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Summary 

An algorithm to recognize and translate sets of character strings 

specified by canonic systems is presented. The ability of canonic systems 

to define the context sensitive features of strings and to specify their 

trl'.nslation allows the algorithm to recognize and translate real computer 

languages. It is also applicable in other language systems. 

Canonic systems are discussed, and several examples of their use are 

given. The algorithm is described, and examples of canonic translation 

are presented using a program which implements it. 
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A Canonic Translator 

The development of a generalized compiler whose function is directed 

by a formal language specification has aroused significant interest and 

effort. This thesis presents an algorithm for the recognition and translation 

of character strings belonging to a set of strings whose syntax and translation 

have been defined by a canonic system. Since these system~ are capable 

of defining context sensitive features of language, the algorithm can 

recognize and translate real computer languages. It is applicable to an 

even wider class of language systems, including boolean algebras and 

theorem proving, which can be characterized by this method. 

Canonic systems form the basis and motivation for this work. The 

first task of the paper is to discuss briefly and informally the improved 

specification of syntax and translation made possible by the development 

of canonic systems. The discussion includes a description of the form of 

the systems and several examples, among them a complete formal description 

for the syntax of the string processing language SNOBOL. The contribution 

of this thesis lies in the presentation of an explicit algorithm which 

employs a canonic system characterizing the syntax and translation of a 

set of source strings to recognize a particular source string and perform 

the translation. The latter part of the thesis describes the algorithm and 

the program which implements it. 
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I. Formal Syntax Specifications 

Backus-Naur Form is the most widely known formal specification of 

syntax. It provides a convenient starting point for a discussion of 

canonic systems. The general form of a rule or production of a BNF 

specification is as follows: 

<name l> : := terminal 10. <name ll> ••• <name ln> terminal ln I 
terminal 20 <name 22> <name 2m> terminal 2m I .... 

The sign::= should be read "may be replaced by" and the vertical bar 

represents "or". The names enclosed within brackets are arbitrary designations 

for defined sets of strings. The definition may be recursive; that is, the 

set on the left may be defined in terms of itself if the name of the set 

also appears on the right. "terminal n m" designates an arbitrary string 

of terminal characters, possibly the null string. As a concrete example, 

consider the following BNF system. 

<assignment> <letter> <expression> 

<expression> <letter> <letter> + <expression> 

<letter> · ·= xhl z 
An example of a string which is a member of the set <assignment> is: 

y~x+z 

The strings cqmprising a set definedby a BNF system normally appear 

to be generated in a "top-down" manner. The highest level definition 

( <assignment> ) is generally placed first, and one normally reads a 

BNF rule from left to right, In order to gain some insight into the form 

and nature of canonic systems without launching into a formal definition, 

consider turning a BNF production around and modifying the punctuation somewhat. 

1. v letter t x expression ~ v = x assignment 

The lower case letters (v and x) are variables representing strings 



-8-

chosen from their respective sets (letter and expression). The names of 

the sets are underlined and called predicates. The definition may be read 

very elaborately as follows: "If v represents a string chosen from the 

set letter, and if x represents a string chosen from the set expression, 

then the string formed by concatenating the string represented by v with 

an equals sign and the string represented by x is a member of the set 

assignment." The sign {-acts as the conjunctive "and", and the sign f- acts 

as an assertion sign. A string of variables and terminal characters (e.g. v=x) 

is a term, and a term followed by a predicate in the manner above is a 

remark. Those remarks to the left of the assertion sign are referred to 

as premises; those to the right as conclusions. This example illustrates 

the most basic form of a canon in a canonic system. A more formal description 

may be found in Donovan (2) and Donovan and Ledgard (3). This discussion 

will remain highly informal. 

What improvements in the definition of a syntax do canonic systems 

permit? The principal weakness of BNF systems is their inability to describe 

the context sensitive features of a set of strings; for example, the 

requirement in most computer languages that all reference labels of a program 

be singly defined as statement labels. This restriction could only be 

imposed in BNF notation by some process akin to defining each possible 

legal program, in toto, in a separate BNF rule. Certainly all sets of 

strings which can be defined in BNF may be defined by a canonic system by 

transforming the rules in the manner illustrated above. In addition, one 

may "cross-reference", or use a variable more than once on the left. 

2. x name x labelname 

Labelname is the intersection of label and~; that is, only those 

strings which are members of both the set label and the set name are members 
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and makes it possible to generate all ordered pairs with the property 

described. 

A concrete example of the production of a particular member of a 

defined set will perhaps serve to clarify the nature and recursive properties 

of canonic systems. Assume we wish to show that <A<X• Y,> is a member 

of the set notin. Using canon 4, we may assert 

A letter. 

We may then substitute this result into the premise of canon 7, and assert 

that 

We then derive from canon 5 that 

<A<. x> differ 

<A<Y> differ. 

Finally, we apply canon 8 twice as follows: 

notin c}- <A<x> differ 

notin 1- <A<Y> differ 

Note that we use the conclusion from the first application of the canon to 

establish the premise in the second application. 

Now that the reader has grasped some of the power and elegance of 

canonic systems, a short history of their development is in order. This 

work is based completely upon the presentation of canonic systems by Donovan 

and Ledgard (3) and Donovan (2), who is responsible for their appearance 

in present form. His work evolved from an applied variant of Smullyan's 

elementary formal systems (6) and Post's canonical systems (4). The present 

canonic systems are so named in recognition of Post's work. 

To further illustrate canonic systems, I present a complete syntactic 

definition of a restricted computer language MINI MAD. The present example 

and the foregoing example of notin both draw heavily from the examples 
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presented in Donovan (2). 

MINI MAD will permit only a few principal types of statements: an 

assignment statement, a transfer statement, and a statement formed by 

combining a simple conditional with one of the two other statements. 

All programs must terminate with an unlabeled END OF PROGRAM statement. 

The only boolean operator allowed is arithmetic equality (.E.), the only 

arithmetic operator allowed is addition (+), and only arbitrary length 

integers will be permitted as constants. The permissible statement labels 

are the single letters A, B and C; the variable names allowed are the letters 

X, Y and z. In addition, restrictions on statement length will be omitted 

and no blanks will be allowed save those which are part of the statement 

definition (e.g. TRANSFER TO). The character* will be adopted as an end-

of-card character, analogous to a carriage return. It should be understood 

that all restrictions and omissions are introduced for the sake of simplicity. 

A complete formal syntactic definition of the string-processing language 

SNOBOL may be found in appendix 2. 

The following example is a member of the set MINI MAD program, with a 

carriage return substituted for the character *· 

A X=lS 

B X=X+l 

WHENEVER X .E. 123, TRANSFER TO A 

TRANSFER TO B 

Three canons will suffice to define the set of arbitrary length integers. 

9. ~ Oid,.2.A ••• .d849digit 

10. d digit ~ d integer 

11. d digit {- i integer ~ di integer 

The use of the predicate notin, defined previously, will later implement 

the restriction that no statement labels be multiply defined. 
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12. ~ <A< B>.t.. <A<C>..6 <B< c> differ 

13. <x<y> differ ~ <Y<x> differ 

14. d digit ~ <ct</\> not in 

15. <x<y> notin q, <x< ct> differ ~ <x< d, y~ notin 

One should keep in mind that only lower case letters are used as 

variables representing strings. The signs ~,ct-,<:::.,/!,. are punctuation 

signs in the canonic system itself. All other characters are drawn from 

the alphabet of the language being defined. 

The definition of the predicate in will serve to implement the restriction 

that all reference labels be defined. The set in will consist of pairs of 

letter lists such that all letters in the first list appear somewhere in 

the second list. If the list of reference labels and the list of statement 

labels in a program satisfy this relationship, we know that there is at 

least one statement label corresponding to every reference label. 

16. ~ AA BA c label 

17. ~ <A""- A > in 

18. <x<Y> in rt i_ label t- <x < 4Y> in 

19. <x<y> in ct 1 la be 1 ~ <1i_x <J
1
y> in 

20. <x<y> in 4 <z<Y> in ~ <xz<Y> in 

Canon 17 provides a simple starting point for the recursive production 

of the more elaborate members of in, and corresponds to a program with 

neither statement nor reference labels. The next two canons describe the 

ways in which one may add to the lists of statement and reference labels. 

We may of course add a label at will to the list of statement labels, and 

may add a label to the reference label list as long as we also add it to 

the list of statement labels. The last canon provides for multiple referencing 

of a statement label. Using canons 16 through 19 alone, it is not possible 

to produce the following member of in 
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We may define the set expression as follows •. 

21. t XA YA Z variable 

22. v variable~ v expression 

23. i integer ~ i expression 

24. v variable q,. x expression r v + x expression 

25. i integer <Y x express4en ~ i + x expression 

The predicate next defined, conditional, will permit us to transform 

any unconditional statement into a conditional statement when a string from 

the set is placed before the unconditional statement. 

26. t A conditional 

x expression 4 y expression~ WHENEVER X .E. Y, conditional 27. 

Canon 26 allows us to produce a string which leaves the statement unchanged. 

Canon 27 defines a set of strings which will change any unconditional MINI 

MAD statement (e.g. X = 3) into a conditional statement (e.g. WHENEVER 

X + Y .E. Z, X = 3). 

The "building block" sets defined so far will permit us to define the 

set of MINI MAD programs in fairly short order. A convenient vehicle for 

the task is a predicate of order three. The first element of the ordered 

triplets which make up the set program with label lists will be a list, 

punctuated by commas, of all statement labels used. The third element will 

be a similar list of reference labels. The second element will be the 

string of statements in which these labels are used. Again, we begin with 

a convenient starting point for later recursion. 

28. ~ < /\ " /I. </I. > program with label lists 

29. <s < p .c:r> program with label lists q 
~ <s.:: 

v variable 4 x expression t c conditiona 

CV =X *J>< r program with label lists 

30. <s < p <r> program with label lists 9- .L_ label f v variable 4 x expression t 
c conditional c}<.t« s> not in 

~ <.11s<L cv=v *P.c:r> program with label lists 
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Canons 29 and 30 describe the way in which we may add an assignment statement. 

either conditional or unconditional. Using the first canon of the two, 

we may add an unlabeled assignment statement; using the second, we may 

add a labeled statement. Note that the use of notin in canon 30 imposes the 

restriction that the label used must not be in the list of previous statement 

labels. 

30. <s<p<r> program with label lists~ 1 label f c conditional 

C TRANSFER TO Lt< Poe f,r> program with label lists 

31. <s.cp<r> program with label lists f /,e,.m label 4 c conditional t 
<m..::.s not in 

~ C TRANSFER TO j_ * P< 11 r 
program with label lists 

These two canons allow use to construct strings which include labeled 

and unlabeled, conditional and unconditional transfer statements in a 

manner analogous to that of the preceding pair of canons. We now need but 

one more canon to produce strings which are legal MINI MAD programs. 

32. <s <P ,..r> program with label lists c} <r<s> in 

~ p END OF PROGRAW< MINI MAD program 

This canon insures that all reference labels in the members of the set 

MINI MAD program are defined, and that all programs are properly terminated. 

This completes one of many possible canonic system definition or programs 

in MINI MAD. The canons are collected in sequence in appendix 1. 

If the reader has clearly understood the manner in which canons may 

define, by production, the syntax of real computer languages, one further 

illustration may provide some insight into the manner in which these systems 

may also define translation. Assume one wishes to translate MINI MAD into 

another language, for instance an assembly language such as FAP. In order 

to accomplish this, one might expand program with label lists to include 

a fourth term which would contain the translation of the string of statements. 
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appear 3-S fnllo ,':..~. 

33. < S<-P<r ~-~> r_r:_c~:.r:: \.•icL '·'''cl lists iilld tr;~l_ation c\. ;7 L11ic-l 

ThiE pu~~: i'.Ji1il ur c2n.:tniL' spe(_jfic..:itio11 o[ trausL:.~ion \•.:ill be pl:rsl:C'd 

furU1cr ir: the de~~- c- ::1'. i o[ the algor_:__Lhr:i ·,,.:hi ch Iorn:s the conLri'.:n1tion 
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II. The Recognition and Translation Algorithm 

Canonic systems will prove very useful in explicitly and concisely 

defining sets of strings such as computer languages. Such definitions would 

eliminate many ambiguities existing in language manuals. These systems 

could prove of greater value, however, if a canonic system could be used 

as a basis for recognizing strings from the defined set. In addition, if 

the members of the defined set are ordered pairs, triplets, etc., the 

usefulness of canonic systems would be still further extended if the 

algorithm could be used to produce the missing terms corresponding to a 

given term. The remaining part of this thesis discusses such an algorithm, 

the program which implements it, and the nature of the constraints imposed 

on the canons in order that the program be able to interpret them. 

This algorithm is an extension of the algorithm presented by Cheathem 

and Sattley (1), which is capable of recognizing strings produced by a 

Backus-Naur system. The modifications to their algorithm, which appears 

here in quite different form, reflect the greater power of canonic systems 

in defining strings. These modifications include mechanisms for handling 

predicates of degree greater than one, for properly interpreting the 

multiple use of a variable among the premises, and for generating the 

translation specified. In the case of a canonic system where all predicates 

are of degree one, and no "cross-referencing" is used, the algorithm operates 

in a manner almost identical to that of Cheatham and Sattley. 

The program which embodies the algorithm divides into two parts. A 

preliminary phase checks the syntax of the canonic system used. It insures, 

for example, that all variables used in the conclusion of a canon are to be 

found in the premises, and that all predicates used as premises are defined 

somewhere as conclusions. Further restrictions, which will be clarified 
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later, are imposed on the form of the canons and are checked at this point. 

The program then assembles the canons into a list structure which reflects 

their form and content, and control is passed to the evaluative phase of 

the program. The SLIP list-processing system, developed by Weizenbaum (7) 

vastly simplified the implementation of the algorithm. 

