This blank page was inserted to preserve pagimation.

ON THE SIMULATION OF DYNAMIC SYSTEMS WITH

LUMPED PARAMETERS AND TIME DELAYS
by

Nestor Leal-Cantu
I.M.E. Instituto Tecnologico y de Estudios Superiors de Monterrey
(1966)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

$$
\text { August , } 1967
$$

Signature of Author . . PRetor?
Department of Mechanical Engineering, Aug. 21, 196 ;

Certified by Ronald C Poremberg Ass. Prof. Thesis Superviso

Accepted by . Chairman, Departmental Committee on Graduate Student

ON THE SIMULATION OF DYNAMIC SYSTEMS WITH

LUMPED PARAMETERS AND TIME DELAYS

by
Nestor Leal-Cantu

Submitted to the Department of Mechanical Engineering on August 21, 1967, in partial fulfillment of the requirements for the degree of Master of Science.

ABSTRACT

A method is developed for digital simulation of linear timeinvariant dynamic systems with lumped parameters and time delays. Ordinarily, such systems can be described by a linear matrix differentialdifference equation, which can be transformed to an infinite-dimensional difference equation whose solution is obtained in a recursive way.

As the present method depends on the accuracy of evaluation of the matrix exponential, a simple computationat procedure based on the truncation of the infinite series for $e^{A T}$ is described.

In addition, an algorithm is given that ensures that the transient state of an unforced linear time-invariant dynamic system with zero time delay is calculated to a specified accuracy.

Several sample problems are included.

ACKNOWLEDGMENTS

```
The author is deeply Indebted to Professor Ronald Carl Rosenberg, thesis advisor, for his encouragment at every stage of this work and the innumerable constructive criticisms for improvement toward making this report readable. The author also owes a debt of gratitude to the members of the ENPORT Project and to many other individuals who must remain anonymous due to lack of space. In a special category, the valuable suggestions of Professor Dean C. Karnopp and Mr. Yves Willems are greatly appreciated. Special thanks are due to Hojalata y Lamina S. A., Monterrey, Mexico which generously financed this work.
Work reported herein was supported in part by Project MAC, an M.I.T. research project sponsored by the Advanced Research Projects Agency, Department of Defense, under Office of Naval Research Contract Nonr4102(01). Reproduction of this report or in part, is permitted for any purpose of the United States Government.
```

TABLE OF CONTENTS
ABSTRACT $1 i$
ACKNOWLEDGMENTS iii
CHAPTER 1 - INTRODUCTION 1
1-1 Description of the problem 1
1-2 Formulation of the approach 2
1-3 Application of results in dynamic simulation 4
CHAPTER 2 - DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS 5
2-1 System characterization by state variables 5
2-2 Digital solution of the matrix differential equation . . 6
2-3 Digital evaluation of the matrix exponential 8
2-4 Error bounds in the transient response 12
CHAPTER 3 - DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMSWITH LUMPED PARAMETERS AND TIME DELAYS 143-1 Digital solution of the matrix differential-difference
equation 14
CHAPTER 4 - ALGORITHMS FOR DIGITAL COMPUTATION 24
4-1-1 TRANS. The time response of linear time-invariant
systems 25
4-1-2 EXPMAT . The evaluation of the matrix exponential 29
4-1-3 DISTUR. Forcing signals 32
4-2-1 TIMDEL. The time response of linear systems with
lumped parameters and time delays 34
4-2-2 DELFOR. The evaluation of the set of transition
matrices 38
4-2-3 PERTUR. Forcing signals 41
CHAPTER 5 - SOLUTION TO SAMPLE PROBLEMS 43
5-1 Test problem for the simulation of dynamic systems
without delay 43
5-2 Control of composition in a chemical reactor 44
5-3 Test problem for the simulation of dynamic systems
with delays 53
CHAPTER 6 - COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCH 74
BIBLIOGRAPHY 76
APPENDIX A. - PROGRAM LISTINGS 79

This empty page was substituted for a blank page in the original document.

CHAPTER 1

INTRODUCTION

1-1 Description of the problem

This report presents a method for the simulation of linear timeinvariant dynamic systems with lumped parameters and time delays.

In many industrial processes one often encounters a type of time delay called "transportation lag". This kind of delay is generated when process materials move from one point in a process to another point without any appreciable change taking place in the properties or characteristics of the process materials. Such delays may be caused by the flow of fluids through pipes, or by the motion of webs or filaments. Systems such as distillation colums and long heat exchangers are characterized by a multitude of small lags, which have an effect somewhat similar to that of time delays. The effects are not identical; however, some insight may be gained by using time delays models. The control of composition in a chemical reactor has been selected as a typical problem and this is depicted in section 5-2.

Models having delays of ten arise in the study of systems with a mixture of lumped and distributed elements. An interesting form of topological representation suitable for such systems has been invented by Prof. H. M. Paynter at M.I.T., and is called the bond graph. Rosenberg (17) and Auslander (1)* describe its use in modeling in some detail.

Many other physical systems, such as electrical, mechanical and

[^0]hydraulic transmission lines, and certain types of structural problems, are good examples of distributed systems which can be modeled using the delay operator. These systems often are analyzed as two-port chains, and usually the equations are slightly more involved than the type treated in this report. It is suggested that the reader interested in these kind of problems consult Koepcke (9) and Vaughn (20), as well as any standard text treating transmission phenomena.

1-2 Formulation of the approach

As an extension to the use of ordinary differential equations which arise when the future behavior of the system depends only upon its present state and not upon its past history, many systems that include time delays can be described by a linear matrix differential-difference equation. That is, the system is described by

$$
\dot{X}(t)=\sum_{i=1}^{n} A_{i} \underline{X}\left(t-T_{i}\right)+\sum_{j=1}^{m} D_{j} \underline{U}\left(t-T_{j}\right),
$$

where X and \underline{U} are the state and input vectors, respectively and T_{i} and T_{j} are some fixed delay times. A_{i} are aet of $n \times n$ matrices, and D_{j} are a set of $n \times r$ matrices. Techniques such as the direct method of lyapunov or laplace transforms can be used in the analysis of the equation. However, the use of these techniques frequently requires extensive computation, and for that reason they are not practical for hand analysis. At this step, designers and analysts are forced to rely on the digital computer as a computing aid.

Because matrix manipulations are so convenient to implement on a
digital computer, many existing dynamic systems programs are based on a
matrix formulation of the problem. This convenience, together with the inherent elegance of the matrix approach, is helping to promote its acceptance among systems theorists.

This report analyzes systems governed by the following differentialdifference equation, for which it is desired to have a time sampled version of the state response:

$$
\underline{\dot{X}}(t)=A \underline{X}(t)+B \underline{X}(t-T)+D_{1} \underline{U}(t)+D_{2} \underline{U}(t-T)
$$

where
$T=$ time delay.
$\underline{X}(t)=(n \times 1)$ vector. It is called the state vector. $\underline{U}(t)=(r \times 1)$ vector. It is the forcing signal or input vector, and it is assumed to be constant between samples.
$A, B=(n \times n)$ constant coefficient matrices. $D_{1}, D_{2}=(n \times r)$ constant driving matrices.

Koepcke (9) shows that the equivalent difference equation is (see
section 3-1)

$$
\underline{X}(t+\tau)=\sum_{i=0}^{\infty}\left[\Phi_{i}(\tau) \underline{X}(t-i N \tau)+\Delta_{i}(\tau) \underline{U}(t-i N \tau)\right]
$$

where $N=\frac{T}{\tau}$, and Φ_{1} and Δ_{1} are called plant transition matrices and control transition matrices respectively.

The accuracy of evaluation of these sets of transition matrices depends upon the accuracy of evaluation of the matrix exponential. In section 2-3 a simple procedure based on the truncation of the infinite series of $e^{A T}(11,6)$, which guarantees a specified accuracy in the matrix exponential, is described.

```
Also, a procedure is developed (21) to ensure that the calculated transient state of unforced linear time-invariant dynamic systems with aero time delay, is accurate to a specified tolerance.
Several sample problems are presented to demonstrate the
```

computation techniques.

1-3 Application of results in dynamic simulation

The two sets of simulators deduced throughout the development of this work, were tested on the time-shared IBM 7094 operated by Project MAC, and the entire operation, input and output, was carried out at an IBM 1050 remote console typewriter. The algorithms will be part of the ENPORT Project which is baing carried out at the mechanical engineering department under the direction of Professor Rosenberg.

ENPORT ig a digital computer program that accepts a bond graph degcription of a dynamic system and produces its time response. Work is being done on the theory of bond graphs, and a systematic graphical method has bean developed for generating the state differential equations. ENPORT is organized in ach a way that a broad class of nonlinear, active and passive, mixed energy-type systems can be handled.

The wakelike nature of certain types of distributed systems make simulation by means of the digital computer, with its ability to exactly model the time delay operator, very natural. A simulation method based on delay-bond modeling has been developed by Auslander (1).

CHAPTER 2

DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS

The analysis of many systems problems encountered in scientific and engineering investigations can be performed by either one of two major approaches. The essentially block diagram approach, involves the determination of the trangfer characteristics of the system components and the overall transfer characteristics. The second approach is based primarily upon the characterization of a system by a number of coupled first order differential equations which govern the behavior of the state variables. This technique is often implemented with the aid of a state variable diagram and is referred to as the state-variable approach.

2-1 System Characterization by State Variables

From the point of view of sygtem analygis it is convenient to classify the variablas which characterize or are associated with any system into (1) input, or forcing signals, $U 1$, which in essence represent the atimuli generated by aystems other than the one under invaatigation and which influence the system behavior; (2) output, or response, variables Yi, which describe those aspects of system behavior that are of interast to the investigator; and (3) state variables Xi, which characteriza the dynamic behavior of the aystem under investigation. One way of defining state variables is by making use of the state variable diagram. A state variabla diagram is made up of integrators, coefficients and suming devices. It describes the relationshipa among the atate variables and provide physical interpretations of them. The
outputs of the integrators denote the state variables.
For continuous-time systems the state variable diagram is the same as the analog-computer simulation diagram. The state variable diagram may be derived from the overall transfer function of the system in three different ways (1) direct programing, (2) parallel programming, and (3) iterative programing. These methods are later ilustrated in the chapter corresponding to the solution to sample problems. Further information can be obtainad from Tou (19), Schwarz and Friedland (18) and Ogata (15).

2-2 Digital Solution of the Matrix Differential Equation

A linear time-invariant system or process can be described by a set of first order linear differential equations with constant coefficients, which may be expressed in matrix form as

$$
\begin{equation*}
\underline{X}(t)=A \underline{X}(t)+D \underline{U}(t) \tag{2.1}
\end{equation*}
$$

where
A is the coefficient matrix
D is the driving matrix
\underline{X} is the state variable vector
\underline{U} is the state forcing signal vector
By analogy to the scalar case, the solution of eq. (2.1) is

$$
\begin{equation*}
\underline{X}(T)=e^{A\left(T-t_{0}\right\rangle} \underline{X}\left(t_{0}\right)+\int_{t_{0}}^{T} e^{A(T-\tau)} D \underline{U}(\tau) d \tau \tag{2.2}
\end{equation*}
$$

with the inftial conditions given by $X\left(t_{0}\right)$.
For simplicity let $t_{0}=0$, and let us define

$$
\begin{equation*}
\Phi(T)=e^{A T} \tag{2.3}
\end{equation*}
$$

as the transition matrix of the process. An equivalent name is the matrix exponential.

Therefore eq. (2.2) can be raduced to

$$
\begin{equation*}
\underline{X}(T)=\Phi(T) \underline{X}(0)+\Phi(T) \int_{0}^{T} e^{-A T} D \underline{U}(\tau) d \tau \tag{2.4}
\end{equation*}
$$

If T is small compared to the shortest period of interest in $\mathbb{U}(t)$, $\underline{U}(t)$ may be approximated over the region by $\mathbb{U}(0)$.

Then eq. (2.4) becomes

$$
\begin{equation*}
\underline{X}(T)=\Phi(T) \underline{X}(0)+\Phi(T)\left(\int_{0}^{T} e^{-A T} d \tau\right) D \underline{U}(0) \tag{2.5}
\end{equation*}
$$

By integration of the series of $e^{-A T}$

$$
\begin{equation*}
\int_{0}^{T} e^{-A \tau} d \tau=A^{-1}[1-\Phi(-T)] \tag{2.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\underline{X}(T)=\Phi(T) \underline{X}(0)+\Phi(T) A^{-1}[1-\Phi(-T)] D \underline{U}(0) \tag{2.7}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
\Delta(T)=\left[e^{A T} A^{-1}-e^{A T} A^{-1} e^{-A T}\right] D \tag{2,9}
\end{equation*}
$$

as the control transition matrix.
From the series definition of $e^{-A T}$, it is observed that

$$
A^{-1} e^{-A T}=e^{-A T} A^{-1}
$$

Therefore, eq. (2.9) becomes

$$
\begin{gathered}
\Delta(T)=\left[e^{A T} A^{-1}-e^{A T} e^{-A T} A^{-1}\right] D \\
\Delta(T)=\left[e^{A T} A^{-1}-A^{-1}\right] D
\end{gathered}
$$

or

$$
\begin{equation*}
\Delta(T)=\left[\left(e^{A T}-I\right) A^{-1}\right] D \tag{2,10}
\end{equation*}
$$

Thus eq. (2.8) can finally be written as

$$
\begin{equation*}
\underline{x}(T)=e^{A T} \underline{x}(0)+\left[\left(e^{A T}-1\right) A^{-1}\right] D \underline{U}(0), \tag{2.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{x}(T)=\Phi(T) \underline{x}(0)+\Delta(T) \underline{U}(0) \tag{2.12}
\end{equation*}
$$

In general eq. (2.12) can be expressed as

$$
\begin{equation*}
\underline{X}(\overline{\mathrm{~K}+1} \mathrm{~T})-\Phi(\mathrm{T}) \underline{X}(\mathrm{KT})+\Delta(\mathrm{T}) \underline{\underline{U}}(\mathrm{KT}) \tag{2.13}
\end{equation*}
$$

which indicates that the state vector of the process after a particular interval depends upon the previous vector and also depends upon the forcing vector evaluated at the previous time.

There are several methods available for computing the closed form expression for $e^{A T}$, either as a special case of the study of the functions of a matrix or by a purely algebraic method based on the Laplace Transform. It is suggested, for those interested in these schemes, that they consult Ogata (15), Zadeh and Desoer (23), or Bellman (2).

