computations. On the other hand, however, it is not yet possible 

to achieve anywhere near complete utilization of processors. 

Instead, a processor is dedicated to a single process, only one 

instruction at a time being executed, and most of the equipment 

(adders, multipliers, etc.) in a processor is idle1 • If, instead, 

the individual hardware components of several processors were 

placed in pools (adders, multipliers, etc.), it would be possible 

to overlap a great many operations. By making it accessible 

from pools on demand, the same equipment contained in one modern 

processor could be used to service simultaneously a surprisingly 

large number of processes. Thus, a third guiding principle for 

the system designer is to permit pooling of small hardware units. 

In summary, the computer system designer must at the very 

least be guided by these principles: programming generality, 

small-working-set programs, ability to manipulate small quantities 

of information, and ability to pool small hardware units. 

1 
Some processors, such as the CDC 6600 and the IBM 360/91, attempt 
to overlap operations by looking ahead a short distance in the 
instruction stream; but the monosequential nature of instruction 
streams makes it difficult to overlap more than a few operations. 
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8.2. The Equipment Configuration 

By the program ~ we mean the collection of possible 

computations. By the equipment configuration we mean 

the proper relative choices of the number N of processors 

and the number M of main memory pages to achieve static balance. 

We shall show that, once any two of {program-mix,M,N} are arbi

trarily given, the third is determined. 

The following is meant to indicate the kind of procedure 

that may be used to determine the equipment configuration; it 

is not meant to be the only possible approach. 

We assume that all jobs are single-process computations, 

that they are statistically independent, and that their working 

sets do not overlap. 

8.2.1. Choosing the Balance Parameters a and E 

The statistical properties of the program mix are the work

ing set size and the duty factor. 

We assume that the working set size w(t,~) is a stationary 

random process (cf. Sections 3.3 and 4.4), and we let~ be under

stood. Thus, we may write w instead of w(t,~). The mean wand 

the variance O~ have already been derived in Theorems 4.4 and 4.5. 

The duty factor ~ depends on the choice of working set 

parameter •, the size w of a job's working set, a job's quantum q, 

and the traverse time T, as follows. If a job is assigned a 

quantum q, it generates q information references. The steady 

state missing-page probability is A(~), so the job expects to 

encounter qA(•) page waits due to pages re-entering its working 

set. In addition, its working set must be demand-paged into 

--- ·~ -----------------------------
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memory at the start of its quantum, requiring an additional w 

page waits, one for each page. The total expected page wait 

time is (qA(~)+w)T. The duty factor is 

(8.2.1) 

Let 

(8.2.2) y 

so that 

(8.2.3) 

q 

q + (qA(~)+w)T 

A(~) + ~ 
q 

1 

1 + yT 

1 

1 + (A(~)~)T 
q 

For simplicity in the following discussion we assume that ~ is 

the same for all jobs (thus, q=C
0
w for some constant C

0
; cf. 

Theorem 7.6). 

We assume that, whenever a job in the balance set is not in 

page wait, it is running. In order that this be a good assump-

tion, there must be sufficient processor resources that the 

probability 

PrCno processor_ available ~hen] 
a process exits page wait 

is arbitrarily small. We shall see shortly that this is the case. 

In this case, we may regard ~ as the probability that a process 

is running. 

We now define two random variables: Wis the total working 

set size of the balance set and P is the total processor require-

ment of the balance set. We suppose there are n jobs in the 

balance set. From our discussion in Chapter 7, if K is the num-

ber of standby set queues, then n must satisfy n_cK. 
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set. 

Let wi be the working set size of the ith job in the balance 

Then the total working set size W of the balance set is 

(8.2.4) w 

n 

w. 
l 

Since the jobs are statistically independent and identically 

distributed, we have 

-w. w 
l 

( 8. 2. 5) i 1, 2, .•• , n 
02 G2 

w . w 
.L 

Then also 

W nw 

(8.2.6) 

0
2 

= n0
2 

w w 

Define the binary random variable 

0 { 

l 
( 8. 2. 7) 11. 

J. 
0 

From the discussion above, 

( 8. 2. 8) 
Pr[11.~1J 

l 

if the 
.th 
l 

otherwise 

T) 

Pr[ rt. ~oJ 1-TJ 
l 

job is running 

where T) is the duty factor. Since the jobs are statistically 

independent and identically distributed, 

'i 
IT T) 

( 8. 2. 9) i 1, 2, .•• ,n 

02 2 -2 
T)(l-T)) TI 11 

11 . 
.L 

The total processor requirement P of the balance set is 
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n 

(8.2.10) p 2: 1t. 
1 

i=l 

and 

p -nrr nT) 

(8.2.11) 
(J2 

p 02 n rr nT) ( 1-T)) 

Now, let numbers gN and gM be given, with 0,ScN,Sl and 

0,Sc~l. These numbers gN and gM represent the allowable pro

cessor and memory overflow probabilities. That is, we want to 

choose M and N such that 

(8.2.12) 

Pr[P > N] ,S gN 

We must proceed carefully, because M and N are not independent. 

But before proceeding, we must indicate how Pr[W>M] and Pr[P>N] 

might be determined. 

The Central Limit Theorem tells us that the sum of n iden-

tically distributed, statistically independent random variables 

becomes normally distributed for large n. We may therefore 

approximate the distributions of W and P by normal distributions 

(these approximations are surprisingly good, even for n as 

small as 10 or 20; see Feller [F2, Vol. 1, p. 168ff]). That is, 

we approximate fw(u) and fp(u) by 

1 
expt - 2] fw(u) 

(u-W) 

V 2rr aw 2 (J2 
w 

(8.2.13) 

1 
exp[- (u-P) 2] fp(u) 

V 2rr crp 2 (J2 p 

-------~- ---~ ---
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and then 

Pr[W > M] 

(8.2.14) 

Pr[P > N] 

Therefore, given gM and gN we can find M and N (using standard 

tables for the normal distribution, such as [F2, Vol. 1, p. 167]) 

such that 

(8.2.15) 

1 and so relate M to gM and N to gN . It is now a simple matter 

to choose M and N. 