Canonic System 

Check syntax of 
canonic system 

and 

assemble 
list 
structure 

list structur 
for 

canonic syste 

Fig. 1. Structure of Program 

INPUT 

scan of 
input string(s) 

_~and generation 
of translation 

\II 
TRANSLATION 

The second part of the program represents the principal programming 

effort. This phase scans the input string, determines whether it satisfies 

the canonic definition, and generates any associated translations. The 

algorithm is principally "top-down"; it attempts first to match the input 

string against the final predicate in the canonic system (e.g. MINI MAD program), 

and it arrives only through recursion at a lower-level predicate, (e.g. 

integer or digit). Consider the following simplified statement of the 

algorithm for the case of a canonic system involving only predicates of 

degree one. The simplified algorithm will be later expanded to include 

more general cases. Imagine an arbitrary character string, with a mental 
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pointer to the left of the first character, and a canonic system defining 

a set of strings. We wish to determine whether the character string is 

a member of the set. 

1. The program considers in sequence those canons directly defining the 

string in question, and performs the following steps (2 through 6) for 

each such canon. 

2. The conclusion of the canon is matched, item by item, against the 

input string. If the item in the conclusion is a terminal character, 

step 3 is performed; if a variable, step 4 is performed. If the end of the 

canon is reached, the algorithm proceeds to step 5. 

3. The item in the conclusion is a terminal character. It is compared 

with the character in the input string to the right of the mental pointer. 

If they are identical, the program returns to step 2 to consider the next 

item in the conclusion, with the pointer shifted one position to the right. 

If not, the scan fails and the program returns to step 1 to consider any 

remaining canons for the string. 

4. The item in the conclusion is a variable, and the program must operate 

recursively to determine the definition of the variable in terms of the 

input string. In other words, it must determine the number of characters 

from the input string, commencing with the character to the right of the 

pointer, which should be alloted to the definition of this variable. To 

accomplish this, the program assembles a new input string which is a copy 

of all input characters to the right of the pointer, and picks a predicate 

among the premises of the canon which contains the variable. After saving 

its present state, the program returns to step 1 to determine the definition 

of the variable by examining the canons defining the premise predicate 

chosen. If there is no response upon return, the scan fails and the 

program returns to step 1 to consider alternative definitions of the string. 
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If there is a response, the program conpares it with the original input 

string to determine the definition of the variable and moves the mental 

pointer to its new position following the definition of the variable. 

The algorithm returns to step 2. 

5. The scan of the conclusion is complete, and the definitions, in terms 

of the input characters, of the variables appearing in the conclusion have 

been recorded. The algorithm now inspects the premises. Those premises 

used in step 4 to determine the definitions of the variables in the conclusion 

may already be asserted, since they were used to generate the definitions. 

However, a variable may appear twice in the premises, and we must insure 

that the string which forms the definition of the variable is a member of 

both sets. The algorithm forms an input string from the definition of the 

variable and operates recursively to determine if the other premise 

containing the variable is also true; i.e., if the string which is the 

definition of the variable is also a member of the second set named as 

a premise predicate. Upon return, if there is no response, the algorithm 

returns to step 1 to pursue alternatives as before. If there is a response, 

the program insures that the string has been fully scanned. If there are 

still more unchecked premises, it treats them in the same manner. After 

all such premises have been successfully verified, the simplified algorithm 

proceeds to the last step. 

6. The results of the scan at this level, which constitute the response 

for the next higher level, are assembled. There are no results if the 

scan failed. Otherwise, they consist of the input string with the mental 

pointer resting at the point where the scan of the conclusion was completed. 

The algorithm now returns to step 1, if there are more canons directly 

defining the set of which the input string is possibly a member. Since 
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each canon could conceivably add to the results, the program must actually 

be equipped to handle multiple results and hence multiple responses at the 

next higher level, and check out each possibility. The example which 

follows will serve to clarify the problem. If there are no further canons, 

the program proceeds to step 7. 

7. The program "pops" its state; that is, it returns to pick up where it 

left off at the next higher level. If the highest level has been reached, 

then the results are examined for a completely scanned input string. If 

such a response is found, the input string is a member of the originally 

defined set. If not, there exists a syntax error in the string. It is 

not clear that the set of all syntactically incorrect sets will be recognized 

by the algorithm. This recognition may be unsolvable in general. The 

algorithm is flowcharted below. 

A simple example will serve to illustrate the process and the problems 

involved in multiple 

34. 

35. 

36. 

~ 
~ 2 digit 

~ 3 digit 

answers. 

37. d digit ~ d integer 

Consider the following canonic system. 

38. d digit t i integer ~ di integer 

This system defines integers as arbitrary length strings of 1, 2 and 3. We 

wish to determine by use of the algorithm whether the string 31 is an 

integer. The process is described in the shorthand fashion below. 
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Recursion Input Canon Next 
Step Level String Considered Result(s) Action 

1 0 ·¥ 31 37 Push for digit 

2 1 .. 31 34 Fails Next Canon 

3 1 '1- 31 35 Fails Next Canon 

4 1 
,j, 

31 36 3{<1 digit Pop 

5 0 3 ~ 1 37 3~1 integer Next Canon 

6 0 ""31 38 Push for digit 

7 1 ,[, 31 34 Fails Next Canon 

8 1 + 31 35 Fails Next Canon 

9 ~ 31 36 3~ 1 digit Pop 

10 0 3,)1 38 Push for integer 

11 1 ll 37 Push for digit 

12 2 -l-1 34 -1' 1 digit Next Canon 

13 2 +l 35 Fails Next Canon 

14 2 tl 36 Fails Pop 

15 1 1~ 37 1 ~integer Next Canon 

16 1 ll-1 38 Push for digit 

17 2 ,),1 34 1..,digit Next Canon 

18 2 il 35 Fails Next Canon 

19 2 "'l 36 Fails Pop 

20 1 li 38 Push for integer 

21 2 37 Push for digit 

22 3 
"" 

34 Fails Next Canon 

23 3 -t 35 Fails Next Canon 

24 3 • 36 Fails Pop 

25 2 + 37 Fails Next Canon 
26 2 ~ 38 Push for digit 
27 3 ~ 34 Fails Next Canon 

28 3 {. 35 Fails Next Canon 
29 3 ~ 36 Fails Pop 
30 2 38 Fails Pop 
31 1 38 l.i- integer Pop 
32 0 38 31 ~integer 

3~1 integer Done 
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Flowchart of Simplified Algorithm 

* ENTER 
with input string and 

predicate 

Set pointer to left 
of input string 

(Another) canon defin- NO 

fully 

N0-..1=*1 
LEVEL O? --~ 

ing this predicate? >-----4 

/Shift pointe!J 

Identical to 
next 

YES 

Another item in 
conclusion of canon? 

character in f<;;"-----1!'-'!:~-!;-'-"-'::..:J 
input string. 

Create new input string 
of characters to right 
of pointer. 

NO 

(Another) premis ,__N_o ___ ~ 
in canon? 

Used to generate I 
definition of variable?. 

NO 

Use definition of 
variable as input 
string 

"PUSH" means save state, go to "ENTER". Assemble results, 
"POP" means pop state1 go to correct "RETURN". @~-----!consisting of 

scanned input string 
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At this point, the algorithm has arrived at two answers; i.e., that 3 

and 31 are both integers. The first could not be immediately rejected 

because the algorithm has no global overview which informs it that there is 

no syntactic type following integer which would account for the rest of the 

string. At level zero however, we may eliminate such results, and the 

single assertion that 31 is indeed an integer remains. 

We now consider the problem of left recursion. Suppose one wrote 

canon 38 in the following manner. 

39. i integer t d digit ~ id 

The defined set integer has not been altered, but the algorithm will no 

longer function correctly. Note that whenever the program operates 

recursively to determine the definition of integer (steps 1, 10, 20), 

the length of the input string has been reduced by one character. Unless 

the scan proceeded from right to left, the program using the canon above 

would be caught in an endless loop, terminated only by the exhaustion of 

memory. Although it would be possible to devise a scheme to avoid the 

problem and still interpret the canon correctly, this would require 

some substantial effort which adds nothing to the scope or generality of 

this work. Instead, the canons are inspected for left recursion and rejected 

if it occurs. This constraint does not prevent the definition of any set 

of strings which could otherwise be defined. 

The example brings out one other problem. At different points in the 

procedure (e.g. steps 42 and 43), the program must handle several possible 

answers which result from the various ways in which the canons may define 

the input. On a theoretical level this presents no problem, but in practice 

the manipulation of multiple large and nearly identical lists may exhaust 

memory. For this reason, one should follow two suggestions in using the 

system. Firstly, all syntactic types should be defined in as little 
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context as possible, so that the legality of a particular string is immediately 

apparent, and does not depend on a construction occurring much further 

along in the input, In particular, the canonic system should not allow 

the input string to be parsed in several different ways, only to discover 

much later that only one is legal. To do so involves the risk of exhausting 

memory. Secondly, the canonic system should be unambiguous; that is, a 

particular string should be generated by only one production or path of 

application through the canons. Otherwise, both productions will give rise 

to results. Although the ambiguity could be eliminated by checking for 

identity among the results at any particular point, the comparisons would 

be extremely time consuming. 

We turn now to an extension of the algorithm for the case in which 

we wish to consider evaluating a predicate of degree greater than one, for 

which one or more of the terms arenot known and are desired as translated 

output. The algorithm is presented at an arbitrary recursive level with 

input of arbitrary degree. For some of the input terms a character string 

is provided; some are merely marked "needed". Imagine a pointer positioned 

as before to the left of every term of the input set for which a character 

string is provided. 

1. The program considers in sequence those canons directly defining the 

input in question, and performs the following steps (2 through 7) for each 

such canon. 

2. The algorithm assembles a list of undefined variables which occur 

in those terms of the conclusion corresponding to "needed" terms in the 

input set. These are variables which would not normally be defined during 

the scan of the conclusion, but for which definitions must be obtained in 

order to generate the required translations. Variables appearing only in 

the premises of the canon and not in the conclusion are also added to the 

list. 
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3. The input strings provided are matched in sequence against the corresponding 

terms in the conclusion of the canon. The program skips conslusion terms 

corresponding to "needed" terms in the input set. If the item in the 

conclusion at any particular point is a terminal character, the algorithm 

performs step 4; if a variable, the algorithm performs step S. When the 

scan of a term is complete, the program leaves the pointer where it rests 

and proceeds to the next term for which input is provided. When all such 

terms are scanned, the algorithm proceeds to step 6. 

4. The item in the conclusion is a terminal character. It is compared 

with the character to the right of the pointer in the input string. If 

they are identical, the program returns to step 3 with the pointer shifted 

right one position. If they differ, the scan fails at this point and the 

algorithm returns to step 1 to pursue alternative definiQons for the input. 

S. The item in the conclusion is a variable, and the algorithm must operate 

recursively to determine its definition. The program assembles a new input 

sequence from one of the premises in which the input appears. For the 

other terms in the premises, it assembles a character string if the variables 

therein have been defined. If one or more of the variables is undefined 

and in the "needed" list, it marks the term as "needed". Otherwise, the 

term is marked as unneeded. The program saves its state and returns to 

step 1 with the assembled input set for the chosen premise predicate. 

Upon return, if there is no response, the scan fails. If there is a 

response, the pointer of the input string is advanced accordingly, the 

definition of the undefined variables recorded, and the algorithm returns 

to step 3. 

6. The scan of the conclusion is complete. Those premises which were 

not employed during the scan to generate definitions must now be verified. 

For these premises, the proper input strings for the terms are assembled 
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from the now-defined variables, and the algorithm operates recursively 

to determine whether the premise is satisfied, When all unchecked premises 

have been satisfied, the algorithm proceeds to the final step. If the 

return from recursion produces no response, or an input string not fully 

scanned, the scan fails and the algorithm returns to step 1 to consider 

any remaining canons. 

7. If the scan succeeded, the results for the next higher level of recursion 

are assembled. For each term given as a string, the string is returned 

with the mental pointer moved to a position following the last character 

inspected in the conclusion scan. For each "needed" term, the definition 

of the term is assembled from the terminal characters and the now-defined 

variables in that term of the conclusion. It there are more canons to be 

considered, the algorithm returns to step 1. If not at level 0, the program 

then pops to the next higher level. If the zero recursion level has been 

reached, the evaluation is nearly complete, The results are checked to 

determine if there is a response in which all given terms have been fully 

scanned. If so, the "needed" terms are outputted, If not, there is a 

syntax error in the input. The expanded algorithm is presented as a flowchart 

below. 
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Flowchart of General Algorithm 
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A step-by-step example such as the previous table would be unduly 

lengthy when considering a non-trivial evaluation of a predicate of degree 

greater than one. Instead, consider as an example the action of the algorithm 

at the highest level of recursion as it seeks to determine whether an 

input string is a legal MINI MAD program. The only relevant canon is 

the last one. 

