

Tius blank page was inserted to preserve pagination.

A CANONIC TRANSLATOR

by

Joseph Wright Alsop

Submitted in Partial Fulfillment
of the Requirements for the
Degree of Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1967

Signature of Author

Department of Electrical Engineering
19 May 1967

Certified by

Thesis Supervisor

Accepted by

Head of Department

Acknowledgement

A heartfelt note of thanks is due my thesis supervisor. Not only
has Professor Donovan's work provided the motivation for the work herein
described; his suggestions, ideas and enthusiasm have made possible a
successful conclusion to this thesis.

I am indebted to Professor Joseph Weizenbaum for the use of the SLIP
system and most particularly for the time he took to explain the details
of its use.

Summary

An algorithm to recognize and translate sets of character strings
specified by canonic systems is presented. The ability of canonic systems
to define the context sensitive features of strings and to specify their
translation allows the algorithm to recognize and translate real computer
languages. It is also applicable in other language systems.

Canonic systems are discussed, and several examples of their use are
given. The algorithm is described, and examples of canonic translation

are presented using a program which implements it.

Structure of
Jllustration
Flowchart of

Flowchart of

Figures and Diagrams

program,
of scan,
simplified algorithm,.

general algorithm.

18

22

28

A Canonic Translator

The development of a generalized compiler whose function is directed
by a formal language specification has aroused significant interest and
effort, This thesis presents an algorithm for the recognition and translation
of character strings belonging to a set of strings whose syntax and translation
have been defined by a canonic system, Since these systems are capable
of defining context sensitive features of language, the algorithm can
recognize and translate real computer languages. It is applicable to an
even wider class of language systems, including boolean algebras and
theorem proving, which can be characterized by this method.
Canonic systems form the basis and motivation for this work. The
first task of the paper is to discuss briefly and informally the improved
specification of syntax and translation made possible by the development
of canonic systems. The discussion includes a description of the form of
the systems and several examples, among them a complete formal description
for the syntax of the string processing language SNOBOL. The contribution
of this thesis lies in the presentation of an explicit algorithm which
employs a canonic system characterizing the syntax and translation of a
set of source strings to recognize a particular source string and perform
the translation. The latter part of the thesis describes the algorithm and

the program which implements it.

I. Formal Syntax Specifications

Backus-Naur Form is the most widely known formal specification of
gyntax. It provides a convenient starting point for a discussion of
canonic systems. The general form of a rule or production of a BNF
specification is as follows:

<name 1> ::= terminal 10" <name 11> ... <name 1ln> terminal 1ln

terminal 20 <name 22> ... <name 2m> terminal 2m |
The sign ::= should be read "may be replaced by'" and the vertical bar

represents "or'. The names enclosed within brackets are arbitrary designations

for defined sets of strings. The definition may be recursive; that is, the

set on the left may be defined in terms of itself if the name of the set

also appears on the right. 'terminal n m'" designates an arbitrary string

of terminal characters, possibly the null string. As a concrete example,

consider the following BNF system.

<assignment’> ::= <letter> < expression>

<expression> <letter> l <letter> + <expression>
<letter > ::= XlY‘ Z
An example of a string which is a member of the set <assignment> is:
Y=X+2
The strings comprising a set definedby a BNF system normally appear
to be generated in a '"top-down" manner. The highest level definition
(< assignment) is generally placed first, and one normally reads a
BNF rule from left to right. In order to gain some insight into the form

and nature of canonic systems without launching into a formal definition,

consider turning a BNF production around and modifying the punctuation somewhat.

1. v letter 4’ X expression " v = X assignment

The lower case letters (v and x) are variables representing strings

chosen from their respective sets (letter and expression). The names of

the sets are underlined and called predicates. The definition may be read
very elaborately as follows: "If v represents a string chosen from the

set letter, and if x represents a string chosen from the set expression,

then the string formed by concatenating the string represented by v with

an equals sign and the string represented by x is a member of the set
assjignment." The sign c{"acts as the conjunctive "and", and the sign }" acts
as an assertion sign. A string of variables and terminal characters (e.g. v=x)
is a term, and a term followed by a predicate in the manner above is a

remark. Those remarks to the left of the assertion sign 4are referred to

as premises; those to the right as conclusions. This example illustrates

the most basic form of a canon in a canonic system. A more formal description
may be found in Donovan (2) and Donovan and Ledgard (3). This discussion
will remain highly informal.

What improvements in the definition of a syntax do canonic systems
permit? The principal weakness of BNF systems is their inability to describe
the context sensitive features of a set of strings; for example, the
requirement in most computer languages that all reference labels of a program
be singly defined as statement labels. This restriction could only be
imposed in BNF notation by some process akin to defining each possible
legal program, in toto, in a separate BNF rule. Certainly all sets of
strings which can be defined in BNF may be defined by a canonic system by
transforming the rules in the manner illustrated above. 1In addition, one

may "cross-reference', or use a variable more than once on the left.
2. X name 4’ x label F x labelname

Labelname is the intersection of label and name; that is, only those

strings which are members of both the set label and the set name are members

-i1l-

and makes it possible to generate all ordered pairs with the property
described.

A concrete example of the production of a particular member of a
defined set will perhaps serve to clarify the nature and recursive properties
of canonic systems. Assume we wish to show that <A<X, Y,>> is a member
of the set notin. Using canon 4, we may assert

A letter.

We may then substitute this result into the premise of canon 7, and assert
that

<A o A> notin,

We then derive from canon 5 that
<AgX> differ
<A YD differ.
Finally, we apply canon 8 twice as follows:
<A¢A> notin c1—<A<x> differ }' <A X,> notin

<AgX,> potin + <AcY> differ }- <AcX, Y, > notin

Note that we use the conclusion from the first application of the canon to
establish the premise in the second application.

Now that the reader has grasped some of the power and elegance of
canonic systems, a short history of their development is in order. This
work is based completely upon the presentation of canonic systems by Donovan
and Ledgard (3) and Donovan (2), who is responsible for their appearance
in present form. His work evolved from an applied variant of Smullyan's
elementary formal systems (6) and Post's canonical systems (4). The present
canonic systems are so named in recognition of Post's work.

To further illustrate canonic systems, I present a complete syntactic
definition of a restricted computer language MINI MAD. The present example

and the foregoing example of notin both draw heavily from the examples

-12-

presented in Donovan (2).

MINI MAD will permit only a few principal types of statements: an
assignment statement, a transfer statement, and a statement formed by
combining a simple conditional with one of the two other statements.

All programs must terminate with an unlabeled END OF PROGRAM statement.

The only boolean operator allowed is arithmetic equality (.E.), the only
arithmetic operator allowed is addition (4), and only arbitrary length
integers will be permitted as constants. The permissible statement labels
are the single letters A, B and C; the variable names allowed are the letters
X, Y and Z. 1In addition, restrictions on statement length will be omitted
and no blanks will be allowed save those which are part of the statement
definition (e.g. TRANSFER TQO). The character * will be adopted as an end-
of-card character, analogous to a carriage return. It should be understood
that all restrictions and omissions are introduced for the sake of simplicity.
A complete formal syntactic definition of the string-processing language
SNOBOL may be found in appendix 2.

The following example is a member of the set MINI MAD program, with a
carriage return substituted for the character *.

A X=15

B X=X+1

WHENEVER X .E. 123, TRANSFER TO A
TRANSFER TO B
Three canons will suffice to define the set of arbitrary length integers.

9. |" 0alaZ2a ... a8a9 digit

10. d digit F d integer

11. d digit 4’ i integer F‘ di integer

The use of the predicate notin, defined previously, will later implement

the restriction that no statement labels be multiply defined.

13

12. }‘ <K AgB>A <A C>a <BC> differ

13, <xgy> diffcrl’ <yex> differ

14 agigit | <den> potin

15. <xeyd> M({/ <xd> differ |‘ <x¢d, y> notin

One should keep in mind that only lower case letters are used as
variables representing strings. The signs F} 4/,<Z,A are punctuation
signs in the canonic system itself., All other characters are drawn from
the alphabet of the language being defined.

The definition of the predicate in will serve to implement the restriction
that all reference labels be defined. The set in will consist of pairs of
letter lists such that all letters in the first list appear somewhere in
the second list. If the list of reference labels and the list of statement
labels in a program satisfy this relationship, we know that there is at
least one statement label corresponding to every reference label.

16. F AaBaC label
17. I‘ <A A> in
18 <xey> in & Z1abel Fo<x Ly> in
19. <xgy> in & Llabel b <ULx fy> in
20, <xey> in 4 <zey> in F<xzey> in

Canon 17 provides a simple starting point for the recursive production
of the more elaborate members of in, and corresponds to a program with
neither statement nor reference labels. The next two canons describe the
ways in which one may add to the lists of statement and reference labels.
We may of course add a label at will to the list of statement labels, and
may add a label to the reference label list as long as we also add it to
the list of statement labels. The last canon provides for multiple referencing
of a statement label. Using canons 16 through 19 alone, it is not possible

to produce the following member of in

14~

< B, By A, B, C)>
We may define the set expression as follows..
21. l" XAYAZ variable

22. v yariable |" v expression

23. i integer “' i expression

24, v variable ¢ X expression |’ v + X expression

25. i integer 4’ X expressien |' i + x expression

The predicate next defined, conditional, will permit us to transform
any unconditional statement into a conditional statement when a string from
the set is placed before the unconditional statement.

26. ‘* A conditional

27. b4 exgressionq’ y expressionk WHENEVER X .E. Y, conditional

Canon 26 allows us to produce a string which leaves the statement unchanged.
Canon 27 defines a set of strings which will change any unconditional MINI
MAD statement (e.g. X = 3) into a conditional statement (e.g. WHENEVER
X+Y .E. 2, X =23).

The "building block" sets defined so far will permit us to define the
set of MINI MAD programs in fairly short order. A convenient vehicle for
the task is a predicate of order three. The first element of the ordered

triplets which make up the set program with label lists will be a list,

punctuated by commas, of all statement labels used. The third element will
be a similar list of reference labels. The second element will be the
string of statements in which these labels are used. Again, we begin with
a convenient starting point for later recursion.

28. |,< A & A ¢ /A > program with label lists

29. s« P «r> program with label lists 4 v variable 4 X expressionc*/ c conditiona
<se CV =X *per program with label lists

30. <s<p <I'> program with label lists q’.l label 4’ v variable‘+ x expression +
c conditional 4/<l<s> notin
<l s<l CV=V *pr program with label lists
1 <

-15-

Canons 29 and 30 describe the way in which we may add an assignment statement.
either conditional or unconditional. Using the first canon of the two,

we may add an unlabeled assignment statement; using the second, we may

add a labeled statement. Note that the use of notin in canon 30 imposes the
restriction that the label used must not be in the list of previous statement
labels.

30. < s«Pp<r> program with label lists 4’ A label C" ¢ conditional

|" s € TRANSFER TO L* pe J,c> program with label lists

31. <s<p<r> program with label lists c*,]Am 1abe1c* c conditional q’

<mgs notin

F m,scm C TRANSFER TO{ * pg [lr program with label lists
These two canons allow use to construct strings which include labeled

and unlabeled, conditional and unconditional transfer statements in a
manner analogous to that of the preceding pair of canons. We now need but

one more canon to produce strings which are legal MINI MAD programs.

32, &5 <p <> program with label lists 4’ <rgs> in
P END OF PROGRAM* MINI MAD program

This canon insures that all reference labels in the members of the set

MINI MAD program are defined, and that all programs are properly terminated.
This completes one of many possible canonic system definition or programs
in MINI MAD. The canons are collected in sequence in appendix 1.

If the reader has clearly understood the manner in which canons may
define, by production, the syntax of real computer languages, one further
illustration may provide some insight into the manner in which these systems
may also define translation. Assume one wishes to translate MINI MAD into
another language, for instance an assembly language such as FAP. 1In order

to accomplish this, one might expand program with label lists to include

a fourth term which would contain the translation of the string of statements.

-16-

The canon for an uncoadizional, un

abeled TRANSZER TO statement might

appear as follows.

33. LS peT ot prous nslation < }Zjvz}_‘xw_l

F < se LRANSEER TO £% pe Lov gx TRA £5>

lists and t

and translati

This poust

further in the forms the contribution

of this thesis, to which I now turn.

«17-

II. The Recognition and Translation Algorithm

Canonic systems will prove very useful in explicitly and concisely
defining sets of strings such as computer languages. Such definitions would
eliminate many ambiguities existing in language manuals. These systems
could prove of greater value, however, if a canonic system could be used
as a basis for recognizing strings from the defined set., 1In addition, if
the members of the defined set are ordered pairs, triplets, etc., the
usefulness of canonic systems would be still further extended if the
algorithm could be used to produce the missing terms corresponding to a
given term. The remaining part of this thesis discusses such an algorithm,
the program which implements it, and the nature of the constraints imposed
on the canons in order that the program be able to interpret them.

This algorithm is an extension of the algorithm presented by Cheathem
and Sattley (1), which is capable of recognizing strings produced by a
Backus-Naur system, The modifications to their algorithm, which appears
here in quite different form, reflect the greater power of canonic systems
in defining strings. These modifications include mechanisms for handling
predicates of degree greater than one, for properly interpreting the
multiple use of a variable among the premises, and for generating the
translation specified. 1In the case of a canonic system where all predicates
are of degree one, and no "cross-referencing” is used, the algorithm operates
in a manner almost identical to that of Cheatham and Sattley.

The program which embodies the algorithm divides into two parts. A
preliminary phase checks the syntax of the canonic system used. It insures,
for example, that all variables used in the conclusion of a canon are to be
found in the premises, and that all predicates used as premises are defined

somewhere as conclusions. Further restrictions, which will be clarified

-18-

later, are imposed on the form of the canons and are checked at this point.
The program then assembles the canons into a list structure which reflects
their form and content, and control is passed to the evaluative phase of

the program. The SLIP list-processing system, developed by Weizenbaum (7)

vastly simplified the implementation of the algorithm.
INPUT STRINGS

Check syntax of
canonic system

and
assemble scan of
Canonic System —>{list input string(s)
structure /‘;yand generation
_-" of translation
-

list structure
for
canonic systen

TRANSLATION

Fig. 1. Structure of Program

The second part of the program represents the principal programming
effort. This phase scans the input string, determines whether it satisfies
the canonic definition, and generates any associated translations. The
algorithm is principally "top-down'; it attempts first to match the input
string against the final predicate in the canonic system (e.g. MINI MAD program),
and it arrives only through recursion at a lower-level predicate, (e.g.
integer or digit). Consider the following simplified statement of the
algorithm for the case of a canonic system involving only predicates of
degree one. The simplified algorithm will be later expanded to include

more general cases. Imagine an arbitrary character string, with a mental

-19-

pointer to the left of the first character, and a canonic system defining

a set of strings. We wish to determine whether the character string is

a member of the set,

1. The program considers in sequence those canons directly defining the
string in question, and performs the following steps (2 through 6) for

each such canon.