Let the memory size M be given. Then choose the largest n 

such tha t 2 

(8.2.16) Pr[W > M] 

n 

Pr[2:wi > M] .::;, e;M 
i=l 

Using this value of n, find the smallest N such that 

n 

(8.2.17) Pr[P > N] Pr[ 2: n:i > N] .::;, gN 

i=l 

1 The normal approximation is not the only way. For example, 
the more powerful Chernoff Bound [W2, p.67ff] shows that, given 
random variables z.>O with common density function f (u), there 
exists a decreasin~-function h(A) depending only on 2 f (u) such 
that z 

n 

Pr[ 2: zi ~ nA] .::;, (h(A) )n 

i=l 

with og-i (A) .::;,1 

2In Chapter 7, we required n~K, where K is the number of standby 
set queues. Here we assume that Mand N are large enough so that 
the largest values of n satisfying eqs. 8.2.16 and 8.2.17 also 
satisfy n~K. 
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- It should be cle~r from eqs. 8.2.16 and 8.2.17 that, once 

any one of the three quantities {n,M,N} has been arbitrarily 

given, the other two are uniquely determined (all other things 

being equal). Thus, it makes no difference which of {n,M,N} is 

chosen first. 

To choose a and B, let {n,M,N} be chosen as above, and 

set B such that 

(8.2.18) BM nw 

and set a such that 

(8.2.19) aN mt nT) 

The procedure discussed above is a worst-case procedure, 

for the following reason. In a real computer system, the values 

of a and B so selected are lower bounds on the actual values that 

may be used without violating the probabilities eM and eN. That 

is, the values of a and B actually used may satisfy 

.!1!l. ~ a ~ 1 N 
(8.2.20) 

.lli!2. ~ B ~ 1 
M 

The reason for this is: the scheduler carefully regulates the 

membership of the balance set, dynamically maintaining W within 

close tolerance of BM and P within close tolerance of aN. The 

procedure just described takes no account of this additional cer-

tainty, that W is close to BM and P is close to aN. Thus, the 

2 actual variance of Wis less than ow (eq. 8.2.6) and the actual 

variance of Pis less than o~ (eq. 8.2.11). There is more free

dom to choose larger a and B. 
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8.2.2. How Much Resource Slack? 

We refer to the reserve (1-B)M pages of memory as the 

slack memory, and the reserve (1-a.)N processors as the slack 

processor. We want to show that, as M and N are increased and 

sM and eN are held fixed, th~t the relative amounts of slack 

resources become negligible. 

Theorem 8.1. Suppose eN and eM are given, a and Bare determined 

according to the procedure above, and we let the number n 

of jobs in the balance set increase without bound (appro

priately adjusting Mand N to satisfy eM and eN). Then 

a-1 

a-1 

Proof: We show that .B-1, since the proof for a-1 is exactly 

the same. Since O~.B~l, it is enough to show: 

1-.B 0 e-
Refer to Figure 8-1, where we have plotted memory usage w, showing 

it to be normally distributed with mean .BM=nw and standard dev

iation Ow=Vna
00

• It is well known that, given eM' the probability 

Pr[W>M] depends only on the distance between M and .BM. That 

is, there exists a fixed constant b>O such that 

Then, as n-• 

Pr[W>M] 

(1-.B)M 
BM = 

Pr[.BM+baw > M] 

ba 1 
---SI. - - 0 

w Vn 

QED. 
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probability 

BM M 

Figure 8-1. Memory usage. 
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8.2.3. Relations Among Processors, Memory, Traverse Time 

There is an important three-way relationship among the 

number N of processors, the number M of main memory pages, and 

the traverse time T. If any two of these quantities are given, 

the third is determined. 

Theorem 8.2. Define BM to be the expected amount of memory to 

match a.N processors. Then 

(8.2.21) BM a.Nw( l+yT) 

where w is the expected working set size, T is the traverse 

time, and 

(8.2.22) y 

has been discussed at eqs. 8.2.2 and 8.2.3. 

Proof: Let {n,M,N} be chosen as discussed in Section 8.2.1. Then 

BM nw 

n 
a.N nT) 

1 + yT 

where TJ is the duty factor, given by eq. 8.2.3. Eliminating n 

between these two equations, we have 

n a.NC l+yT) 

so that 

BM nw a.Nw( l+yT) 

QED. 
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Since Theorem 8.2 depends on average value arguments, it 

is only an approximation to the actual behavior. Put another 

way, we may only regard the relation BM=~Nw(l+yT) as stating a 

necessary, but not sufficient, condition on the hardware confi-

guration. However, the discussion in Section 8.2.1 shows that 

we can regard 6M and 6N as confidence levels for this result. 

The relation BM=~Nw(l+yT) gives further insight into the 

causes of thrashing (Section 3.6). Recall that large values of 

T make the duty factor (and hence the attainable processing effi-

ciency) very sensitive to small changes in the missing-page 

probability (here, represented by y). In Figure 8-2 we have 

indicated the behavior of the processor-memory ratio: 

BM 
(8.2.23) 

~Nw 
(l+yT) R 

for T=l,10,100,1000,and 10000 vtu. It is clear that, when y is 

small and T is large, the slope of R is quite steep. Small 

fluctuations of y can result in wild fluctuations in R. Thus, 

if Rd=]W<1+yT) is regarded as representing the desired processor

memory ratio, and Ra=~ is regarded as representing the actual 

processor-memory ratio, then these fluctuations in y cause 

Rd to be seriously mismatched to Ra. 

In Figure 8-3 we have shown that the expected amount BM 

of memory grows linearly. Indeed, for large values of T, 

(8.2.24) BM z ~NwT 

Were we to reduce T by an order or two of magnitude, ~e could 

also reduce the main memory requirement by as much as an order 

or two of magnitude, without sacrificing efficiency. 
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R 

10000 
T=lOOOO 

1000 
1000 

100 100 

10 

1 

y 
0 l 

Figure 8-2. Desired processor-memory ratio. 

BM 

aNw 

T 

Figure 8-3. Relation among processors, memory, traverse time. 
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The relation BM=aNw(l+yT) shows that BM can increase if 

a~d only if aN increases, all other things being equal. Thus, 

if a
0

N<aN processors are available, then for some B
0

<B, 

B M=a Noo(l+yT), and (B-B )M main memory pages stand idle (that 
0 0 0 

is, they are in no working set). Similarly, if B M<BM main 
0 

memory pages are available, then for some a
0

<a, B
0

M=a
0
Nw(l+yT), 

and (a-a
0

)N processors stand idle. A shortage in one resource 

type inevitably results in a surplus of the other. 

