
I
t
I

INCREMENTAL SIMULATION ON A TIME-SHARED COMPUTER

by

MALCOLM MURRAY JONES

S. B., Massachusetts Institute of Technology
(1957)

S. M. , Massachusetts Institute of Technology
(1958)

SUBMITTED IN PARTIA~ FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOC TOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Certified by .

Accepted by . • . •
Chariman,

February 1967

Thesis Supervisor

.
mittee on Graduate Students

INCREMENTAL SIMULATION ON A TIME-SHARED COMPUTER

by

MALCOLM MURRAY JONES

Submitted to the Sloan School of Management on February 6, 1967, in par
tial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

This thesis describes a system which allows simulation models to
be built and tested incrementally, It is called OPS-4 and is specifically
designed to operate in the environment of the Multics system. It rep
resents a major expansion and improvement of the OPS-3 system im
plemented in CTSS and also includes many features adapted from other
current simulation syste1ns. The PL /1 language, aegmented by many
additional statements and new data objects, provides the basis for de
fining models in OPS-4. A list of desirable features for an incremental
simulation system is presented and it is shown how OPS-4 incorporates
these features, whereas other current simulation systems satisfy only
some of them and are not suitable for use in a time-shared environment.

Some of the particular problems solved by OPS-4 are the imple
mentation and identification of many data bases associated with one pro
cedure, th~ achievement of apparent simultaneity of execution of many
procedures, the use of multiple processes for achieving asynchronous
operation of the simulation system, and a combination interpreter and
incremental compiler which allows both the data base and model struct
ure to be changed and the model immediately executed without the need
for complete recompilation.

OPS-4 includes extensive debugging and tracing features which
are particularly adapted to the on-line, interactive environment provided
by Multics. OPS-4 also makes extensive use of list structures, so the
techniques of memory compacting to reduce unnecessary paging activity
are described. Numerous methods for obtaining statistical measures
of a model 1 s performance and plotting its dynamic behavior are provided
in OPS-4. The use of graphical d~splays for debugging and dynamically
rnonitoring a rn_odel 1 s performance are discussed,

A simplified model of page and segment fault handling in Multics
illustrates soni.e of the features OPS-4 provides to allow the user to con
tinuously interact with a m.odel during its construction, testing and run
ning phases. It also illustrates how the user himself may portray portions
of a model that are not yet defined.

Thesis Supervisor; Martin Greenberger

Title: Associate Professor of Management

AC KNOW LEDGEl\i~~'!\J'T

I sincerely appreciate the attention, interest and encouragement

given to this research by my advisor, Prof. Martin Greenberger. He

was a constant source of ideas and a demanding critic. Many of the

concepts presented in this thesis originated during stimulating discuss

ions with him.

I am grateful to Project MAC which provided the .facilities and

support for this thesis and a stimulating environment for computer or

iented research. Numerous individuals at Project MAC,. especially

R. C. Daley, E. L. Glaser, ·R. M. Graham, F. Kamijo, J. H. Morris,

Jr., D. N. Ness, J. H. Saltzer, and D. B. Wagner, provided informa

tion and acted as critics of embryonic ideas.

I thank Profs. F. J. Corbat6 and M. L. Minsky who, with Prof.

Greenberger, served not only as members of my thesiE. co1nmittee,

but also as members of a special committee which supervised my in

terdepartmental program in Computer Sciences. I am grateful to

Prof. Corbato for initially bringing me in contact with digital computers

during the time he was working with the Whirlwind computer.

I also appreciate the assistance of Miss Janet Cohen and Mrs.

Jackie Robinson,· who typed numerous drafts of this thesis. Their ab

ility to decipher my hand-written manuscripts far exceeds the abilities

of the best currently available pattern recognition programs! Special

gratitude. goes forth to my wife, Jill, who typed the final draft of this

thesis and provided the necessary spiritual support so important dur

ing the completion of this thesis.

CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

1. SIMULATION 0 LD AND NEW

On-Line, Incremental Simulation
Events and Activities
The Simulation Process
Simulation Languages

SIMSCRIPT
GPSS
SOL
SIMULA
OPS-3

A New Time-Sharing Computer
A New Simulation Language
Implementation of OPS-4
Thesis Overview

2. SIMULATION IN MULTICS

Simulation Essentials
Limitations of Multics and P L/l for Simulation
An Overview of Multics
The Relation of OPS-4 to the Shell

Handling of Quits and Interrupts
Modifications to the Shell

Variable Calling Sequences
Multiple Process in OPS-4

The Problem of Reproducibility
Controlling Parallelism
Special Asynchronous Processes in OPS-4

Summary

3, CONSTRUCTING A MODEL

A Model in OPS-4
Hierarchical Models
Three Types of Progran1s in OPS-4

Unco1npiled Programs
User Portrayed Programs

iv

ii

iii

1

1
3
3
4
5
6
7
8
9

10
12
15
16

18

18
19
22
24
26
27
29
31
32
33
34
35

36
37
38
39
40

v

An Example 41
Two Approaches to Modelling 43

Constructing a Model from the Top-Down 44
A Functional Model of Multics 45

Linkage, Segment and Page Faults in Multics 47
Modelling the User 52
Modelling Segment and Page Fault Handling 53
Modelling a Running Process 56
Modelling the Scheduling of Processes 57
The Complete Model 57

Building the Model 59
Testing the Model 60
Completing the Model 62
Lending Realism to the Model 63
The Model as a Designing Tool 64
Constructing a Model from the Bottom-Up 64

Adding Structure to the Model 65
Material Based Versus Machine Based Models 66
Activities and Events 67
Conditional Activities 68
The Information Feature 70
Summary 71

4. THE SIMULATION DAT A BASE 72

Global and Local Variables 72
Implementation of P L/l Storage Allocation in Multics 7 5
Restructuring the Data Base 76
Sets, Queues, and Tables 76
Contents of the Global Symbol Table 79
Manipulating the Global Symbol Table 79
Manipulating the OPS-4 Data Bases 80
Private Data Bases 81
Hierarchically Structured Data Bases 82
Debugging Considerations 83
Multiple Copies of Local Data Bases 84
Difficulties with the Multics Stack 85
Solution to the Stack Problem 87
Linking Activities 88
Initialization of the Data Base 90
Summary 91

5, CONTROL OF ACTIVITY SEQUENCING

The Need for Activity Sequencing Statements

92

92

vi

The Agenda 94
Modifying the Agenda 95

Scheduling Activities 96
Scheduling Conditionally Executed Activities 98
Rescheduling Activities 100
Cancelling Activities 100
Interrupting and Resuming Activities 101

Implicit Modification of the Agenda 102
Delays and Waits 102
Self-Interruption and Self-Cancellation 103

States of Activities 103
The Agenda Scan 105
The Agenda Structure 106

The Structure of an Activity Definition Block 109
The Structure of the Main Entry 110
The Structure of an Event Entry 111
The Structure of an Interrupt Entry 112

Time Advancement 112
Continuous Models 113
Returning Control to the Agenda 114
Modifying the Agenda Entries 115
Specifying the Parameters of Activities 119
Specifying the Variables in Conditions 121
The Pros and Cons of Alternate Sequencing Schemes 121
Another Type of Conditional Scheduling 124
Priorities 126
Real Time Events 127
Executing Activities Simultaneously 128
Manipulating the Agenda 130
Explicit Versus Implicit Scheduling 130
Summary 133

6. RUNNING AND DEBUGGING A MODEL

The Model Development Phase
The Use of Interpretation
Two Levels of Trace Specifications
Monitoring the Flow of Control
Monitoring Simulated Time
Monitoring Statement Label References
Monitoring Activity Calls
Monitoring Modifications to the Agenda
Monitoring the Agenda
Monitoring Statement Execution
Monitoring Specific Variables

134

134
135
136
137
138
138
139
140
141
142
142

vii

Monitoring Errors and Automatic Definition of Variables 143
Qontrolling the Specification of Tracing 144
User Defined Traces 145
Controlling the Execution of Individual Programs 146
Running the Entire Simulation 149
Interrupting A Simulation 150
Recapitulation 152
The On-Line Environment 154
Summary 156

7. COLLECTING STATISTICS

OPS-4 Versus GPSS, SIMSCRIPT and DYNAMO
Time Related Statistics
Basic Statistical Measures
Collecting and Displaying Distributions
An Example
Queue Statistics
Time Series Plots
Summary

8. MEMORY MANAGEMENT TECHN"IQUES

157

157
159
161
162
165
165
166
168

169

List Processing in Multics 169
Managing the Agenda 170
Reordering the Agenda 1 71

Agenda Reordering as an Asynchronous Process 172
Deciding When to Reorder the Agenda 172

Deleting Activity Definition Blocks 173
The Structure of Sets and Queues 174
Managing Sets and Queues 176

Automatically Initiating Garbage Collection 177
Summary 180

9. INTERPRETATION AND INCREMENTAL COMPILATION 181

OPS-4 Programs
The OPS-4 Symbol Table
Inferring Data Attributes
The Execution Seg1nent
Creating the Execution Segm.ent
Detecting the Editing of an OPS-4 Program
lncremental Editing of OPS-4 Programs
Correcting Execution Errors
Detecting Changes in the Symbol Table

181
183
184
186
187
193
194
195
197

viii

Checking Trace Specifications
Compiling an OPS-4 Program
Summary

10. GRAPHICAL DISPLAYS IN SIMULATION

Economic Considerations
A New Display Terminal
Advantages of Soft Ct>py Output
Disadvantages of Soft Copy Output
Centralized Reproduction Facilities
Producing Plots
Text Editing
Data Editing
Dynamic Displays
Implementation Techniques
Summary

11. SUMMARY

OPS-4 in Retrospect
OPS-4 Versus OPS-3
Conclusion

APPENDIX

BIBLIOGRAPHY

BIOGRAPHICAL NOTE

FIGURES

198
199
201

203

203
204
204
205
206
207
208
211
212
214
216

218

218
221
223

225

233

240

Figure 1. Functional Diagram of Multics 46
Figure 2. Functional Diagram of Linkage, Segment and

Page Fault Handling in Multics 48
Figure 3. Segment and Page Fault Handling Model I 55

TABLES

1. Activity State Transitions .105

Chapter 1

SIMULATION OLD AND NEW

This Chapter discusses the nature of simulation.and tells how
the environment of a time-shared computer allows a new type of sim
ulation system to be implemented.. It shows how the current simulat
ion languages are not appropriate for this environment and then spec
ifies what features should be available in an on-line simulation system.

On-Line, Incremental Simulation

The essence of simulation is imitation, or role-playing. One

entity, the device performing the simulation, is made to assume the

nature of another entity --the phenomenon being simulated. Simulat-

ion differs from direct experimentation because the phenomenon un-

der study is usually not a part of the simulation.

An on-line simulation system allows both the user and the sim-

ulation device to cooperate and share the task of performing the sim-

ulation. It does this by providing facilities for the user to interact with

the simulation device so that they may both play active roles in the sim-

ulation process as it is occurring. Thus, the user may perform some

of the simulation functions himself and the simulation device perform the

remaining ones. Alternately, the user may act only as a monitor and

observe, verify and record data or modify and redirect the simulation
1, 2, 3

when it strays erroneously from the desired path. An on-line sirn-

ulation system also allows the actual phenomenon being simulated to be-

come a part of the simulation.

1

z

On-line simulation is not new. Many people have been simula

ting on-line with analog computers for years. Simulations which

involve physical models are often conducted with the user on-line.

Both management gaming and war gaming are limited forms of On

line simulations. However, the on-line, interactive use of a digital

computer to build, modify, test and run simulation incrementally is

new.

Advances in hardware and soft ware technology have made this

possible. The cost of producing electronic components has decreas-

ed to the point that a user can now afford to have his own digital com

puter (e.g., he can buy a PDP-8 S for approximately $10, 000).. He

can observe, and participate in a simulation by manipulating his mod-

el directly from the computer console just as he could with an analog

computer. With large .scale computers the same on-line interaction

is also possible, The technique called. time-sharing allows one large

computer to dynamically reallocate its resources so that users sitting

at remote consoles attached to this large central computer feel as if

they have a computer of moderate capacity all to themselves.
4

•
5

With

these advances it is now possible to provide any user who wishes to

simulate using a digital computer the same or greater degree of involve

ment in the simulation process as that obtained by a user accustomed to

simulating with an analog computer.

3

It is with this environment in mind - the interactive mode of using

either a small digital computer, or a large time-shared one - that the

term on-line simulation is used in this thesis. The term incremental

simulation is defined to mean the building,. testing, and validating of a

model piece by piece. This has always been the recommended method,

but difficult to effect in a batch processing environmep.t. On-line simu-

lation systems now make incremental simulation easily realizable.

Events and Activities

The terms, event and activity are used frequently in the literature

6,7
and throughout this thesis. An event is some action which changes

the state of the simulation by modifying the simulation data base, and/or

scheduling. or cancelling the execution of other events in the system. An

important aspect of an event is that it occurs at a specific point in sim-

ulated time and is instantaneous. An activity is a sequence of related

events which are separated by specified intervals of simulated time.

Thus, an activity exists over a period of simulated time •
•

The Simulation Process

Simulation is sometimes characterized as a three stage process.

First, a descriptive model of the phenomenon is constructed. Then the

model is tested. Finally, the completed model is exercised and, by in-

ference, conclusions are drawn about the behavior of the real phenomenon

being studied.

4

In reality no sharp line should exist between the first two stages.

Ideally, the model building and testing stages are repeated many times

and constantly interact with each other. In some instances, there is

no formal final running stage, since by the time the model is fully de-

bugged the user has obtained such a clear understanding of the phenom-

enon under study that it is not necessary to exercise the model any fur-

ther.

The goal of an incremental simulation system is to completely re-

move the distinction between the building and testing phases, by allow-

ing the user to interact continuously with his model. He should be able

to experiment with his model, either in whole or in part, at any point

during its development. He should be able to change any portion of his

model at any time and im.mediately test the effect of these char_ges. To

allow this flexibility an appropriate language in which a user may easily

specify his model and a simulation system that allows complete interaction

with the model and the ability to easily restructure it must be provided.

Neither is sufficient by itself.

Simulation Languages

When designing a simulation language, the environment in which it

operates - the simulation system - must be constantly kept in mind. For

example, a language designed for an on-line environment should include

facilities for allowing the user to directly co1nmunicate with a model as

it is running. The type of debugging facilities provided in an on-line

5

simulation system may take advantage of this communication and there-

fore substantially differ from those provided in an off-line simulation

system. The language should reflect this difference of environment.

Present simulation languages designed for use in the off-line batch pro-

cessing environment are unsuitable for on-line simulation. The follow-

ing discussion outlines the deficiencies for on-line use of four promin-

ent simulation languages.

SIMSCRIPT

SIMSCRIPT is one of the most widely used simulation languages.
8

Without substantial modifications it would be a poor on-line language.

Why?

1. Complicated, fixed-field forms are used for data specification

and data initialization. They would have to be replaced by

more flexible substitutes, such as the English-line declarative

9
statements proposed for SIMSCRIPT II.

2. There is a total lack of debugging facilities in SIMSCRIPT - a

handicap even to off-line users.

3, The user cannot easily access and modify the master scheduling

system - known as the events list.

4. The user cannot make a small change in the model structure

and see the result without recompiling and reloading the program

5. There is no method for specifying the conditional execution of

events. Also, it is not possible to schedule events relative to

6

(e.g. before or after) previously scheduled· events.

6. The facilities for collecting and producing statistical measures

of a model's performance are very limited.

7. Because of SIMSCRIPT's event, rather than activity, orient-

ation it is often necessary to pass as parameters excessive

amounts of local data from one event to another.

On the plus side the set manipulation facilities in SIMSCRIPT are very

powerful. Also, the fact that FOR TRAN is a subset of SIMSCRIPT is

an important asset.

GPSS

The GPSS language is another very popular simulation language.10

A version of GPSS II modified for on-line use has been available on the

. 11
M. I. T. time-sharing system (CTSS) since early 1964. Although usage

has been limited, more users find this augmented verSion of the GPSS

language quite suitable for on-line use.

1. The debugging facilities are excellent,

2. The events chain, used for scheduling events, may be examined

at any time.

3. Modifications to the model structure may be easily made either

during a run, or between runs.

4. Any of the savex values and the comprehensive statistics auto-

matically collected for blocks, queues, faciliti'es, storages or

tables may be printed at any time.

7

S. The user may _input parameter or savex values from the con

sole during a run.

6. Comments may be printed to identify numeric output, or in

dicate the flow of control within the model.

GPSS has several serious limitations, however, which made it

infeasible for use as a general simulation language.

1. It is a very restricted language. No general algebraic facility

is provided and arithmetic is restricted to integer mode. The

types of entities in the language are very limited and the num

ber of each type is fixed.

2. It is a closed language - it cannot communicate with subroutines

written in other languages (the HELP block is not considered

an adequate mechanism since GPSS users must know FAP and

the internal layout of the GPSS system to make use of it).

3. It cannot be used for large models since the number of entities,

such as facilities, storage, queues, savexes, etc. is limited

by the restricted core space available.

4. No mnemo):lics can be used to label entities. All labels are

numeric not symbolic.

S. Data ·specification and initialization are very restricted.

6. The events chain cannot be modified by the user from the console.

The SOL language retains most of the good features of GPSS and cor

rects many of its shortcomings.12 , 13 Since it is an extended version of

I

8

GPSS embedded in ALGOL it overcomes most of the disadvantages

listed above. However, before corrections to a model can be tested

in SOL it is necessary to recompile the program, since SOL employs

a partially compiled, partially interpretive system to execute simula

tions. SOL also does not allow the user to inspect the event chains.

It does, however, permit conditional delays with its WAIT UNTIL state

ment. Also, SOL provides a simple statement which allows the user to

generate random variates. The chief problem with SOL is that it is not

commercially available, so it is difficult to objectively evaluate it.

SIMULA

The SIMULA language is the best simulation language currently

available.14, 15 It contains ALGOL as a subset, has a flexible means

of scheduling events and activities (called processes), allows the user

to define any type and number of entities, the debugging and tracing

facilities (which were not in the· original version and have just recently

been specified} appear to be quite good, and running time is reported to

be excellent.16, 17 However, the present version of SIMULA is also

not suited for on-line use.

1. Because SIMULA requires compilation of a model before it

can be executed, to make changes in the model is a time con

suming process - no matter how fast the compiler.

2. SIMULA does not allow a user to conditionally .activate processes,

a feature which is very powerful.

•

9

3. By adopting ALGOL as its base language SIMULA has made

the same mistake as COBOL and the original FOR TRAN I

system - a model in SIMULA consists of one big program,

all of which has to be recompiled whenever a change is made

in any part of it.

4. At present the only aid SIMULA provides for collecting stat

istics is an automatic histogram plotting routine.

OPS-3

5. SIMULA :nas no provision for saving or restoring the status

of a model during the simulation,

In contrast to these four languages the simulation system avail

able in OPS-3 was specifically designed for on-line use, 18 (It is the

only simulation system to my knowledge, that was designed for on•line

use.) The following features of OPS-3 are particularly significant.:

1. Specification of data structures and initialization of data in

OPS-3 is cb ne dynamically and is easily specified.

Z. Complete or partial reinitialization of the model is simple

and completely under the user's control.

3. It is easy to modify the model structure at any time and no

compilation or reloading of programs is required,

4. The debugging and tracing facilities are comprehensive, flex

ible and easy to use.

5. The scheduling mechanism - called the Agenda - may be exam

ined and/or modified by the user at any time,

•

10

6. A general algebraic language with implicit array operations

is available, although the control statements in it are limited.

7.. Communication with subroutines written in any language is

simple and allows the basic features of OPS-3 to be easily

expanded or shaped to the user's tastes.

Like GPSS, OPS-3 is largely an interpretive language, (the MADKOP

feature to allow interpretively executed routines to be compiled is incom-

plete), and consequently running time is very long. The present OPS-3

suffers from a lack of statistics collecting routines; it has a limited var-

iety of data entities; and it seriously limits the amount of core space

available for both program and data, Also, the syntax used in some of

the language statements is sometimes awkward and inconsistent.>:<

A New Time-Sharing Computer

The new time-sharing system called Multics which is now being

implemented on a GE 645 at Project MAC will relieve many of the limit-

. 19-25
ations of CTSS. More than just an upgrading of CTSS, it incorpor-

ates a new philosophy of memory addressing, In Multics the logical

*Many of these deficiencies could be corrected and the missing
features added since OPS-3 is a modularly constructed system.
However, the lack of core space available in CTSS prevents add
ing any new features to the present implementation of the lang
uage. The basic OPS-3 system uses 24k of the 32k of core av ail
able to a us·er. The SCHED, DRAW and TAB operators used in
simulations require almost another 2k of core. Thus, the user
is left with only 6. 8k of core space for his own programs and
data storage.

11

sections of a program are specified as segments. A program may con-

18 d h . . sist of up to Z segments an eac segment may contain a maximum

18
of Z words. To allow this size program in a physical core memory

which is limited to a maximum of 16 million words a technique called

paging is employed. Each logical segment is subdivided into pages 64

or 1024 words long. The Multics system keeps .in core memory only

those pages of each of the segments of a user's program that are active-

ly being used at each particular point in the computation. When a new

page is needed it will be automatically obtained by Multics and placed

in core. When physical core memory is full, Multics will automatically

remove pages that have not been recently referenced.

The segmentation scheme also allows users to share programs if

they are written as pure procedures. Thus, if several people wished

to use the same program simultaneously in Multics, only their data

segments need be unique. The instruction segments need be represent-

ed only once (all programs are written as pure procedures). In contrast,

if 3 people are concurrently using the OPS-3 system in CTSS, 3 separate

copies of OPS-3 are maintained by CTSS. Multics also allows user pro-

grams to use procedure segments of the supervisor. This. will simplify

the writing of sophisticated user systems, since many parts of Multics

may be used in place of redundant programs written by the user. Also,

Multics allows a user to specify parallel processing of procedures, a

feature which could be very useful in simulations. Many detailed refer-

12

ences to the implementation of Multics will be made throughout this

thesis. This information is still undergoing revision and clarificat-

ion and is not at present publicly available.

A New Simulation Language

This thesis defines a -language and system for incremental simu-

lation specifically designed to operate in a time-shared environment.

It is referred to as OPS-4 throughout this thesis. It borrows concepts

from all of the five languages described above and several others in

dd. · 2 6-3 o Th f 11 . . f "t . t t f t ... a 1t1on. e o owing 1s a summary o 1 s 1mpor an ea ures. ···

1. A subset of the PL/l language is the basic language of OPS-4

and provides a general algebraic and data handling facility. 32

2. The world view of OPS-4 is not narrowly restricted. That

is, a user may express his model naturally in OPS-4 whether

it is a material or flow oriented model, or a machine or

entity oriented model, or a model combining both views. 33 • 34

Also, both the activity and event orientations for describing

6,7
models are available.

3. OPS-4 is specifically designed to encourage a user to build

a model incrementally and test the partial mode! before all

the pieces have been completed.

*Some of these items may also be found in a list of desirable
features for general simulation languages prepared by Teichrow
and Lubin. 31

13

4. It includes statements to specify the generation of random

deviates from the popular distributions.

5. Special data types known as sets, queues and tables are avail

able in OPS-4 in addition to the normal data types of PL/l.

There is no limitation on the number or size of any data types.

6. Communication among program elements and variables in

a model constructed in OPS-4 is controllable, but not restrict

ed.

7. Restructuring of the data base is simple and requires no re

compilation of procedures being run in a debugging mode

(the normal mode of execution).

8. It is possible to save the status of a model at any point and

at any time by executing a simple statement.

9. Restoring the model to a previously saved state is equally

simple. Thus, roll backs to previous points in simulated

time are easily effected.

10. It is easy at any point during the simulation to reinitialize

partly or cpmpletely both the simulation system's and user's

data base and reset system time so that the simulation may

be restarted or a series of simulation runs may be easily ex

ecuted.

ll. The user has flexible controls to specify the exact order in

which events are executed during simulation.

14

lZ. No important part of the simulation system is hidden from

the user. He has direct access to and the ability to modify

every element of the simulation from his console.

13. Extensive and easily used debugging and tracing features

are available.

14. It is easy to modify the logical structure of a model and

quickly try the new modifications, without recompilation.

15. Flexible means for specifying the starting and stopping

points or duration of the simulation run are provided.

16. It is possible to independently test individual components

of the model, even if they are embedded in larger n)odules.

17. The user can interrupt a model at any point during the

execution phase and redirect its path, examine and change

the values of variables and then immediately continue the

simulation from the point of interruption.

18. In situations where unusual circumstances arise, such as

the backwards movement of time, the user is given the

benefit of doubt and the simulation is not interrupted. How"'.

ever, a flag is set which may be interrogated by the program.

19. Facilities for collecting statistics are comprehensive, op

tional and easy to specify.

ZO. Usually, only the structure and mode of initial data .inputs

in procedures need be declared by the user. The structure

15

and mode o! most data objects resulting from a computation

is inferred by the rules o! the computation.

21. Inunediate on-line diagnostic explanations in graduated detail

and verbosity are available to the user when an error is de

tected during the running o! the model.

22. It is possible to run debugged portions o! a model at full

speed since they may be compiled programs. Interpretive

techniques are used when necessary only !or sections of pro

grams not yet checked out.

Implementation of OPS-4

This thesis limits itself to a discussion of the design and proposed

implementation of OPS-4 for Multics.* The implementation will be in

two phases. First, the conceptual framework of the OPS-3 system will

be used as a base and will provide the required general algebraic language .

Over a year's experience with OPS-3 has shown it to be well adapted

for on-line use. However, OPS-4 will use the syntax of PL/l throughout

and will be substantially restructured and enlarged so that the deficiencies

of OPS-3 as implemented in CTSS will be eliminated.

The second phase will consist of the implementation of an on-line

conversational version o! a subset of PL/l. This is an ambitious goal

*It is expected that implementc..tion will begin in the Fall of 1967.

16

and perforce must await more experience with developing compjlers

for PL/I. All programming of OPS-4 itself will be done in a restrict

ed version of PL/l being used at Project MAC for all systems program

ming. Experience using PL/I to implement Multics has shown it to be

a language well suited to the task of programming systems which require

complex data structures.

Since OPS-4 will be programmed in PL/I it should be possible to

transfer it to other machines, in particular the IBM System/360 model

67, without a major recoding effort. Only the machine dependent mod

ules and those Multics modules which are used directly would have to

be changed.

OPS-4 could also be implemented in a variety of other environ

ments, such as small stand-alone computer systems, or as an adjunct

to other conversational computer languages. However, the design

might differ significantly from the one that is presented in this thesis.

Thesis Overview

This Chapter has outlined the characteristics of OPS-4 and des

cribed the environment in which it will be implemented. Chapter 2

discusses the basic methodology of implementing OPS•4 in Multics.

Chapter 3 describes, with the aid of an example of segment and page

fault handling in Multics, the options a user has in building a model

and discusses items 1-4 listed above. Chapter 4 discusses the struc

ture of the simulation data base, covering items 5 through 9.

17

Chapter 5 discusses event sequencing, and how the user may control

the sequencing. It therefore discusses items 11and12. Item 12 also

pertains to Chapter 6 which describes the methods available to an on

line user to control the running and debugging of a model. Since giving

the user this ability to exercise direct control over the running of a

model is one of the main benefits of an on-line versus an off-line sim-

ulation system, items 12 through 18 are included in this discussion in

Chapter 6. Chapter 7 covers the topic of collecting statistics and thus

discusses item 19. Chapter 8 describes the use of list processing

techniques in a simulation language. The last items, numbers 20-22,

are treated in Chapter 9 which discusses implementation techniques.

Chapter 10 is a presentation of the use of graphical display devices as

an on-line communication media. Finally, Chapter 11 concludes this

thesis with a summary of all the important issues of incremental simu

lation in Multics, and lists possible implementation difficulties.

Chapter 2

SIMULATION IN MULTICS

This Chapter lists the basic elements of a simulation system and
describes how OPS-4 is embedded in Multics. The two chief issues
discussed are the decision of where the responsibility rests for execut
ing OPS-4 statements and the use of multicple processes by the OPS-4
simulation system.

Simulation Essentials

Chapter 1 listed many features that are desirable for an incre-

mental simulation system which operates in a time-shared environ-

ment. Some of these features are absolutely necessary, and are

found in all simulation systems, Others are conveniences that are

peculiar to the on-line environment. It is essential that every simu-

lation system contain the following elements:

1. A mechanism for describing and manipulating the simulation

data base. The data base may be partitioned in many ways,

but the simplest division is between global data, which is

accessible to all activities, and local data, which is access-

ible to only one activity. Many activities may be represented

by the same procedure and differ only in their data base

characteristics.

2. An activity sequencing mechanism. Simulation activities are

different from normal subroutines since they conceptually

operate in parallel. The standard subroutine call is not

18

19

flexible enough to allow for the unpredictable flow of control

between activities. Also, the transfer of control from one

activity to another is a "sideways" transfer, not the standard

hierarchical up or down transfer of control.

3. Special facilities for running and debugging a model. Many

simulation programs have no fixed termination point. They

can be run for variable periods of time. Special features are

necessary for specifying the starting and stopping conditions

of a simulation model. Also, because of the unpredictable

order of activity sequencing, special debugging facilities are

necessary for simulation systems.

4. Facilities for collecting statistical measures of a model 1 s

performance. Simulation models are constructed so that

the user may learn something about a particular phenomenon.

Many times statistical measures are helpful to assess the

functioning of the model in different environments,

Chapters 4, 5, 6, and 7 discuss each of these simulation features in de

tail, describing their specific implementations in the OPS-4 system,

Limitations of Multics and PL/l for Simulation

Multics is faced with many of the same requirements as a simulation

system. It must successfully direct the execution of many processes,

some dependent upon each other's actions, other independent of the other

activities going on. Many of these processes may be operated in parallel

20

with each other. Also, Multics must maintain a global, or system

wide, data base which records the location, status and description of

every process and data segment, both active and inactive within the

system. Multics must also continuously monitor the state of the sys

tem so that users may be properly billed for the resources they util

ize. One is naturally led to ask, "Can't the facilities available in

Multics be used directly to provide the basis of a simulation system? 11

Unfortunately the answer is no, for the following reasons:

1. Multics 1 scheduling system was not designed to be flexible

enough for a general simulation language.

A. Multics relies only ·on a computed priority for organiz

ing its ready list; i.e. it is not possible for the schedul

ing process to use any process' attributes, such as

scheduled execution time, of processes already sched

uled on the ready list.

B. The conditional scheduling mechanism is very limited.

The Block-Wakeup system requires that Wakeup spec

ifically know who to wake up. This is fine for the 'Wait

for Event' type conditional of Pl/l but inadequate for the

general 'Wait until A=B or C>D' type conditional allowed

in OPS-4.

2. Multics' scheduling system maintains and manipulates far more

information than is necessary just for scheduling simulation

21

activities. Specifically, the majority of the information

maintained by the traffic controller in the Active Process

Table is needed only for Multics and is extraneous for a

general simulation system.

3. Multics does not-automatically implement a standard lock

mechanism which guarantees that user processes which

share a common data base do not get in each other's way.

It is left to the user to implement whatever mechanisms

are necessary for maintaining and protecting shared data

bases. The standard lock mechanism used by Multics is

available but each user must implement it himself as nee-

essary.

A fourth point is the present lack of specification of the interprocess

control and communication facilities in Multics. (The initial version

of Multics will not allow the user to have more than one working pro

cess, although Multics itself will use multiple processes.)

A casual reading of the P L/l manual might lead one to conclude

that the PL/l language is suitable as a simulation language. 3Z However,

study will show that it is not complete enough for simulation. The

features for directing tasking are limited and, at the present time,

not clear on such crucial matters as the sharing or independence of

data bases by dependent tasks. Also, the data types in PL/l are not

as extensive as those needed in a simulation language (recall item 5

------------------------------ -- - -----

22

in Chapter 1). Furthermore, the sequencing methods available in PL/l

are. not-flexible enough. This does not mean that an incremental simu-

lation system must be built from scratch. Indeed, as already stated

in Chapter l, Multics and PL/l provide a strong foundation and are the

basis of the OPS-4 system.

An Overview of Multics

One of the central design features of Multics is that a user may

have several processes working for him simultaneously.•:< Indeed, after

a user has completed the Login procedure he has 3 processes automati-

cally established for him. These are:

1. The overseer process which handles certain resource man-

agement tasks, such as Login and Logout which must be

done reliably.

2. The device management process which is directly in charge

of the particular console device he is using, and delivers in-

put strings to the third process.

*A process is basically a program in execution. The tangible
evidence of a process is a processor stateword (a set of machine
conditions) and an associated two dimensional address space
(a core image.) The address space of a process, defined by a
Descriptor Segment, determines the region of accessibility of
the processor, both in execution of instructions and in obtaining
data. A dynamic linking mechanism allows the process to change
the contents and extent of its own address space, but this does
not alter the fundamental view of a process as the execution of
a program contained in the address space.

23

3. A working process which may be executing either a specific

Multics command, a user program, or, if the user is at

command level a procedure called the Shell.

The specific working process is dependent upon the environment

that is automatically provided by Multics. This environment is deter-

mined by administrative authority and by the user himself. For exam-

ple, a user may indicate, by appropriate Multics commands, that he

wishes to have special versions of certain supervisor n10dules: e.g.

a different scheduling mechanism, which always puts him at the top

of the ready list, or a different typewriter management module which

writes a verbatum copy of all typewriter input and output as file on

secondary storage, or perhaps a private version of the PL/l compiler

which recognizes French rather than English keywords. If he has been

allowed such freedom by the system administration this flexibility is

possible. Conversely, the administrative authorities might decree

that only certain modules are to be used and only certain commands may

be accessed by this user, thus restricting him to a subset of Multics'

available facilities.':' This feature could be used to restrict the access of

a student to specific programs, or·to allow the Shell to be replaced by the

OPS command. Thus, it would be possible to have a user automatically

enter OPS-4 as soon as he completed the Login procedure.

>:'This is currently done in a limited fashion in CTSS by an access
vector which allows various system programmers to execute pri

vileged commands not available to normal users.