2, The conclusion of the canon is matched, item by item, against the
input string. If the item in the conclusion is a terminal character,

step 3 is performed; if a variable, step 4 is performed. If the end of the
canon is reached, the algorithm proceeds to step 5.

3. The item in the conclusion is a terminal character. It is compared
with the character in the input string to the right of the mental pointer.
If they are identical, the program returns to step 2 to consider the next
item in the conclusion, with the pointer shifted one position to the right.
If not, the scan fails and the program returns to step 1 to consider any
remaining canons for the string.

4, The item in the conclusion is a variable, and the program must operate
recursively to determine the definition of the variable in terms of the
input string. In other words, it must determine the number of characters
from the input string, commencing with the character to the right of the
pointer, which should be alloted to the definition of this variable. To
accomplish this, the program assembles a new input string which is a copy
of all input characters to the right of the pointer, and picks a predicate
among the premises of the canon which contains the variable, After saving
its present state, the program returns to step 1 to determine the definition
of the variable by examining the canons defining the premise predicate
chosen. If there is no response upon return, the scan fails and the

program returns to step 1 to consider alternative definitions of the string.

«20-

If there is a response, the program conpares it with the original input
string to determine the definition of the variable and moves the mental
pointer to its new position following the definition of the variable.

The algorithm returns to step 2.

5. The scan of the conclusion is complete, and the definitioms, in terms
of the input characters, of the variables-appearing in the conclusion have
been recorded. The algorithm now inspects the premises. Those premises
used in step 4 to determine the definitions of the variables in the conclusion
may already be asserted, since they were used to generate the definitions.
However, a variable may appear twice in the premises, and we must insure
that the string which forms the definition of the variable is a member of
both sets. The algorithm forms an input string from the definition of the
variable and operates recursively to determine if the other premise
containing the variable is also true; i.e., if the string which is the
definition of the variable is also a member of the second set named as

a premise predicate. Upon return, if there is no response, the algorithm
returns to step 1 to pursue alternatives as before. If there is a response,
the program insures that the string has been fully scanned. If there are
still more unchecked premises, it treats them in the same manner. After
all such premises have been successfully verified, the simplified algorithm
proceeds to the last step.

6. The results of the scan at this level, which constitute the response
for the next higher level, are assembled. There are no results if the

scan failed. Otherwise, they consist of the input string with the mental
pointer resting at the point where the scan of the conclusion was completed.
The algorithm now returns to step 1, if there are more canons directly

defining the set of which the input string is possibly a member. Since

-21-

each canon could conceivably add to the results, the program must actually
be equipped to handle multiple results and hence multiple responses at the
next higher level, and check out each possibility. The example which
follows will serve to clarify the problem. If there are no further canons,
the program proceeds to step 7.
7. The program "pops" its state; that is, it returns to pick up where it
left off at the next higher level. 1If the highest level has been reached,
then the results are examined for a completely scanned input string. If
such a response is found, the input string is a member of the originally
defined set. If mot, there exists a syntax error in the string. It is
not clear that the set of all syntactically incorrect sets will be recognized
by the algorithm. This recognition may be unsolvable in general. The
algorithm is flowcharted below.
A simple example will serve to illustrate the process and the problems
involved in multiple answers. Consider the following canonic system.
34. P' 1 digit
35. F' 2 digit
36. F 3 digit
37. d digit F d integer

38. d digit 4/ i integer } di integer

This system defines integers as arbitrary length strings of 1, 2 and 3. We
wish to determine by use of the algorithm whether the string 31 is an

integer. The process is described in the shorthand fashion below.

Step

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

Recursion
Level

[8]

-

QO F N W W WMRNRN W W WRN = NN~

-22-

Input Canon Next
String Considered Result(s) Action
" 31 37 _— Push for digit
' 31 34 Fails Next Canon
& 31 35 Fails Next Canon
N 31 36 3‘#1 digit Pop
3t 1 37 B\LI integer Next Canon
¢31 38 — Push for digit
JIE)I 34 Fails Next Canon
1,31 35 Fails Next Canon
4,31 36 3, }digit Pop
3“1 38 —_ Push for integer
11 37 -_— Push for digit
‘LI 34 \&1 digit Next Canon
$l 35 Fails Next Canon
&1 36 Fails Pop
1$ 37 14' integer Next Canon
¢1 38 —_ Push for digit
\Ll 34 1\P digit Next Canon
¢1 35 Fails Next Canon
¢1 36 Fails Pop
1l 38 -_— Push for integer
37 — Push for digit
v 34 Fails Next Canon
v 35 Fails Next Canon
{ 36 Fails Pop
4 37 Fails Next Canon
v 38 — Push for digit
¥ 34 Fails Next Canon
¥ 35 Fails Next Canon
t 36 Fails Pop
38 Fails Pop
38 1* integer Pop
38 31 | integer
Done

3,1 integer

Flowchart of

-23-

Simplified Algorithm

*
ENTER
with input string and Check for fully
predicate scanned string
¢ output results.
Set pointer to left YES
of imput string
NO, =
c ——| LEvEL 07 |—froP |
(Another) canon defin-| NO
(:) ing this predicate?
YES
Shift pointe Another item in NO
conclusion of canon?
YES
L, Identical to o AV _ o
el nother remlse
e N0 next :,_PERMINAL What_type? —¢)?P
£ail ré“—‘character in XE_%ARIABLE in canon?
g input string] YES
\ i

Select premise predicate
with the variable.

YES

Used to generate

Create new input string
of characters to right
of pointer.

definition of variable?

NO

SV Use definition of
PUSH * variable as input
string
No RETURN *

"PUSH" means save state,

"POP" means pop state, go to correct "RETURN". (:) oo

Save definition
of variable

go to "ENTER".

esponse with full
scanned input?
NO

Assemble results,
consisting of 7
scanned input string

_24-

At this point, the algorithm has arrived at two answers; i.e., that 3
and 31 are both integers. The first could not be immediately rejected
because the algorithm has no global overview which informs it that there is
no syntactic type following integer which would account for the rest of the
string. At level zero however, we may eliminate such results, and the
single assertion that 31 is indeed an integer remains.

We now consider the problem of left recursion. Suppose one wrote

canon 38 in the following manner.

39. i integer ck d digit } id integer

The defined set integer has not been altered, but the algorithm will no
longer function correctly. Note that whenever the program operates
recursively to determine the definition of integer (steps 1, 10, 20),

the length of the input string has been reduced by one character. Unless
the scan proceeded from right to left, the program using the canon above
would be caught in an endless loop, terminated only by the exhaustion of
memory. Although it would be possible to devise a scheme to avoid the
problem and still interpret the canon correctly, this would require

some substantial effort which adds nothing to the scope or generality of
this work. Instead, the canons are inspected for left recursion and rejected
if it occurs. This constraint does not prevent the definition of any set
of strings which ¢ould otherwise be defined.

The example brings out one other problem. At different points in the
procedure (e.g. steps 42 and 43), the program must handle several possible
answers which result from the various ways in which the canons may define
the input. On a theoretical level this presents no problem, but in practice
the manipulation of multiple large and nearly identical lists may exhaust
memory. For this reason, one should follow two suggestions in using the

system. Firstly, all syntactic types should be defined in as little

-25-

context as possible, so that the legality of a particular string is immediately
apparent, and does not depend on a construction occurring much further
along in the input., In particular, the canonic system should not allow
the input string to be parsed in several different ways, only to discover
much later that only one is legal, To do so involves the risk of exhausting
memory. Secondly, the canonic system should be unambiguous; that is, a
particular string should be generated by only one production or path of
application through the canons. Otherwise, both productions will give rise
to results. Although the ambiguity could be eliminated by checking for
identity among the results at any particular point, the comparisons would
be extremely time consuming.

We turn now to an extension of the algorithm for the case in which
we wish to consider evaluating a predicate of degree greater than one, for
which one or more of the terms arenot known and are desired as translated
output. The algorithm is presented at an arbitrary recursive level with
input of arbitrary degree. For some of the input terms a character string
is provided; some are merely marked '"meeded'". Imagine a pointer positioned
as before to the left of every term of the input set for which a character
string is provided.
1. The program considers in sequence those canons directly defining the
input in question, and performs the following steps (2 through 7) for each
such canon.
2. The algorithm assembles a list of undefined variables which occur
in those terms of the conclusion corresponding to ''meeded" terms in the
input set. These are variables which would not normally be defined during
the scan of the conclusion, but for which definitions must be obtained in
order to generate the required translatioms. Variables appeariung only in
the premises of the canon and not in the conclusion are also added to the

list.

-26-

3. The input strings provided are matched in sequence against the corresponding
terms in the conclusion of the canon. The program skips conslusion terms
corresponding to '"nmeeded" terms in the input set. If the item in the
conclusion at any particular point is a terminal character, the algorithm
performs step 4; if a variable, the algorithm performs step 5. When the
scan of a term is complete, the program leaves the pointer where it rests

and proceeds to the next term for which input is provided. when all such
terms are scanned, the algorithm proceeds to step 6.

4, The item in the conclusion is a terminal character. It is compared
with the character to the right of the pointer in the input string. If

they are identical, the program returns to step 3 with the pointer shifted
right one position. If they differ, the scan fails at this point and the
algorithm returns to step 1l to pursue alternative definitions for the input.
5. The item in the conclusion is a variable, and the algorithm must operate
recursively to determine its definition. The program assembles a new input
sequence from one of the premises in which the input appears. For the

other terms in the premises, it assembles a character string if the variables
therein have been defined. If one or more of the varijables is undefined

and in the "needed" list, it marks the term as '"'meeded". Otherwise, the
term is marked as unneeded. The program saves its state and returns to

step 1 with the assembled input set for the chosen premise predicate.

Upon return, if there is no respouse, the scan fails. If there is a
response, the pointer of the input string is advanced accordingly, the
definition of the undefined variables recorded, and the algorithm returns

to step 3.

6. The scan of the conclusion is complete. Those premises which were

not employed during the scan to generate definitions must now be verified.

For these premises, the proper input strings for the terms are assembled

-27-

from the now-defined variables, and the algorithm operates recursively

to determine whether the premise is satisfied. When all unchecked premises
have been satisfied, the algorithm proceeds to the final step. If the

return from recursion produces no response, or an input string not fully
scanned, the scan fails and the algorithm returns to step 1 to consider

any remaining canons.

7. If the scan succeeded, the results for the next higher level of recursion
are assembled. For each term given as a string, the string is returned

with the mental pointer moved to a position following the last character
inspected in the conclusion scan. For each "needed" term, the definition

of the term is assembled from the terminal characters and the now-defined
variables in that term of the conclusion. If there are more canons to be
considered, the algorithm returns to step 1. If not at level 0, the program
then pops to the next higher level. 1If the zero recursion level has been
reached, the evaluation is nearly complete., The results are checked to
determine if there is a response in which all given terms have been fully
scanned. If so, the '"needed" terms are outputted. If not, there is a

syntax error in the input. The expanded algorithm is presented as a flowchart

below.

-28-

Flowchart of General Algorithm

ENTER
with input set
land predicates Check results

J/ Print translations

N

Shift

(Another) canon defining NO YES
this predicate? ————>| LEVEL 0 ? NO| POP

\]/YES

Assemble list of undefined
variables from 'NEEDED' terms
in the input

J

pointer

YES

SCAN
ATLS)

Identical to

[<—next character

in input string

Another item in term of the | yg
conclusion of the canon

corresponding to an inputted
term?

; NO
in canon? — —

VES

IYES [Used in scan
lof conclusion?

(Another) premise
>
—

i, YES

What type?

VARIABLE

Select premise with the
ariable. Create new input NO
set. Mark terms containing
ndefined variables in the
ssembled list as "needed".
ssemble other terms from
efinition of variables and

input strings

se definitions
f variables to
assemble input

Save definition
of variables

RETURN
NO YES |Response with
RESPONSE? fully scanned
terms?

YES

Assemble results.
For inputted terms,
(:)<g____ return scanned
input. For
"needed" terms,
lassemble string for term
from definition of variable

-29-

A step-by-step example such as the previous table would be unduly
lengthy when considering a non-trivial evaluation of a predicate of degree
greater than one. Instead, consider as an example the action of the algorithm
at the highest level of recursion as it seeks to determine whether an
input string is a legal MINI MAD program. The only relevant canon is
the last one.

40. < s_.pr> program with label lists <{res> in

P p END OF PROGRAM * MINI MAD program
The algorithm is presented with an input string which is possibly a member
of the set MINI MAD program. Before beginning to scan the input, the
program determines that s and r cannot be defined in terms of the input,
and places these variables in the undefined list. It then begins the
match of the input string against the conclusion of the canon. Since the
item in the conclusion is a variable, it turns to the first premise, which
contains p as a variable, in order to determine the definition of p in
terms of the input string. Since s and r are in the undefined list, it
marks these terms as "meeded", and operates recursively to determine
whether p is valid, and to produce s and r. The algorithm is presented at
the next lower level with an ordered triplet in which the first and third
elements are "needed'" flags, and the second element an input string. If
the input is indeed valid, excluding the requirement that all referemnce
labels be defined, the algorithm will scan the input string at progressively
deeper levels of recursion, eventually parsing out the statement labels,
the various statements, etc. Since the first and third terms of program with
label lists are '"needed", it will build up these terms from the various
statement and reference labels in the program, as directed by the canons

which define program with label lists. Eventually, the algorithm will

return to level zero. If there is no response returned from the lower level,

the scan failed. If there is a response, it will consist of the input

-30-

string with the pointer shifted to the right, and the accompanying lists

which comprise the first and third terms of program with label lists. The

remaining part of the input string is then checked to see whether it consists
of END OF PROGRAM*. S and r are now defined. 1In order to verify the
second premise, the algorithm assembles an inmput set from r and s, and
operates recursively to determine if the two lists satisfy the relationship
in. Upon return, if there is a response, the program checks to see that
both terms are fully scanned; that is, that the definitions of r and s
agree in both premises. Since both premises are now satisfied, the
algorithm returns the scanned input string as a response. The program is
at level 0, and control is given to a final routine which imsures that, if
there is a response, the input string has been fully scanned. The routine
prints out a message to the effect that the input was or was not legal
MINI MAD.