All our claims that large traverse times degrade performance 

and strain system resources can be substantiated. Fikes, et al. 

[FS] and Lauer [Ll] report on their experience with the IBM 360/67 

Time Sharing System at Carnegie University, in which they replace0 

the drum auxiliary store with large (bulk) £Q£§. storage. For 

their system, the drum traverse time is about 10 times larger 

than the large core storage transfer time. They report that 

throughput was increased by about a factor of 10 when the large 

core replaced the drum. This supports our remarks concerning 

eq. 8.2.24. Since a considerable amount of main memory space 

was reserved for use as buffers for the drum, removing the drum 

made a large quantity of additional memory available. 

Lauer [Ll] points out that the equipment rental and main-

tenance costs were about 10 per cent higher after the large core 

storage was introduced. Since, however, the system capacity is 

effectively 10 times greater with large core storage than without 

it, the increased size of the market (user community) more than 

offsets the increased cost. 

----------------------------------------
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8. 3. Pooling 

Equipment pooling can remarkably enhance throughput. To 

verify this, we consider the conceptual experiment shown in 

Figure 8-4. 

Theorem 8.3. Suppose n requestors with identically distributed 

demands seek to use a given type of resource. Compare two 

cases: first, each requestor is given a private supply of 

resource; second, each requestor draws on demand from a 

pooled supply of the resource. In order than the probability 

n Pr[given requestor fails to obtain required resource] 

be the same in both cases, at least vn times as much resource 

is needed to provide private supplies as is needed to pro-

vide a pooled supply. 

Proof: Each of then requestors requests a random variable yi=y 

of the resource, independently of the others. For simplicity 

assume y=O. Then 

but 

thus, 

(8.3.1) 

02 
y 

f u 2 f Cu) du 
IYI ?_0 y 

-2 y f 
IYI ?_0 

?.. f u 2 f (u) du 
IYI ?_R y 

02 
y 

2 
R Pr[ lyl ?.. R] 

u 2 f (u) du 
y 

R2 f f Cu) du 
IYI 2:,.R y 
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1 2 n Requestors 

T 
J_ 

CASE 1. Private supplies of resource. 

T 

CASS 2. Pooled resource. 

l"igurP 8-4. Pooled vs. Private resource supplies. 
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If 

n 
y 2: IY~ 

i=l 

then 

02 2 no y y 

and eq. 8.3.1 becomes 

no2 

( 8. 3. 2) Pr[Y .2:. R] ~ 
____y 
R2 

Let s 2>0 be given. In Case 1 (Figure 8-4), the probability TI 

of the theorem statement becomes, using eq. 8.3.1, 

02 
E2 TI Pr[ ly\ .2:. R1 ] ~ 

_y 
R2 

1 

or, 
a 

Rl 
_::f._ 

s 

and 

(total resource in Case 1) 
no 
____y 

E 

In Case 2, suppose (n-1) requestors have made their requests, 

th and then then request arrives, his request being yn=u. Then 

he fails to obtain his request just when 

Therefore the probability TI of the theorem statement becomes 

TI j 

n-1 

(Pr[2: jy ii 2:. nR 2- luD) f (u) du y 
i=l 

n-1 

nR2]) (Pr[2: IYil +luJ > f (u) du y 
i-1 

f 



from eq. 8.3.2. Then 

and 

1 ()' _....::t.. 
Vn e: 
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(total resource in Case 2) 

Finally, 

(total resource in Case 1) 

(total resource in Case 2) 

n 0'2 
y 

()' 

n ....::t.. 
e: 

QED. 

It is therefore quite clear that sharing and pooling can 

significantly increase the usable capacity of a given amount 

of equipment, especially when n is large. 

It is one matter to realize that pooling at the finest 

level of detail is beneficial, but it is quite another matter 

to implement it. For pooling to operate without unnecessary loss 

of speed, it is necessary to dispense with a centrally clocked 

computer system and to rely wholly on asynchronous logic. Luconi 

[L2] has studied some of the rather delicate issues attending 

this problem. 
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Existing techniques make pooling of memory resources pos

sible, but they have not yet made pooling of processing hardware 

possible at an equivalent level of detail many programs can 

reside in one memory unit, but only one process can use a pro

cessing unit at a time. 

The problem of pooling the memory resources can be very 

effectively solved by paging. The smaller the page size, the 

better the pooling. Unfortunately the long traverse times that 

predominate in contemporary computer systems make it just as 

expensive to move a small page as a large one. These systems, 

therefore, have been forced into using large page sizes and have 

not always performed as well as expected. Since physical limit

ations make it impossible to reduce access times of rotating 

storage devices to the required levels, we must turn to non

rotating storage devices and rely increasingly on parallel data 

channels and asynchronous logic in order to effect completely 

successful memory pooling. 

Therefore, the potential for effective pooling of memory 

resources already exists in contemporary computer systems. 

It is not the case in contemporary systems that a potential 

exists for achieving the degree of processor pooling needed. 

There are three reasons for this. 

The first reason is complexity of interconnection. In 

order to satisfy objectives of reliability, expandability, and 

programming generality, it has been standard practice to allow 

each of the (say) n processors free and unrestricted access to 

each of the (say) m main memory modules, as indicated in Figure 8-5. 

It is not hard to see that the complexity of the interconnection 

grows exponentially as (mn), whereas the processor-memory capacity 
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m 

Figure 8-5. Full interconnection of processors and memories. 
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grows linearly as (m+n). Indeed, realizing the required large 

number of processors and memory units may not, using full inter

connection, be ~t all feasible. Pooling will have to occur at 

a much finer level. 

The second reason is the large amount .Q£ information needed 

iQ. specify .s, computation. In Multics, for example, a myriad of 

tables and lists are needed in order to completely specify a 

process's name space and to allow it to be interrupted at ar

bitrary times and yet be properly restarted. These tables have 

two deleterious effects. First, it is expensive to switch a 

processor between processes, partly because of all the infor

mation that must be loaded into the processor registers, partly 

because of operating system scheduling functions. Second, the 

tables that must be loaded into main memory while a proces.s is 

active occupy considerable space and reduce the memory space 

available to a program's working set. Unless all this software 

complexity is rooted out, it will remain impractical to implement 

pooling of hardware at a fine level. At the end of this chapter 

we shall disucss a highly organized name-space information struc

ture that may one day produce a solution to these problems. 