2-3 Digital Evaluation of the Matrix Exponential
$e^{A T}$ is given by

$$
\begin{equation*}
e^{A \tau}=e^{B}=I+B+\frac{B}{2}\left(\frac{B}{1!}\right)+\frac{B}{3}\left(\frac{B^{2}}{2!}\right)+\cdots \tag{2.14}
\end{equation*}
$$

note that each term in parenthesis is equal to the previous term. This
provides a convenient recursion scheme.
To ensure a reasonable truncation of the series, it is necessary to judge the convergence of the series. The norm of a matrix A is a real, non-negative number denoted by $\|A\|$, that gives a measure of the size of the matrix elements.

$$
\Phi(T)=e^{A T}=M+R
$$

where M is the truncated matrix which is an approximation of $e^{A T}$ (see reference 11)

$$
\begin{equation*}
M=\sum_{i=0}^{K} \frac{(A T)^{i}}{i!} \tag{2.15}
\end{equation*}
$$

and R is the remainder matrix

$$
\begin{equation*}
R=\sum_{i=K+1}^{\infty} \frac{(A \tau)^{1}}{1!} \tag{2.16}
\end{equation*}
$$

If each element in the matrix $e^{A T}$ is required with an accuracy of "d" significant digits, then

$$
\begin{equation*}
\left|r_{i j}\right| \leq 10^{-d}\left|m_{i j}\right| \tag{2.17}
\end{equation*}
$$

where $r_{i j}$ and $m_{i j}$ are elements of matrices R and M respectively.
Let us define the norm of matrix A as:

$$
\begin{equation*}
\|A\|=\min \left[\max _{i}\left[\sum_{j}\left|a_{i j}\right|\right], \max _{j}\left[\sum_{i}\left|a_{i j}\right|\right]\right\} \tag{2.18}
\end{equation*}
$$

For this norm, we have

$$
\begin{gather*}
\|A B\|_{\leq}\|A\|\left\|_{B}\right\| \tag{2.19}\\
\left|a_{1 j}\right| \leq \mid A \| \tag{2.20}
\end{gather*}
$$

and

$$
\begin{equation*}
\|A\|_{l}\left\|_{B}\right\|_{S}\|A\|_{A}+\left\|_{B}\right\| \tag{2.21}
\end{equation*}
$$

Then, it follows that

$$
\begin{equation*}
\left|r_{i j}\right| \leq\left\|\sum_{i=K+1}^{\infty} \frac{(A r)^{i}}{i!}\right\| \leq \int_{i=K+1}^{\infty} \frac{\|A\|^{i!}}{i} \tag{2.22}
\end{equation*}
$$

if the same norm is applied to the remainder matrix R.

$$
\begin{equation*}
\left|r_{i y}\right| \leq \frac{\left\|_{A}\right\|^{K+1}{ }^{K+1}}{(K+1)!}+\frac{\|\left._{A}\right|^{K+2}{ }_{\tau}{ }^{K+2}}{(K+2)!}+\cdots \tag{2.23}
\end{equation*}
$$

and, calling ε the ratio of the second term to the first

$$
\begin{equation*}
\varepsilon=\frac{\|_{A \|^{K+2} T_{T}^{K+2}}^{(K+2)!}}{\frac{\|\left. A\right|^{K+1} T_{T}^{K+1}}{(K+1)!}}=\frac{\| \frac{A}{K+2}}{\frac{\left(\|_{T}\right.}{K+2}} \tag{2.24}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\left\|_{\mathrm{A}}\right\|_{\tau}}{\mathrm{K}} \leqq \varepsilon \tag{2.25}
\end{equation*}
$$

Making the substitution of eq. (2.19) into eq. (2.23), it follows that

$$
\begin{aligned}
\left|r_{i j}\right| \leqq & \frac{\|\left(A_{\tau}\right)^{K}}{K!} \frac{\|A \tau\|}{K+1}+\frac{\left\|(A \tau)^{K}\right\|\left\|(A \tau)^{2}\right\|}{K!} \frac{\|}{(K+2)(K+1)}+ \\
& +\frac{\left\|(A \tau)^{K}\right\|\left\|\frac{(A \tau)^{3}}{K!}\right\|}{(K+3)(K+2)(K+1)}+\cdots \quad, \quad \text { (2.26) }
\end{aligned}
$$

or

$$
\begin{aligned}
\left|r_{i j}\right| \leq & \left\|(A \tau)^{K}\right\| \\
K! & \left(\frac{\|A \tau\|}{K+1}+\frac{\|A \tau\| \frac{\| T}{K+2} \frac{\|}{K+1}+}{}\right. \\
& +\frac{\| A \tau}{K+3}\left\|\frac{A \tau}{K+2}\right\| \frac{\| A \tau}{K+1}+\ldots
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left.\left|\mathrm{r}_{\mathbf{i} j}\right| \leq \frac{\|(A T)^{\mathrm{K}} \mid}{\mathrm{K}!} \right\rvert\, \frac{\|A T\|_{1}}{\mathrm{~K}+1} 1+\frac{\| A \tau}{\mathrm{~K}+2} \|_{+} \\
& \left.\left.+\frac{\left\|A_{T}\right\| \frac{\lfloor A T}{K+3} \|}{K+2}+--\right\}\right\} \\
& \text { (2.28) } \\
& \text { Now, because any factor of the form } \frac{\|A \tau\|}{K+a} \text { for } a>2 \text { is always } 1 \text { ess }
\end{aligned}
$$

than ε, by eq. (2.24), then

$$
\begin{equation*}
\left|r_{i j}\right| \leq \frac{\|(A \tau)^{K}}{K!} \|\left\{\frac{\|A \tau\|}{K+1}\left\{1+\varepsilon+\varepsilon^{2}+\varepsilon^{3}+\varepsilon^{4}+\cdots\right\}\right) \tag{2.29}
\end{equation*}
$$

If $\varepsilon<1$, eq. (2.29) takes the form

$$
\begin{equation*}
\left|r_{i j}\right| \frac{\mid}{} \left\lvert\, \frac{\|(A \tau)^{K}}{K!}\right. \|\left\{\frac{\|A+\|}{K+1} \cdot \frac{1}{1-\varepsilon}\right) \tag{2.30}
\end{equation*}
$$

This equation is suggested by Everling (6) as the upper bound in the remainder matrix R.

In order to initialize the procedure, a certain K has to be chosen, but this K cannot be arbitrary, because it may happen that $\varepsilon>1$, and relation (2.30) would not hold any more.

This situation can be solved using eq. (2.25); thus

$$
K \geq\left\|\frac{A T}{E}\right\|
$$

In order to ensure that $\varepsilon \leq 1 / 2$, the initial condition for K should
be

$$
\begin{equation*}
K \gtrsim 2\|A T\| \tag{2.31}
\end{equation*}
$$

However, it is possible that $\|A \tau\|$ be less than $1 / 2$; then K would
be less than one. So, in order to avoid this possibility, an initial value of K can be obtained from

$$
\begin{equation*}
K=\max \left[2\left\|_{A T}\right\|, 2\right] \tag{2.32}
\end{equation*}
$$

At this point, Everling (6) suggests that K be incremented by half of its initial value, in the course of iteration.

Although the matrix series approach for the evaluation of the transition matrix is suitable for digital computation, the disadventage stems from the convergence requirements for the series $e^{A T}$, so it would be desirable to speed the computation.

This can be done recalling the basic relationship

$$
\begin{equation*}
e^{A T}=\left(e^{A T / \alpha}\right)^{\alpha} \tag{2.33}
\end{equation*}
$$

where a is chosen using the following expression

$$
\begin{equation*}
a=2^{B} \underline{\underline{\geq}} \max _{i, j}\left(\left|a_{i j}\right| \tau\right) \tag{2,34}
\end{equation*}
$$

where β is the smallest integer allowed.
The idea is to compute $e^{A T / \alpha}$, because the norm of At/ α is smaller than $A T$, and the series will converge faster. Once the addition of the corresponding elements in the matrix terms of the infinfte series is done, all that is required is to raise the result to the power α. The last step involves very few matrix multiplications, because α is a power of 2 ; for example, if $\alpha=32$ only 5 matrix multiplications are performed at the end of the computation.

The steps presented in this section are summarized in a flow diagram in chapter 4.

2-4 Error bounds in the transient response

Although the matrix $e^{A T}$ can be obtained within prescribed accuracy, the truncation error of the matrix series, and the roundoff error do propagate in the state vector with increasing time.

It is desirable, therefore to derive recursion relations which bound the propagated error due to these sources. Whitney (21) suggests one method.

The homogeneous case of eq. (2.13) is

$$
\begin{equation*}
\underline{X}(\overline{K+1} T)=\Phi(T) \underline{X}(K T) \tag{2.35}
\end{equation*}
$$

If eq. (2.15) is used in place of $\Phi(T)$, the numerical calculation
reads

$$
\begin{equation*}
\underline{X}_{*}(\overline{K+1} T)=M \underline{X}_{\star}(K T) \tag{2.36}
\end{equation*}
$$

where $X_{*}(\overrightarrow{\mathrm{~K}+1} \mathrm{~T})$ is the perturbed state vector obtained from numerical calculation.

The propagated error at time $(K+1) T$ due to the approximate M is

$$
\underline{E}(\overline{\mathrm{~K}+1} \mathrm{~T})=\underline{X}(\overline{\mathrm{~K}+1} \mathrm{~T})-\underline{X}_{*}(\overline{\mathrm{~K}+1} \mathrm{~T})
$$

$$
(2.37)
$$

Rewriting eq. (2.35) and substracting eq. (2.36) from it yields

$$
\begin{aligned}
\underline{X}(\overline{K+1} T)-\underline{X}_{*}(\overline{K+1} T)= & {[M+R]\left[\underline{X}_{*}(K T)+\underline{E}(K T)\right] } \\
& -M \underline{X}_{*}(K T)
\end{aligned}
$$

or

$$
\begin{equation*}
E(\overline{K+1} T)=[M+R] E(K T)+R \underline{X}_{*}(K T) \tag{2.39}
\end{equation*}
$$

From eq. (2.17)

$$
\begin{equation*}
\left|r_{i j}\right| \leqq 10^{-d}\left|m_{i j}\right| \tag{2.17}
\end{equation*}
$$

We can define

$$
\begin{equation*}
R_{*}=\left|r_{i j}\right| I \tag{2.40}
\end{equation*}
$$

where I is a matrix each of whose elements is unity. Replacing R with R_{*} In (2.39), we obtain the running error bound for $E(\overline{K+1} T)$, that is

$$
\begin{equation*}
E(\overline{K+1} T)=[M+R] \underline{E}(K T)+R_{*} \underline{X}_{\star}(K T) \tag{2.41}
\end{equation*}
$$

The computation may be initialized assuming $E(0)$ is zero.

CHAPTER 3

DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS WITH LUMPED PARAMETERS AND TIME DELAYS

It has been found that many industrial processes in which transportation lags are common can be described by a system of differential-difference equations. The chemical process industry offers many exampleg.

This chapter analyzes the special case of a system subject to one delay, and a technique suitable for digital computation is described. The derivation follows a criterion developed by Koepcke (9).

3-1 Digital solution of the matrix differential-difference equation

Consider a dynamic system which is governed by the following differential-difference equation
$\underline{X}(t)=A \underline{X}(t)+B \underline{X}(t-T)+D_{1} \underline{U}(t)+D_{2} \underline{U}(t-T)$
where
$\underline{X}(t)=(n \times 1)$ vector, referred to as the state vector;
$\underline{U}(t)=(r \times 1)$ input vector, assumed constant between samples;
1.e. $U(t)=U\left(t_{k}\right)$ for $t_{k \leq 1} \leq t_{K+1}$;
$A, B=(n \times n)$ constant coefficient matrices; and
$D_{1}, D_{2}=(n \times r)$ constant driving matrices
Let us consider first the homogeneous part of eq. (3.1); that is
$\underline{X}(t)=A \underline{X}(t)+B \underline{X}(t-T)$
Taking the laplace transform of eq. (3.2),

$$
\begin{equation*}
S \underline{X}(S)-\underline{X}(0)=\left(A+B e^{-S T}\right) \underline{X}(S) \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{X}(S)=\left[S I-\left(A+B e^{-S T}\right]^{-1} \underline{x}(0)\right. \tag{3.4}
\end{equation*}
$$

Defining $Z \equiv e^{-S T}$, then

$$
\begin{equation*}
\underline{x}(S)-[S I-(A+B Z)]^{-1} \underline{x}(0) \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{X}(S)=\frac{z}{S}[I-(A+B Z) / S]^{-1} \underline{X}(0) \tag{3.6}
\end{equation*}
$$

Let $W=[I-R]^{-1}$, where $R=\frac{A+B Z}{S}$; then

$$
W=I+R+R^{2}+R^{3}+R^{4}+\cdots
$$

Therefore, one should choose an "S" large enough to ansure that
eq. (3.7) is valid.
Thus

$$
\begin{align*}
X(S)=\frac{1}{S}\left[I+\frac{A+B Z}{S}\right. & +\frac{(A+B Z)^{2}}{s^{2}}+\frac{(A+B Z)^{3}}{s^{3}}+ \\
& \left.+\frac{(A+B Z)^{4}}{s^{4}}+-\infty\right] \underline{X}(0) \tag{3,8}
\end{align*}
$$

Recall the facts that

$$
\begin{aligned}
(A+B Z)^{2}= & A^{2}+A(B Z)+(B Z) A+(B Z)^{2} \\
(A+B Z)^{3} & =A^{3}+A^{2}(B Z)+A(B Z) A+A(B Z)^{2}+(B Z) A^{2}+ \\
& +(B Z) A(B Z)+(B Z)^{2} A+(B Z)^{3} \\
(A+B Z)^{4}= & A^{4}+A^{3}(B Z)+A^{2}(B Z) A+A^{2}(B Z)^{2}+A(B Z) A^{2}+ \\
& +A(B Z) A(B Z)+A(B Z)^{2} A+A(B Z)^{3}+(B Z) A^{3}+ \\
& +(B Z) A^{2}(B Z)+(B Z) A(B Z) A+(B Z) A(B Z)^{2}+ \\
& +(B Z)^{2} A^{2}+(B Z)^{2} A(B Z)+(B Z)^{3} A+(B Z)^{4}
\end{aligned}
$$

etc.

