

This blank page was inserted to presenie pagination.

A CANONIC TRANSLATOR

by

Joseph Wright Alsop

Submitted in Partial Fulfillment
of the Requirements for the

Degree of Bachelor of Science
at the

MASSACHUSETTS INSTiTUTE OF TECHNOLOGY

June, 1967

Signature of Author

Certified by

Accepted by

Department of Electrical Engineering
19 May 1967

Thesis Supervisor

Head of Department

Acknowledgement

A heartfelt note of thanks is due my thesis supervisor. Not only
has Professor Donovan's work provided the motivation for the work herein
described; his suggestions, ideas and enthusiasm have made possible a
successful conclusion to this thesis.

I am indebted to Professor Joseph Weizenbaum for the use of the SLIP
system and most particularly for the time he took to explain the details
of its use.

-3-

Summary

An algorithm to recognize and translate sets of character strings

specified by canonic systems is presented. The ability of canonic systems

to define the context sensitive features of strings and to specify their

trl'.nslation allows the algorithm to recognize and translate real computer

languages. It is also applicable in other language systems.

Canonic systems are discussed, and several examples of their use are

given. The algorithm is described, and examples of canonic translation

are presented using a program which implements it.

-5-

Figures and Diagrams

Structure o [program.

Illustration of scan.

Flowchart of simplified algorithm.

Flowchart of general algorithm.

18

22

23

28

-6-

A Canonic Translator

The development of a generalized compiler whose function is directed

by a formal language specification has aroused significant interest and

effort. This thesis presents an algorithm for the recognition and translation

of character strings belonging to a set of strings whose syntax and translation

have been defined by a canonic system. Since these system~ are capable

of defining context sensitive features of language, the algorithm can

recognize and translate real computer languages. It is applicable to an

even wider class of language systems, including boolean algebras and

theorem proving, which can be characterized by this method.

Canonic systems form the basis and motivation for this work. The

first task of the paper is to discuss briefly and informally the improved

specification of syntax and translation made possible by the development

of canonic systems. The discussion includes a description of the form of

the systems and several examples, among them a complete formal description

for the syntax of the string processing language SNOBOL. The contribution

of this thesis lies in the presentation of an explicit algorithm which

employs a canonic system characterizing the syntax and translation of a

set of source strings to recognize a particular source string and perform

the translation. The latter part of the thesis describes the algorithm and

the program which implements it.

-7-

I. Formal Syntax Specifications

Backus-Naur Form is the most widely known formal specification of

syntax. It provides a convenient starting point for a discussion of

canonic systems. The general form of a rule or production of a BNF

specification is as follows:

<name l> : := terminal 10. <name ll> ••• <name ln> terminal ln I
terminal 20 <name 22> <name 2m> terminal 2m I

The sign::= should be read "may be replaced by" and the vertical bar

represents "or". The names enclosed within brackets are arbitrary designations

for defined sets of strings. The definition may be recursive; that is, the

set on the left may be defined in terms of itself if the name of the set

also appears on the right. "terminal n m" designates an arbitrary string

of terminal characters, possibly the null string. As a concrete example,

consider the following BNF system.

<assignment> <letter> <expression>

<expression> <letter> <letter> + <expression>

<letter> · ·= xhl z
An example of a string which is a member of the set <assignment> is:

y~x+z

The strings cqmprising a set definedby a BNF system normally appear

to be generated in a "top-down" manner. The highest level definition

(<assignment>) is generally placed first, and one normally reads a

BNF rule from left to right, In order to gain some insight into the form

and nature of canonic systems without launching into a formal definition,

consider turning a BNF production around and modifying the punctuation somewhat.

1. v letter t x expression ~ v = x assignment

The lower case letters (v and x) are variables representing strings

-8-

chosen from their respective sets (letter and expression). The names of

the sets are underlined and called predicates. The definition may be read

very elaborately as follows: "If v represents a string chosen from the

set letter, and if x represents a string chosen from the set expression,

then the string formed by concatenating the string represented by v with

an equals sign and the string represented by x is a member of the set

assignment." The sign {-acts as the conjunctive "and", and the sign f- acts

as an assertion sign. A string of variables and terminal characters (e.g. v=x)

is a term, and a term followed by a predicate in the manner above is a

remark. Those remarks to the left of the assertion sign are referred to

as premises; those to the right as conclusions. This example illustrates

the most basic form of a canon in a canonic system. A more formal description

may be found in Donovan (2) and Donovan and Ledgard (3). This discussion

will remain highly informal.

What improvements in the definition of a syntax do canonic systems

permit? The principal weakness of BNF systems is their inability to describe

the context sensitive features of a set of strings; for example, the

requirement in most computer languages that all reference labels of a program

be singly defined as statement labels. This restriction could only be

imposed in BNF notation by some process akin to defining each possible

legal program, in toto, in a separate BNF rule. Certainly all sets of

strings which can be defined in BNF may be defined by a canonic system by

transforming the rules in the manner illustrated above. In addition, one

may "cross-reference", or use a variable more than once on the left.

2. x name x labelname

Labelname is the intersection of label and~; that is, only those

strings which are members of both the set label and the set name are members

-11-

and makes it possible to generate all ordered pairs with the property

described.

A concrete example of the production of a particular member of a

defined set will perhaps serve to clarify the nature and recursive properties

of canonic systems. Assume we wish to show that <A<X• Y,> is a member

of the set notin. Using canon 4, we may assert

A letter.

We may then substitute this result into the premise of canon 7, and assert

that

We then derive from canon 5 that

<A<. x> differ

<A<Y> differ.

Finally, we apply canon 8 twice as follows:

notin c}- <A<x> differ

notin 1- <A<Y> differ

Note that we use the conclusion from the first application of the canon to

establish the premise in the second application.

Now that the reader has grasped some of the power and elegance of

canonic systems, a short history of their development is in order. This

work is based completely upon the presentation of canonic systems by Donovan

and Ledgard (3) and Donovan (2), who is responsible for their appearance

in present form. His work evolved from an applied variant of Smullyan's

elementary formal systems (6) and Post's canonical systems (4). The present

canonic systems are so named in recognition of Post's work.

To further illustrate canonic systems, I present a complete syntactic

definition of a restricted computer language MINI MAD. The present example

and the foregoing example of notin both draw heavily from the examples

-12-

presented in Donovan (2).

MINI MAD will permit only a few principal types of statements: an

assignment statement, a transfer statement, and a statement formed by

combining a simple conditional with one of the two other statements.

All programs must terminate with an unlabeled END OF PROGRAM statement.

The only boolean operator allowed is arithmetic equality (.E.), the only

arithmetic operator allowed is addition (+), and only arbitrary length

integers will be permitted as constants. The permissible statement labels

are the single letters A, B and C; the variable names allowed are the letters

X, Y and z. In addition, restrictions on statement length will be omitted

and no blanks will be allowed save those which are part of the statement

definition (e.g. TRANSFER TO). The character* will be adopted as an end-

of-card character, analogous to a carriage return. It should be understood

that all restrictions and omissions are introduced for the sake of simplicity.

A complete formal syntactic definition of the string-processing language

SNOBOL may be found in appendix 2.

The following example is a member of the set MINI MAD program, with a

carriage return substituted for the character *·

A X=lS

B X=X+l

WHENEVER X .E. 123, TRANSFER TO A

TRANSFER TO B

Three canons will suffice to define the set of arbitrary length integers.

9. ~ Oid,.2.A ••• .d849digit

10. d digit ~ d integer

11. d digit {- i integer ~ di integer

The use of the predicate notin, defined previously, will later implement

the restriction that no statement labels be multiply defined.

-13-

12. ~ <A< B>.t.. <A<C>..6 <B< c> differ

13. <x<y> differ ~ <Y<x> differ

14. d digit ~ <ct</\> not in

15. <x<y> notin q, <x< ct> differ ~ <x< d, y~ notin

One should keep in mind that only lower case letters are used as

variables representing strings. The signs ~,ct-,<:::.,/!,. are punctuation

signs in the canonic system itself. All other characters are drawn from

the alphabet of the language being defined.

The definition of the predicate in will serve to implement the restriction

that all reference labels be defined. The set in will consist of pairs of

letter lists such that all letters in the first list appear somewhere in

the second list. If the list of reference labels and the list of statement

labels in a program satisfy this relationship, we know that there is at

least one statement label corresponding to every reference label.

16. ~ AA BA c label

17. ~ <A""- A > in

18. <x<Y> in rt i_ label t- <x < 4Y> in

19. <x<y> in ct 1 la be 1 ~ <1i_x <J
1
y> in

20. <x<y> in 4 <z<Y> in ~ <xz<Y> in

Canon 17 provides a simple starting point for the recursive production

of the more elaborate members of in, and corresponds to a program with

neither statement nor reference labels. The next two canons describe the

ways in which one may add to the lists of statement and reference labels.

We may of course add a label at will to the list of statement labels, and

may add a label to the reference label list as long as we also add it to

the list of statement labels. The last canon provides for multiple referencing

of a statement label. Using canons 16 through 19 alone, it is not possible

to produce the following member of in

-14-

We may define the set expression as follows •.

21. t XA YA Z variable

22. v variable~ v expression

23. i integer ~ i expression

24. v variable q,. x expression r v + x expression

25. i integer <Y x express4en ~ i + x expression

The predicate next defined, conditional, will permit us to transform

any unconditional statement into a conditional statement when a string from

the set is placed before the unconditional statement.

26. t A conditional

x expression 4 y expression~ WHENEVER X .E. Y, conditional 27.

Canon 26 allows us to produce a string which leaves the statement unchanged.

Canon 27 defines a set of strings which will change any unconditional MINI

MAD statement (e.g. X = 3) into a conditional statement (e.g. WHENEVER

X + Y .E. Z, X = 3).

The "building block" sets defined so far will permit us to define the

set of MINI MAD programs in fairly short order. A convenient vehicle for

the task is a predicate of order three. The first element of the ordered

triplets which make up the set program with label lists will be a list,

punctuated by commas, of all statement labels used. The third element will

be a similar list of reference labels. The second element will be the

string of statements in which these labels are used. Again, we begin with

a convenient starting point for later recursion.

28. ~ < /\ " /I. </I. > program with label lists

29. <s < p .c:r> program with label lists q
~ <s.::

v variable 4 x expression t c conditiona

CV =X *J>< r program with label lists

30. <s < p <r> program with label lists 9- .L_ label f v variable 4 x expression t
c conditional c}<.t« s> not in

~ <.11s<L cv=v *P.c:r> program with label lists

-15-

Canons 29 and 30 describe the way in which we may add an assignment statement.

either conditional or unconditional. Using the first canon of the two,

we may add an unlabeled assignment statement; using the second, we may

add a labeled statement. Note that the use of notin in canon 30 imposes the

restriction that the label used must not be in the list of previous statement

labels.

30. <s<p<r> program with label lists~ 1 label f c conditional

C TRANSFER TO Lt< Poe f,r> program with label lists

31. <s.cp<r> program with label lists f /,e,.m label 4 c conditional t
<m..::.s not in

~ C TRANSFER TO j_ * P< 11 r
program with label lists

These two canons allow use to construct strings which include labeled

and unlabeled, conditional and unconditional transfer statements in a

manner analogous to that of the preceding pair of canons. We now need but

one more canon to produce strings which are legal MINI MAD programs.

32. <s <P ,..r> program with label lists c} <r<s> in

~ p END OF PROGRAW< MINI MAD program

This canon insures that all reference labels in the members of the set

MINI MAD program are defined, and that all programs are properly terminated.

This completes one of many possible canonic system definition or programs

in MINI MAD. The canons are collected in sequence in appendix 1.

If the reader has clearly understood the manner in which canons may

define, by production, the syntax of real computer languages, one further

illustration may provide some insight into the manner in which these systems

may also define translation. Assume one wishes to translate MINI MAD into

another language, for instance an assembly language such as FAP. In order

to accomplish this, one might expand program with label lists to include

a fourth term which would contain the translation of the string of statements.

-16-

appear 3-S fnllo ,':..~.

33. < S<-P<r ~-~> r_r:_c~:.r:: \.•icL '·'''cl lists iilld tr;~l_ation c\. ;7 L11ic-l

ThiE pu~~: i'.Ji1il ur c2n.:tniL' spe(_jfic..:itio11 o[trausL:.~ion \•.:ill be pl:rsl:C'd

furU1cr ir: the de~~- c- ::1'. i o[the algor_:__Lhr:i ·,,.:hi ch Iorn:s the conLri'.:n1tion

-17-

II. The Recognition and Translation Algorithm

Canonic systems will prove very useful in explicitly and concisely

defining sets of strings such as computer languages. Such definitions would

eliminate many ambiguities existing in language manuals. These systems

could prove of greater value, however, if a canonic system could be used

as a basis for recognizing strings from the defined set. In addition, if

the members of the defined set are ordered pairs, triplets, etc., the

usefulness of canonic systems would be still further extended if the

algorithm could be used to produce the missing terms corresponding to a

given term. The remaining part of this thesis discusses such an algorithm,

the program which implements it, and the nature of the constraints imposed

on the canons in order that the program be able to interpret them.

This algorithm is an extension of the algorithm presented by Cheathem

and Sattley (1), which is capable of recognizing strings produced by a

Backus-Naur system. The modifications to their algorithm, which appears

here in quite different form, reflect the greater power of canonic systems

in defining strings. These modifications include mechanisms for handling

predicates of degree greater than one, for properly interpreting the

multiple use of a variable among the premises, and for generating the

translation specified. In the case of a canonic system where all predicates

are of degree one, and no "cross-referencing" is used, the algorithm operates

in a manner almost identical to that of Cheatham and Sattley.

The program which embodies the algorithm divides into two parts. A

preliminary phase checks the syntax of the canonic system used. It insures,

for example, that all variables used in the conclusion of a canon are to be

found in the premises, and that all predicates used as premises are defined

somewhere as conclusions. Further restrictions, which will be clarified

-18-

later, are imposed on the form of the canons and are checked at this point.

The program then assembles the canons into a list structure which reflects

their form and content, and control is passed to the evaluative phase of

the program. The SLIP list-processing system, developed by Weizenbaum (7)

vastly simplified the implementation of the algorithm.