24

The Relation of OPS-4 to the Shell

An important issue to be decided is whether or not OPS-4 should

be a single command in Multics and operate as a subsystem of Multics

much as OPS-3 now does in CTSS, or whether each statement in OPS-4

such as,

Set A= 3

should be a separate command and the OPS-4 system viewed as an ex-

tension of the Multics command language. At the present time, it ap-

pears that both possibilities are available and that the distinction be-

tween the two may be academic.*

Implementing OPS-4 as a separate command in Multics is per-

haps the safest route to follow. OPS-4 would then be able to exercise

complete control over whatever it was asked to do. It could adopt un-

usual conventions for punctuations, provide. echoing of input lines, and

allow standard commands to be abbreviated (as does the '. 1 command

in CTSS), etc. It would also be held accountable for all data bases that

it created during its execution so that when a user left OPS the segment

housekeeping module would be able to discard all segments that were not

specifically declared to be saved. The standard OPS-4 pr<;>cedures could

also be bound together in one executable segment.

>:=This statement and the following discussion are purposely vague
since many of the details of Multics which might influence a de
cision one way or another are not yet specified.

ZS

If OPS-4 were implemented as a separate series of commands in

Multics the commands would be interpeted by the Shell procedure. Each

command would be a separate executable segment so that both the seg

ment and entry names need not be specified. Special provisions would

have to be made in each command, to have them reference a common

data segment. By providing a different Shell than the standard one the

user could have the same freedom to use command name abbreviation or

synonyms, invoke different parameter conventions, etc,. proposed in the

first alternative above. However, one difficulty which might arise would

be to decide at what point to delete extraneous data bases created by the

individual commands. A special command could be provided for this

purpose, but the system could not count on the user executing it.- If he

did forget, the user might end up with several strange files appearing

in his directory. Of course, this might be used to advantage by program

mers knowing tricky things to do with these files. However, if providing

access to these special data bases were reaJly important to the sophisti

cated user, the same facility should be provided in the first alternative

proposed above.

At the time of this writing, it appears that both of these alternatives

could be programmed so that if they were both available a user would not

be able to distinguish which version he was using. Indeed, since Multics

allows a user to substitute any procedure for the Shell these two alterna

tives are really equivalent. The only possible minor difference between

26

one command and several commands might be in the flexibility and

met~od provided to handle interrupts and quits initiated by the user

from his console. In CTSS there is a considerable difference.

Handling of Quits and Interrrupts

For example, consider the following situation in CTSS.
4

Com

mand X is sensitive to receiving interrupts - i.e. a special designated

procedure is invoked by X when it receives an interrupt signal. If

command X is executed directly from the console as a command any

interrupts are received directly by X and cause the desired action. In

addition, a quit signal will suspend the execution of X and return the

user to command level. Suppose X is now a program available within

the OPS-3 command. Assume both OPS-3 and program X wish to be

a·ble to receive interrupt signals. If an interrupt is received while X

is running X acts on it directly in identical fashion as if X were a com

mand. Likewise, a quit signal suspends the execution of X. It also,

however, suspends the execution of OPS-3 as well. As long as Xis in

control, and without making special arrangements with X to forward in

terrupts, it is impossible to suspend the execution of X and return to a

specified spot within OPS-3. That is, there is not a way for the user in

CTSS to push or pop the interrupt stack from the console. It can only be

done by programs called SAVBRK and SETBRK. This is a serious limit

ation on the use of the present OPS-3 system for executing programs

which make use of the interrupt facility them.selves.

27

In Multics, instead of the use of physical buttons and special sig

nals to the supervisor to indicate interrupt and quit sign·als the Overseer

process receives the quit signals from the user. Although this has not

yet been specified, it is reasonable to assume that the interrupt signals

will also be handled by the overseer. Since Multics allows the user to

execute any procedure directly from the console, just by giving its name,

it would be possible to terminate the execution of the current program

and initiate the execution of any program, something that is impossible

in CTSS. Thus a distinct inter.rupt signal may not be necessary in Mul

tics. Instead, an interrupt procedure which saves the status of the in

terrupted procedure and calls a specified procedure might be provided.

Modifications to the Shell

The key to implementing OPS-4 as a series of separate, but co,..

ordinated commands is to provide a new Shell process. This new Shell

would include all the facilities of the present Shell and provide the follow

ing additional features.

1. It would maintain the name s of the segments which constitute

the current data base and their associated symbol tables and

provide these names as parameters in the command's calling

sequence to all commands which wished to access the data base.

2. It would also maintain the segment name of the master simu

lation scheduling system known as the Agenda. This name

would have to be passed to all commands which manipulate the

28

Agenda. (Alternately, the Shell might establish a small data

base with a fixed name, such as Shell-data, which would con

tain the names of the current global data bases, symbol tables,

Agenda and any other variable that commands wished to access.

Any commands could then reference this segment to determine

the working names of the other segments.)

3. The Shell's mechanism for calling commands would have to be

expanded. Experience with the OPS-3 system has shown that

there are two basic types of calling sequences - those whose

number and type of parameters are fixed and those "!Joth whose

number and type of parameters are subject to change. LISP

also makes such a distinction, calling the former group of

programs EXPR and the latter group FEXPR - denoting ex

pressions and flexible expression respectively. 35

The present Shell mechanism allows only fixed calling sequences

since it is oriented toward the PL/l restriction of a fixed number and

type of parameters. However, there is a simple mechanism which is

an adaptation of the GETP and the READSQ mechanism provided in OPS-3

which does not violate the PL/l restriction of only fixed length and type

of calling sequence. 18 It requires that the Shell recognize, by examining

either the linkage segment, the symbol table segment, or the procedure

sE:gment of the command, that the command it is about to call has either

as fixed (also referred to as standard) calling sequence, or a variable

calling sequence.

29

If the calling sequence is fixed, it proceeds as the normal Shell

would and does any necessary parameter mode conversions based on

the parameter declarations in the. symbol table for the command. How

ever, if the calling sequence is specified as variable the Shell delivers

the entire parameter string, exactly as it was typed, except for the

leading command name and first succeeding blank, but including the

standard terminating character 'NL' in place of either the terminal 1
;

1

or 'NL' character, to the command as one parameter of type varying

character string. Thus, as far as PL/l restrictions are concerned,

the command has only one parameter, a variable length character string.

It is then up to the command to process this character string any way

it chooses and discover with what parameters it actually was called.

Variable Calling Seguences

For example the command,

Set A=B+C+(D -E)/F

would naturally call a standard algebraic parse routine such as is a.vail

able in Multics debugging package. Alternately, the Schedule command

which has such options as

Schedule X after Y

Schedule X at Sys -time + 3 6

Schedule X when A= 16 or C73. 5

might call a procedure very similar to GETP in OPS-3. t.c

>:<see bottom of page 30.

30

This procedure would have a number of entry points. The first call to

this procedure from within the command would deliver the parameter

string, a list of break characters to be used to parse the parameter

string, and initialize the scan pointer. Subsequent calls to this special

procedure might specify the mode in which the parameters are to be de-

livered to the command and the name or names of the .dummy variables

which are to receive the parameter values. Additional calls might back-

up the scan, re-initialize it, invoke a new set of break characters, or

ask for the return of the remainder of the unscanned parameter string

so that it could be processed by a different routine, such as the stand--

ard algebraic parser.

It is also possible to conceive of more complicated scanning rou-

tines, such as those employed in CL II or COMIT which allow parameter

selection and conversion to be based on the relation of a parameter with

specified neighboring parameters. 36-38 However, experience with OPS-3

has shown that the sequential scan method outlined above is quite P<?Werful

and adequate for most calling sequences,

For example, consider the Shedule examples just presented. X and

Y are names of activities, Sys-time + 36 is a numeric expression, A= 16

>!<GETP is a special routine used to parse the parameter string of
a procedure subject to instructions delivered to GETP by the pro
cedure itself. It is described on pages 96 to 99 of the OPS-3
Manual.18

31

or C>3. 5 is a conditional expression, and after, at and when are key

words in the P L/l sense. The meaning of these three Schedule state-

ments is,

1. Schedule the activity named X immediately after the entry

for the activity named Y already on the Agenda.

2. Schedule the activity named X to occur at the value of simu

lated time equal to the current value of simulated time plus

36.

3. Schedule the activity named X to occur when the Boolean

expression A=l6 or C>3. 5 is true.

The first example has three parameters, each a literal of type char

acter string. The second also has 3 parameters, the first 2 are lit

erals of type character string and the last is of type float. The third

example has 3 logical parameters each of type character string but the

last is actually a string of 7 physical parameters of mixed type. The

parameter conversion method just outlined allows the Schedule routine

to retrieve its first two pararrieters as literal character strings, and

then test the second parameter to determine in what mode to request the

last parameter, or parameters.

Multiple Processes in OPS-4

Another impcsrtant design decision relates to the freedom the user

is given to specify asynchronous or synchronous processes in OPS-4.

One of the ma.jar concerns of all current simulation systems is how to

imitate simultaneity of events on a single processor computer. It would

32

appear that Multics offers a solution to this problem. It does, but not

a complete.one. The traffic controller maps the actual hardware of the

GE 645 (which is limited to 8 processors) into an indefinitely large num

ber of pseudo-processors each capable of running one process at a time.

Conceptually, the user may regard the pseudo-processors as operating

in parallel with each other. In actuality, the amount of simultaneity is

limited by the number of physical processors being used. Therefore,

it will always be possible for a user's model to create more simultan

eous events than there are actual processors available to execute the

events in parallel. Thus, sequencing rules will still be as important

as they are in current simulation languages.

The Problem of Reproducibility

For example, consider a queing model having several servers

and separate queues for each server. The server processes and the

arrival process are all conceptually occurring simultaneously. When

an arrival occurs, it enters the queue which is the shortest. Hypothe

size that there are two queues both of the same length and shorter then

the queues for any of the other servers. Assume that these two servers

finish serving both their requests simultaneously and that at the exact

same instant a new arrival occurs. In which queue will the arrival be

placed? The answer can certainly depend on the order in which t}~e two

server process and one arrival process actually are executed on the

computer.

33

This element of irreproducibility offers both new problems and

new possibilities. During the debugging stage it is a serious handicap.

Reproducibility is essential if bugs are to be easily recreated so that

they may eventually be eliminated. Conversely, once a model has been

substantially debugged the opportunity of actually observing the results

of simultaneously interacting processes may add insight to the under

standing of the model - especially if the element of non-reproducibility

results in different model performance. It is analagous to reseeding

the random number generator, and seeing a different sequence of act-

ivities.

Controlling Parallelism

This suggests that the user should be able to control whether sim

ulation activities are executed sequentially or whether some of the ac

tivities are actually executed simultaneously. To provide this control

OPS-4 will add a new attribute to_ activity declarations. The user may

explicitly declare each activity (e.g. PL/l procedure) to be either of

type Sequential or Simultaneous. The default type will be Sequential. In

addition, a global declaration of Sequential or Simultaneous may be in

voked to cover all activities. However, the local declaration in each

procedure will always take precedence over the global declaration. Thus,

certain activities may be executed sequentially or simultaneously with

other activities, independent of whether all the other activities are being

executed sequentially or simultaneously. The exact mechanism for

34

effecting simu1taneous execution of activities is discussed in Chapter

5 which describes the activity sequencing mechanism. If the user de

clared activities to be Simultaneous, he will have to program locks on

the appropriate data bases, since OPS-4 will not do so in its initial

implementation.

Special Asynchronous Processes in OPS-4

OPS-4 will make use of the multi-processing capabilities of Mul

tics when they are available for some peripheral processes which do not

affect the execution of the central simulation. These are;

1. User communication and asynchronous interaction with the

simulation to allow game playing and the like. 39

2. Asynchronous debugging monitors which allow the simulation

to continue as trace results are simultaneously collected.

3. Statistics collection and processing.

4. Memory compacting (or garbage collection} of list structures

that have diffused throughout many pages of memory.

5. Asynchronous probes of the simulation data base with care-

fully designed inputs.

Each of these processes is essentially independent of the main simulation

process. However, appropriate interlocks will have to be programmed

to insure correct execution of all processes.

Items 1, 2 and 5 are discussed in Chapter 6 which discusses running

and debugging a model and Chapter 10 which describes the use of graphical

~---~------,---------~·

35

displays in simulation. Item 3 is described in Chapter 7 which describes

methods of statistics collection. Item 4 is discussed in Chapter 8 which

covers list processing techniques.

Summary

What has been discussed in this Chapter can be summarized briefly:

1. OPS-4 can be implemented in Multics as a single command hav

ing many subcommands or, by modification to the Shell process,

as a series of separate but coordinated commands. However,

since the Shell can be replaced by any user procedure these

two alternatives are equivalent.

2. The simulation system itself in OPS-4 will generally involv~

-0nly one process in Multics, although the user may specify

more if he wishes. However, multiple processes will be

used to accomplish several important functions which are

conceptually independent of the main simulation process. In

the initial version of OPS-4, however, there will be only one

working process because of this restriction in the initial ver

sion of Multics.

Chapter 3

CONSTRUCTING A SIMULATION MODEL

The interactive features of OPS-4 described in this chapter allow
a user to start building a model on the computer at a very early stage.
The computer may then be used to help clarify and expand the formula
tion of the model from the very outset. The user is encouraged to build
his model modularly so that it may easily be expanded in simple incre
mental steps. He may start at the inside and work out exploring the
interactions of specific detailed functions, or else he may specify the
entire structure in gross fashion and add detail as his understanding of
the problem grows. Facilities are provided in OPS-4 to allow unstruc
tured problems to be described in three levels of specificity. A simple
model of segment and page fault handling in Multics is used to illustrate
these features.

The ability to perform data gathering and data analysis, side by
side with model formulation, testing and validation allows the user to
easily explore the relations between his data and model structure. 2, 3,
40, 41 This may lead to a healthy cross-fertilization of ideas. It is one
of the principal reasons why it is important to have a comprehensive gen
eral algebraic language included as part of a general simulation language.

A Model in OPS-4

The overall structure of an OPS-4 sim.ulation model is rather sim-

ple, but quite different than the structure of a GPSS, SOL or SIMULA

program, IO, 12-15 It is more akin to SIMSCRIPT, as it is organized

around the concept of independent, separately compiled activities, which

are written as external procedures. 8 Each activity has its own local

data base, and may share data with other, but not all other activities,

In addition, there is a global data base which is available to all activit-

ies. Individual activities may be hierarchically structured using the

features available to PL/l. In addition, groups of activities n1ay form

a hierarchical structure. The concept of block structure and scope of

36

37

variables is extended to cover such structures of activities, (This is

discussed in Chapter 4,)

Hierarchical Models

When studying a complex problem it is often helpful to subdivide

the problem into parts. Each part may be further subdivided, and

their parts subdivided again, ad infi!litum, until a level of detail is

reached that can be easily described and analyzed in simple terms.

This the technique that humans appear to use in solving difficult prob

lems and has been mimicked with fair success by various computer pro

grams atterr..pting to demonstrate intelligent behavior. 42 • 43 In fact,

most complex computer programs are written in this hierarchical

manner. 44

An interesting question is, "What is the route taken to write these

hierarchically structured programs?" Is the whole. hierarchical struc

ture specified a priori and programmed starting at the detailed level, or

does the structure grow in detail in parallel with the programming of

increasingly detailed blocks? Historically, complicated programs such

as the initial versions of the CTSS and Multics supervisors have been

programmed using the former approach. 45 However, these systems

have continued to evolve gradually over time by adding hierarchical de

tail. It often turns out that many of the most interesting and important

problems are at the higher levels of the program structure and must

await testing until the majority of the basic programs have been written.

·'-':·"

38

When errors do arise at this level they may be very costly to correct,

for they may require substantial restructuring of subcomponents of the

system.

Simulation is often heralded as a solution to this problem. The

suggestion is made that a simulation model can abstract the important

high level interactions and focus on them, ignoring the detailed problems

at lower levels. When the overall structure is completed then the de

tails can be added. To do this successfully requires that a model be

constructed hierarchically. However, to exercise such models in con

ventional silnulation systems requires that all the key pieces be speci

fied and assembled before a run can be made. OPS-4 offers a new ap

proach to this problem.

Three Types of Programs in OPS-4

The OPS-4 system provides the user with three different modes

of flexibility for specifying his model.

1. He may write an OPS-4 program, compile it, and then exe

cute it.

2. He may write an OPS-4 program and execute it directly with

no intermediate compilation phase.

3. He need not write a program at all, but may execute any pre

viously written system or user procedures, of either type 1

or 2, directly fron1 the console.

Were it not for the idiosyncrasies of computer.$, which make them

39

unable to converse directly in languages natural to the user, the first

mode above would not need to exist. The second is considerably more

natural for a user than the first. Both require a program - e.g. a

specific sequence 0£ actions - be forn'lally stated and therefore they

are fixed specifications. The third mode does not have this restriction.

The user is not required to plan a sequence 0£ actions in advance. He

can improvise.

To distinguish between these three modes 0£ specifications the

following terms are used throughout the thesis. The first is referred

to as a compiled program. The second is called an uncompiled OPS-4

program. The third is known as a user portrayed program. All three

are allowed to be intermixed in a simulation constructed in the OPS-4

system.

Uncompiled Programs

Most programmers have grown to accept the necessity of compil

ing a program before it can be executed, However, compilation is not

a natural function included in specifying a model, and a user should not

be constantly forced to think about it after every iteration of change to

his model. Compilation is related to the efficiency of processor utiliza

tion, Therefore, the user should view compilation merely as a means of

more effectively using a scarce resource, not as a function necessary to

allow executien of a program. Even at this level, however, the user

must weigh the benefits of decreased execution speed of a compiled pro-

40

gram, versus the time taken to comp,ile the program. During the de-

bugging and program testing phase it is not unusual for the compilation

time to exceed by two or three orders of magnitude the program execut-

ion time. Thus, methods for executing uncompilecI programs that are

10-20, or even 100 times slower than the execution of compiled programs

meet a very definite need.* Of course, an alternate approach is to

attempt to shorten the compilation time. But this usually results in an

unfortunate increase in execution time, because of the cruder programs

produced by the hasty compilation. (This is the approach taken in the

design of the MAD compiler.)47

User Portrayed Programs

One of the attributes of a time-sharing system that has been often

praised is the feature that a program may communicate with the user

and ask for help. It has also been stated that a time-sharing system re-

lieves the programmer of the need to write programs for contingencies

that may rarely occur. This is true. Ir. OPS-4, the user portrayed

program is used to provide both these options.

During the course of the construction of a model, any modules

which the user realizes must be included in the model for completeness

*Experiments performed by J. H. Morris, Jr. with the OPS-3
system showed that interpretiye execution of OPS-3 programs
ranged from 25-100 times slower than execution of the same pro
gram after it was translated to a machine progra1n using the MAD
KOP translator. The OPS-3 system is quite inefficient, and the
methods outlined in Chapter 9 for executing OPS-4 programs should
lower this figure considerably. 46.

41

and accuracy, but which he is not interested in descril;>ing, or modules

which he does not know how to completely describe at that particular

time, may be defined as user portrayed programs. This allows the

model description to be logically complete, but does not force the user

to switch from his main area of interest to consider something of lesser

importance. He is only required to be specific about the functions of

the module when it is actually needed. At that time the environment of

the situation is established and it may be helpful in suggesting what is

the proper formulation of the program.

An alternate use of the user portrayed program is to allow the

user, or anyone else, to participate directly in the simulation as it is

running. This feature, together with the ability in Multics to direct

output to, or receive input from several terminals allows OPS-4 to be

conveniently used to specify interactive gaming models.

An Example

Suppose we wished to study the operation of the segmentation and

paging mechanism in Multics. Recall that segmentation is a technique

implemented by software and hardware which divides each program in-

to pieces called segments and required that only those segments referred

to within the program in the most recent interval of time actually reside

in core memor;r. 19-Zl Furthermore, segments are divided into pages.

Pages are of fixed size and the hardware addressing allows them to re

side anywhere in memory. Thus, a segn1.ent need not occupy consecutive

42

blocks of core memory although to the user it may appear as if it does.

(The user need not know anything about pages.) A segmentation and

paging system seek to increase the utilization of memory, which is a

scarce resource, so that more programs may share the memory sim-

ultaneously. It also allows a computer to accommodate programs that

are larger than physical core memory.

Some of the questions about the segmentation and paging system

which we might be interesting in answering are:

I. How many programs can we execute (from start to finish)

in a given period of time with segmentation and paging as

opposed to sans segmentation and paging?

2. How long do various classes of programs take to execute

in a system that uses segmentation and paging compared to

one that doe sn 1 t?

3. What is the total amount of system overhead in a system

that uses segmentation and paging compared to one that

doesn 1t?

4. How does changing the page size affect the answers to

these three questions?>:<

To answer these questions we start to build a model. In fact,

>!<Obviously a page size larger than the largest segment in the
system, or limited to the physical memory size - which ever
is smaller - is like no paging at all.

------~--------------------------:--- -~--------- -

43

since we are asking for comparisons, we must really consider two mod

els - one that uses the swapping technique of CTSS, and the other that

employs the segmentation and paging concepts of Multics. The CTSS

system has already been analyzed by Scherr so we need not do it over

again. 48 In addition, he has also collected the necessary data on pro

grams size, the lengths of running time, the duration of pauses between

successive requests for program execution, etc.

We realize that there is a strong positive correlation between the

data Scherr collected and the CTSS system. In Multics the distribution

of program lengths may be quite different because the number of active

segments and pages changes dynamically and also, because of the pos

sibility of sharing segments. However, in a paging system there is

no limit on memory size as there is in CTSS, so the total size. of all

segments in a program may tend to be larger in Multics than those in

CTSS. The user interaction rate is known to be positively correlated

to the program co1npletion rate. If the system completes programs

rapidly, the user tends to submit more programs to be run. Keeping

these facts in mind we decide that although we are interested in a com

parative study we may have to estal;>lish multiple reference points even

though they may not be realistic in both systems being studied.

Two Approaches to Modelling

How do we start to build a model in OPS-4? We can start either

at the detailed level of the individual modules and build upward until we

44

have constructed all the modules that are necessary to completely spe

cify the model, or we can start with a very abstract, simplified model

and add detail as we find it necessary. The first approach might be

likened to that of building a computer. The individual circuits are spe

cified, they are combined into logical building blocks, the building blocks

are combined into functional units, and the functional units are combin

ed to complete the whole computer. The second approach might be lik

ened to building a house. The outer structure is completed first and

then the detail is added. Both approaches have merit and both approaches

can be used in OPS-4.

Constructing a Model from the Top-Down

This second approach to building the model of segmentation and

paging in Multics might lead us to conceptually think of Multics and the

user in terms of a simple queing model. Users make requests, which

enter a queue, and Multics examines the queue periodically and serves

the requests. Although this is a correct description it is not very en

lightening and certainly doesn't provide any information to help us an

swer questions about segmentation and paging in Multics. More detail

must be added. Modelling the user as a simple arrival process with as

sociated attributes of running time, program size, etc., may be adequate

initially. However, the server side of the model needs to be more

detailed.

45

A Functional Model of Multics

We might model Multics in more detail by specifying the major

modules of which it is constructed. For example, the hard core sup

ervisor logically consists of just 3 functions,

a) Memory management - the allocation of memory among

competing processes, which is the job of the basic file

system.

b) Processor management - the allocation of processors a

mong processes and inter-process control and communi

cation, which is handled by the traffic controller.

c) Secondary storage management - the details of addressing

and manipulating segments stored on the drum, disk, tapes,

etc. which is handled by the basic file system.

Communication with users at remote terminals is handled by subroutine

calls to the I/O system which is not a basic part of the hard core super

visor, but is closely interrelated with it.

Figure 1 shows an overall functional diagram of Multics. Basically,

there are three levels. The lowest level is concerned with hardware

management. It transforms the actual hardware of the machine into a

number of pseudo-processors, each with its ovvn segmented memory

and symbolically accessed files. 25 This level provides what has been

called an extended machine. 49• SO The next level up is concerned with

resource management. Here the extended machine is allocated among

46

~The User~

Listener Overseer

~Shell~
User System
Programs +---t------;: ... Commands

Library I/O Control System
SubroutinesE----t------=~ (User Interface Module)

Resource Management

Reserver~--------i Backup and Multilevel
t-------~Storage Management

LinkerE-----------t

Segment Housekeeping
System Monitoring

t-------:=-- and Accounting

Search Module ~------t

'-.:/
Hardware Management

A

Inter-Process Commun
,.._ ication Facility

Secondary Storage and Processor Management
Core Memory Management (Traffic Controller and
(Basic File System) ~--1---------,,.....Interrupt and Fault

Handling)
I/0 Channel Control "E----1

(GIOC Interface Module)
Supervisor Protection

1-----~-~(The Gatekeeper)

Memory~

Figure 1. Functional Diagram of Multics

47

the various users and numerous administrative servic_es and functions

are performed. Finally, at the top level is the user, and the programs

he may directly execute.

It is apparent that the operation of the basic file system is what

we are primarily interested in modelling. However, we cannot com

plet~ly neglect the other functions, since the basic file system calls the

1/0 system when it needs a pag.e transported to or from secondary stor

age and the basic file system may be called by the traffic controller

when it is necessary to switch processes.

Figure 2 shows a diagram of the linkage, segment and fault handl

ing mechanism in Multics. The solid lines represent flow of control,

with arrows designating direction. The circles indicate data bases and

the dashed lines show what modules acce.ss the data bases.

Linkage, Segment and Page Faults in Multics

To clarify Figure 2, let us review exactly how linkage faults, mis

sing segment faults and missing page faults occur in Multics, AU. seg

ments - which can be either program.a or data - are referred to be name,

rather than by their physical location in either the memory or secondary

storage {Only the basic file system knows the physical locations of a seg

ment}. When a process refers to the segment for the first time, the

linker gains control through a linkage fault. (All symbolic references

to segments are replaced by a linkage fault which is inserted by the PL/l

compiler when it translates a procedure into machine language,) The

8'

e

DIM

Linker

Segment
Control

Page

Control

\
\

e
I

I

Segrr1ent
Housekeeping

Directory
Control

' ' '

Core
Control

DIM

Search
Module

Directories

----e
Access

Control

./
/

/

--~
~

Figure 2. Functional Diagram of Linkage, Segment and Page Fault Handling in Multics

.J>..
CXl

49

linker consults its segment name table (SNT) to see if it knows about the

named segment. If it doesn't, it calls segment housekeeping to look

for the segment. Segment Housekeeping calls the search module for

advice on how to locate the segment. Segment Housekeeping then calls

directory control to manipulate the directories and locate the segment.

(This may require several recursive calls to the search module and di

rectory control.) When the segment is located control passes back to

the linker which enters the segment in the SNT. (The segment is now

known to the process, but not yet loaded.) Now-that the segment is lo

cated, or if it was found in the SNT originally, the linker calls s.egment

control asking it to establish the segment. Segment control then calls

access control to determine if the user has access rights to the segment.

If he does, segment control assigns a segment number for the segment,

creates a new entry for it in the known segment table (KST), stores the

descriptor control bits, which includes the missing segment bit, irt the

descriptor segment, and returns the segment number to the linker. No

part of the segment has yet been brought into core, but it is now directly

addressable because it has a segment number.

As the process tries to make a reference to the segment a missing

segment fault takes it directly back to segment control. Segment control

finds the unique identifier for the segment from the KST and searches

the active segment table (AST) a system-wide table, for a segment with

this unique identifier. If it doesn't find it, it creates an entry in AST by

50

calling directory control to get its physical location. Segment control

then places the segment description in the descriptor segment and

calls page control to read in a page of the segment. Page control first

creates a page table for the segment and returns to segment control.

(Creating the page table may require that a page of core be removed

to make room for the page table), The entries in this page table are

filled with missing page bits. Segment control returns to the original

process. The requested segment has not yet been brought into core

memory, but not it has a page table.

As the original process tries further to complete its reference

to the segment a missing page fault takes it directly back to the page

control. Page control locates on secondary storage the specific page

being referenced and finally brings it into memory by calling the disc

or drum device interface module (DIM) which in turns calls the I/O sys

tem. Loading this page in core may require the removal of some other

page belonging to this, or another process. To remove a page may re

quire copying it out onto secondary storage if it is not a "pure" page.

Thus, page control calls core control before the new page is loaded to

see if there is room for the new page. Core control consults the "core

map" to decide which page or pages of core, if any, should be removed.

This decision is based on the frequency of usage of pages in core. If

core control decides to remove one or more pages it calls page control

recursively to remove the page{s). Page control calls the device inter-

51

face module (DIM) which queues the request. DIM in turn calls the

I/O system to actually move the page(s).

Since the loading of the requested page, and possible prior copy-

ing of another page or pages out onto secondary storage takes time, the

process generating the page fault is blocked until the page actually ar-

rives in core. When the page arrives, the process is awakened and

finally the reference to the page is completed. Future references to

this page will not be subjected to such a torturous routing, unless the

page goes unused for a long time, so that it is removed from core by

the core control module. If so, its missing-page-bit is set on in the

page table. The page is then brought back in when it is again referenced

by repeating the steps just described in the previous paragraph. This

same procedure is also followed when any other page in the segment is

referenced. It is also possible that the segment may be removed because

of inactivity. When the segment is later referenced, a missing segment

fault, rather than a linkage fault, occurs and takes control directly to

segment control. The sequence of steps in the previous two paragraphs

are then repeated. ,.

We may not want to model all of these modules, but we can begin

to see what modules must be represented in a model in order to answer

the questions posed earlier. For example, we can eliminate the function

of the DIM and the I/O system by modelling it by a simple delay. This

delay is drawn from an exponential distribution to which a fixed constant

52

is added. This assumes that most segments that are referenced are

readily available, but that some, such as ones located on long access

time devices such as tapes, require considerably longer to access.

Modelling the User

I
The user model refel."red to earlier needs to be complicated

slightly to include the description of different segment types. We might

classify all user segments as belonging to one of three classes.

a) sequential

b) cyclic

c) random

A sequential segment, an example of which might be a sequentially ac-

cessed data file, is always referenced in ascending consecutive locations.

Thus, new pages will be needed at fixed intervals and old pages will not

be referenced again. A cyclic segment, an example of which might be

an executable program, loops through a fixed number of pages. A random

segment, an example of which might be list-structured segment, gener-

ates random requests among a fixed number of pages.

When the attributes of a user are generated the mixture of these

three types of segments will be specified as parameters of the user.

Thus, the parameters of the user are:

1) Processor time for the request

2) Total nun1ber of segments in the request

3) Total length of all segments in the request

53

4) Pause time before the following request is executed

5) Number of sequential segments

6) Number of cyclic segments

7) Number of random segments

8) Average length of sequential segments

9) Average length of cyclic segments

10) Average length of random segments

The number of segments specified by parameters 5, 6, and 7 determine

parameter 2. The sum of the products of parameters 5 times 8, 6 times

9 and 7 times 10 equals parameter 3. All segments of the same type are

assumed to be the same length. (This is certainly not realistic, but

simplifies the modelJ A request specifies the continuous usage of the

processor, except for paging activity, and timer r·.mouts caused by the

scheduling policy. In this simple model there is no concept of multiple

interactions per request. The data collected by Sherr corresponding to

parameters 1, 3 and 4 are • 88 seconds, 6, 300 words, and 35. 2 sec.onds

respectively. 48

After generating the above 10 parameters the request is entered in

to a workqueue. When the request is completed the- user delays the val

ue of pause time. Then a new set of user characteristics is generated

for the next request and the process just described is repeated.

Modelling Segment and Page Fault Handling

We can eliminate from the server model some of the modules shown

54

in Figure 2. In particular, we can ignore the problems of the linker,

segment housekeeping, the search module, access control, and direct

ory control in a simple model by making no distinction between the first

reference to a segment and all later references. Thus, when a missing

segment fault occurs control will always go to segment control which

will check to see if there is an entry for the segment in the AST. If not,

it will delay, make the entry in AST and call page control. Page control

will check for the presence of a page table. If it is missing it will call

core control. Core control will examine the core map to see if there

is space. If there isn't space it will select a page to be removed and

delay. It will then return to page control which will set the missing

page fault bits on and return. When a missing page fault occurs, con

trol will enter page control which will call core control again for space

and return, after a possible delay, to page control which will reset the

page fault bit and return to the user process.

A number of further simplifications can be made initially. We

need not keep an actual AST, but can answer the question about whether

the segment is active or not by a random draw from a specified proba

bility distribution which we create rather arbitrarily, Likewise, we

need not have a page table or a core map either initially. The questions

regarding these data bases can initially be modelled by other probability

distributions. Furthermore, after a segment fault, we will automatically

enter the page fault routine. Figure 3 shows a flow chart for this simplified

Is Segment
Active?

No

Delay While
Segment Mad

Active

Yes Is There a

Page Table?

Yes

No

Delay
While Space

Obtained

No

Delay While
Space

Obtained

Is Page
In Core?

No

Yes

Get

New Page

55

Yes

e
Figure 3. Segment and Page Fault Handling Model

56

model.

Certainly this model is inaccurate, but its forte is that it is so

simple that it can be easily tested. When we are sure that it is func

tioning correctly, then we can replace the probability distributions by

the specified data bases and gain more realism.

This is one of the advantages of constructing a hierarchical model

on-line. We are encouraged to make trivial models and test them, be

fore plunging into a mass of detail, because it takes little effort to do

so and can give us insight immediately. If we were constructing the

model off-line we would most likely pass over this simple model because

it is so trivial.

Modelling a running process

This model is still not complete since there is no mechanism to

generate the mis sing segment or page faults. We need to model a pro

cess in execution. Using the user characteristics about types of segments

we can build a very crude model using probability distributions again.

First we draw a number which specifies what type of segment ref

erence is to be made, sequential, cyclic or random. Using this number,

and the user parameter which specifies the number of segments of this

type in the process, we determine if a missing segment fault is to occur.

If the answer is yes we call the segment fault routine. If the answer is

no then we draw from a distribution specified by the segment type number

and the average length of the segment the delay interval before a missing

57

page fault occurs in this ~egment. Before actually delaying the speci

fied interval, we check to see if the time allocated by the scheduler for

running this process will elapse before the delay is completed. If the

answer is no, we delay. After the delay the page fault entry is called

and the user cycle is restarted. If the process is to terminate, first

we reduce the delay to the termination time and then delay. After the

delay we set a switch indicating that a page fault is due and save the re

maining amount of time left befoe the page fault. Then we return to the

scheduler.