The third reason is ~ .2!. parallelism !n, ~ hardware. 

Processor pooling implies considerable process activity, which 

in turn implies considerable information movement. Parallelism 

on the data channels between levels of memory and in the addres

sing hardware is needed if the memory system is to be capable of 

handling the information flows induced by busy processor hardware. 

Therefore, although there is much work to be done on memory 

system organization and the structuring information, there is 

even more work to be done on basic hardware design so that the 

required degree of processing can be achieved. 
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8.4. Multilevel Memory Systems 

A memory hierarchy, or multilevel memory, is a sequence of 

increasingly capacious and successively slower-access memory 

devices. Its general organization is shown in Figure 8-6. 

There are n main levels, M
1

, ••• ,Mn' and m auxiliary levels, 

A
1

, ••• ,Am. Each main level device may be addressed directly by 

a processor. Information residing in auxiliary devices must be 

moved into a main level (namely, M ) before it can be referenced. 
n 

We assume that information can migrate only between adjacent 

levels. It is also possible that each auxiliary device (such 

as B) feeds directly into M , rather than into another auxiliary 
n 

device. 

By splitting main memory into several levels, we intend 

to model computer systems using large~ storage in addition 

to the high speed execution store. In these systems, we would 

have n=2; for generality, we allow arbitrary n. The auxiliary 

devices may be drums, disks, tapes, etc. 

Each main level device Mk has an access time ak, representing 

the time required to reference one word in level Mk. The access 

times satisfy 

< < < a n 

We take the access time a
1 

of the fastest memory M
1 

to be one 

virtual time unit (vtu). 

Define T .. to be the traverse time from device i to device j. 
lJ 

Here, 

We assume T .. 
lJ 

j-1 

2:: Tk, k+l 
k=i 

Tji, and that 

i < j 
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n 
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A 

1 
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···--0 

Pigurc 8-6. Drganizalio~ of ~ultilevel memory. 
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T < / T < T 12 · • • -, n-1,n n,n+l < . • • < T 1 n+m- ,n+m 

These traverse times include queue delays, mechanical position-

ing times (if any), access times, and page transmission times. 

The traverse times to auxiliary devices usually depend on rot-

ation times, and so queue delays and transmission times are 

usually negligible components in them. The traverse times be-

tween main levels are composed mostly of transmission times, 

since access times are small. Typical traverse times, using 

1 vtu ~ 1 microsecond, are: 

ty1:2e of device access time traverse time (12age=lK words) 

thin film 0.1 vtu 100 vtu ( 0. 1 ms.) 

high speed core 1 vtu 1000 vtu ( l ms.) 

slow speed core 8 vtu 8000 vtu ( 8 ms.) 

high speed drum 10 4 vtu 104 vtu (10 ms.) 
r:; 

10 5 moving-arm disk 10~ vtu vtu (100 ms.) 

When the traverse times depend on the rotation time of 

a device, we assume that shortest-access-time scheduling tech-

niques, known to be optimum [C2,D3l, are used. We may thus 

assume that each such traverse time is as small as physically 

possible. 

The cost of storing one word for one unit of time is less 

at lower levels, M1 beinq the most expensive and Am least expen-

sive. The total storage capacity is assumed sufficient for 

system needs. 

The combined capacity of the main levels should certainly 

be sufficient to contain the balance set. But, in order that 
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lower traverse times may be effective, we strongly recommend 

that the main levels be sufficiently capacious that standby set 

jobs may also have their working sets present in the main levels. 

Thus, a job re-entering the balance set need not experience 

paging delays at the start of its quantum, and much higher 

processing efficiency is possible. 

We assume information moves upward only on demand, and 

downward as it falls out of use. 

We assume that the unit of storage in the main levels is 

the page, and the page size is the same in each main level. The 

unit of transfer between main levels is the page. We assume the 

unit of storage in the auxiliary levels is the segment. The unit 

of transfer between auxiliary levels, and between Mn and A1 , is 

also the segment. Since information must reside in a main level 

to be addressable, a reference to information in an auxiliary 

level must always involve the transfer of a segment into Mn 

before the reference can be completed. 

The basic strategy we adopt for managing multilevel memories 

is to place information at whatever level results in the least 

memory-usage cost (space-time product). 

There are three questions we must answer: 

1. How are the main levels to be managed? 

2. How are the auxiliary levels to be managed? 

3. What is the role of pre-paging? 

We shall use notions of locality and notions of cost to develop 

guidelines for strategies in each of these areas. 
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8.4.1. Managing the Main Levels 

In a multilevel memory, a working set allocation policy 

guarantees a computation the use of processors if and only if 

there is enough uncommitted space among the main levels to con-

tain its working set. Thus, if wet,•) is the working set of 

some computation, it resides somewhere in 

We must refine the working-set definition in order to decide 

at which level each page of wet,•) shall reside. 

It should be apparent that we should use a value for 1: that 

permits most of a program to reside in the main levels, because 

space is more abundant than in a single-main-level system, and 

because we want to assure higher processing efficiency. For 

example, given g, we can choose 1: such that the missing-page 

probability satisfies 

e8.4.l) 1-F ( 't") ~ g 
x 

where F (1:) is the interreference distribution. x 

Let Z be a program. For each page i in Z we define the 

reference density p. (t,•) at time t to be 
l 

number of references to i in (t-1:,t) 
(8.4.2) 

Then the working set of the computation using Z is 

(8.4.3) W(t,1:) 

Let 9 0 ,91 , ••• ,en be a set of thresholds, where 

(8.4.4) 1 0 
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Then we partition W(t,•) into n subsets, where 

(8.4.5) 

(8.4.6) W(t,•) 

n u Wk(t,•) 

k=l 

and Wk(t,•) is the set of pages to reside in level Mk. 

This definition is based on a refinement of locality, the 

concept that, during any execution interval, a process favors 

some of its pages. The reference density p. Ct,•) measures the 
l. 

degree to which page i is being favored. We assume that the set 

of favored pages (measured by W(t,•)) is not likely to change 

abruptly. In addition, we assume that the reference densities 

p. (t,•) are not likely to change abruptly. 
l. 

The capacity of each main level can be determined by 

suitable generalizations of the procedures already discussed 

in Section 8. 1. 

