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SOME ASPECTS OF PATTERN RECOGNITION BY COMPUTER

by
Adolfo GUZMAN Arenas
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ABSTRACT

A computer may gather a lot of information from its environment
in an optical or graphical manner.

A scene, as seen for instance from a TV camera or a picture, can
be transformed into a symbolic description of points and lines or surfaces.
This thesis describes several programs, written in the language CONVERT,
for the analysis of such descriptions in order to recognize, differentiate
and ldentify desired objects or classes of objects in the scene. Examples
are given in each case.

Although the recognition might be in terms of projections of 2-dim
and 3-dim objects, we do not deal with stereoscopic information.

One of our programs (Polybrick) identifies parallelepipeds in a
scene which may contain partially hidden bodies and non-parallelepipedic
objects. The program TD works mainly with 2-dimensional figures,
although under certain conditions successfully identifies 3-dim objects.
Overlapping objects are identified when they are transparent.

A third program, DT, works with 3-dim and 2-dim objects, and does
not identify objects which are not completely seen.

Important restrictions and suppositions are: (a) the input is
assumed perfect (noiseless), and in a symbolic format; (b) no perspective
deformation is considered.

A portion of this thesis is devoted to the study of models
(symbolic representations) of the objects we want to identify; different
schemes, some of them already in use, are discussed.

Focousing our attention on the more general problem of identification
of general objects when they substantially overlap,we propose some schemes
for their recognition, and also analyze some problems that are met.

Thesis Supervisor: Marvin L. Minsky

Title: Professor of Electrical Engineering.
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CHAPTER I. EXPOSITION

The goal.- Given a scene, as seen for instance from a TV camera or a pic-
ture, it is desired to analyze it in order to recognize, differentiate and

identify desired objects or classes of objects (i. e., patterns) in it.

The problem.- A picture, scene or view is read with the help of an optical
device and stored as an array of light intensities in tﬁe memory of the
computer. The ultimate goal will be to understand this information, that
is, to identify, separate and position the different objects or bodies
belonging to the scene(s). The demands of information will vary: sometimes
we will be interested in knowing if an object is seen in the scene or not,
while at other times we may require a complete description of the scene,
including information on relative support and (3-dim) position of the
different components. Hence it is clear that the recognizer will need an
additional input to specify the nature of the question that the program
is to answer by analyzing the scene.
Some work has been done by the author, specifically in the area
of '"recognition" (see below). This thesis describes the general problem,
its difficult points, possible solutions, and specific attempts by the
author and also by some others.
The work is divided in two parts: preprocessing, which converts
the input into symbolic data, and recognition, which studies these
data and, with Ehe help of‘a model of the object we are searching

for, finds all instances of that object in the scene in question.
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The different chapters of this thesis.~ The array containig the scene 1is

swept and transformed by the preprocessor (chapter 3), which converts the
picture in a more compact (and perhaps symbolic) form of information.

Sometimes a syntactical analysis (end of chapter 3) of this data is enough

to recognize the objects we are interest in. In general, the problems found
(chapter 2) require the use of more sophisticated weapons. Very often

it is necessary to specify a model (chapter 7) of the objects we want to
find, and a considerable part of this thesis (chapter 7) is devoted to

the different models and their characteristics. Some schemes for recognition

are proposed and discussed in chapter 8, using the models of chapter 7 and
assuming we have the scene preprocessed as in chapter 3; problems are taken
into account as in chapter 2. Finally, three particular schemes were

implemented, and are described in chapters 4, 5 and 6.

Contents.

Chapter 1. Exposition (just done).
Chapfer 2. Problems found

Chapter 3. Preprocessor.

Chapter 4. Polybrick.

Chapter 5. TD

Chapter 6. DT

Chapter 7. Models

Chapter 8. Discussion of some schemes for recognition.
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CHAPTER II. PROBLEMS FOUND

This chapter will list a number of important problems present for any
3-dim recognition system. Some of these problems are discussed in the
chapters which cover Polybrick, TD and DT; others are omnly mentioned here
or slightly discussed.

Solutions, approachs and lines of thbught are given when
available. In particular, some of the problems encountered by the
-recognizer are treated in the chapter about models (chapter 7).

7 These problems generally fall in two cathegotiea: are either general,
or caused by the particular method or approach. It should also be
mentioned that this chapter makes a description, rather than an evaluation,
of some of the ways to solve the problems found.

No hardware difficulties are discussed.



Occlusion.~ Since objects in the scene may be partially behind anothers,
the recognizer has to be able to find instances of a given object even
when only a part of it is actually seen in the picture.

Small parts of an object. If an object is totally occulted in
the scene except for a small part of it, identification becomes difficult
and ambiguous. Here, the recognizer could use context or statistical

@ to resolve the ambiguity, or to report the small part as

information
being a portion of one of several possible objects. Note that this problem
ig one of lack of enough information.

@ ~-somewhat arbitrarily-- decides to

For instance, Polybrick
identify as cubes (parallelepipeds) corners of the form A B C D (see fig.

'AMBIGUOUS') .

Fig. 'AMBIGUOUS'. Th: corner AB C D
may belong to several objects of different
shapes.

(l)As done, for instance, in W. W. Bledsoe and I. Browning [2].

(Z)See chapter 4 of this thesis.



Degenerate positions,- Probably most recognizers will fail to identify

the objects in figure 'CONES' as cones.

Fig. 'CONES'. Degenerated positions
are difficult to deal with.

Fig. 'CONES' also shows that there are degenerate positions with non-zero
probabilities. A major finesse will be required from the preprocessor and
its surface functions (see chapters 3 and 6) in order to get the hint "this
is a degenerated case'. Other kind of information may also help: shading,
shadows, knowledge of support structure, etc. If the recognizer has no

idea that it 1is dealing with this case, it can do little to identify
correctly the body, unless the frequency of these cases is such that special
software 1s devoted to them. Once the recognizer suspects a degeneracy,

the special machinery is used upon it.

Heuristic: watch out for isolated single regions surrounded by background

or not otherwise explained.

Hidden Lines.- In chapter 7, talking about transparent or 3~dimensional
models, we assert that we must know what lines or regions of an object are
hidden by the same object, with respect to the different views of such

a body.



Perspective.~ Parallel lines are nc longer parallel, but they converge
at the horizon... Accurate measurennn:s(l) have to be made if we want tc
use this information in order to know the position of the objects with
respect to the observer.

Polybrick, DT and TD ignore this problem, under the assumption

that we are working with small objects and/or‘fn: from them.

Spurious regions.- In using different surface~-functions or predicates for
finding good regions (see in chapter 3, the section "the 'summer vission
group' approach’), there may be overlapping amonig the found regions,

duplicated regions, bad regions, etc. (discussed below).

Bad regions.- Almost any surface function will occasionally find a region
vwhich is considered "bad", in the sense that it does not match exactly
with the outline of the face to which it corresponds. It is well known,
for instance, that intensity countour levels of a scene do not follow
closely the outlines of the objects [21]; over a flat surface, they get
ugly distributions, as fig. 'LEVELS' indicate. ‘

Problems to be solved by the executive or the recognizer are what
function to employ in each particular case, or else how to decide if the
produced region is acceptable. FPeedback between the recognizer and the
preprocessor (see ''the generalized region appreach' in chapter 8) is
needed at this point. Read also chapter 7 to see how models get involved.

It will be a good idea to have a stack of functions useful in
particular conditions; their utility could be further increased if we are

able to compose them, that is, to apply one function to the result of




another. Chapter 3 talks about this.
Also, it will result worthwhile to have an easy framework to

test different predicates manually, in order to collect the stack of

functions mentioned above(l).
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Fig. 'LEVELS'. (a) A plane is illuminated by two
concentrated sources. (b) Equal intensity curves.
If we use a cutoff value of intensity to identify
the region, our result will have little resemblance

with a rectangle.

(l)Towards this direction is EYE [30].



Overlapping regions.- The big repertory of functions (in the "region
approach, chapter 8) suggests that the same region could be found more
than once and, more over, that different functions when applied to the
same face or zone will in fact return different regilons; if there is
little discrepancy in the boundary of two regions which otherwise have
the aame center of figure, extension, etc., we could conclude that they
are the same and keep the more reliable one.

If two regions overlap considerably but one is significantly
bigger than the other, we may suppose that they are composed of smaller
regions, and that we should subdivide them, using a more delicate
surface function. Our hypothesis could be tested by taking the intersec-
tion of these two reglons and sending an speciallized feature-seeker (see
chapter 3) to find out if the region formed by the intersection could be

detected in a different manner.

Duplicated regions.- These are overlapping region s whose discordance is
small. Since their boundaries are not exactly equal, we still have to find

a criterion for choosing the best boundary.

Regions which are not there.- (Highlights, shadows, reflections, etc.) A
number of reglons will be found which are not 'actually' there. Small
(1)

reglons caused by camera noise can be eliminated due to their smallness .

As we point out in the paragraph "bad regions", wrong surface functions are

(1)This is dore by Larry Krakauer [21]. Note, however, that his program

is not designed with the idea of finding '"good' regions.



the main responsable of these monstrosities.
[t 18 possible that the curved surface of the cylinder ia figure
'CYLIN' be r;ported as two, if we use as function the constancy of
intensity, and even if we use the constancy of variation (first derivative).

The recognizer should be aware of this possibility.

N

Fig. 'CYLIN'. Example of regions which are not there.
If the surface function is simple enough, two regiomns
may be found where there is only one.

Non-interesting regions.- When seeing a box with small letters written
in its sides, or a piece of wood showing its grain, the preprocessor
tends to find a multitude of small regions, which are un-interesting to
the recognizer. We have to recognize them as '"non-important"” because of
their smallness, regularity, or some more appropiate property, and to
use their position to help to construct the 'real' region containing them

--the interesting one-- , and finally to ignore them.

Shadows.- Shadows cver the surfaces of bodies in process of idemtification

complicate this task, although they may reveal information about the shape
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of surfaces. A good way of discriminate them is to use as surface function
the composition of the light, that is, the ratio of some color to the
total lumens/mz, instead of the plain intemnsity (assuming we have color

perception).

(¢9)

Spurious Lines.~ A line-follower could get trapped into spurious lines,
and the same applies to the region finder (see chapter 3), when it has to
work with noisy input.

Such spurious lines can be eliminated by their short length, and
on a higher level by the fact that they do not "fit" into the boundary

of a shape for which there is good, independent, evidence.

The a-A transformation.- The following scheme(z) is useful in detecting
undesired lines when dealing with rectilinesr bodies. Given an array
containing elementary segments (a small number of poinis plus a direction
associlated to them), as indicated in figure 'LITTLE SEGMENTS', we assoclate
with each segment a pair of numbers, o is the angle that this segment forms
with the x-axis, and A is the distance of the (extended) line from the
origin.

That 1s to say, we convert the figure to an array of points (see

figure 'CLUSTERING'). In the a-) space, points which fall close together

(1)The following programs are typical line-followers, and are confronted
by the mentioned problem: 1. Sides 21 [10}; 2. Polygon detector [23].

(2)

This scheme is used by Nilsson at Stanford Research Institute in the
visual part of their robot.
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are over the same line, so that frequency count will eliminate the spurious
segments, aé desired. Clouds with the same o are parallel lines, and
this fact could be used in order to look for parallel limes.

Smooth curved lines could also be detected by this method, if we
use a fancier criteria for the detection of clusters(l).
Spurious Points.- Often eﬁough, after the application of some surface
function (again, we are assuming the region-approach) to some part of the
scene, the result will exhibit some isolated or irrelevant points, which
have to be elliminated from the region. These points could be swept out
by averaging and then having a treshold. There are also the so-called
noise-eliminators, line-thinners, and so on, widely used in the field of
character—recognition(z). Disturbances coming from noise in the camera

could be mitigated by reading the same spot several times and averaging.

This technique wastes time.

Range of brightness.- Whem comparing brightnesses, it is advisable to use
their ratios, or differences between logarithms. This helps make the system

invariant to changes in illumination levels.

(1) Work in this area is: 1. Evan L. Ivie. PhD Thesis [18].
2. Probably a conventional pattern clasifier will
do it. See N. J. Nilsson [26].

(2)A good collection of references is in [9]. See there [1].
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CHAPTER 1III. PREPROCESSING

This chapter will cover some schemes that might be used to
preprocess pictures before we can use our "symbolic description
recognition methods.

The preprocessor is responsible for taking the scene as read
into memory --generally as an array of numbers which correspond to the
intensity or brightness of the points in the picture, scene, film, etc.--
and transforming it into a smaller but more usable amount of information,
usually as a highly organized description, in symbolic format perhaps, of
points, regions, lines, surfaces.

The main goal of a preprocessor is to throw away as much informa-
tion as it can, while at the same time to keep the relevant facts in an
organized structure. Most of them perform a local operation over a point

and its neighbors, producing an output that depends only in the values of

the intensity in a small neighborhood.
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EQUAL INTENSITY CONTOURS (global threshold algorithms)

The CNTOUR program.- This program [21] plots an intensity relief map of
an image which 1s read from the vidisector camera (TV-B) attached to the
PDP-6 computer. For high-contrast images, it produces something like a
line drawing.

A contour is a set of closed curves enclosing all those points in
an image whose intensity is greater than a specified threshold. These
contours correspond to .the contours of a relief map, and not to the
boundaries of an object. Thus, except for high-gontrast pictures, equal
intensity contours do not match (do mot follow closely) the boundaries of

a region.

Local threshold.- Something may be gained if, instead of cutting at a
pre-set global threshold, we make a histogram (fig. '"HISTOGRAM') or
frequency count of the scene under consideration. I1f this i1s a sharp-
contrast figure, significant peaks will be found, and then we may put
thresholds in the valleys (see fig. 'HISTOGRAM').

The output of these programs has to be fed to a line-fitter, in

order to get numbers, slopes, etc., out of the lines.
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Fig. "HISTOGRAM". Local thresholds
could be put at A, B and C.

LINE FOLLOWERS

When there exists a sharp contrast between the different surfaces, it is
usually possible to follow fairly well the boundaries of two zones which
differ greatly in brigthness, using what is called a line follower.
This program sends a probe that travels the scene looking for a place
where the intensity changes abruptly, and then travels along this change
or discontinuity; in order to achieve this, we may think of it (the probe)
as having two legs, and each one is kept in a different zone. This should
be taken only as a pictorical description.