40. <s< P.::r> program with label lists <r < s> in 

p END OF PROGRAM * MINI MAD program 

The algorithm is presented with an input string which is possibly a member 

of the set MINI MAD program. Before beginning to scan the input, the 

program determines that sand r cannot be defined in terms of the input, 

and places these variables in the undefined list. It then begins the 

match of the input string against the conclusion of the canon. Since the 

item in the conclusion is a variable, it turns to the first premise, which 

contains p as a variable, in order to determine the definition of p in 

terms of the input string. Since s and r are in the undefined list, it 

marks these terms as "needed", and operates recursively to determine 

whether p is valid, and to produces and r. The algorithm is presented at 

the next lower level with an ordered triplet in which the first and third 

elements are "needed" flags, and the second element an input string. If 

the input is indeed valid, excluding the requirement that all reference 

labels be defined, the algorithm will scan the input string at progressively 

deeper levels of recursion, eventually parsing out the statement labels, 

the various statements, etc. Since the first and third terms of program with 

label lists are "needed", it will build up these terms from the various 

statement and reference labels in the program, as directed by the canons 

which define program with label lists. Eventually, the algorithm will 

return to level zero. If there is no response returned from the lower level, 

the scan failed. If there is a response, it will consist of the input 
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string with the pointer shifted to the right, and the accompanying lists 

which comprise the first and third terms of program with label lists. The 

remaining part of the input string is then checked to see whether it consists 

of END OF PROGRAW'. S and r are now defined. In order to verify the 

second premise, the algorithm assembles an input set from r and s, and 

operates recursively to determine if the two lists satisfy the relationship 

in. Upon return, if there is a response, the program checks to see that 

both terms are fully scanned; that is, that the definitions of r and s 

agree in both premises. Since both premises are now satisfied, the 

algorithm returns the scanned input string as a response: The program is 

at level 0, and control is given to a final routine which insures that, if 

there is a response, the input string has been fully scanned. The routine 

prints out a message to the effect that the input was or was not legal 

MINI MAD. 

We turn now to the problems which may be encountered in evaluating the 

input in this manner. The potentially most disastrous problem is that of 

deciding how to generate the definition of variables not defined by the 

input. In the example above, there is no deterministic way of discovering 

from the one canon alone why the algorithm should not employ the second 

premise to generate the label lists. In this case, both terms of an input 

set would be marked "needed", and the canon would operate recursively to 

determine the members of the set. The definitions would be inserted, one 

at a time, into the first premise until the correct ordered pair for 

the particular input were found. Unfortunately in is an infinite set. 

Thus, if both terms are marked "needed", the algorithm sets about generating 

all possible members of the set and speedily exhausts memory. On the other 

hand, when the definitions for r and s are determined in conjunction with 

the scan of p as terms in program with label lists, only one ordered pair 
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of label lists will be produced and inserted in the second premise. A 

similar but less serious problem might arise in determining the definition 

of p, if there were more than one premise containing p. Again, the choice 

of one premise over the other as a vehicle for determining the definition of 

p might result in a markedly different number of returned responses. These 

problems have been solved by transferring the decision to the user, who 

indicates how the definitbn of a variable should be determir.ed by marking 

one appearance of the variable in the premises with a prefixed dollar sign. 

When the program encounters the variable in the conclusion, it will employ 

the premise in which the variable appears with the dollar sign as the 

vehicle to determine its definition. If there is no dollar sign, the program 

uses the premise in which the variable first occurs. Similarly, when 

considering the other terms of the chosen premise, the algorithm will 

mark the term as needed only if the variables therein are prefixed with 

the dollar sign, or if there is no other term in which they appear. 

Another simplification is introduced in order to ease the programming 

effort. The restriction that premise terms contain one and only one 

variable reduces the complexity of the list manipulation which the program 

must perform. Again, this does not prevent the definition of sets whose 

definition is otherwise possibly. The premises in the canonic system which 

defines MINI MAD contain one and only one variable. An important point 

:Is that with the restriction we have placed on canonic systems we have in 

no way diminished their power. 

This completes the description of the algorithm on the procedural 

level. The details of the use of the program, with examples, are described 

in appendix 3. We now turn to the intriguing question of the practicality 

of the canonic translator as a useful compiler. 
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The present program is wholly experimental, and we intend to use it 

to study the translation process. Three limitat.ions exclude it from serious 

consideration as a practical device. 

1. Speed. The program runs, conservatively, over 1000 times more 

slowly than a normal compiler. 

2. Limitations on input. The program cannot accomodate large 

quantities of input data. 

3. Error indications. If the scan fails, the program pinpoints 

the last character inspected in the input string, but goes no further. 

Thus, only one syntax error is detected per compilation. 

I feel these limitations can be overcome, and that an implementation 

of the algorithm might be extremely useful in acting as a trial compiler 

in the design of a language, or as a regular compiler for lesser used 

languages where the additional efficiency of a dedicated compiler is not 

worth the effort necessary to produce one. I shall not consider the use 

of the algorithm for other language systems, such as the proof of theorems 

in boolean algebra. The further restrictions imposed on the generality of 

the algorithm in order to overcome the three limitations will probably reduce 

its usefullness in other more exotic areas. The proposals follow in order 

of increasing returns and commensurate restrictions on the algorithm. 

1. Redesign and rewrite the program in assembly language. The 

program as it now stands i·s the MAD language in neither elegantly designed 

nor brilliantly executed. The pressure of time and the necessity to have 

the program work no matter how clumsily, prevented extensive streamlining. 

2. Develop, perhaps in conjunction with proposal 1, a list processing 

system or data structure designed specifically for the algorithm. The 

SLIP list-processing system is elegantly designed, but its generality 

necessarily reduces its efficiency for this task. Measure 1 and 2 might 

provide a five-fold increase in speed, and a doubling of input handling 
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capacity. 

3. Presently, all strings must be members of defined sets in order 

for premises to be asserted. Consider placing the left of the assertion 

sign premises which are true if and only if the definition of the variables 

are not members of the defined sets. Presently, it requires on the order 

of 26 2/2 canons to define the predicate differ for all letters of the 

alphabet. By defining a predicate~' as below, one could reduce this 

to 27 canons. 

The sign/V' indicates that the ordered pair x <Y must not be a member 

of the set ~ in order to be a member of the set differ. This procedure 

would involve problems in originally defining variables, but could be used 

in premises which would only be verified after the variables have been 

defined. A moderate increase in speed would result, but the mathematical 

basis for canonic systems might well be destroyed. The possible implications 

of such a modification are vast and unexplored, 

4. The compilation of a program never produces two different 

translations. This fact raises questions about the efficiency of handling 

multiple results at many points in the procedure (e.g. in the example .for 

the simplified algorithm). A program, at any point in the scan of the 

source statement, is either possibly syntactically valid or definitely 

invalid. The source statements cannot be construed in several different 

syntactically valid ways. Consider establishing the rule that the algorithm, 

at any point in the recursion, returns only the first valid definition it 

discovers for the predicate. Assume the definition of integer were as 

follows. 

41. d digit + i integer ~ di integer 

42. d digit ~ d integer 
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Note that the recursive definition precedes the simpler canon, and the 

program considers it first. The action of the algorithm will be such that 

it continually operates recursively,eliminating a digit at each level, 

until it encounters a character other than a digit. The algorithm then 

"backs-up" one level, considers the alternative definition, and returns 

only one answer - ~ integer of the longest possible length, which is the 

definition actually desired. The implications of such a restriction are 

vast. By suitably positioning the non-recursive canons, one immediately 

eliminates more than half of the searching the program must perform. More 

importantly, such a rule eliminates all the list manipulation and duplica

tion the program must presently execute. The manipulations are largely 

responsible for the complexity and inefficiency of the present implementa

tion. Finally, such a restriction eliminates much "back-tracking", and 

makes it possible to contemplate a single, top-to-bottom pass of the input 

from auxiliary storage. Likewise, only one set of translation and "needed" 

lists must be built up, and this makes it possible to arrange the lists in 

a more conventional and more efficient format. The careful and imaginative 

implementation of this restriction might improve the speed of compilation 

by a factor of 50, and make the input capacity of the program comparable to 

that of conventional compilers. The usefulness of the translator for more 

general purposes would be, however, severly restricted. 

5. One might consider using external subroutines to perform those 

functions (e.g. in and notin) clumsily handled by an algorithm which must 

essentially reverse the canonic production of the defined strings. If, as 

a result of proposal 4, the lists were arranged in a more conventional 

fashion, such subroutines might be easily implemented. 

6. Finally, "system predica:es" might be useful. The implementation 

of the algorithm would consider such elementary predicates as letter, digit 
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and differ to be understood, so that they need not be defined. Determining 

that A differs from B by testing whether or not B is one of the other 25 

letters is hardly an efficient procedure. Such a provision might greatly 

speed the compilation. 

We have not considered the uses of the algorithm in areas other than 

language translation, and the implementation of some of these measures, part

icularly 4, would severely hamper the ability of the algorithm to perform the 

intent of the canonic system. Other measures, particularly 1 and 6, might 

still prove useful. Ihave also avoided proposing a means of dealing with 

the problem of error indications. This problem might well be the most 

difficult to solve, but should probably consist of mechanism whereby the 

algorithm backtracks one syntactic type (e.g. statement) from the one in 

which the error was detected, skips the syntactic type, and proceeds from 

there on. Such a procedure might well produce fast and efficient syntax 

error elimination similar to that produced by a normal compiler. 

Canonic systems are extremely powerful mechanisms for the definition 

of complicated strings. The areas in which canonic systems are applicable, 

and the possibilities for future study, are both vast and exciting. The 

possibility of a truly practical generalized compiler implemented through 

canonic systems deserves further investigation. 
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Appendix 1. 

A.Canonic system specification of the syntax of MINI MAD. 

Digit 

Integer 

Label 

Differ 

~ 0All2n 

d digit ~ 
d digit cj, 

d integer 

i integer ~ di integer 

<Ac:B>.i <A<c> <B<C> differ 

<x <Y> differ - <Y< x> differ 

S. Notin J label ~~fi>notin 
<x ,- Y> notin t <x< i> differ r <x<i ,y> notin 

6. In ~ <JI< I\> in 

<~ Y> in c\-- _,/_label ~ <x<l, Y> in 

<X< Y> in f label ~ <Jl,x<.J ,y> in 

<x_ Y> in <} <z< Y> in ~ <xz..: Y> in 

7. Variable ~ X.:. y,. Z variable 

8. Express ion v variable ~ v exEression 

i integer ~t i exE:ression 

v variable x exeression ~ v+x 

i integer t x exEression ~ i+x 

9. Conditional ~ A conditional 

exEression 

ex,Eression 

x exEression t y exEression ~ WHENEVER x .E. y, conditional 

10. Program with label lists 

~ </\<A< A> 
< s.c P< r> program with 

c conditional r <s 

program with label lists 

label lists t v variable t x exEression t 
CV=X * P< r> program with label lists 
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<s< P< r> prog,ram with label lists t < }'< s> not in + 
v variable t/ x expression + c conditional r 

< i. ,s< cv=x '" p r> program with label lists 

<s< P<: r> program with label lists t m label t c conditional 

~ <s""" c TRANSFER TO m '' P-< m, r> 

program with label lists 

<s< p< r> _p_r_o_g_r_a_m_w_i_th __ la_b_e_l_l_i_·s_t_s t m label t <(.ll.:.s> notin 

t c conditional r<i ,s<J c TRANSFER TO m '' P"' m,s> 

program with label lists 

11. MINI MAD program 

<s< P< r> program with label lists t <r < s> in 

r p END OF PROGRAM '' MINI MAD program 
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B. Canonic system specification of the syntax and translation of MINI MAD 
into PSEUDO FAP. The dollar sign in PSEUDO FAP indicates "this location". 

Digit ~ 

Integer d digit ~ d integer 

d digit 4' i integer ~ di integer 

Label 

Differ <A<B>ei. <A.:::C>.a<BLc> differ 

<. x.,;_y> differ ~ <Y..;:X> differ 

Not in L ~ ~ <i </\> not in 

<xcy> ~{ <x<L> ~ ~< x.,,,(, y> notin 

In ~ <l\..cA > !!.:. 
<x<Y> in+ 1 label~ < x<l, y> in 

<x<y> in cf--,l label~<~x<f, y> !!.:_ 

<x<y> in 9--- <x<y> in ~ < XZ<Y> !!.:_ 

Variable ~ Xt. Y J,. Z variable 

Expression v variable ~ V<CLA v*> ex2ression 

i integer ~ i< CLA =i *> exEression 

v variable 9- <X<:Y> ex2ression ~ 
i. integer +<x<Y> ex2ression ~ 

Conditional ~ < /'\</\ > conditional 

<x<y> expression t <u<v> expression 

~<WHENEVER x.E. u, < y STO TMP* 

SUB TMP* TNZ $+3) conditional 

<v+x<y 

< i+x.c y 

ADD v*> ex:e:ression 

ADD =i* > expression 

10. Program with translation 
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<s< per< t> program with 

t<x< y> expression f <c~ 
<s.-::: cv=x * P< r< 

translation + v variable 

d> conditional r 
y STO TNP * 

d CLA TNP * STO V * t> 

program with translation 

<s< P< r< t> program with translation~< R< s > not in f 
v variable t <x Y> expression+ <c.~ d> conditional 

~ <f, s<J cv=x* P« r.: 

f y STO TNP>' d CLA TNP* STO V * t> 

<s< P< r< t> program with translation t m label <c< d> conditional ~ 
<s< c TRANSFER TO m * P< m, r._: d TRA m * NOP * t> 

program with translation 

<s< P< r~ t> program with translation t m label t < .X.< 

~<i ,s<,( c TRANSFER TO m * P<: m, s.c:./ d TRA m * 

program with translation 

11. MINI MAD - PSEUDO FAP 

(s< P< r< t) program with translation 4 <r < s) !!!. 
~ < p END OF PROGRAW• < t HLT* 

TMP DEC-k TNP DEC"I• END * > 
MINI MAD - PSEUDO FAP 

s> notin+ c conditional 

NOP-k t > 
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1NP 
TNP 

x ~ x+ 
l·mn:i: \'J > 

CLA =-15 
STO x 
CL!\ 
ADD x 
STO x 
CLA x 
STO ·1~;]' 

CI.A ' 12'.l 
SUB T:\P 
TNZ ~ + 
TRA A 
NOP 
TRA B 

D[C 
DEC 
HLT 
END 

~2.3, TlZ.AlJS!TiZ Tll ,\ 

_\ 
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Appendix 2. 