Canonic System

Check syntax of
canonic system

and

assemble
list
structure

list structur
for

canonic syste

Fig. 1. Structure of Program

INPUT

scan of
input string(s)

_~and generation
of translation

\II
TRANSLATION

The second part of the program represents the principal programming

effort. This phase scans the input string, determines whether it satisfies

the canonic definition, and generates any associated translations. The

algorithm is principally "top-down"; it attempts first to match the input

string against the final predicate in the canonic system (e.g. MINI MAD program),

and it arrives only through recursion at a lower-level predicate, (e.g.

integer or digit). Consider the following simplified statement of the

algorithm for the case of a canonic system involving only predicates of

degree one. The simplified algorithm will be later expanded to include

more general cases. Imagine an arbitrary character string, with a mental

-19-

pointer to the left of the first character, and a canonic system defining

a set of strings. We wish to determine whether the character string is

a member of the set.

1. The program considers in sequence those canons directly defining the

string in question, and performs the following steps (2 through 6) for

each such canon.

2. The conclusion of the canon is matched, item by item, against the

input string. If the item in the conclusion is a terminal character,

step 3 is performed; if a variable, step 4 is performed. If the end of the

canon is reached, the algorithm proceeds to step 5.

3. The item in the conclusion is a terminal character. It is compared

with the character in the input string to the right of the mental pointer.

If they are identical, the program returns to step 2 to consider the next

item in the conclusion, with the pointer shifted one position to the right.

If not, the scan fails and the program returns to step 1 to consider any

remaining canons for the string.

4. The item in the conclusion is a variable, and the program must operate

recursively to determine the definition of the variable in terms of the

input string. In other words, it must determine the number of characters

from the input string, commencing with the character to the right of the

pointer, which should be alloted to the definition of this variable. To

accomplish this, the program assembles a new input string which is a copy

of all input characters to the right of the pointer, and picks a predicate

among the premises of the canon which contains the variable. After saving

its present state, the program returns to step 1 to determine the definition

of the variable by examining the canons defining the premise predicate

chosen. If there is no response upon return, the scan fails and the

program returns to step 1 to consider alternative definitions of the string.

-20-

If there is a response, the program conpares it with the original input

string to determine the definition of the variable and moves the mental

pointer to its new position following the definition of the variable.

The algorithm returns to step 2.

5. The scan of the conclusion is complete, and the definitions, in terms

of the input characters, of the variables appearing in the conclusion have

been recorded. The algorithm now inspects the premises. Those premises

used in step 4 to determine the definitions of the variables in the conclusion

may already be asserted, since they were used to generate the definitions.

However, a variable may appear twice in the premises, and we must insure

that the string which forms the definition of the variable is a member of

both sets. The algorithm forms an input string from the definition of the

variable and operates recursively to determine if the other premise

containing the variable is also true; i.e., if the string which is the

definition of the variable is also a member of the second set named as

a premise predicate. Upon return, if there is no response, the algorithm

returns to step 1 to pursue alternatives as before. If there is a response,

the program insures that the string has been fully scanned. If there are

still more unchecked premises, it treats them in the same manner. After

all such premises have been successfully verified, the simplified algorithm

proceeds to the last step.

6. The results of the scan at this level, which constitute the response

for the next higher level, are assembled. There are no results if the

scan failed. Otherwise, they consist of the input string with the mental

pointer resting at the point where the scan of the conclusion was completed.

The algorithm now returns to step 1, if there are more canons directly

defining the set of which the input string is possibly a member. Since

-21-

each canon could conceivably add to the results, the program must actually

be equipped to handle multiple results and hence multiple responses at the

next higher level, and check out each possibility. The example which

follows will serve to clarify the problem. If there are no further canons,

the program proceeds to step 7.

7. The program "pops" its state; that is, it returns to pick up where it

left off at the next higher level. If the highest level has been reached,

then the results are examined for a completely scanned input string. If

such a response is found, the input string is a member of the originally

defined set. If not, there exists a syntax error in the string. It is

not clear that the set of all syntactically incorrect sets will be recognized

by the algorithm. This recognition may be unsolvable in general. The

algorithm is flowcharted below.

A simple example will serve to illustrate the process and the problems

involved in multiple

34.

35.

36.

~
~ 2 digit

~ 3 digit

answers.

37. d digit ~ d integer

Consider the following canonic system.

38. d digit t i integer ~ di integer

This system defines integers as arbitrary length strings of 1, 2 and 3. We

wish to determine by use of the algorithm whether the string 31 is an

integer. The process is described in the shorthand fashion below.

-22-

Recursion Input Canon Next
Step Level String Considered Result(s) Action

1 0 ·¥ 31 37 Push for digit

2 1 .. 31 34 Fails Next Canon

3 1 '1- 31 35 Fails Next Canon

4 1
,j,

31 36 3{<1 digit Pop

5 0 3 ~ 1 37 3~1 integer Next Canon

6 0 ""31 38 Push for digit

7 1 ,[, 31 34 Fails Next Canon

8 1 + 31 35 Fails Next Canon

9 ~ 31 36 3~ 1 digit Pop

10 0 3,)1 38 Push for integer

11 1 ll 37 Push for digit

12 2 -l-1 34 -1' 1 digit Next Canon

13 2 +l 35 Fails Next Canon

14 2 tl 36 Fails Pop

15 1 1~ 37 1 ~integer Next Canon

16 1 ll-1 38 Push for digit

17 2 ,),1 34 1..,digit Next Canon

18 2 il 35 Fails Next Canon

19 2 "'l 36 Fails Pop

20 1 li 38 Push for integer

21 2 37 Push for digit

22 3
""

34 Fails Next Canon

23 3 -t 35 Fails Next Canon

24 3 • 36 Fails Pop

25 2 + 37 Fails Next Canon
26 2 ~ 38 Push for digit
27 3 ~ 34 Fails Next Canon

28 3 {. 35 Fails Next Canon
29 3 ~ 36 Fails Pop
30 2 38 Fails Pop
31 1 38 l.i- integer Pop
32 0 38 31 ~integer

3~1 integer Done

B

-23-

Flowchart of Simplified Algorithm

* ENTER
with input string and

predicate

Set pointer to left
of input string

(Another) canon defin- NO

fully

N0-..1=*1
LEVEL O? --~

ing this predicate? >-----4

/Shift pointe!J

Identical to
next

YES

Another item in
conclusion of canon?

character in f<;;"-----1!'-'!:~-!;-'-"-'::..:J
input string.

Create new input string
of characters to right
of pointer.

NO

(Another) premis ,__N_o ___ ~
in canon?

Used to generate I
definition of variable?.

NO

Use definition of
variable as input
string

"PUSH" means save state, go to "ENTER". Assemble results,
"POP" means pop state1 go to correct "RETURN". @~-----!consisting of

scanned input string

-24-

At this point, the algorithm has arrived at two answers; i.e., that 3

and 31 are both integers. The first could not be immediately rejected

because the algorithm has no global overview which informs it that there is

no syntactic type following integer which would account for the rest of the

string. At level zero however, we may eliminate such results, and the

single assertion that 31 is indeed an integer remains.

We now consider the problem of left recursion. Suppose one wrote

canon 38 in the following manner.

39. i integer t d digit ~ id

The defined set integer has not been altered, but the algorithm will no

longer function correctly. Note that whenever the program operates

recursively to determine the definition of integer (steps 1, 10, 20),

the length of the input string has been reduced by one character. Unless

the scan proceeded from right to left, the program using the canon above

would be caught in an endless loop, terminated only by the exhaustion of

memory. Although it would be possible to devise a scheme to avoid the

problem and still interpret the canon correctly, this would require

some substantial effort which adds nothing to the scope or generality of

this work. Instead, the canons are inspected for left recursion and rejected

if it occurs. This constraint does not prevent the definition of any set

of strings which could otherwise be defined.

The example brings out one other problem. At different points in the

procedure (e.g. steps 42 and 43), the program must handle several possible

answers which result from the various ways in which the canons may define

the input. On a theoretical level this presents no problem, but in practice

the manipulation of multiple large and nearly identical lists may exhaust

memory. For this reason, one should follow two suggestions in using the

system. Firstly, all syntactic types should be defined in as little

-25-

context as possible, so that the legality of a particular string is immediately

apparent, and does not depend on a construction occurring much further

along in the input, In particular, the canonic system should not allow

the input string to be parsed in several different ways, only to discover

much later that only one is legal. To do so involves the risk of exhausting

memory. Secondly, the canonic system should be unambiguous; that is, a

particular string should be generated by only one production or path of

application through the canons. Otherwise, both productions will give rise

to results. Although the ambiguity could be eliminated by checking for

identity among the results at any particular point, the comparisons would

be extremely time consuming.

We turn now to an extension of the algorithm for the case in which

we wish to consider evaluating a predicate of degree greater than one, for

which one or more of the terms arenot known and are desired as translated

output. The algorithm is presented at an arbitrary recursive level with

input of arbitrary degree. For some of the input terms a character string

is provided; some are merely marked "needed". Imagine a pointer positioned

as before to the left of every term of the input set for which a character

string is provided.

1. The program considers in sequence those canons directly defining the

input in question, and performs the following steps (2 through 7) for each

such canon.

2. The algorithm assembles a list of undefined variables which occur

in those terms of the conclusion corresponding to "needed" terms in the

input set. These are variables which would not normally be defined during

the scan of the conclusion, but for which definitions must be obtained in

order to generate the required translations. Variables appearing only in

the premises of the canon and not in the conclusion are also added to the

list.

-26-

3. The input strings provided are matched in sequence against the corresponding

terms in the conclusion of the canon. The program skips conslusion terms

corresponding to "needed" terms in the input set. If the item in the

conclusion at any particular point is a terminal character, the algorithm

performs step 4; if a variable, the algorithm performs step S. When the

scan of a term is complete, the program leaves the pointer where it rests

and proceeds to the next term for which input is provided. When all such

terms are scanned, the algorithm proceeds to step 6.

4. The item in the conclusion is a terminal character. It is compared

with the character to the right of the pointer in the input string. If

they are identical, the program returns to step 3 with the pointer shifted

right one position. If they differ, the scan fails at this point and the

algorithm returns to step 1 to pursue alternative definiQons for the input.

S. The item in the conclusion is a variable, and the algorithm must operate

recursively to determine its definition. The program assembles a new input

sequence from one of the premises in which the input appears. For the

other terms in the premises, it assembles a character string if the variables

therein have been defined. If one or more of the variables is undefined

and in the "needed" list, it marks the term as "needed". Otherwise, the

term is marked as unneeded. The program saves its state and returns to

step 1 with the assembled input set for the chosen premise predicate.

Upon return, if there is no response, the scan fails. If there is a

response, the pointer of the input string is advanced accordingly, the

definition of the undefined variables recorded, and the algorithm returns

to step 3.

6. The scan of the conclusion is complete. Those premises which were

not employed during the scan to generate definitions must now be verified.

For these premises, the proper input strings for the terms are assembled

-27-

from the now-defined variables, and the algorithm operates recursively

to determine whether the premise is satisfied, When all unchecked premises

have been satisfied, the algorithm proceeds to the final step. If the

return from recursion produces no response, or an input string not fully

scanned, the scan fails and the algorithm returns to step 1 to consider

any remaining canons.

7. If the scan succeeded, the results for the next higher level of recursion

are assembled. For each term given as a string, the string is returned

with the mental pointer moved to a position following the last character

inspected in the conclusion scan. For each "needed" term, the definition

of the term is assembled from the terminal characters and the now-defined

variables in that term of the conclusion. It there are more canons to be

considered, the algorithm returns to step 1. If not at level 0, the program

then pops to the next higher level. If the zero recursion level has been

reached, the evaluation is nearly complete, The results are checked to

determine if there is a response in which all given terms have been fully

scanned. If so, the "needed" terms are outputted, If not, there is a

syntax error in the input. The expanded algorithm is presented as a flowchart

below.

B

-28-

Flowchart of General Algorithm

ENTER
ith input set

~~--~~-~~~-~,~-n-d-pr_e_d~i-·c_a_t_e_s~---,
~ (Another) canon definin

this predicate?

YES

Assemble list of undefined
variables from 'NEEDED' terms
in the input

Another item in term of the

~:~!~er I--------~ ~~~~!~;!~~i~! ~~e a~a~~;utte

YES

RM IN AL

in input strin

term?

YES

What

VARIABLE

Select premise with the
ariabl'e. Create new input

set. Mark terms containing
ndefined variables in the
ssembled list as "needed".
ssemble other terms from
efinition of variables and

input strings

©

NO

results
translations

YES

LEVEL 0? OE]

(Another) premise
~ in canon?

assemble input
terms

NO

YES

Assemble results.
For inputted terms.

scanned
For

terms,
for term
of variable

-29-

A step-by-step example such as the previous table would be unduly

lengthy when considering a non-trivial evaluation of a predicate of degree

greater than one. Instead, consider as an example the action of the algorithm

at the highest level of recursion as it seeks to determine whether an

input string is a legal MINI MAD program. The only relevant canon is

the last one.

40. <s< P.::r> program with label lists <r < s> in

p END OF PROGRAM * MINI MAD program

The algorithm is presented with an input string which is possibly a member

of the set MINI MAD program. Before beginning to scan the input, the

program determines that sand r cannot be defined in terms of the input,

and places these variables in the undefined list. It then begins the

match of the input string against the conclusion of the canon. Since the

item in the conclusion is a variable, it turns to the first premise, which

contains p as a variable, in order to determine the definition of p in

terms of the input string. Since s and r are in the undefined list, it

marks these terms as "needed", and operates recursively to determine

whether p is valid, and to produces and r. The algorithm is presented at

the next lower level with an ordered triplet in which the first and third

elements are "needed" flags, and the second element an input string. If

the input is indeed valid, excluding the requirement that all reference

labels be defined, the algorithm will scan the input string at progressively

deeper levels of recursion, eventually parsing out the statement labels,

the various statements, etc. Since the first and third terms of program with

label lists are "needed", it will build up these terms from the various

statement and reference labels in the program, as directed by the canons

which define program with label lists. Eventually, the algorithm will

return to level zero. If there is no response returned from the lower level,

the scan failed. If there is a response, it will consist of the input

-30-

string with the pointer shifted to the right, and the accompanying lists

which comprise the first and third terms of program with label lists. The

remaining part of the input string is then checked to see whether it consists

of END OF PROGRAW'. S and r are now defined. In order to verify the

second premise, the algorithm assembles an input set from r and s, and

operates recursively to determine if the two lists satisfy the relationship

in. Upon return, if there is a response, the program checks to see that

both terms are fully scanned; that is, that the definitions of r and s

agree in both premises. Since both premises are now satisfied, the

algorithm returns the scanned input string as a response: The program is

at level 0, and control is given to a final routine which insures that, if

there is a response, the input string has been fully scanned. The routine

prints out a message to the effect that the input was or was not legal

MINI MAD.

