
MAC-TR-42

DESIGN AND IMPLEMENTATION

OF A

TABLE-DRIVEN COMPILER SYSTEM

by

Chung L. Liu

Gabriel D. Chang

Richard E. Marks

July 1967

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This empty page was substih1ted for a
blank page in the original document.

ABSTRACT

Our goal is to provide users of the table-driven compiler system with an environment

within which they can freely design and produce their compilers. The primary design cri­

terion is generality so that the users can define a large class of input languages oriented to­
ward any kind of problem-solving purposes, and can also define a large class of object

programs to be executed on different computer systems. Therefore, in our system we do

not limit the users to specific ways of doing syntactic analysis, or doing storage allocation,

or producing binary programs of a specific format for a particular computer system. What

we provide are mechanisms that are general enough for whichever way a user desires to
build his compiler.

The table-driven compiler system consists of a base program and two fixed higher•

level languages - the Table Declaration and Manipulation Language and the Macro Inter­

pretation Language - together with the corresponding translators which generate the control

tables according to the user's specification. A third higher-level language - the Syntax

Defining Language - and its corresponding translator are also needed. However, their defi­

nitions are left to the users for the reason of providing them with greater flexibility in

specifying the method of syntactic analysis. The base program is controlled by the control

tables to perform the task of translating source programs into object machine codes. It is
a general program which is independent of the particular source language being translated

as well as the method of translation. The control tables contain an encodement of the
syntax of the source language, an encodement of the method of translation and an encode­

ment of the characteristics of the target machine.

In our design, we emphasize the segmentation of the system so that the functions

of each section will be clearly defined and be brought out in evidence. The communication

problem between the segments is not a difficult one to handle as illustrated in our design.

It should also be pointed out that for the generality and flexibility we try to attain, less

consideration is placed on efficiency.

iii

This empty page was substih1ted for a
blank page in the original document.

TABLE"OF CONTENTS

Section

ABSTRACT

LIST OF ILLUSTRATIONS

LIST OF TABLES

I

II

III

INTRODUCTION AND OVERVIEW

GENERAL ORGANIZATION

2.1 Introduction

2.2 The Syntactic Analyzer

2.3 The Table Processor

2.4 The Assembler

THE SYNTACTIC ANALYZER

3.1

3.2

3.3
3.4

3.5

3.6

Introduction

Organization of Data Tables

3.2.1 Referencing the Information Tables

3.2.2 STAB - The Analyzer's Data Table

Routine LEXICAL

Routine TEST

Routine ACTION

Related Information

3.6. l The Analyzer as a Subroutine

3.6.2 Recursive Calls

3.6.3

3.6.4

3.6.5

Control Table References

BCD Data

ACTION Operations

IV THE TABLE PROCESSOR

4.1

4.2
4.3

4.4

4.5

Introduction

Information Tables and Main Directory

Fixed Pointer Table

Table Manipulation Table

Operation of the Table Processor

v

iii

vii

viii

3
3
4

6

9

IO

IO
11

13

17

19

21

21

21

22

22

23

25

25

28
30

30

vi TABLE OF CONTENTS (continued)

Section

v THE ASSEMBLER
5.1 Introduction 33

5.2 Macro List 33

5.3 Temporary Storage Pool 33

5.4 Use of Machine Registers 36

5.5 Macro Interpretation Table 36

5.6 Operation of the Assembler 36

VI THECONTROLLANGUAGES

6.1 Introduction
6.2 An Example Syntax Defining Language

6.3

6.4

6.2.1 Lexical Declarations

6.2.2
6.2.3
6.2.4

Test Declarations
Stack Declarations

AT AB Statements
6.2.5 TTAB Statements
Table Declaration and Manipulation Language
6.3. l Table Declaration Statements
6.3.2 Table Manipulation Statements
Macro Interpretation Language

VII CONCLUSION

BIBLIOGRAPHY

APPENDICES
A Description of STAB, LTAB, TTAB, and ATAB Fields

43

43

43

44

45

46
48

50
50

51
55

61

63

65
67

B List of ACTION Operations 69
C Error Comments 71
D BNF Specification of Terminal Symbols and Basic Syntactic Types 73

E Flowcharts for the Assembler 75
F Sample Source Language and Control Language Compilation Statements 81

vi

LIST OF ILLUSTRATIONS

Figure Page

2-1 Organization of the Base Program 4

2-2 Tabular Control of the Base Program 5

2-3 The Bootstrap Operation 7

3-1 The Syntactic Analyzer 10

3-2 Array vs. Pushdown (Stack Implementation) 12

3-3 Character Testing Sequence for Routine LEXICAL 14

4-1 Example of an Information Table LITT AB used to Store Literals 26

4-2 Example Block in the Main Directory for Figure 4-1 Literal Table 27

4-3 Linkage Between an Information Table and the Fixed Pointer Table 28

4-4 Example of the Merge Operation 29

5-1 Format of a Macro with Three Arguments 34

5-2 Use of a Temporary Storage Pool 35

E-1 Overall Flowchart for the Assembler 76

E-2 Flowchart for Routine GENPRO 77

E-3 Flowchart for Routine GEN 78

E-4 Flowchart for CONVER and CONVGN 79

vu

viii LIST OF TABLES

Table Page

3-l Interface Routines Between Syntactic Analyzer and Table Processor 11

3-2 Fields for Entries in LT AB Control Table 15

3-3 Fields for Entries in TT AB Control Table 17

3-4 Fields for Entries in AT AB Control Table 19

4-1 Fields for Entries in Table Manipulation Table 31

5-1 Entries and Fields for Macro Interpretation Table 37

5-2 Operands and Comparands for Macro Interpretation Table 39

6-1 Markstran Macro Definitions 47

viii

SECTION I

INTRODUCTION AND OVERVIEW

The application of.digital computers to diverse fields has prompted the design of many

probl~m-oriented programming languages. Although developing a compiler for a special pur­

pose language is no longer a mysterious task, it is still, in most cases, a tedious task that may

consume many man-years. The purpose of developing a table-driven compiler system is to

allow a language designer to produce and modify a compiler for his special language at a re­

duction of the time currently required. This facility provides a simulation environment for

testing new syntactic constructions and new translation techniques for the source language,

and lends itself to the more rapid development of new programming languages, especially in

a time-sharing environment.

The notion of a "table-driven compiler" is an extension of the notion of a "syntax­

directed compiler" first studied by E. Irons. The difference between a conventional (i.e.,

not syntax-directed or table-driven compiler) and a syntax-directed compiler is that in a con­

ventional compiler the syntax of the source language is buried in the coding of the compiler

itself; the slightest deviation from the original syntax requires tampering with the original

coding of the compiler - often, a hopeless task. In a syntax-directed compiler, the encoding

of the syntax of the source language is kept in tables separated from the remainder of the

compiler. The tables control the recognition of strings in the source language and may be

readily changed so that the same processing program may handle source languages of

differing syntax.

The idea of using replaceable tables to specify the syntax of a source language to a com­

piler is extended in this report. In addition to tabular control of syntactic analysis, the sys­

tem presented here allows the compiler designer to construct tables controlling the allocation

of storage space, the method of translation, and the assembly of binary machine code. To

design a compiler for a new source language, the designer need only specify these tables. To

modify a compiler, he need only change the appropriate entries in the existing tables.

The design philosophy of our "Table-driven Compiler System" is not to provide the

user with an all-inclusive set of compiling facilities, but rather to provide him with an

environment within which he can freely design and produce his own compiler. We wish to

allow as large a class of problem-oriented input languages and object (i.e. machine) languages

as possible. We try not to limit the compiler designer to specific methods for syntactic

analysis or storage allocation or to specific binary machine codes.

This empty page was substih1ted for a
blank page in the original document.

3

SECTION II

GENERAL ORGANIZATION

2.1 INTRODUCTION

The table-driven compiler system described here consists of a) a base program and b) a

set of control tables for controlling the operation of the base program. The control tables,

in turn, are specified by statements in the corresponding control languages. The base pro­

gram, when supplied with a set of control tables, first translates source programs into an

equivalent set of "macro" instructions and then generates the binary machine code for the

macro instructions. When interpreted by their bootstrap translators, statements in the con­

trol languages are encoded into the control tables needed by the base program to govern the

method of syntactic analysis, the allocation of storage space, and the translation of the

"macro" instructions.

To provide the base program with a complete set of control tables, the designer must

prepare sets of statements in three control languages. In the first of these languages, the

"Syntax Defining Language", the designer specifies the control tables for syntactic analysis.

Both the Syntax Defining Language and its bootstrap translator must be prepared by the

designer. It is expected that eventually two or three syntax defining languages and their

bootstrap translators will be held within the system for a general use. In the second of

these languages, the "Table Declaration and Manipulation Language", the designer specifies

the control tables for allocation of storage space. In the third of these languages, the "Macro

Interpretation Language", the designer specifies the control tables for the method of trans­

lation of the equivalent "macro" instructions generated by the base program from the source

language program. The latter two languages and their bootstrap translators are provided in

the system.

As shown in Figure 2-1, the base program can be divided into three parts: the Syntac­

tic Analyzer, the Table Processor, and the Assembler. Each part is controlled by one or more

control tables, as shown in Figure 2-2.

2.2 THE SYNTACTIC ANALYZER

The Syntactic Analyzer scans programs written in the source language, recognizes syn­

tactic types, and generates a set of equivalent macro instructions that will later be interpreted

by the assembler. The Syntactic Analyzer also transmits storage allocation information to

the Table Processor. The Syntactic Analyzer is controlled by three tables: the Lexical Table,

the Test Table, and the Action Table. (See Figure 2-2.) The Lexical Table and the Test

4

Source Program

Base P rogram

I -----~- ------,

I
I
I
I
I
I
I
I
I
L_

•
Syntactic

Analyzer

/
Table

Processor

~ •

Assembler

-----t---

Object

Program

I
I
I
I
I
I
I
I
I

_ ___ _J

Figure 2-1 . Organization of the Base Program

SECTION II

Table control the recognition of syntactic types. The Action Table controls the generation

of macros and the passage of related information to the Table Processor.

2.3 THE TABLE PROCESSOR

The Table Processor is.divided into two parts. The first part accepts an item of informa­

tion (e.g., a variable name) from the Syntactic Analyzer, enters it into the appropriate in­

formation table (e.g., a symbol table), and returns a pointer to the item (e.g., the pointer

to the corresponding entry in the symbol table). The second part, called after the Syn­
tactic Analyzer has completed its analysis, sorts and merges the information tables and

assigns addresses to the symbols and literals within the tables. The Table Processor is con­

trolled by two tables: the Main Directory, and the Table Manipulation Table. The Main

Directory contains the format specification of the information tables, i.e., the maximum

number of entries in each information table, the number of fields in each entry, the packing

mask and shift for each field, and a sorting indicator designating whether the table should

GENERAL ORGANIZATION

Source Program

l Base Program

,__ __ Le_x_i_ca_1_T_a_b_1e_(_L_T_A_B_, _ _.J ..f "- - - -1
I _____..___

._ __ T_e_s_t_T_ab_l_e_(T_T_A_B_l _ _.~~ ~

Action Table (AT AB) I -'
;..,.....-

--I---,
I

L--_ ____.r I

Table Manipulation Table

I
I
I

.j

.__ _ ____.L II _ Main Directory l

._ __ 1_n_fo_r_m_a_ti_o_n_T_a_b_1e_s_ l"'f

I
I

,,i __ ,......._....J

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

Macro Interpretation

Table
l
I
L

__ _J

Assembler

- _J

Object Program

Conventions: ___,.Solid lines indicate program flow

c::::J- - - -•Dotted lines away from tables designate control tables

used by the base program

C:J,. - - - - Dotted I ines into tables designate control tables formed

by the base program

These conventions will apply to all figures in the text

Figure 2-2. Tabular Control of the Base Program

---,

Machine Code

Table

s

6 SECTION II

be kept sorted. The Table Manipulation Table designates how the information tables are to

be processed after they have been constructed during the syntactic analysis_

2.4 THE ASSEMBLER

The Assembler interprets the list of macro instructions generated by the syntactic

analyzer and produces the correspondlng machine code. The Assembler is controlled by two

tables: the Macro Interpretation Table and the Machine Code Table. The Macro Interpreta­

tion Table specifies how each macro is to be translated. The Machine Code Table gives the

binary code for each machine instruction. The Assembler frequently calls the Table Processor

to extract information collected in the information tables.

To design a compiler for a particular source language, the designer must specify a set of

control tables for the source language. (See Figure 2-3.) Using the Syntax Defining Lan­

guage, he must specify the rules for recognizing source language constructions and the

macros to be generated upon the recognition of these constructions. This information must

be assimilated by a bootstrap translator and stored in the Lexical Table, Test Table and

Action Table. Using the Table Declaration and Manipulation Language, he must declare all

information tables to be used by the base program and the way these tables are to be sorted

or merged. This information must be assimilated by a second bootstrap translator and

stored in the Main Directory and the Table Manipulation Table. Using the Macro Interpret­

ation Language he must specify the machine code translation of the macros generated by the

Syntactic Analyzer. This information must be processed by a third bootstrap translator and

stored in the Macro Interpretation Table. (An extended example of the use of the control

languages is given in Section VI.) The designer must also supply a Machine Code Table and

a number of parameters to the compiler system, such as the length of certain temporary

storage blocks, the number of machine registers in the computer in which the object pro­

gram will run, and the identification bits for each instruction.

GENERAL ORGANIZATION 7

Syntax

Defining

Statements

Table Declaration

and Manipulation

Statements

Macro

Interpretation

Statements

Bootstrap

Translator

Bootstrap

Translator

Bootstrap

Translator

I
I

)

Lexical Table l Base Program

_ _____.f' r-- - --1
1'

~.__ ___ T_e_st_T_ab_l_e __ __,~ + -
', I / \ y

~ ___ A_ct_io_n_T_a_b1_e _ __,r I
I
I
I
I

~---M_a_i_n_D_i_rec_to_r_v __ _.~ ~

' Table Manipulation Table

I
1
I
I
I I Assembler I
L_i ___ _J

I
I

I
--------/ Macro Interpretation

Table

Figure 2-3. The Bootstrap Operation

This empty page was substih1ted for a
blank page in the original document.

SECTION III

THE SYNTACTIC ANALYZER

3.1 INTRODUCTION

The purpose of the Syntactic Analyzer is to operate on the source language input

strings and produce a list of equivalent macro instructions. The analyzer consists of three

routines, called LEXICAL, TEST, and ACTION. These routines have control tables, re­

spectively called LTAB, TTAB, and ATAB. Another table, STAB (pronounced S-TAB),

is used to store the results of partial analysis. Figure 3-1 shows the organization of the

analyzer.

Routine LEXICAL, as controlled by LTAB, performs the lexical analysis on the basic

syntactic types of the input string. When a basic syntactic type is recognized (a variable

name or literal), LEXICAL passes this information (via routine ACTION) to the Table

Processor for entry into an information table. The Table Processor returns a pointer to

the newly formed entry * . This pointer will be stored in the table ST AB and control will

be given to routine TEST.

Routine TEST, as controlled by TT AB, performs the comparisons between the basic

syntactic types associated with the ST AB pointers and an encodement of the syntax which

is stored in the table TTAB. When a successful sequence of tests are performed (when a

designated syntactic pattern is found) control is given to routine ACTION.

9

Routine ACTION, as controlled by ATAB, produces the desired set of macro instruc­

tions for the portion of the input string matched by routine TEST. By manipulating the

pointers tested by routine TEST, ACTION also alters the STAB table and performs book­

keeping operations upon the fields of the pointers. For example, when an identifier is used,

ACTION calls the table processor to check its tables of used identifiers for consistency with

current usage (e.g., to prevent the usage of a label as an indexed array name).

The fields for the control table entries are given in Appendix A and will be discussed

in the following sections.

*In general, the pointer returned by the Table Processor does not point directly to the entry created for

the new item. Instead, the pointer points to an entry in the Main Pointer Table which, in turn, contains

the direct pointer to the item. The additional level of indirectness allows the information table entries to

be reordered without requiring that all references to the item be updated; only the pointer in the Main

Pointer Table need be updated. For ease of reading, when an Information Table Pointer is mentioned, we

will not explicitly state this additional level of indirectness.

10

Source Program

I
Syntactic Analyzer _L r----- --

,___L T_A_s _ _,~ -:- -
LEXICAL ------,

I
I

SECTION III

I
I
I
I

TTAB

I
I
I

~-I--.._ __ ___._ I

I
I

TEST $
I
I
I
I
I

,___A_TA_s_ ~ -~ - ACTION

I
L--~--1-

// I
JI t

Table Processor Assembler

Figure 3-1. The Syntactic Analyzer

3.2 ORGANIZATION OF DATA TABLES

I
I

_ _J
I
I
I

_J

Before discussing the control tables LTAB, TT AB, and AT AB for the Syntactic Anal­

yzer, we will discuss the two major tables affected by the Syntactic Analyzer: the informa­
tion tables within the Table Processor, and the internal table ST AB containing numeric values

and pointers to the information tables.

