
ADEPT - A HEURISTIC PROGRAM 
FOR PROVING THEOREMS OF GROUP THEORY 

by 

LEWIS MARK NORTON 

S.B., Massachusetts Institute of Technology 
(1962) 

SUBMITTED IN PARTIAL FULFILIMENT 
OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF 
PHILOSOPHY 

at the 

MASSACHUSETTS INSTITUTE OF 
TECHNOLOGY 

September, 1966 

Signature of Author .•• ~ •• ~ •• ~~•••••••······· 
/"'l.~ ~~~artment,of Mathematics, August 22, 1966 

Certified by •......•.. . f!.flil!W'w.I.. . . . . , . . ...... , ............... . 
Thesis Supervisor 

Accepted by •••••••••• Cf}_.~· .. , .......... . 
Chairman, Departmental Committee 

on Graduate Students 



ADEPT - A lllUllISTIC PIOGRAM 

!OR PROVDIG TBIOllBMS or GIOUP TBIORY 

by 

Lewis Mark Norton 

Submitted to the Department of Math ... tics on August 22, 1966 in partial 

fulfillment of the requirement for the degree of Doctor of Philosophy. 
~ 

ABSTBACT 

A computer program, named ADIPT (A Diatinctly llllpirical Prover of 'Jheorems), 
has been written which provu theor_. taken from the abstract theory of 
groups. It• organization is basically heur:ltltic, incorporating many of the 
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providing many insights into the particular probl ... inherent in the design 
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Suggestions have been. formulated for further efforts along these lines, and 
comparisona with related work previously r«q>orted in the literature have been 
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CHAPTER I 

INTRODUCTION 

Since its earliest days, research on artificial intelligence has been 

concerned with the mechanization of theorem-proving. Investigators have ap

proached the problem from two directions, combinatorial and heuristic. Pro

grams have been constructed which operate in an essentially combinatorial 

manner on statements of the predicate calculus. Due to the work of Herbrand 

and Gentzen, it was known how to describe a procedure, completely mechanical 

in nature; that would be able to prove every "provable" theorem, sooner or 

later. Here the word "provable" is used in its technical sense, and the 

reader may refer to any book on symbolic logic. A proof procedure such as 

Herbrand's is known as a complete proof procedure, and in the early days of 

digital computers it was not universally appreciated that even the large 

speed and memory of the computer would not suffice to make implementation of 

a complete proof procedure practical for problems of respectable complexity. 

However, due to results obtained with early codings of Herbrand's procedure, 

it was soon discovered that the inefficiency of these algorithms quickly ex

hausted the resources of the largest and fastest computers. Much work has 

subsequently gone into refinements and modifications of complete proof proce

dures, and considerable improvements have been made. Some programs of this 

nature will be discussed in an appendix. 

The other approach to proving theorems by computer has been the heuristic 

one. Projects in this class are not to be confused with those programs, es

sentially combinatorial in nature, which have been modified by the inclusion 

of heuristics. Rather, the basic structure of the algorithm must be heuristic 

in nature. The earliest such attempt, and an important one, was the Logical 
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Theorist of Newell, Shaw, and Simon. (l4 ) Further work by these authors(lS) 

was joined by the so-called "advice-taker" approach originated by McCarthy. (J) 

Many of these programs are in reality general reasoning algorithms, and their 

use as theorem-provers was done merely by way of an example. 'llle heuristic 

approach holds out the enticing possibility of capturing the essence of human 

procedures which enable difficult problems to be handled with a reasonable 

amount of effort. The price to be paid is that of expressing, in the form of 

a computer program, most of the large number of methods that people use, often 

without realizing that they are doing so, while solving problems. 

The work to be discussed here belongs in the second category. Its devel-

opment, however, has been of a different nature than that of most previous 

heuristic problem solvers. In this case, there has been no attempt to develop 

a general problem solving mechanism. Instead, attention has been focussed on 

the abstract theory of groups(22 ) (not necessarily finite), and in particular 

on the question of an algorithm uniquely designed to handle theorems of this 

particular area of pure mathematics. As is related at the end of this report, 

the program actually constructed can be easily adapted to "advice-taker" prob

lems in other areas ~ a fact hardly surprising in view of the reasoning capa

bilities needed to solve theorems in any branch of mathematics. But the 

creation of the program was done with only group theory in mind. 

In fact, the program was created only as a step toward a computer 

procedure for solving difficult problems in the theory of groups. Just as 

it was necessary to actually program Herbrand's procedure in order fully to 

appreciate the difficulties which arise in using this method with a digital 

computer, so it is necessary to have a program capable of handling a fair 

number of group theory theorems of slight to medium difficulty in order fully 

to appreciate the difficulties inherent in coping with the theory of groups 

using a digital computer. Existing programs had proved a few elementary re

sults in group theory, and more are being done as time goes on, but no pro-

gram reported in the literature has proved more than a handful of theorems 

from this subject, and in particular, very little work in group theory has 

7 



been done by programs of a basically heuristic nature. 

Most heuristic proof procedures, including the one to be discussed in 

this report, employ a main routine which works backward. That is, it begins 

with the statement which is to be proved, and constructs a chain of statements 

in the hope of reducing the original statement to one which is known or can be 

established. The chain is so constructed that if such a statement is found, 

the desired conclusion is proved or partially proved. In other words, at any 

point, the chain is part of a "proof tree" leading, by means of valid infer

ences, to the desired conclusion, though no part of it will be a true proof 

tree until some verifiable branches are generated. There is, usually, no 

guarantee that the chain will be turned into a true proof. The alternative is 

a forward approach, which consists of deriving statements from the hypotheses 

and axioms. In this approach, all chains are true proofs; the problem is that 

most statements proved are of no relevance to the desired result. In (14), 

Newell, Shaw, and Simon argue for the "working backward" approach. They liken 

it to the process a needle would use to find its way out of a haystack, as 

opposed to a search for a needle in a haystack. 

In addition to the basic structure of a program (that is, the 

organization of its main routine), there are the special-purpose subroutines 

which enable it to perform capably in a complex problem area. These sub

routines may incorporate individual heuristics; what is more, if the main 

routine is properly organized, they can be altered in various ways, thus 

making it possible to perform experiments which will help determine more suc

cessful methods for dealing with the problem area in question. This is cer

tainly true with heuristic theorem-provers. In developing the main routine, 

one must decide such questions as "in which direction is a proof to be devel

oped?" But the task of establishing theorems can only be done with the ad

ditional aid of many special-purpose techniques, each of which must be incor

porated somehow into the basic program. 

One of the advantages of the heuristic approach is that various 

techniques used by human problem-solvers can be directly incorporated into 
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the program in a natural way. This was definitely a major consideration of 

the present project. Admittedly, it is not true that people organize their 

problem-solving efforts exclusively in the "working backward" manner employed 

by this particular heuristic program. However, it is fair to say that a large 

amount of theorem-proving is done in that fashion, and certainly a proof pro

ceeding i11 that manner is "natural" in appearance. Similarly, it is easy to 

attach various subroutines to a main routine organized to proceed backward. 

With the organization outlined above, a computer program was written, 

designed to produce efficient and natural-appearing proofs for theorems of 

group theory. The program is known as ADEPT, which stands for "A Distinctly 

Empirical Prover of Theorems". As its name indicates, ADEPT is extremely 

ad hoc, which should not be surprising when one considers how non-compact and 

poorly formalized are the methods that people use. Thus ADEPT does not have 

a neat, transparent algorithm, and any reader who feels that all mechanical 

theorem-provers should be basically tidy will be disappointed in the present 

work from that viewpoint. However, compensating for the complexity of the 

program is the ease with which ADEPT may be augmented with direct analogues 

of various shortcuts which people successfully use, and in this respect rapid 

development took place in this project. A notation was developed which was 

simple to use, incorporating English terms in a "Cambridge Polish" format. (B) 

This helped obtain flexibility for experimenting with special-purpose heuris

tics, and ADEPT became a useful tool for investigating the problem area of 

group-theoretic theorems. 

A large percentage of the special-purpose heuristics used with ADEPT 

restrict the growth of the proof tree. Ideally, no irrelevant steps should 

be allowed by such heuristics, and no step necessary to a correct and effi

cent proof should be prevented from occurring. In practice, of course, the 

heuristics are imperfect and fail to some degree in both respects. What seems 

to be needed is for the program to understand where it is in a proof; to be 

aware of what it is doing, and why. It is of no interest here to argue over 

whether or not a program can ever "be aware"; the effect is what is of 
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interest. A program which generates efficient proofs for a large number of 

theorems is the goal, and if it is achieved one might as well say that the 

program is "aware", Certainly the benefits of awareness will have been 

obtained. 

A great amount of effort went into achieving such a property in ADEPT. 

In fact, a strong requirement was adopted from the beginning. One algorithm 

was to suffice for all theorems, yet be efficient in all cases. ADEPT never 

"backtracks". If for some reason it fails to prove a theorem, it does not 

remove some or all heuristic restrictions, though this could be done rather 

easily. Until the program is improved, enabling it to handle that theorem 

without any serious loss of efficiency in other proofs that it has success

fully produced, it will just be unable to prove that theorem, efficiently or 

inefficiently. This requirement may seem harsh, for people sometimes quit 

and start over in a different way, but it must be remembered that ADEPT is 

not doing advanced problems. Thus it is reasonable to experiment and find 

out just how far this "one-pass" approach can be carried. 

Closly related to the idea of "awareness" is the question of ascertain

ing when progress is being made in a proof. 'lllere is no simple way to do 

this --- no metric, no compact test. As will be seen, much of the effort of 

developing a program which appears to understand what it is doing went into 

an analysis of how to recognize those steps which constitute real advancement 

toward the desired goal. 

The construction of a theorem-prover using this philosophy did not occur 

all at once. An "evolutionary" process was involved, as the fine points of 

the problem became evident. 'lllus the earlier versions of ADEPT served as 

vehicles for understanding the task of theorem-proving better, and for sug

gesting new heuristics to be incorporated into the program. lhis report 

tries to make this developmental aspect of the project clear. 

The presentation of both the development of ADEPT and its latest version 

is supplied with numerous, detailed examples. ADEPT has been used to solve 

many theorems, and each has provided new insights into the needs of any 
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algorithm which must cope with many diverse, individual theorems. Examples 

are given to ill~minate the reasons for various additions which have been 

made to ADEPT. Others illustrate the more interesting abilities of ADEPT to 

prove problems efficiently. Still others point out the deficiencies which 

still remain. The totality represents a long program of experimentation, and 

underlines the worth of a working system which can be readily used to explore 

a problem area in detail. 

The theorems presented to ADEPT are all familiar to a student of group 

theory. For the most part, they are given in this report using a common 

mathematical notation. Those terms which represent concepts which must be 

defined in order to specify the theorem will be underlined when used in the 

statement of a theorem. From a syntactic point of view, of course, the pre

cise statement of the hypotheses, conclusion and relevant definitions deter

mine the problem to be proved. A slight.variation in these statements results 

in a completely different problem. However, such a variation may not be a 

different problem from a semantic viewpoint; i.e., its interpretation in 

group theory may be equivalent. It is also possible that a variant of a 

problem may have a different (e.g., broader) interpretation, yet result in 

the same operations by the program. Experiments have been carried out in

volving alternate versions of a number of problems, and indeed the notation 

used by ADEPT allows flexibility in arranging such experiments. In general, 

the view is adopted that if ADEPT can prove some but not all of two or more 

semantically equivalent but syntactically different versions of a theorem, 

ADEPT "can prove the theorem". 

With this introduction, it is time to begin the actual detailed report. 

Chapter II introduces the notation (i.e., syntax) used by the program, and 

presents other details necessary to understand the description of the opera

tion of the program its'elf, which is given in Chapter III, accompanied by 

numerous flow charts. The fourth chapter specifically discusses ADEPT's 

special-purpose heuristics ~their development, purpose, and operation. 

Then, accounts of detailed problems commence, and it is felt that the number 
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and length of the problem descriptions are extremely valuable for an under

standing of this prujecL. Theorems successful Iv proved by ADEPT are the main 

content of Chapter V, \vhile Chapter VI concentrates on those theorems which, 

£or any of a number of reasons, the program cannot handle. Chapter VII is a 

description, with examples, of extensions to Lhe ADEPT program which have 

actuallv been carried out, though in some cases rather crudely. Then Chapter 

VIII suggcsls possible alterations, addiLions, and directions for future work 

which have not been explored Lo Jate. i\n appendix reviews the field of me

chanical problem-solving in the light of the present effort, covering both 

heuristic and combinatorial programs which have been reported in the litera

ture. A bibliography and index supplement Lhc text. 
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CHAPTER II 

DESCRIPTION OF ADEPT - I 

NOTATION, CONVENTIONS, ETC. 

ADEPT has been programmed in the language LISP 1.5, (S) using a special 

version of the system created by Joel Moses, a variant of the system currently 

in use at MIT's Project MAC. <4 ) Ui.e special version provides an increase of a 

thousand words (or 14%) of binary program space by eliminating those features 

of the standard LISP package which are not used by the ADEPT program. As much 

of ADEPT as is possible is compiled. No new features were added to the LISP 

system. 

Since ADEPT is progranmed in LISP 1.5, it is advantageous to have state

ments of its own language appear as lists to LISP. As will be seen in this 

chapter, the notation adopted for representing mathematical statements pos

sesses this property. In particular, the basic (or atomic) entities of this 

notation form a subset of LISP's atomic symbols. For ADEPT, a symbol is a 

string of alphanumerics, the first of which is a letter or an asterisk. Sym

bols are delimited by blanks or parentheses. 

To describe the language used by ADEPT, one must first d~signate which 

symbols are used for variables and constants. Three types or sorts of vari

ables and constants are provided for in the basic system, though more types 

could be added in the future, as mentioned in Chapter VII. The same symbols 

are used for both the variables and constants of a given type, and a flag 

associated with each symbol indicates which use is being made of it at a given 

time. Single letters (A through M, excluding F because of its special role in 

the LISP language) are used to designate sets, the symbols Fl through F9 are 

used for functions, and the symbols Al through Al2 represent variables which 

may be members of sets. In addition, the program is provided with a facility 
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to define new variables or constanta as needed by internally generating new, 

unique symbols. 

By choosing the variable types as above, a two-level hierarchy of member-

ship is fixed. Clearly ambiguity is possible with such a system, as, for in-

stance, with a coset, which while it is a set with its own members, also can 

be itself a member of a larger set, the factor group. lhe burden of deciding 

whether such an object must be considered to be a member or a set in a partic-

ular problem rests with the user, who must use one type of symbol or the other 

when he states the problem. This limitation caused no difficulties while ex-

perimenting with ADEPT; i.e., no problem required three or more explicit 

levels of inclusion. 

The language contains connectives or propositional terms, and the follow-

ing symbols are recognized as such: AND, OR, NOT, IMPLIF.S, IMPLIF.82. 

IMPLIF.82 is the notation for the biconditional (<••>). In addition, the lan-

guage presently contains three logical constants, EQUAL2, EQUAL, and FEQUAL, 

all of which are used to represent equalities. EQUAL2 is the basic symbol, 

and the "2" emphasizes the synnetric nature of equality. EQUAL and FEQUAL 

are present to allow the user easy implementation of some heuristic options. 

The use of EQUAL in a statement will restrict ADEPT to substitutions in only 

one direction, as will be seen in Chapter III. This makes it possible for the 

user, by his choice of logical constant for stating an equality, to provide 

-1 that an axiom such as a 1a 1 • e allow only simplifications, thus prev-enting 

expansions. An equality £2,.2!, proved, stated using FEQUAL, will be processed 

differently by ADEPT from one stated using EQUAL2 or EQUAL, and this feature 

will also be described in the next chapter. Experience has shown that the 

flexibility provided by these options is of tremendous value. (When mathemat-

ical notation is used in this report to describe a proof, the symbol •will 

ordinarily be used for equality. However, if confusion is present or if it is 

important to specify the exact form of a statement in ADEPT's language, math-

ematical notation will be augmented by the symbols •2 , =f, and~. correspond-

ing to EQUAL2, FEQUAL, and EQUAL respectively, and the notation for EQUAL is 
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intended to emphasize that the second argument can be substituted for the 

first, but not vice~.) 

1he symbol EXISTS is used as an existential quantifier, but there is no 

explicit universal quantifier. This should not be surprising, for most uses 

of the universal quantifier in group theory are implicit. Any statement with 

variables not bound by an existential quantifier is interpreted as being uni

versally quantified over those variables. As for the existential quantifier, 

it will be seen in the next chapter that ADEPT does not use a uniform proce

dure to handle it. Instead, special cases are provided for separately, and 

new subroutines can be created as the need for treating more cases arises. 

The name syntactic constant will be used to group together connectives, 

logical constants, and quantifiers. The operations performed by ADEPT upon 

encountering a syntactic constant will be discussed in Chapter III. 

Any symbol which is not a variable/constant or a syntactic constant is a 

~· Terms can be identified by entries in tables of necessary and suffi

cient conditions. When the operation of ADEPT is considered, it will be ex

plained why there are in fact only two tables ~ one of sufficient conditions 

and one with definitions (necessary and sufficient conditions). There are 

two terms which are given null entries in these tables ~MEMBER and *PROD 

and thus may be considered to be primitives. 

Terms may start either with an asterisk or with a letter, and it will be 

seen that asterisked and non-asterisked terms have different roles in the 

syntax of the language. Consequences of the use of the two kinds of terms 

will appear throughout this report. 

It is now time to see how the various symbols are combined into state

ments. First, it is necessary to describe an intermediate notion which is 

essentially a generalization of the concepts of variables and constants, and 

which also is subdivided into types. Objects are defined (recursively) as 

follows: 

i) a set variable or constant is a set object (e.g., A); 

ii) a member variable or constant is a member object (e.g., Al); 
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iii) a list of three elements, the first of which is a function 

variable or constant and the second and third of which are 

set objects, is a function object (e.g., (Fl AB)); 

iv) a list of four elements, the first three of which are as 

in iii) and the last of which is a member object, is a 

member object (e.g., (Fl AB Al)); 

v) a list of one or more elements, the first of which is 

an asterisked term and the rest of which are objects 

of any type, is an object of type to be determined by 

the user's interpretation (e.g., (*CENTER G)). 

In iii), iv), and v), the compound objects, the elements of the list excluding 

the first are arguments of the first element, and the list is said to be 

headed by its first element. All lists conform to the syntax of the program

ming language LISP 1.5. 

Some comments on the concept of object are in order. The definition by 

iii) of function objects and the closely related definition by iv) of certain 

member objects are illuminated by the intended interpretation. The second 

and third elements of these lists are to be understood as the domain and 

range, respectively, of the function. The fourth element of the list, if 

present, is the argument of the function in the mathematical sense. Thus 

(Fl (*INTERSECTION H K) K) might denote the canonical map from H n K into K, 

and (Fl (*INTERSECTION H K) K Al) would then denote some point of K, namely 

the image of Al under the map in question. Note that function variables or 

constants are not allowed to "stand alone" as function objects. All functions 

have a domain and range, and the language, unlike mathematical notation, re

quires that this must be made explicit. Incidentally, the syntax allows ob

jects that have no interpretation. For instance, the object (Fl A B Al) is 

meaningless unless Al is contained in A. 

The intended interpretation also supplements the definition of objects 

given by v). Here the user, in formalizing a definition or sufficient condi

tion for an asterisked term, will determine what arguments, are needed, and 
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therefore their type. (*IDENTITY G) is a possible example of a member ob-

ject with one argument, a set object. (*INTERSECTION H K) was used above as 

a set object with two set objects as arguments. Thus the asterisked term in 

this kind of object syntactically is a function. 

Objects are combined with the other symbols into statements or formulas 

according to the following recursive definition (all statements will be lists 

to LISP 1.5): 

i) a list of two or more members, the first of which is a 

non-asterisked term and the rest of which are objects of 

any type, is a statement (e.g., (SUBGROUP HG)); 

ii) a list of three elements, the first of which is EQUAL, 

EQUAL2 or FE~UAL and the other two of which are member 

objects, is a statement (e.g., (EQUAL2 Al (*IDENTITY G))); 

iii) a list of two elements, the first of which is NOT and 

the second of which is a statement, is a statement; 

iv) a list of three elements, the first of which is AND, OR, 

IMPLIES, or IMPLIES2 and the other two of which are 

statements, is a statement; 

v) a list of three elements, the first of which is EXISTS, 

the second of which is a variable, and the third of which 

is a statement, is a statement. 

Clearly, meaningless statements are possible; i.e., ones with no inter

pretation. However, the intended use of the various forms of statements 

should be clear, except for those defined by i). There is, of course, a 

parallel between such statements, headed by a non-asterisked term, and the 

objects headed by an asterisked term. The arguments in each are determined 

by the user's use of the term. However, a statement headed by a term is in

terpreted as a statement about its first argument. Thus (CENTER C G) says 

that C is the center of G, and (HOMOMORPHISM (Fl G H)) says that a certain 

map is a homomorphism. Non-asterisked terms, then, serve as predicates, with 

a restricting convention on the order of the arguments. 
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Any statement which contains an object headed by an asterisked term can 

be translated into one that does not. For instance, the statement 

(INTERSECTION I (*CENTER G) H), which says that I is the intersection of the 

center of G and some set H, could be restated as (AND (CENTER C G) 

(INTERSECTION I C H)). This is a direct parallel to the practice of intro-

ducing variables in a proof stated in mathematical notation; e.g., "Let C be 

the center of G, and consider the intersection I of C and H. Then •••• " 

Though such a translation is always possible, it is not always desirable. 

For instance, a user would not want to eliminate an instance of 

(*INVERSE Al G) any more than a mathematician would want to say "let y be the 

-1 inverse of x" instead of simply using "x " (The symbol G denotes the set 

on which composition, and hence the inverse, is defined.) 

A converse translation, eliminating non-asterisked terms in favor of 

asterisked terms, is not possible. How, for instance, could 11a 1e G & a2e G" 

be expressed, since both (MEMBER Al G) and (MEMBER A2 G) could only be trans-

lated into (*MEMBER G), thus losing information? An object such as 

(*MEMBER G) would be a variable, syntactically. To simplify construction of 

ADEPT's matching routines, a convention has been adopted providing that!.!.!. 

objects headed £I.!!!. asterisked ~!!!!:!.!!!.be ~!!.constants. Thus 

(*MEMBER G) would be excluded (except in the unlikely case that G has but 

one member), while (*CENTER G) is an object which could appear in a state-

ment. Translation from statements headed by non-asterisked terms is there-

fore limited to cases where the term uniguely specifies its first argument. 

While use of asterisked terms is natural in some cases, such as the 

above-mentioned example of inverses, at other times it is not obvious whether 

or not such terms should be used. A number of examples will be given in 

later chapters illustrating the effects of notation on specific problems. It 

suffices to say here that ADEPT's language allows a degree of flexibility in 

this regard which sometimes can be exploited to advantage. The program it-

self has no facilities for translating from the use of one type of term to 

the use of the other. 
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All proofs constructed by ADEPT are lists of statements, developed by 

operations on statements, so sufficient information on notation baa been pre

sented to allow discussion of a proof. However, for purposes of progr&111Ding, 

many statements have associated property lists, which are inserted into a list 

which is a true statement, preceding the first element. This is the standard 

form of a table entry. In LISP terminology, CAR of a table entry is the prop

erty list, and CDR of a table entry is a statement. For example, statements 

to be entered in the tables of conditions and definitions are accompanied by 

a property list consisting of the term being specified, followed by variables 

of appropriate type serving as dunmy arguments. An example will clarify: a 

sufficient condition for subgroup (closure under products and inverses) is 

given by ((SUBGROUP A B) IMPLIES (AND (MEMBER Al A) (MBMBER A2 A)) (AND 

(MBMBER (*PROD Al A2 B) A) (MEMBER (*INVERSE Al B) A))). Now if it were 

desired to expand the statement (SUBGROUP H G) using this condition, the de

sired substitution instance of the statement given in the table entry could be 

obtained easily with the aid of the result of matching the property list with 

the statement to be expanded. Note how the property list of a definition or 

condition specifies the number and type of arguments of a term. The primitives 

MEMBER and *PROD have their arguments similarly specified by null definitions 

( (MJ!MBER Al A)) and ((*PROD Al A2 A)) respectively (where the third argument 

of *PROD is the set on which the composition is defined). Needless to say, 

consistency in the use of arguments must be followed in creating the tables of 

conditions and definitions. 

To complete the groundwork for the discussion in Chapter III of the oper

ation of the ADEPT program, it is desirable to discuss the way in which a pro

posed theorem is inputted to the program, and the output that is obtained from 

it. Instrumental to this discussion is the fact that in the course of working 

on a proof, ADEPT develops two lists, or tables. Table I is a list of known 

statements --- either hypotheses, axioms, or certain intermediate results; 

table II is the proof tree proper. 

A problem is presented to ADEPT in three statements, each of which may be 
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a conjunction. The first two are hypotheses, either (or both) of which may be 

vacuous. The first of these will have all of its variable/constant symbols 

fixed (i.e. flagged) as constants; any additional variable/constant symbols in 

the second will not be flagged. Both statements are then "sent" to a subrou

tine called PUTONl (described in the next chapter) for inclusion on table I. 

The third statement of input is the desired conclusion. All of its vari

able/constant symbols will be fixed as constants except those appearing in 

(sub)statements headed by the connectives IMPLIES or IMPLIES2. The conclusion 

will be put on table II by the subroutine PUTON2 (also to be described in 

Chapter III). No syntax check is performed on any statements inputted or 

internally formed to insure that they are legally formed, so the user must 

exercise care. 

In this way the determination of whether variable/constant symbols are 

used as constants or variables is handled during the inputting of a problem to 

ADEPT. Any such symbol not flagged as a constant is treated as a variable. 

In the course of a proof, additional symbols may be generated, but the purpose 

for the generation will specify their use. A restriction on the user in this 

regard is actually the only unfavorable consequence observed due to the absence 

of an explicit universal quantifier in the language. 'lllis is the fact that any 

symbol intended to be a variable in an implication which is part of a conclu

sion must not have been previously fixed as a constant due to its use in the 

first hypothesis. For -example, if (LCOSET A Al B C) were the first hypothesis 

(A is the left coset of B given by Al where composition is defined on the set 

C ~e.g., B is a subgroup of C and A is a
1

B) then (IMPLIES (MEMBER Al A) 

(MEMBER Al C)) would not be a way of stating the conclusion that A is a subset 

of C. The intent, having the Al of the conclusion be a universally quantified 

variable, is thwarted by the previous treatment of Al in the hypothesis as a 

constant. Thus the conclusion presented as above would result in a proof that 

just Al, the particular element specifying the coset, is a member of C. (Note 

that the statement (IMPLIES (MEMBER Al ('~LCOSET Al BC)) (MEMBER Al C)) as a 

conclusion would also have the restricted interpretation, but this statement 
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could not have any other interpretation anyway!) Use of A2 in the conclusion 

would remedy the problem, which is an uncommon one, since other methods of 

stating conclusions avoiding implications are usually not only possible but 

more natural, as in this case, the statement (SUBSET A C). The user must also 

be careful when using implications in conclusions to insert hypotheses which 

will fix as constants any variable/constant symbols which must be so treated 

in the implication. This conceivably could necessitate dummy hypotheses. 

Alternatively, the whole problem (which seldom is encountered) could have been 

avoided by requiring the user to accompany the three input statements with a 

list of which variable/constant symbols are to be treated as constants. 

The manner in which the proof tree is developed is the subject of the next 

chapter, but a few remarks will now be made concerning the structure of table 

II. Basically, it is an embodiment of the "working backward" approach to 

theorem-proving. (l4 ) As indicated above, the desired conclusion becomes the 

first node, or head, of the proof tree. Loosely speaking, the proof procedure 

may be said to be an attempt to reduce the desired result to a statement which 

is already established. For this reason, branches of the tree are called 

reductions. A reduction of a node is, with one exception, a statement which, 

if verified, would suffice to verify that node. A node, of course, may have 

any number of reductions. The exception referred to occurs at a node which is 

a statement headed by the connective AND. Such a node is immediately subdi-

vided and therefore has two and only two reductions, its conjuncts, each of 

which must be verified in order to verify the conjunction. The notation of 

Slagle <23 ) wi"ll be used · d" f f t d t" · d" t d in iagrams o proo rees; re uc ions are in ica e 

by lines descending from the parent node, and reductions which must both be 

proved in order to verify the parent node are linked by an arc (Figure 1). 

Statements on both tables I and II have associated property lists. The 

table I entries are accompanied by a line number and a numerical indicator of 

the logical~ to which the line belongs, a concept which will be developed 

in Chapter III. The property list of a table II entry is more complex. Its 

composition is as follows: 
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i) an indicator of the line's status; 

ii) a list of the line numbers of the line's inmediate 

predecessors; 

iii) a list of the line numbers of the line's reductions; 

iv) the line's number; 

v) the line number assigned or that will be assigned 

to the first entry on table I which has not been 

checked against the line; 

and an optional element present only on the property lists of lines which are 

heads of subordinate trees begun in the course of a proof: 

vi) the line number of the table I entry which was used 

in the creation of the line. 

The use of these elements will become clearer in the succeeding chapters. 

The set of possible statuses for a proof tree line is as follows: 

i) VER - ~ified; 

ii) REL - unverified and relevant; 

iii) RELl - unverified, relevant, but deemed to be partially 

processed; 

iv) IRR - known to be irrelevant; 

v) SIM - unverified, but simplified (or subdivided, in the 

case of a conjunction) and therefore to be skipped; 

vi) ST - on a !_Ubordinate .,tree and unverified; 

vii) VERST - on a subordinate tree and ~ified; 

viii) PNT - that line which is currently under closest exam

ination by ADEPT. (PNT is an acronym for "pointer".) 

In discussing the formal language and proof structure used in the ADEPT 

project, no mention has been made of rules of inference. "nlis is because they 

are not treated formally, but in an ad h2£. manner, as will be seen in the de

tailed description of ADEPT's operation. 

ADEPT has been implemented on CTSS (Compatible Time Sharing System)(2 ) at 

MIT's Project MAC. lherefore, communication with the program from a 
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teletype1·niter console is possible. Stating a problem is done bv l\'ping in 

the three statements described prcviouslv, and conditions and definitions wil I 

be requested if not found in the Lables. An anS\-Jer of "NO" '.-Ji IL be recorded 

as a null condition or definition so that terms may be undefined ithout re-

petitive der:iands from the system for the definition. The oulpul consists of 

the final status of tables I and II. (Sometimes infonnation on property 1 is ts 

is destroyed when table II lines are verified, so the final output may appear 

to have lines with erroneous propertv lists.) One observes from the output 

1vhether or not a theorem has been proved simply by noting whether or not the 

first entry of table II is of status VER. 
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CHAPTER III 

DESCRIPTION OF ADEPT - II 

STRUCTURE OF THE PROGRAM 

As was pointed out in the last chapter, ADEPT uses a "working backward" 

method of proof. ntis basic organization is outlined in somewhat more detail 

in Diagram I. Examination of that flow chart will reveal that the majority of 

the work of proving a theorem must take place during the steps labelled "ex

plore consequences ••• ". Also it is obvious that llD.lch must be explained about 

the use of the innocent word "progress". 

Some of the occasions when entries are made to tables I and II are evident 

from Diagram I. Many others are found in the "explore consequences" phases of 

the program. The rest of the basic structure of ADEPT lies in the routines 

which add lines to one of these tables; i.e., add a property list to a state

ment and do any necessary processing which must accompany the placement of the 

new table entry. Of course, there are also matching subroutines, and a 

"tree-pruning" subroutine which is called whenever a table II entry is veri

fied. 

A few remarks regarding the tables of sufficient conditions and defini

tions are now in order. First of all, it is important not to confuse these 

tables with table I, which is the list of "known" information being' used in 

any one proof. The totality of information included as definitions, etc., is 

never dealt with in a proof; only those instances of the entries of these 

tables which are put on tables I or II are processed in any detail. 

Instances of sufficient conditions are used in only one way. As shown 

in Diagram I, if the line currently of status PNT is a statement headed by a 

term, then if there is a sufficient condition for that term in the table, the 

appropriate instance of that condition will be added to table II as a reduction 
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of the line of status PNT. In the event that a sufficient condition is not 

available, the table of definitions will be consulted for a possible reduction. 

Instances of definitions can also be placed on table I, and this occurs at 

three steps of Diagram I which are labelled with the phrase "explore conse

quences", augmented by "of. .. "· In these cases, a call for definition in

stances is being made, either for definitions of terms appearing in a proof 

tree line of status PNT, terms in table I statements identifying constants in 

the line of status PNT (e.g., (SUBGROUP HG) identifies H), or terms appearing 

in the first hypothesis of the problem. 

The method of proof utilized by ADEPT makes it natural to have a separate 

table of sufficient conditions, supplying a source of material for possible 

reductions. Definitions are indispensible for many reasons, and it would be 

poor practice to force a check of both a sufficient condition table and a 

necessary condition table in order to obtain them, hence ADEPT has a table of 

definitions. As for necessary conditions ~ ~· they could be used for the 

same reasons that definitions are used in connection with adding statements to 

table I, but a need for such a feature has not been observed with ADEPT. The 

inclusion of such a table might be a future extension. Until such time, nec

essary conditions for terms may be included in the definition table if the 

user is sure for some reason that no attempt will be made by the program to 

add to table II an instance of the definition of that term. 

At present, provision is made for only one sufficient condition or defi

nition per term. Of course, this is hardly surprising in the case of defini

tions. However, even in the case of conditions, there is really no restriction 

because of the possibility of using the connective OR. This does lead to the 

equal consideration of all disjuncts, at least at present, and for harder 

problems requiring selection among multiple conditions, more sophisticated 

procedures will have to be implemented in order to overcome inefficiency. 

In Diagram I, "initialization and input of problem" results in the place

ment of the two hypotheses on table I and the conclusion on table II. The 

conclusion, or more precisely, all conjuncts of the conclusion which are not 
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themselves conjunctions, will be assigned status REL. The main loop is then 

entered, and one can think of a pointer being positioned on the first table II 

line of status REL. Note that this assignment of status PNT is made only to 

lines of status REL; thus, for instance, lines on subordinate trees can never 

undergo the special treatment afforded to such lines. 

If the current line of status PNT is an implication, an instance of it is 

created by generating a new symbol for each distinct variable (not constant) 

of the line, declaring these new symbols to be constants, and performing the 

indicated substitution (thus achieving a process of universal specification). 

The antecedent of the resulting implication is then added to table I and the 

consequent becomes a reduction (of status REL) of the original implication. 

(In general, reductions are tentatively assigned the status of their pre

decessor. See, however, Diagram IV.) This terminates consideration of the 

implication. 

If the line of status PNT is not an implication, ADEPT at this point 

calls its main subroutine, which performs a scan, deriving reductions of proof 

tree lines which can be inferred from the current set of entries on table I. 

This derivation can be done in various ways, with various allowed inferences, 

and will be discussed in detail shortly. This is what is meant by "explore 

consequences". In some subsequent steps of Diagram I, it is done after adding 

appropriate definition instances, if any, to table I. 

Treatment of special cases by means of the subroutines SOLVEX and HOMOMF, 

mentioned near the bottom of Diagram I, will be discussed at the end of this 

chapter. As for the corrnnunication to the user regarding continuation of a 

proof, clearly this is just a frill made possible by the on-line terminals of 

the MAC time-shared system. This point on the flow chart is almost never 

reached in theorems which ADEPT is able to prove. 

Diagram I reveals to some extent the heuristic nature of ADEPT, at least 

on one level. Of course, proceeding back from the conclusion is itself a heu

ristic for proving theorems. In addition, existence of such entities as FEQUAL 

allows heuristic possibilities. But a central and most difficult goal of this 
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project was to introduce, presumably by use of heuristics, an "awareness" into 

the program. It seems obvious that a successful heuristic theorem-prover must 

perform as though it "understood" where it was in a proof. A student, of 

course, has such an ability, and to what degree it can be inserted in a pro

gram will be reflected in the order of development of a proof and in the ratio 

of necessary to irrelevant lines in the proofs produced. 

The means used to attempt to achieve this ability in ADEPT include the use 

of the status PNT, and the accompanying design and application of criteria for 

"progress", which determine when the pointer is to be advanced. Through use 

of status PNT, instances of definitions can be introduced as they become rele

vant. Of course, this feature can be of help only until all the instances 

which will be used in a proof have been produced. In addition, if the point 

in the flow chart where terms of the first hypothesis are considered is 

reached, experience shows that most of the instances will be obtained all at 

once. However, the first stages of a proof often proceed more efficiently 

because of this "selectivity" feature. Alternative methods for achieving 

similar results are discussed in Chapter VIII. As for detailed discussion of 

particular heuristics, this is the subject matter of the next chapter. 

The flow of a proof can now be illustrated, and the example will also 

serve to illuminate the content of Chapter II. The proof will be discussed 

in both ADEPT's language and mathematical notation. Rather than supply appro

priate definitions to the tables, it will be assumed that the tables are empty 

(except for null definitions of *PROD and MEMBER, and a null sufficient con

dition for MEMBER) and that ADEPT asks the user for information at the appro

priate times. 

Theorem: If K is the kernel of a homomorphism f 1 mapping 

G into H, then K is a submonoid of G. 

This is presented to ADEPT as follows: 

(AND (KERNEL K (Fl G H)) (HOMOMORPHISM (Fl G H))) 

NIL 

(SUBMONOID K G). 
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(In what now occurs, it will be assumed that an early version of ADEPT is being 

used, unaugmented by a number of heuristics yet to be described.) 

Table I now is as follows (since conjunctions and biconditionals are 

inmediately subdivided by PUTONl): 

((1 1) KERNEL K (Fl G H)) 

((2 2) HOMOMORPHISM (Fl G H)), 

K, Fl, G, and Hare fixed as constants, and ((REL (HEAD) (NONE) 1 1) 

SUBMONOID K G) goes on table II. 'nlis line is changed from status REL to 

status PNT, and the preliminary scan is fruitless. ADEPT now desires a suffi

cient condition for submonoid, and the user responds ((SUBMONOID A B) IMPLIES 

(AND (MEMBER Al A) (MEMBER A2 A)) (MEMBER (*PROD Al A2 B) A)); i.e. , A is a 

submonoid of B if a 1e A & a
2

e A••> a 1a2e A (i.e., A is closed under composi

tion). This results in the instance a 1e K &a
2

e K ~"'i> a 1a2e K being added to 

table II as a reduction: ((REL (1) (NONE) 2 1) IMPLIES (AND (MEMBER Al K) 

(MEMBER A2 K)) (MEMBER (*PROD Al A2 G) K)). This causes the property list of 

line (1) (which had already been altered by the fruitless scan) to be changed 

to (REL (HEAD) (2 NONE) 1 3), as line (2) is assigned status PNT. Property 

lists will henceforth be ignored in this discussion, except that entries will 

be referred to by their line numbers. 

The implication is immediately split, and, assuming the symbols generated 

are Kl and K2, the statement (AND (MEMBER Kl K) (MEMBER K2 K) is sent to PUTONl 

for inclusion on table I, and line (3) of the proof tree becomes (MEMBER 

(*PROD Kl K2 G) K). In mathematical language, to prove the desired implica

tion, assume k
1 

and k2 are fixed, arbitrary members of K, and prove k1k2e K. 

Line (3) now has status PNT, a scan is of no help, and the line has no 

terms which are defined in the tables. The line's constants are Kl, K2, G, 

and K, the first two of which are identified by table I statements headed by 

a term with a null definition. G is not identified at all, but K leads to a 

request for the definition of kernel. The user supplies the statement 

a 1e K <;;> f 1 (a 1) ~ eH in ADEPT's language, and the appropriate instances of 

two implications appear on table I. The first of these is (IMPLIES (EQUAL 
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(Fl G H Al) (*IDENTITY H)) (MEMBER Al K)), and the scan which takes place after 

the two entries are made to table I uses this to create the reduction (4): 

(EQUAL (Fl G H (*PROD Kl K2 G)) (*IDENTITY H)). In other words, to prove 

k 1k2e K, prove that f 1 maps k
1
k

2 
into the identity. The scan and the progress 

determination are programmed so that the scan now stops and line (4) takes on 

status PNT. From it, an instance of the definition of identity is obtained 

and put on table I. (A two-sided identity is assumed by using the definition 

a 1e ~ a 1 & ea1 ~ a 1
). This leads to no reductions, but an examination of 

line (4)'s constants produces the "discovery" that (Fl G H) is a homomorphism. 

(Some special-case programming had to be inserted to provide that this be done, 

due to the prohibition on function symbols standing alone.) Upon obtaining 

the definition of homomorphism, the scan is able to produce (5): (EQUAL 

(*PROD (Fl G H Kl) (Fl G H K2) H) (*IDENTITY H)). At this point the scan 

continues, using the other half of the definition of kernel along with other 

table I entries to derive facts about some of the objects in (5). Such facts 

are put on table I; in this case they are (EQUAL (Fl G H Kl) (*IDENTITY H)) 

and (EQUAL (Fl G H K2) (*IDENTITY H)). Still continuing, the scan can now 

create from (5) the reductions (6): (EQUAL (*PROD (*IDENTITY H) (Fl G H K2) 

H) (*IDENTITY H)) and (7): (EQUAL (*PROD (Fl G H Kl) (*IDENTITY H) H) 

(*IDENTITY H)), and from (6), (8): (EQUAL (Fl G H K2) (*IDENTITY H)) using 

the definition of identity, and (9): (EQUAL (*PROD (*IDENTITY H) (*IDENTITY H) 

H) (*IDENTITY H)). From (7) is obtained (10): (EQUAL (Fl G H Kl) 

(*IDENTITY H)), and (9) is seen to be a reduction of (7) as well as of (6). 

From line (8) is obtained (11): (EQUAL (*IDENTITY H) (*IDENTITY H)) which is 

verified, as are all lines of the form (EQUAL Al Al). This causes a chain of 

verification back to line (1), completing the proof. Thus ADEPT, using defi

nitions of homomorphism, identity, and kernel, reduced f
1 

(k1k
2

) = eH to 

: 1 (k1)f1 (k2 ) = eH and then to eH f 1 (k2 ) = eH, f 1 (k1)eH = eH, f 1 (k2 ) = eH, 

,eH = eH, f 1 (k1) = eH, and finally to eH = eH, an obviously valid state

lt. The final proof tree has the form shown in Figure 2. 

The use of EQUAL rather than EQUAL2 in the definitions of kernel and 
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identity is crucial in avoiding serious proliferation of lines. For instance, 

E~UAI2 in the definition of kernel would allow f 1 (k1)eH = eH to have such 

reductions as f
1 

(k1)f
1 

(k
1

) = eH, and EQUAI2 in the definition of inverse would 

lead to even worse misfortunes. To be sure, the above proof is itself ineffi

cient, containing several irrelevant lines. However, the current version of 

ADEPT, whose development will be discussed in the next chapter, contains fea

tures which augment the basic structure shown in Diagram I and enable the pro

gram to avoid many needless actions. In this particular example, the proofs 

given by the old and latest versions deviate starting with the reductions of 

line (5), f 1 (k
1
)f1 (k

2
) = eH. In the improved procedure, substitutions of eH 

for both f 1 (k
1

) and f 1 (k2 ) are made simultaneously and the subsequent reduc

tion, eHeH = eH, is immediately simplified into the verifiable line eH = eH. 