Modelling the Scheduling of Processes

The model of the scheduler may also be very simple. If the CTSS

scheduling routine is used, it removes the new user processes from the

work queue and enters them into the scheduler's queues. If a simple

round robin schedule is used, the work queue may serve as the schedul

ing queue. In any event, the scheduler selects a user to run and calls

the execution routine specifying which user is to run and for how long.

(No pre-emption of a running user is allowed).

The Complete Model

This simple model now consists of the following parts:

1. An activity for generating user process characteristics

called New-User.

2. An activity for scheduling the execution of user processes

called Scheduler.

58

3. An activity for executing user processes and generating

missing segment and page faults called Execute-User.

4. An activity for handling mis sing segment and page faults,

which has two entries called Segment-Fault and page-Fault.

The New-User activity only generates user characteristics and waits un

til it receives a signal that the user is done running. The Scheduler is

an asynchronous activity and gains control whenever a running program

becomes blocked. It selects a user to be run and calls Execute-User with

the particular user characteristics and the selected quantum. When the

quantum is exhausted, the routine Execute-User returns to the Scheduler,

When the total request time is exhausted control goes automatically to the

New-User routine. Execute-User delays for an interval to represent the

elapse of processor time and then calls either Segment-Fault or Page

Fault. When a delay occurs in either of these activities the current user

is blocked and the Scheduler gains control again. It selects a new user to

be run. When the segment or page fault delay expires control goes back

to the Segment-Fault or Page-Fault routine which unblocks the particular

user and puts him on the work queue. However, since another user is now

running nothing further happens.

There is no provision in this model for originating and terminating

users. The original generation of the users in the system can be done

directly from the console or by an initialization routine which will gen

erate a fixed nurn.ber of distinct users. Termination can be ignored.

59

As the model becomes more sophisticated a user arriv~l routine can

easily be added and the routine for generating user characteristics can

be modified to include the possibility the termination of a user.

Building the Model

How might we start out to build this model? What activities should

we· write, and what ones should we portray ourselves? The New-User

activity is simple so it can be written as an uncompiled OPS-4 program.

A round robin scheduler is also easy to write. The activity for handling

the missing segment and page faults has already been described and can

also be written on compiled OPS-4 program. However, the Execute-User

activity has not been thoroughly described and may profit by a certain

amount of experimentation to see what might be a good algorithm for gen

erating missing segment and missing page faults based on the user char

acteristics we have described. Thus, we decide to portray it ourselves.

To inform OPS-4 about the existence of this activity, all that is

necessary to do is execute the PL/l declaration statement,

Declare Execute-User Procedure User

When, during the execution of a model, control flows to this user portray

ed activity Execute-User, the name of this activity and all parameters

associated with it will be displayed on the console and the execution of

the simulation will be suspended. We are then free to do anything we

want.

60

Testing the Model

The three uncompiled OPS-4 programs can easily be tested by

calling them directly from the console and executing them line by line

to see if they work c'Jrrectly. With the New-User activity we might

also want to examine the collection of user characteristics to see if

they are being generated correctly. The Scheduler needs little analysis

since it just removes the top item from the work queue and schedules

it to become active by calling Execute-User. The activity to process

missing segment and page faults is the most complex. To verify that

it is working correctly it will be necessary to examine the Agenda be

fore and after executing it and also it will be necessary to see_ if it is

manipulating the queue of blocked processes correctly. This will re

quire displaying both the Agenda and the queue of blocked processes.

When these three programs appear to be functioning satisfactorily we

can put them all together.

First we might schedule two or three calls to New User to repre

sent two or three distinct users. Then we would set som.e trace options

so we could monitor the fiow of control from one activity to another, We

might also want to monitor the movement of simulated time and monitor

any changes to the Agenda. Then we would start the model running, per

haps specifying that it should stop after a certain period of time or after

so many activities have been executed. The first item. on the Agenda -

a call to New-User - would be executed, a new set of user characteristics

61

would be generated and the activity would wait until the user request

was completly served. The next one or two calls to New-User would

also be handled the same way and then suddenly an error message "No

eligible activities 11 would be printed and the simulation would stop. What

has happened?

We view the Agenda and see the suspended New-User activities

but nothing else. Then we realize our mistake. Of course, we forgot

to initiate the Scheduler activity! Since it is an asynchronous activity

and only gets control when a process is blocked it must be initially called

by us.

We reinitialize the Agenda, this time putting a call to the Schedul

er after any of the calls to New-User. Now the first user gets sched

uled and the Execute-User routine is called, Since we are portraying

Execute-User ourselves the simulation system now requests that we

perform its function. We examine the user characteristics for this

particular user and decide to delay for a specified period of time. When

this delay expires (which will be immediately since no other activity in

tervenes) we will then generate a call to either Segment-Fault or Page

Fault.

After executing the model this way for a while we may discover

some errors that need to be corrected in the three uncompiled OPS-4

programs. If so, we simply edit the programs to make the corrections

and imm.ediately start to execute them again. No intermediate compil-

62

ation is necessary.

Completing the Model

The continual demands made upon us to portray the Execute-User

activity may grow burdensome, and we also may now feel prepared to

formalize the process that we have been doing in an ad hoc manner. So

we write an uncompiled OPS-4 program, test it individually, and then

include it as a part of the whole model. If everything works we 're now

prepared to start thinking about how to answer the original questions

which inspired the construction of this model.

We realize that we need to collect some statistics. Specifically,

we need to know 1) the total number of user requests completed in a

given period of time, 2) the total elapsed time from start to finish of

a user request, and 3) the percent of total time that was spent accomp

lishing supervisory functions as opposed to executing user programs.

The first is easily obtained by just adding one to a counter· each

time a request is completed. The second item is also easily obtained

since the OPS-4 system automatically records the simulated time at

which a new activity first becomes active. Thus, all we need do is add

a few statements to the end to the New User routine to subtract the cur

rent time from the beginning time of the activity and store it for further

processing, tabulate it in a frequency distribution or send it to an out

put device. The third item is also obtained without difficulty. If just

requires accumulating all the delay times in the scheduling routine and

63

Segment-Fault and Page-Fault routine. At the end of the simulation

this time is divided by the total simulated time to give a percentage.

After making these few modifications we might decide to compile these

4 activities to speed up the execution of the simulation.

Lending Realism to the Model

This model's results will be realistic only in so far as the algo

rithm for generating missing segment and page faults and the modelling

of the core map approximates the real situation. We could do what

Scherr did, and collect a large number of statistics about user prog

ram characteristics and missing segment and page faults, or we could

complicate the model substantially by adding detail and keeping t rack

of what segments and pages are active both for each user and also sys

tem-wide - i.e. construct an individual and overall core map. The

latter is equivalent to writing the equivalent pieces of the basic file

system.

This raises the interesting question of why not include pieces of

the basic file system as part of the model? One problem is the protect

ion of the basic file system. It is part of the hard core supervisor and

does not allow direct calls to be made to it from a user level. If this

barrier couldn't be removed it might be possible to get signals from the

basic file system regarding missing segment and page fault handling

which would be used to drive the rest of the model. That is, the Execute

U ser activity would be replaced by a routine which monitored the basic

64

file system and collected the statistics regarding delays associated with

missing segment and page faults. Also, in place of generating user

characteristics, several real programs could be used.

The Model as a Design Tool

Even if it were not initially possible to incorpnrate actual pieces

of the basic file system into the model or to monitor the actions of the

basic file system, this primitive model could act as a crude design tool.

First of all, it could show under what extreme loads the percent of over

head becomes very large or very small. If a realistic core map were

included in the model it could be used to investigate alternate policies

for removing pages from core. A preliminary estimate about the bal

ance between numbers of users and the memory, processor balance could

be obtained. Guidelines could be established about what might be the

ratio between processor time and elapsed time for a request, etc.

Constructing a Model from the Bottom-Up

The bottom-up approach to modelling Multics discussed in the beg

ining of this chapter might consist of modelling each module of the Basic

File System separately, and then combining them hierarchically to form

the complete model. In constructing these individual modules we might

start experimenting with various formulations by executing statements

directly from the console. When we felt we had a workable description

we might choose to write it down as a program, execute it further and

then compile it. Alternately, we might immediately start to write a

65

program and then test it, making repeated changes in the program

specifications until it was accurate. The ability to modify and then

immediately test OPS-4 programs without any intermediate compilation

request is most important in this phase of model building.

Adding structure to the Model

When we felt' we had sufficient number of the basic modules o,f

basic file described we might wish to try combining them together. For

example, we might like to check the interactions of the core control

and page control modules. To do this we might follow the same route

as before, fir st trying various combinations by hand, as it were, and

then as we felt more sure of the way they interacted we could solidify

the relationships by writing them down. During this stage, it is pos

sible that some errors, or incompatibilities might become apparent

in the definition of one or more of the basic modules. If that is the case

we could easily modify the OPS-4 version of the program for one or

more of the modules and test the changes, running some modules as

OPS-4 programs, some as compiled programs, and perhaps specifying

the interrelationships between the modules directly from the console.

This process could continue until the model is completed. Along the

way, we might find it beneficial to portray some of the modules, such

as the search module ourselves. When the model is complete we

would no doubt find it similar to the one constructed from the top, down.

A possible difference might be that this latter module would contain more

66

detailed structure than the former.

Material Based Versus Machine Based Models'

There are two points of view about the different facilities for

constructing simulation models that this model of Multics illustrates.

In this model each user process may be thought of as a different trans

action flowing through the computer with its own distinct characteris

tics. The computer is viewed as a static object which operates on the

transactions in identical fashion. This is what is referred to as a

material based model - i.e. the items of material to be operated on

are non-homogeneous, while the processing operation on all items is

identical. However, it is also possible to view all user processes as

homogeneous objects which simply generate segment and page faults.

~he computer is then required to distinguish between these two types

of requests and react differently to them. This orientation is called

machine based.

As we have just seen there is nothing inherent in OPS-4 which

restricts a user to only one approach. Either one or both may be used.

This freedom is provided by the availability of the rich data structures

provided in P L/l, and the flexibility of the OPS-4 language for specify

ing the individual processing of transactions. The only disadvantage

that this flexibility incurs is that it is not possible to easily provide auto-

matic statistic gathering on pre-defined m.achine usage such as is avail

able in GPSS, a material based languages, since there are no standard

67

machines defined in OPS-4. This disadvantage is outweighed by pro

viding the flexibility to specify any machine or material types. Also,

simplified statistic gathering facilities are available in OPS-4 and are

discussed in Chapter 8.

Activities and Events

Some languages, such as SIMSCRIPT, require that a m.odel be

specified only in terms of separate events. 8 That is, if we were to

model the action on on-line disk storage device in SIMSCRIPT we

would have one event that specified the beginning of the disk seek,

and which scheduled another event called the end of the disk seek.

Such artificiality is not necessary in OPS-4. Instead a delay statement

is used to specify the expiration of a certain amount of time before

the activity representing the disk continues. This is much the same

as one would do the the SOL language.12, 13 SOL, however, makes

it difficult to schedule events directly. Everything is oriented toward

the activity concept. All scheduling is done implicitly by the simulation

system itself. In OPS-4 the approach of SIMSCRIPT for scheduling

events directly is also available.

In OPS-4 an activity is described by writing a program which

may define several events. For example, the activity New-User which

generates user characteristics might be written as follows:

68

New User:

Repeat:

Procedure;
Declare 1 user-char controlled,

2 processor-time float,
2 total- seg float,
2 total-length float,
2 Pause -time float,
2 Number-seq float,
2 Number-cyclic float,
2 Number-random float,
2 Length-seq float,
2 Length-cyclic float,
2 Length-random float;

Allocate User-char;
Draw Processor-time from exponential 88.;
Draw pause-time from exponential 35, 2;

Draw length-cyclic from uniform 500 5000;
Draw length-random from uniform 1000 20000;
Enter User-char bottom work-queue;
Wait Until processor-time = O;
Delay Pause-time;
Total-time = Sys-time - btime;
Display Total-time, User-char;
Total-requests = Total-requests + l;
Go to Repeat;
End New-User;

Conditional Activities

OPS-4 allows the execution of an activity or event to be dependent

on some condition, Two different classes of conditions are distinguished.

The first is identical to the event concept of PL/l which is implemented

in Multics with the Block and Wakeup modules in the Traffic Controller

and the use of an Event Table. One activity may send a signal to any

other interested events by the Set Event statement in P Lil which declares

that a specific named event has occurred. One or more other events

69

(or activities in OPS-4 parlance) may determine if a specific event

has occurred by the statement Note Event. Also, one event may spe

cifically Wait for another specified event to occur before it proceeds.

This type of conditional activation of activities is limited in general

ity, but it is implemented in a very efficient manner in Multics.

The second type of conditional execution of activities allows the

user to specify any relation between global and local variables as the

triggering statement. For example, the condition 'processor-time =

O' was specified as controlling when the activity New-User was to be

continued. This type of scheduling is extremely comprehensive, and

subsumes the first type of scheduling, since Set Event could be repla

ced by setting a switch the name of which would be specified in a Wait

state1nent. However, because of its generality, the testing of these

conditional statements must be done continusously. Therefore, the

execution speed of a simulation model having many conditional state

ments of this latter type is quite slow. In the Multics model the page

control module could use the event type of conditional scheduling just

described to alert it when the transporting of a page to and from core

memory was completed. For example, it might state,

Wait Signal

where Signal is the na1ne an event defined by the I/O module.

70

The Information Feature

Many times during the course of constructing a model, the user

may need to be refreshed about the exact details of how a particular

feature or statement in OPS-4 is used. OPS-4 will have available an

on-line information system which will describe how to use the features

of the OPS-4 system in sections of graduated detail. A similar system

has proved to be a very useful and important feature in the OPS-3 sys-

tem. There will be a few differences, however, in this feature, called

'Info, 1 in OPS-4, which are dictated by experience using the Guide op-

erator which supplies information in OPS-3.

The basic difference is that an Info request will only supply in-

formation about one subject at a time. When it reaches the last sec-

tion pertinent to the specified subject it will automatically return to

normal execution. If there are one or more sections to a specific sub-

ject a carriage return automatically continues with the next section. If

anything else is typed Info returns to normal execution and delivers the

typed line to be executed by OPS-4. Furthermore, in addition to being

able to ask for a s.pecific section pertaining to a subject, a user may

specify that he wishes to see all tlie sections pertinent to a subject.

The Info system will be implemented differently than the Guide

feature in OPS-3. It will allow the user to type, in natural English, his

requests for information about OPS-4. A progran1 similar in nature to

ELIZA, will scan for key words in the sentence and determine what in-

f . h d . 51 ormation t e user es1res. A hash-coded index of all subjects will

71

be stored in <.OPS. Index>.* This index will contain the address of the

beginning of the first section of each subject in<.OPS. Information>. The

format of.(OPS. Information> will be a tree-structure so that each sub-

ject may have several sections, each of which have several subsections,

etc. Facilities will be provided, as an integral part of OPS-4, to allow

authorized users to revise the information contained in<.OPS. Information>

and create a new<. OPS. Index>. This authorization will be implemented

as part of the access control information stored in the directory branch

of these two segments.

Summary

This chapter has described the various alternatives and features

available to a user for constructing complex simulation models. It

.has particularly discussed the importance of hierarchically structured

models. Using the segmentation a.nd paging mechanism of Multics as

an example, it has shown how a model may be constructed from the top,

down, and from the bottom, up. The three types of programs that _OPS-4

recognizes have been illustrated in the example. The richness of the

OPS-4 language in providing both the machine based and material based

orientations to modelling, and also the flexibility of two types of condit-

ional execution of activities has also been discussed. Finally, the on-line

information system available in OPS-4 has been described.

*The use of triangular brackets is the standard convention adopted
to denote a segment in Multics. Thus (a"> means the segment
named 11 a 11

•

Chapter 4

THE SIMULATION DATA BASE

The structure of the data base is an important aspect of every
simulation. The particular way a user chooses to organize his data
base strongly ineracts with the way he constructs a model. The struc
turing of the model and the structuring of the data base must be done
in concert. One should not dominate the other, and· both must be eas
ily subject to change.

This chapter describes the concept of global and local variables
and discusses how they are allocated among various segments by PL/l
and OPS-4. The ability to easily restructure both the global and local
data bases is described as a particularly important feature of the OPS-
4 system. The various types of data objects available in PL/l are re
viewed and the additional ones provided in the OPS-4 system are des
cribed. The special provisions OPS-4 makes for manipulating the
global data base and its associated symbol table are also discussed.
The concept of hierarchically related data bases is discussed. Fin
ally, the solution OPS-4 adopts for allowing multiple copies of local
data bases belonging to one procedure to co-exist and be uniquely i
dentified is described.

Global and Local Variables

A simulation model almost always contains global data - data

available to every activity in the simulation - and also local data which

is available only to the activity that declares it. The global data estab-

lishes the environment in which the model operates. Every activity

may freely modify the global data base without restriction. Local data,

however, is only known to the activity that declares it, and can be used

by other activities only if it is explicitly passed to them as parameters

in their calling sequences. In this respect a simulation model is no

different than any other collection of interacting programs. OPS-4 also

allows one activity to manipulate the local data base of another activity

72

73

by explicitly linking to the data base. This is described at the end of

this chapter.

The model of segmentation and paging in Multics discussed ear

lier almost completely ignores the problem of data bases. Almost

every data base is eliminated to simplify the model. There are two

types of data bases necessary in this model - a global data base for

the directories, AST and Core Map and a data base local to each pro

cess group (a user in our model) for the SNT and KST. The external

attribute in PL/l declarations allow us to define the former as global

data objects so that they may be available for use by all activities in

our model. 32 The SNT and KST will not be defined with the external

attribute and hence will be local to the individual acti vi ties.

Since activities are independently written procedures PL/l re

quires that the declarations of all global (external) variables be re

peated in every activity that refers to them. This is not necessary in

OPS-4. It maintains a special global symbol table. If a user executes

any PL/l declaration statements directly from the console the declared

symbols are automatically entered into this global symbol table irrespec

tive of whether the external attribute was specified in the declaration,

That is, the user is assumed to be operating at the global level unless he

specifies otherwise. Alternately, any PL/l declaration statements with

the external attribute which appear within an OPS-4 program always add

the definition of the symbols to the global symbol table when they are

74

executed.

The OPS-4 symbol table search mechanism always checks the

global symbol table for a symbol definition if it is not defined in the

local symbol table of the activity. Thus, in OPS-4 global symbols

only have to be defined once, either directly by the user from the con

sole, or by one activity. If a symbol is defined more than once the

latest definition always superceeds the former definition. This allows

a user to easily restructure or change the attributes of any variable

at any time by giving just one declaration statement.

When an OPS-4 program is compiled, the special OPS-4 to PL/l

translator discussed in Chapter 9 autornatically creates declaration

statenients \Yith the external attribute for all symbols referred to in

the activity that are not defined in the local syrnbol table, but 2re de

fined in the global symbol table.

If a user wishes to write his program initially in PL/l he will,

of course, have to declare all the global variables explicitly. The use

of the 'insert file' feature recognized by the language translators avail

able in Multics simplifies this task. It allows a user to create a file

that contains all the declarations for com1non variables used by several

progran1s" In place of writing these declarations in each program the

user merely writes INSERT FILE XX, where XX is the first nan1c of the

file containing the declarations of cornrnon variables.

Local variables are handled norm.ally as in standard PL/l prograrns.

75

They are known only to the activity in which they are declared and al

located by that program. If several instances of an activity exist sim

ultaneously during the simulation, each one will have its own local data

base. The problems of identifying and keeping these local data bases

separate from one another are discussed later in this chapter. These

problems are unique to simulation models and distinguish them from

other collections of interacting programs. They are, however, similar

to the problems Multics encounters in allowing a pure procedure to be

simultaneously executed by several different processes.

Implementation of P L/l Storage Allocation in Multics

Because of the variety of data types and modes of storage allocat

ion available in PL/l it may be useful to review here how data storage

is allocated by the P L/l compiler in Multics. There are 3 modes of

storage allocation in PL/1 - static, automatic, and controlled. Auto

matic is the default mode. It iS used to provide the dynamic storage

mechanism required by the block structure of PL/1. Static is similar

to the normal FOR TRAN type of allocation. Storage is allocated at the

beginning of the program and never de-allocated. Controlled storage is

allocated by the user with explicit allocate and free statements.

In Multics there are several standard segments used for storage

allocation. They are .(stat_), <free_), <i;;tack), and the procedure

segment itself, <proc>. All static variables whether external or internal

variables are placed in <stat_). All controlled variables are placed in

76

<free_>. Also, all based variables, e.g. those that are referred to by

a pointer variable are placed in <free_>. All local (internal) variables

of automatic mode are placed in the <:stack>. Any constants are placed,

along with the instructions, in the procedure segment. OPS-4 follows

these PL/l rules in part and also refers to additional data segments,

which are described later.

Restructuring the Data Base

One of the major features of the OPS-4 system. is that a user may

restructure his data base at any time by just executing new declaration

statements. All OPS-4 programs will adapt to the change automatically

(Chapter 9 discusses how this is done). Only compiled programs need

be modified. This allows the user to concentrate on his model and ig

nore many of the mechanical details.

For example, in the Multics model, we might go through many it

erations of changes in the data structure of the KST, AST and core map

before we decided on the proper structure. We could add or subtrace

elern.ents and easily incorporate the new data manipulation statements in

the model without any recon1pilation, provided all the activities were not

yet compiled,

Sets, Queues, and Tables

To make the OPS-4 system more powerful and useful for simulations,

three new types of data objects are added to those already available in

PL/l. The first data object is a set. A set may contain any data object

77

as a member, e.g., scalars, arrays, strings, structures, etc., and

even other sets. The implementation of sets in OPS-4 uses the SLIP

type of list structure. 52 The declaration of a symbol as a set serves

only to establish the set head and a pointer to it. .All sets are allocat

ed storage in a special segment, <,OPS. lists). The decision to do this

rather than place sets in ~free_>, is so that OPS-4 can control garbage

collection of this segment. (Chapter 8 discusses the structure of sets

and garbage collection.) With the addition of this new type of data ob

ject OPS-4 also expands the statements in PL/l to include facilities for

entering or removing elements at either the top or the bottom of a set,

and before, after and in place of a specific member of the set. State

!11-ents are also provided to search sets in a forward or backward dir

ection, and to detect the beginning or end of a set so that searching

may be terminated. These statements are listed in the Appendix and

are patterned after those available in SIMULA.14, 15

The second new data object in OPS-4 is a queue. Queues are very

similar to sets. In fact, the set manipulation statement may be used

directly on queues. The difference between sets ·and queues is that OPS-

4 provides some statements for monitoring queue sizes, computing the

elapsed time of items in queues, etc. (Chapter 7 discusses this in more

detail). Thus, a user will use a queue in deference to a set only because

he desires to collect some statistical measures of queue usage. The

implementation of queues in OPS-4 is similar to that of sets, and all

I

78

queues are also allocated storage in OPS. lists •

The table is the third type of data object added to PL/l by OPS-4.

It is provided to allow the user to easily collect distributions and is

similar to the table features available in GPSS, SOL and OPS-3.10, 12, 13, 18

The declaration of a table includes the lower and upper limits of the

table range, and also the cell interval. Storage for tables is allocated

in .(free_> if it is declared to be external or in a special local segment

if it is internal.

A tabulate statement is provided to allow a user to update the tab-

le with a specified count, or an implied count of one. Also, a variety

of display statements are provided to allow the user to print the table

in tabular form, or plot it either as a density or cumulative distribution,

and as a bar graph, or broken-line graph. These display statements

allow the user to specify the range of the table entries to be displayed

and also vary the cell size so that the definition of individual cells may

be magnified, or groups of contiguous cells may be aggregated. This

flexibility is extremely important when the range of the table is large

and the user wishes to see a condensed version of the entrie table, or

else an expanded view of just a subset of the entire table. Standard

default attributes are defined if the user is not specific in his output

requests. These display statements may be executed at any point dur-

ing the simulation and provide an excellent debugging tool. (See Chap-

ter 7 for details.)

79

Contents of the Global Symbol Table

The global symbol table contains definitions of many other entities

besides the global variables accessable to all activities. It is divided

into permanent and transient sections. The permanent section contains

a list of entries for every standard statement in the OPS-4 language

giving their segment and entry names. This section of the global sym

bol table may be modified only by authorized people, and is in the spec

ial read-only segment, <OPS. statements>.

The transient portion of the global symbol table is in the segment,

<OPS. symbol>. It contains the following types of entries:

a) Definitions of all global variables.

b) The names of all known OPS-4 programs that have not

yet been compiled.

c) The names of all user portrayed programs.

The user may delete any of the entries in the transient symbol table at

any time. The OPS-4 system automatically deletes the name of an OPS-4

program when it is compiled by means of the OPS-4 to PL/l translator.

The names of user portrayed programs must be deleted explicitly by the

user.

Manipulating the Global Symbol Table

The global symbol table is usually an important element of any

simulation model. Therefore, special facilities are available for man

ipulating it directly within the OPS-4 system. The user may do the follow

ing:

80

1. He may uniquely name the current symbol table. (This can

also be done by the rename command of Multics}.

2. He may specify that a particular segment is to replace but

not destroy the current symbol table. (This can be done by

two rename commands in Multics.}

3. He may initiate and name a new symbol table which replaces

but does not destroy the old one.

4. He may initialize the current symbol table, e.g. delete all

the definitions. (This is equivalent to starting a new sym

bol table having the same name as the old one.}

5. He may append a segment to the current symbol table. (Note,

since the symbol tables are hash coded, this is more than

just a simple concatenation of the segments}.

6. He may obtain a listing of the contents of the current sym

bol table.

All of these above options refer only to the transient portion of the sym

bol table. All symbol tables in OPS-4 are never deleted unless the user

does so himself.

Manipulating the OPS-4 Data Bases

A user needs to have similar facilities for manipulating the data

bases created by the OPS-4 system. In particular, the ability to unique

ly name the current data bases, substitute different data bases for the

current ones, and clear the current data bases are all frequently needed

81

functions when a user is experimenting with several different data sets

belonging to the same model, or when a user is switching between sev

eral models. Also, during the stages when the user is incrementally

building his model it is important to be able to combine various frag

mental data bases.

Although most of these functions can be accomplished with Multics

commands, the fact that there are several segments which taken together

constitute the simulation data base makes it unnecessarily burdensome

to require that he do so. Having special OPS-4 statements which sim

ultaneously manipulate all the data bases that are pertinent to a given

model is a considerable convenience.

Private Data Bases

Two or more activities may wish to jointly access data, but yet

not make it generally available. Thus, they need their own private

semi-global data in addition to their local data bases and the general

global data base. The PL/l external declaration attribute is adequate

for describing this type of arrangement in compiled routines. Only those

routines containing the external declarations will have knowledge of the

existence of these private global variables. Thus, various routines may

have different sets of external declarations. The intersection of the sets

of declarations will define the data that is common to both routines-. This

is similar to the named common feature of FORTRAN IV. 53 Thus, al

though all external variables are store<l in the same data segments,

82

namely <stat'> and< free_>. they are not generally available.

However, in OPS-4 programs, as opposed to compiled programs,

such protection does not exist. Any variable declared in the global

symbol table is available to any other OPS-4 program. To limit access

to only specifically declared programs an additional attribute called ac

cess is added to the standard PL/l attributes allowed in a declaration

statement. This access attribute may be followed by a list of programs

that may be granted access to the declared variable. Conversely, a no

access attribute denies access to these named programs and allows all

others access. These lists are stored in the global symbol table, and

checked by OPS-4 before it allows any OPS-4 program to reference the

variable (See Chapter 9 for details}. When OPS-4 programs are com

piled the OPS-4 to PL/l translator generates external declarations for

all global variables having no access restrictions and those variables

which specifically allow access to the program being compiled.

The user, when executing statements directly from the console, is

always allowed access to all variables. If this were not so, he could only

debug programs by being within them - a very unsatisfactory restriction,

Hierarchically Structured Data Bases

The Multics debugging package allows symbol tables to be hierarch

ically structured. Thus, it follows that the corresponding data bases will

be related to each other in a hierarchical manner. This allows the block

structure concept to be dynam.ically extended during execution to

-.· j

83

independently written and/or compiled routines. Althc>ugh it does not

appear that the PL/I compiler will make use of this facility, OPS-4

.~

programs may do so. Any variables declared in hierarchically super-

ior OPS-4 programs will be known to the inferior OPS-4 programs, be-

cause symbol table linkages will be created dynamically as control flows

from the superior to the inferior routine, and all sym.bol table searches

in OPS-4 always start with the local symbol table and progress to the

global symbol table.

Debugging Considerations

This dynamic hierarchical structure does present an interesting

anomaly. When an OPS-4 program is executed independent of_ its sup-

eriors, e.g. when it is called directly by the user from the console, it

will not know about any superior symbol tables except the global symbol

table. Thus, symbols defined in higher level programs will be undefined.

This may be a desirable feature. If, on the other hand, it is not, the

user has the facility provided.by the Multics debugging package to link man-

ually the symbol tables together himself.

This hierarchical structure of data bases and symbol tables does

make debugging more difficult. The user at the console is most naturally

considered to be the most superior level. Thus, all variables defined

in anything but the global symbol table are not directly accessible by him.

However, the Multics debugging package has introduced special features

to allow a user to reference any variable relative to the segment that

84

declared it. Thus, a? b means the symbol a within segment b. OPS-4

allows this type of referencing, and offers an extension. A user may

specify a path to a particular lower level program, much as he speci

fies a path through various directories in the Multics file system. Spec

ification of this path automatically establishes the symbol table linkages

so that all variables defined in superior blocks will be known to the

specified program. Then he may test and probe within the program

and achieve identical results as if control had flowed to the program

normally. A simple statement such as top will automatically return

him to the top level again, and unlink the symbol tables.

Multiple Copies of Local Data Bases

Several instances of a simulation activity may exist simultaneous~

ly during a simulation. For example, in the Multics m()del there will

be many different users being simulated simul~aneously by just one set

of programs. (All OPS-4 programs are pure procedures - i.e. they

do not modify themselves.) Each of these users has certain data, such

as the description of his programs characteristic and the Known Seg

ment Table (KST) which must be kept separate from the other users.

These data bases are local to the programs that man~pulate them. There

fore, the problem is how to allow replications of the local data of an

OPS-4 program.

The dynamic storage allocation features of PL/l which allocate

new storage each time a procedure is called provide a partial solution.

85

Each time a new call is made to a program in Multics it normally saves

all the calling information in the stack and allocates new storage to

contain the local data. As explained previously some of this data norm

ally saves all the calling information in the stack and allocates new

storage to contain the local data. As explained previously some of this

data normally goes into <stack> and some of it into <free_>. Upon re-

turn to the original caller the local data areas are de-allocated. The

only type of storage allocation which could cause difficulty is static.

Allocation of storage for any variables declared to have the static at

tribute is done only the first time the procedure is entered. This

causes no problems for static external variables, since they belong to

the global data base, and there is only one instance of global data. How

ever, local data with static storage allocation will not allow each replica

tion of the data to be distinct. Instead, the latest version of the data

will use the same storage as any former versions as thus obliterate

the previous data. In many situations this may be the desired intent of

the user. However, if it is not, it should be brought to bis attention as

a possible source of ,difficulty. Therefore, OPS-4 will flag any declar

ations of local data having the static attribute. Also, any pointers to

allocated areas which normally are allocated within <stat_,. will be flagged.

Difficulties with the Multics Stack

The normal Call, Save and Return macros used in Multics mani

pulate the stack as a simple push-down stack. That is, when a Call and

86

Save are executed it puts information indicating the calling routine on

the top of the stack and pushes down one level all the information pre

viously placed in the stack. When the corresponding Return is execu

ted_ it takes the information pointed to, which is usually at the top of

the stack, removes it, thus re-defining the top of the stack and uses

it to determine where control should return. In recursive calls of pro

cedures this mechanism operates correctly, since returns are executed

in the same order as the calls are made, e.g. LIFO. However, sim

ulation activities do not behave so properly.

Consider the following example. In the Multics model, the ac

tivity which simulates the handling of segment and page faults is called

many different times. Each call may represent a different user and

therefore must be kept distinct from any other calls. This segment

and page fault handling routine simulates the time it takes to access

secondary storage by a delay of a random amount of time. Assume

user A calls the routine, which we will call Fault, at time 1200 and

draws a delay time of 20 units. This delay interrupts the execution

of Fault and control passes to the central sim.ulation system. At time

1205 user B calls Fault and draws a delay time of 25 units. B will

therefore return from Fault at 1230 whereas A will have already re

turned from Fault at 1220. Thus, A returns before B does. This

causes trouble in a normal push down stack. When B calls Fault it

puts information on top of the infonnation A already put in the stack.

87

When A returns before B, it destroys B's information when it pops the

stack.

The OPS-3 system avoided this problem by laboriously empty

ing the stack and saving it, along with all the local variables every

time a DELAY or WAIT statement was executed in OPS-4. When it

came time to return to the activity, the stack was reloaded and the lo

cal variables were reset to their previous values. This was a time

consuming operation, but was dictated in part by the absence of dynam

ic storage allocation in the MAD language, the chief programming lan

guage available for users in CTSS to write their simulation models.

Solution to the Stack Problem

What is really needed, is a multiple stack arrangement, so that

_each call can be kept separate. Although Multics provides facilities

for the user to redefine the stack by a simple supervisor call, the new

stack is chained to the old stack, and thus is not independent. This is

done because Multics wants to always keep track of the flow of control

between programs, so that it can bail a user out if his program goes

out of control. Separate processes do have separate stacks, but OPS-4

must work initially using just one process. OPS-4 makes use of the

controlled mode rather then the automatic mode of storage allocation

to provide a solution.

It implements its own multiple stack mechanism by allocating each

instance of a procedure 1 s local data base in a different segment. The

88

conventions for naming segments are described in the next section.

