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ABSTRACT 

A computer may gather a lot of information from its environment 
in an optical or graphical manner. 

A scene, as seen for instance from a TV camera or a picture, can 
be transformed into a symbolic description of points and lines or surfaces. 
This thesis describes several programs, written in the language CONVERT, 
for the analysis of such descriptions in order to recognize, differentiate 
and identify desired objects or classes of objects in the scene. Examples 
are given in each case. 

Although the recognition might be in terms of projections of 2-dim 
and 3-dim objects, we do not deal with stereoscopic information. 

One of our programs (Polybrick) identifies parallelepipeds in a 
scene which may contain partially hidden bodies and non-parallelepipedic 
objects. The program TD works mainly with 2-dimensional figures, 
although under certain conditions successfully identifies 3-dim objects. 
Overlapping objects are identified when they are transparent. 

A third program, DT, works with 3-dim and 2-dim objects, and does 
not identify objects which are not completely seen. 

Important restrictions and suppositions are: (a) the input is 
assumed perfect (noiseless), and in a symbolic format; (b) no perspective 
deformation is considered. 

A portion of this thesis is devoted to the study of models 
(symbolic representations) of the objects we want to identify; different 
schemes, some of them already in use, are discussed. 

Focousing our attention on the more general problem of identification 
of general objects when they substantially overlap,we propose some schemes 
for their recognition, and also analyze some problems that are met. 

Thesis Supervisor: Marvin L. Minsky 

Title: Professor of Electrical Engineering. 
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CHAPTER I. E X P 0 S I T I 0 N 

The goal.- Given a scene, as seen for instance from a TV camera or a pic­

ture, it is desired to analyze it in order to recognize, differentiate and 

identify desired objects or classes of objects (i.e., patterns) in it. 

The problem.- A picture, scene or view is read with the help of an optical 

device and stored as an array of light intensities in the memory of the 

computer. The ultimate goal will be to understand this information, that 

is, to identify, separate and position the different objects or bodies 

belonging to the scene(s). The demands of information will vary: sometimes 

we will be interested in knowing if an object is seen in the scene or not, 

while at other times we may require a complete description of the scene, 

including information on relative support and (3-dim) position of the 

different components. Hence it is clear that the recognizer will need an 

additional input to specify the nature of the question that the program 

is to answer by analyzing the scene. 

Some work has been done by the author, specifically in the area 

of "recognition" (see below). This thesis describes the general problem, 

its difficult points, possible solutions, and specific attempts by the 

author and also by some others. 

The work is divided in two parts: preprocessing, which converts 

the input into symbolic data, and recognition, which studies these 

data and, with the help of a model of the object we are searching 

for, finds all instances of that object in the scene in question. 
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The different chapters of this thesis.- The array containig the scene is 

swept and transformed by the preprocessor (chapter 3), which converts the 

picture in a more compact (and perhaps symbolic) form of information. 

Sometimes a syntactical analysis (end of chapter 3) of this data is enough 

to recognize the objects we are interest in. In general, the problems found 

(chapter 2) .require the use of more sophisticated w-pons. Very often 

it is necessary to specify a model (chapter 7) of the objects we want to 

find, and a considerable part of this thesis (chapter 7) is devoted to 

the different models and their characteristics. Some schemes for recognition 

are proposed and discussed in chapter 8, using the models of chapter 7 and 

assuming we have the scene preprocessed as in chapter 3; problems are taken 

into account as in chapter 2. Finally, three particular schaaes were 

implemented, and are described in chapters 4, 5 and 6. 

Contents. 

Chapter 1. Exposition (just done). 

Chapter 2. Problems found 

Chapter 3. Preprocessor. 

Chapter 4. Polybrick. 

Chapter s. TD 

Chapter 6. DT 

Chapter 7. Models 

Chapter 8. Discussion of some schemes for recognition. 
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CHAPTER II. PROBLEMS F 0 UN D 

This chapter will list a number of important probleas present for any 

3-dim recognition systaa. Some of these problems ai;e discussed in the 

chapters which cover Polybrick. TD and DT; others are olll.y mentioned here 

or slightly discu .. ed. 

Solutions. approach& and lines of thought are given when 

available. In particular. some of the problells encountered by the 

-recognizer are treated in the chapter about models (chapter 7). 

These problems generally fall in two cathegories: are either general. 

or caused by the particular method or approach. It should also be 

aentioned that this chapter makes a description. rather than an evaluation. 

of some of the ways to solve the problems found. 

No hardware difficulties are discussed. 
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Occlusion.- Since objects in the scene may be partially behind anothers, 

the recognizer has to be able to find instances of a given object even 

when only a part of it is actually seen in the picture. 

Small parts of an object. If an object is totally occulted in 

the scene except for a small part of it, identification becomes difficult 

and ambiguous. Here, the recognizer could use context or statistical 

information(l) to resolve the ambiguity, or to report the small part as 

being a portion of one of several possible objects. Note that this problem 

is one of l.ack of enough information. 

For instance, Polybrick(Z) --somewhat arbitrarily-- decides to 

identify as cubes (parallelepipeds) corners of the form A B C D (see fig. 

'AMBIGUOUS'). 

Fig. 'AMBir.uous•. Th~ corner AB c D 
may belong to several objects of different 
shapes. 

(l)As done, for instance, in w. W. Bledsoe and I. Browning [2]. 

(Z)See chapter 4 of this thesis. 
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Degenerate positions.- Probably most recognizers will fail to identify 

the objects in figure 'CONES' as cones. 

O· 
Fig. 'CONES'. Degenerated positions 
are difficult to deal with. 

Fig. 'CONES' also shows that there are degenerate positions with non-zero 

probabilities. A major finesse will be required from the preprocessor and 

its surf ace functions (see chapters 3 and 6) in order to get the hint "this 

is a degenerated case". Other kind of information may also help: shading, 

shadows, knowledge of support structure, etc. If the recognizer has no 

idea that it is dealing with this case, it can do little to identify 

correctly the body, unless the frequency of these cases is such that special 

software is devoted to them. Once the recognizer suspects a degeneracy, 

the special machinery is used upon it. 

Heuristic: watch out for isolated single regions surrounded by background 

or not otherwise explained. 

Hidden Lines.- In chapter 7, talking about transparent or 3-dimensional 

models, we assert that we must know what lines or regions of an object are 

hidden by the same object, with respect to the different views of such 

a body. 
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Perspective.- Parallel lines are no. loncer pualiel, but they converse 

at the horizon ••• Accurate measurt1111mts(l) have to be aade if we want tc 

use this information in order to know the position of the objects with 

respect to the observer. 

Polybrick, DT and TD ignore this problem, under the aaaumption 

that we are working with small objects and/or far from them. 

Spurious regions.- In using different 11Urface-functJ.ona or predicates for 

finding good regions (see in chapter 3, the section "the 'summer viHion 

group' approach"), there may be overlapping 81110ft8 the found regions, 

duplicated regions, bad regions, etc. (discussed below). 

Bad regions.- Almost any surface function will Occasionally find a region 

which is considered "bsd", in the sense that it does not match exactly 

with the outline of the face to which it corresponds. It is well known, 

for instance, that intensity countour levels of a scene do not follow 

closely the outlines of the objects [21); over a flat eurface, they get 

ugly distributions, as fig. 'LEVELS' indicate. 

Problems to be solved by the executive or the recognizer are what 

function to employ in each particular case, or else how to decide if the 

produced region is acceptable. FeedO.ck between tha reeognizer and the 

preprocessor (see "the generalized region approach" in cha~er 8) is 

needed at this point. Read also chapter 7 to aee how models get involved. 

It will be a good idea to have a stack of functions useful in 

particular conditions; their utility could be further increased if we are 

able to compose them, that is, to apply one function to the result of 
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another. Chapter 3 talks about this. 

Also, it will result worthwhile to have an easy framework to 

test different predicates manually, in order to collect the stack of 

functions mentioned above(l). 

(IA.) 
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·. .-

Fig. 'LEVELS'. (a) A plane is illuminated by two 
concentrated sources. (b) Equal intensity curves. 
If we use a cutoff value of intensity to identify 
the region, our result will have little resemblance 
with a rectangle. 

(!)Towards this direction is EYE [30]. 

6 
11,\' 



- 8 -

Overlapping regions.- The big repertory of functions (in the "region 

approach, chapter 8) suggests that the same region could be found more 

than once and, more over, that different functions when applied to the 

same face or zone will in fact return different regions; if there is 

little discrepancy in the boundary of two regions which otherwise have 

the same center of figure, extension, etc., we could conclude that they 

are the same and keep the more reliable one. 

If two regions overlap considerably but one is significantly 

bigger than the other, we may suppose that they are composed of smaller 

regions, and that we should subdivide them, using a more delicate 

surface function. Our hypothesis could be tested by taking the intersec-

tion of these two regions and sending an speciallized feature-seeker (see 

chapter 3) to find out if the region formed by the intersection could be 

detected in a different manner. 

Duplicated regions.- These are overlapping region s whose discordance is 

small. Since their boundaries are not exactly equal, we still h~ve to find 

a criterion for choosing the best boundary. 

Regions which are not there.- (Highlights, shadows, reflections, etc.) A 

number of regions will be found which are not 'actually' there. Small 

regions caused by camera noise can be eliminated due to their smallness(l). 

As we point out in the paragraph "bad regions", wrong surface functions are 

(l)This is done by Larry Krakauer [21]. Note, however, that his program 
is not designed with the idea of finding "good" regions. 
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the -in responaable of these aonstrositiea. 

!t is po .. ible that the curved surface of th& cylinder 1u figure 

'CYLIN' be reported as two, if we use as function the constancy of 

intensity, and even if we uae the constancy of variation (first derivative). 

The recognizer should be aware of this possibility. 

Fig. 'CYLIN'. Example of regions which are not there. 
If the surface function is simple enough, two regions 
may be found where there is only one. 

Non-interesting regions.- When seeing a box with 11111&11 letters written 

in its aides, or a piece of wood showing its grain, the preprocessor 

tends to find a multitude of small regions, which are un-interesting to 

the recognber. We have to recognize them as "non-important" because of 

their smallness, regularity, or some more appropiate property, and to 

use their position to help to construct the 'real' region containing them 

--the interesting one-- , and finally to ignore them. 

Shadows.- Shadows ever the surfaces of bodiea in process of identification 

complicate this task, although they may reveal information about the ahape 
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of surfaces. A good way of discriminate them is to use as surface function 

the composition of the light, that is, the ratio of some color to the 

2 total lumens/m , instead of the plain intensity (assuming we have color 

perception) • 

Spurious Lines.- A line-follower(l) could get trapped into spurious lines, 

and the same applies to the region finder (see chapter 3), when it has to 

work with noisy input. 

Such spurious lines can be eliminated by their short length, and 

on a higher level by the fact that they do not "fit" into the boundary 

of a shape for which there is good, independent, evidence. 

The a-A transformation.- The following scheme(2) is useful in detecting 

undesired lines when dealing with rectilinear bodies. Given an array 

containing elementary segments (a small number of points plus a direction 

associated to them), as indicated in figure 'LITILE SEGMENTS', we associate 

with each segment a pair of numbers, a is the angle that this segment forms 

with the x-axis, and A is the distance of the (extended) line from the 

origin. 

That is to say, we convert the figure to an array of points (see 

figure 'CLUSTERING'). In the a-A space, points which fall close together 

(l)The following programs are typical line-followers, and are confronted 
by the mentioned problem: 1. Sides 21 [10); 2. Polygon detector [23]. 

<2>This scheme is used by Nilsson at Stanford Research Institute in the 
visual part of their robot. 
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Fig. a-A. A little segment S is 
represented by the pair(a. A). 

Fig. 'CLUSTDING'. Clouds with the 
same a are parallel aides. 
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Fig. 'LITTLE ~S'. 
A ecene after procening by a gradient 
operation. Irrelevant segments have to be 
taken out. 
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are over the same line, so that frequency count will eliminate the spurious 

segments, as desired. Clouds with the same a are parallel lines, and 

this fact could be used in order to look for parallel lines. 

Smooth curved lines could also be detected by this method, if we 

use a fancier criteria for the detection of clusters(l). 

Spurious Points.- Often enough, after the application of some surface 

function (again, we are assuming the region-approach) to some part of the 

scene, the result will exhibit some isolated or irrelevant points, which 

have to be elliminated from the region. These points could be swept out 

by averaging and then having a treshold. There are also the so-called 

noise-eliminators, line-thinners, and so on, widely used in the field of 

character-recognition(2). Disturbances coming from noise in the camera 

could be mitigated by reading the same spot several times and averaging. 

This technique wastes time. 

Range of brightness.- Whein comparing brightnesses, it is advisable to use 

their ratios, or differences between logarithms. This helps make the systein 

invariant to changes in illumination levels. 

(1) Work in this area is: 1. Evan L. Ivie. PhD Thesis [18]. 
2. Probably a conventional pattern clasifier will 

do it. See N. J. Nilsson [26]. 

(2)A good collection of references is in [9]. See there [l]. 
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CHAPTER III. PREPROCESSING 

This chapter will cover some schemes that might be used to 

preprocess pictures before we can use our "symbolic description" 

recognition methods. 

The preprocessor is responsible for taking the scene as read 

into memory --generally as an array of numbers which correspond to the 

intensity or brightness of the points in the picture, scene, film, etc.-­

and transforming it into a smaller but more usable amount of information, 

usually as a highly organized description, in symbolic format perhaps, of 

points, regions, lines, surfaces. 

The main goal of a preprocessor is to throw away as much informa­

tion as it can, while at the same time to keep the relevant facts in an 

organized structure. Most of them perform a local operation over a point 

and its neighbors, producing an output that depends only in the values of 

the intensity in a small neighborhood. 
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EQUAL INTENSITY CONTOURS (global threshold algorithms) 

The CNTOUR program.- This program [21] plots an intensity relief map of 

an image which is read from the vidisector camera (TV-B) attached to the 

PDP-6 computer. For high-contrast images, it produces something like a 

line drawing. 

A contour is a set of closed curves enclosing all those points in 

an image whose intensity is greater than a specified threshold. These 

contours correspond to _the contours of a relief map, and not to the 

boundaries of an object. Thus, except for high-qontrast pictures, equal 

intensity contours do not match (do not follow closely) the boundaries of 

a region. 

Local threshold.- Something may be gained if, instead of cutting at a 

pre-set global threshold, we make a histogram (fig. 'HISTOGRAM') or 

frequency count of the scene under consideration. If this is a sharp­

contrast figure, significant peaks will be found, and then we may put 

thresholds in the valleys (see fig. 'HISTOGRAM'). 

The output of these programa has to be fed to a line-fitter, in 

order to get numbers, slopes, etc., out of the lines. 
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A B c. 

Fig. "HISTOGRAM". Local thresholds 
could be put at A, B and C. 

LINE FOLLOWERS 

When there exists a sharp contrast between the different surfaces, it is 

usually possible to follow fairly well the boundaries of two zones which 

differ greatly in brigthness, using what is called a.!!!!!, follower. 

This program sends a probe that travels the scene looking for a place 

where the intensity changes abruptly, and then travels along this change 

or discontinuity; in order to achieve this, we may think of it (the probe} 

as having two legs, and each one is kept in a different zone. This should 

be taken only as a pictorical description. 

The output of a line fo-lower is a set of lines, which often has 

to be processed slightly more, in order to elliminate very small lines, 

and in order to merge several fairly collineal segmenta(l}. For instance, 

it may be difficult to find the exact ubication of the corners (place 
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where two lines intersect); one can instead follow the lines until near 

the corner and then, after the complete set of lines is found, use an 

analytical interpolation to find the "best" corners( 2). 

From the many line forlowers that exist, we will present two. 