The output of a line fo-lower is a set of lines, which often has
to be processed slightly more, in order to elliminate very small lines,
and in order to merge several fairly collineal segments(l). For instance,

it may be difficult to find the exact ubication of the corners (place
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where two lines intersect); one can instead follow the lines until near
the corner and then, after the complete set of lines is found, use an
(2)

analytical interpolation to find the 'best" corners

From the many line forlowers that exist, we will present two.

Sides 21.- This program [10] for the PDP-6 computer uses a box with a
zone of tolerance (see fig. 'BOX'), the width and length of the box
being functions of the length of the portion of line already found and

(2)

of the noise present in the picture. It uses CORNS . The program searches

for the maximum gradient, the relative location of the maximum gradient

Fig. 'BOX'. The innermost rec-
tangle is termed the acceptance
box; the outer two rectangles
are collectively termed the
looking box. When tracking, the
less sharply defined the edge
is, the wider the box must be

to successfully track it.

with respect to the box is also known to the program, and this information
is subsequently used to steer the box. If the line is within the acceptan-
ce box, the program considers that the correct location of the line has
been found, and thus will track further. In the case of a noisy edge, the
box is widened as a function of how far the maximal gradient goes astray.
90% of the points must be inside the acceptance box before the box will
extend. When the program believes it has arrived at a corner, it will

move the box in several directions to find the possible emerging lines.

1

See at this respect 'spurious lines' in chapter 2; more detailed in-
formation is found 1n Cyclops-1{24].

(Z)CORNS [32] is a program that does this.
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Finding the edges of a polygon.— Mann [23] uses also an edge detector in
order to find the different sides of a rectilinear polygon; it first
searches in a rectangular grid, until it observer an abrupt change in the
intensities. Noting this point, it continues until the intensity is sta-

ble again. It returns the average of these points as the edge.

STACKS OF SUCCESIVE TRANSFORMATIONS(l)
We may transform pictures, that is, arrays of intensities (array of
numbers) into new arrays of numbers which, generalizing, could also be
considered as pictures. So, we would have functions which transform
pictures into pictures, and we could stack them , that is, compose them.

The following table shows some of the different possibilities.

FROM TO
Intensity | point line symbolic
pictures pictures pictures descriptions
averaging. | threshold
contours.
gradient. operations.
laplaci Kirsch edge
. . aplacian. irsc
Intensity pictures . detectors.
region package.
finder.
color.
rotse P | Line
Point pictures eliminators.fitters'
Kirsch PAX|
projectiong. '
Line pictures line White's
fitters. program.
Martin's Display Display D.
Symbolic display. programs. programs. ﬁTé et .
description ode’s to pa

terns compiler
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In this table, the lower triangle [\ corresponds to display; the upper
triangle N\] , to preprocessing.

Now, a preprocessing may be considered as a path between the
upper left square and the lower right square; typically, we transform
intensity pictures into intensgity pictures several times, and then
apply a transformation from intensity pictures to point pictures, etc.
(see diagram below). Nevertheless, due to the fact that "local pre-
processing" is expensive (time consuming), the preprocessing could be
under 'global' control\ --more complicated loops would appear in the
diagram below-- so that only difficult regions are transformed much.

This is discussed somewhat in 'the generalized regions approach', in

chapter 8.

Fig. 'GRAPH'. Typical flow-chart of a preprocessor.

(1)1 got this idea from T. Marill.
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SOME OTHER METHODS.
Laplacian. Gradient. They are local operatlons. See [5].
Ridge detectors.- See [29].

Logical (boolean) preprocessing.- See Kirsch [20].
A. Rosenfeld and J. L. Pfaltz.
J. ACM 13, 4; pp. 471-494 (oct 66).

Hodes line follower.- See [17].

REGIONS. THE ''SUMMER VISION GROUP" APPROACH[27].

[33]

A program sweeps the array containing the scene and collects
sets of points satisfying a given predicate; these sets are called
regions, and roughly correspond to the different faces of the objects.

It is entirely possible, but it is undesirable, that two or more regioms
will be reported as one. To find good regions is not a trivial task.

Another program[zzl will drive the region-finder, supplying 'good'
predicates; the boundaries will be sorted and '"smoothed", and the bad
regions elliminated and/or merged.

[37, 38], interpolating

A further preprocessing will then be done
straight lines, segments of curves, etc., until finally each region 1is
described by a set of properties, in the so-called region-notation (see
chapter on models).

This input is the one which the recognizer (for instance, TD[16])

will use.
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Syntactical analysis of figures.- We cite the following references:

1. Ledley, R. S., and Wilson, J. B. Automatic Programming languages
translation through syntactical analysis. Comm. ACM 5, No. 3. March 1962.

2. Ledley, R. S., Rotolo, L. S., Belson, M., Jacobsen, J.
Pattern recognition studies in the biomedical sciences. SJCC, 1966, vol.
28, p. 411-430.

3. Narasimhan, R. Labeling schemata and syntactic descriptions of
pictures. Inform. Control 7 (1964), 151-179.

4. Hodes, L. [17].

5. Cyclops-1 [24].
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CHAPTER 1IV. POLYBRICK

1 am presenting in this chapter a description and discussion of
Polybrick. This is a program that recognizes 3-dimensional parallelepipeds
(solids limited by 3 pair of parallel planes), using as data 2-dimensional
orthogonal projections.

Under the name CUBE LISP, a version of this program is running in
the CTSS 7094 Time Sharing System of Project MAC, MIT. A more complete
description and a listing of the program is found in a MAC emo [13].

Polybrick is written in the CONVERT language [14].
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Introduction.- The programs contained in this chapter solve the following
problem:

A scene contains noise free parallelepipeds without perspective
effects, but partially occulting one to others. Extraneous rectilinear
objects other than paralleslepipeds may be present.

Problem: what parallelepipeds (hersafter called sloppily "cubes")
are there and where they are (in the 2-dim picture)?

An ansver is considered bad when it misses some cube, or if it
confuses some. On the other hand, ambiguous cubss or partially-identified
ones should be reported as such.

The program should also give the position of such cubes, to the

extend such information is available.

Input to the program.- Eventually the program will read its data directly
1)

from the world'~’. Right now, the picture is transformed (by hand) to a
1list of corners and points of intersection (real or’virtunl) of lines,
and their --two dimensional~- coordinates in the picture, together with
its nearest adjacent points.

For example, the input associated with fig. '#CUBE' is
(A(BF)BMAGCC(BD)D(GEC)EB(FD)F (AEG) G(FBD))

1, 2] “{2,1] Z’["'.11 20[4. 2] (3, 31 M1, 31 ¢ (2, 2] E

Fig. '#CUBE'. A cube
showing its vertices. G

1)

See chapter on preprocessing.



Coordinate

Vertex X Y neighbors

A 1 4 BP
B 1 6 AQc
c 5%/g 7779 BDS
- D 5 8 EC
£ E 6 10 DXF
F 8 11 EG
o . é G 14 8 XHF
H 13 6 16
I 11 5 XM J
g - 4 3 g J 9 6 ITUWK
< r x K 9 4 JL
7 L 7 1 KWM
6 - b v J A M 5 1 NL
¢ ® N 5 3 OWM
< 0 5.7213 4.0909 P V
4+ 4 b X P 3 3 AQO
Q 3 5 BPR
» N W R 8 7 QST
2- s 6 8 CR
T 8 6.5 RUJ
™ 7 U 8 6 TVJ
b . . . . . . . v 7 6 UD
2 9 6 2 1o 2 4 W 7 3 NJL
X 12 7 IGE
Fig. GORDO

To its right is its description list, tthe input to the program.
The numbers are stored in the property list of each vertex.

—Ez-
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Format of the answer. We use the CONVERT processor and apply the function
cube ( in the file "CUBE LISP") to the picture GORDO (in file "gordo"). Here

is the operation in CTSS.

load (( a cube gordo))
(CERO UNDECLARED)
(CERO UNDECLARED)
NIL
e (cubs gordo)
THERE ARE AT LEAST 3 OR 3 CUBES)

CUBE 1 IS(N(WOM WENJIL)L MKW) )

~~ o~

CUBE 2 IS (I (JHX)G( XH)X(EGI)E (XFD) )

~

(CUBE 3 IS (P(AOQ R(SQT)Q(BRP) B (QCA) )

THE PROGRAMS.
They are written in CONVERT, a pattern-driven symbolic transformation

language [ /4 ], and we will discuss here the following:

CUBES2 LISP 000 Original,uses continuity.
CUBS ‘LI1SP 000 Partitions the set into disjoirt classes
CUBA LISP 000 Final version; uses the unit
distance method.
CUBE LISP 000 Breaks ¢ into —{ &~ (mot
conected)

The last one is the one currently in use, but it is interesting

to talk about all of them.

CUBES2 LISP. Use of neighbourhood .

If a corner ( ( ) is found, we ldok for a parallelogram ( (::) )
which has that corner (we use here the information about which points are
joined to which); as usual, solid arrows in the flow chart indicate the

direction of success; broken ones, the direction of failure.
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For example, in fig GORDO, CUBES2 proceeds in this way :

[

B s
/N N
———> CUBEFOUND  ——>FILL CUBE —> A P R

N
4

—_

\ Y i

Now it tries again : it finds all the 3 cubes.

Shortcomings of CUBES2

The scheme just presented gives an idea of the power or weakness of
CUBES2. It is able to find connnected cubes; for example, it solves fig GORDO
and fig COMMON, but it fails to find
A B CD in the figure at the right
because it is formed of two disconnected

parts (disconnected it the sense that,in *

[2Y

order to go from one part A D to the D &
other B C, we have to cross other cubes).

wWhat to erasz and what to leave

Once all the points of a cube are found, we have to delete it from
the picture, in order to process the remainder. Or, if you do not want
to delete points, you still have to mark them as "already processed". This
process is explained with COMMON, the example in fig "COMMON".

Once the cube K.J IWUVF GH is found, we delete these points from
the graph. The point G, for example, is safely deleted, since its neighbors

,F,H and W also belong to the encountered gube.
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What to erase and what to leave

(63)

Once all the points of a cube are found, we have to delete it from
the picture, in order to process the kemainder. Or, if you do not want to
delete points, you still have to mark them as "already processed'. This process
is explained with COMMON, the example in fig7 ‘cOMMON'. (page 34).

Once the cube K J IWU VF GH is found, we delete these points from
the graph. The point G, for example, is safely deleted, since its neighbors,
F,H, and W also belong to the encountered cube. But F, for example , is
still not deleted, since it has as neighbors point outside (not belonging
to) the actual cube. Therefore, one pass through the graph eliminates all
the lines arriving at points in the cube; for example,P*(E¥C* K) is transformed
to P (Bx Cx ), since K was in the cube. In this way we delete the line F* -K,
if we also make the transformation from K(U J F¥) to K(U J).

Another pass looks for points of the form W ( ), that is, points
"igolated" (not connected to anything else), and deletes them.

The first pass is done with the CONVERT rule
[ (XXX (YYY U 22Z) WWW) (XXX (*REPT* ((YYY 2ZZ) WiW))) ]
vhere we define U as' "member of CUBEJUSTFOUND".

The second pass --deletion of isolated points-- is done with
[ (XXX X( ) YYY) (XXX (*REPT* (YYY))) ].

In this way points shared by several cubes (like K) are preserved.

But not the lines; for example, the line K-U is erased ( fig.ff1"CHANGE"),
because it belonged to the cube K J I WU VF G, even if it also belongs to
the cube MNP DEF VT.

In general, there is no way to predict such an event, since the

(1) Canaday [4] treats this problem in a similar way.
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second cube has not yet been found, and therefore there is no way to tell what
its parts are. We sill discuss this point later.
In general, this is not a serious defect, but see the example TRICKY,

fig TRICKY,

Fig. coMMON after erasing cube K J I WU VFG.
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CUBS LISP. Classification of the corners.
We want to be able to recognize '"disconnected" cubes; roughly speaking,

the problem is this; in some way I manage to know that A Q C Aqq
looks like it is going to be a cube ( see also fig HIDDEN) C
;80 I would like to look for a cormer of the form_V in the
direction Q C. That corner happens to be U W T V --~---! » U\lw(v
at the bottom, but in order to find it I have to continue the line Q C
for a while, and stop after finding W T, which is the continuation.

We could use the scheme of trying to extend all lines that seem to
be stopped--like QC,TW --, making the picture somewhat transparent. Also,
when looking for corner T, we could extend slowly the line Q C, and every
2 millimeters or so ask : Have I hit a point yet ?

Instead of that, we use the opposite approach: look for the points
(corners) whéch exist, and see which of them may be coatinuations of Q C.
But it would be better not to ldok at all of them, but just to the most
promising ones. That is what CUBS does.

The vertices may be CORNERS,Y's,T's or ANY's.

The program classifies the vertices of the picture into several
categories :

CORNERS; With this name we denote vertices at which two lines arrive,

for example U ,A, I, rk, etc. in HIDDEN (fig. ).
Y's : Three lines meeting at a point, two of them codlinear; B*,W, K%,
L&, Mk |

ANY's: Vertices having more than 3 lines.
What the program CUBS does is divides the vertices into CORNERS,

Y's,T's and ANY's. The Y's are also classified into classes, according to
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A
Q
0
1" J
4
M
& w* .
L)
ae € F M
8" I .
[ 3
w
A ™ /V
u T
2 q t 10 iz
HIDDEN
Fig The cubes A Q VU T and A* H are disconnected.

4

o2

. {0

.8
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the slope of ikts sides

After this, all the Y's of a particular cube can be found in a given
class; if it happens that there are no parallel cubes, like in STICKS (
fig. ), then you simply print the classes, because each class contains
exactly one cube.

That is not the complete solution. There is more to be said, of course.
When a single class contains just one vertex, such as G or M* (STICKS, fig .

) ,it may or may not be part of a cube. CUBS make further analysis and
depending upon the kind of vertices attached to the lines forming that Y,
an acceptance or rejection is made. For information purposes, a message
"FALSE CUBE FOUND" is issued.