We turn now to the problems which may be encountered in evaluating the

input in this manner. The potentially most disastrous problem is that of

deciding how to generate the definition of variables not defined by the

input. In the example above, there is no deterministic way of discovering

from the one canon alone why the algorithm should not employ the second

premise to generate the label lists. In this case, both terms of an input

set would be marked "needed", and the canon would operate recursively to

determine the members of the set. The definitions would be inserted, one

at a time, into the first premise until the correct ordered pair for

the particular input were found. Unfortunately in is an infinite set.

Thus, if both terms are marked "needed", the algorithm sets about generating

all possible members of the set and speedily exhausts memory. On the other

hand, when the definitions for r and s are determined in conjunction with

the scan of p as terms in program with label lists, only one ordered pair

-31-

of label lists will be produced and inserted in the second premise. A

similar but less serious problem might arise in determining the definition

of p, if there were more than one premise containing p. Again, the choice

of one premise over the other as a vehicle for determining the definition of

p might result in a markedly different number of returned responses. These

problems have been solved by transferring the decision to the user, who

indicates how the definitbn of a variable should be determir.ed by marking

one appearance of the variable in the premises with a prefixed dollar sign.

When the program encounters the variable in the conclusion, it will employ

the premise in which the variable appears with the dollar sign as the

vehicle to determine its definition. If there is no dollar sign, the program

uses the premise in which the variable first occurs. Similarly, when

considering the other terms of the chosen premise, the algorithm will

mark the term as needed only if the variables therein are prefixed with

the dollar sign, or if there is no other term in which they appear.

Another simplification is introduced in order to ease the programming

effort. The restriction that premise terms contain one and only one

variable reduces the complexity of the list manipulation which the program

must perform. Again, this does not prevent the definition of sets whose

definition is otherwise possibly. The premises in the canonic system which

defines MINI MAD contain one and only one variable. An important point

:Is that with the restriction we have placed on canonic systems we have in

no way diminished their power.

This completes the description of the algorithm on the procedural

level. The details of the use of the program, with examples, are described

in appendix 3. We now turn to the intriguing question of the practicality

of the canonic translator as a useful compiler.

-32-

The present program is wholly experimental, and we intend to use it

to study the translation process. Three limitat.ions exclude it from serious

consideration as a practical device.

1. Speed. The program runs, conservatively, over 1000 times more

slowly than a normal compiler.

2. Limitations on input. The program cannot accomodate large

quantities of input data.

3. Error indications. If the scan fails, the program pinpoints

the last character inspected in the input string, but goes no further.

Thus, only one syntax error is detected per compilation.

I feel these limitations can be overcome, and that an implementation

of the algorithm might be extremely useful in acting as a trial compiler

in the design of a language, or as a regular compiler for lesser used

languages where the additional efficiency of a dedicated compiler is not

worth the effort necessary to produce one. I shall not consider the use

of the algorithm for other language systems, such as the proof of theorems

in boolean algebra. The further restrictions imposed on the generality of

the algorithm in order to overcome the three limitations will probably reduce

its usefullness in other more exotic areas. The proposals follow in order

of increasing returns and commensurate restrictions on the algorithm.

1. Redesign and rewrite the program in assembly language. The

program as it now stands i·s the MAD language in neither elegantly designed

nor brilliantly executed. The pressure of time and the necessity to have

the program work no matter how clumsily, prevented extensive streamlining.

2. Develop, perhaps in conjunction with proposal 1, a list processing

system or data structure designed specifically for the algorithm. The

SLIP list-processing system is elegantly designed, but its generality

necessarily reduces its efficiency for this task. Measure 1 and 2 might

provide a five-fold increase in speed, and a doubling of input handling

-33-

capacity.

3. Presently, all strings must be members of defined sets in order

for premises to be asserted. Consider placing the left of the assertion

sign premises which are true if and only if the definition of the variables

are not members of the defined sets. Presently, it requires on the order

of 26 2/2 canons to define the predicate differ for all letters of the

alphabet. By defining a predicate~' as below, one could reduce this

to 27 canons.

The sign/V' indicates that the ordered pair x <Y must not be a member

of the set ~ in order to be a member of the set differ. This procedure

would involve problems in originally defining variables, but could be used

in premises which would only be verified after the variables have been

defined. A moderate increase in speed would result, but the mathematical

basis for canonic systems might well be destroyed. The possible implications

of such a modification are vast and unexplored,

4. The compilation of a program never produces two different

translations. This fact raises questions about the efficiency of handling

multiple results at many points in the procedure (e.g. in the example .for

the simplified algorithm). A program, at any point in the scan of the

source statement, is either possibly syntactically valid or definitely

invalid. The source statements cannot be construed in several different

syntactically valid ways. Consider establishing the rule that the algorithm,

at any point in the recursion, returns only the first valid definition it

discovers for the predicate. Assume the definition of integer were as

follows.

41. d digit + i integer ~ di integer

42. d digit ~ d integer

-34-

Note that the recursive definition precedes the simpler canon, and the

program considers it first. The action of the algorithm will be such that

it continually operates recursively,eliminating a digit at each level,

until it encounters a character other than a digit. The algorithm then

"backs-up" one level, considers the alternative definition, and returns

only one answer - ~ integer of the longest possible length, which is the

definition actually desired. The implications of such a restriction are

vast. By suitably positioning the non-recursive canons, one immediately

eliminates more than half of the searching the program must perform. More

importantly, such a rule eliminates all the list manipulation and duplica

tion the program must presently execute. The manipulations are largely

responsible for the complexity and inefficiency of the present implementa

tion. Finally, such a restriction eliminates much "back-tracking", and

makes it possible to contemplate a single, top-to-bottom pass of the input

from auxiliary storage. Likewise, only one set of translation and "needed"

lists must be built up, and this makes it possible to arrange the lists in

a more conventional and more efficient format. The careful and imaginative

implementation of this restriction might improve the speed of compilation

by a factor of 50, and make the input capacity of the program comparable to

that of conventional compilers. The usefulness of the translator for more

general purposes would be, however, severly restricted.

5. One might consider using external subroutines to perform those

functions (e.g. in and notin) clumsily handled by an algorithm which must

essentially reverse the canonic production of the defined strings. If, as

a result of proposal 4, the lists were arranged in a more conventional

fashion, such subroutines might be easily implemented.

6. Finally, "system predica:es" might be useful. The implementation

of the algorithm would consider such elementary predicates as letter, digit

-35-

and differ to be understood, so that they need not be defined. Determining

that A differs from B by testing whether or not B is one of the other 25

letters is hardly an efficient procedure. Such a provision might greatly

speed the compilation.

We have not considered the uses of the algorithm in areas other than

language translation, and the implementation of some of these measures, part

icularly 4, would severely hamper the ability of the algorithm to perform the

intent of the canonic system. Other measures, particularly 1 and 6, might

still prove useful. Ihave also avoided proposing a means of dealing with

the problem of error indications. This problem might well be the most

difficult to solve, but should probably consist of mechanism whereby the

algorithm backtracks one syntactic type (e.g. statement) from the one in

which the error was detected, skips the syntactic type, and proceeds from

there on. Such a procedure might well produce fast and efficient syntax

error elimination similar to that produced by a normal compiler.

Canonic systems are extremely powerful mechanisms for the definition

of complicated strings. The areas in which canonic systems are applicable,

and the possibilities for future study, are both vast and exciting. The

possibility of a truly practical generalized compiler implemented through

canonic systems deserves further investigation.

1.

2.

3.

4.

-36-

Appendix 1.

A.Canonic system specification of the syntax of MINI MAD.

Digit

Integer

Label

Differ

~ 0All2n

d digit ~
d digit cj,

d integer

i integer ~ di integer

<Ac:B>.i <A<c> <B<C> differ

<x <Y> differ - <Y< x> differ

S. Notin J label ~~fi>notin
<x ,- Y> notin t <x< i> differ r <x<i ,y> notin

6. In ~ <JI< I\> in

<~ Y> in c\-- _,/_label ~ <x<l, Y> in

<X< Y> in f label ~ <Jl,x<.J ,y> in

<x_ Y> in <} <z< Y> in ~ <xz..: Y> in

7. Variable ~ X.:. y,. Z variable

8. Express ion v variable ~ v exEression

i integer ~t i exE:ression

v variable x exeression ~ v+x

i integer t x exEression ~ i+x

9. Conditional ~ A conditional

exEression

ex,Eression

x exEression t y exEression ~ WHENEVER x .E. y, conditional

10. Program with label lists

~ </\<A< A>
< s.c P< r> program with

c conditional r <s

program with label lists

label lists t v variable t x exEression t
CV=X * P< r> program with label lists

-37-

<s< P< r> prog,ram with label lists t < }'< s> not in +
v variable t/ x expression + c conditional r

< i. ,s< cv=x '" p r> program with label lists

<s< P<: r> program with label lists t m label t c conditional

~ <s""" c TRANSFER TO m '' P-< m, r>

program with label lists

<s< p< r> _p_r_o_g_r_a_m_w_i_th __ la_b_e_l_l_i_·s_t_s t m label t <(.ll.:.s> notin

t c conditional r<i ,s<J c TRANSFER TO m '' P"' m,s>

program with label lists

11. MINI MAD program

<s< P< r> program with label lists t <r < s> in

r p END OF PROGRAM '' MINI MAD program

This empty page was substih1ted for a
blank page in the original document.

1.

2.

3.

4.

s.

6.

7.

8.

9.

-39-

B. Canonic system specification of the syntax and translation of MINI MAD
into PSEUDO FAP. The dollar sign in PSEUDO FAP indicates "this location".

Digit ~

Integer d digit ~ d integer

d digit 4' i integer ~ di integer

Label

Differ <Aei. <A.:::C>.a<BLc> differ

<. x.,;_y> differ ~ <Y..;:X> differ

Not in L ~ ~ <i </\> not in

<xcy> ~{ <x<L> ~ ~< x.,,,(, y> notin

In ~ <l\..cA > !!.:.
<x<Y> in+ 1 label~ < x<l, y> in

<x<y> in cf--,l label~<~x<f, y> !!.:_

<x<y> in 9--- <x<y> in ~ < XZ<Y> !!.:_

Variable ~ Xt. Y J,. Z variable

Expression v variable ~ V<CLA v*> ex2ression

i integer ~ i< CLA =i *> exEression

v variable 9- <X<:Y> ex2ression ~
i. integer +<x<Y> ex2ression ~

Conditional ~ < /'\</\ > conditional

<x<y> expression t <u<v> expression

~<WHENEVER x.E. u, < y STO TMP*

SUB TMP* TNZ $+3) conditional

<v+x<y

< i+x.c y

ADD v*> ex:e:ression

ADD =i* > expression

10. Program with translation

-40-

<s< per< t> program with

t<x< y> expression f <c~
<s.-::: cv=x * P< r<

translation + v variable

d> conditional r
y STO TNP *

d CLA TNP * STO V * t>

program with translation

<s< P< r< t> program with translation~< R< s > not in f
v variable t <x Y> expression+ <c.~ d> conditional

~ <f, s<J cv=x* P« r.:

f y STO TNP>' d CLA TNP* STO V * t>

<s< P< r< t> program with translation t m label <c< d> conditional ~
<s< c TRANSFER TO m * P< m, r._: d TRA m * NOP * t>

program with translation

<s< P< r~ t> program with translation t m label t < .X.<

~<i ,s<,(c TRANSFER TO m * P<: m, s.c:./ d TRA m *

program with translation

11. MINI MAD - PSEUDO FAP

(s< P< r< t) program with translation 4 <r < s) !!!.
~ < p END OF PROGRAW• < t HLT*

TMP DEC-k TNP DEC"I• END * >
MINI MAD - PSEUDO FAP

s> notin+ c conditional

NOP-k t >

-t, 1-

As .:r1 c:-:a1 1plc. tl1·: ~)~-u~~r~ut1 given prL·viou;:;Jy in the text is reproduccd
below v,rith ::-l:._ L:'r:i\ralL~ll~ PS[lJ)() F.t~2-) µrot;ra1:1.

B

A

B

1NP
TNP

x ~ x+
l·mn:i: \'J >

CLA =-15
STO x
CL!\
ADD x
STO x
CLA x
STO ·1~;]'

CI.A ' 12'.l
SUB T:\P
TNZ ~ +
TRA A
NOP
TRA B

D[C
DEC
HLT
END

~2.3, TlZ.AlJS!TiZ Tll ,\

_\

-42-

Appendix 2.

A canonic system specification for the syntax of SNOBOL.

The canonic system presented in this appendix defines the syntax

of SNOBOL as implemented on the 7094 CTSS system at MIT. The language

is used for string processing and contains statements for string

matching, replacing, deleting and inserting. The language also

has a few arithmetic capabilities. Those not familiar with the

language may find reference 5 useful.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

The canonic system is listed below. A represents a space.