A canonic system specification for the syntax of SNOBOL. 

The canonic system presented in this appendix defines the syntax 

of SNOBOL as implemented on the 7094 CTSS system at MIT. The language 

is used for string processing and contains statements for string 

matching, replacing, deleting and inserting. The language also 

has a few arithmetic capabilities. Those not familiar with the 

language may find reference 5 useful. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

The canonic system is listed below. A represents a space. 

~ Af!~C ~Y~Z letter 

r OAlJ-2 7f.8 6 9 digit 

x letterfy digit} x
11

y
6

• name character 

x name character L x , ' * + ·- / ? = $ label character 
fAll6JlLiAbAil 

x name character L x , ,_ ( ) * + / ? = $ string character f •uol,6./J.AA./; 

x string character r xi;.' character 

~ +4 -A /
6 
* operator 

~ j tab 

r J carriage return 

x spaces r A <1 xA spaces 

a<lb"c"dile.llf name character r a,,ab_,abcl,abcd/._abcdeaabcdef string name 

x string character 4y string r xy string 

x string ~ 'x' literal 

x letter 4y digit 1z label character 4 a label~ x"y6az label 

x digit <f y integer ~ x" yx integer 
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17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 
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x string name +y literal ~ xAy operand 

x6 y operand q. z expression t v operator f s spaces 

~ xsvsy A xsvsz I'> zsvsy 
1

, (z) expression 

x operand cf'Y expression 9,z term 1 s spaces 

~ x J. y A zsx 1, zsy term 

x term t /\;;. x concatenation 

x string name ~ ~-x* variable name 

x,. y string name ct-z integer ~ *x/yi'A *x/'z'* fixed length name 

x string name ~ *(x)* balanced name 

x string name q y literal cf' u Av term c}'w indirect name 

cys space~~ $x 11 $yh$(w) 1, $(usw)A $(wsu)A $(uswsv) indirect name 

(A<B>,. 0-<c) t. ••• ,. ~< c) 6 .•. 6 (~<$)differ 

a 4 e A f string 4 (b<~ differ ~ ~ce<abf) different 

(x<y) different ~ (y<xJdifferent 

x label 4 y list r ;\A yxw list 

x list ~ (/\< x) in 

x 4 y listf(w<xy)in fl label~ <wlw(xlwy)in 

(w ( xy) in 4 <U ( xy) in ~ <WU ( x"f in 

x label ~ (x<I\) notin 

x .0. y label 4(x c0 different q·(x ~ z) no tin ~ ( x < zyw) not in 

x string name f y concatenation 4 s spaces 

~ xs=sy assignment statement 

x operand cf Y expression q u variable name q·v fixed length name 

4 w balanced name q z indirect name ~ u.a. v6 WA xA yA z 

scan operand 
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x scan operand f z ~ cys spaces r x A xsz scan 

x operand cl' y concatenation 4z scan cys spaces 

r xsz 4 xszs=sy scan statement 

-EJECTA -LIST A -NULLOP OP A -FCC A -SPACE A -TITLE 

A -UNLIST control word 

38. x operand 9'a arguments~ ;\A xAa'xA x,aA 'a' 4 (a) arguments 

39. x string name 4a arguments ~ x(a) string name cj-
x(a) system function 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

x label t'Y indirect name r (x<xw} 4 (Y<~ reference label 

(x<y),(w<z) reference label r (;(x)(y )4«S(x)<~./.fF(x)<y) 
A 4s (x)F (w)< yz) branch 

x scan statement cyy assignment statement f~z system function 

(u<v) branch cj' s spaces ~ < x<A).lY<I\) ,/xsu(v) 

li(ysu<v) 6 (z<A)44su<v) right hand side 

(x<y) right hand side ~ <END£x<y) 6 <END<A) end card 

~ ( /\ <I\< I\) program string 

(p<q<r}program string itx control word ~ <p<qxl<r) program string 

(p<q<r) program string 4(x<y) right hand side 4 u label 

f<u<p) notin ~ (p<qJxJ<ry)A(puw<quh~<ry) program string 

(p<q<r) program stringq(END<p) notin q(x(y) end card 

4V"y< p > in r qxl program 
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Appendix 3. 

Use of Program. 

The program which implements the algorithm allows the user to type in 

a series of canons defining a set of strings, followed by the input he wishes 

to have analyzed. The program then scans the input string or strings for 

correct syntax. If the input is syntactically correct, a message to this effect 

is printed. Further, if the input is defined as only one of several terms 

in the final predicate of the canonic system, the other terms corresponding 

to the input may be produced. If the scan fails, the program identifies 

the character in the input string which was the last character inspected. 

The sequence of messages and the proper responses as the program 

executes on the MIT CTSS system are as follows. 

INPUT CANONS. 

A set of canons may now be input, subject to the restrictions described in 

the text and summarized briefly below. 

1. Canons may contain only one conclusion. 

2. The terms of the premise predicates may contain one and only one 

variable, and no terminal characters. 

3. Left recursion in all terms of a predicate is not permitted. Partial left 

recursion evokes a warning message. 

The user inputs the canons according to the following rules which implement 

~he punctuation of the canonic system. 

1. Strings of terminal characters must be enclosed in break characters 
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( ' I or " ) . 

be dcf111L·r\ ir t\it_ pn·r ·1~.l :-.:. 

4. 

8. 

AftL'r thL· l:L-»t c~111 Jll, t~!-.' usLT :-y;1cs 'end' cit the beginning of a line. 1'hc 

used a~ prL'I111--..L·~ ;Jrv ('.t_·finccl as cunch1::-;ion:->. 

CONSIT '\T Sl ·1 OF C\'\O:\S. 

The [irL·d1catcc t\pLt1 11: enc t::L'Tl li~tL:d in tlw circler in \\·liich they fir~t cippcarcd. 

Il\l'L'T OF S(ll''ZCI 'iHCI'\ :s. 

TYPl·: FI\:,\ I. l' Zi 1 JI C:.\ I I • 
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The user responds by typing the predicate name which defines the input string 

he wishes the program to consider. 

TYPE -NONEED-, -NEED- OR -INPUT- FOR EACH TERM. 

TERM NUMBER n OF -predicate-

At this point the user declares which terms of the final predicate he wishes to 

input and which terms he desires as translation. 'Noneed' indicates that he 

wishes neither to input the term nor receive it as output. 'Need' indicates 

he wishes to receive the term as a translation. 'Input' means that he wishes 

to type in an input string for the term. In this case, the program responds. 

INPUT STRING. EXTRA CARRIAGE RETURN INDICATES END. 

The user may now type in input which will be verified for syntactic correctness, 

and for which the program will produce output corresponding to 'needed' 

terms. Carriage returns are counted as characters. If the user wishes instead 

t6 input card images, he may do so by typing in 80 characters or more. The 

input is truncated at 80 characters and in this case the carriage return will 

not be counted. 

. 
After all terms of the final predicate have been considered, the program types 

this message. 

TYPE 0, I OR 2 FOR DEPTH OF COMMENTS. 

The user responds by typing a single number. If 0, the program will print 

only the final results. If 1, it will remark on extraordinary conditions which 

occur. Typing 2 results in messages whenever the program "pops" or "pushes". 

A larger number will result in the output of various lists which comprise the 

intermediate results of the scan. These lists, while useful during program 
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during program debugging, are rather incomprehensible except to those 

familiar with both the program and the SLIP system. 

The program then types 

SCAN BEGINS. 

When the program returns to the zero level of recursion, it will type out the 

results of the analysis. If the scan succeeds, and if terms are 'needed', 

these terms are printed. If there is more than one translation, all will 

be printed. In the examples which follow, the execution time, which is 

printed in seconds at the end of the run, indicates the problems of execution 

speed to be overcome if one wishes to make a practical canonic translator. 

There are three examples of canonic translation. The first is relatively 

simple. It illustrates a scheme for coding messages by replacing the 

letters in the message with their successors in the alphabet. The 

second example demonstrates the construction of an expression in MINI MAD 

and the corresponding PSEUDO FAP instructions. The third example, 

an extension of the second, demonstrates the construction of an assignment 

statement in MINI MAD and the translation into PSEUDO FAP. Note that 

no data cells were reserved, although this could ha\e been easily implemented. 

A final example illustrates the error analysis of the program. 



resume thesis 
w 2121.4 
INPUT CANOllS. 

= I a I • I b I - pa i r
= 'b'.'c' -pair

' c I • I d I - pa i r
' d'. 'e' -pair
' e ' • ' f ' - pa I r -
' f' • 1 a 1 -pair-

x. Y -pair- = x.y -code-
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x,y -pair-, u,v -code- = xu.yv -code-
u.v -code- = u2 • v' Is the coded message for 'u2 -messag
end 

CONSISTENT SET OF CANONS. 

LIST OF DEFl1JED PREDICATES MD DEGREES, 

1. PAIR- 2 
2. CODE- 2 
3. -MES SAG- 2 

INPUT OF SOURCE STRINGS, 
TYPE FINAL PREDICATE. 
mes sag 

TYPE -NONEED-, -NEED- OR -INPUT- FOR EACH TERM. 

TERM NUMBER 1 OF -MESSAG-
1 npu t 

INPUT STRING. EXTRA CARRIAGE RETURN INDICATES END. 

abcdef 

TERM NUMBER 2 OF -NESSAG
need 

TYPE O, 1 OR 2 FOR DEPTH OF COMME~TS, 
0 

SCAN BEGINS, 

SCAN SUCCESSFUL. 
TRANSLATED OUTPUT (IF ANY) FOLLOWS. 

TERM NUMBER 2, 

BCDEFA IS THE CODED MESSAGE FOR AACOEF 

END OF RUN, 
EXITM CALLED. GOODBYE. 
R 7.lSO+b,983 



resume thesis 
1J 2127,!> 
INPUT CANOIJS, 

'x' -variao
'y' -varlab
'z' -variab
'l' -diglt-
121 -digit-
131 -dlglt-

d -digit- = d -lnteg-

-so-

d -digit-, I -integ- = di -integ-
1 -lnteg- = i , ' cla ='i2 -expres-
v -variab- = v , ' cla 'v2 -expres-
1 -lnteg-, x,y -expres- = i'+'x, y' add ='12 -expres-
WARHIHG- PARTIAL LEFT RECURSION IN LIME Ni.JriBER 11 
v -varlab-, x,y -expres- = v'+'x , y' add 'v2 -expre;-
WARNlllG- PllRTIAL LEFT RECUR:>IOI~ Ill Lli~E :wrrn::R 12 
x,y -expres- = x2 , 'this Is the translation fo~ 'x22 

y' end 12 -exampl-
end 

CONSISTENT ;;ET OF CAtJOi~S. 

LIST OF DEFINED PREDICATES AiJO DEGREES. 

1. -VARI AB- l 
2. - DIGIT- l 
3. - llHEG- 1 
4. -EX PRES- 2 
5. -EXAf1PL- 2 

IN PUT OF SOURCE srn I llGS. 
TYPE FINAL PREDICATE. 
exampl 

TYPE -NOi~EED-, -NEED- OR - INPUT- FOR EACH TERM, 

TERM IWllBER 1 OF -EXAMPL-
1 nput 

INPUT STRING, EXTRA CARRIAGE RETURN INDICATES END. 

x+l23+y+32l+z 

TERM NUl1BER 2 OF -EXAMPL
need 

TYPE U, 1 OR 2 FOR DEPTH OF COMMENTS, 
u 
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resume thesis 
I'/ 2150.5 
INPUT CANONS. 

1 x 1 -varlab-
1y1 -variab
'z' -varlab-
111 -digit-
121 -dlglt-
131 -diglt-

d -digit- = d -integ-
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d -digit-, i -lnteg- = di -lnteg-
1 -lnteg- =I • 1 cla ='12 -expres-
v -varlab- = v • 1 cla 1 v2 -expres-
1 -lnteg-, x.y -expres- = l'+'x. y' add ='12 -expr~s-
vlARNIMG- P/1RTIAL LEFT RECURSIOii IM LlfJE NUllflER 11 
v -variab-, x.y -expres- = v'+'x • y' add 'v2 -expr~s-
WARIJIHG- PARTIAL LEFT RECURSIO;i IN LlrlE NU1111ER 12 
v -variab-, x.y -expres- = v'='x • y' sto 1 v2 -asslgn-
x.y -assign- = x2 • 'this Is the translation for 1 x22 

y' end 1 l -exa111pl-
end 

CONSISTENT SET OF CANONS. 

LIST OF DEFINED PREDICATES AND DEG~EES. 

1. -VARIAR- 1 
2. - DIGIT- 1 
3. - INTEG- 1 
4. -EX PRES- 2 
s. -ASSIGN- 2 
ti -EXAM PL- 2 

INPUT OF SOURCE STP. li!GS. 
TYPE FINAL PREDICATE. 
exampl 
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TYPE -NONEED-, -NEED- OR -INPUT- FOR EACH TERM. 

TERM NUMBER 1 OF -EXAMPL-
1 nput 

INPUT STRING. EXTRA CARRIAGE RETURN INDICATES END. 

y=x+123+y+3211+z 

TERM NUMBER 2 OF -EXAtlPL
need 

TYPE O, 1 OR 2 FOR DEPTH OF COi·IHEllTS. 
0 

SCAN BEGll'lS. 

SCAN SUCCESSFUL. 
TRANSLATED OUTPUT (IF ANY) FOLLOWS. 

TERH NUMBER 2. 

THIS IS THE TRANSLATION FOR Y=X+l23+Y+32ll+Z 

CLA Z 
ADD =S211 
ADD Y 
ADD =123 
ADD X 
STO Y 
END 

END OF RUIJ. 
EXITN CALLED. GOODBYE. 
R 18.866+1!.~00 



resume thesis 
W 220U.4 
INPUT CAl<OIJS. 
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= 'this Is a test sentence 1 2 -exampl
end 

CONSISTENT SlT OF CANONS. 