For example, analyzing the points attached to H, XM and F, the "Y" G

is aécepted as a cube; analyzing the points N%, ¥* and Z¥%, the point M* is
T*

rejected, that is to say, < > e is not
part of a cube. L

Tk
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STICKS

Fig.
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This is the solution for STICKS (last page), as the program CUBS does it:

(CORNERS == ZM (QM Q) RM (M N) LM (KM MM) IM (W JM) I* *H*
Jk) F* (E*x Gk) D* (Ck E*) Bk (Ck AX) Y (X YM) U(TV) K (J
L) H(GI)F (GE) D (CE) A (B J*))

(TES = A/ (H* DM G*) YM (GM Z Y) XM (P R* G) WM (C B VM) UM
(Q* E VM) TM (SM I 0) MM (LM GM V*) JM (KM IM NM) M (Z EM
Y*) EM (W* FM X*) BM (AM CM DM) AM (Z* BM E*) Z* (K* AM H¥)
Y* (FM X* Ak) X* (EM W* Y*) Wk (EM X* V&) vk (S* MM W) S*
(R* T* V*) R* (Q* S* XM) Q* (UM P* R*) Pk (N* T* Q%) K* (L*
Zk J%) J% (K* T* A) A* (2 Y* B*) Z (¥M A* PM) W (IM V X) Q
(ZMPR)P (QXMO0) O (NTMP) N(RMQMO) M (RMOML) I (H
JTM) E(FDUM) C (DB WM))

(FALSE CUBE ( 0.30000002E1 0.5e0 -0.0 N* (VM P* M#)))
(FALSE CUBE ( 0.2E1 0.0 -0.3333333 M* (T* L* N*)))

(CUBE 1 IS (U* (T* L* C*) L* (Uk Mk K%) Ck (B* Uk D*)))
(CUBE 2 IS (KM (JM HM LM) HM (KM X GM) GM (MM HM YM) X (W Y HM)))
(CUBE 3 IS (NM (T VJM) H* (A/ Z*x I*) V (UMM W) T (S NM U)))
(FALSE CUBE (0.0 -0.1E1 -0.2E1 S (T OM R)))

(CUBE 4 IS (QM (N PM ZM) PM (OM QM R) OM (M PM S) R (S PM Q)))
(CUBE 5 IS (VM (WM N* UM) SM (J L TM) L (SM K M) J (I SM K)))
(CUBE 6 IS (G F H XM))

(CUBE 7 IS (CM (BM DM E*) G* (DM F* A/) B (A WM C)))

(ANYS = DM (BM CM A/ G*) T* (S% U* Mk N%) E*x (AM D* CM F*))

We print, as additional information, the CORNERS and the T's. Note that
only a small part of each cube is printed; for example, of the long
horizontal cube, only vertices G, F, H and XM are printed. It is not

difficult to "fi11" the cube, as CUBES2 does'l), but CUBS does not do that,

(l)See Polybrick memorandum [13].
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if for no other reason, because we already know how to do it, so it is
just a matter of adding that part of the program.
Algo, CUBS does not use any information about CORNERS; we will

need it in more complicated cases.

Shortcomings of CUBS.

I think the most serious one is that it is unable to make
recognition among parallel cubes, for example cubes A Q U T and G* F* J* H*
in fig. 'HIDDEN' (page 29) are confused and reported as just one, since
they 1ie in the same class. A better (or worse) example is fig. 'COMMON'
(page 34), where all the four cubes are parallel, and the program thinks
there is just one. Also, the program does not check for length of edges.

Let us not get angry at CUBS., It is obvious that the program is
incomplete, and it is also obvious what should be done.

The main good idea in CUBS is that, by dividing the cubes into
classes, we transform the problem of finding all the cubes, into the
problem of finding the cubes in a given class, in which all of them are

parallel. This approach also solves the disconnectivity problem.

CUBA LISP. Differentiating among parallel cubes.-

The program just discussed takes a figure and separates the cubes
into classes, each one of them containing parallel cubes. For example, in
fig. "HIDDEN' (page 29), the cubes A Q V U T and E* J* D*¥ J H* are
parallel. We would like to differentiate among them. Here we use the

collinearity among two vertices; for example, Q and T are collineal
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--figure at the right-- , but Q and D* are not, so Q A

and D* can not form a cube. Q
Also, we do not want to compare Q with all the

vertices of its same class in order to select the po-

ssible ones; it seems that a further classification

of vertices of the same class is desirable.

Collinearity is not sufficient. For example, vertices A and B --see
figure below-- are collineal, and still do not form a cube; therefore,
we will select all the vertices colineal to A in the direction AT and

(if there are some) select the appropiate ome.

Numbering the Y's. Unit distance vertices.-

TAke a cube, pick any vertex and establish the three directions
of its lines, as done in the figure. Now, examine for each vertex, the

F £ ! lines which depart from it.

A ? 2 For vertex A, all its lines

a depart in the positive direc-

tions N , —» and L H

8 (o
therefore, is (+ + +) or (0 0 0). For vertex B, 1line B G is N\ (+)
line B C is — (+)

line B A is T (-)
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thevefore, vertex B is (+ + =) or (0 0 1) or 1. When we finish this

process, our cube now looks like this: F (100)

This numbering scheme is inde-
pendent of the starting vertex (0 0 0)

and of the directions which are consi- @
(o1)

dered positive. ¢ (o14)

(oot)

Connected vertices are unit-
distant, that is, their binary words differ in exactly one bit. Vertices
which are 2 units apart lie on the diagonal of the faces (A E, A G, BH,
etc.) and vertices lying in opposite extremes of the diagonals of the cube
are 3 units apart, for example F (1 00) and C (0 11).

(1).- The pre-processing done in CUBA 1is more complicated

Pre-processing
than the one done in CUBS.
Vertices are divided into CORNERS, T's, Y's and ANY's (as before);
1. CORNERS are divided according to the slope of the sides.

2. T's are divided according to the slope of the top and
the slope of the tail.

3. Y's are divided into classes, according to slopes.
In each class, vertices are divided according to the
unit distance concept. If certain vertex happens to

be the first of a given class, the number (0 0 0) is
assigned to it.

Localization of the cubes.- A second part of CUBA applies to each class
of Y's the following process:
1. A vertex is selected and the program tries to attach to it a

cube, 1f possible; therefore, its unit-distance vertices are looked
for [if the vertex in question has number (xl. Xy, x3), only sub-

clasges (;1' X5y x3), (x4 iz, x,) and (x,, x,, ;3) are searched(*)];

(1) (*) footnotes in next page.
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a vertex has to pass the test for collinearity and, if several
are found, the closest is chosen. It turned out that these 3
test are still not sufficient; for example, B is

(1) unit-distant from A

(2) colineal

(3) the closest

and still A - B is not (part of) a cube.

In relation with this, see also fig. 'TOWER'.

2. Ve apply to the vertices found in (1.) the same process (1.),
up to a certain depth,

3. The cube formed in this way is accepted if it hag two or more
vertices; if it has one, as N¥ (K* L* M*) in fig. "HIDDEN', page
29, we check the extreme points [K*, L* and M* in the example],
as explained in CUBS.

A fancier program should say, after finding a cube such
as N*: "I am not sure it is really a cube, but it looks like one".
This comment can be inserted in this part of the program.

4, Accepted cubes are reported and their vertices erased from
the subclasgses where they were found, and the whole process is
applied again to the next vertex of the subclass.

5. When a subclass (or a class) is empty, the next one is searched.

CUBE LISP.

Is the program currently in use; in addition to what CUBA does, it

also breaks vertices of the type -—5‘- in two Y's: —5‘ and \_ .

(l)This should not be confused with the kind of preproceassing of chapter 3.

* s{Lirxn

*lo1Fx=1
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Recognition of Cubes in a Picture which alsv contains other Objects.-

In the presence of non-cubic objects, an effort is made by the
program to see cubes in them; if none is found, these objects are simply
ignored. A good example is fig. 'HIDDEN', page 29, where the truncated
pyramid is ignored, but only after several "false cubes" found in it.
The output is the following:

(FALSE CUBE (Z* (Q* Y* $%)))

(FALSE CUBE (Y* (V* Z* X*)))

(FALSE CUBE (X* (W*x 0* Y*)))
SOLUTION TO HI DD E N

(FALSE CUBE (S* (T* Z* S%)))

(FALSE CUBE (Q* (Z* P* R*)))

(CUBE 1 IS (N* K* Lk M%))

(FALSE CUBE (X (H Y B)))

(FALSE CUBE (J (I K H*)))

(CUBE 2 IS (H* (G* F* J) E* (F* G* C*) F* (E* H* D*) D* (W K F*)))
(CUBE3 IS (P(AQR)YO(QANQ(PC)T (UVW))

(CUBE 4 IS (L (A* B* M) Z (M N A*) M (ZD L) H (B X R¥)) )

(FALSE CUBE (B* (Y* U* W*)))

(CUBE 5 IS (Y (D X I*) G (P* I* B) I* (E G Y) E (I* 0% §)) )

(FALSE CUBE (D (Y M §)))

If instead of a pyramid we put an hexagonal prism, it will recognize in
it the 'cubes" ABCEFG and BCDFGH!

As you see, CUBE 1is not very successful in a b ¢

foreign environment. A more general program should be

more careful about accepting candidates which look F G

good.
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We have already shown several figures which the program analyzes

correctly; they are COMMON (page 34), GORDO (page 23), HIDDEN (page 29),

STICKS (page 31). Some of them, like HIDDEN (page 29) are somewhat compli-

cated, since they involve parallel cubes, disconnected cubes, l-corner

cubes, extraneous objects, etc.

I would like to present now a couple of examples, TRICKY (fig.

'TRICKY'), and WHAT? (fig. 'WHAT?'), where the answer is ambiguous (non

unique). The program does its best, and its answers are acceptable but,

in general, CUBE is not designed to solve optical illusions.

load ((a cube tricky))

(CERO UNDECLARED)
(CERO UNDECLARED)

NIL

(THERE ARE 2 OR 1 CUBES)

(CUBE 1 is (M (B DL) B (M

e (cubs tricky)

(CUBE 2 IS (J (K I P) P (L

(FALSE CUBE (0 (H L D))

(CUBE
CUBE accepts
to the scene

(CUBE
(CUBE
(CUBE
(CUBE
(CUBE
(CUBE

(FALSE CUBE (V (J R T)))
(FALSE CUBE (C (R B D)))

3IS(F(ENG)N(

the 3 exterior cubes

WHAT? :

1
2
3
4
5
6

IS (0
IS (S
IS (Q
IS (M
IS (H
Is (M

Y
(DTR)
(B RP)
Lz
(G U I
(YN Z)

X
D
B
K
U
Y

@
(s
Q
(@]
(T
M

cA»)
HJ)) )

FH) )

and rejects 0 (HL D). Now we apply it

W0)Q XRP)))
EC)) )
C A)))
ZL)Z (WKM))
HJ)))
OW) 0o (NY X))
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'TRICKY'.

Fig.

16-

'WHAT?'.

Fig.
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These are the results for WHAT? (page 40). 6 cubes are found;

MY O W is accepted, but J VR T is not. This is (see figure 'WHAT?')
certainly a possibility; otherwise, how does one explain with cubes the
presence of lines ON and NM ?

The next page shows the scene 'TOWER'. All the cubes but one are
correctly identified; cubes C¥X T and P I are [con]fused and they appear
in the answer as only one, namely C* N* A* J. This is because we do not
use information about lines; lines P* Q and R* T (see page 42) will solve
the problem.

e (cubs tower)

(THERE ARE AT LEAST 3 OR 2 CUBES)

(CUBE 1 IS (A* (X I X*) X* (Z 0 A¥)) )

(CUBE 2 IS (X* (Z O U*) U* (H S X*)) )

(CUBE 3 IS (V (C T* B) F* (T* C C*) T* (F* V NX) N* (C* R T*)) )
(CUBE 4 IS (N* (Ck R P*) A* (X I W*)) )

(CUBE 5 IS (F (Y M N) N (G* L F)) )

(CUBE 6 IS (N (G* L K) K (D* G N)) ) ;

(CUBE 7 IS (K (D* G J) J (H* V* K)) )

(CUBE 8 IS (U* (H S F) F (Y M U*)) )

(FALSE CUBE (W* (D Y* A%)))

(CUBE 9 IS (E (W Q* J*) E* (J* B R) U (B J* Q%) J* (E* U E)) )
(FALSE CUBE (E (W Q* T)))

(CUBE 10 IS (W* (D Y* A) I* (A Q D) R* (P* A S*) A (I* R* Wk)) )
(FALSE CUBE (P* (R* Q N¥)))

(FALSE CUBE (B (U E* V)))
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.

Fig. 'T O W E R', Vertices such as K (D* N G J) having 4 connected points,
two of which (J and N) are collineal, get decomposed in two Y's: K (D* N G)
and K (D* J G).
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CHAPTER V. T D

This dhapter describes a program(l), written in the CONVERT language,
and run in the IBM 7094 system, called TD. The function of TD is to accept
a scene expressed as a symbolic expression (cf. chapter 3) and a model (cf.
chapter 7), expressed in the same notation, and to find all instances of
this model in the scene.

The symbolic hotatiom for expressing scenes and models uses a language
called FDL-1 (figure description language-one). The notation restricts the
present application of the system to scenes and models which are made of
straight line segments. Models can be described independent of position,
gsize, rotation, reflection, etc.

The program TD is particularly well-suited for non-overlapping figures.

Overlapping figures are identified only when they are transparent.

Either two or three-dimensional models and scenes can be represented
in our notation. Furthemmore, the program TD will handle three dimensional
scenes and models as readily as two-dim ones. That is, we can compare 2-dim
scenes with 2-dim models, or 3-dim scenes with 3-dim models (both cases des
cribable in FDL-1); this last case is rather rare, due to the difficulty to
get 3-dim scenes to analyze. On occasion, it is possible correctly to
analyze a scene which is the two-dimensional representation of a 3-dim

scene by using only two-dimensional models,

(I)TD was developped by the author at Computer Corporation of America,
Cambridge, Mass., under contract AF 19(628)-5914.
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SECTION I. The Figure Description Language FDL-1.

Introduction.

The figure description language FDL-1 is a language in which
figures and models may be represented in a symbolic notation. For the
purposes of FDL-1 we restrict ourselves to figures and models which are,

made of straight-line segments.

Formally, there is no distinction in the language between a figure
and a model. Informally, we will use the term "figure'" to mean a certain
specified picture (which may or may not be fixed in position), whereas we
will use the term "model" to refer to a class of pictures, such as the
class of squares for example, or the class of chemical formulae containing

one benzine ring.

THE LANGUAGE

Roints.

Points are the building blocks of further structures. A point is

represented by an atom., Example: A
B
coc are points (see fig., 'POINIS').

!ertex.

A vertex is a point followed by a (non-ordered) list of points,

called the neighbors of such a point. A vertex has no repeated neighbors,
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A,
Fig. 'POINIS'. The simplest
B : element of a figure is a
point.
cocC

and is not a neighbor of itsgelf.