3.2.1 Referencing the Information Tables

The information tables of the Table Processor are used for storing quantities such as

variable names and terminal symbols. The Table Processor and its information tables are

external to the Syntactic Analyzer. Within the analyzer an entry in an information table is

referenced by the entry points issued by the Table Processor. Within the Table Processor

there are two values associated with the entry pointer: a table number and an entry num­

ber. The table number identifies the information table that the entry is in; the entry

number identifies the location of the entry within the table. The table number also gives

the location within the Table Processor of the packing information describing the location of
each field within an entry. A field is the smallest quantity of information considered as an
entity. The size of a field may range from one bit to several computer words. When referenc­
ing a field, both an entry pointer and a field number must be given. The field number identifies

THE SYNTACTIC ANALYZER 11

which field in the entry is referenced. Table 3-1 lists the Table Processor interface routines
called by the analyzer to store and retrieve information to and from the information tables.

Routine

INVAL:

OUTVAL:

TABNO:

INCRM:

SENTER:

Table 3-1. Interface Routines Between Syntactic

Analyzer and Table Processor

Function and Calling Parameters

puts data in tables of the Table Processor.
I NVAL (value, entry pointer, field number)

fetches data out of tables of the Table Processor.
OUTVAL (value, entry pointer, field number)

gets table number corresponding to a given entry pointer.
TABNO (entry pointer, table number)

gets entry pointer for a new zero entry within given table.
INCRM (entry pointer, table number)

(search and enter) searches a given field within all entries
of a given table for a given value. If the value is found,
SENTER returns the negative of the entry reference num-
ber. If the value is not found, SENTER forms a new entry
which has the given value in the given field and returns
the pointer to the new entry.
SENTER (value, table number, field number, entry pointer)

3.2.2 ST AB - The Analyzer's Data Table

The ST AB table is constructed by the analyzer to store the results of partially analyzed

strings. Entries within the ST AB may contain two types of fields, numeric values and

pointers. The pointers point to entries in the information tables or to other STAB entries.

The pointers serve as a common representation for the diverse elements to which they

point. An entry in ST AB consists of six fields:

NAME Likely bits Use

PINTP 2 bits 0 - PPTR is the entry number of another ST AB entry
1 - PPTR is a numeric value - PPTRS is its sign
2 - PPTR is a pointer to an entry in an information table

PPTR 15 bits

PPTRS 1 bit

PADD 15 bits arbitrary additional information

PFLGS 1 bit flag for arbitrary use

PFLGF 1 bit flag for arbitrary use

12 SECTION III

The last three fields may be used by the compiler designer as will be shown in the example

of Section IV. The number of binary bits associated with each field is given only to aid the

reader is visualizing the size of a field and is not fixed.

The entries in ST AB may be organized by the designer into blocks of pushdowns and

arrays. Whether an entry in ST AB is referenced as a pushdown entry or an indexed member

of an array is determined by the way in which the AT AB and TT AB tables control the

accessing of entries. Pushdowns and arrays have similar implementations. For example,

consider the lists of entries A and B whose base addresses relative to the origin of ST AB are

X and Y, i.e., we define loc A(O) = X and loc B(O) = Y. (See Figure 3-2.)

A(5)

A(4)

A(3)

A(2)

A(l)

A(O)

A(-1)

PAL X+5

L X+4

p X+3

CD x +2

AX x + 1

-- x

5 X-1

(a) An array A of length 5

B(5)

8(4)

B(3)

B(2)

B(l)

B(O)

B(-1)

-- Y+5

-- Y+4

Q Y+3

FOX Y+2

G Y+l

3 y

5 y - 1

(b) A pushdown stack B of maximum

length 5 and of present length 3.

Figure 3-2. Array vs. Pushdown Stack Implementation

If the list A is declared as an array then A(-1), i.e., ST AB (X-1), contains the maximum size

of the array. If the list B is declared as a pushdown, then B(-1) contains the maxim uni size

of the stack and B(O) contains the current number of entries. When an entry is inserted into

the pushdown, B(-1) is incremented and the new entry is placed in Y + B(O). When an entry

is removed from the pushdown, B(O) is decremented.

A pushdown stack may be referenced like an array, i.e., without invoking the pushdown

mechanism to "manipulate" the most recently inserted entry. For example, to fetch the

most recently inserted entry in the list B of Figure 3-2(b) without decrementing the push­

down counter, the reference B(B(O)), rather than the reference STACK (B) *,can be used.

*Stack is a pseudo-function that "pops up" the most recently inserted entry.

THE SYNTACTIC ANALYZER 13

3.3 ROUTINE LEXICAL

Routine LEXICAL recognizes basic syntactic types. These include key words (GOTO,

IF, THEN), terminal symbols(+,-,*), identifiers (ALPHA, B, C), and literals (2,3.14). Each

block of LT AB entries governs the recognition for one basic syntactic type. LEXICAL is

called with a pointer to a sequence of AT AB entries; each AT AB entry contains a pointer to

a block of LT AB entries and a pointer to an information table and field number to be used

by the table processor if an acceptable syntactic type is found.

LEXICAL performs the analysis designated by each LT AB entry within the block.

LEXICAL uses the information table and field number to place an entry in the information

table. If the analysis designated by the block succeeds, the LEXICAL truth value is set to

TRUE: the pointer to the information table entry is placed on top of a system stack called

PSTK; and control is returned to ACTION. If the analysis designated by the block fails,

LEXICAL automatically performs the lexical analysis designated by the block of LT AB

entries pointed to by the next ATAB entry. If the block of analysis pointed to by the last

AT AB entry fails, the LEXICAL truth value is set to FALSE and control is returned to

ACTION.

The LT AB entries specify one of three mechanisms for handling a string that is recog­

nized as a basic syntactic type: a) the string is to be inserted into an information table

(a literal or identifier), b) a search is to be made to match the string with an existing entry in

the information tables (key words), or c) no action is to be taken, the information table

entry number has already been coded into the LT AB entry (a terminal symbol). In any

case, LEXICAL returns a truth value indicating whether an acceptable information table

entry exists and a pointer is given to the entry.

Besides LT AB there are two important tables used by LEXICAL: CLIST and CPLIST.

Table CLIST, which is part of STAB, is used to store the BCD characters of the input string -

one BCD character per CLIST entry. The CLIST entries are periodically shifted or deleted

to accommodate new characters. Table CPLIST contains the "property" bits associated

with each of the sixty-four possible BCD characters. The interpretation of the bits is

defined by the control tables. For example, the characters 0 to 9 are likely to have a prop­

erty bit for "number" set, while the characters 0 to 7 are also likely to have a property bit

for "octal number" set, and the character 0 of the special property bit for "zero value" set

(the latter for use in eliminating leading zeros in literals). A maximum of 15 property bits

can be defined. The testing for the occurrence of a certain class of character, i.e., a char­

acter with a certain "property", is basic to lexical analysis.

The system variable BLPROP is used to store the property bits for ignorable characters

(blanks). LEXICAL uses BLPROP to scan the characters in the input string until a charac­

ter that does not have the properties of BLPROP is found, and only the characters that do

not have the properties of BLPROP are added to CLIST. This technique provides a quick,

non-interpretive scan of ignorable characters.

14 SECTION III

LEXICAL forms temporary BCD strings which are used by the search routine in calls

to the Table Processor. As each character is analyzed, LTAB indicates whether this char­

acter should be added to the BCD strings. When the lexical analysis designated by a block

of entries is finished, the newly formed BCD string will contain a copy of the accepted

string or its compressed equivalent (the string "3.000" is usually compressed to "3").

The basic testing sequence for lexical analysis is outlined in Figure 3-3. The fields

within an LT AB entry and their interpretation in controlling lexical analysis are given

in Table 3-2.

Use next ATAB line for new

series of tests. back. up

input string pointer to

point to first unrecognized

character.

Form pointer to recognized

string; return control to ACTION

No

Perform tests on characters as indicated by

current L TAB entry: add character to BCD string

and advance input stnng pointer if necessary

Yes No

analyzed a termmal character1

Figure 3-3. Character Testing Sequence for Routine LEXICAL

Example:

To illustrate the L TAB-LEXICAL operation, consider the following Backus-Naur Form

specification* for the syntactic type "literal":

digit

integer

literal

0111213141516171819

[(digit)]~

(integer)(blank) I <integer). (blank)

. (integer)(blank) I (integer). (integer)(blank)

The table CPLIST might be initialized as:

CPLIST (0)

CPLIST (l)

CPLIST (33)** 2
CPLIST (60)*** = 4

The LT AB entries for this syntactic type might be as follows (continued top of p.16):

*In addition to the notation used in pure Backus-Naur form, we use the brackets

any number from k
1

through k2 occurrences of the enclosed expression.

**33 is the octal equivalent for the BCD character"."

***60 is the octal equivalent for the BCD character blank

] k2 to designate
kl

THE SYNTACTIC ANALYZER 15

Table 3-2. Fields for Entries in LTAB Control Table

No. of
Field Bits Interpretation

(1) Get character

LCHGXB 1 0 - use input string character previously tested

1 - examine LPOS and LPLMN to get new char-

acter from input string

LPOS 5 relative location in CLIST of characters to be tested

LP-LMN 1 0 - set X = XC + LPOS (see legend at bottom of

table for definition of XC)

1 - set X = XC-LPOS

(2) Perform Test

LTEST 15 character (LWHAT = 1) or property bits (LWHAT = 2)

to be tested for

LWHAT 2 0 - no test, assume test is TRUE

1 test if "CLISTL(X) = L TEST"

2 test if "CPLIST (CLIST(X)) .A. L TEST I 0".

(3) If test is TRUE

LTBCD 2 0 - take no action

1 - add CLIST (X) to BCD string

2 - excise BCD string

LADVN 6 relative location in CLIST of latest characters

recognized (L TADVN = 2)

LTADVN 2 0 - take no action

1 - set XC = X

2 - set XC = XC + LADVN

3 - set XC = SXC

LTDONE 15 0 - perform new test from entry L TOONE

of LTAB

1 - ATAB test failed; reset XC to SXC, excise BCD

string, and start next AT AB test

2 - terminal character found; L TAB (AFALSE) is

the table name; LARG (AFALSE) is the field

number for the entry

3 - terminal character found; set pointer

to L TOONE

(4) If test is FALSE

LFBCD, LFADVN, - similar set of fields for FALSE test result. (The

LFDONE, LFALSE field LADVN is not duplicated.)

System variables used by LEXICAL:

XC - Location in CLIST of last characters analyzed

LXC - Location in CLIST of last character input to CLIST

SXC - Location in CLIST of first character that has not been identified

16 SECTION III

Entry Interpretation

LTAB (20)

LGHGXC = 1, LPOS = 0, LPLMN = 0, Use current character;

LTEST = 1, LWHAT = 2, Test if character has property bit for "digit set",

i.e., test if character is a digit

L TBCO = 1, L TOONE = 22, L TRUE = 0, if TRUE, add character to BCD string and test

LTAB (22)

LFDONE = 24, LFALSE = 0. if FALSE, test L TAB (24).

LTAB (22)

LCHGXC = 1, LPOS = 1, LPLMN = 0, Use next character;

LTEST = 1, LWHAT = 2, test if character is a digit;

L TBCO = 1, L TADVN = 1, L TOONE = 22, if TRUE, add character to BCD string and repeat

LTRUE = 0, test for next character;

LFDONE = 24, LFALSE = 0. if FALSE, test L TAB (24).

LTAB (24)

LCHGXC = 0, Use previous characters;

L TEST = 33, LWHAT = 1, test if character is a "u . '

LTBCD = 1, LTADVN = 1, LTDONE = 28, if TRUE, add character to BCD string and test

LTRUE = 0 LTAB (28);

LFDONE = 26, LFALSE = 0. if FALSE, test L TAB (26).

LTAB (26)

LCHGXC = 0, Use previous character;

L TEST = 2, LWHAT = 2, test if character is a blank;

LTBCD = 0, LTADVN = 1, LTRUE = 2, if TRUE, search for literal in table processor;

LFALSE = 1. if FALSE, reset BCD string and try next

ATAB test.

LTAB (28)

LCHGXC = 0, LPOS = 1, LPLMN = 0, Use next character;

LTEST = 1, LWHAT = 2, test if character is a digit;

LTBCD = 1, L TADVN = 1, LTDONE = 28, if TRUE, add character to BCD string and repeat

LTRUE = 0 test for next character;

LFDONE = 26, LFALSE = O. if FALSE, test L TAB (26).

LTAB (30)

LCHGXC = 0, Use previous character;

L TEST = 33, LWHAT = 1, test if character is a
II II . '

L TBCD = 1, L TOONE = 28, if TRUE, test L TAB (28);

LFALSE = 1. if FALSE, report ATAB test failed.

THE SYNTACTIC ANALYZER

3.4 ROUTINE TEST

Routine TEST is called by routine ACTION to make a series of tests on the entries

in STAB in order to identify patterns of basic syntactic types. If a series of tests is suc­

cessful, control is returned to routine ACTION.

TEST performs the tests designated by a sequence of TT AB entries. The fields for a

TT AB entry are given in Table 3-3. The tests allowed in TEST are rather simple; if a more

complex test is needed, a special call can be made to ACTION. The special call initiates a

routine that operates more slowly than TEST but has a general arithmetic testing facility.

The pointer that is accessed during the scan of the first part of the TT AB entry is given as

an argument to ACTION; the result of the call is a truth value, which, upon return from

ACTION, is used in the same manner as a truth value computed internally within TEST.

Ultimately TEST must return control to ACTION.

Table 3-3. Fields for Entries in TT AB Control Table

Field No. of Bits Interpretation

(1) Get entry number of an

STAB entry (all entry

numbers refer to ST AB)

TLOC 15 entry number

TSTPT 2 1 - TLOC is entry number of a stack base (as

noted previously, STAB may be organized

in blocks of stacks or arrays)

2 - TLOC is entry number of a value

3 - TLOC is entry number of a pointer

TPOS 15

TPLMN 1 if TSTPT = 1:

0 - TPOS is added to stack base

1 - TPOS is subtracted from current

stack limit

if RSTPT = 2:

0 - TPOS is added to value pointed to

17

1 - TPOS is subtracted from value pointed to

(2) Check for indirect ref.
(if TSTP = 3)

TINDR 1 1 - if the pointer in ST AB points to another

pointer (Pl NTP = O), use that pointer

18 SECTION III

Table 3-3. Fields for Entries in TTAB Control Table (Cont.)

Field No. of Bits Interpretation

(3) Extract proper field from entry

TT ABLE 15 entry number of last entry to be checked

TTBTST 1 0 . ignore TT ABLE, check only one entry

1 . test all entries up to TTABLE

TWHAT 3 0 - no test; assume test is TRUE

1 - a complex test is indicated; pass control
to ACTION for test and return to (5) below.

(ACTION returns a truth value)

2 - get PPTR field of ST AB entry

3 - get PADD field of STAB entry

4 - get PFLGS field of STAB entry

5 - get PFLGP field of STAB entry

TSFLD 15 field number

TFLDTS 1 0 - ignore TSFLD

1 - get field TSF LO from table processor using
value gotten above as entry number

(4) Perform the following test
on the field

TT EST 15 value to be matched

TM NP RP 1 0 - test if "field = TTEST"

1 - test if "field .A. TTEST = O"

(5) If test is TRUE

TTDONE 15 entry number

TT RUE 1 0 - perform another test from TTAB(TTDONE)

1 . go to ACTION and perform operations
specified by ATAB (TTDONE) and the

succeeding entries.

(6) If test is FALSE

TFDONE 15 entry number

TFALSE 1 0 - perform another test from TTAB (TFDONE)

1 - go to ACTION and perform operations
specified by ATAB (TFDONE) and the
succeeding entries

THE SYNTACTIC ANALYZER

3.5 ROUTINE ACTION

After TEST finds a particular syntactic pattern in the input string, routine ACTION

generates the equivalent set of macro instructions and performs bookkeeping operations.

When ACTION completes its processing, control is returned to TEST for more pattern

testing.

There are two modes in which the controlling AT AB entries may be interpreted. In

19

the normal mode the entries call for access to the information table fields. Operations such

as printing or transfers of control, however, use literal arguments so frequently that it would

be unduly time-consuming to use the field accessing routines of the Table Processor. For

these operations a special mode of interpretation exists in which the required fields are taken

directly from A TRUE and AFALSE fields of the AT AB entry. These latter two fields over­

lay the fields interpreted in the normal mode.