Sides 21.- This program [10] for the PDP-6 computer uses a box with a 

zone of tolerance (see fig. 'BOX'), the width and length of the box 

being functions of the length of the portion of line already found and 

of the noise present in the picture. It uses CORNS( 2). The program searches 

for the maximum gradient, the relative location of the maximum gradient 

Fig. 'BOX'. The innermost rec­
tangle is termed the acceptance 
box; the outer two rectangles 
are collectively termed the 
looking box. When tracking, the 
less sharply defined the edge 
is, the wider the box must be 
to successfully track it. 

with respect to the box is also known to the program, and this information 

is subsequently used to steer the box. If the line is within the acceptan-

ce box, the program considers that the correct location of the line has 

been found, and thus will track further. In the case of a noisy edge, the 

box is widened as a function of how far the maximal gradient goes astray. 

90% of the points must be inside the acceptance box before the box will 

extend. When the program believes it has arrived at a corner, it will 

move the box in several directions to find the possible emerging lines. 

(1) 
See at this respect 'spurious lines' in chapter 2; more detailed in-
formation is found in Cyclops-1(24]. 

(2)CORNS [32] is a program that does this. 
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Finding the edges of a polygon.- Mann [23] uses also an edge detector in 

order to find the different sides of a rectilinear polygon; it first 

searches in a rectangular grid, until it observer an abrupt change in the 

intensities. Noting this point, it continues until the intensity is sta-

ble again. It returns the average of these points as the edge. 

STACKS OF SUCCESIVE TRANSFORMATIONS(!) 

We may transform pictures, that is, arrays of intensities (array of 

numbers) into new arrays of numbers which, generalizing, could also be 

considered as pictures. So, we would have functions which transform 

pictures into pictures, and we could stack them , that is, compose them. 

The following table shows some of the different possibilities. 

FR 0 M T 0 

Intensity point line symbolic 
pictures pictures pictures descriptions 

averaging. threshold 
gradient. operations. 

contours. 

laplacian. Kirsch edge 
Intensity pictures 

region package. detectors. 

finder. 
color. 

smoothing. line 
Point pictures noise 

fitters. eliminatoI s. 
Kirsch PAX 

projection~. White's Line pictures line 
fitters. 

program. 

Martin's Display Display TD. 

Symbolic display. programs. programs. DT. 

description Models to pat-
terns compiler 
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In this table, the lower triangle~ corresponds to display; the upper 

triangle ";:] , to preprocessing. 

Now, a preprocessing may be considered as a path between the 

upper left square and the lower right square; typically, we transform 

intensity pictures into intensity pictures several times, and then 

apply a transformation from intensity pictures to point pictures, etc. 

(see diagram below). Nevertheleas, due to the fact that "local pre­

processing" is expensive (time consuming), the preproceuing could be 

under 'global' control --more complicated loops would appear in the 

diagram below-- so that only difficult regions are transformed much. 

This is discussed somewhat in 'the generalized regions approach', in 

chapter 8. 

Fig. 'GRAPH'. Typical flow-chart of a preprocessor. 

(l)I got this idea from T. Marill. 
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SOME OTHER METHODS. 

Laplacian. Gradient. They are local operations. See [SJ. 

Ridge detectors.- See [29). 

Logical (boolean) preprocessing.- See Kirsch [20). 

A. Rosenfeld and J. L. Pfaltz. 
J. ACM 13, 4; pp. 471-494 (oct 66), 

Hodes line follower.- See [17). 

REGIONS. THE "SUMMER VISION GROUP" APPROACH[ 27 J. 

A program[ 33 J sweeps the array containing the scene and collects 

sets of points satisfying a given predicate; these sets are called 

regions, and roughly correspond to the different faces of the objects. 

It is entirely possible, but it is undesirable, that two or more regions 

will be reported as one. To find good regions is not a trivial task. 

Another program[ 221 will drive the region-finder, supplying 'good' 

predicates; the boundaries will be sorted and "smoothed", and the bad 

regions elliminated and/or merged. 

[37 38) A further preprocessing will then be done ' , interpolating 

straight lines, segments of curves, etc., until finally each region is 

described by a set of properties, in the so-called region-notation (see 

chapter on models). 

This input is the one which the recognizer (for instance, TD[l6]) 

will use. 
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Syntactical analysis of ~igures.- We cite the following references: 

1. Ledley, R. S., and Wilson, J. B. Automatic Programming languages 

translation through syntactical analysis. Comm. ACM 5, No. 3. March 1962. 

2. Ledley, R. S., Rotolo, L. S., Belson, M., Jacobsen, J. 

Pattern recognition studies in the biomedical sciences. SJCC, 1966, vol. 

28, p. 411-430. 

3. Narasimhan, R. Labeling schemata and syntactic descriptions of 

pictures. Inform. Control 7 (1964), 151-179. 

4. Hodes, L. [17]. 

5. Cyclops-1 [24]. 
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CHAPTER IV. P 0 L Y B R I C K 

I am presenting in this chapter a description and discussion of 

Polybrick. This is a program that recognizes 3-dimensional parallelepipeds 

(solids limited by 3 pair of parallel planes), using as data 2-dimensional 

orthogonal projections. 

Under the name CUBE LISP, a version of this program is running in 

the CTSS 7094 Time Sharing System of Project MAC, MIT. A more complete 

description and a listing of the program is found in a MACil!'mo [13]. 

Polybrick is written in the CONVERT language [14]. 
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Introduction.- The progr ... contained in this chapter solve the following 

probl•: 

A scene contain• noise free parallelepipeds without perspective 

effects, but partially occulting one to others. Bstraneoua rectilinear 

obj ectl other than parallelepipeds aay be prueat. 

Probl•: vhat parallelepiped• (benafter called sloppily "cubes") 

are there and where they are (in the 2-clia picture)? 

An anaver ia considered bad when it aiMU -. cube, or if it 

confuses aoae. On the other haDd, ambiguous cubes or partially-identified 

ones should be reported aa such. 

The progr• should also give the poaition of auch cubes, to the 

extend such information ia available. 

Input to the progr ... - Eventually the progr .. will read its data directly 

from the ti0rld(l). Right now, the picture ia tranafonaed (by band) to a 

list of corner• and points of intersection (real or virtual) of linea, 

and their ~two diaenaional-- coordinates in the picture, together with 

its nearest adjacent pointa. 

For exaaple, the input asaociated with fig. '#CUBE' ia 

(A (BF) B (AG C) C (B D) D (GE C) E (FD) F (A E G) G~(F B D) ) 

~c1, 21 tc2.11 ~£4,11 lc4, 21 LcJ, JJ tu. JJ F c2. 21 

Fig. '#CUBE' • A cube 
showing its vertices. 

(l)See chapter on preprocessing. 



Coordinate 

Vertex x y 

A 1 4 
B 1 6 
c s419 7719 

11. • D ~ 8 

F E 6 10 
F 8 11 

IO • e~ """-... G 14 8 
H 13 6 
I 11 5 

8. «.L..!. .............._ 
"-.,.~ J 9 6 

K 9 4 
L 7 1 

b. ~c- ~ "t>/ I ..i M 5 1 

2. • 

'Ji i 

N 5 3 
0 5. 7213 4.0909 
p 3 3 
Q 3 5 
R 8 7 

I I / s 6 8 
T 8 6.5 
u 8 6 

-- v 7 6 . . 
" (, g fD It. I~ w 7 3 

x 12 7 

Fig. GORDO 

To its right is its description list, !the input to the program. 
The numbers are stored in the property list of each vertex. 

neighbors 

B p 
AQC 
B D S 
EC 
DX F 
E G 
XHF 
I G 
UH J 
ITU WK 
J L 
KWM 
NL N 

"' OWM I 

p v 
AQO 
BP R 
Q S T 
CR 
RUJ 
TV J 
U D 
NJ L 
I G E 
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Format of the answer. We use the CONVERT processor and apply the function 

~ ( in the file "CUBE LISP") to the picture GORDO (in file "gordo"). Here 

is the operation in CTSS. 

load (( a cube gordo)) 
(CERO UNDECLARED) 
(CERO UNDECLARED) 
NIL 

( THERE ARE il LEAST 3 OR 3 CUBES) 
e (cubs gordo) 

( CUBE 1 IS(N ( W 0 M) W (N J L) L (MK W)) ) 

CUBE 2 IS (I (J H X) G (F X H) X (E G I) E (X F D)) ) 

CUBE 3 IS (P (A 0 Q) R (S Q T) Q (B R P) B (Q C A)) 

THE PROGRAMS. 

They are written in CX>NVERT, a pattern-driven symbolic transformation 

language [ /'/ ) , and we will discuss here the following: 

CUBES2 LISP 000 Original,uses continuity. 

CUBS LISP 000 Partitions the set into disjoid: classes 

CUBA LISP 000 Final version; uses the unit 
distance method. 

CUBE LISP 000 Breaks + into -{ (- (not 
conected) 

The last one is the one currently in use, but it is interesting 

to talk about all of them. 

CUBES2 LISP Use of neighbourhood . 

If a corner ( ( ) is found, we look for a parallelogram ( <) 
which has that corner (we use here the information about which points are 

joined to which); as usual, .solid arrows in the flow chart indicate the 

direction of success; broken ones, the direction of failure. 
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For example, in fig GORDO, CUBES2 proceeds in this way 

B B B 

I /\ Al \Q ' A-A ~A Q ) R ~ 

\ \/ \/ / 
p· p p 

s 
/\ " > CUBEFOUND FILL CUBE ~ A R 

'\/ 
T/ Q 0 

Now it tries again it finds all the 3 cubes. 

Shortcomings of CUBES2 

The scheme just presented gives an idea of the power or weakness of 

CUBES2. It is able to find connnected cubes; for example, it solves fig GORDO 

and fig COMMON, but it fails to find 

A B C D in the figure at the right 

because it is formed of two disconnected 

parts (disconnected it the sense that, in 

order to go from one part A D to the 

other BC, we have to cross other cubes). 

What to eras= and what to leave 

Once all the points of a cube are found, we have to delete it from 

the picture, in order to process the remainder. Or, if you do not want 

to delete points, you still have to mark them as "already processed". This 

process is explai.ned with COMMON, the example in fig "COMMON". 

Once the cube K.•J I W U V F G H is found, we delete these points from 

the graph. The point G, for example, is safely deleted, since its neighbors 

,F,H and W also belong to the encountered eube. 
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What to erase and what to leave 

Once all the points of a cube are found, we hive to delete it from 
(1) 

the picture, in order to process the k.amainder. Or, if you do not want to 

delete points, you still have to mark them as "already procaued". This process 

is explained with COHK>N, the example in fig/ 'COIH>N'. (page 34). 

Once the cube K J I W U V F G H is found, we delete these points from 

~he graph. The point G, for example, is safely deleted, since its neighbors, 

F,H, and W also belong to the encountered cube. But F, for example , is 

still not deleted, since it has as neighbors point outside (not belonging 

to) the actual cube. Therefore, one pass through the graph eliminates all 

the lines arriving at points in the cube; for example,F*(E*C* K) is transformed 

to F* (E* C* ), since K was in the cube. In this way we delete the line F* -K, 

if we also make the transformation from K(U J F*) to ~(U J). 

Another pass looks for points of the form W ( ), that is, points 

"isolated" (not connected to anything else), and deletes them. 

The first pass is done with the CONVERT rule 

(:XXX (YYY U ZZZ) WWW) (:XXX (*RBPT* ( (YYY ZZZ) WWW))) ] 

where we define U as "member of CUBEJUSTFOUND". 

The second pass --deletion of isolated points-- is done with 

(:XXX X( ) YYY) (:XXX (*REPT* (YYY))) ) • 

In this way points shared by several cubes (like K) are preserved. 

But not the lines; for example, the line K-U is erased ( fig.jlllJ&l7."CHANGE"), 

because it belonged to the cube K J I W U V F G, even if it also belongs to 

the cube M N P D E F V T. 

In general, there is no way to predict such an event, since the 

(1) Canaday (4) treats this problem in a similar way. 



- 27 -

second cube has not yet been found, and therefore there is no way to tell what 

its parts are. We sill discuss this point later. 

In general, this is not a serious defect, but see the example TRICKY, 

fig Tll.iCtc.Y. 

Fig. COMMON after erasing cube K J I W U V F G. 
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CUBS LISP. Classification of the corners. 

We want to be able to recognize "disconnected" cubes; roughly speaking, 

the problem is this; in some way I manage to know that A Q C 

looks like it is going to be a cube ( see also fig HIDDEN) 

,so I would like to look for a corner of the form__i.., in the 

direction Q C. That corner happens to be U WT V -·----• U*V 

at the bottom, but in order to find it I have to continue the line Q C 

for a while, and stop after finding W T, which is the continuation. 

We could use the scheme of trying to extend all lines that seem to 

be etopped--like QC,TW --, making the picture somewhat transparent. Aleo, 

when looking for corner T, we could extend slowly the line Q C, and every 

2 millimeters or so ask : Have I hit a point yet ? 

Instead of that, we use the oppo.eite approach: look for the points 

<.corners) whet.ch exist, and see which of them may be continuations of Q C. 

But it would be better not to look at all of them, but just to the most 

promising ones. That is what CUBS does. 

The vertices may be CORNERS, Y's, T's or ANY.' s. 

The program classifies the vertices of the picture into several 

categories 

CORNERS; With this name we deno~e vertices at which two lines arrive, 

for example U ,A, I, r*, etc. in HIDDEN (fig. ). 

Y's Three lines meeting at a point, two of them co&linear; B*,W, K*, 

L*, Mk . 

ANY's: Vertices having more than 3 lines. 

What the program CUBS does is divides the vertices into CX>RNERS, 

Y's,T's and ANY's. The Y's are also classified into classes, according to 
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0 a " ' ' 10 
HIDDEN 

Fig The cubes A Q V U T and A* H are disconnected. 
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the slope of its sides 

After this, all the Y's of a particular cube can be found in a given 

class; if it happens that there are no parallel cubes, like in STICKS ( 

fig. ), then you &imply print the classes, because each class contains 

exactly one cube. 

That is not the complete solution. There is more to be said, of course. 

When a single class contains just one vertex, such as G or M* (STICKS, fig . 

,it may or may not be part of a cube. CUBS make further analysis and 

depending upon the kind of vertices attached to the lines forming that Y, 

an acceptance or rejection is made. For information purposes, a message 

"FALSE CUBE FOUND" is issued. 

For example, analyzing the points attached to H, XM and F, the "Y" G 

is accepted as a cube; analyzing the points N*, !'* and Z*, the point M* is 

rejected, that is to say, ---£)~ 
t* 

is not 

part of a cube. 
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•• 
... 

,,. 

'=I ~ < 
1: ... 