Thus the current proof contains seven nodes, and the proof tree is a straight 

line. Certainly for that particular problem, that is a very efficient, natu

rally developing proof. 

The scanning procedure is probably the most important subroutine in the 

program, and certainly it is the most complex. It is here that many heuristics 

can be added and tested. The main function of the scan, as already indicated, 

is to discover what new lines can be added to the proof tree as a result of 

implications on table I, and what substitution instances of lines already on 

the proof tree may be added to table II as a result of equalities on table I. 

This process is handled by a double loop, and can be done in either of two 

ways, both of which have been thoroughly explored with ADEPT. The first is to 

cycle through table I, and for each entry of one of the appropriate forms, to 

cycle through table II, generating all reductions of proof tree lines possible 

because of this particular table I statement. The other, of course, is to 

cycle through the proof tree, creating all reductions of a given line of table 

II due to all of the "known facts" on table I before proceeding to the next 

line of the proof. 

The latter design of the scan is superior from the point of view of having 

the program achieve an "awareness" of where it is in a proof. The attention 
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of the program is not removed from, but remains focussed first and foremost 

upon the proof tree and its development. One consequence of this is the ease 

in which a concept of "related" substitutions can be implemented, permitting 

such steps to be made simultaneously and thus allowing such steps as the jump 

from f 1 (k1)f1 (k2) • e8 to e
8

e
8 

= e
8 

which was seen to be desirable in the 

example just given. 

The current version of the scan is known as SCANW, and it will now be 

explained in detail. It cycles through the proof tree in its outer loop, and 

contains such refinements as the related substitution feature. To understand 

its operation, the concept of logical class must be defined. (The reader will 

remember that an indicator of the logical class is the second element of a 

table I entry's property list.) The logical class represents an attempt by 

ADEPT to group together related table I entries. For instance, all conjuncts 

of a conjunction sent to PUTONl are put in the same class (except for the con

juncts of the two conjunctions comprising the original hypotheses), and the two 

implications resulting from a biconditional are in the same class. Also in the 

same logical class are instances of the same definition added to table I during 

a single "explore consequences of all. •• " execution. Finally, any lenmas de

rived by the program, by procedures about to be described, from a table I 

implication will be in the same class as the implication. For example, if a 

line on the proof tree mentions two sets Hand J, both of which are subgroups 

of a group 9, and if both instances of the definition of subgroup are placed on 

table I during the examination of the constants of this line, then all con

juncts of both instances will be in the same logical class; in addition, if 

due to table I entries a 1e H and a2e H, the le11111a a1a
2

e H is derived using the 

conjunct a 1e H & a2e H --> a 1a2e H of the definition of H, then this lemma will 

also be in the same class. 

SCANW is described in Diagram II, which is augmented by Diagrams Ila - Ile, 

due to the routine's complexity. When studying these flow charts, note that 

this version of the scan contains within it a definition of ''progress"; Le., 

when the pointer is to be moved. This is by no means the only way to treat the 
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evaluation of progress, and the next chapter will discuss this whole question 

in detail. 

The scan, as a routine, has two arguments. One, L, is used only in the 

processing of implications. The second, LL, indicates whether all of the proof 

tree starting with the line of status PNT is to be scanned immediately, or if 

the node of status PNT is to be scanned, and then a decision made whether to 

continue or return (Diagram Ile). (1he latter option is generally exercised 

when SCANW is used to "explore consequences". Other uses of the scan will be 

seen later.) As shown in Diagram II, before the scan is actually made, newly 

proved lemmas are noted, in order that whatever steps they make possible may 

be carried out. The generation and use.of lemmas is part of the processing 

of implications (Diagrams Ila and !lb). 1he double loop is then entered, and 

implications and equalities are processed. Note that substitutions are not 

allowed in some proof tree lines which are scanned by implications, and that 

substitution instances are not actually created until the pass through table I 

is completed. 1his, of course, enables related substitutions to be performed 

together, and it is also a fact that some possible substitutions will not be 

performed due to actions taken while processing implications. 

When an implication is encountered, as shown in Diagram Ila, an attempt 

is made to generate a reduction of the proof tree line being scanned by means 

of detachment. 1his method, used in Newell, Simon, and Shaw's LT, (l4 ) is 

justified by modus ponens, and provides that a proof tree line P may be re-

duced to a line Q if there is an entry Q' ==> P' on table I, where P is an 

instance of P' (or of a conjunct of P') and Q is the corresponding instance of 

Q'· If an addition can be made to the proof tree by this means, certain book· 

keeping is done, noting that the particular proof tree line has a reduction 

created in this manner. (The special treatment given to occurrences of the 

use of detachment is part of the current heuristic determination of "pro-

gress".) If not, and if the proof tree line being scanned does not have a 

reduction created by detachment from some other table I implication of the 

same logical class, then an attempt to generate lemmas is made. A lemma is 

41 



simply an instance of the consequent of the implication, which can be added to 

table I as a "known" statement by virtue of the presence of the corresponding 

instance of the antecedent (or all its conjuncts) on table I or as a verified 

line on table II. 'l.hus the generation of a lemma is a direct use of modus 

ponens. 

Q\lite often, a lenana which can be generated is irrelevant from the point 

of view of the statements to be proved on the proof tree. This suggested the 

inclusion of a relevancy check to be made before adding a lemma to table I. 

With this check, no such addition is made to table I unless the lemma would 

enable one or more reductions to be added to the proof tree. Once included, 

the existence of the check makes it nat~ral to discover cases where a lemma 

would be useful but the required instance of the antecedent. is ~ known to 

hold. Then this instance of the antecedent can be put on table II as the head 

of a subordinate tree, and if it is subsequently verified, the lemma will be 

generated by a future scanning pass if it still appears to be of use. In such 

an event the verified head of the subordinate tree is also put on table I. 

This is the present form of the section of SCANW which generates lemmas and 

which is detailed in Diagram IIb. 

'lhe restriction providing that lemmas are generated only when they can 

cause an addition to the proof tree is extremely important. It minimizes the 

use made of a ''working forward" procedure and eliminates much unnecessary 

proliferation. For instance, suppose that G is known to be a group, and that 

a1 and a2 are members of G. From the definition of group it will be known 

that eGc G and that G is closed under composition. '!bus a 1a2c G, a 1eGc G, 

eGa2c G, and six other inclusions could be derived immediately from the clo

sure statement, and each of these would lead to further "lemmas". With the 

present SCANW none of these derivations are made. (If one of these facts were 

desired; i.e., on table II and unverified, detachment would have handled the 

situation.) Suppose further that G is postulated to be abelian. Then none of 

the numerous instances of commutativity will be put on table I unless it en

ables a specific substitution to be made in a line of the proof tree. To 
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supplement the relevancy check, a heuristic, not indicated in Diagram II and 

which will be described in Chapter IV, has been found which limits the cre

ation of some subordinate trees to those cases where the heads are "likely" to 

be verifiable. 

Lines on subordinate trees are of status ST unless verified or simplified, 

in which case they are of status VERST or SIM respectively, though if a re

duction of a line of status ST is already on table II, its original status 

will not be changed to ST. Lines of status ST are given a more restricted 

treatment than those on the main proof tree, since inasmuch as they cannot 

take on status PNT they can only be processed during scans. A second major 

restriction is that such a line cannot itself give rise to a new subordinate 

tree. This restriction to a single level of subordinate proof means that 

ADEPT cannot prove theorems requiring the establishment of a complex chain of 

subtheorems. Only a few of the problems considered required this kind of 

proof; to do them with ADEPT it was necessary to state some lemmas explicitly 

in the hypotheses. 

One point is not clear on Diagram IIb, and this is the case where the 

argument L is not only not null (thereby prohibiting the creation of subordi

nate trees) but an actual statement. This situation arises when SCANW is 

called by the subroutine SOLVEX while attempting to obtain a "solution" for 

a table II line of the form (]a
1
)[a

1
e A & Pa 1]. In such a situation, Lis 

set to be 11a 1e A". An example will be given when SOLVEX is discussed, later 

in this chapter. 

The discussion of lenunas will conclude with an illustration. In this 

example a subordinate tree is started not because of an observed possible 

substitution (the most common case), but because of an observed possible uti

lization of an implication which is itself the consequent of an implication. 

Theorem: If the center C of a ~ G contains all 

of G, then G is abelian. 

From the definition of abelian, ADEPT quickly concludes that the theorem 

will be proved if, assuming g 1 and g2 are members of G, the identity 
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g
1
g

2 
= g

2
g

1 
can be established. This line itself suggests no continuation, 

but an examination of the terms of the first hypothesis causes an instance of 

the definition of center to be placed on table I, namely [a 1e C <==> 

[a2e G ==> a 1a 2 a2a 1)) & [a 1 e C ==> a 1 e G). From this the scan finds that 

a2g1J could reduce the proof to showing 

g
2

e G, if it were known that g
1

e c. Di.is is not known, so g1e C becomes the 

head of a subordinate tree. The scan continues and finds that due to hypoth

esis a reduction of this line is g1e G. Di.is is an assumption made in the 

course of the proof, so the head of the subordinate tree is verified, and 

subsequently the desired implication appears on table 1 as a generated lemma. 

Continuing the scan, the proof is reduced to showing a
2

e G, an assumption, 

thus establishing the theorem. 

Diagrams Ile through Ile are mostly self-explanatory. Diagram Ile de

picts the determination of substitutions, and shows clearly that the logical 

constant EQUAL suppresses substitutions in one direction. Note also that the 

associativity axiom, which can be stated using an equality headed by EQUAL2, 

can also be stated using a term of one argument, ASSOC (which is given a 

null definition), in order that the matching may be carried out by a more 

efficient, special-purpose subroutine. The actual creation of reductions 

which are substitution instances is shown in Diagram !Id, and it should be 

observed that substitutions are only made in the left half, or first argument, 

of equalities on the proof tree. This particular heuristic, along with many 

others, will be discussed in Chapter IV. This concludes the exposition of the 

scanning subroutine. 

The subroutines which add entries to table I and II, PUTONl and PUTON2, 

are outlined in Diagrams III and IV. Both routines add an appropriate prop

erty list to the statement being added to a table, though the details of this 

bookkeeping are not all given in the flow charts. Note that both routines 

subdivide conjunctions and biconditionals, though PUTON2 also retains the 

original line and puts it on the proof tree in status SIM. Both diagrams 

contain references to the MODEL heuristic, to be introduced in the next 
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chapter. 'lhis is the heuristic restricting creation of some subordinate 

trees. 

PUTONl compiles lists of certain information in order that searches of 

table I in its entirety may be held to a minimum. It is also clear from 

Diagram III that when a statement headed by an existential quantifier is added 

to table I, an instance of it is immediately derived and added to table I~ 

a process corresponding to the classical operation of existential specifica

tion. (Existential generalization is not possible in ADEPT without the addi

tion of a special axiom as part of the hypotheses.) 

'lhere is one step on Diagram IV which involves use of the subroutine 

SOLVEX and thus, like one step in SCANW, will be explained when SOLVEX is 

discussed. Then there is mention of "built-in" axioms, and these are a heu

ristic feature added as ADEPT was developed. As will be seen in Chapter IV, 

this feature has been very useful, but ADEPT could theoretically run with, no 

such axioms. 

Diagrams III and IV indicate the possible ways that a proof tree line may 

become verified, thus initiating appropriate tree-pruning by reference to the 

structure reflected in the lists of line numbers of predecessors and reduc

tions in the property list of each table II entry. The simplest situation 

occurs when both arguments of an equality or implication being put on the 

proof tree are identical. Such a line is verified. Another case is when a 

line about to be put on table II as a reduction of some line .2.• is found to be 

already on table II and of status VER or VERST; i.e., verified. This causes 

appropriate tree-pruning starting with verification of line .2.· Otherwise, 

verification occurs only if a line appears on both table I and table II. This 

may come about in either of two ways. The line may be on table II and being 

put on table I as a newly-discovered "known" statement, or a line being put on 

the proof tree may already be on table I. 'lhe latter situation is extremely 

common, being the result of successfully reducing a statement to be proved to 

a statement already established. 

For the purpose of checking whether or not a line is on both tables, the 
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different logical constants used to express equalities may be considered 

identical. While EQUAL and FEQUAL are used to achieve certain special process-

ing of statements in which they appear, clearly their presence should not pre-

vent verification of a table II equality which is on table I though expressed 

with a different logical constant. The heuristic use of the extra logical 

constants does not alter the fact that they all represent equality. 

Diagram I contains a call to a subroutine called SOLVEX in order to pro-

cess lines of the form ( 3 a 1)Pa
1

• This subroutine 1 s effects have also been 

noticed in the flow charts for SCANW and PUTON2. It attempts to "solve" a 

line of the indicated form, for a value of a
1

. As indicated in Chapter II, it 

is organized in terms of special cases. The current version will only handle 

Pa
1 

of the form P 1 =
2 

P" or P 1 ~ P" where either P 1 or P" but not both con-

tains a 1 , or Pa 1 of the form a 1e A & qa 1 (or qa 1 & a 1e A) where Qa 1 is one of 

the admissible Pa 1
1 s just described. Such a line is put into the form O'a 1 

Q", and the conjunct a 1e A, if any, is separated. The reordered line is 

checked to see if the equality can be solved for a
1 

by "multiplying" both 

sides by proper inverses. a
4 

can be solved to obtain 

(Note that this subroutine assumes that all inverses are 

defined, and therefore cannot be used for theorems about semigroups. A check 

to determine the routine's applicability, though not included in the program 

at present, could easily be made using the list of sets known to be groups 

that is created by PUTONl.) If a solution is obtained the line either will 

be verified, or the indicated substitution instance of a
1

e A added to the 

proof tree as a reduction of the line under consideration, whichever is appro-

priate. If no solution is found, the line is checked to see if it is of the 

form Q'a 1 = Q'a2 , in which case again it is either verified, or the reduction 

a
2

e A added to the proof tree. If this also fails, a scan is done, with the 

arguments LL and L of SCANW "on" (i.e., not null), and if a conjunct a
1

e A was 

detached from the line, L is set to precisely that conjunct. Whenever a new 

line of the form ( 3 a 1) P 1 a 1 is put on the proof tree in the course of this 

scan, it is checked to see if it can be solved in one of the two ways mentioned. 
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This is the call to SLVX indicated in Diagram IV. If so, the scan ends just 

as if the proof were complete, and control returns to SOLVEX, which proceeds 

essentially as though the original line had been solved for a
1

. All the lines 

created of the form ( 3 a 1)P'a
1 

during the scan are removed from further con

sideration; in fact, they are printed out at that time and completely removed 

from tacle II. If the scan ends without creating a line which can be solved, 

control returns to SOLVEX and then to the main routine which acts accordingly, 

as shown in Diagram I. 

It remains to discuss the role of SCNX, mentioned in Diagram IIb. If 

during a scan initiated by SOLVEX, a substitution could be made in a line 

(]a1)P'a1 (i.e., in P'a
1

) if only a
1

e A, and Lis 11a
1

e A", control is passed 

by SCANW to SCNX, which allows the substitution and resets L. This is best 

described by an example. Suppose that the statement a 1e A==> (3a2 ) 

[a
2

e B & a
1 

= a
2

CJ is on table I (one part of the definition of a factor group 

A = B/C), and that the line of table II being considered by SOLVEX is ( 3 a 1) 

[a
1

e A & f 1 (a
1

) = a
3

J, where a
3 

is being used as a constant. This will be 

"reordered" as (Ja1) [f 1 (a 1) = a
3

] and L set to 11a 1e A". (Clearly the scan 

will occur, as f 1 (a
1

) = a
3 

cannot be solved directly.) The scan will observe 

that the substitution of a
2
c (or more precisely, an instance of a2c obtained 

after an application of existential specification) for a 1 could take place if 

a
1
e A were established. SCNX receives control and adds the line (] a2 ) 

[f
1 

(a
2
c) = a

3
] to the proof tree, sets L to 11a

2
e B", and saves the information 

that this substitution has been made. This suffices to illustrate the opera

tion of SCNX, but it will be profitable to continue this example further. 

Perhaps f 1 is a map from B/C to D/E defined by f 1 (a 1c) = f2 (a 1)E, for some 

map f
2 

taking B .£!!!.£ D. So, if a
3

e D/E, the lines ( 3 a2 ) [f
1 

(a
2
c) = a

4
EJ, 

() a2 ) [f
2 

(a2 )E = a
4

E], and (3 a2 ) [f2 (a2 )E = f 2 (as)E] might be generated. 

The last of these can be solved, giving a
2 

= as (for this possibly non-unique 

as such that f2 (aS) = a
4

, where a
3 

= a
4

E), and SCANW will now return control 

to SOLVEX, which will make use of the information stored by SCNX that a2c was 

substituted for a
1

, and put on the proof tree as a reduction of the original 
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line ( 3a1) [a
1
e A & fl (a

1
) = a

3
] the line a

5
c e A. This "change of variables" 

procedure, which may be carried to any depth, is clearly very useful. 

In Diagram I there is also a reference to a subroutine HOMOMF, which deals 

with lines headed by FEQUAL. (The name HOMOMF was chosen because the routine 

is used in establishing homomorphisms.) HOMOMF 1 s task is to attempt to verify 

the equality headed by FEQUAL by successive evaluation of the two arguments 

of the logical constant; i.e., the two sides of the equality. It evaluates 

the first argument, obtaining, if successful, a list of one or more evalua

tions, plus the original argument. It then starts to evaluate the second 

argument, stopping with success if an evaluation of the second argument is 

on the list of evaluations of the first. Evaluation is done by a call to 

SCANW, with table II augmented by a new "tree" headed by the argument to be 

evaluated. ni.e use of FEQUAL and HOMOMF has proved to increase efficiency in 

the establishment of equalities similar to the one involved in demonstrating 

that a map is homomorphic. As an illustration, suppose that table I contains 

the hypothesis f
1 

(a 1) = e; i.e., f 1 maps everything into the identity. If a 

sufficient condition for a map's being a homomorphism, stated using FEQUAL, 

is entered into ADEPT's tables, then in the course of proving f 1 homomorphic 

HOMOMF will be asked to establish the equality f 1 (a2a
3

) =f f 1 (a2 )f1 (a
3

). 'lll.e 

proof would proceed: f 1 (a
2

a
3

) = e (evaluation of the first argument); 

f 1 (a2 )f1 (a3
) = ee = e (q.e.d.). 

It is possible to write a supervisor to use the full power of ADEPT to 

solve a theorem with many sub-theorems. Such a program is ISOLVE, which uses 

ADEPT to establish isomorphisms between groups. A routine called GENFCN was 

written, which generates a canonical relation between two sets, given the 

hypotheses concerning the two sets (GENFCN also uses SCANW), and ISOLVE makes 

four calls to ADEPT to prove that the relation is (in this order) well-defined, 

homomorphic, epimorphic, and monomorphic. (Sometimes the relation generated by 

GENFCN is well-defined by construction, as in the case when the domain of the 

relation is simply a group G.) This program has been used to establish a 

number of isomorphisms, and these are the most impressive theorems proved by 
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the computer in the course of this project. (Incidentally, GENFCN works for 

sets but !SOLVE assumes that the sets are groups.) 

One fact about !SOLVE is of special interest. In order to prove a 

-1 relation f 1: G ~ H is well-defined, the problem a 1 a2 • eG --i> 

-1 
f 1 (a1) f 1 (a2 ) ~ eH is given to ADEPT. In general, to prove that f 1 is 

one-to-one requires establishment of the converse implication. However, since 

f 1 will first be shown to be a homomorphism (if f 1 isn't proved to be homo

morphic, or if any one of the four proofs is not successfully completed, !SOLVE 

goes no further), one may take advantage of the theorem which states that for 

a homomorphism f 1, f 1 is one-to-one if and only if its kernel reduces to the 

identity. That is, !SOLVE is justified in presenting ADEPT with the problem 

f 1 (a1) • 8H •-> a 1 • eG, and in fact, this is exactly how it has been pro

grammed to prove f 1 monomorphic, for this latter implication usually can be 

proved more easily. Equivalently, ADEPT could be programmed to include the 

heuristic -- ''when asked to prove that a function f 1 is one-to-one, make use 

of (the above theorem) whenever it is known that f1 is a homomorphism". 

51 



CHAPTER IV 

SPECIAL-PURPOSE HEURISTICS 

THE DYNAMIC PROCESS OF USING AND CREATING ADEPT 

The heuristic philosophy adopted for the ADEPT project has already been 

expounded, and certain of the program's heuristic features have become appar

ent in the previous chapters. The original version of the program contained 

relatively few heuristics, inasmuch as the purpose of the development of ADEPT 

was to discover the difficulties which arise in the attempt to prove theorems 

of group theory by computer, and then to devise means by which to overcome 

these obstacles. Thus it is pertinent to discuss not only the current version 

of the program, but also the development of this version, and some of the 

previous states of the program. By this, of course, is not meant a revelation 

of such data as the state of the program when the ability (SOLVEX) to handle 

problems involving certain statements headed by an existential quantifier was 

added, but rather a discussion of heuristics and features which were developed 

to cope with previous lack of capability or efficiency on the part of ADEPT. 

Thus this chapter supplements the previous one in giving further description 

of the program, concentrating on those features whose addition was prompted by 

information obtained while experimenting with early versions of ADEPT. 

One such addition has been described in Chapter Ill, since it is pres

ently an important part of the operation of SCANW. This is the simultaneous 

performance of related substitutions, a heuristic which eliminates many previ

ous instances of inefficiency in favor of very natural steps combining oper

ations. 

Another good example, and a simple one, is reflected in Diagram I, and 

happens to represent the first difficulty which arose in this project. Ini

tially, the program only put instances of definitions on table I as a result 
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of processing the line of status PNT. But, as is shown in Diagram I, when 

ADEPT has explored the consequences of all such instances without success, it 

now considers all terms in the first hypothesis of the problem and obtains the 

appropriate definition instances for them. Such action was not necessary in 

the proof that the kernel of a homomorphism is a submonoid, for instance, but 

it is required in order to prove that the center of a group is abelian. In 

this example, line (1) of the proof tree, (ABELIAN C G) is reduced to the 

implication which is the indicated instance of the definition of abelian, which 

is promptly split, thus obtaining line (3), (EQUAL2 (*PROD Cl CZ G) 

(*PROD CZ Cl G)) which becomes the first line of status PNT to be searched 

for terms and constants. But no explicit mention of C appears in this line, 

and since the proof requires the addition of an instance of the definition of 

center to table I, the examination of the terms of the first hypothesis takes 

place, and the proof is subsequently completed. 

Note that the implementation of this heuristic assumes the use of 

non-asterisked terms to some extent. For instance, if (CENTER C G) had not 

been included in the hypotheses of the above example, but instead the conclu

sion had been stated (ABELIAN (*CENTER G) G), the heuristic as programmed 

would have failed. To remedy this, and to implement the heuristic in a more 

general form which will have the same effect independent of notation, all 

asterisked terms of the conclusion should be examined along with the terms of 

the first hypothesis. 

The difficulties which suggested this heuristic reflect a second need for 

augmenting the "working backward" approach with a certain amount of "working 

forward". (The generation of lemmas, of course, is the first and primary 

example.) In other words, a procedure which only reduces desired conclusions 

to established statements is not adequate for handling theorems of group 

theory. Some recourse must be made to the derivation of statements from the 

hypotheses, axioms, etc. Table II, the proof tree, cannot develop suffi

ciently without such derivations, which cause expansion of table I. However, 

such expansion must be controlled. Lemmas are generated only if they will be 
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of immediate use. In the same spirit, it is important to note that a check of 

terms in the hypotheses is not done until the usual procedures prove inade-

quate for a given problem. 

The whole question of ~ to obtain ~ information from the condition 

and definition tables is a problem of information retrieval. In harder theo-

rems requiring a larger base of information, this problem could become quite 

critical. Some comments on this, and some alternative methods of placing and 

using definition instances on table I, will be given in Chapter VIII. 

Another instance of a change which was made in the course of the develop-

ment of ADEPT was also seen in the flow diagrams of SCANW, in particular, in 

Diagram Ild. This is the heuristic which provides that reductions obtained by 

substitutions in an equality on table II are created by substituting only in 

the first argument of the equality. In other words, if a line on the proof 

tree has the form P • Q, substitutions are made only in P. The rationale 

behind this restriction is illustrated by an example. If it is known explic-

itly that P • P1 , P1 • P2 , .•. , Pn-l • Pn' Pn z ~· ••• , Q1 a Q (where none of 

the expressions are identical, and no other equivalences are as yet explicit-

ly "known"; i.e., on table I), a proof of P • Q with the heuristic under dis-

cussion takes 2n steps. If substitutions are permitted in Q also, and no 

other heuris.tic is introduced to order substitutions, a proof of P c: Q might 

proceed as follows: P•Q--;>P =Q~P •Q-> 
\ 1 \ 2 \ 

p - Q --> p = Q --> 
\1 1 \ 1 

2 a process which will require on the order of n steps. 

In return for the potential reduction of the number of steps, or at least 

for release from the need to discover more sophisticated heuristics, there 

would be, in theory, no cost"if all equalities were treated symmetrically. 

But such is not the case in ADEPT when use is made of EQUAL. However, even if 

all equalities were headed by E~UAL2, there is a price to be paid in practice. 

Consider the proof that the map which takes every element of a group G into 

the identity is a homomorphism. This proof was discussed in the previous 
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chapter as an example of the use of FEQUAL. However, suppose the equality 

expressing the property of being homomorphic is stated using EQUAL2. Then the 

' heuristic of substituting only in the left-hand side requires the proof to 

proceed: f 1 (g1g2) • e • ee • f 1 (g1)f 1(g2). But this series of steps, using 

only the hypothesis f 1 (a1) -2 e and the definition of identity, requires 

planning heuristics of a comparatively involved nature. For instance, to 

reduce the line es f 1 (g1)f
1 

(g
2

) to the line ee • f
1

(g
1
)f

1
(g

2
) requires ex

pansion of e to ee, which might be accomplished upon analysis of the 

right-hand side of the equality. Even more difficult to program would be the 

efficient execution of the substitutions needed to establish the final result. 

(None of the expansions would normally be allowed, since the hypothesis de-

fining f 1 would most naturally be stated using EQUAL, not EQUAL2, as would the 

definition of identity.) Admittedly, this problem is primarily an example of 

the worth of the use of FEQUAL, but it does show the kind of difficulty which 

can arise due to the restriction on substitutions in equalities on the proof 

tree. 

There is one heuristic which was included in the original program, and 

which has been retained because of its success. This particular feature is a 

restriction included in ADEPT's matching subroutine, and thus was not encoun-

tered in Chapter III. Incidentally, the matching process used is basically 

recursive and no attempt has been made to optimize it, yet it suffices quite 

well. The restriction concerns the case where a single variable is being 

matched against a line or part of a line on the proof tree. In other words, 

all occurrences of objects, of the same type as the variable, appearing in 

some table II line are desired, In this event, the variable is matched only 

with simple variables or constants, not with compound objects. This case is 

not to be confused with the matching of variables within a more complex ex-

pression being matched against a line of the proof tree; such variables will 

be matched with any object of the appropriate type. Thus, if all reductions 

made possible by a table I entry (EQUAL Al (*INVERSE Al G)) are desired from 

the line (MEMBER (*PROD A2 A3 G) H), substitutions of a
2
-l for a

2 
and a

3
-l for 
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a
3 

will be made, but the substitution of (a
2

a
3
)-l for a

2
a

3 
will not be con

sidered. However, the Al in an expression such as (*PROD Al A2 G) may be 

matched with any member object. 

This heuristic has the obvious effect of controlling the expansion of a 

proof tree in any problem in which it is applicable. In only one theorem pre 

sented to ADEPT did it cause any unwanted effects, so it is certainly to be 

considered advantageous. (The one difficulty necessitated the explicit defi-

nition of the inverse image of a point, as opposed to the use of the general 

definition of the inverse image of a set in conjunction with the definition 

of a unitset or singleton; i.e., a set with one member.) 

Perhaps the most important and revealing addition to the program is one 

which occurred in stages. As alluded to in the previous chapter, the first 

implementation of ADEPT had no identities or definitions "built into" the 

program. Thus simplification of a product involving the identity element 

could not be accomplished until the term *IDENTITY was encountered and the 

corresponding instance of its definition put on table I. Also, certain facts, 

such as "f 
1 

(e) = e when f 
1 

is a homomorphism", had to be included with the 

hypotheses for some problems, for ADEPT is not able to set up the "construc

tions" necessary to prove these facts. Clearly, this forced the program to be 

quite inefficient in proving theorems. Such a simple-minded procedure does, 

however, emulate the student who is a complete beginner at group theory. 

Just as a student must assimilate simple identities involving identities, 

inverses, homomorphisms, etc., it does not take long before the problems in 

group theory demand facility with these facts if efficient proofs are to be 

found. It was clear that ADEPT could not become proficient and handle harder 

problems unless these identities could be applied more sensibly. Accordingly 

a routine was introduced (into PUTON2, see Diagram IV) to check each line being 

put on the proof tree to see if certain identities could be applied. As the 

number of theorems presented to ADEPT increased, it became clear which iden

tities should be dealt with in this way, and the routine under discussion 

expanded gradually. Besides the advantage of a more natural development of 
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the proof tree, this routine offered an opportunity to make this use of 

matching procedures more efficient. This is so because the identities to be 

matched are not arbitrary, but fixed, and a special-purpose matching routine 

can be easily implemented and used instead of the general matching routine 

used by SCANW. In ADEPT's most recent version, matching is greatly speeded 

up by a key-word check between the identity and the line of the proof tree. 

The current set of identities handled in this way is divided into two 

classes, according to the action taken if a match is found. The first set 

causes a true simplification; i.e., a new line is created as a reduction of 

the old line, and the status of the original line is changed to SIM. This 

-1 -1 set contains the facts ee ~ e, ea 1 ........ a
1

, a 1e -E- a
1

, a
1
a 1 ~ e, a

1 
a 1 ~ e, 

-1 -1 -1 
(a 1 ) ~ a 1 , and e ........ e. There is also a subroutine by which products 

of arbitrary association are checked according to these identities. Thus the 

-1 
product (a2a

3
)a

3 
will be simplified to a

2 
even though the binary nature of 

the operation does not allow direct application of the identity a 1a
1
-l ~ e. 

(This subroutine obviously relies upon the assumption of associativity.) 

The second set of identities merely causes new lines to be put on the 

proof tree, without declaring the original line unworthy of further consider-

at ion. In this set presently are the following facts: 

-1 -1 if f 1 is homomorphic, f
1 

(e) ~ e, f
1 

(a
1 

) =
2 

f
1 

(a
1

) , f
1 

(a
1
a

2
) -

2 
-1 -1 

f 1 (a
1
)f

1 
(az); if A/B is a factor group, a 1 B =2 (a

1
B) , (a 1a2)B -

2 

(a 1B)(a2B). Application of these identities is expediated by the lists of 

factor groups and homomorphic maps created by PUTONl. 

It is revealing to note the analogy here between what is essentially a 

transition from interpretive to compiled application of these identities with 

the corresponding development in the methods used by a student in making such 

steps. (l2 ) 

The problem of deciding when a line on the proof tree has been success-

fully processed, even though the theorem may be not yet proved, is a very 

difficult one. For a general theorem-prover, this problem is closely related 

to the question of deciding which branch of the tree it would be most 
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profitable to investigate first. In ADEPT, the problem is sharpened; from a 

given line on the proof tree reductions should be generated until and only 

until the one which is "correct" is generated. This is one manifestation of 

the goal of having ·the program appear as though it understands where it is in 

the course of a proof. It turns out that there are heuristics which are fair

ly successful in this regard for a wide range of theorems. Unfortunately, 

their effectiveness decreases rapidly when irrelevant hypotheses are intro

duced. Without any heuristics, even problems with a minimal set of hypotheses 

have inefficient proofs, but while the schemes about to be discussed usually 

remedy that situation, they are of limited worth with regard to overspecified 

problems. 

The "progress" heuristics used by ADEPT are few, and range from trivial 

to subtle and controversial. In the first category are rules such as consid

ering a line on the proof tree of the form P ~ Q processed when an instance 

of the antecedent P is put on table I and the corresponding instance of Q 

becomes the reduction of the implication. In fact no other processing is 

allowed on such a line except for verification if the same line P •llC> Q ap

pears on table I. Similarly, a line headed by EXISTS or FEQUAL is processed 

only by the special-purpose subroutines SOLVEX and HOMOMF respectively. 

The major difficulty occurs with lines of a general nature, e.g., equal

ities or lines of the form a
1
c A. If such a line is not verified, it never 

can be dec[ared to be sufficiently processed unless some heuristic is employed. 

Two have been tried with ADEPT. Both provide for "progress" only after a line 

of the proof tree has had a reduction introduced by detachment. But not all 

such reductions cause "progress" to be declared. A detailed description of 

the heuristics will make this clearer. Suppose that line !!. of the proof tree 

is under current consideration; i.e., of status PNT. Heuristic~ provides 

that when the scan is called, all entries of table II from line !!. onward shall 

be processed, and as soon as the line of status PNT gives rise to a reduction 

by detachment it shall be declared to need no further processing if ~ only 

if the line of status PNT is the lone reduction of its inmediate predecessor 
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(not counting c.o-conjuncts if the predecessor is a conjunction). If this is 

the case, the next table II line of status REL immediately takes on status PNT 

and the scan continues. Any line not of status PNT which obtains a reduction 

using detachment is not given any special treatment. Heuristic'!. provides 

that first only line !l shall be scanned, and after it is completely processed 

by all table I entries, the scan shall stop if line !l has given rise to one or 

more reductions ~detachment. What is more, after an instance of detachment 

occurs due to a table I implication, no further table I equalities in the same 

logical class as the implication will be used to create substitution instances 

of line !l· If detachment occurs, once the scan of line !l is completed control 

will be returned to the main routine, which will move the pointer down; i.e., 

"progress" will be declared. If no detachment occurs, the scan will continue 

through all the rest of table II, and any line of status REL giving rise to a 

reduction using detachment will be put in status RELl, so that it cannot take 

on status PNT at any later time. The restriction on creation of reductions by 

substitution after instances of detachment also remains in force as the rest 

of table II is processed. 

Heuristic A is clearly syntactic, being based on the structure of the 

proof tree preceding line !!..· It proceeds on the assumption that if the proof 

tree has been developing in a straight-line fashion, it is safe to proceed as 

though it were inevitable that the proof would continue in this fashion. Con

versely, if the proof is full of alternative branches, the heuristic says that 

caution must be observed. It is clear that irrelevant hypotheses render heu

ristic A ineffective, for extra table I entries cause excess bsanching in the 

proof tree, unnecessary though it may be, and thus heuristic A will not cause 

"progress" to be declared as often as it should. 

Heuristic B is the one currently in use in ADEPT, as was seen in Diggram 

II. It also gives special consideration to occurrences of detachment, but it 

does not refer to the shape of the tree. Unlike heuristic A, it takes notice 

of applications of detachment to lines other than the one of status PNT. Since 

it prevents some lines from ever taking on status PNT, unnecessary uses of 
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detachment can be harmful. Thus heuristic B is also adversely influenced by 

unnecessary hypotheses, but only if they contain implications. This slightly 

greater degree of insensitivity is of some advantage, and another factor in 

heuristic B's favor is the greater amount of processing allowed on a line of 

status PNT, so that it can continue to give rise to reductions even though one 

reduction of it has been created using detachment. To allow total processing 

to continue would be too inefficient, however, so the restriction involving 

logical classes has been introduced. An example will clarify the reasoning 

behind heuristic B, and the theorems which will be discussed in the following 

chapters will serve to indicate shortcomings of this strategy. In particular, 

the third part of the first example of Chapter VI shows the one situation 

encountered to date where the logical class restriction fails completely. 

Consider the theorem stating that the image I of a ~ G under a 

homomorphism f 1 is a subgroup of the range of f
1

. In the course of proving 

this theorem, ADEPT must show closure of the image under composition; in par

ticular, having fixed b1 and b
2 

as members of I, it must be shown that b 1b
2 

is a member of I. The relevant instance of the definition of image is 

a 1e I<==;> (Ja
2

)[a2e G & f
1 

(a
2

) = a 1J, which becomes two implications on 

table I in the same logical class. One of these causes an occurrence of de

tachment, reducing b 1b2e I to (3a2 ) [a
2

e G & fl (a
2

) = b
1
b

2
]. This happens to 

be the "correct" step, leading to a proof of minimal length, and is but one 

instance of advantageous applications of detachment which have led to the 

affirmation of a connection between detachment and "progress", as shown in 

the two progress heuristics. Now, the converse implication on table I leads 

to a substitution instance of b1b2e I that could be put on the proof tree, 

namely f 1 (g1
)f1 (g2

) e I, where g1 and g
2 

are members of G which are mapped by 

f 1 into b 1 and b2 respectively. This branch would lead to a parallel proof, 

doubling ADEPT's efforts, and it is this kind of proliferation which the 

logical class restriction was introduced to prevent. Indeed, the vast major

ity of the time this particular feature of heuristic B achieves exactly the 

proper effect. (Note that the success of this procedure depends upon the 
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detachment's being made before the substitutions are determined. This will be 

insured if the user puts all definitions which specify sets by their members 

in the form a
1
e A<==> Pa

1
, for PUTONl splits a biconditional P <==> Q into 

Q =='> P and P ==> Q, in that order.) 

One more heuristic remains to be discussed in this chapter. It is a 

non-trivial one, though easy to implement, and it is present because of the 

nature of many definitions, namely, that they are of the form a 1e A<==> Pa1 , 

where Pa 1 contains an equality of the form a
1 

Q, for some object Q. When an 

instance of such a definition is on table I, it is observed many times during 

a call to SCANW that a substitution of Q (or more precisely, some instance of 

Q) could be made for some variable or constant, say a2 , if only a 2e A were 

established. Consequently a great many subordinate trees are started on table 

II, headed by a node of this form. Many of these nodes represent highly un-

likely possibilities, and some are not just impossible to prove, but are 

actually incorrect. To remedy this, a lattice or model of the sets involved 

can now be built by ADEPT using information stored with the definitions of 

various kinds of sets. This lattice is used only to cull out unlikely possi-

bilities about to be put on table II in status ST. It is not used for the 

purpose of verifying a line on the proof tree, in order that all proofs may be 

developed by the operations on the statements on tables I and II. An example 

will show what this heuristic does and does not do. With the definition of a 

factor group A B/C is stored the following information: A, B ::>C. This 

indicates that C is a subset of B, and that B and A have no members in common. 

(The definition of a map f
1

: A~> B is accompanied by the information A, B. 

This indicates that there is no reason to assume that the sets A and B are 

not disjoint.) Similarly for a sub-factor group D = E/G of a factor group 

I/G, the definition is augmented by the information D, I:::> E :JG. So if the 

hypotheses of a problem provide that A = G/H, B = G/K, C = H/K, D = B/C, and 

IC G, ADEPT can construct the model D, A, B::IC, G :::>H :::>K. This lattice 

~ 
I 

will be used in conjunction with other hypotheses about variables and 
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constants. For instance, suppose a1 is known to be in H. Then the s~te

ment a1c B will be ruled out by a simple reference to the lattice. a1c X will 

be discarded as unlikely, for a general member of H can seldom be shown to be 

a member of a particular subset of H. ~1c G will be allowed, but not automat

ically verified. a
1
c I will be allowed, since it is quite possible, and such 

a statement is often provable in group-theoretic probl ... (as opposed to 

ale X) • 

l'his heuristic only examines lines of the form a1c A where a 1 is a simple 

variable or constant, as opposed to a compound object such as a product. This 

is so mainly because of the difficulty of formulating and applying rules for 

accepting or rejecting the more complex statements~ For instance, suppose 

that a1 and a2 are both members of G and H is a subset of G. Even though it 

is reasonable to exclude statements such as a1c H with almost any specification 

of H, as long as it is a proper subgroup of G, it is not always wise to exclude 

the statement a1a2c H. To be sure, often this is also a fruitless head·for a 

subordinate tree, but H might be a set such as the coset a1J, where J is some 

other subset of G. Another restriction on the heuristic's applicability is 

that it is not used to examine proposed lines for the main proof tree. If it 

were, it would be impossible to use ADBPT to prove such facts as "the center C 

of an abelian group G is the whole group. 11 In thia probl•, it is known from 

the definition of center that C is a subset of G, and it must be shown that 

any member a 1 of G is a member of c. Clearly the heuristic lllU8t not be allowed 

.to prevent the necessary conclusion from being p~ced on the proof tree~ For

tunately, the heuristic servea its purpose quite.adequately, though it is re

stricted to apply only to lines of the form a1c A about to be put on subordi

nate trees. where a1 is a simple variable or constant. 

l'his feature, known as the ll>DIL heuristic, was implemented so that it 

can be used or not as desired. Tests with isomorphisa problems have shown a 

steady decrease of about 1/3 in the length of a proof, with all lines discarded 

being indeed irrelevant. The decrease in processing time was nearly the same, 

being only slightly less, due to the nature of the information to be handled 
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in the lattice, which allows very fast processing of this heuristic. Clearly 

because of the nature of many definitions in group theory and modern algebra 

in general, this is an important special-purpose feature. 

Though the NJDEL heuristic is an important addition to ADEPT because the 

single operation it performs is so often desirable, it is not a profound exam

ple of the use of a semantic model. Such models are not uncoamon in 

theorem-proving. A simple example would be the augmentation of a proposition

al calculus theorem-prover with a subroutine which tested a proposed line by 

evaluating it using one of the possible assignments of truth-values to its 

variables. The best-known example of the use of a semantic model is the 

"diagram" in Gelernter's geometry-theorem proving machine. (S, 6) lbis program 

and its use of a model is discussed in Appendix I. In general, heuristic pro

grams for proving theorems often can be improved by inclusion of some model 

of the intended interpretation of its domain, to act as a filter or guide for 

using the more syntactic procedures in the algorithm. 

Other insights have been gained during the course of this project. Be

cause they did not lead to the addition of important heuristics, and because 

they are best discussed in the light of particular examples, they are not 

considered here, but postponed until the next chapter, which discusses select

ed theorems successfully proved by ADEPT. 
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CHAPTER V 

DISCUSSION OF SELECTED PROBLEMS 

ADEPT has been used successfully to prove nearly 100 theorems. To be 

sure, some of these have been very simple problems, but many have been of a 

relatively involved nature. 17 have been proofs of isomorphisms by ISOLVE, 

each of which involves at least 3 if not 4 separate sub-theorems (depending on 

whether or not the relation requires explicit proof that it is well-defined). 