Examples: A (BCD) is a vertex; B, C, and D are the neighbors of A.
A (BDC) is a vertex.
A (B CC) is not a vertex.

A (B C A D) is not a vertex.

Elementary Figure.

A list of vertices satisfying the following constraints is called an
elemmntary figure:

1. Each point mentioned occurs exactly once as a vertex.

2. Neighborhood is a symmetric property; that is, the occurrence
of ... A (.o B ...) «.. in the figure means that ... B (... A ...) ...
must also be present,

Elementary figures are sometimes called the commection matrix or
connection list, The order in which the vertices are mentioned is irrelevant.
Bxample: (A (BC) B (CDA)D (BC) C (ABD))
is an elementary figure. See figure below.

Note that the vertex A (B C) is different from the figure

(A (B C) B (A) C (A)). See figure 'THREE',

< Ry e T AR SRR T v e R T
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(a) elementary figure
(b) point A. (a) A
(c) vertex A (B C).

Example:
Example:
Example:

(b) <A

(c) A

Fig. "THREE', The elementary figure
(A (B C) B (A) C (A)).

C

(A OB C() is an elementary figure (see figure below).
((A (B C)M (N S))) is not an elementary figure.

(A B (C) D (116, 0.563)) is not an elementary figure.

This elementary figure shows the

fact that the neighbors of a given
point P are the other vertices to
which lines from P are drawn. .
Compare with figure 'THREE’'. .C
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Example: (A (BC)C (BAE)D () B (CA) E (C) ) is an elementary figure

(see figure below).

E
A c
C
D E
A ®
*D 5 B
(a) (b)
Two figures (a) and (b) may be described
by the same elementary figure in FDL-1:
(A(BC)C(BAE)D()B(CA)E (C)).
Broperties.

Elementary figures deascribe only the topology of the connection

between the different vertices of the object(l)

s in order to characterize
further the scene or model in question, we modify (we restrict, in fact)
this topological skeleton by specifying properties which the figure has

(to have).

A property is an ordered list whose first atom has been declared to
be of the type "property name" (i. e., it is not a point), and whose
remaining elements are atoms representing points, or numerical constants.

A property is simply a predicate, i.e., an expresion with open variables,
such that the expression becomes T or F upon substitution for the variables.

Examples: (LENG C B 4.0)

(1)Evans [8] uses a similar scheme for the representation of his figures.
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(ANGLE A B C 75)

Attachment of Properties to Figures.

Given a figure, a new figure may be formed by attaching to it a
collection of properties, using the connector 'where'. An example will
illustrate the syntax.

(A(BC)B (AC) C (AB)) L

(SLOPE A B 3.0) (LENG C A 5.0) (2)
Expression (1) represents an elementary figure with three vertices;

expression (2) represents two properties,

A new (non-elementary) figure may be formed by saying:

((A (BC)B (AC)C (AB)) where ((SLOPE A B 3.0) (LENG C A 5.0))) (3)

In the example, (1) is any triangle, and (3) is any triamgle with a side
of length 5.0 and the adjacent one with slope 3.

Example: ((M (NR) Q WR) N (M Q) R (M Q)) where

((LENG N R 8.5)
(SLOPE M Q 0.0)) )
represents a quadrilateral with an horizontal diagonal, the other being

8.5 units long.

Therefore: A figure may be formed by a list containing 3 elements:
1. a figure
2. the connective where

3. a list of properties.
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ertie a n varigbles.

The properties (SLOPE A B X)
(SLOPE M N X)
where X is not a point, but an explicitly declared "open variable"”, are
interpreted as saying that the slope of AB is X and the slope of MN 1is
also X, vhatever X may be. In short, the lines AB and M are parallel.
In general, open variables are used when we do not want to commit ourselves
to specific values, but insist only that the value be the same each time

the variable 18 encountered.

In order to distinguish open variables from points and property
names, open variables are declared as such using VARIABLES, which is a
special property. Thus, the expression

(VARIABLES ALPHA THETA CAMOTES ....)
defines the atoms ALPHA, THETA, CAMOTES, ..., to be open variables.
These variables are considered open only with respect to the figure which

they modify. An example of a figure containing open variables is as

follows:
(B @R Q(PR) R(PQ) uhere R
( (LENG P Q L1)

(LENG Q R L1) L

(LENG P R L1) L

(VARIABLES L1) ) )
This figure represents an equilateral R
triangle. A second description may be: L
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(C( @R Q(PR) R (PQ)) where
((ANGLE P Q R ALPHA)
(ANGLE R P Q ALPHA)
(VARIABLES ALPHA))) where
((ANGLE P R Q ALPHA)
(ANGLE P Q R ALPHA)

(VARTABLES ALPHA)) )

Composition of Figures.

Boolean connectors may be used to form new expressions. For example:
(=OR= (A (B C) B (A C) C (A B))
(A(BC)B(AD)D(BC)C(AD)))

is a representation of a triangle or a certain type of quadrilateral.

Definitions: Single Names.

An operator is now introduced which allows us to give to a whole
figure a single name. This operator is

(=DEF= name fig)
where name is an atom not previously used as either a point, an open va-
riable, or a property name, and fig is a figure. After such a statement
has been executed, mname and fig are completely equivalent and interchan-
geable.

=DEF= allows us to set single atoms to stand for whole figures.
For example, assume we have a quadrilateral, i. e.,

(A(BD)B(AC) C(BD)D(aC))
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Fig. 'QUADRILATERAL'. A model,

We may define the atoms "QUADRILATERAL" and "QUAD" both to represent
that quadrilateral as follows.
(=DEF= QUADRILATERAL (A (B D) B (AC) C (BD) D (AC)))
(=DEF= QUAD QUADRILATERAL).

A parallelogram may now be defined as a quadrilateral having two equal,

p—" [
-

Fig. 'PARALLELOGRAM'.
Parallelogram defined
with the help of the
model of figure
'QUADRILATERAL',

e=\'

non-adjacent, and parallel sides, such as AB and DC (not CD). For example:
(=DEF= PARALLELOGRAM (QUAD where
( (SLOPE A B S)
(SLOPE D C S)
(LENG D C L)

(LENG A B L)
(VARIABLES A L) )) )
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We may now define a rectangle as a parallelogram having one right angle:
(=DEF= RECTANGIE (PARALLELOGRAM ere
\ ((ANGLE D A B 90°)) ))

Of course, we could have made some of the definitions in a different
manner; for example,
(=DEF= PARALLELOGRAM ((A (B D) B (AC) C (BD) D (AC)) where

((SLOPE A B X) (SLOPE A DY)

(SLOPE D C X) (SLOPE B C Y) (VARIABLES XY) )) )
The above defines a parallelogram to be a quadrilateral with opposite

gides parallel two by two.

A rectangle may be defined as a parallelogram constrainted to have
its two diagonals of equal length, as follows.
(=DEF= RECTANGLE (PARALLELOGRAM where
((LENG A C 2)
(LENG D B 2z) (VARIABLES 2) )) )
Note that properties are not attached to lines, but to figures; for
instance, (LENG A C Z) is a well-defined property, even when the figure

*
does not contain line AC( ).

Definitions of New Properties.

New properties may be defined at will. In order for the recognition
program to take proper action in regard to the new properties, these must
be defined before use in terms of LISP functions.

A property (P Al A ... An-l An) is handled by producing a call to

2

(*)

This feature is considered important by Sutherland in Sketchpad [34].
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the LISP function (P Al' Az' eee An_l'), where Ai' is the expression
obtained by replacing Ai by its value (with respect to TD); the value
of this LISP function is then computed and compared with An', yielding
a match or a failure(l); furthermore, when the mentioned value is T,
this comparison does not take place, and TD handles this case as if a

successful match were occurred.

For example, suppose we want to define the property EQUILATERAL,

function of m sides A1 Bl; A2 B2; ese} Am Bm; and we will say that a fi
gure has such property if llength Ai Bi falls within + EPS of the
average length _ Z: length AyBi
AB = ccmcccumecaaan
Zi
4

where EPS is some pre-specified tolerance. We must write a LISP function
of name EQUILATERAL, of 2m (not 2mt+l) arguments, whose value is, for ins=-
tance, YES if the arguments [whose values are the points forming the
sides of the figure in question] fulfill the appropiate requeriments; this
function should check its arguments to see if some of them is not a point,
in whose case should return T; otherwise (failure), its value must be dif-
ferent from YES or T. One could then write
(=DEF= SQUARE ( (A (B D) B (AC)C (BD) D (A B)) where

((EQUILATERAL A B BC CD DA YES)) ))
The user is able to define properties as complicated as he wishes, since
properties are functions (predicates) of several variables, the variables
‘being the (coordinates of the) vertices, and the values which obtain diffe
rent UAR variables: slopes of lines, distances, etc. Therefore, arbitrarily

complex restrictions may be specified, and models can have fairly elaborate

properties or constraints between its different elements.

(1)This comparison is done by RESEMBLE (see CONVERT [14]).
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SECTION II. The Program

What the Program does

As already mentioned, the recognition program called TD accepts a
description of a scene expressed in the notation of section I and a des-
cription of a model expressed in the same notation, It will produce, as
output, the instances of the given model in the given scene.

TD operates in several modes which are set by 'switches'. There are

three switches called EXACT, ALL and SYMMETRIC.

EXACT can have ane of two values: T and (). A value of T for EXACT is the

normal mode. In this mode, an object will be said to match the model only

A 2 e

(m) (n) (p)

Fig. y-16. The small triangle A B C in (p) 1is not recognized
when EXACT is T, but it will be when EXACT is ().

if the vertices of the object have exactly the same number of lines as
are specified for the corresponding vertices in the model. Thus, ABC will
be recognized as a triangle in fig. y-16~m and in fig. y-16-n, but not in

fig. y-16-p.

When the value of EXACT is (), the object will be recognized as matching

a model even if there are more lines occurring at a given vertex than those
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specified in the model. Thus, ABC in fig.y-16-p will also be recognized as

a triangle.

The next switch is called ALL., It takes one of three values: T, () and 69.
The normal setting is T. In this state, the program will identify a certain
portion of the scene, erase that portion, and then operate on the remainder.
The program terminates when the scene no longer contains parts which may

be identified as the model in question.

Under the setting (), the program stops after having identified the first

instance of the model.

Under the setting 69, the program will do an exhaustive analysisof the
scene in terms of the given model. Thus, for example, in fig. 'ALL' the
program will find two rectangles in the setti.g T, one rectangle in the
setting (), and 12 rectangles in the setting 69. The 12 are all the permu-

tations of the three rectangles, ABCD, NMLK and S N R D.

The third switch is called SYMMETRIC. It B8

N R M
has two values: T and (). The setting T
is to be used when the current model is, A S o

K L

in fact, symmetric. In this case, the pro-
] ]

gram will operate faster than in the Fig. 'ALL'. Twelve rectangles.

mode (), the normal mode. In case the model is not symmetric and the switch

is set to T, the program will not behave correctly. See examples below.
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244

224

- & ¥ 3 § @ o ©°
Fig. 'P27'. Scene analyzed in example 1.

&«
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Example 1. P27,

We have shown (fig. 'P27) in the page 56 a scene we want to analyze.
The symbolic description of such a scene, that is, the way it is assimilated
by the program, is the following:

(LAMBDA (A B C) (PUT A B (LLENA C)))

(P27 SCENE (A 3. 9. (B D) B 1. 25. (A C) C 10. 25. (B D)

D11, 17. (AC) E 11, 15, (F 2) ¥ 12, 13. (E G) G 18.421052

16.210525 (¥ z U H) H 18, 12. (G I) I 23.833333 11.416667

(ERQJ) J 21, 10. (1K) K 2.59, (JOPL)L 13, 9,

(XM) M 24, 1. (LK) N 35, 9, (0 M) 0 28,230769 9. (P K S N)

P 24, 4, (K O) Q 28, 11. (R I) R 26.263158 13.631578 (I T S Q)

§35.17. (RO) T 29. 21. (U X) U 28,166666 21.083333

(XVTG)V 30. 22. (UW) W29, 24, (X V) X 24, 21.5 (Y WUZ)
Y 19. 22. (X Z) Z 18.68421 18.84210 (EY X G) ))

PUT (QUADRILATERAL MODEL ( A* (Bt D¥) Bk (A% Ck) Ck (Bt D)

D* (A% C*) ))

PUT (TRIANGLE MODEL (A% (B C*) B (A% Ck) CF (A% BY) ))

The last three rows define the models "quadrilateral" and "triangle'.
g* C* ¥

AY D¥* AR Cx
Models "quadrilateral” and "'triangle" used in
the analysis of fig. 'P27' (page 56).

We ask the program to look first for triangles, then for quadrilaterals: '

(TRIANGLE 1 IS (J § P))
(TRIANGLE 2 IS (L N M))
(O(PKBN) ORI)R(ITSQ) (T(WR)) (URXVTE

) (VOW (WEXW)) (X(IWUZ)) (Y(X2))(Z(RYXOE))
(A(BD)) (B(AC)) (C (BD)) (D(AC)) (E (F Z)) (F (RG))

(G(FzZUN) H(CI)) (I(HRQJ)) (KT OPL)) ~

(QUADRILATERAL 1 IS (AB D C
(QUADRILATERAL 2 IS (EF W V
(QUADRILATERAL 3 IS (Y T H Q
(R(ITS8Q)) (8 (RO)) (U

RTTT

VTG)) (XQYWU2)) (Z (E
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YXG) (G(FZUH) (I (HROJ) (J(IK)) (K (JOPL))
(L (KM) M (LN) (N (0M)) (0 (PKSN)) (P (KO0))

Now we change EXACT to (). When we look for quadrilaterals, the answer is

(QUADRILATERAL 1 IS (A B D C))

(QUADRILATERAL 2 IS (E F Z G))

(QUADRILATERAL 3 IS (L O M N))

(QUADRILATERAL 4 IS (U X V W))

((HEI) (L(EHRQJI)) J(IK) RGOPL) (P (XO))
@QRI)) (R(ITSQ)) (5SRO (T (UR)) (¥ (X 2)))

note that the analysis.is consistent with the setting EXACT = () and

ALL = T; namely, we cannot identify other quadrilaterals in the remainder.