~ IL 

• ~ ... .. 
Fig. STICKS 
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This is the solution for STICKS (last page), as the program CUBS does it: 

(CORNERS •• ZM (QM Q) RM (M N) LM (KM MM) IM (W JM) I* *H* 
J*) F* (E* G*) D* (C* E*) B* (C* A*) Y (X YM) U (T V) K (J 
L) H (G I) F (G E) D (C E) A (B J*)) 

(TES • A/ (H* DM G*) YM (GM Z Y) XM (P R* G) WM (C B VM) UM 
(Q* E VM) TM (SM I 0) MM (LM GM V*) JM (KM IM NM) FM (Z EM 
Y*) EM (W* FM X*) BM (AM CM DM) AM (Z* BM E*) Z* (K* AM H*) 
Y* (FM X* A*) X* (EM W* Y*) W* (EM X* V*) V* (S* MM W*) S* 
(R* T* V*) R* (Q* S* XM) Q* (UM P* R*) P* (N* T* Q*) K* (L* 
Z* J*) J* (K* I* A) A* (Z Y* B*) Z (YM A* FM) W (IM V X) Q 
(ZM P R) P (Q XM 0) 0 (N TM P) N (RM QM 0) M (RM OM L) I (H 
J TM) E (F D UM) C (D B WM)) 

(FALSE CUBE ( 0.30000002El 0.5e0 -0.0 N* (VM P* M*))) 

(FALSE CUBE ( 0.2El 0.0 -0.3333333 M* (T* L* N*))) 

(CUBE 1 IS (U* (T* L* C*) L* (U* M* K*) C* (B* U* D*))) 

(CUBE 2 IS (KM (JM HM LM) HM (KM X GM) GM (MM HM YM) X (W Y HM))) 

(CUBE 3 IS (NM (T V JM) H* (A/ Z* I*) V (U NM W) T (S NM U))) 

(FALSE CUBE (O.O -0.lEl -0.2El S (T OM R))) 

(CUBE 4 IS (QM (N PM ZM) PM (OM QM R) OM (M PM S) R (S PM Q))) 

(CUBE 5 IS (VM (WM N* UM) SM (J L TM) L (SM K M) J (I SM K))) 

(CUBE 6 IS (G F H XM)) 

(CUBE 7 IS (CM (BM.DH E*) G* (DM F* A/) B (A WM C))) 

(ANYS • DM (BM CM A/ G*) T* (S* U* M* N*) E* (AM D* CM F*)) 

We print, as additional information, the CORNERS and the T's. Note that 

only a SlllSll part of each cube is printed; for example, of the long 

horizontal cube, only vertices G, F, H and XM are printed. It is not 

difficult to "fill" the cube, as CUBES2 does(l), but CUBS does not do that, 

(l)See Polybrick memorandum [13). 
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if for no other reason, because we already know how to do it, so it is 

just a matter of adding that part of the program. 

Also, CUBS does not use any information about CORNERS; we will 

need it in more complicated cases. 

Shortcomings of CUBS. 

I think the most serious one is that it ia unable to make 

recognition 8DIOng parallel cubes, for example cubes A Q U T and G* F* J* B* 

in fig. 'BIDDEN' (page 29) are confused and reported as just one, since 

they lie in the same class. A better (or worse) example is fig. 'COMMON' 

(page 34), where all the four cubes are parallel, and the program thinks 

there is just one. Also, the program does not check for length of edges. 

Let us not get angry at CUBS. It is obvious that the program is 

incomplete, and it is also obvious what should be done. 

The main good idea in CUBS is that, by dividing the cubes into 

classes, we transform the problem of finding all the cubes, into the 

problem of finding the cubes in a given class, in which all of them are 

parallel. This approach also solves the_disconnectivity problem. 

CUBA LISP. Differentiating among parallel cubes.-

The program just discussed takes a figure and separates the cubes 

into classes, each one of them containing parallel cubes. For example, in 

fig. 'BIDDEN' (page 29), the cubes A Q VU T and E* J* D* J B* are 

parallel. We would like to differentiate among them. Here we use the 

collinearity 8DIOng two vertices; for example, Q and T are collineal 
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--figure at the right-- , but Q and D* are not, so Q 

and D* can not form a cube. 

Also, we do not want to compare Q with all the 

vertices of its same class in order to select the po-

ssible ones; it seems that a further classification 

of vertices of the same class is desirable. 

Collinearity~ not sufficient. For example, vertices A and B --see 

figure below-- are collineal, and still do not form a cube; therefore, 

we will select all the vertices colineal to A in the direction AT and 

(if there are some) select the appropiate one. 

Numbering the Y's. Unit distance vertices.-

TAke a cube, pick any vertex and establish the three directions 

of its lines, as done in the figure. Now, examine for each vertex, the 

F lines which depart from it. 

For vertex A, all its lines 

3 depart in the positive direc-

tions '\ ' 
___,. and i 

therefore, is (+ + +) or (0 0 0). For vertex B, line B G is \ (+) 

line B c is ~ (+) 

line B A is t (-) 
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the•efore, vertex B is (+ + -) or (0 0 1) or 1. When we finish this 

process, our cube now looks like this: 

This numbering scheme is inde-

pendent of the starting vertex (0 0 0) 

and of the directions which are consi-

dered positive. 
Coot) 

Connected vertices are unit-

distant, that is, their binary words differ in exactly one bit. Vertices 

which are 2 units apart lie on the diagonal of the faces (A E, A G, B H, 

etc.) and vertices lying in opposite extremes of the diagonals of the cube 

are 3 units apart, for example F (1 0 0) and C (0 1 1). 

Pre-processing(l).- The pre-processing done in CUBA is more complicated 

than the one done in CUBS. 

Vertices are divided into CORNERS, T's, Y's and ANY',s (as before); 

1. CORNERS are divided according to the slope of the sides. 

2. T's are divided according to the slope of the top and 
the slope of the tail. 

3. Y's are divided into classes, according to slopes. 

In each class, vertices are divided according to the 
unit distance concept. If certain vertex happens to 
be the first of a given class, the number (0 0 0) is 
assigned to it. 

Localization of the cubes.- A second part of CUBA applies to each class 

of Y's the following process: 

1. A vertex is selected and the program tries to attach to it a 
cube, if possible; therefore, its unit-distance vertices are looked 
for [if the vertex in question has number Cx1 , x2 , x3), only sub~ 

- - - (*) classes (x
1

, x2 , x
3
), Cx1 , x2, x3) and Cx1 , x2 , x3) are searched ]; 

(1) (*) footnotes in next page. 
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a vertex has to paaa the teat for collinearity and, if several 
are found, the closest is chosen. It turned out that these 3 
teat are still not sufficient; for example, B ia 

(1) unit-diatant from A 
(2) colineal 
(3) the closest 

and still A - B is not (part of) a cube. 
In relation with this, see also fig. 'TOWER'. 

2. We apply to the vertices found in (1.) the same process (1.), 
up to a certain depth. 

3. The cube formed in this way is accepted if it has two or more 
vertices; if it ha• one, as N* (K* L* M*) in fig. 'BIDDEN', page 
29, we check the extraae points [K*, L* and M* in the example], 
as explained in CUBS. 

A fancier progr11111 should aay, after finding.a cube such 
as N*: "I am not sure it is really a cube, but it looks like one". 
Thia comment can be inserted in thia part of the program. 

4. Accepted cube• are reported and their vertices erased from 
the subclasses where they were found, and the whole process is 
applied again to the next vertex of the aubclaH. 

5. When a subclass (or a class) ia empty, the next one ia searched. 

CUBE LISP. 

Is the program currently in use; in addition to what CUBA does, it 

also breaks vertices of the type ~ in two Y's: -4 and 

(l)This should not be confused with the kind of preprocessing of chapter 3. 

(*) - {l if x - 0 
x - 0 if x - 1 
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Recognition of Cubes in a Picture which alsu contains other Objects.-

In the presence of non-cubic objects, an effort is made by the 

program to see cubes in them; if none is found, these objects are simply 

ignored. A good example is fig. 'HIDDEN', page 29, where the truncated 

pyramid is ignored, but only after several "false cubes" found in it. 

The output is the following: 

(FALSE CUBE (Z* (Q* Y* S*))) 

(FALSE CUBE (Y* (V* Z* X*))) 

(FALSE CUBE (X* (W* O* Y*))) 

(FALSE CUBE (S* (T* Z* S*))) 

(FALSE CUBE (Q* (Z* P* R*))) 

(CUBE 1 IS (N* K* L* M*)) 

(FALSE CUBE (X (HY B))) 

(FALSE CUBE (J (I K H*))) 

SOLUTION TO H I D D E N ------------------------

(CUBE 2 IS (H* (G* F* J) E* (F* G* C*) F* (E* H* D*) D* (WK F*))) 

(CUBE 3 IS (P (A Q R) 0 (Q A N) Q (0 P C) T (U V W)) ) 

(CUBE 4 IS (L (A* B* M) Z (MN A*) M (Z D L) H (B X K*)) 

(FALSE CUBE (B* (Y* U* W*))) 

{CUBE 5 IS (Y (D X I*) G (P* I* B) I* (E G Y) E (I* O* S)) ) 

(FALSE CUBE (D (Y M S))) 

If instead of a pyramid we put an hexagonal prism, it will recognize in 

it the "cubes" A B C E F G and B C D F G H ! 

As you see, CUBE is not very successful in a 

foreign environment. A more general program should be 

more careful about accepting candidates which look 

good. 
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Some Examples. 

We have already shown several figures which the program analyzes 

correctly; they are COMMON (page 34), GORDO (page 23), HIDDEN (page 29), 

STICKS (page 31). Some of them, like HIDDEN (page 29) are somewhat compli-

cated, since they involve parallel cubes, disconnected cubes, 1-corner 

cubes, extraneous objects, etc. 

I would like to present now a couple of examples, TRICKY (fig. 

'TRICKY'), and WHAT? (fig. 'WHAT?'), where the answer is ambiguous (non 

unique). The program does its best, and its answers are acceptable but, 

in general, CUBE is not designed to solve optical illusions. 

load ((a cube tricky)) 
(GERO UNDECLARED) 
(GERO UNDECLARED) 
NIL 

e (cubs tricky) 

(THERE ARE 2 OR 1 CUBES) 

(CUBE 1 is (M (B D L) B (M C A)) 

(CUBE 2 IS (J (KI P) P (L HJ)) 

(FALSE CUBE (0 (H L D)) 

(CUBE 3 IS (F (ENG) N (D F H)) ) 

CUBE accepts the 3 exterior cubes and rejects 0 (H L D). Now we apply it 

to the scene WHAT?: 

(CUBE 1 IS (0 (P Y X) x (Q W 0) Q (X RP)) 

(CUBE 2 IS (S (D T R) D (S E C)) ) 

(CUBE 3 IS (Q (B R P) B (Q C A)) 

(CUBE 4 IS (M (Y L Z) K (J Z L) Z (WK M)) 

(CUBE 5 IS (H (G U I) u (T H J)) ) 

(CUBE 6 IS (M (Y N Z) y (M 0 W) 0 (NY X)) 

(FALSE CUBE (V (J R T))) 

(FALSE CUBE (C (RB D))) 
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These are the results for WHAT? (page 40). 6 cubes are found; 

MY 0 Wis accepted, but JV RT is not. This is (see figure 'WHAT?') 

certainly a possibility; otherwise, how does one explain with cubes the 

presence of lines ON and NM ? 

The next page shows the scene 'TOWER'. All the cubes but one are 

correctly identified; cubes C* T and P I are [con]fused and they appear 

in the answer as only one, namely C* N* A* I. This is because we do not 

use information about lines; lines P* Q and R* T (see page 42) will solve 

the problem. 

e (cubs tower) 

(THERE ARE AT LEAST 3 OR 2 CUBES) 

(CUBE 1 IS (A* (X I X*) X* (Z 0 A*)) ) 

(CUBE 2 IS (X* (Z 0 U*) U* (H S X*)) ) 

(CUBE 3 IS (V (C T* B) F* (T* C C*) T* (F* V N*) N* (C* RT*)) ) 

(CUBE 4 IS (N* (C* R P*) A* (X I W*)) 

(CUBE 5 IS (F (Y M N) N (G* L F)) ) 

(CUBE 6 IS (N (G* L K) K (D* G N}) ) 

(CUBE 7 IS (K (D* G J) J (H* V* K)) ) 

(CUBE 8 IS (U* (H S F) F (Y M U*)) ) 

(FALSE CUBE ·cw• (DY* A*))) 

(CUBE 9 IS (E (W Q* J*) E* (J* B R) U (B J* Q*) J* (E* U E)) ) 

(FALSE CUBE (E (W Q* T})) 

(CUBE 10 IS (W* (D Y* A) I* (A Q D) R* (P* A S*) A (I* R* W*)) ) 

(FALSE CUBE (P* (R* Q N*))) 

(FALSE CUBE (B (U E* V})) 
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.. 1 . 
I ' Fig. 'TOWER'. Vertices such as K (D* NG J) having 4 connected points, 

two of which (J and N) are collineal, get decomposed in two Y's: K (D* N G) 
and K (D* JG). 
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CHAPTER V. T D 

This ahapter describes a program(l}, written in the CONVERT language, 

and run in the IBM 7094 system, called TD. The function of TD is to accept 

a scene expressed as a symbolic expression (cf. chapter 3) and a model (cf. 

chapter 7), expressed in the same notation, and to find all instances of 

this model in the scene. 

The symbolic notation for expressing scenes and models uses a language 

called FDL-1 (figure description language-one). The notation restricts the 

present application of the system to scenes and models which are made of 

straight line segments. Models can be described independent of position, 

size, rotation, reflection, etc. 

The program TD is particularly well-suited for non-overlapping figures. 

Overlapping figures are identified only when they are transparent. 

Either two or three-dimensional models and scenes can be represented 

in our notation. Furthermore, the program TD will handle three dimensional 

scenes and models as readily as two-dim ones. That is, we can compare 2-dim 

scenes with 2-dim models, or 3-dim scenes with 3-dim models (both cases de~ 

cribable in FDL-1}; this last case is rather rare, due to the difficulty to 

get 3-dim scenes to analyze. On occasion, it is possible correctly to 

analyze a scene which is the two-dimensional representation of a 3-dim 

scene by using only two-dimensional models. 

(l)TD was developped by the author at Computer Corporation of America, 
Cambridge, Mass., under contract AF 19(628)-5914. 
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SECTION I. The Figure Description Language FDL-1. 

Introduction. 

The figure description language FDL-1 is a language in which 

figures and models may be represented in a symbolic notation. For the 

purposes of FDL-1 we restrict ourselves to figures and models which are, 

made of straight-line segments. 

Formally, there is no distinction in the language between a figure 

and a model. Informally, we will use the term "~" to mean a certain 

specified picture (which may or may not be fixed in position), whereas we 

will use the term "~" to refer to a class of pictures, such as the 

class of squares for example, or the class of chemical formulae containing 

one benzine ring. 

THE LANGUAGE 

~-

Points are the building blocks of further structures. A point is 

represented by an atom. Example: A 

B 

COC are points (see fig. 'POINTS'). 

vertex. 

A~ is a point followed by a (non-ordered) list of points, 

called the neighbors of such a point. A vertex has no repeated neighbors, 



A 

and is not a neighbor of it1elf. 
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coc 

Fi1. 'PODrrS'. The 1i11ple1t 
el-t of a figure ii a 
point. 

Examples: A (B C D) is a vertex; B, C, and D are the neighbors of A. 

A (B D C) is a vertex. 

A (B C C) is not a vertex. 

A (B C A D) is not a vertex. 

Eleeentarx Figure. 

A list of vertices 1atisfying the following conatraints ia called an 

elemantary figure: 

1. Each point mentioned occurs exactly once as a vertex. 

2. Neighborhood is a 1ymmetric property; that i1, the occurrence 

of ••• A ( ••• B ••• ) in the figure -an• that B ( ••• A ••• ) ••• 

mu1t also be present. 

Elementary figures are sometimes called the connection matrix or 

connection list. The order in which the vertices are mentioned is irrelevant. 

Example: (A (B C) B (C DA) D (B C) C (A I D)) 

is an elementary figure. See figure below. 

Note that the vertex A (B C) is different from the figure 

(A (BC) B (A) C (A)). See figure 'THREE'. 



(a) elementary figure 
(b) point A. 
(c) vertex A (BC). 
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(a) A 

(b) 

8 

(c) ·< 
Fig. 'THREE'. The elementary figure 
(A (B C) B (A) C (A)), 

c 

Example: (A() B () C ()) is an elementary figure (see figure below). 

Example: ((A (BC) M (NS))) is mi,! an elementary figure. 