$$
\begin{aligned}
& \underline{x}(s)=\left[\frac{I}{s}+\frac{A}{s^{2}}+\frac{A^{2}}{s^{3}}+\frac{A^{3}}{s^{4}}+\frac{A^{4}}{s^{5}}+\cdots\right] \underline{x}(0)+ \\
& +\left[\frac{B Z}{s^{2}}+\frac{A(B Z)+(B Z) A}{s^{3}}+\frac{A^{2}(B Z)+A(B Z) A+(B Z) A^{2}}{s^{4}}+\right. \\
& +\frac{\mathrm{A}^{3}(B Z)+\mathrm{A}^{2}(B Z) A+\mathrm{A}(B Z) \mathrm{A}^{2}+(B Z) \mathrm{A}^{3}}{\mathrm{~s}^{5}}+-\mathrm{J} \underline{\mathrm{x}}(0)+ \\
& +\left[\frac{(B Z)}{s^{3}}+\frac{A(B Z)^{2}+(B Z) A(B Z)+(B Z)^{2} A}{s^{4}}+\frac{A^{2}(B Z)^{2}+A(B Z) A(B Z)}{s^{5}}\right. \\
& +\frac{\mathrm{A}(\mathrm{BZ})^{2} \mathrm{~A}+(\mathrm{BZ}) \mathrm{A}^{2}(\mathrm{BZ})+(\mathrm{BZ}) \mathrm{A}(\mathrm{BZ}) \mathrm{A}+(\mathrm{BZ})^{2} \mathrm{~A}^{2}}{\mathrm{~s}^{5}}+ \\
& +-1 \underline{\underline{x}}(0)+ \\
& +\left[\frac{(\mathrm{BZ})^{3}}{\mathrm{~s}^{4}}+\frac{\mathrm{A}(\mathrm{BZ})^{3}+(\mathrm{BZ}) \mathrm{A}(\mathrm{BZ})^{2}+(\mathrm{BZ})^{2} \mathrm{~A}(\mathrm{BZ})+(\mathrm{BZ})^{3} \mathrm{~A}}{\mathrm{~s}^{5}}+\right. \\
& + \text {--] } \underline{x}(0)+
\end{aligned}
$$

$$
\begin{aligned}
& \text { + ----- } \\
& \text { (3.9) }
\end{aligned}
$$

Now, because

$$
\begin{equation*}
Z X(t)=X(t-T) \quad\left(Z \equiv e^{-S T}\right) \tag{3,10}
\end{equation*}
$$

We have

$$
\begin{aligned}
& Z \underline{X}(0)=\underline{X}(-T) \\
& z^{2} \underline{X}(0)=\underline{X}(-2 T), \\
& z^{3} \underline{X}(0)=\underline{X}(-3 T), \text { and so forth. }
\end{aligned}
$$

Therefore, $X(S)$ can be arranged in the following way.

$$
\begin{aligned}
\underline{X}(S)=\Phi_{0}(S) \underline{X}(0)+\Phi_{1}(S) \underline{X}(-T) & +\Phi_{2}(S) \underline{X}(-2 T)+\Phi_{3}(S) \underline{X}(-3 T)+ \\
& +\Phi_{4}(S) \underline{Y}(-4 T)+\cdots
\end{aligned}
$$

$\Phi_{0}(S)=\frac{I}{S}+\frac{A}{S^{2}}+\frac{A^{2}}{s^{3}}+\frac{A^{3}}{S^{4}}+\frac{A^{4}}{S^{5}}+\cdots \cdots \cdots \cdots$
$\Phi_{1}(S)=\frac{B}{s^{2}}+\frac{A B+B A}{s^{3}}+\frac{A^{2} B+A B A+B A^{2}}{s^{4}}+$

$$
\begin{equation*}
+\frac{A^{3} B+A^{2} B A+A B A^{2}+B A^{3}}{s^{5}}+\cdots \tag{3.13}
\end{equation*}
$$

$\Phi_{2}(\mathrm{~s})=\frac{\mathrm{B}^{2}}{\mathrm{~s}^{3}}+\frac{A B^{2}+B A B+\mathrm{B}^{2} \mathrm{~A}}{\mathrm{~s}^{4}}+\frac{\mathrm{A}^{2} \mathrm{~B}^{2}+\mathrm{ABAB}+A \mathrm{~B}^{2} \mathrm{~A}+\mathrm{BA} \mathrm{A}^{2} \mathrm{~B}}{\mathrm{~s}^{5}}+$ $+\frac{\mathrm{MBA}+\mathrm{B}^{2} A^{2}}{\mathrm{~S}^{5}}+\cdots-$
$\Phi_{3}(S)=\frac{B^{3}}{S^{4}}+\frac{A B^{3}+B A B^{2}+B^{2} A B+B^{3} A}{S^{5}}+\cdots$
$\Phi_{4}(S)=\frac{B^{4}}{S^{5}}+$
Rearranging terms, it follows that
$\Phi_{0}(S)=\frac{I}{S}+\frac{A}{S^{2}}+\frac{A^{2}}{S^{3}}+\frac{A^{3}}{S^{4}}+\frac{A^{4}}{S^{5}}+\cdots-\cdots-\cdots$
$\Phi_{1}(s)=\frac{B}{s^{2}}+\frac{A B+B A}{s^{3}}+\frac{A(A B+B A)+B A^{2}}{s^{4}}+$

$$
\begin{equation*}
+\frac{A\left[A(A B+B A)+B A^{2}\right]+B A^{3}}{s^{5}}+\cdots \tag{3.18}
\end{equation*}
$$

$\Phi_{2}(s)=\frac{B^{2}}{s^{3}}+\frac{A B^{2}+B(A B+B A)}{s^{4}}+\frac{A\left[A B^{2}+B(A B+B A)\right]}{s^{5}}+$

$$
\begin{equation*}
+\frac{B\left[A(A B+B A)+B A^{2}\right]}{s^{5}}+\cdots \tag{3.19}
\end{equation*}
$$

$\Phi_{3}(S)=\frac{B^{3}}{s^{4}}+\frac{A B^{3}+B\left[A B^{2}+B(A B+B A)\right]}{S^{5}}+--$

s^{-1}	s^{-2}	s^{-3}	s^{-4}	s^{-5}	
I	A	A^{2}	A^{3}	A^{4}	
0	B	$A B+B A$	$A(A B+B A)+B A^{2}$	$A\left[A(A B+B A)+B A^{2}\right]+B A^{3}$	
0	0	B^{2}	$A\left(B^{2}\right)+B(A B+B A)$	$A\left[A\left(B^{2}\right)+B(A B+B A)\right]+B\left[A(A B+B A)+B A^{2}\right]$	
0	0	0	B^{3}	$A\left[B^{2}\right]+\mathrm{B}\left[\mathrm{A}\left(\mathrm{B}^{2}\right)+\mathrm{B}(\mathrm{AB}+\mathrm{BA})\right]$	
0	0	0	0	B^{4}	
0	0	0	0	0	
1	\pm	\pm	\downarrow	\ddagger	

Figure 3.1 Array of the elements of the laplace-transformed
transition matrices

It is seen that the correlation among the elements (call any
element by $C_{i, j}$) is
$\mathrm{s}^{-1} \quad \mathrm{~s}^{-2} \quad \mathrm{~s}^{-3} \quad \mathrm{~s}^{-4} \quad \mathrm{~s}^{-5}$

c_{00}	c_{01}	c_{02}	c_{03}	c_{04}
0	c_{11}	c_{12}	c_{13}	c_{14}
0	0	c_{22}	c_{23}	c_{24}
0	0	0	c_{33}	c_{34}
0	0	0	0	c_{44}

where the arrows indicate the inmediate dependance; $1 . e ., C_{12}$ depends on C_{01} and C_{11}, etc.

From a careful study of the array in fig. 3.1, it is found that

$$
\begin{equation*}
\frac{c_{i, j}}{s^{j}}=\frac{A C_{i_{1} j-1}}{s^{j+1}}+\frac{\text { B } C_{i-1, j-1}}{s^{j+1}} \tag{3.22}
\end{equation*}
$$

where "i" is the subindex denoting row and " j " is the subindex denoting colimin.

The following conditions should be added, in order to initialize a computational procedure

$$
\begin{gather*}
c_{-1, j}=0 \quad j>0 \tag{3.23}\\
C_{0,0}=I \tag{3.24}\\
C_{1,0}=0 \quad 1>0 \tag{3.25}\\
\text { The inverse laplace transform of eq. (3.22) yields (note: }
\end{gather*}
$$

$\mathrm{L}\left[\mathrm{t}^{\mathrm{n}} / \mathrm{n}!\right]=1 / \mathrm{s}^{\mathrm{n}+1}$)

$$
\begin{equation*}
\left[c_{1, j}\right] \frac{\tau^{j-1}}{(j-1)!}=\left[A C_{1, j-1}\right] \frac{\tau^{j}}{j!}+\left[B C_{i-1, j-1}\right] \frac{\tau^{j}}{j!} \tag{3.26}
\end{equation*}
$$

Therefore

$$
C_{i, j}=\left[A C_{1, j-1}\right] \frac{\tau^{j}}{j!} \frac{(j-1)!}{\tau^{j-1}}+\left[B C_{1-1, j-1} \frac{\tau^{j}}{j!} \frac{(f-1)!}{\tau^{j-1}},(3.27)\right.
$$

or

$$
\begin{equation*}
C_{i, j}=\frac{\left[A C_{1, j-1}\right] \tau+\left[B C_{i-1,1-1}\right] \tau}{j} \tag{3.28}
\end{equation*}
$$

Changing j for $j+1$, eq. (3.28) takes the final form

$$
\begin{equation*}
C_{1, j+1}=\frac{[A \tau] C_{i, 1}+[B \tau] C_{1-1,1}}{J+1} \tag{3.29}
\end{equation*}
$$

Actually eq. (3.29) gives all coefficients without any need to
multiply them by $\frac{\tau^{j}}{j!}$.
This is because τ has been associated with matrix A and B, and in order to compute any $C_{i, j+1}$, the initial conditions given by eqs. (3.23), (3.24) and (3.25) have to be considered.

The computation of the $C_{1, j+1}$ is done in a recursive way, as given by eq. (3,29). Once they are computed, they may be substituted in the inverse laplace transformation of eqs. (3.17), (3.18), etc., so that $\Phi_{0}(\tau), \Phi_{1}(\tau), \Phi_{2}(\tau), \ldots$ can be generated. The last get of matrices are called "plant transition matrices".

Returning to eq. (3.11), if $e^{t S}$ is multiplied into both sides, then

$$
\begin{align*}
e^{t S} \underline{X}(S)=\Phi_{0}(S) e^{t S} \underline{X}(0) & +\Phi_{1}(S) e^{t S} \underline{X}(-T)+\Phi_{2}(S) e^{t S} \underline{X}(-2 T)+ \\
& +\Phi_{3}(S) e^{t S_{X}(-3 T)+\cdots} \tag{3.30}
\end{align*}
$$

or

$$
\begin{align*}
e^{t S} \underline{X}(S)=\Phi_{0}(S) \underline{X}(t) & +\Phi_{1}(S) \underline{X}(t-T)+\Phi_{2}(S) \underline{X}(t-2 T)+ \\
& +\Phi_{3}(S) \underline{X}(t-3 T)+\cdots \tag{3.31}
\end{align*}
$$

Taking the inverse laplace transform of eq. (3.31), it turns out to be

$$
\begin{align*}
\underline{X}(t+\tau)=\Phi_{0}(\tau) \underline{X}(t) & +\Phi_{1}(\tau) \underline{X}(t-T)+\Phi_{2}(\tau) \underline{X}(t-2 T)+ \\
& +\Phi_{3}(\tau) \underline{X}(t-3 T)+\cdots \tag{3.32}
\end{align*}
$$

or

$$
\begin{equation*}
\underline{X}(t+\tau)=\sum_{i=0}^{\infty} \Phi_{1}(\tau) \underline{X}(t-1 T) \tag{3.33}
\end{equation*}
$$

This is the sampled version of the homogeneous part of the differential-difference equation.

Now, let us consider the addition of an input vector or forcing signal.

In chapter 2 , section $2-2$, it was found that the digital version of the time-invariant matrix differential equation adopted the form

$$
\begin{equation*}
\underline{X}(\overline{K+1} T)=\Phi(T) \underline{X}(K T)+\Delta(T) \underline{U}(K T) \tag{3.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(T)=e^{A T} \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta(T)=\left(e^{A T}-I\right) A^{-1} D \tag{3.36}
\end{equation*}
$$

Although it was not demonstrated, it can be shown that

$$
\begin{equation*}
\Delta(T)=\sum_{j=0}^{\infty} \frac{(A T)^{j}}{(j+1)!} T D \tag{3.37}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta(T)=\sum_{j=0}^{\infty} \frac{(A T)^{j}}{j!} \frac{1}{j+1} T D \tag{3.38}
\end{equation*}
$$

If the terms $\frac{1}{j+1}$ and TD were absent, the series would be the well known matrix exponential, whose terms can be computed in a recursive way by

$$
\begin{equation*}
C_{0, j}=\frac{(A T)}{j+1} \tag{3.39}
\end{equation*}
$$

Therefore, eq. (3.38) is

$$
\begin{equation*}
\Delta(T)=\sum_{j=0}^{\infty} C_{0, f} \frac{T}{j+1} D \tag{3.40}
\end{equation*}
$$

By following the same line of reasoning, the control transition
matrices in the case of the complete differential-difference equation can
be written as

$$
\begin{equation*}
\Delta_{i}(\tau)=\sum_{j=i}^{\infty} C_{i, j} \frac{\tau}{j+1} D_{1}+\sum_{j=i}^{\infty} C_{i-1, j} \frac{\tau}{j+1} D_{2} \tag{3.41}
\end{equation*}
$$

and the complete difference equation is

$$
\begin{equation*}
\underline{X}(t+\tau)=\sum_{i=0}^{\infty}\left[\Phi_{i}(\tau) \underline{X}(t-1 T)+\Delta_{1}(\tau) \underline{U}(t-1 T)\right] \tag{3.42}
\end{equation*}
$$

In resume, the digital version of

$$
\underline{X}(t)=A \underline{X}(t)+B \underline{X}(t-T)+D_{1} \underline{U}(t)+D_{2} \underline{U}(t-T)
$$

is

$$
\underline{X}(t+\tau)=\sum_{i=0}^{\infty}\left[\Phi_{i}(\tau) \underline{X}(t-i N \tau)+\Delta_{i}(\tau) \underline{U}(t-1 N \tau)\right]
$$

where

$$
\begin{gathered}
N=\frac{T}{\tau} \\
\Phi_{1}(\tau)=\sum_{j=0}^{\infty} C_{i, j} \\
C_{1, j+1}=\frac{[A \tau] C_{1, j}+[B \tau] C_{1-1,1]}}{j+1} \\
C_{0,0}=I
\end{gathered}
$$

This chapter presents flowcharts for the algorithms of chapters
2 and 3 , from which the computer programs were derived. They accept as input the coefficient matrices, the driving matrices, the initial state vector, and deterministic forcing vectors. As output, the computer will produce the state vector at the current sampling time and the aet of transition matrices, if desired.

Because these routines will eventually become part of Project ENPORT, they were designed to be used on the time-sharing system. However, they may be operated in the BATCH procedure without any difficulty, by modifying the input/output statements.

The programs were written in the MAD language, and are listed in Appendix A.

Purpose: to compute the time response of linear time-invariant systems.