The greatest number of nodes in a proof tree was 73 (see the third problem dis-

cussed in this chapter), and no single proof by ADEPT took more than ~minutes 

of computer time, though the composite isomorphism theorems took up to 9 min-

utes. Among the more complicated theorems not described in this chapter were 

-1 
proofs that (a

1
A) is 

-1 } {f1 (a 1) is the same 

-1 
the same set as Aa

1 
, and that for a homomorphism f

1
, 

set as a 1K, where K is the kernel of f 1 • Other lengthy 

proofs completed by ADEPT are parts of theorems which cannot be done in en-

tirety by the present program, and will be discussed when inadequacies of 

ADEPT are considered in a later chapter. Not counting the isomorphism theo-

rems, only 4 proofs took over 2 minutes of computer time; 4 contained 30 or 

more nodes in the proof tree. (In the intersection of these two classes of 

difficult theorems were 3 problems.) 

The particular problems discussed in this chapter are presented either 

because they serve as excellent illustrations of various features of ADEPT, or 

because the problems themselves are of interest, particularly those into which 

a special insight has been obtained through their use as examples for ADEPT. 
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Problem V-A 

One group of problems presented to ADEPT is concerned with intersections 

of subgroups: 

1) The intersection of two subgroups of a ~ is itself 

a subgroup. 

2) The intersection of two normal subgroups is itself normal. 

3) The intersection of a normal subgroup and an arbitrary 

subgroup is normal in the arbitrary subgroup. 

Consider the last of these from the point of view of stating it formally. 

There are many possibilities. One is to say in effect "let I be the inter-

section of Hand J, where His normal in G and J is a subgroup of G; prove 

that I is normal in J." This statement may appear to omit some of the con

tent of 3) above (e.g., G is not stated to be a group, and H is not stated to 

be a subgroup), and indeed it does if one must state explicitly all supporting 

assumptions. But the facts that H is a subgroup of G and that G is a group 

are not used explicitly in the proof of this theorem. However, the definition 

of normality implicitly assumes that the set in question is a subset of a 

group, because it only makes sense if inverses are defined. (A normal set 

itself may not necessarily be a sub~, according to this interpretation.) 

These remarks about assumptions have been made just because the proof of 

3) can be carried out using the above statement provided that it is assumed 

that all definitions make sense. This is the way ADEPT has proved this theo

rem. The proof is now exhibited, following which a discussion of the conse

quences of explicitly stating the additional justifying hypotheses is pre

sented. 

The hypotheses are put on table I: i) I is the intersection of Hand J, 

ii) H is normal in G, and iii) J is a subgroup of G. The first line of table 

II, the proof tree, is (1) I is normal in J. From the definition of normality 
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1 

2 

(Circled line numbers indicate references to previously existing lines.) 

Figure 3 

Proof tree for Problem V-A 
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-1 is obtained (2) a 1e J & a2e I •-.> (a1a2)a1 e I. Asa\Ulling an instance of the 

antecedent results in the addition of iv) j 1c J and v) j 2e I to table I and of 

-1 (3) (j 1j2 )jl c I to the proof tree, where jl and j 2 are constants. Status PNT 

is given to this line. No steps are possible from the hypotheses on table I as 

it stands. 'Ihe set constant I is identified by i) and the appropriate instance 

of the de.finition of intersection is added to table I: vi) a1 c H & a1 e J --!> 

-1 -1 a 1etandvii)a1eI•-.>a1eH&a1eJ. 'Ihus (4) (j 1j 2)j1 eH&(j 1j 2)j 1 eJ 

-1 -1 goes on table II, and it is split into (5) (j 1j 2)j 1 e Hand (6) (j 1j 2)j 1 e J. 

'.!his application of detachment to (3) causes status PNT to be given to the next 

line on the proof tree of status REL as soon as all other reductions that can 

be made from (3) are completed. Since no further steps are possible, the proof 

continues by examining (5) (since (4) has been disposed of by splitting). 

Again no progress is possible from table I as it standa. The constant H in (5) 

-1 causes viii) a1e G &a2c H-'> (a1a2)a1 e H, an instance of the definition of 

normality, to be put on table I because of ii). '1'hen the proof tree is aug-

mented by (7) j 1e G & j 2e H, which yields (8) j 1c G and (9) j 2e H. Work is 

now completed on line (5), and line (6) is placed in status PNT. Table I as 

it stands can cause further progress on table II (all lines from (6) to the 

end will be considered by SCANW), namely from line (9) is created (10) j 2e I, 

which is verified (line v) on table I) and therefore line (9) is also verified. 

Line (6) must now be examined in detail, and the definition of J is added to 

table I: ix) a1e J ~ a 1e G, x) a1e J & a
2

c J -c> a1a2e J, xi) eGe J, and 

-1 xii) a 1e J •-<> a 1 e J, This leads to the following reduction of (6): (11) 

-1 -1 j 1j 2e J & jl e J, which become (12) j 1j 2e J and (13) jl e J, '1'his completes 

consideration of line (6). '1'he next line of status REL is line (8), and it 

takes on status PNT. Table I as it is yields (14) j 1e J as a reduction of (8). 

Line iv) of table I is verification of this, which results in verification of 

(7), since the other conjunct of (7) is the already verified line (9). '1'hus 

line (5) is verified, Line (12) is the next line to take on status PNT. From 

vii) on table I is obtained (15) j 1j 2e I, and then from x), (16) j 1e J & j 2e J. 

As (16) is split, it is seen that j 1e J is line (14), already verified, and the 
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lone reduction of (16) becomes (17) j 1e J. Next line (13) is scanned, yield

ing (18) j
1

- 1e I and a reference to line (14), and thus line (13) is verified. 

Attention moves to line (15), which suggests (19) j
1

j
2

e H & j 1j 2 e J. This 

fruitless move is not avoided by ADEPT, and it yields (20) j 1j 2 e Hand a cir

cular reference to (12). Line (17) is now considered, and vii) on table I 

gives a reference to line (10), which is verified, thus causing a chain of 

verification leading through (17), (16), (12), (11), (6), (4), (3), (2), (1), 

and the proof is complete. The final proof tree is shown in Figure 3. Lines 

(15), (18), (19), and (20) were unnecessary. 

Now suppose that the hypothesis that H is a subgroup of G had been stated 

explicitly. Line (5) would then have two reductions -- the one due to the 

normality of H (line (7) above, which is split into (8) and (9)), and another 

due to the hypothesis that His a subgroup -- namely (10') j
1

j 2 e H & j 1-
1

e H, 

which is a useless step. (10') immediately is split into (11 1
) and (12'). In 

fact, not only is extra work generated, but ADEPT, with its one-pass organiza-

tion, is unable to prove the theorem at all. The extra hypothesis confounds 

the algorithm as follows: 

After line (5) is processed, line (6) is put into status PNT due to the 

two applications of detachment to (5). Before the terms and constants of (6) 

are examined, a scan is done, and line (8) is seen to generate the reduction 

(13 1
) j

1
e H by application of detachment using the conjunct of the definition 

of H as a subgroup which states that H is a subset of G. Line (8) is therefore 

marked unworthy of further processing by putting it in status RELl. After 

further lines are generated by the scan, the constants of line (6) are finally 

examined, and the instance of the definition of subgroup due to the fact that 

J is a subgroup is put on table I. This suffices to process line (6), as in 

the proof just presented. But the next line of status REL is no longer line 

(8), and the assignment of status PNT is made to a later line on the proof 

tree, thus providing that line (8) never can be scanned by the axioms saying 

"J is a subgroup". 'lhe proof above shows that verification of line (8) is a 

necessary part of the proof, and that it is verified because J is a subgroup 
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of G. ADEPT has passed over this crucial line, and therefore can not produce 

a proof of this version of the theorem. 

For the problem of proving Lhat the intersection of two normal subgroups 

is normal, the introduction of explicit but unnecessary hypotheses (namely that 

the two normal sels are in fact subgroups) causes ADEPT to do extra work but 

does not cause the program tu be unable to supply a proof. The ADEPT algorithm 

is unaffected by the manner of statement of the problem that the intersection 

of two normal subgroups of a group is again a subgroup of that group. As a 

matter of fact, this proof is done without a single unnecessary line; i.e., all 

lines on the proof tree contribute to the verification of the head of the tree. 
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Problem V-B 

"nle second problem to be examined in detail is a rather simple one, 

though, like the previous example, it cannot be proved by ADEPT if given an 

unnecessary hypothesis. The proof will be discussed, and a reproduction of 

the actual output from ADEPT is provided. (Note that table I is not printed 

out in serial order, and that the symbols VERA2 and A2. are used for the sta-

tuses VERST and ST.) Also to be noted in this example is a detail involving 

the implementation of the simultaneous performance of related substitutions. 

Theorem: A subset H of an abelian group G is normal. 

Proof: 

Assuming an instance of the antecedent, it remains to prove the corresponding 

instance of the consequent. In dealing with a particular instance, ADEPT has 

to generate new symbols internally, which are specified to be constants. The 

symbols G04088 and G04089 seen in the output are the symbols created.by ADEPT 

for this purpose. For the following discussion, A3 and A4 will be used in-

stead. Thus line (3) would appear as (MEMBER (*PROD (*PROD A3 A4 G) 

-1 (*INVERSE A3 G) G) H), or in mathematical notation, (a3a
4

)a3 e H. A check of 

the terms of this line causes no action, since MEMBER has a null sufficient 

condition and definition, *PROD has a null definition, and there is no defini-

tion of *INVERSE in ADBPT's table. ("nle latter is effectively compiled into 

PU'l'ON2 by means of ''built-in" axians, as described in Chapter IV.) Examination 

of the constants of (3) yields two set constants G and H which are defined by 

three statements on table I. 'lherefore instances of the corresponding defini-

tions appear on table I, as indicated below (using mathematical notation): 

vi) a 1e G & a2e G ~ ala2 • 8 2al (from ii), (ABBLIAN G G)) 

vii) a 1e G & •2e G -<> ala2e G 

} viii) G is associative 

ix) eGe G 

(from iii), (GROUP G)) 
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(and (suhset h g) (and (abellan g g) (group g))) 
n 11 
Cnorr11al h g g) 

(((1 • 1) SURSET H G) ((2 • 2) ABELIAN G G) ((3 • 3) R80UP 
0) ((4 • 4) MF.MRF.R 004088 R) ((5 • 4) MEMBER R0408q H) (~9 • 
10) MEMRF.R (•IOF.NTITY R) G) ((12 • q) MF.MRF.R (•PROD. A04088 
004089 G) r,) ((13 • g) MF.MBF.R (•INVERSE RO•OBI r,) G) ((15 • 
9) MF.MRF.R G0•089 G)) 
(((6. 9) IMPLIF.S <AND (MEMRER Al G) (MF.MRF.R A2 B)) (F.QUAL 
(•PROO Al A2 G) (•PROD A2 Al G))) ((7 • 10) IMPUF!; (ANO CMF.MRFR 
Al G) (MF.MRF.R A2 R)) (MF.MRFR (•PROO Al A2 A) A)) CCI • 10) 
ASSOr. A) ((10 .• ·10> IMPLIF.S (MF.MRFR Al A) (MF.MRFR (•INVF.RSF 
Al G) G)) ( Cll • 11) IMPLI F.S (MfMRER Al H) CMF.MRFR Al n)) ( 
CH • 9) F.QIJAL (•PROO (•PROO AO•OH ROIJOH G) (•INVERSF AOlt"88 
n) G) (•PROO (•INVF.RSF. GOIJOU R) (•PROn ROIJOll ao•Ol9 r,) A)) 
((16 • 9) EQUAL (•PROD AOIJOll G04089 R) (•PROD ROlt019 BOIJOll 
r,))) 

(((VF.R (HF.AD) (2 NO.NE) 1 4) NORMAL H G R) CCVF.R (1) (3 NONE) 
2 NILL) IMPLIES CANO CMF.MRER Al R) (MEMIF.R A2 H)) (MF.MRF.R ( 
•PROO (•PROO Al A2 R) (•INVERSE Al G) G) H))). 
(((VF.R (2) (16 10 NONE) 3 12) MEMRF.R (•PROD (•PROD RO•OH ROIJOH 
R) (•INVERSE R04018 0) R) H) ((VERA2 (HEAD) CS NONE) It 12 6) 
ANO (MEMBER (•PROD R0\011 RO•OH CU G) CMIMIER (•INVERSE GO•Ol8 
R) G)) ((VERA2 (It) (11 7 NONF.) ·5 12) MF.MIER (•PROD 004081 004019 
G) R) ((VF.RA2 (4) (NONF.) 6 12) MEMIF.R (•JNVERSE BO•Oll R) G) 
((VERA2 (5 HF.AD) (9 NONE) 7 12 6) AND (MEMBER GO•Oll G) (MEMBER 
R04089 G)) ((VF.RA2 (7) (NONE) 8 NILL) MEMIER GO•Oll G) ((VERA2 
(7) (12 NONF.) 9 12) MEHRER 004019 G) ((IRR (3) (NONE) 10 12) 
NILL MEMRER (•PRO.D nn4011 (•PROD G04019 (•INWERSE. 004011 G) 
A) G) H) ((IRR (5) (NONF.) 11 NILL) NILL MEMBER (•PROD 004088 
G04Q8q A) H) ((VERA2 (9) (NONE) 12 NILL) MEMBER RO•Ol9 H) ( 
CA2 (HF.AD) (lit NONE) 13 NILL 6) AND (MEMBER G01t081 G) (MEMBER 
(•PROO r,o•oeg (•INVERSE GO•Ol8 G) G) G)) ({A2 (13) ("ONE) 14 
Nll.L) MF.MRF.R (•PROO n04019 (•INVERSE QOltOll 0) Q) Q) ((VERA2 
(HF.AO) (NONE) 15 NILL 6) AND (MEM~ER 001t089 0) (MF.MAER (•INVF.RSF. 
R040R8 0) 0)) CCVF.R (3) (NONE> 16 NILL) MF.Mf'ER (•PROD. (•~OD. 
GQ4089 G04088 r,) (•INVERSF. 001t081 r,) r,) ~)) 
QUIT, 

R 28. lfifi+l. 783 

Piaur• 4 

Actual output from ADIPr 

71 



x) 

xi) 

-1 
a 1e G ==> a 1 e G 

a 1 e H ==> a 
1 

e G 

(from iii), (GROUP G)) 

(from i), (SUBSET H G)) 

(Line iv) is a
3

e G and line v) is a
4

e H). Associativity is expressed by the 

statement (ASSOC G), allowing the use of a special matching subroutine, as 

opposed to an explicit line 

SCANW now causes the following lines to be put on the proof tree as two 

subordinate trees: 

(4) a
3

a
4

e G & a3 
-1 

G e 

(5) a
3

a
4

e G 

(6) 
-1 

a3 e G 

(7) a3e G & a4e G 

(8) a
3

e G (immediately verified) 

(9) a
4

e G 

Verification of (7) or (4) would allow the consequent of vi), the abelian 

axiom, to cause a substitution in line (3). 

From line viii), -1 
(10) a

3
(a

4
a

3 
) e His obtained as a reduction of (3). 

Line (3) has not been involved in a use of detachment, and no verification of 

it has occurred, so the scan proceeds to the rest of the proof tree (through 

line (10)). lbis causes: from (5) because of vii), a reference to (7); from 

(5) because of xi), (11) a
3

a
4

e H; from (6) because of x), verification due to 

line (8); from (9) due to xi), (12) a
4

e H. Since line (12) is line v) of table 

I, it is immediately verified, thus completing verification of lines (4) 

through (9), and rendering line (11) irrelevant. 

The scan continues, yielding two new subtrees because of vi) and (10): 

(13) 

(14) 

(15) 

-1 
a

3
e G & a

4
a

3 
e G 

-1 
a4a

3 
e G (a

3
e G being line (8)) 

-1 a
4

e G & a
3 

e G, which is immediately verified since both its 

conjuncts have been verified. 

lbis completes the scan of the proof tree through line (10) as was indi-

cated, and since new lines have been added to the proof tree, the scan of the 
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whole tree (lines (3) - (15)) is redone. As shown in Diagram II, no line on 

table I is used to scan any lines on table II that it already has scanned 

unless the line is an implication which is now augmented by a verified head of 

a subordinate tree it suggested. This is the case with line vi), and since 

-1 
line (4) is verified, table I is augmented by xii) a3a4e G, xiii) a3 e G, and 

-1 -1 xiv) (a
3

a
4

)a
3 

= a
3 

(a
3

a
4

). Then, analogously, xv) a
4

e G and xvi) a
3

a
4 

= 

a
4

a
3 

are obtained from line (7). 

Scanning line (3) with these new lines, two substitutions are found, and 

since lines xiv) and xvi) have arisen due to the same table I entry (line vi)) 

and thus are in the same logical class, these substitutions are considered to 

be related. However, they conflict, and cannot be performed together, so they 

are done one at a time. As it happens, the substitution suggested by xvi) is 

performed first, yielding (16) (a
4

a
3

)a
3

- 1e H. As described in the last chap

ter, this is immediately collapsed into a
4

e H, which is already verified as 

line (12). This suffices to complete the proof. 

If line i) of table I had been (SUBGROUP HG), ADEPT would have gone off 

on a dead end, thinking line (3) to be processed after generation by detachment 

-1 of the reduction a
3

a
4

e H & a
3 

e H. Efficient means of avoiding such difficul-

ties (i.e., without backtracking) are clearly of great interest, and this sub-

ject will be approached in a later chapter. 
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Problem v-c 

Sometimes ADEPT produces a very inefficient proof even when no unnecessary 

hypotheses have been explicitly stated. This is the case for the following 

theorem: A coniugate D of a subgroup H of a l!.2!:!E. G is itself a subgroup of G. 

(A conjugate of a subgroup H is specified by a member a 1 of G, and is the set 

-1 -1 
such that a

2
e D <-> (3a

3
)[a

3
e H & a

2 
.. (a

1
a

3
)a

1 
); i.e., D • a

1
Ha

1 
.) The 

proof given by ADEPT for this theorem is 73 lines long, of which 49 are due to 

"false leads." It is easy to see how this happens by observing the development 

of only a small section of the proof. 

To prove D a subgroup, it is necessary to show closure under composition, 

so assuming d
2

e D and d
3

e D, d
2

d
3

e D must be shown; i.e., ( ]a
3

) [a
3

e H & d
2

d
3 

• 

-1 
(a

1
a

3
)a1 ) is to be proved. SOLVEl quickly reduces the problem to showing 

-1 -1 -1 a 1 ((d
2

d
3

}(a
1 

) ) c H, which is inmediately changed to 

-1 
a

1 
((d

2
d

3
)a

1
) e H (*). 

The desired continuation is to observe that the membership of d2 and d3 in 

-1 and (a1h
2

)a
1 

for d2 and d
3 

respectively 

in (*), where h1 and h2 are then known to be in H. 'lhe two substitutions are 

related, and will be performed simultaneously, yielding the following reduction 

of (*): 
-1 -1 -1 a

1 
((((a

1
h 1)a

1 
)((a

1
h

2
)a1 ))a1) c H, which iumediately will be 

collapsed into h1h2e H. This soon will be verified inasmuch as H is a sub

group. But, from (*) are derived 3 other reductions, each of which leads to 

much extra work. Two of these arise because of associativity, and the third 

is a direct application of the closure-under-products conjunct of the defini-

tion of the subgroup H to line (*). All of these entries are on table I by 

this time, and so there is no selectivity involved. A similar situation 

arises when proving the closure of D under inverses. Perhaps the greatest 

difficulty in theorem-proving is ''knowing" when a proof is on the right track. 

Once again, the reader is referred to the later chapters. 
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Problem V-D 

A lesson in the use of ADEPT may be learned from the following example. 

The commutator of two members a1 and a
2 

of a group G, denoted in mathe

-1 -1 matical notation by [a1,a2 J, is defined by [a1,a2 J • ((a1 a2 )a1)a2• This 

concept can, of course, be defined for ADEPT, and identities concerning com-

mutators can be proved. ADEPT is not primarily designed for manipulation of 

identities, and all but the simplest of these requires a large amount of com-

puter time, though there are some fairly obvious heuristics which could be 

applied to this very special problem area to remedy this. Such digressions 

are not relevant to the ADEPT project, but insights from one particular simple 

identity problem happen to be valuable in general. '!he problem is: 

-1 
[a

1
,a2 J = [a

2
,a

1
J. 

Although either the notation (COMMUTATOR A3 Al A2 G) or 

(*COMMUTATOR Al A2 G) may be employed, assume the latter is used. ibe prob-

lem then may be stated in many ways. One is to give ADEPT the conclusion 

(EQUAL (*INVERSE (*COMMITl'ATOR Al A2 G) G) (*COMMUTATOR A2 Al G)). Remembering 

that no substitutions are made in the second argument of an equality on the 

proof tree, it is seen that this will produce a fairly lengthy chain of sub-

stitutions, resulting in a correct proof, but a proof made quite long due to 

the application of the associativity axiom. No improvement is obtained using 

FEQUAL. For this problem there is a way out, however. A sufficient condition, 

known to ADEPT, for INVERSE, is given by "a2 is the inverse of a1 if a2a1 • e". 

ibis can be used if the usual asterisked notation for inverse is not employed; 

i.e., if the conclusion of the problem is put in the form: (INVERSE 

(*COMMUTATOR A2 Al G) (*COMMUTATOR Al A2 G) G). Doing this works very well, 

simply because related substitutions are made simultaneously, so that the 

-1 -1 reduction of the application of the sufficient condition is (((a2 a 1 )a2)a1) 

-1 -1 
(((a1 a2 )a1)a2 ) = e, which is immediately collapsed into e = e, a line 
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which is verified as it is put on the proof tree. This is a very striking 

example of the value of doing related substitutions simultaneously and per

forming certain operations on a line, such as this "collapsing", at the time 

of its placement on the proof tree. 

The point of all this is that different ways of doing problems are often 

not too similar in their demands upon the resources of computer time and mem

ory. Even if ADEPT were much more highly developed than it is at present, 

including possession of the ability to choose the "correct" path of the proof 

tree more often, it well may not be able to take the statement of a problem 

and transform it into the most advantageous form. ADEPT should be able to 

solve the problem in any form, sooner or later, but the user can be asked to 

utilize some ingenuity in setting up the form of the hypotheses, conclusions, 

and definitions. ADEPT is flexible enough to allow significant experimentation 

along these lines, perhaps to the end that future programs will be able to 

take this burden from the user, 
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Problem V-E 

The following is a problem that has been considered by other theorem-prov-

ing programs: a~' every element of which is of order 2, is abelian. 

ADEPT has no provision for numbers, but for an element a 1 to be of order 2 

simply means that it must satisfy the equation a
1

a
1 

= e. One would like to 

give this problem to ADEPT and have it come up with a proof. But, faced with 

proving g
1
g2 = g

2
g

1
, the program has no idea how to proceed. None of the 

axioms can be applied to the statement g
1

g
2 

= g
2

g
1

• Now it turns out that a 

simple proof of this theorem, requiring no "construction," follows from the 

consequence of a
1
a

1 
= e 

-1 -1 
The proof proceeds: g1g2 = g

1 
g2 

-1 
(g2g1) = g2g1 . ADEPT proves this theorem given the 

-1 
hypothesis a 1 =2 a 1 

It does so with very little wasted effort, due to the restriction on matching 

simple variables and the innnediate simplification of expression such as 

-1 -1 
(gl ) . 

Of course, this is hardly fair, for in order to have ADEPT prove this 

theorem, the user must know how the proof proceeds! Clearly ADEPT has to be 

more clever, though a user who was very familiar with the program might real-

ize which of the two ways of stating the "order 2" hypothesis was preferable 

(that is, if he were aware of both alternatives). One way to approach this 

difficulty would be to program into ADEPT a feature whereby insertion of the 

-1 fact a 1a
1 

= e on table I causes the consequence a
1 

= a
1 

to appear. This 

would have to be programmed carefully, so that very little time would be spent 

checking all lines being put on table I to see if they are of this form. Such 

a feature would properly be called a heuristic. 

Another approach would be to make explicit use of a lemma, a
1
a 1 = e ==> 

Under which conditions this lemma would be put on table I is a 

difficult problem. In addition, even if this lennna were not brought onto 

table I to "confuse" proofs of other problems, its use in this problem causes 
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a proof of twice the length, requiring four times the time of the original 

proof with the simple hypothesis a
1 

= a
1
-l 

The empirical approach to theorem-proving demands the incorporation of 

such lemmas or heuristics as the one described above. There are certainly 

direct analogues to the inclusion of such facts in ADEPT in the learning pro

cess of a student of group theory. This is in contrast to specification of a 

"complete" proof procedure (e.g., Herbrand's), which has a different orienta

tion than that of a student. It is known that complete procedures are very 

prone to fatal combinatorial explosion. The question is: Can an empirical 

approach handle enough special cases efficiently to surpass the other approach? 
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Problem V-F 

One of the first problems considered in conjunction with ADEPT was one of 

the most troublesome: 'l'he kernel of a homomorphism f 1 reduces to the identity 

if and only if fl is one-to-one. 'Ibis theorem can be divided into two parts, 

and, defining a unitset to be a set with a single element, details of this 

problem will now be considered. 

Let f 1 be a homomorphism from G to H, K its kernel, E the unitset con

taining the identity of G, and first assume that K is a subset of E; i.e., K 

reduces to the identity. To be shown is that f 1 is one-to-one. A sufficient 

condition for fl to be one-to-one is that if f 1 (a1) • f
1 

(a2 ), then a1 • a2 • 

'l'he usual proof proceeds by contradiction; if f 1 (a
3

) • f 1 (a
4

) 

a3 • a4 for some a3 and a4 , then 

-1 
homomorphic) • ~· so a3a4 e K. 

-1 -1 
fl(a3a4 ) - fl (a3)fl(a4) 

dieting the assumption that K reduces to eG. 

does not imply 

(since f 1 is 

ADEPT has no provision for proofs by contradiction, but a reformulation 

of the sufficient condition is all that is needed to allow ADEPT to solve this 

problem: 'l'his 

is clearly equivalent, and the proof proceeds straightforwardly: 

-1 -1 -1 -1 
if a

3
a4 c E, if a3a4 c K, if f 1 (a3a4 ) • ~· but f 1 (a3a4 ) • 

-1 -1 
f1(a3)f1 (a4 ) • fl(a3)fl(a4) • eH. 'l'hus the formulation of the sufficient 

condition is important, and it is reasonable to expect a user of ADEPT to 

supply appropriate entries to its tables, just as in ProblemV-D it was argued 

that the user should be expected to employ ingenuity in choosing the form of 

statement of a theorem. 

For the converse, it is the definition of one-to-one that is important, 

and indeed this half of the theorem is more treacherous. Here, assuming f 1 is 

one-to-one, it is desired to show that K is contained in E. So assume k1e K 

and attempt to prove k1e E; i.e., k1 = eG. If the definition of one-to-one 
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used is that if f
1 

(a 1) =fl (a
2

), then a 1 = a2 , an infinite loop is generated: 

k 1 = eG if f
1 

(k
1

) = f
1 

(eG) if f 1 (f1 (k1)) = f 1 (f1 (eG)), etc. lllis loop could 

be stopped artificially, but that seems to be an unnecessary extra check to 

add to the program. Alternatively, an effort could be made to make sure that 

the argument of a function was in its domain, but this would not help in the 

case G = H. If the definition of one-to-one is: 

-1 a 1a2 = eG, ADEPT will have no "ideas" as to how to proceed. But, the con-

nective FEQUAL is available, and the definition of one-to-one can very natural-

ly be phrased f 1 (a 1) =f f 1 (a2 ) ==> a 1 = a2 , and the proof proceeds: k1 = eG 

if f 1 (k1) =f f 1 (eG). Evaluating the left-hand side: f 1 (k1) = eH since k1e K. 

Evaluating the right-hand side: fl (eG) = eH since f 1 is homomorphic. That 

completes the proof of this theorem, which is another example where the forms 

of definitions, etc. are critical. 
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Problem V-G 

Among the proofs of isomorphisms produced by !SOLVE (see Chapter III), 

none contain any surprises. The proofs have been of isomorphisms of a trivial 

to a relatively complex nature. The simplest required !SOLVE to go through 

the motions of proving a group G isomorphic to itself. As a related problem, 

-1 GENFCN may be overridden, and the relation f 1 (a 1) = (g
1
a 1)g 1 for some g1e G 

inserted, and this will be shown to be an isomorphism. Similarly, for G 

-1 abelian, f
1 

(a 1) = a 1 can be shown to be isomorphic by !SOLVE. 

The most complicated isomorphism that has been done by !SOLVE is to prove 

that G/H is isomorphic to (G/K)/(H/K). This statement only makes sense for the 

case that K and H are normal subgroups of G, and ADEPT is able to prove the 

justifying fact that, under these hypotheses, H/K is a normal subgroup of G/K. 

To prove the isomorphism, the assumptions of the normality of K and H need not 

be stated explicitly, as they play no further role in the proof. The entire 

proof of isomorphism, including the generation of a map from G/H to (G/K)/(H/K) 

by GENFCN, took 7t minutes of computer time and 40 entries on the proof tree. 

Of these, 7-were used in the proof that the relation is well-defined, 18 in the 

proof that it is homomorphic, 12 in the proof that it is onto, and 3 to prove 

that it is one-to-one. 2 lines of the proof that it is well-defined and 6 

lines of the proof that it is homomorphic were irrelevant; i.e., useless 

branches. (Incidentally, if GENFCN is asked to provide a relation from 

(G/K)/(H/K) to G/H, the corresponding proof of isomorphism takes 9 minutes 

of computer time and 44 lines.) Without the use of the MODEL heuristic, the 

same proof would have been generated, but with an additional 30 to 40 irrele-

vant lines at a cost of 3 to 4 extra minutes of computer time. 

Other isomorphisms established by !SOLVE include that of G and K when f 1 

is an isomorphism from G to H and £2 is an isomorphism from H to K; that of G 

with G/{eG}; -that of G/(Ker f 1) with £1 (G) for a homomorphism f 1; and that of 
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-1 G/f1 (K) with H/K for an epimorphism f 1 from G to H (where K is a normal 

subgroup of H), ADEPT is able to prove all justifying theorems to show that 

-1 these problems make sense ~ for instance, in the last example, that f 1 (K) 

is indeed a normal subgroup of G. ISOLVI does B2l automatically go through 

these ju1tifying theorems; it assumes the problem to be well-defined. But 

ADEPT has been given the associated theorems which establish this, and it has 

proved thm. 

ISOLVI may also be used to establish theorems about other relations. For 

instance, rather than give ADEPT separate theorems, ISOLVI may be run in an 

attempt to "prove" that the relation (generated by GBNFCN) f
1 

(a1) • a1H from 

G to G/H is an "isomorphism". ISOLVI will produce proofs that the relation is 

homomorphic and onto, and will, of course, fail to show it to be one-to-one. 

Another such example is the canonical relation between G/K and f 1 (G)/f1 (K) 

which also is an epimorphism but not an isomorphism, for a general epimorphism 

f
1

• 'lhis relation must also be proved to be well-defined, as opposed to the 

map from G to G/H which is trivially well-defined by its defining equation. 

It is interesting to observe that though the term *LCOSE'I (which stands 

for "left coset") appears often in the statement on the proof trees of the 

isomorphisms involving factor groups, its definition, which is not needed in 

order to establish the isomorphisms, is never put on table I by ADEPT, thus 

saving a great deal of effort. This is a good illustration of why it is not 

desirable to go to the tables for instances of definitions of all terms that 

appear in the course of a proof regardless of whether or not they appear in 

lines of status PNT. 

To conclude this chapter, an insight gained from ISOLVI should be men-

tioned. The selective introduction of instances of definitions; i.e., the 

controlled growth of table I at the start of a problem, mentioned in Chapter 

Ill, could, of course, be used by ADEPT in each of the 4 sub-theorems handed 

to it by ISOLVI. 'lhis involves, in general, obtaining the definition of each 

term in the hypotheses of an isomorphism theorem 4 times. It has been found 

that the class of proofs involved in establishing isomorphisms is not sensitive 
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to selective growth of table I, and consequently it is more profitable to 

have ISOLVE call ADEPT with the instances of definitions of all terms in the 

hypotheses already on table I. Thus ISOLVE can consult the table of defini

tions once for all 4 sub-theorems. The determination of the relative merits 

of such trade-offs is one of the types of insights into proving theorems about 

groups by computer which can easily be obtained by experimentation with ADEPT. 
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CHAPTER VI 

LIMITATIONS OF THE PRESENT PROGRAM 

The previous chapter, in addition to illustrating proofs produced by 

ADEPT, has also served as an introduction into the limitations of the present 

program. The remainder of this report will be devoted almost entirely to dis

cussions of various types of theorems with which ADEPT cannot cope. These 

types fall into different classifications. For instance, there are those 

which ADEPT cannot do simply because it is not broad enough. Such theorems 

include facts involving the introduction of numbers, say as orders of finite 

groups. Another such group is theorems requiring statements using double 

existential quantifiers, which cannot be handled by SOLVEX at present. These 

theorems are not significantly harder in any sense of the word; they simply 

require additional subroutines for ADEPT. 

Another class of theorems might be called the overspecified class. Such 

a grouping has no mathematical basis in group theory, but it is a label to be 

applied to those theorems with extra hypotheses with which ADEPT performs so 

erratically, as seen in the last chapter. As theorems become more complex, 

even those with minimal sets of hypotheses will cause similar difficulties for 

ADEPT. A decision must be made whether or not this can be overcome by heuris

tics, or whether a completely different approach to theorem-proving will 

ultimately have to be adopted. 

There are also theorems which require new and different methods of proof. 

In contrast to those which require introduction of additional types of con

cepts, these theorems are often significantly more difficult. Mechanization 

of proof by contradiction, use of constructions in proofs, etc., all must be 

considered. Finally, it is important to ask if the reasoning used in advanced 
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theorems of group theory is fundamentally different from that used in ele

mentary theorems? Is it the case that it is not a matter of extending ADEPT 

to be much, much more sophisticated, but rather a matter of implementing an 

entirely different form of human thought process, though perhaps in conjunction 

with a more sophisticated ADEPT? The logician is tempted to rely upon the 

theoretical fact that all theorems of mathematics follow or issue from the 

basic axioms of the system; the pure mathematician has reservations for he 

knows that intuition and other rather illogical procedures play a large part 

in his advanced work. The choice of methods with which to prove an advanced 

theorem is an excellent example of a step which cannot be done by simple pro

cessing of hypotheses, conclusion, and relevant definitions. 

All these considerations must be taken into account when discussing the 

future of theorem-proving by computer, and when discussing the level to which 

a program like ADEPT for proving one class of theorems should be perfected. 

The class of theorems for which ADEPT is best suited should be clear. 

ADEPT produces proofs which follow directly from given axioms, lemmas, and 

definitions. To some extent this can be augmented, perhaps by such methods 

as proof by contradiction. But clearly the approach used in ADEPT is 

ill-suited to many methods of proof, such as construction of counter-examples, 

a procedure certainly in the repertoire of any good group theorist. 

Before continuing this discussion, it will be profitable to consider 

specific problems of two kinds. The first kind includes problems that ADEPT 

either can "almost" prove, or that are closely related in content to problems 

that ADEPT has proved. The second type is a group of problems of a different 

nature, involving new concepts and methods, which have been considered in 

detail with proof by ADEPT in mind. 
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Problem VI-A 

It would certainly appear that ADEPT should be able to prove that the 

center of a group is a normal subgroup. However, it cannot, and the reasons 

why are instructive. 

Proving that the center is closed under products is done easily, by a 

version of the following argument: Let C be the center of a group G, and let 

c 1 and c2 be members of c. To show c1c
2

c C requires proving that (c 1c2 )g1 • 

g1 (c 1c2) for g1e G. But (c 1c2)g
1 

"'c1 (c2g1) "'c1(g1c2 ), since c2c C, and 

c 1 (g 1c2) • (c 1g1)c2 = (g
1
c

1
)c2 • g1 (c 1c2 ), since c 1c c. 'J.'here is inefficiency 

in ADEPT's actual proof, to be sure, but it proceeds straightforwardly. 

The next step is to prove closure under inverses. 

There is more than one way 

to do this, but no way that does not require a bit of ingenuity. One method 

is to use a "construction"; i.e., the reverse of the procedure of s:lmplifica-

tion. This proof proceeds: 

since c1c c. This approach requires clever heuristics to introduce the appro-

priate construction. An even neater proof is as follows: 

-1 -1 -1 -1 -1 (g1 c 1) c (c 1s1 ) • g1c 1 • This proof depends upon the identities 

-1 -1 -1 -1 -1-1 
a 1 a2 • (a2 a 1) and a 1a

2 
.. (a2a 1 ) • Now ADEPT "knows" the identity 

-1 -1 -1 
(a 1a2) = a2 a 1 , as explained in Chapter IV, and this suffices to provide 

-1 -1 -1 one of the equalities needed for this proof, for (c 1g1 ) matches (a1a2) , 

-1 -1 -1 i.e., is of that form. But c1 g1 does not match a2 a 1 ; such a match re-

-1 -1 -1-1 quires an explicit intermediate step ~ c
1 

g
1 

• c1 (g1 ) to obtain 

the proper form. 

It is not profitable for ADEPT to explicitly check every line against the 

-1 -1 -1 identity a 1 a2 a (a2 a
1

) , even though it seems natural to check for in-

-1 -1 -1 stances of the identity (a 1a2) • a
2 

a 1 Neither is it profitable to use 
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-1 -1 
a

1 
= (a 1 ) as a symmetric equality. (Remember that it is written now using 

EQUAL, not EQUAL2. This is an example where extra progralllllling is dictated to 

make possible the reverse substitution, rather than opening the problem up to 

a proliferation of substitutions by using EQUAL2.) So again heuristics need 

to be discovered to enable ADEPT to prove this theorem without introducing 

provisions in the algorithm which would virtually insure large increases in 

useless effort for all proofs in general. 

Another mishap occurs when trying to prove that the center is normal. 

Assuming c 1e C and g1e G, the desired conclusion is (g1c
1

)g
1
- 1e c. The "ob

vious" step to ADEPT is to proceed as in the first two parts of this theorem, 

-1 -1 namely to show that ((g1c 1)g
1 

)g2 = g2 ((g1c 1)g1 ) (*) for any g2e G, a 

reduction obtained by detachment, using the definition of center. And the 

algorithm provides that no other use of the definition of center can then be 

-1 made with respect to the line (g1c 1)g1 e C (see Diagram II and the discussion 

of heuristic B for "progress" in Chapter IV). For most theorems, this re-

striction of ADEPT is well-justified, for most theorems progress as the first 

part of this one did. To prove c 1c2e C, ADEPT showed (c1c2 )g1 = g1 (c 1c2), 

and to carry out a parallel branch starting with c2c 1e C is needless prolif

eration of effort. However, to show normality the simple proof is to proceed 

-1 . -1 (g1c 1)g1 e C if (c 1g1)g1 ( = c 1) e c. Indeed, to prove (*) requires either 

some kind of planning, a construction, or substitution in both sides of (*), 

none of which are presently possible in ADEPT. 

Thus, though ADEPT has enabled the computer to produce many proofs, em-

phasis on those types of problems which give it trouble indicates that a rad-

ical re-examination of the whole philosophy of ADEPT's design may be necessary. 

Or perhaps the difficulty is that the proper heuristics have not yet been 

isolated. 
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Problem VI-B 

There is a second problem on which ADEPT fails that is not dissimilar 

from the preceding one. 
-1 

Consider the theorem that the map f 1 (a 1) = a 1 from 

a ~ G into itself (the map taking every element into its inverse) is 

homomorphic if and only if G is abelian. One half of this gives ADEPT no 

trouble; in fact for G abelian, the map in question is isomorphic and !SOLVE 

proves this. 

The converse is not hard, but requires ingenuity of the same type as that 

needed in the second part of the previous theorem. To show G abelian, ADEPT 

must establish the identity g
1
g

2 
g

2
g

1 
under the hypothesis that f 1 is 

homomorphic. Completing the proof requires use of a "construction"; in 

-1 -1 
particular, a substitution of the form a 1 ~ (a

1 
) • Note that the execu-

tion of such a step would require a message to the simplifying routine associ-

ated with PUTON2, insuring that the new line will not be simplified. The proof 

-1 -1 -1 -1 
= (fl (gl)fl (g2)) = (gl g2 ) 

(Close examination of this proof reveals that the hy-

pothesis defining the map f 1 must be written using EQUAL2. The converse of 

this theorem, showing f
1 

to be an isomorphism when G is abelian, requires only 

EQUAL in the defining equation of the map.) 

Further discussion of this theorem would only parallel connnents made 

while discussing the last problem. However, in Chapter VIII some possible 

means of overcoming difficulties such as these will be suggested. 
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Problem VI-C 

-1 
It is a theorem of group theory that f

1 
(K) = K for any subset K of f 1's 

domain, if f
1 

is a monomorphism. Tite inclusion KC:: f
1 

(K)-l is trivial and is 

true for any homomorphism f 1 . ADEPT proves it with ease. The converse is 

much harder, and appears to demand an approach not possible with ADEPT. At 

least, the most obvious proof to the author is one which is ill-suited to 

ADEPT's algorithm. It seems to require a controlled "working forward" ap-

proach which cannot be supplied by the "lemma-proving" procedure which is made 

possible by lines of status ST on table II. Briefly, the proof proceeds as 

follows: 

-1 
Assume a

1
e f

1 
(K) . Titen f

1 
(a

1
) e f

1 
(K), which, by the definition of 

image, means that f
1 

(a
1

) = f
1 

(a
2

) for some a
2

e K. But f
1 

is one-to-one, so 

a
2 

= a 1 and therefore a 1e K, which was to be shown. 

Now consider the problem as ADEPT sees it ~ given the assumptions and 

-1 
assuming a 1e f 1 (K) , the line to be proved is a

1
e K. But K is an arbitrary 

subset, and in addition no substitutions are possible for a 1 , so ADEPT is 

unable to continue. From the point of view of working backwards, the above 

proof depends on the imp 1 ica ti on ( 3 a
2

) [ a2 e K & a 1 = a2 J ==> a 1 e K. However, 

even if ADEPT "knew" this fact, SOLVEX would attempt to "solve" the line 

(3a2 )[a2 e K& a 1 = a2 J for a
2

, and would come up with the "reduction" a 1e K, 

which is no help at all. Thus determination of a candidate for this variable 

a
2 

must proceed by more devious methods. The fact that the definition of 

f
1 

(K)-l causes a
1

e f
1 

(K)-l to imply an identity involving f(a
1

) as opposed to 

a 1 may be able to be used as the "tip-off" that the usual procedures of ADEPT 

will not suffice for this proof. 
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Problem VI-D 

The last problem which will be discussed to illustrate limitations of 

ADEPT for proving theorems of the type it is best suited to prove is the nee-

essary and sufficient condition for equality of two (left) cosets a 1H and a2H: 

-1 
a

1
H • a2H <•-> a2 e H. 'lllis theorem is an example of how everything can go 

wrong! 

-1 First, consider proving a2 a 1e H from the equality of the cosets. ADEPT 

has no "ideas" except to attempt to show a1 and a
2 

to be members of a 1H or a2H, 

which is suggested due to the form of the definition of left coset, for if any 

of these lemmas could be established, a substitution would be possible in the 

original line. Now a 1 and a2 are general members of a group G of which H, a1H, 

and a2H are subsets. 'lllerefore the l«>DEL heuristic will not allow these candi

dates for heads of subordinate trees to appear on table II. Fortunately, the 

user has the option of not using the l«>DEL lattice (though he may not know 

when not to use it), and at least it is possible to get ADEPT to proceed with 

this proof. 