~ Af!~C ~Y~Z letter

r OAlJ-2 7f.8 6 9 digit

x letterfy digit} x
11

y
6

• name character

x name character L x , ' * + ·- / ? = $ label character
fAll6JlLiAbAil

x name character L x , ,_ () * + / ? = $ string character f •uol,6./J.AA./;

x string character r xi;.' character

~ +4 -A /
6
* operator

~ j tab

r J carriage return

x spaces r A <1 xA spaces

a<lb"c"dile.llf name character r a,,ab_,abcl,abcd/._abcdeaabcdef string name

x string character 4y string r xy string

x string ~ 'x' literal

x letter 4y digit 1z label character 4 a label~ x"y6az label

x digit <f y integer ~ x" yx integer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

-43-

x string name +y literal ~ xAy operand

x6 y operand q. z expression t v operator f s spaces

~ xsvsy A xsvsz I'> zsvsy
1

, (z) expression

x operand cf'Y expression 9,z term 1 s spaces

~ x J. y A zsx 1, zsy term

x term t /\;;. x concatenation

x string name ~ ~-x* variable name

x,. y string name ct-z integer ~ *x/yi'A *x/'z'* fixed length name

x string name ~ *(x)* balanced name

x string name q y literal cf' u Av term c}'w indirect name

cys space~~ $x 11 yh(w) 1, $(usw)A $(wsu)A $(uswsv) indirect name

(A,. 0-<c) t. ••• ,. ~< c) 6 .•. 6 (~<$)differ

a 4 e A f string 4 (b<~ differ ~ ~ce<abf) different

(x<y) different ~ (y<xJdifferent

x label 4 y list r ;\A yxw list

x list ~ (/\< x) in

x 4 y listf(w<xy)in fl label~ <wlw(xlwy)in

(w (xy) in 4 <U (xy) in ~ <WU (x"f in

x label ~ (x<I\) notin

x .0. y label 4(x c0 different q·(x ~ z) no tin ~ (x < zyw) not in

x string name f y concatenation 4 s spaces

~ xs=sy assignment statement

x operand cf Y expression q u variable name q·v fixed length name

4 w balanced name q z indirect name ~ u.a. v6 WA xA yA z

scan operand

35.

36.

37.

-44-

x scan operand f z ~ cys spaces r x A xsz scan

x operand cl' y concatenation 4z scan cys spaces

r xsz 4 xszs=sy scan statement

-EJECTA -LIST A -NULLOP OP A -FCC A -SPACE A -TITLE

A -UNLIST control word

38. x operand 9'a arguments~ ;\A xAa'xA x,aA 'a' 4 (a) arguments

39. x string name 4a arguments ~ x(a) string name cj-
x(a) system function

40.

41.

42.

43.

44.

45.

46.

47.

x label t'Y indirect name r (x<xw} 4 (Y<~ reference label

(x<y),(w<z) reference label r (;(x)(y)4«S(x)<~./.fF(x)<y)
A 4s (x)F (w)< yz) branch

x scan statement cyy assignment statement f~z system function

(u<v) branch cj' s spaces ~ < x<A).lY<I\) ,/xsu(v)

li(ysu<v) 6 (z<A)44su<v) right hand side

(x<y) right hand side ~ <END£x<y) 6 <END<A) end card

~ (/\ <I\< I\) program string

(p<q<r}program string itx control word ~ <p<qxl<r) program string

(p<q<r) program string 4(x<y) right hand side 4 u label

f<u<p) notin ~ (p<qJxJ<ry)A(puw<quh~<ry) program string

(p<q<r) program stringq(END<p) notin q(x(y) end card

4V"y< p > in r qxl program

-45-

Appendix 3.

Use of Program.

The program which implements the algorithm allows the user to type in

a series of canons defining a set of strings, followed by the input he wishes

to have analyzed. The program then scans the input string or strings for

correct syntax. If the input is syntactically correct, a message to this effect

is printed. Further, if the input is defined as only one of several terms

in the final predicate of the canonic system, the other terms corresponding

to the input may be produced. If the scan fails, the program identifies

the character in the input string which was the last character inspected.

The sequence of messages and the proper responses as the program

executes on the MIT CTSS system are as follows.

INPUT CANONS.

A set of canons may now be input, subject to the restrictions described in

the text and summarized briefly below.

1. Canons may contain only one conclusion.

2. The terms of the premise predicates may contain one and only one

variable, and no terminal characters.

3. Left recursion in all terms of a predicate is not permitted. Partial left

recursion evokes a warning message.

The user inputs the canons according to the following rules which implement

~he punctuation of the canonic system.

1. Strings of terminal characters must be enclosed in break characters

-4o-

(' I or ") .

be dcf111L·r\ ir t\it_ pn·r ·1~.l :-.:.

4.

8.

AftL'r thL· l:L-»t c~111 Jll, t~!-.' usLT :-y;1cs 'end' cit the beginning of a line. 1'hc

used a~ prL'I111--..L·~ ;Jrv ('.t_·finccl as cunch1::-;ion:->.

CONSIT '\T Sl ·1 OF C\'\O:\S.

The [irL·d1catcc t\pLt1 11: enc t::L'Tl li~tL:d in tlw circler in \\·liich they fir~t cippcarcd.

Il\l'L'T OF S(ll''ZCI 'iHCI'\ :s.

TYPl·: FI\:,\ I. l' Zi 1 JI C:.\ I I •

-47-

The user responds by typing the predicate name which defines the input string

he wishes the program to consider.

TYPE -NONEED-, -NEED- OR -INPUT- FOR EACH TERM.

TERM NUMBER n OF -predicate-

At this point the user declares which terms of the final predicate he wishes to

input and which terms he desires as translation. 'Noneed' indicates that he

wishes neither to input the term nor receive it as output. 'Need' indicates

he wishes to receive the term as a translation. 'Input' means that he wishes

to type in an input string for the term. In this case, the program responds.

INPUT STRING. EXTRA CARRIAGE RETURN INDICATES END.

The user may now type in input which will be verified for syntactic correctness,

and for which the program will produce output corresponding to 'needed'

terms. Carriage returns are counted as characters. If the user wishes instead

t6 input card images, he may do so by typing in 80 characters or more. The

input is truncated at 80 characters and in this case the carriage return will

not be counted.

.
After all terms of the final predicate have been considered, the program types

this message.

TYPE 0, I OR 2 FOR DEPTH OF COMMENTS.

The user responds by typing a single number. If 0, the program will print

only the final results. If 1, it will remark on extraordinary conditions which

occur. Typing 2 results in messages whenever the program "pops" or "pushes".

A larger number will result in the output of various lists which comprise the

intermediate results of the scan. These lists, while useful during program

-48-

during program debugging, are rather incomprehensible except to those

familiar with both the program and the SLIP system.

The program then types

SCAN BEGINS.

When the program returns to the zero level of recursion, it will type out the

results of the analysis. If the scan succeeds, and if terms are 'needed',

these terms are printed. If there is more than one translation, all will

be printed. In the examples which follow, the execution time, which is

printed in seconds at the end of the run, indicates the problems of execution

speed to be overcome if one wishes to make a practical canonic translator.

There are three examples of canonic translation. The first is relatively

simple. It illustrates a scheme for coding messages by replacing the

letters in the message with their successors in the alphabet. The

second example demonstrates the construction of an expression in MINI MAD

and the corresponding PSEUDO FAP instructions. The third example,

an extension of the second, demonstrates the construction of an assignment

statement in MINI MAD and the translation into PSEUDO FAP. Note that

no data cells were reserved, although this could ha\e been easily implemented.

A final example illustrates the error analysis of the program.

resume thesis
w 2121.4
INPUT CANOllS.

= I a I • I b I - pa i r
= 'b'.'c' -pair

' c I • I d I - pa i r
' d'. 'e' -pair
' e ' • ' f ' - pa I r -
' f' • 1 a 1 -pair-

x. Y -pair- = x.y -code-

-49-

x,y -pair-, u,v -code- = xu.yv -code-
u.v -code- = u2 • v' Is the coded message for 'u2 -messag
end

CONSISTENT SET OF CANONS.

LIST OF DEFl1JED PREDICATES MD DEGREES,

1. PAIR- 2
2. CODE- 2
3. -MES SAG- 2

INPUT OF SOURCE STRINGS,
TYPE FINAL PREDICATE.
mes sag

TYPE -NONEED-, -NEED- OR -INPUT- FOR EACH TERM.

TERM NUMBER 1 OF -MESSAG-
1 npu t

INPUT STRING. EXTRA CARRIAGE RETURN INDICATES END.

abcdef

TERM NUMBER 2 OF -NESSAG
need

TYPE O, 1 OR 2 FOR DEPTH OF COMME~TS,
0

SCAN BEGINS,

SCAN SUCCESSFUL.
TRANSLATED OUTPUT (IF ANY) FOLLOWS.

TERM NUMBER 2,

BCDEFA IS THE CODED MESSAGE FOR AACOEF

END OF RUN,
EXITM CALLED. GOODBYE.
R 7.lSO+b,983

resume thesis
1J 2127,!>
INPUT CANOIJS,

'x' -variao
'y' -varlab
'z' -variab
'l' -diglt-
121 -digit-
131 -dlglt-

d -digit- = d -lnteg-

-so-

d -digit-, I -integ- = di -integ-
1 -lnteg- = i , ' cla ='i2 -expres-
v -variab- = v , ' cla 'v2 -expres-
1 -lnteg-, x,y -expres- = i'+'x, y' add ='12 -expres-
WARHIHG- PARTIAL LEFT RECURSION IN LIME Ni.JriBER 11
v -varlab-, x,y -expres- = v'+'x , y' add 'v2 -expre;-
WARNlllG- PllRTIAL LEFT RECUR:>IOI~ Ill Lli~E :wrrn::R 12
x,y -expres- = x2 , 'this Is the translation fo~ 'x22

y' end 12 -exampl-
end

CONSISTENT ;;ET OF CAtJOi~S.

LIST OF DEFINED PREDICATES AiJO DEGREES.

1. -VARI AB- l
2. - DIGIT- l
3. - llHEG- 1
4. -EX PRES- 2
5. -EXAf1PL- 2

IN PUT OF SOURCE srn I llGS.
TYPE FINAL PREDICATE.
exampl

TYPE -NOi~EED-, -NEED- OR - INPUT- FOR EACH TERM,

TERM IWllBER 1 OF -EXAMPL-
1 nput

INPUT STRING, EXTRA CARRIAGE RETURN INDICATES END.

x+l23+y+32l+z

TERM NUl1BER 2 OF -EXAMPL
need

TYPE U, 1 OR 2 FOR DEPTH OF COMMENTS,
u

SCI\.! ._1L·:~CL

T R/d L:-, L II f l_ [J \..! .._J

1!11 ':i I :, ~ · 1 _

c !_1\ i.

Afi [I ~ _) L l

;'\fll) y
Anl'1 ;:: l. 2 _)
id)~) "
[I·~ l)

E i~ ll U ~ i;1J,;.

EX I T:: C 1\ l_ L c ~ ••

R ltJ,/.i_)+o.Jc.

- 5 I -

' r :, ·: ·,·) ! n L LO,, ; •

'I

resume thesis
I'/ 2150.5
INPUT CANONS.

1 x 1 -varlab-
1y1 -variab
'z' -varlab-
111 -digit-
121 -dlglt-
131 -diglt-

d -digit- = d -integ-

-52-

d -digit-, i -lnteg- = di -lnteg-
1 -lnteg- =I • 1 cla ='12 -expres-
v -varlab- = v • 1 cla 1 v2 -expres-
1 -lnteg-, x.y -expres- = l'+'x. y' add ='12 -expr~s-
vlARNIMG- P/1RTIAL LEFT RECURSIOii IM LlfJE NUllflER 11
v -variab-, x.y -expres- = v'+'x • y' add 'v2 -expr~s-
WARIJIHG- PARTIAL LEFT RECURSIO;i IN LlrlE NU1111ER 12
v -variab-, x.y -expres- = v'='x • y' sto 1 v2 -asslgn-
x.y -assign- = x2 • 'this Is the translation for 1 x22

y' end 1 l -exa111pl-
end

CONSISTENT SET OF CANONS.

LIST OF DEFINED PREDICATES AND DEG~EES.

1. -VARIAR- 1
2. - DIGIT- 1
3. - INTEG- 1
4. -EX PRES- 2
s. -ASSIGN- 2
ti -EXAM PL- 2

INPUT OF SOURCE STP. li!GS.
TYPE FINAL PREDICATE.
exampl

-53-

TYPE -NONEED-, -NEED- OR -INPUT- FOR EACH TERM.

TERM NUMBER 1 OF -EXAMPL-
1 nput

INPUT STRING. EXTRA CARRIAGE RETURN INDICATES END.

y=x+123+y+3211+z

TERM NUMBER 2 OF -EXAtlPL
need

TYPE O, 1 OR 2 FOR DEPTH OF COi·IHEllTS.
0

SCAN BEGll'lS.

SCAN SUCCESSFUL.
TRANSLATED OUTPUT (IF ANY) FOLLOWS.

TERH NUMBER 2.

THIS IS THE TRANSLATION FOR Y=X+l23+Y+32ll+Z

CLA Z
ADD =S211
ADD Y
ADD =123
ADD X
STO Y
END

END OF RUIJ.
EXITN CALLED. GOODBYE.
R 18.866+1!.~00

resume thesis
W 220U.4
INPUT CAl<OIJS.

-54-

= 'this Is a test sentence 1 2 -exampl
end

CONSISTENT SlT OF CANONS.

LIST OF DEFllJED PREDICATES ANfl DEGREES.

1. -EXMIPL- l

INPUT OF SOURCE STRINGS.
TYPE FINAL PREDICATE.
exam pl

TYPE -NONEEO-, -NEEfl- OR -INPUT- FOR EACH TERM.

TERM NUMBER 1 OF -EXAl1PL-
lnput

INPUT STRlllG. EXTRA CARRIAGE RETUP.:l INfllCATES DID.

this ls not a test sentence

TYPE 0, 1 OR 2 FOR DEPTH OF COilMHITS.
u

SCAN BEGINS.

SCAN FAILED. SYNTAX ERROR IN INPUT STRING(S).
NO TRANSLATED OUTPUT.

LAST CHARACTER lllS PECTED IN TERM 1 llAS N Ill MI OST OF FOLL011l NG C01H EXl

THIS IS NOT A TEST SENTE

END OF RUil.
EXITH CALLED. GOOrlBYE.
R .S83+~.766

-55-

Appendix 4.

Program Listing.

The program listing for the program which implements the canonic

translation algorithm is contained in this appendix. The program may

be divided into three parts: a preliminary phase which verifies the

syntax of the canons typed in and assembles them into a SLIP list

structure, the recursive scanning routine which forms the major part

of the code, and a final routine which inspects and prints the

results. Understanding the code requires a thorough comprehension

of the SLIP system developed by Weizenbaum (7). The lack of elegance

in the program is quite the fault of the author.

The following table identifying the major parts of the code

may prove useful.

Label Lines Purpose of Code

NEWORD 57-74 Inputs a line from the typewriter, feeds characters

one at a time to the canon-analyzing routine.

107-285 Reads predicate names and makes various checks

(left recursion, degree same as before, etc.) and

assembles into list structure.