The thresholds 9k represent tradeoffs between the cost of 

not having a page in level ~ and running more slowly, versus 

having a page in level Mk' running more quickly, and paying the 

overhead of moving the page. 

One method for setting the thresholds 9k is as follows. 

Let q be the average quantum, over all jobs, and let S be the 

page size. We wish to decide whether to move page i from level 

Mk into Mk_1 • If page i is moved, the saving in running time 

during q is: 

where ak is the access time to level Mk. The time required to 
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move the page is 

since the page transfer proceeds at the slower of the two 

access times ak and ak_1 • The page should be moved if 

(8.4.7) 

That is, whenever 

(8.4.8) 

Hardware not presently commercially available would be 

needed to implement automatic memory management using these 

ideas 1 • Whenever the reference density of a page in level Mk 

exceeds ek-l' the page is moved into Mk_1 • Whenever the re

ference density of a page in level Mk falls below 9k' the 

page is a candidate for removal to Mk+l" The least recently 

used non-working set pages in Mn are candidates for removal to A1 • 

1For example, we could associate a ~-bit shift register with 
each page-block of main memory. The bit pattern in the re
gister is shifted once every time unit. A 1 is entered into 
the register if the page is referenced, 0 otherwise. The 
number of l's contained in the register can be used as a mea
sure of the reference density. 
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8.4.2. Managing the Auxiliary Levels 

Because the high access times make it expensive to re

ference information stored in auxiliary levels, we assume the 

the unit of information storage and transfer among the auxiliary 

levels is the segment. Moreover, an entire segment is moved 

from A1 into Mn whenever one of its pages is referenced. 

The best strategy for managing auxiliary levels is the 

least-recently-used strategy. As a segment falls out of use, 

it finds its way into the lowest levels. A segment is moved 

upward only when it is referenced. 

The reason this strategy is best follows from a locality 

concept, though not exactly the same concept we have been using 

for program behavior. The locality concept of interest here 

is locality in people's behavior and actions. The longer it has 

been since a person used a certain segment, the more likely it 

is that he has forgotten about it or that he no longer cares 

about it, and so the less likely it is that the segment is of 

immediate u~e to him. 
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8.4.3. What About Pre-Paging? 

When, if at all, is it worthwhile to load a job's infor-

mation into main storage prior to its execution? 

The chief argument for pre-paging is as follows [Ll]. 

Suppose it requires a traverse time T to acquire a page from a 

drum auxiliary memory, and that we wish to demand-page an n-page 

working set into memory. What is the space-time product (cost) 

of this operation? For k=l, ••. ,n, paging in the kth page results 

in k pages standing idle in memory, at a cost of kT. The total 

cost is 

(8.4.9) 

n 

2: kT 
k=l 

n(n+l) T 
2 

On the other hand, by careful drum management, it is possible 

to write out the n-page working set as a contiguous block and 

read it back in as a contiguous block, the readin operation re-

quiring about one traverse time T (since the page transmission 

times are so much less than the rotation time). The cost of 

the operation is nT, since n pages of memory must be reserved 

before the paging operation can begin. Let C denote the ad-

ditional cost of identifying working set pages (so that they can 

be paged out as a block) and carrying out the page-out operation. 

Then pre-paging is better if 

(8.4.10) nT + C < n(n:+-1) T 
2 

It is usually possible to make the cost C small enough to satisfy 

eq. 8.4.10. Apparently, then, pre-paging is worthwhile when 

used to obtain information from a rotating device. 



259 

If the information to be pre-paged resides in a large 

core storage, where the traverse time depends only on page trans

mission time, pre-paging is not worthwhile. With rotating de

vices, it takes about as much time to move a block of n pages 

as it does to move one page, whereas with non-rotating devices 

it takes one traverse time to move each page. There is clearly 

no gain from pre-paging information stored in a non-rotating 

device. 

Nevertheless, we do not believe pre-paging is worthwhile 

in the multiprocess computer systems we have described. The 

argument given to derive eq. 8.4.10 depended on there being 

no sharing of information. If a working set is to be paged 

out in a block, we must exclude the shared pages from this oper

ation. But then, when paging the working set back in, these 

shared pages may not be available, and additional effort is 

needed to locate them. The costs C (eq. 8.4.10) of identifying 

pages, of careful drum management, of handling the page-out 

operation, and of recovering the missing shared pages, can easily 

outweigh the potential savings. Other arguments agains pre

paging have been presented in Section 3.4. 

We do not, therefore, subscribe to pre-paging working set 

pages in multiprocess computer systems, unless no sharing is 

possible. Furthermore, if the multilevel memory system of 

Figure 8-6 is used, it is unlikely that a working set of a 

standby set computation will leave the main levels, so there is 

no need for pre-paging. 
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We do, however, feel that it is possible to anticipate 

that an item will be referenced even before it is in a working 

set, and begin moving it into higher levels beforehand. This 

requires a new concept of information structures, which we 

discuss in the next section. 
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S.S. The Environment Graph Information Structure 

Recent work by Dennis [DlO] on the design of highly para

llel computer systems has produced interesting concepts which 
\ 

can greatly simplify the solution to the resource allocation 

problem. The most important concept is that of the environment 

~ information structµre. 

/"'A naming scheme is a set of rules for relating occurrences 

of identifiers to items represented in the computer's memory 

system. We assume here that the same naming scheme is used 

throughout the entire memory system from the lowest level to 

the highest, and throughout the entire execution of a process 

from its first reference to the last. This means that all 

references can be handled within the hardware, and in particular 

that levels of memory can communicate directly with one another 

l without having to consult an operating system procedure • 

The environment graph is a generalization of the file.dir

ectory structure [Dl] to a level of detail so fine that every_ 

word has a named position. The environment graph is a directed 

1Multics-like systems do not have a uniform naming scheme. All 
1user information is embedded in a system-wide file directory 
structure [Dl]. A program makes its first reference to a seg
ment by means of a ~ ~' which may incur many costly refer
ences to little-used file directories stored in auxiliary 
levels before-..~he desired segment is located. Once located, 
a segment is assigned a segment number; subsequent references 
take place using segment numbers and are handled automatically 
by hardware. The dreadful inefficiency of referencing infor
mation buried in the file directory structure makes it neces
sary to have a second, more efficient naming scheme that 
streamlines later information references. 
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acyclic graph having a single root node from which there is at 

least one directed ~ to every other node in the structure. 