There are two system pushdown stacks used by routine ACTION: VSTK, a pushdown

for values, and PSTK, a pushdown for pointers. They are used for the storage of temporary

results. The fields within an AT AB entry and their interpretation are given in Table 3-4.

Table 3-4. Fields for Entries in AT AB Control Table

Field No. of Bits l Interpretation

(1) Initialize value of dummy variable NUMBER

APTR 15

ANUM 2 0 - Let NUMBER= value on top of VSTR

1 - Let NUMBER= APTR

2 - Let NUMBER= STAB(APTR)

ASTK 3 0 - Let NUMBER= STAB (NUMBER
(AVLPTR below must= 1.)

1 - NUMBER is base of pushdown

2 - NUMBER is base of pushdown; process next
AT AB entry (ASTK of next entry must = 3
or 4.)

3 - NUMBER is location relative to base of stack

previously used

4 - NUMBER is location relative to current

limit of stack previously used

5 - let PPTR =NUMBER, PINTP = 1. (for

fetching only)

20 SECTION III

Table 3-4. Fields for Entries in AT AB Control Table (Cont.)

Field No. of Bits Interpretation

(2) If NUMBER is a value, exit

AVLPTR 0 - NUMBER is a value exit

1 - NUMBER is a pointer

(3) If NUMBER is a pointer, use the following fields

AUSPTR 2

AFLD 3

AARG 15

0 - exit

1 - use only the fields PINTP, PPTRS, PPTR

of the entry pointed to

2 - 1.1se only the field AFLD of the entry
pointed to

3 - use field number AARG from Table Processor.
Error if PINTP "I= 2

0 - error (use only when AUSPTR = 2)

1 - use PPTR, PPTRS

2 - use PINTP

3 - use PADD

4 - use PFLGS

5 - use PFLGF

6 - use table reference number of entry
pointed to. If PINTP~ 2, use PINTP

field reference number (use only if AUSPTR = 3)

(4) Perform the ACTION operation indicated by AOPN

AEOPN I 6 l Number of ACTION operation to be performed

The use of these fields is illustrated by the following examples:

(l) Initializing Number

VSTKO* ;::;; 425

APTR ;::;; 233

STAB(233) = 607

ANUM = O; NUMBER = 425

= I ; NUMBER ;::;; 233
= 2; NUMBER ;::;; 607

*VSTKO designates the top element of VSTK, VSTKl the next to top element, etc.

THE SYNTACTIC ANALYZER

(2) Stack accessing (assume NUMBER is 233).

ASTK = 0: AVLPTR

AVLPTR

O; VSTKO 233

= 1; PSTKO STAB(233)

= 1: If STAB(233) ~ 0, error;

else fetch STAB (233+STAB(233)).

= 2: STKNUM 233. If ASTK (next line) :f 3 or 4, error.

= 3: IfSTAB(STKNUM-1) < 233, error;

else fetch STAB(STKNUM+233).

= 4: If STAB(STKNUM) ~ 233, error;

else fetch STAB(STKNUM+STAB(STKNUM)O 233).

= 5: Fetch pointer with

PINTP = 1 and

PPTR = 233.

21

A list of the ACTION operations designated by AOPN is given in Appendix B. A maximum

of sixty-four operations is allowed, although presently only forty-three have been imple­

mented. The compiler designer may add additional operations to this list.

3.6 RELATED INFORMATION

3.6.1 The Analyzer as a Subroutine

The entire analyzer may be treated as a subroutine. The calling sequence is the equiva­

lent of the MAD statement EXECUTE SYNTAX. (A, B). SYNTAX is the symbolic name

of the main entry point for the analyzer. The argument A is used to return the number

ERRFLG of an error (or zero if no error). Appendix C contains a table of error numbers,

the error comments that are printed if an error occurs, and the probable cause of errors.

The error exit may be used to detect source program errors or errors in the design of the

control tables. The argument B is used to indicate which of the control tables (LT AB,

TT AB, or ATAB) is to be overlaid with sections of other _tables if the control tables over­

flow core space. This feature has not yet been implemented. The analyzer requires 64738

or 3387
10

locations and uses 30010
8

or 12296
10

locations of common storage.

3.6.2 Recursive Calls

When a predicate call (i.e., a call which returns a truth value) from either TEST,

LEXICAL or ACTION is made to ACTION, the entry number (in TTAB, or ATAB) which

initiated the call is saved on top of the system stack DOSTK. DOSTK is used to keep track

of the level of recursive calls. Two flags (DOPRED and DO LEX) are set in the DOSTK

entry to designate the calling routine. When the RETURN operation is invoked, the flags

in the entry on top of DOSTK are examined to determine to which routine control should

be returned.

22 SECTION III

All communication between routines ACTION, TEST, and LEXICAL is done through

routine CONTRL. CONTRL keeps track of calling sequences and the save stack DOSTK.

Because of the complex recursion that may occur between calls, a return from a predicate

cannot be a simple function return. The common system variable CONFLG is used to indi­

cate the return sequence for calls to LEXICAL, TEST, and ACTION. The interpretation

of CONFLG is as follows:

ROUTINE

Exit from ACTION

Entry into TEST or LEXCAL

Exit from TEST or LEXCAL

3.6.3 Control Table References

Value of CON-FLG

0

2

3

0

0

MEANING

exit from analyzer

call LEXICAL

call TEST

predicate return to TEST or LEXCAL

normal entry

predicate return from ACTION

done - return to ACTION

(special) predicate call to ACTION

An entry in the control tables may require more than one computer word. To allow

all fields of a given entry could be referenced with the same entry index, the macro names

LTABl, TTABl, TTAB2, TTAB3, and ATABl are defined. For example, TTABl(x) =
TT AB(x+ 1): the fields referenced by the name TT AB 1 are equivalent to those referenced

by the name TT AB displaced by one computer word. (This technique has the disadvantage

that when indexing through the control tables, one must increment by something other

than unity.)

3.6.4 BCD Data

BCD strings (routine names and error comments) are handled in two ways. For BCD

strings stored in the Table Processor, the "value" of a BCD string is the address of the first

computer word in the string. The first six bits of the string are interpreted as an octal number

designating the total number of BCD characters in the string. For BCD strings stored in the

STAB of the Syntactic Analyzer, the "value" of a BCD string entry is the entry number of

that string in a block called BCDT AB. For a string of five or less characters, the entry num­

ber is prefixed by plus indicator and the first six bits of the string is an octal number (1 to 5)

giving the number of characters in the string. For strings of greater length, the entry number

is prefixed by a minus indicator; the decrement field of the entry contains the number of

BCD characters in the string and the address field points to the words containing the BCD

string. This method, rather than the one used in the Table Processor, is used to allow for

very long strings like those used for error comments.

THE SYNTACTIC ANALYZER 23

Before the bootstrap operation, BCDTAB contained the names for the system routines

and system error comments. After the bootstrap operation, it is expected that the BCD

strings for the designer's error comments will be stored in BCDTAB.

3.6.5 ACTION Operations

a.) The PRINT Operation (AOPN = 28):

All output from the analyzer is handled by a single ACTION operation, PRINT. The

PRINT Operation is controlled by four system variables - PRNTVL, OUTLNT, PRNTMD

and PRNTSP. PRNTVL is the value to be added to the BCD output string. OUTLNT is

the maximum number of characters allowed per output line. If the BCD output string

being formed becomes greater in length than OUTLNT, the forming process is temporarily

halted, the current output string is pointed and expunged, and the forming process is

resumed. PRNTMD is an integer indicating the interpretation of PRNTVL:

PRNTMD

0

2

3

4

5

6

7

INTERPRETATION

ignore PRNTVL; load blanks into output line

PRNTVL is a signed decimal number

PRNTVL is an unsigned octal number

PRNTVL is a binary number

PRNTVL is a Table Processor BCD string

PRNTVL is an internal (BCDT AB) string

ignore PRNTVL; print current output string

skip line

PRNTSP is the number of characters to use when printing PRNTVL. If the number of

characters required to print PRNTVL is less than PRNTSP, the value is printed left adjusted

with trailing blanks. If PRNTVL requires more characters than PRNTSP, only the leftmost

characters are printed. If PRNTSP is 0, the given string will be printed with no blanks.

b.) The Operation NEWCHR (AOPN = 42):

The ACTION operation NEWCHR allows characters to be read from the input medium.

NEWCHR inserts the new characters into CLIST, eliminates fully analyzed characters, re­

arranges CLIST, and changes the values of SXC and LXC if necessary.

If the compiler is used in time-shared operation from a console, and a line consisting

of a single break character is read, NEWCHR will cause the word "INPUT" to be printed.

Thus if the user wants to know when the system requires input, he simply hits the break

character (the carriage return) and "INPUT" will be typed when input is needed. Two

24 SECTION III

successive break characters will cause an error exit from the analyzer. NEWCHR will not

put the break character in CLIST unless the system variable BRKCHR is non-zero.

c.) MOVE Operation (AOPN = 29):

The formation of a macro is usually handled in one stack and later transferred to

another stack when completed. The MOVE operation is used to empty the elements for a

completed macro from one stack to a second stack. The operation begins by transferring

the first element entered into one stack onto the second stack and ends by transferring

the last element of the first stack onto the top of the second stack. To distinguish the

name of a macro from its arguments, the leftmost bit of the first element transferred (the

name of the macro) is set to I. The leftmost bit of the remaining elements transferred

(the arguments of the macro) is set to 0. Two system pointers, FMOVE and LMOVE, are

set by the MOVE operation. FMOVE points to the first element moved into the second

stack; LMOVE points to the last element moved onto the second stack. For example,

suppose that i) ST ACKQ is a stack on top of which the code number for the macro PLUS

and pointers to the elements "A" and "B" of the input string have been formed, and that

ii) the macros resulting from syntactic analysis are put in a stack STACKM. The call MOVE

(STACKM, STACKQ, STACKQO, STACKQ2) would load entries STACKQO through

ST ACKQ2 onto ST ACKM.

d.) The ROUTINE Operation (AOPN = 35):

There may be many complex operations which a user would like to perform but cannot

do efficiently in the present system. The ROUTINE operation provides the facility for user

supplied external subroutines. These might include routines to evaluate mathematical func­

tions (log x) or routines to convert BCD strings into their intended values. (The BCD string

"147" may have to be converted into the integer representation of "147".)

It is assumed that when the control tables are formed, the auxiliary routines may not

be available and hence their starting location in core not known. When the control tables

are formed, the table RTNTAB must be loaded with the BCDTAB entry numbers for the

entries containing the BCD names of the auxiliary routines. When starting execution, the

entry routine SYNTAX searches the MOVIE TABLE for these BCD names and replaces them

with their starting locations. If a subroutine given in RTNTAB is not found in the MOVIE

TABLE, a comment is printed and analysis proceeds. However, if a call is made to an un­

defined subroutine (one not found in the MOVIE TABLE) a system error results.

25

SECTION IV

THE TABLE PROCESSOR

4.1 INTRODUCTION

The Syntactic Analyzer encounters information that should be processed and made

available for later use by the Assembler. The Table Processor is designed for the collection of

this storage information (variable names, label names, array dimensions, and data type infor­

mation) and the allocation of storage space. It works with the Syntactic Analyzer to enter

the information into the information tables, and later processes these tables upon completion

of the syntactic analysis. The functions of the Table Processor include a) assigning core

locations to symbols, arrays, and literals and b) merging and sorting the information tables

so that the Assembler can quickly access the information in them. Unlike the generation of

macros, which can be carried out when certain complete syntactic units have been recognized,

the allocation of storage can be carried out only at the end of the syntactic analysis. (For

example, all source program variable names must be collected and they can be allocated stor­

age words and the referencing machine instructions assembled.)

4.2 INFORMATION TABLES AND MAIN DIRECTORY

The information tables are used to store variable names, label names, literals, integers,

character patterns, dimensional information, and other information that the Syntactic

Analyzer encounters in the source program. The names and formats for each information

table are declared using the Table Declaration and Manipulation Language. The format infor­

mation for each table is coded into a table called the Main Directory.

An information table has a simple structure. At the base of the table, there is a book­

keeping word containing two pieces of information. The address part of the bookkeeping

word contains a pointer to the current top entry in the table; this pointer is used when

adding an entry to the table or sorting the table. The decrement part of the bookkeeping

word contains a pointer to the entry last processed. Figure 4-1 gives an example of an in­

formation table called LITT AB which might be used to store literals. The most recent entry

to the table occupies registers 34400-02. The pointer 34427 in the decrement of LITT AB(O)

is considered to have been set by the utility routine SEARCH when a match was found in

the entry in location 34427. This pointer may be so used to access other fields of the entry

without calling the routine SEARCH again.

The format description of each information table is kept in a table called the Main

Directory. The system uses the Main Directory to meaningfully access an information table

entry. Although an information table is referenced with its symbolic name by the designer,

it is referenced internally by the address of the first word of the block of words in the

Main Directory that contains its format information. The format of each information table

26

34300

34400
34401
34402
34403
34404
34405

34406

34407
34408

34500

LITTAB

• . .
Identifier 3.14
Value in floating point

Address

Identifier 3.0
Ptr to Fixed Ptr Table

Identifier 3.0
Value in floating point

Address

Ptr to Fixed Ptr Table

. . .

I 34427 I I 34400

SECTION IV

LITTAB(N)

LITTAB(N-1)

LITTAB(O)

Figure 4-1. Example of an Information Table LITT AB used to Store Literals

is declared using the Table Declaration and Manipulation Language. For each information

table the user must declare:

(1) the symbolic name

(2) the maximum number of entries

(3) the sorting option (whether the table should be kept sorted), the field on which

the sort is to be based, and the sorting scheme (the order of precedence)

(4) the number of fields in an entry and the packing information for each field (If

the designer does not specify how the fields should be packed, the bootstrap trans­

lator will specify it for the user.)

The bootstrap translator interprets the declarations, assigns storage space for the declared

tables, and inserts the format information into a block of words in the Main Directory.

The format of the blocks in the Main Directory is shown in Figure 4-2. The

first two words in each block contain miscellaneous information about the information table.

The decrement of the first (top) word gives the address of the last (bottom) word of the in­

formation table. The address of the first word gives the size of the information table. The

THE TABLE PROCESSOR 27

14000 34500 00200

14001 00003 0 --
14002 0 00000 0 00000 format of field 1 (identifier)

14003 00001 00001

14004 0 00000 0 00000 format of field 2 (value)

14005 00001 00002

14006 0 00000 0 77777 format of field 3 (address of I iteral

in object program)
14007 00000 00003

14010 0 00000 0 77777 format of field 4 (ptr to Fixed Ptr Table)

14011 00000 00004

Figure 4-2. Example Block in the Main Directory for Figure 4-1 Literal Table.

All numbers given are in octal.

decrement of the second word gives the number of words occupied by one entry in the

information table. The tag of the second register specifies the sorting option for the table:

0 - the table is not to be sorted.

l - the table is to be sorted according to the standard BCD scheme.

m - the table is to be sorted according to them-th sorting scheme (m = 2,3,4,5,6).

The address of the second word is the field based on which table is to be sorted.

Each following pair of words in the block gives the format of one of the fields in the

information table. The first word contains the mask for the field, i.e., a word containing l's

in the bits occupied by the field and O's elsewhere. A mask of all O's designates a field of one

or more whole registers. If the mask is non-zero, the decrement of the second word will con­

tain the number of bit positions to be right-shifted when the field is to be right-justified, and

the address of the second word will give the location in the entry of the word in which the

field is stored. If the mask is zero, the decrement of the second register will contain the

number of registers occupied by the field, and the address of the second register will <;ontain
'

28 SECTION IV

the location in the entry of the first of the words occupied by this field. The last pair of words

always contains the information on the field for the pointer to the Fixed Pointer Table. (See

Section 4.3 for description of Fixed Pointer Table.)

As an example, a possible block in the Main Directory for the literal table LITT AB (see

Figure 4-1) is indicated in Figure 4-2. As mentioned earlier, tables are referenced internally

by the address of the first word assigned to its format information in the Main Directory; thus

LITT AB is referenced by the address 14000. The Main Directory and storage for the infor­

mation tables are set up by the bootstrap translator from the declaration statements in the

Table Declaration and Manipulation Language. These statements are explained in Section 6.3.

4.3 THE FIXED POINTER TABLE

Besides the information table fields that are declared using the Table Declaration and

Manipulation Language, there is an additional field that is provided by the system. This

field, known as the fixed pointer, contains a pointer to a corresponding entry in a table called

the Fixed Pointer Table. The Fixed Pointer Table entry (see Figure 4-3) occupies one word;

the address part contains a pointer back to the pointer in the information table and the

decrement part contains the internal name (the Main Directory address) of the information

table. The Fixed Pointer Table is used to keep track of the locations of all entries in all the

information tables when some of the entries are merged or sorted. Figure 4-3 shows an

example of the chaining between an entry in the literal table of Figure 4-1 and the Fixed

Pointer Table. Note that the literal table name given in the Fixed Pointer Table entry is

14000, the internal name for LITT AB. (See Figure 4-2.)