Since a 1H and a2H are the same set according to the hypotheses, each of 

these four heads of subordinate trees is a reduction of one of the other three. 

For example, to show a 1e a2H it suffices to show a1c a1H. 'llle fact that 

a3e a3H for any a3 is a simple one, and ADEPT can prove it quickly if given 

it as an explicit problem. However, as a line of status ST, it cannot be 

proved, for the proof that a
3

c a
3

H requires "solving" by SOLVBX the line 

(3a4)[a4c H & a3 • a3a4J. As shown in Diagram I, only lines of status PNT 

are ever processed by SOLVEX, and a line of status ST can never take on status 

PNT. 'lhus the present version of ADEPT is stymied. 

One possibility, which would not cause great amounts of additional effort 

per proof, would be to try to "solve" every such line put on table II (i.e., 
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always trying a call to SLVX in Diagram IV). If the line were not immedi-

ately solved, it would not be scanned as described in Chapter III unless it 

were of status PNT. The example in this theorem can be solved immediately, 

-1 
yielding a3 a3e H which quickly reduces to eGe H, which could be verified 

from part of the definition of subgroup. But again trouble develops, for if 

H were explicitly assumed to be a subgroup, the original conclusion would be 

-1 reduced to showing a2 e H & a 1e H, which is certainly a fruitless attempt at 

a solution. Furthermore, this reduction is derived by detachment, and thus 

-1 
a2 a

1
e H would be removed from further consideration, and by the time the 

status ST lines were verified, the substitutions in the original conclusion 

could no longer be made, since the pointer would have been moved down (i.e., 

status PNT would have been assigned to some subsequent line of the proof 

tree). 

It has already been observed in Chapter III that the design of ADEPT, 

and in particular, the restricted processing given to lemmas, is not oriented 

to proofs which must go back many "levels" to original definitions. In this 

spirit one would suggest that the user include with the specific hypotheses of 

this theorem the lemma a
3

e a
3

H. Even with this approach, the user can run 

afoul! The use of asterisked terms happens to be critical in this instance. 

Assuming that the user inputs the lenma in the form (MEMBER A3 

(*LCOSET A3 HG)) (where A3 is a variable), the proof will be completed easily. 

Without the asterisked term, the user must state the lenma as a translation of 

"let A be a left cos et a
3

H; then a
3

e A", and this would cause an undesirable 

application of detachment to the original conclusion. Since a3e A matches 

-1 a 1e H, the proof would be "reduced" to showing that H is the a2 cos et 

(a2 
-1 a 1)H. This inference is completely valid, and the new line does happen 

to be provable, but only with great effort. Thus there is a definite need for 

the use of the asterisked term in this problem! 

The converse of this theorem is really a conjunction, namely to prove that 

-1 a 1Hc: a2H and a2Hc::a1H if a2 a 1e H. This proceeds normally, and requires 

explicit assumption that H is a subgroup. One inclusion parallels the other 
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in its proof, though ADEPT has no way of detecting this and profiting by the 

observation. The parallel is not quite complete; proving the inclusion 

a
2
Hc: a

1
H comes down to observing a

1
- 1a

2
e: H, which, while implied by a

2
- 1a 1e: H, 

is not derivable by ADEPT. This situation is analogous to the one in the first 

problem described in this chapter, and no more need be said here. 

This discussion of this last theorem may seem to be lengthy and to place 

undue emphasis on the limitations of ADEPT. However, despite the inept per-

formance just outlined, ADEPT did manage to prove many theorems! But all 

heuristics break down sooner or later, and a clear discussion of the impli-

cations of ADEPT's organization was certainly in order. Shortly, discussion 

will resume on the worth, limitations, and future of ADEPT, including possible 

corrective modifications which could be made, but first, problems of another 

class should be discussed ~ those with new features to which ADEPT could be 

adapted. After all, future work must take into account more kinds of theorems 

and harder theorems, as well as theorems very similar to the ones already 

discussed. 

t Note that a more general statement of the lemma, such as eGe: B ==> 

a
3

e: a
3

B, could lead to still another undesirable effect if it were not stated 

using the asterisked term *LCOSET. If the table I entry were (IMPLIES (AND 

(MEMBER (*IDENTITY G) B) (LCOSET A A3 BG)) (MEMBER A3 A)), then any occurrence 

of detachment using this implication would give rise to a table II entry with 

a variable, namely B. While variables in table II entries are not forbidden, 

they can lead to an entry which is difficult to prove or which has no interpre

tation. Here a proof tree line a
4

e: H could be reduced to a conjunction, one 

conjunct of which is eGe: B, for a completely unspecified variable B. Thus the 

user must beware of implications P ==> Q on table I which have the property 

that if a table II entry Q' leads to a reduction P' using detachment, then P' 

contains (free) variable; i.e., in creating the instance P' using the informa

tion obtained in finding the match of Q1 and Q, constants were not substituted 

for all of the variable symbols of P. This situation can be avoided by making 

use of the well-known equivalence (used in the reduction of statements to 

prenex normal form): 
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example, the lemma could have been stated (IMPLIES (EXISTS ~ (AND (MEMBER 

("'IDENTITY G) B) (LCOSET A AJ BG))) (MEMBER A3 A)). With this statement, 

trouble is averted, though, of course, an extension to SOLVEX would he nec

essary to actually handle any reductions generated by detachment using it. 
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CHAPTER VII 

EXTENSIONS OF ADEPT 

One method of proof which ADEPT does not use is mathematical induction, 

and it was this method which was considered in most detail as a specific ex-

tension of ADEPT. Theorems which are proved naturally by induction are not 

too common in group theory, even when groups of finite order are considered, 

but enough were isolated in order to justify this section of the investigation. 

Most involve terms with a varying number of arguments, such as a finite prod-

uct or intersection. Consequently, important questions of notation arise. It 

is simple enough to define a new type of variable or constant to represent 

integers, and N, Nl, ••• , N9 are used for the integer symbols, which may be 

variables or constants. Having done this, how shall the new concepts be 

represented? 

'lbe easiest concept to represent is the iterated product of the same 
n t~rms n 

variable~ a 1.::&;_ or (a 1) • Using an asterisked term, this may be written 

(*EXP Al N G), where G is the set on which the composition is defined. The 

general iterated product is more difficult. Consider the product a 1 ••• an' 

which is to be denoted by the term *GPROD with some appropriate set of argu-

ments which wtll include G, the set with the composition. Any notation used 

for this must be flexible enough to allow easy statement of such products as 

f 1 (a 1) •.• f 1 (an). It must also be easy to express the fact that if n is 1 in 

either product, the generalized product collapses to a single object. But 

this object (a1 or £1 (a1) in the examples given) is subscripted. It is impor

tant to notice that the subscripts of the letter "a" in the following two ex-

94 



(2) f 1(a1 ••• an) • f 1(a1) •• ,f1(an). In (1), the subscripted letters are used 

as symbols for simple variables. The particular integers used as the sub

scripts have no significance. In (2), the subscripts are used to specify an 

ordering of the variables. Indeed, in (2), the unsubscripted letter is a 

meta-symbol denoting any variable/constant symbol, and the subscript yields 

information on the order and number of these symbols. 

Retaining the spirit of Polish notation, the term *SUB is introduced, to 

be used whenever a subscript is used to specify ordering, etc. A variable 

symbol can easily play the part of the meta-symbol, and a tentative represen-

tation for a 1 ••• an is (*GPROD (*SUB A9 1) (*SUB A9 N) G), 

'l'his is not satisfactory, and in order to see this, consider the equali

ties al'''an' • (al'''an)an' and fl (al) ••• fl(an,) • [fl(al) ••• fl(an)]fl(an,)' 

(n' is the successor of n, ordinarily n + 1.) 'l'hese are both instances of one 

general fact, which should be expressible by one statement. However, in the 

corresponding representations for these identitiea, the occurrences of 

(*SUCCESSOR N) are at different levels of the expreaaion, and the matching 

routine will not suffice. Stating the situation in another way, it is impos

sible for AD!PT to have a schema of the form P(n) • Q(n) where n occurs at 

arbitrary levels in the syntax of p, 

One possible notation which will at least suffice, though it is cumber

some, is to include as arguments of *GPROD: 

i) the subexpression of ii) which is the subscripted 

subexpression of the general element; 

ii) a symbol acting as a meta-symbol for the general element 

of the product; 

iii) the number of elements in the product; 

iv) the set upon which the composition is defined. 

Similarly, a single subscripted object is written using as arguments of *SUB: 

i) same as i) for *GPROD; 

ii) same as ii) for *GPROD; 

iii) the value of the subscript. 

95 



The first argument mentioned is present to allow for a distinction between 

f 1 (an) and [f1 (a)]n. Thus f 1 (a 1) .•• f 1 (an,) = [f1 (a 1) ... f 1 (an)]f1 (an,) can be 

written: (EQUAL (*GPROD Al (Fl G H Al) (*SUCCESSOR N) H) (*PROD (*GPROD Al 

(Fl G H Al) N H) (*SUB Al (Fl G H Al) (*SUCCESSOR N)) H)). This is an instance 

of the general statement (EQUAL (*GPROD A8 A9 (*SUCCESSOR N9) A) (*PROD 

(*GPROD A8 A9 N9 A) (*SUB A8 A9 (*SUCCESSOR N9)) A)), where A8, A9, N9, and A 

are (free) variables. It is not necessary to indicate in some way that A8 

must match a subexpression of whatever expression A9 matches, for this will 

automatically be the case in any well-formed use of *GPROD. 

Together with the preceding general statement, the identity (EQUAL 

(*GPROD A8 A9 1 A) (*SUB A8 A9 1)) gives an inductive definition of *GPROD. 

Using such a definition, it is reasonable to consider such theorems as 

-1 
f 1 (a 1 ••• an) = f 1 (a 1) .•• f 1 (an) for a homomorphism f 1 , or (a1 ••. an) 

-1 -1 
an ••• a1 Both proofs are exactly the same in structure, step by step. 

Each is a natural use of induction, and each requires an additional hypothesis. 

For the first, this hypothesis is as follows: (EQUAL2 (Fl G H (*SUB A8 A9 N9)) 

(*SUB A8 (Fl G H A9) N9)). This is an explicit connection between two legal 

notations, according to these conventions of notation, for expressions sue& as 

f 1 (a 1). Thus there is actually still a need for a schema; in this case a 

schema to the effect that P[(*SUB A8 A9 N9)] = (*SUB A8 P[A9] N9), where P is 

any of a fairly large class of terms. 

Leaving this incomplete discussion of the problems of notation, the 

question of the implementation of the method of mathematical induction will 

now be considered. The greatest difficulty here is an obvious one - how to 

decide algorithmically when to attempt a proof by induction. This decision, 

including the identification of the specific variable on which the induction 

is to be performed, is not an easy one. Surely one condition which must al-

ways be present in a theorem which is provable by this method is the appearance 

of a term which is defined by a definition which is inductive in form; i.e., 

of the form "X, Y, .•• , Z are special instances of a ___ , and if A is a ___ , 

the element given by the (usually simple) operation ~ on A (or on A and some 
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other ~~-'s) is a~~-·" For instance, a common example is the positive 

integers, given by "l is a positive integer, and if n is a positive integer, 

n + 1 is also a positive integer." *GPROD, the term discussed above, has an 

inductive definition. 

While the presence of a term that is inductively defined is a necessity 

for the use of induction, it is certainly not true that use of induction is 

appropriate in all theorems which contain mention of such terms. Many theo-

rems involving finite groups, for instance, are not proved by induction on the 

order of the group. To be short and to the point, a method has not been found 

to enable ADEPT to reasonably decide when to use induction. 

Once such a decision is made, there is little further trouble. A super-

visor along the lines of !SOLVE has been written which, when asked to prove 

some proposition P(n), asks ADEPT to prove P(l) and P(n) ==;> P(n'). Til.is suf-

fices to handle most instances of induction encountered in elementary group 

theory. In general, more freedom is needed to specify the basic case, and a 

non-rigid concept of successor is needed. 

Using the supervisor just described, NSOLVE, a user may decide that a 

proof should be done by induction, and have it done by machine. The two the-

orems mentioned earlier in this chapter are provable by NSOLVE, as well as the 

n simple fact that a 1e G ==l> a
1 

e G for any semigroup G. Using the same guide-

lines for notation described above, NSOLVE can be given problems involving, 

say, finite intersections of sets. For example, consider the problem that the 

intersection of any finite number of subgroups is itself a subgroup. Til.is is 

done easily by NSOLVE if the lemma stating that the intersection of two sub-

groups is a subgroup is known to it. It seems reasonable to assume that this 

lemma would be present as a disjunct of the sufficient condition for subgroup 

available for use on any non-trivial problems. (The proliferation inherent 

in such assumptions will be discussed in the next chapter.) Given this lemma, 

only one extension had to be made to ADEPT. This was to have the search which 

sees if a line about to be put on table II is already on table I take into 

account (free) variables as arguments of terms on table I. Til.at is, a 
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statement of the form P(a1), where a1 is a variable, on table I carries the 

force of its universal generalization, and therefore should suffice to verify 

any statement P(a2) being put on the proof tree. Heretofore, all statements 

put on table I with variables happened to be either implications or equalities, 

and thus a simple check for equality of two statements, one on table I and one 

one table II, was sufficient (given that EQUAL and EQUAL2 were considered 

identical), since the scan would discover other possible inferences. In this 

problem, however, a table I statement (SUBGROUP (*SUB A A N9)) with (free) 

variables A and N9 has to cause verification of such lines on the proof tree 

as (SUBGROUP (*SUB H H 1)), Such an extension to ADEPT is clearly necessary 

and desirable, and can be implemented in a manner so that it will not increase 

running time significantly. 

The preceding paragraphs have mentioned only very simple problems prov

able by induction. 'l'he following discussion is of a considerably harder the

orem. Included here because the proof requires induction, this theorem's 

diacuaaion will also serve to illustrate the problems that will arise when 

definitely more advanced theorems are given to mechanical proof procedures. 

Truly a "Pandora's box catastrophe" is very near, and only inspired heuris-

tica will ward it off. 

The theorem ia that every finite group baa a composition series, and 

first, a proof of this is outlined, in order to make the following c0111111ents 

more intelligible. A composition series of a group G is a aeries of subgroups 

(A.1, ••• , An) of G such that A1 .- { eG}, An • G, Ai-l is normal in Ai and Ai/Ai-l 

is simple for i • 2, ••• , n, and all the Ai's are distinct. To aid in the proof 

is the lemma that A/B is simple (has no non-trivial normal subgroups) if and 

only if B is a maximal normal subgroup of A. Proceeding to induct on the 

order of G, the basis step is completed by demonstrating that ({eG}) is a 

composition series of length 1 for G if G has order 1. Assuming that any 

group of order s m has a composition aeries, a group G of order m + 1 is shown 

to have one by considering its maximal normal subgroup H. H must have ord~r 

s m, and therefore has a composition series (A.1, ••• , An)' where An• H. 'lben 
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it can be shown that (A1 , .•• , An' G) is a composition series for G. '!his 

completes the inductive step and therefore the proof. 

Now consider just a few of the details glossed over in the above outline, 

which cannot be omitted in a machine's proof. '!he definition of a maximal 

subgroup H of a group G includes a statement that the order of H, o(H), is 

strictly less than o(G). To conclude from o(G) s m + 1 and o(H) < o(G) that 

o(H) ~ m requires an explicit step, using one of the numerous relations con

necting<, ~. •, ~. and>. Certainly these relations cannot be given to ADEPT 

as lemmas, but must be built (or "compiled") into the program, and in a way 

that will not cause proliferation of effort. Perhaps this can be done not by 

special-purpose matching routines for Polish notation expressions, but by a 

subroutine built around the use of the linear "lattice" model of the integers. 

Another step left out of the proof is one which might be given as a lemma for 

this theorem, and that is that every finite group G such that 1 < o(G) has a 

maximal normal subgroup. (How ~ADEPT prove this innocent fact?) Another 

detail requires that the definition of ~of a group state that a group of 

order 1 contains one element, and if th~ definition does not specify this 

element to be the identity, ADEPT must be able to prove the admittedly trivial 

fact that it is the identity. 

In addition, demonstration of a candidate for a composition series in

volves a use of existential quantifiers which is not among the special cases 

which SOLVEX can now handle. '!his, of course, will be a frequent occurrence 

as new types of theorems are proposed for ADEPT, and some of the necessary 

extensions will be more difficult than others. 

It is the author's hope that the preceding discussion will clearly illus

trate the difficulties and considerations inherent in proofs of more complex 

theorems. No solutions have been delineated, partly because it is the author's 

contention that the harder theorems introduce radically different types of 

reasoning processes than those used in the types of theorems for which ADEPT 

was constructed. 

Mostly just to prove that it could be done, even though making use of an 
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extension of SOLVEX written to cope with only the above theorem and making use 

of a "loaded" definition of composition series, a version of the preceding 

problem was formulated which NSOLVE successfully proved (with 26 lines and 

using 33 seconds of machine time). The statement of the problem is given here 

in mathematical notation, and the translation into Polish notation follows the 

spirit of the previous discussion on notation for series, iterated products, 

and the like. 

A composition series is defined for this purpose by the inductive state-

ment: B = {eB} =~ (B) is a composition series of length 1 for B; if B has a 

maximal normal subgroup and (A1 , ••. , An) is a composition series for it, then 

(B1 , •.. , Bm) is a composition series for B, where m = n + 1, Ai= Bi for i < m, 

and B 
m 

B. The theorem itself is given as a conjunction of lemmas, followed 

by the conclusion: [G is a group and o(G) ~ n] ==<> G has a composition series. 

NSOLVE is told to induct on n. The lemmas used are: 

i) [A is a group and o(A) s l] ==<>A= {eA}; 

ii) A is a group ==<> [A has a maximal normal subgroup 

which is itself a group, and [o(A) s m + 1 ==<> the 

order of the maximal subgroup of A is s m]]; 

iii) A has a composition series ==<> there exist an integer 

m and subgroups Bi such that (B1 , ••• , Bm) is a 

composition series for A. 

Even these specially chosen statements caused difficulties. In particu-

lar, it was discovered that certain conjunctions on the proof tree were such 

that it made no sense to attempt to prove one conjunct before the other was 

established, and a provision was introduced to flag such a conjunct as "not 

discarded but not to be considered until such and such a time". This was 

crudely done, and is best not described in detail! 

Before embarking on the next chapter for a final discussion of the future 

of mechanical theorem-proving as revealed in the light of the ADEPT program, 

one other example will be considered. Much of the reasoning used in the types 

of theorems which ADEPT encounters is applicable to problems previously given 
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to "advice-takers". In particular, an investigation was made to see what 

modifications would have to be made to ADEPT to solve a version of the MIKADO 

problem, originated by Safier(ZO) and discussed by Slagle. (Z 4 ) It turns out 

that very few are necessary. The access to tables of definitions and suffi

cient conditions is blocked, for advice-taker problems are stated in 

self-contained packages. Koko, Nankipoo, Katisha, and Mikado are declared to 

be variables (it does not matter which kind!), and one extension is made to 

SOLVEX, allowing an expression of the form (3a1) ••• (3an)P(a1 , ... , an), for 

some expression P which is a single term followed by its arguments, to be 

"solved" if a statement P (b 1 , ••• , bn) is on table I. The problem can then be 

proved by ADEPT if stated as follows: 

hypotheses: 

i) (Unmarried*female Katisha) 

ii) (Unmarried*male Koko) 

iii) (Not*think*dead Mikado Nankipoo) =::;> (Can*stay*alive Koko) 

iv) (Can*appear*safely Nankipoo) =::;> (Can*Produce Koko Nankipoo) 

v) (Not*accusing Katisha Nankipoo) =::;> (Can*appear*safely Nankipoo) 

vi) (Not*claiming Katisha Nankipoo) ==i> (Not*accusing Katisha 

Nankipoo) 

vii) ( 3a1) (Can*produce a
1 

a
2

) =::;> (Not*think*dead Mikado a2 ) 

viii) (Married Katisha) ==i> (Not*claiming Katisha a
1

) 

ix) ( 3a1) (Can*marry a
1 

a
2

) ==i> (Married a
2

) 

x) (3a1)(Can*Propose a 1 Katisha) =::;> (3a1)(Can*marry a 1 Katisha) 

xi) (Unmarried*female a
2

) & (3a
1

)(Unmarried*male a 1) =::;> (3a1) 

(Can*Propose a 1 a2 ) 

conclusion: 

(Can*stay*alive Koko) 

In the above, a 1 and a
2 

are assumed to be variables; i.e., the first six 

hypotheses form the first conjunction of input, and the last five hypotheses 

form the second. 

This statement of the problem should be compared closely with that given 
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in Slagle. <24
) The propositions involving causality used in Slagle's proof 

were not used with ADEPT, so it is not surprising that ADEPT's proof is 

shorter; in fact, it is much shorter, taking only 14 seconds instead of 

Slagle's 5.7 minutes. But ADEPT is not an advice-taker in a general sense, 

so the preceding comparisons are not too cogent. It suffices to say here 

that ADEPT can handle at least some advice-taker problems. In Appendix I, 

a more detailed discussion of advice-takers and how they differ from ADEPT 

will be given. 
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CHAP?D VIII 

FUTURE POSSIBILITIES AND CONCUJSIONS 

It is time to evaluate the ADEPT project and discuss possibilities for 

future work uncovered through inst.ghts and experience obtained from the pro-· 

gram. To do this to beat advantage requires a restatement of the purposes 

for which ADEPT was created. Primarily, the goal was to obtain a program 

which could handle a significant number of theorems of elementary group the

ory. Needleaa to say, these theorems were to be drawn from the simple1t 

results, the foundations of the subject. 'l.'heae seem to fall into four main 

classes: i) those which require 11cbnstructiona", such as the proof that a 

left identity is also a right identity, ii) thole which follow by straight• 

forward inferences from ba1ic concepts, iii) those which depend to a large 

extent on knowledge of simple facts in nmaber theory, such as easy ruulta 

regarding finite groups, and iv) those which serve as illu1trative examples. 

It was deci-ded to use theorema of the second type, on the assumption that the 

deductive rea1oning required to handle them would be mo1t generally applicable 

to all kinda of theorem-proving. 

As a matter of fact, consideration of the developnent of the simple proof 

that the kernel of a homomorphism is a subgroup of the domain of that homomor

phism was instrumental in defining the ba~ic structure of ADBPT. Subsequent 

consideration of numerous theor_. of the 1ame type led to the growth of ADIPT 

to its present form, complete with a number of special-purpose heuristics. 

Indeed, the limited goals for ADEPT as a program have been met, for nearly 

one hundred theorema of group theory have been proven by this computer algo

rithm, and the program has sufficed to provide legitimate evaluation of vari

ations in the algorithm and their effects. 
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It may be objected that the proofs produced by ADEPT are sometimes inef-

ficient, not to mention that some problems of the type that is ADEPT's spe-

cialty "stump" the program completely. In reply one has only to note that any 

routine which can produce proofs of all the various facts that ADEPT has es-

tablished in consistently less than two minutes of computer time per proof 

cannot be seriously inefficient. (The isomorphism theorems if considered as 

three or four "proofs" each conform to this statement.) This is particularly 

cogent when one considers that ADEPT is written in LISP 1.5, a language not 

noted for execution speed. As for the similar problems with which ADEPT cannot 

cope, they are not numerous. Indeed, most have been discussed in earlier 

chapters, on the assumption that examination of shortcomings is more instruc-

tive than perusal of successes. The fact remains that the successes far out-

number the failures. More importantly, the class of theorems for which ADEPT 

was designed has been essentially exhausted in the course of this project. 

'Dlis fact has two important consequences. One is the fact that improvements 

made to ADEPT in order to enable it to prove those theorems of the same type 

which it cannot prove would not result in a program which could prove many 

more theorems. The other is that refinements designed to increase efficiency 

could only be used on the same theorems, which do not now require prohibitive 

amounts of effort. 

More serious,is the complaint that, though ADEPT can prove an impressive 

number of theorems, many must be stated in a "correct" manner in order for the 

program to be successful. In many instances this complaint is, in the author's 

opinion, not valid. In particular, it is maintained that a user can be reason-

ably asked to exercise care in deciding upon the form of statements presented 

to ADEPT, as least at this stage in the art of theorem-proving. For instance, 

choices between asterisked and non-asterisked notation, or between the various 

logical constants for equality are often critically important, and the user 

has a responsibility to aid ADEPT in this heuristic matter. 'Die complaint is 

valid, however, in the case where the number, and not the form, of the hypoth-

eses is in question. The user cannot be expected to know the minimal set of 
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hypotheses needed for a proof. 'lbus this is a definite shortcQllling of the 

ADEPT program. 

Changes designed to ameliorate this failing could be tested on the same 

theorems which ADEPT has already considered, by making use of the enormous 

number of possible ways of overspecifying the hypotheses to these problems. 

This is the case even if only "natural" unnecessary assumptions are introduced. 

But the weakness of ADEPT in coping with overspecified theorems is an indica

tion that more serious difficulties will arise when more difficult problems, 

based on a broader base of known concepts, are considered. For instance, the 

introduction of numbers and their associated properties could complicate a 

proof considerably. Add to this another inefficiency which has been tolerated 

until now but which must be faced in the near future, namely excess branching 

due to the associativity axiom, and a good case has been made for conducting a 

full-scale investigation of more efficient theorem-proving with an eye to a 

much larger class of problems. 

How, then, can such difficulties be overcome? Can it be by additional 

special-purpose heuristics, or by some general planning heuristics, or by an 

entirely different and more appropriate algorithm? 'lbe answer, as is so often 

the case, is probably a combination of the possible courses of action. Still, 

it seems that the most efficacious improvement would be the introduction of 

some kind of planning. 'lbis could take a variety of forms. In fact, some 

planning is already present in ADEPT. HOMDMF effectively delineates a plan to 

be followed to attempt to verify certain equalities (those given by FEQUAL). 

On a larger scale, !SOLVE represents a plan for approaching an isomorphism 

problem. Similar plans could be developed for other special subclasses of 

theorems or types of lines on the proof tree. One possibility is a special 

executive like !SOLVE designed for closure problems. A closure problem is 

one where, assuming a variable or variables are members of some set, it is to 

be shown that a certain function of those variables is again a member of the 

set. Showing sets to be subgroups or normal are problems of this kind. As 

was seen in Chapter V, efficiency difficulties have occurred in such theorems, 
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and a plan incorporated in a supervisor might be an an•wer to such troubles. 

To resort in this manner to separate routines for each kind of problem 

is an abandonment of any hope of developing a general-purpose problem solver, 

except for a program to perform the very trivial deductions which form the 

core of most proofs. Such despair may be justified, but this cannot be argued 

conclusively at this date. For one thing, there are more general ways to 

attempt planning. One such possibility would not be hard to try with ADEPT, 

and probably should be tried soon. This particular planning heuristic will 

now be elaborated upon in some detail. 

In Chapter III the phrase "explore consequences of all terms ••• " was 

used, to indicate a call to SCANW to match against lines on the proof tree 

all instances of definitions of the terms in question!!.!!!!.!!. all other hy

potheses and accumulated "knowledge" on table I at the time of the call. In 

the early stages of a problem this amounted to a planning heuristic, for due 

to the selective placement of entries on table I, very little was on table I 

except entries associated with the terms in question. 'l'hus the ''plan" was to 

apply to a line on the proof tree only facts known about terms, etc. of that 

one particular line. As the proof progressed, and more entries appeared on 

table I, this heuristic gradually "disappeared", giving way to-• procedure 

of a much more "brute-force" character. Why not employ this heuristic at all 

times, thus incidentally eliminating the need for selective placement of 

entries on table I? This could be done by "indexing" all table I entries, 

according to their origin. Obviously there would be the original hypotheses, 

and the lemmas which were added during the proof, but more importantly, those 

entries which were definitions of terms could be "tagged" by that term, and 

singled out from table I whenever that term was spotted in a line of the proof 

tree. 'J.'hus for every line of status PNT, when it was scanned table I could be 

divided into two parts ~ a select part including all definitions of terms or 

constants in the line being scanned (and perhaps the original hypotheses), and 

the remainder of table I. Clearly the select subset would be used alone by 

the scan at first, and if no success or progress resulted, possibly but not 
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necessarily the remainder would be considered. 

In conjunction with the changes now being suggested, two details should 

be implemented. One concerns a more involved check of the constants of a line 

being examined. At present, for each constant of the line, a search is made 

through table I for entries which define it. To be precise, a constant A is 

defined by an entry of the form (TERM A ••• ), and the resulting action is the 

placement on (the select portion of) table I of the proper instance of the 

definition of TERM. 'Ibis procedure handles set and function constants ade

quately, but very seldom provides any information regarding constants which 

are members of sets. To remedy this, the procedure could be supplemented by 

a search of table I for terms defining not only the constants of the line of 

status PNT, but also all set constants A from table I entries of the form 

(MEMBER Al A), where Al is a constant of the line of the proof tree being 

examined. (For asterisked notation this procedure would put on (the select 

portion of) table I an instance of the definition of *TERM when Al was found 

in an entry of the form (HIMBER Al (*TERM ••• )).) lbia would provide a more 

complete determination of which entries of table I are relevant to a given 

proof tree line of status PNT. 

In addition, it is suggested as a result of experience, that certain 

entries of the select portion of table I be given even higher priority. This 

might be too difficult to implement to be practical, but the idea is this. 

Consider the case where a line !!. of the proof tree has given rise to a reduc

tion !!.l due to an application of detachment from an implication of table I in 

logical class m. Suppose further that other table I entries in the same log

ical class could have caused substitutions in line !!.• if this were not pre

vented by the restriction described in connection with "progress heuristic" 

B. lbe suggestion is that if the same "inhibited" substitutions are now pos

sible in a line of the proof tree which is either !!.l itself or a reduction of 

!!.l• that these should be done first, and given a definite priority. As an 

illustration of this, the reader is urged to refer back to Problem v-c, and to 

note that implementation of this suggestion would remove the inefficiency 
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associated with that proof. 

Tile heuristics just described, by analyzing more completely the content 

of a line of the proof tree, including, in the last suggestion, an element of 

analysis of how the line originated, clearly would implement a greater degree 

of "awareness" to the program, so that it could be maintained more cogently 

that ADEPT .would be performing as though it knew where it was in a proof. On 

a more prosaic level, proofs would run faster, if only because just a subset 

of table I would be used by SCANW except in unusual cases. Some proofs would 

no doubt be shorter from the point of view of the number of lines on the proof 

tree, but it is less clear that increased efficiency would manifest itself 

noticeably in that manner. Another important advantage would be gained ~ 

namely that the separation of a select portion of table I before scanning 

would enable ADEPT to cope successfully with problems involving a longer total 

table I; i.e., problems with more hypotheses or problems involving a broader 

base of concepts. There is no reason to believe that single lines of the 

proof tree in such problems would have more terms and constants than at pres

ent; thus the size of the select portion of table I for any given line should 

remain small and manageable. 

While the previous heuristics would enable ADEPT to handle more assump

tions, hypotheses, etc., they do nothing to alleviate a similar problem~ 

more branches on the proof tree. As theorems become more complex, and ADEPT 

acquires a broader base of "knowledge", lines of the proof tree will have 

greater numbers of reductions. One example of this was alluded to briefly in 

the last chapter ~ sufficient conditions will have to be disjunctions with 

many clauses. Under these conditions, it will be impossible to expect ADEPT 

to consider reductions of lines in the order of their generation, as is pres

ently done. Some choice will have to be made, on the basis of the particular 

context of the theorem at a point in its proof. One isolated suggestion was 

made in the preceding discussion concerning a proposed priority for substitu

tions "delayed" by prior applications of detachment. A crude choice could be 

based on length or complexity of a reduction, with "simpler" reductions being 
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processed first. Such a heuristic might work in some cases, but it is the 

author's opinion that any such completely syntactic heuristic would have lim

ited effectiveness. Perhaps it would be best to use a complexity heuristic 

only in cases where one alternative is dramatically simpler than the others, 

as sometimes happens when a "correct" substitution results in a "collapsing" 

of a lengthy expression to a very simple one. 

Other possible criteria for ordering reductions of a line are based on 

the history of the reductions. For instance, since generation of reductions 

by detachment has been seen to be correlated with progress, perhaps reductions 

generated in this manner should be considered first. Another possibility 

which may have a desirable effect is to keep track of the logical class of 

the table I entry which is used in generating each reduction of a line on the 

proof tree. Then a list of all logical classes of table I entries used in 

the steps from the head of the tree to any particular branch would be avail

able. (When an implication is split and the reduction is an instance of the 

consequent of the parent line, there is no associated logical class, but 

neither is there any other reduction necessitating a decision.) Given this 

history of a line, priority could be given to reductions generated due to 

axioms, etc., in a new logical class, or in a little-used logical class, or 

perhaps in a logical class that had not been used recently. This would be a 

manifestation of the heuristic stating that all the hypotheses may be needed 

for a successful proof. (l6) 

Another suggestion is to make use of a grouping of terms into classes 

according to their generality. For instance, subgroup is probably the most 

general term which defines a set in group theory. In contrast, an inverse 

image can be considered to be a fairly specific set. With such a grouping, 

which would not have to be too refined, preference could be given to reduc

tions generated using table I entries obtained from definition instances of 

the more specific terms. The rationale behind this proposal is shown in 

many of the examples of the earlier chapters. Many theorems involve subgroups, 

for instance, but the presence of the instances of the definition of subgroup 
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must not cause a lot of extra branches, as it presently does in ADEPT. So 

this is a heuristic which might help the program to cope with overspecified 

problems and problems with many hypotheses. 

Some of the above suggestions may be futile hopes. One important fact is 

that because of this project, it is or may soon be possible to test such heu

ristics. Using ADEPT or a slightly (not greatly) improved ADEPT and the more 

difficult of the theorems already proved by ADEPT along with some of a slight

ly harder nature, it should be possible to obtain significant evaluation of 

the effectiveness of such schemes, and of different combinations and prior

ities in combinations of such schemes. 

Incidentally, the worth of some of these proposed heuristics will vary 

according to the degree to which a hypothesis is liable to be necessary. For 

simple problems, this means that techniques used to cope with theorems stated 

with deliberate "red-herring" hypotheses will vary from those used for more 

ideally stated problems. For harder problems, it means that because of the 

larger number of hypotheses per problem, and therefore the lessened likelihood 

that any one hypothesis will be "correct" for a given step, and because of hy

potheses included due to uncertainty over their relevance, different criteria 

for evaluation may be needed than were optimum for simpler problems. To give 

an example, the ~uggested "approval" for use o.f axioms of varied logical class 

is obviously a heuristic which could lead to wasted effort in the presence of 

irrelevant hypotheses. 

A couple of other details involving ordering of reductions are of more 

certain usefulness. The MODEL heuristic can be applied to lines of the main 

proof tree, not to accept or completely reject lines as it does for those of 

status ST, but to give an indication of the likelihood of proving a reduction 

of the form a 1e A. And it hardly needs to be mentioned that when one reduc

tion happens to be a conjunction, which will itself be of status NILL, that 

this branch should be ordered according to the worst evaluation of the two 

co-conjuncts. Such pessimism is only cormnon sense since both conjuncts would 

have to be established in order to verify their predecessor. 
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It should be noted that adoption of schemes for ordering reductions 

raises questions about the order in which the total proof proceeds. Some 

heuristics would appear to decrease the need for complete scans, but if SCANW 

is not called often, a new procedure will be necessary to adequately process 

lines of status ST, the subordinate trees. It will be necessary to specify 

when to end processing of a selected reduction. If processing is ended in the 

same way as that of a line of status PNT is terminated at present, where does 

the program go next? 'lbe answer nearest to the spirit of the present version 

is illustrated as follows: Suppose line (4), say, has just been processed, 

and the next line of status REL able to take on status PNT is line (6). Per-

haps line (6) is a reduction of line (3), and another· reduction of (3), say 

line (9), is of higher priority. Then simply interchange lines (6) and (9) 

and proceed as usual. 

Some other heuristics which can properly be called planning heuristics 

are suggested by features of previous work in problem-solving by computer 

which were not included in ADEPT. For instance, the difference-operator tech

niques of Newell, Shaw, and Simon(lS) have an obvious application for the 

establishment of identities. For example, when an equality requires a switch-

ing of constants, as in a proof that a set is abelian, the axiom concerning 

the inverse of a product may be useful, as in Problem V-E. While it would 

seem impractical to develop a complete GPS-like routine to handle such steps, 

certainly some sort of comparison between halves of an equality could be 

developed and used to some degree in the choice of the next step to be made 

by ADEPT, as well as a means of evaluating progress. A more specific heuris

tic is suggested by a particular example in one of the GPS papers. (lS) 'lbere, 

planning is done by "abstracting" the problem; since the domain of the example 

is the predicate calculus, this could be done by ignoring connectives and the 

order of the variables. ADEPT has need of such an approach in its treatment 

of associativity. Here the abstracting would be accomplished by ignoring 

grouping; i.e., "remove the parentheses". 'lbere are strong reasons for for-

mally considering composition as a strictly binary operation, for this 
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simplifies the task of formalizing and programming group-theoretic algorithms 

tremendously. But it has become obvious that at certain times in some prob

lems, ADEPT must be able to "stand back" and consider the lines of the proof 

tree in this more abstract form, thus making optimum use of the known hypoth

esis of associativity. Surely it would not be difficult to decide upon a 

precise form for this special-purpose planning heuristic and then to implement 

it within ADEPT. 

What are the implications of the implementation of planning heuristics 

for the methods of determining "progress" in ADEPT? Is heuristic B, which is 

presently in use, suitable for a program altered in ways such as have been 

considered above? The answer is that heuristic B is not sophisticated enough, 

but more constructive comments are not as easy to make. Of course, if a pri

ority scheme is adopted to order reductions of lines, the method of assigning 

priorities will probably also be of some application for a determination of 

progress. For instance, if terms are classed according to specificity, gen

eration of a reduction of a line by detachment using a table I line arising 

from the definition of a very general term may well not be considered grounds 

for declaring "progress" or for putting a line of status REL into status RELL 

Conceivably, with good enough planning and ordering heuristics, there would be 

no need for status RELl. Or if determination of order of reductions depended 

strongly upon which were generated by detachment, perhaps a progress heuristic 

should not be based so strongly on application of detachment. It does seem, 

however, in the light of results obtained so far with ADEPT, that uses of 

detachment must be given some kind of special consideration in either planning 

or evaluating steps in any extension of ADEPT. 

Of course, if special-purpose executives, like ISOLVE, are constructed, 

as was suggested above for closure problems, the need for lower-level planning 

and evaluation of progress will decrease markedly. In fact, since a large num~ 

ber of theorems considered thus far with ADEPT are closure problems, it might 

be a worthwhile short-term project to develop such an executive in order to 

evaluate the special-purpose approach. In contrast, development of planning 
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heuristics and more sophisticated progress heuristics should be done in light 

of more theorems than those considered so far in the course of this project. 

It should also be noted that other existing heuristics besides those 

connected with "progress" may be rendered unproductive by the adoption of 

planning techniques. Just as an example, the heuristic of substituting in 

only one half of an equality on the proof tree may be found to be of no fur-

ther value. As in all this discussion, precise statements about effects can 

not be made until a particular combination and implementation of some or all 

of the possible new heuristics is adopted and fixed. 

As mentioned at various times in this report, part of the effort of ex-

tending ADEPT will have to be devoted to development of specific subroutines 

to augment the existing program. These are not heuristics, but merely capa-

bilities for different types of problems. SOLVEX will have to be able to 

handle expressions of the form (3a1)Pa 1 for a broader class of expressions 

Pa
1

, including expressions themselves headed by an existential quantifier. 

The need for a routine to discover "constructions" or expansions has been seen 

in a number of examples. Such a routine will not be easy to develop. It will 

have to include heuristics, quite possibly ones very reminiscent of Newell, 

Shaw, and Simon's GPS. (lS} This routine will govern those cases where equal-

ities expressed using EQUAL (including those handled by the simplification 

routines associated with PUTON2) should be applied in the unnatural direction. 

It should also be capable of either performing or setting up intermediate 

-1 -1 -1 
steps so that ADEPT can perform substitutions such as a 1a2 ~ (a2a 1 ) , 

which were seen to figure in some of the theorems covered in Chapter VI. 

As difficult as it will be to devise a "construction" subroutine, an 

even more difficult task will be to decide algorithmically when to use it. 

Here the realm of the unexplored has been reached. No longer does the orien-

tation of ADEPT seem so productive, but still it is infinitely preferable to 

the orientation of the complete predicate calculus procedures. Here open, 

creative minds are needed to cross a gap of ignorance. Similar situations 

have come up before in this report. When should induction be used? What 
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procedure can isolate the variable on which the induction will take place? 

For proofs by contradiction, efficiency virtually demands prior selection of 

the hypothesis most likely to be contradicted by the consequences of assuming 

the denial of the conclusion. Even more difficult·is the question of when to 

abandon proof of a proposed theorem and try to construct a counter-example for 

it. (Incidentally, a good "give-up" heuristic could conceivably make it 

practical to try all of the methods of proof on a given problem, thus elimi

nating the need to choose between proof by induction, contradiction, etc., 

without increasing the total amount of effort involved by a ver·y high factor.) 

And ultimately, could a computer program generate likely candidates for 

theorems? 

Returning from this dash into the world of the relatively distant future 

of theorem-proving by computer, consider problems of only slightly greater 

difficulty than those already done by ADEPT. In particular, consider briefly 

how the concepts of ~ of an element and ~ of an element are naturally 

used in the proof of the Sylow theotems, which need only mention ~ of the 

group in their statements. This is not an isolated example; to prove more 

advanced theorems one must know what method to use, and the method often in

volves introduction of other concepts. In part, one learns from experience, 

but if only from experience the result is a group theorist like the author, 

who is unable to prove a theorem unless he has seen the proof of a similar 

one! But how does the mind of the creative mathematician work? Could a 

scholar outline an algorithm suitable for a computer? ls it not more likely 

that a progranmer attacking this problem will meet the same frustration as 

Dr. A. L. Samuel met when he found that expert checkers players did not under

stand how they played the game? 

Thus the author firmly believes that radically different approaches are 

used in the thought processes of human mathematicians as they work on harder 

theorems, and therefore different algorithms will be needed to prove harder 

theorems by computer. Indeed, though it could be broadened to prove more the

orems, ADEPT is already to the point where its orientation has approached the 
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limit of its productiveness, and fresh ideas are needed in order to produce 

efficient proofs of harder theorems. There will, however, be need for ADEPT, 

or rather for an improved ADEPT, in future problem-solving programs no matter 

what their organization, for harder theorems will have sub-theorems which are 

precisely the type of problem for which ADEPT was constructed. In addition, 

part of the reasoning process of harder proofs, particularly once a general 

method of proof has been chosen, will involve just those very logical infer

ences that ADEPT can handle. 