Every node has a label. Figure 8-7 shows an example of an (un

labelled) environment graph. All paths are assumed to be directed 

downward. 

If v 1 and v 2 are nodes, and there is a directed path from 

v 1 to v 2 , then v 2 is a descendent of v 1 • A subgraph is any node 

v together with all•its descendents; subgraphs represent data 

structures, such as files, arrays, procedures, etc. Figure 8-8 

shows how the linear sequence of instructions 

would be represented. The leaf nodes (those with no descendents) 

represent actual data values, whereas internal nodes represent 

named information structures (an internal node is always inter-

preted as the root of a subgraph). 

A data value or structure is identified by selecting a path 

to it from the root node. A special data type, the pointer, may 

designate some internal node as being the most recent reference 

point of a process. The prncess makes new references with res

pect to its pointer, not with respect to the root. 

Define the k-orbit of a node v to be the set of nodes that 

are connected to v by a shortest undirected path of length k. 

The k-sphere of a node v is the set of j-orbits for l~.J~k. If 

a process has its pointer at node v it will generally make its 

next reference to some node in the 1-sphere of v, its second 

reference to some node in the 2-sphere of v, and its kth refer

ence to some node in the k-sphere of v. Therefore the environment 
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root 

Figure 8-7. An environment graph. 

v 

v 
n 

Figure 8-8. Representdtion of a linear sequence of words. 
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graph can be used to anticipate references: if we observe the 

pointer at node v, we can say reliably that the next k refer

ences will occur within the k-sphere of v. 

Consider the multilevel memory system shown in Figure 8-9. 

Suppose a node v residing in level Mk is referenced, requiring 

it to be moved into level M1 • In anticipation of future refer

ences, v's 1-orbit should be moved into level M1 , its 2-orbit 

into level M2 , and so on: when a node is moved upward k levels, 

its (n-k)-sphere is moved upward k levels. The k-orbit of any 

node v in level M1 should not lie below level Mk in the memory 

system. 

Since the file directory structure used in many contemporary 

computer systems may be regarded as an environment graph whose 

nodes are segments (a node is a directory segment if and only 

if it is an internal node), a similar procedure might be used 

to anticipate segment references. Keep all of a segment on one 

level. If we observe a directory at level k is consulted, we 

bring it into level M1 , all its contents to level M2 , etc. 

By using the environment graph information structure to

gether with a uniform naming scheme and highly parallel auto

matic memory management hardware, these goals are met: 

1. There is sufficient detail in the environment graph 

to specify a process, so that little more than a pointer 

is needed to remember where the last reference took place. 

This eliminates complex auxiliary tables needed to spec

ify a computation, conserves memory, and permits rapid 

inter-process switching. 
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processors 

Figure 8-9. Multilevel memory for use with environment graph. 
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Sharing is natural to implement. User A, whose local 

root node is v A, can share subgraph v tl o:f user B simply 

by introducing the edge (vA,v
8

i into the environment 

graph ( ith B's permission). 

3. Protection is natural to implement. User A cannot 

reference any node VB for 1P1hich there lS no path 

(vA,vB); and the path cannot be established 'Aiith per-

mission from user 8. 

1. Locality is implied by the k-spheres. Given thLtt il 

process has referenced node v, its next k references 

will <Jenerally fall within the k-sphere of v. In 

managing multilevel memories, the k-orbit of any node 

v in level M
1 

should not lie below Jovel Mk. '/Jorki ng 

set concepts can be used to decide when a node is to 

be moved downward. 



267 

8.6. Summary 

Programmers and system designers should keep in mind 

cert~in guidelines, where applicable: 

1. locality. 

2. programming generality. 

3. uniform naming schemes. 

4. pooling of equipment at the finest level of detail. 

5. parallelism. 

6. ability to manipulate small quantities of information. 

The equipment configuration can be described analytically. 

Relations among program properties, processor-memory resources, 

and traverse times were derived. There is strong evidence 

favoring the use of large core storage at the upper levels of 

memory. 

In order to utilize equipment fully and to obtain the 

required capacity, it is necessary to pool small hardware units. 

If this is done successfully, it is possible to obtain many times 

the capacity with little more equipment than is currently used 

in comput.er systems. 

Management of multilevel memories can be handled using 

generalized working set concepts. The environment graph infor

mation structure provides a method for anticipating information 

references. 
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CHAPTER 9 

Performance Measures and Accounting Procedures 

9.0. Introduction 

Once we have accepted the working set model and the ideas 

of demand and balance as being valid and useful approaches to 

the resource allocation problem, the set of performance measures 

is more clearly defined. We shall review the relevant probability 

oistributions and indicate how their measurement is useful, not 

only for proper regulation of the computer system, but also for 

assisting the administration in setting its operating policies. 

We shall complete the discussion begun in Chapter 1 regarding 

metering of resource usage and attributing of charges; of part

icular interest are methods for charging for shared information. 
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- 9.1. What to Measure and Why 

The measures fall into three classes, according to their 

purpose: 

1. Working set measures. The distribution of the page 

interreference intervals, the working set size distri

bution, and the autocorrelation function for working 

set size, are needed for the proper (program-dependent) 

determination of the working set parameter •, and for 

better understanding of program behavior. 

2, System control measures. The joint demand distribution, 

the job running-time distribution, and the queue length 

distribution are needed to decide what equipment is 

needed and to arrive at a solution for the balance 

policy from the mathematical programming problem 

equations. Here, the efficiency, the missing-page 

probability, and the traverse time serve three purposes: 

first, to determine sensitivity to thrashing; second, 

to determine the equipment configuration; and third, 

to provide additional (non-program-dependent) criteria 

for selecting the working set parameter •· Finally, 

the variation of the balance set demand (p8 ,m8 ) about 

(a,B) is useful for deci~ing on the choices of the 

balance parameters a and B. 

3, Policy-determining measures. The queue-length dis

tribution (equivalently, the distribution of unser

viced demands in the standby set) provides indicators 

to the administration when user community demand is 

outstripping supply. The relationships among total 

community demand, bidding, and price, will have to be 

measured in order to be able to set prices. 
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We discuss each measure separately and indicate how it 

applies to each of these three categories. 