This answer was one of several possible matches, which could be discovered

by reordering the vertices of the scene and applying TD again, or by making
ALL = 69,

Looking for all (in the 69 sense) triangles:

cset (symmetric nil) cset (all 69) cset (exact nil)
td (triangle p27)

(TRIANGLE 1
(TRIANGLE 2
(TRIANGLE 3

(TRIANGLE &

(TRIANGLE 5 IS P O K)
(TRIANGLE 6

(TRIANGLE 7

(TRIANGLE 8

(TRIANGLE 9 IS K P 0)
(TRIANGLE 10 IS O K P)
(TRIANGLE 11 IS P K 0)
(TRIANGLE 12 IS § J P)
(TRIANGLE 13 IS
(TRIANGLE 14 IS
(TRIANGLE 15 IS
(TRIANGLE 16 IS
(TRIANGLE 17 IS
(TRIANGLE 18 IS

QUIT

(the program was stopped and did not finish).
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Fig. 'SQUARE',
Find all the squares in this picture.
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Example 2, 'SQU ARE',

(see fig. 'SQUARE', page 59). The symbolic scene is

(LAMBDA (A B C) (PUT A B (LLENA C)))

(SQUARE SCENE (A 1. 6. () B1,8. () C2, 3. () D3.3. (O
E3, 6. OF4.,8. )OG&4.16, O HSG6, 5. ()12, 8, ()
J 12, 14, () K15, 1, () L 16. 7. () M 17. 14. ()

N 22, 8. () »

We will look for squares here, in the sense of séts of four points
which could be located at the corners of a square; the model in
question is

(PUT (SQUARE MODEL

( Qe () O% () N« () P* () ) WHERE

(LENG M* N+ L1) (LENG P* O* L1) (LENG N* O* L2) (LENG M* P* L2)
(ANGLE Nk Mk O% Al) (ANGLE M* N P* Al) (ANGLE P* Mk O% Al

(ANGLE O% N P* Al) (VARIABLES L1 L2 Al) )))

)

The answer is

(SQUARE 1 IS (A D F H))
(SQUARE 2 IS (K M C G))

Example 3, 'X S',

We will now analyze a three dimensional scene (see fig. 'XS', page 61),
or rather, to a 2-dim view of a 3-dim scene, We are interested in objects
of a shape as "X " (see fig, 'EQUIS‘.)

The operation 1s:

CSET (SYMMETRIC ())

TD (EQUIS XS)

(EQUIS L IS (I JHAF GEDC B))
(EQUIS 2 IS (K DLLSOMNPQR))
(EQUIS 3 IS (ZALUBLVTY WXCL))
NIL
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!
Bl
T
Y
(o]
X

Fig. "X 8",
Scene for example 3. Model is called 'X' (see fig. 'EQUIS')
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Fig. 'EQUIS'. A model
for fig, 'Xs’',
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The NIL at the bottom is the remainder of the scene, as allways. In this
case is an empty remainder, i. e., the scene consisted only of the searched
object (EQUIS).

Nevertheless, when we look for the object EQUIS (page 62) in the
figure below, the program fails to identify it.

This is due to the fact that the two dimensional representations
are different. Chapter 7 discusses this in detail.

A solution to this is to define a model (like the block in questiom)

as one of several models; FDL~1 has an =OR= for this effect.

14 4
124 K
104 !

8

o 2 4 6 8 10 12 14 18 1B 20 22

Fig. d24., The model EQUIS (page 62) is
inadequate for the identification of this
drawing.
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Fig. 'CHEM I S', This scene was
analyzed by ID using the models in
the next page. (see example 4).
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Fig, 'NAPHT ALENE', A model,

EX F¥
D¥
L% A% ¥
K B¥ H*
J¥ 1%

Fig. 'ACENAPHTYLENE'. A model.
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Example 4. CHEMTIS
~-gee figures "W A P HT AL E N E" (page 65), ACENAPHTYLENE (page 65),

and CHEMIS (page 64).--

Several chemical compounds were looked in CHEMIS, page 64. The

results are given below,

(NAPHTALENE 1 IS (N O M FL Al G BL S L A))

((P (HGL)) (0 (Y X)) (R (E2 M2 I2)) (T (Gl H1)) (U (Xl B2
Z1)) (Vv (C2 A2)) (W (EK)) (X (Q W1)) (¥ (V1 T1 Q)) (Z (tl
L1 N1)) (CL (J1 K1 GL)) (DL (I2 J2)) (El (M2 P1)) (GL (P T
Cl)) (HL (T1 I1)) (Il (HL K1)) (J1 (B C1)) (K1 (Cl I1)) (Ll
(U1l z)) (ML (F N1)) (N1 (z M1)) (Ol (L2 K)) (P1 (El F2)) (Q1
(D J)) (R1 (I C)) (SL (XL Y1 zl1)) (TL (Y Wl 2)) (UL (V1 L1))
(VL (Y ULl)) (W1 (T1 X F)) (X1 (S1 I U)) (YL (C S1)) (Z1 (U
S1 A2)) (A2 z1 V)) (B2 (U C2)) (C2 (B2 V)) (D2 (E2 G2 J))
(E2 (F2 D2 R)) (F2 (Pl E2 D)) (G2 (D2 H2)) (H2 (G2 I2)) (12
(R H2 D1)) (J2 (K2 K1)) (K2 (M2 J2)) (L2 (Ol E)) (M2 (EL R
K2)) (B (HJ1)) (C (RLl Y1)) (D (F2 QL)) (E (W L2)) (F (WL ML))
(1 (B P)) (I (RLX1)) (J (D2 QL)) (K (W 01)))

{ACENAPTHTYLENE 1 IS (T1 Z Y W1 L1 N1 V1 Q X F ML Ul))
((X1 (S1 I U)) (YL (C s1)) (Z1 (U Sl A2)) (A2 (Z1 V)) (B2 ... etc, etc.
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CHAPTER VI. DT

The present chapter describes a program, written in CONVERT, and rum in
the PDP-6 computer of Project MAC, M, I. T,, which recognizes objects in
a scene, Two imputs to the program determine its behavior and response:
1, The scene to be analyzed, which is entered in a symbolic format,
called the region-format, somewhat different from FDL-1.
2. A symbolic description --the model-- of the class of the objects
we want to identify in the scene.
Given a set of model 8 of the objects we want to locate, and a scene or
picture, the program will identify in it all those objects or figures
which are similar to one of the models, provided they appear complete in
the picture (i. e., no partial occlusion or hidden parts). Recognition is
independent of position, orientation, size, etc,; it strongly depends on
the topology of the model.
Important restrictions and supositions are:
(a) the input is assumed perfect =--noiseless-- and highly organized.
(b) more than one model is in general required for the description of
one object.
(c) partially seen objects may appear in the scene, but only objects
which appear unobstructed are recognized.

Work is continuing in order to drop restriction (c¢) and to improve (a).

A more complete description of DI is found in a Project MAC memorandum[16].

Relation of DT with other parts of this thesis.,~ DT represents the implemen=-
tation of a different approach to recognition; it works with regionms,
instead of lines, as TD does. It is general, and may recognize any model
(within its limitations), instead of only parallelepipeds, as Polybrick,

Its models are discussed in chapter 7, DI needs improvement to deal with

partially occluded objects.
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An example of recognition.- This chapter describes DT, a program which,
given an scene (such as 'EXAMPLE2') and a model (such as 'CUBE'),

will identify all 'parallelepipeds' present in 'EXAMPLE2'. In this case,
parallelepipeds 1 and 3 are found; parallelepiped 2 is partially hidden

and is not recognized, Both the scene and the model are in symbolic forwat.

H &

Fig. 'EXAMPLE2'. Three parallelepipeds.

Restrictions: In this first experimental system we will live with the follo~
wing constraints:

1.- Noiseless data is suposed, i. e., the scene must be accurately
described by its symbolic representation., Also, the set of shapes assumed
is small, so that we need not worry about heuristic efficiency in algorithms.

2.~ Whenever a 3-dim object gives rise to several (2-dim) projections
which are topologically different, all these need to be presented as models
in order to cover the possible cases. The recognizer has an OR feature
for this effect. For instance, fig. 'L' has the same object in four diffe-
rent positions, requiring 3 or possibly 5 models of an 'L' to identify all,
The exact number depends on the particular models in question and their
"dont-care’ conditions, which may depend on what other objects in the
world have to be distinguished.

3.~ Only objects w}x:lch are totally seen are recognized, Partially
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occluded or hidden parts or bodies may be present in the picture but the

occulted objects will not be identified. For instance, parallelepiped 2

Fig. 'L’
The same object in four different positions,
all of which differ in the topology of its
two dimensional projection over the plane of
the drawing.

in fig. 'EXAMPLE2' was not found, Our current work will help to relax this
last restriction, and also restriction (1). The reader umfamiliar with
progress in that direction can see references 4, 13, 24 and 29 for some
earlier work of that kind,

4,- In the present program we assume orthogonal projections. Later we
will considere finite perspective. For small visual angles, a simple tolerance
should suffice for most cases, but for large visual angles we will have to

use other methods.

R S e e e - e
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THE SCENE

Informally a scene (picture) is a collection of regions (projections of
faces); a region 1s described by an ordered collection of segments (lines
or curves), and these have several properties.

A scene is represented by an atom which has under the entry 'regions' a
list of the regions composing it; for instance (see fig. 'BOTTLES'), the
atom BOTTLES is a scene for which

(GET (QUOTE BOTTLES) (QUOTE REGIONS)) = (ABCDEFGHIJKLMZ)

In this case the regions of 'BOTTLES' are A, B, .e. , M, Ze

A region is an atom which has in its property list the entries NEIGHBOR,
SHAPE, and possibly others, A region corresponds to a surface or face in

the scene, except that it is treated 2-dimensionally; i. e., in fig,

"EXAMPLE2', the upper face of the eraser AB C EL is composed of two regions,

namely B and L.

8 L
Example.~ In the property list of
region M (figure 'BOTTLES') we find: Fig. "EXAMPLE2'
NEIGHBOR (L 2) (L and Z are limitrophe regions with M)

SHAPE ELLIPSE

At present, the shapes of regions can only be atoms; this is a severe
restriction since may be too much to require that the preprocessor recognize
region M (fig. 'BOTTLES') as an ellipse or region A (fig. EX2) as a paralle
logram. In the models, the shapes are also atoms. This restriction will be

abandoned eventually, but now is observed.
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FIG. 'BOTTLES'
An scene composed of regions A, B, ... , L, M, Z.

THE MODEL

A model is an atom which contains in its property list, under the entry

'REGIONS', a list of the following form:

a) the first element of such a list is an atom, the name of the region,

as far as the model is concerned,
b) Each of the remaining elements of such a list is a property; specifi-

cally, is either a list (NEIGHBOR ..,)
or a list (SHAPE ...). More complicated properties
will be used when objects start getting more complicated.
A model is composed of regions, with properties inter-relating them,

Given an object, there is a large number of models which correctly describe it,
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Fig, 'HO U S E', A model.

Example. The model 'HOUSE' is written in this way (see fig. 'HOUSE'):

HOUSE

(in its property list, we find:)

REGIONS ((A* (NEIGHBOR B*) (NEIGHBOR C*) (SHAPE PENTAGON))
(B* (NEIGHBOR A*) (NEIGHBOR C*) (SHAPE PARALLELOGRAM))
(C* (NEIGHBOR A%*) (NEIGHBOR B*) (SHAPE PARALLELOGRAM)) )

What this list means is that HOUSE is composed of three regions, namely
A%, B* and C*; and that A* is neighbor of Bk and C¥*, etc.

More over, it says the shapes of A* (pentagcn), B* (parallelogram) and C*
(parallelogram), Additional properties could be inserted here.

The names A*, B*, etc,, given to the different faces, have nc importance,
they act as dummy variables (UAR or 'undefined' variables in CONVERT);

the names such as PARALLELOGRAM, PENTAGON, etc., given to the shapes, are

Fig. 'PYRAMID'
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crucial, since they are going to be compared by equality with the corres-
ponding names in the property list of the regions of the scene. Note that
the models we are using are not 'cathegorical" -- they do not contain enough
information (usually) to reconstruct the object.

Example.- PYRAMID (see.fig. "PYRAMID') is a model written as

(DEFPROP PYRAMID ((A* (NEIGHBOR B*) (SHAPE TRIANGLE))
(B* (NEIGHPBR A*) (SHAPE TRIANGLE))) REGIONS)

--but also see fig. 'PYRAM1'.--

Fig. 'CYLINDER'. A model,
(DEFPROP CYLINDER
((A* (NEIGHBOR B*) (SHAPE ELLIPSE))
(B* (NEIGHBOR A%) " &
(SHAPE (I C I D))) )
REGIONS)

Remark: Note how we describe B*'s shape as

(SHAPE (I C I D)), i. e., as (straight, convex, straight, concave).

Example.- A cube (parallelepiped) is described as

(DEFPROP PARALLELEPIPED ((C* (NEIGHBOR E*) (NEIGHBOR D*) (SHAPE PARALLELOGRAM))
- (D* (NEIGHBOR C*) (NEIGHBOR E*) (SHAPE PARALLELOGRAM))
(E* (NEIGHBOR D*) (NEIGHBOR C*) (SHAPE PARALLELOGRAM)))

REGIONS)

Fig. 'CUBE', A model,
It is really a parallelepiped.
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THE RESULIS

We will present now several examples of scenes analyzed by DI, the program,
in the PDP-6 computer. The symbol y marks the lines typed by the user.

Y CONV 4 Bring the CONVERT processor from
tape 4.
Y (UREAD DT LISP 5 tQ 4W) Load the file comtaining DT,
the recognizer.
v (UREAD EX2 LISP 1Q W) Bring the scene EX2 into
memory (see fig. 'EX2').
Y (UREAD MOD2 LISP fQ fw) (IOC V) Load the models
)
Y (DT (QUOTE CUBE) (QUOTE EX2)) Look for 'CUBES' in 'EX2",

(CUBE 1. IS (A B C)) (see fig. 'EX2').

(CUBE 2. IS (J L M))
(DEFGHIKNOPQRSTUVWXY Z) Remaining of scene.

Y (DT (QUOTE CYLINDER) (QUOTE EX2)) Look for cylinders (see fig.
(CYLINDER 1. IS (E D)) "CYLINDER').
(CYLINDER 2. IS (G F))
(ABCHIJKLMNOPQRSTUVWXYZ) Remaining of scene,

Y (DT (QUOTE -HOLLOWCYLINDER) (QUOTE EX2))
(HOLLOWCYLINDER 1. IS (T U S))
(ABCDEFGHIJKLMNOPQRVWXYZ)

Y (DT (QUOTE HOLLOWBRICK) (QUOTE EX2))
(HOLLOWBRICK 1. IS (N O P Q R)) See fig. 'HOLLOWBRICK'.
(ABCDEFGHIJKLMSTUVWXYZ)

We define DD, a FEXPR that suppresses the QUOTEs:

Y (DEFPROP DD (LAMBDA (A) (DT (CAR A)
Y (CADR A)))  FEXPR)
DD
Y (DD HOLLOWBRICK EX2) Commpare with above.