All local variables are stored in this special segment. The pointer

to the segment (e.g. the segment number) is maintained in a special

definition block created by OPS-4 for each activity. This definition

block also contains other important information about the activity and

it is described in detail in Chapter 5. When a Delay or Wait statement

is executed in an activity, the contents of the normal Multics stack is

copied into this special segment. When the activity is continued at a

later time this segment is accessed and is used to reload ,the Multics

stack.

The reason for copying the stack is compatibility. Unless all

procedures are processed by the OPS-4 to PL/l translator, or unless

a special PL/l translator is available for OPS-4 users, it is impossi

ble to guarantee that all storage is allocated in these special local data

base segments. Thus it is necessary to perform the time consuming

operation of copying the Multics stack into the local data base segment

when an activity is interrupted. It allows normal PL/l routines to use

the automatic storage allocation features, and not confound the simula

tion system. If all routines are written in OPS-4 the stack will not con

tain any data, but only the flow of control information.

Linking Activities

One activity may wish to examine the local variables of another ac

tivity but not transfer control to it. For example, we might wish to

89

simulate a sc~1eduling p.rogram in Multics which needed to ex<l/ffiine in

formation contained within each process to decide which process to

schedule next. (Note: this is not the scheduling method used in Multics.)

This is rather unusual request, since each activity's local variables

are purposely not readily available to other activities. However, its

implementation is straight forward.

The principal problem is identifying the specific instance of an

activity whose local variables are to be made available to another ac

tivity. To simplify this problem, OPS-4 allows each activity to be

uniquely named. However, it does not require that activities be unique

ly named. For example, to uniquely name each instance of the activity

which generates user characteristics we might say,

Schedule New-User named Sam

We could have also said just,

Schedule New-User

or,

Schedule New-User named Joe

That is, when creating a new activity we have the opportunity of unique

ly naming that instance of the activity. If no unique name is assigned,

the generic name, in this case, New-User followed by a unique serial

number is assigned by OPS-4 automatically. These activity names are

pointer variables and are created dynamically by the Schedule statement.

They point ot the definition block for the activity. All definition blocks

90

are stored in the special segment <.OPS. Activities>. The structure

of definition blocks is described in Chapter 5. The unique activity

name is also used as the name of the segment which contains the local

data of the activity.

Specifying the specif~c name of an activity within another activity

causes the local symbol table for the generic activity and the specific

named local data base segment to be linked to the symbol table of the

current activity. All the local variables of the linked activity may

then be symbolically accessed using their variable names defined with-

in the activity, and manipulated as if control had flowed to the activity.

After the original activity is finished manipulating the variables of the

linked activity it unlinks itself. This linking and unlinking mechanism

14,15
is a direct adaptation of the connect feature in SIMULA. It also

has a parallel with the link that a user may make between files in dif-

ferent directories in Multics.

Initialization of the Data Base

Since the global data base may be manipulated by all activities,

it is very easy to have one special activity which initializes it before

the simulation begins. It is also possible to initialize the data base, as-

suming it was created previously, by using one of the data base manipu-

lation statements discussed earlier in this Chapter.

91

Summary

This Chapter has introduced the concept of a global data base

and its associated global symbol table and described the features for

manipulating them which are particularly important in an on-line sim

ulation model. It has also discussed how the local data bases of activ

ities may be hierarchically structured and the unusual debugging prob

lems that this presents. The augmentations of the PL/l data types by

the inclusion of sets, queues and tables is described. Finally a sol

ution to the problem, unique to a simulation system, for manipulating

and identifying the multiple instances of activities is presented.

..; .. ,

Chapter 5

CONTROL OF ACTIVITY SEQUENCING

One of the unique features of a general simulation system is a
mechanism for controlling the sequencing of activities in a simulation -
e.g. mq.naging the flow of control between sections of the simulation
program. This Chapter introduces the concept of an Agenda, which is
an ordered list of activities and shows how it is used to determine the
sequencing of activities. It discusses the statements available in OPS-
4 to add, modify or delete entries on the Agenda. The various differ
ent states of a simulation activity are discussed and it is shown how
the statements in OPS-4 may change the state of an activity.

The Need for Activity Seguencing Statements

Normal collections of interacting programs find the subroutine

call mechanism adequate for managing the flow of control between the

parts of the program (e.g. subroutines). Even complicated heuristic

programs do not require a special calling mechanism, although the flow

of control is certainly far from predictable in these programs. 42• 43

What is different about simulation programs? Why is the subroutine

calling mechanism not adequate for them?

It is because a simulation model is not just one program~ but

several programs operating in parallel. Each activity in a simulation

model is conceptually executing in parallel with the other activities in

the model. Since even new multi-processor computers may not have

as many processors as there may be activities in a model, it is neces-

sary to have some means of simulating the simultaneous execution of

many activities on a one or n-processor computer, where n is less than

92

.·_, :.

93

the number of activities .in the model.

Thus, simulation systems need to have a mechanism for allow

ing separate programs to be run sequentially but appear to be running

in parallel. A mechanism is needed for allowing these programs (e.g.

activities) to transfer control among themselves, in a completely un

predictable manner. This is necessary because silriulation programs

may contain stochastic elements in them which determine when they

want to run and for how long. Thus, it is impossible in general to pre

dict when one program may wish to run, and how long its execution

will take. If both of these factors were fixed it would be possible to

specify a sequence of calls from one program to the next program and

-the standard subroutine calling mechanism would suffice.

If simulation activities had only the mechanism of the co;rwention

al subroutine calls available to them for transferring control, each

activity would have to call every other activity when it was finish~d

executing to see if any of them wanted to start executing. If more than

one activity did it would have to resolve conflicts and assign priorities.

A slightly more sophisticated plan might utilize a special subrou

tine which tests the activities rather than require each activity to do

its own testing. Then each activity would call the special sequencing

routine when it wished to transfer control to another activity. Even

this proposal has severe limitations. It requires that this special sub

routine be aware of the presence of all activities in the model. Also, it

94

is very inefficient since this sequencing routine must check each ac

tivity every time it is necessary to transfer control from one activity

to the next. Also, it is very difficult to implement any sort of a pri

ority scheme, other than a fixed one which specifies the order in which

activities are to be tested for execution. However, polling schemes

similar to this were used in the early simulation programs. Z6.

The Agenda

An obvious solution to this problem is to introduce the concept

of an intermediary which does not need to know about all activities in

the model, but only those that wish to be executed. When activity A

wished to transfer to activity B, it would tell the intermediary about

this desire, rather than transfer directly to B itself. The intermedi

ary might then complete the transfer to routine B, or knowing that some

thing else should be done before the transfer to routine B, it might in

terject a transfer to several other routines before it transferred control

to B. In fact, the possibility exists that one of the intermediate routines

might cancel the transfer to B and thus negate the original intent of

routine A.

The simplest form of an intermediary is a queue. The names of

activities wishing to be executed are entered in the queue. A central dis

patcher examines the queue after each activity finishes execution and

transfers control to the next activity. This technique augmented by a

clock for internal timing is used as a simple scheduling mechanism in

95

rnany real-time programs, and in Multics itself.

Simple queues are limited to either a FIFO or LIFO policy. A

more general queue discipline is necessary. The Agenda is the name

given to this more flexible queue in the OPS system. The Agenda is

an ordered list of activities and is implemented as a special type of

set. (Its exact structure is described later in this Chapter). The order

of entries on the Agenda indicates the order in which activities should

be executed. However, because OPS-4 allows the execution of some

activities to be conditionally specified, the actual order of execution

may differ from the order of the entries on the Agenda. The Agenda

is only used to route the flow of control between activities. The norm

al subroutine call is used for indicating the flow of control within an

activity.

Modifying the Agenda

There are only three types of changes that can be made to the Agen

da. A new entry may be added, an existing entry may be deleted, or an

existing entry may be modified. Modifications to entries on the Agenda

may cause them to be refiled in a different location.

Because the Agenda is really just a special set, all the set mani

pulation features are appropriate for the Agenda. That is, entries may

be placed at the top or the bottom of the Agenda, immediately before or

after an existing entry, or in place of an ~ntry already on the Agenda.

Likewise the entry at the top or bottom of the Agenda, before or after a

96

specific entry on the Agenda, or with a specific name may be deleted.

However, because the specific structure of the Agenda is quite differ

ent from the structure of sets in OPS-4, special statements are used

to modify the Agenda. These statements may be grouped according

to the three categories of addition, deletion or modification.

Scheduling Activities

New entries are explicitly created by Schedule statements. A

Schedule statement is used when one activity wishes to specify the ex

ecution of another activity. The Schedule statement is analagous to

both the Create and Cause statements in SIMSCRIPT, and acts as a

deferred subroutine call. The Schedule statement gives the generic

name of an activity and may optionally define a specific name for the

activity. It also defines the parameters of the activity and specifies

the position on the Agenda where an entry is placed which defines the

call to the activity. The position is specified as being at the top or

bottom of the Agenda, or before, after or in place of an existing entry

on the Agenda, For example, to explicitly schedule the execution of the

activity which generated user-characteristics in the Multics model des

cribed in Chapter 3, we could write either

Schedule New-User after Finish

or

Schedule New-User named Sam after Finish

In both cases a call to the activity New-User is placed on the Agenda

97

after the first entry which calls an activity identified as Finish. (No

parameters are included since the activity New-User has no paramet

ers.) In the latter case this instance of the activity New-User is to be

identified as Sam and a pointer variable na,med Sam is dynamically

created. In the first case the name of the activity is New-User, the

same as the generic name. This ability to specifically name each in

stance of an activity is the method provided in OPS-4 to identify indiv

idual activities. This name provides a way of identifying the activity

when another activity wishes to refer to it. It also allows the local data

bases of activities to be manipulated and filed in sets. The set mani

pulation statements provide a limited form of list processing capabil

ity in OPS-4.

One of the unique features of the Agenda is that each entry on the

Agenda contains a special time attribute. If the user desires, he may

insert entries on the Agenda at a position determined by a s_pecific val

ue of this trime attribute. For example, to continue the above example,

we might have specified

Schedule New-User named Sam at 1225

This would insert an entry on the Agenda containing a call to the activity

New User (with the specific name of this activity being Sam) at a position

immediately following all previous entries with a time attribute of 1225

or less. This is a very useful scheduling option, and some simulation

systems have relied on it as their only method for scheduling activities.
8

98

Having available only this single type of scheduling statement restricts

these simulation systems to be solely dependent on time as the forcing

function which drives the simulation. In many, discrete-event simula

tions this is not a limitation. However, in many continuous simulation

models time is just an incidental variable which is periodically updated.

A general purpose simulation system must not be restricted to schedu

ling based only on time.

Scheduling Conditionally Executed Activities

In addition to scheduling options which specify absolute or relative

positions or which use a special attribute to determine the position of

entries on the Agenda, there is an important option which is position

independent. In OPS-4 it is possible to specify that an activity is to

be executed when a specified condition occurs. Although the term is

somewhat inaccurate, this type of scheduling is called conditional sched

uling. To return to the example again, we could have specified,

Schedule New-User when X = B

meaning, schedule the execution of the activity New-User to occur when

the condition X = B is true. Alternately, we could have specified the

condition for the execution of New-User as being dependent upon the com

pletion of some specific event or events. This latter feature is just an

extension of the 'Wait for Event' statement in PL/l.
32

These two types of conditional scheduling statements are very power

ful and greatly simplify the user's task in structuring simulations in which

99

the execution order of activities is subject to many constraints. How

ever, since the first type of condition specified is so general, it is im

possible to implement it is any efficient manner using software alone.

What is really needed is a hardware trap to alert the system to changes

in the values of the specified variables.

To guarantee that the activity is executed as soon as the specified

condition becomes true, OPS-4 must re-check the validity of all gener

al conditions after the execution of every event in the simulation. This

is a time-consuming operation and thus users are wise not to specify

general conditional scheduling as an excuse for laziness, but only when

absolutely necessary. On the other hand, the conditional statement

which specifies a particular event is qui te::efficiently implemented.

It is implemented in a manner similar to the basic method Multics uses

for controlling the execution of processes. Thus, in place of specifying

the condition A = 0, or A = 1, it would be more efficient to define an

Event A which is associated with the value of the variable A being either

1 or 0, and specify the completion of Event A as the condition.

The conditional and unconditional scheduling options available in

OPS-4 may be combined to allow a user to specify both a condition and

either a position on the Agenda or an explicit time as being the deter

mining factors which influence when an activity may be executed. This

means that the condition for activities scheduled at a future time do not

have to be tested until that time becomes the current time.

100

Rescheduling Activities

Sometimes it is necessary to reschedule or repositior: the entries

representing calls to activities already existing on the Agenda. For

example, in the Multics model, the scheduling module must be able to

reschedule a user to run again if he does not complete his request af

ter the first service. This is done by the Reschedule statement which

gives the specific name of an activity. It has all the options of the

Schedule statement. This means it is possible to change activities that

were conditionally scheduled to being unconditionally scheduled and vice

versa. It is also possible to change the parameters of an activity with

a Reschedule statement, although this may alternately be done by using

the connect feature discussed in Chapter 4. The Reschedule statement

may refer to the time attribute of the entry being moved and thus easily

reschedule an activity by adding or subtracting a fixed time to the pre

viously scheduled time without actually knowing the previously scheduled

time of the activity.

Cancelling Activities

On occassion, it is necessary to cancel the scheduled execution of

an activity. This is done by removing its entry from the Agenda. As

in the Reschedule statement, activities are identified by giving their spe

cific name rather than their generic name. However, cancelled activ

ities may still be referred to, because their definition block still

exists.

101

Interrupting and Resuming Activities

An activity must be interrupted when a circumstance arises in

the simulation which dictates that the activity cannot continue in exe-

cution. For example, when the user pushes the quit button he causes

the current process in execution to be interrupted. Or when a higher

priority activity wishes to use some facility which is already in use,

the activity using the facility must be interrupted. Interrupting is dif-

ferent from rescheduling, because at the time an activity is interrupt-

edit is not possible to specify when it may be resumed. Interrupting

should also not be confused with cancelling an activity. A cancelled

activity disappears from the Agenda, whereas an interrupted activity

'
is just set off to the side. However, it is possible that interrupted

activities may never be resumed and thus effectively become equi-

valent to cancelled activities.

The activity to be interrupted is specified by name and removed

from the active part of the Agenda. When the specified activity is later

resumed the interval of simulated time during which it has been inter-

rupted is added to .the value of the system time attribute and this new

value of the system time attribute is used to compute the position of the

entry for the activity in the Agenda.

If a Reschedule, Cancel, Interrupt, or Resume statement specifies

the name of an activity, for which there is no entry on the Agenda, a

flag is set indicating a possible error and the simulation continues with

102

no modification being made to the Agenda.

Implicit Modification of the Agenda

All of these five methods of modifying the Agenda require that the

user explicitly execute them either from the console or by incorI>orat

ing them in the definitions of activities. Also, all of these statements

refer to a specific named activity which is normally an activity other

than the activity in which they appear. Thus, these five statements

might be termed external scheduling statements. There are corres

ponding statements in OPS-4 which allow the user to modify the state

of the activity in which they occur, and by doing so implicitly modify

the entry on the Agenda for the current activity.

Delays and Waits

The simplest form of implicit scheduling statement is the Delay

statement. It specifies an interval of time during which the execution

of the current activity is suspended. When the interval expires, the

activity is alJ.tomatically resumed. The operation of the Delay state

ment is equivalent to an unconditional Reschedule statement.

The Wait statement specifies a condition rather than an interval

of time as the factor which determines when the current activity is con

tinued. As long as the condition is false, the activity remains interrupt

ed. When the condition is satisfied the activity is resum.ed. The oper

ation of the Wait statement is equivalent to a Reschedule statement that

specifies a condition rather than an interval of time. Both forms of

103

conditions, the specific named event, and the general variable relation

ship may be specified in a Wait statement.

It is also possible to combine the Delay and Wait statements so

as to specify a specific interval of time and a condition, both of which

must be satisfied before the activity is resumed. .The possibility of

specifying either a specific interval of time, or a condition is discussed

later in this Chapter.

Self-Interruption and Self-Cancellation

An activity may want to inte-rrupt itself and not specify how it is

to be resumed. This is accomplished by exec.uting the Interrupt state

ment with no arguments. Unless some external activity resumes the

activity it will never be restarted. It is also possible for an activity

to cancel itself. There is no explicit statement for this in OPS-4. Ac

tivities are automatically cancelled - e.g. their entries on the Agenda

are removed - whenever they execute a Return, Exit or End statement.

A Continue statement is similar to the Return, Exit and End statement,

except that it does not change the Agenda entry for the activity in any way.

States of Activities

An activity may be in only one of six states at any given time dur

ing its existence in an OPS-4 model. The names of these states and

their definitions are as follows:

1. Active - The activity is currently being executed on a

processor.

104

2. Unconditionally Scheduled - Only the passage of time is

necessary before the activity will become active.

3. Conditionally Scheduled - As SOOil as the specified con

dition is true the activity wi.11 become active.

4. Conditionally Scheduled at a Future Time - Once the

indicated time has elapsed and as soon thereafter as

the specified condition is true, the activity will become

active.

5. Interrupted - The activity can not become active until

it is referenced by a Resume statement.

6. Inactive - The activity has not been created, it has been

cancelled or, has terminated naturally by executing its

final 'End' statement. However, it still may have a

local data base and be referred to by another activity.

Any activity which is not in one of these six states is unknown to

the OPS-4 system. An activity is any of these states may be linked to by

another activity. (Recall discussion at end of Chapter 4). The following

table shows how the various sequencing statements alter the state of an

activity. The current state of any activity may be determined by the spec

ial OPS-4 function 'State' which requires the name of the activity as its

only argument. If the activity is inactive it returns a zero, otherwise it

returns an integer from 1 to S. If the activity is inactive, but linked to

by another activity it returns the value 6.

,---

Sequencing Statement

External
Schedule
Reschedule
Cancel
Interrupt
Resume

Direct Subroutine Call

Internal
Delay
Wait
Delay and Wait
Interrupt
Continue
Return, Exit, End

Original State

6
2, 3, 4, 5 or 6
2, 3, 4, or 5
2, 3, or 4
5

any state

1
1
1
1
1
1

New State

2, 3,
2, 3,
6
5
2, 3,

1

2
3
4
5

or 4
or 4

or 4

105

state before becoming active
6

Table 1. Activity State Transitions

It is interesting to note that it is not directly possible for the ex-

ternal sequencing statements to cause an activity already entered on

the Agenda to become active. This guarantees that the Agenda will al-

ways be in control. However, the statements, Reschedule Z top; Delay

0, are equivalent to a direct call to the activity z. The direct call

causes an activity to be activated at its currently defined re-activation

point.

The Agenda Scan

Normally, the Agenda determines the next activity to become active.

It does this in a simple manner. Unless the activity releasing control has

specified otherwise, the scan of the Agenda to determine the next activity

to become active is started at the top of the Agenda. The first entry is

~·-- •• ,-;__, ',< ...

106

examined. It may be one of the two types corresponding to the three

states numbered 2, 3, or 4 described previously. 1£ it is an uncondit

ional entry - e.g. the activity it specifies is unconditionally scheduled

(state two) - then the specified activity is immediately made active.

1£ it is a conditional entry - e.g. the activity it specifies is conditional

ly scheduled (state two or three) - then the condition is tested. 1£ the

condition is true, the activity is immediately made active. 1£ the con

dition is not true this entry is passed by and the next entry is tested.

Because of the presence of conditional entries on the Agenda,

several entries may be. tested before an eligible activity is found. 1£

the entire Agenda is scanned and no eligible activity is found, an er

ror is reported to the user.

The conditional entries on the Agenda represent only those activ

ities that were scheduled with the general variable condition. Activit

ies scheduled with the specific event conditions are placed in a differ

ent position on the Agenda, and are not checked by the Agenda scan4

The Agenda Structure

The full Agenda is really a tree structure. The main branch is the

one just described. A separate branch exists for each event that is

specified in a specific event condition. For example, if the user

specified

Wait for Event A and B

an entry pointing to the main entry for the activity in which this statement

107

occurred would be placed on the branches for the events A and B. The

two entries in the branches A and B would be chained together and a

count field would be set to two indicating both events needed to be sat

isfied. If instead of requiring that both the Events A and B occur be

fore the activity continues the user specified A or B, the entries on the

Agenda would be the same, except the count field would he set to 1,

indicating that either of the events could cause the activity to be made

active. If the user does not explicitly state either 'and' or 'or' the

default case always assumed to be 'and'. The count option available

in PL/l may also be used.

For example,

Wait for Event A, B, C, D, E, (3)

specifies that when any three of the events A, B, C, D, or E are com

plete the activity is to continue. This is implemented by storing the

specified count rather than the total number of named events in the

count field of the entries in each event branch.

In all three of these cases when one event is completed its corre

sponding entry is removed from its event branch and the counts in all

the entries on the other event branches are decreased by one. When any

count reaches zero, all the remaining entries are removed, and the

main entry for the specified activity is inserted on the main branch of

the Agenda.

The P L/l statement,

108

Set-Event (event name)

is used to define the completion of an event. It checks for the existence

of the named event branch and makes all the modifications necessary

to that branch and any entries on other branches which may link to the

entries on the original branch. If all the event conditions for the ac

tivity is satisfied the specified activity is merged into the main branch

of the Agenda,

All interrupted activities are also kept on a separate branch of

the Agenda. When an activity is interrupted it is removed from the

main branch and an entry containing the time of interruption and a

pointer to the entry for the interrupted activity is placed in the inter

rupt branch of the Agenda.

The Agenda is thus a list of lists. The first sublist is the main

branch, the second the interrupt branch, and the third is a pointer to

a hash-coded table which contains pointers to each of the specific event

branches. Since the number of sublists is fixed at 3, the pointers to

these sublists are stored in a 3 element vector. The first element

contains a pointer to the beginning of the main branch. The second

element contains a pointer to the beginning of the interrupt branch, and

the third contains a pointer to the base of a hash-coded table. Each en

try in the hash-coded table is one word long and contains two pointers,

one to the name of the event and the other to the event branch. This

table is rehashed when it is too long or too short.

109

The reason for including these event branches and interrupt

branch as part of the Agenda, rather than using the Event Table pro

vided by Multics and a separate interrupt list is mostly a matter of

centralization. The user should be able to obtain all the information

about the states of activities just by examining the Agenda. He should

not have to look in three different places.

The Structure of an Activity Definition Block

Each activity that has been scheduled in the OPS-4 system always

has a certain amount of identifying data associated with it. This is

called its definition block. The specific activity name pointer, dis

cussed in Chapter 4, always points to the definition block for an ac

tivity. The definition block of each activity is 12 words long and con

tains the following information: (The length of each component is in

dicated parenthetically.)

1. A pointer to the entry for the activity on the Agenda. This

field is zero if the activity is inactive. (18 bits)

2. A code which identifies the current state of the activity.

(3 bits)

3. A count which indicates the number of activities currently

linked to this activity and also indicates Set membership

(15 bits)

4. A time attribute which defines the simulated time when the

activity first was- unconditionally scheduled or when it first

I.

llO

became active if it was conditionally scheduled, called BT.

(1 word)

5. A time attribute which defines when the activity last finish

ed execution, called LT. (1 word)

6. A pointer to the segment containing the local data for the

activity. (This segment contains the specific name of the

activity.) This is an ITS pair. (2 words).

7. A pointer to the entry point in the activity where control

will flow when the activity is made active. This is an ITS

pair, since it points directly to a segment. (2 words)

8. A pointer to the symbol table for the activity (which con

tains the generic name of the activity). This is also an ITS

pair, since it points directly to a segment. (2 words)

9. A back pointer to the symbol table of the activity which cre

ated this entry. This is also an ITS pair, since it points

directly to a segment. (2 words)

10. A pointer to the paramet~rs of the activity stored in <free_>.

(18 bits)

11. Unused. (18 bits)

The Structure of the Main Entry

Each entry on the main branch is 3 words long and contains the

following information:

I. A pointer to the proceeding entry on the main branch, (18 bits)

111

2.. A pointer to the following word on the main branch. (18 bits)

3. The execution time attribute for the activity, abbreviated ET.

(1 word)

4. A pointer to the general variable condition, which itself is

stored in <free_>, if the activity is scheduled with a general

variable condition, or a zero field if the activity is uncondit

ionally scheduled or is inactive. (18 bits)

5. A pointer to the definition block for the activity. (18 bits)

The Structure of an Event Entry

Each entry in an event branch is linked to the other entries on the

same branch and to other branches if multiple events have been speci

fied by a specific event condition. An entry contains the following in

formation:

1. A pointer to the preceeding entry for another activity in this

branch.(18 bits)

2.. A pointer to the following entry for another activity in this

branch. (18 bits)

3. A pointer to the entry for this activity in the preceeding event

branch or a zero field if only one event was listed. (18 bits)

4. A pointer to the entry for this activity in the following event

branch, or a zero field if only one event was listed. (18 -bits)

5. A count field. If the count is initially 0 it indicates an 'or'

condition between events. If the count is greater than zero

it indicates an 1and 1 condition between events. (18 bits)

112

6. A pointer to the definition block for the activity. (18 bits)

The total length of each event entry is three words.

The Structure of an Interrupt Entry

An interrupt entry is also 3 words long. It contains the follow

ing information:

1. A pointer to the preceeding entry in the interrupt branch.

(18 bits)

2. A pointer to the following entry in the interrupt branch. (18

bits)

3. The value of simulated time when the activity was interrupt

ed. (1 word)

4. A pointer to the definition block for the interrupted activity.

(18 bits)

5. Unused. (18 bits)

Time Advancement

The Agenda scan mechanism is used to advance simulated time.

The rules for advancing time are as follows:

..

1. If the entry for the activity selected to be activated is uncon

ditional the system time is set to the value of the ET for this

entry. If this results in a backward movement of simulated

time a flag is set.

2. If the entry for the activity selected to be activated is

ll3

conditional and the current value _of simulated time exceeds

or is equal to the ET of .this entry the value of system time

is not modified. If the current value of simulated time is

less than the ET of this entry then the value of simulated

time is set to the ET for this entry.

The user is also free to advance time himself by executing an

assignment statement of the form,

Set sys-time = expression

This is useful in simulations where all activities are scheduled rela-

tive to each other, rather than scheduled at specific times •. It then

provides the only means for advancing the clock.

Continuous Models

Many econometric models or the type of continuous feedback mod

els which the DYNAMO system is designed to simulate are of the type

just mentioned.
54

These models require only the cyclic solution of a

series of difference equations and the increase of system time by a

fixed DT in between each cycle. Introducing the concept of permanent

entries - entries which can never be deleted - allows such models to

be easily handled in OPS-4.

An Agenda for this type of model would be fixed and consist only

of permanent entries. Each activity would ~eturn to the next entry on

the Agenda, by means of the 'Continue next' sequencing statement, rather

than to the top of the Agenda, as the normal rule. The last entry on the

114

Agenda would call an activity which would update system time by the

specified DT and then return to the top of the Agenda by executing an

unmodified Continue statement. This would start the cycle all over ag

ain. Thus, a generalized discrete event simulation system may be used

to model continuous systems with ease. The reverse, however, is not

true.

Returning Control to the Agenda

Once an activity becomes active it can not be de-activated by the

simulation system. Only the eight internal sequencing statements list

ed in Table 1 may cause an active activity to enter an inactive state.

The external sequencing statements do not alter the state of the current

activity or interrupt its actual execution.

Recall the definitions of activity and event given in Chapter 1. An

activity that is active is executing one event within the activity. Unless

the user specifically changes the value of system time, an event occurs

at a single instant of simulated time. Each event may define an inter

action point of that activity with other activities in the syste1n (i.e. a

point where control may be transferred). There are no interaction

points within an event, unless the user specifically provides one. For

example, inserting a delay of length zero within an event will force an

interaction point without. causing simulated time to advance. All events

in an activity are concluded with one of the 8 internal sequencing state

ments. The value of simulated time will be automatically increased by

115

the simulation system between the execution of successive events.

When an activity becomes inactive by virtue of executing one of

the internal sequencing statements, control automatically returns to

the Agenda system. However, before an activity returns control to the

Agenda, it may specify whether the Agenda scan is to be continued

from the current entry, or whether the scan is to return to the top of

the Agenda. If no specification is made the default case is to return

to the top of the Agenda and restart the scan. By normally starting

at the top of the Agenda, after the execution of each activity, it is pos

sible to test the general conditional entries and see if any of the con

ditions have changed. If there are many conditional entries this can

be a time consuming operation. The user can skip this rescan of the

conditional entries by returning to the next entry on the Agenda..

Modifying the Agenda Entries

All the sequencing statements modify one or more of the components

of the Agenda entry to which they refer and change the identification code

of the activity pointer. They may also move an entry from one branch

of the Agenda to another.

The Schedule statement always creates a new definition block for an

activity, and also creates an entry which is inserted in the specified pos

ition on the Agenda, either on the main branch, or in a specific event

branch. If a specific event is specified, the name or names of the events

are looked up in the hash table, added to the table if necessary, and the

116

appropriate branch entries created in addition to the definition .block.

When an activity is first inserted on the main branch the three time

attributes ET, BT and LT are always initialized with the same value

of simulated time. If the schedule option specified 'before,' 'after',

or 'in place of' an existing entry on the Agenda the value of simulated

time used for initialization of the ET, BT and LT of the new entry is

the ET of the specified activity, provided it is scheduled uncondition

ally. If the specified activity is scheduled conditionally, the current

value of simulated time is used instead to initialize the ET, BT and

LT of the new entry. If the schedule option is 'top', 'bottom' or just

a condition, the time used for initialization of ET, BT and LT is the

current value of simulated time. If the schedule option specifies a

particular time, that time is used to initialize the ET, BT and LT of

the new entry. The schedule statement also fills in all the other com

ponents of the definition block and allocates space for the parameters

and the condition, if any, in <free_>,

The Reschedule statement may modify the position of the entry on

the Agenda. However, only if a Reschedule statement specifically spec

ifies a new time is the ET of the rescheduled entry changed. When it

is necessary to move an entry, the forward and backward pointers of

the entry and the pointers for its two old neighbors and its two new neigh

bors are changed appropriately. A Reschedule statement may also chang·e

the condition pointer of the entry by adding or removing a condition and

117

allocating or deallocati:n.g the space for the condition in .(free_>. If

the condition being added or deleted specifies a specific event rather

than a relation between variables, the entry may be moved to or from

a specific event branch and the main branch. The Reschedule state

ment may also affect cancelled activities.

The Cancel statement removes the specified entry from the

Agenda by changing the pointers of the two adjacent entries. However,

the definition block for the activity is not destroyed. The Interrupt

statement only moves the entry from its position on the main branch

to the interrupt branch. This requires the changing of the pointers of

the adjacent entries on the main branch and inserting the entry at the

end of the interrupt branch.

The Resume statement is similar to the Reschedule statement,

except it refers only to items on the interrupt branch. The specified

activity is re-inserted in either the main branch or the specific event

branch depending on the options specified. Unless the Resume state

ment specifically specifies a new execution time for the activity, the

interval of time the activity was interrupted is computed by subtract

ing the time stored in the interrupt branch entry from the current val

ue of simulated time and then added to the old ET of the activity to de

fine the new ET for the activity.

If one activity calls another activity directly the Agenda entry is

not modified, since control never passes to the Agenda.

ll8

All the interval sequencing statements except for Return, End,

and Exit, always do three things:

1. They modify the LT of an entry by reseting it to the current

value of system time.

2. They redefine the entry point for the activity.

3. They modify the mode which identifies the state of the activ..:.

ity. They may also deallocate space for. the activity's par

ameters and set the pointer to zero if it was not already zero.

A Delay statement also modifies the ET of the entry and recom

putes its position on the Agenda and makes the changes in the 4 pointers

to effect its movement. It also sets the condition pointer to zero, and

deallocates space in <:free_> if it was non-zero previously.

A Wait statement updates t:ie ET for the entry to the current sys

tem time, sets the condition pointer for the entry, allocates space for

the condition in <free_> and stores the condition there. It then moves

the entry either to a new position on the main branch or on an event

branch.

A Wait and Delay statement combines these two actions. It com

putes a new ET by using the specified time, sets the condition pointer,

allocates space in <free_> and stores the condition. It also moves the

entry to the appropriate position on either the main branch or the event

branch.

The internal Interrupt statement operates similarly to the external

119

interrupt statement ana in addition resets the condition pointer to zero

and deallocates the space for the condition in <free_>• The Continue

statement makes no additional changes to the activity entry. The Return,

Exit and End statements change the pointers of the adjacent entries so

as to effectively remove the current entry from the Agenda.

The current values of the three time attributes for an entry, ET,

BT and LT may each be obtained by using standard functions in OPS-4

described in Chapter 7. But they cannot be modified directly by the

user.

Specifying the Parameters of Activities

As we have seen the scheduling of a simulation activity is dif

ferent than a normal subroutine call. One result of this difference is

that there may be a significant delay between the time a simulation ac

tivity is scheduled and the time it is actually executed; (there is usual

ly no delay between the time a normal subroutine is called and the time

it is executed.) Thus, when scheduling an activity there must be a

mechanism for indicating whether the values of the parameters at the

time the activity is scheduled or their values at the time the scheduled

activity is executed should be delivered to the called activity.

This is related to the call-by-name, call-by-value pararr:eter op

tion offered in ALGOL. 55 If the name of a data object is specified as

the parameter of a scheduled activity, then the value of the data object

is not obtained until the activity is executed. Alternatively, if the

120

value of a data object is specified as the parameter of a scheduled ac

tivity, then the value at the time the activity is scheduled is used when

the activity is executed. If parameters are of the type value, rather

than name, then storage must be allocated immediately for the paramet

ers. Thus, if an activity is to be scheduled with the value of an array,

the storage for the array is allocated at the time the activity is sched

uled, rather than when the activity is executed. Two special functions

Current-Value and Later-Value are used in OPS-4 to distinguish be

tween the current value of a parameter at the time it is first mentioned

and the later value of a parameter at the time the activity is executed.