LIST OF DEFllJED PREDICATES ANfl DEGREES. 

1. -EXMIPL- l 

INPUT OF SOURCE STRINGS. 
TYPE FINAL PREDICATE. 
exam pl 

TYPE -NONEEO-, -NEEfl- OR -INPUT- FOR EACH TERM. 

TERM NUMBER 1 OF -EXAl1PL-
lnput 

INPUT STRlllG. EXTRA CARRIAGE RETUP.:l INfllCATES DID. 

this ls not a test sentence 

TYPE 0, 1 OR 2 FOR DEPTH OF COilMHITS. 
u 

SCAN BEGINS. 

SCAN FAILED. SYNTAX ERROR IN INPUT STRING(S). 
NO TRANSLATED OUTPUT. 

LAST CHARACTER lllS PECTED IN TERM 1 llAS N Ill MI OST OF FOLL011l NG C01H EXl 

THIS IS NOT A TEST SENTE 

END OF RUil. 
EXITH CALLED. GOOrlBYE. 
R .S83+~.766 



-55-

Appendix 4. 

Program Listing. 

The program listing for the program which implements the canonic 

translation algorithm is contained in this appendix. The program may 

be divided into three parts: a preliminary phase which verifies the 

syntax of the canons typed in and assembles them into a SLIP list 

structure, the recursive scanning routine which forms the major part 

of the code, and a final routine which inspects and prints the 

results. Understanding the code requires a thorough comprehension 

of the SLIP system developed by Weizenbaum (7). The lack of elegance 

in the program is quite the fault of the author. 

The following table identifying the major parts of the code 

may prove useful. 

Label Lines Purpose of Code 

NEWORD 57-74 Inputs a line from the typewriter, feeds characters 

one at a time to the canon-analyzing routine. 

107-285 Reads predicate names and makes various checks 

(left recursion, degree same as before, etc.) and 

assembles into list structure. 

EVAL 

PUTIN 

383-395 Identifies next variable to be encountered should 

be marked as the one to use if the variable is 

needed in the later phase. 

396-434 Inputs variable and assembles into SLIP structure. 

444-472 Checks that all variables are defined. 

505-574 Assembles list structure for input to scan program 

at zero leve 1. 



LUPOOO 592 
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Beginning of recursive routine, It is to this point 

that the program returns when "pushing". 

603-617 Makes an "object time" check for left recursion. 

OUTCHK 621-671 Creates the 'needed' list of variables for which 

definitions must be found from other than the input 

string. 

LUP008 677-697 Handles multiple results, each of which must 

be analyzed in turn. 

717-855 Compares input string with conclusion, "pushing" 

to find definition of variables if necessary. 

PUSHIT 871-893 Saves state of program and returns to the beginning 

of the scan routine, 

PRMCHK 897-977 Checks premises of a canon. 

ASSMBL 981-1038 Assembles results of scan for next higher level 

before "popping". 

POP 1042-1075 Uncovers the state of the program and goes to 

appropriate return routine. 

POPl 1080-1164 

POP2 1165-1196 

THKGOD 1200-1344 

HE RAUS 1348'-1350 

1355-1381 

Analyzes return resulting from "push" during 

scan of conclusion. 

Analyzes return resulting from "push" during 

check of premises. 

Outputs results of scan. 

Exit. 

Obtains character from input data area, using 

pointer furnished by caller. 
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...............•.•..........•..•..•.•.•••..............•....•................ 
M53b4 

BEGINS 

LOO Pl 

SKIP 

NE WPRM 

NEWT RI' 

NE WORD 
RDLUJE 

R 
R 
R 

511>3 THESIS MAD FOR 

R CANONIC TRANSLATION PROGRAM. 

M5364 

R THIS PROGRAM EMPLOYS A CANONIC SYSTEM AS A BASIS 
R FOR RECOGNIZING DEFINED SETS OF STRINGS. THE 
R FIRST PART OF THE PROGRAM VERIFIES THE SYNTAX OF 
R THE CANONIC SYSTEM WHICH IS INPUT AND 
R ASSEMOLES IT INTU A SLIP LIST STRUCTURE. 

5163 

R THE SECOND PART OF THE PROGRAM OPERATES RECURSIVELY 
R TO DETERMINE WHETHER A GIVEN STRING IS A MEMBER 
R CF A DEFINED SET OF STRINGS, OR WHETHE~ THE GIVEN 
R STRING IS ONE ELEMENT OF AN ORDERED N-TUPLE 
R nHICH IS A MEMBER OF A DEFINED SET. IN THE LATTER 
R CASE, THE OTHER ELEMENTS OF THE N-TUPLE MAY BE 
R CUTPUT AS TRANSLATIONS. 
R 
R 

N'S INTEGER 
eCOLEAN EQUAL, EOLIND, STRTND, ERRS, NOTfN, IN, SOMERC, ALLRC 

1 rLEMPTY, !NP, DOLIND 
DI MENS ION BUFFER ( 14 I 1 INPUT ( lil00 I 

R 
Rl~ITlhLIZATION OF SLIP SYSTEM. 
R 

R 

I~ IT AS. I 0 I 
LIST. ISYSTEMI 
LIST. INAMESI 
LI NE = 0 
OEFNUM = :l 

Rl~ITIALIZATION OF SYSTEM 
R 

R 

PRINT COMMENT $INPUT CANONS.$ 
PRINT COMMENT S $ 
T'O SKIP 

Rl~ITIALIZATION PRIOR TO READING A CANON 
R 

R 

IRALST. !VARI 
IRALST. ,(SVEVARI 
DEF = LIST. 191 
LIST. !VARI 
LIST. ISVEVARI 
NEED = LIST. 191 
CCLlND = JB 
CCNO = l 
ECUAL = OB 
ECLIND = lB 
PREM= LIST. (91 
TRMNUM = j 

TERM= LIST. 191 

Rl~PUT OF ChNONS, CHARACTER BY CHARACTER, RIGHT 
RACJUSTED IN WORD 
R 
~·R .NOT. EOLIND, T'O GETW 
NUMB = RDFLXC. {BUFFER, 84) 

0 



GETW 

R 

LINE = LINE + 1 
ECLINO = JB 
PCS = 6 
I = -1 
STRTNIJ = lB 
W'R POS .GE. 6 

POS = :J 
I = I + l 
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WORT = BUFFER I I I 
E'L 
W'R NUMB .E. 01 T'O RDLINE 
NLMB = NUMB - l 
W'R NUMB .E. IJ, EOLIND = lB 
PCS = POS + l 
WCRO WO!H .RS. 3J .v. $ OS 
WCRT = WORT .LS. 6 

RCHECK TO SEE IF READING ANSWER TO QUESTIONS. 
R 

R 

W'R COND .E. 8 
T1 0 ROANS 

RCHECK FOR REMARK ANO END CARDS 
R 

C'R STRTND 
STRTND = OB 
w• R WORD .E. $ •$, r•o RDLINE 
W'R BUFFER IOI .A. 7777770J00u)K .E. SENDJ.J0$ 

W'R COND .E. 1, T'O EVAL 
PRNTP. I ERRll 
V'S ERRl = $LAST CANON IS l~COMPLETE$ 1 377777777777 

lK 
T'O ERR IN 

E'L 
E'L 

R 
RCHECK TO SEE IF READING 'LITERAL' OF TERMINAL CHARACTERS 
R 

W1 R COND • E. 6 
W'R WORD .E. BREAK 

COND = 2 
0 1 E 

NEWBDT. IWORD 1 TERM I 
W'R EOLIND, NEWBOT. I 60606060605 5K, TERM! 

E'L 
T'O NEWORD 

D'R WORD • E • $ s 
T' 0 NE WORD 

R 
RCHECK TO SEE IF READING PREDICATE 
R 

C'R COND • E. 7 
W'R WORD .NE. $ -S 

LENGTH = LENGTH + 
W'R LENGTH .E. 7 

PRNTP. IERR21 
v•s ERR2 = STOO MANY CHARACTERS IN PREDICATES 

lo 377777777777K 
T'O ERRIN 

E'L 
R 



LOOP3 

LOOP4 

LOOPS 
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RBUILD UP PREDICATE, CHARACTER BY CHARACTER 
R 

NAME = NAME .LS. 6 .v. WORD .A. 000u00000J77K 
T'O NEWORD 

R 
RSAVE PREDICATE NAME JUST READ IN 
R 

0'E 

R 

EQUIV = ITSVAL. (NAME, NAMES) 
W'R EQUIV .E. 0 

E'L 

DEFNUM = DEFNUM + 1 
EQUIV = DEFNUM .v. TRMNUM .LS. 18 
NEWVAL. (NAME, EQUIV, NAMES) 

CHKNUM = EQUIV .RS. 18 
EQUIV = EQUIV .A, 777777K 

RC~ECK DEGREE OF PREDICATE 
R 

W'R TRMNUM .NE. CHKNUM 
P'T ERR15, NAME, LINE 
V'S ERR15 = SH'DEGREE OF PREDICATE -'1C61 

lH'- IN LINE NUMBER',13,H' NOT AS PREVIOUSLY DEFINED'•$ 
T'O ZAPALL 
E'L 

R 
RIF CONCLUSION, MAKE VARIOUS CHECKS AND ADO CANON TO SYSTEM 
R 

W'R ECUAL 
R 
RCHECK FOR LEFT RECURSION 
R 

.A. 777777K 

LRECUR = SEQRDR.lDEFl 
CHKPRM = SEQLR. lLRECUR, Fl 
w•R F .c. D, T•o CHKILL 
PRMPRM =TOP. lLSTNAM. lCHKPRMll 

- W'R PRMPRM .NE. EQUIV, T'O LOOP3 
CHECKC = SEQRD~. (PREMI 

. - CHECKP = SEQRDR, l CHKPRM I 
SOMERC = DB 
l\LLRC = lB 
TERMP = SEQLR. lCHECKP, Fl 

--·- TERMC = SEQLR. ICHECKC, GI 
W1 R F .G. 0 .OR. G .G. 0 

--·----~- W'R SOMERC .AND. ALLRC 
PRNTP. IERRlll 
v•s ERRll = SCOMPLETE LEFT RECURSION 

lS, 377777777777K 

1 RECURSION IN LrNE 

E1 L 

T'O ERRIN 
D'R SOMERC 

P'T ERR121 LINE 
v•s ERR12 ~ SH'WARNING

NUMBER', 13•$ 
E'L 
T'O LOOP3 

TERMl = SEQRDR. ITERMPl 
TERM2 • SEQRDR. lTERMCl 
PPPR EM SEQLR. !TERM l t Fl 
CONCLU = SEQLR. lTERM2, Gl 

PARTIAL LEFT 



CHKI LL 
AOVANP 

AD VANT 

AOVANV 

.GOOF_,l 

-LOOP6 

AOVANL 

61 

W'R F .G. :; .OR. G .G. 0 1 T'O LOOP4 
W'R F .L. 0 .ANO. G .L. 0 

W'R PPPRE~ .e. CONCLU, T1 0 LOOP5 
•. 0 I R F • E • ~ • AND. G • E • 0 

W'R TOP. ILSTNAM. ICONCLUI I .E. 

R 

CHKPRM .AND. PPPREM .E. CONCLU 
SOMERC = lB 
T'O LOOP4 

E'L 
E'L 
ALLRC = ,;,B 
T' 0 LOOP4 

RCHECK FOR ILLEGAL VARIABLE CONSTRUCTION, I.E. 
RA PREMISE TERM WITH MORE THAN A VARIABLE. 
R 

11 377777777777K 

READP = SEQROR. IDEFI 
PREMP = SEQLR. IREADP1 Fl 
W1 R F .G. o, r•o NOUSE 
READT = SEQROR. IPREMPI 
TERMP = SEQLR. IREAOT, Fl 
W1 R F .G. o, T10 AOVANP 
NOTIN=OB 
IN = OB 
VARCNT = 0 
REAOV = SEQROR.· ITERMPI 
VARIAB = SEQLR. IREADV, Fl 
W1 RF.G.O 

W'R VARCNT .G. 1 
PRNTP. IERR161 
v•s ERR16 = $VARIABLE 

T'O ERRIN 
... O'R VARCNT .L. 1 

PRNTP. IERR221 

NOT ISOLATED$ 

... v•s ERR22 =$TERM WITHOUT VARIABLES 
l 1 377777777777K 

- T' 0 ERRlN 
E'L 

.T 1 0 ADVANT 
E'L 

.w•R F .L. o, T 1 0 GOOFOl 
VARIAB = TOP. IVAR!ABI 

- - . -- ... --- ---- VARCNT = VARCNT + 1 
REAOC = SEQROR. ISVEVARI 

-- --------·-·-- ----- TERMV = SEQLR. IREADC1 Fl 
W' R F .G • .J 

NOTIN = lB 
REAOL = SEQROR. INEEDI 

-- - TERML = SEQLR •. I READL, FI 
W1 RF,G,J 

NEWBOT, IVARIAB, NEED) 
P'T NOTTY, VARIAB 

.... V'S NOTTY = $H 1 NEEO 1
1 C6•$ 

T'O AOVANV 
0 1 R VARIAB ,A. 7777777777K .E. TERML ,A, 

7777777777K 
------SUBST, IVARIAB .v. 77Kl01 SEQPTR. 

l IRE AOL I I 
- T' 0 AOVANV 

E'L 



R 
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r•o ADVANL 
0 1 R TERMV .E. VARIAB 