LITTAB

Fixed Pointer Table
34300

• 34400 3.14 . 34401
34402 I II

15337 I 14000 I l 34403 • .. 34403 I II 15337
34404 3.0

. 34405 . . 34406
34407

J ii I 15352

• . .
34500 I 47543 l l 47543

Figure 4-3. Linkage Between an Information Table and the Fixed Pointer Table

THE TABLE PROCESSOR 29

When an element is entered into an information table, the control routine will also fill

the fixed pointer field and the corresponding entry in the Fixed Pointer Table. The control

routine will return the location of the entry in the Fixed Pointer Table.

This location, rather than the location of the information table entry, is returned so that

references to the information table entry will not have to be updated if the entry in the in­

formation table entry is displaced during a sorting or merging of the tables.

Each time an information table entry is displaced, the fixed pointer field of the entry is

traced back to the Fixed Pointer Table entry to update the reverse pointer. When two infor­

mation tables with matching entries are merged, (See Figure 4-4), both Fixed Pointer Table

entries to the matching entries must be updated to point to the single entry in the new merged

table. This is effected by setting a flag in one Fixed Pointer Table entry and setting its

address field to point to the second Fixed Pointer Table entry. The address field of the

second Fixed Pointer Table entry is set to point to the combined information table entry. The

fixed pointer field of the combined entry will be set to point to the second Fixed Pointer

Table entry.

15201

15337

34402 1

Fixed Pointer Table

•
•
•

I 10554 11 24323 14-
• •
•

l 14000 l l 34402 1-1
•
•
•

Table A

(primary table)

3.14

il 15337 24~1 -
I

(a) Tables before merging

15201 I

15337 I

Table B

(secondary table)

3.14

1 l 1s201

Fixed Pointer Table

•
•
•
11000 15337

• •
•
11000

•
•
•

Table C

(merged table)

3.04

(b) Tables after merging

Figure 4-4. Example of the Merge Operation

30 SECTION IV

4.4 TABLE MANIPULATION TABLE

The Table Manipulation Table is used to control the processing of the information tables.
The table is set up by the bootstrap translator from statements given by the designer using the

Table Declaration and Manipulation Language.

The entries in the Table Manipulation Table are grouped into blocks. Each block specifies

a set of operations to be performed on one or more tables. The fields within a Table Manipula­

tion Table entry and their interpretation are given in Table 4-1. Example statements in the
Table Declaration and Manipulation Language are given with each example entry; these state­

ments are explained in Section VI.

4.5 OPERATION OF THE TABLE PROCESSOR

When control is passed t~ the Table Processor upon completion of syntactic analysis,
the Table Processor operates in the following manner. The entries in the Table Manipulation
Table are scanned and the first block of entries is found. The routine PROCESS is then called
to process the block of entries. Routine PROCESS scans each entry in the block, identifies
the function that each represents, and calls the associated utility routines (SORT, INSERT).

Since the utility routines are written in MAD, the call to a utility routine is processed through

a FAP subroutine that converts the control table information into the appropriate parameters

and generates the suitable calling sequence. After processing each entry in the block, routine

PROCESS returns control to the main portion of the Table Processor for further action until
all blocks of entries are processed.

Table 4-1. Fields for Entries in Table Manipulation Table

Prefix·tag of
first word in

Operation encoded entry

BEGIN BLOCK 1 0

Entry Format Example Entry

! 1 l1oc i lo I table p I 55000 I 1 j 5503:3JilIT6600 J

SORT 1 n ! 1 !table p \n \field ml 55001 [tF6so!ifiJIB6o2 !
In= 1 thru 6)

INSERT 6 0

TEST 4-n
(n= 1,2,3,or4)

SEARCH 5-0

55002 6 14427
55003 16606

16602
17702

·All table addresses refer to the corresponding addresses in the Main Directory

Interpretation•

Loe J (55033) is the last word in the table
manipulation block: table p (16000 or TABLE-A)
is the primary table for the block.

Table p 116600 or TABLE Al is the table to be

sorted; field m (16600) is the field upon which
the sort is to be based. (In the Main Directory,
the format specification of the first field of
TABLE-A occupies locations 16602 and 16603.
n = 1 specifies sorting scheme 1, the standard
BCD sorting scheme is to be used.)

Field m of table p lfield 2 of TABLE-Bl is to be

matched against all occurrences of field n of
table q (field 3 of TABLE-A). If a match is
not found, a new entry corresponding to field n
of table p will be inserted into table q.

Field m of table p (the first field of TABLE-Cl
is tested if equal to the test quantity (the BCD
string ABC). If test is true, the accumulator will
be set to 1; otherwise it will be set to 0. n = 1,2,3,
or 4 depending on whether the test quantity is
another field, a variable, an integer, or a BCD
string.

All instances of field m of tabte pare searched for
field n in current entry of table q; if a match is
found, the accumulator will be set to 1; other­
wise it will be set to zero.

Assume the following Main Directory Table addresses: TABLE-A= 16600 TABLE B = 14423 TABLE-C = 17700

(Corresponding Statement in Table
Declaration and ManiDUlation Language)

PROCESS TABLE A, TABLE·B, TABLE-C

SORT TABLE·A'(l,1)

INSERT (TABLE·B,2) INTO 10,3)

TEST ITABLE-C,1) AGAINST (ABC)

SEARCH 10,1) FOR (2,1)

~
rT'l
-i
>
o:i
[;; .,,
~
Q
ti'.!
ti'.!
0
~

w -

Prefix-tag of
Operation ~

encoded entry

TRANSFER 2 n
(n = 0 or 1)

INDEX 2-n
(n = 2 or 3)

(or)

ASSIGNMENT 3 - n
{n = 1,2, or 3)

ARITHMETIC 7 - 7

PRINT 1 - 7

Table 4-1. Fields for Entries in Table Manipulation Table (Cont.)

Entry Format

[2\1oc}Inl1oc2 I

71-l7l_n
1st instruction
2nd instruction . . .
nth instruction

f[table P}_7j_n
1st word
2nd word . . .
nth word

Example Entry

sso10 [2]5=501s\1 fss@

55011 w7oo [jfl 70041
55012 4 2

s5013 [31!foooJIT1 noo-1
55014 5

55015
55016
55017
55020
55021
55022
55023

il-_1_7_1_00006
TSX j_ 11. 50332
1nooII1n04

MPV 20313
XCA
ADD 26401
STO 26401

20313c= }ls

26401(3\A

55024
55025
55026
55027
55030
55031
55032
55033

iJ_ 16600_1_ 7j_ 7
2& 1
JOI 4
60606060 ()()()()

46_I 2
31[3
60606060 ()()()()

46I 3

(Corresponding Statement in Table
Interpretation Declaration and Manipulation Language)

For an unconditioned transfer (n = 0). a transfer is $ 3, · 2 $
made to examine the entry in loc 2 (55004) in the
Table Manipulation block. For a conditioned
transfer (n = 1). if the accumulator contains a one,
the entry in loc 1 (55015) of the Table Manipu-
lation Table is examined next. If the accumulator
contains a 0, the entry in loc 2 (55004) is ex-
amined next.

The field (or variable for n "' 21 specified in the
first word {field 2 of TABLE-C) is incremented by
the integer (-2) in the second word.

Field n of table p (the 3rd field of TABLE-Bl is
set equal to the quantity specified by the second
word. n = 1,2, or 3 specifies that the quantity in
the second word is a field, an integer, or a
variabte.

The Arithmetic entry is used to set the value
of a variable. The n words after the first are
interpreted as machine instructions. IThe TSX
instruction is a call to a routine beginning at
50332. This routine gets the field value of the
field given below the TSX instruction and
inserts the value into the accumulator.)

The Print entry is used to specify the printing
of information table fields. Then words after
the first Specify the format of the fields to be
printed from table p. 23 (octal for Cl indicates
the field designated by the address is to be
printed in BCD format. 30 (octal for I) indi­
cates that the following word is to be printed
in decimal integer format; the address gives
the number of character in the string. 46
(octal for 0) indicates that the field designated
by the address is to be printed in octal integer
format.

INDEX 12,2) -2

{2,3) = 5

A= A+ (2,2)• 5

PRINT TABLE-A(C/1,
4H ,112.4H ,1/3)

w
N

tll

8
0 z -<

33

SECTION V

THE ASSEMBLER

5.1 INTRODUCTION

The Assembler accepts the list of macros generated by the Syntactic Analyzer and uses

the information tables furnished by the Table Processor to generate binary machine code from

the list of macros. The Assembler is controlled by the Macro Interpretation Table. This table

contains information ·regarding the interpretation of the macros. The Assembler also uses

another table, the Machine Code Table, which contains the binary representation of the

machine instructions.

5.2 MACRO LIST

A macro generated by the Syntactic Analyzer contains the following information:

1. The macro name, which is the address in the Macro Interpretation Table of the

block of words specifying the interpretation of the macro;

2. A count, specifying the number of times the result of the macro is referenced by

other macros;

3. A list of arguments, each of which is one of the three types:

type 0 - the fixed pointer to an information table entry,

type 1 - a pointer to another macro,

type 2 - a fifteen bit number..

Type 0 arguments are used to reference values obtained during syntactic analysis. Type 1

arguments are used to reference results of other macros. Type 2 arguments designate fixed

values.

The format of a macro is shown in Figure 5-1. The prefix 4 in the first word of the figure

designates the first of a block of words representing a macro; the decrement and address of the

first word contain the macro name and count. The second word is a word reserved to store the

value of the macro after is is processed by the assembler. The remaining words in the block

contain the arguments of the macro; the prefix of these words contains the type number.

5.3 TEMPORARY STORAGE POOL

When algebraic or boolean expressions are evaluated, it is often necessary to store tem­

porary results. The temporary storage words needed by the object program are drawn from a

common pool of words. The compiler keeps track of the number and location of these tem­

porary storage words.

34 SECTION V

macro

4 name count Macro name and count

word reserved for value of macro

0 pointer argument 1

2 value argument 2

0 pointer argument 3

Figure S-1. Format of a Macro with Three Arguments

We distinguish between two kinds of temporary storage. One kind is used only by the

machine instructions corresponding to a single macro. The temporary storage words used by

these instructions should be returned to the common temporary storage pool after the instruc­

tions are executed. The other kind is used to store the result of the set of machine instructions

of a macro so that the result can be referenced by the machine instructions of other macros.

These temporary storages should be returned to the pool when there is no further reference

to these results.

For each temporary storage word used by a macro, a word is reserved in the Macro

Interpretation Table for a pointer to the temporary storage word. Since there is no way of

knowing the length of a program or the maximum number of registers needed from the tem­

porary storage pool until the entire object program has been generated, locations of the words

to be used as temporary storage cannot be assigned until all machine instructions are generated.

During the course of compilation, the instructions which address a word from the temporary

storage pool will use the address of the temporary storage1word relative to the beginning of

the temporary storage pool. The temporary storage words are thus addressed as 00000,

0000 l, 00002, etc., when they are assigned. In order to identify these temporary addresses

later, an "identification bit" is attached to each address. After all macros arc processed, the

"program break" (the location of the first word in the temporary storage pool) is added to

addresses containing an identification bit.

The temporary storage pool is organized as a chained list whose size is initialized by the

user. The initial organization of a temporary storage list is shown in Figure 5-2(a). Herc the

decrement of each word contains the pointer to the next available location and the address

of each word gives the location of the word relative to the origin of the temporary storage

list. The temporary storage control routine of the compiler maintains a pointer to the first

available word in the temporary storage list. When a m:w temporary storage word is re­

quested, the control routine allocates the word pointed to by the pointer, updates its pointer

THE ASSEMBLER

Control Routine Ptr

50330

50331

50332

50333

50334

50335

50336

50331

50332

50333

50334

50335

50336

. .

(a)

0

1

2

3

4

5

6

Initial Configuration

Control Routine Ptr

50330

50331

50332

50333

50334

50335

50336

00000 0

00000 1

00000 2

00000 3

50335 4

50336 5

6 .

(b)

Configuration after

first 4 words have

been allocated

35

Control Routine Ptr

50330

50331

50332

50333

50334

50335

50336

50334 0

00000 1

50330 2

00000 3

50335 4

50336 5

6 .

(cl

Configuration after

locations 50330 and

50332 are returned

in order to pool

Figure S-2. Use of a Temporary Storage Pool

to point to the next available word in the list, and sets the decrement of the allocated word

to zero. Figure 5-2(b) shows how the example list appears after the first four words have been

alk>cated. When a temporary storage word is released, the control routine sets the decrement

of the released word equal to the control routine pointer and updates the control routine

pointer to point to the word just released. Figure 5-2(c) shows the organization of the ex­

ample list after the words in locations 50330 and 50332 have returned to the pool, in that

order.

If the count (number of references to the macro) is greater than zero, the result of the

macro is stored in a temporary storage word and the address of the temporary storage word

is stored in the address portion of the second register of the block of words representing the

macro. When this result is accessed by another macro, the count is decremented by one.

This count is tested every time it is reduced, and if the count becomes zero, the temporary

storage word will be returned to the pool and the address of the second word in the macro

will be set to zero.

36 SECTION V

5.4 USE OF MACHINE REGISTERS

The execution of a machine instruction usually involves the use of machine registers,

such as the accumulator, the multiplier-quotient register, or an index register. By keeping

track of the contents of these registers, the assembler can generate more efficient binary code.

For example, if the value of a variable is in the accumulator, there is no need to reload the

variable from core storage. To keep track of the contents of the machine registers a word for

each machine register is reserved in a list called the Register Association List. If the execution

of a macro leaves the result of the macro in a machine register, a two-way pointer will be set

up between the Register Association List and the macro block. The word corresponding to

the machine register in the Register Association List will contain a pointer to the second word

in the macro block, and the decrement of the second word in the' macro block will contain

a pointer back to the word in the Register Association List. The pointers are used to deter­

mine the location of the result when the result is referenced by another macro. When the

machine register is used by another computation, the two-way pointer will be erased.

To use this feature, it is necessary to declare the machine registers that each macro uses.

The Register List statement of the Macro Interpretation Language (see Section 6.4) is used

for this purpose.

5.5 MACRO INTERPRETATION TABLE

The Macro Interpretation Table is used to specify the interpretation of the macros. Each

macro is defined by a block of entries in the Macro Interpretation Table. There are several

types of macro interpretation entries. These entries and their fields are given in Table 5-1.

The example operands and comparands given in Table 5-1 are of a limited type. In

general, operands and comparands may be of a more varied form. Table 5-2 gives a list of the

possible types of operand. The binary operators+,-, *,.A. and .X. and unary operators .L.

and .R. designate the operations of addition, subtraction, multiplication, logical "and", logical

"exclusive OR", logical "left shift", and logical "right shift" respectively. These operators

may be used to combine the constituents of an or-segment. (The logical "or" operator is not

defined since all or segments are eventually combined in a logical "or".)

5.6 OPERATION OF THE ASSEMBLER

The first action the assembler takes is to initialize the temporary storage areas using the

subroutine INTEMP. (See Appendix E, Figure E-1.) The instruction counter is set equal to

the address of the first location not used for temporary storage. The macros are then pro­

cessed one at a time. The routine GETMAC is used to get the starting location of the block

of registers in the Macro Interpretation Table that describes how the macro should be inter­

preted. Next the arguments of the macro are tested. For a type 0 argument (a table entry

pointer), the pointer to the main pointer table will be replaced by the address of the entry in

an information table. The count of the macro is then tested. If temporary storage is needed,

Prefix-Tag of
Entry Type Encoded Entry

TEMPORARY STORAGE 0-0

REGISTER LIST 3-2

TRANSFER 2-0

ERROR 2-0

CONDITIONAL 1 -0

Table 5-1. Entries and Fields for Macro Interpretation Table

Entry Format

[-J loc_buITrn I

3 adr1}2I n1
n2

• • •

QC6Jojentry1 I

CZC-nJol o I

1 0 comparand 1
comparand2

loc1
loc2
loc3

•
•
•

Example Entry

52000 f [s2030 I I -!J

~~:~
1
3, 5J004[il TI

52003 6

52004~r--01o15202!J

52005121 1101 o I

·I

1J

52006
52007
52010
52011
52012
52013
52014
52015
52016
52017
52020
52021

1

2

2
2

2

0 66637
64216
52013
52015
52020

52015 52021
0 52022

52021 52021
5 0 0

0 52004
52021 52021

0 0 0

Interpretation

This entry must be the first in each macro block.
It specifies the number n of temporary storage
words used by this macro; loc. buf. gives the
location of the first of the n contiguous words
which will contain pointers to the words taken
from the temporary storage pool

Adrl (520041 is the address of the first word in
the next entry; nl, n2, ... give the machine
registers used in the Macro Interpretation block;
nl is the register in which the result of the macro
will be left

The control is passed to entry1 (520211

The error message associated with the n (71 is
to be printed (note: the Error entry is distin·
guished from a Transfer entry by the non-zero
decrement I

A If comparand1 (Al is less than, equal to, or
B greater than comparand2 (81, then the set of

entries beginning in loc1, loc2, or loc3 respec­
tively is examined. The first word in these sets
of entries contain al a pointer to the next set of
entries in their decrement, and bl a pointer to

GO + 1 the last word of the conditional entry block in
their address; the first word is followed by an

ERR 5 encoding of the entries to be scanned if control
GO -2 was passed to this point

END

66637f =1 A

64216 8

(Corresponding statement in Macro
Interpretation Language)

TEMP 3

RL R3, R5, R6

RL Rl (Rlisaccummulatorl

GO +3

ERR 7

IF A=B (GO +1. ERR 5, GO -1. ENDI

'"'3 :c
t'T1
>
{ll
{ll
t'T1 a:
t::O

~
:::0

w
--.I

Prci1x TJ~ lif

lntrv T \Tit! tncoded Entry

llF ~JE H1\ r1:: I U or)

U"D ~~ACRO 2 ()

Table 5-1. Entries and Fields for \1acro Interpretation Table (Cont.)