(HOLLOWBRICK 1. IS (NO P Q R)) Good. Let us see other example.
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Fig. 'F I G 2". A scene



We analyze now FIG2 (see fig., 'FIG2') with DT,

Y (DD PYRAMID FIG2) Looking for PYRAMIDs (see model
RAMI in fig. "PYRAMID'). DD is like
(7Y D 11Is (L M) DI, but it is an FEXPR (cf.[28]).
(PYRAMID 2 IS (X Y))

(ABCDEFGHIJKNOPQRSTUVWZ)

Note that pyramid L M N is not reported as such, but only IM is
reported or recognized. Why is this? Because the model 'PYRAMID' (see
fig. 'PYRAMID') is composed of two triangles. Also, it is in the nature
of our algorithm that L M prevents recognizing M N. In order to get
L M N, we define PYRAML as a pyramid which has three visible triangular
faces:

(DEFPROP PYRAML ((A* (NEIGHBOR B*) (SHAPE TRIANGLE))
(B* (NEIGHBOR A*) (NEIGHBOR C*) (SHAPE TRIANGLE))
(C* (NEIGHBOR B*) (SHAPE TRIANGLE)) ) REGIONS)
PYRAM1 See fig. 'PYRAML',
Now we apply this model to scene FIG2:
Y (DD PYRAM1 FIG2)
(PYRAML IS (L M N))

(ABCDEFGHIJKOPQRSTUVWIXY Z) Aja. Only one is found.
Correct. Only one pyramid with
three visible faces is present in FIG2.

What we really want is to define a pyramid as something which shows
either two or three triangular faces; so,
vy (DEFPROP PYR (OR PYRAMID PYRAM1) REGIONS)

PYR The last model of an OR, PYRAM1
in this case, is searched first.

At this moment, PYR is a model which stands for either or
Yy (DD PYR FIG2)
(PYRAMIL 1 IS (L M N))
(PYRAM1 2 IS (X Y)) Good. Two objects were found to

match with PYR: (L M N)
(ABCDEFGHIJKOPQRSTUVW?Z2) and (X Y). See fig. FIG2,

What would have been happened if we define PYR in the reverse order?
Let us define

Y (DEFBROP PYR (OR PYRAMI PYRAMID) REGIONS)
PYR
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The last model in the OR list, PYRAMID in this case, is searched first.
The answer is:

Y (DD PYR FIG2)
(PYRAMID 1 IS (L M))
(PYRAMID 2 IS (X Y)) Two objects matched with PYRAMID:
(X Y) and (L M); after
(ABCDEFGHIJKNOPQRSTUVWZ) this, no object was found
to match with PYRAM1.
Conclusion: Order in the models is important, sc long as we leave
things to the normal CONVERT matching algorithm.
Y (DD PYR FIG3)

NIL FIG3 is an empty scene.

Y (DD CYLINDER FIG2)

(ABCDEFGHIJKLMNOPQRSTUVWXY Z) No cylinders.
Cylinder P O is partially occulted,
go is not found.

Y (DD CUBE FIG2)
(CUBE 1 IS (I J K))
(ABCDEFGHLMNOPQRSTUVWXY Z)

Y (DD ANGLE FIG2)
(ANGLE 1 IS (D A B C))
(EFGHIJKLMNOPQRSTUVWXY z)

Angle is a model deseribed in the next page (see fig. 'ANGLE').
Angle Q VR T U was not found because has a different form (its
two dimensional projection has a different topology from model

'ANGLE' ; namely, has 5 faces or regions, and 'ANGLE' only 4).

Angle EF G H was not found because it is partially occulted.
vy (DD SPHERE FIG2)
(SPHERE 1 IS (S))

Some models.
(DEFPROP ANGLE ((A* (NEIGHBOR B*) (SHAPE FUNNY))
(B* (NEICHBOR A*) (NEIGHBOR C*) (NEIGHBOR D*) (SHAPE ELE))
(C* (NEIGHBOR B*) (NEIGHBOR D*) (SHAPE PARALLELOGRAM))
(D* (NEIGHBOR B¥*) (NEIGHBOR C*) (SHAPE PARALLELOGRAM)) )
REGIONS)
This is the model for ANGLE. See figure in next page. Angle was used in PIC2.
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Fig. 'PYRAM1". A model, Fig. 'ANGLE'. A model.

(DEFPROP PYRAM1 ((A* (NEIGHBOR B*) (NEIGHBOR C*) (SHAPE TRIANGLE))
(B* (NEIGHBOR A*) (NEXIGHBOR C*) (SHAPE TRIANGLE))
(C* (REIGHBOR B*) (SHAPE TIHRGLF))) REGIONS)

(DEFPROP SPHERE

((A* (NEIGHBOR ==) (SHAPE CIRCLE)))
REGIONS)

Fig. '"SPHERE'. A model,
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CHAPTER VII. MODELS

A model is a written representation of an object that we want to identify. Models
are mainly used for recognition of the object they represent; they are similar to
patterns in CONVERT. Generally, a model can represent a large class of objects.

We have already talked about models in TD (see notation FDL-1) and in DT;

the purpose of this chapter is to discuss them more systematically.
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2-dim representation of 3-dim models.

2-dim models are capable of representing either two or three dimensional
objects. This is possible since, in analyzing a scene or a picture, we may
considere a 3+dim object as a 2-dim portion of the picture formed by several
2-dim regions (surfaces). In describing the model, the inter=-connection of
the vertices of the object is given, plus additional properties or constraints
between different features (points, corners).

We will simultaneously talk about a
two types of such a representation; in
one of them (see fig. 'PARAL'), a whole s
3-dim object is described by the struc €
ture of its edges, as used in TD and

Polybrick (chapters 5 and 4)[15, 13], b
[ 4
and is called edge-representation or Fig. 'PARAL', Representation

of a parallelepiped as a 3-dim

notation, The other type uses regions model.

as building blocks of models; it is called the region-representation or
format, and is the one used by DI (chapter 6) [16] and some of the vision

group programs [22, 33, 38],

Models written in edge-notation.- We give as example the parallelepiped of
figure 'PARAL', which may be represented (written) as

(a(bgf)b(ca)c (dgd)d(ec)e (fgd) £ (ea)g (cea))

plus the additional properties

(slope b a ml) (length b a L1)

(slope ¢ g ml) (length c g L1)

(slope d e ml) (length d e L1)
(slope b ¢ m2) (lengkh b ¢ L2)

(1)See the FDL-1 language in chapter 5.
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(slope a g m2) (length a g L2)
(slope f e m2) (iength £ e L2)
(slope ¢ d m3) (length c d L3)
(slope g e m3) (length g e L3)
(slope a £ m3) ‘(length a £ L3)
Plus the additional [pseudolproperty
(variables ml m2 m3 L1 L2 L3)
which indicates (see fig. 'PARAL' again) that the symbols ml, ..., L3 are
dummy variables that may have any value, the only restriction being that
this value be the same for each occurrence of the symbol. Variables which
behave in this form are called bound variables in logic, and UAR (undefined
variables) in CONVERT. Under this convention, we see that
(slope b a ml)
(slope ¢ g ml)
(slope d e ml)
means three parallel lines.
Properties such as (slope b a ml) are in general function=predicates
which have as arguments vertices and undefined variables; the user may

define arbitrary (LISP) properties, which represent constraints on the

figure or object that the model has to match.

Models written in region-notation.- Surfaces (faces) are given names,

and the neighborhood relation between them is indicated; in additionmn,
each region has a description of its shape, pretty much in edge notation.
Fig. "PARALE' (page ) is described in this way.

Vertices are treated as being two-dimensional, that is, the coordinates
with respect to the (frame of the) picture or scene are used; coordinates

are then those of the projection over the plane of the drawing; all the
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points of a model are coplanar, so z~coerdinate is not indicated.

Multiple modely for the sape obiect.- A three dimensional object will,
in genersl, have more than one 2-dim representation; for imstance, the
body with an L shape shown in figure 'ELE' will have three or four (51)

models, according to the position from where you are seeing it.

¥Yig. 'ELE'. A three dimensional object has four or
more different representations as & model, if the
model contains only 2~dim informatidn about the
(relative) position of the vertices.



Our goal in this chapter is, using the representations for models that
we just described, to develop a notation in which models will be easily
expressed; to investigate different conventions regarding to the model
attached to a given object; that is, given an object, how will we write
its model?

It would be nice 1f we could express in the same notation both the model
and the figure or scene <--as done in FDL-1 --,

The main use of the model will be in the recognition and identification
of objects in a scene.

I will present now several approaches, which I call First Approach,
Second Approach, etc., to thig problem. Some of them have been programmed,
tested, thought, etc.(see chapters 4, 5, and 6), and this is so indicated

when they are.

irst Approach; Multirepresentation.

Since, in general (we hope) the different models of the same object will
be just a few (less than 5? Certainly, less than a dozen), we could defime
a complex (compound) model compossed by the OR of several simple ones,

such as

m=(@?°'®°’&" ﬁh)

That 1is: we accept this multiplicity of models and try to get used to it,
The program DI works in this way, using 2-dim models of 3-dim objects; the
description of the models is made in terms of regions, instead of lines.
In gection of chapter 6 we see an example of this kind of recognition-

identification (pages 77-78): the way DI finds pyramids, in the figure 'FIG2'
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The program TD also works in this way (cf. chapter 5), using 2-dim
models of 3-dim objects; the descrpition of tﬁe model is made in terms of
lines =--instead of regions-- pretty much the way we have been describin
models in this section. See the way TD recognizes 'Xs' in figure "EQUIS'
(page 61). Note also that, if we do not define the complete set of different
models of an object, we run the risk to fail to recognize the object (see
figure 424, page 63) when is found in‘ the scene in some positions.

conject:ure: If for each object we write all its pogsible models we may
run out of storage. May be not, may be fairly simple objects may be repre-

sented by just a few 2-dim models.

Order in the models.- When our model is compound, that is, when we have

‘MOD = (OR MOD1 MOD2 ... MODm)

then the recognition is done (we are talking of programs DI and TD) from
right to left: we find all the instances of model MODm in the scene, and
erase them; then all ingtances of model MODn_l, etc. In this way, rare

representations of the object could be included in the OR 1list, to be

used only when more usual models have failed.

Second Approgch: Two-dimensional Patterng.-

This could also be considered as an extemsion to the first approach.
Properties, defined by the user, may be very complicated functions of the
(coordinates of the) vertices [cf. FDL-1, chapter 5], value of slopes,
distances, etc. Nevertheless, these properties are attached to a mesh of

connections specifying the seen edges, which 1s topollogically
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€9}

invariant .« We would like to be able to have ways to specify variations,
modifications and additions to this network, in a rich and systematic way.
Uging solution 1 {first approach) is not enough: guppose I want to define
a.. STAR as an object having an arbitrary (bigger than 3) number of equal

"peaks", equally distributed, as in fig. 'STARS'.

AL f ¥

STAR3 STAR4 STARS STAR6 STARLL
Fig. 'STARS', Different objects

which could fall under the same
generalized model,

We do not want to say STAR = (STARL or STAR2Z or STAR3 or ... )

We would like to say
STAR = (PEAK PEAK PEAK STARS)

where STARS = ( A or (PEAK STARS) )

A 1s the null string.

More pictorically, and more informally too,
STAR = (or A (feak STARS))

4

.S
PEAK =\/
)

How good could this approach get?
If we were going to specify patterns for a lineal string (or for an S-

expression), this would be the approach we would take. Observe how easy is

(l)It is interesting to note here that Evans [8] used essentially this kind

of representation, but he used few attached properties,
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to say in CONVERT

(== = ==) for any list containing exactly three elements;

(X == X), with X as UAR variable,
for any list with two or more elements, the first equal to
the last, but otherwise totally arbitrary;

(EVEN)  PAT ((*0OR* () (== == EVEN)): this definition of the fragment
EVEN makes possible for (EVEN) to stand for a list with an
even number of elements, but arbitrary otherwise.

Probdly an extension of this notation will allow us to specify two-dimensional

patterns, in a CONVERI-like manner, which will then be used for matching,

i. e., for recognition of objects in a scene, In order to achieve this,

we have to specify

--= the primitive constituents (primitive patterns) of

syntax our notational language.

--~ the ways new patterns are formed from patterns.
semantics =--- the way the matching or identification is carried
out; that is, what a 2-dim pattern stands for.
Non~trivial problems to solve are also:
-~~~ to find a good written representation of the patterms.
--- the internal (machine) representation of the patterns.
--- the interpreter (recognizer) for such 2~dim pattermns; i. e.,
the algorithm which the machine will use in order to carry
the match or comparison, expressed in a meaningful language(*).
Incidentally, in this last point questions of efficiency in time (speed

of execution), efficiency in space (size of program + magnitude of inter-

mediate swell(l) + extent of data), efficiency in use (easiness of writing,

*
( )that is, in a language which the machine is able to understand/execute.

(1)phrase used by Tobey [35].
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understanding, modifying and debugging a program, model or pattern), etc.,
have to be considered --the so-called implementation details-~ .
For the moment, through the remaining of this chapter, we will not worry
about implementation and we will use for writtenm representation of the
patterns a mixture of line drawing and atomic symbols, as we already did
with STAR (cf. page 86).

Let me point out briefly the syntax and semantics of CONVERT-patterms,
that is, linear --unidimensional-- strings of symbols, and them I will do

the same for 2-dim,

UNIDIMENSIONAL (CONVERT-type) PATTERNS.

Terminal Patterns. () stands for ()
== gtands for or matches any S-expression.
=ATO= matches any atom.

A some other atom, 1f it does not appear with a
definition in the dictionary, stands for itself;
it will match only with an identical atom.

=== matches with any fragment such that the remainder
of the pattern finds an acceptable match with the
remaining of the expression under comparisson.

There is a way to define boolean combination of patterns.

Definitions can be done in several ways in the dictionary, and we may define
a single atom to represent a whole pattern, this last being either an S-
expression or a fragment.