Example: (AB (C) D (116. 0.563)) is mi,! an elementary figure. 

This elementary figure shows the 
fact that the neighbors of a given 
point P are the other vertices to 
which lines from P are drawn, 
Compare with figure 'THREE'. 

. s 

.c 

D 
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Example: (A (BC) C (BAE) D () B (CA) E (C) ) is an elementary figure 

(see figure below). 

A 

Properties. 

D 
• 

(a.) 

Two figures (a) and (b) may be described 
by the same elementary figure in FDL-1: 
(A (B C) C (BAE) D () B (CA) E (C) ). 

( b) 

Elementary figures describe only the topology of the connection 

between the different vertices of the object(l); in order to characterize 

further the scene or model in question, we modify (we restrict, in fact) 

this topological skeleton by specifying properties which the figure has 

(to have). 

A property is an ordered list whose first atom has been declared to 

be of the type "property name" (i. e., it is not a point), and whose 

remaining elements are atoms representing points, or numerical constants. 

A property is simply a predicate, i.e., an expresion with open variables, 

such that the expression becomes T or F upon substitution for the variables. 

Exaq>les: (LENG C B 4.0) 

(l)Evans [8] uses a similar scheme for the representation of his figures. 
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(ANGLE A B C 75) 

Attachment of Properties to Figures. 

Given a figure, a new figure may be formed by attaching to it a 

collection of properties, using the connector 'where'. An example will 

illustrate the syntax. 

(A (B C) B (A C) C (A B)) 

(SLOPE A B 3.0) (LENG C A 5.0) 

(1) 

(2) 

Expression (1) represents an elementary figure with three vertices; 

expression (2) represents two properties. 

A new (non-elementary) figure may be formed by saying: 

((A (B C) B (A C) C (AB)) where ((SLOPE A B 3.0) (LENG C A 5.0))) (3) 

In the example, (1) is any triangle, and (3) is any triangle with a side 

of length 5.0 and the adjacent one with slope 3. 

Example: ((M (N R) Q (N R) N (M Q) R (M Q)) where 

((LENG N R 8.5) 

(SLOPE M Q O.O)) 

represents a quadrilateral with an horizontal diagonal, the other being 

8.5 units long. 

Therefore: A figure may be formed by a list containing 3 elements: 

1. a figure 

2. the connective ~ 

3. a list of properties. 
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fropertie1 Coptaiping open vari1ble1. 

The properties (SIDPE A B X) 

(SIDPE M N X) 

where X is not a point, but an explicitly declared "open variable", are 

interpreted 11 saying that the slope of AB ii X and the elope of MR is 

also X, whatever X may be. In short, the lines AB and 191 are parallel. 

In general, open variables are used when we do not want to cOlllllit ourselves 

to specific values, but insist only that the value be the same ea~h time 

the variable is encountered. 

In order to distinguish open variables from points and property 

names, open variables are declared as such using VAlllABLBS, which is a 

special property. Thua, the expres1ion 

(VAaIABLES ALPHA THETA CA!l>TES •••• ) 

defines the atoma ALPHA, THETA, CA!IYlES, ••• , to be open variables. 

'lhese variables are considered open only with re1p~ct to the figure which 

they ,modify. An example of a figure containing open variable• ie as 

follows: 

((P (Q R) Q (PR) R (P Q)) ~ 
Q 

( (LBNG P Q Ll) 

(LENG Q R Ll) 

(LENG P R Ll) 

(VAlllABLES Ll) ) J 

This figure represents an equilateral R 

triangle. A second description may be: 

p 
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(( (P (Q R) Q (P R) R (P Q)) where 

((ANGLE P Q R ALPHA) 

(ANGLE R P Q ALPHA) 

(VARIABLES ALPHA))) where 

((ANGLE p R Q ALPHA) 

(ANGLE p Q R ALPHA) 

(VARIABLES ALPHA)) ) 

Composition of Figures. 

Boolean connectors may be used to form new expressions. For example: 

(=OR= (A (B C) B (A C) C (A B)) 

(A (B C) B (A D) D (B C) C (A D)) ) 

is a representation of a triangle or a certain type of quadrilateral. 

Definitions: Single Names. 

An operator is now introduced which allows us to give to a whole 

figure a single name. This operator is 

(=DEF= name fig) 

where name is an atom not previously used as either a point, an open va­

riable, or a property name, and fig is a figure. After such a statement 

has been executed, name and fig are completely equivalent and interchan­

geable. 

=DEF= allows us to set single atoms to stand for whole figures. 

For example, assume we have a quadrilateral, i.e., 

(A (B D) B (A C) C (B D) D (AC)) 
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Fig. 'QUADRILATERAL' • A mode 1. 

D 

We may define the atoms "QUADRILATERAL" and "QUAD" both to represent 

that quadrilateral as follows. 

(•DEF• QUADRILATERAL (A (B D) B (A C) C (B D) D (A C))) 

(•DEF• QUAD QUADRILATERAL). 

A parallelogram may now be defined as a quadrilateral having two equal, 
I 

_,.,,,,,. .... ___ ..... 
-s ---- ..... ___ ... -

r- .. -·· 
-~· 

--·-1 

Fig. 'PARALLELOGRAM'. 
Parallelogram defined 
with the help of the 
model of figure 
I QUADll.ILArJmAL I o 

non-adjacent, and parallel sides, such as AB and DC (not CD). For example: 

(-DEF• PARALLELOGRAM (QUAD ~ 

(SU>PE A B S) 

(SU>R DC S) 

(LENG D C L) 

(LENG AB L) 

(VARIABLES A L) ) ) ) 
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We may now define a rectangle as a parallelogram having one right angle: 

(•DEF• RECTANGIE (PARALLELoGRAM ~ 

((ANGLE DA B 90°)) )) 

Of course, we could have made some of the definitions in a different 

manner; for example, 

(cDEF• PARALLELOGRAM ((A (B D) B (A C) C (B D) D (A C)) where 

((SLOPE ABX) (SLOPE A DY) 

(SLOPE D C X) (SLOPE B C Y) (VARIABLES X Y) )) ) 

The above defines a parallelogram to be a quadrilateral with opposite 

sides parallel two by two. 

A rectangle may be defined as a parallelogram constrainted to have 

its two diagonals of equal length, as follows. 

(•DEF• RECTABGLE (PARALLELOGRAM ~ 

((LENG A C Z) 

(LENG DB Z) (VARIABLES Z) )) ) 

Note that properties are not attached to lines, but to figures; for 

instance, (LENG A C Z) is a well-defined property, even when the figure 

does not contain line Ac(*). 

Definitions of New Properties. 

New properties may be defined at will. In order for the recognition 

program to take proper action in regard to the new properties, these must 

be defined before use in terms of LISP functions. 

A property (P A1 A2 ••• An-l An) ia handled by producing a call to 

. (*)This feature is considered important by Sutherland in Sketchpad [34]. 
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the LISP function (P A1 ' A2 ' An_ 1 '), where Ai' is the expression 

obtained by replacing A. by its value (with respect to TD); the value 
1 

of this lISP function is then computed and compared with A I , yielding 
n 

a match or a 
(1) 

failure ; furthermore, when the mentioned vslue is T, 

this comparison does not take place, and TD handles this case as if a 

successful match were occurred. 

For example, suppose we want to define the property EQUILATERAL, 

function of m sides A1 B1 ; A2 B2 ; ••• ;Am Bm; and we will say that a fi 

gure has such property if jlength A. B. I falls within f EPS of the 
1 1 

AB 
f: length Ai Bi 
----------------

average length 

where EPS is some pre-specified tolerance. We must write a LISP function 

of name EQUILATERAL, of 2m (not 2m+l) arguments, whose value is, for ins-

tance, YES if the arguments [whose values are the points forming the 

sides of the figure in question] fulfill the appropiate requeriments; this 

function should check its arguments to see if some of them is not a point, 

in whose case should return T; otherwise (failure), its value must be dif-

f.e rent from YES or T. One could then write 

(=DEF= SQUARE ( (A (B D) B (AC) C (B D) D (AB)) where 

((EQUILATERAL AB B C C D DA YES)) )) 

The user is able to define properties as complicated as he wishes, since 

properties are functions (predicates) of several variables, the variables 

·being the (coordinates of the) vertices, and the values which obtain diffe 

rent UAR variables: slopes of lines, distances, etc. Therefore, arbitrarily 

complex restrictions may be specified, and models can have fairly elaborate 

properties or constraints between its different elements. 

(l)This comparison is done by RESEMBLE (see CONVERT [14]). 
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SECTION II. The Program 

Hhat the Program does 

As already mentioned, the recognition program called TD accepts a 

description of a scene expressed in the notation of section I and a des-

cription of a model expressed in the same notation. It will produce, as 

output, the instances of the given model in the given scene. 

TD operates in several modes which are set by 'switches'. There are 

three switches called EXACT, ALL and SYMMETRIC. 

EXACT can have ane of two values: T and (). A value of T for EXACT is the 

normal mode. In this mode, an object will be said to match the model only 

(n) (p) 

Fig. y-16. The small triangle A B C in (p) is not recognized 
when EXACT is T, but it will be when EXACT is () • 

if the vertices of the object have exactly the same number of lines as 

are specified for th~ corresponding vertices in the model. Thus, ABC will 

be recognized as a triangle in fig. y-16-m and in fig. y-16-n, but not in 

fig. y-16-p. 

When the value of EXACT is (), the object will be recognized as matching 

a model even if there are more lines occurring at a given vertex than those 
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specified in the model. Thus, ABC in fig.y-16-p will also be recognized as 

a triangle. 

The next switch is called ALL. It takes one of three values: T, () and 69. 

The normal setting is T. In this state, the program will identify a certain 

portion of the scene, erase that portion, and then operate on the remainder. 

The program terminates when the scene no longer contains parts which may 

be identified as the model in question. 

Under the setting(), the program stops after having identified the first 

instance of the model. 

Under the setting 69, the program will do an exhaustive analysisof the 

scene in terms of the given model. Thus, for example, in fig. 'ALL' the 

program will find two rectangles in the settii.0 T, one rectangle in the 

setting(), and 12 rectangles in the setting 69. The 12 are all the permu-

tations of the three rectangles, AB C D, NM L K and SN RD. 

The third switch is called SYMMETRIC. It 

·1 1~ 
:1 [ has two values: T and (). The setting T 

is to be used when the current model is, A D 

in ~act, symmetric. In this case, the pro- K 

gram will operate faster than in the Fig. 'ALL'. Twelve rectangles. 

mode (), the normal mode. In case the model is not symmetric and the switch 

is set to T, the program will not behave correctly. See examples below. 
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Fig. 'P27'. Scene analysed in eXo111ple 1. 
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Ex.mple l. P27. 

We have ahown (fig. 'P27) in the page 56 a acene "" WIUlt to analyze. 

The aymbolic deacription of auch a acene, that ia, the -way it ia aaaiailated 

by the program, 1a the following: 

(LAllSDA (A B C) (Ptrr A B (LLDIA C))) 
(P27 SCIHI (A 3. 9. (B D) B 1. 25. (A C) C 10. 25. (B D) 
D 11. 17. (AC) I 11. 15. (F Z) F 12. 13. (I G) G 18.421052 
16.210525 (F Z U K) R 18. 12. (G I) I 23.833333 11.416667 
(K R Q J) J 21. 10. (I K) K 2.5 9. (J 0 P L) L 13. 9. 
(E H) II 24. 1. (L R) H 35. 9. (0 H) 0 28.230769 9. (P k S H) 
P 24. 4. (K 0) Q 28. 11. (R I) R 28.263158 13.631578 (I T S Q) 
S 35. 17. ( a 0) T 29. 21. (UR) t1 28.166666 21.083333 
(X V T G) V 30. 22. (U W) W 29. 24~ (X V) X 24. 21.5 (Y W U Z) 

Y 19. 22. (X Z) Z 18.68421 18.84210 (I Y X G) )) 
!Ur (QUAll1.II.all.U. KmBI. ( A* (I* D*) I* (A* C*) C* (I* D*) 
D* (A* C*) )) 
Pl1r (TllAHGLI ll>DBJ. (A* (I* C*) I* (A* C*) C* (A* I*) )) 

The laat three rowa define the models "quadrilateral" and "triangle". 

r \ L 
A* D* A* C* 

Models "quadrilateral" and "triaqle" uaecl in 
the analyaia of fig. 'P27' (pa1e 56). 

We aak the program to look firat for trianglea, then for quadrilaterala: 

(TllARGLI 1 IS (J S P)) 
(TRL\RGLE 2 IS (L H H)) 
((0 (P K S H)) (0 (R I)) (R (I T S Q)) (T (U R)) (U (X V T 
G)) (V (U W)) (W (X V)) (X (Y WU Z)) (Y (X Z)) (Z (I Y X G)) 
(A (I D)) (B (A C)) (C (I D)) (D (A C)) (I (F Z)) (l (I G)) 
(G (F Z U K)) (R (G I)) (I (H R Q J)) (K (J 0 P L))) 
(QtwWD.AT'llW.. l IS (A I I> C)) 
(QtWltILADIAL 2 IS (1 1 W V)) 
(QlJAmILADW. 3 IS (Y T H Q)) 
((R (I T S Q)) (S (R O)) (U (X VT G)) (X (Y WU Z)) (Z (I 
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Y X G)) (G (F Z U H)) (I (H R 0 J)) (J (I K)) (K (J 0 P L)) 
(L (KM)) (M (L N)) (N (0 M)) (O (P K S N)) (P (K O))) 

Now we change EXACT to (). When we look for quadrilaterals, the answer is 

(QUADRILATERAL 1 IS (A B D C)) 
(QUADRILATERAL 2 IS (E F Z G)) 
(QUADRILATERAL 3 IS (L 0 M N)) 
(QUADRILATERAL 4 IS (U X V W)) 
((H (G I)) (I (H R Q J)) (J (I K)) (K (J 0 P L)) (P (K 0)) 
(Q (R I)) (R (I T S Q)) (S (R 0)) (T (U R)) (Y (X Z))) 

note that the analysis,is consistent with the setting EXACT=() and 

ALL = T; namely, we cannot identify other quadrilaterals in the remainder. 

This answer was one of several possible matches, which could be discovered 

by reordering the vertices of the scene and applying TD again, or by making 

ALL = 69. 

Looking for all (in the 69 sense) triangles: 

cset (syumetric nil) cset (all 69) cset (exact nil) 
td (triangle p27) 

(TRIANGLE 1 IS U Y G) 
(TRIANGLE 2 IS Y U G) 
(TRIANGLE 3 IS Q R I) 
(TRIANGLE 4 IS R Q I) 
(TRIANGLE 5 IS P 0 K) 
(TRIANGLE 6 IS 0 P K) 
(TRIANGLE 7 IS N L M) 
(TRIANGLE 8 IS L N M) 
(TRIANGLE 9 IS K P 0) 
(TRIANGLE 10 IS 0 K P) 
(TRIANGLE 11 IS P K 0) 
(TRIANGLE 12 IS S J P) 
(TRIANGLE 13 IS K 0 P) 
(TRIANGLE 14 IS J S P) 
(TRIANGLE 15 IS I R Q) 
(TRIANGLE 16 IS R I Q) 
(TRIANGLE 17 IS Q I R) 
(TRIANGLE 18 IS I Q R) 

QUIT 

(the program was stopped and did not finish). 
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Fig. 'SQUARE'. 
Find all the squares in this picture. 
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Example 2. 's Q u ARE'. 