We turn now to the problems which may be encountered in evaluating the
input in this manner. The potentially most disastrous problem is that of
deciding how to generate the definition of variables not defined by the
input. In the example above, there is no deterministic way of discovering
from the one canon alone why the algorithm should not employ the second
premise to generate the label lists. 1In this case, both terms of an input
set would be marked ''needed", and the canon would operate recursively to
determine the members of the set. The definitions would be inserted, one
at a time, into the first premise until the correct ordered pair for
the particular input were found. Unfortunately in is an infinite set.
Thus, if both terms are marked ''meeded", the algorithm sets about generating
all possible members of the set and speedily exhausts memory. On the other

hand, when the definitions for r and s are determined in conjunction with

the scan of p as terms in program with label lists, only one ordered pair

-31-

of label lists will be produced and inserted in the second premise. A
similar but less serious problem might arise in determining the definition
of p, if there were more than one premise containing p. Again, the choice
of one premise over the other as a vehicle for determining the definition of
p might result in a markedly different number of returned responses. These
problems have been solved by transferring the decision to the user, who
indicates how the definition of a variable should be determired by marking
one appearance of the variable in the premises with a prefixed dollar sign.
When the program encounters the variable in the conclusion, it will employ
the premise in which the variable appears with the dollar sign as the
vehicle to determine its definition. If there is no dollar sign, the program
uses the premise in which the variable first occurs. Similarly, when
considering the other terms of the chosen premise, the algorithm will

mark the term as needed only if the variables therein are prefixed with

the dollar sign, or if there is no other term in which they appear.

Another simplification is introduced in order to ease the programming
effort. The restriction that premise terms contain one and only one
variable reduces the complexity of the list manipulation which the program
must perform. Again, this does not prevent the definition of sets whose
definition is otherwise possibly. The premises in the canonic system which
defines MINI MAD contain one and only one variable. An important point
is that with the restriction we have placed on canonic systems we have in
no way diminished their power.

This completes the description of the algorithm on the procedural
level. The details of the use of the program, with examples, are described
in appendix 3. We now turn to the intriguing question of the practicality

of the canonic translator as a useful compiler.

-32-

The present program is wholly experimental, and we intend to use it
to study the translation process. Three limitations exclude it from serious
consideration as a practical device.

1. Speed. The program mns, conservatively, over 1000 times more
slowly than a normal compiler.

2, Limitations on input. The program cannot accomodate large
quantities of input data.

3. Error indications. If the scan fails, the program pinpoints
the last character inspected in the input string, but goes no further.

Thus, only one syntax error is detected per compilation.

I feel these limitations can be overcome, and that an implementation
of the algorithm might be extremely useful in acting as a trial compiler
in the design of a language, or as a regular compiler for lesser used
languages where the additional efficiency of a dedicated compiler is not
worth the effort necessary to produce one. I shall not consider the use
of the algorithm for other language systems, such as the proof of theorems
in boolean algebra. The further restrictions imposed on the generality of
the algorithm in order to overcome the three limitations will probably reduce
its usefullness in other more exotic areas. The proposals follow in order
of increasing returns and commensurate restrictions on the algorithm.

1. Redesign and rewrite the program in assembly language. The
program as it now stands is the MAD language in neither elegantly designed
nor brilliantly executed. The pressure of time and the necessity to have
the program work no matter how clumsily, prevented extensive streamlining.

2. Develop, perhaps in conjunction with proposal 1, a list processing
system or data structure designed specifically for the algorithm. The
SLIP list-processing system is elegantly designed, but its generality
necessarily reduces its efficiency for this task. Measure 1 and 2 might

provide a five-fold increase in speed, and a doubling of input handling

-33-

capacity.

3. Presently, all strings must be members of defined sets in order
for premises to be asserted. Consider placing the left of the assertion
sign premises which are true if and only if the definition of the variables
are not members of the defined sets. Presently, it requires on the order
of 26 2/2 canons to define the predicate differ for all letters of the
alphabet. By defining a predicate same, as below, one could reduce this
to 27 canons.

‘- KA A>p <BeBDaA ... LZ,o2Z>; same <x<y>gjlg F <x cy>differ

The sign/v indicates that the ordered pair x ¢y must not be a member
of the set same in order to be a member of the set differ. This procedure
would involve problems in originally defining variables, but could be used
in premises which would only be verified after the variables have been
defined. A moderate increase in speed would result, but the mathematical
basis for canonic systems might well be destroyed. The possible implications
of such a modification are vast and unexplored.

G4, The compilation of a program never produces two different
translations. This fact raises questions about the efficiency of handling
multiple results at many points in the procedure (e.g. in the example for
the simplified algorithm). A program, at any point in the scan of the
source statement, is either possibly syntactically valid or definitely
invalid. The source statements cannot be construed in several different
syntactically valid ways. Consider establishing the mile that the algorithm,
at any point in the recursion, returns only the first valid definition it
discovers for the predicate. Assume the definition of integer were as
follows.

41. d digit CF i integer F di integer

42, d digit F d integer

_34-

Note that the recursive definition precedes the simpler canon, and the
program considers it first. The action of the algorithm will be such that
it continually operates recursively,eliminating a digit at each level,
until it encounters a character other than a digit. The algorithm then
“"backs-up'" one level, considers the alternative definition, and returns

only one answer - an integer of the longest possible length, which is the

definition actually desired. The implicatioms of such a restriction are
vast. By suitably positioning the non-recursive canons, one immediately
eliminates more than half of the searching the program must perform, More
importantly, such a rule eliminates all the list manipulation and duplica-
tion the program must presently execute. The manipulations are largely
responsible for the complexity and inefficiency of the present implementa-
tion. Finally, such a restriction eliminates much "back-tracking", and
makes it possible to contemplate a single, top-to-bottom pass of the input
from auxiliary storage. Likewise, only one set of translation and "needed"”
lists must be built up, and this makes it possible to arrange the lists in
a more conventional and more efficient format. The careful and imaginative
implementation of this restriction might improve the speed of compilation
by a factor of 50, and make the input capacity of the program comparable to
that of conventional compilers. The usefulness of the translator for more
general purposes would be, however, severly restricted.

5. One might consider using external subroutines to perform those
functions (e.g. in and notin) clumsily handled by an algorithm which must
essentially reverse the canonic production of the defined strings. If, as
a result of proposal 4, the lists were arranged in a more conventional
fashion, such subroutines might be easily implemented.

6. Finally, "system predicaes' might be useful. The implementation

of the algorithm would consider such elementary predicates as letter, digit

-35-

and differ to be understood, so that they need not be defined., Determining
that A differs from B by testing whether or not B is one of the other 25
letters is hardly an efficient procedure. Such a provision might greatly
speed the compilation.

We have not considered the uses of the algorithm in areas other than
language translation, and the implementation of some of these measures, part-
icularly 4, would severely hamper the ability of the algorithm to perform the
intent of the canonic system. Other measures, particularly 1 and 6, might
still prove useful. Ihave also avoided proposing a means of dealing with
the problem of error indications. This problem might well be the most
difficult to solve, but should probably consist of mechanism whereby the
algorithm backtracks one syntactic type (e.g. statement) from the one in
which the error was detected, skips the syntactic type, and proceeds from
there on. Such a procedure might well produce fast and efficient syntax
error elimination similar to that produced by a normal compiler.

Canonic systems are extremely powerful mechanisms for the definition
of complicated strings. The areas in which canonic systems are applicable,
and the possibilities for future study, are both vast and exciting. The
possibility of a truly practical generalized compiler implemented through

canonic systems deserves further investigation.

10.

-36-

Appendix 1.

A .Canonic system specification of the syntax of MINI MAD.

Digit " 041425 ... 4829 digit

Integer d digit |" d integer

d digit <I’ i integer}' di integer

Label |> Az Bs C label

Differ“ <KAcB>s <A LC> <BC> differ
<x <y>differ - <y x> differ

Notin [1label }*(I<A>not'm
<% _y> notin (1_ <x 4> differ |-<x<1 ,¥> notin

I | <AA>
<xey> in G Liaver | <xet, y> in
<x y> in § label } <JZx¢f,y>in
<xc > i_n<.|/<z< > ﬁl- <xz:y> in

Variable lr X. Yu Z variable

Expression v variable l» v expression

i integer i expression

v variable + X expression l- wix expression

s

integer 4, x expression |— i+x expression

Conditional l» /1 conditional

X expression ’+ y expression l— WHENEVER x .E. y, conditional

Program with label lists

<A¢ ,\< > program with label lists

<s¢ p<« > program with label lists qrv variable + X expression +

c cenditional i- <s CV=Y * p. r> program with label lists

-37-

<s. P< T> program with label lists <,€< s> notin Q}/

v variable J[/ x expression + ¢ conditional

<X »S¢ cv=x * p r> program with label lists

<s< P r> program with label lists + m label + ¢ conditional
|~ <S. ¢ TRANSFER TO m * p. m, r>

program with label lists

<s¢ p. r> program with label lists 4, m label :‘(<4 8> notin
\t/ ¢ conditional }’(Jf s d ¢ TRANSFER TO m % p« m,s>

program with label lists

11. MINT MAD program

<s¢ pc r> program with labellists ‘{' <regs> in
|. p END OF PROGRAM * MINL MAD program

This empty page was substituted for a
blank page in the original document.

10.

-39-

B. Canonic system specification of the syntax and translation of MINI MAD
into PSEUDO FAP. The dollar sign in PSEUDO FAP indicates 'this location'.

Digit ’“ 0ala2a ... ~8a9 digit

Integer d digit l’ d integer
d digitq/ i integer |~ di integer

Label t, AABa C label

Differ } <AB>A <ALC> A <B,C> differ
SXey> differ‘— <y.x> differ

Notin / label I» <2 > potin
<Xey> notinc*' < xe 2> differ l‘(x< 4, y> notin

In + CAA> in .
<x<y> in £ lavel | < x<f, y> n
<xey> in £ labell <4x £ y> in
<xcy> ind <xoy> in F <xzgy> in

Variable I— XA Y4 Z variable

Expression v variable l‘ v<CLA v*> expression
i integer }- i,CLA =i *> expression
v variable 4' < X ¢y> _expression |' < <y ADD x> expression
i, integer +<X<y> expression l‘ < itxey ADD =i%* > expression

Conditional l' < /\</\ > conditional

< X y> expression c{' <u<Vv> expression
< WHENEVER x.E.u, <y STO TMP*
SUB TMP* INZ $+3) conditional

Program with translation

'—- < /\</\</\</\ > _program with translation

-40-

<s; perro t> program with translation v variable
+<x< y> expression :l, <ce 4> conditional fv
<s¢ cv=x * po T y STO TNP *
d CLATNP % STOV * t>

program with translation

<s¢ pc I t> program with translation]'< ¢c %> notin C{»

v variablet*— <x o y> exgression+ <c.. &> conditional
<ﬂ , sk cv=x¥ p. I:

}/ y STO TNP* d CLA INP* STO V * t>

<8< P< T¢ t> program with translation 2*, m label <ce d> conditional ,—
<s¢ c TRANSFER TO m * p. m, I d TRA m * NOP * t>

program with translation

<8¢ P« L. t2> program with translationd m label <+ < K¢ 8> notind c conditional
!,<£ ,s<A ¢ TRANSFER O m * pcm, s/ d TRAm* NOPX t >

program with translation

11. MINI MAD - PSEUDO FAP

{s¢ Pgrct > program with translation ':*' Lrgsy in
<p END OF PROGRAM* _ t HLT*

TMP DEC* TNP DEC* END * >

MINL MAD - PSEUDOQ FAP

As an example.
below with the

TP
TNP

Xl

X o= X

WHENE

TRANSFLL

CIA =
ST0 X
CLA =
ADD X
STO X
CLA X

41-

the propram given previously in the text is reproduced

cquivalent PSEUDO FAPY program.
5

i

XoWEL 123, TRANSFER TO A

STO TxY

CILA =

SUB TNP

TNZ ¢
TRA A
NOP
TRA B
DEC
DEC
HLT
END

-42-

Appendix 2.

A canonic system specification for the syntax of SNOBROL.

The canonic system presented in this appendix defines the syntax
of SNOBOL as implemented on the 7094 CTSS system at MIT. The language
is used for string processing and contains statements for string
matching, replacing, deleting and inmserting. The language also
has a few arithmetic capabilities. Those not familiar with the
language may find reference 5 useful.

The canonic system is listed below. A represents a space.

1. } 5@5&? ces %SXQ? letter

2. |. 04142 ... 7,8,9 digit
3. X 1etterch digit }xoyb. name character

4. x name character / ? = $ label character

LA -
YA/

R

? = i
5. X name characterr X, 5, (W A$ string character

*
[RAN'
[

A character

6. X string characterl—x
7. l» +, -A/A* operator

8. } } tab

9. r) carriage return

10. X spaces P KA x\ spaces

11. aAbAcAdAeAf name character } aﬁab‘abcﬁabcd&abcdeﬁabcdef string name

12, x string character c}y string } Xy string

13, x string + 'x' literal

14, x letter C}y digit 4,2 label character 4—a label } X, y,az label

15. x digit q,y integer ‘— X , yx integer

16.

17.

18.

19.

20.

21.

22,

23.

24,

25

26.

27.

28.

29.

30.

31.

32,

33.