In summary, what has been done is this. Starting with a desire to captur~ 

in an algorithm suitable for a machine the human thought-processing used in 

elementary group theory, a program was developed. Before this development 

could be accomplished, a decision had to be made between two possible orienta

tions - the ''mechanical" and the "heuristic". The former had been considered 

more extensively in previous projects. On the surface it seemed that a com

binatorial, manipulative approach with a simple but powerful theory behind it 

was ideally suited to a computer program, as well as providing the satisfying 

theoretical "completeness" which is a consequence of the theory. But the pre

vious efforts had shown that what seemed ideal in theory was not at all ideal 

in practice, and in fact discouraging barriers were encountered in the realm 

of efficiency. At the same time, the heuristic approach had not been shown to 

be necessarily superior, but at least it was a viable alternative. Its main 

advantage is that the progranmer can avail himself of human experience in a 

direct way. By introspection and investigation of mathematical reasoning as 

seen in the literature, an attempt can be made to understand how the human 

mathematician is able to reduce what is combinatorially a gigantic problem 

to manageable size. (It must not be overlooked that even this "size" is not 

small when one takes into account the "experience of the ages"~ the store of 

knowledge and effort of centuries before.) 'lbus the investigation takes on a 

two-fold interest ~not only is there the attempt to construct a working 

algorithm, but there is the endeavor of understanding in part the techniques 

of the brain, and formalizing those steps of logical deduction that are done 
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literally without thinking. 

There is no claim here that what is best for the mind is best for the 

machine. It is certainly conceivable that the optimum way for a computer to 

prove theorems bears little relation to human thought. But at the present 

time it is not known what this might be. One "non-human" orientation has 

already been seen to not be the answer. Meanwhile, progress can be made, both 

in developing algorithms and in understanding the problem itself, by consider

ation of what people know about what is, after all, a uniquely human ability 

at this time. 

Pointed in this direction, the development of ADEPT began. First and 

foremost, as has been seen, the program has been successful, though this fact 

may have been obscured at times by the discussion of ADEPT's shortcomings and 

what could be done next. Not only have non-trivial theorems been proved by a 

computer program, but a huge number of insights into the natures of specific 

problems and types of problems as they are approached algorithmically have 

been obtained. Furthermore, heuristics have been discovered and evaluated, 

now that a suitable vehicle for such experimentation is in existence. It will 

be instructive to list briefly, in a single compact list, the heuristics used 

in the course of this project. 

1) Implementation, through the use of specially introduced 

logical constants for equality (EQUAL and FEQUAL), of 

restrictions on substitutions and of different methods 

of processing lines. 

2) Substitutions allowed in one side only of an equality 

(EQUAL or EQUAL2) on the proof tree. 

3) Performance of related substitutions simultaneously, 

implemented through the use of a "logical class" for 

table I entries. 

4) Processing of lines headed by an existential quantifier 

by special cases, as opposed to a uniform procedure. 

5) Selective placement of definition instances on table I, 
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done as terms are encountered in the course of a proof. 

6) Restricted matching allowed for expressions consisting 

of just one free variable. 

7) "Compiled" application of common identities as a line is 

put on the proof tree, sometimes resulting in simplification 

of the line, and other times resulting in additional 

substitution instances of the line. 

8) lb.e MODEL heuristic, allowing rejection of some new sub

ordinate trees started by an expression of the form 

(MEMBER Al A), using a "lattice" model of the sets involved. 

9) Various progress heuristics, in particular, heuristics 

A and B, involving consideration of detachment. 

Some of these heuristics have proved more successful than others. For 

instance, numbers 1), 3), 6), 7), and 8) seem to have proved their value con

clusively, and can be retained in essentially their present form. Others, as 

implied in the preceding discussion of possible improvements, may be found to 

be of less importance or worth. And obviously, new heuristics are still 

needed. 

lb.ough ADEPT never was intended to embody a "complete" procedure, a 

moment's reflection will show that some of the above heuristics further limit 

ADEPT's theoretical power. For instance, sometimes "progress" is declared 

erroneously, as in the overspecified version of Problem V-A. It would, of 

course, be a trivial matter for ADEPT to be progra1111Ded so that once it became 

"stuck", it lifted these heuristic restrictions and redid the problem in a 

more comprehensive manner. (It is a less trivial matter to "know" when the 

program is "stuck"!) But such a recovery procedure is of little interest, as 

is obvious from the original abandonment of a "complete" procedure. A de

crease in ADEPT's theoretical power caused by a heuristic is of no concern, 

if the heuristic permits more efficient proofs for more theorems in general, 

where ''more", of course, has to refer to a great many more theorems than are 

"foiled" by the proposed heuristic. Certainly the heuristics included in 
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ADEPT conform to this policy. They have enabled ADEPT to perform acceptably, 

and what is more, this report has been candid about those examples which point 

out shortcomings of the heuristics. 

The question can be raised: Why stop here? Many possibilities, both 

inmediate and more long-range, exist for continued work. The answer is not 

simply that one has to stop someplace; this is in reality a natural 

break-point. This is not to say that what exists of ADEPT is perfected; it is 

not even to say that the discussion of future possibilities suggests answers 

to all of the problems raised in the earlier chapters. However, as stated 

earlier, no simple alterations or extensions to the program will enable it 

to handle a significant number of new theorems. ~ite the contrary; unless 

major additions are created, only better proofs of theorems already provable 

will result. 

Therefore, this project (and this report) com.ea to an end. Those diffi

culties encountered and overcome in the course of these efforts can now be 

handled routinely in the future, freeing further researchers in the area of 

heuristic problem-solving so that they 11111y be able to concentrate more clearly 

on the harder problems ahead. 

One final caament should be made. It has been suggested to the author 

by Tim Hart that heuristics developed by experiments such as have been carried 

out with ADEPT may be able to be restated in a form compatible with "complete" 

procedures, and incorporated into them, perhaps to the end that a basically 

combinatorial approach will surpass the basically heuristic, empirical ap~ 

proach. This is in no way an argument against the ADEPT project. If such a 

reliance on heuristics which can only (or at least more easily) be discovered 

through the mere natural orientation to theorem-proving used in ADEPT, can 

then be transferred to a more mechanical program, the dividing line between 

the two approaches will virtually disappear, and advantage will have been 

taken of the best virtues of both. To the author, though, the most important 

contributions will still be the heuristics. Hopefully, ADEPT will pave the 

way for important discoveries of that nature. 
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APPENDIX I 

OTHER WORK IN THEOREH.-PROVING 

This discussion of related work in theorem-proving has been placed after 

the body of the report on ADEPT for two reasons. The first is that before 

understanding the approach used in ADEPT it would not be clear which previous 

projects were relevant as background. Secondly, this history can now be sup

plied with comparisons and c011111ents on the author's contributions. 

The appearance of theorem-proving as a branch of artificial intelligence 

was inevitable. As soon as researchers began to explore the potentialities 

of digital computers for tasks other than numerical computation, and more 

specifically, as soon as non-numerical tasks requiring "intelligence" were 

seen to be legitimate subject areas for computer programs, artificial intelli

gence was in existence. It is not the intention of this coamentary to define 

the proper bounds of this area of computer science, or to become involved in 

a harangue over the use of the word "intelligence". The fact is that it be

came possible to conceive of a digital computer, properly prograumed, making 

decisions and performing tasks that in human experience necessitated "thought" 

and reasoning of a higher level than merely mechanical operations. Such possi

bilities were highly exciting. If achieved, computers could become extremely 

powerful and valuable aids, much more so than they are because of their com

putational capabilities alone. As a by-product, scientists would have a use

ful model of a class of human mental processes. Consequently, artificial 

intelligence projects were undertaken. Not surprisingly, the first tasks 

explored in these endeavors contained a large element of mechanical procedure 

and only a small amount of required "thinking". Excellent examples were found 

in games and in the theorems of the early chapters of Russell and Whitehead's 
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monumental Principia Mathematica. Closely related, though not usually put 

under the category of artificial intelligence, was the effort to make rough 

translations from one language to another. 

Work in all these areas became more sophisticated. An admirable achieve

ment was made by Dr. A. L. Samuel in his master-level checkers program, (Zl) a 

milestone in artificial intelligence, and an excellent example of a 

special-purpose program designed to do only one task, and to do it well. Pro-

grams for computerized formal mathematics also became more ambitious, and the 

early programs for doing mathematical logic were joined by such successes as 

Gelernter's geometry program <5 ,G) and Slagle's symbolic integration pro

gram. (2J) Because of its self-contained nature, at least in the early stages 

of the subject, and its ease of formalization, the theory of abstract groups 

became a frequent subject of theorem-proving programs. But the successes 

were followed by a long series of slight improvements, without any real 

break-through. 

Meanwhile, a number of investigators delineated a problem area of 11 logi7 

cal deductive reasoning", independent of subject matter. Often with ambitious 

claims of generality and applicability, programs were constructed to handle a 

wide variety of questions. Some, as GPS -- Newell, Shaw, and Simon's General 

Problem Solver, (l5 ) were actually crude models of human rational thought. By 

necessity, these general programs contained heuristics -- procedures designed 

to cope with certain cases or combinations of events in a manageable way; pro-

cedures believed to be of wide applicability but not necessarily guaranteed to 

be always productive. Heuristic, general routines needed to be tested on some 

particular syllabus. Often this syllabus was drawn from the theorems of some 

branch of mathematics. 

In any event, the attempt to prove theorems of formal mathematics by 

computer is not done as an end in itself, but as a step toward the achievement 

of artificial intelligence, in the hope of achieving a much greater usefulness 

of digital computers. At the present day such a hope is far from realization, 

and so work in artificial intelligence continues to concern itself with 
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theorems, games, etc. 

Henceforth this discussion will concentrate only on the area of 

theorem-proving by computer. Progress is being made constantly, and the 

state of the art is no doubt rather more advanced than can be seen from the 

literature, due to the time lag involved in publishing. In particular, pro

jects are known to be under way at MIT and at Carnegie Tech at this time, and 

undoubtedly other work is in progress elsewhere. However, only what has been 

published will be presented here. 

The fundamental difference between the mechanical and heuristic ap

proaches to theorem-proving has already been maintained. A familiarity with 

the general organization of a "complete" proof procedure has been assumed, 

and ADEPT itself is an example of the heuristic, albeit special-purpose, ap

proach. What has not been done is to point out how far other projects have 

gone, and to compare ideas used in ADEPT with some of those used in earlier 

programs. 

Beginning with the mechanical, combinatorial approach, what can be said 

about the capabilities of the many programs of this nature which have been 

written, and what means have been employed to reduce combinatorial explosion? 

The most encouraging report is that of Wos, Robinson, and Carson, <29> which 

relates that a program (hereafter called the "Wos program") solved Problem 

V-E (a group each of whose elements is of order 2 is abelian) in as little as 

5.18 seconds. The main heuristic used was the so-called "set of support strat

egy", which can be described precisely only in terms of a formal logical sys

tem, but which amounts to giving special consideration to the conclusion and 

special hypotheses (in this case the hypothesis that a
1
a

1 
= e for all a 1 in 

the group). Since the proof procedure works forward, attempting to generate 

a contradiction from the hypotheses and the denial of the conclusion, this 

means that the program looked for contradictory sets of statements only among 

sets of statements containing clauses derived from the two lines which were 

singled out. In ADEPT, such a heuristic would essentially say that any proof 

must make use of all special hypotheses, where the user, as in the case of the 
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Wos program, tells the program which hypotheses are to be so treated. 

In the Wos paper, the interplay between the set of support strategy and 

an arbitrary bound imposed on the complexity of statements generated is dis

cussed. The latter involves a guess as to the complexity of the proof of a 

proposed theorem. Not surprisingly, in the presence of an accurate guess the 

set of support strategy is of little help. But its worth is clear in the 

absence of such a guess, for with the strategy a 37 .• 5 second proof is obtained 

when no bound is specified, while a 411 second proof with a conservative bound 

and no proof at all with no bound is obtained without the set of support strat

egy. ADBPT's performance on this problem has already been discussed. Its 

"working backward" elminates much of the need for the set of support strategy, 

inasmuch as most irrelevant lemmas in ADEPT are automatically excluded. It 

was seen that ADEPT 

about a consequence 

could not solve the problem without 

-1 of the hypothesis, namely a 1 • a 1 

being explicitly told 

for all a 1 in the 

group. As described in Chapter V, ADEPT proved two versions of the restated 

problem, and one took 22 seconds while the other took 82 seconds. Only 18 

lines on the proof tree were needed in the latter case, as opposed to over a 

thousand for WOs' worst case. In conclusion it should be pointed out that 

this problem is quite a bit more suitable for a combinatorial theorem-prover 

than many which have been solved by ADEPT. 

'11le Wos program, of course, profited by the experience of its predeces~ 

sors. It uses a variation of the Herbrand procedure that was formalized by 

J. A. Robinson, (l9) using a single rule of inference, resolution, which is 

rather well-suited for the task of mechanization. Robinson, in turn (as is 

excellently recounted in his 1963 paper(18>), drew upon improvements outlined 

by Davis and Putnam()) and others. All in all, much effort has been spent on 

developing an extremely efficient fonnalization of a complete proof procedure, 

greatly refining Herbrand's original scheme. For instance, properties common 

to the syntax of contradictory sets have been utilized. But refinements in 

the procedure are not heuristics, and are not even subject-oriented. 

Hao Wang has done a great deal of investigation<26 •27 •28) along similar 
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lines. For instance, he has improved procedures by developing separate algo-

rithms for statements of different syntactic forms; i.e., different patterns 

of quantifiers in prenex normal form. Wang's papers contain the most persua-

sive arguments for the combinatorial as opposed to the heuristic approach. 

Unfortunately, his arguments for the preferability of a sound theory and 

complete procedure seem based on a faith that such an approach can, with ef-

fort, be made successful. No program has been demonstrated to date to support 

this faith. If it is a justifiable hope, Wang's arguments would be hard to 

ignore; if, as this author believes, the hope is forlorn, then the theoretical 

advantages of a complete procedure are irrelevant. 

This concludes an admittedly brief account of combinatorial 

theorem-proving programs. Before a discussion of specifically heuristic 

problem-solvers is begun, mention should be made of the work of a man who had 

no interest in computer programs for formal mathematics, but who nonetheless 

has completely captured the spirit and worth of heuristics in his pedagogical 

approach. . (16 17) Prof. G. Polya's books on problem-solving ' are 'lmusts" for 

anyone who is interested in the procedures used by people while doing "formal" 

reasoning. 

In the field of artificial intelligence, perhaps no researchers are bet-

ter known than Newell, Shaw, and Simon. lbeir programs ~ first the Logical 

. (14) (15) Theorist (LT) and then the General Problem Solver (GPS) ~have had 

an enormous impact upon this area of computer science. (Perhaps, as Newell 

himself notes, (l3 ) this impact has been too great, causing a lack of innova-

tion in approaching artificial intelligence.) LT was conceived and implemented 

a decade ago, yet its ideas have reappeared in most subsequent heuristic 

problem-solvers. Partly, this is due to Newell, Shaw, and Simon's emphasis on 

simulation of human behavior, because, being concerned with uncovering models 

of human thought processes, these researchers specified algorithms and heuris-

tics which seem very natural, for they attempt to capture our (the human'&) 

way of approaching problem-solving. For a number of reasons, work in 

theorem-proving often turns to draw upon human experience, and in so doing, 
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emulates LT. For instance, an introduction to the gross inefficiency inherent 

in a blind ''working forward" approach as found in the early combinatorial 

theorem-provers leads one to the observation that people often work backward 

from the conclusion, either completely so as in LT, almost so as in ADEPT, or 

at least keeping the goal in mind to guide steps taken, as can be said of GPS. 

"Working backward" is for many problem areas a high .. level heuristic, and a 

very effective one for reducing irrelevant effort. It was one of the main 

points made by the LT project. 

Adoption of a "working backward" type of procedure usually involves the 

use of a matching subroutine, and ADEPT has one just as did LT. Now, as then, 

this subroutine accounts for a significant fraction of the effort expended by 

the entire program. Newell, Shaw, and Simon experimented with heuristics 

(the similarity tests) designed to facilitate match4lg, but had limited suc

cess. As they pointed out, those possible matches which heuristics can easily 

recognize as not worth sending to the matching subroutine are just those which 

the subroutine itself rejects after a minimal amount of work. In ADEPT, very 

little effort was spent trying to improve the matching process. The only fea

ture incorporated for this purpose was the special-purpose matching rou.tine to 

handle the checking of a fixed list of common axioms and identit.ies by PUTON2. 

Here, use of a quick check for key terms cOD1Don to axioms and the proof tree 

line was sufficient to expedite the matching of the~e particular statements. 

Particularly on a superficial level, there is a great deal of similarity 

between LT and ADEPT. Both use!!!,~ methods chosen to handle a particular 

problem area. Since the "task environment" of LT, propositional calculus, is 

semantically simpler (i.e., of less content) than group theory, it is not 

strange that LT is a less complicated program. Both ADEPT and LT employ 

non-complete procedures. LT seems more formally structured than ADEPT, but 

this is due largely to the nature of the problem area. Still, ADEPT does not 

use ''methods", tried in turn on lines of the proof tree. Instead, each axiom 

is allowed to operate on the proof tree line, in turn (or at a special time, 

in the case of the common axioms and identities which have been singled out), 
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in whatever way its syntax permits. ~ ponens plays a prominent role in 

each program, though the specific use of this rule of inference takes different 

forms in each. However, on a more detailed level, again partly due to the 

nature of the problem areas, ADEPT is more resourceful than LT. Not only does 

it contain more heuristics, but it can be extended to include or test other 

special-purpose heuristics which might be developed. It makes more use of the 

context of the problem, as, for instance, in the examination of terms and 

constants of a proof tree line, and in the recognition of table I lines 

defining constants used in the proof, thus enabling instances of definitions 

to be used to better advantage. 

The creators of LT discovered a property of heuristics that also has been 

observed in ADEPT, namely that they enable a program to reach a "plateau" of 

performance, beyond which it is very difficult to progress without very dif

ferent heuristics. This was mentioned in Chapter VIII as primarily a property 

of the problem area, the author maintaining that harder problems necessitate 

new methods. This differentiation of problems is harder to observe in systems 

oriented around the predicate calculus, and perhaps this was one reason which 

led Newell, Shaw, and Simon to leave the impression that what is needed is a 

more powerful set of general-purpose heuristics as opposed to different heu

ristics for different classes of problems. 

In any event, new heuristics were (and are) needed, and GPS followed LT. 

GPS is a much more ambitious project, with many psychological implications. 

Intended to be a model of problem-solving in many areas, GPS was tested on 

problems in propositional calculus and trigonometry. Its basic organization 

is much too well known to need recounting here; suffice to say it employs 

certain "goal types" to apply operators that reduce differences between known 

statements and desired statements. The operators and differences must be 

specified and characterized for each problem area to which GPS is directed; 

the methods or "goal types" are fixed, and conform roughly to means-end anal

ysis. Clearly ADEPT has no similarity to GPS in general organization, Yet 

GPS has been mentioned in passing in this report, primarily in Chapter VIII, 
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because it appears that attempts to remedy some of ADEPT's weak points may be 

able to profit from insights gained in the GPS work. Comparing present with 

desired results has an obvious analogue in the establishment of identities, 

and a proposed low-level planning heuristic for use with GPS, namely abstrac-

tion of the problem, seems applicable to more efficient treatment of associa-

tivity, as described previously in Chapter VIII. 

While discussing the work of Newell, Shaw, and Simon, a paper of Newell 

and Ernst(lJ) should be mentioned as giving a provocative overview of heuris-

tic progranming. Its perspective on program organization appears that it 

might be very useful to anyone contemplating new routines for problem-solving. 

While by no means as far-reaching as Minsky's Steps Toward Artificial Intelli

gence, (ll) the paper is quite general, and helps to unite the field, as have 

Minsky's papers. 

Perhaps the project nearest in spirit to ADEPT is the Geometry-Theorem 

Proving Machine of Gelernter. <5 •6> First reported in 1958, the geometry 

machine is a heuristic theorem-prover designed specifically for one branch of 

mathematics. In fact, like ADEPT, it handles a subclass of the elementary 

theorems of its subject, namely theorems involving congruences, parallel 

lines, and equality or inequality of segments and angles. Over 50 such the-

orems were successfully proved by the geometry machine, and it became a use-

ful vehicle for testing special-purpose heuristics. Thus it was the first 

program to successfully handle a significant number of theorems from a par-

ticular branch of formal mathematics. Like ADEPT, it used a ''working back-

ward" procedure which was .!!!_ h2£. in formalization, and not complete. Even 

some of the particular heuristics used in the two programs are closely re-

lated. Both programs single out certain deductions to be made immediately 

on a proof tree line. Also, both programs make use of a diagram. 

At this point of similarity, the divergence between the two projects 

becomes most clear. Gelernter's geometry machine is totally dependent upon 

its diagramming feature. This is in no way a fault of the program; it is to 

its credit that this semantic model proves so powerful for its problem domain. 
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However, anyone acquainted with group theory will hardly be surprised that the 

semantic model used in ADEPT plays a relatively minor role. Of course, the 

relative importance of one heuristic is hardly a major factor for evaluation, 

but its consequences are, for the geometry machine, due to the success of the 

diagram heuristic, did not have to develop any other means for controlling 

proliferation of effort, and indeed was incapable of handling even the sim

plest of theorems without recourse to a diagram. With ADEPT, the basic orga

nization had to be more clever to allow efficient proofs, and, as argued 

throughout this report, whatever success has been obtained in this regard 

reflects progress toward a theorem-prover which "understands" where it is in 

a proof, and is able to make use of context. The formal part of the geometry 

machine has no such capabilities, for they were not needed. Thus both the 

geometry machine and ADEPT have been successful programs for a branch of 

formal mathematics, but ADEPT was forced to contain more sophisticated tech

niques, and the research involved in their development is more likely to be of 

value in the future. 

The idea of a diagram, or more generally, a semantic model, is a very 

fruitful one, and was first propounded by Minsky. (lO) A use for a model was 

found in group theory, as seen in ADEPT's !«>DBL heuristic, and there is every 

reason to believe that other subjects will lend themselves to other realiza

tions Of this general idea. Certainly future workers in theorem-proving must 

be alert to the possibility of favorable uses of such a feature. 

The other projects relevant to this report are the general question-

answering systems that come under the heading of "advice-takers". The 

advice-taker was conceived by McCarthy, <7> and it is oriented to the develop

ment of a system which would be capable of learning and working with any 

subject area, including "everyday situations". To do this, it was designed 

so that it was very general, handling all facts in the same way, and what is 

more, in a rather simple form which was intended to facilitate use of the 

system by many people. Because of this generality, the advice-taker is a 

victim of ambition. Like the combinatorial theorem-provers, it is ill-suited 
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to the introduction of techniques based on context, and heuristics intended to 

become an integral part of the program's structure. Like heuristic programs, 

it lacks formal theory, forcing a reliance on ad hoc programming which in this 

case is thwarted by the proposed generality of the system. Admittedly, 

McCarthy did not see it in this light; rather the advice-taker was to profit 

by an ability to accept heuristics in exactly the same way as the data base 

and questions. But the method of introduction of statements makes use of a 

variation on formal logic which retains some characteristics of English, just 

as in ADEPT. This means that heuristics must also be stated in this form, 

which appears to be a harsh requirement. In theory, a huge bootstrapping 

operation could be undertaken, but this appears beyond the capacity of present 

systems. 

In order to deal in detail with "everyday situations", McCarthy proposed 

that formal predicates of ability and cause be introduced, (9) along with 

statements expressing properties of and relations between these predicates 

(such as a statement saying that if A can cause an event .!!.• and if event .!!. 

causes event!?.• then A can cause event !?.)· Sample problems proposed for the 

advice-taker were stated in terms of these predicates. In some cases, such as 

the Mikado problem(ZO,Z4 ) (considered at the end of Chapter VII), the use of 

these predicates was not necessary to express the essential content of the 

problem, as was seen in the version of the Mik.'.ldo problem posed for ADEPT. 

Still, the expanded version serves as an illustration of a possible way of 

working with a problem-solver of great generality. One should note, however, 

that the character of the problem is not altered by the presence of additional 

predicates and axioms; the result is simply a more complex problem of the 

same type. 

The actual algorithm which is the advice-taker is very simple, and it is 

small wonder that ADEPT has enough deductive power to "answer" versions of 

some advice-taker problems. However, it would be erroneous to claim that 

ADEPT can do anything that an advice-taker can. In fact, two versions of an 

advice-taker have been created, one by Slagle(Z4 ) and one by Black, (l) and 
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both have interesting capabilities not useful for formal mathematics and there

fore not included (and difficult to insert) in ADEPT. Slagle 1 s DEDUCOM is 

imbedded in the LISP interpreter, and this simple fact allows great flexibility 

in use of symbol processing and arithmetic capabilities of LISP. Introduction 

of even simple arithmetic to ADEPT would be rather awkward. More importantly, 

both advice-takers allow multiple answers to questions, and the solutions of 

problems created by this feature are non-trivial. 

In terms of ADEPT, the ability to provide multiple answers means free 

variables on table II, something which is not provided for at present. Black 

gives an excellent account of the difficulties these variables create and 

their implications for program organization. The matching routines become 

more complex and, as is to be expected, a larger amount of effort per problem 

is needed in order to find all answers. There is no doubt that multiple an

swer capability is necessary to a general deductive system; it is also true 

that it is an ability not needed in formal mathematics such as group theory. 

Early versions of Black's program fell into infinite loops at times be

cause they did not check whether a line being put on the proof tree was al

ready on the tree. ADEPT checks this in PUTON2, and it does not seem to be a 

time-consuming process, as Black feared. Other loops occur~ed from axioms 

with hidden pitfalls, like (IMPLIES (NOT (NOT Al)) Al), which -would allow to 

a line A2 on the proof tree the reduction (NOT (NOT A2)), which in turn would 

have a reduction (NOT (NOT (NOT (NOT A2)))), etc. ADEPT encountered a very 

similar difficulty in Problem V-F due to the hypothesis fl (a1) = fl (a2) ms;> 

a 1 = a2 • With ADEPT, the problem was circumvented by use of FEQUAL. Black 

also found the form and order of hypotheses to be critical in some problems, 

as did Slagle. To make deductive algorithms independent of such factors would 

almost necessarily introduce an unbearable degree of inefficiency. 

Black experimented with some heuristics to improve his advic·e-taker. One 

was a bound on the proof tree by means of various length restrictions. This 

purely syntactic strategy was less than satisfying. He discussed possible 

schemes for stopping or avoiding loops. He also proposed grouping axioms and 
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hypotheses according to their main terms or connectives. 'Ibis is done in the 

present implementation of ADEPT. For one thing, in order to facilitate 

PUTON2 1s application of common identities, special lists are kept of all 

homomorphisms and factor groups, so that a separate search of table I for 

this information is unnecessary. Table I itself is split into two parts, as 

might be deduced from Figure 4. All the equalities and implications are on 

one part, and .only this part is used directly by SCANW. However, such stream

lining is hardly of crucial importance to the efficiency and success of the 

program. (Warren Teitelman<25> has also explored some modifications of Black's 

advice-taker.) 

This concludes the account of various projects related to the ADEPT pro

ject and how ADEPT contrasts with them. No mention has been made of other 

important areas in which many feel that significant progress must be made in 

order for any large advances to be made in artificial intelligence. One is 

learning and another is organization of data and concepts. ADEPT is not a 

learning program, and would not be a suit~ble foundation for one. Learning, 

of course, refers to machine assimilation of knowledge, as opposed to in

creasing the "knowledge" of a program by the addition of more routines by .a 

progranmer. Slagle points out that his DBDUCOK(24 ) (and therefore ADEPT) 

"learns" when given more information, such as a new axiom or definition. In 

a limited sense this is true, particularly from the advice-taker orientation. 

Yet it would appear that real machine learning must involve progranmed induc-

tion and generalization or adaptation facilities. 

As for data organization, even less is known on how to proceed. List 

structures have been standard up until now. Indeed, all of the programs men

tioned in this chapter under the general heading of "heuristic", including 

ADEPT, have been written using list processing languages. Without these 

languages these programs would have been almost impossible to write. Still, 

one wonders if a fresh view toward data organization could be helpful. 
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APPENDIX II 

THEOREMS PROVED BY ADEPT 

1) (GROUP G) 
NIL 

(SEMIGROUP G) 

2) (AND (KERNEL K (Fl G H)) (HOMOMORPHISM (Fl G H))) 
NIL 

(SUBGROUP K G) 

3) (AND (KERNEL K (Fl G H)) (HOMOMORPHISM (Fl G H))) 
NIL 

(NORMAL K G G) 

4) (AND (CENTER C G) (ASSOC G)) 
NIL 

(SUBMONOID C G) 

5) (CENTER C G) 
NIL 

(ABELIAN C G) 

6) (AND (CENTER C G) (AND (GROUP G) (SUBSET G C))) 
NIL 

(ABELIAN G G) 

7) (AND (CENTER C G) (AND (SUBSET H C) (GROUP G))) 
NIL 

(NORMAL H G G) 

8) (AND (SUBSET H G) (AND (ABELIAN G G) (GROUP G))) 
NIL 

(NORMAL H G G) 

9) (AND (SUBSET H G) (AND (ABELIAN G G) (GROUP G))) 
NIL 

(ABELIAN H G) 

10) (AND (INTERSECTION I HJ) (AND (SUBGROUP HG) (SUBGROUP J G))) 
NIL 

(SUBGROUP I G) 

11) (AND (INTERSECTION I HJ) (AND (NORMAL HG G) (NORMAL J G G))) 
NIL 

(NORMAL I G G) 

12) (AND INTERSECTION I H J) (AND (SUBGROUP J G) (NORMAL H G G))) 
NIL 

(NORMAL I J G) 

131 



13) (AND (IMAGE I (Fl G H)) (AND (HOMOMORPHISM (Fl G H)) (GROUP G))) 
NIL 

(SUBGROUP I H) 

14) (AND (CONJUGATE D Al H G) (AND (GROUP G) (SUBGROUP H G))) 
NIL 

(SUBGROUP D G) 

15) (AND (AND (SUBGROUP H G) (LCOSET D Al H G)) (MEMBER Al H)) 
NIL 

(SUBSET .D H) 

16) (AND (SUBSET A G) (AND (LCOSET D (*IDENTITY G) A G) (GROUP G))) 
NIL 

(SUBSET D G) 

17) (AND (SUBSET A G) (AND (LCOSET D (*IDENTITY G) A G) (GROUP G))) 
NIL 

(SUBSET D A) 

18) (AND (SUBSET A G) (LCOSET D (*IDENTITY G) A G)) 
NIL 

(SUBSET A D) 

19) (AND (GROUP G) (AND (SUBSET A G) (AND (LCOSET D (*IDENTITY G) A G) 
(RCOSET E (*IDENTITY G) A G)))) 

NIL 
(SUBSET D E) 

20) (AND (GROUP G) (LCOSET D Al G G)) 
NIL 

(AND (SUBSET G D) (SUBSET D G)) 

21) (AND (GROUP G) (AND (LCOSET D Al G G) (RCOSET E Al G G))) 
NIL 

(SUBSET D E) 

22) (AND (SUBGROUP H G) (LCOSET D Al H G)) 
NIL 

(MEMBER A 1 D) 

23) (AND (SUBGROUP HG) (NORMALIZER DH G)) 
NIL 

(SUBSET H D) 

24) (NORMALIZER J H G) 
NIL 

(NORMAL H J G) 

25) (GROUP G) 
NIL 

(NORMAL G G G) 

26) (UNITSET E (*IDENTITY G)) 
NIL 

(NORMAL E G G) 

27) (UNITSET E (*IDENTITY G)) 
NIL 

(SUBGROUP E G) 
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28) (AND (COMMUTATOR Al A2 A3 G) (ASSOC G)) 
(EQUAL2 (*PROD A2 A3 G) (*PROD A3 A2 G)) 
(EQUAL Al (*IDENTITY G)) 

- :""::'-!'"··--;-

29) (AND (COMMUTATOR Al A2 A3 G) (AND (ASSOC G) (AND (ABELIAN G G) 
(AND (MEMBER A2 G) (MEMBER A3 G)) ) ) ) 

NIL 
(EQUAL Al (*IDENTITY G)) 

30) (AND (AND (COMMUTATOR Al A2 A3 G) (COMMUTATOR A4 A3 A2 G)) (ASSOC G)) 
NIL 

(EQUAL (*INVERSE Al G) A4) 

31) (AND (AND (COMMUTATOR Al A2 A3 G) (COMMUTATOR A4 A3 A2 G)) (ASSOC G)) 
NIL 

(INVERSE A4 Al G) 

32) (AND (GROUP G) (AND (MEMBER Al G) (MEMBER A2 G))) 
NIL 

(AND (EXISTS A3 (EQUAL (*PROD Al A3 G) A2)) (EXISTS A3 (EQUAL 
(*PROD A3 Al G) A2))) 

33) (SUBGROUP H G) 
NIL 

(IMPLIES (AND (MEMBER Al H) (MEMBER A2 H)) (MEMBER (*PROD Al 
(*INVERSE A2 G) G) H)) 

34) (GROUP G) 
(EQUAL2 Al (*INVERSE Al G)) 
(ABELIAN G G) . 

35) (GROUP G) 
(AND (EQUAL (*PROD Al Al G) (*IDENTITY G)) (IMPLIES (EQUAL 

(*PROD Al Al G) (*IDENTITY G)) (EQUAL2 Al (*INVERSE Al G)))) 
(ABELIAN G G) 

36) (AND (HOMOMORPHISM (Fl G H)) (KERNEL K (Fl G H))) 
(IMPLIES (MEMBER Al K) (E~UAL Al (*IDENTITY G))) 
(ONETOONE (Fl G H)) 

37) (AND (AND (HOMOMORPHISM (Fl G H)) (KERNEL K (Fl G H))) (ONETOONE 
(Fl G H))) 

NIL 
(IMPLIES (MEMBER Al K) (EQUAL Al (*IDENTITY G))) 

38) (AND (AND (AND (LCOSET D Al H G) (SETINV I D G)) (SUBGROUP H G)) 
(GROUP G)) 

NIL 
(RCOSET I (*INVERSE Al G) H G) 

39) (AND (AND (LCOSET D Al H G) (LCOSET E A2 H G)) (AND 
(SUBGROUP H G) (ASSOC G))) 

(AND (MEMBER (*PROD (*INVERSE A2 G) Al G) H) (EQUAL 
(*PROD (*INVERSE Al G) A2 G) (*INVERSE (*PROD (*INVERSE A2 G) 
Al G) G))) 

(AND (SUBSET D E) (SUBSET E D)) 

40) (AND (AND (HOMOMORPHISM (Fl G H)) (AND (MEMBER Al G) (INVPNT I 
(Fl G H Al) (Fl G H)))) (KERNEL K (Fl G H))) 

NIL 
(LCOSET I Al K G) 
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41) (AND (NORMAL HG G) (SUBSET KG)) 
NIL 

(NORMAL H K G) 

42) (AND (AND (SUBSET A B) (SUBSET B G)) (AND (CENTRAL C A G) 
(CENTRAL D B G))) 

NIL 
(SUBSET D C) 

43) (AND (}l)MOMORPHISM (Fl G H)) (AND (RIMAGE J K (Fl G H)) 
(INVIMAGE I J (Fl G H)))) 

NIL 
(SUBSET K I) 

44) (AND (AND (EPIMORPHISM (Fl G H)) (CENTER C G)) (AND 
(RIMAGE I C (Fl G H)) (CENTER D H))) 

NIL 
(SUBSET I D) 

45) (AND (EPIMORPHISM (Fl G H)) (IMAGE I (Fl G H))) 
NIL 

(SUBSET H I) 

46) (AND (HOMOMORPHISM (Fl G H)) (AND (ABELIAN G G) (IMAGE I 
(Fl G H)))) 

NIL 
(ABELIAN I H) 

47) (AND (AND (}l)MOMORPHISM (Fl G H)) (SUBGROUP K G)) (RIMAGE I K 
(Fl G H))) 

NIL 
(SUBGROUP I H) 

48) (AND (NORMAL K G G) (AND (RIMAGE I K (Fl G H)) (EPIMORPHISM 
(Fl G H)))) 

NIL 
(NORMAL I H H) 

49) (AND (AND (}l)K:>MORPHISM (Fl G H)) (NORMAL KG G)) (AND (RIMAGE I K 
(Fl G H)) (IMAGE J (Fl G H)))) 

NIL 
(NORMAL I J H) 

50) (AND (HOMOMORPHISM (Fl G H)) (AND (SUBGROUP K H) (INVIMAGE D K 
(Fl G H)))) 

NIL 
(SUBGROUP D G) 

51) (AND (HOMOK:>RPHISM (Fl G H)) (AND (NORMAL K H H) (INVIMAGE D K 
(Fl G H)))) 

NIL 
(NORMAL D G G) 

52) (AND (SUBGROUP HG) (AND (FACTORGROUP B KG) (SUBFGRP C K HG))) 
NIL 

(SUBSET C B) 

53) (AND (SUBGROUP H G) (AND (FACTORGROUP B K G) (SUBFGRP C K H G))) 
NIL 

(SUBGROUP C B) 
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54) (AND (NORMAL H G G) (AND (FACTORGROUP B K G) (SUBFGRP C K HG))) 
NIL 

(NORMAL C B B) 

55) (GROUP G) 
(IMPLIES (MEMBER Al G) (EQUAL (Fl G G Al) (*IDENTITY G))) 
(HO!l>MF (Fl G G)) 

56) (GROUP G) 
NIL 

(ISOMORPHIC G G) 

57) (ISOMORPHISM (Fl G H)) 
NIL 

(ISOMORPHIC G H) 

58) (ISOMORPHISM (Fl G H)) 
NIL 

(IS<H>RPHIC H G) 

59) (AND (GROUP G) (AND (ISOMORPHISM (Fl G H)) (ISOMORPHISM en H K)))) 
NIL 

(ISOMORPHIC G K) 

60) (AND (ISOMORPHISM (Fl G H)) (ISOK>RPHISM en H K))) 
NIL 

(ISCH>RPHIC K G) 

61) (AND (FAC'IORGROUP D E G) (AND (UNITSET E (*IDENTITY G)) (GROUP G))) 
NIL 

(ISOMORPHIC G D) 

62) (AND (FACTORGROUP D E G) (UNITSET E (*IDENTITY G))) 
NIL 

(ISOl«>RPHIC D G) 

63) (AND (AND (FAC'IORGROUP D K G) (KERNEL K (Fl G H))) (EPIHORPHISM 
(Fl G H))) 

NIL 
(ISOMORPHIC D H) 

64) (AND (AND (FACTORGROUP D K G) (KERNEL K (Fl G H))) (EPIMORPHISM 
(Fl G H))) 

NIL 
(ISOMORPHIC H D) 

65) (AND (AND (FACTORGROUP D K H) (FACTORGROUP I I H)) (AND 
(INTERSECTION I H K) (SUBGROUP K H))) 

NIL 
(ISOMORPHIC D E) 

66) (AND (AND (FACTORGROUP D K H) (FACTORGROUP E I H)) (AND 
(INTERSECTION I HK) (SUBGROUP K H))) 

NIL 
(ISCH>RPHIC E D) 

67) (AND (AND (FACTORGROUP D I G) (FACTORGROUP I K H)) (AND 
(EPIMORPHISM (Fl G H)) (INVIMAGE I K (Fl G H)))) 

NIL 
(ISOMORPHIC D E) 
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68) (AND (AND (FACT9~GROUP D I G) (FACTORGROUP E K H)) (AND 
(EPIMORPHISM {Fl G H)) (INVIMAGE I K (Fl G H)))) 

NIL 
(ISOMORPHIC E D) 

69) (AND (AND (FACTORGROUP A H G) (FACTORGROUP B KG)) (AND 
(SUBFGRP C K H G) (FACTORGROUP D C B))) 

NIL 
(ISOMORPHIC A D) 

70) (AND (AND (FACTORGROUP A HG) (FACTORGROUP B KG)) (AND 
(SUBFGRP C K H G) (FACTORGROUP D C B))) 

NIL 
(ISOMORPHIC D A) 

71) (AND (ABELIAN G G) (GROUP G)) 
NIL 

(ISOMORPHIC G G) 
(IMPLIES (MEMBER Al G) (EQUAL (Fl G G Al) (*INVERSE Al G))) 

(overriding GENFCN) 

72) (AND (MEMBER Al G) (GROUP G)) 
NIL 

(ISOMORPHIC G G) 
(IMPLIES (MEMBER A2 G) (EQUAL (Fl G G A2) (*PROD (*PROD Al A2 G) 

(*INVERSE Al G) G))) 
(overriding GENFCN) 

73) (AND (GROUP G) (FACTORGROUP D H G)) 
NIL 

(ISOMORPHIC G D) 
(fails on one-to-one, thus proving epimorphic) 

74) (AND (FACTORGROUP D K G) (AND (FACTORGROUP E I H) (AND 
(RIMAGE I K (Fl G H)) (EPIMORPHISM (Fl G H))))) 

NIL 
(ISOMORPHIC D E) 

(fails on one-to-one, thus proving epimorphic) 

75) (AND (LCOSET D Al H G) (AND (LCOSET E A2 H G) (AND (ASSOC G) (AND 
(MEMBER Al D) (SUBSET D E))))) 

NIL 
(MEMBER (*PROD (*INVERSE A2 G) Al G) H) 

76) (AND (SETINV I H G) (AND (NORMAL H G G) (SUBGROUP H G))) 
NIL 

(AND (SUBSET H I) (SUBSET I H)) 

77) (AND (SETINV I H G) (SUBGROUP H G)) 
NIL 

(SUBGROUP I G) 

78) (AND (SETINV I H G) (AND (NORMAL H G G) (AND (SUBGROUP HG) (ASSOC G)))) 
NIL 

(NORMAL I G G) 

79) (AND (CENTER C G) (ABELIAN G G)) 
NIL 

(SUBSET G C) 
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80) (HOMO~RPHISM (Fl G H)) 
(AND (AND (EQUAL (*SEQ (A9 N2) 1 A) (A9 1)) (EQUAL (*SEQ (F9 A B 

(A9 N2)) 1 B) (F9 A B (A9 1)))) (AND (EQUAL (*SEQ (A9 N2) 
(*SUCCESSOR N3) A) (*PROD (*SEQ (A9 N2) N3 A) (A9 (*SUCCESSOR N3)) 

A)) (EQUAL (*SEQ (F9 A B (A9 N2)) (*SUCCESSOR N3) B) (*PROD (*SEQ 
(F9 A B (A9 N2)) N3 B) (F9 A B (A9 (*SUCCESSOR N3))) B)))) 

(FEQUAL (Fl G H (*SEQ (Al Nl) N G)) (*SEQ (Fl G H (Al Nl)) N H)) 

81) (HOMOMORPHISM (Fl G H)) 
(AND (AND (EQUAL (*SEQ A8 A9 1 A) (A8 A9 1)) (EQUAL (*SEQ A8 A9 

(*SUCCESSOR Nl) A) (*PROD (*SEQ A8 A9 Nl A) (A8 A9 (*SUCCESSOR Nl)) 
A))) (EQUAL (F9 A B (A8 A9 Nl)) (A8 (F9 A B A9) Nl))) 

(FEQUAL (Fl G H (*SEQ Al Al N G)) (*SE~ Al (Fl G H Al) N H)) 

82) (AND (SEMIGROUP G) (MEMBER Al G)) 
(AND (EQUAL (*EXP A9 1 G) A9) (EQUAL (*EXP A9 (*SUCCESSOR Nl) G) 

(*PROD (*EXP A9 Nl G) A9 G))) 
(MEMBER (*EXP Al N G) G) 

83) (AND ($SUBGROUP (H 1) G) ($SUBGROUP (H (*SUCCESSOR N)) G)) 
(IMPLIES (AND ($SUBGROUP A C) ($SUBGROUP B C)) ($SUBGROUP 

(*INT A B) C)) . . 
($SUBGROUP (*FININT H N) G) 

84) (AND ($NORMAL (H 1) G G) ($NORMAL (H (*SUCCESSOR N)) G G)) 
(IMPLIES (AND ($NORMAL A C C) ($NORMAL B C C)) ($NORMAL (*INT A B) C C)) 
($NORMAL (*FININT H N) G G) 

8S) (NULL) 
(AND (AND (IMPLIES (AND (GROUP A) (LEP (ORDER A) 1)) (EQUAL A 

(*UNITSET (*IDENTITY A)))). (IMPLIES (GROUP A) (AND 
($HAS*MAX*NORM*SUB A) (AND (GROUP (*MAX*NriRM*SUB A)) 
(IMPLIES (LEP (ORDER A) (*SUCCESSOR Nl)) (LEP (ORDER 
(*MAX*NORM*SUB A)) N 1)))))) (IMPLIES ($HAS*OOMP*SBRIES A) 
(EXISTS N3 (EXISTS (B N4) (COMP*SIRIES ((B N4) N3) A))))) 

(IMPLIES (AND (GROUP G) (LEP (ORDER G) N)) ($HAs*COMP*SERlES G)) 

86) (AND (AND (UNMARRIED*FEMALE N7) (UNMARRIED*MALE NS)) (AND (IMPLIES 
(NOT"THINK*DF.AD N8 N6) (CAN*STAY*ALIVB NS)) (AND (IMPLIES 
(CAN*APPEAR*SAFELY N6) (CAN*PRODUCE NS N6)) (ANI)' (IMPLIES 
(NOT*ACCUSING N7 N6) (CAN*APPEAR*SAFELY N6)) (IMPLIES 
(NOT*CLAIMING N7 N6) (NOT*ACCUSING N7 N6)))))) 

(AND (IMPLIES (EXISTS Nl (CAN*PRODUCE Nl N2)) (NOT"THINK*DF.AD N8 N2)) 
(AND (IMPLIES (MARRIED N7) (NOT*CLAIMING N7 Nl)) (AND (IMPLIES 
(EXISTS Nl (CAN*MARRY Nl N2)) (MARRIED N2)) (AND (IMPLIES (EXISTS Nl 
(CAN*PROPOSE Nl N7)) (EXISTS Nl (CAN*MARRY Nl N7))) (IMPLIES (AND 
(UNMARRIED*FEMALE N2) (1$XISTS Nl (UNMARRIED*MALB Nl))) (EXISTS Nl 
(CAN*PROPOSE Nl N2))))))) 

(CAN*STAY*ALIVE NS) 
(NS • Koko 
N6 = Nankipoo 
N7 = Katisha 
N8 =Mikado) 
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APPENDIX III 

LISTING OF THE PROGRAM 

'nle reader who attempts to use the listings included in this appendix 

will find that they do not conform in all details with the descriptions given 

in the body of this report. Any discrepancies of this sort were introduced 

solely to make the report easier to comprehend, and do not really misrepresent 

the actual operation of the program. 