EVAL

PUTIN

383-395 Identifies next variable to be encountered should

be marked as the one to use if the variable is

needed in the later phase.

396-434 Inputs variable and assembles into SLIP structure.

444-472 Checks that all variables are defined.

505-574 Assembles list structure for input to scan program

at zero leve 1.

LUPOOO 592

-56-

Beginning of recursive routine, It is to this point

that the program returns when "pushing".

603-617 Makes an "object time" check for left recursion.

OUTCHK 621-671 Creates the 'needed' list of variables for which

definitions must be found from other than the input

string.

LUP008 677-697 Handles multiple results, each of which must

be analyzed in turn.

717-855 Compares input string with conclusion, "pushing"

to find definition of variables if necessary.

PUSHIT 871-893 Saves state of program and returns to the beginning

of the scan routine,

PRMCHK 897-977 Checks premises of a canon.

ASSMBL 981-1038 Assembles results of scan for next higher level

before "popping".

POP 1042-1075 Uncovers the state of the program and goes to

appropriate return routine.

POPl 1080-1164

POP2 1165-1196

THKGOD 1200-1344

HE RAUS 1348'-1350

1355-1381

Analyzes return resulting from "push" during

scan of conclusion.

Analyzes return resulting from "push" during

check of premises.

Outputs results of scan.

Exit.

Obtains character from input data area, using

pointer furnished by caller.

., _ l

P1n1:,1 .Jll', 1 .--.1r-:.JL'lllr(· ~Jf 11ST_:.-',

58

...............•.•..........•..•..•.•.•••..............•....•................
M53b4

BEGINS

LOO Pl

SKIP

NE WPRM

NEWT RI'

NE WORD
RDLUJE

R
R
R

511>3 THESIS MAD FOR

R CANONIC TRANSLATION PROGRAM.

M5364

R THIS PROGRAM EMPLOYS A CANONIC SYSTEM AS A BASIS
R FOR RECOGNIZING DEFINED SETS OF STRINGS. THE
R FIRST PART OF THE PROGRAM VERIFIES THE SYNTAX OF
R THE CANONIC SYSTEM WHICH IS INPUT AND
R ASSEMOLES IT INTU A SLIP LIST STRUCTURE.

5163

R THE SECOND PART OF THE PROGRAM OPERATES RECURSIVELY
R TO DETERMINE WHETHER A GIVEN STRING IS A MEMBER
R CF A DEFINED SET OF STRINGS, OR WHETHE~ THE GIVEN
R STRING IS ONE ELEMENT OF AN ORDERED N-TUPLE
R nHICH IS A MEMBER OF A DEFINED SET. IN THE LATTER
R CASE, THE OTHER ELEMENTS OF THE N-TUPLE MAY BE
R CUTPUT AS TRANSLATIONS.
R
R

N'S INTEGER
eCOLEAN EQUAL, EOLIND, STRTND, ERRS, NOTfN, IN, SOMERC, ALLRC

1 rLEMPTY, !NP, DOLIND
DI MENS ION BUFFER (14 I 1 INPUT (lil00 I

R
Rl~ITlhLIZATION OF SLIP SYSTEM.
R

R

I~ IT AS. I 0 I
LIST. ISYSTEMI
LIST. INAMESI
LI NE = 0
OEFNUM = :l

Rl~ITIALIZATION OF SYSTEM
R

R

PRINT COMMENT $INPUT CANONS.$
PRINT COMMENT S $
T'O SKIP

Rl~ITIALIZATION PRIOR TO READING A CANON
R

R

IRALST. !VARI
IRALST. ,(SVEVARI
DEF = LIST. 191
LIST. !VARI
LIST. ISVEVARI
NEED = LIST. 191
CCLlND = JB
CCNO = l
ECUAL = OB
ECLIND = lB
PREM= LIST. (91
TRMNUM = j

TERM= LIST. 191

Rl~PUT OF ChNONS, CHARACTER BY CHARACTER, RIGHT
RACJUSTED IN WORD
R
~·R .NOT. EOLIND, T'O GETW
NUMB = RDFLXC. {BUFFER, 84)

0

GETW

R

LINE = LINE + 1
ECLINO = JB
PCS = 6
I = -1
STRTNIJ = lB
W'R POS .GE. 6

POS = :J
I = I + l

59

WORT = BUFFER I I I
E'L
W'R NUMB .E. 01 T'O RDLINE
NLMB = NUMB - l
W'R NUMB .E. IJ, EOLIND = lB
PCS = POS + l
WCRO WO!H .RS. 3J .v. $ OS
WCRT = WORT .LS. 6

RCHECK TO SEE IF READING ANSWER TO QUESTIONS.
R

R

W'R COND .E. 8
T1 0 ROANS

RCHECK FOR REMARK ANO END CARDS
R

C'R STRTND
STRTND = OB
w• R WORD .E. $ •$, r•o RDLINE
W'R BUFFER IOI .A. 7777770J00u)K .E. SENDJ.J0$

W'R COND .E. 1, T'O EVAL
PRNTP. I ERRll
V'S ERRl = $LAST CANON IS l~COMPLETE$ 1 377777777777

lK
T'O ERR IN

E'L
E'L

R
RCHECK TO SEE IF READING 'LITERAL' OF TERMINAL CHARACTERS
R

W1 R COND • E. 6
W'R WORD .E. BREAK

COND = 2
0 1 E

NEWBDT. IWORD 1 TERM I
W'R EOLIND, NEWBOT. I 60606060605 5K, TERM!

E'L
T'O NEWORD

D'R WORD • E • $ s
T' 0 NE WORD

R
RCHECK TO SEE IF READING PREDICATE
R

C'R COND • E. 7
W'R WORD .NE. $ -S

LENGTH = LENGTH +
W'R LENGTH .E. 7

PRNTP. IERR21
v•s ERR2 = STOO MANY CHARACTERS IN PREDICATES

lo 377777777777K
T'O ERRIN

E'L
R

LOOP3

LOOP4

LOOPS

60

RBUILD UP PREDICATE, CHARACTER BY CHARACTER
R

NAME = NAME .LS. 6 .v. WORD .A. 000u00000J77K
T'O NEWORD

R
RSAVE PREDICATE NAME JUST READ IN
R

0'E

R

EQUIV = ITSVAL. (NAME, NAMES)
W'R EQUIV .E. 0

E'L

DEFNUM = DEFNUM + 1
EQUIV = DEFNUM .v. TRMNUM .LS. 18
NEWVAL. (NAME, EQUIV, NAMES)

CHKNUM = EQUIV .RS. 18
EQUIV = EQUIV .A, 777777K

RC~ECK DEGREE OF PREDICATE
R

W'R TRMNUM .NE. CHKNUM
P'T ERR15, NAME, LINE
V'S ERR15 = SH'DEGREE OF PREDICATE -'1C61

lH'- IN LINE NUMBER',13,H' NOT AS PREVIOUSLY DEFINED'•$
T'O ZAPALL
E'L

R
RIF CONCLUSION, MAKE VARIOUS CHECKS AND ADO CANON TO SYSTEM
R

W'R ECUAL
R
RCHECK FOR LEFT RECURSION
R

.A. 777777K

LRECUR = SEQRDR.lDEFl
CHKPRM = SEQLR. lLRECUR, Fl
w•R F .c. D, T•o CHKILL
PRMPRM =TOP. lLSTNAM. lCHKPRMll

- W'R PRMPRM .NE. EQUIV, T'O LOOP3
CHECKC = SEQRD~. (PREMI

. - CHECKP = SEQRDR, l CHKPRM I
SOMERC = DB
l\LLRC = lB
TERMP = SEQLR. lCHECKP, Fl

--·- TERMC = SEQLR. ICHECKC, GI
W1 R F .G. 0 .OR. G .G. 0

--·----~- W'R SOMERC .AND. ALLRC
PRNTP. IERRlll
v•s ERRll = SCOMPLETE LEFT RECURSION

lS, 377777777777K

1 RECURSION IN LrNE

E1 L

T'O ERRIN
D'R SOMERC

P'T ERR121 LINE
v•s ERR12 ~ SH'WARNING

NUMBER', 13•$
E'L
T'O LOOP3

TERMl = SEQRDR. ITERMPl
TERM2 • SEQRDR. lTERMCl
PPPR EM SEQLR. !TERM l t Fl
CONCLU = SEQLR. lTERM2, Gl

PARTIAL LEFT

CHKI LL
AOVANP

AD VANT

AOVANV

.GOOF_,l

-LOOP6

AOVANL

61

W'R F .G. :; .OR. G .G. 0 1 T'O LOOP4
W'R F .L. 0 .ANO. G .L. 0

W'R PPPRE~ .e. CONCLU, T1 0 LOOP5
•. 0 I R F • E • ~ • AND. G • E • 0

W'R TOP. ILSTNAM. ICONCLUI I .E.

R

CHKPRM .AND. PPPREM .E. CONCLU
SOMERC = lB
T'O LOOP4

E'L
E'L
ALLRC = ,;,B
T' 0 LOOP4

RCHECK FOR ILLEGAL VARIABLE CONSTRUCTION, I.E.
RA PREMISE TERM WITH MORE THAN A VARIABLE.
R

11 377777777777K

READP = SEQROR. IDEFI
PREMP = SEQLR. IREADP1 Fl
W1 R F .G. o, r•o NOUSE
READT = SEQROR. IPREMPI
TERMP = SEQLR. IREAOT, Fl
W1 R F .G. o, T10 AOVANP
NOTIN=OB
IN = OB
VARCNT = 0
REAOV = SEQROR.· ITERMPI
VARIAB = SEQLR. IREADV, Fl
W1 RF.G.O

W'R VARCNT .G. 1
PRNTP. IERR161
v•s ERR16 = $VARIABLE

T'O ERRIN
... O'R VARCNT .L. 1

PRNTP. IERR221

NOT ISOLATED$

... v•s ERR22 =$TERM WITHOUT VARIABLES
l 1 377777777777K

- T' 0 ERRlN
E'L

.T 1 0 ADVANT
E'L

.w•R F .L. o, T 1 0 GOOFOl
VARIAB = TOP. IVAR!ABI

- - . -- ... --- ---- VARCNT = VARCNT + 1
REAOC = SEQROR. ISVEVARI

-- --------·-·-- ----- TERMV = SEQLR. IREADC1 Fl
W' R F .G • .J

NOTIN = lB
REAOL = SEQROR. INEEDI

-- - TERML = SEQLR •. I READL, FI
W1 RF,G,J

NEWBOT, IVARIAB, NEED)
P'T NOTTY, VARIAB

.... V'S NOTTY = $H 1 NEEO 1
1 C6•$

T'O AOVANV
0 1 R VARIAB ,A. 7777777777K .E. TERML ,A,

7777777777K
------SUBST, IVARIAB .v. 77Kl01 SEQPTR.

l IRE AOL I I
- T' 0 AOVANV

E'L

R

62

r•o ADVANL
0 1 R TERMV .E. VARIAB

IN = lB
T'D ADVANV

E'L
T'O LOOP6

RCHECK FDR UNUSED VARIABLE (ONE WHICH OCCURS ONLY ONCE
RI~ CANON)
R

NOUSE READL = SEQRDR. (NEED)
ADVANN TERML = SEQLR. IREADL, Fl

W'R F .G. O, T'O ADDCAN

ADDCAN

W'R TERML .A. 77Kl0 .E. 77Kl0
TERML = TERML .A. 607777777777K
T'O ADVANN

E'L
P•T ERR17r TERML, LINE
V'S ERR17 = $H'WARNING- VARIABLE •,RCl,

lH' IN LINE NUMBER',13,H' UNUSED'•$
DELETE. <SEQPTR. (READLll
T•o ADVANN

R

MAKEDL. (PREM, DEFl
MAKEDL. <NEED, PREM)
EQU = ITSVAL. (EQUIV, SYSTEMJ
W'R EQU .E. 0

EQU=LIST.(91
NEWVAL. (EQUIV, EQU, SYSTEM)

E'L
NEWBOT. IOEF, EQUl
COND = l
T1 D LODPl

RIF NOT CONCLUSION, SAVE PREMISE AND PREMISE PREDICATE
R

O'E

E'L
E'L

R

NEWBOT. (PREM, DEFl
TEMP= LIST. (91
MAKEDL. (TEMP, PREM)

--NEWBOT. (EQUIV .V. TRMNUM .LS. 18, TEMPI
COND = 3
r•o NEWPRM

RCHECK FOR BREAK BETWEEN TERMS
R

R

C'R WORD .E. S .S
W'R COND .NE. 2

D'E

E'L

- PRNTP. (ERR3l
v•s ERR3 = SMISPLACED PERIODS, 377777777777K
T'D ERRIN

-- NEWBOT. <TERM, PREMI
TRMNUM = TRMNUM + l
COND = 4
T'D NEWTRM

RCHECK FOR BEGINNING OF NAME

R

R

63

C1 R WORD .E. $ -$
W'R COND .NE. 2

PRNTP. (ERR4)

0 1 E

E'L

V'S ERR4 = $MISPLACED HYPHENS, 377777777777K
T'O ERR!N

COND = 1
LENGTH = 0
NAME = $ $
NEWBOT, (TERM, PREM)
TRMNUM = TRMNUM + l
l'O NEWORD

RCHECK FOR BEGINNING OF TERMINAL CHARACTER 'LITERAL'
R

C 1 R WORD .E. $ 1 $,OR, WORD .E. S •S .OR. WORD ,E,
l S IS

R

~I' R COND • E, 3
P 'T ERRlO, WORD, LINE
v•s ERRlJ = SH.MISPLACED •.,RC[,H, 1 IN LINE NUMBER.