34,

-43-

x string name !J{y literal !— X,y operand

X,y operand 4’21 expression <+v operator +s spaces

XSVSY, XSVSZ , ZSVSY , (z) expression

x operand L}'y expression (1/2 term c}«s spaces
X 4 Y 4 28K 4 ZSY term
x term x concatenation
term | A, x concatenation

x string name l» *x* variable name

A
x string name |» #(x)% balanced name

x string name 4 y literal CI/ U, v term q'w indirect name

c‘/ s spaces l» $x A $yA $(w) 4, $(us.w)A $(wsu)A $(uswsv) indirect name

AE L AE), v By s GePdiffer
a e, f string §(bec) differ l» <ace<abf>different
(k) different |» <y<x)different
XMC*YE '» Ay list
x list P<A<X>E
x v listd (v o xy)in 41 label P <w1w(xlwy)_i_n_
(o 9} in d e ¢ xy)in } (v ¢ 3 1n
x label l’ (A motin
x v label (i ¢ Pdifferent 4k ¢ z)notin ’» <x < zyw notin

x string name t%y concatenation C} s spaces

I- xs=sy assignment statement

X, y string name z:fz integer I» *x/y*A *x/'z'% fixed length name

x operand C|'y expression Clr u variable name 4‘v fixed length name

4

4 w balanced name C}z indirect name }- Uy Va Yy Xy Yy

scan operand

bl

35. x scan operand L{/z scan C#/s spaces '» X , Xsz scan

36. x operand ¢

°y concatenation (%z scan q/s spaces
‘> X852z 4 XsZs=sy scan statement
37. '» —EJEC’I“d -LIST , -NULLOP OPA ~PCC A -SPACEA -TITLE

A "UNLIST control word

38. x operand Cf’a arguments }» AA X 285K, X,d 4 'a'A (a) arguments

39. X string name cl'a arguments l» x(a) string name Ci/

x(a) system function
40. x label C#-’y indirect name <x(xm>4<y</\> reference label

41. (x()>‘<w<z> reference label '» (/(x)<y>A</S(x)<)>A</F(x)<y>

A </S(X)F(w)<yz> branch

42. X scan statement C}’y assignment statement ¥z system function
<u(v> branch G|’s spaces '» <x<A>A<y</\>A<xsu(v>
A<ysu<v>6<z</\>6<zsu<v> right hand side

43. <x<y> right hand side lr <ENDlx<y>A<END< A> end card

44, |,<A <A</\> program string

45. <p<q<t) program string l*x control word l» <p(qxa<r> program string

46. (p.acr) program string cf(x(y) right hand side C#’u label
of Cuce) motin } {peatx hry) pusequbxdry) program string
47. {p¢a.r) program string4<END<p> notin Clr<x<y> end card
<1»<ry<p> in Ir qx) program

~45-

Appendix 3.

Use of Program.
The program which implements the algorithm allows the user to type in
a series of canons defining a set of strings, followed by the input he wishes
to have analyzed. The program then scans the input string or strings for
correct syntax. If the input is syntactically correct, a message to this effect
is printed. Further, if the input is defined as only one of several terms
in the final predicate of the canonic system, the other terms corresponding
to the input may be produced. If the scan fails, the program identifies
the character in the input string which was the last character inspected.
The sequence of messages and the proper responses as the program
executes on the MIT CTSS system are as follows.
INPUT CANONS.
A set of canons may now be input, subject to the restrictions described in
the text and summarized briefly below.
1. Canons may contain only one conclusion.
2. The terms of the premise predicates may contain one and only one
variable, and no terminal characters.
3. Left recursion in all terms of a predicate is not permitted. Partial left
r.ecursion evokes a warning message.
The user inputs the canons according to the following rules which implement
the punctuati(.)n of the canonic system.

1. Strings of terminal characters must be enclosed in break characters

45

(' /or®).
2. The digit and the digit 2 when not enclosed in breaks represent

1

respectively a tah and a carriage roturn.

shles. All variables used in the conclusion must

3. Letters represont va
be defined in the promis=cs.

4. Predicate names must consist of six characters or less, and be cuclosed
in hyphens.

5. The terms of a predicare are separated by periods,

6. The promise raemarks ol a canon arce separated by commas.

7. An equals sign replaces the assertion sign.

8. Spaces and carrisge returns are |

&

onored except when enclosed in breaks,
but cach linc may not conain more than one canor.

The examples at the end of this appendix will serve to clarify the syntax rules.
After the last canon, the user types "end' at the beginming of a line. The
program responds with the followinyg sequence after checking that all predicates

uscd as premises are defined as conclusions,

CONSITENT SET OF CANONS.

LIST OF DEFINZD PREDICATES AND DEGHEELS.
The predicates typed i are then Tisted i the order in which they first appeaved.

INPUT O SOURCE STRINDS.

TYPLE FINAL PREDICA T,

~47-

The user responds by typing the predicate name which defines the input string
he wishes the program to consider.

TYPE -NONEED-, -NEED- OR -INPUT- FOR EACH TERM.

TERM NUMBER n OF -predicate-

At this point the user declares which terms of the final predicate he wishes to
input and which terms he desires as translation. 'Noneed' indicates that he
wishes neither to input the term nor receive it as output, 'Need' indicates

he wishes to receive the term as a translation. 'Input’ means that he wishes

to type in an input string for the term. In this case, the program responds.
INPUT STRING. EXTRA CARRIAGE RETURN INDICATES END.

The user may now type in input which will be verified for syntactic correctness,
and for which the program will produce output corresponding to 'needed’

terms. Carriage returns are counted as characters. If the user wishes instead
to input card images, he may do so by typing in 80 characters or more. The
input is truncated at 80 characters and in this case the carriage return will

not be counted.

After all terms of the final predicate have been considered, the program types
this message.

TYPE 0, 1 OR 2 FOR DEPTH OF COMMENTS.

The user responds by typing a single number. If 0, the program will print

only the final results. If 1, it will remark on extraordinary conditions which
occur. Typing 2 results in messages whenever the program "pops” or "pushes".
A larger number will result in the output of various lists which comprise the

intermediate results of the scan. These lists, while useful during program

-48-

during program debugging, are rather incomprehensible except to those

familiar with both the program and the SLIP system,

The program then types

SCAN BEGINS.

When the program returns to the zero level of recursion, it will type out the

results of the analysis. If the scan succeeds, and if terms are 'needed’,

these terms are printed. If there is more than one translation, all will

be printed. In the examples which follow, the execution time, which is

printed in seconds at the end of the run, indicates the problems of execution

speed to be overcome if one wishes to make a practical canonic translator.
There are three examples of canonic translation. The first is relatively

simple. It illustrates a scheme for coding messages by replacing the

letters in the message with their succéssors in the alphabet. The

second example demonstrates the construction of an expression in MINI MAD

and the corresponding PSEUDO FAP instructions. The third example,

an extension of the second, demonstrates the construction of an assignment

statement in MINI MAD and the translation into PSEUDO FAP. Note that

no data cells were reserved, although this could hawe been easily implemented.

A final example illustrates the error analysis of the program,

-49-

resume thesls
W 21214
INPUT CANONS.

= ‘a' 'p' -pair-

= 'p'.'c' -palr-

= 'c¢','d' -pair-

= 'd'.'e' -palr-

= 'e!' 'f' -pair-

= .f'.la' _pair_

X.Y =-pair- = x,y -code-

X.y -pair-, u,v -code- = xu.,yv -code-

u.,v ~code- = u2 , v' is the coded message for 'u2 -messag-
end

CONSISTENT SET OF CANQIiS.

LIST OF DEFINED PREDICATES AND DEGREES,
1, - PAIR- 2
2, - CODE- 2
5, =MESSAG- 2

INPUT OF SOQURCE STRINGS,

TYPE FINAL PREDICATE.

messag

TYPE -NONEED-, -NEED- OR =IMPUT- FOR EACH TERM.

TERM NUMBER 1 OF -MESSAG-
input

INPUT STRIMG. EXTRA CARRIAGE RETURN INDICATES END.
abcdef

TERM NUMBER 2 OF -MESSAG-~

need

TYPE 0, 1 OR 2 FOR DEPTH OF COMMENTS,
0

SCAN BEGINS,

SCAN SUCCESSFUL,

TRANSLATED QUTPUT (IF ANY) FOLLOWS,
TERM NUMBER 2,

BCDEFA IS5 THE CODED MESSAGE FOR ABRCDEF
END OF RUN,

EXITM CALLED. GOODBYE.
R 7.150+6,983

-50-

resume thesis
W 2127,5
INPUT CANOHNS,

= "x!' ~varijab-
= 'y' -vartab-
= '2' -variab-
= '1' -digit-
= '2' -digit-
= '3 ~diglit-
d ~digit- = d -integ~
d ~digit-, | -integ- = di -integ-
i ~integ- =1 , ' cla ='i2 -expres-
v -variab- =v , ' cla 'v2 -expres-
1 -~integ=, x.y -expres- = i'+'x [y' add ='12 -expres-
WARNIHMG=- PARTIAL LEFT RECURSION [N LINE NUMBER 11
v -varlab-, x.y -expres- = v'+'x , y' add 'v2 -expre;-
WARNIHG- PARTIAL LEFT RECURSION IN LINE HUNMBER 12
X.y -expres- = x2 . 'this Is the translation for. 'x22
y' end'2 -exampl-
end

CONSISTENT SET OF CAHNONS,

LIST OF DEFINED PREDICATES A!D DEGREES.

1, -VARIABR- 1
2, - DIGIT-~ 1
3, - INTEG- 1
4, -EXPRES- 2
5. =~EXAHPL- 2

INPUT OF SQURCE STRINGS.
TYPE FIMAL PREDICATE.
exampl

TYPE -NOWNEED-, -NEED- OR =~INPUT- FOR EACH TERM,

TERM NUINBER 1 OF -EXAMPL-
input

INPUT STRING. EXTRA CARRIAGE RETURH INDICATES END.
x+123+4y+321+2

TERM NUMBER 2 QF =-EXAMPL~

need

TYPE U, 1 OR 2 FOR bEPTH OF COMMENTS.
v

SCAN BEGENS

SChvl sUZOE-s

TRANSLATLD

TERM HuR LT

THIS To o

N

L)

FOLLOS,

A+120+Y 4021+

-52-

resume theslis
W 2150.5
INPUT CAMQOHNS,

= 'x' ~varlab-
= 'y' —variab-
= '2z' -varlab-
= "1' ~digit-
= '2' -diglit-
= '3' ~digit-
d -digit- = d ~integ-
d -digit-, i -integ- = di ~-Integ-
1 -Integ~ =1 . ' cla ='i{2 -expres-
v -varlab- = v , ' cla ‘'v2 -expres-
I -Integ-, x.y -expres=- = ["+'x , y' add ='12 ~expras-
WARNIMG- PARTIAL LEFT RECURSION IM LIHE NUMBER 11
v -variab-, x.y -expres- = v'+'x , y' add 'v2? -expras-
WARHING- PARTIAL LEFT RECURSIOW IWH LIMNE NUMBER 12
v -variab-, x.y -expres- = v'='x ., y' sto 'v2 -assign-
x.y -asslgn- = x2 , "this Is the translation for 'x22
y' end'? -exampl-
end

CONSISTENT SET OF CANONS,

LIST OF DEFINED PREDICATES AND DEGPEES,

1. -VARIAB- 1
2, - DIGIT- 1
3. - INTEG- 1
b, =-EXPRES- 2
5. =ASSIGN- 2
6. -EXAMPL- 2

INPUT OF SQURCE STRIIIGS,
TYPE FINAL PREDICATE.
exampl

~53-

TYPE ~NONEED-, -HEED- OR ={NPUT- FOR EACH TERM.

TERM NUMBER 1 OF -EXAMPL-
input

INPUT STRING., EXTRA CARRIAGE RETURN INDICATES END.

y=X+123+y+3211+z

TERM NUMBER 2 OF -EXAMPL-
need

TYPE 0, 1 OR 2 FOR DEPTH OF COMMENTS.
0

SCAN BEGINS,

SCAH SUCCESSFUL.
TRANSLATED OUTPUT (IF ANY) FOLLOWS,

TERH NUMBER 2,
THIS 1S THE TRANSLATION FOR Y=X+123+Y+3211i+Z

CLA Z

ADD =5211
ADD Y
ADD =
ADD X
STO Y
END

END OF RUMN,
EXITM CALLED, GOODBYE,
R 18,8b66+3.400

-54-

resume theslis
W 2200.4
INPUT CANONS,

= "this Is a test sentence'2 -exampl-
end

CONSISTENT SET OF CANONS,

LIST OF DEFINED PREDICATES AND DEGREES.
1. -EXAMPL- i

INPUT OF SOURCE STRINGS,

TYPE FINAL PREDICATE,

exampl

TYPE -NONEED-, -NEED- OR -INPUT- FQOR EACH TERM,

TERM NUMBER 1 OF =-EXAMPL-
input

INPUT STRI1i#G. EXTRA CARRIAGE RETURN INNICATES END.

this is not a test sentence

TYPE 0, 1 OR 2 FOR DEPTH OF COMMENTS.

[¢]

SCAN BEGINS,

SCAN FAILED, SYNTAX ERROR IN [NPUT STRING(S).

NO TRANSLATED OUTPUT,

LAST CHARACTER INSPECTED IN TERM 1 WAS N IN MIDST OF FOLLOWING COHTEXT
THIS 1S NOT A TEST SENTE

END OF RUN.

EXITH CALLED. GOONDBYE,
R .583+2,766

-55-

Appendix 4.

Program Listing.

The program listing for the program which implements the canonic
translation algorithm is contained in this appendix. The program may
be divided into three parts: a preliminary phase which verifies the
syntax of the canons typed in and assembles them into a SLIP list
structure, the recursive scanning routine which forms the major part
of the code, and a final routine which inspects and prints the
results. Understanding the code requires a thorough comprehension
of the SLIP system developed by Weizenbaum (7). The lack of elegance
in the program is quite the fault of the author.

The following table identifying the major parts of the code
may prove useful,

Label Lines Purpose of Code

NEWORD 57-74 Inmputs a line from the typewriter, feeds characters
one at a time to the canon-analyzing routine.

107-285 Reads predicate names and makes various checks
(left recursion, degree same as before, etc.) and
assembles into list structure.