(1). Interreference Distribution F (u). (cf. Section 4.1). The -x--

page interreference intervals x, so intimately related to work-

ing set properties, have appeared again and again in our dis-

cussions. Although we defined them in virtual time, because 

virtual time renders invisible the vagaries of paging and arbit-

rary sequencing of scheduled jobs, we can also define them in 

real time and obtain directly the real-time working set pro-

perties. In order that we can do this with the assurance that 

the derivations are correct, we must first convince ourselves 

that page waits and scheduling interrupts are distributed uni-

formly among the jobs. Since working set memory management 

strategies assure statistical independence among jobs, and since 

the scheduler is assumed fair, we may be assured of non-distorted 

measures. 

(2). Working set size distribution F Cu). -w--- (cf. Section 4.4). 

Measurements of individual working set sizes are needed to ob-

tain more insights into the behavior of programs, answering ques-

tions such as: How strong is locality across the range of pro-

gram types?, How does w(t,") vary across the execution of a pro-

gram?, How successful can programmers who attempt to design 

programs with small, compact working sets be? 

(3). Correlation function R (u,•). 
-t.l 

(cf. Section 4.8). The 

correlation between working set size at two times is invaluable 

not only for examing locality, but also for assisting in the 
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proper choice of • and evaluating the predictive ability of a 

measurement of the working set size. To determine Rw(u,•), pro

ceed as follows. Let {tn}~=O be a long sequence of N equally

spaced instants at which the size wCt,•) is sampled, and let 

w.=w(t. ,•)denote the size at time ti·· Then the value of R Cu,•) 
l l w 

at time spacing ui is: 

N-i 

N:i 2: wk wk+i 
k=O 

Two things must be noted: the number N of samples must be large 

so that i may become large enough, with N>>i, to make the sam-

ples wk and wk . statistically independent; and R Cu,•) depends 
+l w 

on •, and so it will have to be measured for a family of •-values. 

(4). Working Set Intersections. (cf. Section 3.1.3). A study 

of the size of the intersection between the working sets W(t,•) 

and W(t+y,•) of a certain process, as a function of y, would 

provide insight into the predictive ability of working sets. 

Also of interest is the effect of an interaction during Ct,t+y) 

on the intersection, as a function of the duration of the 

interaction. 

(5). The running-time distribution F (u). (cf. Section 6.2.2). - - -q--

In the case of single-process computations, this distribution 

is useful for determining processor demand. This distribution 

may not be particularly valuable in the case of multiprocess 

computations, in which we are more interested in the number, 

rather than the duration, of component processes. Moreover, 

since q is defined to be interval between successive interactions, 



272 

the distribution F (u) tells how often a process will be 
q 

blocked. 

(6). ~demand distribution F (u,v). (cf. Section 7.4). -pm 

Knowledge of this distribution is needed to obtain a solution 

(a balance policy) from the mathematical programming problem 

described in Sections 7.3 and 7.4. Assuming a fair balance 

policy, Fpm(u,v) is easily measured by taking samples of the 

jobs in the standby set queues. Knowledge of this distribution 

is also invaluable for assisting the administration in setting 

prices and deciding when to purchase equipment. If it is ob

served that either of Pr[p=l] or Pr[m=l] is not small, then 

either price controls must be enforced to reduce demand or 

more equipment must be purchased. 

(7). Queue length distributions fnipmCylu,v). This gives the 

length n of the queue at the point (u,v) in the standby set 

demand space, Section 7.4. This is again useful for finding 

the optimum balance policy and for indicating to the adminis-

tration when the total demand is high enough to warrant new 

equipment. 

(8). Duty factor .!ll:Ll.· (cf. Sections 4.5 and 5.6). Defined 

as the fraction of time in the balance set a process is not in 

page wait, the duty factor is useful for determining sensitivity 

to thrashing (Section 3.6) and for determining the equipment 

configuration (Section 8.2) and for estimating processing effi-

ciency. 
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(9). Missing-page probability A(T). (cf. Sections 4.2 and 5.4). 

Useful for determining sensitivity to thrashing, and for estim-

ating paging rates. It can be measured in a time interval I as 

number of page faults in I 
A(T) 

number of references in I 

(10). Traverse~ 1:· It is useful to know how often references 

are made to slower~ lower levels of memory, for purposes of de

termining sensitivity to thrashing and memory system requirements. 

(11). Variation of balance set demand. For a given balance 

policy, we can perform experiments to observe the variation of 

balance set demand Cp
8

,m8 ) about the desired Ca,B). Doing this 

for a family of (a,B) values will yield information useful for 

determination of (a,B). 

(12). Demand .:l:C§_. cost curves. (cf. Section 1.4.1). The steady 

state curves discussed in Chapter 1 relating cost per unit re-

source to total community demand would be valuable for assisting 

administration officials set prices. These curves can be com-

posed from the joint demand distribution F (u,v) resulting from pm 

particular price settings. The administration may have to ex-

periment with prices in order to determine the general character 

of the curve. 

(13). Bidding and inflation. (cf. Section 1.4.3). Assuming the 

existence of a bidding mechanism, it is necessary to know 

whether inflation is a problem. 
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9.2. Charging for Resource Use 

Given that memory management at all levels of the memory 

hierarchy is controlled by means of working set or related stra-

tegies, we observe that there may be no need to explicitly bill 

for processor usage, because a process receives service from 

a processor if and only if its working set is in main memory. 

We merely charge an account for the size and duration of its 

main memory usage; in so doing we implicitly obtain processor 

usage. 

Thus, let w (t) denote the number of pages in main memory 
p 

at time t, belonging to process p. If w (t)=O we understand 
p 

that p has no pages in main memory (i.e., it is neither running 

nor page wait) • The cost C (I) to process p during a real time 
p 

interval I for main memory usage is 

(9.2.1) C (I) 
p 

c J w (t) dt 
o I p 

some c >0 
0 

and C (I) implies both processor and memory usage. 
p 

We do not mean to imply that processor usage ought not be 

metered. We only mean to point out that the same mechanism 

that meters memory usage can be used to infer processor usage 

costs. 