T'O ZAPALL
O'E

. - BREAK = WORD
COND = 6
T' 0 NEWORD

E' L

RCHECK FOR COMMA AFTER PREDICATE
R

R

D'R WORD .E, $,$
-W'R CONO .NE. 3

PRNTP, (ERR51

.O'E

E'L

v•s ERR5 = $MISPLACED COMMAS, 371777777777K
T'O ERRIN

COND = 4
--t '0 NEWORD

RCHECK FOR EQUALS, BEGINNING OF CONCLUSION
R ··-- - - ------- -- -

R

C'R WORD .E. $ =$
W1 R COND .NE, 3 .AND. CDND .NE. l

PRNTP. IERR6)
----- v•s ERR6 = $MISPLACED EQUALS SIGNS, 377777777777K

T'O ERRIN
0'E

E' L

EQUAL = lB
-CDND = 4
l'O NEWORD

RC~.ECK FOR TAB
R

- -- C'R WORD .E. $ l$
W 1 R CON D • E. 3

PRNTP. (ERR131
v•s ERR13 = $MISPLACED TABS, 377777777777K

0 1 E

R

64

T'O ERRIN

NEWBOT. l606060606C72Kr TERM!
- -CONO = 2

T'O NEWORD

RC~ECK- FOR CARRIAGE RETURN
R

C'R WORD .E. S 2S
W'R COND .E. 3

-- PRNTP. IERR14l ----------
V'S ERR14 • $MISPLACED CARRIAGE RETURNS, 3777777777

l 71K

R

T'O ERRIN

NEWBOTo 16060606060SSK, TERM)
- - COND = 2

T 1 0 NEWORD
- E' L ---- ------ ---------- ------------- -

RCHECK FOR s. INDICATES VARIABLE NEXT ENCOUNTERED
R SHOULD BE MARKED FOR NEED.
R

C1 R WORD
W'R

O'E

E'L

.E. 606060606053K
COND .E. 3 .OR. EQUAL·

PRNTP. IERR2Sl
~V'S ERR25 • SMISPLACED

T'O ERRIN

DOLIND = 18
T'O NEWORD

DOLLAR SIGNS, 377777777777K

R -------------- ---
RASSUME CHARACTER IS VARIABLE
R

C•E
W'R COND .E. 3

PRNTP. IERR71
- - -------V'S ERR7 = $MISPLACED VARIABLES, 377777177777K

T'O ERRIN
0 1 E

, COND " 2
- VARIAB = ITSVAL. IWORDr VARI

W1 R EQUAL

17177K

O'E

- W'R VARIAB .E. 0
PRNTP. IERRBI
v•s ERRB = SUNDEFINED VARIABLES, 37777777

TIO ERRIN
E'L
NEWBOT. IVARIAB, TERMI
NEWBOT. IWORO, SVEVARI

W'R VARIAB .E. 0
VARIAB =LIST. 191
TEMP = LIST. 191

---- - MAKEDL. ITEMP, \IARIABI
NEWBOT. IWORD, VARIABI

--- -------- ---- NEWVAL. IWORD, VARI AB, VARI

ONLYON

ERRIN

ZAPALL

EVAL

LOOP2

TYPOUT

FNDNl1B

SPCN~B

E'L

E'L

65

0 1 R DOL IND
POPTOP, ILSTNAM, IVARIABI I

O'E
T'O ONLYON

E' L
NEWBOT. IPREM, LSTNAM, IVARIABll
NEWBOT. IVARIAB, TERM)
DOLIND = OB

T'O NEWDRD

E'L
R
RI~ CASE OF ERROR, CANON IS ERASED AND MAY BE RECONSTRUCTED
R

R

P'T ERR, LINE
v•s ERR= $H' IN LINE NUMBER 1 ,13•$
IRALST, ITERMl
IRflLST. (PREM)
IRALST, IDEFI
T'D LDDPl

RVARIDUS ERRCR CHECKS FOLLOW
R
RCHECK TO SEE IF ALL NAMES ARE DEFINED
R

ERRS = '..IB
DLIST = LSTNAM. INAMESl
SEQCHK = SEQRDR. lDLISTI
NAME = SEQLR, lSEQCHK, Fl
CEFNUM = SEQLR, ISEQCHK, TEMPI .A. 777777K
W' R F • G. J

W' R ERRS
PRNT P. I COMM2 l
V'S COMM2 = $PLEASE DEFINE ABOVE PREOICATES.S, 7777

l 77777777K

E'L

T'O LODPl
E1 L
PRINT COMMENT $
PRNTP. ICDMMll
V'S COMMl = SCDNSISTENT SET OF CANONS.S, 777777777777K
fl 0 TY POUT

OEFCHK = ITSVAL. lOEFNUM, SYSTEM)
h'R OEFCHK .E. 0

ERRS = lR
P'T ERR9, NAME
V'S ERR9 = SC6, H1 UNDEFINED'•$

E'L
T'O LOOP2

R
RPRINT LIST OF PREDICATES.
R

PRINT COMMENT $ S
PRINT COMMENT SLIST OF DEFINED PREDICATES ANO DEGREES.S
PRINT COMMENT S S
I = 0
I = I + l
SEQCHK = SEQRDR. ILSTNAM. INAMESll
l\AME = SEQLR. ISEQCHK, Fl

PUTIN

RETRY

66

OEFNUM SEQLR. (SEQCHK, GI
PRMNUM DEFNUM .RS. 18
DEFNUM DEFNUM .A. 777777K
W'R F .G. J, T'O PUTIN
h'R DE~NU.'1 .E. I

P'T NDTEJ 1 I, NAM[, PRMNUM
V'S NDTE3 • $13,H'. -',C6,H'-' 1 14•S
T' 0 F.~DNMH

E 'L
T'O SPCNMB

R
Rl~PUT OF SOURCE STRINGS A~D 'NEED' FLAGS.
RA POl~TER TO THE INPUT STRING IS USED IN
RTHE LIST, RATHER THAN THE INPUT ITSELF.
RT~E ADDRESS PORTION OF THE WORD CONTAINS THE
RNUMOER OF THE LAST CHARACTER INPUTTED
RA~D THE DEC~EMENT CONTAINS THE NUMBER OF
RT~E FIRST. THOSE PARTS OF THE STRINGS
RDERIVED FROM THE CANONIC DEFINTIDNS
RIRE LEFT AS SINGLE CHAR~CTERS IN A SLIP
RC ELL.
R

LIST. (MAXINPI
IRALST. (NAf'ES I
PRINT COM~ENT $ $
PRINT COMMENT $INPUT OF SOURCE ST~INGS.S

PRINT COMMENT tTYPE FINAL PREDICATE.$
READ!.~. INA~EI

ECUIV = ITSVAL. (NAME, NAMESJ
CHKNUM • EQUIV .RS. 18
ECUIV • EQUIV .A. 777777K
W'R EQUIV .E. 0

E' L

P' T CO~M4, NAME
v•s CO~M4 = $H'-',C6,H'- NOT FOUND'·~

T' O RETRY

LIST. ISEARCHI
ll\P : ~B

LHCNT = J
PRINT CCM~ENT $ $
PRINT COMMENT $TYPE -NONEED- 1 -NEED- OR -INPUT- FOR EACH TERM

l.!
THROUGH READY, FOR TRMNUM • 11 l• TRM~UM .G. CHKNUM

PRiNT COMMENT $ $
P'T CDMM3 1 TRM,'JU,~, NAME
v•s CO~M3. $H'TER~ ~UMBER•,12,H• OF -•,c6,H'-'•S
READIN. I ANSWER I
W'R ANSWER .E. $ NEED$

NEW BOT. ($NEED$, SEARCH I
r•o READY

O'R ANSWER .E. $~DNEED$

NEWBDT. ($PLEASES, SEARCH)
T'O READY

O'R ANSWER .E. $ INPUT$
!NP = 18
PRINT COMMENT $ t
PRINT COMMENT SINPUT STRING. EXTRA CARRIAGE RETURN

ll~DICATtS rno.s
PRINT COMMENT I S
SAVI ILNECNT • 6 + 11 .LS. 18
TEMP • LIST. 191

I I'

·,f. \I)' Ti-
1-' • '))

I I: • , lf

"' l \t'
i ,I :_,c/.~·.,11 :,, ~fr'T 1·-1z~ I ;)1.,11.f

'1

f ,.

~ l '

1 1 (; ');: '.i'
. ' •) c ·,

\i.) 1.

',f ,,' 1;.
T '.' '! ,''

~ (. .

(l 'J ~- C. ~ ' i , l .) I

t V • (L_. J ·_ r:_ ·~ 1 i;- t))

,'. 1/ ~ , T :__ ~ I
, ·; l ri ,·,, ,,. •. \A. I';-. J

I'.·:'.,
r,~ -I' ,•+f"~'.l':·\f))/{J

··~-I "-- ! 7 (l '1: (,'if - l l
,., ' . .- , , . r . .:z r . ~ ;·1

t t : I F ·~ :::: <) ' l ' . ,.., ["
,i: I r =: ! 1 ~ '/ • 7 7 "'.. • l :-. . i · J" · l

:1 (l) 00 I

~ ,) " ') ' .
r I(•

{ ,\ \ s ,, ~ { J

'" '. J -~ - "

- l

I\;> • t, ·J: • c; ,., l T: >· • r-,.

J ~\ ,/ t- ·~· -(, f ~ f- ·' T 1 i

·'' ,- \ T :t, r, ', , i · 4 • 1 _, l · J '1 1., 1 • ~

(t SY ~ T L '' S , '; Y S I '. '-' l

• . " l . ~ ' ('.:l l .

~'~·" ·,1·~·,~~

\ I ~ t

I : l \,

c.·,1·

RECUl(R

OUTCHK

LUPO 3

LUPO. 5

PRTNED

LUPO 4

LUPO 6

LUPO!)

STRTSC

R

68

C~KR SEQRCR. ISTACKBl
C~Kl SEQLR. ICHKR, Fl
C~K2 SEQLR. ICHKR, TEMPl
~·R F .G.), r•o OUTCHK
o 1 R CHKl .NE. DEFINE, T•O RECURR
W'R LSTEQL. !SEARCH, CHK2l .E. 0

E'L

W'R SWITCH .G. 0
PRINT COMMENT $LEFT RECURSION DETECTED.$
E' L
f'll LUPOU2

T'll RECURR
R
RCEVELDPE 'NEED' LIST.
R

R

FIND= LSSCPY. ISEARCHI
TEMP! = LIST. l9l
~~KEDL. ITEMPl, FINDl
11.EWTOP. ISEQRDR. IFINDl, TEMPll
TEMP LSTNAM. IDEFINEl
NEED LS SC PY. I LS TN AM. I TEMP l l
PREM SEQRCR. ITEMPl
LCOK SEQRCR. (F!NDl
LIST. I NOi~ E ED l
PRMISE = SEQLR. !PREM, Fl
W'R F .G. Q, T'O PRTNED
SEE = SEQLR. !LOOK, Fl
Fl\DTRM = SECRDR. IPRMISEl
V~RlhB = SEQLR. IFNDTRM, Gl
W'R G .G. o, T'O LUP0j3
W'R G .E. ~

E'L

VARIAB = TOP. IVARIABl
W'R SEE .E. $NEEC$

NEWBOT. IVARIAB, NEEDl
0' R F • E. 0

NEWBOT. IVARIAB, NONEEDl
E'L

l'O LUP.J05
W'R LEMPTY. INONEEDJ, T•o LUPJl)6
TEMPl = POPTOP. (NO~EECJ

Fl\OTRM ~ SEQRDR. INEEDl
V~RIAB = SECLR. IFNDTRM, Fl
W'R F .G.), r•o PRTNED
W'R VARIAB .NE. TEMPI, r•o LUPJ04
DELETE. ISEQPTR. IFNDTR~ll
T'O LUPj04
IRALST. INDNEEDl
W'R SWITCH .LE. l. r•o STRTSC
TEMP! = SEQRDR. (NEEDl
TEMP2 = SEQLR. (TEMP!, Fl
W'R F .G. 0, r•o STRTSC
P'T NDTEJ, TEMP2
V'S NDTEJ = $H'NEED •,RCl,H'.'•$
T'O LUPJlJ

RGET CONCLUSION OF CANON.
R

l\EWBOT. !FIND, STACK21
~·R SWITCH .G. 4, PRTLST. 1$NEEO$, NEEDI

LUPO·.· 7

LUPO ·d
LUPO 9

LUPOl l

LUPOl 5

R

69

CCNCL = SEQRDR. (TEMPI
TERM = SEQLR. (CONCL, Fl
W'R F .G.), T'D PRMCHK
ECLI ND = lB
I~ = ~fl

l~P = DB

RGET NEXT TERM OF CONCLUSION.
R

R

PIECE = SEQRDR. (TERMJ
T'O LUP.lll
W'R IN, T'D GETINA
I~ = OB
W1 R LEMPTY. (STACKJJ

W1 R INP, T'O LUPJJ7
EDLIND = OB
CHAR = SEQLR. (PIECE, GI
W'RG.G.O

W'R EOLIND
INP lB

D'E
T' 0 LUPJ.)7

E'L
E'L

RCHECK TO SEE IF SCAN HAS FAILED.
R

R

E'L

W'R LEMPTY. (STACK2J, T1 0 LUPJ01
TEMP =. STACKl
STACKl. = STACK2
STACK2 = TEMP

FIND = POPTOP. lSTACKll
SEE = LSTNAM. lFINDJ
READS = POPTOP. lSEEJ
W'R EDLIND

EI L

SEQLR. !READS, Fl
W'R F .L. 0 .DR. INP

NEWTOP. !READS, SEEi
NEWBDT. (FIND, STACK21
I NP = lB
T' 0 LUP009

TEMP= CONT. lSEQPTR. IREADSJ + 11
HCLDP = TOP. ITEMPJ
HCLOT = BOT. !TEMPI
W1 RG.L.J

RTERMINAL CHARACTER IN CONCLUSION, CHECK STRING.
R

W'R LEMPTY, IHDLDTJ, T'O NGO DO
WORD = POPTOP. (HOLDT I
STRTND = OB
II' R WORD .L. ;)

W'R CHAR .E. WORD
NEWBOT. I WORD, HOLDPJ
NEWBOT, !FIND, STACK21
NEW TOP. (READS, SEEi
T' 0 LUPuJB

LUP0l9

TRAOVR
SKPOVR

JMPOVR

NGOOD

LUP02l

LUP023

LUP02 7

O'E

70

O'E
r•o NGOOD

E'L

OBJECT = CHARAC. !WORDI
W'R O~JECT .E. CHAR

TEMPl = WORD ,A, 777777K6
W'R LEMPTY. (HOLDPJ, T•D TRAOVR
TEMP= POPBOT, (HOLDPI
W'R TEMP ,G. 0 ,ANO, !TEMP .A. 777777KI

l .E. (WORD .RS. 181 - l, T'O SKPOVR
NEWBOT, (TEMP, HOLOP I

E'l
R

TEMP = TEMPl .V. !WORD ,RS, 181 - 1
TEMP = TEMP + l
NEWBOT. !TEMP, HOLDPI
W'R TEMPl .GE. WORD ,LS. 18 1 T'O JMPOVR
WORD = WORD + 1K6
NEWTOP, !WORD, HOLDT!
W1R STRTND1 T10 LUPJ15
NEWBOT, !FIND, STACK21
NEWTOP. !READS, SEEi
T'O LUPuJB