383-395 1Identifies next variable to be encountered should
be marked as the one to use if the variable is
needed in the later phase.

396-434 Inputs variable and assembles into SLIP structure.

EVAL 444-472 Checks that all variables are defined.
PUTIN 505-574 Assembles list structure for input to scan program

at zero level.

LUP00Q

OUTCHK

LUP0O8

PUSHIT

PRMCHK

ASSMBL

ropr

592

603-617

621-671

677-697

717-855

871-893

897-977

981-1038

1042-1075

POP1 1080-1164

POP2

1165-1196

THKGOD 1200-1344

HERAUS 1348=1350

1355-1381

-56-

Beginning of recursive routine, It is to this point
that the program returns when "pushing'.

Makes an "object time" check for left recursion.
Creates the 'needed' list of variables for which
definitions must be found from other than the input
string.

Handles multiple results, each of which must

be analyzed in turn.

Compares input string with conclusion, "pushing"

to find definition of variables if necessary.

Saves state of program and returns to the beginning
of the scan routine.

Checks premises of a canom.

Assembles results of scan for next higher level
before "popping".

Uncovers the state of the program and goes to
appropriate return routine.

Analyzes return resulting from "push" during

scan of conclusion.

Analyzes return resulting from "push" during

check of premises.

Outputs results of scan.

Exit.

Obtains character from input data area, using

pointer furnished by caller.

PRIL.SY B sovnoaitine to opaint out the content aned structure of lists

RS R F SRR EE R R BRI R R SRR R E RN AR AR R S U SRR AR R RS IR SRR RN RN AR R AR B R ERARR SRR RSN R

M5364

BEGINS

LOOP1

SKIP

NEWPRM -

NEWTRM

'NEWORD
RDLINE

58

5163 THESIS - MAD FOR M5364 5163

CANONIC TRANSLATIUN PROGRAM. .

THIS PROGRAM EMPLUYS A CANONIC SYSTEM AS A BASIS
FOR RECOGNIZING DEFINED SETS OF STRINGS. THE

FIRST PART OF THE PROGRAM VERIFIES THE SYNTAX OF
THE CANONIC SYSTEM WHICH IS INPUT AND

ASSEMBLES IT INTU A SLIP LIST STRUCTURE.

THE SECOND PART OF THE PROGRAM OPERATES RECURSIVELY
TO DETERMINE WHETHER A GIVEN STRING IS A MEMBER

CF A DEFINED SET OF STRINGS, OR WHETHER THE GIVEN
STRING IS ONE ELEMENT OF AN ORDERED N-TUPLE

WHICH IS A MEMBER OF A DEFINED SET. IN THE LATTER
CASE, THE OTHER ELEMENTS OF THE N-TUPLE MAY BE
CUTPUT AS TRANSLATIONS.

RV BDRAOROIRIRIRIRNONDIOIDR

N'S INTEGER

BCOLEAN EQUAL, EOLIND, STRTND, ERRS, NOTIN, IN, SOMERC, ALLRC
1 ,LEMPTY, INP, DOLIND

OIMENSION BUFFER (14), INPUT (1009)

R
RINITIALIZATION OF SLIP SYSTEM.
R
INITAS. (D) . e

LIST. {SYSTEM)

LIST. (NAMES) e . S

LINE = O

CEFNUM = 5 . I
R

RINITIALIZATION OF SYSTEM - - .

R

PRINT COMMENT $INPUT CANONS.$ e
PRINT COMMENT § $

¥'0 sxip .. e .

R
RINITIALIZATION PRICR TO READING A CANON
R

IRALST. (VAR}

IRALST. ,(SVEVAR)
DEF = LIST. (9) B

LIST. (VAR)

LIST. {SVEVAR) U O
NEED = LIST. 19)

CCLIND = 08B

CCND = 1

ECUAL = 08B o [T,

ECLIND = 1B

PREM = LIST. (9) e

TRMNUM = 0

TERM = LIST. (9)
R . .
RINPUT OF CANONS, CHARACTER BY CHARACTER, RIGHT
RACJUSTED IN WORD

R . -
W'R «NOT. ECLIND, T'0 GETW
NUMB = ROFLXC. (BUFFER, 84)

59

LINE = LINE + 1
ECLIND = 0B

PCS = 6
I = -1
STRTND = 18
GETW W!'R PDOS .GE. 6
POS = D
I =1+1

WORT = BUFFER (11
E'L
W'R NUMB .E. 2y T'0 ROLINE
NUMB = NUMB - 1
W'R NUMB .E. 9y EOLIND = 1B
PCS = POS + 1
WCRD = WORT 4RS. 30 V. $ 0%
WCRT = WORT .LS. 6

R
RCHECK TO SEE IF READING ANSWER TO QUESTIONS.

R
W!'R COND .E. 8
T+ RDANS
R
RCHECK FOR REMARK AND END CARDS
R
CT'R STRTIND
STRTND = 0B
WIR WORD .E. $ #$, T'0 RDLINE
W'R BUFFER (D) <A, T777770303032K .E. $ENDILOS
W'R COND +E. 1y T*'O EVAL
PRNTP. (ERR1)
V'S ERR] = $LAST CANON IS INCOMPLETES, 377777777777
1K
T'0 ERRIN
E'L
E*L
R
RCHECK TQ SEE IF READING 'LITERAL' OF TERMINAL CHARACTERS
R

W'R COND .E. 6
W*'R WORD .E. BREAK
COND = 2
0'E .
NEWBOT, (WORD, TERM}
W'R ECQLIND, NEWBOT. {606260606055K, TERM)
E'L
T*0 NEWORD
O'R WORD .E. 3§
T*C NEWORD
R .
RCHECK TO SEE IF READING PREDICATE
R
C*'R COMD .E. 7 .
W'R WORD .NE. $ -$
LENGTH = LENGTH + 1
WIR LENGTH .E. 7
PRNTP, (ERR2)
V'S ERR2 = $Y0O MANY CHARACTERS IN PREDICATES
1y 377777777777K
T'0 ERRIN
E't

60

RBUILD UP PREDICATE, CHARACTER BY CHARACTER

R .
NAME = NAME .LS. 6 .V. WORD .A. Q00{09000377K
T*'0 NEWORD
R
RSAVE PREDICATE NAME JUST READ IN
R
0'c - -
EQUIV = ITSVAL. (NAME, NAMES)
-W'R EQUIV .E. O - e
DEFNUM = DEFNUM + 1
EQUIV = DEFNUM .V. TRMNUM .LS. 18
NEWVAL. (NAME, EQUIV, NAMES)
E*L - - - - -
CHKNUM = EQUIV .RS. 18
EQUIV = EQUIV A, TT7777K
R
RCHECK DEGREE OF PREDICATE
R

- W'R TRMNUM .NE. CHKNUM
P'T ERR1S, NAME, LINE
V'S ERR1S5 = $H'DEGREE OF PREDICATE ~'4Cé+
1H'- IN LINE NUMBER',13,H' NOT AS PREVIOUSLY DEFINED'»s$

T*'C ZAPALL
E*L
R S - . .
RIF CONCLUSION, MAKE VARIOUS CHECKS AND ADD CANON TO SYSTEM
W'R EQUAL
R . - .
RCHECK FOR LEFT RECURSION
R o .
LRECUR = SEQRDR.(DEF)
LOODP3 - = — --CHKPRM = SEQLR. {LRECUR, F) - R
WIR F .G. Dy T*O CHKILL
- - cee - PRMPRM = TOP. (LSTNAM. (CHKPRM))

1 A, 777777K
R e W'R PRMPRM .NE. EQUIV, T'0C LOOP3
CHECKC = SEQRDR. (PREM)
i r o e e CHECKP = SEQROR W (CHKPRM) s

SOMERC = 0B

.~ .e.. . . . ALLRC = 1B
LOOP4 TERMP = SEQLR. (CHECKP, F)
. . feeew oew---TERMC = SEQLR. (CHECKC, G)

W'R F .G. D OR. G +G. O
e e e - WYR SOMERC JAND. ALLRC
PRNTP. (ERR11}
e e e - V*S ERR11 = $COMPLETE LEFT RECURSION
18, 3777777777 77K
S e e e T*0 ERRIN
O'R SOMERC
e i e . PYT ERR12y LINE - -
V'S ERR12 = SH'WARNING- PARTIAL LEFT
- - 1 RECURSION IN LTNE NUMBER',[3#$
E'L
- e - --T'0 LOOPD
E*L
wwomo- TERML = SEQRDR. (TERMP) [T
TERM2 = SEQROR. (TERMC)
LoorPs - ------.-- PPPREM = SEQLR. (TERMl, F)
CONCLU = SEQLR. (TERM2y G)

CHKILL
ADVANP

ADVANT

" ADVANY

... GODF U1

61

-1 CHKPRM <AND. PPPREM .E

R

ToP. (LSTNAM. (CONCLU}) LE.

W'R F «G. 7 «OR. G 4G. O,
- -~ WIR F oLs 0 +AND. G L. O
W'R PPPREM .E. CONCL
- -~ 0'R F «Es O «AND. G «E. O
WiR
« CONCLU
SOMERC = 1B
e - T'0 LOOPS
E'L
e ETL -
ALLRC = B
--- 710 LOOP4

RCHECK FOR ILLEGAL VARIABLE CONSTRUCTION,

R

[U L

1y 377777777777K

1,y 377TTTITITTIK

R —— .Y 1o \') §

SEQRDR. (DEF)

READP =
PREMP = SEQLR. {READP, F)
W'R F .G. O, T'O NOUSE
READT = SEQRDR. (PREMP)
TERMP = SEQLR. (READT, F)
«Ge Dy TtO ADVANP
NOTIN = 0B
IN = 0B
VARCNT = O
«---READV = SEQRDR. {TERMP)
VARIAB = SEQLR. (READVy F
e WIR F 2Ge D --
W'R VARCNT o.Ga. 1

<mm—. PRNTP. (ERR16)
V'S ERR16 = $VARIABLE NOT ISOLATEDS

710 ERRIN

cemimm o @R VARCNT olos 1

E*L

PRNTP., {ERR22)

--T'0 ERRIN

e - 190 ADVANT

E*L
- .--MIR F
VARIA

oL
8

« 0y T'0 GOGFOL1
TOP. {VARIAB)
VARCNT + 1

READC = SEQRDR. {SVEVAR)

—- TERMYV
W'R F

.G
NOT
REA

- ~--TERML

WIR

P*T NOTTY, VARIAB

1 TTTIITITIIIR
e SUBST.. (VARIAB

1 iwenoL 1y

0'R

SEQLR. (READCy F)
« U

IN 18

F «G. 2
NEWBOT. {VARIAB

w-e--- V'S NOTTY = $HYNEED ',C6%$

T*0 ADVANV

T*'0 LOOP4

Us

I.
RA PREMISE TERM WITH MORE THAN A VARIABLE.

DL = SEQRDR. (NEED}
= SEQLR.- (READL.,

T'0 LOOPS

E.

F)

+ NEED)

VARIAB ,A. 777777777T7K .E.

-~ T'0C ADVANV

oV

T7K10,

TERML .A.

SEQPTR.

i -- VY8 ERR22 = STERM WITHOUT VARIABLES

NOUSE
ADVANN

ADDCAN

62

T'0O ADVANL

O'R TERMV .E. VARIAB
IN = 18
T'0 ADVANV
E'L
--- T'O LOOPS
R
RCHECK FOR UNUSED VARIABLE (ONE WHICH OCCURS ONLY ONCE
RIN CANON)
R
READL SEQRDR. (NEED)

-~ TERML = SEQLR. [(READL, F)
W!'R F .G. Oy T'O ADDCAN
W'R TERML .A. 77K10 .E. 77K10
TERML = TERML oA 607777777777K
T'0 ADVANN
E'L
P'T ERR1T7s TERML, LINE
V'S ERR1T = $H'WARNING- VARIABLE *,RC1,
1H' IN LINE NUMBER',13,H®' UNUSED'#3$
DELETE. (SEQPTR. (READL})
- T'0 ADVANN
MAKEDL. (PREM, DEF)
B MAKEDL. (NEED, PREM)
EQU = ITSVAL. (EQUIV, SYSTEM)
- - W'R EQU .E. O
EQU = LIST. (9)
e - NEWVAL. {EQUIV, EQU, SYSTEM)
E*L
- .- NEWBOT. (DEF, EQU)
COND = 1
T*'0 tOOP1

RIF NOT CONCLUSION, SAVE PREMISE AND PREMISE PREDICATE

. O'E . .
NEWBOT. (PREM, DEF)
i e - TEMP = LIST. (9)
MAKEDL. (TEMP, PREM)

e e e ewee .~ NEWBOT. (EQUIV V. TRMNUM .LS. 18, TEMP)

COND = 3
. 70 NEWPRM

RCHECK FOR BREAK BETWEEN TERMS e e
R

C'R WORD .E. $.$
W'R COND .NE. 2
~------ PRNTP. {ERR3) -
V'S ERR3 = $MISPLACED PERIODS, 377777777777K
ceomieee TP0 ERRIN SO .- O