(see fig. 'SQUARE', page 59). Ihe symbolic scene is 

(LAMBDA (A B C) (PUT A B (IJ..ENA C))) 
(SQUARE SCENE (A 1. 6. () B 1. 8. () C 2. 3. () D 3. 3. () 
E 3. 6. () F 4. 8. () G 4. 16. () H 6. 5. () I 12. 8. () 
J 12. 14. () K 15. 1. () L 16. 7. () M 17. 14. () 
N 22. 8. () )) 

We will look for squares here, in the sense of s~ts of four points 

which could be located at the corners of a square; the model in 

question is 

(PUT (SQUARE !l>DEL 
( (Mk () O* () N* () 'P* () ) WHERE 
(LENG M* N* Ll) (LENG P* O* Ll) (LENG Nk O* L2) (LENG M* 'P* L2) 

(ANGLE N* M* O* Al) (ANGLE M* N* 'P* Al) (ANGLE 'P* M* O* Al) 
(ANGLE O* N* P* Al) (VARIABLES Ll L2 Al) ))) 

Ihe answer is 

(SQUARE 1 IS (A D F H)) 
(SQUARE 2 IS (KM C G)) 

Example 3. 'XS'. 

We will now analyze a three dimensional scene (see fig. 'XS', page 61), 

or rather, to a 2-dim view of a 3-dim scene. We are interested in objects 

of a shape as "X" (see fig. 'EQUIS' .) 

Ihe operation is: 

CSEI (sntlEIRIC ()) 

ID (I!QUIS XS) 

(EQUIS 1 IS (I J H AF G E D C B)) 
(EQUIS 2 IS (K Dl L S 0 M N P Q R)) 
(EQUIS 3 IS (Z Al U Bl VI Y W X Cl)) 
NIL 
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B R 

s 

z 

T 

Pig. "X S". 
Scene for example 3. Model ia called 1X1 (see fig. 'EQUIS 1 ) 
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_ .... 
0 

""'\ --.--_. -----

Fig. 'EQUIS'. A model 
for fig. 'XS'. 

F 
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The NIL at the bottom is the remainder of the scene, as allways. In this 

case is an empty remainder, i. e., the scene consisted only of the searched 

object (EQUIS). 

Nevertheless, when we look for the object EQUIS (page 62) in the 

figure below, the program fails to identify it. 

This is due to the fact that the two dimensional representations 

are different. Chapter 7 discusses this in detail. 

A solution to this is to define a model (like the block in question) 

as one of several models; FDL-1 has an =QR= for this effect. 

16 

12 

10 

8 

6 

4 

2 

0 

c 

L--------iH 
E 

F 

2 4 6 10 12 14 16 

Fig. d24. The model EQUIS (page 62) is 
inadequate for the identification of this 
drawing. 

20 22 
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Fig. 'CHEM Is•. Thia scene was 
aIUllyzed by TD using the models in 
the next page. (aee example 4). 
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F* 

E* 

Fig. 'NAP HT ALENE'. 1 model. 

E* r==========i F* 

~H* 

j~ 1* 
Fig. 'ACE NAP HT Y LENE'. 1 model. 
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Example 4. C H E M I S 

--see figures "NAP HT ALENE" (page 65), ACENAPHTYLENE (page 65), 

and CHEMIS (page 64).--

Several chemical compounds were looked in CHEMIS, page 64. The 

results are given below. 

(NAPHTALENE 1 IS (N 0 M Fl Al G Bl S L A)) 
((P (H Gl)) (0 (Y X)) (R (E2 M2 I2)) (T (Gl Hl)) (U (Xl B2 
Zl)) (V (C2 A2)) (W (E K)) (X (Q Wl)) (Y (Vl Tl Q)) (Z (tl 
Ll Nl)) (Cl (Jl Kl Gl)) (Dl (I2 J2)) (El (M2 Pl)) (Gl (P T 
Cl)) (Hl (Tl Il)) (Il (Hl Kl)) (Jl (B Cl)) (Kl (Cl Il)) (Ll 
(Ul Z)) (Ml (F Nl)) (Nl (Z Ml)) (01 (L2 K)) (Pl (El F2)) (Ql 
(D J)) (Rl (I C)) (Sl (Xl Yl Zl)) (Tl (Y W1 Z)) (Ul (Vl Ll)) 
(Vl (Y Ul)) (Wl (Tl X F)) (X1 (Sl I U)) (Yl (C Sl)) (Zl (U 
Sl A2)) (A2 Zl V)) (B2 (U C2)) (C2 (B2 V)) (D2 (E2 G2 J)) 
(E2 (F2 D2 R)) (F2 (Pl E2 D)) (G2 (D2 H2)) (H2 (G2 I2)) (I2 
(R H2 Dl)) (J2 (K2 Kl)) (K2 (M2 J2)) (L2 (01 E)) (M2 (El R 
K2)) (B (H Jl)) (C (Rl Yl)) (D (F2 Ql)) (E (W L2)) (F (Wl Ml)) 
(H (B P)) (I (Rl Xl)) (J (D2 Ql)) (K (W 01))) 

(ACENAPTHTYLENE 1 IS (Tl Z Y W1 Ll Nl Vl Q X F Ml Ul)) 
((Xl (Sl I U)) (Yl (C Sl)) (Zl (U Sl A2)) (A2 (Zl V)) (B2 ••• etc, etc. 

"' 
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CHAPTER VI. D T 

The present chapter describes a program, written in CONVERT, and run in 

the PDP-6 computer of Project MAC, M. I. T., which recognizes objects in 

a scene. Two imputs to the program determine its behavior and response: 

1. The scene to be analyzed, which is entered in a symbolic format, 
called the region-format, somewhat different from FDL-1. 

2. A symbolic description --the model-- of the class of the objects 
we want to identify in the scene. 

Given a set of model s of the objects we want to locate, and a scene or 

picture, the program will identify in it all those objects or figures 

which are similar to one of the models, provided they appear complete in 

the picture (i.e., no partial" occlusion or hidden parts). Recognition is 

independent of position, orientation, size, etc.; it strongly depends on 

the topology of the model. 

Important restrictions and supositions are: 

(a) the input is assumed perfect --noiseless-- and highly organized. 
(b) more than one model is in general required for the description of 

one object. 
(c) partially seen objects may appear in the scene, but only objects 

which appear unobstructed are recognized. 

Work is continuing in order to drop restriction (c) and to improve (a). 

A more complete description of Dr is found in a Project MAC memorandum[l6]. 

Relation of Dr with other parts of this thesis.- Dr represents the implemen-

tation of a different approach to recognition; it works with regions, 

instead of lines, as TD does. It is general, and may recognize any model 

(within its limitations), instead of only parallelepipeds, as Polybrick. 

Its models are discussed in chapter 7. Dr needs improvement to deal with 

partially occluded objects. 
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An ~le of recognition.- This chapter describes ur, a program which, 

given an scene (such as 'BXAMPLB2') and a model (such as 'CUBE'), 

will identify all 'parallelepipeds' present in 'BXAMPLB2 1 • In this case, 

parallelepipeds 1 and 3 are found; parallelepiped 2 is partially hidden 

and ia not recognized. Both the scene and the model are in symbolic format. 

Pig. 'EXAMPLB2'. Three parallelepipeds. 

Restrictions: In this first experimental syetem we will live with the follo• 

wing constraints: 

1.- Noiseless data is suposed, i.e., the ecene muat be accurately 

described by its symbolic representation. Also, the set of shape& assumed 

is small, so that we need not worry about heuristic efficiency in algorithm&. 

2.- Whenever a 3-dim object give& rise to several (2•d:la} projections 

which are topologically different, all these need to be presented as models 

in order to cover the possible cases. The recognizer has an OR feature 

for this effect. Por instance, fig. 1L1 has the same object in four diffe­

rent positions, requiring 3 or poseibly 5 models of an 'L' to identify all. 

The exact number depends on the particular models in question and their 

11dont•care" conditions, which may depend on what other objects in the 

world have to be distinguished. 

3.- Only objects ~ich are totally seen are recognized. Partially 
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occluded or hidden parts or bodies may be present in the picture but the 

occulted objects will not be identified. For instance, parallelepiped 2 

Fig. 'L' 
The same object in four different positiona, 
all of which differ in the topology of its 
two di.men.tonal projection over the plane of 
the drawing. 

in fig. 'EXAMPLE2 1 was not found. Our current work will help to relax this 

last restriction, and also restriction (1). The reader unfaailiar with 

progress in that direction can see references 4 1 13 1 24 snd 29 for some 

earlier work of that kind. 

4.- In the present program we assume orthogonal projections. Later we 

will conaidere finite perspective. For small visual angles, a simple tolerance 

should suffice for most cases, but for large visual angles we will have to 

use other methods. 
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THE SCENE 

Infonnally a scene (picture) is a coDection of regions (p~ojections of 

faces); a region is described by an ordered collection of segments (lines 

or curves), and these have several properties. 

A scene is represented by an atom which has under the entry 'regions' a 

list of the regions composin~ it; for instance (see fig. 'BO'!TLES'), the 

atom BOTTLllS is a scene for which 

(GET (QOOTE BOTTLES) (QUOTE REGIONS)) = (A B C D E F G H I J K L M Z) 

In this case the regions of 'BOTTLES' are A, B, ••• • M, z. 

A region is an atom which has in its property list the entries NEIGHBOR, 

SHAPE, and possibly others. A region corresponds to a surface or face in 

the scene, except that it is treated 2-dimensionally; i. e., in fig. 

'EXAMPLE2' • the upper face of the eraser AB C EL is composed of two regions, 

namely B and L. 

$ 
Fig. I EXAMPLE2 I 

Example.- In the property list of 

region M (figure 1 Bal"l'LES 1 
) we find£ 

NEIGHBOR (L Z) (L and Z are limitrophe regions with M) 

SHAPE ELLIPSE 

At present, the shapes of regions can only be atoms; this is a severe 

restriction since may be too much to require that the preprocessor recognize 

region M (fig. 'BOTTLES') as an ellipse or region A (fig. EX2) as a paralle 

logram. In the models, the shapes are also atoms. This restriction will be 

abandoned eventually• but ~ is observed. 
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z 
f 

M 

I 

FIG. 'BOTTLES' 
An scene composed of regions A, B, ••• , L, M, z. 

THE MODEL 

A model is an atom which contains in its property list, under the entry 

'REGIONS', a list of the following form: 

a) the first element of such a list is an atom, the name of the region, 
as far as the model is concerned. 

b) Each of the remaining elements of such a list is a property; specifi­
cally, is either a list (NEIGHBOR ••• ) 

a~ a list (SHAPE ••• ).More complicated properties 
will be used when objects start getting more complicated. 

A model is composed of regions, with properties inter-relating them, 

Given an object, there is a large number of models which correctly descriae it, 
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Pig. 'H 0 USE'. A model, 

Example. The model 'HOUSE' is written in this way (see fig. 'HOUSE'): 

HOUSE 

(in its property list, we find:) 

REGIONS ((A* (NEIGHBOR B*) (NEIGHBOR C*) (SHAPE PENTAGON)) 

(B* (NEIGHBOR A*) (NEIGHBOR C*) (SHAPE PAIALLEIDGRAM)) 

(C* (NEIGHBOR A*) (NEIGHBOR B*) (SHAPE PARALLELOGRAM)) 

What this list means is that HOUSE is composed of three regions, namely 

A*, B* and C*; and that A* is neighbor of B* and C*, etc. 

Hore over, it says the shapes of A* (pentagon), B* (parallelogram) and C* 

(parallelogram). Additional properties could be inserted here. 

The names A*, B*, etc,, given to the different faces, have no importance, 

they act as dlJBllY variables (UAR or 'undefined' variables in CONVER1'); 

the name• such as PARALLELOGRAM, PENTAGON, etc., given to the shapes, are 

Pis. 'PYRAMID' 
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crucial, 1ince they are going to be compared by equality with the correa-

ponding names in the property li1t of the region• of the 1cene. Note that 

the models we are u1ing are not "cathegorical" -- they do not contain enough 

information (u1ually) to recon1truct the object. 

Exmlple.- PYRAMID (aee.fig. 'PYKAMID') ii a model written a1 

(DEFPROP PYRAMID ((A* (NEIGHBOR B*) (SHAPE TRIANGLE)) 
(B* (NEIGllBH A*) (SHAPE TRIANGLE))) REGIONS) 

--but also see fig. 'PYRAMl' .--

Fig. 'CYLINDER'. A model. 
(DEFPROP CYLINDER. 

((A* (NEIGHBOR B*) (SHAPE ELLIPSE)) 
(B* (NEIGHBOR A*) 

(SHAPE (I C I D))) ) 
REGIONS) 

Remark: Note how we describe B*'s shape aa 

(SHAPE (IC ID)), i. e., as (straight, convex, 1traight, concave). 

Example.- A cube (parallelepiped) is described as 

(DEFPROP PARALLELEPIPED ((C* (NEIGHBOR E*) (NEIGHBOR D*) (SHAPE PARALLELOGRAM)) 

(D* (NEIGHBOR C*) (NEIGHBOR E*) (SHAPE PARALLELOGRAM)) 

(E* (NEIGHBOR D*) (NEIGHBOR C*) (SHAPE PARALLELOGRAM))) 

REGIONS) 

Fig. 'CUBE'. A model. 
It is really a parallelepiped. 
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THE RESULTS 

We will present now several examples of scenes analyzed by DT, the program, 
in the PDP-6 computer. The symbol y marks the lines typed by the user. 

y 

y 

y 

y 

y 

CONV 4 

(UREAD DT LISP 5 tQ tW) 

(UREAD EX2 LISP tQ tw) 

(UREAD MOD2 LISP fQ tW) (IOC V) 
(v) 

(DT (QUOTE CUBE) (QUOTE EX2)) 

(CUBE 1. IS (A B C)) 

(CUBE 2. IS (J L M)) 

Bring the CONVERT processor from 
tape 4. 
Load the file containing DT., 

the recognizer. 

Bring the scene EX2 into 
memory (see fig. 'EX2'). 

Load the models 

Look for 'CUBES• in 'EX.2". 
(see fig. 'EX2'). 

(D E F G H I K N 0 P Q R S T U V W X Y Z) Remaining of scene. 

y (DT (QUOTE CYLINDER) (QUOTE EX2)) 

(CYLINDER 1. IS (E D)) 

(CYLINDER 2. IS (G F)) 

Look for cylinders (see fig. 
'CYLINDER'). 

(A B C H I J K L MN 0 P Q R S T U V W X Y Z) Remaining of scene. 

y (DT (QIXlTE·HOLLOWCYLINDER) (QUOTE EX2)) 

(HOLLOWCYLINDER 1. IS (T U S)) 

(A B C D E F G H I J K L M N 0 P Q R V W X Y Z) 

y (DT (QUOTE HOLLOWBRICK) (QUOTE EX2)) 

(HOLLOWBRICK 1. IS (N 0 P Q R)) See fig. 'HOLLOWBRICK'. 

(A B C D E F G H I J K L M S T U V W X Y Z) 

We define DD, a FEXPR that suppresses the QUOTEs: 

y (DEFPROP DD (LAMBDA (A) (DT (CAR A) 

y (CADR A))) FEXPR) 

y 

DD 

(DD HOLLOWBRICK EX2) 

(HOLLOWBRICK 1. IS (N 0 P Q R)) 

Compare with above. 

Good. Let us see other example. 
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z 

Fig. 'EX 2'. A scene. 
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0 
T 

' I G 2" Fig 'F • A scene 
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We analyze now FIG2 (see fig. 'FIG2') with DT. 

y 

y 

y 

y 

y 

y 

y 

y 

(DD PYRAMID FIG2) 

(PYRAMID 1 IS (L M)) 

(PYRAMID 2 IS (X Y)) 

Looking for PYRAMIDs (see model 
in fig. 'PYRAMID'). DD is like 
DT, but it is an FEXPR (cf.[28)). 