E ntrv F cH rnrlt
---·--

I 7 I I 0 I e'.'dse<J I ·~

L'nclSEfJ l I 11 IOI ,.ncbe~2

.
cndseg n 7 1 next entrv '1 . . .

·~--

next entry ...
rr=oJo[~

Exa11111lp l::ntry

02022

52023
1-- T---

52074 I 7 ' -=ti
02025 I · 3

52 0 2 6 ______ill_;
'>2077 f-i\u -

52030 I 2 I loloJ oi

ln1f•rpre!,1t11_w

-;-'le (_JenCr<1tl' ffl°.IY Sf'.('Clfl("j tlw il(lll'td!ICJ'' ,,f

lHlf' >/\Olil (if lil'lcH'/ l!'cJChl''t' Uldt' [di Ii)(:•.jr'1i_'r·1'

~if •Nrirth ~~Jeufles tit 111.tchir1e ((J(lr' t\1t _111t· 11r

<:>eqrr1rnt, :ii or se9n1erirs ford sinLJlc t~11lr\ .. 11»

'or 'rd tocwtf'·t~r to nht(l1n tht· \/•(Jr(~ 1i! L·n.nv

r·1.ict·1r1!;' code
[n(bl:'yl {57073! q1vrs th: locdl1on uf t·1r icist

word for the enclosed or seqrncnt. Thr ·1.·1r.J1111rHJ

words <lrP a list of operdf1ds Jn(~ or_ierdtor~. 1.M1tlt->n

111 post-fll(form. For l'x<lrnple d t.iu of 3 dnd

dddress of 7 specifics C (thr• 1n::.truct1on lr:it<Jt <1n

counter) dS an operJnd. 01 tt1q of 0 speuf1r:s ,Jr1

integer, and the lf~ltt'rs ACL :c.pecify tlw or1Prcd1< 1n

1 to be rrcide \l'l thf-' 11re1.edir1~ operdnds

Tfl!.' Fml McJcro cnt·v ttJr·111ndlt:":> t·1c IJloc" :-Jt

entries tor J n1Jcru 1note. The E:_nd ri.11d(r(:

entry 1s d1'.:>t1114u1shed frorr the brrn &HI

T rcn1Sff~r entries by hrlvinlJ both d ;Pru dt>ut>r>len'.

,rnd Lero dddre'>'.>.)

\.F~J ,~,~1n~'.·111

rNn

w
':/'.;

VJ
'.T.
lj

j
0
2

<

Table 5-2. Operands and Comparands for Macro Interpretation Table ~ = rrl

Tag of Corresponding reference in Macro >
Cll

Operand Type encoded word Example Entry Interpretation Interpretation Language statement Cll
rrl a:
t=
t""

DECLARED VARIABLE 0 I I 123302 I 23302 is the location of a variable quantity ALPHA rrl
::ii::!

INTEGER 0 I I lol 14 I 14 is octal for the decimal integer 12 12

I I lol 10 I 10 is octal for the octal integer 10 10

A-TYPE or 6 I I 2161 31 Use the 2nd field of the informa- A2.3
tion table entry pointed to by

S-TYPE 7 I I 2111 31 the 3rd argument of the macro S2.3
being evaluated. An S-TYPE entry
(tag= 7) means the field is to be
right shifted.

P-TYPE 5 I I ls I 31 Use the 3rd argument of the P3
macro. If the argument is type 0,
(pointer) its value is the table name
of the table pointed to; if the
argument is type 1, its value is the
result of a previous macro; if the
argument is type 2, (integer) its
value is the integer

M-TYPE 2 I I I 2 ls6621 I 56627 is the address of a word in M108
the Machine Code Table

T-TYPE 3 I I 7131 , I Use the contents of the 7th word T7
in the temporary storage pool w

"°

Operand Type

R-TYPE

RL-TYPE

TY-TYPE

C·TYPE

Table 5-2. Operands and Comparands for Macro Interpretation Table (Cont.)

Tag of Corresponding reference in Macro

encoded word Example Entry Interpretation Interpretation Language statement

3 I I 0131 31 Use relative address in temporary R
storage pool of result of current
macro. (note: the address of 3
differentiates an R-TYPE entry
from A-TYPE entry)

4 I I 14 1 2 I Use the contents of the 2nd RL2
register in the hardware register list

1 I I I 1 I 31 Use the 3rd argument of the macro TY3

3 I I 13 I 21 Use contents of instruction location c
counter (note: the address 2 distin·
guishes a C-TYPE entry from a
T-TYPE or R-TYPE entry.)

~

~ g
0 z
<

THE ASSEMBLER 41

the subroutine TEMPTK is called to assign a word of temporary storage to the macro and

TEMPTK will return the address of the released temporary storage word and this address will

be inserted into the second word of the block of words for the macro. The block of entries

in Macro Interpretation Table is then examined for the interpretation of the macro. The

first entry in the block (a Temporary Storage entry) specifies the maximum number and

starting location of the internal temporary storage words that the macro will use. The sub­

routine TEMPTK is called again, and the temporary storage words will be assigned accordingiy.

Subroutine GENPRO is then called to process the macro.

At the end of the processing of a macro, all internal temporary words used by the macro

will be returned to the temporary storage pool and the Assembler will examine the next macro

in the list of macros. After all the macros are processed and the binary program generated, the

identification bits will be scanned and the corresponding addresses in the binary program will

be modified by adding the program break.

The subroutine GENPRO (See Appendix E, Figure E-2) processes the entries in the Macro

Interpretation Table. A pointer is kept in index register 7 pointing to the current entry.

Subroutine GEN is used to process a generate entry. (See Appendix E, Figure E-3.) The

or-segments in each generate statement are processed according to their operator-operand

pair. The operand in each pair is converted by the subroutine CONVCN. An indicator is set

to denote the type of the operand (an integer, a table-entry, a machine instruction code, a

temporary storage). The result of the execution of an or-segment is or-ed to the sense indi­

cators. At the end of the or-segment, the type of integer, as well as the number of bits to be

left shifted, are collected in a list called the relocation bit information list. This list is useful

in the generation of relocation bits. After the result of the last segment is or-ed to the sense

indicators, the values of the sense indicators, which constitute a binary word in the object

program, will be saved in the buffer pool that constitutes the object program. After a binary

word is generated, the subroutine RELCBT is called. This subroutine will examine the relo­

cation bit information list and generate the appropriate relocation bits.

The subroutine CONVER is called to get the value of a comparand when a conditional

statement is processed. There is no need to find out the type of a comparand. The sub­

routine CONVCN is called during the generation of identification bits if it is necessary to

determine the type of operand. When the operand has a 6 in the tag field (Si.j. type), a sub­

routine GET in the table processor is called to get its value and to determine the type of the

operand. When the operand has a 7 in the tag field (Ai.j. type), then in addition to the infor­

mation to be obtained from a S-type, the number of bits to be right-shifted to make it right­

justified is also needed. This is done by the same subroutine in the Table Processor. The

flow chart of the subroutines is shown in Appendix E, Figure E-4. When a register list entry

is encountered, the existing two way pointer for the specified registers are erased and a new

set of two-way pointers corresponding to the macro defined in the new entry is set. When a

42 SECTION V

conditional entry is encountered, the conditional level counter* is examined to determine the

level of conditional testing. The arguments in the first and second words are converted into

their respective values by the subroutine CONVER; the values of the arguments are compared

and the pointer (index register 7) is updated according to the result of comparision.

*The conditional level counter (in index register 5) is set to zero at the beginning of the interpretation of

of the macro, incremented by one each time a conditional entry is encountered, and decremented by one
each time an exit from a conditional entry is made.

43

SECTION VI

THE CONTROL LANGUAGES

6.1 INTRODUCTION

For the control tables to be properly filled, the designer must prepare statements in the

three control languages. The statements in these languages are interpreted by the bootstrap

translators and encoded into the control tables. (See Figure 2-3.) Two of the control

languages, the Table Declaration and Manipulation Language and the Macro Interpretation

Language, and their bootstrap translators are fixed within the system. The third control

language, the Syntax Defining Language, and its bootstrap translator must be prepared by

the designer.

The following sections describe the two fixed languages and present an example Syntax

Detining Language*. The BNF syntax of a sample source language and the statements

needed to completely design a compiler for the sample source language are given in Appen­

dix F.

6.2 AN EXAMPLE SYNTAX DEFINING LANGUAGE

In this section we present an example of a Syntax Defining Language, Markstran -

named after its designer R. E. Marks. Markstran resembles the language described in

reference 6 . The statements in Markstran define the method of syntactic analysis to be

used by the Syntactic Analyzer. We first present the syntax of Markstran, and then give

the Markstran program for syntactic analysis of the sample source language.

The Markstran language has five basic statement types, Lexical declarations, Test

declarations, Stack declarations, ATAB statements and TTAB statements. These statement

types are translated (by the Markstran bootstrap translator) into entries in the LTAB, TT AB,

STAB, and ATAB tables, respectively.

6.2.l Lexical Declarations

Lexical declarations have the following form:

(Lexical declaration) : := (lexical block name) = (LEXICAL right part list)

(lexical block name) : := (identifier)

<LEXICAL right part list) : := (lexical symbol) [/ (lexical symbol) J "O'
I [I (termination symbol) l"O'

* The example Syntax Defining Language and its bootstrap translator have been implemented and may be

used by the compiler designer.

44

(lexical symbol) : := (bed string) I (keyword)

(termination symbol) : := <bed string) I <keyword)

(keyword) : := ALPHABETIC I INTEGER I OINTEGER I BLANK II*

SECTION VI

A keyword is the symbolic name for a class of characters. Each character in a class will have

the bit representing its class set to 1 in the character's entry in CPLIST. The keywords

ALPHABETIC, INTEGER, OINTEGER and BLANK represent strings of alphabetic charac­

ters, digits, octal digits, and blanks respectively. For example, the lexical declaration

LIT = INTEGER / .INTEGER / INTEGER. I INTEGER.INTEGER // BLANK

defines the lexical block LIT, which will match decimal literals followed by a blank. The

declaration

TS= +/-/*///EQ/NE/GT/LT/LE/GE// BLANK

defines the lexical block TS which will match any of the terminal symbols+,-, ... ,GE

followed by a blank.

In the above examples TS and LIT must be declared as information tables.

MARKSTRAN assumes that there is only one table reference number for each Lexical

declaration and that each table referenced is declared in the Table Processor declarations.

Corresponding to each list of lexical or terminal symbols in a Lexical declaration, an infor­

mation table must be declared to contain the symbols.

The Lexical declarations are encoded into LT AB entries. An example encoding for

the lexical block for LIT is given in Section 3.3. There is no simple one-to-one mapping

between lexical declarations and entries in LT AB. However, for any given lexical declara­

tion, the mapping is unambiguous. Rapid lexical analysis is important; therefore, it is

usually desirable to hand code the lexical tables rather than to use the possibly less

optimum ones that could be encoded by the bootstrap translator.

6.2.2 Test Declarations

There are two kinds of Test declarations: the VALUE TEST declaration and the

PROPERTY TEST declaration.

<Test declaration) : := VALUE TEST (test primary) I PROPERTY TEST (test primary)

(test primary) : := (field name) = <TEST right part list)

(field name) : := (ST AB pointer field name) <information table field name)

* "IC stands for the null character

THE CONTROL LANGUAGES 45

(STAB pointer field name) : := PFLGF I PFLES I PADD I PINTP I PPTRS I PPTR

<information table field name) : : = (identifier)

<TEST right part list) : := [(test value) I (test value) ((test symbol list))]:

[,(test value) I, (test value) ((test symbol list))]'lf

(test value) : : = <identifier)

(test symbol list) : := (test symbol) [, (test symbol)]'if

(test symbol) : := (bed string)

An information table field name must be the symbolic name of an information table field.

A test symbol must be the symbolic name for a symbol defined by a lexical declaration.

Exam pie: Consider the declarations

VALUE TEST PFLGF = OFF, ON

VALUE TEST PADD = TERM, FACT, AEXP

The first declaration defines a test for one of the two values OFF or ON on the PFLGF

field of a pointer. The second declaration defines a test for one of the three values TERM,

FACT, AEXP on the PADD field of a pointer. Example: Within the analyzer a "property"

is represented by the occurrence of a single bit. For example, if 001
8

, 002
8

, and 004
8

represent three properties, the field with value 003
8

has two properties 001
8

and 002
8

.

A "property test" on a field is a check for the existence of one or more property bits in the

field. If the Lexical declaration

TS = +/-/*///EO/NE/GT/LT/LE/GE//BLANK

has been made. The test declaration

PROPERTY TEST TPROP = ADDOP (+,-), MULOP(*,/), RELOP (EQ,NE,GT,LT,GE,LE)

will, a) assign the values 1
8

, 2
8

and 4
8

to the symbolic names ADDOP, MULOP, and RELOP

respectively, b) initialize the entries+ and - of the TS table to the value 1
8

, the entries * and

I to 2
8

, and EQ, ... ,LE to 4
8

, and c) assign the value 7
8

to the symbolic name TPROP. The

tests ADDOP(P), RELOP(P), and TPROP(P), where P is a pointer to the EQ entry in the TS

information table, would have the values FALSE, TRUE, and TRUE respectively.

6.2.3 Stack Declarations

Stack declarations declare symbolic names and maximum sizes of the stacks,

(stack declaration) : := STACKS (stack list)

(stack list) : :=(stack name) ((integer)) [, (stack name) ((integer))]'lf

(stack name) : := (identifier)

The declared stacks are set up as blocks of STAB entries.

46 SECTION VI

Example: The declaration

STACKS STACKL(20)

defines a stack of maximum length 20, associates the symbolic name ST ACKL with the base
address of the stack, and initializes STACKL(-1) to 20.

6.2.4 AT AB Statements

The AT AB statements are used to specify the sequence of actions for syntactic
analysis

<AT AB statement) - [(label) $] ~ [(command statement> I (IF statement)

I <assignment statement)] ! I (predicate definition)
(command statement) : ;:; (command name) [((argument list))]~

(IF statement) : ;:; IF <boolean expression) THEN [<A.TAB statement)] ENDI

IF <boolean expression) THEN [(unlabeled ATAB statement)] ELSE

[(unlabeled AT AB statement)] END
(assignment statement) : ;:; (identifier) :; (value)

(predicate definition) : ;:; PREDICATE START (predicate name) [<A.TAB statement)]~

STOP
(command name) : ;:; <basic ATAB-TTAB operation) I <macro command name)
(argument list) : ::; (argument) [, (argument)]

(argument) : := (labeD I (value) I (bed string) I (stack name)
(value) : ::; (integer) I (test value)

(predicate name) : := (identifier)

A command statement results in the formation of an AT AB entry. The basic AT AB

operations are given in Appendix B. In addition to the basic ATAB operations, several

special macro commands are defined within Markstran. A macro·command and its argu­

ments, like a F AP ma~ro call, may be used in place of a sequence of commands. The

macro commands are 1given in Table 6-1. An IF statement results in the generation of

several AT AB entries. The first entry is a conditional transfer; the remaining entries are

those designated by the statements in the THEN-ELSE and ELSE-END blocks. An assign­

ment statement generates a STORE entry in the ATAB table. A predicate definition is

used to define names for predicate macro definitions of one argument. For example, the

definition

PREDICATE START EQ2

IF PREDVR EQ 2 THEN SETTRUE (1). RETURN. ELSE

SETTRUE (). RETURN.