Experience with the OPS-3 system has indicated that most para

meters of an activity are the value type.18 Thus, when an activity is

scheduled, storage for the parameters is allocated in dree_>, the val

ues of the parameters at the time the activity is scheduled are stored in

<free_> and a pointer to these parameters is defined in the entry for

that activity on the Agenda. If instead, the name of a parameter is des

ired, the user must specifically indicate that this is his intent when the

activity is scheduled by using the Later-Value function. For example,

Schedule X at 32 with 15 'A' Later-Value {New) Z

would associate the literal parameters 15 and A, the later value of the

variable New and the current value of the variable Z with the entry for

X on the Agenda.

121

Specifying the Variables in Conditions

An analogous problem is the interpretation of the variables in a

general condition for a conditional entry on the Agenda. Since the con

dition is specified at the time the activity is scheduled on the Agenda

either the current value or names of the variables specified in the con

dition should be appended to the entry for the activity on the Agenda.

Unlike the parameters of an activity, the variables in a conditioned ex

pression are usually specified by name rather than Value. This is easy

to understand, since if all the variables in a condition were specified

with their current values the truth value of the condition would never

change, thus negating the whole purpose of the conditional entry. There

fore, when a user schedules a conditional entry on the Agenda he must

specifically indicate those variables in the conditional expression whose

current values are to be used rather than their later values. Condition

al entr~es generated implicitly by a Wait statement may contain variables

local to the activity. Since local variables of an activity will not change

value while the activity is not active, unless the activity is linked to, the

current value of any local va,riables specified in a Wait statement are

always used, unless the user directs otherwise by using the Later-Value

function.

The Pros and Cons of Alternate Sequencing Schemes

The Agenda mechanism of OPS-4 is not the only possible sequenc

ing system that can be used in a simulation. It is possible to use a

122

sequencing system that does not maintain an ordered list, and requires

a search to select the next activity to become active. This type of se

quencing system has some advantages compared to the ordered list of

the Agenda for certain situations. Let us list the pros and cons of these

two types of sequencing systems.

A. Advantages of the Agenda Mechanism

1. Selecting the next activity to become active requires on

ly a minimum amount of searching of the Agenda.

2. Having an ordered list allows activities to be scheduled

relative to activities already on the Agenda - e.g. the

'before', 'after' and 'in place of' options.

3. Displaying the Agenda is a meaningful and very helpful

debugging technique, since the order of entries indicates

the possible future flow of control in the simulation.

4. It is easy to create a dummy Agenda to test a specific

interaction pattern between activities.

5, Since the Agenda is always ordered, there is no ambig

uity in determining in what order activities should be ex

ecuted.

6. A list-structured Agenda requires no physical movement

of entries, only the changing of pointers.

B. Disadvantages of the Agenda Mechanism

1. The scheduling or rescheduling of an activity may be time

··'

123

consuming. since the Agenda may need to be searched

to locate the proper new position for the activity entry.

(Only the'before,11after! 'top! and'bottom and' in place of'

options require no search.)

Z. The position of an entry on the Agenda is de~ermined at

the time an activity is scheduled. Unless an activity is

conditionally scheduled, this means that the order of ex

ecution of events is determined well before the event is

executed and cannot be affected by events which occurred

later.

C. Advantages of an unordered list

1. The scheduling of activities never. requires any search.

z. Rescheduling activities requires only one search to lo•

cate the old entry.

3. It is not necessary to waste time and space for manipu

lating and storing list pointers.

D. Disadvantages of .an unordered list

1. All the eligible activities must be sear.ched, before the

next activity to become active can be selected.

z. The problem of resolving conflicts between two or more

simultaneously eligible activities must be decided by the

scheduling system or through the use of priority schemes.

The fact that OPS-4 activities may be scheduled both conditionally

124

and unconditionally really allows both sequencing systems to be used

advantageously. If a user does not wish. to specify any ordering to the

execution of activities all activities may be scheduled conditionally.

This complicates the task of the scheduling system when it must deter

mine the next eligible activity, but simplifies the user's job. However,

if the user specifies an exact or relative order of executing activities

the problem of selecting the next eligible activity disappears. The fact

that OPS-4 also allows activities to be named, and that the name of an

activity always points directly or indirectly to activity entry on the Agen

da makes it possible to locate a specific activity without a search.

The OPS-4 Agenda mechanism is a major restructuring of the OPS-

3 Agenda although it is conceptually quite similar.
18

The scheduling sys

tem of'GPSS II and SOL are also similar, but not as flexible since they

have limited external sequencing statements, 10, 12, 13 SIMULA does not

allow conditional scheduling in its full generality.14, 15 In SIMSCRIPT the

user can only schedule by specifying the time of an event. 8 CSL, GSP,

and MILITRAN all rely on the scheduling activities conditionally and

maintain no ordered list of scheduled activities. 2 6- 2 8

Another Type of Conditional Scheduling

OPS-4 allows activities to be scheduled conditionally, or condition

ally with a specific time specification. It might be desirable to be able

to specify a third type of scheduling which would be either a condition .QL

a specific time specification. For example, a user might want to state,

----- -------·---- ----·~-.-----------------~------

125

Schedule ZZ at 1200 or when P = Q

or

Delay 20 or until P = Q

The difficulty with implementing this type of conditional scheduling is

that the entry for the activity really should be on the Agenda in two

places. One should be a conditional entry with an ET equal to the cur

rent time. The second entry should be an unconditional entry with an

ET of the specified time. The two entries should be linked, so that if

one is selected as being eligible for execution, the other is automati

cally deleted.

An alternate technique would be to insert only one entry on the

Agenda. It would have an ET equal to the specified time, but it would

be inserted in a position determined as if it had an ET equal te> the cur

rent time. The Agenda scan would have to be complicated so that the

entry would be treated as a simple conditional entry if system time was

less than the ET. However, if a different entry elected as being eligible

was an unconditional one with an ET equal to or greater than the ET of

this special entry, then this special entry would be executed as an uncon

ditional entry instead of the selected one.

Both these suggested implementation techniques complicate the Agen

da scan mechanism. The desired result can already be accomplished by

including system time as one of the variables in a general variable con

ditional. For example,

126

ScheduleZZ when sys-time = 1200 or P = Q

can achieve the same result. However, because the Agenda mechan

ism advances time in unequal and unpredictable intervals care must

be exercised when the system variable time is used within a condition

of a sequencing statement. Consider the following situation. An un

conditional entry for the activity R with an ET of 1205 immediately fol

lows this entry for the activity ZZ just scheduled and the current time

is 1150. The entry for activity ZZ is examined and P does not equal Q,

nor is time equal to 1200, so the next entry is examined. This entry

is unconditional, so system time is advanced to 1205 and the activity R

is executed. It is now impossible for the system variable time to equal

1200 and satisfy the conditional relation of the entry for activity zz. It

is possible that-this was the result desired. If, however, the intent

was to execute the activity ZZ at a time no later than 1200 a dummy un

conditional activity with an ET of 1200 must be scheduled to prevent the

system variable time from leaping over 1200. This dummy activity will

serve only to advance the system variable time to 1200 so that the con

ditional entry for activity ZZ will be satisfied.

Priorities

The Agenda does not recognize any priorities among scheduled

activities. The order of entries on the Agenda is the only factor which

governs the order in which activities are executed. Thus, priority only

has meaning when activities are scheduled.

127

The general scheduling rule in OPS-4 is FIFO. That is, if an

entry is being inserted based on its computed ET, then it is normally

inserted after all entries with the same or lesser values of ET. This

holds for both conditionally and unconditionally scheduled activities.

If a user wants to envoke a LIFO scheduling rule he may do so

by attaching the modifying adjective 'first' to the scheduling statements.

This will then have the effect of inserting an entry filed by ET following

all entries with lesser ET's but in front of all entries with the same ET.

Since the user has so many other scheduling options it does not

seem necessary to implement any numerical priority system such as

GPSS II allows.10 Also, the fact that system time is a floating point

variable rather than integer allows the user to directly implement a

priority system by varying the scheduled time of 'simultaneous' activ

ities by small increments or decrements.

Real-Time Events

Multics allows a user to define 'real-time' events, e.g. events

that are to occur at some specified time of day (not simulated time). For

example, a user may request that a certain program be run at 12 noon.

Alternately, the event can be defined relative to the current time. Thus,

a user might specify that a certain event was to occur il} five minutes.

These real-time events are implemented in Multics by using the

Calendar Clock, and placing entries in a special Calendar Clock Wake

Time Table. This table can be viewed as a real-time Agenda, in which

128

entries can only be scheduled by explicitly giving their execution time.

The existence of this feature in Multics means that a user could

construct simulations that have real time features in them or run a

simulation that is synchronized with real time. Alternatively, the user

might use these real-time events as special debugging aids or snapshot

traces.

This suggests numerous possibilities for using OPS-4 to execute

various management gaming models which require interaction with the

players at specific points in time. Also, the possibility of incorporat

ing various physical devices as parts of the simulation suggests itself.

Executing Activities Simultaneously

Chapter 2 introduced a new procedure modifier which may be

used to specify whether an activity may be executed sim·.iltaneously

with another activity on a multi-processor computer. In practice, the

structure of activities is such that they only are actually executed at

specific points in simulation time. Thus, the degree of simultaneity is

limited. However, since the Agenda is an ordered list it provides the

key to determining whether two or more activities may be executed sim

ultaneously. There are two situations where simultaneous execution is

appropriate. If two or more conditionally scheduled activities are sim

ultaneously eligible for execution they may be executed simultaneously.

If two or more unconditionally scheduled activities have the same ET

they may be scheduled simultaneously.

129

When an eligible entry is located on the Agenda, the procedure

attributes for the activity are checked by consulting the symbol table

for the activity. If the simultaneous attribute is specified and the next

eligible entry meets the eligibility requirements specified above, then

its procedure attribute is also checked. If it specifies simultaneous

execution, then the first activity may be started. Before the second

activity is started, the test for a third eligible activity is performed.

This goes on until there are no more eligible activities, or else the

simultaneous attribute is off for one of the activities. At this point the

last activity having the simultaneous attribute is started into execution.

A count of the number of simultaneously executing activities is

kept, and each time an activity finishes execution the count is decre

mented by one. Also, when each activity finishes' execution a test is

performed to see if any conditionally scheduled or new unconditionally

scheduled activities with the current ET have become eligible. If so,

and if they have the simultaneous procedure attribute they are initiated

immediately. Only when the count of the number of simultaneously ex

ecuting activity reaches zero, can the next unconditionally scheduled

activity at a different ET be executed.

It is difficult to predict how much simultaneity may actually exist

in a simulation. Experience with OPS-3 (which did not allow simultane

ity) indicates that most unconditional entri~s have different values of ET.

Therefore, it seems that the major benefit might come through the sim-

130

multaneous execution of several conditionally scheduled activities.

However, the necessity to lock data bases such as the global data base

may effectively limit the amount of true simultaneity in a simulation.

Manipulating the Agenda

Because the Agenda plays such a key role in the OPS-4 simula

tions it is important that the users be able to manipulate it freely. At

any time during the course of a simulation the entire Agenda or any

specified portion of it may be displayed for the user to analyze. This

has proven to be a very powerful debugging technique in OPS-3. The

user may also modify the Agenda directly from the console by execut

ing any of the external or internal sequencing statements.

The Agenda is a separate segment in OPS-4 called 'OPS.Agenda'

and the user may replace it at any time with any other segment having

the same structure as the Agenda. Thus, he may easily switch between

various states in the simulation by replacing the Agenda. This switch

ing can be accomplished dynamically within any activity and allows sim

ulations within simulations to be easily effected, With this flexibility

it is important that backward movement of time not be interpreted as an

error, but just flagged as an unusual event, since an inner simulation

might consist of a forecast which is used by the master simulation.

Explicit vs. Implicit Scheduling

The variety of scheduling statements in OPS-4 exceeds what is avail

able in any of the current simulation languages. 31 It is probable that a

-~-,---.......,.,~:---'.7'."'·"'.':·,,,.~~ ... ~.~~·7. ""''"'"'·""""'°"";·t"'"':"!"·,~=,...,:""""· 1!1"".:~""·.·Z""•~""·"'~-""'fi'":-,.""'.,2-_,",.-_-,:~,:~ .• ,.,...,,.,., .. ,'.,..,--,-~.,,---~
(. .

131

user will not make use of all of them in one model and indeed, different

models may not require the use of all of them.. They have· been provided,

however, so that a user may have a choice, and not be forced into using

a scheduling method that seems awkward to him.

A user not experienced in constructing simulation models often is

confused about how to control the execution of several asynchronous

activities so as to make them appear to execute simultaneously. He

knows that the different activities communicate and interact with each

other, yet he may not program any direct communication or direct ·

transfers of control between activities. Simulation systems which im-

plicitly schedule the flow of control between activities and keep the sched-

uling mechanism hidden from the user, such as GPSS and SOL often are

the most baffling to the novice. IO, 12• 13 Languages such as SIMSCRIPT

which require the user to explicitly schedule the flow of control between

activities sometimes seem more natural. 8 A programmer is used to

thinking only in terms of direct subroutine calls. The concept of an in-

termediary (the Agenda in OPS-4) which actually makes the subroutine

may be difficult to grasp.

Experience with the OPS-3 simulation system, which provides a

method for explicitly scheduling simulation activities similar to SIMSCRIPT

and also contains an implicit scheduling system similar to GPSS and SOL

has shown that when the scheduling system is brought out into the open

and easily examined, users have little difficulty understanding how the

132

scheduling mechanism works.
18

The on-line environment is used to

great advantage when the user is allowed continuously to monitor the

contents of the Agenda. Seeing the entire Agenda gives a much clear

er understanding of the interaction between the activities in a model

than just the tracing of the flow control from one activity to the next.

When a user schedules activitis explicitly he has to consider the

interaction between the activities in the model and their implications.

This is why the user is allowed to be very explicit in dictating the pos

ition of the entry for the activity on the Agenda in OPS-4. When the

scheduling of activities is done implicitly, the user has almost no

control. over the scheduling system and may not understand all the

implications of the scheduling decision. A user that is forced to con

sider the cause and effect relationships among activities in the model,

will be more likely to detect errors in logic than when these effects

are hidden from him and he is forced to rely on statistical measures

to judge the model's performance.

There is often a trade - off between the amount of detail to which

the user is exposed, or forced to consider, and the understanding he

gains of his model's performance. In OPS-4 a user can examine every

detail of the scheduling system, On the other hand, he can also ignore

these details and rely on aggregated statistical measures. The former

is important during the early stages of structuring a model. The latter

is useful for comparing the performance of alternate models that are

133

substantially debugged.

Summary

This chapter has discussed how the sequencing o! activities is

accomplished in a simulation system, and has shown why it is more

complicated than in a normal non- simulation program. The thirteen

external and internal sequencing statements available in OPS-4 have

been described and the six states o! an activity defined. The Agenda

mechanism has been explained and the detailed structure of the Agen

da has been specified. The difference between calling an activity with

the name or value of a parameter has been illustrated and the anala

gous problem for specifying the interpretation of variables in a con

ditional scheduling expression has been described. The method for

simultaneously executing two or more activities in an-processor com

puter system and also for allowing real-time activities has been dis

cussed. This Chapter concludes with a discussion o! explicit and im

plicit scheduling methodology.

Chapter 6

RUNNING AND DEBUGGING A MODEL

Two important aspects of any simulation system are its running
efficiency and the facilities it offers for debugging a model. The form
er is usually overemphasized and t.he latter not emphasized enough. Un
less a simulation model is used as a production tool running efficiency
need not receive so much emphasis. The design, debugging and vali
dation phases (validation should really be considered a part Of the de
bugging phase, and should not be postponed until the model is substan
tially complete) of a complicated simulation model very often consume
more computer time than the production phase. Certainly these three
phases consume more elapsed time and require more concentrated at
tention of the model builder in a complicated model.

This Chapter describes the debugging and tracing options avail
able in OPS-4 which are particularly adapted to an on-line environ
ment. It also discusses the features available in OPS-4 which give the
user flexible control over the execution of specified portions of a model.

The Model Development Phase

As was stated in Chapter 1, the goal of a simulation experiment

is to gain some understanding of a model so that this understanding may

be transferred to the real system that the model describes.- Many re-

searchers in the field of simulation have pointed out that by the time a

model is completed and fully debugged they may have gained such a

clear understanding of the model that it is not really necessary to ex-

ercise it further. The production phase serves only to confirm their

qualitative understanding of the functioning of the model and give spec-

ific quantitative figures so that a detailed report may be published. Of

course, the latter should not be deprecated, since one of the important

aspects of scientific research is to record knowledge and understanding

134

135

so that others may thereby profit.

The OPS-4 system places major emphasis on the importance of

the model development phase. OPS-4 is designed so that all aspects

of the model are out in the open and subject to detailed scrutiny. The

user may probe, examine, trace and modify any portion of the model

during its development phase. This enhances his ability to comprehend

complex models.

The Use of Interpretation

Interpretive techniques are used to provide the flexibility necess

ary for easily changing the model. This does result in an unavoidable

amount of overhead. But the techniques described in Chapter 9 mini

mize it as much as possible. However, by using interpretive tech

niques, OPS-4 allows many more types of tracing than what is possible

if normal compiled techniques are used, 56

OPS-4 provides the two modes of simulation - one for debugging,

the other for production. Only the debugging mode involves interpret

atiOn. It is not necessary to make any changes in a model to go from

one mode to the other. All that needs to be done is to compile the pro

cedures that constitute the model. However, the tracing and control

statements described in this Chapter are only effective in uncompiled

programs.

If a model is to be us,ed as a prod~ction tool, it may be necessary

to rewrite sections of the model after it has been debugged so that run-

136

ning efficiency may be improved. Also, the user may desire to elim

inate some unimportant aspects of the model to increase running speed.

In addition, if a production model does not require any interaction with

the user, it may be run as a batch processing job, rather than on a

time-sharing system. This is possible, because the basic core of OPS-

4 is a collection of procedures that may be called by any P L/l program.

Two Levels of Trace Specifications

In OPS-4 all tracing options may be specified at two distinct levels.

The user may specify that tracing is to be in effect globally or he may

specifically tag individual statements that are to be traced. OPS-4

maintains a set of global trace switches, one switch for each of the

trace options which may be specified in the OPS-4 system. These

switches may be set (reset) by execution of the Trace (No-Trace) state

ment. However, since the Trace and No-Trace statements may be ex

ecuted within any procedure the global effect of the trace settings may

easily be localized.

In addition to this global injunction of tracing the user may point

to a specific statement in any procedure and specifically turn on or off

any of the trace options by setting local switches stored with each state

ment. This is done using the incremental editor described in Chapter 9.

These individual statement trace settings take precedence over the glob

al ones. They must be individually reset in the same manner as they

were set, except that it is possible to clear all the settings for one

137

statement at once.

Monitoring the Flow of Control

Since the flow of control from one activity to the next is often

influenced by stochastic elements in a simulation model, the ability

to monitor this flow of control is an important debugging aid. It is

also helpful to be able to monitor the flow of control between proced

ures within any activity. (Recall that an activity in OPS-4 may in

clude many procedures which call each other with normal subroutine

call statements.) Associated with this is the ability to monitor the

values of parameters that are being transferred from one activity or

procedure to another.

The OPS-3 system provides this monitoring facility for transfers

between KOP's and the STRACE command of CTSS provides the same

facility for transfers between BSS subroutines. 4 , 18 The monitoring of

all activity and procedure calls in OPS-4 is accomplished by having the

call routine check the status of the call trace switch before completing

the call. If the call switch is on the name of the activity and/or proced

ure called is displayed. (Recall that OPS-4 allows activity names to be

different from procedure names associated with the activity.) The names

of all the parameters, or literal values, will also be displayed if the

parameter option was additionally specified.

138

Monitoring Simulated Time

The movement of the simulated clock in a discrete, event-orient

ed simulation is also an important feature. Sometimes the model build

er is interested in knowing only when the clock changes. In other cases,

however, he may be interested in the fact that the clock doesn't change

in going from one event to another.

There are two ways to monitor time in OPS-4. The first is to

specify the tracing of system time. Whenever the value of system tirre

changes, the old time, new time, and activity causing the time change

are displayed. The second is to specify the tracing of the execution

time, ET, associated with every activity. Whenever control flows from

one activity to the next, the ET of the new activity is displayed. The

narne of the activity is not displayed, however. It may be obtained in

numerous other ways.

The ET of a conditional activity is not equivalent to the execution

time of the activity since it indicates when the activity was last sched

uled for execution. Therefore, displaying the ET alone might be confus

ing. To avoid such confusion, all ET's of conditional activities are ident

ified by appending the letter C to the ET when they are displayed.

Monitoring Statement Label References

Statement labels are usually included in programs because they are

necessary for indicating the targets points of branching statements. Of

ten, statements labels have mnemonic significance. Therefore, displaying

----~~-~-------

139

the names of all statement labels as they are reached during the exe

cution of a program provides any excellent record of the flow of con

trol within a procedure. OPS-4 stores the statements labels alongside

the executable statements. (See Chapter 9 for details). Therefore, it

is easy to display a statement label when this tracing option is -speci

fi"d.

Since all procedure entry points have statement labels, this trace

option would appear to duplicate the procedure name trace previously

described. However, there is a subtle difference. Statements labels,

can not be traced in compiled procedures. This includes the entry

names of the procedures. However, if the compiled procedure is called

by an uncompiled program, the call statement - which gives the entry

name - can be traced.

Monitoring Activity Calls

Many times it is desirable to trace more than just the name and/ or

ET of any activity. It may be important to see the parameters of the

activity, the name of the entry point within the activity and the condition

associated with all conditional entries. This is called an activity trace.

It is similar to the procedure call trace. The two important differences

are, 1) it applies only to activity calls, not all procedure calls, and,

2) it always displays the parameters, the entry point name and the con

dition, if appropriate, associated with an activity entry.

The procedure call, statement label, and activity trace provide

140

three different means of displaying the names of entry points in programs.

If all three trace switches were simultaneously turned on it woud be re

dundant to display the entry name three times. This problem is solved

by testing the trace switches in a specific order. The most compre

hensive traces are tested first and the specific traces are tested last.

Thus, if the activity trace were on, the procedure call and statement

label trace switches would not be tested.

Monitoring Modifications to the Agenda

The scheduling, rescheduling, interrupting, resuming and cancel

ling of activities on the Agenda is also an important fact of interest to

the model builder. When any changes are made to the Agenda it is im

portant to know the value of system time, the name of the activity that

is modifying the Agenda and the modification itself. Entries are placed

on the Agenda by the activity sequencing statements described in Chapter

5. Changes made by all of the sequencing statements, just the external

or internal statements, or changes made by specific sequencing statements

may all be monitored. For example,

Trace Entries

would display the changes made by any of the sequencing statements, while

Trace Delay Entries

would display the changes made only by Delay statements. In both cases

the value of system time and the activity making the modification would

be displayed also.

141

Monitoring the Agenda

Another important tracing feature is to be able to follow the scan

of the Agenda when the next eligible entry is being selected. Specifying

Trace Agenda

will display the name of the activity, its condition if any, and the par

ameters of the activity for every entry that is examined during the scan,

including the entry selected as the next eligible one. This is a partic

ularly helpful debugging technique when the sequencing of events is not

going as planned.

It is always possible to display the entire Agenda or any portion

of it at any time, either from within activity, or from the console, by

issuing the instruction

Display Agenda

The display of the entire Agenda helps to provide the model builder with

an overall view of the future course of the simulation, The Agenda scan

trace just focuses on the current activity. Experience with OPS-3 has

shown that both of these are very effective debugging aids.

The Agenda itself may be used to implement a wide variety of de

bugging techniques. Normally, the Agenda contains only calls to activ

ities. However, it is possible to place any legal statements in the OPS-4

language on the Agenda. DO LOOP's, GO TO's, Input and Output state

ments, etc, may all be placed on the Agenda. In fact, placing Trace and

No-Trace statements on the Agenda is a very effective way of controlling

142

the duration of tracing in a simulation. These statements may be in

serted or deleted by using the Schedule or Cancel Statements.

Monitoring Statement Execution

Within an activity it is possible to monitor every stat 0 ment that

is executed, i.e. before a statement is executed the entire statement

is displayed. This is the most thorough method available for monitor

ing the flow of control in a program. Although it generates voluminous

output, it is particularly effective during the early stages of model de

velopment, and is also useful when bugs cannot be detected by other

more selective methods. Associated with this is the ability to display

the results of statement execution. This trace only has meaning for

those statements that have a definable result, e.g. Set, Draw, if and

Repeat statements.

Monitoring Specific Variables

The monitoring of all references to or changes in specific variables

made by any statement in OPS-4 is a particularly effective debugging tool.

Special features, which are discussed in Chapter 9, have been designed

to make its implementation as efficient as possible. Whenever a variable

is referenced, as a parameter of any OPS-4 statement, the name of the

variable and its current value is displayed. Variables receiving new

values have the previous values displayed b~fore they are destroyed,

since the result trace just described may be used to display the new val-

ues.

143

The tracing of array variables must be used judiciously. The

entire array will be displayed when the entire array is referenced by

the assignment statement. This may be the user's intention. Or he

may have only been thinking about monitoring specific elements with

in an array. It is not possible to specify just a single cell within an

array to be traced when the entire array is referenced. However,

when only portions of an array are referenced or modified, only the

referenced portion is displayed. Identifying subscript specifications

are always displayed in addition to the values themselves.

Monitoring Errors and Automatic Definition of Variables

There are three more trace options that are also available. The

first,

Trace Error

prints out a full error diagnostic comment whenever an error is detect

ed during the execution of a program. If the error trace is off, only a

short cryptic error comment is given. In either case, when an error

is detected the simulation stops. The second option,

Trace Flag

prints out a full comment about any unusual occurrence, such as moving

the clock backwards, or cancelling an event that isn't entered on the A

genda, etc. that the system detects. If the flag trace is off no comment

is printed, but an internal switch, which may be interrogated by the

program, is set. In either case the simulation continues. The last

144

option,

Trace Define

prints a comment specifying the name and type of a new result variable

that is automatically defined. If this trace is off, no comment is

printed.

Controlling the Specification of Tracing

The power of these tracing facilities lies not just in their avail

ability, but in the flexible manner in which they may be used. (Their

initial settings are determined by the OPS-4 system and consultation

with the user option feature of Multics.) Limited forms of tracing

have been available since the early days of computers. Indeed, the

IBM 704 had a special hardware feature to allow tracing of every trans

fer of control within a program. It was rarely used! The trouble with

this feature was that it usually flooded the programer with information.

The same complaint can be voiced about the TRACE, UNTRACE feature

of GPSS II. lO The difficulty with both these trace features lies in the

detachment of the user from his program. The user operating in a batch

processing mode is forced to guess when to start tracing and when to

stop. Since the penalty for guessing wrong - wasting a run and having

to wait for the next shot at the machine - is very high he usually errs

on the side of specifying too large a tracing range and the result is an

overwhelming volume of output.

The user at an on-line console is not faced with this dilemma.

145

First of all, if he guesses wrong he can immediately try again. More

important, however, is the fact the guessing can be greatly eliminated.

Like a hunter tracking his prey, the user can slowly converge on the

problem area by watching the trail of the simulation or by making per

iodic tests along the way. When he senses that the region of the pro

gram containing a bug is imminent he may specify any type of tracing

that is needed. If it turns out to be a false alarm, he rnay quickly turn

off the tracing. When the bug is eventually caught he may immediately

abort the run and set about the task of correcting the error. Alternate

ly, he can replace the erroneous results with a correct ones and pro

ceed with the simulation, hoping to catch further bugs along the way or

see if the remainder of the model is correctly structured.

When multiple user processes are available in Multics, the set

ting and resetting of the trace options, and the probing and modification

of the simulation data base may be carried out asynchronously with the

execution of the main simulation process. Also, using similar facilities

t},e user may be able to execute any specified process in parallel with the

main simulation. In particular, asynchronous input and output processes

will be initiated by the Shell procedure or its counterpart in OPS-4.

User Defined Traces

The standard OPS-4 tracing features just described provide grad

uated levels of information, and allow the model builder to remain de

tached and receive occassional progress reports, or to become fully im-

146

mersed in the model and observe the minute details of its execution.

In addition to using the built-in trace features, the user is free to

specify his own debugging monitors. This is easily done by writing

special procedures which may be called from any point in the program,

or by editing the program and inserting any statements that are appro

priate. Combining standard P L/l If statements with Trace statements

allows selective control over the effectiveness of the tracing options.

The fact that OPS-4 programs do not require compilation after pro

grams have been modified makes the frequent editing of programs to

insert or remove trace statements a very convenient technique.

Controlling the Execution of Individual Progran1s

The important aspects of debugging a model are establishing a

specific environment, selectively executing specific portions of the

model in the environment and observing the model's perform.ance.

The use of the normal input, and assignment statements, as well as

the features described in Chapter 4 for manipulating data bases allows

the user to easily establish any environment for the model. The set

tings of the trace options may also be regarded as an extension of the

environment. They, in conjunction with the output statements and

statistical processing staternents described in Chapter 7, provide the

monitoring facilities for observing the model's performance.

The facilities for selectively executing programs in OPS-4 fall

into two categories:

1. The execution of an entire procedure, or series of

procedures.

2. The execution of delimited portions of a procedure.

Accomplishing the first requires no special provisions. In OPS-4

any procedure may be executed directly by the user just by giving

147

its name and parameter values - which may be variables defined in

the currently defined symbol table or literal values. When the pro

cedure executes a Return, Exit, or final End statement, control is

returned to the user. This feature in itself makes on-line debugging

very flexible. The same procedure may be executed many times with

different parameter values, and the results of these executions quick

ly compared.

The execution of specified portions of a procedure requires

some additional control information. The two chief items necessary

are the specification of the starting and stopping points within the pro

cedure. The starting point may be given explicitly in terms of a state

ment label or an ordinal statement number (statements are not explicit

ly numbered in OPS-4 programs.) If no starting point is specified the

indicated entry point is always taken as the starting point. A special

Execute statement is used to specify this control information.

In addition to the specification of a specific state:i:ne.nt label or

ordinal statement number as the terminal point within a procedure, a

count of the number of statements to be executed may be specified. If

148

no count is specified, a count of 1 is assumed. This provides a simple

way of single stepping through a program. (In OPS-3 the convention

adopted was that after the first statement was executed a carriage re

turn meant execute the next statement). When a count is specified as

the terminal condition, it is decreased by 1 for every statement exe

cuted. Calls to other procedures are counted as only 1 statement exe-

cution,

All three of these stopping definitions may be modified by append

ing a repetition modifier. This causes the execution of the procedure

to be terminated after the stopping point has been passed the specified

number of times. This feature is particularly useful when program

loops are being debugged. The following examples show some of the

various ways of using the Execute statement.

Execute XYZ from NEXT 2 times

Execute XYZ to LOOPZ

Execute XY Z from ABLE tc> line 12 3 times

Execute XYZ from ABLE next 5 lines

Parameter specification is not necessary unless execution starts at an

entry point. In that case the parameters are listed right after the entry

point name. For example,

Execute ABC 3. 6 4. 1 to LOOP3 2 times

Only uncompiled OPS-4 programs may be executed in this manner. The

Execute statement checks to see if the specified program is defined in

149

the global symbol table. If it isn't, it defines it.

Running the Entire Simulation

Controlling the execution of an entire simulation model also re-

quires the specification of a starting and a stopping point. The Start

statement is used to specify the name of the first procedure to be ex-

ecuted in the simulation. Usually this procedure, initializes the data

base and schedules the execution of the initial activities on the Agenda.

Normally, this initial procedure has no parameters. If it does they

follow the nam.e of the procedure as normal.

The stopping point may be specified four different ways.

1. By specifying the clock time at which the simulation
should stop.

2. By specifying either a general variable condition or a
specific event condition which will stop the simulation
when it becomes true.

3. By specifying the number of activities that are to be
executed before the simulation stops.

4. By inserting specific Exit statements at any location
within the program.

The first three .methods of controlling the duration of the simulation are

mutually exclusive - only one may be in effect at a time. The last one

also allows the user to specify multiple stopping points, any one of which

may terminate the simulation. The Exit statements are inserted in the

program by the user with the norn1al editing command.

The first three control options also automatically cancel themselves,

whereas the Exit statements must be specifically deleted. All four of

150

these methods of controlling the duration of the simulation preserve

the status of the simulation so that it may be saved on the disk for a

later console session, or so that the simulation may be continued af

ter any probing or inspecting of variables, validation analyses, or

changes in the model structure have been made.

The first three of these stopping conditions are specified by

appending a phase beginning with the word stop to the Start statement,

as illustrated below.

Start Initialize stop at 1600

Start Initialize stop when Event X

Start Initialize stop after 100

The first two options actually result in a special activity being inserted

on the Agenda by the simulation system. The pointer to this activity

is stored by the system, and updated each time a new stoping specifi

cation is given. The third option is implemented by a special count

register, which may be modified by the simulation during its execution.

In fact, it is possible to respecify any of these three options as individual

stop statements from within any activity.

Interrupting a Simulation

In each of these above methods, the termination of the simulation

must be planned in advance. There is one additional technique which re

quires no advance planning. It may be used at any time and at any point

within the simulation. By pushing a special "quit" button on the console

lSl

the simulation is &topped dead in its· tracks no matter what it was doing.

The exact machine instruction it was next going to execute is remember

ed. However, because this is such an unplanned and abrupt interruption

it does not often occur at a logical halting spot. For example, the sim

ulation might be right in the middle of a procedure that was recomputing

the elements of an array and had only finished 3 of the 5 rows. Or, the

simulation might have been interrupted while it was reading or writing

information on the disk. Therefore, although it is possible, it is not

always meaningful to save on the disk the status of a simulation that has

been inter-rupted in this way and then attempt to restart it from a differ

ent point at a latter time. In fact, to resume the simulation, so that it

continues with the very next instruction it was about to execute when it

was interrupted, requires a slightly different technique than resuming a

simulation that was halted by one of the 4 stopping options. However, if

the user decides that it is not necessary to resume at the exact point of

interruption, but he does wish to continue, any of the normal methods of

continuing the simulation specified above may be used.

The normal method for continuing a simulation that has halted is

to respecify the starting and stopping points by using the Start statement

just described. However, to continue a simulation that has been interrupt

ed from its exact point of interruption the Resume statement is used, If

no stopping phrase is appended to the Resume statement the previous

stopping conditions will apply. However, the user may specify any stop

ping condition, in the same manner as with tlle Start statement, and

152

these will superceed the previous specification.