O'R OBJECT .E. $00NULL$
STRTND = 18
T10 LUP019

O'R OBJECT .E. SOOOENDS
T'O LUPJ15

E'l

IRALST, l FIND I
W'R IN

E'L

CHAR = SAVECH
G = SAVEG

T'O LUPOJ9

RV~RIABLE IN CONCLUSION.
RC~ECK TO SEE IF VARIABLE PREVIOUSLY DEFINED,
R

C'E
VARIAB = TOP. !CHARI
OUST = ITSVAL. lVARIAB, FINDI

·- W'R DLIST .NE. 0
SAVECH = CHAR

. SAVEG = G
IN = lB
G = -1
DLIST = SEQROR. lDLISTI
CHAR = SEQLR. lDLIST, Fl
W'R F .G. o, r•o GETOUT
W'R CHAR .L. J, T'O LUPJ27
I = CHAR
CHAR= CHARAC. Ill
I = I + 1K6
W'R CHAR .E. SOOOEND$, T'O LUP021
W'R CHAR .E. SOONULL$1 T'O LUPC23
ALLRC = lB
r•o LUP:Jl5
ALLRC = as

GE TINA

GE TOUT

LUP03 l

LUP035

E'l
R

71

T1 0 LUPul5
FINO = POPBOT. !STACK21
READS = POPTOP. !SEEi
W'R ALLRC, T'O LUP023
T'O LUP:lll
CHAR = SAVECH
G = SAVEG
NH/BOT. !FIND, STACK21
NEWTOP. !READS, SEE)
T'O LUPJJ9

RV~RJAOLE JS NOT YET DEFINED, SO PROGRAM
R ~UST SEARCH RECURSIVELY. SELECT PREMISE WITH WHICH
R TO SEARCH FOR VARIABLE.
R

PRPNTR = TOP. (LSTNAM. !CHARI I
PRMNUM = TOP. !LSTNAM. !PRPNTRI I .A. 777777K

R
RCHECK OTHER TERMS !AND VARIABLES) IN CHOSEN PREMISE.
R

R

LIST. CPUSHESI
REMPTR = SEQROR. (PRPNTRI
TERM = SEQLR. ! REMPTR, Fl
W'R F .G. O, T'O PUSHl
TEMP= TOP. !TERM)
ZIEL = TOP. CTEMPl

Rl~SERT STRING FOR VARIABLE PRESENTLY SOUGHT.
R

R

W'R ZIEL .E. VARIAB

O'E

TEMP = LIST. (9)

NEWBOT. !TEMP, PUSHES)
TEMP2 = LISl. (9)
NEWBOT. CTEMP2, TEMPI
TEMPl = LSSCPY. (HOLDT)
NEWBOT. CTEMPlr TEMPI
ABANDN. (TEMP ll

RSEE IF OTHER VARIABLES PREVIOUSLY DEFINED.
R

R

JSITOF = ITSVAL. !ZIEL, SEEl
- W'R ISITOF .NE. 0

O'E

TEMPl = LSSCPY. CISITOF)
TEMP2 = LIST. !91
TEMP = LIST. (91
NEWBOT. !TEMP2, TEMPI
NEWBOT. !TEMPl, TEMPI
ABANON. !TEMPl I
NEWBOT. !TEMP, PUSHESI

RDECIOE WHETHER TO FLAG AS 'NEED' OR 'PLEASE•.
R

l T'O LUP'.l37
W'R PRPNTR .NE. TOP. (LSTNAM. (TEMP) I,

NOPTR = SEQRDR. (NEEDI
CKNEED = SEQLR. !NDPTR, Fl
W'R F .G. 0

LUP037

PUSHl

PUSHZ

PUSHIT

PR MC HK
LUP05l

E'L
E'L
T'O LUP'.!31

72

NEW BOT, I $PLEii SE$, PUSHES I
O'R ZIEL .E. CKNEED

NEW BOT, I $NEED$, PU SHE SI

T'O LUP035
E'L

E'L
R
Rlf\FORMllTION FOR RECURSION ASSEMBLE0 1 SO SAVE STUFF
RFCR THE PUSH,
R

R

SCMERC = \JB
k'R SWITCH ,G, l

P'T NOTEl1 PRMNUM
v•s NOTEl = $H'SCAN PUSH FOR 1,13•$

E'L
T'O PUSHIT
SCMERC = l B
W'R SWITCH ,G,

pt T NOTE A, PRMNUM
V'S NOTEA = $H'PREMISE PUSH FOR'113•$

E'L
ll:EWTOP. (DEF, STACKAI
NEWTOP. <EQUIV, STACKAI
fiEWTOP. (NEED, STACKAI
NEWTOP. (SE~RCH, STACKBI
NEWTOP. (DEFINE, STACKBI
NEWTOP. (STACKl1 STACKAI
l'\EWTOP. ISTACK2, STACKAl
liEWTOP, ICONCL 1 STACKA)
l'.EWTOP. !PIECE, STACKAI
NEWTOP. (FIND, STACKAl
l\EWTOP. ISEE 1 STACKAl
NEWTOP. (RE ADS 1 STACK Al
NH/TOP. IHOLDP, STACKA)
fiEWTOP. I HOLDT 1 SUCK A I
NEWTOP, !CHAR, STACKAI
f\EWTOP, (VAR!Af\ 1 STACKAI
fiEWTOP. IPRPNTR, STACKAl
fiEWTOP., I ANSWER, STllCKA I
fiEWTOP. ISOMERC 1 STACKAI
NEWTOP, IEOL!ND, STACKAI
E~U!V = PKMNUM
SEARCH = PUSHES
l'O LUPO'J)

RCHECK WHETHER PREMISE CONDITIONS ARE SATISFIED.
R

PIECE = SEQRDR. IDEFINEI
W'R LEMPTY. ISTACKll

E'L

W'R LEMPTY. ISTACK21. r•o LUPJ11
PRPNTR = SEQLR. (PIECE, Fl
W'R F .G. o. T'O ASSMBL
TEMP = STACKl
STACKl STACK2
ST ACK2 = TEMP

LUP0'.'3

LUP057

R

73

FIND = POPTOP. (STACKl I
SEE= LSTNAM. IFINDI
READS = POPTOP. !SEEi
PRMNUM = TOP. ILSTNAM. IPRPNTRl l .A. 777777K
CLIST = ITSVAL. (PRPNTR .A. 77777K, FINDI

RPREMISE HAS NOT BEEN PREVIOUSLY VERIFIED WHILE
RSEARCHING CONCLUSION.
R

W'R DLIST .E. 0
LIST. (PUSHES)

R

TERM= SEQRDR. IPRPNTRl
TOPS = SEQLR. !TERM, Fl
W'R F .G. O, T1 0 PUSH2
TOPS = TOP. (TOP. !TOPS))
DLIST = ITSVAL. !TOPS, FIND!
W ' R Dll ST , E. :J

RV~RIARL[NOT YET DEFINED. INSERT 'NEED'
R

lK,-•$

C'E
R

EI L

NEW BOT. I $NEED$, PUSHES I
W'R SWITCH .G. 0

P'l NOTED
V'S NOTED $H-'NEED 1 REQUEST IN PREMISE CHEC

EI L
T'O LUPJ53

TEMPl =LIST. 191
NEWAOT. !TEMPI, PUSHES!
TEMP2 = LIST. 191
NEWBOT. ITEMP2, TEMPl I
TEMP2 = LSSCPY, IDLISTI
NEWBOT. ITEMP2, TEMPll
ABANDN. ITEMP2l
f'O LUP053

RPREMISE HAS BEEN PREVIOUSLY GENERATED IN SCAN
RCF CONCLUSION.
R

SOMERC = OB
PUSHES = LSSCPY, IDLISTl
TERM = SEQROR. (PUSHES!
TE~P = SEQRDR. IPRPNTRl
TOPS = SEQLR. !TERM, Fl
TEMP3 = SEQLR. !TEMP, HI
W' R F .G, 0

W'R SOMERC, T'O PUSH2
IRALST. (PUSHES)
NEWTOP. !READS, SEEi
NEWBOT, !FIND, STACK2l
T'O LUP)51

O'RF.L.O
SOMERC = lA
TEMP3 = TOP. !TOP. <TEMP3ll
DUST= ITSVAL. ITEMP3, FIND)
W 'R DLI ST • E. 0

P'l NOTED
SUBST. ($NEEDS, SEQPTR. !TERM) I

ASSMBL

LUP067

LUP071

E'L

74

T'O LUP.J57
E'L
TEMPl =LIST. (91
SUBST. !TEMPl, SEQPTR. (TERMI I
TEMP2 = LIST. (91
NEWBOT. CTEMP2, TEMPll
TEMP2 = LSSCPY. CDLIST)
NEWBOT. CTEMP2, TEMPll
ABANDN. I TEMP2 I

T'O LUP057
E'L

R
RASSEMBLE CONCLUSION TO BE TRANSMITTED UPSTAIRS
R

R

W'R LEMPTY. CSTACK2J, T'O LUPJOl
FIND = POPTOP. (STACK2J
READS = POPTOP. CLSTNAM. (FIND) I
TERM = SEQRDR. (FINO)
PREM= SEQRDR. CLSTNAM. !DEFINEll
TCPS = SEQLR. <TERM, GI
CCNCL = SEQLR. !PREM, Fl

RASSEMRLED, ADD TO ANSWER AND RETURN.
R

R

W'RF.G.O
NODLST. (FINDJ
NEWBOT. (FINO, ANSWER)
T'O ASSMBL

RIF TERM SCANNED, SKIP IT.
R
C'RG.E.O

T' 0 LUP067
R
RIF NEED OR PLEASE, ASSEMBLE.
R
O•RG.L.O

SOME RC = 0 B
TEMP = LIST. 191
TEMPl = SEQRDR. CCONCLI
TEMP2 = SEQLR. (TEMPl, Fl
W'f\ F .G.)

W'R SOMERC .OR, TOPS .E. SNEEDS
TEMPl = LIST. !91

O'E

E'L

SUBST, (TEMPl, SEQPTR, (TERMJl
NEWBOT. !TEMP, TEMPll
TEMPZ = LIST. (9)
NEWBOT, (TEMPZ, TEMPll

IRALST. !TEMPI

T'O LUP067
O'RF.E.O

SOMERC = lB
DLIST = TOP. (TEMP2l
ANTWRT = ITSVAL. CDLIST, FINDJ
W'R ANTWRT ,E. 0

w•R TOPS .E, SNEED$
PRINT COMMENT S'NEED• ERROR,$

POP

E'L

75

E1 L
IRALST. !FIND)
T 1 0 ASSM~L

TEMP3 ; LSSCPY. !ANTWRTI
INLSTR, lTEMP3, !CONT, !TEMP .A.

77777Kll .RS. 181
IRALST, !TEMP3l

O'RF.L.O
NEWBOT, !TEMPZ, TEMP)

EI L
T'O LUP07l

EI L
R
RPCP-UP ROUTINE
R

l.'R SWITCH ,G. 2
PRTLST, ($ANSWER$, ANSWER I

E'L
IRALST. !STACKll
JRALST. !STACK21
W1 R LEMPTY, !STACKA), T'O THKGOD
lRALST. !SEARCHI
RTRNl ; ANSWER
ECLIND POPTOP. !STACKAI .E.
SCMERC POPTOP, t STACKA) ,E,
A~SWER POPTOP, tSTACKAl
PRPNTR POPTOP, (STACKAI
VARIAB POPTOP. !STACKAl
CHAR ; POPTOP. !STACKAI
HCLOT POPTOP. !STACKAI
HCLDP = POPTOP. !STACKAI
READS ; PDPTOP. (STACKAI
SEE ; POPTOP. !STACKAI
FIND ; POPTCP. !STACKAI
PIECE; PDPTOP. !STACKAI
CCNCL = POPTOP. !STACKAI
STACKZ POPTOP. !STACKAl
STACK! POPTOP. !STACKAl
CEFINE POPTOP. !STACKBl
SEARCH POPTOP. ISTACKBl
NEED = POPTCP. ISTACKAl
E'UIV = ,POPTOP. ISTACKAI
DEF = POPTOP, !STACKAI
G ; 0
w'R SWITCH .G. l

P'T NOTE2, EQUIV
V'S NDTEZ = $H'POP BACK T0',13,H'.'"$

E'L
W'R SOMERC, T 1 0 POP2

R
RRETURN TO SCA~ OF CONCLUSION AFTER PUSHING
RFCR DEFINITION OF A VARIABLE.
R

POPI W'R LEMPTY. !URNll
IRALST. (RTRNll
IRALST. (FIND I
INP = 'JB

W'R S~·JITCH .L. 4, T'O LUPJ'J?
PRTLST. ($STACK!$, STACK! I

LUP079

LUP080

LUP081

76

PRTLST, ($STACK2S, STACK2J
T' 0 LU P(j09

E' L
F~DCPY = LSSCPY. IFINDJ
TEMP = SEQRDR. IF IND)
TEMP3 = SEQRDR. I FNDCPY J
TEMPl = SEQLR. !TEMP, Fl
TEMP2 = SEQLR. ITEMP3, HJ
W'Rf,G,O

T'O LUP080

W'R TE~P .E. READS

E'L

CPYHDP = TOP, ITEMPZJ
CPYRDS = TEMP3
LINKS= CONT. ITEMP2 ,A, 77777KJ .RS. 18

r•o LUP079
E'L

R
RSAVE THE RETURN ANSWER, AND DEFINE VARIABLES
RA~D PREDICATES AS GIVEN FROM PUSH,
R

R

TEMPl POPTOP. (RTRNlJ
TEMP3 SEQRDR. ITEMPll
TEMP2 SEQRDR, (PRPNTRl
TEMP4 SEQLR. ITEMP3 1 HJ
TEMP5 SEQLR. ITEMP21 Fl
W' R F , G. 0

NEWVAL, IPRPNTR .A. 77777K 1 TEMP1 1 FNDCPYJ
Af\ANDN. I TEMPl l
NEIHOP, ICPYRDS1 LSTNAM. IFNDCPYl l
NEWBOT. IFNDCPY, STACK2J
T'O POPl

C' R H • L, ;J

O'E

W'R TE~P4 .E, SNEED$
PRINT COMMENT $'NEED' ERROR,$

E' L
T' 0 LUP081

TMPVAR =TOP. !TOP, ITEMP5JJ
PRVDEF = ITSVAL. CTMPVAR, FNOCPYl

RVARIABL~ PREVIOUSLY DEFINED, COMPARE DEFINITIONS,
R

R

W'R PRVDEF .NE, -J

O'E

W'R LSTEQL, (PRVDEF, TOP. ITEMP4Jl .NE, 0
IRALST, I FNDCPY J
IRALST, CTEMPlJ
T'D POPl

E'L

RACO DEFINITION.
R

NEWVAL, ITMPVJ\R, TOP. ITEMP4) 1 FNDCPYJ
W'R VARIAB .E. TMPVAR

SUBST, IPOPBOT. ITEMP4J 1 LINKSJ
CHKJ = LSSCPY. I TOP. ITEMP4 JI
NEWTOP, !LIST. 191 1 TEMP4J
W'R LEMPTY. ICHKOJ, T'O LUP•J81

TH KG DZ

LU Pl 5.)