Inputs: order of system ($M=$); sampling time ($T=$); final
time (TF =); number of input signals ($R=$); the augmented A matrix and the inftial state $(x(1)=)$.

Outputs: the transition matrix; the current time; and the state of the system.

Remarks: main program. Subroutines called by TRANS: EXPMAT, and DISTUR.

EXPMAT. Page 2 of 2 pages.

```
32
    4-i-s UIETCR
        Sugam, asmpute the furcing signal ve:tor at the current
```



```
    4-2-*
        arnom: : mmbte tne matrix expommital
```



```
            :,0
        ans
    y+i
```


TIMDEL

```
Purpose: to compute the time response of linear systems with
        lumped parameters and time delays.
Inputs: order of syatem (M = ); sampling time (T = ); time
    delay (TD - ); final time (TF = ); number of input
    signals ( }R=\mathrm{ ); the A matrix; the B matrix; the D D
    matrix; the }\mp@subsup{D}{2}{}\mathrm{ matrix; the initial state ( }X(1,1)=)
Outputs: the plant transition matrices, the control transition
    matrices if desired; the current time; and the state
    of the system.
```

Remarks: main program. Subroutines called by TIMDEL: DELFOR, and PERTUR.

$+6$
PEOg 2 m

M. FO F
 What: vie pant transithon ratrices and the
 ron cramsition matrices.

Sulbe adied by THDL:.


```
4-2-3 PEKMLK
Porpose % ompute the forcing signai vector a& the current
    :ims. The program has to keep track of the past.
```

Remarks: somouche calted by Imblm.
)
3

This chapter describes a set of sample problems which were
selected because they represent typical applications of the two simulators. They are intended to show the use of the state variable diagram, and also to show the accuracy of the methods.

5-1 Test problem for the gimulation of dynamic systems without delay

Example 5-1. Although this example may represent a great number of physical processes, it was selected purely from the mathematical point of view. The same problem was run by Liou (11).

Given

$$
\dot{X}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{5.1}\\
0 & 0 & 1 \\
-.75 & -2.75 & -3
\end{array}\right] \underline{X}(t)
$$

and

$$
\underline{x}(0)=\left[\begin{array}{c}
2 \tag{5.2}\\
-2.5 \\
3.75
\end{array}\right]
$$

Obtain $\underline{X}(n T)$ using $T=0.1$ Min.
The reported solution by Liou and the one obtained by the

```
loadgo trans expmat distur
W 1010.4
EXECUTION
GIVE ORDER OF SYSTEM (M = )
SAMPLING TIME (T = ), FINAL TIME (TF = )
m=3,t=.1,tf=2.*
IS THERE ANY DISTURBING SIGNAL
no
GIVE THE A MATRIX (A(1,1)=--, A(2,1)=--)
a(1,1)=0.,1.,0.*
a(2,1)=0.,0.,1.*
a(3,1)=-.75,-2.75,-3.*
GIVE INITIAL STATE (X(1)=--)
x(1)=2.,-2.5,3.75*
V
    V(t)}=[\begin{array}{l}{X(1)}\\{X(2)}\\{X(3)}\end{array}
    Am}[\begin{array}{ccc}{0}&{1}&{0}\\{0}&{0}&{1}\\{-.75}&{-2.75}&{-3}\end{array}
    v(0)=[ [ 2 [ -2.5
```

$\underline{V}(t)=A \underline{V}(t)$
$\underline{V}(t)=\left[\begin{array}{l}X(1) \\ X(2) \\ X(3)\end{array}\right]$
$A^{m}\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -.75 & -2.75 & -3\end{array}\right]$
$\underline{v}(0)=\left[\begin{array}{c}2 \\ -2.5 \\ 3.75\end{array}\right]$

```
terms of the matrix exponential
\begin{tabular}{|c|c|c|c|c|c|}
\hline EM & 1, & 1) & & . 999884 & \\
\hline EM ( & 1. & 2) & = & . 995717 E & -01 \\
\hline EM ( & 1, & 3) & = & . 452513 E & -02 \\
\hline EM ( & 2, & 1) & \(=\) & -. 339385 E & -02 \\
\hline EM( & 2, & 2) & \(=\) & . 987440 E & 00 \\
\hline EM ( & 2 , & 3) & \(=\) & . 859963 & -01 \\
\hline EM & 3. & 1) & = & -. 644972 E & -01 \\
\hline EM & 3. & 2) & & -. 239884 E & 00 \\
\hline EM ( & 3. & 3) & & . 729451 E & 00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline TIME & X (1) & X (2) & X(3) \\
\hline . 10 & .176781E 01 & -. 215290 E 01 & . 320616 EI \\
\hline . 20 & . 156774 E 01 & -. 185614 E 01 & . 274116 El \\
\hline . 30 & . 139515 El & -. 160242 E 01 & . 234368 E 01 \\
\hline . 40 & .124603E 01 & -. 138548 E 01 & . 200401 E 01 \\
\hline . 50 & . 111700E 01 & -. 119997 Ol & . 171382 E 01 \\
\hline . 60 & . 100515 E 01 & -. 104131E 01 & . 146596 El \\
\hline . 70 & . 907978 E 00 & -.905571E 00 & . 125431 E 01 \\
\hline . 80 & . 823379 E 0 & -. 789413 C 00 & . 107362 E 01 \\
\hline . 90 & . 749538 E 00 & -.689964E 00 & .919418E 00 \\
\hline 1.00 & . 684911 E 00 & -.604775E 00 & . 787838 E 00 \\
\hline 1.10 & .628178E 00 & -. 531753E 00 & .675590E 00 \\
\hline 1.20 & . 578215 E 00 & -. 469107 E 00 & . 579853 E 00 \\
\hline 1.30 & . 534062 E 00 & -. 415312 E 00 & . 498212 E 00 \\
\hline 1.40 & . 494901 E 00 & -. 369064 E 00 & . 428602 E 0 \\
\hline 1.50 & . 460034 E 00 & -. 329250 E 00 & . 369257 EO \\
\hline 1.60 & . 428868 E 00 & -. \(294921 E 00\) & . 318666 E 0 \\
\hline 1.70 & . 400894 E 00 & -. 265268 E 00 & . 275537 E 00 \\
\hline 1.80 & . 375681 E 00 & -. 239602 E 00 & . 238768 E 00 \\
\hline 1.90 & . 352861 EO & -. 217334 E 00 & . 207415 E 00 \\
\hline 2.00 & . 332118 E 00 & -. 197965 E 00 & . 180676 E 00 \\
\hline 2.10 & . 313185 E 00 & -. 181068 E 00 & . 157862 EO \\
\hline
\end{tabular}
END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE AND PRINT AN ASTERISK
```


A liquid stream enters tank 1 (figure 5.3) at a volumetric flow rate $F \mathrm{cfm}$ and contains reactant A at a concentration of C_{o} moles A / f^{3}. Reactant A decomposes in the tanks according to the irreversible chemical reaction.

$$
\mathrm{A} \longrightarrow \mathrm{~B}
$$

The reaction is first order and proceeds at a rate

$$
r=k c
$$

where
$x=$ moles A decomposing $/\left(f t^{3}\right)(t i m e)$
$c=$ concentration of A, moles $A / f t^{3}$
$k=$ velocity constant, a function of temperature

The reaction is to be carried out in a series of two stirred
tanks. The tanks are maintained at different temperatures. The temperature in tank 2 is to be greater than the temperature in tank 1 , with the result that k_{2}, the velocity constant in tank 2 , is greater than in tank 1 , k_{1}. Changes in physical properties due to chemical reaction are neglected. The purpose of the control system is to maintain c_{2}, the concentration of A leaving tank 2, at some desired value in spite of variation in inlet concentration c_{0}. This will be accomplished by adding a stream of pure A to tank 1 through a control valve.

Further assumptions are that the control valve and the measuring element have no dynamics, and that the controller exert proportional action on the process.

A portion of the liquid leaving tank 2 is continuously withdrawn through a sample line. The measuring element is remotely located from the process, because rigid ambient conditions must be maintained for accurate concentration measurements. The sample line can be represented by a
transportation lag.

Figure 5.3

Control of a tirred-tank chemical reactor
The following data ia assumad to apply to the aystem
Molecular weight of $A=100 \mathrm{lb} / 1 \mathrm{~b}$ mole

$$
\begin{aligned}
\rho_{A} & =0.8 \mathrm{lb} \mathrm{~mole} / \mathrm{ft}^{3} \\
\mathrm{C}_{\mathrm{os}} & =0.1 \mathrm{lb} \mathrm{~mole} \mathrm{~A} / \mathrm{ft}^{3} \\
\mathrm{~F} & =100 \mathrm{cfm} \\
\mathrm{~m}_{\mathrm{g}} & =1.0 \mathrm{lbmola} / \mathrm{min} \\
k_{1} & =1 / 6 \mathrm{~min}^{-1} \\
k_{2} & =2 / 3 \mathrm{~min}^{-1} \\
v & =300 \mathrm{ft}^{3}
\end{aligned}
$$

Valve sensitivity $k_{v}=1 / 6 \mathrm{cfm} / \mathrm{p}$: 1
Massuring device aensitivity
$k_{m}=100 \mathrm{in}$. pen traval/(ib mole/ft ${ }^{3}$)
Time delay in eample line = T
The overall block diagram which the authors propose is

Figure 5.4
Block diagram for a chemical reactor
control system

It is assumed that the inlet concentration c_{0} does not change with time.

As was discused in chapter 2 , the state variable diagram can
be obtained in three waya. Direct programing will be used in this case. With this purpose, let it be called c_{A} the input to the las term $\frac{1}{S+1}$ and c_{B} its output in figure 5.4 , then

$$
\begin{equation*}
\frac{c}{c_{B}}=\frac{1}{2 S+1} \tag{5.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{c}{c_{B}}=.5 \frac{s^{-1}}{1+.5 \mathrm{~S}^{-1}} \tag{5.4}
\end{equation*}
$$

Eq. (5.4) can be written as

$$
\begin{equation*}
c=.5 \mathrm{~s}^{-1} \mathrm{E}_{\mathrm{b}} \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{b}=\frac{c_{B}}{1+.5 s^{-1}} \tag{5.6}
\end{equation*}
$$

Tranapoaing

$$
\begin{equation*}
\mathrm{E}_{\mathrm{b}}=\mathrm{c}_{\mathrm{B}}-.5 \mathrm{~s}^{-1} \mathrm{E}_{\mathrm{b}} \tag{5.7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{c_{B}}{c_{A}}=\frac{1}{S+1}, \tag{5.8}
\end{equation*}
$$

or

$$
\begin{align*}
& \frac{c_{B}}{c_{A}}=\frac{s^{-1}}{1+S^{-1}} . \tag{5.9}\\
& c_{B}=S^{-1} E_{A} \tag{5.10}
\end{align*}
$$

where

$$
\begin{equation*}
E_{a}=\frac{e}{1+s^{-1}} \tag{5.11}
\end{equation*}
$$

Trenepoaing

$$
\begin{equation*}
s_{A}-c_{A}-s^{-1} c_{A} \tag{5.12}
\end{equation*}
$$

The state variabla diagran follow from eqs. (5.5), (5.7) and
eqs. (5.10), (5.12), and is shown in figure 5.5.

Figure 5.5
State variabla diagran for a chanical ractor
control syetem

The notation in figure 5.5 hae been cheaged silghtly. This is in
order to follow the same symolism given in the previous chapters.
In figure 5.5 the atate variables are X_{1} and X_{2}. The differantial-
difference equations for the tate variables are readly obtained by inspection of the diagram. That is,

$$
\begin{align*}
& \dot{x}_{1}=-.5 x_{1}+.5 x_{2} \tag{5.13}\\
& \dot{x}_{2}=-x_{2}+K U-K x_{1}(t-T) \tag{5.14}
\end{align*}
$$

Therefore the matrix differential-difference equation is

$$
\dot{\underline{X}}(t)=\left[\begin{array}{cc}
-.5 & .5 \tag{5.15}\\
0 & -1
\end{array}\right] \underline{x}(t)+\left[\begin{array}{cc}
0 & 0 \\
-K & 0
\end{array}\right] \underline{x}(t-T)+\left[\begin{array}{l}
0 \\
K
\end{array}\right] U(t)
$$

where

$$
\underline{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

From this equation, it is seen that the coefficient matrices and driving matrices are

$$
\begin{align*}
& A=\left[\begin{array}{cc}
-.5 & .5 \\
0 & -1
\end{array}\right] \tag{5.16}\\
& B=\left[\begin{array}{ll}
0 & 0 \\
-K & 0
\end{array}\right] \tag{5.17}\\
& D_{1}=\left[\begin{array}{l}
0 \\
K
\end{array}\right] \tag{5.18}\\
& D_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \tag{5.19}
\end{align*}
$$

Five numerical examples were run using this system. These are sumbarized as follows.
equal to zero. A unit step is the input and all initial conditions are zero. The matrix differential equation is

$$
\underline{\dot{V}}(t)=\left[\begin{array}{ccc}
-.5 & .5 & 0 \tag{5.20}\\
-5.24 & -1 & 5.24 \\
0 & 0 & 0
\end{array}\right] \underline{V}(t)
$$

where

$$
\underline{V}(t)=\left[\begin{array}{l}
x_{1}(t) \tag{5.21}\\
x_{2}(t) \\
U(t)
\end{array}\right]
$$

Example 5.2.2. Overall forward gain $K=5.24$, and time delay $=$. 5 Min.. Same conditions of the state were taken. The matrix differentialdifference equation is

$$
\begin{gather*}
\dot{X}(t)=\left[\begin{array}{cc}
-.5 & .5 \\
0 & -1
\end{array}\right] \underline{X}(t)+\left[\begin{array}{cc}
0 & 0 \\
-5.24 & 0
\end{array}\right] \underline{X}(t-.5)+\left[\begin{array}{c}
0 \\
5.24
\end{array}\right] U(t)+ \\
\quad+\left[\begin{array}{l}
0 \\
0
\end{array}\right] U(t-.5) \tag{5.22}
\end{gather*}
$$

Example 5.2.3. Overall forward gain $K=1.85$. Time delay is zero.
The remaining conditions are the same. The state equation is

$$
\underline{\dot{V}}(t)=\left[\begin{array}{ccc}
-.5 & .5 & 0 \tag{5.23}\\
-1.85 & -1 & 1.85 \\
0 & 0 & 0
\end{array}\right] \underline{V}(t)
$$

Example 5.2.4. Overall forward gain $K=1.85$. Time delay $=.5 \mathrm{~min}$.

$$
\begin{gather*}
\underline{X}(t)=\left[\begin{array}{cc}
-.5 & .5 \\
0 & -1
\end{array}\right] \underline{X}(t)+\left[\begin{array}{cc}
0 & 0 \\
-1.85 & 0
\end{array}\right] \underline{X}(t-.5)+\left[\begin{array}{c}
0 \\
1.85
\end{array}\right] U(t)+ \\
\quad+\left[\begin{array}{l}
0 \\
0
\end{array}\right] U(t-.5) \tag{5.24}
\end{gather*}
$$

Example 5.2.5. This is the same as example 5.2.4, with the exception of the time delay, which is taken equal to 1 min.. The state equation is

$$
\begin{gather*}
\dot{X}(t)=\left[\begin{array}{cc}
-.5 & .5 \\
0 & -1
\end{array}\right] \underline{X}(t)+\left[\begin{array}{cc}
0 & 0 \\
-1.85 & 0
\end{array}\right] X(t-1)+\left[\begin{array}{c}
0 \\
1.85
\end{array}\right] U(t) \\
+\left[\begin{array}{l}
0 \\
0
\end{array}\right] U(t-1) \tag{5,25}
\end{gather*}
$$

All five examples with the input/output information and the response curves, are shown in figures 5.6 to 5.15 .