(A B C D E F G H I J K N 0 P Q R S T U V W Z) 

Note that pyramid L MN is not reported as such, but only IM is 

reported or recognized. Why is this? Because the model 'PYRAMID' (see 

fig. 'PYRAMID') is composed of !?!2 triangles. Also, it is in the nature 

of our algorithm that L M prevents recognizing M N. In order to get 

L MN, we define PYRAMl as a pyramid which has~ visible triangular 

faces: 

(DEFPROP PYRAMl ((A* (NEIGHBOR B*) (SHAPE TRIANGLE}) 

(B* (NEIGHBOR A*) (NEIGHBOR C*} (SHAPE TRIANGLE)) 

(C* (NEIGHBOR B*) (SHAPE TRIANGLE)} ) REGIONS) 

PYRAMl See fig. 'PYRAMl'. 

Now we apply this model to scene FIG2: 

(DD PYRAMl FIG2} 

(PYRAMl IS (L MN)) 

(A B C D E F G H I J K 0 P Q R S T U V W X Y Z) Aja. Only one is found. 
Correct. Only one pyramid with 
three visible faces is present in FIG2. 

What we really want is to define a pyramid as something which shows 

either two or three triangular faces; so, 

(DEFPROP PYR (OR PYRAMID PYRAMl) 

PYR 

REGIONS) 

The last model of an OR, PYRAMl 
in this case, is searched first. 

At this moment, PYR is a model which stands for either or 

(DD PYR FIG2) 

(PYRAMl 1 IS (L MN)) 

(PYRAMl 2 IS (X Y)) Good. Two objects were found to 
match with PYR: (L MN) 
and {X Y). See fig. FIG2. (A B C D E F G H I J K O P Q R S T U V W Z) 

What would have been happened if we define PYR in the reverse order? 

Let us define 

(DEFl!ROP PYR (OR PYRAMl PYRAMID) 

PYR 

REGIONS) 
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The last model in the OR list, PYRAMID in this case, is searched first. 
The answer is: 

y (DD PYR FIG2) 

(PYRAMID 1 IS (L M)) 

(PYRAMID 2 IS (X Y)) Two objects matched with PYRAMID: 

(A B C D E F G H I J K N 0 P Q R S T U V W Z) (X Y) and (L M); after 
this, no object was found 

to match with PYRAMl. 

Conclusion: Order in the models is important, so long as we leave 
things to the normal CONVERT matching algorithm. 

y (DD PYR FIG3) 

NIL 

y (DD CYLINDER FIG2) 

FIG3 is an empty scene. 

(A B C D E F G H I J K L MN 0 P Q R S T U V W X Y Z) No cylinders. 
Cylinder P 0 is partially occulted, 
so is not found. 

y (DD CUBE FIG2) 

(CUBE 1 IS (I J K)) 

(A B C D E F G H L M N 0 P Q R S T U V W X Y Z) 

y (DD ANGLE FIG2) 

(ANGLE 1 IS (D A B C)) 

(E F G H I J K L M N 0 P Q R S T U V W X Y Z) 

Angle is a model described in the next page (see fig. 'ANGLE'). 
Angle Q V R T U was not found because has a different form (its 
two dimensional projection has a different topology from model 
'ANGLE'; namely, has 5 faces or regions, and 'ANGLE' only 4). 

Angle E F G H was not found because it is partially occulted. 

y (DD SPHERE FIG2) 

(SPHERE 1 IS (S)) 

Some models. 

(DEFPROP ANGLE ((A* (NEIGHBOR B*) (SHAPE FUNNY)) 

(B* (NEIGHBOR A*) (NEIGHBOR C*) (NEIGHBOR D*) (SHAPE ELE)) 

(C* (NEIGHBOR B*) (NEIGHBOR D*) (SHAPE PARALLELOGRAM)) 

(D* (NEIGHBOR B*) (NEIGHBOR C*) (SHAPE PARALLELOGRAM)) 

REGIONS) 

This is the model for ANGLE. See figure in next page. Angle was used in PIGZ. 
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Fig. 'PYRMll". A model. Pig, 'ANGLE'. A model. 

(DEl'PllOP PYRMll ((A* (NEIGHBOR B*) (NIIGBBOll C*) (SllAPI TRIANGLE)) 

(B* (HIIGBBOll A*) (HIIQllBOa C*) (SHAPI Tl.IANGLE)) 

(C* (RIIGDO& B*) (SllAPI TII.AIGLE))) REGIONS) 

(DEPPIOP SPHDE 

((A* (NIIGBllOR. -) (SHAPE CIRCLE))) 

llEGIOHS) 

Pig. 1 Sl!HDE 1 
• A model. 
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CHAPTER VII. MODELS 

A model is a written representation of an object that we want to identify. Models 

are mainly used for recognition of the object they represent; they are similar to 

patterns in CONVERT. Generally, a model can represent a large class of objects 

We have already talked about models in TD (see notation FDL-1) and in DT; 

the purpose of this chapter is to discuss them more systematically. 
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2-dim representation of 3-dim models. 

2-dim models are capable of representing either two or three dimensional 

objects. This is possible since, in analyzing a scene or a picture, we may 

considere a 3~dim object as a 2-dim portion of the picture fonned by several 

2-dim regions (surfaces). Ia describing the model, the inter-connection of 

the vertices of the object is given, plus additional properties or constraints 

between different features (points, corners). 

We will simultaneously talk about 

two types of such a representation; in 

one of them (see fig. 'PARAL'), a whole 

3-dim object is described by the stru£ 

ture of its edges, as used in TD and 

Polybrick (chapters 5 and 4)[15, 13], 

and is called edge-representation or 

notation. The other type uses regions 

~ 

Fig, 'PARAL'. Representation 
of a parallelepiped as a 3-dim 
mqdel. 

as building blocks of models; it is called the region-representation or 

format, and is the one used by rn: (chapter 6) [16] and some of the vision 

group programs [22, 33, 38]. 

Models written in edge-notation.- We give as example the parallelepiped of 

figure 'PARAL', which may be represented (written) as 

(a (b g f) b (c a) c (d g b) d (e c) e (f g d) f (e a) g (c e a) ) 

plus the additional properties 

(slope b a ml) 
(slope c g ml) 
(slope d e ml) 
(slope b c m2) 

(length b a Ll) 
(length c g Ll) 
(length d e Ll) 
(length b c 12) 

(l)See the FDL-1 languag.." in chapter s. 



(slope a g m2) 
(slope f e m2) 
(slope c d m3) 
(slope g e m3) 
(slope a f m3) 
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(length a g L2) 
(l.ength f e L2) 
(length c d L3) 
(length g e L3) 
'(length a f L3) 

Plus the additional [pseudo]property 

(variables ml m2 m3 Ll L2 L3) 

which indicates (see fig. 'PARAL' again) that the symbols ml, •••• L3 are 

dummy variables that may have any value, the only restriction being that 

this value be the same for each occurrence of the symbol. Variables which 

behave in this form are called bound variables in logic, and UAR ~ndefined 

v~iables) in CONVERT. Under this convention, we see that 

(slope b a ml) 

(slope c g ml) 

(slope d e ml) 

means three parallel lines. 

Properties such as (slope b a ml) are in general function-predicates 

which have as arguments vertices and undefined variables; the user may 

define arbitrary (LISP) properties, which represent constraints on the 

figure or object that the model has to match. 

Models written in region-notation.- Surfaces (faces) are given names, 

and the neighborhood relation between them is indicated; in addition, 

each region has a description of its shape, pretty much in edge notation. 

Fig, 'PARALE' (page is described in this way, 

Vertices are treated as being two-dimensional, that is, the coordinates 

with respect to the (frame of the) picture or scene are used; coordinates 

are then those of the projection over the plane of the drawing; all the 
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pointa of a model are coplanar, ao z-coerdinate ia not indicated. 

1l9ltiple lll!!ltl! for th! 119! ob1ect.- A three· ~ional object will, 

in paenl, haft mre than - 2-dim repnaeatatt-; for iutaace, the 

body with an L ahtpe do- in fipH 'et.I' vtU luwe ttiree or four (ST) 

modeb, accordina to the poaition from were you are aeeina it. 

Pig. '!LI'. A three diMnaional objiict baa four or 
more differeut repreeentatiOD!!: ae a Jllldel, if the 
model cOld:aiU only 2•clia tnfoftlattclb about the 
(relative) poaition of the verticea. 
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Our goal in this chapter is, using the representations for models that 

we just described, to develop a notation in which models will be easily 

expressed; to investigate different conventions regarding to the model 

attached to a given object; that is, given an object, how will we write 

its model? 

It would be nice if we could express in the same notation both the model 

and the figure or scene --as done in FDL-1 --. 

The main use of the model will be in the recognition and identification 

of objects in a scene. 

I will present now several approaches, which I call First Approach, 

Second Approach, etc., to this problem. Some of them have been programmed, 

tested, thought, etc.(see chapters 4, 5, and 6), and this is so indicated 

when they are. 

First Approach; Multirepreaentation. 

Since, in general (we hope) the different models of the same object will 

be just a few (leas than 5? Certainly, leas than a dozen), we could define 

a complex (compound) model compoaaed by the OR of several simple ones, 

such as 

That is: we accept this multiplicity of models and try to get used to it, 

The program rn: works in this way, using 2-dim models of 3-dim objects; the 

description of the models is made in terms of regions, instead of lines. 

In section of chapter 6 we see an example of this kind of recognition­

identification (pages 77-78): the way rn: finds pyramids, in the figure 'FIG2'. 
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The program TD also works in this way (cf. chapter 5), uaing 2-dim 

models of 3-dim objects; the descrpition of the model is made in terms of 

lines --instead of regions-- pretty much the way we have been describin 

models in this section. See the way TD recognizes 'Xs' in figure 'EQUIS' 

(page 61). Note also that, if we do not define the complete set of different 

models of an object, we run the risk to fail to recognize the object (see 

figure d24, page 63) when is found in the scene in same positions. 

c 
onjecture~ If for each object we write all its possible models we may 

run out of storage. May be not, may be f~irly aiq>le objects may be repre­

sented by just a few 2-dim models. 

Order in the models.- When our model is compound, that is, when we have 

.KOD • (OR MODl MOD2 ••• MODm) 

then the recognition is done (we are talking of programs 11.r and TD) from 

right to left: we find all the instances of model MOJn in the scene , and 

erase them; then all ins~ancea of model MODm-l" etc. In this way, rare 

representations of the object could be included in the OR list, to be 

used only when more usual models have failed. 

Second Approach: Two-dimeyiopal Pattem .-

Thia could also be considered as an extension to the first approach. 

Properties, defined by the user, may be very complicated functions of the 

(coordinates of the) vertices [cf. FDL-1, chapter 5], value of slopes, 

distances, etc. Nevertheless, these properties are attached to a mesh of 

connections specifying the seen edges, which is topollogically 
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invariant(l). We would like to be able to have ways to specify variations, 

modifications and additions to this network, in a rich and systematic way. 

Using solution 1 (first approach) is not enough: suppose I want to define 

a~- STAR as an object having an arbitrary (bigger than 3) number of equal 

"peaks", equally distributed, as in fig. 'STARS'. 

A <} ~ * ~ STAR3 STAR4 STARS STAR6 STARll 

Fig. 'STARS'. Different objects 
w}lich could fall under the same 
generalized model. 

We do not want to say STAR = (STARl or STAR2 or STAR3 or ) 

We would like to say 

STAR = (PEAK PEAK PEAK STARS) 

where STARS = ( A. or (PEAK STARS) ) 

A. is the null string. 

More pictorically, and more informally too, 

STAR • ~("' ;t ,,. .. ,., • .,,) 

PEAK 

. ·~: 
How good could this approach get? 

If we were going to specify patterns for a lineal string (or for an s-

expression), this would be the approach we would take. Observe how easy is 

(l)It is interesting to note here that Evans [8) used essentially this kind 
of representation, but he used few attached properties. 
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to say in CONVERT 

(~ ~ ==) for any list containing exactly three elements; 

(X =~ X), with X as UAR variable, 

for any list with two or more elements, the first equal to 

the last, but otherwise totally arbitrary; 

(EVEN) PAT ((*OR*() (====EVEN)): this definition ·Of the fragment 

EVEN makes possible for (EVEN) to stand for a list with an 

even number of elements, but arbitrary otherwise. 

Probail.y an extension of this notation will allow us to specify two-dimensional 

patterns, in a CONVERT-like manner, which will then be used for matching, 

i. e., for recognition of objects in a scene. In order to achieve this, 

we have to specify 

syntax 

semantics 

the primitive constituents (primitive patterns) of 
our notational language. 

the ways new patterns are formed from patterns. 

the way the matching or identification is carried 
out; that is, what a 2-dim pattern stands for. 

Non-trivial problems to solve are also: 

to find a good written representation of the patterns. 

the internal (machine) representation of the patterns. 

the interpreter (recognizer) for such 2-dim patterns; i. e., 
the algorithm which the machine will use in order to carry 
the match or comparison, expressed in a meaningful language(*). 

Incidentally, in this last point questions of efficiency in time (speed 

of execution), efficiency in space (size of program+ magnitude of inter­

mediate swell(l) +extent of data), efficiency in use (easiness of writing, 

(*)that is, in a language which the machine is able to understand/execute. 

(!)phrase used by Tobey [35]. 
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understanding, modifying and debugging a program, model or pattern), etc., 

have to be considered --the so-called implementatiQll details-- • 

For the moment, through the remaining of this chapter, we will not worry 

about implementation and we will use for written representation of the 

patterns a mixture of line drawing and atomic symbols, as we already did 

with STAR (cf. page 86). 

Let me point out briefly the syntax and semantics of CONVERT-patterns, 

that is, linear --unidimensional-- strings of symbols, and then I will do 

the same for 2-dim. 

UNIDIMENSIDNAL (CONVERT-type) PATTERNS. 

Terminal Patterns. () stands for () 

-- stands for or matchea any s-expression. 

•ATO• matches any atom. 

A some other atom, if it does not appear with a 
definition in the dictionary, stands for itself; 
it will match only with an identical atom. 

matches with any fragment such that the remainder 
of the pattern find• an acceptable match with the 
remaining of the expreasion under coq>arisson. 

There is a way to define boolean combination of patterns. 

Definitions can be done in several ways in the dictionary, and we may define 
a single atom to represent a whole pattern, this last being either an S­
expression or a fragment. 

Recursive definitions are possible. 

Concatenation: the pattern (Pl P2 ••• Pm) where Pi are patterns, stands 

for a list of m elements (El E2 ••• Em) such that each element Ei is 

represented (is matched) by the corresponding pattern Pi. 

A way exists to isolate subparts of a pattern and to have them available 
for future analysis or for other purposes. 
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2-dimensional Models.- TD and Polybrick use models where the connection 

matrix is in terms of the vertices, as ilustrated in fig. 'PARAL'; that 

is, atoms represent points. The notation called FDL-1 (chapter 5) is 

also developed with this convention. 