Recursive definitions are possgible,

Concatenation: the pattern (P1 P2 ... Pm) where P, are patterns, stands

i

for a list of m elements (El E2 ... Em) such that each element Ei is

represented (is matched) by the corresponding pattern Pi'
A way exists to isolate subparts of a pattern and to have them available
for future analysis or for other purposes.
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2-dimensional Models.- TD and Polybrick use models where the connection
matrix is in terms of the vertices, as ilustrated in fig. 'PARAL'; that
is, atoms represent points, The notation called FDL-1 (chapter 5) is

also developed with this convention.

A model as used by TD is a list of the form
( connectionlist 'WHERE' properties )
where connectionlist is a list of points and neighbors (example refers to
figure 'PARALLFLOGRAM'): (A (B D) B(AC)C (BD)D (AC))

properties 1is a list of properties:

((slope b ¢ ml) (slope a d ml) (slope b a m2) (slope ¢ d m2) (variables ml m2))

DT and the summer-vision group programs [12, 16, 22, 27, 33, 37, 38], on
‘the other hand, are using regidns (faces) as elementary constituents among
kwhich the relations of neighboorhood are specified; in models for IT,
atoms represent regions. For instance, the same figure 'PARAL', a parallele-
piped, is described as

( (A* (NEIGHBOR B¥*)
(NEIGHBOR C*)
(SHAPE PARALLELOGRAM))
(B* (NEIGHBOR C*)
(NEIGHBOR A*)
(SHAPE PARALLELOGRAM))
(C* (NEIGHBOR B*)
(NEIGHBOR A*)
(SHAPE PARALLELOGRAM)) )

As we see, 'SHPE' indicates the shape of the region; in this case, the
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&
Fig. 'PARALLELOGRAM'.

A model in edge-notation is a list of three elements:

the connectionlist, the conjunction 'WHERE' and a list

of properties. See FDL-1 in chapter 5.
shape is an atom, 'PARALLELOGRAM'; in general, it will be a list of points
and segments; undefined variables are local for each mpdel, but not for
each region: if two regions of the same model mention the same
undefined variable, this atom will in fact represent the same
quantity, but if the same variable is mentioned in two models,
no relation holds between them, In this way, slopes, lengths,

etc.,, 4are transmitted

between regions.

Fig. '"PARALE'.
Model of a parallelepiped.
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Fig. 'WEDGES'. A scene.

A P [ The regions A and F have to
be fused together and the
c result to match a region-model
with shape 'parallelogram'.

Differences and Similarities between the two represantatiom of models.-~

Both representations use symbolic descriptions of an object, suitable
for comparison or recognition (matching); the edge-representation (as in
TD) is easier to understand and contains less redundant information; the
representation by regions (as in DT) is more cumbersome to read; it has
more repetitions of information,

There is a good advantage in using the representation by regions of
a model: the comparison is made using bigger '"elementary units', so the
resulting program is less complicated (compare the sizes of TD and DT);

I also believe the match is done faster, because the tree has less branches,

Fig. 'WEDGES..."

False segments are found in
regions A and F; they are
the dotted ones.

Other advantage of the region-representation seems to be evident when
dealing with two distinct regions that are really one; for instance, in
figure 'WEDGES' we have to realize that regions A and F are really

€8]

continuation one of the other, and that the union

9]

of both will form

Not really union, because one has to assume the hidden part...
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a gregion (general region) that will match a region-model having the shape
'parallelogram'; this being the case, if the scene is represented in terms

of regions, it is easier to identify regions A and F as 'mergeable’ and to

construct from them the gregion A F. Of course, this is also possible,

but cumbersome, when scene 'WEDGES' is represented in FDL-1 format, that

is, by edges.

Another advantage in using the region-representation of a scene is
that it allows one to talk, for each region, of 'spurious' boundaries, that
i8, boundaries that do not actually belong physically to the region, but
are the result of superpositions. DOTS is the name of a program that
analyzes each region and tries to determine, using the information about
T-joints (terminology explained in chapter 8), which boundaries are 'false'
and marks them with 'dots’,

A given segment may be 'false' with respect to ome region, but 'true'
with respect to the neighbor region; this is a property of a pair
region-segment.

For instance, DOTS converts figure WEDGES : into figure 'WEDGES,..'

TWO-DIMENSIONAL PATTERNS (CONVERT~-type models).

A terminal patter is a model with no special marks, with or without properties.
(In this section, we generally refer to the edge~-notation, as TD uses it,

but our remarks apply also to any other representation of a model; we will

use a mixture of line drawings and atomic symbols as written representation

of models),

Hp to this point, all the models have been of the type 'terminal patterns’',
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~

with the exception of the

,ﬁ
w4
A\

(OR MOD1 MOD2 ...) wmodel,

(OR MOD1 MOD2 ... MODn). This

pattern will match with a figure

*
if this figure matches one of ‘ *M ¢
the models MOD ; the first Fig. 'LRG'. A semi-model. The
s A® and B* here,
(rightmost) that matches is have additional lines or edges
that connéct the semi~figure
accepted, no more are tried. that this semi-model represents,

to a bigger figure,
Semi-models.- With this name are designated patterns that are terminal
patterns, except that they are joined to a bigger figure by some points,
the tying points., In fig. 'LEG', A* and B¥ are tying points,
A tying point (like B* in fig. 'LEG') must have as neighbor, in
addition to the specified 'mormal' points (Ck and F¥), a point L¥,
aothing of which is known., K* is also a'missing neighber' of the tying

point Ak,

4 Fig. ‘TABLE',
It has five 'LEGS',

TD is capable of handling semi-models; for instance, when we look for LEGS

in scene 'TABLE', five legs are found: U, B, C, D, (RONCAS) -
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The way to specify a semi-model in TD notation is simply to avoid talking,
in the connection-matrix, about the points K* and L* :
(A* (K% Ck Dk) Bk (Ck L* Fk) Ckx (Ax Bx EX) Dk (E*x A%) E* (D* F* C¥)
F* (E* B¥))

Note that we mention that A* has K* as neighbor, but we do not say which
are the neighbors of K*.

Properties may use the coordinates of K* and L* (the '"missing points');
for instance, we could ask for the same slope between lines K* - A* and

A% - C* (see again fig. 'LEG'),

Union or Concatenation of Patterns.- New patterns are formed from old ones
by soldering together some of their points; see =TIE= statement in FDL-1.
The pattern has the form

(=TIE= PAT1 N1 PAT2 N2 ... PATm Nm ( unionl union2 ... unionk ) )
For instance, the following figure may be described as

(=TIE= (A (B C) B (AC) C (A B)) (L)
(E(F)D(EF)F (ED)) (2)

((Cl1 TO E2)
(831 TO D2)))

c € F c F

A B v A  J

This feature 13 not implemented in TD, Originally we proposed to do it by
forming a new terminal pattern which would be equivalent to (=TIE=',,.) but
gimpler than it.

The former pattern would be converted (by TD, at some stage) into
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(A(BC)B(ACF)F (CB) C (ABF)) plus properties. Since we can tie
a figure to itself several times, renaming of thé vertices has to be done;
we use here the GENSYM capabilities of LISP and CONVERT.

Comment: It looks like this way of concatenation is easy but messy.

A different representation.- Daniel Conrad(l) is interested in the genera-

tion of recursive figures. A line is represented as a series of n _points

that are x units apart lying in the direction d , or (n, r, d).

A figure is a dictionary of cycle 2 of the form
(N VI F1 V2 F2 V3 F3 ... Vn Fn)

V1 is the first line in the figure. Since each line or edge of a figure
should end at a vertex, it may be referred to as a vertex.

Fl is a figure built on the vertex Bl. It in turn has the same form
(N' V1' F1' Vv2' F2' ... Vm' Fm') as the larger figure of which Fl is a
subfigure.

V2 is the next vertex, It will always have its tail on the tip of the
previous vertex.

F2 is the subfigure of V2 ...

These figures are plotted in the printer.

A different representation.- William Martin [25] also displays figures,
this time in the scope of the PDP-6.

Several others [19, 29, 34] have symbolic representations for the

(1)Planar figures and LISP functions to manipulate them are described in [6];

the use of CONVERT to construct these figures is explained in [7].
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purpose of constructing figures. I will not discuss their work here.

So far we have seen two approaches to the use of models for identifi-

cation, A third will be pressated now,

Third Approach: 3~dim transparent models (edge-representation).- These
models can be considered a3 a 3-dim wired structere, wires corresponding
to edges, plus properties establishing restrictions between vertices,
slopes, lengths, etc. For instance, a tetrahedron will be modelled as
follows (see fig. 'TETRAHEDRON'):
¢ ((A(BCD)B(ACD)C(ABDP)D (A3 C)) where
((length a b nl) {leagth a ¢ nl) (length a ¢ ni)

‘ c (length b ¢ nl) (length b d al) (length c d nl)

(variables nl)) )
A ' The vertices of these models have 3 coordinates;
D properties now refer teo coplansrity, etc.
Pig. “EETRAHEDRON', We only need ons of these 3~dim models to describe

This is a three- di
mensional model; it completely an object; the problem is how to compare
is seen here resting
on a table, this 3=dim model against a 2~dim scens,
A possible way, which we began to think about for a while, was to direct
the machine to use information of which lines may possibly be occulted, g
given that certain others are already saen.

That is, the model should contain enocugh information, or the program
should be written in such a way, that after having identified some lines,
1t would be possible to predict or know which lines of the 3-dimensional

model are necessarily hidden, so as not to look for them.
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For instance, suppose we are looking for 'Fs" (see fig. 'F') in a scene,
and we have already found lines K-A, A-B, 3-G, B3-C, C-D; then the program
would recognize that line E-F would be occluded, and would not try to
find 1t.

The trouble with this approach seems to be the sophistication of the
program necessary in order to "predict” the lines which are going to be
occulted and the lines that are required to be present in the scene. This
situation could be somewhat alleviated if the user supplies --as part of
the model-~ for each point of ¥iew the list of visible and invisible lines
(or regions) from that position. Instead of a true-false dichotomy for
visibility, we could have several cathegories: visible - partially

visible ~-- invisible -~ ; possibly others, e, g., all - or - none.

)

Fig. ' F '. A transparent 3-dim model.

55 B R T
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3~-dim models projected into 2-dim patterns.- 1In the last parragraphs we
have explained the idea of ‘a 3-dim model with associated lists, ome for

each direction of view, these lists containing information about the regions
or lines visible from that particular line of sight, and the lines which

the object itself makes invisible from that direction of view.

It could be possible for a program to produce itself this lists, that
is, when comparing the scene with the 3-dim model, to use the results of
this comparisson in order to get the best "line of sight";best in the sense
that, if we see from that position our 3-dim model, we will obtain a 2-dim
projection that would closely resemble that part of the scene under compa-
rison, if the model and the object are really the same. The scene will
drive the construction. In this way, we are producing the 2-dim model as

(1)

meeting the requirements of the scene » but at the same time the model
we should produce has to be a projection of the 3~dim model of the object
we want to identify, so recognition is achieved.

Perhaps the main difficulty in this approach is the fact that very
little is known about symbolic projectioms., Also the amount of computation

might be large.

Numerical Models.- Roberts [29] uses 3-dim models; these are numerical in
nature, and are represented by lists of tied blocks comnected in rings. See
the Coral language [34] for this ring structure.

Each model block is tied to lists of its points, lines and surfaces,

(I)When we eventually finish the construction of the 2-dim model, matching
against the corresponding part in the scene will be easy, and could be
reduced to a simple check-up, since we tailor the model to produce (some
of) the regions in the scenee.
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Curved Objects.- Objects containing curve edges are represented by the
same kind of models we described for rectilinear objects. We have now
more than one kind of segments joining two points, and some notation
must be used feor them(l).

When the surfaces adopl sophisticated curvatures and inflexions, the
kinds of models we have described will be inexact. There are major conceptual
problems to be faced if we are to find really good models for intricately-
curved surfaces., We can perhaps take a gloomy comfort in the fact that

humans are very weak (much weaker than they think!) in their mental

ability to deal with such things.

(l)A straightforward representation of curve line segments is given by
white [38].
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CHAPTER VIII. DISCUSSION OF SOME SCHEMES FOR RECOGNITION.

The following subject is treated in this chapter: assume that a
preprocessor (see chapter 3) has transformed a scene into a line
drawing or a set of regions, and that a symbolic description of them is
available., Independently or otherwisea), the computer has also in 1its
memory a collection of 1ists or patterns called models (see chapter 7),
which define objects or classes of objects we want to find or recognize.
We discuss here some algorithms which, using as data the symbolic descrip
tion of the scene and the models of the objects we are interested in, goes
ghead and finds them. Chapter 2 talks about some of the problems that we
expect to meet. .

Some of these algorithms or variations have already been put into

practice; see chapters on TD, DT and Polybrick,

(I)For instance, learning is discussed in Cyclops-2 [3].
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The One-to-one matching scheme.

Under this schema, identification of a given object by means of a model is
done only if all the features present in the model are also present in the
object ~-in the scene--; that is, partially occulted bodies are not idemn-
tified, unless the model in question specifically has & don't-care
conditions the face or lines missing in the scene.

DT effectuates mainly this kind of matching or recognition. It has
to care essentially for finding the right re gions, having the required
neighbors, erasing the identified bodies, and repeating again.

TD is more sophisticated, being able to identify overlapping trans-
parent objects, The proper vertices are searched for, and com plicated
binding-restorations have to be made to account for failures and
not-yet-defined properties, See chapter 5.

Polybrick does not effectuate a one-to-one matching.

Evans' identification program [8] makes first a one-to-one matching
between two figures, using one of them as a model, but it has provisions
to abandon this mode (he "weakens'" the requirements) if neccessary. In a
complicated sense it, too, has to 'account for failures' and it has a set
of scoring systems to decide which of a number of matching attempts has the

'least amount of failure'.

Implementation.- In DI and TD, the model to be matched ome-to-one to the
scene is converted to a CONVERT pattern, then definitions are added to the

dictionary, and the pattern is handed to the CONVERT processor, which executes
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+c. In this way, we avoid the double interpretation which would occur ..
we keep both model and scene in their original format and use a program
to scan the model, chose a feature (a region, a line) and search the scene
for it; then, scan the model more, select another feature gnd gearch the

scene looking for a match for it; scaﬁ the model some more, eic.

LINEAR WEIGHTING

Weights.~ Given a model, we attach coefficients to each of its parts, and
also assign a number or threshold to the entire model, as it is indicated

in figure 'WEIGHTS', where the coefficients or weights are assigned to lines.