The interested reader should compare the rasponses of the three cases with delay with those given by Coughanowr and Koppel on page 467 of reference (4).

5-3 Test problem for the simulation of dynamic systems with delays

The eighth example was run in order to check the accuracy of evaluation of the set of transition matrices. This example is discussed by Koepcke (9).

The problem is described as an unstable process which is governed by
*

GIVE ORDER OF SYSTEM ($M=$)
SAMPLING TIME ($T=$), FINAL TIME (TF =)
$\mathrm{in}=2, \mathrm{t}=.5, \mathrm{tf}=11$.*

```
IS THERE ANY DISTURBING SIGNAL
yes
GIVE NUMbER OF INPUT SIGNALS (R = )
r=1*
GIVE the A MATRIX (A(1,1)=--,A(2,1)=--)
a(1,1)=-.5,.5,0.*
a(2,1)=-5.24,-1.,5.24*
a(3,1)=0.,0.,0.*
gIVE INITIAL STATE (X(1)=--)
x(1)=0.,0.*
```

$\underline{v}(t)=A \underline{V}(t)$
$\underline{v}(t)=\left[\begin{array}{l}x(1) \\ x(2) \\ U(1)\end{array}\right]$
$A=\left[\begin{array}{ccc}-.5 & .5 & 0 \\ -5.24 & -1 & 5.24 \\ 0 & 0 & 0\end{array}\right]$
$\underline{X}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
terms of the matrix exponential

EM	1.	1)		. 556076 E	00
EMS	1,	2)	$=$. 154089 E	00
EM	1,	3)		. 243387 E	00
EM	2,	1)	=	-. 161485 E	01
EM	2 ,	2)	$=$. 401987 E	00
EMA	2.	3)	$=$. 185824 E	01
EMc	3.	1)		. 000000 E	
EM	3.	2)		. 000000 E	00
EM	3.	3)		1.000000 E	

TIME $\quad X(1) \quad X(2)$

			.185824 E	01	
.50	.243387 E	00		.0221219 E	01
1.00	.065063 E	00	.20		
1.50	.954087 E	00	.167353 E	01	
2.00	.103181 E	01	.990269 E	00	
2.50	.969739 E	00	.590102 E	00	
3.00	.873563 E	00	.529468 E	00	
3.50	.810740 E	00	.660403 E	00	
4.00	.795981 E	00	.814488 E	00	
4.50	.811516 E	00	.900262 E	00	
5.00	.833372 E	00	.909654 E	00	
5.50	.846973 E	00	.878136 E	00	
6.00	.849679 E	00	.843503 E	00	
6.50	.845848 E	00	.825210 E	00	
7.00	.840898 E	00	.824044 E	00	
7.50	.837966 E	00	.831568 E	00	
8.00	.837495 E	00	.839327 E	00	
8.50	.838429 E	00	.843206 E	00	
9.00	.839546 E	00	.843258 E	00	
9.50	.840175 E	00	.841475 E	00	
10.00	.840250 E	00	.839743 E	00	
10.50	.840025 E	00	.838925 E	00	
11.00	.833774 E	00	.833960 E	00	

END OF EXECUTION
to continue, go to the top of a neiv page
AND PRINT AN ASTEKISK
Figure 5.6 Console transaction for example 5.2.1

TRANSFER	MATRIX	PHI (c)
EM $($	1,	$1)=$
EM $($	1,	$2)=$
EM $($	2,	$1)=$
EM $($	2,	$2)=$

GIVE THE INITIAL STATE $(X(1,1)=---)$
$x(1,1)=0 ., 0$.
TIME

.50	$.2564 E$	00	.2062 E	01
1.00	.7980 E	00	.3102 E	01
1.50	.1300 E	01	.2831 E	01
2.00	.1502 E	01	.1539 E	01
2.50	.1332 E	01	$.2406 \mathrm{E}-01$	
3.00	.9204 E	00	-.8884 E	00
3.50	.5132 E	00	-.7847 E	00
4.00	.3246 E	00	.1653 E	00
4.50	.4295 E	00	.1364 E	01
5.00	.7391 E	00	.2150 E	01
5.50	.1067 E	01	.2155 E	01
6.00	.1237 E	01	.1465 E	01
6.50	.1179 E	01	.5227 E	00
7.00	.3475 E	00	-.1450 E	00
7.50	.6857 E	00	-.2169 E	00
8.00	.5349 E	00	.2774 E	00
8.50	.5622 E	00	.1013 E	01
9.00	.7330 E	00	.1573 E	01
9.50	.9408 E	00	.1683 E	01
10.00	.1072 E	01	.1335 E	01
10.50	.1065 E	01	.7646 E	00
11.00	.9404 E	00	.2788 E	00
11.50	.7766 E	00	.1715 E	00
12.00	.6646 E	00	.4115 E	00
12.50	.6579 E	00	.8506 E	00
13.00	.7480 E	00	.1234 E	01
13.50	.8763 E	00	.1366 E	01
14.00	.9708 E	00	.1205 E	01
14.50	.9854 E	00	.8692 E	00
15.00	.9214 E	00	.5560 E	00

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE AND PRINT AN ASTERISK

```
TRANSFER MATR!X DELTA( 6)
```

TRANSFER MATR!X DELTA(6)
OEL(1, 1)=.418403E-12
OEL(1, 1)=.418403E-12
DEL(2, 1)=.232657E-10

```
DEL( 2, 1)=.232657E-10
```



```
*
```

GIVE ORDER OF SYSTEM (M =)
SAMPLING TIME ($T=$), FINAL TIME ($T F=$)
$\mathrm{in}=2, \mathrm{t}=.5, \mathrm{tf}=11$. *
IS THERE ANY DISTURBING SIGNAL
yes
GIVE NUMBER OF INPUT SIGNALS ($\mathrm{R}=$)
$r=1$ *
GIVE THE A MATRIX ($A(1,1)=--, A(2,1)=--)$
$a(1,1)=-.5, .5,0 . *$
$a(2,1)=-1.85,-1 ., 1.85$ *
$a(3,1)=0 ., 0 ., 0$. *
GIVE INITIAL STATE (X(1)=--)
$x(1)=0 . .0$.*
$\underline{V}(t)=A \underline{V}(t)$
$\underline{v}(t)=\left[\begin{array}{l}x(1) \\ x(2) \\ U(1)\end{array}\right]$
$A=\left[\begin{array}{ccc}-.5 & .5 & 0 \\ -1.85 & -1 & 1.85 \\ 0 & 0 & 0\end{array}\right]$
$\underline{x}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

TERMS OF THE MATRIX EXPONENTIAL

EM(1.	1)	=	. 697370 E	00
EM	1.	2)	$=$. 165714 E	00
EM	1.	3)	$=$. 888757 E	-01
EM(2 ,	1)	$=$	-. 613141 E	00
EM	2,	2)	$=$. 531656 E	00
EM(2,	3)	$=$. 702016 E	00
EM	3.	1)	=	. 000000 E	00
EM	3.	2)	=	. 000000 E	00
EM (3.	3)	=	1.000000 E	00

TIME	X (1)	X(2)	
. 50	. $888757 \mathrm{E}-01$. 702016 E	00
1.00	. 267189 E 00	. 102075 E	01
1.50	.444358 E 00	. 108088 E	01
2.00	. 577874 E 00	. 100422 E	01
2.50	.658281E 00	. 881598 E	00
3.00	. 694033 E 00	. 767104 E	00
3.50	.699993E 00	. 684312 E	00
4.00	.690429E 00	. 636641 E	00
4.50	. 675860 E 00	. 617160 E	00
5.00	. 662472 E 00	. 615736 E	00
5.50	. 652899 E 00	. 623187 E	00
6.00	. 647458 E 00	. 633019 E	00
6.50	. 645293 E 00	. 641581 E	00
7.00	.645202E 00	. 647461 E	00
7.50	.646113E 00	. 650643 E	00
8.00	. 647276 E 00	. 651776 E	00
8.50	. 648274 E 00	. 651666 E	00
9.00	.648953E 00	. 650995 E	00
9.50	. 649314 E 00	. 650222 E	00
10.00	. 649438 E 00	. 649590 E	00
10.50	. 649420 E 00	. 649178 E	00
11.00	. 649339 O 0	. 648970 E	00

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK
Figure 5.10 Console transaction for example 5.2.3


```
*
GIVE ORDER OF SYSTEM (M = )
DESIRED SAMPLING TIME (T = )
TIME DELAY (TD = ), FINAL TIME (TF = )
m=2,t=.5,td=.5,tf=15.*
IS THERE ANY DISTURBING SIGNAL
yes
NUMBER OF INPUT SIGNALS (R = )
r=1*
GIVE THE A MATRIX (A(1, 1)=--, A(2,1)=--)
a(1,1)=-.5,.5*
a(2,1)=0.,-1.*
GIVE THE B MATRIX (B(1,1)=--, B(2,1)=--)
b(1,1)=0.,0.*
b(2,1)=-1.85,0.*
GIVE THE DI MATRIX (D1(1,1)=--,Dl(2,1)=--)
d1(1,1)=0.*
dl(2,1)=1.85*
GIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)=--)
d2(1,I)=0.*
N2(2,1)=0.*
dO YOUU WISH TO HAVE THE TRANSITION MATRICES
no
GIVE THE INITIAL STATE (X(1, 1)=---)
x(1,1)=0.,0.*
    TIME X(1) X(2)
\begin{tabular}{|c|c|c|c|}
\hline TIME & X (1) & \multicolumn{2}{|l|}{X(2)} \\
\hline . 50 & . 9052E-01 & . 7279 E & 00 \\
\hline 1.00 & . 2848 E 00 & . 1143 E & 01 \\
\hline 1.50 & . 4952 E 00 & . 1282 E & 01 \\
\hline 2.00 & . 6644 E 00 & . 1214 E & 01 \\
\hline 2.50 & . 7664 E 00 & .1034 E & 01 \\
\hline 3.00 & . 8015 E 00 & . 8266 E & 00 \\
\hline 3.50 & . 7862 E 00 & . 6539 E & 00 \\
\hline 4.00 & . 7431 E 00 & . 5448 E & 00 \\
\hline 4.50 & .6932E 00 & . 5021 E & 00 \\
\hline 5.00 & .6512E 00 & . 5114 E & 00 \\
\hline 5.50 & . 6245 E 00 & . 5508 E & 00 \\
\hline 6.00 & . 6138 E 00 & . 5995 E & 00 \\
\hline 6.50 & .6158E 00 & . 6421 E & 00 \\
\hline 7.00 & .6251E 00 & . 6704 E & 00 \\
\hline 7.50 & . 6369 E 00 & . 6829 E & 00 \\
\hline 8.00 & . 6472 E 00 & . 6825 E & 00 \\
\hline 8.50 & . 6541 E 00 & . 6740 E & 00 \\
\hline 9.00 & .6572E 00 & . 6627 E & 00 \\
\hline 9.50 & .6572E 00 & . 6523 E & 00 \\
\hline 10.00 & . 6552 E 00 & . 6450 E & 00 \\
\hline 10.50 & .6525E 00 & . 6414 E & 00 \\
\hline 11.00 & .6499E 00 & . 6411 E & 00 \\
\hline 11.50 & .6482E 00 & . 6429 E & 00 \\
\hline 12.00 & .6473E 00 & . 6455 E & 00 \\
\hline 12.50 & . 6472 E 00 & . 6480 E & 00 \\
\hline 13.00 & . 6476 E 00 & . 6499 E & 00 \\
\hline 13.50 & .6482E 00 & . 6508 E & 00 \\
\hline 14.00 & .6488E 00 & . 6510 E & 00 \\
\hline 14.50 & . 6493 E 00 & . 6507 E & 00 \\
\hline 15.00 & .6495E 00 & . 6501 E & 00 \\
\hline
\end{tabular}
Figure 5.12
50
6.50
7.00
7.50
8.00
9.00
9.50
10.00
10.50
11.00
12.00 12.50 13.00 13.50 14.00
15.00
\(.6495 \mathrm{E} 00 \quad .6501 \mathrm{E} 00\)
```

$\begin{aligned} \dot{X}(t) & =A \underline{X}(t)+B \underline{X}(t-.5) \\ & +D_{1} U(t)+D_{2} U(t-.5)\end{aligned}$
$A=\left[\begin{array}{cc}-.5 & .5 \\ 0 & -1\end{array}\right]$
$B=\left[\begin{array}{cc}0 & 0 \\ -1.85 & 0\end{array}\right]$
$D_{1}=\left[\begin{array}{c}0 \\ 1.85\end{array}\right]$
$D_{2}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

```
GIVE THE INITIAL STATE \((X(1,1)=---)\) \(x(1,1)=0.0\).*
Console transaction for example
5.2 .4
```



```
6 4
G(VE THE INITIAL STATE ( }x(1,1)=-\cdots
G(VE,1)=0.,O.*
\begin{tabular}{ccc} 
TIME & \(X(1)\) & \(X(2)\) \\
.50 & \(.9052 \mathrm{E}-01\) & .7279 E 00 \\
1.00 & .2864 E 00 &. .1169 E 01
\end{tabular}
        1.00
        2.00 ..7194E 00 .1444E 01
        2.50 . 8664E 00 . 1306E 01
        3.00 .9369E 00 . . }0063\textrm{E Ol
        3.50 .9328E 00 .7864E 00
        4.00 .8712E 00 .5417E 00
        4.50 .7771E 00 . 3720E 00
        5.00 . .6770E 00 .2960E 00
        5.50 .5928E 00 . 3093E 00
        6.00 .5384E 00 . 3897E 00
        6.50 .5185E 00 .5062E 00
        7.00 . 5299E 00 .6269E 00
        7.50 .5634E 00 .7262E 00
        8.00 .6073E 00 .7881E 00
        8.50 .6503E 00 .8080E 00
        9.00 .6838E 00 .7909E 00
        9.50 .7029E 00 . 7482E 00
    10.00 .7068E 00 .6944E 00
    10.50 .6980E 00 .6429E 00
    11.00 .6810E 00 .6038E 00
    11.50 .6611E 00 .5825E 00
    12.00 .6430E 00 .5795E 00
    12.50 .6301E 00 .5915E 00
    13.00 .6239E 00 .6128E 00
    13.50 . .6243E 00 . .6370E 00
    14.00 .6296E 00 .6584E 00
    14.50 .6379E 00 .6733E 00
    15.00 .6466E 00 .6800E 00
END OF EXECUTION
to continue, gO tO the top Of a new page
AND PRINT AN ASTERISK
```