0'E

-. .- NEWBOT. (TERMy PREM}
TRMNUM = TRMNUM + 1
COND = 4
T'0 NEWTRM

E'L -

R
RCHECK FOR BEGINNING OF NAME

63

R
R ~ C'R WORD .E. -$
WIR COND .NE. 2
- e emPRNTP. (ERR4) .
V'S ERR4 = SMISPLACED HYPHENS, 3777777TTTT7K
e - T*0 ERRIN e e
0'E
e - - - -~ - COND = 7 R e e — e -
LENGTH = 0
- - - . NAME = $ § B
NEWBOT. (TERM, PREM)
- - TRMNUM = TRMNUM + 1 e
T*0 NEWORD
N P E'L - e e e
R
RCHECK FOR BEGINNING OF TERMINAL CHARACTER 'LITERAL'
R
C'R WORD LE. *$ LOR. WORD +E. § 8 JOR. WORD .E.
1 /3
- . W'R COND .E. 3 - R
P'T ERR1D, WORD, LINE
B . ~e. V'S ERRID = $H.MISPLACED *.,RCIyH.* IN LINE NUMBER.
1,13+8
_T'0 ZAPALL e
O'E
. - .-.BREAK = WORD e
COND = &
- S - e ... T'D NEWORD e . .
E'L
R fe e e - I _ .
RCHECK FOR COMMA AFTER PREDICATE
e R . .
C'R WORD .E. '$
e ~W'R COND .NE. 3 SRR .
PRNTP. (ERRS)
e ichie-.._ V'S ERRS = $MISPLACED COMMAS, 377777777777K
T*0 ERRIN
R e .__._DYE . .. T
COND = 4
... _____T'D NEWORD e
E'L
,,,,, - R . R . . . e .
RCHECK FOR EQUALS, BEGINNING OF CONCLUSION
. - U PR
C'R WORD .E. § =s
e e oo WY R COND oNEw 3 <AND. COND LNE. 1
PRNTP. (ERR6)
- e e V'S ERR6 = SMISPLACED EQUALS SIGNS, 37T777T777777K
T'0 ERRIN
- - O'E . . e PR -
EQUAL = 1B
. ~es . _COND = 4 e e e
T*0 NEWORD
. . _ E'L - R B
R
. . RCHECK FOR TAB
R
e __.C'R WORD .E. 1s e
W'R COND .E. 3
o } PRNTP. (ERR13) . L
V'S ERRL3 = SMISPLACED TABS, 3777777777T77K

[..-0v'E

64

T*O ERRIN
.- DYE . - PN e e -
NEWBOT. (606060606C72Ky TERM)
it CDND = 2 B
T*0 NEWORD
E1L i O VU S .
R
RCHECK. FOR CARRIAGE RETURN e e e e
R
C'R WORD .E. $ 28 e et e e e s
H'R COND +E. 3
e - . ..PRNTP. (ERR14) U P
V'S ERR14 = SMISPLACED CARRIAGE RETURNS, 3777771777
LATTK T O -

T'0 ERRIN

NEWBOT. (606060606055K, TERM)
.. COND = 2 e e -
T*0O NEWORD
o <L U U ~
R
. RCHECK FOR $. INDICATES VARIABLE NEXT ENCOUNTERED (-
R SHOULD BE MARKED FOR. NEED.
R J e e
C'R WORD .E. 6060606060353K
W'R COND +E. 3 <OR. EQUAL" [e et e
PRNTP. (ERR25)
B —w - -V1'S ERR25 = SMISPLACED DOLLAR SIGNS, 3777777777177K
T'0 ERRIN
. B+ 1 X - O
DOLIND = 18
B - T'0 NEWORD B SR
E*L
R . e e L e e e o o
RASSUME CHARACTER IS VARIABLE
R PO
C'E
~-W'R COND .Es 3 e e e e

PRNTP. (ERR7}
Cee e —-V'S ERR7 = SMISPLACED VARIABLES, 3777777777717K

T*'0 ERRIN
.- 0'E s
, COND = 2 -
ce--w- VARTAB = ITSVAL. (WORDy VAR) - -
W'R EQUAL
i e WIR VARTAB ¢Be O oo e e e

PRNTP. (ERRS)

. s eimeoowo - V'S ERRB = SUNDEFINED VARIABLES, 37777777
17777K

feeo--- .. Y*O ERRIN .
E'L
e cmi——— . -NEWBOT o (VARIAB, TERM) e e
NEWBOT. (WORD, SVEVAR)
. D'E . -
W'R VARIAB .E. 0
. - . VARIAB = LIST. (9)
TEMP = LIST. {9)
i e —me . MAKEDL. {TEMP, VARIAB) i -
NEWBOT. (WORD, VARIAB)
e .___NEWVAL. (WORD, VARIAB, VAR) S

65

G'R DOLIND
POPTOP. (LSTNAM. (VARIAB))
0'E
T'0 ONLYON
E'L)
NEWBOT. (PREM, LSTNAM. (VARIAB)}
ONLYON NEWBOT. (VARIAB, TERM)
DOLIND = 08
EL
T'O NEWORD
E'L
E'L
R
RIN CASE OF ERRDR, CANON IS ERASED AND MAY BE RECONSTRUCTED
R
ERRIN P*T ERR,y LINE
VIS ERR = $H' IN LINE NUMBER®,13s$
ZAPALL IRALST. (TERM}

IRALST. (PREM)

IRALST. (DEF)

T'0 LOOPL
R
RVARIOUS ERRCR CHECKS FOLLOW

R
RCHECK TO SEE IF ALL NAMES ARE DEFINED
R
EVAL ERRS = 0B
DLIST = LSTNAM. (NAMES)
SEQCHK = SEGRDR. (DLIST)
toopPz NAME = SEQLR. (SEQCHK, F)
CEFNUM = SEQLR. (SEQCHK, TEMP) .A. TT7777K
W'R F .Gs 3 -
W'R ERRS
PRNTP. {COMM2) :
V'S COMM2 = $PLEASE DEFINE ABOVE PREDICATES.S$, 7777
1777777TT7K .
T*0 LOOP1
E'L
PRINT COMMENT $ §
PRNTP. (COMM1)
V'S COMM1 = SCONSISTENT SET OF CANONS.$, TT7T7T77777777K
T'Q TYPOUT.
E*L s
OEFCHK = [TSVAL. (DEFNUM, SYSTEM)
W'R DEFCHK .E. 2
ERRS = 18
P*T ERR9s NAME
V'S ERR9 = $C6, H' UNDEFINED'#$
E*L
T'0 LOOP2
R
RPRINT LIST OF PREDICATES.
R
TYPOUT PRINT CCMMENT ¢ $
PRINT CCMMENT $LIST OF DEFINED PREDICATES AND DEGREES.S$
PRINT COMMENT $ $
1 =0
FNONMB I =1+1
SEQCHK = SEQRDR. (LSTNAM. (NAMES))
SPCNMB NAME = SEQLR. (SEQCHK, F)

66

CEFNUM = SEQLR. ({SEQCHK, G)
PRMNUM = DEFNUM (RS. 18
DEFNUM = DEFNUM JA. T77777K
W!'R F 4Gao Oy T'0 PUTIN
W'R DEFNUM JE. 1
P'T NOTE3, I, NAME, PRMNUM
VIS NOTE3 = $I3,H's —'3CoyH' -, 14%%
T+*0 FNONHMB
EfL
T*0 SPCNMB
R
RINPUT OF SOURCE STRINGS AND 'NEED' FLAGS.
RA POINTER TC THE INPUT STRING IS USED IN
RTHE LIST, RATHER THAN THE INPUT ITSELF.
RTHE ADDRESS PORTION OF THE WORD CONTAINS THE
RRUMBER OF THE LAST CHARACTER INPUTTED
RAND THE DECREMENT CONTAINS THE NUMBER OF
RTEE FIRST. THOSE PARTS OF THE STRINGS
ROERIVED FROM THE CANONIC DEFINTIONS
RARE LEFT AS SINGLE CHARACTERS IN A SLIP
RCELL.
R
PUTIN LIST. (MAXINP}
IRALST. (NAMES)
PRINT COMMENT % $
PRINT COMMENT $INPUT OF SOURCE STRINGS.$
RETRY PRINT COMMENT $TYPE FINAL PREDICATE.S$
READIN., (NAME}
EQUIV = TTSVAL. {NAME, NAMES)
CHKNUM = EQUIV .RS. 18
EQUIV = EQUIV A, TT7777K
W'R EQUIV .E. O
P'T COMM&, NAME
V'S COMM4 = $H'-',C6,H'- NOT FOUND'e$
T*Q RETRY
E'L
LIST. (SEARCH)
INP = 0B
LNECNT =
PRINT COMMENT % $
PRINT COMMENT S$TYPE -NONEED-, ~NEED- OR =INPUT- FOR EACH TERM
1.8
THROUGH REACY, FOR TRMNUM = 1, 1y TRMNUM .G. CHKNUM
PRINT COMMENT $ $
P'T COMM3, TRMNUM, NAME
V¢S COMM3 = S$H'TERM NUMBER'yI2,H* OF —*,C6,H'-"»$
READIN. [(ANSWER)
- W'R ANSWER LE. $ NEEDS$
NEWBOT. (SNEEDS$, SEARCH)
T*0O READY
O*'R ANSWER .E. $NONEEDS
NEWBOT. (SPLEASES, SEARCH)
T'0 READY
O'R ANSWER .E. $ INPUTS$
INP = 18
PRINT COMMENT $ $
PRINT COMMENT $INPUT STRING. EXTRA CARRTAGE RETURN
LINDICATES END.$
PRINT COMMENT ¢ $
SAVi (LNECNT » 6 + 1} .LS., 18
TEMP LIST. (9]}

By

)
)

AR

TR SR N

{

HAORL

—

J

HCAN

SYSiLM

>

P

R~

’

68

CHKR = SEQRCR. (STACKB)
RECUKR CHK)l = SEQLR. [CHKRy F)
CHEKZ2 = SEQLR. {CHKR, TEMP}
W'R F oG. 2y, T'0 OUTCHK
W'R CHK1 .NE. DEFINE, T'0C RECURR
WIR LSTEQL. (SEARCH, CHK2) .E. §
W'R SHITCH .G. O
PRINT COMMENT S$LEFT RECURSION DETECTED.$
E'L
T*0 LUPQuU2
EtL
T*0 RECURR
R
RCEVELOPE 'NEED' LIST.
R
OUTCHK FIND = LSSCPY. (SEARCH)
TEMP1l = LIST. (9}
MAKEDL. (TEMPl,y FIND)
NEWTOP. (SEQRDR. (FIND), TEMP1)
TEMP = LSTNAM. {DEFINE)

NEED = LSSCPY. (LSTNAM, (TEMP)}
PREM = SEQROR. (TEMP)
LCOK = SEQRCR. {(FIND)

LISY. (NONEED)
LUPO 3 PRMISE = SEQLR. (PREM, F)
W'R F .G. O, T'0 PRTNED
SEE = SEQLR. (LOOK, F)
FADTRM = SEGRDR. (PRMISE)
LUPD. 5 VARIAR = SEQLR. (FNDTRM, G}
W'R G +G. 0Oy T'0 LUPDIJ3
W'R G .E. O
VARIAB = TOP. (VARIAB)
WIR SEE .E. $NEEDS
NEWBOT. (VARIAB, NEED)
0'R F .E. O
NEWBOT. (VARIAB, NONEED)
E'L
EYL
10 LUPJUDS
PRTNED W'R LEMPTY. {NONEED)s T'0Q LUPJDS
TEMP1 = POPTOP. (NONEEC)
FNDTRM = SEQRDR. (NEED)
LUPQ -4 VARIAB = SEGLR. {(FNDTRM, F)
W!'R F .G. Iy T'0 PRTNED
W'R VARIAB JNE. TEMPLl, T'0O LUPJIO4
CELETE. (SEQPTR. (FNDTRM))
T'O0 LUPLOS
LUP) 6 IRALST. (NONEED)
W'R SWITCH .LE. ly T'0 STRTSC
TEMP1 = SEQRDR. (NEED)
LUPQ1 TEMP2 = SEQLR. (TEMP1l, F)
W'R F .G. Oy T*'0 STRTSC
P'T NOTEJ. TEMP2
V'S NDTEJ = $HYNEED ',RCl,H".'#$§
T'0 LUPC1D
R
RGET CONCLUSION OF CANON.
R
STRTSC NEWBOT. (FIND, STACK2)
W'R SWITCH «G. 4, PRTLST. ($SNEEDS$, NEED)

69

CCNCL = SEQRDR. (TEMP)
LUPQ.. 7 TERM = SEQLR. (CONCL, F)
W'R F 4Gs Dy T'0 PRMCHK
ECLIND = 1B
IN = OB
INP = OB
R
RGET NEXT TERM OF CONCLUSION.
R
PIECE = SEQRDR. (TERM)
TtQ LUPOLL
LUP)..8 W'R IN, T'O GETINA
LUPO 9 IN = 08
W!R LEMPTY. (STACK1}
W'R INP, T*O LUPDD7
EOLIND = 08

LUPOL1 CHAR = SEQLR. (PIECE, G)
HW'R G .G. O
W'R EOLIND
INP = 18
O'E
T*0 LUPDOT
E*L
E'L
R
RCHECK TO SEE IF SCAN HAS FAILED.
R

WOR LEMPTY. {STACK2}, T'0 LUPIAIL
TEMP = STACKL
STACK1 = STACK2
STACK2 = TEMP
E'L
FIND = POPTCP. (STACKL)
SEE = LSTNAM. (FIND)
READS = POPTOP. (SEE}
W'R EOLIND
SEQLR. (READS, F})
W'R F .L. O .OR. INP
NEWTOP. (READS, SEE)
NEWBOT. (FIND, STACK2)
INP = 1B
T*0 LUPDGCY

E'y
E'L

TEMP = CONT. (SEQPTR. (READS) + 1}
HCLDP = TOP. {TEMP)
HCLODT = BOT. (TEMP)
W'R G oL, 2
R
RTERMINAL CHARACTER IN CONCLUSION. CHECK STRING.
R
LUPO15 ’ W'R LEMPTY. (HOLCT), T*O NGOOD
WORD = POPTDP. (HOLDT}
STRIND = 08
H'R WORD .L. D
W'R CHAR .E. WORD
NEWBOT. {(WORD, HOLDP]}
NEWBOT., (FIND, STACK2)
NEWTOP. (READS, SEE)
T*0 LUPCUSB

70

D'E
-T'0 NGOOD

E*L

0'E
OBJECT = CHARAC. {WORD)
W'R OBJECT .E. CHAR
LuPg19 TEMPL = WORD .A. T77777Ké6

W'R LEMPTY. (HOLDP}, T'0O TRAOVR
TEMP = POPBOT. (HOLDP)
WIR TEMP +G. O +AND. (TEMP .A. T77777K)

1 «.E. {WORD .RS. 18) - 1, T*0 SKPOVR
- NEWBOT. (TEMP, HOLOP)
TRAOVR TEMP = TEMPL1 .V. (WORD .RS. 18} - 1
SKPOVR TEMP = TEMP + 1

NEWBOT. (TEMP, HOLDP}
W'R TEMP1 .GE. WORD .LS. 18, T'0 JMPOVR
WORD = WORD + 1K6
NEWTOP. (WORD, HOLDT)
JMPOVR W'R STRTND, T'0 LUPD15
NEWBOT. (FIND, STACK2)
NEWTOP. (READS, SEE)
- T'0 LUPDOB
O'R OBJECT .E. $OONULLS
STRTND = 1B
T'0 LUPOL9
0'R OBJECT .E. $J00ENDS
T'O LUPJ1S
-D'E
NGOOD IRALST. (FIND)
- e W'RIN
CHAR = SAVECH
R ..~ 6 = SAVEG
E'L
-~ T*0 LUPOQ9
E'L
E'L - - - - S
R
RVARIABLE IN CONCLUSION. -
RCHECK TO SEE IF VARIABLE PREVIOUSLY DEFINED.