'lb.e various LISP functions are made into a system by means of a file such 

as COMPIL. Following execution of this file, the user may call ADEPT as a 

LISP function of two arguments. 'nle first of these is to be either ''NIL" or 

"MODEL", and determines whether or not the MODEL heuristic is to be in effect. 

The second argument is to be either "NIL" or "INDUCT'', and is the present 

means whereby NSOLVE can be called, when use of mathaDatical induction is 

desired. (Warning: Even with the special LISP system available to the author 

and extensive use of RDK>B, (S) it was not possible to load all the functions 

into the system at once by use of COMPIL as presented here. This would pre

sumably be the case with most LISP systems.) 

The file DEFNS DATA contains the sufficient conditions and definitions 

used by the author. 'lb.e two remaining lists in this file represent certain 

of the built-in axioms and lattice information for use with the MODEL heuris-

tic, respectively. 
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ADDANTBC, 162 

ADDallSQ, 162 

A»m, 141 

ALUIATCRl, 169 

ALISUBSTS, 165 

ALLVBLIS, 164 

ANDARGS, 162 

ARDllG>, 169 

ANDTUMB, 169 

ilPINilt, 162 

AROOl'l, 166 

ASSOCM, 165 

ASTDISDD, 165 

A'DtS, 168 

CADNU, 166 

CADDDAAR, 166 

CADDDAR, 166 

CRBClll>DIL, 160 

CHHGW, 165 

OCllPIL, 172 

CCll1'0S ITIOR, 155 

OONNBC?M, 164 

DBPRS DATA, 170-171 

DILPB., 168 

DILTP, 168 

1'11TR, 165 

DllVBL&, 168 

GDPCN, 154 

GIHSBT, 160 

GIHSUBST, 164 

GIMVBL&, 168 

GPDm, 169 

GMATCR, 163 

GMATCRl, 163 

QllMB, 169 

INDEX TO LiSTING 
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GTPBM, 161 

RIM, 159 

llK)Ml, 153 

IM!MATCH, 163 

nmt, 158 

INVM2, 158 

DWBDO, 167 

INVSUB, 167 

ISOLVI, 142 

MASI., 162 

MATCHl, 162 

MBBT, 160 

MDl>Pl, 167 

KDGBA, 168 

KODIL MAD, 160 

ll>Mma, 156 

HUT, 166 

RDLOOI'., 165 

HOWBICH, 160 

HSOLVI, 143 

ON, 164 

ONLY, 153 

OHL1MIMB, 168 

0112·; 149 

01'2A VD., 162 

!MATCH, 165 

P10DA1GS, 167 

. PUD2, 149 

PU'lOlil, 148 

PU'l01'2. 149 

PUT2 • 149-150 

USB.V, 164 

IOPV, 165 

BOIW, 166 

ll'LCI, 166 



RPLCEF, 168 

RPLCl, 169 

RPTSUB, 167 

SCANW, 146-147 

SCNX, 152 

SIFT, 158 

SIXTH, 165 

SLVX, 153 

SOLVE, 144-145 

SOLVEX, 151 

SOLVX, 143 

SOLVXP, 153 

SPREAD, 165 

SUPSUB, 164 

SUPXEC, 164 

SWMEMB, 160 

TACK, 168 

TERMS, 164 

VB LES, 164 

VERIFY, 157 

WLDFN, 155 

WLDFNl, 155 
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ADEPT LISP 
DEFINElllADEPTILAM8DAIQM5 WHI 
IPROGIWl w x y Zl Z2 Z3 Z4 N Z6 Q Qfl u Ul QLl QL2 xx ex CXl LON 

QMl QM2 QM3 QM4 QM6 FQM2 FQH3 FQH4 U2 U3 ZN VVl VV2 CL Z4A Z4BI 
ISETQ N !QUOTE NILlll 
IFilESEEKIQUDTE DEFNSllQUOTE DATAll 
I SETQ X I READ II 
I SETQ Y I READ 11 
ISETQ XX IREADll 
ISETQ QMl IREADll 
IFILEENDRDIQUOTE DEFNSllQUOTE DATA)) 

Hl . ISETQ Zl IQUOTEllNILL.AllNilL.BllNILl.CllNILL.DllNILL.El 
I NILL.GI (NILL.HI INILL.11 INILL.JI (Nill.Kl (NILL.Ml 111 
ISETQ Z2 (QUOTEllNILL,flllNILL.F211NILL.F3llNILL.F411NILL.F51 
INILL.F6llNILL.F7llNILL.F811NILL.F9llll 
ISETQ Z3 IQUOTEllNILL.AlllNILL.A211NILL.A311NILL.A4llNILL.A5l 
INILL.A61 INILL.A7l INILL.A8l INILL.A91 INILL.AlOllNILL.Alll INILl!.Al21 Ill 
ISETQ ZN IQUOTEllNILL.NllNILL.NlllNILL.N211NILL.N31 
INILL.N4llNILL.N511NILL.N61~NILL.N7JINILL.N811NILL·N9llll 
I SETQ Q NILi 

ISETQ QM2 NllllSETQ QM3 NILllSETQ QM4 NILllSETQ QM6 Nill 
I SETQ Qll Nill 
I SETQ Ql2 Nill 
ISETQ Z4 lllSETQ Z4A lllSETQ Z48 ll 
I SETQ Z6 Nill 
ISETQ LON Nill 
ISETQ VVl NILllSETQ VV2 Nill 
ISETQ Wl Nill 
ISETQ W Nill 
ISETQ U2 IROFLXllll 
ISETQ Ul IALLVBLESIVBLES U2lll 
ISETQ Zl IRESRV Ul Zill 
ISETQ Z2 IRESRV Ul Z2ll 
ISETQ Z3 IRESRV Ul Z3ll 
ISETQ ZN IRESRV Ul ZNll 
ISETQ Cl IALLVBLESITERHS U2 IALLVBLESIVBLES U2lllll 
ISETQ U3 IROFLXllll 
ISETQ U IRDFLXI l l I 
ICONOllEQUALICAR UllQUOTE IHPLIESlllGO HlAlll 
ISETQ Ul IALLVBLESIVBLES Ulll 
ISETQ Zl IRESRV Ul Zlll 
ISETQ Z2 IRESRV Ul Z2ll 
ISETQ Z3 IRESRV Ul Z3ll 
ISETQ ZN IRESRV Ul ZNll 

HlA ICONOllEQUALICAR U211QUOTE ANDlllSETQ Ul IPUTONllCONS Z4A NI U2lll 
IT ISETQ Ul IPUTONllCONS Z4A Z4Bl U211JI 

ISETQ Z4B IADDl Z4Bll 
ICONOllNUll U311GO HlBlll 
ISETQ U2 U31 
I SETQ U3 Nill 
I GO HlAI 

Hl8 ICONOllMcMBERICAR UllQUOTEIISOMORPHIC ONEONElll 
ISETQ Ul llSOLVE Ulll 

llNUll WHllSETQ Ul !SOLVE Ulll 
IT ISETQ Ul INSOLVE Ullll 

I GO Hll 
11111 STOP) 11 
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I SOLVE LISP 
OEFINECCllSOLVEILAM80ACUICPROGIU1 EQN FY FV21 
Xl ICONOllNULL CLllGO X2111 

ISETQ Ul CGTFRMCCAR CLICQUOTE YI NIL Z4811 
ISETQ CL ICOR CLll 
ISETQ Z48 CAODl Z4811 
IGO XU 

X2 ISETQ Fv ICONS VVl VV211 
ISETQ FQM2 QM211SETQ FQM3 QM31CSETQ FQM4 QM41 
ISETQ EQN IRDFLXllll 
ICONOllEQUALICAR LllQUOTE ONEONElllGO 8111 
ISETQ Ul IMEMOFl VVl CQUOTE ISOMORPHISMlll 

X4 ICONDICNUll UllCGO X311 
llEQUALICDAAR UllCCDR UlllGO F6111 

ISETQ Ul ICDR Ulll 
IGO UI 

X3 ICONDICNUll EQNllSETQ EQN IGENFCNICOR Ulllll 
CCONDCINULL EQNllGO Fllll 
CPRINT EQNI 
CSETQ VVl ICAR FVlllSETQ VV2 ICOR FVll 
ISETQ QM2 FQM21CSETQ QM3 FQM31CSETQ QM4 FQM41CSETQ QM6 NILi 
CSETQ Ul CPUTONlCCONS Z4A Z481 EQNll 
ISETQ Z48 CAOOl Z4811 
CSETQ FV2 CCONS VVl VV211 
ICONDCIEQUALCCAR EQNllQUOTE IMPLIESlllGO Alll 
ISETQ Ul IWLOFNICOR EQNlll 
ICONDllNULL UlllGO F2111 
CSETQ Ul ICAAOR EQNll 
ISETQ VVl CCAR FV211CSETQ VV2 CCDR FV211 
ISETQ QM2 FQM211SETQ QM3 FQM311SETQ QM4 FQM411SETQ Q"6 NILi 
IGO All 

A ISETQ Ul CCAARICDAODR EQNlll 
.Al ISETQ Ul CSOLVEILISTIQUOTE HOMOMFllCONS Ul ICOR Ull 111 

ICONOllNULL UlllGO f3111 
ISETQ Z6 NILllSETQ LON NILi 
I SETQ Wl NILi 
ISETQ W NILi 
ISETQ VVl ICAR FV2111SETQ VV2 CCOR FV211 
ISETQ QM2 FQM211SETQ QM3 FQM311SETQ QM4 FQM41CSETQ QM6 NILi 
ICONOllEQUALICAR EQNICQUOTE IMPLIESllCGO Piii 

Pl ISETQ Ul ISOLVEILISTCQUOTE ONTOllCONSICAAOR EQNllCOR Ulllll 
ICONOllNULL UlllGO F4111 
CSETQ Z6 NILllSETQ LON NILi 
CSETQ Wl NILi 
ISETQ W Nill 
ISETQ VVl ICAR FVlllSETQ VV2 ICOR FVll 
ISETQ QM2 FQM211SETQ QM3 FQM311SETQ QM4 FQM411SETQ Q"6 NILi 

8 ISETQ Ul IMOlllOMF EQN NII 
ICONOllNULL UlllCilO F5111 

t CPRINTIQUOTE QEOll 
IRETURN Tl 

Fl CPRINTIQUOTECCANNOT FIND RELATING FUNCTIONlll 
IGO Hll 

F2 IPRINTIQUOTEICANNOT PROVE FUNCTION WELL DEFINEDlll 
I GO Hll 

F3 IPRINTIQUOTEICANNOT PROVE FUNCTION HOMOMORPHltlll 
CGO Hll 

F4 CPRINTIQUOTECCANNOT PROVE FUNCTION EPIMORPHIClll 
CGO Hll 

F5 IPRINTIQUOTEICANNOT PROVE FUNCTION MONOMORPHIClll 
Hl I RETURN FI 
F6 !PRINT UI 

IPRINTCQUOTE BECAUSEll 
IPRINTILISTCQUOTE ISOMORPHISMICCAAR Ullll 
IGO Cl 

P CSETQ Ul CCADOR EQNll 
ISETQ VV2 ISU8ST Ul EQN VV211 
CSETQ EQN Ull 
IGO Pll 

11111 STOPllllll 
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NSOLYE LISP 
OEFINElllNSOLYEILAMBOA(Ul(PROGIUl FYI 

ISETQ FY ICONS YYl YY211(SETQ FQM2 QM21CSETQ FQM3 QM311SETQ FQM4 QM41 
ISETQ Ul CSUBST 1 (QUOTE NI Ull 
IPRINTIQUOTECATTEMPTING PROOF BY INDUCTIONlll 
CSETQ Ul CSULYE Ulll 
ICONOllNULL UlllGO Fllll 
IPRINTIQUOTECBASIS STEP PROVEDlll 
ISETQ LON Nil I 
(SETQ 16 NILllSETQ Ill NILllSETQ W NILllSETQ YVl (CAR FVlllSETQ VY2 
ICOR FVllCSETQ ~MZ ~QMZICSETQ QM3 FQM31lSETQ Qfl4 FQM41CSETQ QM6 NILi 
ISETQ Ul CPUTONllCONS Z4A Z4BICSUBSTCQUOTE EQUALICQUOTE FEQUALI Ulll 
ISETQ Z4B IAODl Z4Bll 
ISETQ U ISU&STIQUOTEC•SUCCESSOR Nll(QUOTE NI Ull 
ISETQ ZN IRESRYCQUOTEINll ZNll 
CSETQ Ul ISOLYE ICONSIQUOTE INOUCTIONI Ulll 
ICONDllNULL UlllGO F2111 
IPRJNTCQUOTEllNDUCTIVE STEP PROYEDlll 
IPRINTIQUOTE QEDll 
IRETURN Tl 

Fl IPRINTCQUOTEICANNOT COMPLETE BASIS STEPlll 
IRETURN Fl 

FZ IPRINTIQUOTEICANNOT COMPLETE INDUCTIVE STEPlll 
IRETURN Fl 

11111 STOPlllll 

SOLYX LISP 
DEFINElllSOLYXILAM8DAIUllPROGIU1 U2 U3 SI 

ICONDllONICADOll UI ZNllGO Biii 
IGO EXTENDI 

B ISETQ Ul ICAOODR Ull 
Bll ICONDllEQUALICAR UlllQUOTE EXISTSlllGO Blll 

llCONNECTJVEICAR Ulll(GO B2111 
ISETQ U2 tMEMOfl VVl lCAR Ullll 

B4A lCONOICNULL UZltGO 83111 
lSETQ U3 IGMATCHICDR UlllCAR U2111 
lCONDllNULL U31lGO 84111 
ISETQ U3 IPUTNZ NIL ICONSICAR Ull 

ICAR U2l11CADDOAR UJll 
lCONDltNULL U31lGO B4111 
(RETURN U31 

84 lSETQ U2 ICOll U2JI 
160 84AI 

Bl ISETQ Ul ICAODR Ull I 
IGO BUI 

83 CSETQ U2 IMEMOFl VY2 (QUOTE IMPLIESlll 
B3A ICONDllNULL U211GO BZll 

llEQUALICAADAR U211QUOTE ANOlllGO B511 
llEQUALCCAADAR U21CCAR UllllGO B6111 

838 ISETQ U2 tCOR UZll 
lGO B3AI 

86 CSETQ U3 lGMATCHCCDR UllCCDADAR U2111 
lCONDCCNULL U31lGO B3Blll 
lSETQ U3 lPUTN2 NIL ICAAR U211CADDDAR Ulll 
CCDNDICNULL U31lGO B3Bll 

llMEMBER U3 IQUOTElOONE NEXTllllRETURN U3111 
CSETQ S U31 
160 83BI 

85 ICONDllMEM8ERICAR UlllATMSICDADAR U2111 
ISETQ U2 (APPEND UZ ILJSTtLISTlCAAR U21lCARlCOAOAR U2111 

CLISTlCAAR U211CAORlCDAOAR U211111111 
CGO B381 

B2 ICONDlCNOTlNULL SllCRETURN Siii 
EXTEND (RETURN NILi 
11111 STOPlllJll 
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SOLVE LISP 
DEFINElllSOLVEILAMBDA IUI 
IPROGIUl U2 U3 Ult Z5 SI 

ICONDllEQUALICAR UllQUOTE INOUCTIONlllGO 1111 
H ISETQ Ul IPUTN2 NIL U Nllll 

ICONOllEQUAL Ul (QUOTE OONElllGO Hltlll 
H2 ICONDllEQUALICAAAR WllQUOTE REllllGO H3lll 

ISETQ Wl (APPEND Wl ICONSICAR WI Nlllll 
ISETQ W ICOR Wll 
IGO H2l 

H3 ISETQ W ICONSISUBSTIQUOTE PNTllQUO'rE RELllCAR W)llCDR Wiii 
H3A I CONDI I EQUAL( CAOAR WI I QUOTE IMPL IESll IGO HH) l 

llEQUAL Z5 IQUOTE INDUCTIONl)IGO Il))) 
ISETQ U ISCANW Nil NILll 

H3B ICONDllEQUAL U (QUOTE DONElllGO Hltll 
llEQUAL U IQUUTE NEXTYlllGO H5All 
((EQUAL U IQUOTE NEXTlllGO H5111 

HH ISETQ U ICAR Wll 
ICONDllCONNECTIYEICAOR Ull,GO H6111 
lSETQ Ul IGTFRMICDR UllQUOTE XllCAOOOAR UI Nill) 
ICOND II NULL U 111 GO HS II . 

((EQUAL Ul (QUOTE OONElllGO Hitlll 
IGO H5AI . 

H8 ISETQ Ul IAllVBlESlTERMSICOR UllAllYBLESIVBLESICOR Ul)))ll 
ISE'rQ S NILi 

H8A ICONDllNUll UlllGO H8Blll 
ISETQ U2 ICONSICAR Ull Nllll 
ISETQ U3 ICOR Ulll 
ISETQ Ul NILi 

H81 ICONDllNUll U3llGO H821 I 
llEQUALICAAR U211CAAR U3111SETQ U2 (APPEND U2 

ICONSICAR U31 Nil)))) 
IT ISETQ Ul (APPEND Ul ICONSICAR U31 Nlllll)I 

ISETQ U3 ICDR U311 
IGO H8ll 

H82 ICONDllNULl U211GO H83111 
ISETQ U3 IGTFRMICAR U211QUOTE YI NIL ZltB)I 
I COND II NULL U 311 GO HS 21 JI 

llEQUAL U3 IQUOTE OONE)llGO H4)) 
llEQUAL U3 (QUOTE NEXT)llGO H5Alll 
llEQUALICAAR UZllQUOTE ISOMORPHISMlllSETQ Z48 IADDl ZltBllll 

ISETQ Z5 (QUOTE GENII 
H82l ISETQ" U2 ICDR U2ll 

IGO HBZI '-· 
H83 i~ETQ Z48 IADDl Z4Bll 

IGO HBAI 
H88 ICONDllNUll l511GO H9ll 

llNOTINUll Ul llSETQ Z5 Nill )I 
ISETQ U3 ISCANW NIL Z511 
ISETQ Z5 NILi 
ICONOllNULl U311GO H91 I I 
ISETQ U U31 
IGO H3BI 

H9 I CONDH NULL U II GO HlOA II 
llEQ S NI (GO HlOl 11 

ISETQ S NI 
ISETQ U2 IALLYBLESIVBLESICDR Ullll 
ICONOllNULL UZllGO HlOlll 

H91 ISETQ Ul !APPEND Ul IARGOFllCAR UZI VVllll 
ISETQ U2 ICDR U211 
ICONO((NOTINULL UZI llGO H9ll II 
IGO H8AI 

H6 ICONDllEQUALICAOR UllQUOTE IMPLIESlllGO H6All 
llEQUALICAOR UllQUOTE DEFERlllGO H6Elll 

IGO HSI 
H6A ISETQ Ul IALLY8LESIY8LESICADDR Ullll 

ISETQ Ul IRPLCl Ulll 
fCONOllNOTINUlL UllllSETQ U ICONSICAR UICGENSUBST 

lCAR UlllCOR UlllCDR Ullllll 
ISETQ Ul IPUTONllCONS Z4A ZltBllCADOR Ulll. 
I SETQ Z48 I AODl ZltB 11 . 
CCONDllEQUAL Ul IQUOTE OONElllGO H411 

llEQUAL Ul (QUOTE NEXTlllGO H5Alll 
ISETQ Ul IPUTN2 NIL ICAODOR UllCADDOAR Ulll 

H6Al. ICOND((NULL Ull IGO H811 
llEQUAL Ul (QUOTE OONHllGO H411 I 

IGO H5AI 
H6E. ISETQ Ul IPUTN2 NIL ICAOOR UllCADDDAR·O~ll, 

IGO H6All 
HlO CCONDllEQUALICAOR UllQUOTE EXISTSlllGO H68111 
HlOC ISETQ U NILi 

ISETQ Ul CLI 
IGO H8Al 
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HlOA (CONO(IEQUALICAOAR WllQUOTE EXJSTSllCGO H6811 
CIEQUALICADAR WICQUOTE FEQUALlllGO H6Dlll 

HlOB IPRINTIQUOTEIDRASTJC MEASURES NEEDEDlll 
IPRINTIQUOTEITYPE YES IF POINTER SHOULD BE MOVED DOWNlll 
ISETQ U IRDFLXllll 
ICONDICEQUAL U IQUOTE YESllCGO H5111 
(GO H4FI 

H68 ISETQ Ul ISOLVEXICAR Wiii 
H68l ICONDllNULL UlllGO H6BAll 

((EQUAL Ul (QUOTE NEXTlllGO HSll 
((EQUAL Ul NllGO H5All 
llEQUAL Ul (QUOTE DONElllGO H4111 

H6SA ICONDCINOTINULL UI llGO HlOCll I 
ISETQ Ul CSOLVXICAR Wiii 
ICONO((NOTINULL UllllGO H6Bllll 
IPRINTIQUOTE EXISTSll 
(GO HlOBI 

H60 (SETQ Ul (HOMOMFICDAR Wiii 
ICONOllEQUAL Ul (QUOTE NEXTlllGO HSll 

llNOTIEQUAL Ul (QUOTE DONEllllGO HlOBlll 
H4 IPRINT VVlllPRlNT VV211PRINT WlllPRINT WI 

!RETURN Tl 
H51 (SETQ Z48 IADDl Z4Bll 
HS CCONOl(NULL INEXT Nllll(GO HSElll 

IGO HHI 
HSAl (SETQ Z48 IADDl Z4Bll 
HSA ICONDllNOTINULLINEXT NILllllGO H3Alll 
HSE IPRINT(QUOTEIPANIC HSE SOLVElll 
H4F (PRINT VVlllPRINT VV211PRINT NlllPRINT WI 

(RETURN Fl 
ISETQ ZS (CAR Ull 

ISETQ U (COR UI I 
IGO HI 

11 lSETQ Z5 Nill 
IGO HHI 

11111 STOPlllllll 
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SCANW LISP 
DEFINE(((SCANW(LAMBDA(L Lll 
lPROGIS Sl U Ul UZ U3 U4 U5 U6 U7 UB FLGI 
Al .. ISETQ S Nill 

I SETQ FLG tUL I 
ISETQ Ul IONLVIAPPEND Wl WllQUOTEIVERAZllll 

AlA ICONDllNULL UlllGO AZll 
llMEMBERICADDDAAR Ull Z61160 AAll 
llMEM8ERIQUOTE HEADllCADAAR UllllSETQ FL6 ICONSISIXTH 

ICAAR Ulll FLGllll 
AA CSETQ Ul ICDR Ulll 

160 AUi 
AZ ICONOCCNULL WICSETQ Ul NILll 

CINULL LLICSETQ Ul CCONSICAR WI NILlll 
llEQUAL LL NICSETQ Ul ICDR Will 
IT ISETQ Ul Will 

A2A ICONDllNULL UlllGO Clll 
CSETQ U2 CCAR Ulll CSETQ Ul lCDR Ulll 
CCONOCCNOLOOK(CAOOOAR UZlllGO A2All 

CCMEMBERICAOR U2tlQUOTEllMPLJES FEQUAL DEFER ORlllC60 A2Alll 
ISETQ U CROFYIFIFTHCCAR U211 FLGll 
ISETQ U4 NILi 
CCHNGW UZI 

A28 ICONOllNULL Ull60 A3111 
CSETQ U3 I CAR U II C SETQ U I CDR U II 
ICONDICEQUALCCAOR U311QUOTE IMPLIESlllGO 8411 

llEQUALICADR UZllQUOTE EXISTSlllGO AZBll 
llMEMBERICONSICADDOAR U211COAR U311 LONllGO AZBll 
llEQUALCCAOR U3110UOTE EQUALlllGO 8311 
ICEQUALCCAOR U311QUOTE EQUALZllCGO 8211 
CCEQUALICAOR U31CQUOTE ASSOClll60 86111 

CGO AZBI 
A3 CCONOCINULL U4llGO AZAll 

CCNULL SICGO A3lll 
llNOLOOKCCAODOAR UZlllGO A2Alll 

A31 ISETQ U5 ICAAR U411 
CSETQ U6 CCOAR U4ll 
CSETQ U7 ICOR U411 
ISETQ U4 Nill 

A3A ICONOCINULL U71C60 A3811 
CIEQUAL U5 CCAAR U711CSETQ U6 CAPPENO U6 ICOAR 071111 
IT ISETQ U4 IAPPEND U4 ICONSCCAR U71 NILlllll 

ISETQ U7 ICOR U711 
IGO A3AI 

A38 CCONDllMEMBERICADR UZllQUOTECEQUAL EQUALZlllCSETQ U ICADOR U2111 
IT ISETQ U ICOR U21111 

CSETQ U6 ISUPXEC U6 Ull 
A30 ICONOCINULL 061160 A311 

llMEMBERCCAOR U211QUOTECEQUAL EQUAL2111 
ISETQ U ILISTICAOR U21CCAR U6llCAOOOR U21111 

IT ISETQ U ICAR U61111 
I SETQ U6 ICOR U611 , 
I SETQ U3 I PUTN2ICOND11 MEMBER I CUR U211 QUOTE I RELl PNTI 11 

NILllT ICAAR U2111 U ICADOOAR U2111 
CCONOllNULL U311GO A3011 

llEQUAL U3 IQUOTE OONElllRETURN U311 
llEQUAL U3 IQUOTE NEXTllCGO A3Elll 

A301 ISETQ S NI 
CGO A3DI 

A3E ICONDllNULL LLllRETURNIQUOTE NEXTVllll 
ISETQ Sl U31 
IGO A30ll 

82 ISETQ U5 IALLSU8STSICAOOR U311CADODR U31 
CCDR U211CDAR U3111 

ICONDICNULL U51160 83111 
CSETQ U4 IAPPEND U4 ICONS U5 NILlll 

83 ISETQ U5 IALLSUBSTSCCADDDR U311CAODR U31 
ICDR UZllCDAR U3111 

83A ICONOllNOTINULL U5111SETQ U4 !APPEND U4 ICONS U5 NILlllll 
IGO A2BI 

86 ICONDllNOTIMEMBERIQUOTE •PROOllALLVBLESIATMSCCOR U211111 
160 AZBl 11 

I SE TQ U5 I ASSOCM I CADOR U3 I I COR U2· II COAR U3 II I 
IGO 83AI 

84 ISETQ U5 IALLMATCHlCCADOOR U311CDR U2111 
841 ICONOICNULL U511GO 8811 

llNULL SIC60 841All 
llNOLOOK ICAODDAR U211CGO A2Alll 

841A CSETQ U6 IPUTN21CONDCCMEM8ERICUR UZI IQUOTEIRELl PNTI).) 
NILllT ICAAR U211116ENSU8STCCDAR U511CAAR U51 
ICAOOR U311CCADODAR U2111 

ICONDllNULL U61CGO 84All 
llEQUAL U6 IQUOTE DONElllRETURN U611 
ICEQUAL U6 (QUOTE NEXTllCGO 848111 
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00010 
ocozo 
00030· 
00040 
00050 

.. 00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280. 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 
00600 
00610 
00620 
00630 
00640 
00650 
00660 
00670 
00680 
00690 
00700 
00710 
00720 
00730 
00740 
00750 
00760 
00170 
00780 
00790 
00800 
00810 
00820 
00830 



8418 ISETQ S NI 
842 ICONDllEijUALICAAR U211QUOTE RELlllGO ~Cll 

II EQUALICAAA U2 I I QUOTE PNTI I( SETQ Sl I QUOTE NEXTl I 11 
843 ISETQ LON ICONSICONSICADDOAA U211CDAR U311 LONll 
843A I SETQ us ICDR U511 · 

IGO 8411 
84A ICONDtlONtGENSUBSTICDAR U511CAAR U511CADDR U311 

IROFWICADDDAR U2111(60 842111 
IGO 843AJ 

848 ICONDltNULL LLllRETURNIQUOTE NEXTVllll 
ISETQ Sl U61 
160 84181 

84C ISETQ U6 IGFINDICADDDAR U2111 
ICONDllEQUALICAAR U611QUOTE RELlllSETQ·W ISU8ST 

ISU8STIQUOTE RELlllQUOTE RELi U61 U6 Wllll 
160 8431 

8. ICONDllMEMBERICONSICADDDAR U211CDAR U311 LONllGO A28111 
ISETQ U5 llMPMATCHICADODR U3llCDR U2111 

ALO ICONDllNULL U511GO A2811 
llNULL SllGO 88111 
llNOLOOKICAOOOAR U2111GO A2Alll 

881 ISETQ U6 IGENSU8STICDAR U51tCAAR U511CADDR U3111 
ICONOllON U6 (APPEND VVl VV2lllGO 88All 

llEQUALICAR U611QUOTE ANDlllGO AlOClll 
Al08 ISETQ U7 ION2AVER U611 

ICONDtlNOTINULL.U7111GO Al411 
llEQUALICAAR U21(QUOTE A2111GO AlOAll 
llNULL LllGO AlOFll 
llEQUAL L U61160 AlOGlll 

AlOA ISETQ US ICDR U511 
IGO AlOI 

AlOG ICONDllNOTIEQUALICADR U211QUOTE EXISTllllGO AlOAlll 
ISETQ S ISCNX S ICADR LllCAR U511CADODR U31 U211 
ICONDllEQUAL S (QUOTE DONElllRETURN Sii 

llATOM SllGO AlOAlll 
ISETQ L ICDR Sii ISETQ S ICAR Sii 
IGO AlOAI 

AlOF ISETQ U6 IPUTON21LISTIQUOTE A211LISTIQUOTE HEADll 
ILISTIQUOTE MONEii Z4 N ICHR U31 I U6 NILll 

ICONDllNOTINULL U611tSETQ S Niii 
(GO UOAI 

AlOC ISETQ U7 IANDAAGS U611 
AlOO (CONDllNULL U711GO BBAll 

llEQUALICAAR U711QUOTE ANOlllGO AlOEll 
llONICAR U711APPENO VVl VV2111GO AlOElll 

IGO Al081 
AlOE ISETQ U7 ICDR U711 

160 AlODI 
Al4 ICONDttMEM8ERtQUOTE HEADI UlllGO Al4All 

((EQUALtCAAA U21(QUOTE A2111GO AlOAlll 
Al4A ISETQ U8 ICONS Z4A Uill 

ISETQ U7 IPUTONllCONS Z4A ICDAR U311 U611 
ICOHDllNULL UlllGO 88811 

llMEMIEAICAA U6llQUOTEIANO EXISTSlll 
ISETQ U IAPPEND U IROfVCCAR Ull NILllll 

flMEMIERICAR U61CQUOTEIEQUAL2 EQUAL IMPLJESlll 
ISETQ U IAPPENO U ICONSCCONSICONSICAA Ult 
ICDAA U311 U61NILlllll 

ICDNDllEQUAL U7 (QUOTE DONElllRETURN U711 
llEQUAL U7 (QUOTE NEXTlllSETQ Sl U7111 

ISETQ S NI 
tCONOllEQICDR UBI NllGO 888111 

8BA ISETQ U6 IGENSU8STICOAR USllCAAR U511CADDDR U3111 
ISETQ UB NI 
fGO U4AI 

888 ISETQ UB NILi 
160 UOAI 

C I SETQ 16 I APPEND FLG 1611 
·r COHO II NULL LL II GO D JI 

llNULL SllRETUAN Slll 
llNULL SlllSETQ LL (QUOTE GENlll 
llEQUAL Sl (QUOTE NEXTlllGO Cllll 

160 All 
Cl ISETQ Ul INEXT NILJI 

ICONDllNULL UlllGO C2111 
ISETQ Sl NI 
tSETQ LL IQUOTE GENII 
160 All 

C2 IPRINTIQUOTEIPANIC C2 SCANWlll 
IRETURNIQUOTE DONEll 

D ICONDllNOTINULL SllllRETURN ISU8STIQUOTE NEXTVllQUOTE NEXTI 51111 
((NULL SllSETQ LL Niii 

IGO All 11111 STOPllllll 
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00840 
00850 
00860 
00870 
00880 
00890 
00900 
00910 
00920 
00930 
00940 
00950 
00960 
00970 
00980 
00990 
01000 
01010 
01020 
01030 
01040 
01050 
01060 
01070 
01080 
01090 
01100 
01110 
01120 
01130 
01140 
01150 
01160 
01170 
01180 
01190 
01200 
01210 
01220 
01230 
01240 
01250 
01260 
01270 
01210 
01290 
01300 
01310 
01320 
01330 
01340 
01350 
01360 
01370 

·oueo 
01390 
01400 
01410 
01420 
01430 
01440 
01450 
01460 
01470 
01480 
01490 
01500 
01510 
01520 
01530 
01540 
01550 
01560 
01570 
01580 
01590 
01600 
01610 
01620 
01630 
01640 
01650 
01660 



PUTONl LISP 
OEFlNElllPUTONllLAH80AIL UllPROGIUl U3 U41 

ICONOllHEH8ERICAR UllQUOTEllHPLIES EQUAL EQUAL2 ASSOClll 
IGO Cl I 

llEQUALICAR UllQUOTE ANOlllGO 8211 
llEQUALICAR UllQUOTE lHPLIES2111GO Bii 
llON U VVlllRETURN NILlll 

ISETQ Ul NI 
CSETQ Z4A IAODl Z4All 
ISETQ VVl IAPPEND VVl ICONSICONS LUI NlLlll 
ICON~llEQUALICAR UllQUOTE EXlSTSlllGO 8111 

llEQUALICAR UllQUOTE GROUPlllSETQ Q IALLVBLESICONS 
ICAOR UI Qllll 

llHEMBERICAR UllQUOTEIHOHOHORPHlSH ISOMORPHISM 
EPlHORPHISH HONOHORPHISHllllSETQ QLl 
IGTFRHICONSCQUOTE HHPRPllCOR Ull 
(QUOTE XXI NIL QLllll 

llEQUALICAR UllQUOTE FACTORGROUPlllSETQ QL2 IGTFRH 
ICONSIQUOTE FGPRPllCDR UlllQUOTE XXI NIL QL21111 

ICONDllNULL QM511GO A2ll 
CIANOIEQUALICAR UllQUOTE HEHBERlllATOHICAOR Ulll 

ISETQ QM2 ICONSCCDR UI QH21111 
IHOOELHAKE UI 

AZ ICONOllNOTION U !APPEND Wl WllllRETURN Ullll 
Al ISETQ U3 !VERIFY Ull 

ICONDllNULL U31CRETURN Ullll 
(RETURN U31 

C CCONOllON U VV211RETURN NILlll 
ISETQ Ul NI 
CSETQ Z4A IADDl Z4All 
ISETQ VV2 IAPPENO VV2 CCONSICONS LUI NILlll 
ICONDllEQUALICAR UllQUOTE ASSOClllSETQ Q IALLVBLES 

ICONSICADR UI Qlllll 
ICONDllON U IAPPENO Wl WlllGO Alll 

llEQUALICAR UllQUOTE EQUALlllSETQ U ICONSIQUOTE EQUAL2 
llCORUllll 

llEQUALICAR UllQUOTE EQUAL2111SETQ U ICONSIQUOTE EQUAL) 
ICOR Ull 111. 