A model as used by TD is a list of the form 

( connectionlist 'WHERE' properties ) 

where connectionlist is a list of points and neighbors (example refers to 

figure 'PARALLELOGRAM'): (A (B D) B (A C) C (B D) D (A C) ) 

properties is a list of properties: 

((slope b c ml) (slope a d ml) (slope b a m2) (slope c d m2) (variables ml m2)) 

DT and the suamer-vision group programs [12, 16, 22, 27, 33, 37, 38], on 

the other hand, are using regions (faces) as elementary constituents among 

which the relations of neighboorhood are specified; in models for DT, 

atoms represent regions. For instance, the same figure 'PARAL', a parallele­

piped, is described as 

( (A* (NEIGHBOR B*) 

(NEIGHBOR C*) 

(SHAPE PARALLELOGRAM)) 

(B* (NEIGHBOR C*) 

(NEIGHBOR A*) 

(SHAPE PARALLELOGRAM)) 

(C* (NEIGHBOR B*) 

(NEIGHBOR A*) 

(SHAPE PARALLELOGRAM)) ) 

As we see, 'S:i..>E' indicates the shape of the region; in this case, the 
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Fig. 'PABALLELOGIAM'. 
A model in edge-notation is a list of three 
the connectionlist, the conjunction 'WHERE' 
of properties. See FDL-1 in chapter 5. 

elements: 
and a list 

shape is an atom, 'PARALLELOGRAM'; in general, it will be a list of points 

and segsnents; undefined variables are local for each m>del, but not for 

each region: if two regions of the same model mention the same 

undefined variable, this atom will in fact represent the same 

quantity, but if the same variable is mentioned in two models, 

no relation holds between them. In this way, slopes, lengths, 

etc., are transmitted 

between regions. 

Fig. 'PARALE'. 
Model of a parallelepiped. 
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Fig. 'WEDGES'. A scene. 
The regions A and F have to 
be fused together and the 
result to match a region-model 
with shape 'parallelogram'. 

Differences and Similarities between the two represantatiOUI of models.-

Both representations use symbolic descriptions of an object, suitable 

for comparison or recognition (matching); the edge-rPpresentation (as in 

TD) is easier to understand and contains less redundant information; the 

representation by regions (as in DT) is more cumbersome to read; it has 

more repetitions of information. 

There is a good advantage in using the representation by regions of 

a model: the comparison is made using bigger "elementary units", so the 

resulting program is less complicated (compare the sizes of TD and DT); 

I also believe the match is done faster, because the tree has less branches. 

Fig. 'WEDGES ••• " 
False segments are found in 
regions A and F; they are 
the dotted ones. 

Other advantage of the" region-representation seems to be evident when 

dealing with two distinct regions that are really one; for instance, in 

figure 'WEDGES' we have to realize that regions A and F are really 

continuation one of the other, and that the union(l) of both will form 

(l)Not really union, because one has to assume the hidden part ••• 
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a gregion (general region) that will match a region-model having the shape 

'parallelogram'; this being the case, if the scene is represented in terms 

of regions, it is easier to identify regions A and F as 'mergeable' and to 

construct from them the gregion AF. Of course, this is also possible, 

but cumbersome, when scene 'WEDGES' is represented in FDL-1 format, that 

is, by edges. 

Another advantage in using the region-representation of a scene is 

that it allows one to talk, for each region, of 'spurious' boundaries, that 

is, boundaries that do not actually belong physically to the region, but 

are the result of superpositions. DOTS is the name of a program that 

analyzes each region and tries to detennine, using the information about 

T-joints (terminology explained in chapter 8), which boundaries are 'false' 

and marks them with 'dots', 

A given segment may be 'false' with respect to one region, but 'true' 

with respect to the neighbor region; this is a property of a pair 

region-seg111ent, 

For instance, DOTS converts figure WEDGES , into figure 'WEDGES ••• ' 

TWO-DIMENSIONAL PATTERNS (CONVERT-type models). 

A tenninal patter is a model with no special marks, with or without properties. 

(In this section, we generally refer to the edge-notation, as TD uses it, 

but our remarks apply also to any other representation of a model; we will 

use a mixture of line drawings and atomic symbols as written representation 

of models). 

HP to this point, all the models have been of the type 'tenninal patterns', 



with the exception of the 

(OI. ll>Dl ll>D2 ••• ) llOdal. 

(OI. ll>Dl ll>D2 ••• ll>Dn). Thia 

pattern will -tch with • figure 

if thb fiaure -tchea one af 

the modela ll>Di; the firat 

(riptaoat) ~t -tchea ia 

accepted, no aore are tried. 
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,,. 
l'i&• 'LIG'. A a-1.-aodel. The 
tyill "'81•, A• and I* hne, 
have tclditional liaea or edgea 
that oomMtct cM Mai•Hgue 
tbtt thit t-1.-.odal repreaenta, 
to a bi.,.r ff.sure. 

S-1.-.odela.- With thia 11111e are deai1111tad patterns that are terminal 

pauame, except that they are joined to a bi ... r fiaure by - pointa, 

the tying pointa. In fig. 1LIG1
, A* and I* are CJt.as po:l.nta. 

A tying p~nt (like I* in fig. 'LEG') muat have aa neighbor, in 

•ddition to the 1pacified 'no-1 1 pointl (C* and S*), a point L*, 

1t0thing of which ia known. K* ia alao a 1mi111ng aeipllor' of the tying 

point A*. 

u 

• Fig. 'TABLI I • 

It haa five 'LIGS', 

'IJ) ia capable of handling aemi-aodela; for inatanc:e, when we look for LEGS 

in acene 'TABIJI', five lea• are found: U, B, C, D, (RON c A I) • . 
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The way to specif} a semi-model in TD notation is simply to avoid talking, 

in the connection-matrix, about the points K* and L* : 

(A* (K* C* D*) B* (C* L* F*) C* (A* B* E*) D* (E* A*) E* (D* F* C*) 

F* (E* B*)) 

Note that we mention that A* has K* as neighbor, but we do not say which 

are the neighbors of K*. 

Properties may use the coordinates of K* and L* (the "missing points"); 

for instance, we could ask for the same slope between lines K* - A* and 

A* - C* (see again fig. 'LEG'). 

Union or Concatenation of Patterns.- New patterns are formed from old ones 

by soldering together some of their points; see =TIE= statement in FDL-1. 

The pattern baa the form 

("'£IE= PATl Nl PAT2 N2 ••• PATm Nm ( unionl union2 ••• unionk ) ) 

For instance, the following figure may be described as 

(=TIE= (A (B C) B (A C) c (AB)) (1) 

(E (D F) D (E F) F (E D)) (2) 

(C 1 TO E 2) 

(B 1 TO D 2) ) ) 

This feature is not implemented in TD, Originally we proposed to do it by 

forming a new terminal pattern which would be equivalent to (=TIE=' ••• ) but 

simpler than it. 

The former pattern 11!,0Uld be converted (by TD, at some stage) into 
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(A (B C) B (A C F) F (C B) C (A BF)) plus properties. Since we can tie 

a figure to itself several times, renaming of the vertices has to be done; 

we use here the GENSlM capabilities of LISP and CONVERT. 

COlllll8nt: It looks like this way of concatenation is easy but messy. 

A different representation.- Daniel Conrad(l) is interested in the genera­

tion of recursive figures. A line is represented as a series of n points 

that are r units apart lying in the direction d , or (n, r, d). 

A figure is a dictionary of cycle 2 of the form 

(N Vl Fl V2 F2 V3 F3 ••• Vn Fn) 

Vl is the first line in the figure. Since each line or edge of a figure 

should end at a vertex, it may be referred to as a vertex. 

Fl is a figure built on the vertex Bl. It in turn has the same form 

(N' Vl' Fl' V2' F2' ••• Vm' Fm') as the larger figure of which Fl is a 

subfigure. 

V2 is the next vertex. It will always have its tail on the tip of the 

previous vertex. 

F2 is the subfigure of V2 ••• 

These figures are plotted in the printer. 

A different representation.- William Martin [25) also displays figures, 

this time in the scope of the PDP-6. 

Several others [19, 29, 34] have symbolic representations for the 

{l)Planar figures and LISP functions to manipulate them are described in [6); 
the use of CONVERT to construct these figures is explained in [7]. 
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pinpo•• of cOD8tructing figure•. I will not dbcuH their vorlt here. 

So far w have Hen two appzoache• to the UH of 904ala for idntifi-

cation. A third will be preH11ted now. 

model• can be coa8iclerad aa a 3-.dia wincl•t'l'Ucture, wire• correllpO'IM!ing 

to edge•, plua properties Htabliahing -trictloaa bet""1l ftrttcea, 

dopea, length•, etc. Jor i.DaC:aDCa, a tatnlledl'OD will be llOClelled •• 

followa (aee fig. '~'): 

• 
c 

((A (I C D) I (A C D) C (A I D) D (A I C)) J!llD 

({length a b nl) {leqth a c al) (leqtll a cl nl) 

(length b c nl) (Hngt:b b d. al) (leagtb c d nl) 

(Tari.able• al)) ) 

'Dia Y&rticea of tMH moclab have 3 coord:lnatea; 

propertiH 1lOV refer ~ coplaaadty, .cc. 

Pia. ''ll'llAJllmoR'. We only need 0118 of thaae 3-dta llOdela to deacribe 
Thi• i• a three- dJ. 
MUional modal; it cmpletely an obj act; the probl,m ta "ow to caapare 
i1 aen here re1ti1lg 
011 • table. thi• 3-dta model qaWt: a 2-dta ac-. 

A poHible -y, wich W be1&11 to thilllt about for a while , WU to direct 

tM uchtna to UM infomation of 'llaich 11-u MY poHiblJ be occulted, a 

given. that certatn other• are already Ha. 

That ii, the model ahould coatain e1lOUlh :l1lfol:Mt1oa, or the progr­

•hould be written in 1uch a _y, that after having 1da.t1fild acme ltna1, 

it would be po11lble to predict or know w:l.ch 11.M• of.the 3-dtaeuional 

.,del are nec:eHarily hidden, 10 a1 not to look for th•. 
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Por :lnatanc:e, auppoae we are loold.n1 for 'Pa" (H• f:l.1. 1!' 1 ) :ln a ecene, 

and w have already fOUlld 1:1.nea ~-A, A•I, 1-C, J-C, C•D; then the proaram 

would recop:l.H that 1:1.ne B·P would he occluded, and would not try to 

f:lnd :Lt. 

The trCNble w:lth th:le approach ••- to he the eoph:lat:lcat:lon of the 

proar• neceaaary :ln ordar t;o "predict" the 1:1.nea wb:lch are 1oiq to he 

occulted aad the 1:1.nee that are required to l>e preaent in the acene. Th:la 

a:ltuation could he a1111ewbat alleviated if the uaer aqppl:lee --a• part of 

the model·- for each point of view the liat of v:la:lble and :lnviaible 1:1.nea 

(or re1iooa) from that poa:lt:lon. lnetead of a true•falae dichotOllJ' for 

vil:lb:l.1:1.ty, - could have aeveral cathe&oriea: v:laible - partially 

vieible :lnvielble - ; poaaibly othera, e. I•, all - or - none. 

Fi&• ' F '. A tranaparent 3-dia mQC!el. 
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3-dim models projected into 2-dim patterns.- In the last parragraphs we 

have explained the idea of 'a 3-dim model with associated lists, one for 

each direction of view, these lists containing information about the regions 

or lines visible from that particular line of sight, and the lines which 

the object itself makes invisible from that direction of view. 

It could be possible for a program to produce itself this lists, that 

is, when comparing the scene with the 3-dim model, to use the results of 

this comparisson in order to get the best "line of sight";l?est in the sense 

that, if we see from that position our 3-dim model, we will obtain a 2-dim 

projection that would closely resemble that part of the scene under compa-

rison, if the model and the object, are really the same. The scene will 

drive the construction. In this way, we are producing the 2-dim model as 

meeting the requirements of the scene(l), but at the same time the model 

we should produce has to be a projection of the 3-dim model of the object 

we want to identify, so recognition is achieved. 

Perhaps the main difficulty in this approach is the fact that very 

little is known about symbolic projections. Also the amount of computation 

might be large. 

NUlllerical Models.- Roberts [29] uses 3-dim models; these are n\llllerical in 

nature, and are represented by lists of tied blocks connected in rings. See 

the Coral language [34] for this ring structure. 

Each model block is tied to lists of its points, lines and surfaces. 

(l)When we eventually finish the construction of the 2-dim model, matching 
against the corresponding part in the scene will be easy, and could be 
reduced to a simple check-up, since we tailor the model to produce (some 
of) the regions in the scenee. 
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Curved Objects.- Objects containing curve edges are represented by the 

same kind of models we described for rectilinear objects. We have now 

more than one kind of segments joining two points, and some notation 

must be used for them(l). 

When the surfaces adopt sophisticated curvatures and inflexions, the 

kinds of models we have described will be inexact. There are major conceptual 

problems to be faced if we are to find really good models for intricately-

curved surfaces. We can perhaps take a gloomy comfort in the fact that 

humans are very weak (much weaker than they think!) in their mental 

ability to deal with such things. 

(l)A straightforward representation of curve line segments is given by 
White [38]. 
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CHAPTER VIII. DISCUSSION OF SCH!: SCBBMIS FOR RECOGNITION. 

The following subject is treated in this chapter: assume that a 

preprocessor (see chapter 3) has transformed a scene into a line 

drawing or a set of regions, and that a symbolic description of them is 

available. Independently or otherwise(l) 1 the computer has also in its 

memory a collection of lists or patterns called models (see chapter 7) 1 

which define objects or classes of objects we want to find or recognize. 

We discuss here some algorithms which, using as data the symbolic descriJ!. 

tion of the scene and the models of the objects we are interested in, goes 

ahead and finds them. Chapter 2 talks about SOiie of the problems that we 

expect to meet. 

Some of these algorithms or variations have already been put into 

practice; see chapters on TD, DT and Polybrick. 

(l)For instance, learning is discussed in Cyclops-2 [3]. 
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The One-to-one matching scheme. 

Under this schema, identification of a given object by means of a model is 

done only if all the features present in the model are also present in the 

object --in the scene--; that is, partially occulted bodies are not iden­

tified, unless the model in question specifically has mdon't-care 

conditions the face or lines missing in the scene. 

Dr effectuates mainly this kind of matching or recognition. It has 

to care essentially for finding the right re gions, having the required 

neighbors, erasing the identified bodies, and repeating again. 

TD is more sophisticated, being able to identify overlapping trans­

parent objects. The proper vertices are searched for, and com plicated 

binding-restorations have to be made to account for failures and 

not-yet-defined properties. See chapter 5. 

Polybrick does not effectuate a one-to-one matching. 

Evans' identification program [8] makes first a one-to-one matching 

between two figures, using one of them as a model, but it has provisions 

to abandon this mode (he "weakens" the requirements) if neccessary. In a 

complicated sense it, too, has to 'account for failures' and it has a set 

of scoring systems to decide which of a number of matching attempts has the 

'least amount of failure'. 

Implementation.- In Dr and TD, the model to be matched one-to-one to the 

scene is converted to a CONVERT pattern, then definitions are added to the 

dictionary, and the pattern is handed to the CONVERT processor, which executes 
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LC. In this way, we avoid the double interpretation which would occur L-

we keep both model and scene in their original format and use a program 

to scan the model, chose a feature (a region, a line) and search the scene 

for it; then, scan the model more, select another feature and search the 

scene looking for a match for it; scan the model some more, etc. 

LINEAR WEIGHUNG 

Weights.- Given a model, we attach coefficients to each of its parts, and 

also assign a number or threshold to the entire model, as it is indicated 

in figure 'WEIGm'S', where the coefficients or weights are assigned to lines. 

Fig. 'WEIGm'S'. Coefficients of 2 are assigned 
to each line of this model; the total sum is 
16. If we set the threshold • 10, then we allow 
three lines to be missing. 

The weight of a given feature represents the relative value of this feature; 

in fig. 'WEIGm'S' all lines have the same value, 2. Therefore, the total 

weight of this model is 16; the threshold value is set to a lower number, 

say 10. The recognizer is instructed to try to match each feature of the 

model with the corresponding feature of the scene, as fn one-to-one matching, 

but in addition it accepts matches even if the features do not agree --that 

is, even in a normal failure•• • At the end, we have a match of value v, 

this number being the sum of the weights of the features which ill agree. 
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We reject fbe match if v is smaller than the thre1hold of the given model. 