Figure 5.14 Console transaction for example 5.2.5

$\dot{X}(t)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \underline{X}(t)+\left[\begin{array}{cc}2 & 0 \\ 0 & -.1\end{array}\right] \underline{X}(t-T)+\left[\begin{array}{l}0 \\ 1\end{array}\right] U(t-T)(5.26)$
It is assumed the sampling time equal to the time delay. That is,

$$
\tau=T=\frac{\pi}{4} \text { min }
$$

Koapcke reported the following results of the plant transition
matrices and the control transition matrices:
$\phi_{0}=\left[\begin{array}{cc}.7071068 & .7071068 \\ -.7071068 & .7071068\end{array}\right] \quad \Delta_{0}=\left[\begin{array}{l}.00000 \\ .00000\end{array}\right]$
$\Phi_{1}=\left[\begin{array}{rr}.1338340 & .0277680 \\ -.0277680 & -.0782980\end{array}\right] \quad \Delta_{1}=\left[\begin{array}{c}.2928932 \\ .7071068\end{array}\right]$
$\Phi_{2}=\left[\begin{array}{ll}.0109582 & .0022524 \\ -.0022524 & .0026278\end{array}\right] \quad \Delta_{2}=\left[\begin{array}{c}.0075873 \\ -.0308106\end{array}\right]$
$\Phi_{3}=\left[\begin{array}{rr}.0005903 & .0000742 \\ -.0000742 & -.0000854\end{array}\right] \quad \Delta_{3}=\left[\begin{array}{c}.0004532 \\ .0007349\end{array}\right]$
$\Phi_{4}=\left[\begin{array}{cc}.0000236 & .0000026 \\ -.0000026 & .0000013\end{array}\right] \quad \Delta_{4}=\left[\begin{array}{c}.0000119 \\ -.0000165\end{array}\right]$
$\phi_{5}=\left[\begin{array}{cc}.0000008 & .0000001 \\ -.0000001 & -.0000000\end{array}\right] \quad \Delta_{5}=\left[\begin{array}{l}.0000003 \\ .0000002\end{array}\right]$

The time response of the aystem was obtained assuming a step
input and zero initial conditions for the integrators.
The solution is depicted in figures 5.18 and 5.19.

In a similar way, this same example was tested assuming no lags
in the system, that is

$$
\underline{\dot{v}}(t)=\left[\begin{array}{ccc}
.2 & 1 & 0 \\
-1 & -.1 & 1 \\
0 & 0 & 0
\end{array}\right] \underline{\underline{v}}(t)
$$

where

$$
\underline{v}(t)=\left[\begin{array}{l}
x_{1}(t) \tag{5.29}\\
x_{2}(t) \\
u(t)
\end{array}\right]
$$

The evaluation of the state is shown in figures 5.16 and 5.17.
It is intereating to compare the transient response in both cases.
As it can be seen in the plots (figures 5.17 and 5.19), the case with
delay is something less unstable than the linear one with delay equal to zero.

```
*
GIVE ORDER OF SYSTEM (M = )
SAMPLING TIME (T = ), FINAL TIME (TF = )
m=2,t=.5,tf=15.*
IS THERE ANY DISTURBING SIGNAL
yes
GIVE NUMBER OF INPUT SIGNALS (R = )
r=1*
GIVE THE A MATRIX (A(1,1)=--,A(2,1)=--)
a(1,1)=.2,1.,0.*
a(2,1)=-1.,-.1,1.*
```



```
GIVE INITIAL STATE (X(1)=--)
x(1)=0.,0.*
\underline{v}}(t)=A\underline{V}(t
    v}(t)=[\begin{array}{l}{x(1)}\\{x(2)}\\{U(1)}\end{array}
    A=[}[\begin{array}{ccc}{.2}&{1}&{0}\\{-1}&{-.1}&{1}\\{0}&{0}&{0}\end{array}
    X}(0)=[\begin{array}{l}{0}\\{0}\end{array}
```

```
TERMS OF THE MATRIX EXPONENTIAL
\begin{tabular}{|c|c|c|c|c|c|}
\hline EM & 1, & 1) & \(=\) & . 976370 E & 00 \\
\hline EM & 1. & 2) & \(=\) & . 492031 E & 00 \\
\hline EM & 1. & 3) & \(=\) & . 124527 E & 00 \\
\hline EM( & 2. & 1) & = & -. 492031 E & 00 \\
\hline EM ( & 2, & 2) & \(=\) & . 828760 E & 00 \\
\hline EM & 2. & 3) & \(=\) & . 467126 E & 00 \\
\hline EM ( & 3. & 1) & \(=\) & . 000000 E & 00 \\
\hline EM ( & 3. & 2) & & . 000000 E & 00 \\
\hline EMC & 3. & 3) & & 1.000000 E & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline time & X(1) & X (2) \\
\hline . 50 & . 124527 E 00 & . 467126 E 00 \\
\hline 1.00 & . 475952 E 00 & . 792990 E 00 \\
\hline 1.50 & .979407E 00 & . 890141 E 00 \\
\hline 2.00 & . 151877E 01 & . 722940 E 00 \\
\hline 2.50 & .196311E 01 & . 318989 E 00 \\
\hline 3.00 & . 219820 E 01 & -. 234422 E 00 \\
\hline 3.50 & . 215544 El & -. 808739 E 00 \\
\hline 4.00 & . 183111E 01 & -. 126367E 01 \\
\hline 4.50 & .129060E 01 & -.148112E 01 \\
\hline 5.00 & . 655877 E 00 & -. 139538 E 01 \\
\hline 5.50 & . \(783336 \mathrm{E}-01\) & -. 101203 El \\
\hline 6.00 & -. 296938 E 00 & -. 410143 E 00 \\
\hline 6.50 & -. 367197E 00 & . 273318 E 00 \\
\hline 7.00 & -. \(995124 \mathrm{E}-01\) & . 874313 E 00 \\
\hline 7.50 & . 457555 E 00 & . 124068 E 01 \\
\hline 8.00 & . 118173 E 01 & . 127022 E 01 \\
\hline 8.50 & . 190332E 01 & .938392E 00 \\
\hline 9.00 & . 244459 E 01 & . 308336 E 00 \\
\hline 9.50 & . 266306 E 01 & -. 480150 E 00 \\
\hline 10.00 & . 248841 El & -. 124111E 01 \\
\hline 10.50 & . 194347 E 01 & -. 178583 E 01 \\
\hline 11.00 & . 114338 E 01 & -. 196915E 01 \\
\hline 11.50 & .272011E 00 & -. 172740 E 01 \\
\hline 12.00 & -. 459826 E 00 & -. 109832 E 01 \\
\hline
\end{tabular}
```


\therefore Aus: 3.16 Console transaction for example 3.3
when time delay $=0$

Figure 5.17 Response curves of system for example 5.3 when time delay $=0$

TRANSFER MATRIX DELTA(6)
DEL. 1. I) = .739099E-08
DEL(2,1$)=-.367553 \mathrm{E}-08$

GIVE THE INITIAL STATE $(x(1,1)=---)$
$x(1,1)=0 \ldots 0$ *
TIME $\quad X(1) \quad X(2)$

. 79	. 0000 E 00	. 0000 E 00
1. 57	.2929E 00	. 7071 E 00
2.36	. 1008 E 01	. 3692 E 00
3.14	. 1758 E 01	. 5864 E 00
3.93	. 2125E 01	-. 2538 E 00
4.71	. 1889 E 01	-. 1100 E 01
5.50	. 1158 E 01	-.1478E 01
6.28	. 3207 E 00	-. 1159E 01
7.07	-. 1582 E 00	-. 2928 E 00
7.85	. $3256 \mathrm{E}-02$. 6571 E 00
8.64	. 7401 E 00	. 1163 E 01
9.42	. 1663 E 01	. 9241 E 0
10.21	. 2263 F 01	. $4467 \mathrm{E}-01$
11.00	. 2132 E 01	-. 1009 E 01
11.78	. 1462 E 01	-. 1654 E 01
12.57	. 4567 E 00	-. 1514 El
13.35	-. 2735 E 00	-. 6351 E 00
14.14	-. 3088 E 00	. 5194 E 00
14.92	. 3380 E 00	. 1315 E 01
15.71	. 1481 El	. 1292 E 01
16.49	. 2349 El	. 4317 E 00
17.28	. 2503 E 01	-. 8188 E 00
18.06	. 1842 E 01	-. 1775 E 01
18.85	. 6889 E 00	-. 1890 OL
19.63	-. 3244 E 00	-. 1067 E 01
20.42	-.6256E 00	.2718E 00

END OF EXECUTION
to continue, go tu the top of a new page AND PRINT AN ASTERISK

Figure 5.19 Response curves of system for example 5.3 when time delay $=\frac{\pi}{4}$

CHAPTER 6

 COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCHIn obtaining $e^{A T}$ by the use of a digital computer the virtues of the series expansion technique are its simplicity and ease in programing. It is not necessary to find the eigenvalues of A. There is, however, some computational disadvantage to the series expansion method. This comes from the convergence requirements for the series. In general, it is reasonable to compute $e^{A T}$ by the power series when T is small. The running time for the matrix exponential simulation will be among the longest of various schemes, Use of the Jordan Canonical form, for example, requires considerably more programming, but will run in a fraction of time needed for the series solution.

Some suggestions concerning the bound on the error in the evaluation of the matrix exponential when the matrix A is known with some error are given by Levis (10).

The aimulation technique for linear time-invariant dynamic
systems has been tested, and it was found that the use of the augmented A $\operatorname{matrix}\left(\underline{X}(t)=A \underline{X}(t)+D \underline{U}(t)\right.$ can be expressed as $\underline{V}(t)=\left(\begin{array}{ll}A & D \\ 0 & 0\end{array}\right) \underline{V}(t)$, where $V(t)=\left(\frac{X}{U}\right)$, greatly improved the procedure. The reason is that the actual reduction of the elements of the augmented matrix times T to values less than one can be performed successfully. However, this method cannot be used for calculating the digital version of the control transition matrix. Another scheme that can be used to check the error bound in the state is to divide the time region of interest in two or three parts. Preferably these times should be powers of two times the sampling time. Next, compute the matrix exponential at the desired sampling time.

BIBLIOGRAPHY

1. Auslander, D. M., Analysis of Networks of Wavelike Transmission

Elements, Sc. D., Thesis. Dept. of Mech. Engr., Mass. Inst. of Tech., August, 1966.
2. Bellman, R., Introduction to Matrix Analysis. Mc Graw-Hill Book Company, Inc. 1960.
3. Buckley, P. S., "Automatic Control of Processes with Dead Time" from "Theory of Continuous Linear Control Systems". Reprint from Automatic and Remote Control. Proceeding of the First Congress of the International Federation of Automatic Control, page 31-37. 1963
4. Coughanowr and Koppel, Process Systems Analysis and Control, Mc GrawH111 Book Company. 1965.
5. Crisman, P. A., Editor, The Compatible Time-Sharing System; A Programmer's Guide. The M.I.T. Press, Cambridge, Mass., 1965.
6. Evarling, W., "On the Evaluation of $e^{A T}$ by Power Series", Proceedings of the I.E.E.E., Vol. 55, No. 3, page 413, March, 1967.
7. Faddeva, V. N., Computational Methods of Linear Algebra, Dover Publications, Inc. New York. 1959.
8. Kalman-Englar, "A Uaer's Manual for the Automatic Synthesis Program". NASA Contractor Report. NASA CR-475. June, 1966.
9. Koopcke, R. W., "On the Control of Linear Systems with Pure Time Delay" Joint Automatic Control Conferance. Stanford University. Session XV, paper No. 1, page 397. June 24-25-26, 1964
10. Levis, Alexander H., "Error Bounde in some Matrix Calculations", Control Theory Group. Research Note 1967-2, Electronic Systems Laboratory. Department of Electrical Engineering, Mess. Inst. of Tech.,

May, 1967.
11. Liou, M. L., "A Novel Method of Evaluating Transient Response", Proceedings of the I.E.E.E., Vol 54, No. 1, page 20, January, 1966
12. Liou, M. L., "Evaluation of the Trangition Matrix". Proceedings of the I.E.E.E., Vol 55, No. 2, page 228, February 1967.
13. MacMilan-Higgins-Nas1in, "Progress in Control Engineering", Vol 1, page 19-33. Academic Press, Inc. Publishers, New York, 1962.
14. M1chigan Algorithm Decoder (MAD), University of Michigan, August, 1966
15. Ogata, Katsuhiko, State Space Analysis of Control Systems, Prentice Hal1, Inc. 1967.
16. Oguztoreli, M. N., Time Lag Control Systems. Academic Press, New York, London. 1967.
17. Rosenberg, R. C. Computer-Aided Tesching of Dynamic Systems Behavior, Ph. D. Thesis, Dept. of Mech. Engr., Mass. Inst. of Tech., Sept., 1965.
18. Schwarz and Friedland, Linear Systemg. Mc Graw-H111 Book Company. 1965
19. Tou, Julius T., Modern Control Theory. Mc Graw-H111 Book Company. 1964
20. Vaughan, D. R., "Application of Diatributed Systems Concepta to Dynamic Analyses and Control of Bending Vibrations". Douglas report SM-48759. Prepared under contract No. NAS8-11420 by Douglas Aircraft Company, Inc. Missile and Space Systems Division, Santa Monica, California for NASA, August, 1965.
21. Whitney, D. E., "Propagated Error Bounds for Numerical Solution of Transient Response", Proceedings of the I, E.E.EA, (letters), Vol 54, page 1084-1085, August, 1966.
22. Whitney, D. E., "Forced Response Evaluation by Matrix Exponential", Proceadings of the I.E.E.E. (letters), Vol 54, page 1089-1090, August, 1966.