IGO A21 
81 ICONDllNOTION U IAPPENO Wl WllllGO BlAlll 

ISETQ U3 (VERIFY Ull 
ICONOCCEQUAL U3 (QUOTE OONElllRETURN U311 

CIEQUAL U3 (QUOTE NEXTlllSETQ Ul U3111 
81A ICONDCIONCCAOR UI Z311GO 818111 

IPRINTCQUOTECEXISTS 81A PUTONllll 
IRETURN (QUOTE DONEll 

818 CSETQ U3 IGENSYHll 
ISETQ U4 ISU8ST U3 ICAOR UllCAOOR Ulll 
ICONOllNULLIGENV8LEICAOOR UllllSETQ Z3 ICONS 

ICONSCQUOTE RESI U31 Z3111 
IT ISETQ Z3 CCONSICONSIQUOTE GENI U31 Z31111 

ISETQ U3 IPUTONllCONS Z4A ICOR Lii U411 
IGO 82AI 

8 ISETQ U !LIST N ILISTIQUOTE lHPLlESllSU8STIQUOTE EQUAL! 
!QUOTE SEQUALllCAOOR UlllCAOR UlllLISTIQUOTE IHPLlESI 
ICADR UllSU8STIQUOTE EQUAL211QUOTE SEQUALltCADDR Ulllll 

82 ICONDllNOTIEQUALICOR LI NlllGO 82111 
llEQUALICAAOR UllQUOTE ANOlllSETQ Ul IPUTONl L ICAOR Ullll 
IT ISETQ Ul IPUTONllCONSICAR LI Z4811CAOR Ulllll 

ISETQ Z48 IAOOl Z4811 
IGO 8221 

821 ISETQ Ul IPUTONl L ICAOR Ulll 
822 ICONOllEQUAL Ul IQUOTE OONElllRETURN Ulll 

llNOTIEQUALICOR LI NlllSETQ L ICONS Z4A ICDR Lilli 
llEQUALICAAOOR UllQUOTE ANOlllSETQ L ICONS Z4A Niil 
IT ISETQ L ICONS Z4A Z481111 

ISETQ U3 IPUTONl L ICADDR Ulll 
82A ICONOllORINULL UlllHEH8ER U3 IQUOTEINEXT DONElllllRETURN U3111 

IRETURN Ull 
l II II STOPI II II I 
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00010 
00020 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 
00600 
00610 
00620 
00630 
00640 
00650 
00660 
00670 
00680 
00690 



PUTON2 LISP 
DEFINElllPUTN21LAM8DAIL U MllPROGIUll 

ICONDllNULL LllSETQ L IQUOTE RELllll 
ICONDllNULL MllSETQ Ul ICONSIQUOTE HEADI NILlll 

llATOM MllSETQ Ul ICO~S M NILlll 
IT ISETQ Ul ICONS I CAR HI NILi 111 

IRETURNIPUTON21LIST L Ul ICONSIQUOTE NONEI NILi Z4 NI 
UHll 11111 

DEFINElllPUTON21LAH8DAIL U MllPROGll 
ICONDllON U !APPEND Wl WlllRETURNION2 LU Miii 

llEQUALICAR LllQUOTE A2111GO Alli 
80 IRETURNIPUT2 LU Mii 
81 ICONDllMEH8ERICDR UI QH211GO 8011 

llHEHBERICDR UI QH611GO 8311 
llNULLICHECKMODELICDR UllllGO 82111 

IGO 801 
B2 ISETQ QM6 ICO~SICDR UI QM611 
B3 ICONDllATOM MllRETURN NILlll 

!RETURN !QUOTE REJECTll 
A ICONDllMEM8ERICAR UllQUOTEIIMPLIES EXISTS IMPLIES2 FEQUALlll 

I RETURN NILi I C INULL QM51 IGO 8011 
llANDIEQUALICAR UllQUOTE MEH8ERlllATOMICADR UllllGO 81111 

CGO 801 11111 
DEFINElllON21LAMBDAIL U MllPRDGCU31 

ICONDllNULL MllGO AlDll 
llATOM MllGO AlAlll 

ISETQ U3 IADDANTECCCAR Ml Ull 
CCONOllNULL U31CGO AlCll 

llNULLICDR MlllRETURN U311 
ICEQUAL U3 !QUOTE BlllGO AlClll 

ISETQ U3 IADDCONSQCCONSCCADR Ml U3llCAR Miii 
!RETURN NI 

AlA ISET~ U3 CAODANTEC M Ull 
ICONDllNULL U311RETURN NILll 

llEQUAL U3 !QUOTE 8111GO Alfi II 
ISETQ U3 IAODCONSQ U3 Mii 
!RETURN NI 

AlC ICONDllNULLICDR MlllRETURN NILlll 
ISETQ U3 IADOCONSQICAOR MllCAR Miii 
!RETURN NI 

AlD ICONDllNOTIEQUALICAR LICQUOTE A21111RETURN NILlll 
CSETQ U3 CCARCGFINO Ulll 
CCONOCINOTIMEM8ERICAR U31IQUOTEIA2 VERA211111RETURN NILi) 

llMEM8ERIQUOTE HEAOllCAOR U3111RETURN NILlll 
ISETQ M ISUBSTICONSCQUOTE HEADICCAOR U311CCAOR U31 U311 
CSETQ M !APPEND M CCONSCSIXTH LI NILlll 
ICONOICORINULL WllLESSPCCAOOOR U31CCAOOOAAR Wiii 

ISETQ Wl ISUBST M U3 Wllll 
IT CSETQ W ISUBST M U3 Wllll 

!RETURN NILi 
Alf ISETQ U3 IVERIFYCCORIGFIND Mllll 

ICONOllNULL U3llRETURN Niii 
!RETURN U31 11111 

COMPILEllPUTN2 PUTON2 ON211 STOPllll 

PUT2 LISP 
OEFINElllPUT21LAMBOAIL U MllPROGIZ Ul U2 U3 U4 Lll 

ISETQ Ul NI 
ISETQ Z Z41 
ISETQ Z4 IADDl Z411 
ICONDCIMEMBERICAR UllQUOTEIANO OR IMPLIES21111GO 84111 

65 ISETQ W !APPEND W ICONS ICONS L UI NILlll 
ICONOllNULL MllGO A2)1 

llATOM MllGD 8111 
llNULLICDR MlllGO A2Alll 

ISETQ U3 IADDCONSQICDR MllCAR Miii 
IGO A21 

A2A ISETQ Ul !QUOTE All 
IGO A21 

bl ISETQ U3 IADDCONSQ Z Mii 
A2 ICONOCION U !APPEND VVl VV2111GO A311 

llNOTINULL Qfll llGO Cll 11 
A2C ICONDllMEMBERICAR UllQUOTEIIMPLIES EQUAL EQUAL21111GO A611 

llEQUALICAR UllQUOTE IMPLIES2111GO Ill 
llANOCNULL CXICEQUALICAR UllQUOTE EXISTllllGO Ell 
llEQUALICAR UllQUOTE ORlllGO OJI 
llEQUALICAR UllQUOTE ANOlllGO A7111 
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00010 
00020 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
OOHO 
00320 
00330 
00340 
0035.0 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
OO't40 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
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00020 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
OOl'iO 
00150 
00160 
00170 
00180 
00190 
00200 
00210 



A28 ISETQ ·U4 IALLV8LESCATMS Ulll 
ISETQ U2 llNVM U U411 
ICONDllNULL U211RETURNIHFM U U4 Ul L Zllll 
ISETQ W CSU8STCCONS N ICDR Lii L Wll 
ISETQ U3 IPUTN21CAR LI U2 Zll 
IGO Al2AI 

84 ISETQ Ll ICAR Lii 

. ::-;.· 

ICDNDllNOTCEQUAL Ll IQUOTE A211~1SETQ L ICONS ~ ICDR Lllll~ 
IGO 851 

A3 ISETQ U3 !VERIFY Ull 
ICONDllEQUAL Ul IQUOYE AlllSETQ Ul IQUOTE 8111 

llEQUAL U3 IQUOTE DONEllCRETURN U311 
CIEQUAL U3 IQUOTE NEXTlllGO A9Alll 

A98 ICONDllEQUALICAR UflQUOTE ANDI llGO AlOll I 
AB I RETURN Ul I 
A6 ICONDCIEQUALICAR UllQUOTE EQUALlllGO A6All 

CIEQUALCCAR UllQUOTE EQUAL211CGO A68111 
A6C ICONDICEQUALCCADR UICCADDR UlllGO A3111 

CGO A281 
A6A CCONDCIONICONSCQUOTE EOUAL211COR Ull VV21CGO A3111 

IGO A6CI 
A68 ICONOllONICONSIQUOTE EQUALICCDR Ull VV211GO A3111 

IGO A6CI 
A7 C SETO U2 Zit I 

ICONDllANDIEQUALICAADOR UllQUOTE MEMBERlllATOMICARICDAOOR UlllllGO A7A 
111 
A78 ISETQ U3 IPUTN2 Ll ICADR UllCONS Z NILl)I 

ICONOllNULL U3llGO Al211 
CCMEMSER U3 IQUOTEINILL AllllGO Al211 

llEQUAL U3 IQUOTE BlllGO Al3All 
llEQUAL U3 ICUOTE NEXTVllCGO Al3Bll 

CIEQUAL U3 (QUOTE DONElllRETURN U311 
CIEQUAL U3 IQUOTE NEXTlllSETQ Ul U311 
CCEQUAL U3 CQUOTE REJECTlllRETURN NILi) 
IT ISETQ U2 U3111 

Al2 ISETQ ·U3 IPUTN2 Ll <C·AOOR UHCONS Z ICONS U2 141))1 
Al2A ICONOllMEMBER U3 IQUOTEIOONE NEXTlllCRETURN U3111 

I GO ABI 
A7A CSETQ U ILISTICAR UllCAOOR UICCADR Ulll 

ICONOCCNULL QM51CGO A7811 
llANOCEQUALICAAODR UllQUOTE MEMBERlllATOMICARICDADOR Ullll 

ISETQ U INOWWHICH Ull)I 
IGO A781 

AlO ISETQ U4 IANDARGS Ull 
Al6 ICONOllNULL U411GO A81) 

llONICAR U411APPEND Wl WlllGO Al511) 
Al7 ISETQ U4 ICDR Ult) I 

160 Al61 
Al5 ISETQ U3 CVERIFYICAR U4111 

CCONOCIEQUAL U3 CQUOTE OONElllRETURN U311 
CIEQUAL U3 CQUOTE NEXTllCGO Al5Alll 

CGO Alli 
Al5A ICONOCIEQUAL Ul IOUOTE BlllSETQ Ul IQUOTE NEXTVlll 

IT ISETQ Ul IQUOTE NEXTllll 
IGO Alli 

A9A ICONDllEQUAL Ul IQUOTE BlllSETQ Ul IQUOTE NEXTVlll 
IT ISETQ Ul IQUOTE NEXTllll 

IGO A981 
Al38 CSETQ Ul IQUOTE NEXTll 
Al3A CSETQ U3 IPUTN2 Ll ICADDR UI Zll 

IGO Al2AI 
Cl ICONOllANDCEQUALICAR LllQUOTE RELlllON U Qflll 

CRETURNIQUOTE OONEllll 
IGP A2CJ 

D ISETQ U3 IPUTN2 Ll ICADR UI Zll 
ICONDllEQUAL U3 IQUOTE NEXTlllSETQ Ul U311 

llEQUAL U3 IQUOTE OONElllRETURN U3111 
160 Al3AI 

IRETURNIPUTN2 Ll CLISTIQUOTE ANDllLISTIQUOTE IMPLIESI 
ISUBSTIQUOTE EQUAL21COUOTE SEQUALllCAOOR UlllCADR Ull 
ILISTl,UOTE IMPLIESllCADR UllSUBSTIQUOTE EQUALI 
IQUOTE SEQUALllCADDR Ullll Zll 

E ISETQ Ll ISLVX Ull 
ICONDllEQ Ll NllRETURNIQUOTE DONElll 
llGO A281 

11111 COMPILEICPUT211 
STOPlllll 
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00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 
00600 
00610 
00620 
00630 
00640 
00650 
00660 
00670 
00680 
00690 
00700 
00710 
00720 
00730 
00740 
00750 
00760 
00770 
00780 
00790 
00800 
00810 
00820 
00830 
00840 
00850 
00860 
00870 
00880 
00890 
00900 
00910 
00920 
00930 
00940 
00950 
00960 
00970 
00980 



SOL VEX LISP 
DEFINElllSOLVEXILAMBDAIUI 
IPROGfZ UI S U2 U3 U4 U5 U6 QF2 L U7 FUI 

ICONDflNOTIONICADOR UI Z3111RETURN NILlll 
ISETQ U7 fGENSYMll 
fSETQ Z3 !APPEND Z3 ICONSICONS N U71 NILlll 
fSETQ FU CCOR Ull 

· ueTQ u ISUBST U7 ICAODR UI Ull 
fSETQ Z Zltl 

Al ISETQ Ul ICAOOOR Ull 
fSETQ L NI 
CSETQ U2 (QUDTEIEQUAL EQUAL2111 
CCDNOllMEMBERICAR Ull U21CGO A211 

CfEQUALICAR UlllQUOTE ANOlllSETQ Ul ICOR Ullll 
IT I RETURN NILi 11 

ICDNOllMEMBERICAAR Ull U211GO AlCll 
CCEQUALICAAR UllCQUOTE MEMBERlllGO AlBlll 

(RETURN NILi 
AlB fCONOICEQUALCCAOAR Ull U711SETQ L ICAR Ullll 

CT !RETURN NILlll 
(.CONDCIMEMBERCCAADR Ull U21 ISETQ Ul ICAOR UlM I 

IT !RETURN NILlll 
UiO AlOI 

Alt CCDNOllEQUALICAADR UlllQUOTE MEMBERllCSETQ L CCADR Ullll 
CT (RETURN NILlll 

ICONOllEQUALCCAOR LI U711SETQ Ul ICAR Ultll 
IT I RETURN NIL 11 f 

AlO ISETQ S ICDDR Lii 
A2 iCONOllMEMBER U71VBLESICADR UlllllGO A2All 

((MEMBER U7 IVBLESICADDR UlllllGO ~28111 
!RETURN NIL I 

A2~1CONDllMEMBER U7 IVBLESCCADDR UlllllRETURN NILlll 
IGO A31 

A21 fSETQ Ul ICONSfCAR UllfCONSCCAODR UllfCONSICAOll till NILllll 
A3 ISETQ U2 IPUTN2 NIL ICONS(QUOTE EXISTllCONS U7 

ICONS Ui NILlll NILll 
ICONOllEQUAL U2 (QUOTE OONEllCGO A6Elll 
ISETQ U2 CSCANW L (QUOTE GENlll 
ICONOllEQUAL U2 (QUOTE NEXTlllGO Ell 

ICEQUAL U2 (QUOTE OONElllGQ Altlll 
IGO Ell 

Alt ICONOllNULL WlllGO AltAll 
llEQUALICAAAR WlllQUOTE VERlllRETURN U2111 

CGO A6EI . 
AltA CCONOCIEQUALICAAAR WllQUOTE VERllCRETURN U2111 
A6E · ICONOllNULL SllGO E211 I 
E3 ISETQ W I MASK Z II 

UETQ QF2 NILi 
ISETQ Ul (QUOTE MEMBERll 
CSETQ U3 CPUTN2 NIL ICONS Ul ICONS CXl Sil 
. ICAOOOAR UI II . 

CCONOCINULL U31CRETURN Nllll 
.((MEMBER U3 IQUOTEIOONE NEXTllllRETURN U3111 

IRETURN Nl 
E2 ISETQ U6 !VERIFY FUii 

IPIUNT FUI 
· (PRINTlLISTICAOR FUICQUOTE EQUALSI CXlll 

fCONDCfEQUAL U6 (QUOTE OONEllCRETURN U6111 
E fSETQ W !MASK Zll 

ISETQ QF2 NILi 
IRETURN IQUOTE NEXTll 

El ISETQ W I MASK Z II 
fSETQ QF2 NILi 

. !RETURN NILi 11111 
COMPllECISOLVEXll 
STOPI II 
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SCNX LISP 
OEFINElllSCNXILAM80ACS L Ul U U511PROGIU2 U3 U41 

ISETQ U IGENSU8STICOR UlllCAR Ull Ull 
ISETQ U2 ILISTCQUOTEIEQUAL Al A2111QVOTEIEQUAL2 Al A21111 

A ISETQ U3 ICAR U211 
ISETQ U4 IRPLCEIQUOTEIAl A211 NILll 
ICONDllNULL U411GO 8111 
ISETQ U3 IGENSU8STICAR U411COR U41 U311 

8 ISETQ U4 IMATCHl U3 Ull 
81 ICONOICNULL U4llGO Cll 

CCMEM8ER L ICOAR U411CGO Diii 
CSETQ U4 CCOR U411 
IGD Bll 

C ISETQ U2 ICOR U211 
ICONOCCNULL U21CRETURN Siii 
CGO Al 

0 CSETQ U3 CCOAR U411 
01 CCONOCIEQUALICAR U31 NICGO 0211 

CIEQUALCCAR U31 LICGO 02111 
IGO El 

02 ISETQ U3 ICOR U311 
CGO 011 

E ISETQ U4 CALLV8LESCVBLESICAR U31111 
El CCDNOC INULL U41 I RETURN S.11 

llFREEVBLEICAR U411CGO E2111 
CSETQ U4 CCOR U411 
CGO Ell 

E2 CSETQ U2 CCAR U411 
ISETQ U4 CCOR U511 
ISETQ U4 ICONSICAR U411CONS U2 

ISUBSTICA~ U31 L ICDOR U411111 
CSETQ ex NI 
CSETQ L Z41 
CSETQ U4 CPUTN2 NIL U4 CCAODOAR U5111 
CSETQ ex NILi 
CCONDCINULL U41IRETURN Sii 

CCEQUAL L Z41CRETURN Siii 
ISETQ Ul CQUOTEIMEM8ER Al Alll 
ISETQ U4 IRPLCECQUOTE CAl Al I NILi I 
ICONOCCNULL U411GO Giii 
ISETQ Ul IGENSU8STICAR U411COR U41 Ulll 

G ISETQ U4 IMATCHl Ul Ull 
Gl CCONO<INULL U41CGO Hll 

llMEMBER U2 ICDAR U411CGO G2111 
ISETQ U4 ICOR U411 
IGO Gll 

G2 ISETQ.Ul IGENSUBSTICOAR U41CCAAR U41 Ulll 
ISETQ U4 IGENSYMll 
ISETQ Z3 ICONSCCONS N U41 Z311 
ISETQ Ul ICONS N CSU8ST U4 U2 Ullll 
CSETQ S CCO~CGFINO Lill 
ISETQ W CSU8STCSU8ST U4 U2 SI S Wll 
CSETQ U3 ISU8ST U4 U2 ICAR U3111 
ICONDllNULL QF211SETQ QF2 ICONS U4 U3111 

ITISETQ QFZ ICONS U4 ISUBST U3 CCAR QF211COR QF2111111 
IGO Hll 

H ICONOllNULL QFZllSETQ QF2 ICONS U2 ICAR U31111 
ITISETQ QF2 ICONS U2 ISUBSTICAR U311CAR QF21CCOR QF2111111 

I SETQ Ul NI 
Hl ISETQ L IROFW Lii 
HlA CCONOllNULL'LllRETURN Ullll 

ISETQ S ISLVXICOAR Liii 
CCONDllEQ S NllRETURN (QUOTE OONEllll 
ISETQ L ICOR Lii 
fGO HlAI 

11111 STOPll 11 
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SLVX LISP 
DEFINElllSLVXILAMBOAIUllPROGIUl U21 

ICONDllNULL QF211GO Allll 
ISETQ CXl ISOLVXPICOAOOR UllCAR QF2111 
ICONDllNULL CXlllGO Allll 
ISETQ CXl ISUBST CXl ICAR QF211COR QF2111 
IRETURN NI 

Al ISETQ CXl ISOLVXPICOAODR UllCADR Ulll 
ICONOllNOTINULL CXllllRETURN Niii 
ISETQ Ul ICAOOR Ull 
ISETQ U2 IGMATCHICAOR UlllCAOOR Ullll 
ICUNDllNULL U211RETURN NILll 

llNOTIEQUALICAAR U211CADR UllllRETURN NILll 
llNULL QF211SETQ CXl ICAOR U2111 
IT ISETQ CXl ISUBSTICAOR U211CAR QF211COR QF2111ll 

!RETURN NI 11111 
DEFINElllSOLVXPILAMBDAIU3 UllPROGIUl P PPI 

ISETQ P (QUOTE •PRODll 
ISETQ PP (QUOTE •INVERSEll 

A ISETQ Ul !CAR U311 
ICONOllATOM UlllGO Alli 

llEQUALICAR Ull PllGO Blll 
II EQUAL I CAR Ull PP llGO Cll JI 

(RETURN NILi 
Al ICONDllEQUAL Ul UllRETURNICAOR U31111 

!RETURN NILi 
Bl ICONOllMEMBER U IVBLESICAOR UlllllGO 82111 

ISETQ U3 ILISTICAOOR UlllLIST P (LIST PP ICADR Ull 
ICAOODR UllllCADR U311CAOOOR Ulllll 

IGO Al 
82 ICONDllMEMBER U IVBLESICAODR UlllllRETURN NILlll 

ISETQ U3 ILISTICAOR UlllLIST P ICADR U311LIST PP ICADOR Ull 
ICAOOOR UllllCAOOOR Ulllll 

IGO Al 
Cl ISETQ U3 ILISTICAOR UlllLIST PP ICAOR U311CADOR Ulllll 

IGO Al 11111 
COMP I LE I I SOLVXP 11 STOP 1111 11 

HOMOMF LISP 
OEFINElllHOMOMFILAMBOAILllPROGIU3 U41 

ISETQ U3 Z41 
ISETQ U4 IPUTN2 NIL ICAOR LI NILll 
ISETQ U4 ISCANW NILIQUOTE GENlll 
ISETQ QFl IONLYIROFW U311QUOTEIREL RELlllll 
ISETQ W (MASK U311 
ISETQ U3 Z41 
ISETQ U4 IPUTN2 NIL ICAODR LI Nilll 
ICONOllNOTIEQUAL U4 IQUOTE OONEllllSETQ U4 ISCANW NIL (QUOTE GENlllll 
ISETQ Qfl NILi 
ISETQ W IMASK U311 
ICONOllEQUAL U4 (QUOTE OONElllSETQ U4 (VERIFY Lllll 
I RETURN U4 I 111 I I 

OEFINElllONLYILAMBOAIU LI 
ICONDllNULL UI NILlllMEMBERICAAAR UI LllCONSICAR UI 
IONLYICOR UI LI 11 IT IONLYCCOR UI Lii i 1111 
STOPI 111 
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GENFCN LISP 
OEFINECCIGENFCNILAM8DAILICPROGCU Ul U2 U3 U4 U5 U6 SI 

ISETQ U4 ICONSIGENSYMICGENSYMlll 
ISETQ Z3 CCONSCCONS N CCAR U411 Z311 
ISETQ Z2 ICONSICONSIQUOTE RESllCOR U411 Z211 
CCONOICEQUALCCAR LICCAOR llll60 Ell) 
CSETQ'U6 ICAOR Lii 

Al ISETQ U3 14) 
CSETQ U IGENSYMll 

ISETQ Z3 ICONSICONSIQUOTE GEN) U) 13)1 
ISETQ Ul IPUTONllCONS l4A l4811LISTIQUOTE MEM8ER) U U6llJ 
CSETQ Ul IPUTN2 Nil lllSTIQUOTE OUMMYI UI Nllll 
ISETQ Ul ISCANW N IQUOTE GENlll 
ISETQ Ul ICDRIROFW U3111 
ISETQ W IMASK U311 
ISETQ U3 IMEMOFl VVl IQUOTE MEMBERlll 
ICONOllNULL SllSETQ U2 ICONSILIST U6 U UI Nlllllr 

A2 ICONDllNUll UlllGO 02111 
ISETQ U IGENV8LEICOAR. Ullll 
ICONDllNUll UllGO 03111 
ISETQ U5 U31 

A5 ICONDllNUll U511GO 0311 
llEQUAL U ICAAR U511CGO A6111 

CSETQ U5 ICOR U511 
CGO A51 

A6 ICONOCINULL SllGO S21)1 
CSETQ U5 ICAOAR U511 
ISETQ U6 U21 

Al ICONOllNUll U6llGO A811 
llEQUAL U5 ICAAR U6lllGO 0111 

ISETQ U6 ICOR U61) 
IGO All 

S2 ICONOllEQUALICAR LICCAOAR U5))1GO Clll 
ISETQ U2 IAPPENO U2 ICONSILISTICAOAR U51 U 

ICAODAR Ulll Nlllll 
IGO A81 

03 CCONDCINULL SICSETQ U2 IAPPEND U2 CLISTCLIST Nl)llll 
A8 ISETQ Ul ICDR Ulll 

IGO A21 
02 ICONOllEQ S N)CRETURN NILlll 

ISETQ S N) 
ISETQ U6 ICAR Lii 
CGO All 

C ISETQ U6 ISU8STICAR U4) U ICAOOAR Ulll) 
Cl IRETURNILISTIQUOTE IMPLIESICLISTCQUOTE MEMBERI 

ICAR U4ICCAR LlllLISTIQUOTE EQUALllLISTICOR U41 
ICAR LllCAOR LllCAR U411 U61)1 

0 IRETURNILISTIQUOTE EQUALllLISTCCOR U411CAR L) 
ICAOR LllSUBSTICAR U4) U ICAOOAR Ullll 
ISUBSTICAR U41CCADAR U61ICADDAR U61111 

E ISETQ U6 ICAR U411 
IGO Cll 

11111 STOPllllJI 
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WLOFN LISP 
OEFINECllCOMPOSITIONILAMBDAIU VBICPROGCUll 
A CCONOCCATOM UICRETURN NILll 

I CONICAR UI ZZICSETct· Ul CCONSCLISTCCAR UICCADA UI 
CCADOR UI I Ull 11 

CT !RETURN NILlll 
CSETQ U ICADDDR Ull 
ICDNDCIEQUAL U V81CRETURN UU 11 
CGO Al 11111 

DEFINEICIWLDFNCLAMBOAIEQNICPROGCUl UZI ~ 
CPRINTIQUOTECMUST PROVE RELATION WELL DEFINEOlll 
CPRINTIQUOTECIS INVERSE RELATION ONE TO ONEiii 
CSETQ Ul CGENSYMll 
CSETQ UZ ICOAR EQNll 
ISETQ ZZ ICONSICONSIQUOTE RESI Ull lZll 
CSETQ Ul IMONOMFILISTIQUOTE EQUALllLIST Ul ICAOR UZI 

ICAR UZICCADR EQNllCCAOOR UZll NILll 
CCONOCINULL UllCRETURN NILlll 
ISETQ 16 NILi 
I SETQ LON NIL I 
I SETQ Wl NILi 
CSETQ W NIL I 
CRETURN Tl 1111) 

DEFINECllWLOFN11LAM8DAIU4 U5 U6 U711PROGIFY S Ul UZ U31 
CSETQ Ul ICONSCGENSYMllGENSYMlll 
CSETQ 13 ICONSICONSCQUOTE RESllCAR UlllCCONSCCONSCQUOTE RESI 

ICOlt Ulll 13111 . 
CSETQ U3 IGENVBLE U411 

CO ICONOCIATOM USICGO Clll 
llEQUALCCAR U511QUOTE •LCOSETlllGO C4111 

Cl ISETQ UZ ILISTCQUOTE EQUALICLISTCQUOTE •PROOICLISTCQUOTE •INVERSEI 
ISUBSTCCAR Ull U3 U51CCAOR U611CSUISTCCDR Ull U3 USI 
ICADR U611CLISTCQUOTE •IOENTITYICCAOlt U61111 

CZ ICONDllNULL SllGO C31) 
llNULL Qfl51CGO CZAllJ 

CSETQ FY ILISTIQUOTE MEMIERI U3 CGENSET U3 U71ll 
ISETQ FY CPUTONlCCONS l4A Z48JCLISTCQUOTE ANOtCSU8STCCAR Ull U3 FYI 

·csuBSTCCOR Ul) U3 FVJttl 
ISETQ Z48 IAODl 14811 

CZA ISETQ FY CSOLYElllSTCQUOTE IMPLIESJUZ Sill 
ICONDllNULL FYJCRETURN Nlllll 
!RETURN NI 

C3 ISETQ S UZI 
ISETQ U5 U41 
ISETQ U6 ICOR U6ll 
160 COi 

C4 CSETQ UZ ILISTCQUOTE MEMBERllLISTCQUOTE •PROOJCLIST 
(QUOTE •INYERSEllSUISTICAR Ult U3 CCAOR UStllCAOODR U511 
ISUBSTCCOlt Ull U3 CCADR U511CCAOOOR USllCCAODR U5111 

CGO CZI 
lltll STOPlllllll 
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MONOMF LISP 
DEFINElllMONOMFILAM8DAIEQN SJIPROGIUl U2 U3 U4 U5 U6 U7 FVJ 

ISETQ U6 ICAOR EQNll 
ICONOllFREEV8LEICADODR U61JIGO 8111 

Al ISETQ U2 ICONS Z4A 1411 
ISETQ FV ICONS VVl VV211 
ISETQ U4 IGENSYMJI 
ISETQ Z3 ICONSICONSIQUOTE GENI U41 Z311 
ISETQ U3 IPUTONllCONS Z4A Z48llLISTIQUOTE MEMBERI U4 ICAOR U61111 
ISETQ U3 IPUTN2 NIL ILISTIQUOTE DUMMYllSUBST U4 

ICADDDR U61 U611 NILll 
ISETQ U3 ISCANW N (QUOTE GENlll 
ISETQ U3 141 
ISETQ VVl NlLllSETQ VV2 NILi 
ISETQ U4 IPUTONl ICONS Z4A Z4BI EQNll 
ISETQ U4 ISCANW NIL !QUOTE GENlll 
ISETQ U4 IGFIND U311 
ICONDllNULL U4llRETURN NILlll 
ISETQ U5 ICADDRICOAOORIGFINDICAAOAR U411111 
ISETQ U4 ICADDR U411 
I SETQ Z6 NILi 
ISETQ LON NILi 
I SETQ Wl NIL I 
I SETQ W NILi 
ISETQ Z4 ICDR U2111SETQ Z4A ICAR U211 
ISETQ VVl ICAR FVlllSETQ VV2 ICDR FVll 
ISETQ U7 QM21 
ISETQ QM2 FQM211SETQ QM3 FQM311SETQ QM4 FQM4llSETQ QM6 NILi 
ICONDllNULL SllRETURNIWLOFNl U4 U5 U6 U7111 

llATOM U411GO A211 
llEQUALICAR U411QUOTE •LCOSETlllGO A6lll 

A2 ISETQ Ul IGENV8LE U411 
CCONOllNULL UlllGO A8111 
ISETQ U3 ISOLVXPILIST U4 ILISTIQUOTE •IDENTITY! 

ICADDR U6111 Ulll 
ICONDllNULL U311GO A8111 
ISETQ FY IPUTONllCONS Z4A Z4Bl(LISTIQUOTE EQUALI Ul U3lll 
IGO DI 

A6 ISETQ FV IPUTONllCONS Z4A Z481(LISTIQUOTE MEMBER! 
ICAOR U4llCAODR U41111 

ISETQ Ul IGENVBLE U411 
IGO DI 

AB ISETQ FV IPUTONllCONS Z4A Z481tLISTIQUOTE EQUALI U4 
ILISTIQUOTE •IOENTITYllCADDR U61)))) 

D ISETQ 14B IADDl 24811 
ICONDllNULL QM5JIGO 0011 

llNULL UlllGO 001)1 
ISETQ FV IPUTONllCONS Z4A Z48JILISTIQUOTE MEMBER) ~1 IGENSET Ul U71JI) 
ISETO Z48 IAOOl Z48JI 

DO CSETO FV ISotYEILISTIOUOTE EQUALI U5 
ILISTIQUOTE •IDENTJTYllCADR U611111 

ICONDllNULL FVllRETURN NILlll 
!RETURN NI 

B ISETQ Ul ICOMPOSITIONICAQOR EONllCAOOOR U611J 
ICONDllNULl UlJIGO·Allll 

81 ICONOCIONILISTIQUOTE ONEONEllCAR UlJI VVlllSETQ Ul ICDR Ul))) 
IT IGO AU IJ 

ICONOllNULL UlJIGO B2J)I 
160 Bll 

B2 IPRlNTIQUOTECFUNCTlON IS A COMPOSITION OF MONOMORPHISMSJll 
!RETURN NJ 

JI))) STOPIJllJll 

156 

00010 
OOG20 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
005BO 
00590 
00600 
00610 



VERIFY LISP 
DEFINE(l(VERIFYCLAMBDAIUI 
IPROGCUl U2 U3 U4 U5 U6 U7 TT NN GI 

ISETQ G IQUOTE All 
AO CSETQ U2 Wll 
Al CCDNDllNULL U21CGO A211 

CIEQUAL G CQUOTE AlllGO AlAll 
II EQUALICAR U611CAOOOAAR UUllGO A311 I 

AlB ISETQ Ul !APPEND Ul ICONSCCAR UZI NILlll 
ISETQ UZ ICOR U211 
IGO All 

AlA CCONOCCEQUAL U ICDAR UZlllGO A3111 
IGO AlBI 

A3 ISETQ U3 ICAAAR U211 
ICONOllMEMBER U3 IQUOTEIVER VERAZ IRRllllGO A611 

llEQUAL G CQUOTE AlllGO A3Cll 
llEQUAL G !QUOTE BllCGO A3Dll 
ICONLYMEMBICDR U6llCADAAR UZllCGO A3Cllll 

A3C3 ISETQ U7 IDELTf(COR U611CADAAR U2111 
CSETQ U3 ICONS U3 ICONS ~l ICOOAAR U21111 

A3E CSETQ UZ CCONSCCONS U3 ICDAR U2111CDR 02111 
A98 CCONDllNULL TTllSETQ Wl IAPPEND Ll UZlll 

IT ISET~ W !APPEND Ul U21111 
IGO All 

A30 ICDNDllMEMBERICDR U611CAODAAR UZllCGO A3Clll 
ISETQ U7 IOELPRICDR U6llCADOAAR U2111 
CSETQ U3 ICONS U3 ICONSICAOAAR U21(t0NS UlCCORICODAAR UZllllll 
IGO A3EI 

A3C2 ICONOllMEMBERIQUOTE HEAOllCADAAR U211CGO A3C3111 
IGO A3CI 

A3Cl ICONDICEQUAL U3 (QUOTE A2ll(G0 A3C2111 
A3C CSETQ U3 ICAR U211 

ISETQ U2 ICOR U211 
CCONOCIEQUAL G (QUOTE ClllGO A3Fll 

llEQUAL G IQUOTE AlllSETQ U6 ICONSICADDDAR U31 NILllll 
ISETQ U4 IMIRGEAITACKICAOAR U311CAR U611 U411 
ISETQ U5 CMIRGEAITACKICAODAR U311CAR U611 U511 
ICONOllEQUALICAAR U311QUOTE AZlllGO A411 

llEQUALICAAR U3llQUOTE PNTllCSETQ NN IQUOTE NEXTllll 
ISETQ U3 CCONSICONSCQUOTE VERllCDAR U3JllCDR U3111 

A3A CSETQ U2 ICONS U3 U211 
IGO A9BI 

A3F ISETQ U5 IMIRGEACTACKICADDAR U311CAR U611 U511 
ICONDllEQUALICAAR U311QUOTE PNTlllSETQ NN CQUOTE NEXTllll 
ISETQ U3 ICONSICONSIQUOTE IRRllCDAR U31JCCONS N ICDR U31111 
IGO A3AI 

A4 ISETQ U3 CCONSICONSCQUOTE VERA21CCDAR U3111CDR U3111 
I GO A3AI 

AZ CCONDllNULL TTllGO A2Alll 
CGO All 

A2A CSETQ TT NI 
I SETQ Ul Nil I 
ISETQ UZ WI 
IGO Alt 

A6 CCONDllEQUAL G (QUOTE AlllRETURN NILlll 
Al CCONDllEQUAL G CQUOTE CllCGO AlAlll 

ISETQ G (QUOTE 811 
ICONDICNULL U41CGO AlAlll 
CSETQ U6 ICAR U411 
ISETQ U4 ICOR U411 

Al8 ISETQ TT NILi 
ISETQ Ul NILi 
IGO ADI 

AlA ICONDllNULL U511GO Cllll 
ISETQ U6 CCAR U511 
ISETQ U5 ICDR U511 
ISETQ G !QUOTE Cll 
IGO Al81 

Cl ICONDllNULL WlllGO.C211 
ICEQUALICAAAR WlllQUOTE VERlllRETURNCQUOTE DONEllll 

!RETURN NNI 
CZ ICONDllEQUALICAAAR WJIQUOTE VERIJIRETURNCQUOTE DDNEllll 

!RETURN NNI lllll 
COMPILECIVERIFYJI 
STOPI 
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INVM LISP 
OEFINEllCINVMILAM80AIU U211PROGIU1 U4 U5 LLI 

ISETQ LL QI 
CCONOCIMEM8ERCCAR UllOUOTECIMPLIES FEQUAL EXISTSlll 

I RETURN NILi I 
CINOTIANOIMEM8ERIQUOTE •PROOI U2tCMEM8ERIQUOTE •INVERSU. U211 I 

IRETURNCINVM2 U U5 U21111 
84 CCONOCINULL LLICRETURNCINVM2 U U5 U21111 

ISETQ Ul IPMATCHICAR Lll Ull 
83 ICONOllNULL UlllGO 81111 

ISETQ U4 CINVSU81PROOARGSICOAR Ulllll 
CCONOCINULL U4llGO 82111 
ISETQ U llNYREOOCCOAR Ull U4 U ICAR LLlll 
I SEHi U5 U I 

82 ISETQ Ul ICOR Ulll 
IGO 831 

81 CSETQ LL ICOR LLll 
160 841 I I I 11 

OEFl~EllllNVMZIL~MBOAIU U5 U6llPROGIU1 U2 U3 U4 Sll 
ICONOllNULL U511SETQ Sl Niii 

ICONOtlMEM8ERIQUOTE •INVERSE! U611GO Ellll 
ISETQ Ul (LIST NIL Nllll 
ISETQ UZ ILIST NILJI 
ISETQ U3 ILIST Nllll 
ICONDl IANOlMEM8ERIQUOTE •PRODI U611MEMBERHMJOTE •IOENTITYJ U611 

ISETQ U4 ILIST N Nlll 
IT ISETQ U4 ILIST Nil .Nllllll 

IGO E91 
El CSETQ U2 CllST NII 

ICONDICM.EM8ERIQUOTE •PROOI U6IC60 E2111 
CSETQ Ul ILIST NIL Nllll 
CSETQ U4 CLIST NIL Nllll 
CCONOllMEM8ERIQUOTE •IDENTITY) U611SETQ U3 CLIST Niii 

IT CSETQ U3 CLIST NILllll 
160 E91 

E2 CSETQ Ul ILIST N NI-I 
CCONDllMEMBERCQUOTE •IDENTITYI U611GO E3111 
ISETQ U3 ILIST Nllll 
ISETQ U4 ILIST Nil NILll 
IGO E91 

E3 ISETQ U3 ILIST NII 
ISETQ U4 !LIST N NII 

E9 CSETQ U3 ISIFTIAPPEND Ul !APPEND UZ !APPEND U3 U411111 
A tCONDllNULL U311GO 0111 

CSETQ U2 ICAAR U311 
CSETQ U5 ICAOAR U311 
CSETQ Ul IRPLCECQUOTEIAl All Nill I 
CCONDCCNUl.L UlllGO 8111 
CSETQ U2 CGENSUBSTCCAR UillCDR Ull U211 
ISETQ US IGENSUBSTCCAR UlllCDR Ull U511 

B . ISETQ Ul IMATCHl U2 UI I 
CCONDllNULL Ull CGO C 111 
ISETQ Sl NILi 
ISETQ u IRPTSU8 U5 U2 u"u111 

C ISETQ U3 ICDR U311 
IGO Al 

0 ICONOllNULL SlllRETURN Ulll 
IRETURN NILi 11111 

DEFINEllCSIFTCLAMIDAIUll~RDGIUl UZI 
fSETQ Ul CQUOTEICl•PROO Al !•INVERSE Al Al Al 

(•IDENTITY Allll•PROOC•INYERSE Al Al Al Al 
(•IDENTITY AllfC•INYERSEC•INVERSE Al Al Al All 
ll•INVERSEl•IDENTITY Al All•IDENTITY All 
ll•PROD Al !•IDENTITY Al Al All 
((•PROD !•IDENTITY Al Al Al All Ill 

A ICONOllNUt.L UllRETUflN U211 
CIEQUALCCAR UI NICSETQ U2 ICONSICAR UllU21111 

CSETQ U CCDR Ull 
CSETQ Ul ICDR Ulll 
CGO Al 11111 

COMPILE IC INVMI I 
STOPI 111 
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MODEL LISP 
OEFINElllMOOELMAKEILAMBDAIUllPROGIUl U2 U31 

I SETQ Ul QMll 
AO ICONDllNULL UlHRETURN NILll 

llEQUALICAR UllCAAAR UllllGO All II 
ISETQ Ul ICOR Ulll 
IGO ADI 

Al ISETQ Ul ICAR Ulll 
ISETQ U2 IRPLCEIALLV8LESIV8LESICOAR UlllllALLVBLESIVBLESICOR Ulllll 
ICONOllNULL U21(G0 AlBlll 
ISETQ Ul IGENSUBSTICAR U211COR UZI Ulll 

AlB ISETQ Ul CGENSUBSTICDR UllCDAR UlllCDR Ullll 
ISETQ U2 ICAR Ulll 

A2 CCONDllNULL U211GO A3111 
ISETQ U3 iALLVBLESICAR U2111 
ISETQ U QM31 
ISETQ QM3 NILi 

A2A ICONDCINULL UllGO A2Cll 
llNULLIMEETICAR UI U3111SETQ QM3 ICONSICAR UI QM3111 
CT IGO A281 II 

A2Al CSETQ U CCD~ UI I 
IGO A2AI 

A28 CSETQ U3 IALLVBLESIAPPENDICAR UI U3111 
IGO A2All 

A2C ISETQ QM3 ICONS U3 QM311 
ISETQ U2 ICDR U211 
IGO A21 

A3 CSETQ Ul ICOR Ulll 
A3A ICONDCINULL UlllRETURN NILll 

llEQUALCCAAR UlllCAOAR Ul)llGO A38111 
ISETQ QM4 ISWMEM8CCAR UllCCONSICAOAR UllCCONSICAAR Ull NILll QM411 

A38 CSETQ Ul tCDR Ulll 
IGO A3AI 11111 ~ 

DEFINElllCHECKMODELILAMBOACUllPROGIUl U2 U31 
ISETQ Ul QM21 

AO ICONDllNULL UlllGO Alll 
llEQUALICAAR UlllCAR UlllSETQ U2 ICONSCCAOAR Ull U21111 

CSETQ Ul CCDR Ulll 
IGO AOI 

Al ICONDCINULL U211RETURN Tiii 
ISETQ Ul QM31 

AlA ICONDICNuLL UlllRETURN Tll 
CIMEMBERCCADR UllCAR UlllCGO A2111 

ISETQ Ul CCDR Ulll 
IGO AlAI 

A2 CSETQ Ul ICAR Ulll 
CSETQ U3 UZI 

A2A CCONDICNULL U211RETURN NILll 
CIMEM8ERCCAR UZI UlllGO A3111 

ISETQ U2 CCDR U211 
CGO A2AI 

A3 ISETQ Ul QM41 
ISETQ U2 NILi 

A3A ICONOllNULL UlllGO A411 
llEQUALICAAR UlllCADR UlllSETQ U2 ICONSICADAR Ull U21111 

ISETQ Ul CCDR Ulll 
IGO A3AI 

A4 ICONDllNULL U211RETURN Tiii 
A4A ICONDllNULL U311RETURN NILll 

llMEMBERICAR U31 U21CSETQ U3 CCDR U3111 
Ct I RETURN Tl 11 

I GO A4A I 11111 
DEFINElllMEETILAMBDAIUl UZI 

ICONOllNULL Ull NILlllMEMBERICAR Ull U211CONSICAR UlllMEET 
ICOR Ull U21111T IMEETCCDR Ull U2111 1111 

DEFINElllSWMEMBILAMBDAIUl U2 LI 
ICONDllNULL LllCONS Ul NILllllEQUAL Ul ICAR Lil LI 
llEQUAL U2 ICAR LlllCDR LlllT CCONSICAR LllSWMEMB Ul U21CDR Llllllllll 

DEFINECllNOWWHICHILAM8DAIUllPROGIU11 
ISETQ Ul CCDAOR Ull 
CCONDllMEM8ER Ul QM611RETURN Ull 

CCMEMBER Ul QM211GO All 
ICNULL CCHECKMOOEL UlllCRETURN Ulll 

A IRETURNILISTCCAR UllCADOR UllCADR Ulll 11111 
DEFINEICCGENSETILAMBDAIU LICPROGCI 
A CCONDCCNULL LllGO 811 

CCEQUALICAAR LI UICRETURNICAOAR Lllll 
ISETQ L CCOR Lil 
IGO Al 

8 IPRINTCQUOTECGENSET IS RETURNING NONSENSElll 
IRETURNCQUOTE XXll 11111 

STOPll 11 
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GTFRM LISP 
OEFINECllGTFRMILAMBOACU l Z LNI 
CPROGCUl U2 U3 U4 SI 
A tCONOCCEQUAl l CQUOTE YlllSETQ U4 VII 

ICEQUAL L IQUOTE XllCSETQ U4 XII 
IT ISETQ U4 XXlll 

Al CCONOllNULL U41CGO A211 
lCEQUALICAAAR U411CAR UlllGO Alllll 

ISETQ U4 ICOR U411 
(GO All 

Ail ICONDllNULLICOAR U411CGO AlBlll 
CSETQ Ul CCOAAR U411 

· I SETQ U2 I COAR U411 
CSETQ U3 IALLVBLESCVBLES U2111 
ISETQ U3 CRPLCEF U3 CALLVBLESCVBLESCCOR Ulllll 
ICO.NOICNUll U31CGO AlAll I 
ISETQ U2 CGENSUBSTCCAR U311COR U31 UZll 
ISETQ Ul CGENSUBSTCCAR U311COR U31 Ulll 

AlA ISETQ UZ IGENSUBSTCCOR UI Ul U211 
ICONOCIORIEQUAL L IQUOTE XlllEQUAL S NllCRETURN 

IPUTNZ Nil UZ Zill 
llEQUAl L (QUOTE XXlllGO 811 
lT lRETURNlPUTONlCCONS Z4A LNI UZllll 

AlB ICONOIC~QUAL l IQUOTE XlllSETQ S NII 
lT (RETURN Nlllll 

ISETQ L (QUOTE VII 
lGO Al 

AZ CCONOICEQUAL l (QUOTE XlllPRINTIQUOTE 
lCAN YOU GIVE ME A SUFFICIENT CONDITION FORllll 
IT lPRINTIQUOTE lCAN YOU GIVE ME A DEFINITION OFlllll 

lPRINTlCAR UI I 
ISETQ Ul CRDFLXClll 
CCONDllEQUAL Ul (QUOTE NOlllSETQ Ul lCONSlCONSlCAR UI 

NILi NILUll 
ICONDllEQUAL LlQUOTE YllCSETQ Y lCONS Ul VIII 

llEQUAL LIQUOTE Xl-llSETQ X ICONS Ul XIII 
CT lSETQ XXlCONS Ul XXllll 

CSETQ U4 lCONS Ul NILll 
(GO Alli 

8 ICONDllNOTCON U2 LNlllSETQ LN (APPEND LN 
lCONSICONS N UZI NILlllll 

(RETURN LNI 
11 I 11 STOP 1111 
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MATCH ' LISP 
OEFIHElllAOOCONSQILAMBDAIZ MllPROGIU3 U4 U51 

ISETQ U3 lCARlGFINO M))I 
lSETQ U5 lAPPENOMICAOOR U31 Zll 
lCONDllNULL U5)lRETURN NILll) 
CSETQ U4 CCONSCCAR U311CDNSCCAOR U31CCONS U5 lCDOOR U3lllll 
CCDNDCCORCNULL WllLESSP H CCADDDAAR Wiii 

CSETQ Wl ISUBST U4 U3 Wllll 
CT CSETQ W ISUBST U4 U3 Wllll 

(RETURN NILi 11111 
DEFINEllCAPPENDMCLAMBDACL ZI 

CCONDllMEMBER Z LI NILi IT ICONS Z LI II 1111 
DEFINEllCADDANTECILAMBDAlM UllPROGCU3 U4 U51 

ISETQ U3 ICARCGFIND Ulll 
CCONDllGMEM8 M ICADDR U3lllRETURN NILll 

lCEQUAL M CCADDDR U311CRETURN NILll 
llNULLCANDEND M lCADDR U3llllRETURN NILll 
lCMEM8ERltAR U31CQUOTEIVER VERA21111RETURNlQUOTE 8)111 

A2A CSETQ U5 CAPPENDMCCADR U31 Mii 
lCONDClNULL USICRETURN Nl~lll 
lSETQ U4 lCONSICAR U311CDNS U5 CCDDR U31111 
ICONDllORINULL WllLESSPCCADDDR U31lCADDDAAR Wiii 

ISETQ Ill CSU8ST U4 U3 Wllll 
IT ISETQ W ISU8ST U4 U3 Wllll 

!RETURN ICADDDR U311 11111 
OEFINElllANOARGSlLAM80AlUllPROGll 

lCONDCCEQUALCCAADR UICQUOTE ANDlllGO Alli 
CIEQUALCCAAOOR UllQUOTE ANOlllGO A2111 

IRETURNCCOR Ull 
Al CCDNDlCEQUALICAADDR UICQUOTE ANDlllGD A3111 

IRETURNCAPPENDCCOR UllANDARGSICADR Ullll 
A2 lRETURNIAPPENDCCOR UllANDARGSICADDR Ullll 
A3 IRETURNlAPPENDCCOR UllAPPENDIANDARGSICADR UlllANOARGSICADDR UllllJ 
1111 
DEFINEICION2AVE~ILAM8DAIUllPRUGIU11 

ISUQ Ul. IGFIND Ull 
ICONDllNULL UlllRETURN NILll 

llEQUALICAAR UlllQUOTE VERA2111RETURNICADAR Ulllll 
(RETURN NILi 11111 

DEFINElllMATCH11LAM8DAIU LllPROGIUl UZI 
ICONOllNULL LICRETURN NILll 

llATOMCCAR LJl1GO A2111 
CSETQ Ul CMATCHl U ICAR Liii 
CCONDCINULL UlllRETURNCMATCHl U ICOR Llllll 
ISETQ U2 IMATCHl U ICOR LIJI 
ICONDllNULL U211RETURN Ullll 
(RETURN (APPEND Ul U2)1 

A2 ICONOIClTOM UllGO AS)) 
ClFREEV8LElCAR UJllGO Alll 

llEQUALCCAR UJCCAR LJllGO A51!J 
CRETURNlMlTCHl U lCDR Lii) 

Al lCONDICONlCAR LI Z2JIGO A5111 
lRETURNlMATCHl U lCDR LI)) 

A5 ISETQ Ul lGMATCH U Lii 
lCONDICNULL OlllRETURN IMATCHl U ICDR Ll))ll 
ISETQ U2 CMATCHl U ICDR Liii 
(RETURN ICONS Ul U2J) 1111) 

COMPILEICADOCONSQ APPENDM ADOANTECll 
COMPILEllANDARGS OH2AVER MATCHll) 
DEFINEICIMA$l(ILAM80ACZllPROGCU Ul U21 

CSETQ U II) 
A CCOHOICNULL UllRETURN Wll 

llEQUAL l ICADODAAR UIJCGO 8)1) 
ISETQ Ul IAPPEND Ul CCONSCCAR UI NILJ)I 
C SETQ U lCOR UI I 
CGO Al 

8 lCONDllNULL UICGO Oii 
lCMEMBERCCAAlR UllQUOTElREL RELlllllSETQ U21APPEND U2 CCONSICAR UI 

NIL 1111 
IT ISETQ Ul IAPPENO Ul lCONSlCAR UI NILlllll 
CSETQ U ICOR UI I 
IGO 81 

D (PRINT UZI 
!RETURN Ull 11111 

COfliPILEllMASKI I 
STOPI 
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.. -~. 