<.

Fig. 'WEIGHIS'. Coefficients of 2 are assigned
to each line of this model; the total sum is
16, If we set the threshold = 10, then we allow
three lines to be missing.

The weight of a given feature represents the relative value of this feature;
in fig. 'WEIGHTS' all lines have the same value, 2, Therefore, the total
weight of this model is 16; the threshold value is set to a lower number,
say 10. The recognizer is instructed to try to match each feature of the
model with the corresponding feature of the scene, asin one-to-one matching,
but in addition it accepts matches even if the features do not agree --that
is, even in a normal failure-- ., At the end, we have a wmatch of value v,

this number being the sum of the weights of the features which did agree.
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We reject the match if v 1is smaller than the threshold of the given model.
Important features have big numbers; the nearer the threshold to the
total value of the model, the more "strict" we are with our matches.
This scheme is a majority consensus; to the extent that it works its
success is due to the fact that random lines will have a low probability
of being aligned so as to match some model. That is, '"if some figure looks
enough like a cube, it has to be a cube."
Linear weighting is easy to implement, but it is weak in differentia-

ting between two slightly different models.

Sub-weights.- When using the region-notation, an improvement can be made if
we assign also weights to the segments that form the boundary of a region.

We will have now two thresholds: one for accepting a face or a region when

the lines found for it(*) are enough to overweight the threshold for the

region; another for accepting a collection of regions to form an object.

7

Fig. 'LINEAL'. A face i3 good if 3 out of 4 of its lines
are seen; a body is goodoif 3 of 4 of its faces (regions)
are seen. Under this 75 /o criteria, only the cube behind
the cone fails to be recognized.

*
( )Bad matches are thosg when the complete line is missing, or it goes in
the wrong direction., They contribute with a weight of O to the total

value of the match,
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Note that even disconnected bodies, such as the parallelepiped in figure
'COPY' can be identified -~ at least one of its parts, snd from this will

not be hard to find the remaining, using a merger like 'FIT' (next sectiomn).

o‘-‘i "

Fig. 'COPY'. Under the 75 °/, criteria (see fig. 'LINEAL'),
face A of the parallelepiped matches completely; faces ¥ and B
match with 3/4 of success, and are accepted., Therefore,
parallelepiped A B F is found. Under 66 °/, of success, we
will still find another parallelepiped: G and E are faces of
3/4 of success, and parallelepipsd G K {s one with one face
missing: 2/3.

But then things start to get complicated: unless our program be quite
sophisticated, face K i{s (more or less) according to linear weight, a
parallelogram, and so are faces C and D, so figure C D H will be taken

as a parallelepiped also,

Conclusions.~ We can go a considerable distance with simple methods as
linear weighting; if we decide to use another method, this last one has to
do better than linear weighting.

This observation has application not only here; often enough in
the field of artificial intelligence, people is tempted to choose

complicated but anthwopomorphic programs; let them do so, provided that
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their algorithms work better than simpler 'machine oriented' methods.
Perhaps the best thing would be to use these simple schemes as some sort
of heuristic that guides and complements the more powerful (but more ex-

pensive in time) tools.

Despite its simplicity, lirear weighting(l) has the disadvantage of
not being easily extendable. To be sure, we could develop more complex
schemes that use linear weighting(z) as the main tool but, in the light of
this added sophistication, the weights would probably become for us more a
nuisance than a help. And the cause is clear: evidence in pro or in contra
does not behave linearly; more interaction among the different facts is
neccessary in order to arrive to a sound conclusion than the simple
'majority votation' implied by the weights and the threshold. When you
h:ave easy ways to get information, linear weight will find its way in.
V;len we have to use more powerful tools and sophisticated methods to
é:tract relevant facts, we usually need sharper "combining" tools for
making partial conclusions, if for no other reason then because these
better tools are more expensive (time-consuming), so have to be driven with
care and with a more detailed knowledge of the prevailing situation.

Nevertheleas, linear weighting has important uﬂes(l).

Linear weight puts a lower limit of performance which more sophisti-

cated programs have to excede if they want to be called ''good".

(1)0ne of the most succesful users of weights is Samuel [31].

11)
(Z)A proposed refinement of [31] is done by Gritfit£ [A new machine-learning

technique applied to the game of checkers., MAC-M~299 (AI memo 94). March 66].
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THE GENERALIZED REGION (GREGION) APPROACH

Generalities.- This section refers to a more involved approach to the
recognition problem; we suppose that several models are available, in
region-notation, and that the regions of the scene to be analyzed have been
found 'correctly', that is, the symbolic description is an accurate, exact
specification of it. We want to find in that scene all instances of a given
object.

The general procedure is as follows: each region in the scene is
analyzed and some of the segments or sides of its boundary are marked
(with dots); these new regions are then classified and merged, and then
comparison (matching) begins with the model. The model guides the classi-
fication and merging, so that there is not a clear cut between the matching
and the merging; during these processes, difficulties may suggest the ina-
dequacy of the data, so that (1) a new redotting or (2) a new preprocessing )
of the given region can be performed, this time with indication of what to
look for and how.

Matching is done at a high level (I am using CONVERT) and, when some
feature is not there, like a line, for instance, we call to FIT to extend
the region, or we try to find a reason for this omission; or, as we said,
perhaps FIT does not trust any more the data and decides to get new one, etc.

All this section is devoted to the explanation of what was just said,

The programs that mark (with dots) the regions and classify them are
written but undebugged; it is my idea to finish this work and implement the
approa ch described in this section, or an extension of it; originally,

this thesis was going to be about analysis of scenes using the algorithm

(*) Which, in turn, may originate new merging, etc.
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which I am about to describe but, since the programs are unfinished ...

Before talking about the gregion approach, we give some

Definitions.

BOUNDARY.- (or SHAPE) of a region. Counterclockwise ordered list of

segment (lines) and vertices that separate the region from others.

VERTEX.- Informally, point where two or more segments meet, Formally,
point where the slope of a line is discontinuous, multivaluee (?) or has
a maximum or minumum --inflection point--.

Vertices are inflection points, points where two straight segments or
one curve and one straight meet, or more than two segments encounter each
other. They do not need to correspond to 3-dim vertices, although some of

them do,

Y-JOINT.- Or simply 'Y'. Vertex with three rectilinear segments. (see chap-
ter 4 on Polybrick for the use of ¥Y's).

T~-JOINT.- Y-joint with exactly two segments having the same slope. More

generally, vertex with 3 segments, two of which are rectilinear and colineal.

SEGMENT .~ The finite part of a line between two points in the line (usual

definition).

SCENE.- Internal representation of visual or graphical data. The information
that a scene contains is going to be secured by the process of recognition
or identification of objects. Frequently, I mean by a SCENE a collection of

data as above, but organized in a symbolic format.

MODEL.- A representation of an object or body, used mainly for recognition
purposes, and generally in a non-numeric format (see in chapter 5 the notation

FDL-1 for models; see chapter 7 and the region-notation for models).
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x )

Fig. 'DEFINITIONS'. We identify the following entities:
SCENE: One, called 'definitioms'.
REGION: four regioms: 1, 2, 3, 4, Region 4 is the background.
BOUNDARY: each region has onme. .
Boundary of region 3: (point H, segm. HE, point E, segm EF,
point F, segm FG, point G, segm GH, point H)
VERTEX{ A, B, ..., K, L.
T-JOINT: I, D. (and, in a more general manner, H, E).
Y-JOINT: D, I. E is not because EH {s curved.
SEGMENT: Each region has a set of them.
Segments of region 3: HE, EF, FG, GH.

RE@ION.- A simple closed curve of a scene or a model.
DOTTED REGION,.-~ A region processed by 'DOTS' (a program); a region where

some of its segments are 'false' and therefore, dotted.

GREGION.~ (generalyzed region). The merging of two or more dotted
regions or gregions, which belong to the same face of a 3~dim (or 2-~dim)
body but that, due to occlusion, are disconnected in the scene, as done

by'FIT" (a p}ogrun) .

OBJECT.- (or BOI¥). A mass of matter distinct from other masses

(usual definition).

FACE,- Any of the surfaces that bound a geometric solid. (usual

definition).
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Marking the boundary of regions .~ Each region of the scene in question
receives the treatment specified in this paragraph.

Each one of the vertices of the boundary is analyzed, looking for
'T' joints ; with respect to a region, T-joints may be of one of three

classes : Out, In or Passing

Once identified, the program called DOTIS marks, erases, or as I
prefer to say, puts aotl to chains of segments between OUT<T's and IN-T's;
for instance, fig 'PATCH' becomes 'PATCH ..." The doted segments are 'falsge'
ones, in the sense that they do not belong to the region, but are occassioned

by overlapping or occlusion. See also fig. 'WEDGES..." .(page 91 )
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Fig. 'PATCH'. A suene composed of four regionms

Fig. 'PATCH..." T- joints are foynd and dots are
placed in some of the sides of regions 2 and 3

We erase the 'false segments with the purpose of facilitating the

comparissons which have to be made,
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Unreliability of DOTTS.- In some cases, the information obtained
analyzing the T-joints is not enough to determine completely the 'false’
segments of a given region ; that is, we can not completely put dots to

all the false segments. In figure 'CARDS', two answers are acceptable,

which in turn correspond to two possible identifications 6f the scene.

C

Fig. "CARDS'., An scene for which the identification
of 'false' boundaries for region C is not unique

j

—"
[}
-

c (o

Two different gregions for region C,
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If we remote the uppermost caxd, the interpretation
of the remaining two cards is different depending
on the gregion for C.

Probably this problem will not be serious, since we will, in general,

not be dealing with thin objects.

Classification of the regions.- So far, we have converted the regions to
dotted-regions, using the program DOTS, Now, these dotted regions are
classified in one of the two following forms, the decission depending if
there are just a few models to identify (a), or if there is a fair amount (b).
(a) We examine the shapes of the regions of the models, and let us say we
find m different shapes 815 8g) coey 8. Now, for each dotted-region of

the scene, we compute & vector [p1 Py P3 eee pm], vhere Py is the proba-

bilisy that the region in question has shape s The py are not strictly

e
prebabilities, but have a small range, say, 0, 1, .,., 5. The idea is to
make these computationsg fast, even if they are somewhat unreliable.

(b) If the number of models we try to find in the scene is not small,
instead of (a), it will be better to work with predetermined shapes

81, Sz, ceey ’k' and to compute for them the probability vector as before.

Shapes S i should be "standard" ones, such as parallelogram, ellipsoi-
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dal, long, large, small, rounded, fragmentary (when the region is really
part of a bigger but disconnected region), mess, etc, Classes do not need
to be disjoint.

These computations are done by examining the boundary of each dotted
region, using fast 'rules of thumb', such as: how long is the longest seg-
ment compared to the average segment length; ratio of curved to non-curved
sides; total number of sides; parallel sides, etc.

I may say that the purpose of this pass is to "become familiar" with
the data (with the scene); that is, to have a fair idea of how things look,
where are situated the large regions, etc.

Perhaps a better idea is to make this classification pass after the
merging of regions into gregions; when the number of regions in a scene is
small, use this pass before merging the regions, otherwise merge first

and then classify.

Merging regions into gregions.- TQO dotted regions having among them cer-
tain relationships --certain configuration of sides(*), as used in
Polybrick when trying to find the "next'" vertex-- are grouped or merged
into a more general region, called gregion. Gregions are also joined under
similar criteria into gregions. For instance, in fig. 'PATCH...", the
regions 2 and 3 will be merged. This operation is done by the skeleton-
program 'FIT', and is facilitated by the fact that the 'false' sides or
segments have been erased; they do not influence this concatenation.

A question arises: Do we want to make the merging independent of
the shapes of the regions of the model or not? If we choose independency,

the algorithm will be simpler to implement, and faster. If merging is

governed or influenced by the matching algorithm =--that is, when we have
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information about which region is being compared in this moment--, then

we will have a more powerful merging, but it will be slower and, beyond a
point, we will be exploring branches of the tree with very low probability
of success,

Let me explain it: If two regions more or less fit (they are 'mergeable'),
except in a portion, the comparator or matcher should be called to see if
it finds a third region --the missing linkage--; in looking for this
third region, the matcher will probably call again to the merger, because
it has a candidate for the third region that '"almost' matches, except that ...
etc. My point is: Iif two gregions are not mergeable after a few attempts,
they will never be mergeable. It is like having two somewhat distant pieces
when we are working in a jigsaw puzzle, and try to find the link between
them recursively. May be it will work, if the pieces are not far apart;
otherwise, other ways to work the puzzle will generally be easier.
Conclusion: Interaction between the merger and the matcher will be carried

up to a certain (shallow) depth,

Under good reasons, 'FIT' (the merger) may not give full credit to
some segment, that is, it could question its autenticity or fidelity; for
instance, see fig. "CYLIN' in chapter 2. The surface function which obtained
it will be seen, and perhaps the preprocessor will be given a new (hopefully
improved) function to reanalyze the region; also, special feature-seekers,

line followers, etc., could be used at this point.

Comparison: the job of the matcher.- As in DT and TD, the part of the program
that effectuates the match has two inputs: a model and a scene. This time,

the scene is composed by gregions, since it has been treated alredy by DOTS
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and 'FIT',

Matching is dona at high level (I am using CONVERT), comparing
feature after feature --that is, segments, the right neighbors, etc.--
When some part of a region is missing --say a line--, we (1) call to
FIT to extend the gregion, or (2) we try to justify the absence of the line;
for instance, a dotted side means either (a) end of the gregion or (b)
thisgregion is expandable or mergeable, since a dotted or false segment
indicates that the gregion is partially occluded; or (c¢) indicates that
data is not reliable and FIT will call the preprocessor; or (d) the

comparator or matcher says '"this object is not found in this scene."

Unlike TD or DT, matching will be done here interpreting the model
and trying to find in the scene the required features. It looks to me that
the process is complicated enough, and that the formation, as in TD or DT,
of a CONVERT pattern from the model in question will be very complicated.

The comparisson program (and FIT also) will use the information con-
tained in the probability vector, pretty much in a conventional way: when
looking for a parallelogram, will analyze first the regions with big chances
of being parallelogram. We must realize that the probability vectors may
be wrong, since they contain information that was gathered in a quick manner.
Other thing that may go wrong is that FIT merged two gregions that should
not be merged; at some point the program has to realize this, and undo the
consequences of its mistake,

Since this 18 expensive in time, it may pay to have a cautious merger.

As pointed out before, 'DOTS' may also (rarely) fail.
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