STOP

defines the predicate EQ2. The system variable PREDVR is used in all macro definitions

and refers to the argument passed in the macro definition. The call EQ2(N) wiJI result in

MJcro narne

LOAD

PRINT COMM

EXCISE

SET

STACKTOP

POINT

Table 6-1. Markstran \tarro Definitions

Encoded AT AB entries

Argu rne_nt E'_q_u1valent ATAB ore_ration

J> J>
J> J> J>

< c J> J> r (/)
""U ""U z CJ) "Tl ""U ""U
0 -I c -I r -I -I
z ::0 ~ 7\ 0 ::0 ::0

1 5 I 1 ooo I 1 I o I =I ~I 0

16 1002 1 1 0

GET CURSY~

I bed string•) GET bed string· 15 0042 1 Io To 0 0 0

28
AFALSE .· 5

. --

ATRUE ~ 0
PR I NT · IJCd mode no

PRINT •output mode' 28 -- AFALSE ~ 6

{n) 15 1002 2 0 0 0 0 j
3 n 1 0 0 0 0 J
16 1002 2 0 0 0 oj

GET STACKOIO)

MINUS n

PUT STACKO(O)

(n)

I ~ ~ I 10~2 I ~ I ~~ I ~ I ~ I GET n

PUT PAD (STACKO)

(n) GET FE0Jlf~ \0 \~I ~ \
(pntr) 1·16 J poi~-;-] J 11=} J

I

The following values are assumed: lac of CURSYM STABl1000)

base of STACKO - STAB(1002)

loc of bed comment - 0042

Meaning

Put next input symbol on top

of STACKO

Print the bed string given

as its argu rnent

Rernove top n elements

from STACKO

Place the value n in the PADD

field of the points on top

of STACKO

Access the n th element

from the top of ST AC KO

The PINTP, PPTR and PPTRS

fields of a pointer are used for

forming a pointer

-l
:I:
~

<"'::
c z
;;o
c
r-
t""'
;i;.
z
c;
c
;i;.
c;
rri
[jJ

+­......

48 SECTION VI

the formation of the AT AB entries for the predicate defined above, where N will be used

in place of the identifier PREDVR.

6.2.S TT AB Statements

The following two system variables are defined within Markstran:

STACKQ The symbolic name for the stack of pointers upon which syntactic

analysis is performed.

CURSYM The symbolic name for the location into which the result of lexical

analysis is put.

The occurrence of the special label INITIAL designates the first AT AB statement.

The TT AB statements are used to control routine TEST:

(TT AB statement)

(unlabeled TT AB statement) . ·=
[(label> $] ~ (unlabeled TT AB statement)

/[(test name)]~ // I //(test name) ///I
I [(test name)] ~ /I (test name) 111

The statements have the following meaning (an, ... a0 and bare test names):

TT AB statement form

II b Ill

I an ... a0 I I b I I I

Meaning

an specifies a test on ST ACKQ{n), ... , a0 specifies

a test on ST ACKQ(O).

b specifies a test on CURSYM

an specifies a test on ST ACKQ(n), ... , a0 specifies a

test on ST ACKQ(O), and b specifies a test on CURSYM

Following each TT AB statement must be one or more AT AB statements. A test is

specified by giving the name of a defined table entry, the name of a table, or the name of a

value or property test. If the stack element being tested has all of the values and properties

associated with the given name, then that test is TRUE. If all the tests in a test sequence are

TRUE, the AT AB statements that follow are executed; if any test in the sequence is FALSE,

then the next test sequence is performed. There is a pseudo-test, named OTHERWISE,

which is always TRUE. When the name of a stack is mentioned in a statement, that stack

is to be used as a pushdown.

Example: Consider the statements:

X 1$ /I START I// LOAD. DO(SCAN). TEST(Sl)

OTHERWISE ERR$ PRINT COMM(ILLEGAL PROGRAM).

ERROR EXIT.

SI$ 11 ...

THE CONTROL LANGUAGES

If CURSYM points to the symbol START, then a) the macro command load is executed,

b) control is passed to the statement labeled SCAN for performing more lexical analysis,

and c) if SCAN returns without error, control is passed to the TTAB statement labeled

S l. Otherwise, an error comment is printed and an error exit is taken.

Example: Assume that the TS and LIT declarations have been given as in the previous

examples and that:

ADDOP = l

MU LOP = 2

RE LOP = 4

OFF = 0

ON = l

TS table reference number

TPROP field number

+ reference number

Next AT AB entry to be checked

= 32000

:;::; 270

= 13000

:;::; ATAB(40)

Current TTAB entry to be generated = TTAB(20)

CURSYM = ST AB(I 000)

STACKQ(O) = STAB(l002)

The following TT AB statements would cause the corresponding TT AB entries to be gen­

erated.

Part of statement

II+ Ill

II ADDOP Ill

/IF II

llEQRELlll

I OFF II

I ab II

Encoding for TT AB entry

TLOC = 1000, TSTPT:;::; 3, TWHAT = 2, TTEST = 13000,

TMNPRP = 0, TTRUE :;::; 1, TTDONE = 40, TF ALSE = 0,

TFDONE = 21

TLOC:;::; 1000, TSTPT:;::; 3, TTABLE:;::; 32000, TTBTEST = 1,

TWHAT = 2, TSFLD :;::; 270, TFLDTS :;::; 1, TTEST = l,

TMNPRP = I, TTDONE = 40, TTRUE:;::; 2, TFDONE = 24,

TFALSE= 0

TSTPT = 1, TLOC = 1002, TPLMN = l, TPOS = 0,

TWHAT = 2, TMNPRP:;::; 0, TTEST = 14677, TRUE = l,

TTDONE = 236, TFALSE = 0, TFDONE:;::; 26

TLOC:;::; 1000, TSTPT = 3, TT ABLE= 32764, TTBTST:;::; 1,

TWHAT = 2, TSFLD :;::; 271, TFLDTS = 1, TTEST = l,

TMNPRP =I, TTDONE:;::; 236, TTRUE = 1, TFDONE = 27,

TFALSE:;::; 0

TLOC = 1002, TSTPT :;::; 1, TPOS = 0, TPLMN :;::; 1, TWHA T = 5,

TMNPRP = 0, TTEST :;::; 0, TTRUE = l, TTDONE :;::; 236,

TF ALSE = 0, TFDONE = 26

TLOC = 1002, TSTPT = l, TPOS = l, TPLMN = l, TWHA T = 2,

TFLDTS = 1, TSFLD = 0, TMNPRP :;::; 0, TTEST = 4

-test for "a" assume TSFLD = 0-, TTRUE = 0, TTDONE:;::; 26,

TF ALSE = 0, TFDONE = 30

49

50 SECTION VI

TLOC = 1002, TSTPT = 1, TPOS = 0, TWHAT = 2, TFLDTS = 1,

TSFLD = 1, TMNPRP = 0, TTEST = 1, -test for "b" assume

TSFLD = 1 - TTRUE = 1, TTDONE = 236, TF ALSE = 0,

TFDONE = 30

6.3 TABLE DECLARATION AND MANIPULATION LANGUAGE

The information tables formed during syntactic analysis must be defined using the

Table Declaration and Manipulation Language. The language consists of two classes of

statements, table declaration statements and'table processing statements. The table decla­

rations allow the designer to specify the name, the maximum number of entries, the fields,

and the sorting option for each information table. The table processing statements allow the

designer to specify how the information tables are to be processed by the Table Processor

upon completion of the syntactic analysis.

6.3.1 Table Declaration Statements

There are two types of table declaration statements: type A, in which the bootstrap

translator assigns the packing of fields, and type B, in which the designer specifies the

packing of fields. These statements are of the form:

(table declaration) : := (type A declaration) I (type B declaration)

(type A declaration) : := (table name)(integer)(sorting option)(field list)

(type B declaration) : := (table name)(integer)(sorting option)(field and packing list)

(sorting option) : := NO SORT I SORT I SORT ((integer), (integer))

(field list) : := (integer) [, (integer))~

(field and packing list) : := (integer) ((integer), (integer)) [, (integer)

((integer), (integer)))~

The integer following the table name gives the maximum number of entries in the table

named. The sorting option NO SORT designates a table not to be kept sorted during syn­

tactic analysis; the sorting option SORT designates a table to be kept alphabetically sorted

on the basis of the first (BCD) field in each entry; the sorting option SORT(integer,integer)

designates a table to be kept sorted, where the first integer gives the index of the field used

for sorting and the second integer identifies a designer-specified sorting scheme (see sorting

scheme statement below). Each integer in a field list designates the number of bits in a

field; the number of integers in the bit list is the number of fields in an entry. Each set of

three integers in a field packing list designates a field and the way it is to be packed; the

first integer is the number of bits in the field, the second is the index in the entry of the

word that the first bit is to occupy, and the third is the position of the first bit in the word.

In addition to the table declaration statement, an additional statement is used to

specify sorting schemes. This statement has the form:

(sorting scheme statement) : := (integer) [, (integer) I 61
3

THE CONTROL LANGUAGES 51

The first integer identifies the sorting scheme to be defined; it must have a value between

two and six (the standard BCD sorting scheme is referred to as scheme one). The remaining

integers gives the indices of the fields upon which the sorting is to be based and the order

of precedence of the fields; the order of the integers is the order of precedence and each

integer must have a value between one and six.

6.3.2 Table Manipulation Statements

Table manipulation statements are used to specify the processing of tables upon com­

pletion of syntactic analysis. The table manipulation statements are grouped into blocks

of statements, each block specifying certain actions for each of the entries in an information

table. Each block of statements consists of a process statement, memory initialization

statements, and action statements:

(statement block) : :== (process statement) [(memory initialization statement)] ~

[<action statement)] ~

(process statement) : := PROCESS (table name) [, (table name)] ~

(memory initialization statement): := MEMORY INITIALIZATION

(variable name) = <integer)

In the process statement for a statement block, the first table named is referred to as

the primary table in the block (table 0), and the remaining tables are referred to as the

secondary tables in the block (tables l, 2, 3, etc.).

Example statements Encoded entries in table manipulation table *

PROCESS TABLE-A, TABLE-B, TABLE-C 55000 [1~1_5_5_0_33_.._o___.....__16_6_0_0~

PROCESS LITT AB 65 000 ._I 1___._I __ ____.__0___._1_4_00_0~

In the first process statement above, TABLE-A is declared as a primary table (table 0) and

tables T ABLE-B and T ABLE-C are declared as secondary tables (tables 1 and 2 respectively).

Memory initialization statements are used to initialize the values of variables. For

example, the statement

MEMORY INITIALIZATION RELOCA == 144

will reserve a word for RELOCA and initialize its contents to 144.

The action statements specify the processing to be performed on the tables named in

the process statement. Upon completion of syntactic analysis, each action statement will be

executed once for each entry in the primary table. An action statement can be one of the

following types:

*The encoded entries are explained in Section 4.4

52 SECTION VI

<action statement) : :=<sort statement) I (insert statements) I (test statement)

(search statement) I (transfer statement) I (index statement>

(assignment statement) I (arithmetic statement) I (print statement)

(sort statement) : : = SORT (table name) ((integer) , <integer))

<insert statement) : : = INSERT (field) INTO (field)

(test statement) : : = TEST (field) AGAINST [(field) I (variable) I (integer) I (bed string) J"f

(search statement) : : = SEARCH (field) FOR (field)

(transfer statement) : : = $ (integer) $ I $ (integer) , (integer) $

Gndex statement> : : = INDEX [(field) I (variable)] 1 (signed integer)
I

<assignment statement> : : = (field)= [(field) I (variable) I (integer)] 1
I

<arithmetic statement) : : = (variable)= (arithmetic expression)

(print statement) : : = PRINT (table name) ((format specification))

<format specification) : : = (unit) [, (unit)]~

(unit) : : = 0/(integer) I C/(integer) I If (integer) I (integer) H/(bcd string)

Fields are specified by giving the table name and field number of the field referenced. Since

action statements are executed once for each entry in the specified table, no entry number

need be given. The table number implied by the location of the table name in a process

statement may be substituted for the table name. For example, with respect to the process

statement:

PROCESS TABLE-A, T ABLE-B, T ABLE-C

the field specification (TABLE-C, 2) refers to the second field of a TABLE-C entry, (1, 2)

refers to the second field of a TABLE-B entry, and (0, 3) refers to the third field of a

TABLE-A entry.

The sort statement specifies the name, the sorting field and sorting option for the

table to be sorted.

Example statement Coded entry in Table Manipulation table

SORT TABLE-A {I, 1) 55001 11116600I1 I 16602 I
The name (here TABLE-A) gives the name of the table to be sorted. The first integer gives

the number (1) of the sorting scheme to be used. The second integer (I) gives the index of

the field on which the sort is to be based.

THE CONTROL LANGUAGES 53

The insert statement is used to insert an entry into another table.

Example statement Coded entry in Table Manipulation table

INSERT (TABLE-B,2) INTO (0,3) 55002 6 14423 0 14427

55003 16600 16606

The test statement is used to test whether a field matches another field, variable, integer,

or BCD string of six or less characters. If the match is successful, the accumulator will be

set to l ; otherwise it will be set to zero.

Example statements Coded entries in Table Manipulation table

TEST (T ABLE-C, l) AGAINST (ABC) 55004 4 17700 4 17702

55005 000000 212223

TEST (l, l) AGAINST 0 14423 3

A search statement is used to search all instances of a field in one table for a match to

a field in the current entry in another table. If a match is found, the accumulator will be

set to 1 ; otherwise the accumulator will be set to zero.

Example statement Coded entry in Table Manipulation table

SEARCH (0, 1) FOR (2, 1) 55006 5 16600 0 16602

55007 17700 17702

The transfer statement is used to make conditional and unconditional transfers to

other statements in the statement block.

Example statements

$ 3,-2 $

$ 3 $

$ -2 $

Coded entries in Table Manipulation table

55010 ! 2 I 55015

I 2 I 0

0

550041

55014 I
55004 I

In the first example a transfer to the third following statement is indicated. In the second

example a transfer to the second previous statement is indicated. In the third example, if

the accumulator contains a 1, a transfer to the third following statement is indicated, if

the accumulator contains a 0, a transfer to the second previous statement is indicated.

54 SECTION VI

The index statement increments the field or variable named by the value of the

integer.

Example statement Codt'd entry in Table Manipulation t;ihlc

INDEX L~.2J -2 55011 -.
17700 l 3 I 17704 -

55012 4
...,
-

The assignment statcmrnt is used to fill a field of the current entry in a table

Example statemenb Coded entry in Table Manipulation table

(0.2) = (2.3) 3 I (1600 I 16604

17700 17706

(2.3) 5 55013 3 17700 17706

55014 5

(LITT AB.3 J = RELOCA 3 14000 3 14006

52321

In the first example. the second field of TABLE-A is filled with the third field of TABLE-C.

In the second example. the third field of TABLE-C is filled with "5''. In the third example.

the third field of LITT AB is filled with the value of the variable RE 10CA. All variables

(except the reserved varia blcs AO.A I A 9 used in the Ta hie Processor for indexing) must

be declared by a Memory Initialization statement.

The arithmetic statement is used to set the value of a variable.

Example statement Coded entry in Table Manipulation table

A= A+ (2.2)*5 50015

55016

55017

55020

55021

55012

55023

7 J
TSX

17700

MPY

XCA

ADD

STO

7 OOOOh

4 50332

17704

20313

26401

26401

THE CONTROL LANGUAGES 55

Coded entry in control table

20313 5 5

26401 3 A

The Print statement is used to print the contents of an information table. Each unit

specifies a field or BCD string to be printed. The letters 0, C, and I designate octal, BCD,

and integer fields; the integer following these letters is the field number of the field to be

printed. The letter "H/" designates the printing of a BCD string; the integer before the H is

the number of characters in the string.

Example statement Coded entry in control table

PRINT TABLE-A (C/l ,4H , l/2,4H ,I/3) 55024 I 1 I 14423 7 7

55025 l 2_3__._I _______ _

5 5026 ._I 3;..;;o__._I ______ 4.;.__....i

55027 I 60606060 0000

55030 l._4_6__._I ______ 2_..

55031 l._3_o__._I ______ 4_

55032 l60606060 0000

550331._4_6__,l.__ _____ 3___.

The example statement above will cause the printing of three fields in each TABLE-A entry.

The first field will be printed in BCD format, the second and third in integer format; the

fields will be separated by four blanks.

6.4' MACRO INTERPRETATION LANGUAGE

The Macro Interpretation Language is used to specify the interpretation of the macros.