IN = lB 
T'D ADVANV 

E'L 
T'O LOOP6 

RCHECK FDR UNUSED VARIABLE (ONE WHICH OCCURS ONLY ONCE 
RI~ CANON) 
R 

NOUSE READL = SEQRDR. (NEED) 
ADVANN TERML = SEQLR. IREADL, Fl 

W'R F .G. O, T'O ADDCAN 

ADDCAN 

W'R TERML .A. 77Kl0 .E. 77Kl0 
TERML = TERML .A. 607777777777K 
T'O ADVANN 

E'L 
P•T ERR17r TERML, LINE 
V'S ERR17 = $H'WARNING- VARIABLE •,RCl, 

lH' IN LINE NUMBER',13,H' UNUSED'•$ 
DELETE. <SEQPTR. (READLll 
T•o ADVANN 

R 

MAKEDL. (PREM, DEFl 
MAKEDL. <NEED, PREM) 
EQU = ITSVAL. (EQUIV, SYSTEMJ 
W'R EQU .E. 0 

EQU=LIST.(91 
NEWVAL. (EQUIV, EQU, SYSTEM) 

E'L 
NEWBOT. IOEF, EQUl 
COND = l 
T1 D LODPl 

RIF NOT CONCLUSION, SAVE PREMISE AND PREMISE PREDICATE 
R 

O'E 

E'L 
E'L 

R 

NEWBOT. (PREM, DEFl 
TEMP= LIST. (91 
MAKEDL. (TEMP, PREM) 

--NEWBOT. (EQUIV .V. TRMNUM .LS. 18, TEMPI 
COND = 3 
r•o NEWPRM 

RCHECK FOR BREAK BETWEEN TERMS 
R 

R 

C'R WORD .E. S .S 
W'R COND .NE. 2 

D'E 

E'L 

- PRNTP. (ERR3l 
v•s ERR3 = SMISPLACED PERIODS, 377777777777K 
T'D ERRIN 

-- NEWBOT. <TERM, PREMI 
TRMNUM = TRMNUM + l 
COND = 4 
T'D NEWTRM 

RCHECK FOR BEGINNING OF NAME 



R 

R 
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C1 R WORD .E. $ -$ 
W'R COND .NE. 2 

PRNTP. (ERR4) 

0 1 E 

E'L 

V'S ERR4 = $MISPLACED HYPHENS, 377777777777K 
T'O ERR!N 

COND = 1 
LENGTH = 0 
NAME = $ $ 
NEWBOT, (TERM, PREM) 
TRMNUM = TRMNUM + l 
l'O NEWORD 

RCHECK FOR BEGINNING OF TERMINAL CHARACTER 'LITERAL' 
R 

C 1 R WORD .E. $ 1 $ ,OR, WORD .E. S •S .OR. WORD ,E, 
l S IS 

R 

~I' R COND • E, 3 
P 'T ERRlO, WORD, LINE 
v•s ERRlJ = SH.MISPLACED •.,RC[,H, 1 IN LINE NUMBER. 

T'O ZAPALL 
O'E 

. - BREAK = WORD 
COND = 6 
T' 0 NEWORD 

E' L 

RCHECK FOR COMMA AFTER PREDICATE 
R 

R 

D'R WORD .E, $ ,$ 
-W'R CONO .NE. 3 

PRNTP, (ERR51 

.O'E 

E'L 

v•s ERR5 = $MISPLACED COMMAS, 371777777777K 
T'O ERRIN 

COND = 4 
--t '0 NEWORD 

RCHECK FOR EQUALS, BEGINNING OF CONCLUSION 
R ··-- - - ------- -- -

R 

C'R WORD .E. $ =$ 
W1 R COND .NE, 3 .AND. CDND .NE. l 

PRNTP. IERR6) 
----- v•s ERR6 = $MISPLACED EQUALS SIGNS, 377777777777K 

T'O ERRIN 
0'E 

E' L 

EQUAL = lB 
-CDND = 4 
l'O NEWORD 

RC~.ECK FOR TAB 
R 

- -- C'R WORD .E. $ l$ 
W 1 R CON D • E. 3 

PRNTP. ( ERR131 
v•s ERR13 = $MISPLACED TABS, 377777777777K 



0 1 E 

R 
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T'O ERRIN 

NEWBOT. l606060606C72Kr TERM! 
- -CONO = 2 

T'O NEWORD 

RC~ECK- FOR CARRIAGE RETURN 
R 

C'R WORD .E. S 2S 
W'R COND .E. 3 

-- PRNTP. IERR14l ----------
V'S ERR14 • $MISPLACED CARRIAGE RETURNS, 3777777777 

l 71K 

R 

T'O ERRIN 

NEWBOTo 16060606060SSK, TERM) 
- - COND = 2 

T 1 0 NEWORD 
- E' L ---- ------ ---------- ------------- -

RCHECK FOR s. INDICATES VARIABLE NEXT ENCOUNTERED 
R SHOULD BE MARKED FOR NEED. 
R 

C1 R WORD 
W'R 

O'E 

E'L 

.E. 606060606053K 
COND .E. 3 .OR. EQUAL· 

PRNTP. IERR2Sl 
~V'S ERR25 • SMISPLACED 

T'O ERRIN 

DOLIND = 18 
T'O NEWORD 

DOLLAR SIGNS, 377777777777K 

R -------------- ---
RASSUME CHARACTER IS VARIABLE 
R 

C•E 
W'R COND .E. 3 

PRNTP. IERR71 
- - -------V'S ERR7 = $MISPLACED VARIABLES, 377777177777K 

T'O ERRIN 
0 1 E 

, COND " 2 
- VARIAB = ITSVAL. IWORDr VARI 

W1 R EQUAL 

17177K 

O'E 

- W'R VARIAB .E. 0 
PRNTP. IERRBI 
v•s ERRB = SUNDEFINED VARIABLES, 37777777 

TIO ERRIN 
E'L 
NEWBOT. IVARIAB, TERMI 
NEWBOT. IWORO, SVEVARI 

W'R VARIAB .E. 0 
VARIAB =LIST. 191 
TEMP = LIST. 191 

---- - MAKEDL. ITEMP, \IARIABI 
NEWBOT. IWORD, VARIABI 

--- -------- ---- NEWVAL. IWORD, VARI AB, VARI 



ONLYON 

ERRIN 

ZAPALL 

EVAL 

LOOP2 

TYPOUT 

FNDNl1B 

SPCN~B 

E'L 

E'L 
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0 1 R DOL IND 
POPTOP, ILSTNAM, IVARIABI I 

O'E 
T'O ONLYON 

E' L 
NEWBOT. IPREM, LSTNAM, IVARIABll 
NEWBOT. IVARIAB, TERM) 
DOLIND = OB 

T'O NEWDRD 

E'L 
R 
RI~ CASE OF ERROR, CANON IS ERASED AND MAY BE RECONSTRUCTED 
R 

R 

P'T ERR, LINE 
v•s ERR= $H' IN LINE NUMBER 1 ,13•$ 
IRALST, ITERMl 
IRflLST. (PREM) 
IRALST, IDEFI 
T'D LDDPl 

RVARIDUS ERRCR CHECKS FOLLOW 
R 
RCHECK TO SEE IF ALL NAMES ARE DEFINED 
R 

ERRS = '..IB 
DLIST = LSTNAM. INAMESl 
SEQCHK = SEQRDR. lDLISTI 
NAME = SEQLR, lSEQCHK, Fl 
CEFNUM = SEQLR, ISEQCHK, TEMPI .A. 777777K 
W' R F • G. J 

W' R ERRS 
PRNT P. I COMM2 l 
V'S COMM2 = $PLEASE DEFINE ABOVE PREOICATES.S, 7777 

l 77777777K 

E'L 

T'O LODPl 
E1 L 
PRINT COMMENT $ 
PRNTP. ICDMMll 
V'S COMMl = SCDNSISTENT SET OF CANONS.S, 777777777777K 
fl 0 TY POUT 

OEFCHK = ITSVAL. lOEFNUM, SYSTEM) 
h'R OEFCHK .E. 0 

ERRS = lR 
P'T ERR9, NAME 
V'S ERR9 = SC6, H1 UNDEFINED'•$ 

E'L 
T'O LOOP2 

R 
RPRINT LIST OF PREDICATES. 
R 

PRINT COMMENT $ S 
PRINT COMMENT SLIST OF DEFINED PREDICATES ANO DEGREES.S 
PRINT COMMENT S S 
I = 0 
I = I + l 
SEQCHK = SEQRDR. ILSTNAM. INAMESll 
l\AME = SEQLR. ISEQCHK, Fl 
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OEFNUM SEQLR. (SEQCHK, GI 
PRMNUM DEFNUM .RS. 18 
DEFNUM DEFNUM .A. 777777K 
W'R F .G. J, T'O PUTIN 
h'R DE~NU.'1 .E. I 

P'T NDTEJ 1 I, NAM[, PRMNUM 
V'S NDTE3 • $13,H'. -',C6,H'-' 1 14•S 
T' 0 F.~DNMH 

E 'L 
T'O SPCNMB 

R 
Rl~PUT OF SOURCE STRINGS A~D 'NEED' FLAGS. 
RA POl~TER TO THE INPUT STRING IS USED IN 
RTHE LIST, RATHER THAN THE INPUT ITSELF. 
RT~E ADDRESS PORTION OF THE WORD CONTAINS THE 
RNUMOER OF THE LAST CHARACTER INPUTTED 
RA~D THE DEC~EMENT CONTAINS THE NUMBER OF 
RT~E FIRST. THOSE PARTS OF THE STRINGS 
RDERIVED FROM THE CANONIC DEFINTIDNS 
RIRE LEFT AS SINGLE CHAR~CTERS IN A SLIP 
RC ELL. 
R 

LIST. (MAXINPI 
IRALST. ( NAf'ES I 
PRINT COM~ENT $ $ 
PRINT COMMENT $INPUT OF SOURCE ST~INGS.S 

PRINT COMMENT tTYPE FINAL PREDICATE.$ 
READ!.~. INA~EI 

ECUIV = ITSVAL. (NAME, NAMESJ 
CHKNUM • EQUIV .RS. 18 
ECUIV • EQUIV .A. 777777K 
W'R EQUIV .E. 0 

E' L 

P' T CO~M4, NAME 
v•s CO~M4 = $H'-',C6,H'- NOT FOUND'·~ 

T' O RETRY 

LIST. ISEARCHI 
ll\P : ~B 

LHCNT = J 
PRINT CCM~ENT $ $ 
PRINT COMMENT $TYPE -NONEED- 1 -NEED- OR -INPUT- FOR EACH TERM 

l.! 
THROUGH READY, FOR TRMNUM • 11 l• TRM~UM .G. CHKNUM 

PRiNT COMMENT $ $ 
P'T CDMM3 1 TRM,'JU,~, NAME 
v•s CO~M3. $H'TER~ ~UMBER•,12,H• OF -•,c6,H'-'•S 
READIN. I ANSWER I 
W'R ANSWER .E. $ NEED$ 

NEW BOT. ($NEED$, SEARCH I 
r•o READY 

O'R ANSWER .E. $~DNEED$ 

NEWBDT. ($PLEASES, SEARCH) 
T'O READY 

O'R ANSWER .E. $ INPUT$ 
!NP = 18 
PRINT COMMENT $ t 
PRINT COMMENT SINPUT STRING. EXTRA CARRIAGE RETURN 

ll~DICATtS rno.s 
PRINT COMMENT I S 
SAVI ILNECNT • 6 + 11 .LS. 18 
TEMP • LIST. 191 
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C~KR SEQRCR. ISTACKBl 
C~Kl SEQLR. ICHKR, Fl 
C~K2 SEQLR. ICHKR, TEMPl 
~·R F .G. ), r•o OUTCHK 
o 1 R CHKl .NE. DEFINE, T•O RECURR 
W'R LSTEQL. !SEARCH, CHK2l .E. 0 

E'L 

W'R SWITCH .G. 0 
PRINT COMMENT $LEFT RECURSION DETECTED.$ 
E' L 
f'll LUPOU2 

T'll RECURR 
R 
RCEVELDPE 'NEED' LIST. 
R 

R 

FIND= LSSCPY. ISEARCHI 
TEMP! = LIST. l9l 
~~KEDL. ITEMPl, FINDl 
11.EWTOP. ISEQRDR. IFINDl, TEMPll 
TEMP LSTNAM. IDEFINEl 
NEED LS SC PY. I LS TN AM. I TEMP l l 
PREM SEQRCR. ITEMPl 
LCOK SEQRCR. (F!NDl 
LIST. I NOi~ E ED l 
PRMISE = SEQLR. !PREM, Fl 
W'R F .G. Q, T'O PRTNED 
SEE = SEQLR. !LOOK, Fl 
Fl\DTRM = SECRDR. IPRMISEl 
V~RlhB = SEQLR. IFNDTRM, Gl 
W'R G .G. o, T'O LUP0j3 
W'R G .E. ~ 

E'L 

VARIAB = TOP. IVARIABl 
W'R SEE .E. $NEEC$ 

NEWBOT. IVARIAB, NEEDl 
0' R F • E. 0 

NEWBOT. IVARIAB, NONEEDl 
E'L 

l'O LUP.J05 
W'R LEMPTY. INONEEDJ, T•o LUPJl)6 
TEMPl = POPTOP. (NO~EECJ 

Fl\OTRM ~ SEQRDR. INEEDl 
V~RIAB = SECLR. IFNDTRM, Fl 
W'R F .G. ), r•o PRTNED 
W'R VARIAB .NE. TEMPI, r•o LUPJ04 
DELETE. ISEQPTR. IFNDTR~ll 
T'O LUPj04 
IRALST. INDNEEDl 
W'R SWITCH .LE. l. r•o STRTSC 
TEMP! = SEQRDR. (NEEDl 
TEMP2 = SEQLR. (TEMP!, Fl 
W'R F .G. 0, r•o STRTSC 
P'T NDTEJ, TEMP2 
V'S NDTEJ = $H'NEED •,RCl,H'.'•$ 
T'O LUPJlJ 