R s - [-
C'e
- VARIAB = TOP. (CHAR)
DLIST = ITSVAL. (VARIAB, FIND)
.--- W'R DLIST .NE. O
SAVECH = CHAR
- -—--SAVEG = G - S -
IN = 18
-6 = -1
DLIST = SEQRDR. (DLIST)
LuP021 - CHAR = SEQLR. (DLIST, F)
W'R F .G. 0, T*0 GETOUT
- ---- W'R CHAR. .L. Jy T'0 LUPQ27
I = CHAR
tyro23 CHAR = CHARAC. (1)

I =1+ 1Ké
W'R CHAR .E. $DDOEND$, T'0 LUPD21
W'R CHAR .E. $OONULLS, T'0 LUP(C23
ALLRC = 1B
T'0 LUPDLS

Luen27 ALLRC = 08

71

T'0 LUPI1S

- GETINA FIND = POPBOT. (STACK2)
READS = POPTOP. {(SEE)
W'R ALLRC, T*'O LUPO23
T'0 LUPD21

GETOUT CHAR = SAVECH

G = SAVEG

NEWBOT. (FINDy STACK2)

NEWTOP. (READS, SEE)

- T'0 LUPIDI9

E'L

R

RVARTABLE IS NOT YEY DEFINED, SO PROGRAM

R MUST SEARCH RECURSIVELY. SELECT PREMISE WITH WHICH

R TO SEARCH FOR VARIABLE.

R
PRPNTR = TOP. (LSTNAM. (CHAR))
PRMNUM = TOP. {LSTNAM. (PRPNTR)} JA. TT7777K
R
RCHECK OTHER TERMS {AND VARIABLES) IN CHOSEN PREMISE.
R

LIST. (PUSHES)

REMPTR = SEQRDR. (PRPNTR)
LUPO31 TERM = SEQLR. (REMPTR, F)

W!'R F «Go. O, T'0 PUSH1

TEMP = TOP. (TERM) . -
ZIEL = TOP. (TEMP)
R .
RINSERT STRING FOR VARIABLE PRESENTLY SOUGHT.
R . R
W'R ZIEL .E. VARIAB
TEMP = LIST. (9)
NEWBOT, (TEMP, PUSHES)
.-~ TEMP2 = LIST. (9}
NEWBOT. (TEMP2, TEMP}
TEMP1 = LSSCPY. (HOLDT)
NEWBOT. (TEMP1l, TEMP)
. ABANDN. (TEMP1)
0'E
R

RSEE [FidTHéR VARIABLES‘PREVIUUSLY DEFINED.
R

ISITDF = [TSVAL. (21EL, SEE)
. - -HW'R ISITDF .NE.
TEMP1 = LSSCPY. (ISITDF)
s - TEMP2 = LIST. (9) -
TEMP = LIST. (9}
NEWBOT. (TEMP2, TEMP)
NEWBOT. (TEMPL, TEMP)
- ABANDN. (TEMP1)
NEWBOT. (TEMP, PUSHES)
O'E .

R

ROECIDE WHETHER TO FLAG AS *NEED®' OR ‘'PLEASE'.

R

. W'R PRPNTR JNE. TOP. (LSTNAM. (TEMP)),
1 T*0 LUP237

NOPTR = SEQRDR. (NEED)
LUPO35 CKNEED = SEQLR. (NDPTR, F)
- W'R F .G. 0

72

LUPO37 NEWBOT. ($PLEASES$, PUSHES)
O'R ZIEL +E. CKNEED
NEWBOT. ($NEED$, PUSHES)
O'E
T'0 LUPD3S
ErL
E'L
E*L
T'0 LUPD3L
ETL
R
RINFORMATION FOR RECURSTON ASSEMBLED. SO SAVE STUFF
RFCR THE PUSH.
R
PUSH1 SCMERC = 0B
W'R SWITCH 4G. 1
P'T NOTEls, PRMNUM
V'S NOTE1l = $H*SCAN PUSH FOR*,13%$

E*L
T*0 PUSHIT
PUSHZ SCMERC = 1B

W'R SHITCH .G. 1

P*T NOTEA, PRMNUM

V'S NOTEA = $H'PREMISE PUSH FOR',I3+$
E'L

PUSHIT NEWTOP. (DEFy STACKA)

NEWTOP. {EQUIV, STACKA)
NEWTOP. (NEED, STACKA)
NEWTOP., {SEARCH, STACKB)
NEWTOP. (DEFINE, STACKB)
NEWTOP. (STACK1ls STACKA)
NEWTOP. [(STACK2, STACKA)
NEWTOP. (CONCL, STACKA)
NEWTOP. (PIECE, STACKA)
NEWTOP. (FIND, STACKA}
NEWTOP. (SEE, STACKA)
NEWTOP. {READS, STACKA)
NEWTOP. (HOLDP, STACKA)
NEWTOP. (HOLDT, STACKA)
NEWTOP. (CHAR, STACKA}
NEWTOP. (VARIAB, STACKA)
NEWTOP. (PRPNTR, STACKA}
NEWTOP. [ANSWER, STACKA)
NEWTOP. (SOMERC, STACKA)
NEWTOP. (EQLIND, STACKA)
EQUIV = PRMNUM
SEARCH = PUSHES

T'0 LUPDI)
R
RCHECK WHETHER PREMISE CONDITIONS ARE SATISFIEO.
R
PRMCHK PIECE = SEQRDR. (DEFINE)
LUPO51 W'R LEMPTY. (STACK1)

W'R LEMPTY., (STACK2), T*'O LUPJIL
PRPNTR = SEQLR. (PIECE, F)

W'R F .G. Oy T'0 ASSMBL

TEMP = STACKL

STACK1 = STACK2

STACK2 = TEMP

73

FIND = POPTOP. (STACKL)
SEE = LSTNAM. (FIND)
READS = POPTOP. (SEE)
PRMNUM = TOP. (LSTNAM. (PRPNTR)} JA. TTT777K
CLIST = ITSVAL. {PRPNTR .A. 77777K, FIND)
R .
RPREMISE HAS NOT BEEN PREVIOUSLY VERIFIED WHILE
RSEARCHING CONCLUSION. -
R
W'R DLIST .E. O
LIST. (PUSHES)
TERM = SEQRDR. {PRPNTR)
LUP053 TOPS = SEQLR. (TERM, F)
W'R F .G. Oy T'0 PUSH2
TOPS = TOP. (TOP. (TOPS})
DLIST = ITSVAL. (TOPS, FIND)
W!R DLIST .E. 2

R
RVARIABLE NOT YET DEFINED. INSERT *NEED®
R
NEWBOT. {$NEEDS, PUSHES])
W'R SWITCH .G. 0
P'T NOTED
V'S NOTED = $H-'NEED' REQUEST IN PREMISE CHEC
1K, -»$
E'L
T40 LUPDS53
E'L
TEMPL = LIST. (9)
NEWBOT. (TEMPLl, PUSHES)
TEMPZ2 = LIST. (9}
NEWBOT. (TEMP2, TEMP1}
TEMP2 = LSSCPY. (DLIST)
NEWBOT. (TEMP2, TEMP1)}
ABANDN. (TEMP2)
T*0 LUPD53
C*'E
R .
RPREMISE HAS BEEN PREVIOUSLY GENERATED IN SCAN
RCF CONCLUSICN.
R
SOMERC = DB
PUSHES = LSSCPY, (OLIST)
TERM = SEQRDR. {PUSHES}
TEMP = SEQRDR. (PRPNTR)
LUPOS7 TOPS = SEQLR. (TERM, F) .- - -
TEMP3 = SEQLR. (TEMP, H)
W'R F .G. 0
W'R SOMERC, T'0 PUSH2
IRALST. {PUSHES)
NEWTOP. (READS, SEE)
NEWBOT. (FIND, STACKZ)

T*'O LUPDSL
0'R F L. 0
SOMERC = 18

TEMP3 = TOP. (TOP. (TEMP3))
DLIST = [TSVAL. (TEMP3, FIND)
W'R DLIST .E. O
P'T NOTED
SUBST. (SNEEDS$, SEQPTR. (TERM))

ASSMBL

LUPNGY

LUPO71

74

T*0 LUPI5T
E'L
TEMPL = LIST. (9)
SUBST. (TEMPly, SEQPTR. (TERM)])
TEMPZ = LIST. (9)
NEWBOT.. {TEMP2, TEMPL)
TEMP2 = LSSCPY. (DLIST)
NEWBOT. (TEMP2, TEMP1)
ABANDN. (TEMP2)
E'L
T*0 LUPDST
E*L
R
RASSEMBLE CONCLUSION TO BE TRANSMITTED UPSTAIRS
R
W'R LEMPTY. (STACK2), T'0 LUPQOL
FIND = POPTOP. (STACK2)
READS = POPTOP. (LSTNAM. (FIND)}
TERM = SEQRCR. (FIND)
PREM = SEQRDR. (LSTNAM. (DEFINE))

TCPS SEQLR., (TERM, G)

CCNCL = SEQLR. (PREM, F)

R

RASSEMBLED, ADD TO ANSWER AND RETURN.
R

W'R F .G. 0
NODLST. (FIND)
NEWBOT. (FINDsy ANSWER)
T'0 ASSMBL

R - . -
RIF TERM SCANNED, SKIP IT.
R . s
C'R G E. O
T'0 LUPG6?
R
RIF NEED OR PLEASE, ASSEMBLE.
R
'R G .L. O
SOMERC = OB
CTEMP = LIST. (9)
TEMPL = SEQRDR. (CONCL)
TEMP2 = SEQLR. (TEMPl, F})
WIR F .G.)
.. ... W'R SOMERC .OR. TOPS .E. SNEEDS
TEMP1 = LIST. (9)
SUBST. (TEMP1, SEQPTR. (TERM})
NEWBOT. (TEMP, TEMPL)
TEMPZ = LIST. (9)
NEWBOT. (TEMP2, TEMP1)

O'E
IRALST. (TEMP)
- - E'L
T'0 LUPDGT

D'R F .E. O
SOMERC = 1B
DLIST = TOP. (TEMP2)
ANTWRT = ITSVAL. (OLIST, FIND)
W'R ANTWRT .E. O
W'R TOPS .E. $SNEECH
PRINT COMMENT S$*NEED' ERROR.S

POP

POPL

75

ErL
IRALST. {FIND}
T'0 ASSMBL
E'L
TEMP3 = LSSCPY. {ANTWRT}
INLSTR. (TEMP3, {CONT. (TEMP
1 77777K)) .RS. 18]}
IRALSY. (TEMP3)
O'R F L. O
NEWBOT. (TEMP2, TEMP)
E'L
T*0 LUPOTL
E'L

R
RPCP-UP ROUTINE

R
W'R SWITCH .G. 2

PRTLST. ($ANSWERS$, ANSWER)
E'L
IRALST. (STACKL1)
TRALST. (STACK2)
W'R LEMPTY. (STACKA), T'O THKGOD
IRALST. {SEARCH}
RTRN1 = ANSWER
ECLIND = POPTOP. (STACKA) .E. 1
SCMERC = POPTOP. {STACKA) €. 1
ANSWER = POPTOP., (STACKA)
PRPNTR = POPTOP. (STACKA)
VARIAB = POPTOP. (STACKA)
CHAR = POPTOP. (STACKA)
HCLDT = POPTOP. (STACKA)
HCLOP = POPTOP. {STACKA)
READS = POPTQP. (STACKA)
SEE = POPTOP. (STACKA}
FIND = POPTCP. (STACKA)
PIECE = POPYOP. (STACKA)
COCNCL = POPTOP. {STACKA})
STACKZ = POPTOP. (STACKA)
STACK1 = POPTOP. {STACKA}
CEFINE = POPTOP. (STACKB)
SEARCH = POPTOP. (STACKS)}
NEED = POPTCP. (STACKA)
ECUIV = POPTOP. (STACKA)
DEF = POPTOP. (STACKA)
G =0
W'R SWITCH .G. 1

P'T NOTE2,» EQUIV

V'S NOTE2 =
E'L

A

$H*PCP BACK TO'yI3,H'.'#3

W'R SOMERC, T'0 POP2

R

RRETURN TO SCAN COF CONCLUSION AFTER PUSHING
RFCR DEFINITION OF A VARIABLE.

R

W*'R LEMPTY.
IRALST.
[RALST.

(RTRNL}
{RTRN1)
(FIND)

INP = 03B

W'R SWITCH
PRTLST.

Lo 4,
($STACKLS,

T'O LUP23CY
STACK1)

LuPo79

LUPOBY

Lurdsl

R

RSAVE THE RETURN ANSWER,
RAND PREDICATES AS GIVEN

R

R

PRTLS

E'L

FNDCP
TEMP
TEMP3
TEMPY
TEMP2
W'R F

C'E

E'L

TEMPL
TEMP3
TEMP2
TEMP4
TEMPS
WIR F

C'R H

76

TOP. (TEMP2)

T. ($STACK2$, STACK2)
T*0 LUPGOY
Y = LSSCPY. (FIND)
= SEQRDR. (FIND)
= SEQRDR. (FNDCPY)
= SEQLR. (TEMP, F)
= SEQLR. (TEMP3, H)
«Ge 0
T*O LUPDBOD
WIR TEMP .E. READS
CPYHDP =
CPYRDS = TEMP3
LINKS = CONT. (TEMP2 .A.
E'L
T*0 LUPD79

«Ge O
NEWVAL .
ABANDN.
NEWTOP.
NEWBOT .