Each macro is defined by a block of statements in the Macro Interpretation Language:

<macro interpretation program) : : = [(macro interpretation block)] ~

(macro interpretation block) : : = [<macro interpretation statement)]~

<macro interpretation statement) : : = (register list statement) i (temporary storage)

(define statement) I (transfer statement)

(error statement) I (end macro statement)

(conditional statement) I (generate statement)

56 SECTION VI

(register list statement) : : = RL (hardware register name) [, <hardware register name))

(temporary storage) : : = TEMP (integer)

(define statement) : : = (declared variable) = [(signed integer) I (hardware register name)) 1

I

(transfer statement) : : = GO (signed integer)

(error statement) : : = ERR (integer)

(end Macro statement) : : = END

(conditional statement> : : = IF (comparand) = (comparand) ((unconditional statement list).

(unconditional statement list) . (unconditional statement list))

(generate statement) : : = GEN [((or segment>)) "f

(unconditional statement list): : = (unconditional statement) [(unconditional statement)]':';'

(unconditional statement) : : = (register list statement) I (transfer statement) I
(error statement) I (end macro statement) I (generate statement)

<hardware register name) : : = RO I R 1 I R2 I ... I R 10

(or segment> : : = (operand) [(operator) (operand) I (shift operator) (integer)

(operand): : = (declared variable) I (integer) I (octal integer) I A(integer).

(integer) IS (integer).(integer) P (integer) I

M <integer) I T (integer) I R I C

(comparand) · · - (declared variable) I A (integer) .(integer) I
S(integer).(integer) I P <integer) I

RL <integer) I TY (integer)

(operator) : : = + I - I * I .N. I .X.

(shift operator) : : = .L. I . R.

The temporary storage statement is used to specify the maximum number of temporary

storage words to be taken from the temporary storage pool for the macro. For example,

Example statement

TEMP3 52000

Encoding in Macro Interpretation Table

..._ ls_2_0_3o_..._l _..._l _3_.l (beginning of macro
block)

will reserve three temporary storage words for each occurrence of the defined macro.

THE CONTROL LANGUAGES 57

The Register List statement is used to identify the machine registers used by the macro.

The first register identified is taken to be the register in which the result of the macro will be

left. The keyword identifiers RI, R2, etc., are used to denote machine registers.

Example statement Encoding in Macro Interpretation Table

RL R3, RS, R6 S2001 3 S2004 2 3

S2002 s

S2003 6

In the above example, registers R3, RS, and R6 will be used by the macro and the result

of the macro will be left in R3.

The define statement is used to give mnemonic names to integers or machine registers,

Example statement

BASIS

END =
AC =

32800

5570K4

RI

(a decimal integer)

(an octal integer)

(a machine register)

The transfer statement is used to pass control to another statement. For example,

Example statement Encoding in Macro Interpretation Table

GO -1 5 2004 I 2__._I __ _.._o__,__5_2_00_1__,

passes control to the preceding statement the statement and

GO +3 s 2004 12~1 __ _.___o_.___5 2_0_2_2 ~

passes control to the third following statement.

The error statement is used to call an error printing routine which prints out the error

message associated with the given integer. For example,

Example statement Encoding in Macro Interpretation Table

ERR 7 52005 I 2__._l __ 1 _._o__._ __ o_.

calls for a printing of the message associated with error number 7.

58 SECTION VI

The conditional statement is used to execute one of three unconditional statement

lists:

Example statement Encoding in Macro Interpretation Table

If A= B (GO+ 1. ERR 5, GO -2. END) 52006

52007

52010

5201 l

52012

52013

52014

52015

52016

52017

52020

52021

1

52015

2

52020

2 5

2

52021

2 0

0 66637 A

64216 B

52013

52015

52020

52021

52022 GO l

52021

0 ERR 5

52004 G0-2

52021

0 END

This example has the following meaning. If A is Jess than B, then go to the next statement;

if A is equal to B, then print error message 5 and go to the preceding statement; if A is

greater than B, then terminate the interpretation of the macro.

The generate statement is used to handle the generation of machine code. Each generate

statement generates one word of binary machine code. The binary code for each or­

segment within the generate statement is combined in a logical "or" operation to form the

binary word for the statement. The formation of binary code for an or-segment depends on

the operators and operands given in the or-segment.

THE CONTROL LANGUAGES 59

Example statement Encoding in Macro Interpretation Table

GEN (Ml08) (C+2) 52022 7 I 0 52024

52023 2 56627 loc of M108

52024 7 J l 52026

52025 3 2 C (instruction loc. counter)

52026 0 2 2

52027 ACL encoding of +

The execution of the example generate statement results in the following sequence of

events:

1. The indicators will be set to 0.

2a. The machine code for the 108th entry in the Machine Code Table will be loaded
into the accumulator.

b. The accumulator will be OR'd to the indicators.

3a. The contents of the instruction location counter will be loaded into the accumu­

lator.

b. 2 will be added to the accumulator.

c. The accumulator will be OR'd to the indicators.

The indicators will contain the generated binary machine word.

The End Macro statement is used to terminate the block of statements for a macro:

Example statement Encoding in Macro Interpretation Table

END 52030 I 21 o lol o I

This empty page was substih1ted for a
blank page in the original document.

61

SECTION VII

CONCLUSION

The emphasis in our design has been the segmentation of the system to show sepa­

rately the functions of each segment. Thus, the replacement or modification of a segment

is eased. We feel that the communication between the segments is not difficult in our system.

We have placed more emphasis on the generality and flexibility of our system than on its

efficiency. We feel that this is an unavoidable trade-off. For example, consider the general

structure of the information tables in the Table Processor. Because of the flexibility the

system provides for the user to have information tables of arbitrary formats, looking up all

the references in the Main Directory becomes a necessary intermediate step in accessing the

information tables.

Besides providing the users with an environment in which they can write their own

compilers, it is hoped that the experience of designing such a system will lead to the further

understanding of the general theory of compiler structure and the general technique of com­

piler writing. The basic idea in designing such a system is to separate the common features

of most compilers from the peculiarities of each individual compiler. We also see the possi­

bility of using the system as a classroom instruction tool to demonstrate the functions of a

compiler and to provide the students with opportunities for designing segments of a compiler.

This empty page was substih1ted for a
blank page in the original document.

63

BIBLIOGRAPHY

1. Irons. t'..T .. T/11' Struclurc u11cl Cse of the Syntax-Directed Co111pilcr. Annual Review

in Automatic Programming. Vol. 3. 1963

Irons. L.T ... 1 S1·11ra.Y-!Jircctnl Cu111r!iler ji_Jr. I/go/-!\()_ Communications of the AC:\1.

v 0 l. 4. l lJ6 1

3. Chc;1tharn. T.l .. Jr. :111d K. Sattky. Srntax-JJirected Cn11111i!i11g. Proceedings of the

AFIPS SJCC. Spart;111 Boob. 1 CJ(i4

4. Warslwll. S. and R.M. Shapiro. A (;c11crul-P11rpose Fah/c-/)ri1·c11 ('n11111i!er. Proceedings

of the AFIPS SJCC. Spartan Books. 1 %4

5. Chang. G.D .. A Table-Driven Compiler Generator System. S}.1. Tlwsi\, Department

of ckl"trical 1-nginc·ering. \1.1.T .. June 1966

6. \forks. R.L.. A Table-Driven Syntactic Analyzer. S.M. Thc·sis, DL']1;Hlmc·nt of ckctrical

Lnginc·cring, \1.l .T .. .I 11 iw I CJh6

This empty page was substih1ted for a
blank page in the original document.

Al'l'l::I\ IH Cl::S

rr l) r (l 11111 :~ ;_· i 11...,

ll B'\l '>1•c·c1l1,::ilwn ot' T~T111i1ul S\ 111bol\ :rncl K1,1L· S\ 11L1Ltlc l 1 Jl'-''

I ilmc·IL1rt, lu1· tilt: \y,L'llli•!n

S:1rn1•k S<llll'ct .llll!ll:ll!L' dill! (ontrul l:1nc<ll.!)2L' C,111111iLttiun StdklllL'!lh

This empty page was substih1ted for a
blank page in the original document.

67

APPENDIX A

DESCRIPTION OF STAB, LTAB, TTAB, AND ATAB FIELDS

Field No. of First Last Table

Name Mnemonic Bits Bit Bit Reference Mask Shift

STAB fields

PFLGF p-flag-first 0 STAB 35

PFLGS p-flag-second STAB 34

PADD p-additional 15 3 17 STAB 77777 18

PINTP p-interpret 2 18 19 STAB 3 16

PPTRS p-pointer-sign 20 STAB 15

PPTR p-pointer 15 21 35 STAB 77771 0

LTAB fields

LTABL L-table 15 3 17 LTAB 77777 18

LARG L-argument 15 21 35 LTAB 77777 0

LPLMN L-plus-or-minus 0 LTAB 4K11 35

LCHGXC L-change-XC 1 LTAB 2K11 34

LPOS L-position 5 2 6 LTAB 37 29

LTEST L-test 15 7 21 LTAB 77777 14

LTBCD L-true-BCD 2 22 23 LTAB 3 12

LFBCD L-false-BCD 2 24 25 LTAB 3 10

LTADVN L-true-advance-XC 2 26 27 LTAB 3 8

LFADVN L-false-advance-XC 2 28 29 LTAB 3 6

LADVN L-advance 6 30 35 LTAB 71 0

LWHAT L-what 2 0 1 LTAB1 3 34 (2nd word)

LTRUE L-true 2 2 3 LTAB1 3 32 (2nd word)

LTDONE L-true-done 15 4 18 LTAB1 77777 17 (2nd word)

LFALSE L-false 2 19 20 LTAB1 3 15 (2nd word)

LFDONE L-false-done 15 21 35 LTAB1 77777 0 (2nd word)

TTAB fields

TSTPT T-test-pointer 2 0 TTAB 3 34

TPLMN T-plus-or-minus 2 TTAB 1 K11 33 (2nd word)

TLOC T-location 15 3 17 TTAB 77777 18

TWHAT T-what 3 18 20 TTAB 7 15

TPOS T-position 15 21 35 TTAB 77777 0

TTBTST T-table-test 2 TTAB1 1 K11 33 (2nd word)

TINDR T-indirect TTAB1 2K11 34 (2nd word)

- --··--· ----~·- - ···-·-------·-- --------------·--------

68 APPENDIX A

Field No. of First Last Table

Name Mnemonic Bits Bit Bit Reference Mask Shift

TT ABLE T-table 15 3 17 TTAB1 77777 18

TFLDTS T-field-test 18 TTAB1 4K5 17 (2nd word)

TMNPRP T-number-or-property 19 TTAB1 2K5 16 (2nd word)

TT EST T-test 15 21 35 TTAB1 77777 0
TTRUE T-true 1 1 TTAB2 2K11 34 (2nd word)

TTDONE T-true-done 15 3 17 TTAB2 77777 18

TFALSE T-false 19 TTAB2 2K5 16 (2nd word)

TFDONE T-false-done 15 21 35 TTAB2 77777 0
TSFLD T-processor-field 15 21 35 TTAB3 77777 0

ATAB fields

AOPN A-operation 6 0 5 ATAB 77 30

AVLPTR A-value-or-pointer 1 10 ATAB 1 25
ANUM A-number 2 11 12 ATAB 3 23

ASTK A-stack 3 13 15 ATAB 7 20
AUSPTR A-use-of-pointer 2 16 17 ATAB 3 18

AFLD A-field 3 18 20 ATAB 7 15

APTR A-point 15 21 35 ATAB 77777 0

AFALSE A-false 15 6 20 ATAB 77777 15

ATRUE A-true 15 21 35 ATAB 77777 0

AARG A-argument 15 21 35 ATAB1 77777 0 (2nd word)

69

APPENDIXB

LIST OF ACTION OPERATIONS

The following is a list of operations performed by routine ACTION. The operations

are grouped by function rather than by numeric order. No mention is made of removing

processed elements from the stack, although elements are removed when necessary. VSTKO

refers to the top element of VSTK, VSTKl the next to the top element etc. Note the RE­

VERSE operation which is used to process sequences as C-(A *B-D) without temporary

storage or a complex analysis algorithm.

Value of AOPN Mnemonic

Arithmetic Operations

1 UNARY MINUS

2 PLUS

3 MINUS

4 TIMES

5 DIVIDE

6 REVERSE

30 LOGICAL AND

31 LOGICAL OR

33 ABS

34 SIGN

38 TALLY

Relational Operations

7 LESS THAN

8 GREATER THAN

9 EQUAL

10 NOT EQUAL

11 LESS OR EQUAL

12 GREATER OR EQUAL

13 EQUAL POINTER

14 NOT EQUAL POINTER

Control Operations

17 CONDITIONAL

TRANSFER

18 TRANSFER

19 COMPUTED

TRANSFER

Interpretation

-VSTKO

VSTK 1 + VSTKO

VSTK 1 - VSTKO

VSTK 1 " VSTKO

VSTK1 I VSTKO (integer division)

interchange values of VSTK 1 and VSTKO

bit by bit logical "and" of VSTK1 and VSTKO

bit by bit logical "or" of VSTK1 and VSTKO

VSTKO

If VSTKO 0 then 1 else 0

VSTKO+ 1

IF VSTK1 "relation" VSTKO

true TRUE= 1

else TRUE= 0

(TRUE is the symbolic name of a system

variable)

IF PSTK1 "relation" PSTKO

then TRUE= 1 else TRUE= 0

IF TRUE#: 0 the go to ATAB(ATRUE) else go to

ATAB(AFALSE)

go to ATAB(ATRUE)

go to ATAB(VSTKO)

(must use FETCH routine)

70 APPENDIXB

Value of AOPN Mnemonic Interpretation

20 DO save current ATAB line number and go to

ATAB(ATRUE)

21 COMPUTED DO same as DO but use VSTKO

22 TEST go to TTAB(ATRUE)

23 COMPUTED TEST same as TEST but use VSTKO

24 RETURN return to caller from predicate in TT AB or LT AB

or from DO in ATAB

26 LEXICAL see later explanation:

27 NEW TABLES exit from analyzer giving a parameter which requests

that the analyzers tables be overlaid with new

tables. This is a machine extension operation.
0 HALT normal exit from analyzer when done with analysis

36 ERROR EXIT prints error comment and exits analyzer

Other Operations

15 GET call interpretive fetch routine to load stack

16 PUT call interpretive store routine to load storage

from stack

28 PRINT PRNTSP = ATRUE

PRNTMD = AFALSE

PRNTVL"' VSTKO (if necessary)

see explanation in text, section 3.6.5

29 MOVE see explanation in text, section 3.6.5

32 NOP dummy - no operation

35 ROUTINE see explanation in text, section 3.6.5

37 NEW ENTRY using subroutine call to table processor creates a

pointer to a new-blank - entry in the table pro-

cessor with table reference number ATRUE

39 ZERO creates new VSTK entry of 0

40 OUTBCD creates duplicate of table processor BCD string,

represented by VSTKO, and places it in the

analyzer's BCOTAB • VSTKO is changed to

represent this duplicate string

41 INBCD creates duplicate of analyzer BCD string in the

table processor format - VSTKO represents

this new string

25 SET TRUE TRUE= VSTKO- used to set truth value before

predicate return TRUE .. 0 is FALSE truth value

42 NEWCHR calls routine to read input string (this is also done

automatically by LEXICAL) See text, section

3.6.5

43-63 no defined operation

71

APPENDIXC

ERROR COMMENTS

The system table ERRTAB controls the printing of error comments. The entries in this

table are referenced by the system variable ERRFLG. The call ERRTAB(ERRFLG) is in­

terpreted by the system as calling for a printing of an error comment in the following format:

ERROR FOUND IN.ROUTINE routine-name

error-comment

ERROR EXIT

sub-error-code

The "routine-name" is the name of the system routine in which the error was found

(ACTION or SYNTAX); the "error-comment" is the text comment describing the error;

the sub-error-code gives further details about the error.

The table on the following page lists the possible errors.