When there is sharing, we follow the ideas of Section 5.1, 

letting a page in main memory belong to the working set of the 

process that most recently referenced it. In this case wp(t) 

still measures the number of pages belonging to process p at 

time t, and the cost is still given by eq. 9.2.1. The problem 

of attributing pages to processes is an implementation problem, 

and has already been discussed in Section 5.1. 
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Eq. 9.2.1 c~:jn be extendec ecJ.slly to memory usciqe costs 

in rnu I ti l PVe I mcT1uc i C'',, where no·v1 an ~ (Section S. l) has 

the nurcber of p~ges held by 0wr~L a_ t .i_cvcl 

is 

Let w((t) denote 

M k' 
and suppose 

ThP~, d~r~ng an intPrv~l I, owner j is charged 

( 9. 2. 2) (:;-) 

for his resource us~ge. 

n 

cci • 2: ck w~ ( t) H 
~ k~l 

some c >0 
0 
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CHAPTER 10 

Conclusions 

By constructing abstract behavior models for ongoing 

multiprocess computations, we have intended to build a frame

work within which we can understand misunderstood problems, 

answer unanswered questions, and foresee unforeseen difficulties. 

Perhaps more important than the particular models is the 

basic approach. Every one of the models is based on an appro

priate locality concept. 

For a variety of reasons it is natural to suppose that, 

during any interval of execution, the majority of programs 

will favor a subset of their information, exhibiting locality 

in their reference patterns. 

A process's working set of information -- the pages it has 

referenced during the last ~ units of execution -- is a measure 

of the set of favored pages. Main memory allocation strategies 

that grant processors to processes if and only if their working 
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sets are present in main memory can minimize both memory 

usage costs and the possibility of thrashing. By defining a 

page's reference density -- the fraction of the last ~ refer

ences it received -- we can refine the notion of a working set 

for memory systems having several levels of directly-addressable 

memory. Pages with the highest reference densities reside in 

the highest levels, and pages with the lowest reference den

sities reside in the lowest levels. 

The locality concept behind these working set models 

assumes that a process is unlikely to abruptly change either 

its favored pages or its reference densities. 

It is quite clear that resource allocation can be very 

effective if programs do in fact exhibit the locality properties 

we assume. Indeed, the more pronounced the locality behavior, 

the more successful the resource allocation. Because the con

cept of a working set is defined independently of a computer 

system, it is perfectly reasonable to encourage programmers to 

construct their programs to have small, compact working sets. 

There is no need to resort to absurdities, like a declare 

working set statement in PL/I; all that is necessary is that 

a programmer get organized, avoid unnecessary jumping from 

region to region in name space, and employ algorithms and data 

structures that induce highly local reference patterns. 

The definition of system demand is another application of 

locality concepts, for we assume that it is possible to measure, 

and act on, a computation's demand before the demand can change 

significantly. 
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The definition of system demand can be extended from 

two resource types -- processor and memory -- to n resource 

types. One simply defines an n-tuple, whose ith position 
. th 

contains a measure of demand for the i resource type. Demand 

for resource types beyond processor and memory can be defined 

once the appropriate locality concept has been recognized. 

Thus, by first asking ourselves the question: What is the 

locality concept applicable here?, we have been able to cons-

truct useful models for program behavior. We suspect that this 

sort of approach to constructing behavior models may be useful 

in other areas as well. 

The model of a balanced computer system has given insights 

into the causes of thrashing, into the equipment configuration 

problem, into means of satisfying other scheduling objectives 

beyond balance, and into methods of analysis. 

When the computer system is contiruously balanced, the 

demand of the balance set is tightly distributed about the de-

sired demand. Although we cannot accurately predict the demand 

of an arbitrarily given computation, we can accurately predict 

the demand of the balance set. For this reason it is possible 

not only to avoid thrashing, but also to effect the proper 

equipment configuration and be confident that it is correctly 

matched to the work load. 

Balance policies are flexible. By formulating a mathe-

matical programming problem whose objective function is arbit-

rary, whose constraints enforce both balance and fairness, and 

whose solution is the set of jobs to be admitted to the balance 

set, we showed that it is possible to establish reasonable 
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policies with respect to other, arbitrarily given criteria 

(such as minimum response time). 

The model of a balanced computer system has shown that 

analysis is possible because computations can be made independent 

of one another, inasmuch as resource acquisitions of one compu-

tation do not interfere with resources in use by another. This 

mcrlel has also shown that processor and memory demands cannot 

be treated independently: resource allocation decisions must 

account for both demands at the same time. 

The model of a balanced computer system has many applic-

ations to contemporary and future problems of computer system 

organization. This model gives quantitative justification to 

many ~ntui~ive ideas; for example, the intuitive notion of a 

working set, or the benefits obtainable by sharing information 

and pooling equipment, or the dependence of thrashing on memory 

traverse times. This model affords possible solutions to prob-

lems for which we have no previous answers, such as the equip-

ment configuration problem or the thrashing problem. This 

model makes clear which program 'behavior parameters are impor-

tant, and what performance measures ought to be used. The model 
/ 

suggests better system organizations, better resource allocation 

policies. The mcrlel can make system designers and administrators 

feel confident that there is theoretical justification to their 

decisions. Finally, the model has shown that we are only start-

ing on the long road to understanding the complex behavior of 

computations and other information-processing activities. 

If we have answered some questions, we have raised others. 

Many of these have already been indicated throughout the text. 
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The most troublesome problems arise when information is 

shared. In our work here, we have made processes statistically 

independent, an assumption that is valid only if processes do 

not communicate or if shared data is not interlocked. Clearly, 

many interesting questions concern non-independent processes. 

It is evident that we want two processes to run concurrently 

whenever they share information. Ideally, we want to use 

scheduling mechanisms and policies that somehow automatically 

group processes together, according as they share information. 

More work is needed in this area. 

We defined a computation to be a collection of mutually 

cooperating processes and information operating in the same name 

space, so that a computation is behaviorally well-defined. Might 

a vaguer definition lead to even more useful models? Can we de

fine degrees of cooperation among processes and let the member

ship of a computation vary dynamically, according to degrees 

of cooperation? More work is needed in this area. 

Another direction the work can be extended is into the 

so-called distributed ~problem. What locality and working 

set concepts are i.mportant when the data is geographically scat

tered, as might be the case in a computer network? Is there any 

way to anticipate, on the basis of present or past behavior, 

when information should be moved from one geographic location 

to another? 

We have intended to devise new approaches to modelling com

putations, to spark a new kind of thinking about dynamic infor

mation processing activities, and to develop new philosophies 

about resource sharing and allocation. We sincerely hope we 

have raised more questions than we have answered. 
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