RGET CONCLUSION OF CANON. 
R 

l\EWBOT. !FIND, STACK21 
~·R SWITCH .G. 4, PRTLST. 1$NEEO$, NEEDI 
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CCNCL = SEQRDR. (TEMPI 
TERM = SEQLR. (CONCL, Fl 
W'R F .G. ), T'D PRMCHK 
ECLI ND = lB 
I~ = ~fl 

l~P = DB 

RGET NEXT TERM OF CONCLUSION. 
R 

R 

PIECE = SEQRDR. (TERMJ 
T'O LUP.lll 
W'R IN, T'D GETINA 
I~ = OB 
W1 R LEMPTY. (STACKJJ 

W1 R INP, T'O LUPJJ7 
EDLIND = OB 
CHAR = SEQLR. (PIECE, GI 
W'RG.G.O 

W'R EOLIND 
INP lB 

D'E 
T' 0 LUPJ.)7 

E'L 
E'L 

RCHECK TO SEE IF SCAN HAS FAILED. 
R 

R 

E'L 

W'R LEMPTY. (STACK2J, T1 0 LUPJ01 
TEMP =. STACKl 
STACKl. = STACK2 
STACK2 = TEMP 

FIND = POPTOP. lSTACKll 
SEE = LSTNAM. lFINDJ 
READS = POPTOP. lSEEJ 
W'R EDLIND 

EI L 

SEQLR. !READS, Fl 
W'R F .L. 0 .DR. INP 

NEWTOP. !READS, SEEi 
NEWBDT. (FIND, STACK21 
I NP = lB 
T' 0 LUP009 

TEMP= CONT. lSEQPTR. IREADSJ + 11 
HCLDP = TOP. ITEMPJ 
HCLOT = BOT. !TEMPI 
W1 RG.L.J 

RTERMINAL CHARACTER IN CONCLUSION, CHECK STRING. 
R 

W'R LEMPTY, IHDLDTJ, T'O NGO DO 
WORD = POPTOP. (HOLDT I 
STRTND = OB 
II' R WORD .L. ;) 

W'R CHAR .E. WORD 
NEWBOT. I WORD, HOLDPJ 
NEWBOT, !FIND, STACK21 
NEW TOP. (READS, SEEi 
T' 0 LUPuJB 
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O'E 
r•o NGOOD 

E'L 

OBJECT = CHARAC. !WORDI 
W'R O~JECT .E. CHAR 

TEMPl = WORD ,A, 777777K6 
W'R LEMPTY. (HOLDPJ, T•D TRAOVR 
TEMP= POPBOT, (HOLDPI 
W'R TEMP ,G. 0 ,ANO, !TEMP .A. 777777KI 

l .E. (WORD .RS. 181 - l, T'O SKPOVR 
NEWBOT, (TEMP, HOLOP I 

E'l 
R 

TEMP = TEMPl .V. !WORD ,RS, 181 - 1 
TEMP = TEMP + l 
NEWBOT. !TEMP, HOLDPI 
W'R TEMPl .GE. WORD ,LS. 18 1 T'O JMPOVR 
WORD = WORD + 1K6 
NEWTOP, !WORD, HOLDT! 
W1R STRTND1 T10 LUPJ15 
NEWBOT, !FIND, STACK21 
NEWTOP. !READS, SEEi 
T'O LUPuJB 

O'R OBJECT .E. $00NULL$ 
STRTND = 18 
T10 LUP019 

O'R OBJECT .E. SOOOENDS 
T'O LUPJ15 

E'l 

IRALST, l FIND I 
W'R IN 

E'L 

CHAR = SAVECH 
G = SAVEG 

T'O LUPOJ9 

RV~RIABLE IN CONCLUSION. 
RC~ECK TO SEE IF VARIABLE PREVIOUSLY DEFINED, 
R 

C'E 
VARIAB = TOP. !CHARI 
OUST = ITSVAL. lVARIAB, FINDI 

·- W'R DLIST .NE. 0 
SAVECH = CHAR 

. SAVEG = G 
IN = lB 
G = -1 
DLIST = SEQROR. lDLISTI 
CHAR = SEQLR. lDLIST, Fl 
W'R F .G. o, r•o GETOUT 
W'R CHAR .L. J, T'O LUPJ27 
I = CHAR 
CHAR= CHARAC. Ill 
I = I + 1K6 
W'R CHAR .E. SOOOEND$, T'O LUP021 
W'R CHAR .E. SOONULL$1 T'O LUPC23 
ALLRC = lB 
r•o LUP:Jl5 
ALLRC = as 
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T1 0 LUPul5 
FINO = POPBOT. !STACK21 
READS = POPTOP. !SEEi 
W'R ALLRC, T'O LUP023 
T'O LUP:lll 
CHAR = SAVECH 
G = SAVEG 
NH/BOT. !FIND, STACK21 
NEWTOP. !READS, SEE) 
T'O LUPJJ9 

RV~RJAOLE JS NOT YET DEFINED, SO PROGRAM 
R ~UST SEARCH RECURSIVELY. SELECT PREMISE WITH WHICH 
R TO SEARCH FOR VARIABLE. 
R 

PRPNTR = TOP. (LSTNAM. !CHARI I 
PRMNUM = TOP. !LSTNAM. !PRPNTRI I .A. 777777K 

R 
RCHECK OTHER TERMS !AND VARIABLES) IN CHOSEN PREMISE. 
R 

R 

LIST. CPUSHESI 
REMPTR = SEQROR. (PRPNTRI 
TERM = SEQLR. ! REMPTR, Fl 
W'R F .G. O, T'O PUSHl 
TEMP= TOP. !TERM) 
ZIEL = TOP. CTEMPl 

Rl~SERT STRING FOR VARIABLE PRESENTLY SOUGHT. 
R 

R 

W'R ZIEL .E. VARIAB 

O'E 

TEMP = LIST. (9) 

NEWBOT. !TEMP, PUSHES) 
TEMP2 = LISl. (9) 
NEWBOT. CTEMP2, TEMPI 
TEMPl = LSSCPY. (HOLDT) 
NEWBOT. CTEMPlr TEMPI 
ABANDN. (TEMP ll 

RSEE IF OTHER VARIABLES PREVIOUSLY DEFINED. 
R 

R 

JSITOF = ITSVAL. !ZIEL, SEEl 
- W'R ISITOF .NE. 0 

O'E 

TEMPl = LSSCPY. CISITOF) 
TEMP2 = LIST. !91 
TEMP = LIST. (91 
NEWBOT. !TEMP2, TEMPI 
NEWBOT. !TEMPl, TEMPI 
ABANON. !TEMPl I 
NEWBOT. !TEMP, PUSHESI 

RDECIOE WHETHER TO FLAG AS 'NEED' OR 'PLEASE•. 
R 

l T'O LUP'.l37 
W'R PRPNTR .NE. TOP. (LSTNAM. (TEMP) I, 

NOPTR = SEQRDR. (NEEDI 
CKNEED = SEQLR. !NDPTR, Fl 
W'R F .G. 0 
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NEW BOT, I $PLEii SE$, PUSHES I 
O'R ZIEL .E. CKNEED 

NEW BOT, I $NEED$, PU SHE SI 

T'O LUP035 
E'L 

E'L 
R 
Rlf\FORMllTION FOR RECURSION ASSEMBLE0 1 SO SAVE STUFF 
RFCR THE PUSH, 
R 

R 

SCMERC = \JB 
k'R SWITCH ,G, l 

P'T NOTEl1 PRMNUM 
v•s NOTEl = $H'SCAN PUSH FOR 1,13•$ 

E'L 
T'O PUSHIT 
SCMERC = l B 
W'R SWITCH ,G, 

pt T NOTE A, PRMNUM 
V'S NOTEA = $H'PREMISE PUSH FOR'113•$ 

E'L 
ll:EWTOP. (DEF, STACKAI 
NEWTOP. <EQUIV, STACKAI 
fiEWTOP. (NEED, STACKAI 
NEWTOP. (SE~RCH, STACKBI 
NEWTOP. (DEFINE, STACKBI 
NEWTOP. (STACKl1 STACKAI 
l'\EWTOP. ISTACK2, STACKAl 
liEWTOP, ICONCL 1 STACKA) 
l'.EWTOP. !PIECE, STACKAI 
NEWTOP. (FIND, STACKAl 
l\EWTOP. ISEE 1 STACKAl 
NEWTOP. (RE ADS 1 STACK Al 
NH/TOP. IHOLDP, STACKA) 
fiEWTOP. I HOLDT 1 SUCK A I 
NEWTOP, !CHAR, STACKAI 
f\EWTOP, (VAR!Af\ 1 STACKAI 
fiEWTOP. IPRPNTR, STACKAl 
fiEWTOP., I ANSWER, STllCKA I 
fiEWTOP. ISOMERC 1 STACKAI 
NEWTOP, IEOL!ND, STACKAI 
E~U!V = PKMNUM 
SEARCH = PUSHES 
l'O LUPO'J) 

RCHECK WHETHER PREMISE CONDITIONS ARE SATISFIED. 
R 

PIECE = SEQRDR. IDEFINEI 
W'R LEMPTY. ISTACKll 

E'L 

W'R LEMPTY. ISTACK21. r•o LUPJ11 
PRPNTR = SEQLR. (PIECE, Fl 
W'R F .G. o. T'O ASSMBL 
TEMP = STACKl 
STACKl STACK2 
ST ACK2 = TEMP 
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FIND = POPTOP. (STACKl I 
SEE= LSTNAM. IFINDI 
READS = POPTOP. !SEEi 
PRMNUM = TOP. ILSTNAM. IPRPNTRl l .A. 777777K 
CLIST = ITSVAL. (PRPNTR .A. 77777K, FINDI 

RPREMISE HAS NOT BEEN PREVIOUSLY VERIFIED WHILE 
RSEARCHING CONCLUSION. 
R 

W'R DLIST .E. 0 
LIST. (PUSHES) 

R 

TERM= SEQRDR. IPRPNTRl 
TOPS = SEQLR. !TERM, Fl 
W'R F .G. O, T1 0 PUSH2 
TOPS = TOP. (TOP. !TOPS)) 
DLIST = ITSVAL. !TOPS, FIND! 
W ' R Dll ST , E. :J 

RV~RIARL[ NOT YET DEFINED. INSERT 'NEED' 
R 

lK,-•$ 

C'E 
R 

EI L 

NEW BOT. I $NEED$, PUSHES I 
W'R SWITCH .G. 0 

P'l NOTED 
V'S NOTED $H-'NEED 1 REQUEST IN PREMISE CHEC 

EI L 
T'O LUPJ53 

TEMPl =LIST. 191 
NEWAOT. !TEMPI, PUSHES! 
TEMP2 = LIST. 191 
NEWBOT. ITEMP2, TEMPl I 
TEMP2 = LSSCPY, IDLISTI 
NEWBOT. ITEMP2, TEMPll 
ABANDN. ITEMP2l 
f'O LUP053 

RPREMISE HAS BEEN PREVIOUSLY GENERATED IN SCAN 
RCF CONCLUSION. 
R 

SOMERC = OB 
PUSHES = LSSCPY, IDLISTl 
TERM = SEQROR. (PUSHES! 
TE~P = SEQRDR. IPRPNTRl 
TOPS = SEQLR. !TERM, Fl 
TEMP3 = SEQLR. !TEMP, HI 
W' R F .G, 0 

W'R SOMERC, T'O PUSH2 
IRALST. (PUSHES) 
NEWTOP. !READS, SEEi 
NEWBOT, !FIND, STACK2l 
T'O LUP)51 

O'RF.L.O 
SOMERC = lA 
TEMP3 = TOP. !TOP. <TEMP3ll 
DUST= ITSVAL. ITEMP3, FIND) 
W 'R DLI ST • E. 0 

P'l NOTED 
SUBST. ($NEEDS, SEQPTR. !TERM) I 



ASSMBL 

LUP067 

LUP071 

E'L 

74 

T'O LUP.J57 
E'L 
TEMPl =LIST. (91 
SUBST. !TEMPl, SEQPTR. (TERMI I 
TEMP2 = LIST. (91 
NEWBOT. CTEMP2, TEMPll 
TEMP2 = LSSCPY. CDLIST) 
NEWBOT. CTEMP2, TEMPll 
ABANDN. I TEMP2 I 

T'O LUP057 
E'L 

R 
RASSEMBLE CONCLUSION TO BE TRANSMITTED UPSTAIRS 
R 

R 

W'R LEMPTY. CSTACK2J, T'O LUPJOl 
FIND = POPTOP. (STACK2J 
READS = POPTOP. CLSTNAM. (FIND) I 
TERM = SEQRDR. (FINO) 
PREM= SEQRDR. CLSTNAM. !DEFINEll 
TCPS = SEQLR. <TERM, GI 
CCNCL = SEQLR. !PREM, Fl 

RASSEMRLED, ADD TO ANSWER AND RETURN. 
R 

R 

W'RF.G.O 
NODLST. (FINDJ 
NEWBOT. (FINO, ANSWER) 
T'O ASSMBL 

RIF TERM SCANNED, SKIP IT. 
R 
C'RG.E.O 

T' 0 LUP067 
R 
RIF NEED OR PLEASE, ASSEMBLE. 
R 
O•RG.L.O 

SOME RC = 0 B 
TEMP = LIST. 191 
TEMPl = SEQRDR. CCONCLI 
TEMP2 = SEQLR. (TEMPl, Fl 
W'f\ F .G. ) 

W'R SOMERC .OR, TOPS .E. SNEEDS 
TEMPl = LIST. !91 

O'E 

E'L 

SUBST, (TEMPl, SEQPTR, (TERMJl 
NEWBOT. !TEMP, TEMPll 
TEMPZ = LIST. (9) 
NEWBOT, (TEMPZ, TEMPll 

IRALST. !TEMPI 

T'O LUP067 
O'RF.E.O 

SOMERC = lB 
DLIST = TOP. (TEMP2l 
ANTWRT = ITSVAL. CDLIST, FINDJ 
W'R ANTWRT ,E. 0 

w•R TOPS .E, SNEED$ 
PRINT COMMENT S'NEED• ERROR,$ 
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E1 L 
IRALST. !FIND) 
T 1 0 ASSM~L 

TEMP3 ; LSSCPY. !ANTWRTI 
INLSTR, lTEMP3, !CONT, !TEMP .A. 