Value of
ERRFLG Comment Printed

1 STACK OVERFLOW

2 STACK UNDERFLOW

3 ILLEGAL LEXICAL TEST

4 BCD TABLE OVERFLOW

5 ILLEGAL TABLE FORMAT

6 ILLEGAL BCD STRING

7 ILLEGAL LEXICAL PREDICATE

8 NO BCD INPUT

9 INCORRECT USE OF
MOVE ACTION

10 INCORRECT USE OF
SYSTEM STACKS

11 CANNOT ACCESS POINTER
ARGUMENT

12 REFERENCE TO UNDEFINED
SUBROUTINE

Sub-error-code

Base address of offending stack

Base address of offending stack

none

1 (CLIST overflow). 2(LABCD overflow),
3(BCDTAB overflow), or 4(XBCD overflow)
(LABCD and XBCD are system tables)

l(ATAB), 2(TTAB) or 3(RTNTAB)

"value" of string

none

none

none

66 (base of VSTK) or 84 (base of PSTK)

Entry number of STAB entry containing
pointer

none or number of BCDTAB entry to
subroutine name

Probable cause of error

Reference made to an index in a stack which
was greater than max. allowable value

Use of stack index less than zero or fetch
from an empty stack

LEXICAL attempts to test a character
with a CLIST index less than SXC

Undefined field value, e.g., ASTK = 7

First six bits in "positive" BCDTAB entry
have value greater than 6

Lexical is called while evaluating a lexical
predicate

Two consecutive break characters in input
string

Both VSTK and PSTK contain entries after
the stack base value has been removed from VSTK

Either VSTK or PSTK not empty on exit
from ACTION

Pointer used does not point to table processor

If no sub-error-code, then ROUTINE operation
attempts to use RTNTAB index greater than
RTNMAX

......
N

;
0

><
(')

I
I

I
!

(letter)

(digit)

<octal digit)

(integer)

(octal integer)

APPENDIXD

BNF SPECIFICATION OF TERMINAL SYMBOLS
AND BASIC SYNTACTIC TYPES

· · == A I B IC ... I Y I Z

· · = o I I I 2 ... I 8 I 9

- o 11 I 2 ... 16 17

- [(digit)]Of

· · = [<octal digit)]Of

(symboD - + I - I * I I I (I) I . I $ I = I '
(signed integer) - (integer) I + (integer) I - (integer)

(bed string) - [(character)]Of

(alphanumeric string) - [(letter) I (digit)]Of

(character} (letter) I (digit} I (symbol)

(identifier} (letter) [(letter} I (digit}]~

(defined name) [<letter}]Of

~table name} - (identifier)

(variable name} - (identifier}

<arithmetic expression} (term) [(addition operator) (term)]Of

(term) - (factor} [* <factor}]Of

<factor} (variable) I <field) I <integer} I (arithmetic expression}

(addition operator} + I -

73

This empty page was substih1ted for a
blank page in the original document.

75

APPENDIX E

FLOWCHARTS FOR THE ASSEMBLER

The following four flowcharts are presented to show graphically how the assembler an<l

its various routines work together in the compiler system.

76

ILC
x1-o

If C(O, 6) • 0

X S-1st line of ML

X &-2nd line of ML

Digest Macro List Table

Convert Type 0 arguments

and Test Count to see if
a Temp. Storage is needed.

PPTEMP

Figure E-1. Overall Flowchart for the Assembler

APPENDIXE

FLOWCHARTS FOR THE ASSEMBLER

X7--A IBUFF-1,5)'

X5-X5 + 1?

X7-·A(AC)

Process Inf.
Temp Stor.

x5-o
X7--Cl·1,6)

xs-xs-1
AC-CI0,7)

(BUFF-1,5!-AC

O(TXLl-DIAC)

X,_X7-1

Figure E-2. Flowchart for Routine GENPRO

77

AIREG!-A(AC)

0(REGWR)4l-·DIAC)

OI0,61-A(REG)

X7--DIACI

78

, ..

x~o

Yes

GNFLAG-=O

P(GEN + 81-A

X~X7·1

A---X7

AO-AC V Value

(BUFF6,3l-AC

EXECUTE BUFF6,3

XJ-X3·1

X,_X7·2

No

Yes

Figure E-3. Flowchart for Routine GEN

APPENDIXE

GNFLAG..-0

Value-C(0.71

INTFLG-1 0

Back I

Value-

PIAI0,71.61
. p. 33

I Back)

C(MCATAB+

2"A.(0,7ll

NCFLAG-

2"A,(0,71

NIFLAG­

ldentification bit

Information

I Back)

A(CI0.2)"1

SBFLAG--; 0

(Back)

·Xl

ILCFLG

-10

I

HARDFG-;O

Valu~
Valu..-

DIA(0,71,6) CIAI0,71,6)

AC-CIAC"I
ABFLAG C(0,71-AC

_,,, 0
SBFLAO-;o

Figure E-4. Flowchart for Routine CONVER and CONVCN

I I

Value­

IDENIF-

Valu.,...

A(A(0,7),6)

INTFLG-~ 0

Valu..­

IDENIF­

LFTSHF-

"!!

~
>
~ en
"!!
0
~

;!
tT1
> en

~
°' bj
~

-..!

'°

This empty page was substih1ted for a
blank page in the original document.

APPENDIX F

SAMPLE SOURCE LANGUAGE AND CONTROL LANGUAGE

COMPILATION STATEMENTS

F.l BNF SYNTAX OF SAMPLE SOURCE LANGUAGE

: : == START [(statement)]~ STOP

81

(program)

(statement) : : == [(label)$]~ [<assignment statement) !(transfer statement) I

<assignment statement)

(transfer statement)

(conditional statement)

<arith. exp.)

(factor)

(term)

(identifier)

<integer)

(character)

(digit)

(rel. op.)

(mult. op.)

(add. op.)

(conditional statement)]!

: : == (identifier)== <arithmetic expression)

: : == GOTO (identifier)

: : = IF (arith. exp.) (rel. op.) (arith. exp.)

THEN [(statement)]~.

: : = (factor)[(add. op.)(factor)]'if

: : = (term) [(mult. op.) (term))'jf

: : = (integer) I (identifier) I ((arith. exp.)

- [(characters)]Cf

. . = [(digit)]"f

::=AIBl ... IZ

: : = O I I I ... 19

EQINEIGTILTILEIGE

* I I
: := + 1-

F .2 THE OVERALL SYNTAX OF MARKSTRAN

<Markstran program) : : = MARKSTRAN START

(declaration statement block)

(syntactic analysis block)

MARKSTRAN STOP

(declaration statement block) · · = LEXICAL DECLARE START

[(LEXICAL declaration)]~

STOP

TEST DECLARE START

(<TEST ·declaration)]~

STOP

ST ACK DECLARE ST ART

[(ST ACK declaration))~

STOP

82 APPENDIXF

<syntactic analysis block) : : = [<A.TAB statement>)': I ITTAB statement) [<A.TAB statement>ro'

F.3 THE MARKSTRAN PROGRAM FOR SYNTACTIC ANALYSIS OF THE SAMPLE

SOURCE LANGUAGE

MARKSTRAN START

LEXICAL DECLARE ST ART

TS=+/-/•/-/ EQ/NE/ST/LT/LE/GE/ = /IF/THEN/./S/START/STOP/GOTO/(/)//BLANK

IDEN = ALPHABETIC // BLANK

LIT = INTEGER/ .INTEGER/INTEGER./INTEGER.INTEGER/ /BLANK

STOP

TEST DECLARE ST ART

PROPERTY TEST TPROP = ADDOP(+,-), MULOP(*,-), RELOP(EO,NE,GT,LT,LE,GE)

VALUE TEST PADD =TERM, FACT, AEXP

STOP

STACK DECLARE START

STACKS STACKL(20), STACKM(2000)

STOP

PREDICATE START EQ2

IF PREOVR EQ-2 THEN SETTRLE(I). RETURN. ELSE SETTRUE(O)., RETURN.END

STOP

INITIALS DO(SCAN). TEST (Xl)

SCAN$ IF LEXICAL (TS), LEXICAL(LIT), LEXICAL(IDEN)

THEN STORE(CURSYM). RETURN

ELSE PRINT COMM(ILLEGAL LEXICAL TEST). ER~OR EXIT. END

XIS I/ START/// LOAD. DO(SCAN). TEST (SI)

OTHERWISE ERRS PRINT COMM(ILLEGAL PROGRAM)

ERROR EXIT

S1$ II IF/// LOAD. DO(AE). TEST(IFl).

II TO II/ DO(SCAN). TEST(TOl).

// STOP /// TEST(X2).

// ID ENT /// LOAD. DO(SCAN). TEST(ID 1).

OTHERWISE TO(ERR).

SAMPLE LANGUAGE STATEMENTS

X2$ I START// PRINT COMM(SYNTACTIC ANALYSIS FINISHED).

EXCISE(l). HALT.

OTHERWISE TO(ERR).

ID I $ 11 $ I I I X = SU SE(ST ACKTOP(O)).

ID ERR$

IDIA$

//=Ill

IF XEQO THEN

SUSE(STACKTOP(O))= 1.

SLABEL(ST ACKTOP(O)) = 1.

TO(IDIA).

END

IF EQ2(X) THEN

PRINT COMM(ILLEGAL USE OF IDENT).

ERROR EXIT.

END

MOVE(STACKM,LABEL,STACKQ).

DO(SCAN). TEST(Sl).

IF SUSE(STACKTOP(O)) EQ I THEN TO(IDERR). END

SUSE(STACKTOP(O)) = 2.

LOAD. · DO(AE).

MOVE(STACKM,=,STACKTOP(2), STACKTOP(O)).

EXCISE(3). TEST(END l).

OTHERWISE TO(ERR).

TO l $ 11 IDENT 111 IF EQ2(SUSE(CURSYM)) THEN TO(IDERR). END

SUSE(CURSYM) = I.

MOVE(STACKM,TO,CURSYM).

DO(SCAN). TEST(END l).

OTHERWISE TO(ERR).

IF1$ II RELOP II/ LOAD. DO(AE).

83

MOVE(ST ACKM,STACKTOP(l),STACKTOP(2),STACKTOP(O)).

ST ACKL = PPTR(LMOVE). EXCISE(3). TEST(IF2)

OTHERWISE TO(ERR).

IF2$ I IF II THEN II I
DO(SCAN). TEST(S l).

OTHERWISE TO(ERR).

84 APPENDIX F

END1$ //. /// DO(SCAN). TEST(END2).

OTHERWISE PRINT COMM(ILLEGAL STATEMENT TERMINATION).

ERROR EXIT.

END2$ /IF //./// PPTR(STAB(STACKL)) = PPTR(LMOVE)+l.

EXCISE(I). DO(SCAN).

TEST(END2).

OTHERWISE TEST(S I).

AE$ DO(SCAN). TEST(AEI).

AE1$ //+///

II - Ill

DO(SCAN). TEST(AEIA).

ST ACKQ = UN-.

DO(SCAN). TEST(AE I A).

AEIA$ // IDENT ///

// NUM /// LOAD. SET(TERM).

DO(SCAN). TEST(AE2).

// (/II LOAD. SCAN. TEST(AEI).

OTHERWISE TO(ERR).

AE2$ // MULOP /// LOAD. SCAN. TEST(AEIA).

AE2X$ /TERM MULOP TERM//

MOVE(ST ACKM,STACKTOP(I),ST ACKTOP(2),STACKTOP(O)).

EXCISE(3).

SET(TERM);

STACKQ = POINT(FMOVE).

TEST(AE2X).

/TERM// SET(FACT). TEST(AE3).

OTHERWISE TO(ERR).

AE3$ II ADDOP Ill
LOAD. SCAN. TEST(AE I A).

AE3X$ / FACT ADDOP FACT //

MOVE(ST ACKM ,ST ACKTOP(1),ST ACKTOP(2),ST ACKTOP(O)).

EXCISE(3).

SET(FACT).

II UN-FACT II

STACKQ = POINT(FMOVE).

TEST(AE3X).

MOVE(ST ACKM=ST ACKTOP(1),STACKTOP(O)).

EXCISE(2). STACKQ = POINT(FMOVE).

SET(AEXP). TEST(AE4).

SAMPLE LANGUAGE STATEMENTS

AE30$ I FACT II SET(AEXP). TEST(AE4).

OTHERWISE TO(ERR).

AE4$ I (AEXP If) Ill

PAREN$ STACKTOP(l) = STACKQ.

PAREN1$ SET(TERM). TEST(AE2).

I (AEXP 11 PRINT COMM(MISSING RIGHT PARENTHESIS).

TO(PARENT 1).

I AEXP 11) 111 PRINT COMM(MISSING LEFT PARENTHESIS

TO(PARENI).

I AEXP II RETURN.

OTHERWISE TO(ERR).

F.3 COMMENTS ON THE MARKSTRAN PROGRAM

85

It is assumed that SUSE and SLABEL have been declared in the Table Processor to be

symbolic names for fields of table IDENT. The values in these fields are interpreted in the

following way by the MARKSTRAN program:

SUSE field - 0 - . ident not yet used

I - used as label

2 - used as variable

SLABEL field - examined only if SUSE = 1

0 - location not yet defined

1 - location defined

Note that the result macro-strings are placed in STACKM.

If a pointer P points to another pointer (i.e., PINTP(P)= 0), the STAB(PPTR(P)) accesses

this pointer.

F.4 TABLE DECLARATION AND MANIPULATION STATEMENTS FOR

THE SAMPLE SOURCE LANGUAGE

LITTAB (100) NOSORT 36(1,0), 36(2,0), 15(3,21)

SYMTAB (200) SORT (1,1) 36, 3, 15, 15, 15

PROCESS LITT AB

MEMORY INITIALIZATION RELOCA= 144

r

86

(LITIAB, 3) = RELOCA

INDEX RELOCA 1

PROCESS SYMTAB

(SYMTAB, 5) = RELOCA

INDEX RELOCA 1

APPENDIXF

F.5 EXAMPLE MACRO INTERPRETATION STATEMENTS FOR THE SAMPLE
SOURCE LANGUAGE

Consider the sample source language statement:

IF X EQ 3.14 TIIEN GOTO fiLPHA

The macro instructions for this statement might be as fouows:

EQ (X,3.14)

TO (ALPHA)

TO (C +I)

Here EQ is a macro that causes a transfer of control to I) the following macro if its
arguments are equal or 2) the second following macro if its arguments are not equal.
TO is a macro for unconditional transfer of control. The machine code for these macros
might be as follows:

CLA X

SUB 3.14

TNZ * + 2

TRA ALPHA

TRA • + 1

machine code for EQ (X 3.14)

machine code for TO (ALPHA)

machine code for TO (next macro)

The macro interpretation statements for the macros EQ and TO might be as follows
(assume M 101, M 106, M94, and M32 designate the ;nachine code table entries for CLA,

SUB, TNZ, and TRA respectively):

TEMP 0

RL

-no temporary storage is needed for EQ

-result of macro is left in AC

GEN (M 101) (ARG 1) -generates code for CLAARG 1

GEN (M 106) (ARG2) -generates code for SUBARG2

GEN (M94) (C + 2) -generates code for TNZ *+2; (C is the instruction

END location counter)

TEMP 0 -no temporary storage is needed for TO

GEN (M32) (ARG 1) -generate code for TRA ARG I

END

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security class1ficat1on of title, body ol abstract and indextnQ annotation must be entered when the overall report 1s c1ass1f1ed)

I. ORIGINAT\NG ACTIVITY (Corporate author) 2• REPORT SE CURI TY CLASSl~ICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC Zb. GROUP

None
3. REPORT TIT!-E

Design and Implementation of a Table-Driven Compiler System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report, Electrical Engineering, September 1965 to April 1967
5. A.UTHOR{Sl (Last name, first name, initial)

Liu, Chung L., Gabriel D. Chang, and Richard E. Marks

6. REPORT DATE 7•. TOTAL NO. OF PAGES

rb
NO. OF REFS

July 1967 90 6 ... CONTRACT OR GRANT NO. . .. ORIGINATOR'S REPORT NUM8ER(5)

Office of Naval Research, Nonr-4102(01)
MAC-TR-42 b. PROJECT NO.

NR 048·189 Ob. OTHER REPORT NO(S! (Any other numbers that may be
c.

assigned this report)

d.
RR 003·09·01

1 o. AVAILA81LI TY I LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Advanced Research Projects Agency
3D-200 Pentagon
Washington, D. C. 20301

13. ABSTRACT Our goal is to provide users of the table-driven compiler system with an environment within which they can
freely design and produce compilers. The primary design criterion is generality so that the users can define a large class of
input languages oriented toward any kind of problem-solving purposes, and can also define a large class of object programs
to be executed on different computer systems. Therefore, in our system we do not limit the users to specific ways of doing
syntactic analysis, or doing storage allocation, or producing binary programs of a specific format for a particular computer
system. What we provide are mechanisms that are general enough for whichever way a user desires to build his compiler. The
table-driven compiler system consists of a base program and two fixed higher-level languages -- the Table Declaration and
Manipulation Language and the Macro Interpretation Language -- together with corresponding translators to generate control
tables according to user specifications. A third higher-level language -- the Syntax Defining Language -- and its corresponding
translator are also needed. For the generality and flexibility we try to attain, less consideration is placed on efficiency.

14. KEY WORDS

Compiler generators Multiple·access computers Syntax-directed compilers
Computer On-line computers Table-driven compilers
Machine-aided cognition Real-time computers Time-shared computers

DD (M.l.T.) 1473 FORM
I NOV II

UNCLASSIFIED

Security Classification