One of the most important uses- of this interrupt feature is to

make unprogrammed inspections or changes in the data base and also

set or reset the trace options as the simulation progresses. This in

terrupt feature may also be used in interrupt a simulation that has gone

astray or appears to be in a loop. In addition, it is also a useful way

of monitoring the progress of a simulation that is-giving no output. Fin

ally, if it is necessary to arbitrarily interrupt a simulation because of

some unexpected event before it reaches its normal halting spot, this

interrupt feature allows the exact status of the model to be saved and

then resumed at a later date. Never is the user forced to wastefully

retrace his steps unless he specifically desires to do so,

Recapitulation

With the ability to arbitrarily set initial conditions, specify any

starting point and with these various methods of stopping a simulation,

the user has a great deal of flexibility in controlling the running of a

model. Alternate simulation strategies may be compared by restarting

the simulation from a given point with different decision rules of data

values. The user may easily construct arbitrary sequences of events

on the Agenda and quickly see the results of executing part or all of the

sequence. In addition, he may execute a single activity directly from

the console and supply any parameter values he wishes. This easily

allows him to test activities with many sets of data values and observe

153

the results immediately. Such freedom of control allows .the user

quickly to answer the question, "What if ••• " with, "Well, that's in

teresting!" by trying his hypoth~sized situation when it occurs to him

and immediately seeing the result. Being able to quickly and easily

restructure a portion of a model is also an important aspect of debug

ging in OPS-4.

As was mentioned in Chapters 4 and 5, the OPS-4 system has

been specifically designed so that no information regarding the present

or past status o.f the simulation is carelessly discarded. The data bas,e

of activities that have terminated naturally, or been specifically cancel

led may still be probed since they still exist, unless the activities have

been rescheduled in the mean time using the same name. By using the

segment addressing techniques of the Multics debugging system, any

variables in any local data base may be mclnipulated. This policy of

not discarding information is an important feature, since when an error

has occurred it allows the user to look backward at the history of the

simulation and attempt to see what caused the error.

At any time, either dynamically within an event, or through a

specific instruction issued from the console when the simulation is halt

ed, it is possible to save the complete status of the simulation data base

on the disk. This is a particularly attractive feature, either in the de

bugging phase, or during the running of the model when the user wishes

to test alternative strategies. It means he can halt the simulation, save

154

the status of the simulation (i.e .•. its' data base) on the disk, and then

let the simulation continue until a bug is found, or an alternative pol-

icy is exercised. He can then stop the model and easily re.store it to

its previous state, including the automatic resetting of the system time,

by simply recalling the previous status from the disk. This facility

also means that between actual sessions at the console separated by

minutes, hours, days or weeks, no work is lost, nothing has to be re-

peated. Providing the user can remember what he was doing, he can

continue from one console session to the next as if there has been no

interruption at all.*

The On - Line Environment

The previous discussion brings up a very important point about

working with a simulation model at an on-line console. Because of

the responsiveness of an interactive simulation system, the tracing

facilities, the degrees of control a user may exercise over the running

of the model, the ability to interject himself directly in the model and

the important fact that he may devote full attention to a model for sev-

eral hours without interruption; it is possible to become completely im-

mersed in the model - a rapport is established between the researcher

and his model that is impossible in a batch processing environment.

This is probably the most important contribution an on-line, interactive

*This assumes that both the basic OPS-4 system and Multics itself
have not been significantly modified during the interum period.

155

simulation system can offer a mature researcher who has a difficult

problem he is striving to understand through the technique of model

~ing. It is a new experience for people who have been trying to cope

with the sporadic 1 hour, 4 hour, 8 hour, or 24 hour or longer turn

around times in a batch processing environment. Now a researcher

can effectively have a digital computer to himself and work for long

periods without interruption just as the engineer with an analog com

puter, and the chemist in his laboratory may be able to devote his full

attention to the solution of a problem, or the performance of an exper -

iment. Furthermore, because of the versatility of the computer, the

availability of a rich collection of statistical data al)alysis routines

right at hand, if it is necessary to analyze some preliminary results

before continuing further this may be done quickly and easily without

letting the researcher's major train of tJiought grow stale. 4o

This means that validation of the model may be done incrementally,

just as the model is built incrementally. Each piece may be tested at

the time the user is most interested in that particular aspect of the mod

el. The model may be continually re-validated as it grows. There may

be continual interation between the data collection, data analysis, model

building, and validation phases of a large scale simulation experiment.

This removes the possibility of validation being ignored completely, or

the more common occurrence of the validation being performed many

months after the detailed portions of the model have been locked deep

within the structure of a large simulation model.

156

Summary

This Chapter has described the large variety of tracing options

in OPS-4 that are available to the user to help him debug a model. It

has also discussed the special control features that are necessary in

an on-line environment to allow the user to execute selected portions

of the model. These features, together with the facilities for interrupt

ing a model, saving its status on the disk and later resuming its exe

cution allow the user to validate the model in small segments by easily

trying numerous alternatives and examining the results. By allowing

the on-line user to become fully immersed in the workings of his mod

el, the model development phase takes on a new level of importance.

Chapter 7

COLLECTING STATISTICS

Collecting statistics in a simulation model poses problems for
both the user and the simulation system. Often the user does not think
about collecting statistics until after he has written major portions 0£
a model. Then, when he starts to consider what measures 0£ perform
ance are necessary, he sometimes finds that substantial changes must
be made to either the simulation data base or the model structure. This
is an annoying situation, 0£ course, the user can be blamed £or not
thoroughly thinking through at the outset the statistical measures neces
sary to evaluate his model. But, he shouldn't have to. An incremental
simulation system should encourage the researcher who has a nascent
idea to use the system from the outset to help develop the idea to mat
urity. The simulation system must be flexible enough so that as the
user 1 s ideas unfold he need only make changes in the simulation model
that are prO]JOrtional to changes in his conceptual model. However, it
should not do a lot 0£ unnecessary work. 1£ a user substantially revises
the method for simulating a particular aspect 0£ the model he may have
to substantially change his program. On the other hand, the addition 0£
one 0£ two variables for collecting statistics, and the insertion 0£ a few
statements to process them should not require substantial programming
effort. This concept applied to OPS-4 dictates that the basic simulation
system should not be burdened with the task 0£ automatically processing
statistics. However, the system should make the basic data items avail
able to the user and provide convenient ways 0£ manipulating them, Three
types 0£ statistics are available in OPS-4.

1. Reports concerning the state 0£ the simulation at a specific
point in time,

2. Summary statistics, relating to data accumulated through time.
3. Time series statistics which describe the behavior 0£ the sim

ulation over a period 0£ time.

OPS-4 Versus GPSS, SIMSCRIPT and DYNAMO

The GPSS family 0£ simulation languages automatically provide a

plentiful assortment 0£ statistics. lO Many 0£ them are always 0£ interest,

a few of them are almost never of interest and the rest may or may not

be important depending on the type of model being simulated. The auto-

157

158

matic collection and processing of these statistics is one of the reasons

simulations in GPSS run slowly. Unfortunately, if the user desires some

statistical measures that have not been provided by GPSS, it is difficult,

or impossible to obtain them. (GPSS does allow the user to communicate

with subroutines through the HELP block, but this is not recognized as

an acceptable solution to the problem.) Also, it is impossible to associ-

ate descriptive text with any of the statistics GPSS provides, so that in-

terpretation of the results by anyone other than the programmer is dif-

ficult.

8
The SIMSCRIPT language adopts the opposite approach. No sta-

tistics are automatically calculated. Only an ACCUMULATE statement

to sum integrals over time and a COMPUTE statement which automati-

cally computes, sums, means, and standard deviations of variables are

provided. A sophisticated report generation feature is available, how-

ever, so that annotated and readable reports may be produced quite sim-

ply. Also, since SIMSCRIPT is an extension of the FORTRAN language,

the user may easily calculate any statistical measures he needs. But the

user is required to do almost all the work in collecting, storing and pro-

cessing the raw data for his statistical measures.

The DYNAMO system is particularly noted for its excellent time

series plots. 54 Any simulation variables may be automatically plotted

at fixed time intervals and fixed ranges are specified for each variable.

Seeing a graphical display of values of variables over a period of time

159

adds a dimension that is .not captured by summary statistics.

A middle of the road approach is adopted for OPS-4. It automat

ically collects and retains certain information which is of general in

terest. It also aids the user in obtaining measures that depend on sys

tem operation which would normally be difficult for him to obtain by

himself. Simplified statements for many of the commonly performed

operations are provided. A complete algebraic language is available

in PL/l, and a simplified report preparation and labelling system is

also available through the picture attributes and formatting facilities

of PL/l. 32 Procedures discussed briefly in Chapter 4 for tabulating

and displaying distributions and collecting and computing queue statis

tics are also available. The following paragraphs discuss these features

in more detail.

Time Related Statistics

In a discrete, event oriented simulation, the user is often inter

ested in statistical measures that have to do with simulated time. For

example, such questions as, "What was the average processing time? 11
,

"What was the average waiting time? 11 or "What was the average machine

utilization? 11 seem naturally to occur. Since an event oriented simulation

system is driven by time, the simulation system is required to keep track

of at least the execution time (ET) of an unconditionally scheduled activity.

With a conditionally scheduled activity no event time is available since

it is unpredictable. However, with conditionally scheduled events the

natural time-related statistic is how long the event waited for its execution

160

to occur. With only a trivial amount of extra labor, a simulation system

can help provide this answer by recording the simulated time at which

the conditional activity was scheduled. The delay interval can be com

puted by subtracting this scheduled time (~T) from the current time

when the activity is executed. Only one extra storage cell is required

by the simulation system for each conditional entry. This is a small

price to pay in exchange for being able to obtain the waiting time so eas

ily. In actuality, since the structure of all entries in OPS-4 - condit

ional or unconditional - are identical the space is already available.

The amount of simulated time between events represents the con

sumption of time by some activity and this interval is of importance in

computing the utilization of facilities. It is obtained in OPS-4 by allo

cating a second additional cell of storage per entry on the Ager~da. This

cell contains the execution time of the last event (LT) that was executed

in the activity. Thus, the interval of simulated time between any events

may be easily computed by subtracting LT from ET. Finally, in an

activity oriented system, where activities consist of sequences of events,

it is often desirable to know the total activity duration. This is provided,

by a third additional cell per entry on the Agenda, which records the

first scheduled execution time for the activity (BT). Each of these three

raw datums are available through system defined functions, etime, ltime,

btime, respectively. In addition, the waiting time of a conditionally exe

cuted activity is obtained by the function wtime; the delay interval between

161

the current event and the preceeding event in an activity is provided

by the function dtime; and the total elapsed time for the activity may

be obtained by the function atime. Although, each of these functions

usually has no calling argument, implying the current active activity,

it is possible to obtain these statistics for any entry on the Agenda by

calling the functions with a specific activity name.

Basic Statistical Measures

To make it simple for the user to collect the data to calculate

the basic statistical measures of means, variances and standard de-

viations an Accumulate statement similar to the one in SIMSCRIPT is

provided. For example, executing the statement

Accumulate number sum and sumq of X in ?CNUM XS and XSQ

will automatically increment the variable XNUM by one and the variables

XS and XSQ with the value and squared value of the variable or express-

ion X, respectively, thus computing the number of items, sum of X and

2
the sum of X . If only one or two of the sums are wanted the other names

may be omitted. Since either a simple variable, a function result, or a

complicated expression may be accumulated, the user may easily answer

the three questions posed earlier in this chapter.

As a further aid, however, a Compute statement is available to

compute the mean, variance and standard deviation, from the number,

sum and sum of squares of any variable. Thus,

Compute mean MX var VX st-dv SDX from XNUm SX and XSQ

16Z

will compute these. useful statistics for the variable X accumulated in

the Accumulate statement illustrated above. An alternate form of the

Compute. statement which accepts a vector of raw datums is,

Compute mean MZ and var VZ of Z

This computes the mean and variance of the elements stored in the vec

tor Z starting with Z(l). If only the first n element of. Z are valid dat

ums where n is less than the length of the vector, Z(O) should contain n.

Collecting and Displaying Distributions

In many models a complete distribution of data values is required

in addition to the mean, variance and standard deviation of the data. For

the user to tabulate the distribution himself would require a substantial

amount of programming. Three operations are provided in OPS-4 to

~implify this task. The first defines a table by giving the narrie of the

table, lower limit, cell interval, and upper limit• For example,

Declare T table 10 5 100

defines T to be a table with discrete cells 10-15, 15-20, 20-25, .•• , 90-95,

and 95-100. In addition to these 18 cells, an underflow cell for values

below 10 and an overflow cell for values of 100 are also automatically

provided.

To record entries in a table the .tabulate operator is available.

Tabulate X in T weight W

uses X as an index to determine in which cell of the table T it shouldadd

the weight W. If a weight W is not specified, a weight of one is assumed.

163

If X falls exactly on a cell interval it always goes into the upper cell.

Thus, if X were 25, the weight W would be added into the cell 25-30,

not the cell 20-25. However, if X were 100 it would go in the last cell

95-100, not in the overflow cell. Finally,

Display T

p~oduces a tabular listing of the table, giving the number of entries,

total sum of all the entries, the mean, standard deviation and the in

dividual cell subtotals, cell percentages and ·cumulative percentages

listed by cells.

It is also possible to display just a portion of a table and aggre

gate cells. For example.

Display T from 30 to 75 cell 15

will list just the five cells 30 and below, 30-45, 45-60, 60-75, and 75

and over, as well as the standard summary statistics. If a new cell

width smaller than the original width is specified a flag is set and the

defined cell width is used instead.

In addition, distributions may be plotted either as bar graphs or

broken-line graphs. Also, either the distribution or its cumulative may

be plotted. Subsections of the entire distribution may be specified and

the user is allowed to specify aggregation of cells and designate the actual

physical space to be devoted to each cell. For example,

Plot T bar from 25 to 80 cell 5/20

specifies that the interval 25 to 80, inclusive, of the table .T is to be

164

plotted as a bar graph an_d that a cell interval of 5 is to be used but

actually occupy 20 units of space on the resulting graph. If the pro

duct of the specified physical cell width times the computed number of

cells exceeds the available space, a flag is set and the largest allow

able physical cell width is used,

The height of the graph is also limited by the amount of available

space. The ordinal divisions are computed by subtracting the minimum

aggregated cell count, including underflow and overflow cells, and the

dividing thls into the available space. The vexing problem of adjusting

these varied divisions to asthetically pleasing numbers (e, g. • 5

rather than . 489 or . 516) is ignored, since the user also is allowed to

specify the ordinal scale by giving a minimum value, interval and max

imum if he wishes. The plot routine will visually flag any cells which

fall outside these limits.

Alternately,

Plot Cum of T line

will plot the cumulative distribution of the entire table T as a broken

line graph. The width of each cell is automatically computed by divid

ing the available space by the number of cells, including one for under

flow and one for overflow. Vertical scaling of cumulative graphs pro

vide no problem, The available space is uniformly scaled (using pleas

ing intervals) from 0 to 1.

165

An Example

These' routines form a very powerful package. For example, in

the Multics model the waiting time distribution for the user requests

waiting for processing could. be tabulated in a table called WT by spec-

ifying,

Tabulate wtime in WT

every time the activity for executing users was activated. Likewise, if

the variable Q represented the queue size of·activities waiting to be run

the state probability distribution OD. describing the queue length could

be obtained by executing the statement,

Tabulate Qin OD weight Sys-time-Otime

every time just before the size of Q is incremented or decremented. The

variable Otime would also be updated at the same time so that it repre-

sented the last time the Q was modified. If only the average length of

the queue was desired instead of the complete distribution this could be

obtained by executing the statement

Accumulate number and sum of O*(Sys-time-Otime) in QNUM
and QSUM

in place of the Tabulate statement.

Queue Statistics

Because statistics on queues are so often desired in a simulation,

special operations for automatically accumulating queue statistics are

provided in OPS-4. Every time a new element is inserted in or removed

;...,··

166

from a queue (recall a queue is a special data object provided in OPS-4)

by the norm.al set manipulation statements, all the queue statistics are

automatically updated. These inClude the maximum contents, average

contents, current contents and total number of entries in the queue.

Also, the average, maximum. and minimum duration of each element

in the queue including the current ones, and the percent of the time

that the queue is empty are computed. The current contents, average

contents, maximum contents and total number of entries of any queue

may be obtained directly by the user at any time by calling the functions

sizeq, avgq, maxq and totalq with the name of the queue. The time re

lated statistics for queues are obtained by the functions avg-time, max

time, min-time and zero-time. They may all be obtained simultaneous

ly by using the Display statement. The duration of a particular element

in a specific queue may be obtai'l\ed by the function qtime which requires

the queue name and element name as arguments. The detailed structure

of queues is described in Chapter.8.

Time Series Plots

A facility similar to that offered in DYNAMO will be available in

OPS-4. 54 A user may declare any variable to have an additional attri

bute called plot. Associated with this aU!ibute is the specification of a

minimum and maximum scale value and a plot character (used to identify

it froµi other variables plotted simultaneously). If no minimum or max

imum is specified the standard range of zero to 100 is assumed. Also,

167

if no plot character is designated the first letter of the variable name

will be used. OPS-4 will .maintain a list of all variables having this

plot attribute. During the Agenda scan if an unconditional activity is

about to be made active and it results in the change of system time,

all the variables with the plot attributes will be plotted. In the- nor.rnal

mode of usage, activation of conditional activities or uncondtional ac

tivities having the same ET will not affect plotting.

The rules for plotting may be revised by the user at any time,

however. By making calls to the routine Change-plot he may direct

that a plot occur before:

1. The activation of every activity

z. The activation of all unconditional activities

3. The activation of all conditional activities

4. The normal mode

Since individual variables may be redeclared dynamically the plot attri

bute may be selectively removed and reinstated during the simulation

and the maximum and mini.xnum ranges modified and the plot character

changed.

The normal rult:: for indicating the time axis ii> to space one divis

ion for each unit of time. Since time changes discretely, the resulting

plot may have many apparent plateaus. The time axis is automatically

labelled at fixed intervals. Also, if one of the non-standard modes of

plotting is in effect and the time axis is not increased, successive plots

168

will be plotted at the-same position, possibly resulting in multiple

values from some variables.

The special routine Change-plot, described above, may be called

to change any of these three facts; i.e. the number of units of time per

division may be modified. (fractional values indicate amplification of

the time axis), the labelling interval may be modified, and plots which

occur at identical values of system time may be plotted as distinct frames.

When multiple processes are available in Multics this plot feature will

be implemented as an asynchronous process.

Summary

OPS-4 has followed a middle course with regard to simulation

statistics. No statistics are automatically generated and displayed as

a. by-product of an OPS-4 simulation run. However, many of the im

portant basic datum are automatically provided by OPS-4 and may be

obtained by the user through standard OPS-4 functions. This allows the

basic simulation to be uncluttered and run relatively fast. However,

when it is necessary to collect a distribution, or obtain queue statistics

the user does not have to write the detailed programming required. A

few statements inserted in the right place in the program will do most of

the work for him.
'

Chapter 8

MEMORY MANAGEMENT TECHNIQUES

List processing techniques -provide a method for solving problems
in which both the size and number of data objects are unpredictable
and constantly changing. This situation is common to simulation. OPS-
4 uses a list structured Agenda, and also provides the set and queue
data objects which are list structures. A particular problem with list
structures is the management of memory. Either memory management
is continuous - i.e. a list of available space is constantly updated or
else it is sporadic - i. e. garbage collection is performed whenever
space is exhausted. This Chapter discusses the policies used in OPS-4
which are especially designed for the Multics environment.

List Processing in Multics

The Multics environment provides a mixed blessing for the im-

plementor of list processing systems. On one hand its paging system

allows list structures to be larger than physical memory. This is a

significant achievement since almost every major program that uses

list processing techniques has been contrained by the amount of direct

ly accessible memory. 57 On the other hand, memory references in

list processing programs are most unpredictable. A series of consecu-

tive references to a list structure may each reference a different page.

Since only a few pages of a single user's list structured program will

be residing in core memory simultaneously, it is probable that an un-

usual amount of paging activity may be initiated by list processing pro-

grams. The memory management policies of OPS-4 try to keep lists

ordered in such a way as to reduce the probability of out of page refer-

ences.

169

170

Managing the Agenda

Chapter 5 described the Agenda structure. Recall that is is a

tree structure with 3 branches. All the entries on the main branch,

interrupt branch and specific event branches are 3 words long. All

entries use the double pointer system of SLIP to reference the pre

ceeding and following entries. SZ The specific event branches have

a second set of pointers which link them to entries on other branches.

To simplify management of the Agenda, the three branches and

the hash-coded table for the conditional event branch are stored in the

segment <OPS. Agenda>. This is one of the most frequently referenced

referenced segments in the OPS-4 system. A minimum of one refer

ence is made each time an activity is made active. (Here reference

is used in the logical sense and may imply many actual memory ref

erences.} Because of the possibilities of conditional entries on the

Agenda many references to .(OPS. Agenda'> may be made before an

eligible entry is selected. All the external and internal sequencing

statements also reference the Agenda. Thus, it is imperative that the

Agenda be efficiently organized to limit page faults.

Fortunately, the successive references to the Agenda by the Agenda

scan are very predictable. The less frequent references to the Agenda

by the sequencing statements are not predictable. Therefore, the Agenda

entries will be ordered to coincide with the order in which they are ref

erenced by the Agenda scan. This means that all the entries on the main

branch will follow each other consecutively and will be ordered by their ET.

171

The interrupt branch comes first in '-OPS. Agenda>. The specific event

entries and their hash table follow the interrupt branch, but precede the

main branch. This leaves room at the end of the main branch for new

entries. When new space is needed for a.main entry, an interrupt, or

an event entry it will be obtained from the current physical end of the

Agenda. (A special cell always contains the address of the first unused

space in.(. OPS. Agenda).)

As new entries are inserted on the main branch and entries are

moved to and from the specific event and interrupt branches, the phys

ical order of the entries will no longer .coincide with the Agenda scan

order. Also, some entries may represent inactive activities.

Reordering the Agenda

To restore order to the Agenda, a special reordering process is

initiated. It does the following:

1. Traverses the interrupt branch and copies it into the

beginning of a new segment .(.OPS. New-Agenda'> in the

order that the entries are referenced.

Z. Traverses the specific event branches, by $Oing through

the hash table, copies them into< OPS. New-Agenda>

following the interrupt branch and recomputes the address

es of the branch entries ~n the hash table.. If the hash

coded table needs rehashing, because it is too large or

too small, it is done at this time.

172

3. Traverses the main branch of the Agenda and copies

all the active entries into< OPS. New-Agenda"> in the

order that the entries are referenced.

4. Deletes< OPS. Agenda> and renames.(.. OPS. New-Agenda>

to< OPS. Agenda>.

Agenda Reordering as an Asynchronous Process

When multiple user processes are available in Multics the Agenda

reordering will be done in parallel with the normal simulation. Certain

procedures will have to be established to inhibit modification to the Agen

da while it is being copied, The reordering processes will lock the Agen

da to prevent any activity from modifying it. This may cause a process

to become blocked. When steps 1 through 3 of the reordering are finished

the reordering process will change the current activity pointer to(. OPS.

New-Agenda>. It will then proceed with step 4 and finally unlock the

Agenda. Any blocked processes may then proceed.

Deciding When to Reorder the Agenda

It would be foolish to reorder the Agenda continuously because re

ordering it is time consuming. Also, if the Agenda is small and always

fits within one page, it is not necessary to reorder it. In addition, even

if the entire Agenda does occupy several pages, if the frequently refer

enced portion is on one page ther is no need to reorder it. The only

reason reordering is necessary is to eliminate unnecessary out-of-page

references. The fact that there may be holes in <:OPS. Agenda) because

173

of entries for inactive activities is not a serious concern. It is expect

ed that the need to unscramble the order of the Agenda will always oc

cur well before the space in <OPS. Agenda>is exhausted.

The Agenda scan operation will provide the necessary clue as to

when it is time to reorder the Agenda. This is the only operation that

is penalized if the Agenda is unordered. All other references to the

Agenda have no predictable pattern to them. Therefore, every nth

scan of the Agenda, when n is a parameter that is self •adjusting or

may be explicitly set and/or modified by the user, the Agenda scan

mechanism will check the pointer address to see if they reference dif

ferent pages. This is done by monitoring bits 11, 12, 13, etc. of each

address. If the number of distinct page references divided by the total

number of references made to the Agenda exceeds some threshold, which

may be set and/or modified by user, and the number of Agenda refer

ences made during the Agenda scan was above some minimum number

{such as 3 or 4), where this number may also be set and/or modified by

the user, the Agenda reordering process will be automatically invoked.

The user will also be directly able to invoke the reordering process by

giving the statement Reorder-Agenda at any time.

Deleting Activity Definition Blocks

Activity definition blocks are never deleted from .(OPS. Activities)

when they become inactive. Therefore, it is possible, although not

probable, that their sum of the active and inactive definition blocks may

174

exceed the size of <.OPS. Activities>. If this happens the normal rule

is to notify the user and ask for advice. In all likelihood the simula

tion has gone out of control and generated too many activities. How

ever, it is possible that numerous inactive definition blocks might be

taking up too much space. If this is the case, the user may direct

that all these inactive entries be deleted. (If ·he wishes to save spec

ific ones this can be done by temporarily rescheduling the specifie

activities, issuing the deletion order, and then cancelling these ac

tivities.) It is also possible for the user to direct that all inactive

entries are to be automatically deleted when they become inactive and

are not linked to by any other activity. This can be done with safety

when the simulation is debugged and references to inactive activities

are not contemplated.

The Structure of Sets and Queues

Both sets and queues are structured using the double pointer sys

tem of SLIP. 5Z Each entry in a set consists of two words. The first

word contains the two 18 bit backward and forward p9inters which link

this entry to the preceeding and following entries in the set. The sec

ond word contains an 18 bit pointer to the name of the element or name

of another set entered in this set and a special 18 bit code identifying

whether this entry represents an individual element or the head of another

set. The first word in the head of a set also contains the standard for

ward and backward pointers. The second word of the set head contains

175

the 18 bit code identifying it as a set head, and an 18 bit field which con

tains a count of the number of elements in this set. This set length is

not necessary but is provided for the user 1s convenience. The set

length may be obtained by the function Set-size.

Each entry in a queue consists of 3 words. The first word con

tains the backward and forward pointers. The second word contains an

18 bit pointer to the element in the queue, and an 18 bit zero field. The

third word contains the value of simulated time when the entry was

placed in the queue. The head of a queue consists of 8 words structured

as follows:

1. Forward and backward pointers.

2. A special code identifying it as the head of the queue

and a count of the total number of entries which have

been, or currently are members of the queue.

3. Two 18 bit fields which contain a count of the current

number of entries in the queue and the maximum number

of entries which existed in the queue at any one time.

4. The value of simulated time when the queue was created.

5. The value of simulated time when the queue was last

modified - i.e. either a new entry was added or an old

one deleted.

6. The maximum duration of an entry in the queue, including

the current ones.

176

7. The minimum duration of any entry that is no longer in

the queue.

8. The sum of the duration of all entries in the queue, in

cluding the present ones.

All these items are necessary to compute the queue statistics described

in Chapter 7.

Every time a new set or queue is created as a result of executing

one of the declaration statements, the set head or queue head is created.

A pointer to this head is stored on a simple 1 word per entry list main

tained by the OPS-4 system. This entry contains two pointers. One

points to the next element on the list and the other points to the set or

queue head. The use of this list is described in the next section.

Managing Sets and Queues

All sets and queues used in OPS-4 are stored in <OPS. lists>.

This is done so that OPS-4 itself may exercise complete control over

memory management of this segment. Rather than using a free storage

list and introducing reference counts into the set and queue heads, a

garbage collection scheme is employed when the space in the segment is

exhausted. This decision is based on research which shows that if the

ratio of memory actually used to memory available is small, the time

saved by not returning discarded words to the free storage list is g·reater

than the time spend reorganizing memory. 58 It is expected that this

condition will hold in OPS-4 since the length of all sets and queues should

177

be substantially less than.the limit of a segment cz18 words).

The garbage collection scheme will copy all the sets and queues

into a segment< OPS. New-lists), delete.(OPS. lists) and rename< OPS.

New-lists) to -<OPS. lists>. It uses the special list of set and queue

heads which is stored in <OPS. lists>to access all sets and queues~ The

second word of both set and queue heads contain an identifying code

which the copying system uses to distinguish whether it is copying a

set or a queue. Even if sets and queues are empty they are not de

leted. Only the elements of sets and queues that are no longer refer

enced will be deleted.during the copying stage. If a set contains other

sets as members, these are copied as part of the original set, and

these sub-sets are marked as having been moved so that they are not

recopied. The special list of set and queue heads is copied after all

the sets and queues have been copied. OPS-4 itself needs to remember

only the address of this special list and the address of the beginning of

usused memory at the end of .COPS. lists>.

Automatically Initiating Garbage Collection

Normally the garbage collection operation will only be performed

when the end of <OPS.> lists has been reached. However, the user may

specifically envoke the garbage collection operation any time he wishes

by executing the statement Purge-Lists. A third possibility that also

exists is to have it envoked automatically. Although space in .(OPS. lists)

may be far from exhausted, frequent modifications of both sets and queues

178

may result in them being spread over many pages. References to

either the top or bottom of sets and queues will cause no difficulty.

However, if sets and queues are being continusously searched, this

may result in a considerable amount of overhead. To reduce this over-

head, the garbage collection operation may be performed. The question

is when should it be initiated by the system?

What is needed is some measure of the efficiency of accessing

sets and queues. One measure might be one minus the inverse of the

number of consecutive memory references between memory references

which require a page reference: i.e.

1
1------

MRPP

where MRPP stands for memory references per page. This measures

only dynamic memory references, and ignores any memory locations

occupied by elements which are not actively referred to. In the worst

case, where each element referenced was on a different page, this

measure would be zero. Assuming a page length of 1024, and a non-

cyclic set (two words per element), in the best case this measure would

be
2

1- ----
1024

= . 9990

Unfortunately, without a hardware modification or an interpretive sys-

tern to monitor all memory references, this measure can not be calcu-

lated.

If it is assumed that most references to sets and queues require

them to be searched then the ratio of the current length of all sets and

179

queues to the total number of words in <.vi:';.). lists> t.L.at have been al

located, provides an indication of the dispersal of these sets and queues

through memory and may be used to infer the probability of out of page

references. The actual length of each set and queue is stored in the

headers and thus by traversing the special list of sets and queues this

total length can be determined at any time. Alternately, an additional

cell could be monitored by OPS-4 which would always contain this sum.

The assumption about searching may not be valid with queues since they

tend to be LIFO or FIFO structured. However, sets may be more fre

quently referenced on the basis of specific element membership than

simply a reference to the top or bottom element of a set.

It is also possible to obtain from the Multics accounting system

an indirect measure of paging activity per unit of time. The Core Res

idence Meter will indicate how many word-seconds a user is charged

for and the Core-Usage Meter will measure the processor time. Div

iding the first by the second gives the amount of memory a user is

charged for. Because of the method of charging for pages jointly shared

by several users this is not an accurate measure. Also, this includes

all the pages in a user's process, not just those in <OPS. lists).

It is possible, however, that combining this measure of total core

space with the previous ratio of allocated to actually used space in <OPS.

lists), that a useful indication of when to automatically envoke garbage

collection will be more accurate than either one taken alone. Not until

180

Multics is running will it. be possible to tell. It is also reasonable to

provide both of these measures to the user and let him use them as in

dications of when to perform a garbage collection if it is not done auto

matically.

Summary

This Chapter has discussed the problem of memory management

of list structures in the Multics environment. Specifically, a method

for reordering the Agenda to reduce the unnecessary out of page ref

erences caused by the scrambled order of the Agenda and a garbage

collection scheme for cleaning out discarded set and queue elements

in the segment <.OPS. lists) are described. A technique for automat

ically invoking the reordering of <.OPS. Agenda"> is described. A sim

ilar technique for automatically initiating garbage collection in<: OPS.

lists> is also described.

Chapter 9

INTERPRETATION AND INCREMENTAL COMPILATION

Most of the specific implementation problems and techniques
employed in the design of OPS-4 have been discussed in previous chap
ters when they were pertinent to the topic being covered. However,
the methods employed to create and execute the on-line version of
PL/l and its additional features which constitute an OPS-4 program
have been passed over. This chapter describes these implementation
methods. A combined interpretive, incremental statement by state
ment compilation approach is used. The use of an inter-line inter
preter which executes either compiled statements or interpreted state
ments allows programs to be edited and immediately executed and also
provides full tracing flexibility at only a moderate cost in overhead.

OPS-4 Programs

An OPS-4 simulation program may be created just like any other

program in Multics by using the normal editing command of Multics.

The program is an ASCII character file having the class name OPS.

it may be printed, punched, etc., with the normal Multics commands

and even created off-line and loaded onto secondary storage.

The alternate of having a special editing command which is used

only to write OPS-4 programs and which performs immediate syntax

checking does not seem to be that desirable. Being able to quickly and

easily correct errors when they are detected during execution is far

more important and is provided by the interpretive execution system

described below.

An OPS-4 program obeys most of the conventions of PL/l and

will look very similar to a standard P L/l program. 32 The major dif-

ference in syntax of an OPS-4 program is the requirement to prefix the

181

182

word Set, followed by a space to all assignment statements and the

ability to write the name of any procedure or OPS-4 program at the

beginning of a statement without pr.eceeding it with the word Call.

For example, instead of writing the P L/l statements,

A=X+Y

Call Invert (A, B)

the OPS-4 statements would be written as,

Set A= X + Y

Invert (A, B)

Although it may appear to be annoying to have to prefix all assignment

statements with the word Set followed by a space, the user soon be

comes accustomed to it. The use of the word Set standardizes the

languages so that every statement begins with a procedure name. This

allows any procedure to be a statement in the language without having

to prefix these statements by the word Call.

The additions to the PL/l language supplied by OPS-4 are the

expansion of allowable data types to include sets, queues, and tables,

the procedure attributes simultaneous and sequential, the plot and access

attributes associated with any variable and the numerous additional

statements to manipulate the new data types, schedule events, and col

lect statistics.