TRANS

```
Purpose: to compute the time response of linear time-invariant
    systems.
Inputs: order of system (M = ); sampling time (T = ); final
    time (TF = ); number of input signals ( }R=\mathrm{ ); the
    augmented A matrix and the initial state (X(1)=).
Outputs: the transition matrix; the current time; and the state
    of the system.
Remarks: main program. Subroutine called by TRANS: EXPMAT, and
    DISTUR.
```

```
    PROGRAM COMMON A, EM, M, RIJ, R, X
    DIMFNSION X(2U),Y(2U),E(2U),PE(20),XI(20)
    DIMENSION EMP(400,H),A(400,H),EM(400,H)
    INTEGER I,J,M,R,WISH
    FORMAT VARIABLF FM
    VECTOR VALUES H=2,1,0
    PRINT COMMENT SGIVE ORDER OF SYSTEM IM = 1$
    PRINT COMMENT &SAMPLING TIME IT= 1, FINAL TIME (TF = 1B
    READ DATA
    PRINT COMMENT & $
    FM=M
    PRINT COMMENT $IS THERE ANY DISTURBING SIGNALS
    RFAD FORMAT S3,WISH
    VECTOR VALUFS $3 = $ C3*$
    WHFNFVFR WISH.F.DYES$
    PRINT COMMENT $ $ 
    PRINT COMMENT SGIVE NUMBER OF INPUT SIGNALS (R =)$
    READ DATA
    M=M+R
    OTHERNISE
    R=?
    END OF CONDITIONAL
    H(2)=M
    PRINT COMMENT S $
    PRINT COMMENT $GIVE THE A MATRIX (AIl,1)=--, A(2,1)=--)$
    THROUGH LUPE, FOR I=1,l,I.G.M
    READ DATA
    PRINT CONMENT S &
    PRINT COMMENF SGIVE INITIAL STATE (X(1)=--)$
    READ DATA
    THROUGH ALICIA, FOR I=1,1,I\bulletG.(M-R)
    XI(I)=X(I)
    TA=T
    WHENEVER R.NF.O
    EXECUTE DISTUR. (TA)
    J=M-R+1
    THROUGH JULIA, FOR I=J,I,I.G.M
    XI(J)=x(J)
    CONTINUF
    END OF CONDITIONAL
    THROUGH ALMA, FOR I=1,1,1.G.(M)
    F(I)=0.
    TZ=T
    EXECUTE FXPMAT.(T)
    THROUGH FANNY, FOR I=1,1,I.G.M
    THROUGH FANNY, FOR J=1,l,J.G.M
    PRINT FORMAT CUATRO,I,J,EM(I,J)
    VECTOR VALUES CUATRO = $1H ,S8,3HEM(,14,1H,,I4,3H) =,E14.6*$
    CONTINUF
    THROUGH MARTA, FOR I=1,1,I.G.(M-R)
    THROUGH MARTA, FOR J=1,l,J.G.M
    EMP(I,J)=EM(I,J)
    WHENEVER (M-R).L.S
    PRINT COMMFNT $ $
    PRINT FORMAT SI, (I=1,l,I.G.(M-R),I)
    VECTOR VALUES SI = $ ,S6,4HTIME,S8,1FMP(2HX(,I1,1H),S12)/*$
    END OF CONDITIONAL
    TRANSFER TO TERESA
OLGA
TA =TA+TZ
```

```
WHFNFVFR R.NE.O
EXECUTF DISTUR. (TA)
FND OF COMDITIONAL
TFRFSA THROUGH ELENA, FOR I=1,l,I.G.(M-R)
    PE(I)=0.
    Y(I)=0.
    THROUGH MARIA, FOR J=1,l,J.G.M
    Y(I)=Y(I)+FMP(I,J)*X(J)
    PF(I)=(EMP(I,J)+RIJ)*E(J)+RIJ*X(J)+PE(I)
MARIA CONTINUF
FLFNA CONTINUF
    FNORM=?.
    THROUGH ROSA, FOR I=I,I,I.G.(M-R)
ROSA ENDPM=FNORM+.ABS.(PF(I))
    WHENEVFR ENOR'A.GF.110..P.-O7)
    T=TA
    EXECUTE EXPMAT.(T)
    THROUGH ROSANA, FOR I=1,I,I.G.(M-R)
    PE(I)=0.
    Y(I)=0.
    THROUGH ESTHER, FOR J=1,1,J.G.M
    Y(I)=Y(I)+EM(I,J)*XI(J)
    PE(I)=PF(I)+RIJ*XI(J)
FSTHFR CONTINUE
ROSANA CONTINUF
    OTHERWISE
    TRANSFFR TO SARA
    END OF CONDITIONAL
    THROUGH CARMEN, FOR I=1,l,I.G.(M-R)
```



```
    J=M-R+1
    THROUGH LILIA, FOR I=J,l,I.G.M
I.ILIA E(J)=0.
WHFNFVER (M-R).L.6
PRINT FORMAT S2,TA,X(1)...X(M-R)
VFCTOR VALUFS S2 = , S4,FG.2,IFM'(S3,E14.6)*$
OTHERWISF
PRINT RFSULTS TA
PRINT RFSULTS X(1)...X(M-R)
END OF CONDITIONAL
WHENFVER TA.L.TF, TRANSFER TO OLGA
PRINT COMMENT $END OF EXECUTION$
PRINT CONNENT $TO CONTINUE, GO TO THE TOP OF A NEW PAGE$
PRINT COMMENT SAND PRINT AN ASTERISK$
READ DATA
TRANSFER TO MAGDA
END OF PROGRAM
```

EXPMAT

Puppose: $i=$ compute the ratrix exponential.

Remarks suotoutine called by TRANS,

```
    EXTERNAL FUNCTION (T)
    PROGRAM COMMON A, EY, M, RIJ, R, X
    DIMENSION A(400,H),EM(400,H),TFRM(400,H),NTERM(400,H)
    DIMENSION X(2U),B(400,H)
    VECTOR VALUES H=2,1,0
    INTEGER K,I,J,L,M,LL,Y,Q
    ENTRY TO EXPMAT.
    H(2)=M
    THROUGH ELENA, FOR I=1,l,I.G.M
    THROUGH ELENA, FOR J=1,1,J.G.M
    B(I,J)=A(I,J)
    B(I,J)=R(I,J)*T
    AMIN=R(1,1)
    THROUGH DIANA, FOR 1=2,1,I.G.N
    WHENEVER R(I,I).L.AMIN, AMIN=B(I,I)
    CONTINUF
    FAC=EXP. (AMIN)
    THROUGH OLGA, FOR I=l,l,I.G.M
    B(I,I)=B(I,I)-AMIN
    Y=.AB5.B(1,1)
    THROUGH SARA, FOR I=1,1,I.G.M
    THROUGH SARA, FOR J=1,1,J.G.M
    WHENFVER .ABS.(B(I,J)).G.(Y+O.),Y=.ABS.(B(I,.J))
    CONTINUF
    TAP=1.
    YE=Y+0.
    THROUGH ALMA, FOR Q=1,1,Q.G.10
    TAP=2.*TAP
    WHENEVER TAP.GE.YE, TRANSFER TO ESTHER
    CONTINUF
    Y=TAP
    THROUGH YOLIS, FOR I=1,1,I.G.M
    THROUGH YOLIS, FOR J=1,1,J.G.M
    B(I,J)=R(I,J)/(Y+O.)
    TERM(1,J)=B(I,J)
    LL=0
GLORIA MAXH=O.
    MAXV=0.
    THROUGH MARIA, FOR I=l,l,I.G.M
    SUMH=O.
    Sumv=0.
    THROUGH ROSANA, FOR J=1,l,J.G.M
    SUMH=SUMH+.ABS.TERM(I,J)
    SUMV=SUMV +.ARS.TERM(J,I)
    CONTINUE
    WHENEVER SUMH.G.MAXH,MAXH=SUMH
    WHENFVER SUMV.G.MAXV,MAXV=SUMV
    CONTINUF
    NORM=MAXH
    WHENEVER MAXV.L.NORM,NORM=MAXV
    WHENEVER LL.NE.U, TRANSFER TO DELIA
    SOLO=NORM
    K=2.*NORM
    WHENEVER K.L.2, K=2
    IN=K/2
    VECTOR VALUES CINCO = $1H, 2HK=,I4*$
    THROUGH SUSANA, FOR I=1,l,I.G.M
    THROUGH SUSANA, FOR J=1,1,J.G.M
    UNIT=O.
```

	WHENEVER J.E.I, UNIT=1. EM(I,J) $=$ UNIT+B(I,J)
SUSANA,	CONTINUE
I SABEL	WHENEVER LL.GE.K, TRANSFER TO GLORIA
	$L L=L L+1$
	THROUGH LILIA, FOR L=I, 1,L.G.M
	THROUGH LILIA, FOR I=1,1,I.G.M
	NTERM(L, I) $=0$ 。
	THROUGH EVA, FOR J=1, $1, J . G . M$
	NTERM(L, I) $=$ NTERM(L,I) + B (L, J)*TERM(J,I)
EVA	CONT INUE
	EM(L, I) = EM(L, I) + NTERM(L, I)/(LL+l.)
I.Ilia	CONTINUE
	THROUGH AURORA, FOR $I=1,1, I . G . M$
	THROUGH AURORA, FOR $J=1,1, J . G \cdot M$
AURORA	
	TRANSFER TO ISABEL
DELIA	EPS $=$ SOLO $/(K+2 \cdot)$
	RIJ = NORM*SOLO/($(K+1) *.(1 .-E P S))$
	THROUGH JULIA, FOR $1=1,1, I \cdot G . M$
	THROUGH JULIA, FOR J=1, 1, J.G.M
	$W W=, A B S .(E M(I, J) * 10 . . P$ - 7)
	WHENEVER RIJ.G.WW
	$K=K+1 N$
	TRANSFER TO ISABEL
	OTHERWISE
	TRANSFER TO JULIA
	END OF CONDITIONAL
JULIA	CONTINUE
	THROUGH ALICIA, FOR LL=1,1,LL.G.Q
	THROUGH MARTA, FOR L $=1,1, L . G . M$
	THROUGH MARTA, FOR $1=1,1, I \cdot G . M$
	TERM(L, I) $=0$.
	THROUGH MAGUF, FOR J=1, 1,J.G.M
	$\operatorname{TERM}(L, I)=\operatorname{TERM}(L, I)+\operatorname{EM}(L, J) * E M(J, I)$
MAGUE	CONT INUF
MARTA	CONTINUF
	THROUGH OLIVIA, FOR $1=1,1, I . G . M$
	THROUGH OLIVIA, FOR $J=1,1, J . G . M$
OLIVIA	$E M(I, J)=\operatorname{TERM}(1, J)$
ALICIA	CONTINUE
	PRINT COMMENT \$ \$
	PRINT COMMENT \$ TERMS OF THE MATRIX EXPONENTIALS
	THROUGH CARMEN, FOR $I=1,1, I \cdot G \cdot M$
	THROUGH CARMEN, FOR $J=1,1, J . G \bullet M$
CARMEN	EM(I, J) =FAC*EM(I*J)
	FUNCTION RETURN
	END OF FUNCTION

```
    sm
```


TIMDEL

Purpose: to compute the time response of linear systems with lumped paramaters and time delays.

Inputs: order of system (M_{m}); sampling time ($\mathrm{T}=$); time delay (TD =); final time (TF =); number of input signals ($R=$); the A matrix; the B matrix; the D_{1} matrix; the D_{2} matrix; the initial state $(X(1,1)=)$.

Outputs: the plant transition matrices, the control transition matrices if desired; the current time; and the state of the system.

Remarks: main program. Subroutines called by TIMDEL: DELFOR, and PERTUR.

```
    PROGRAM COMMON EM,DELF,M,R,W,A,B,D1,D2,U
    DIMFNSION FM(4OOO,H),DELF(40OO,H),X(400,G),A(40G,G)
    DIMENSION B(400,G),D1(400,G),D2(400,G),U(400,E)
    INTEGER I,J,K,L,M,N,LL,Z,W,R,REL,MM,WISH,JJ
    FORMAT VARIABLE FM
    VECTOR VALUES G=2,1,0
    VECTOR VALUES E=2,1,0
    VECTOR VALUES H=3,1,0,0
    PRINT COMMENT SGIVE ORDER OF SYSTEM (M = IS
    PRINT COMMENT SDESIRED SAMPLING TIME (T = IS
    PRINT COMMENT STIME DELAY ITD = 1,FINAL TIMF \TF= $$
    RFAD DATA
    FM=M
    PRINT COMMENT $ $
    PRINT COMMENT $IS THERE ANY DISTURBING SIGNALS
    READ FORMAT S3.WISH
    VECTOR VALJES S3=$ C3*$
    WHENFVER WISH.E.SYESS
    PRINT COMMENT $ $
    PRINT COMMENT $NUMBER OF INPUT SIGNALS (R = IS
    RFAD DATA
    OTHERWISF
    R=0
    FND OF CONDITIONAL
    RFL=TD/T+O.2
    G(2)=M
    H(2)=M
    H(3)=M
    PRINT COMMENT $ $
    PRINT COMMENT SGIVE THE A MATRIX (A(1,1)=--,A(2,1)=--)$
    THROUGH MELA, FOR I=1,I,I.G.M
    RFAD DATA
    PRINT COMMENT & $
    PRINT COMMENT SGIVE THE B MATRIX (B(1,1)=--,B(2,1)=--)$
    THROUGH MALFNA, FOR I=1,1,1.G.M
    RFAD DATA
    WHFNFVFR R.F.O,TRANSFER TO JULIA
    PRINT COMMFNT I $
    PRINT COMMENT $GIVE THE DI MATRIX (DI(1,1)=--,DI(2,1)=--)$
    IHROUGH ALMA, FOR I=1,I,I.G.M
    READ DATA
    PRINT COMMENT $$
    PRINT COMMENT SGIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)=--)$
    HROUGH BERTA, FOR I=1,1,I.G.M
    RFAD DATA
EXECUTE DELFOR. (T)
PRINT COMMFNT &DO YOU WISH TO HAVF. THE TRANSITION MATRICESI
RFAD FORMAT S3,WISH
WHENEVFR WISH.F.$YFS$
THROUGH DULCE, FOR L=I,I,L,G.W
L=L-1
WHENEVFR R.E.O
PRINT FORNAT OCHO,LL
VECTOR VALUES OCHO = $1H,S8,15HTRANSFER MATRIX,S2,
4HPHI(,14,1H)*g
    OTHERWISE
PRINT FORMAT SEIS,LL,LL
VECTOR VALUES SEIS= $1H,S8,15HTRANSFER MATRIX,S2,
14HPHI(,I4,1H),S8,22HTRANSFER MATRIX DELTA(, 14,1H)*$
```

```
CFLIA CONTINUF
    WHENEVFR Z.E.1, L=L-1
    THROUGH ALICIA, FOR K=1,1,K.G.W*REL
    THROUGH ALICIA, FOR I=1,1,I.G.M
    B(K,I)=X(K+1,I)
    WHENEVER K.E.W, TRANSFER TO ALICIA
    A(K,I)=U(K+1,I)
ALICIA CONTINUE
    THROUGH MARTA, FOR K=1.1.K.G.W*REL
    THROUGH MARTA, FOR I=1,1,1.G.M
    X(K,I)=R(K,I)
    WHENEVER K.E.W, TRANSFER TO MAF-.
    U(K,I)=A(K,I)
    CONTINUE
    TRANSFER TO SONIA
    PRINT COMMENT SEND OF EXECUTION$
    PRINT COMMENT STO CONTINUE, GO TO THE TOP OF A NEW PAGE$
    PRINT COMMENT $AND PRINT AN ASTERISK$
    READ DATA
    TRANSFER TO MAGDA
    ENO OF PROGRAM
```

DELFOR

Purpose: to compute the plant transition matrices and the
control transition matrices.