Important features have big n1.1111ber1; the nearer the thre1hold to the 

total value of the model, the more "1trict" we are with our matches. 

This scheme is a majority con1en1us; to the extent that it works its 

aucce1s is due to the fact that random lines will have a low probability 

of being aligned so as to match some model. That is, "if 1ome figure looks 

enough like a cube, it has to be a cube." 

Linear weighting is easy to implement, but it is weak in differentia-

ting between two slightly different models. 

Sub-weights.- When using the region-notation, an improvement can be made if 

we assign also weights to the segments that form the boundary of a region. 

We will have now two thresholds: one for accepting a face or a region when 

(*) 
the lines found for it are enough to overweight the threshold for the 

region; another for accepting a collection of regions to form an object. 

Fig. 'LINEAL'. A face is good if 3 out of 4 of its lines 
are seen; a body is good

0
if 3 of 4 of its faces (regions) 

are seen. Under thi1 75 / 0 criteria, only the cube behind 
the cone fails to be recognized. 

(*)Bad matche1 are thos" when the complete line is missing, or it goes in 
the wrong direction. They contribute with a weight of 0 to the total 
value of the match. 
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Note that even di•cODDected bodie•, •uch a• the parallelepiped in fisure 

'COPY' can be identified -- at leaat one of it• parta, and from thla will 

not be hard to find the -intq, uaiq a •ra•r like 'JIT' (nn:t Hction). 

P' 

J ' 

Pig. 'COPY'. Under the 75 °/0 criteria (He fig. 'LINEAL'), 
face A of the parallelepiped .. tcha1 c0111flately; face• :r and B 
.. tch with 3/4 of •ucceH, and are accattad. 'ftaerefore, 
parallelepiped A B 'I 11 found. .....T 66 °/0 of tucceH, we 
will •till find another parallelepiped: G and I are faces of 
3/4 of •uccHa, and paTallelepttM G I 11 Ollll' with one face 
miHing: 2/3. 

But then thing• •tart to get c0111plicated: ilnle•• our program be quite 

•ophi•ticated, face H i• (more or le••) according to linear weight, a 

parallelogram, and •o are faces C and D, •o figure C D H will be taken 

as a parallelepiped al•o• 

Conclu•ion•.- We oan go a considerable distance with •illple method• a• 

linear weighting; if wa decide to u•e another method, thi• la•t one ha• to 

do better than linear weighting. 

Thi• ob•ervation ha• application not only here; often enough in 

the field of artificial intelligence, people i• tempted to choo•e 

c0111plicated but antlnivpamorphic proar ... ; lat th .. do •o 1 provided that 
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their algorithms work better than simpler 'machine oriented' methods. 

Perhaps the best thing would be to use these simple schemes as some sort 

of heuristic that guides and complements the more powerful (but more ex-

pensive in time) tools. 

Despite its simplicity, linear weighting(l) has the disadvantage of 

not being easily extendable. To be sure, we could develop more complex 

schemes that use linear weighting(2) as the main tool but, in the light of 

this added sophistication, the weights would probably become for us more a 

nuisance than a help. And the cause is clear: evidence in pro or in contra 

does not behave linearly; more interaction a.ong the different facts is 

neccessary in order to arrive to a sound conclusion than the simple 

'majority votation' implied by the weights and the threshold. When you 

have easy ways to get information, linear weipt will find it• way in. 

~en we have to use more powerful tools and sophisticated.-thods to 

extract relevant facts, we usually need sharper "combining" tools for 

making partial conclusions, if for no other reason then becauee these 

better tools are more expensive (time-cons1.DDing), so have to be driven with 

care and with a more detailed knowledge of the prevailing situation. 

Nevertheless, linear weighting has important uses(l). 

Linear weight puts a lower limit of performance which more sophist!-

cated programs have to excede if they want to be called "good". 

(l)One of the most succesful users of weights is Sallluel [31]. 
(2) {11) 

A proposed refinement of (31] is done by Griffith [A new machine-learning 
technique applied to the game of checkers. MAC-M-299 (AI memo 94). March 66]. 
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THE GENERALIZED REGION (GREGION) APPROACH 

Generalities.- This section refers to a more involved approach to the 

recognition problem; we suppose that several models are available, in 

region-notation, and that the regions of the scene to be analyzed have been 

found 'correctly', that is, the symbolic description is an accurate, exact 

specification of it. We want to find in that scene all instances of a given 

object. 

The general procedure is as follows: each region in the scene is 

analyzed and some of the segments or sides of its boundary are marked 

(with dots); these new regions are then classified and merged, and then 

comparison (matching) begins with the model. The model guides the classi-

fication and merging, so that there is not a clear cut between the matching 

and the merging; during these processes, difficulties may suggest the ina-

. (*) dequacy of the data, so that (1) a new redotting or (2) a new preprocessing 

of the given region can be performed, this time with indication of what to 

look for and how. 

Matching is done at a high level (I am using CONVERT) and, when some 

feature is not there, like a line, for instance, we call to FIT to extend 

the region, or we try to find a reason for this omission; or, as we said, 

perhaps FIT does not trust any more the data and decides to get new one, etc. 

All this section is devoted to the explanation of what was just said. 

The programs that mark (with dots) the regions and classify them are 

written but undebugged; it is my idea to finish this work and implement the 

approach described in this section, or an extension of it; originally, 

this thesis was going to be about analysis of scenes using the algorithm 

(*) Which, in turn, may originate new merging, etc. 
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which I am about to describe but, since the programs are unfinished 

Before talking about the gregion approach, we give some 

Definitions. 

BOUNDARY.- (or SHAPE) of a region. Counterclockwise ordered list of 

segment (lines) and vertices that separate the region from others. 

VERTEX.- Info:nnally, point where two or more segments meet. Fo:nnally, 

point where the slope of a line is discontinuous, multivaluee (?) or has 

a maximum or minumum --inflection point--. 

Vertices are inflection points, points where two straight segments or 

one curve and one straight meet, or more than two segments encounter each 

other. They do not need to correspond to 3-dim vertices, although some of 

them do. 

Y-JOINT.- Or simply 'Y'. Vertex with three rectilinear segments. (see chap­

ter 4 on Polybrick for the use of Y's). 

T-JOINT.- Y-joint with exactly two segments having the same slope. More 

generally, vertex with 3 segments, two of which are rectilinear and colineal. 

SEGMENT.- The finite part of a line between two points in the line (usual 

definition). 

SCENE.- Internal representation of visual or graphical data. The information 

that a scene contains is going to be secured by the process of recognition 

or identification of objects. Frequently, I mean by a SCENE a collection of 

data as above, but organized in a symbolic format. 

MODEL.- A representation of an object or body, used mainly for recognition 

purposes, and generally in a non-numeric format (see in chapter 5 the notation 

FDL-1 for models; see chapter 7 and the region-notation for models). 
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• 
L 

~~~~~~~~~~~~~~~---J 

" Fig. 'llBlillITIOBS'. we identify the follovin1 entitie•: 
SCIRE: One, called 'definition•'· 
UGIOI: four re1iona: 1 1 2 1 3, 4. 'legion 4 19 the background. 
BOUHDAKY: each reaion ha• one. 

Boundary of region 3: (point B, ••P• BE, point I, •ep Er, 
point F, H(Pll 1G, point G, HP GB, point H) 

VBnllti A, B, ••• , K, L. 
T-JODT: I, D. (and, in a aore pneral manner, H, I). 
Y-JODl'l: D, I. I h not beca1111e IH b curved. 
SEGMlll"l: lach reaion ha• a Ht of th-. 

Sepent1 of region 3: Bl, IF, 1G 1 GB. 

aJIIOR.- A •imple clo•ed curve of a •cene or a model. 

OOTTED REGION.- A region proceHed by 1 DOTS 1 (a proaram); a region where 

•ome of it1 •epent• are 1 fal•e' and therefore, dotted. 

GllEGION.- (generalyzed region). The merging of two or more dotted 

region• or gregion•, which belong to the same face of a 3-dim (or 2-dim) 

body but that, due to occluaion, are di•connected in the scene, as done 
\ 

by'FIT" (a progr-). 

OBJECT.- (or JIOW). A mass of matter distinct from other maHes 

(usual definition). 

FACE.- Any of the surfaces that bound a geometric solid. (u•ual 

definition). 



- 109 -

Marking the boundary of regiona .- Each re1ion of the acene in queation 

receive• the treatment specified in thi• parasrapb. 

Each one of the verticea of the boundary i• analysed, looking for 

''J:' joint• ; with re•pect to a region, 'J:·joint• •Y be of one of three 

cl••••• : Out, In or P•••lns 

Once identified, the program called DO'l".rS •rk•, era•••• or as I 

prefer to ••Y• puts dot• to chain• of aepent• between OU'r•'J:'• and IN-'l'•; 

for inatance, fig 'PA'J:CH' becomes 'PA'J:CH •••" 'J:he doted aepient• are 'false' 

onea, in the senae that they do not belons to the region, but are occaHioned 

by overlappins or occlusion. See aho fig. 'WEDGES ••• " .(pqe 91 ) 
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1 

Fig. 'PATCH'. A 1aene composed of four regions 

Fig. 'PATCH ••• " T- joints are foynd and dots are 

placed in some of the sides of regions 2 and 3 

We erase the 'false segments with the purpose of facilitating the 

comparissons which have to ~e made. 
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Unreliability of DO'l"rS.- In some cases, the information obtained 

analysing the T-joints is not enough to determine completely the 'false' 

segments of a given region ; that is, we can not completely put dots to 

all the false segments. In figure 'CARDS', two answer• are acceptable, 

which in turn correspond to two possible identifications bf the scene. 

c 
Fig. 'CARDS'. An scene for which the identification 

of 'false' boundaries for region C is not unique 

Two possible identifications for Fig. 'CARDS' 

II 
.. ---· .. --------.1 \ , .. 

' ........... - •.••. 1 

~--c ____ c 

Two different gregiona for region c. 
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.. ' [J """" .. - ' .. - ' 
' ' ....... 

.-·"", .... ' -- ' .. ' -- ' ' ' .... ' 
~- .~ ' .... ' ' 

.. - __ , .. 
...... ' ' ' ' "'" 

.... ' 

c 

•, . 
\.-

..... -
..... -

If we re.>te the upper.oat card, the interpretation 
of the r-inina two cara is different depending 
on the gregion for c. 

Probably thi• problem will not be aeriot111, aince we will, in general, 

not be dealing with thin object•. 

Claaaificatiou of the regiona.- So far, we have converted the regions to 

dotted-regions, uaing the program DO'l'8, Now, the1e dotted region• are 

claaaified in one of the two following fo%ma, the deciaaion depending if 

c 

there are jt111t a few models to identify (a), or if there is a fair amount {b), 

(a) We examine the ahapea of the regions of the modela, and let ua aay we 

find m different ahapea a
1

, •2. . .. ' •m· Now, for each dotted-region of 

the acene, we compute a vector [p1 p2 P3 ••• pm)• where pi ia the proba-

bili~ that the re1ion in queation ha• ahape ·f· The Pi are not strictly 

pl'ebabilitiea, but have a ... 11 range, aay, O, 1, •••I 5, The idea ia to 

make theae computation~ faat, even if they are aomlllibat unreliable. 

(b) If the number of models we try to find in the acene is not amall, 

inatead of (a), it will be better to work with predetermined shape• 

81 , 82 , •••• lk' and to compute for them the probability vector aa before, 

Shape• Si ahould be "atanard" onea, auch a• parallelogram, ellipaoi-
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dal, long, large, small, rounded, fragmentary (when the region is really 

part of a bigger but disconnected region), mess, etc. Classes do not need 

to be disjoint. 

These computations are done by examining the boundary of each dotted 

region, using fast 'rules of thumb', such as: how long is the longest seg-

ment compared to the average segment length; ratio of curved to non-curved 

sides; total number of sides; parallel sides, etc. 

I may say that the purpose of this pass is to "become familiar" with 

the data (with the scene); that is, to have a fair idea of how things look, 

where are situated the large regions, etc. 

Perhaps a better idea is to make this classification pass ~ the 

merging of regions into gregions; when the number of regions in a scene is 

small, use this pass before merging the regions, otherwise merge first 

and then classify. 

Merging regions into gregions.- Two dotted regions having among them cer­

tain relationships --certain configuration of sides(*), as used in 

Polybrick when trying to find the "next" vertex-- are grouped or merged 

into a more general region, called gregion. Gregions are also joined under 

similar criteria into gregions. For instance, in fig. 'PATCH ••• ", the 

regions 2 and 3 will be merged. This operation is done by the skeleton­

program 'FIT', and is facilitated by the fact that the 'false' sides or 

segments have been erased; they do not influence this concatenation. 

A question arises: Do we want to make the merging independent of 

the shapes of the regions of the model or not? If we choose independency, 

the algorithm will be simpler to implement, and faster. If merging is 

governed or influenced by the matching algorithm --that is, when we have 
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information about which region is being compared in this moment--, then 

we will have a more powerful merging, but it will be slower and, beyond a 

point, we will be exploring branches of the tree with very low probability 

of success. 

Let me explain it: If two regions more or less fit (they are 'mergeable'), 

except in a portion, the comparator or matcher should be called to see if 

it finds a third region --the missing linkage--; in looking for this 

third region, the matcher will probably call again to the merger, because 

it has a candidate for the third region that "almost" matches, except that 

etc. My point is: if two gregions are not mergeable after a few attempts, 

they will never be mergeable. It is like having two somewhat distant pieces 

when we are working in a jigsaw puzzle, and try to find the link between 

them recursively. May be it will work, if the pieces are not far apart; 

otherwise, other ways to work the puzzle will generally be easier. 

Conclusion: Interaction between the merger and the matcher will be carried 

up to a certain (shallow) depth. 

Under good reasons, 'FIT' (the merger) may not give full credit to 

some segment, that is, it could question its autenticity or fidelity; for 

instance, see fig. 'CYLIN' in chapter 2. The surface function which obtained 

it will be seen, and perhaps the preprocessor will be given a new (hopefully 

improved) function to reanalyze the region; also, special feature-seekers, 

line followers, etc., could be used at this point. 

Comparison: the job of the matcher.- As in DT and TD, the part of the program 

that effectuates the match has two inputs: a model and a scene. This time, 

the scene is composed by gregions, since it has been treated alredy by IXY.rS 
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and 'FIT', 

Matching is dona at high level (I am using CONVERT), comparing 

feature after feature --that is, segments, the right neighbors, etc,-­

When some part of a region is missing --say a line--, we (1) call to 

FIT to extend the gregion, or (2) we try to justify the absence of the line; 

for instance, a dotted side means either (a) end of the gregion or (b) 

thisgregion is expandable or mergeable, since a dotted or false segment 

indicates that the gregion is partially occluded; or (c) indicates that 

data is not reliable and FIT will call the preprocessor; or (d) the 

comparator or matcher says "this object is not found in this scene." 

Unlike TD or DI, matching will be done here interpreting the model 

and trying to find in the scene the required features, It looks to me that 

the process is complicated enough, and that the formation, as in TD or DI, 

of a CONVERT pattern from the model in question will be very complicated, 

The comparisson program (and FIT also) will use the information con­

tained in the probability vector, pretty much in a conventional way: when 

looking for a parallelogram, will analyze first the regions with big chances 

of being parallelogram, We must realize that the probability vectors may 

be wrong, since they contain information that was gathered in a quick manner. 

Other thing that may go wrong is that FIT merged two gregions that should 

not be merged; at some point the program has to realize this, and undo the 

consequences of its mistake, 

Since this is expensive in time, it may pay to have a cautious merger. 

As pointed out before, 'DOTS' may also (rarely) fail. 
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