Since any procedure followed by any arbitrary parameter string

(recall the discussion in Chapter 2) may be written as a statement in an

OPS-4 program, the many standard additional statements in OPS-4 are

183

implemented just by writing procedures which perform the specified

actions. Thus, the OPS-4 language is open-ended and may be easily

modified and adapted to suit the tastes of any user.

When a user interpretively executes an OPS-4 program named

X, the ASCII file X. OPS is opened and a minimum of four new segments

are created or referenced. One segment is created for the execution

version of the program. Another segment is created for the symbol

table of the program. A third segment created is the standard linkage

segment for the program used for all external references. Finally,

one or more of the standard Multics data segments may be referenced

and some new ones created to hold the local data objects defined ~n the

program. The possibility of the local data base of a procedure being

fragmented into more than one segment causes no difficulty. It arises

solely as a convenient way of implementing the various data objects and

modes of storage allocation which PL/I allows and was discussed in

Chapter 4.

The OPS-4 Symbol Table

The format of all OPS-4 symbol tables will closely resemble the

format of the standard P L/1 symbol table so that all the standard symbol

table searching routines in the Multics debugging package may be used.

The only difference is the addition of new attribute types. In particular,

this compatibility implies that the OPS-4 symbol table will be tree

structured and hash coded so that searching for symbols will obey the

184

scope restrictions of P L(l and also be very rapid. All the information

about the location of variables will always be relative to a fixed base.

The techniques adopted by Multics for linking separate symbol tables

may be used to link together the symbol tables of separately written

procedures independent of whether they were written as OPS-4 programs

or compiled programs.

An OPS-4 symbol table is created dynamically as its companion

OPS-4 program is executed for the first time. As the PL/l declar

ation statements are executed they cause the declared information to

be added to the symbol table. If any attributes for identifiers are left

unspecified, their default values are entered into the symbol table.

Two special attributes called time and trace are always automatically

defined for each identifier. The trace attribute is initially set to off.

The time attribute is the number of microseconds since 0000 GMT,

January 1, 1901, and is provided automatically by the Calendar Clock

of the GE 645 hardware. The use of these.attributes will be described

later in this chapter.

The linkage segment is also created simultaneously with the sym

bol table and contains entries for all identifiers having the-external at

tribute.

Inferring Data Attributes

OPS-4 uses a scheme for inferring the attributes of data objects

that result from a computation. This means that it is necessary to de-

185

clare only \.nt:. attribute .. of the actual "inputs 11 to a procedure - i.e.

the procedure parameters plus any other variables which are used as

given in the procedure, but not declared in a superior block.

For example, the statements,

Set A= B*C

New CUSTOMER named JOE

Draw RATE from Normal (MN, STDV)

all result in the automatic definition of the data objects A, JOE and

RATE, respectively, which need not be explicitly declared. The at

tributes of A are implied by the combination of the attributes of B and

C and the multiplication operation. The attributes of JOE are identical

to the attributes of CUSTOMER, since JOE is a new entity belonging

to the class CUSTOMER. The attributes of RATE are derived from the

operation of the Draw operator and the type of distribution specified

which, in this instance, generates a floating point random sample from

the normal population with inean MN and standard deviation STDV. Since

the symbol table is always checked to see if all the attributes of the

resultant variable are defined before the inferred attributes are defined,

it is possible to override the inferred definition by declaring some, or

all of the attributes of the resultant variable if the user desires. This

scheme for inferring data attributes, has been used successfully in OPS-3

and found to be a very important feature of an on-line programming sys

tem. It relieves the programmer of much unnecessary effort, but still

186

allows him to be specific when necessary.

If the user wishes to write a procedure in which the attributes of

the resultant data object influence the operation of the procedure, then

the attributes of the resultant data object clearly must be thought of as

inputs to the computation as well as outputs. If, when the procedure is

executed, the attributes of the resultant data object are not defined, the

parameter accessing mechanism will ask that the attributes be defined

before it returns to the calling procedure. Note, that all statement

labels are also treated as variables, and they are implicitly declared

and entered into the symbol table as relative pointers within the execu-

tion segment.

The Execution Segment

The special execution segment referred to earlier is also created

dynamically as the OPS-4 program is executed for the first time. The

sole reason for creating this segment is execution efficiency. An OPS-

4 program could be executed completely interpretively directly from the

OPS-4 program segment containing the ASCII text as is done in the pres-

ent OPS-3 system.* Interpretation allows a user to complete flexibility

to make any modifications to the model structure at any time and have

them immediately take effect. It is also quite simple to program the

*In OPS-3 the equivalent of the OPS-4 program segment is a special
file called a KOP, which can only be written and read by the OPS-3
system.18

187

basic inter-statement sequencing for such an interpretive system.

However, the execution of programs in this manner is very slow since

any statements executed repetitively must be completely re-interpreted

each time they are re-,executed.

Analysis of the execution of OPS-3 KOP 1 s has shown the ineffic

iency of the interpretive mode execution to range from almost none,

for the event sequencing operations and array manipulation statements,

to intolerable amounts, for simple scalar substitution statements such

as,

Set X = 3, B = 516

and transfers of control such as,

Go to Next

Therefore, in OPS-4, the techniques of incremental compilation employ

ed in other on-line languages will be used selectively. 59-62 Thus, it

is necessary to create the special execution segment to contain the com

piled code.

Creating the Execution Segment

When the user executes an uncompiled OPS-4 program either from

within any procedure or directly from the console the interpreter checks

to see if the execution segment for the program exists. If it does it im

mediately starts to execute it line by line as described later in this Chap

ter. If no execution segment exists one is ere-ate~. The first item, which

is entered in a special record at the beginning of the execution segment

188

is the current time. This uniquely identifies when this segment was

created. As each statement in the OPS-4 program is read and execut

ed an eight word entry is created for it in the execution segment con

taining the following fields:

(The length of each field is indicated parenthetically)

1. Forward and backward pointers to reference the previous

and following entries in the execution segment. (1 word)

2. The name of the specified statement is converted to an ab

solute pointer to the specified segment name I entry name

in one of the following ways: (In all cases the result is an

ITS pair which occupies two words).

a. The global symbol table is consulted to determine if the

name is known as a standard statement in the OPS-4

language. If it is the entry OPS/name is entered.

b. If the global symbol table reports that the name is that

of an uncompiled OPS-4 program, then the entry OPS/CALL

is entered in the record. This is the special call to an

OPS-4 program, similar to the CALLK operator in the

OPS-3 system. It indicates that the called procedure is

to be executed interpretively.

c. If the global symbol table reports that the name is a user

defined procedure, then the entry OPS/USER is entered in

the record. This is a special call, similar to OPS/CALL,

189

that indicates that the user will portray the procedure

directly from the console,

d, If no entry is found for the statement name in the global

symbol table, it is assumed that this is a compiled pro-

cedure defined by the user, or that it is a standard li-

brary procedure. In either case the Search Strategy

Module is called to locate the segment and determine the

. t * entry. porn.

e. If the Search Strategy Module can not find the specified

segment name/entry name, the user will be asked for

guidance. He may then specify the correct segment

name/entry name, indicate that he is supplying an OPS-

4 program name instead, or indicate that he will portray

the execution of the specified procedure himself from the

console.

3. A special time attribute which contains the time at which the

symbol table was most recently modified. {52 bits)

4. The set.of switches indicating what traces have been explicitly

turned on for this statement. {10 bits)

5. The set of switches indicating what traces have been explicitly

turned off for this statement. {10 bits)

*This assumes that user defined procedures named in OPS-4 pro
grams are compiled one per segment. If this is not the case, the
user can specify the segment name/entry name directly when he
writes the OPS-4 program.

190

6. A pointer to the text of the statement which is contained in

the OPS-4 program segment. (18 bits)

7. A pointer to the statement label definition in the symbol table,

or a zero field if there is no label with this statement. (18 bits)

8. A pointer to the execut~ble code if the statement is compiled,

or a zero field if the statement is not compiled. (18 bits)

9. A switch indicating whether any of the parameters are de

fined in the global symbol table. ·Only global variables

having no access qualification, or those that specify the

name of this program may be referenced by statements in

this program. (1 bit)

10. A count of the number of parameters in the statement, or a

zero field if the statement analyzes its own parameter string.

(17 bits)

11. A pointer to a variable length string of trace indicators one

for each of the parameters of the statement. This field is

zero if the parameter count is zero. (18 bits)

12. A pointer to a variable length string of pointers, one for each

of the parameters of the statement. The field is zero if the

parameter count is zero. (18 bits)

If any of the parameters in the string, other than a result parameter are

undefined, the user is alerted and asked to define them before execution

continues.

191

The details of the algorithm used to decide whether or not to com

pile a statement or execute it interpretively are not clear at this time.

They must await final specification of each of the standard statements in

the language. These specifications depen4 in turn-on details of Multics

which are not yet available. However, the following general guide'lines

will probably be followed.

1. All simple transfer statements (e.g. Go to's) will be compiled.

2. All Call statements will be compiled.

3. All statements which parse their own parameter strings. will

not be compiled.

4. Do Loop's will not be compiled, but executed interpretively

so that automatic checking for subscript limits can be per

formed by OPS.

5. Simple Set statements, e.g. those with straight-forward in

dexing and/or only scalar arithmetic, will be compiled.

6. All standard input and output statements will be compiled as

subroutine calls.

7. All non-standard statements not defined in the global symbol

table will not be compiled.

The compiled code, parameter trace indicators and parameter pointers

are all located in <free_'> which is the segment Multics uses to store all

variable length strings.

The general rules for pointers to the parameter attributes in the

symbol table are clearer:

192

1. All compiled statements and/or statements with fixed para

meter strings will have pointers to the parameter definitions

in the symbol table. The code for these compiled statements

will include the standard P L/l dope and specifier information.

2. All statements which parse their own parameter strings and

also are not compiled will not have pointers to parameter def

initions.

3. Any parameters which are literals will cause special definit

ions to be created for them. Storage for literals is allocated

in the execution segment.

After completing the creation of this entry in the execution segment,

the statement is executed and this process repeated for the next state

ment in the OPS-4 program.

Because of the multiplicity of branches in a complicated program

it is possible that some statements appearing in the OPS-4 program will

not have been executed, and therefore not appear in the execution segment

if the procedure outlined above is followed explicitly. Therefore, the

following modification is necessary. When execution of a branch state

ment causes a reference to a statement label not yet defined in the symbol

table and hence "below" the current location in the program, a search is

started to locate the referenced label by reading through the rest .of the

program until it is found. If it is not found an error is reported to the

user and execution suspended. The user may correct the error by de-

-------------------------~----------

)

fining the label, or by changing the name of the referenced label to a

known one. In either case the program then continues from the point

determined by the referenced statement label. If the program state-

ments that are being passed over are not already in the execution seg-

ment, they are read from the OPS-4 segment and translated as des-

cribed above, but not executed. Begin and End statements are recog-

nized since they cause a new branch to be referenced or created iil the

tree-structured symbol table. In addition, all statement labels en-

countered are defined in the symbol table. This is done to guarantee

that all undefined statement labels encountered during execution are

below the current program point.er. When the referenced statement

label is located complete execution of program statements is resumed.

This technique assures that all statements to which control may poss-

ibly flow during the execution of the program are included in the exe-

cution segment. Note, this also assumes that all declarations for each

block must occur at the beginning of the block. Declarations intermixed

with normal statements will become effective only when control flows

through them and they are actually executed.

Detecting the Editing of an OPS-4 Program

If a user edits, or in any manner modifies the OPS-4 program seg-

ment, the time-last-modified attribute for the OPS-4 program kept in

the user's directory by the file system will be automatically updated. The

name of the program will also be redefined as an uncompiled OPS-4 pro-

194

gram in the global symbol table. When the user then asks t~t the mod

ified program be executed OPS will note that the internal time attribute

of the execution segment does not agree with the directory entry's time

attribute for the OPS-4 program segment. It will then delete the exe

cution segment, symbol table segment, linkage segment and any associ

at·ed data segments and· start afresh as if the OPS-4 program had just

been initially created. Note - this means that it may be impossible to

refer- to any previous instances of the activities that have already been

created using the former version of the program.

Why is such drastic action as this necessary? Isn't it possible

to make the necessary changes in the appropriate segments and pro

.ceed? Yes, it is, but it is not simple. Since the editing of the OPS-4

program may be done using the standard Multics editing program or in

an unknown variety of other methods there is no way to simultaneously

make the corresponding changes in the symbol table, linkage segment,

data segments and/ or execution segment. Furthermore, the editing

program does not mark which statements in the OPS-4 program segment

have been modified. Thus, it would be necessary to run a comparison

check on the entire OPS-4 segment against the execution segment, link

age segment symbol table segment and data segments. This is equival

ent to regenerating these segments.

Incremental Editing of OPS-4 Programs

However, an alternate editing command will be provided by the OPS-

4 system which will allow incremental changes to all the necessary segments.

195

The difference between this command and the normal Multics editing

command is that it will be aware of the presence of the other segments

beside the OPS-4 program. For example, new or modified declarat

ions will result in the corresponding changes in the symbol table entires

and possibly the linkage segment and updating of both the symbol table

internal time attribute and the time attributes of the particular entries

that were modified. When changes are made in any executable state

ments in the OPS-4 program the corresponding changes will be made

in the records of the execution segments and possibly one or more date1

segments. Although the user may conceptually think that he is editing

the OPS-4 program segment, in actuality. the execution segment is the

key segment manipulated by the special editor since it contains pointers

to the other segments.

This editor also must be used when the user wishes to set the

trace switches attached to each statement. Executing the Trace o-r No

Trace statements within this editor will cause the specified on or off

switches for the statement to be set.

Correcting Execution Errors

During the execution of an OPS-4 program, all errors detected by

the system are immediately brought to the attention of the user. The

OPS-3 philosophy for error diagnostics is followed. First, a terse com

ment followed by any meaningful variables and their values are displayt:d

for the user 1 s analysis. If this is not sufficient to explain the nature of

196

the error to the user, he may ask for clarification of the type of error

or more information about where the error occurred and under what

circumstances. He may do as much probing as necessary to determine

the nature, cause, and extent of the error. To correct the cause of the

error may require editing of the OPS-4 program.

If the incremental editor is used, execution may immediately con

tinue after editing is completed. However, if any other editing technique

is used it is necessary to start execution of the program over from the

starting point. Before or after correcting the statements that caused

the error, the user may want to execute several statements to repair

the damage caused by the erroneous execution of the program. This may

be done by executing the required statements directly from the console.

To then return to the point in the program where the error was detected

the user merely executes a Resume statement and execution starts at the

beginning of the statement which was not previously completed. If the

error was detected while control was passing between statements (except

by the explicit transfers caused by branch statements) execution contin

ues with the next statement to be executed. If the user wishes to start

the program at a different point than where it stopped he may use the

Execute statement described in Chapter 6. Of course, the user always

has the option of ignoring the error and continuing the execution of the

program from any arbitrary point.

197

Detecting Changes in the Symbol Table

Whenever the symbol table is modified, the time of modification

replaces the internal time attribute at the beginning of the symbol table.

In addition, the time attribute of each of the identifiers that were mod

ified are updated. Thus, when the execution segment is used to execute

the program one simple check is made before each statement is exe

cuted. The special time attribute for each statement is checked against

the time attribute for the corresponding local symbol table and also the

global symbol table, if it is referenced. If they match execution proceeds.

If not, the time attribute for each variable in the parameter string is

checked. If none of the variables have time attributes which exceed the

time attribute for the statement, the statement time attribute is updated

to the time attribute of the entire symbol table and execution proceeds.

However, if one or more recently modified variables are encountered,

then the appropriate changes are made in the statement and the state

ment's time attribute is then updated to the time attribute of the symbol

table and execution proceeds. The advantage of this method is that is is

not necessary to check every statement in the program each time a var

iable definition changes since each statement does its own checking before

it is executed. Also, after the initial check of all variables in a state

ment, repeated executions of the same statement requires only a single

equality check. This method also allows dynamic redefinition of var

iables during execution, a feature not available in the compiled PL/l

program.

198

Checking Trace Specifications

The inter-statement interpretive mode of execution provides an

opportunity to check the trace switches. First, the two trace fields

for the statement to be executed are checked. If the "on" field is non

zero it is "ored" to the system-wide trace settings. If the "off" field

is non-zero it is complimented and ''anded" to the result of the previous

union operation, This result is used to specify what traces are to be

performed. If both local trace fields are zero only the global settings

are used. Conversely, if the global settings are all zero (off) then only

the local settings are used. The statement label trace, statement name

trace, and complete statement trace are easily checked in thi.s manner.

The specific variable trace is handled differently. The trace at

tribute in the symbol table for symbol X is set and reset by the trace X,

and no-trace X statements. Whenever this attribute is set or reset the

time attribute for the identifier and the entire symbol table time attri

bute is also reset. This will cause every succeeding statement to be

alerted about a change in the symbol table. As execution proceeds and

the attributes for all parameters of each statement are checked for

changes, the change in the trace attribute will be noted. Ii will be re

corded in two ways. The variable trace bit in the "on" field for the

state~ent and the trace bit for the specified parameter in the statement

will be each set.

This method ensures that once the flurry of symbol table accessing

199

activity caused by a change in the symbol table subsides no further

references to the symbol table are necessary. The individual state

ment contains the necessary information. The use of a special trace

bit for the entire statement simplifies the testing to determine whether

or not any of the parameters in a statement are currently being traced.

Only if this trace bit is on ie it then necessary to check the trace indi

cators for each parameter.

Compiling an OPS-4 Program

When the user is satisfied that his program is working satisfactor

ily he may wish to compile it into the standard format of a directly

executable PL/1 program to increase the execution speed. A special

OPS-4 to PL/l translator (similar to the MADKOP translator of OPS-

3) is provided for this purpose. 46 It does the following:

1. Strips off the word Set and the following blank from all

assignment statements.

Z. Prefixes the word Call followed by a blank to all procedure

names that. are not defined as statements in the PL/l language.

3. Converts the parameter ~trings of all procedures which analyze

their own parameter strings into a quoted literal character

string.

4. Prefixes all statements that start with names of OPS-4 pro

grams, as opposed to compiled procedures, by a Call to a

special entry point named OPS/CALL and inserts the parameters

200

of the OPS-4 program as a quoted literal string. (This en

try point performs the switch into the interpretive mode of

execution used to execute OPS-4 programs. When the OPS-

4 program executes its return statement the system leaves

the interpretive mode of execution and returns to the calling

procedure.)

5. Prefixe$ all statements that start with names of user defined

programs, i.e. unwritten programs portrayed by the user at

the console, by a Call to a special entry point named OPS/

USER and inserts the parameters of the user defined program

as a quoted literal character string. (This entry point is sim

ilar to the previous one, except that the user at the console

is called. When he gives his return signal the system returns

to the calling procedure.)

6. Generates declarations for all data objects that are undefined.

This includes those data objects which OPS-4 defines using

its scheme for inferring data object attributes and those var

iables declared in outer blocks. The translator may ask for

help if it cannot find the symbol table defining these global

variables. If any identifiers are defined in the global symbol

table, their declarations will include the external attribute.

7. Ignores all Trace and Na-Trace statements will may still be

left in the program.

-------------------- ·-------~-------~------~---· - -

201

8. Removes from the global symbol table the definition of this

program as as uncompiled OPS-4 program.

After the translation to PL/l is finished the PL/l compiler is called

to compile the program.

To guarantee a corre-ct translation experience with OPS-3 has

shown that it is usually best to execute the compiled program immed

iately before, translating it. This insures that. all references to glob

al symbols will be found. The compiled version and the OPS-4 ver

sion of a program s-hould then, produce identical results. The only

noticable side effect should be a reduction in the execution time.

Once an OPS-4 program has been compiled the compiled version is

always used by the Search Strategy Module in place of the OPS-4 ver

sion when it is referenced by another program.

Summary

This chapter has discussed how individual OPS-4 programs may

be c.r.eated, executed and modified. It has also described what segments

are created during the execution of an OPS-4 program. The structure

of the execution segment is described in detail. The use of a special time

attribute to act as an alarm whenever changes are made to the program

or symbol table is presented as an efficient way to allow changes to be

immediately acknowledged and acted upon, without reqq.iring continuous

time-consuming checking. It is mentioned how the scheme used to infer

202

the attributes of data objects resulting from a computation makes it

unnecessary to declare most variables in an OPS-4 program. Also

the on-line diagnostic system is described and the implementation

of the tracing options is discussed. It is shown how the difficult prob

lem of variable tracing is handled in straight-forward manner by the

use of the special alarm feature. Finally, the method for translating

OPS-4 into standard PL/l programs is described.

Chapter 10

GRAPlilCAL DISPLAYS IN SIMULATION

The production of graphical output is an important adjunct of
most simulations. Many relationships can be grasped more quickly
or understood more completely when presented graphically. In an
on-line, interactive simulation system graphical output is particular
ly important. A user on-line does not want to stop his simulation,
spend a significant portion of time manually plotting or tabulating
some intermediate results, and then continue. An on-line simulat
ion system should do this for him.

This Chapter discusses some of the current display devices
and details and their limitations. It describes a new, low cost term
inal being designed at Project MAC which could provide the basis of
an ideal simulation terminal. The many types o.£ graphical facilities
that might be available in OPS-4 if this terminal were used are des
cribed.

Economic Considerations

CRT display devices may be divided into two categories - those

ihat produce only textual output such as the GE 760, the Sanders 720,

and the IBM 2260 arid those that have line drawing capabilities and use

a character generation device to display text such as the IBM 2250.

The former are quite inexpensive, renting for under $100 a month, but

because of their lack of graphical capability, they are not acceptable

as a simulation console. They are usually limited to one size of letters

and are best described as high speed electronic typewriters.

The latter group of devices would be adequate but their present

cost is too high. The IBM 2250 with its associated 2840 control unit

rests for over $2, 000 a month. In contrast, the typewriter consoles

such as the IBM 1050 or 2741 rent for approximately $150 a month, and

203

204

the teletype consoles models 33 and 35 rent for around $100 a month.

A New Display Terminal

Research now underway at Project MAC is aimed at producing

a low-cost graphical console with the capabilities of the IBM 2250 but

costing only approximately $5, 000, or on a rental basis only a little

more than $100 a month. 63 It is designed around a direct view storage

tube so that it is not necessary to regenerate the picture 30 or 40

times a second to keep it from flickering. Thus, it can be remotely

connected to a centralized computer by a telephone line with only a

2, 000 bit per second data rate. Characters are generated using a 7

by 9 dot matrix and can be displayed at a rate of 200 per second -

about 15 times as fast as the IBM 1050. Line drawings can be pro

duced at the rate of 200 inches per second. The maximum number of

characters that may be displayed is 4, 000 - 50 lines with a maximum

of 80 characters per line. This compares to a maximum of 960 char

acters for the IBM 2260. The size of the CRT is 10 x 12 inches. A

complete picture of moderate complexity takes about 10 seconds to

generate - the principal limitation being the bandwidth of the phone

line, not the display hardware itself.

Advantages of Soft Copy Output

The term soft copy has been used to describe the presentations

on CRT devices. The term hard copy generally refers to printed out

put. Devices producing soft copy have many advantages over typewriter

zos

devices which produce only hard copy. The primary one is their abil-

ity to generate line drawings. 'typewriter-like devices are naturally

limited to crude graphical imitations using x' s or other characters.

Speed is another advantage. It is indeed frustrating to be forced to

display significant amounts of textual information on a typewriter con-

sole at a maximum of 15 characters per second. To create graphs on

a typewriter is even more frustrating since so much time is spent

spacing over blank areas. The ability to modify portions of a display

and quickly see the entire corrected version without having to recreate

the entire picture is also a significant advantage of graphical display

devices.

Disadvantages of Soft Copy Output

One of the present limitations of soft copy devices is their inabil-

ity to produce hard copy. The majority of the time a complete trans.-

cript is not necessary. However, if the user occasionally wishes to

look back and review prvious work it can not be done with just a scope

* output. More important, however, if the user wishes to have a perm-

anent copy of a particular display, at present his only resort is to take

a Polaroid picture. This is unsatisfactory because of its size limitation.

There is a real need for a graphical console that would allow the user

to obtain within 10 or 20 seconds a hard copy reproduction of a display

on demand. Both Xerox and IBM are reported to be working on such

*The display group at MAC has proposed that a small buffer might
be used to hold 2 or 3 previous pictures.

Z06

device, but no information is presently publicly available. Another

limitation of most CRT display devices is their refresh rate - i.e. the

time it takes to display a new frame. Even devices like the 2250 re

quire a few seconds to change pictures. This means that any rapidly

varying dynamic data can not be effectively presented. A·further prob

lem is the bandwidth of the line between the computer and the display

and the encoding of data to be sent over the line.

Centralized Reproduction Facilities

At present, the only type of devices that produce hard copy

graphical output use film techniques. This, of necessity, requires

a more elaborate and expensive mechanism· which implies a central

ized installation and long processing time. Stromberg Carlson has

for 4 or 5 years marketed a microfilm recorder :known as the SC-4020.

(3M has just recently announced a similar device.) It is driven by a

standard IBM magnetic tape unit and produces high quality graphical

output on microfilm. Bell Telephone Laboratories have found it to be

a very effective device and have used it extensively. 64 Stromberg

Carlson has just announced a newer version called the SC-4060. 65 It

is actually a self-contained device including a small digital computer.

It may be directly connected to a larger computer or also be fed from

magnetic tape, teletype, punch cards or punch paper tape. It offers 4

times the resolution of the older SC-4020 (i.e. 4, 000 by 4, 000 points)

and also provides 4 sizes of alphanumerics. The announced rental is

'I

Z07

just over $8, 000 a month.

A company called Photomechanisms, located on Long Island,

New York, also makes hard copy graphical output devices. However,

they use rapid film processing techniques, thus hard copy is available

almost immediately. Their main market has been the military. One

of their products provides an 8 by 11 hardcopy print in ZS-30 seconds

after exposure. The cost of this device is approximately $30POO. The

resolution quality is not as good as the SC-40ZO, but would be accept

able for most simulation graphical output.

Producing Plots

Display devices have many uses in OPS-4. The production of

the plots described in Chapter 7 is one of the most obvious, Partic

ularly during the model building stages, when relationships between

variables may not be understood, a graphical representation may be

very helpful. The facilities provided to allow a small area of a plot

to described and magnified is particularly important. The productfon

of on-line graphical presentations can be considered just a first ap

proximation when the user is also on-line since he may immediately

make any adjustments that are appropriate. For example, the problem

of determining the separation between distinct points may be adjusted by

the user. Also, the setting of minimum and maximum scale values

may be done by the user, after viewing an initial plot, so that a few

extreme data values do not cause the plot to have a range which extends

208

considerably beyond the area of interest. Once a satisfactory pre

sentation is produced and appropriate labels are specified the user

could request by a suitable statement that a hard copy version be pro

duced on the centralized reproduction facility. The hard copy would

not be immediately available if a device such as the SC-4060 were

used, but could be picked up several hours later. Alternately, the

central facility might mail the hard copy to the user. The on-line

display console is used as a working tool to view preliminary results

and to allow specially tailored plots to be created.

Text Editing

A CRT display is also a helpful device for editing programs.

The ability to point to variables, words, or statements that are to be

changed or deleted in a program is more powerful than the 'ED' and

'EDL' context editors that are available to a CTSS user seated at only

a typewriter terminal. Also, the ability to delimit phrases, that are

to be deleted or moved, by brackets rather than having to type the

whole phrase is much easier for the user. The proposed low-cost dis

play will have a cursor that can be positioned to the correct spot by a

mechanical control device. Allowing the user to write directly on the

CRT or similarly by supplying him with a RAND tablet device for writ

ing does offer some advantages over the user of a typewriter having an

augmented character set but introduces many new problems and increases

the cost of the display console.*

209

One particular aspect of editing that is vexing with the ED and

EDL editing commands is the problem of interchanging sections of

text, e.g. the movement of a sentence or phrase appearing at one pos

ition in the text so that it appears as a dupiicate, as a replacement

for another section of text, or as an insert in another position in the

text. This can be done quite easily with a display system by using

the cursor to delimit the phrase to be moveci or duplicated and then

pointing to the new spot where the insertion or replacement should

be made. With the present typewriter editing programs, the phase

must be retyped in the new position where it is to appear.

The IBM DATATEXT editing system does simplify the problem

of moving sections of text from one position in a file to another. 66

However, it does this at the expense of requiring the user to nun1ber

each unit of text (a unit may be one or more sentences).

The QED editing program just introduced in CTSS allows text

movement in a simpler manner. Using its context editing features, a

user describes the first line of a section of text to be moved, and then

specifies that all the lines up to and including a concluding line (which

is specified by context or by giving a count) be written into one of 128

distinct buffers. He may then insert the contents of this buffer or any

other at any position in the text. He may also write selected lines of

>:<The Rand tablet alone costs approximately $6, 500.

210

text as separate files, and read these files and insert them at any

point in the text. However, QED currently operates only on whole

lines, not phrases. Also, pointing to the lines is simpler and less

ambiguous than describing a line by context.

Using a display system to edit programs also allows a more

global approach to editing. As much text as can be displayed on a

scope may be examined at one time. The text may be rolled forward

or backward, so that the continuity of the program may be preserved.

The present typewriter editing systems are seriously deficient in this

respect. If the user is making only single line changes, such as cor·

recting the syntax errors detected by a compiler and specifically men

tioned by line number on the diagnostic output, the present editing pro

grams suffice. However, if the user is in the program developn1ent

stage and is making important structural changes to the model, he

must be able to see large sections of the program.

Today, a user in the program development stage requires fre

quent print-outs of his entire program so he can see the program as a

unit. In fact, with only a typewriter for output, one of the most serious

problems facing a user who is making numerous structural changes to

a large program is to keep track of the current state of the program.

It is necessary to see a large section of the .program so that the effect

of a change made in one part of a program on the other parts of the pro

gram may be studied. A scope display should alleviate this problem

211

considerably and thereby substantially reduce the necessity for fre

quently obtaining listings of the program.

Data Editing

A researcher who is constructing and testing a simulation mod

el wants to edit his data as well as his model. This is where the use

of a cursor is particularly desirable. He should be able to designate

areas of curves or areas in a plot that look suspicious and request

magnification of the area, or obtain a tabulation of the data values a

longside the graphical output using a split screen approach. If the

plot represents a function which he is specifying, rather than a plot

of some empirical data, he might wish to actually redraw the shape

of the curve so as to specify a new function.

Being able to easily generate graphical displays should signif

icantly increase a user's understanding of his data, and thereby short

en the time span required to construct and debug data-based models.

A user seated at such a display console will not have to spend consid

erable effort to perform statistical analyses to gain limited forms of

description of the data such as the mean, median, mode, standard

deviation, etc. Instead he quickly will be able to see the data and from

many perspectives. He may still wish to obtain the popular statistical

measures for comparative purposes, but he will not be limited to

then1.

212

Dynamic Displays

One of the major advantages of a graphical display device over

a typewriter device is the ability to present changing information. This

is something that can be done quite easily on a scope since usually on

ly the modified area needs to be recreated whereas it is very ineffic

ient to do this with a printing device since the entire presentation must

be recreated. The dynamics of both the program and data can be pre

sented, as a moving picture rather than a series of snap shots so that

the user may interact with the simulation as he sees situations develop

ing which require some action.

A simple example is tre dynamic time series display of key var

iables, discussed in Chapter 7, which allows changes in data values to

be observed as they occur. Another example would be to display the

frequency distribution of the length of the work queue in the Multics

model so that the distribution shape, and change in shape could be ob

served as the simulation progresses. Being able to see changes in

distributions over time adds a new insight not available from end-of-run

statistics. Also, a display of key variables could be particularly help

ful in determining, during the initial stages of a simulation, when a

steady state had been reached , so that the collection of statistical

measures of performance could be started without introducing any ab

normal biases caused by the starting conditions.

Particularly during the debugging stage, the ability to see the dynamic

213

of a model is most important since the dynamic interaction of the parts

of a simulation program may be more complex and varied than a non

simulation program. In addition to being able to observe the relations

among variables and the relations between variables and time, the user

should be able to observe the dynamic relations of sections of a program.

One possibility would be to display a matrix of boxes, where each

box represents an activity. The boxes could be sub-divided to repre

sent the events within an activity. The box for the current activity and

the sub-division for the current event could be highlighted or made to

flash, if that is possible. In the corner of the screen the simulated

time could be displayed, In the corner of each activity the status of

the activity, inactive, scheduled unconditionally or scheduled condition

ally, interrupted, etc., could be indicated. If an activity was scheduled

more than once and in more than one way, individual counts could be

displayed next to the activity status. With this type of a display the over

all status of the simulation would be apparent, as well as the flow of

control from one acti:vity to another. The user could be given the ability

to display only selected activities and selected events within activities.

Another possibility is to display a horizontal bar graph. Each bar

would represent one activity. Time would be the horizontal axis and the

length of the bars would indicate the last active period of the activity.

Dotted lines could be used to extend the bars of activities that are schedul

ed to be reactivated at a known future time. Conditionally scheduled

Zl4

activities could be indicated by extending the bars for the events with

a shaded area which would automatically advance as the clock advanc

ed. The bar representing the currently active activity could be point

ed to by the cursor. All the activities or only selected ones specified

by the user could be displayed in this way. This presentation might

be helpful to illustrate the simultaneity of various activities.

Many of the tracing options discussed in Chapter 6 could be dis

played individually or in combinations. For example, displaying the

Agenda whenever it changed could be a very powerful debugging tech

nique. The new or modified entry could be indicated by the cursor.

Not only would a display presentation take less time to produce then

a hard copy printout, but the fact that a cursor can be programmed to

point to any item or area of the display makes it much easier for the

user to spot any changes.

Implementation Techniques

To present these types of displays in a useful way, a simulation

program might have to run considerably slower than its maximum exe

cution rate because of the rapidity of executing events and the time tak-

en to transmit and generate each new display picture, or else a sampling

technique would have to be used. In a small stand-alone computer this

could be accomplished by increasing the number of repetitions of a dis

play frame before moving on to the next one. The obvious penalty is a

proportional increase in computer time. In a time-sharing system, where

215

a user receives intermittent bursts of computatiol"I the- solution could

be different.