Remarks: subroutine called by TIMDEL.
ROSANA
MARIA
salome
I SABEI.
FANNY

```
```

```
EXTERNAL FUNCTION (T)
```

```
EXTERNAL FUNCTION (T)
PROGRAM COMMON EM,DELF,M,R,W,A,B,DI,D2,U
PROGRAM COMMON EM,DELF,M,R,W,A,B,DI,D2,U
DIMENSION C(11000,H),A(400,G),B(400,G),EM(4000,H), XX(400,G)
DIMENSION C(11000,H),A(400,G),B(400,G),EM(4000,H), XX(400,G)
DIMENSION TERM(400,G),NTERM(400,G),UU(400,G),D1(400,G)
DIMENSION TERM(400,G),NTERM(400,G),UU(400,G),D1(400,G)
DIMENSION DELF(4000,H),D2(400,G),U(400,E)
DIMENSION DELF(4000,H),D2(400,G),U(400,E)
INTEGER I,J,K,L,M,N,Y,Q,R,W
INTEGER I,J,K,L,M,N,Y,Q,R,W
VECTOR VALUES H=3,1,0,0
VECTOR VALUES H=3,1,0,0
VECTOR VALUES G}=2,1,
VECTOR VALUES G}=2,1,
VECTOR VALUES E=2,1,0
VECTOR VALUES E=2,1,0
ENTRY TO DELFOR.
ENTRY TO DELFOR.
G(2)=M
G(2)=M
H(2)=M
H(2)=M
H(3)=M
H(3)=M
LINDA=0.
LINDA=0.
ROSA=-1.
ROSA=-1.
THROUGH YOLIS, FOR I=1.1.I.G.M
THROUGH YOLIS, FOR I=1.1.I.G.M
THROUGH YOLIS, FOR J=1,1,J.G.M
THROUGH YOLIS, FOR J=1,1,J.G.M
WHENEVER J.G.R, TRANSFER TO DELIA
WHENEVER J.G.R, TRANSFER TO DELIA
D1(I,J)=D1(I;J)*T
D1(I,J)=D1(I;J)*T
D2(I;J)=D2(I,J)**T
D2(I;J)=D2(I,J)**T
D2(I;J)=D2(I,J)**
D2(I;J)=D2(I,J)**
TERM(1,J)=A(I,J)
TERM(1,J)=A(I,J)
B(I,J)=B(I,J)*T
B(I,J)=B(I,J)*T
N=0
N=0
MAXH=O.
MAXH=O.
MAXV=0.
MAXV=0.
THROUGH MARIA, FOR I=1,1,I.G.M
THROUGH MARIA, FOR I=1,1,I.G.M
SUMH=0.
SUMH=0.
SUMH=0.
SUMH=0.
THROUGH ROSANA, FOR J=1,1,J.G.M
THROUGH ROSANA, FOR J=1,1,J.G.M
SUMH=SUMH+.ABS.TERM(I,J)
SUMH=SUMH+.ABS.TERM(I,J)
SUMV =SUMV +.ABS.TERM(J,I)
SUMV =SUMV +.ABS.TERM(J,I)
```

MAXH=O.

```
MAXH=O.
CONTINUE
CONTINUE
WHENEVER SUMH.G.MAXH,MAXH=SUMH
WHENEVER SUMH.G.MAXH,MAXH=SUMH
WHENEVER SUMV.G.MAXV,MAXV=SUMV
WHENEVER SUMV.G.MAXV,MAXV=SUMV
CONTINUE
CONTINUE
NORM=MAXH
NORM=MAXH
WHENEVER MAXV.L.NORM,NORM=MAXV
WHENEVER MAXV.L.NORM,NORM=MAXV
WHENEVER LINDA.NE.O., TRANSFER TO CARMEN
WHENEVER LINDA.NE.O., TRANSFER TO CARMEN
WHENEVER N.NE.O, TRANSFER TO CHELA
WHENEVER N.NE.O, TRANSFER TO CHELA
SOLO=NORM
SOLO=NORM
K=2**NORM
K=2**NORM
WHENEVER K.L.2, K=2
WHENEVER K.L.2, K=2
W=1
W=1
IN=K/2
IN=K/2
THROUGH SALOME, FOR I=1,1,I.G.M
THROUGH SALOME, FOR I=1,1,I.G.M
THROUGH SALOME, FOR J=1,l:J.G.M
THROUGH SALOME, FOR J=1,l:J.G.M
C(I,I,J)=0.
C(I,I,J)=0.
WHENEVER J.E.I,C(I,I,J)=1.
WHENEVER J.E.I,C(I,I,J)=1.
EM(W,I,J)=((1,I,J)
EM(W,I,J)=((1,I,J)
XX(I,J)=EM(W,I,J)
XX(I,J)=EM(W,I,J)
UU(I,J)=0.
UU(I,J)=0.
TERM(I,J)=C(1,I,J)
TERM(I,J)=C(1,I,J)
N=0
N=0
WHENEVER N.GE.K.AND.LINDA.E.O.,TRANSFER TO MAGUE
WHENEVER N.GE.K.AND.LINDA.E.O.,TRANSFER TO MAGUE
WHENEVER N.GE.K.AND.LINDA.NE.O.,TRANSFER TO ELENA
WHENEVER N.GE.K.AND.LINDA.NE.O.,TRANSFER TO ELENA
N=N+1
N=N+1
THROUGH HILDA, FOR L=I,I,L.G.M
THROUGH HILDA, FOR L=I,I,L.G.M
THROUGH HILDA, FOR I=1,l,I.G.M
```

THROUGH HILDA, FOR I=1,l,I.G.M

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
NTERM(L, I) \(=0\). \\
THROUGH LILIA, FOR J=I,I,J.G.M \\
WHENEVER LINDA•E.O., \((1+1, J, I)=0\). \\
NTERM(L,I)=NTERM(L,I)+A(L,J)*TERM(J,I)+B(L,J)*C(N+1,N,I
\end{tabular} \\
\hline \multirow[t]{4}{*}{1.ILIA} & cont inue \\
\hline & EM(W,L,I) \(=E M(W, L, 1)+N T E R M(L, I) /(N+L I N D A)\) \\
\hline & WHENEVER R.E.O, TRANSFER TO HILDA \\
\hline & \(X X(L, I)=X X(L, I)+N T E R M(L, I) /(1 N+L I N D A) *(N+L I N D A+1 *))\) \\
\hline \multirow[t]{4}{*}{HILDA} & CONTINUE \\
\hline & THROUGH JULIA, FOR \(1=1,1,1 . G . M\) \\
\hline & THROUGH JULIA, FOR J=1, \(1, J . G . M\) \\
\hline & \(C(N+1, I, J)=N T E R M(I, J) /(N+L I N D A)\) \\
\hline \multirow[t]{2}{*}{JULIA} & TERM(I, J) \(=(1 N+1,1, J)\) \\
\hline & TRANSFER TO FANNY \\
\hline \multirow[t]{11}{*}{CHELA} & \(E P S=S O L O /(K+2\). \\
\hline &  \\
\hline & THROUGH EVA, FOR \(\mathrm{I}=1,1,1 . G . \mathrm{M}\) \\
\hline & THROUGH EVA, FOR \(J=1,1, J . G . M\) \\
\hline & \(W W=. A B S .(E M(W, I, J) * 10 . . P\) - -07) \\
\hline & WHENFVER RIJ.G.WW \\
\hline & \(\mathrm{K}=\mathrm{K}+\mathrm{IN}\) \\
\hline & TRANSFER TO FANNY \\
\hline & OTHERWISE \\
\hline & TRANSFER TO EVA \\
\hline & END OF CONDITIONAL \\
\hline EVA & CONTINUF. \\
\hline \multirow[t]{8}{*}{FLENA} & \(\operatorname{LINDA}=\mathrm{LINDA+1}\). \\
\hline & ROSA \(=\) ROS \(A+1\). \\
\hline & WHENEVFR R.E.O, TRANSFER TO PATY \\
\hline & THROUGH MARTA, FOR L \(=1,1, L . G . M\) \\
\hline & THROUGH MARTA, FOR \(1=1,1, I . G . R\) \\
\hline & \(\operatorname{TERM}(\mathrm{L}, 1)=0\). \\
\hline & THROUGH AURORA, FOR \(J=1,1, J . G . M\) \\
\hline & \(\operatorname{TERM}(L, I)=\operatorname{TERM}(L, I)+X X(L, J) * D 1(J, I)+U U(L, J) * D 2(J, I)\) \\
\hline AURORA & CONT INUE \\
\hline \multirow[t]{3}{*}{MARTA} & CONT INUE \\
\hline & THROUGH IRMA, FOR \(I=1,1, I . G . M\) \\
\hline & THROUGH IRMA, FOR J=1, \\
\hline IRMA & \(\operatorname{DELF}(W, I, J)=\operatorname{TERM}(1, J)\) \\
\hline \multirow[t]{3}{*}{PATY} & THROUGH SONIA, FOR I=1,1,I.G.M \\
\hline & THROUGH SONIA, FOR J=1,1,J.G.M \\
\hline & TERM(I, J) = EM (W,I, J) \\
\hline \multirow[t]{2}{*}{SONIA} & UU(I,J) \(=\mathrm{XX}(1, \mathrm{~J})\) \\
\hline & TRANSFER TO MAGUE \\
\hline \multirow[t]{5}{*}{CARMEN} & WHENEVER NORM.LE.10..P.-07,TRANSFER TO DIANA \\
\hline & THROUGH YOCO, FOR L=1, \(1, L . G . M\) \\
\hline & THROUGH YOCO, FOR I=1,1,I.G.M \\
\hline & NTERM(L, I ) \(=0\) 。 \\
\hline & THROUGH JOSEFA, FOR \(J=1,1, J . G . M\) \\
\hline JOSEFA & NTERM(L, I) \(=\) NTERM(L, I) + B (L, J)* ( \(11, \mathrm{~J}, 1)\) \\
\hline \multirow[t]{7}{*}{YOCO} & CONT INUF \\
\hline & \(w=w+1\) \\
\hline & THROUGH ELISA, FOR I=1,1,I.G.M \\
\hline & THROUGH ELISA, FOR \(J=1,1, J . G . M\) \\
\hline &  \\
\hline & \(x \times(1, j)=C(1, I, J) /(R O S A+2\). \\
\hline & EM( \(W, I, J)=C(1, I, J)\) \\
\hline \multirow[t]{2}{*}{ELISA} & \(\operatorname{TERM}(1, J)=C(1,1, J)\) \\
\hline & TRANSFER TO ISABEL \\
\hline
\end{tabular}

ran de r Mormo

\section*{PERTUR}

Purpose: to compute the forcing signal vector at the current
time. The program keeps track of the past.

Remarks: subroutine called by TIMDEL.
```

EXTERNAL FUNCTION (TA,LL)
PROGRAM COMMON EM,DELF,M,R,W,A,B,D1,D2,U
DIMENSION EM(4000,H),DELF(4000,H),A(400,G),B(400,G)
DIMENSION D1(400,G),D2(400,G),U(400,E)
INTEGER I,LL,R,W,M
VECTOR VALUES G=2,1,0
VECTOR VALUES E=2,1,0
VECTOR VALUES H=3,1,0,0
ENTRY TO PERTUR.
G(2)=M
H(2)=M
E(2)=W
H(3)=M
U(LL,1)=---*
U(LL,2)=-----

U(LL,R)=----
FUNCTION RETURN
END OF FUNCTION

```

This empty page was substituted for a blank page in the original document.

\section*{Report \# LLSS-TR-45}

Each of the following should be identified by a checkmark:
Originating Department:
\(\square\) Artificial Intellegence Laboratory (AI)
Laboratory for Computer Science (LCS)
Document Type:
\(\square\) Technical Report (TR) \(\square\) Technical Memo (TM)
\(\square\) Other: \(\qquad\)
Document Information Number of pages: 104 (III-imAGEF) Not to include DOD forms, printer instructions, etc... original pages only.
Originals are: Intended to be printed as :
Single-sided or
Double-sided
\(\square\) Single-sided or
X Double-sided

Print type:


Check each if included with document:
\begin{tabular}{lll}
\(\searrow\) DOD Form & \(\square\) Funding Agent Form & \(\searrow\) Cover Page \\
\(\square\) Spine & \(\square\) Printers Notes & \(\square\) Photo negatives
\end{tabular}
\(\square\) Other:
Page Data:
Blank Pages (by peso number): \(\qquad\)
Photographs/Tonal Material may pep number):



Scanning Agent Signoff:
Date Received: 1211195 Date Scanned: 12122185 Date Returned: 12128195

Scanning Agent Signature: \(\qquad\)

\section*{UNCLASSIFIED}

Security Classification

13. ABSTRACT

This thesis developes a method for digital simulation of linear time-invariant dynamic systems with lumped parameters and time delays. Ordinarily, such systems can be described by a linear matrix differential-difference equation, which can be transformed to an infinite-dimensional difference equation whose solution is obtained in a recursive way.

As the present method depends on the accuracy of evaluation of the matrix exponential, a simple computational procedure based on the truncation of the infinite series for \(\mathrm{e}^{\mathrm{AT}}\) is described.

In addition, an algorithm is given which ensures that the transient state of an unforced linear time-invariant dynamic system with zero time delay is calculated to a specified accuracy.

Several sample problems are included.
14. KEY WORDS
\begin{tabular}{lll} 
Computers & Machine-aided cognition & Simulation \\
Digital simulation & Multiple-access computers & Time-sharing \\
Linear dynamic systems & On-line computers & Time-shared computers
\end{tabular}

DD
, nook. 1473
(M.I.T.)

\section*{Scanning Agent Identification Target}

Scanning of this document was supported in part by the Corporation for National Research Initiatives, using funds from the Advanced Research Projects Agency of the United states Government under Grant: MDA972-92-J1029.

The scanning agent for this project was the Document Services department of the M.I.T Libraries. Technical support for this project was also provided by the M.I.T. Laboratory for Computer Sciences.
```


[^0]: * Numbers in parenthesis refer to items in the bibliography.