T'0 POPL

ele D

POPTOP. (RTRN1)
SEQRDR. (TEMP1)
SEQRDR. (PRPNTR)
SEQLR. (TEMP3, H}
SEQLR. (TEMPZ2, F)

T777T7K) «RS. 18

AND DEFINE VARIABLES
FROM PUSH.

{PRPNTR .A. T7777K, TEMP1l, FNDCPY)

(TEMPL)

{CPYRDSy LSTNAM. {FNDC
(FNDCPY, STACK2)

W'R TEMP4 .E. SNEED$
. PRINT COMMENT $'NEED' ERR

ETL

T'0 LUPDSBL

TMPVAR = TOP. (TAOP. (TEMPS))
PRVDEF = ITSVAL. (TMPVAR,

PY)}

OR.$

FNDCPY)

RVARIABLE PREVIOUSLY DEFINED. COMPARE DEFINITIONS.
R

R

W'R PRVDEF JNE. 2

. W'R LSTEQL.

Er
O*'E

L

(PRVDEF, TOP.

IRALST. (FNDCPY)
IRALST. (TEMP1)

T+0 POPL

RACD DEFINITION.

R

NEWVAL. (TMPVAR,
W'R VARIAB .E. TMPVAR

SuBsST. (POPBOT.

T0P. (TE

CHKJ = LSSCPY. (TOP.
NEWTOP. (LIST. (9],

W'R LEMPTY.

[CHKO),

(TEMP4)) .NE.

MP4), FNDCPY)

[TEMP4), LINKS)

(TEMP4)}
TEMP4&)
T'0 LUPA8]

9

THKGD2

LUP15.)

LUPERR

ERRLUP

LUPSEE

78

W'R LEMPTY. (ANSWER])

W'R ALLRC, T'0 HERAUS
W'R SUMERC
PRINT COMMENT $SCAN COMPLETED. SYNTAX ERROR IN INP

1U1 STRING. §
PRINT COMMENT $PART(S) OF INPUT OR NEED STRING(S) NOT SCANNED

l.¢

T'0 LUP15D
o't
PRINT COMMENT $SCAN FAILED. SYNTAX ERROR IN INPUT

1STRING(S).$

E'L

PRINT COMMENT 3$NO TRANSLATED OUTPUT.S
CHKNUM = 0

MAX1 = 0

CONCHK = SEQRDR. (SEARCH)

SEECHK = SEQLR. (CONCHK, F)

W'R F «Go Oy T'O HERAUS
CHKNUM = CHKNUM + 1
W'R F «Le Oy T'0 LUPERR
1 = SEQLR. (MAXCHK, F)
OLOMAX = MAX1
MAXY =71 A. TT7777K
MAX2 = I .RS. 18
PRINT COMMENT $ §
WIR CHARAC. (I + 1K6) .E. $OINULLS .AND. MAX1 - MAX2
5
P'T NOTE4, CHXNUM
V'S NOTE4 = $HT'INPUT TERM*,12,H* COMPLETELY SCANNED

MAX3 = CHARAC. (1)
P*T NOTES, CHKNUM, MAX3
V'S NOTES =" $HYLAST CHARACTER INSPECTED IN TERM!

14124H* WAS *,RC1,H' IN MIOST OF FOLLOWING CONTEXT.'s$

PRINT COMMENT $ $
LINEl (MAX2 - 1}/6 - 2
LINE2 (OLOMAX + 5)/76 - 1
LINE3 = (MAXL - 1)/6
THROUGH ERRLUP, FOR I = 0y 1y I +E. 5
W'R LINEl + I oLE. LINE2 +OR. LINEl + I .G.

1 LINE3
BUFFER(I) = 575757575757K
0'e
BUFFER(I) = INPUT{LINEL + I}
E*L
CONT INUE
P'T NOTE6y BUFFER(O)y.e4yBUFFER{4)
V'S NOTE6 = $5C6%$
E'L
T*'0 LUPERR
C'e .
SOMERC = 1B

HOLD = POPTOP. (ANSWER)

ENDCHK = SEQRDR. (HOLD)

TEMP4 = SEQRDR. (SEARCH)

SEECHK = SEQLR. {ENDCHK, F)

TEMP5 = SEGLR. (TEMP4, H)

WI'R F .Ga O, T'O ALLOVR

W'R TEMP5 .E. $PLEASES, T'0 LUPSEE

TEMP = BOT.
W'R JNOT. LEMPTY.

79

(SCECHK)

{TEMP)

TEMPL =
WtR JNOT
TEMP2
TEMP3
TEMPL =
W'R TEMP]

Lo

POPTOP.

. LEMPTY.
+RS.
-

TEMPL
TEMP1
CHARAC.

{TEMP)
(TEMP),
18
T17777K
{TEMP1)

+NE. $OQ0QENDS

«AND.

T'0 THKGD1

TEMPL

«NE.

1 $UONULLS
EvL
T*0 LUPSEE

E'L

R

RSCAN WAS SUCCESFUL.

R

WIR ALLRC
PRINT COMMENT $ $
PRINT COMMENT SACDITIONAL SUCCESSFUL SCAN.S$
T'0 ALLGNE

.0R, TEMP3 - TEMP2 .G. S5, T'0 THKGD!

PRINT QUT *NEEDED' TERMS.

ALLOVR

PRINT COMMENT $SCAN SUCCESSFUL.$

ALLRC = 1B

PRINT COMMENT STRANSLATED OUTPUT (IF ANY)

CONCHK = SEQRDR. (SEARCH])

TRMNUM = 9

CONCL = SEQLR. (CONCHK,

SEECHK = SEQLR. (ENDCHK,

TRMNUM = TRMNUM + 1

W'R F .G. Oy T'0 THKGD1

W'R CONCL .NE. SNEEDS,

PRINT COMMENT $ $

W'R SEECHK .E. SNEEDS$,

P*T NOTET, TRMNUM

V'S NOTE7 = $H'TERM NUMBER',I2,H*.'*%$

PRINT COMMENT ¢ ¢

SEECHK = TOP. (SEECHK)

INP = 0B

THROUGH LUPLOL,y FOR 1 = Uy

BUFFER(I) = ST5757575757K

BUFFER(14) = 777777777777K

I =0

G = 33

WRODCNT = 0

W'R G .LE.
G = 39
WRODCNT =

ErL

W'R I

ALLGNE FOLLOWS. $

F)
G)

LyPQUT

T'0 LUPOUT

PRINT COMMENT $*NEED®' ERRS$

LUPL g +Ee 14

LUPL 1

1, 1

CHKEMP -6

WROCNT + 1
+E. 80

PRNTP. (BUFFER
T'0D LUP1OD

CROUT ()}
E'L
W'R INP

INP = 1B
TEMPL =
TEMP =

W'R TEMP1

W'R TEMPL

TeO LUPLL3

LUPl..5
LurPl. 7 CHARAC. (TEMP)
TEMP + 1K6

«E. SUONULLS,

«E. $D0IENDS,

T'O LUPLGY
T'0 LUP1VY

Ore

LUP1.9 W'R LEMPTY. {SEECHK)

RODANS

SKIPILT

81

E1D READRIN.

Crun = b

CuMMY = ¢ 3

Tr0 ROLINE

WIR O OWHRE Lbh. B -$ JOR. WORD .E. %
CURMY = DJUMY JLS. 6 V. WIRD LA, 77K
WiROEDLIND, FUNCTION RETURN

TCU NOWCRE

E'N

[

$, T'0 SKIPIT

82

R R T R R Ry sy Y N Y Y Y SRS SRS RSS2 Y N

M5364

START

AROUND

RETURN

GOBACK

READER

5163 PRTLST MAD FOR M5364 5163 05
EXTERMAL FUNCTION (NAME, LSTOUT)
K'S INTEGER
BCOLEAN LEMPTY
E'O PRTLST.

PRINT COMMENT § $
P'T NOTEBB, NAME, GETMEM. (0)
V'S NOTEBB = $C6,H' MEM=',16%s$
I1=0 :
LIST. (STACK}
LISSNM = LSTOUT N
NUMBER = ITSVAL. (LISSNM, STACK)
W'R NUMBER .NE. O -
P'T NOTE2, NUMBER
V'S NOTE2 = $H'LIST',I3ss
WER LEMPTY. (STACK}
PRINT COMMENT §
IRALST. {STACK)
FUNCTION RETURN S o
B'E
S = POPTOP. {STACK)
POINT = POPTOP. (STACK)
NUMB = POINT .A. T77777K
POINT = POINT .RS, 18
“W'R POINT .E. 1, T*Q RETURN

T*'0 GGBACK
E*L
E'L
I=1+1
NUMB = |

NEWVAL. (LTISSNM, NUMB, STACK)

P'T NOTE3, NUMB

V'S NOTE3 = S$SH'BEGIN'yI3,H',v«s$

S = SEQRDR. (LISSNM)

L = LSTNAM, (LISSNM)

W!'R L «NE. 2D
PRINT COMMENT $DLIST.$
NEWTOP. {NUMB .V. 1Ké6, STACK)
NEWTOP. (S, STACK)

LISSNM = L
T'0 START |
PRINT COMMENT S$END DLIST.S
C'E o R
PRINT COMMENT $NO DLIST.$
E*L - B
W = SEQLR. (S, F)
W'R F .G. D

P'T NOTE6, NUMSB
V'S NOTE6 = SH'END',I3,H*,'s$
T*'0C ARQUND
C'R F .E. 0 .
W'R W .A. TODDD07K5 NE. O, T*O READER
PRINT COMMENT S$LIST NAME.S
NEWTOP. (NUMB, STACK)
NEWTOP. (Ss STACK)
LISSNM = W
T'0 START —

PY'T NOTES, Wy W
VS NOTES = $H. '.,Cé6,H.* TaeK12,H. t.e8

Bt
Frn

THo

GORACK

83

-84~

Bibliography

Cheatham, T. E. and Kirk Sattley, Syntax-Directed Compiling, Proceedings
1964 Spring Joint Computer Conference, pp. 31-57, American Federation of
Information Processing Societies (1964).

Donovan, John J., Investigations in Simulation and Simulation Languages,
Ph.D. Thesis, Yale Univesity, New Haven, Connecticut; Fall, 1966.

Donovan, John J. and Henry Ledgard, A Formal System for the Specification
of the Syntax and Translation of Computer Languages, M.I.T., 1967.

Post, E. L.,"Formal Reductions of the General Combinatorial Decision
Problem", American Journal of Mathematics, Vol. 65, pp. 197-215; 1943,

Shea, Dorothy, CTSS SNOBOL User's Manual, Project MAC Memo MAC-M-307-1,
Project MAC, M.I.T., Cambridge, Mass.; October, 1966.

Smullyan, R. M., Theory of Formal Systems, Princeton University Press,
Princeton, New Jersey; 1961.

Weizenbaum, J.,"Symmetric List Processor", Communications of the ACM,
Vol. 6, No. 9; September, 1963,

Weizenbaum, J., The Symbolic SLIP-Mad System, Project MAC, M.I.T.,
Cambridge, Mass; September, 1965.

CS-TR Scanning Project
Document Control Form Date: Jas ! /iS

Report# _Le.s “TR-Y¢

Each of the following should be identified by a checkmark:
Originating Department:

0 Artificial Intellegence Laboratory (Al)
Laboratory for Computer Science (LCS)

Document Type:

X Technical Report (TR) [Technical Memo (TM)
O other:

Document Information Number of pages: §4(qi-imacs)

~ Not to include DOD forms, prhterintstrudlons etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
ﬂ Double-sided \M Double-sided
Print type:

] Typewriter [J oOfftsetPress [] Laser Print
ﬂlmetpmw [0 Unknown [] Other:

Check each if inciluded with document:

X DOD Form ﬁ Funding Agent Form k Cover Page

[0 spine O Printers Notes O Photo negatives

O Other:
Page Data:

Blank Pagesiy pege numben:

Photographs/Tonal Material ey page numbes:

Other {note description/page number).
Description : Page Number:

Erace maR(1)s 4) uagt’Fo TITLE + Ak, PACES 3-FY w0tk €Y
(85-91) ScancoTTrRoL, COVSR Fapink A@rmmo,Ws(y)

Scanning Agent Signoff:
Date Received: L1/ /] 197 Date Scanned: /3/2/ 45 Date Returned: /2138 /1S~

!
Scanning Agent Signature; 2]4 4&4“4 h,{ (;g_jé Row /o4 DSLCS Fom -

UNCLASSTFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security clasaification of titls, body of abstract and indexing annotation muat be entered when the overall report ia clasaified)

1. ORIGINATING ACTIVITY (Corporate suthor) 2a4. REPORT SECURITY CLASSIFICATION
Magsachusetts Institute of Technology UNCLASSIFIED
Project MAC 2b. GROUP

None

3, REPORT TITLE

A Canonic Tranmslator

4. DESCRIPTIVE NOTES (Type of raport and inclusive dateas)
Bachelor's Thesis, Electrical Engineering, June 1967

5. AUTHORIS} (Last name, [irat name, initial)

Alsop, Joseph W.

8. REPORT DATE 7e8. TOTAL NO. OF PAGES 7h. NO. OF REFS
November 1967 84 8
8a. CONTRACT OR GRANT NO. 9. ORIGINATOR'S REPORT NUMBERI(S)
Office of Naval Research, Nonr-4102(01)
5. PROJECT NO. MAC-TR-46 (THESIS)
NR 048-189 8b. OTHER REPORT NO(S5} (Any other numbera that may be
© RR 003-09-01 aneignod thia teport)
d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12.

SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency

None 3D-200 Pentagon
Washington, D, C. 20301

13. ABSTRACT
This thesis presents an algorithm to recognize and translate sets of character
strings specified by canonic systems. The ability of canonic systems to define the
context sensitive features of strings and to specify their translation allows the
algorithm to recognize and translate real computer languages. It is also applicable

in other language systems.

Canonic systems are discussed, and several examples of their use are given.
The algorithm is described, and examples of canonic translation are presented

using a program Implementation.

14. KEY WORDS

Canonic systems Machine-aided cognition Time-sharing
Canonic translators Multiple-access computers Time~shared computers
Computers On-line computers Translators

DD .73+, 1473 (M.LT.) UNCLASSIFIED

Security Classification

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