LU PERR

ERRLUP

78

W'R LEMPTY. (ANSWER)
W'R ALLRC, r•o HERAUS
W1 R SUMERC

PRINT COMMENT $SCAN COMPLETED. SYNTAX ERROR IN IN~

lUI STRING. S
PRINT COMMENT SPART(S) OF INPUT DR NEED STRING(Sl NOT SCANNED

1. f
T'O LUP15J

D'E
PRINT COMMENT $SCAN FAILED. SYNTAX ERROR IN INPUT

lSTRINGlS).S
E'L
PRINT COMMENT $NO'TRANSLATED OUTPUT,$
CHKNUM 0
MAXl = 0
CONCHK = SEQRDR. (SEARCH)
SEECHK = SEQLR. lCDNCHK, Fl
W1 R F .G, O, T'O HERAUS
CHKNUM = CHKNUM • 1
W'R F .L. O, T'O LUPERR
I = SEQLR. (MAXCHK, FI
OLDMAX = MAXl
MAXl =I .A. 777777K
MAX2 = I .RS. 18
PRINT COMMENT $ $
l<I' R CHARAC. (I + lKbl .E. SOJNULI $.AND. MAXl - MAX2

1 • L. 6
P 1 T NOTE4 1 CHKNUM
V'S NDTE4 = SH' INPUT TERM 1,!2,H 1 COMPLETELY SCANNED

O'E
MAX3 = CHARAC. ([)
P 1 T NOTES, CHKNUM 1 MAX3
v•s NOTE5 =· SH'LAST CHARACTER INSPECTED IN TERM'

1112,H' WAS 1 ,RCl,H' IN MIDST OF FOLLOWING CONTEXT. 1 •S
PRINT COMMENT $ S
LINEl = lMAX2 - 11/6 - 2
LINE2 = lOLDMAX + 51/b -
LINE3 = (MAXl - ll/b
THROUGH ERRLUP, FOR I = a, 1, I .e. 5

W'R LINEl + I .LE. LINE2 .OR. LINEl + I .G,
1 LINE3

C'E

BUFFER l I l

BUFFER(!)
E'L
CONTINUE

575757575757K

INPUTILINEl +II

P'T NDTEb, BUFFERlOl, ••• ,8UFFERl41
v•s NOTE6 = S5C6•$

E'L
T'D LUPERR

SOMERC = lB
HOLD= POPTOP. (ANSWER)
ENDCHK = SEQRDR. (HOLD)
TEMP4 = SEQRDR. (SEARCH)
SEECHK = SEQLR. lENDCHK, Fl
TEMP5 = SECLR. lTEMP4, Hl
W1 R F .G. O, T'D ALLDVR
W'R TEMP5 .e. $PLEASES, T'D LUPSEE

ALLOVR

ALLGNE

LUPO UT

LUPI:·~

LUPLl

CHKEl-:P

CROUT

LUPl. 5
LUPl, 7

LUPL9

79

TEMP = BOT. tSEECHKJ
W'R .NOT. LEMPTY. tTEMPJ

TEMPl = POPTOP. ITEMPJ
W'R .NOT. LEMPTY. ITEMPJ, T'O THKGDl
TEMP2 TEMPl .RS. 18
TEMP3 = TEMPI .A. 777777K
TEMPI = CHARAC. ITEMPlJ
W'R TEMPl .NE. $000END$.AND. TEMPl .NE.

H;JNULL$.OR, TEMP3 - TEMP2 .G. 5, T'O THKGDI
EI L

E'l
R

T•o LUPSEE

RSCAN WAS SUCCESFUL. PRINT OUT 'NEEDED' TERMS.
R

W'R ALLRC

C'E

PRINT COMMENT $ $
PRINT COMMENT SACDITIONAL SUCCESSFUL SCAN.$
T 1 0 ALLGNE

PRINT COMMENT SSCAN SUCCESSFUL.$
ALLRC = IB
PRINT COMMENT $TRANSLATED OUTPUT (IF ANY) FOLLOWS.$
CONCHK = SEQRDR. tSEARCHJ
TRMNUM = 0
CONCL = SEQLR. ICONCHK, Fl
SEECHK = SEQLR. IENDCHK, GJ
TRMNUM = TRMNUM t 1
W'R F .G. o. T'O THKGDl
W'R CONCL .NE. SNEED$, T'D LUPOUT
PRINT COMMENT $ $
W'R SEECHK .E. $NEED$, PRINT COMMENT $'NEED' ERRS
P 1 T NOTE7, TRMNUM
V'S NOTE7 = $H'TERM NUMBER',12,H'. '•$
PRINT COMMENT $ $
SfECHK = TOP. ISEECHKJ
!NP = OB
THROUGH LUPIOl, FOR I = ~, I, I .E. I4
RUFFER I I J = 575757575757K
BUFFERl14J = 777777777777K
I = D
G = 3)
WRDCNT = 0
W'R G .LE. -6

G = 3·J
WRDCNT = WRDCNT t 1

EI L
W'R I .E. 80

EI L

PRNTP. (BUFFER ICJJ
T 1 0 LUPlO.)

w IR !NP

O'E

!NP = lB
TEMPl = CHARAC. ITEMPJ
TEMP = TEMP t IK6
W'R TEMPl .E. $00NULL$, T'O LUPI.07
W'R TEMPI .E. $)QJEND$, T 1 0 LUP109
T•o LUP113

W'R LEMPTY. tSEECHKJ

SK. IP I T

t 1 o ~<, 1_ r\ !' 1 · J •

c r ·J:) -~ 1,

cv·~y = t s
TI ~l H.,Jl_ r rE:

01

~ 1 1.Z '(i1!~L~ .f_. -$.CJR. WJ·\D .[. t
L:~r-'Y\Y ::o rJ,J'',."1 Y .. LS. {) .V. W':lRO .f... 77K
o°'{ l'JLI~d, HJ'JCT l:H kFTlH!j
T'~J f~·'r1'C~C

E ' ·~
EI,'-'.

$, T'O S~IPIT

82

1••···•••1
H5364

START

AROUND

RETURN

GO BACK

READER

5163 PRTLST MAO FOR
EXTERNAL FUNCTION (NAME, LSTOUTI
!';'S INTEGER
~COLEAN LEMPTY
e•o PRTLST.
PRINT COMMENT S $
P'T NOTEBB, NAME, GETMEM. (01
v•s NDTEBB = $C6,H' MEH=',l6•S
l = 0
LIST. (STACKI
LI SS NM = LS TOUT
f\UMBER = ITSVAL. (LISSNM, STACKI
W'R NUMBER .NE. 0

E' l

P'T NOTE21 NUMBER
V'S NOTE2 = $H'l!ST'113•$
W'R LEMPTY. CSTACKI

O'E

E' L

PRINT COMMENT $ S
IRALST. (STACK I
FUNCTION RETURN

S = POPTOP. (STACKI
POINT = POPTOP. (STACKI
NUMB = POINT .A. 777777K
POINT = POINT .RS. 18
W'R POINT .E. 11 T'O RETURN
T10 GOBACK

I = I + 1
f\t;MB = I
NEWVAL. (LISSNM 1 NUMB, STACKI
P'T NOTE3 1 NUMB
V'S NOTE3 = SH'BEGIN 1 1 l3 1H1• 1•$
S = SEQROR. (LISSNMI
l = LSTNAM. <LISSNMI
W'R L .NE. ·)

O'E

E'L

PRINT COMMENT SDLIST.S
NEWTOP. (NUMB .v. 1K6, STACKI
NEWTOP. (S, STACKI
LISSNM = L
T'O STMT
PRINT COMMENT SEND DL!ST.S

PRINT COMMENT SNO OL!ST.S

W = SEIJLR. CS, Fl
W'R F .G. 0

P'T NOTE6 1 NUMB
V'S NOTE6 = $H'END'113 1H'.'•$
T•O AROUND

C'RF.E.!)

M5364

W'R w .A. 7000~07K5 .NE. o, T10 READER
PRINT COMMENT SLIST NAME.$
NEWTOP. (NUMB, STACKI
NEWTOP. (S, STACKI
L!SSNM = W
T'O START

C'E
P'T NOTES, W, W
V'S NOTES = SH. •.,C6 1H.• '.,K12,H. •.•S

5163 05,

EI l

f' ii

T I u '.',()II 1\C K

-84-

Bibliography

1. Cheatham, T. E. and Kirk Sattley, Syntax-Directed Compiling, Proceedings
1964 Spring Joint Computer Conference, pp. 31-57, American Federation of
Information Processing Societies (1964).

2. Donovan, John J., Investigations in Simulation and Simulation Languages,
Ph.D. Thesis, Yale Univesity, New Haven, Connecticut; Fall, 1966.

3. Donovan, John J. and Henry Ledgard, A Formal System for the Specification
of the Syntax and Translation of Computer Languages, M.I.T., 1967.

4. Post, E. L.,"Formal Reductions of the General Combinatorial Decision
Problem", American Journal of Mathematics, Vol. 65, pp. 197-215; 1943.

5. Shea, Dorothy, CTSS SNOBOL User's Manual, Project MAC Memo MAC-M-307-1,
Project MAC, M.I.T., Cambridge, Mass.; October, 1966.

6. Smullyan, R. M., Theory of Formal Systems, Princeton University Press,
Princeton, New Jersey; 1961.

7. Weizenbaurn, J., "Symmetric List Processor", Communications of the ACM,
Vol. 6, No. 9; September, 1963.

8. Weizenbaurn, J., The Symbolic SLIP-Mad System, Project MAC, M.I.T.,
Cambridge, Mass; September, 1965.

CS-TR Scanning Project
Document Control Form

Report # 14:.s -Tf\-4 b

Date: /JJ II J '15

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other: -----------
Document Information Number of pages: ~~ (91-l !Y)AGfS)

Not to include DOD forms, printer lntstructions, etc ... original pages only.

Originals are:

D Single-sided or

~ Double-sided

Print type:
D Typewriter D Offset Prass D Laser Print

Intended to be printed as :

D Single-sided or

}(_Double-sided

):2(InkJet Printer D Unknown D Other:. ______ _

Check each if included with document:

~ DODForm

D Spine

D Other:

As. Funding Agent Form

0 Printers Notes

Page Data:

)(' Cover Page

0 Photo negatives

Blank Pages(bypege!IUl'llb9I): __________ _

Photographs/Tonal Material (bypege number!: ________ _

Other <"*,if*Di.,... numOerl:
Description : Page Number:

~meQ?o" frlA!f) ()... fl'f) V,N1t= 1 to TITLE;- pc tw. f"t;;f~ J-}Tf ,4.ivitBU')'i .. q~
(gs....., {) sc:J\Nc.-o•Jt"--Ol._, '-a\lm F.. NIJ~lJb A<1FN1 l:lDP}l¥1JS(.1)

y ~

Scanning Agent Signoff:

Date Received: /)..J/_JJ_/'tJ' Date Scanned:~~ C\S Date Returned: tJ..1~011S

Scanning Agent Signature: M..~ 'h) -GA--

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security cl•••lllcetlon ot tltl•, body of llbetrect .,.d inde•ln' .-rnotetlon mu•f be entered wllen Ute over•U report ie claeel(led)

I. ORIGINATING ACTIVITY (Corporate a.1thor) ... REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC ... GROUP

None
3. REPORT TITLE

A Canonic Translator

.. DESCRIPTIVE NOTES (Type of report 9nd JnclueJve datee)

Bachelor's Thesis, Electrical Engineering, June 1967 .. AUTHOAISI (L.Ht name, llret nmne, Initial)

Alsop, Joseph w.

.. REl"ORT DATE 7•. TOTAL NO. OF PAGES r NO. OF REFS

November 1967 84 8 ... CONTRACT OR GRANT NO . . •. ORIGINATOR'S REPORT NUMBER(Sl

Office of Naval Research, Nonr-4102(O1) .. PROJECT NO. MAC-TR-46 (THESIS)
NR 048-189 .•. OTHER REPORT NOISI (Any other mmibera that mey be

c.

RR 003-09-01 •••l•n•d thh report) •. ... AVAILABILITY/LIMITATION NOTICES

Distribution of this docwnent is unlimited.

"· SUPPLEMENTARY NOTES "· SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentagon

Washington, D. c. 20301

... ABSTRACT

This thesis presents an algorithm to recognize and translate sets of character

strings specified by canonic systems. The ability of canonic systems to define the

context sensitive features of strings and to specify their translation allows the

algorithm to recognize and trans late real computer languages. It is also applicable

in other language systems.

Canonic systems are discussed, and several examples of their use are given.

The algorithm is described, and examples of canonic translation are presented

using a program implementation.

... KEY WORDS

Canonic systems Ma chine- a id ed cognition Time-sharing
Canonic translators Multiple-access computers Time-shared computers
Computers On-line computers Trans la tors

DD (M.l.T.) 1473 FORM
I NOY 61

UNCLASSIFIED

Security Classification

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Resear.ch Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