77777Kll .RS. 181 
IRALST, !TEMP3l 

O'RF.L.O 
NEWBOT, !TEMPZ, TEMP) 

EI L 
T'O LUP07l 

EI L 
R 
RPCP-UP ROUTINE 
R 

l.'R SWITCH ,G. 2 
PRTLST, ($ANSWER$, ANSWER I 

E'L 
IRALST. !STACKll 
JRALST. !STACK21 
W1 R LEMPTY, !STACKA), T'O THKGOD 
lRALST. !SEARCHI 
RTRNl ; ANSWER 
ECLIND POPTOP. !STACKAI .E. 
SCMERC POPTOP, t STACKA) ,E, 
A~SWER POPTOP, tSTACKAl 
PRPNTR POPTOP, (STACKAI 
VARIAB POPTOP. !STACKAl 
CHAR ; POPTOP. !STACKAI 
HCLOT POPTOP. !STACKAI 
HCLDP = POPTOP. !STACKAI 
READS ; PDPTOP. (STACKAI 
SEE ; POPTOP. !STACKAI 
FIND ; POPTCP. !STACKAI 
PIECE; PDPTOP. !STACKAI 
CCNCL = POPTOP. !STACKAI 
STACKZ POPTOP. !STACKAl 
STACK! POPTOP. !STACKAl 
CEFINE POPTOP. !STACKBl 
SEARCH POPTOP. ISTACKBl 
NEED = POPTCP. ISTACKAl 
E'UIV = ,POPTOP. ISTACKAI 
DEF = POPTOP, !STACKAI 
G ; 0 
w'R SWITCH .G. l 

P'T NOTE2, EQUIV 
V'S NDTEZ = $H'POP BACK T0',13,H'.'"$ 

E'L 
W'R SOMERC, T 1 0 POP2 

R 
RRETURN TO SCA~ OF CONCLUSION AFTER PUSHING 
RFCR DEFINITION OF A VARIABLE. 
R 

POPI W'R LEMPTY. !URNll 
IRALST. (RTRNll 
IRALST. (FIND I 
INP = 'JB 

W'R S~·JITCH .L. 4, T'O LUPJ'J? 
PRTLST. ($STACK!$, STACK! I 
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PRTLST, ($STACK2S, STACK2J 
T' 0 LU P(j09 

E' L 
F~DCPY = LSSCPY. IFINDJ 
TEMP = SEQRDR. IF IND) 
TEMP3 = SEQRDR. I FNDCPY J 
TEMPl = SEQLR. !TEMP, Fl 
TEMP2 = SEQLR. ITEMP3, HJ 
W'Rf,G,O 

T'O LUP080 

W'R TE~P .E. READS 

E'L 

CPYHDP = TOP, ITEMPZJ 
CPYRDS = TEMP3 
LINKS= CONT. ITEMP2 ,A, 77777KJ .RS. 18 

r•o LUP079 
E'L 

R 
RSAVE THE RETURN ANSWER, AND DEFINE VARIABLES 
RA~D PREDICATES AS GIVEN FROM PUSH, 
R 

R 

TEMPl POPTOP. (RTRNlJ 
TEMP3 SEQRDR. ITEMPll 
TEMP2 SEQRDR, (PRPNTRl 
TEMP4 SEQLR. ITEMP3 1 HJ 
TEMP5 SEQLR. ITEMP21 Fl 
W' R F , G. 0 

NEWVAL, IPRPNTR .A. 77777K 1 TEMP1 1 FNDCPYJ 
Af\ANDN. I TEMPl l 
NEIHOP, ICPYRDS1 LSTNAM. IFNDCPYl l 
NEWBOT. IFNDCPY, STACK2J 
T'O POPl 

C' R H • L, ;J 

O'E 

W'R TE~P4 .E, SNEED$ 
PRINT COMMENT $'NEED' ERROR,$ 

E' L 
T' 0 LUP081 

TMPVAR =TOP. !TOP, ITEMP5JJ 
PRVDEF = ITSVAL. CTMPVAR, FNOCPYl 

RVARIABL~ PREVIOUSLY DEFINED, COMPARE DEFINITIONS, 
R 

R 

W'R PRVDEF .NE, -J 

O'E 

W'R LSTEQL, (PRVDEF, TOP. ITEMP4Jl .NE, 0 
IRALST, I FNDCPY J 
IRALST, CTEMPlJ 
T'D POPl 

E'L 

RACO DEFINITION. 
R 

NEWVAL, ITMPVJ\R, TOP. ITEMP4) 1 FNDCPYJ 
W'R VARIAB .E. TMPVAR 

SUBST, IPOPBOT. ITEMP4J 1 LINKSJ 
CHKJ = LSSCPY. I TOP. ITEMP4 JI 
NEWTOP, !LIST. 191 1 TEMP4J 
W'R LEMPTY. ICHKOJ, T'O LUP•J81 





TH KG DZ 

LU Pl 5.) 

LU PERR 

ERRLUP 
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W'R LEMPTY. (ANSWER) 
W'R ALLRC, r•o HERAUS 
W1 R SUMERC 

PRINT COMMENT $SCAN COMPLETED. SYNTAX ERROR IN IN~ 

lUI STRING. S 
PRINT COMMENT SPART(S) OF INPUT DR NEED STRING(Sl NOT SCANNED 

1. f 
T'O LUP15J 

D'E 
PRINT COMMENT $SCAN FAILED. SYNTAX ERROR IN INPUT 

lSTRINGlS).S 
E'L 
PRINT COMMENT $NO'TRANSLATED OUTPUT,$ 
CHKNUM 0 
MAXl = 0 
CONCHK = SEQRDR. (SEARCH) 
SEECHK = SEQLR. lCDNCHK, Fl 
W1 R F .G, O, T'O HERAUS 
CHKNUM = CHKNUM • 1 
W'R F .L. O, T'O LUPERR 
I = SEQLR. (MAXCHK, FI 
OLDMAX = MAXl 
MAXl =I .A. 777777K 
MAX2 = I .RS. 18 
PRINT COMMENT $ $ 
l<I' R CHARAC. (I + lKbl .E. SOJNULI $ .AND. MAXl - MAX2 

1 • L. 6 
P 1 T NOTE4 1 CHKNUM 
V'S NDTE4 = SH' INPUT TERM 1,!2,H 1 COMPLETELY SCANNED 

O'E 
MAX3 = CHARAC. ([) 
P 1 T NOTES, CHKNUM 1 MAX3 
v•s NOTE5 =· SH'LAST CHARACTER INSPECTED IN TERM' 

1112,H' WAS 1 ,RCl,H' IN MIDST OF FOLLOWING CONTEXT. 1 •S 
PRINT COMMENT $ S 
LINEl = lMAX2 - 11/6 - 2 
LINE2 = lOLDMAX + 51/b -
LINE3 = (MAXl - ll/b 
THROUGH ERRLUP, FOR I = a, 1, I .e. 5 

W'R LINEl + I .LE. LINE2 .OR. LINEl + I .G, 
1 LINE3 

C'E 

BUFFER l I l 

BUFFER(!) 
E'L 
CONTINUE 

575757575757K 

INPUTILINEl +II 

P'T NDTEb, BUFFERlOl, ••• ,8UFFERl41 
v•s NOTE6 = S5C6•$ 

E'L 
T'D LUPERR 

SOMERC = lB 
HOLD= POPTOP. (ANSWER) 
ENDCHK = SEQRDR. (HOLD) 
TEMP4 = SEQRDR. (SEARCH) 
SEECHK = SEQLR. lENDCHK, Fl 
TEMP5 = SECLR. lTEMP4, Hl 
W1 R F .G. O, T'D ALLDVR 
W'R TEMP5 .e. $PLEASES, T'D LUPSEE 



ALLOVR 

ALLGNE 

LUPO UT 

LUPI:·~ 

LUPLl 

CHKEl-:P 

CROUT 

LUPl. 5 
LUPl, 7 

LUPL9 
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TEMP = BOT. tSEECHKJ 
W'R .NOT. LEMPTY. tTEMPJ 

TEMPl = POPTOP. ITEMPJ 
W'R .NOT. LEMPTY. ITEMPJ, T'O THKGDl 
TEMP2 TEMPl .RS. 18 
TEMP3 = TEMPI .A. 777777K 
TEMPI = CHARAC. ITEMPlJ 
W'R TEMPl .NE. $000END$ .AND. TEMPl .NE. 

H;JNULL$ .OR, TEMP3 - TEMP2 .G. 5, T'O THKGDI 
EI L 

E'l 
R 

T•o LUPSEE 

RSCAN WAS SUCCESFUL. PRINT OUT 'NEEDED' TERMS. 
R 

W'R ALLRC 

C'E 

PRINT COMMENT $ $ 
PRINT COMMENT SACDITIONAL SUCCESSFUL SCAN.$ 
T 1 0 ALLGNE 

PRINT COMMENT SSCAN SUCCESSFUL.$ 
ALLRC = IB 
PRINT COMMENT $TRANSLATED OUTPUT (IF ANY) FOLLOWS.$ 
CONCHK = SEQRDR. tSEARCHJ 
TRMNUM = 0 
CONCL = SEQLR. ICONCHK, Fl 
SEECHK = SEQLR. IENDCHK, GJ 
TRMNUM = TRMNUM t 1 
W'R F .G. o. T'O THKGDl 
W'R CONCL .NE. SNEED$, T'D LUPOUT 
PRINT COMMENT $ $ 
W'R SEECHK .E. $NEED$, PRINT COMMENT $'NEED' ERRS 
P 1 T NOTE7, TRMNUM 
V'S NOTE7 = $H'TERM NUMBER',12,H'. '•$ 
PRINT COMMENT $ $ 
SfECHK = TOP. ISEECHKJ 
!NP = OB 
THROUGH LUPIOl, FOR I = ~, I, I .E. I4 
RUFFER I I J = 575757575757K 
BUFFERl14J = 777777777777K 
I = D 
G = 3) 
WRDCNT = 0 
W'R G .LE. -6 

G = 3·J 
WRDCNT = WRDCNT t 1 

EI L 
W'R I .E. 80 

EI L 

PRNTP. (BUFFER ICJJ 
T 1 0 LUPlO.) 

w IR !NP 

O'E 

!NP = lB 
TEMPl = CHARAC. ITEMPJ 
TEMP = TEMP t IK6 
W'R TEMPl .E. $00NULL$, T'O LUPI.07 
W'R TEMPI .E. $)QJEND$, T 1 0 LUP109 
T•o LUP113 

W'R LEMPTY. tSEECHKJ 
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01 
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1••·······································································•••1 
H5364 

START 

AROUND 

RETURN 

GO BACK 

READER 

5163 PRTLST MAO FOR 
EXTERNAL FUNCTION (NAME, LSTOUTI 
!';'S INTEGER 
~COLEAN LEMPTY 
e•o PRTLST. 
PRINT COMMENT S $ 
P'T NOTEBB, NAME, GETMEM. (01 
v•s NDTEBB = $C6,H' MEH=',l6•S 
l = 0 
LIST. (STACKI 
LI SS NM = LS TOUT 
f\UMBER = ITSVAL. (LISSNM, STACKI 
W'R NUMBER .NE. 0 

E' l 

P'T NOTE21 NUMBER 
V'S NOTE2 = $H'l!ST'113•$ 
W'R LEMPTY. CSTACKI 

O'E 

E' L 

PRINT COMMENT $ S 
IRALST. (STACK I 
FUNCTION RETURN 

S = POPTOP. (STACKI 
POINT = POPTOP. (STACKI 
NUMB = POINT .A. 777777K 
POINT = POINT .RS. 18 
W'R POINT .E. 11 T'O RETURN 
T10 GOBACK 

I = I + 1 
f\t;MB = I 
NEWVAL. (LISSNM 1 NUMB, STACKI 
P'T NOTE3 1 NUMB 
V'S NOTE3 = SH'BEGIN 1 1 l3 1H1• 1•$ 
S = SEQROR. (LISSNMI 
l = LSTNAM. <LISSNMI 
W'R L .NE. ·) 

O'E 

E'L 

PRINT COMMENT SDLIST.S 
NEWTOP. (NUMB .v. 1K6, STACKI 
NEWTOP. (S, STACKI 
LISSNM = L 
T'O STMT 
PRINT COMMENT SEND DL!ST.S 

PRINT COMMENT SNO OL!ST.S 

W = SEIJLR. CS, Fl 
W'R F .G. 0 

P'T NOTE6 1 NUMB 
V'S NOTE6 = $H'END'113 1H'.'•$ 
T•O AROUND 

C'RF.E.!) 

M5364 

W'R w .A. 7000~07K5 .NE. o, T10 READER 
PRINT COMMENT SLIST NAME.$ 
NEWTOP. (NUMB, STACKI 
NEWTOP. (S, STACKI 
L!SSNM = W 
T'O START 

C'E 
P'T NOTES, W, W 
V'S NOTES = SH. •.,C6 1H.• '.,K12,H. •.•S 

5163 05, 
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