The simulation program would receive short bursts of computa

tion separated by an inactive period which would be specified by the

program, so that the display rate could by controlled by increasing

or decreasing the length of the inactive period of the program. Each

short burst of computation would allow one event to be executed and

the display updated. The program would then enter an inactive state

for some predetermined fraction of multiple of a second. Since a

storage tube is used the display would not fade and would not need

continual regeneration. Then the program would execute the next

event, return to its inactive state, etc. This could be done quite eas

ily by modifying the Agenda scan mechanism and using the real-time

scheduling features available in Multics.

This would be similar to the present use of the SLEEP call to the

supervisor in CTSS, which allows a program to specify a variable per

iod of time, during which the program is inactive, and at the end of

which the program automatically awakes and resumes computation.

The only difference in this situation is the short duration of both the

active and inactive periods. An active period might range from only a

few micro seconds to several milli seconds and an inactive period from

several hundred milliseconds to a few seconds. Whether a scheduling

policy would allow an inactive period of only 200-500 milliseconds is

216

problematic at present. Also, the time to transmit and regenerate

the display might be several seconds. Furthermore, the simulation

system would have to be allowed a high priority so that it would be

placed on or near the top of the ready list when the inactive period

expired, so that its next execution phase would not be significantly

delayed.

If the minimum sleep period were restricted to 1 second, as in

the present CTSS system, this might constitute too low an upper limit

on the number of events to be executed per unit of time. However, if

such a system as proposed could be implemented, it would offer sub

stantial economies in the amount of computer time required to control

the display rate compared to the technique used in a stand-alone com

puter system.

If the user wished to 'freeze' a particular presentation so that

he could study it, this is easily accomplished by using the interrupt

feature described in Chapter 6. Although the simulation would be stopped,

the display would remain. since it would need no regeneration. When the

user wished to continue the simulation the dynamic nature of the display

would be resumed.

Summary

This Chapter has described the direct view storage tube display

console that is being designed at Project MAC. It has discussed both

the advantages and disadvantages of soft copy output. It has suggested

-----·--------- ~-~-- --· ---------------------~-

Zl7

that the availability of a centralized facility for produc:;ing'hard copy

reproductions of graphical output is most important. Many possible

uses of a graphical display in an on-line, interactive simulation sys

tem have been described. The effective use of graphical displays

will allow the researcher conducting a simulation experiment on a

time-shared computer to have a more complete degree of involve

ment in a simulation than is possible with just typewriter-like devices.

This is one of the main goals of an incremental simulation system.

Chapter ll

SUMMARY

OPS-4 in Retrospect

This thesis has described the potentials for a new simulation

system in a time-shared environment. Specifically the Multics en-

vironment is considered. A review of some of the current simulation

languages shows them all to be unsuitable for use in this environment.

A new simulation system called OPS-4 is described. It is based on

a subset of the PL/l language, but extends it considerably, by add-

ing many new statements and the three data types of sets, queues,

and tables.

OPS-4 emphasizes flexibility and ease of change. The goal of

OPS-4 is to allow a model builder to continuously interact with his

model as it is being structured. He is encourages to start using OPS-

4 at a very early point and let it help him to evaluate alternate possi-

•"
bilities. OPS-4 allows him to build and test his model incrementally.

Special facilities are provided to allow completely unstructured por-

tions of the model to be portrayed directly by the user. More formal-

ly structured portions of the models may be written as normal programs

and executed interpretively. These programs may be repeatedly modified

and executed with no intermediate recompilation. Well defined portions

of the model may be compiled procedures and run at full efficiency.

218

219

A simulation model may consist of any mixture of these three types of

procedures. The construction of a simplified model of segment and

page fault handling in Multics illustrates the use of these features.

The techniques used to implement OPS-4 in Multics include:

the extension of the standard Shell procedure to allow more general

parameter specifications, the addition of the concept of a global data

base and its associated symbol table, a system for uniquely naming

replications of an individual p:t>ocedure's local data bases so as to in

sure that they all remain distinct from each other but yet are address

able, the isolation of the local data bases in separate segments which

provides a multi-stack system so that the activities may be interrupt

ed and be returned to at a later time without the control information

in the stack being destroyed, and the use of a sp~cial ordered list

called the Agenda which ads as an intermediary for simulation activ

ities which desire to transfer control among themselves.

OPS-4 provides an extremely broad choice of both explicit and

implicit sequencing statements allowing activities to be executed both

conditionally and unconditionally and also placed on the Agenda relative

to entries already on the Agenda. Statements for rescheduling, cancel

ling, interrupting and resuming activities are also provided in OPS-4.

The Agenda which contains a list of all scheduled, or interrupted activ

ities may be viewed by the user at any time, and the Agenda scan oper

ation may also be monitored by the user. The various states of an

220

activity are defined and effect of the sequencing statements in chang

ing states is described.

A large variety of tracing options are provided which allow the

user to receive only summary information and gross flow of control

information or obtain a complete trace of every statement as it is ex

ecuted and view the value of every variable that is referenced in an

OPS-4 program. Control facilities which allow individual procedures,

portions of uncompiled procedures or the entire simulation model to

be executE;d from a selected starting point and with specified stopping

conditions are available in OPS-4.

These flexible and comprehensive trace and control features

are efficiently implemented by a special inter-statement interpreter

which executes compiled statements or interpretively executed state

ments. A special time attribute is used to act as an alarm which alerts

the system to any changes in variable definitions, changes in model

structure, or changes in the setting of trace options. Immediately af

ter an alarm extensive checking is done to make sure that the changes

are noted and acted upon. However, after this flurry of activity sub

sides the need for continual checking is not necessary and the system

runs in a more efficient manner.

Although OPS-4 does not provide any automatic statistics process

ing, it does provide the user with certain important system-related data.

Furthermore, it provides a number of special statements and functions

ZZl

which make the collection and processing of statistical measures of a

model's performance particularly simple. Both dynamic reports of

the model's behavior over time and summary statistics are available

in OPS-4.

Since OPS-4 operates in a paged memory environment the prob

lems of memory management of list structures is discussed. A scheme

for automatically reordering the Agenda to minimize out of page ref

erences and a garbage collection scheme for removing inactive entries

in sets and queues are described.

OPS-4 Versus OPS-3

OPS-4 has not yet been implemented since the Multics system

on which it depends is not completed. However, OPS-3 has been run

ning on CTSS since 1965. It has been used successfully by several

dozen students to construct a wide variety of simulation models. How

ever, as pointed out in Chapter 1, it has several serious limitations

which regulate it to the role of an experimental rather than a production

system.

Many of the features of the OPS-4 are direct adaptations of those

found in OPS-3. These are:

1. The generalized parameter accessing mechanism.

Z. The inter-line tracing facilities.

3. The Agenda concept.

4. The conditional scheduling facilities.

222

5. The method for inferring the attributes of data structures

resulting from various well defined operations.

6. The immediate error diagnostics.

7. The on-line information system.

8. A limited collection of statistical routines.

Because of the experience with the features in OPS-3 it is expected that

there should be little difficulty in implementing them in OPS-4. OPS-4

does, however, include a substantial number of new features that were

not tested in OPS-3. These are:

l. The concept of user defined programs.

2. Complete compatibility between all three types of programs

in OPS-4.

3. The use of multiple processes to provide asynchronous exe

cution.

4. More extensive scheduling statements which allow the user

to schedule on the basis of position.

5. A more efficient interpretive and incremental compiler system.

6. Smooth and simple transfer of control between all three types

of programs in OPS-4.

7. Extended data structures, including sets, queues and tables.

8. Set manipulation facilities.

9. More extensive control facilities.

10. More extensive statistics collection and processing statements.

ZZ3

11. An extension of the scheduling statements to include an in-

terrupt facility.

lZ. A facility for linking activities to one another.

13. Attention to memory management techniqµes.

14. Integration of graphical monitoring and display facilities.

15. The use of segmentation concepts.

16. A more efficient and expanded Agenda mechanism.

Many of these new features are possible because of the facilities

provided in Multics. Contingent on the exact final specifications of

Multics, it may be necessary to modify some of these features of OPS-

4 presented in this thesis. In particular, the method of allocating

data among the various standard Multics segments and special OPS-4

segments may be modified. The method proposed for allocating the

instances of the local data bases of activities may be changed. Since

the proposed combination interpreter and incremental compiler pro

posed in Chapter 9 is a new feature in OPS-4 its exact implementation

may change with experience. Also, the memory management techniques

outlined in Ch~pter 8 are a new feature and may change as experience

with a paged memory system is accumulated.

Conclusion

Taken as a whole, the OPS-4 system offers the model builder a

powerful and flexible system for structuring models in a time-shared

224

environment. Its use of the P L/l language provides a basic and rela

tively broad foundation for describin.g models. However, the choice

of PL/l does limit OPS-4 to a definite style. In particular, the major

area for significant improvement of simulation languages such as OPS-

4 lies in extending the data addressing and structuring facilities so

that more natural ways of handling complicated data structures and re

lationships may be easily expressed. PL/l has made significant ad

vances in this direction compared to ALGOL and FORTRAN, but ex

tensions to it are already being proposed. 67

APPENDIX

STATEMENTS IN OPS-4

(All keywords are in upper case)

1. General Statements (standard syntax of PL/1 with the exception
of the first two statements) - discussed in Chapter 1.

These statements provide the general algebraic~ control and
data definition facilities as well as some of the debugging anc;l
storage allocation features of OPS-4.

SET (assignment statement)
SET-EVENT event-name(s)
IF
GO TO
DO
BEGIN
END
PROCEDURE
DECLARE
ENTRY
RETURN
ON
SIGNAL
REVERT
ALLOCATE
FREE

2. Set Manipulation Statements - discussed in Chapter 4.

These statements provide a limited list processing facility for
manipulating named variables and local data bases.

(A'!)

ENTER Identifier

IN

{

TOP }

BOTTOM

BEFORE}

AFTER

225

(OF)

Set-Name

Identifier (I~

ZZ6

REMOVE

Identifier [FROM]

TOP 1 (ELEMENT)

BOTTOMf

[ELEMENT];EFORE}

~FTER

CLEAR Set-Name

(OF] Set-Name

Identifier ~]

3. Global Symbol Table Manipulation Statements - discussed in
Chapter 4.

These statements allow the user to manipulate directly the global
symbol table of an OPS-4 model.

NAME
USE
CREATE
CLEAR
APPEND
VIEW

Identifier
Identifier
Identifier
Identifier
Identifier

4. Global Data Base Manipulation Statements - discussed in Chapter 4.

These statements allow the user to manipulate directly the global
data base of an OPS-4 model and to quickly clear, switch or mod
ify the data base.

NAME-DB
USE-DB
CLEAR-DB
APPEND-DB

Identifier
Identifier
Identifier
Identifier

5. Local Data Base Manipulation Statements - discussed in Chapter 4.

These statements allow one activity to access the local data base
of another activity.

CONNECT
DISCONNECT

Activity
Activity

227

6. Input-Output Statements (standard syntax of PL/l) - discussed
in Chapter 1.

These statements provide various degrees of control over input
output operations in OPS-4.

OPEN
CLOSE
DELETE
FORMAT
GET
PUT
READ
WRITE
DISPLAY

7. Data Generation Statements - discussed in Chapters 1, 3 and 4.

The DRAW statement is used to sample from a specified distrib
ution.

NORMAL [Mean ST-Dv]

EXPONENTIAL (Mean]

DRAW Identifier (FROM] UNIFORM (Lower-Bound Upper-Bound)

Array [cJD]
The NEW statement dynamically creates a new data object and may
assign it a name. ·

NEW Identifier (NAMED Identifier]

8. Scheduling Statements - discussed in Chapter 5.

A. External

These statements allow one activity to affect the activation
of another activity.

228

BEFORE 1
AFTER Activity

IN PLACE OF

SC HE DU LE [Identifier NAMEg 7Aclivity [FIRST]

RESCHF:DULE J BOTTOM

[wrn-r
pararne-
ter(s)]

TOP

AT expression

WIIEN r~~olean Cond-1
it1on Event
name(s) [{count)]

The last two oplions 'AT' and '\\'HEN' may be cornbined by appending the

WHE:N phase after the AT phrase but before the WITH phrase; e.g.

. [, J , . {Boolean Condition } [U AT expression ANDj \\-HEN . [(:;i WITH pararneter(s)
Event Nan1e(s) count~

CA"iCEL Activity

INTERRUPT Activity

RESUME Activity [FIRST]

B. Internal

These staternents affect the state of the current activity.

DELAY expression

WAIT
[

[UNTIL]
[FOR] (EVJ<~NT]

Boolc:an Condition]
Event N arnc: (s) [(countD

DELA y expression [AND] \\' A::T {[UNTIL] Boolean Condition
[FOR] y Event Narnc(s) [(count)]

[EVENTf?)]

Ii'\TERRUPT

COi'\TIJ\UE [NEXT]

RETURN [NEX'l]

229

9. Trace Statements - discussed in Chapter 6.

The TRACE statements allow the user to monitor the action of
the simulation.

TRACE

CALLS (AND)
TIME
ET
LABELS
ACTIVITIES
SCHEDULE
RESCHEDULE
CANCEL
INTERRUPT
RESUME
DELAY
WAIT
CONTINUE
AGENDA
STATEMENTS
RESULTS
VARIABLE (S)
ERROR
FLAG
DEFINE

(PARAMSj

ENTRIES

Identifier (s)

The syntax of the NO-TRACE statement is identical to the syntax
of the TRACE statement.

10. Execution Control Statements - discussed in Chapter 6.

These statements allow the user to directly control the execution
of the model

EXECUTE Procedure (FROM {Label]]
LINE number

(TO {Label rJ (NEXT number LINES] (number
LINE numberJ TIMES]

·EXIT

RESUME

230

START Procedure [FROM [~~l number}

STOP

tAT time)
(STOP AFTER count

WHEN /Boolean Condition l
l.Event-Narne(s) (Ccount>]J

{

AT time }
AFTER count
WHEN [Boolean Condition }

l Event-Name(s) [(count)]

ll. Statistics Collection Statements - discussed in Chapter 7.

These statements allow the user to collect and process statistical
measures of a model's performance.

ACCUMULATE [NUMBER] (SUM] ~D] [suMSQ] [oF]
expression [IN] Variable
(Variable] [AND] {yariable]

COMPUTE [MEAN Variable). [VAR Variable) [AND]

{

FROM variable £variable] {A.Nr:il &ariablej]
[ST-DV variable]

OF vector

TABULATE Expression [IN] Table-name [Weight] ~xpressionJ

DISPLAY Table-name [FROM expression TO expression]
[CELL expression]

PLOT (cuM] [oF]

CHANGE-PLOT

Table name{(BAR1b'ROM expression to expression)
lfLINE]f [CELL e~ression/expressionJ

JHEIGHTJ [MIN expression]
{INTERVAL expressio!!J [MAX

{

All expression]

UNCONDIT~ONAL] {UNITS expression }
CONDITIONAL LABEL expression
NORMAL DISTINCT

12. Memory Management Statements - discussed in Chapter 8.

These statements allow the user to directly manage memory
allocation of the AGENDA ·and sets.

REORDER AGENDA

PURGE
(Activities]

l Lists

13. New Declaration Attributes

f conti~uousl yJ

A. For procedures - discussed in Chapters 2, 3 and 9

1. SEQUENTIAL
z. SIMULTANEOUS
3. USER

B. For Variables - discussed in Chapters 4, 7 and 9

1. ACCESS Procedure 1 ~rocedure z] ...
2. SET
3. QUEUE
4. TABLE
5. PLOT [MIN expression] (MAX expression]

[Plot-character]

231

14. Special OPS-4 Incremental Editor ~DOPS - discussed in Chapter 9.

15. Special OPS-4 Functions

A. To obtain simulated times related to an activity - discussed
in Chapters 5 and 7.

BTIME}
E TIME (<Activity tl
LTIME

·B. Parameter Specification - discussed in Chapter 5

LATER-VALUE (Variable)
CURRENT-VALUE (Variable)

232

C. Set Manipulation (adopted from SIMULA) - discussed in
Chapter 4.

HEAD (Set-Name}
SUCCESSOR (Identifier)
PREDECESSOR (Identifier)
SAME (Identifier Identifier}
SIMILAR (Identifier Identifier)
FIRST (Set-Name)
LAST (Set-Name)
MEMBER (Identifier Set-Name}
EXIST (Identifier)
EMPTY {Set-Name)

D, Activity References - discussed in Chapter 5.

CURRENT
STATE (Activity-Name)

--------~--~-

BIBLIOGRAPHY

Abbreviations used in these references:

ACM Association of Computing Machinery

AFIPS American Federation of Information Processing Societies

FJCC Fall Joint Computer Conference

SJCC Spring Joint Computer Conference

ORSA Operations Research Society of America

References, in order cited:

1. Greenberger, M., and Jones, M. M., "On-Line Simulation in the
OPS System", Proceedings of the 21st National Conference,
ACM Thompson Book Company, Washington, D. C., 1966,
pp. 131-138.

2. Greenberger, M., "A New Methodology for Computer Simulation, 11

Computer Methods in the Analysis of Large-Scale Social
Systems, Joint Center for Urban Studies of The Massachu
setts Institute of Technology and Harvard University, J.M.
Beshers, Ed., Cambridge, Mass., 1965, pp. 147-162.

3. Licklider, J.C. R., Discussion on Simulation Models, Computer
Methods in the Analysis of Large-Scale Social Systems,
Joint Center for Urban Studies of The Massachusetts Institute
of Technology and Harvard University, J.M. Beshers, Ed.,
Cambridge, Mass., 1965, pp. 163-165.

4. The Compatible 'Time-Sharing System: A Programmer's Guide,
Second Edition, The M. I. :r. Computation Center, P. A. Cris -
man, Ed., The M. I. T. Press, Cambridge, Mass., 1965.

5. Schwartz, J. I., "The SDC Time-Sharing System - Part I and
Part II, " Datamation, Vol. 10, Nos. 11, 12, (November and
December 1964), pp. 28-31, and pp. 51-55.

233

;,. l ~ .

234

6. Blunden, G. P., and Krasnow, H. S., "The Process Concept as
a Basis for Simulation Modelling", presented at the 28th
National Meeting, ORSA, Houston, Texas, November 4-5,
1965.

7. La.ski, J. G., "On Time Sctructure in (Monte Carlo) Simulations 11
,

Operational Research Quarterly; Vol. 16, No~ 3, (September
1965), pp. 329-339.

8. Markowitz, H., Hausner, B., and Karr, H., SIMSCRIPT, A
Simulation Programming Language, Prentke-Hall Inc.,
Englewood Cliffs, New Jersey, 1963.

9. Kiviat, P. J., ''Introduction to the SIMSCRIPT Il Programming
Language 11

, presented at the Symposium on Simulation Tech
niques and Languages, Brunel College, ·London, England,
May 10-ll, 1966.

10. Reference Manual, General Purpose Systems Simulator II, Inter-
national Business Machines Corporation, White Plaines,
New York, 1963.

11. Jones, M. M., "On-Line Version of GPSS II", Project MAC
Memorandum MAC-M-140, March 10, 1964.

12. Knuth, D. E., and McNeley, J. L., "SOL - A Symbolic Language
for General Purpose Systems Simulation", IEEE Transact
ions on Electronic Computers, Vol. EC-13, No. 4, (August
1964); pp. 401-408.

13. Knuth, D. E., and McNeley, J. L., "A Formal Definition of SOL",
IEEE Transactions on Electronic Computers, Vol. EC-13, No.
4, (August 1964), pp. 409-414.

14. Dahl, O. J., and Nygaard, K., "SIMULA - A Language for Program-
ming and Description of Discrete Event Systems, Introduction
and User's Manual", Third Printing, Norwegian Computing
Center, Forskningsveien 1 B, Oslo 3, Norway, May 1966.

15. Dahl, O. J. , and Nygaard, K. , "SIMULA - ,An ALGOL - Based .Sim-
ulation Language", Communications of the ACM, Vol. 9_, No.
9, (September 1966), pp. 671-678.

16. Dahl, O. J. , Myhrhaug, B., and Nygaard, K., "SIMULA Tracing
System", (Preliminary Version, August, 1966), Norwegian
Computing Center, Forskningsveien 1 B, Blindern, Oslo 3,
Norway.

235

17. Nygaar_d, K. "Report on the Use of SIMULA up to December
196511

, Norwegian Computing Center, Forskningsveien 1
B, Blindern, Oslo 3, Norway.

18. Greenberger, M., Jones, M. M., Morris, J. H., Jr., and
Ness, D. N., On-Line Computation and Simulation: The
OPS-3 System, The M.l. T. Press; Cambridge, Mass.1965.

19. Corbatc(, F. J., and Vyssotysky, V. A, "Introduction and Over-
view of the Multics System", AFIPS Conference Proceed
ings. Vol. 27 (196'5 FJCC), Spartan Books, Washington,
D. C., 1965, PP• 185-196.

20. Glaser, E. L., Couleur, J. F., and Oliver, G. A., "System
Design of the GE 645 Computer for Time-Sharing Appli
cation", AFIPS Confer.ence Proceedings, Vol. 27 {1965
FJCC), Spartan Books, Washington, D. C •• 1965. pp. 197-
202.

21. Vyssotsky, V. A., Corbato, F. J., and Graham, R. M. "Structure
of the Multics Supervisor", AFIPS Conference Proceedings,
Yol. 27 (1965 FJCC), Spartan Books, Washington, D. c.,
1965, pp. Z03-21Z.

22. Daley, R. C. and Neumann, P. G., "A General Purpose File
System for Secondary Storage", AFIPS Conference Pro
ceedings, Vol. 27 (1965 FJCC), Spartan Books, Washington,
D. C., 1965-, pp. 213-229.

23. Ossanna, J. F., Mikus, L •. E., and Dunten, S. D., "Communications
and Input/ Output Switching in a Multiplex Computing System",
AFIPS Conference Proc;;.eedings, Vol. 27 (1965 FJCC), Spartan
Books, Washington, D. C., 1965, pp. 231-241.

24. David, E. E., Jr., and Fano, R. M., ''Some Thoughts About the
Social Implications of Accessible Compu~ing", AFIPS Confer
ence Proceedings, Vol. 27 (1965 FJCC), Spartan ·Books,)
Washington, D.C., 1965, pp. 243-247.

25. Saltzer, J. H., Traffic Control in a Multiplexed· Computer Sys-
tem", Project MAC Technical Report, MAC-TR-30 (Thesis)
July, 1966.

26. Control and Simulation Language, Reference Manual, Esso Petrol
eum Co., Ltd., London, England, March 1963.

; \- -..

236

27. Tocher, K. D., Handbook of the General Simulation Program,
Department of'O. R. and Cybernetics, United Steel Companies,
Ltd. , Sheffield, England.

28. MIUTRAN Programming Manual, Prepared for the Office of
Naval Research, Navy Department, Washington, D. C., by
Systems Research Group, Inc., New York, June 1964.

29. Parente, R. J., "A Language for Dynamic System Description",
IBM Advanced Systems Development Division, TR 17-180, 1965.

30. Conway, R. W., et. al, "CLP - The Cornell List Processor, 11

Communications of the ACM, Vol. 8, No. 4 (April 1965),
pp. 215-216.

31. Teichrow, D., and Lubin, J. F. , "Computer Simulation - Discus-
sion of the Technique and Comparison of Languages 11

, £2.m.
munications of the ACM, Vol. 9, No. 10, (October 1966),
pp. 723-741.

32. IBM Operating System/360 PL/l: Language Soecifications, Form
.CZ8-6571-3, International Business Machines Corporation, 1966.

33. Tocher, K. D., "Review of Simulation Languages", Operational
Research Quarterly, Vol. 16, No. Z, (June 1965). pp. 189-217.

34. Krasnow, H. S., and Merikallio, R. A., "The Past, Present
and Future of General Simulation Languages 11

, Management
Science, Vol. 11, No. Z, (November 1964), pp. 236-267.

35. McCarthy, J. ,-et. al., LISP 1.5-Programmer's Manual, The
M.I.T. Press, Cambridge, Mass., 1963.

36. Shapiro, R. M., and Zand, L. J., A Description of the Input
Language for the Compiler Generato:r System, CAD-63-1-S D,

37. An Introduction to COMIT Programming, The M. I. T. Press,
Cambridge, Mass., 1962.

38. COMIT Programmers' Reference Manual, M.I. T. Press, Cam
bridge, Mass., 196Z.

39. Whitelaw, S., "An Automated Stock Exchange 11
, Unpublished

Master's Thesis, Alfred P. Sloan School of Management,
Massachusetts Institute of Technology, June 1965.

237

40. Edwards, D. C., "Development of an On-Line Statistical Package
within the OPS System," Unpublished Master's Thesis,
Alfred P. Sloan School of Management, Massachusetts
Institute of Technology, June 1967.

41. Kwok, B. C., "An Experimental On-Line Data Base System",
Unpublished Master's Thesis, Alfred P. Sloan School of
Management, Massachusetts Institute of Technology
September 1966.

42. Newell, A., et. al., "Report on a General Problem-Solving
Program, 11 Proceedings, International Conference on
Information Processing,, Paris, UNESCO House, 1959.

43. Slagle, J. R., "Heuristic Program that Solves Symbolic Inte
gration Problems in Freshman Calculus, "Journal of the ACM,
Vol. 10, No. 4 (October 1963), pp. 507-520.

44. Strachey, C., "System Analysis and Programming, 11 Information,
W. H. Freeman and Co., San Francisco, 1966, pp. 56-75.

45. Saltz er, J. H. "CTSS Technical Notes, " Project MAC Technical
Report, MAC-TR-16, March 1965.

46. Morris, J. H., Jr., "Interpretive System in On-Line Program
ming, "Unpublished Master's Thesis, Alfred P. Sloan
School of Management, Massachusetts Institute of Tech
nology. January 1966.

47. The Michigan Algorithm Decoder, University of Michigan, November
1963. (Rev. ed., March 1965.)

48. Scherr, A. L., "An Analysis of Time-Shared Computer Systems, "
Project MAC Technical Report, MAC-TR-18 (Thesis), June 1965.

49. Goodroe, J. R. , and Leonard, G. F. , "An Environment for an
Operating System, 11 Proceedings of the 17th National Conference,
ACM, 1964, pp. E2. 3-1 to E2. 3-11.

SO. , "More on Extensible Machines, " Communications
of the ACM, Vol. 9, No. 3, (March 1966), pp. 183-188.

51. Weizenbaum, J., "ELIZA - A Computer Program for the Study of
Natural Language Communication Between Man and Machine,"
Communications of the ACM, Vol. 9, No.1 (January 1966}, pp. 36-45.

Z38

5Z. Weizenbaum, J., "Symmetric List Processor, 11 Communications
of the ACM, Vol. 6, No. 9 (September 1963), pp. 524-544.

53. Operating System/360 FORTRAN IV Language, International
Business Machines, Form CZS-6515-4, 1966.

54. Pugh, A. L., m, Dynamo Usel''s Manual, The M. I. T. Press,
Cambridge,· Mass., 1961.

55. Naur, P., et. al., "Revised Report on the Algorithmic Language
ALGOL 60," Communications of the ACM, Vol. 6, No. 1
(January 1963), pp. 1-17.

56. Evans, T. G., and Darley, D. L., "On-Line Debugging Techniques:
A Survey, 11 AFIPS Conference Proceedings, Vol. Z9 (FJCC
1966,) pp. 37-50.

57. Feige.nbaum, E. A., and Feldman, J., Computers and Thought,
McGraw-Hill, 1963.

58. Collins, G. E., "PM, A System for Polynominal Manipulation,"
Communications of the ACM, Vol. 9, No. 8 (August 196.6) pp. 578-579.

59. Morrissey, J. H., "The QUICKTRAN System, " Datamation, Vol.
11, ;No. 2, (February 1965), pp. 4Z-46.

60. Shaw, J.C., "JOSS: A Designer's view of an Experimental On
Line Computing System, 11 AFIPS Conference Proceedings,
Vol. 26. (FJCC 1965), pp. 455-464.

61. Lock, K., "Structuring Programs for. Multiprogram Time-Sharing
On-Line Applications," AFIPS Conference Proceedings, Vol.
Z7, (FJCC 1965). pp. 457-472.

62. Ryan, J. L. et. al •• "A Conversation System for Incremental Com
pilation and Execution in a Time-Sharing Environment," AFIPS
Conference Proceedings, Vol. Z9, (FJCC 1966), pp·. 1-Zl.

63. Stotz, R.H., Gronemann, U., Ward, J.E., "Specifications for a
Dataphone-Driven Remote Display Console for Project MAC,"
Mem~randum MAC-M-243, June 24, 1965.

64. Ninke, W. H. , 11Future Graphical Input/Output Equipment at Bell
Telephone ·Laboratories, 11 Pt"oject MAC Seminar, January 10,
1967.

239

65. Datamation, Vol. 12, No. 11, (November 1966) pp. 66-67.

66. DATATEXT: Terminal Reference Manual, For Y20-0037,
International Business Machines, 1966.

67. Dodd, G. E., 11APL-A Language for Associative Data Handling
in PL/l", AFIPS Conference Proceedings, Vol. 29, (FJCC
1966), pp. 677-684.

C\,: .. ';' "~ ;·

BIOGRAPHICAL NOTE

Malcolm Murray Jones was born in Scarsdale, New York on

October 24, 1935. He graduated, second in his class, from the Rivers

Country Day School, Chestnut Hill, Mass. in June 1953. He entered

the Massachusetts Institute of Technology in September 1953, where he

studied.Mechanical Engineering and Economics, receiving the degree

of S. B. in June 1957, and also a commission as 2nd Lieutenant in the

U.S. Air Force. He received the degree of S. M. in Economics from

the Massachusetts Institute of Technology in June 1958. During the

academic year 1957-58, and through November 1958, he worked as a

research assistant in the newly formed M. I. T. Computation Center.

This marked the beginning of his interest in digital computers.

From December i958, through September 1962, Mr. Jones

served as an electronics engineer in the U.S. Air Force, stationed

at the National Security Agency, Fort Meade, Maryland. At NSA he

worked on numerous computer oriented p~ojects, including the design

of an advanced data processing language for a large scale computer

system. He received a letter of commendation from the Director of

NSA for his work on the project. During his tour of duty in the Air

Force, he took special courses in electrical engineering at the Univer

sity of Mary~and.

Mr. Jones returned to M. I. T. in September 1962, as a special

student in the Department of Electrical Engineering. The following

240

Z41

summer he became one of the first members of the Project MAC staff,

which was formed in July 1963, working as a research assistant. In

September 1963, Mr. Jones enrolled in the Sloan School of Management

as the first interdepartmental doctoral candidate in Computer Sciences.

He also continued to work as a research assistant for Project MAC and

the M. I. T. Computation Center until June 1965. At that time he was

appointed an Instructor in the Sloan School of Management. He teaches

courses in Information Systems technology. He has accepted a position

as an Assistant Professor in the Sloan School of Management at M. I. T.,

beginning·February 1967. Since Aprill, 1965, he has also been a guest

lecturer on Data Processing for the Katharine Gibbs School, Boston, Ma.

His research interests are concentrated in the area of information sys

tems design and digital computer simulation languages, the latter being

the subject of his doctoral dissertation.

Mr. Jones married the former Lesly Sheldon Weaver of Evanston,

Illinois, in June 1966. He is a consultant to the National Security Agency

and holds the rank of Captain in the Air Force Reserve. He is a member

of the Association for Computing Machinery, Institute of Electrical and

Electronic Engineers, American Association for the Advancement of Sci·

ence, and Tau Beta Pi.

242

Publications

"On-Line Simulation in the OPS System, 11 Proceedings of the 21st
National Conference, ACM, The Thompson Book Co., Washington,
D. C., 1966 (with M. Greenberger).

On-Line Computation and Simulation: The OPS-3 System, M. I. T.
Press, Cambridge, Mass., 1965 (with M. Greenberger, J. H.
Morris, Jr., and D. N. Ness).

"On-Line Version of GPSS II, 11 Project Mac Memorandum, MAC-M-
140, March 10, 1964.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract t111d JndexinQ annotation must be entered when the overall rtJport 1• classified)

1. ORIGINATING ACTIVITY (Corporate author) 2•· REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC 2b. GROUP
None

3. REPORT TITLE

Incremental Simulation on a Time-Shared Computer

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

PhD. Thesis, Sloan School of Management, February 1967 .. AUTHOR(S) (Last name, first name, initial)

Jones, Malcolm M.

.. REPORT DATE 7•. TOTAL NO. OF PAGES r· NO. OF REFS

January 1968 252 67 ... CONTRACT OR GRANT NO . •.. ORIGINATOR'S REPORT NUMBERISJ

Office of Naval Research, Nonr-4102(01)
b. PROJECT NO. MAC-TR-48 (THESIS)

NR 048-189 ... OTHER REPORT NO(S) (Any other numbers that may be
c. RR 003-09-01 assi4ned this report)

d.

10. AVAi LA Bi UTY I LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEME_NTARY NOT ES 12 SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

None 3D-200 Pentagon
Washington, D. c. 20301

13. ABSTRA.CT This th es is describes a system which allows simulation models to be built
and tested incrementally. It is called OPS-4 and is specifically designed to operate
in the environment of the Multics system. It represents a major expansion and improve-
ment of the OPS-3 system implemented in CTSS and also includes many features adapted
from other current simulation systems. The PL/l language, augmented by many additional
statements and new data objects, provides the basis for defining models in OPS-4. A
list of desirable features for an incremental simulation system is presented and it is
shown how OPS-4 incorporates these features, whereas other current simulation systems
satisfy only some of them and are not suitable for use in time-shared environment.

A simplified model of page and segment fault handling in Multics illustrates
some of the features OPS-4 provides to allow the user to continuously interact with
model during its construction, testing and running phases. It also illustrates how
user himself may portray portions of a model that are not yet defined.

... KEY WOROS

Computers Multiple- access computers Simulation systems
Incremental simulation On-1 ine computers
Machine-aided cognition Real-time computers

DD FORM ,_., 1473 (M.l.T.)

Time-sharing
Time-shared computers

UNCLASSIFIED

Security Classification

a
the