GMATCH LISP 
OEFINEClllMPMATCHILAMBDACU MICPROG(Ul U2 U3 U41 

CCONDCIEQUALCCAR UICQUOTE EQUALllCGO Alll 
llEQUALICAR UICQUDTE EQUAL21 ICGO A211 
llEQUALICAR UICQUOTE EXISTSlllGO ABll 
CIEQUALCCAR UICQUOTE IMPLIESllCGO A611 
ICEQUALCCAR UllQUOTE ANOllCGO 43111 

I RETURN NILi 
41 ISETQ U2 ICONSCC40R UI NILll 

CGO Altl 
A2 CSETQ U2 CCDR Ull 
Alt CCDNDCINULL U211RETURN Ullll 

CSETQ U3 ICAR U211 ISETQ U2 ICDR U211 
CSETQ Ult IGMATCH U3 Mii. 
CCONDCCNOTCNULL U4111SETQ Ul (APPEND Ul CCONS U4 NILlllll 
CCONDCCEQUALCCAR MICQUOTE EXISTSlllGO Altll 

CIMEMBERICAR MllQUOTECEQUAL EQUAL2111CSETQ U4 CMATCHl U3 ICONS 
ICAOR Ml NILllll(T ISETQ U4 IMATCHl U3 ICDR Mlllll 

ICONDllNOTCNULL U4111SETQ Ul (APPEND Ul U41111 
IGO A41 

43 I SETQ U2 I ANDARGS U 11 
IGO 4"71 

A6 ISETQ U2 ICDDR Ull 
ISETQ Ul IALLMATCH11C4R UZI Mii 

A7 ICONDllNULL U2ICRETURN Ullll 
ISETQ U3 ICAR U211 ISETQ U2 ICDR U211 
ISETQ Ul !APPEND Ul llMPMATCH U3 Miii 
IGO A71 

A8 ISETQ Z3 ISUBSTICONSIQUOTE RESllC40R Ull 
ICONS N ICADR Ull Z311 

ISETQ Ul llMPMATCHICADOR UI Mii 
CSETQ Z3 ISUBSTICONS H ICADR Ull 

ICONSIQUOTE RESllCADR Ull Z311 
!RETURN Ull 11111 

DEFINElllGMATCHllLAMBDAIU Ul U2 V21CPROGCV3 Viti 
lC°"DCINULL UICGO Alll 

llNULL UlllRETURN NILll 
CIATOM UllGO A5111 
llATOMICAR UlllGO A211 
CIATOMICAR UlllCRETlJAN NILlll 

ISETQ V3 CGMATCHllCAR UICCAR Ull U2 V211 
ICONDICNULL V31CRETURN NILlll 
ISETQ V4 IGMATCHlCCDR UICCDR Ull U2 V211 
ICONDllNULL V411RETURN NILlll 
IRETURNICONSCAPPENDCCAR V31CCAR V41 llAPPENOICDR V311COR Vltll 11 

Al ICONDCINULL UllCRETURNCCONS U2 V21111 
11tETURN NILi 

A2 CCONDllFREEVBLECCAR UlllGD A311 
ICEQUALCCAR UllCAR UlllCGO A411 
llANDCMEMBERICAR UllQUOTEIEQUAl2 EQUALlll 

IMEMBERICAR UlllQUOTECEQUAL2 EQUALlllllGO Altlll 
!RETURN NILi 

A3 ISETQ V3 IGMATCHI ICOR UICCOR Ull U2 V211 
(COHDCINULL V31CRETURN Nlllll 
IRETURNICONSIAPPENOCCONSCCAR UINILllCAR V311CAPPENOCCDNSICAR Ull 

NILllCDR V311 II 
AS CCONDllONICAA Ull 131180 ASBiii 

I RETURN NIL I 
A5B IRETURNICONSICONS U U21CCONSCCAR Ull V2111 
A51 CCONOCCFREEVBLE UICGO A511 

CC£QUAL U (CAR UllllRETURNCCONS U2 V21111 
CRETURN NILi 

A4 CRETURNCGMATCHl CCDR UICCOR Ull U2 V211 11111 
DEFINECCCGMATCHCLAMBDACU Ul1CPROGCV7 V2 V3 V4 V5 V61 

CSETQ V7 IGMATCHl U Ul ICONS N NILICCONS N NILlll 
CCONOCCNULL V71CRETURN NILlll 
CSETQ V2 ICDR V711 ISETQ V7 ICAR V711 

Al CSETQ V3 (APPEND V3 ICDNSICAR V71 NILlll 
CSETQ Vlt (APPEND V4 ICONSCCAR V21 NILlll 

AlA CSETQ V2 CCDR V211 
CSETQ V7 ICDR V711 
CCONOICNULL V711RETURN CCONS V3 Vltlll 

llMEMBERCCAR V71 V311GO A2111 
160 All 

A2 ISETQ VS V31 
ISETQ V6 V41 

A3 CCONDCCEQUALCCAR V711CAR V5111GO 44111 
ISETQ V5 ICDR V511 CSETQ V6 ICDR V611 
IGO A31 

A4 CCONDllEQUALCCAR V21CCAR V611CGO AlAlll 
!RETURN NILi 11111 

CDMPILEICIMPMATCH GMATCHl GMATCHll STOP))) 
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--~-::.: :: 

VBLES LISP 
DEFINElllVBLESCLAMBDAIUllPROGCI 

CCONDCCNULL U)IRETURN NIL)) 
llATOM UllRETURNIV8LESICONS U NILllll 
llATOM !CAR UlllGG Allll 

IRtTURNIAPPENDIV8LESICAR UlllV8LESICOR U))ll 
Al IC.ONOllONICAR UI ZUIGO A211 

llONCCAR UI ZNICGO A2)1 
llONCCAR UI Z21CGO A211 
tCONCCAR UI Z31CGO A21)1 

CRETURN CVHLESCCOR Ulll 
A2 CRETURNCCONSICAR UICVBLESCCOR Ullll 11111 
OEFINECCCALLVBLESCLAM80ACUI 

CCONOCINULL UI U)CCMEM8ERCCAR UICCDR UllCALLV8LESICDR U>ll 
CT CCONSCCAR U)IALLVBLESCCDR Ul))ll 1111 

OEFINECCCRESRVILAM80AIU ZI 
ICONOCINULL ZI ZllCMEMBERICOAR Z) UI 

ICONSCCONSIQUOTE RESllCOAR Z)I 
CRESRV U ICOR Zlll) 
CT ICONSICAR ZICRE'SRV U CCDR Zlllll )Ill 

DEFINeCCCONILAMBDACU ZI 
CCONOCCNULL ZI NIL>CCEQUAL U CCOAR Zll Tl 

CT CON U CCOR Z>lll 1111 
DEFINElllCONNECTIVECLAMQOAIUI 

ICONOllMEMBER U IQUDTEIIMPLIES IMPLIES2 OR DEFER 
EQUAL FEQUAL EQUAL2 EXISTS ANO NOTlll Tl 

CT F>I )Ill 
OEFINElllTERMSILAMBOAIU LllPROGll 

ICONOICNULL UllRETURN NILll 
CIATOMICAR UlllGO Allll 

!RETURN IAPPENOITERMSCCAR UI LllTERMSICDR UI Liil 
Al ICONDllCONNECTIVEICAR U>llGO A2)1 

llEQUALICAR UllQUOTE ASSOClllGO A21> 
llNUMBERPICAR UlllGO A211 
llMEMBERCCAR UI LllGO A2lll 

CRETURNCCONS U ITERMSICOR UI LI I) 
A2 (RETURN CTERMS ~COR UI Lii 11111 
OEFINECCCGENSU8STCLAMBOACL M UICPROGCI 

ICONOllNULL LllRETURN Ull 
llATOMICAR LlllGO All 
llONICAAR L) Z2llGO 8)11 

C (·KETURNISUBSTICAR LI (CAR MllGENSU8STICDR L>ICDR Ml Ull I 
A ICONOllEQUALICAR LllCAR M)ICRETURNCGENSU8STCCDR LI 

ICOR Ml Ull)) 
CGO Cl 

8 IC°"'OCIATOMCCAR MllCGO Cll 
UDNICAAR Ml Z2HRETURNIGENSU8STICAR LI 
ICAR MllGENSU8STCCDR LICCDR Ml Ullll> 

CGO Cl 11111 
COMPILEICYBLES At.LV8LES RESRV ONll 
COMPlLEClCONHECTlVE TERMS GENSUBSTll 
DEFINEllCSUPXECILAMBDAIU6 U)lPROGISUP RET Ull 
A lCONDllNULL U6llRETURN RETlll 

ISETQ SUP NILi 
ISETQ RET lCONSISUPSUB U6 UI RETll 

8 ICONOllNULL U61IGO 81)1 
llNOTIMEMBERICDAR U61 SUPl>ISETQ Ul ICONSCCAR U61 Ull))I 

CSETQ U6 ICDR U611 
CGO Bl 

Bl CSETQ U6 Ul) 
C SETQ Ul NILi 
IGOAI 11111 

DEFINEICCSUPSUBILAMBDAIU6 U>IPROGIU31 
ISETQ U3 U61 

Al ICONDllNULL U3llGO 81)1 
llEQUALICDAR U31 UllGO 8211 
IT ISETQ U3 ICDR U311>> 

IGO All 
81 ICONDllATOM UICRETURN Ull) 

CRETURNCCONSISUPSUB U6 CCAR UlllSUPSU8 U6 ICDR U))I) 
B2 ISETQ SUP ICO~SCCDAR U31 SUPll 

!RETURN CCAAR U3)) )1111 
STOPllll 
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00420 
0000 
0041t0 
00450 
001t60 
00470 
001t80 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 
00600 
00610 
00620 
00630 
0061t0 
00650 
00660 
00670 
.00680 
00690 
00700 
00710 
00720 



ROFll LISP 
OEFINElllNOLOOKILAMBDAIMJ 
ICONDllMEMBERICAARIGFIND MlllQUDTElllER IRR llERA2 NILLlll 
TllT Fil 1111 
DEFINElllSPREADILAMBOAIAllUNPACKICARIGET A (QUOTE PNAMEllllllll 
DEFINElllASTERJSKcDILAMBDAIAllCONOllEQUAL STAR 
ICARISPREAD Alli TllT Fil 1111 
DEFINElllFIFTHILAMBDAIUJICARICDDDDR Ullllll 
DEFINElllSIXTHILAMBDAIUllCONDllNULLICORICOOODR Ulll NILi 

IT ICADRICDDOOR UlllJ 1111 
DEFJNElllALLSUBSTSILAMBOAIL M U LNllPROGIUl U2 SI 

ISETQ Ul IGMATCH M Ull 
ICONDllNOTINULL UllllSETC Ul ICONS Ul NILllll 

Al ICONDI INULL Ul JIGO A21 II 
ISETQ U2 !APPEND U2 ILISTICONSIGENSUBSTICOAR Ull 

ICAAR Ull LllGENSUBSTICDAR UlllCAAR Ull MIJlll 
ISETQ Ul ICOR Ulll 
I GO All 

AZ ICONOllNOTINULL SlllGO A3111 
I SETQ S NI 
ICONOllMEMB~RICAR UllQUOTEIEQUAL EQUAL21111SETQ U ICONSICADR UI NILlll 

IT I SETQ u ICDR UIJ II 
ISETQ Ul IMATCHl M Ull 
I GO All 

A3 ICONOllNULL U211RETURN NILlll 
IRETURNICONS LN U211 11111 

DEFINElllASSOCMILAMBDAIM U LNllPROGIUll 
ICONOllHEMBERICAR UllQUOTEIEQUAL EQUAL21111SETQ U ICADR Ullll 
ISETQ Ul IPMATCH M Ull 
ICONOllNULL UlllRETURN NJLlll 
IRETURNICONS LN Ulll 11111 

OEFINElllPMATCHILAMBDAIM UllPROGIUl U2 U3 SJ 
ISETQ Ul ICONSIQUOTEl•PROD Al (•PROO A2 A3 Al All 

IQUOTEl•PRODl•PROD Al A2 Al A3 Allll 
ISET' Ul ISUBST M IQUOTE Al Ulll 
ISETQ U2 IRPLCEIQUOTEIAl A2 A311 NILll 
ICONOllNOTCNULL U2111SETQ Ul IGENSUBSTICAR U211COR U21 Ulllll 

C ISETQ U2 IMATCHllCDR Ull Ull 
A ICONDllNULL U211GO Bill 

ISETQ U3 !APPEND U3 ILISTCGENSU~STICDAR U211CAAR U21 Ulllll 
CSETQ U2 CCDR U211 
!GO Al 

B ICONDllNOTINULL SlllRETURN U3111 
ISETQ S NI 
ISETQ Ul ICONSICDR UlllCAR Ullll 
IGO Cl 11111 

OEFINElllROFlllLAMBOAIZ FLGllPROGIU Ull 
ICONDllEQUAL l NJIRETURN 11112111 
ISETQ U 111121 

A ICONOCINULL UllRETURN Ulll 
llMEMBcRICAAAR UI FLGllSETQ UllAPPENO Ul ICONSICAR UI NILllll 
ICLESSPICAAAR UI ZJ(GO Bil 
IT IRETURNIAPPEND Ul Ullll 

B ISETQ U CCDR Ull 
(GO Al I I I I I 

DEFINElllCHNGWILAHBOAIUJIPROGIUl U2 U3 U41 
ICONDllEQUALIFIFTHICAR Ull Z4AllRETURN NILlll 
ISETQ Ul WI 

Al CCONDllNULL UlllRETURN Nllll 
llEQUALICDAR UlllCDR UlllGO A2111 

ISETQ U2 IAPPEND U2 ICONSICAR Ull Nill II 
ISETQ Ul ICOR Ulll 
(GO All 

A2 ISETQ U3 ICAAR Ulll 
ISETQ U4 !SIXTH U3ll 
ISETQ U3 ILISTICAR U3JICAOR U3JICAOOR U311CAOCOR U31 Z4All 
ICONOllNOTINULL U4111SETQ U3 !APPEND U3 ICONS U4 NILlllll 
ISETQ W IAP~ENO U2 ICONSICONS U3 ICOR UlllCOR Ulllll 
IRETURN Nill Jilli 

STOPI I I I I 
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00010 
00020 
00030 
00040 
00050 
00060 
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00080 
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00100 
00110 
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00130 
00140 
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00300 
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00340 
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00380 
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00400 
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00440 
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004BO 
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00510 
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00590 
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00640 
00650 
00660 
00670 
00680 
00690 



NEXT USP 
OEFINElllNEXTILA"BOAILJIPROGIJ 

ICONOICNOTIEQUALICAAAR WllQUOTE PNTllJIGO 81111 
ISETQ Wl IAPPENO Wl ICONSISUBSTIQUOTE RELi 

!QUOTE PNTllCAR Wll NILlll 
8 ISETQ W ICDR Wll 

ICONOllNULL WllRETURN NILll 
llEQUALICAAAR WllQUOTE RELlllGO Clll 

81 CSETQ Wl (APPEND Wl ICONSICAR WI NILlll 
IGO Bl 

C ICONOllEQUALICAOAR WllQUOTE OEFERlllGO 0111 
Cl ISETQ W ICDNSISUBSTIQUOTE PNTllQUOTE RELllCAR WlllCDR Wiii 

IRETURN NI 
0 ISETQ L ICOAAR Wll 

ICONOll"E"BERICAODR LllCADDARIGFINOICAAR LlllllGO Clll 
llNULLICO~ WIJIRETURN NILlll 

ISETQ Wl ISUBST 14 ICADDR LI WlJI 
ISETQ W IAPPENO W ICONSISU,ST Z4 ICAODR LllCAR WJI NILlll 
ISETQ Z4 IADDl 1411 
160 81 Hiii 

OEFINElllCADDDARILAMBOAIUllCARICODOAR Ullllll 
DEFINE I I ICADODURILA"BDAIUI ICAOR'ICDDAAR UI 1111 I 
OEFINElllCADDAARILAMBDAIUllCARICOOAAR UlllllJ 
DEFINE I I IRl!LCEl_UMBOAIU Ullf PROGIU2 U3 U4 US U61 

ISETQ UZ UI 
Al ICONDICNULL UZllGO A611 

CIFREEVBLEICAR U2111GO 13111 
AZ ICONOllONICAR U21 llllSETQ U5 llll 

llONICAR U21 lNllSETQ U5 lNll 
llONICAR U21 l211SETQ U5 1211 
CT CSETQ U5 13111 

ISETQ U6.CCIR U51J 
•ZC ICONDllNULL USllGO ASIJ 

CIEQUAL N ICAAR USlllGO A4111 
A2D ISETQ US ICDR USll 

CGO A2CI 
A3 ICONDllMEMBERICAR U21 UlllGO A2111 
A3A CSETQ U2 CCOR UZll 

IGO All 
A4 CCONDllMEMBERICDAR U51 UlllGO A2Dll 

ICMEMBERICDAR USI UICGO A2Dll 
ICMEMBERICDAR USI U311GO A20111 

ISETQ U3 ICONSCCDAR USJ U31 I 
ISETQ U4 CCONSICAR U21 U411 
IGO A3AI 

A5 IPRINTIQUOTEINOT ENOUGH VARIABLESlll 
IPIUNT U61 
ISETQ U IROFLXllll 
ISETQ U5 ICONSICONS N UI NILll 
ICONOllEQUAL U6 ICAR ZllllSETQ %1 IAPPENO ll USIJI 

Cl EQUAL U6 ICAR ZNll CSETQ ZN &APPEND ZN US I >I 
llEQUAL U6 ICAR l2111SETQ 12 (APPEND 12 U5111 
IT ISETQ Z3 !APPEND Z3 U51111 

IGD A41 
A6 ICONOllNULL U311RETURN NILlll 

IRETURNICONS U3 U411 1'111 
OEflNElllARGOFllLAMBOAIU LllPROGIUll 

ICONDllNULL LllRETURN Nllll 
llCONNECTIVEICADAR LlllRETURNIARGOFl U ICDR LllJJ 
llASTERISKEDICADAR LlllRETURNCARGOFl U CCDR Lllll 
CCON U Z21CGO All 
((EQUAL U CCADDAR LllCRETURNCCONSCCDAR LI 

CARGOFl U CCDR Lllllll 
IRETURNIARGOFl U CCDR Liii 

A ICONDICATOHICAODAR LllCRETURNIARGOFl U ICOR Lilli 
llEQUAL U ICARCCADOAR LllllRETUANICC*SICDAR LI 
IARGDFl U ICDR Lllllll 

CRETURNCARGOFl U CCDR Liii 11111 
DEFINflllROFWILAM80AIMllPROGIUI 

ISETQ U WI 
A ICONOllNULL UllRETURN NILll 

llGREATERP" CCADDDAAR UlllSETQ U CCDR Ulll 
IT IRETUAN Ull I 

C GO Al 11 IJ I 
COMPILEICNEXT CADODAR CADODAAR CAOOAAR RPLCE ARGOFl ROFWll 
STOPI 
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00300 
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00320 
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00350 
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00380 
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00420 
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00440 
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ATMS LISP 
DEFINElllGENYBLEILAMBDAIUllPROGIUZ U31 

ISETQ UZ Z31 
A ICONOCINULL UZllGO Bil 

CCEQUALCCAAR UZllQUOTE GENllCSETQ U3 CCONSICOAR UZI U31111 
CSETQ UZ ICDR UZll 
IGO Al 

B ISETQ UZ IATMS Ull 
C ICONDCINULL UZICRETURN Nllll 

CIMEMBERCCAR UZI U3llRETURNCCAR UZllll 
CSETQ UZ CCOR UZll 
IGO Cl 11111 

DEFlNElllATMSCLAMBDAIUICCONDICNULL UI NlLICIATOM UI 
ICONS U NlLlllT CAPPENDCATMSCCAR UllCATMSICDR Ulllllllll 
DEFINECCIRPLCEFCLAMBDAIU UllCPROG(UZ U31 

ISETQ UZ Z31 
A CCONOCCEQUALCCDAR Z311QUOTE AlllCGO Biil 

ISETQ Z3 (CDR 2311 
CGO Al 

B CSETQ U3 CRPLCE U Ulll 
ISETQ Z3 UZI 
(RETURN U31 11111 

DEFlNECCCFREEVBLECLAMBDAIUllPROGCUll 
ISETQ Ul !APPEND 21 (APPEND 2Z (APPEND Z3 2Nllll 

Al CCONOllNULL UllCRETURN Nllll 
CCEQUAL U ICDAR UllllGO A2111 

ISETQ Ul ICOR Ulll 
CGO All 

A2 CCONDCIEQUALICAAR Ull NllRETURN Till 
(RETURN Nill Jilli 

DEFINECCITACKILAMBDAIL MllPRQGCUll 
ISETQ Ul CCONSCCONSICAR.LI MINILll 

Al ISETQ L CCDR Lii 
ICONOCCNULL LICRETURN Ullll 
ISETQ Ul !APPEND Ul ICONSCCONSICAR LI Ml Nlllll 
IGO All 11111 

DEFINEICCMIRGEAILAMBDAIL MJCPROGll 
Al CCONDllNULL LllRETURN Mii 

ICEQUALCCAAR LICQUOTE HEADlllGO AZll 
CCEQUALCCAAR LICQUOTE NONElllGO AZll 
CCATOMICAAR LlllGO A3111 

CSETQ L (CONSCCONSICAAAR LllCDAR LlllCONSICONSICOAAR LI 
. ICDAR LlllCDR Lllll 

IGO All 
A3 ISETQ M CAPPEND M ICONS lCAR LI Nlllll 
A2 lSETQ L ICOR Lil 

I GO Al I 11111 
OEFlNElllDELPRILAMBOAlM LllPROGIUll 
Al ICONDllNULL LllRETURN Ulll 

llATOMICAR LlllGO AZll 
CIEQUAL M ICAAR LllCGO A411 
((EQUAL M (COAR LllCGO A3111 

AZ ISETQ Ul CAPPENO Ul ICONSCCAR LI Nlllll 
CSETQ LICOR Lii 
IGO All 

A3 ISETQ L CCONSCCAAR LllCDR Lill 
CRETURN !APPEND Ul Lil 

A4 CSETQ L CCONSCCOAR LllCOR Liii 
[RETURN (APPEND Ul Lil 11111 

DEFINEllCONLYMEMBILAMBOAIM LI 
CCONDllNULLICDR LlllCONOICEQUAL M CCAR Lii TICT Fill 

CCEQUALCCADR LICQUOTE HEADlllCONOl(EQUAL M ICAR Lii Till Fiii 
.llEQUALCCAR LllQUOTE HEADlllCDNDICEQUAL M CCADR.Lll TllT Fll1 
IT Fii 1111 

DEFIHEICCDELTFILAMBDA(M LllPROGIUll 
Al CCONDCIEQUALCCAR LI MllRETURN !APPEND Ul ICDR Llllll 

ISETQ Ul !APPEND Ul ICONS CCAR LI Nlllll 
( SETQ l ICDR L 11 
IGO Al) 11111 

COMPILECCFREEVBLE TACK MlRGEA DELPR ONLYMEMB DELTFll 
STDPI 
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00010 
ooozc 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
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00230 
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00300 
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00340 
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00380 
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00400 
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00420 
00430 
00440 
00450 
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00600 
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00640 
00650 
00660 
00670 
00680 
00690 
00700 



GFJND LISP 
DEFJNElllANDENDILAMBDAIM UllPROGIUll 
Al ICONDllNULL UllRETURN NII 

llATOMICAR UlllGO AZlll 
AlA ISETQ U ICOR Ull 

IGO All 
AZ ICONDllEQUALICAR UllQUOTE NONElllGO AlAlll 

ISETQ Ul IGFJNOICAR Ulll 
ICONDllEQUALICADR UlllQUOTE ANDlllGO A3111 
IGO AlAI 

A3 ICONDllMEMBER M IANDTERMSICAODAR UlllllRETURN Nlllll 
IGO AlAI 11111 

DEFlNElllANDTERMSILAMBDAIUllPROGIUl UZI 
ICONDllATOMICAR UlllGO 8111 
ISETQ Ul IGFINDICAAR Ulll 
ICONDllEQUALICADR UlllQUOTE ANOlllSETQ UZ IANOTERMSICADOAR Ulllll 

IT ISETQ UZ (CONSICAAR UI NILllll 
AZ ISETQ Ul IGFINDICDAR Ulll 

ICONDllEQUALICADR UlllQUOTE ANOlllGO A3111 
IRfTURNICONSICDAR UI UZI~ 

A3 IRETURNIAPPENDIANDTERMSICADDAR Ulll UZll 
8 ISETQ Ul IGFINDICAR Ulll 

ICONDllEQUALICADR UlllQUOTE ANDlllRETURNIANOTERMSICAOOAR Ullllll 
IRETURNICONSICAR UI NILll 11111 

DEFINElllGFINDILAMBDAIMllPROGIUI 
ISETQ U IAPPENO Wl Wll 

Al ICONOllNULL UllRETURN NILll 
llATOM MllGO UI 
ICEQUAL M ICOAR UlllRETURNICAR Ullll 

AZ ISETQ U ICDR Ull 
(GO All 

8 ICONDllEQUAL M ICADDDAAR UlllRETURNICAR Ullll 
(GO AZ I 11111 

COMPILEllANOEND ANDTERMS GFINDll 
DEFINE I I IALLMATCHllLAMBOAIU Ml IPROGIUl U31 

ICONDll~QUALl~AR UllQUOTE ANDlllSETQ U ICONS U CANDARGS Ullll 
IT ISETQ U ICONS U NILllll 

8 ICONDllNULL UllRETURN Ullll 
CSETQ U3 IGMATCHICAR UI Mii 
CCONDllNOTINULL U3111SETQ Ul (APPEND Ul ICONS U3 NILlllll 
ISETQ U CCDR Ull 
CGO Bl 11111 

DEFINEICCGMEMBILAMBDAIM UI 
ICONDllNULL UI Fl 

llATOMICAR UlllCONDllEQUAL M ICAR Ull Tl 
IT IGMEMB M ICDR Ulllll 

IT ICONDllEQUAL M ICAAR Ull Tl 
llEQUAL M ICDAR Ull. Tl 
IT IGMEMB M ICDR Ullllll 1111 

DEFINE( I IRPLCllLAMBDAIUI IPROGIUl UZ U31 
AO ICONDllNULL UllGO 8111 

ISETQ U3 !APPEND Zl !APPEND ZZ !APPEND Z3 ZNllll 
Al ICONDllEQUALICAR UllCOAR U3lllGO. A3lll 

ISETQ U3 ICDR 0311 
IGO Alt 

A3 ICONDllEQUALICAAR U3llQUOTE RESlllGO A4111 
ISETQ U3 IGENSYMll 
ISETQ Ul ICONS U3 Ulll 
ISETQ UZ ICONSICAR UI UZll 
CCONDCIONICAR UI ZlllSETQ Zl ICONSICONSIQUOTE RESI U31 Zllll 
. llONICAR UIZNllSETQ ZN ICONSICONSIQUOTE RESI U31 ZNlll 

llONICAR UI ZZllSETQ ZZ ICONSICONSIQUOTE RESI U31 ZZlll 
IT ISETQ Z3 ·CCONSICONSIQUOTE RESI U31 Z31111 

Alt ISETQ U ICDR Ull 
IGO AOI 

8 ICONDllNULL UlllRETURN NILlll 
IRETURNICONS Ul UZll 11111 

COMPILEllALLMATCHl GMEMB RPLClll 
STOPI 
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OEFNS DATA 
I 
llSSU8GROUP A 8llllSNORMAL A 8 Cll 
llMEMBER Al AllllNORMAL AB CllllSEMIGROUP AllllASSOC AlllCABELIAN A Bil 
IC SUBSET A B 11 
llSU8GROUP A Bl IMPLIESIANOIMEM8ER Al AJIMEMBER A2 All 
IANDIMEMBERl•PROO Al A2 Bl AllMEMBERC•INVERSE Al Bl Alll 
llSUBMONOIO A Bl lMPLlESIANDIMEMBER Al AllMEM8ER A2 All 
IMEM8ERl•PAOD Al A2 Bl All 
l(HOMOMORPHISM(Fl A 811 lMPLlES(ANOIMEMBER Al Al 
I MEMBER A2 All CANO(MEM8ERIF1 A 8 AU &ICEQUAL2 
IFl AB l•PROO Al A2 Alll•PROO(fl AB All(Fl A 8 A21 Bllll 
ICHOMOMFIFl A Bil IMPLIESIANO(MEM8ER Al AHMEMHR A2 All 
IFEQUALIFl A 8 l•PROO Al A2 Alll•PROOIFl AB All 
IFl AB A21 Biii 
CCON.TO(Fl A Bil IMPLJES(MEMBER Al BlCEXlSTS A2 
IANOIMEMBER A2 AllEQUALIFl A 8 A21 Alllll 
lllNVERSE Al A2 Al EQUAl(•PRGO Al A2 Al(•IOENTITY All 
I ISHAS•COMP•SERlES Al EXISTS Nl IEXlSTSH NU 
ICOMP.SERIESllB N21 Nll Alll 
CCONETCONEIFl A Bii IMPLIESIANDCANOIMEM8ER Al Al 
CMEMBER A2 AlllEQUALl•PROOl•lNVERSEIFl AB All Bl 
IFl A B A21 Bll•~OENTlTY lllllEQtlllC•PROO 
l•INVERSE A! Al·A2 All•IOENTITY Alli 
CIRCOSET A Al B ClllCLCOSET A Al B Cll 
II 
ICSSUBGROUP A 81111SNORMAL AB CllllNUllll 
ll•FlNINT A N9l ANOCEQUALl•FININT.A lllA. 111 
IEQUALl•FINlNT A (•SUCCESSOR N3lll•lNTC•FlNINT A N31 
IA (•SUCCESSOR N31111l 
ll•SEQIAl NI Allll•EXP Al N All 
ll•SUCCESSOR NII 
ICMEM8ER Al Allll•PROD Al A2 AilCIASSOC All 
lllMAGE A IFl B Cll IMPLlES21MEMBER Al AllEXISTS A2 
IANDIMEM8ER A2 811SEQUALIF1 8 C A21 Alllll 
llHOMOMORPHISMCFl A Sll IMPlJESIMEM&ER Al Al 
IMEMBERIFl A 8 All 811 
Cl•lHVERSE Al All CC•IDENTITY All 
llGROUP Al ANDCIMPLIESIAND(MEMBER Al Al 
!MEMBER A2 AlllMEMIERl•PROO Al A2 Al AlllANO 
(ASSOC AllANOIMEMBERl•IOENTITY Al Al 
llMPLIESIMEM8ER Al AJCMEMIERC•INVERSE Al Al Alllll 
((CONJUGATE A Al 8 Cl ANOIMEM8ER Al Cl 
llMPLIES21MEMBER A2 AllEXISTS A3 IANOIMEMBER A3 Bl 
!EQUAL A2 l•PRODl•PROO Al A3 CIC•INVERSE Al CJ Cl II Ill 
CCSU8GROUP A 81 ANOCIMPLIESCMEMIER Al Al 
IMEM&ER Al BlllANOllMPLIESIANOIMEMIER Al Al 
IMEM8ER A2 AlllMEMIER l•PROO Al A2 Bl All 
IANIHMEMIERC•IOENTITY 81 AIClMPLlESCMEM8ER Al Al 
IHEMIERl•INVERSE Al 81 Alllll 
llKERNEL A IFl B Cll 
lMPLIES21MEM8ER Al AlCEQUALIFl BC Alll•IOENTITY Clll 
ICHELIAN A Bl IMPLIESCANOCMEMBER Al AlCMEMIER A2 All 
IEQUALl•PROO ·Al A2 Bll•PROD A2 Al 81)1 
((SEMIGROUP Al ANOIIMPLlESIANDIMEM8ER Al Al 
!MEMBER A2 AlllMEMIER(•PROO Al AZ Al AllCASSOC All 
llCENTER A Bl ANOllMPllESIMEMIER Al AllMEMIER Al Bil 
llMPLIES21MEMBER Al AlllMPllESfMEMBER AZ 81 
I EQUAL I •PROO Al AZ 11.1 •PROO AZ Al 811111 
lllNTERSECTlON AB CJ IMPl.JES21ME"8ER Al AICANO 
IMEM8ER Al BICMEMIER Al till 
((NORMAL A 8 Cl lMPllES(ANOCMEfCBER Al 81CMEM8ER A2 All 
IMEMIERC•PROOl•PROO Al A2 CIC•INVERSE Al Cl Cl All 
llCOMflUTATOR Al AZ A3 Al EQUAL2 Al l•PROOl•PROOl•PROO 
!•INVERSE A2 All•INYERSE A3 A I Al A2 Al A3 All 
CINORMALlZER A B Cl IMPLlES2CMEMIER Al AlllMPLlES 
IMEMlfR A3 81CMEM8ERC•PROOC•PR00 Al A3 Cl 
l•lNVERSE Al Cl Cl 8)11 
ICRIMAGE AB IFl C 01) lMPLlES2CMEMBER Al AICEXISTS A2 
IANOIMEM8ER AZ BllSEQUALCFl C 0 A21 Alllll 
ICEPlMORPHISMCFl A 8)1 ANOllMPLIESCMEM8ER Al 81CEXISTS A2 CANO 
!MEMBER A2 AJCEQUAL21Fl A 8 A21 AlJlllllMPLlESC"EMIER A3 Al 
IMEM8ERIF1 AB A31 8111 
CIMOHOMORPHISMCFl A Bil ANOCONEONEIFl A 8)1 
llMPLlESCMEMBER Al AICMEM8ERCF1 A B All Bill 
ICRCOSET A Al B Cl ANOCMEMIER Al ClllMPLIES2CMEMIER A2 A) 
CEXISTS A3 UNOCMEMBER A3 81CSEQUAll•PROO A3 Al Cl A211 )ll 
llLCOSET A Al 8 Cl ANOCMEMIER Al ClllMPLIES2CMEMIER A2 Al 
!EXISTS A3 IANOIMEM8ER A3 BICSEQUALC•PROO Al A3 Cl A211111 
llSETINV A 8 Cl lMPllES21MEMBER Al Al 
!EXISTS A2,UNDIMEMBER A2 ll'CSEQUALt•INVERSE A2 Cl Alllll 
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00730 
00740 
00750 
00760 
00170 
00780 
00790 
00800 



CCfACTORGROUP A 8 DI ANDCAND 
IJMPLIESZCMEMBERC•LCOSET Al 8 DI AICMEMIER Al Dll 
CJMPLJESCMEMIER Al llCEQUALC•LCOSET Al 8 DI 
C•IDENTITY AllllCIMPLIESCMEMIEA Al Al 
CEXISTS AZ CANDCMEMBEA AZ DICEQUAL Al 
C•LCOSET AZ B 0111111 
ICUNITSET A All IMPLIESZCMEM8ER AZ AICSEQUAL AZ Alll 
ICINVIMAGE A 8 Cfl C Dll IMPLIES2CMEM8ER Al AICMEMIERlfl CD All 811 
ccsu•seT A Bl IMPLIESIMEMBER Al AICMEMSEA Al Ill 
CCISOMOAPHISMCfl A Bii ANOCANOIOHEONECFl A Bii 
CIMPLIESCMEMBEA Al BICEXISTS AZ CANO 
CMEMBEA A2 AICECIUALZlfl A I AZI AllllllCIMPLIESCMEMBER A3 Al 
IMEMBEACfl A 8 A31 1111 
CCSUIFGRP A 8 C DI AND 
llMPLIESZCMEMBEAl•LCOSET Al B OJ AICMEMBER Al Cll 
llMPLIESCMEMIEA Al Al 
IEXISTS AZ CANOCMEM8ER AZ CICEQUAL Al 
l•LCOSET AZ 8 0111111 
CCCOMP•SERIESCCA Nll NZI 81 ANOCIMPLIESCEQUAL I C•UfillTSET 
C•IOENTITY BllllCOMP•SEAIESCCB Nll 11 lllCIMPLIESCANOC 
SHAS•MAX•NOAM•SU8 ll(OEFERIEXISTS N4 CEXISTSCC N51 CCOMP•SERIES 
ICC N51 N41C•MAX•NOAM•SU8 Bllllll 
IANOICOMP•SERIESCCO N31 N61 llCANOCANOIEACHCEQUALCO N31CC N511 
C •PREDECESSOR N6 I IC EQUALC 0 NU 811 C EQUAL C •PREDECESSOR N6 I N4 II I II 
CCONETOONECFl. A Ill IMPLIESCfEQUALCFl A B All 
Cfl A 8 AZllCEQUAL Al AZll 
CCINVPNT A Al Cfl 8 Cll ANOCIMPLIESCMEMIER AZ Al 
CEQUAL(fl 11.C AZI AlllflMPLIESCEQUALCFl 8 C AZI 
AllCME~8ER AZ Alll 
CICENTRAL A 8 Cl ANOCIMPLIESCMEMIER Al AICMEM8ER Al Cl 
ICIMPLIESZCMEMBER Al AlllMPL.ESCMEMBER AZ 81 
CEQUALl•PROD Al AZ CIC•PROD AZ Al Clllll 
IC 
CCHMPRPCfl A Bii CFl A B C•IOENTITY AllC•IOENTITY 81 
Cfl A 8 (•INVERSE Al AllC•INVEASECfl A 8 All 81 
Cfl:A 8 C•PROD Al AZ A•ll•PAODCFl A 8 All 

. C Fl A B A2 I Bii 
CCFGPRP A 8 OIC•LCOSETl•INVERSE Al 01 8 DI 
C•INVERSEl•LCOSET Al 8 01 All•LCOSETC•PROO 
~-: AZ 01 8 Dl~•PRODC•LCOSET Al 8 OJC•LCOSET AZ 8 01 All 

CCSUBSET A llCIA lllCA 811 
CC fACTOAGAOUP A 8 0 IC CA IC 8 011 Cl DI> 
CCHOMOMORPHISMCfl A lllCCAICBlll 
CCEPIMORPHISMCFl A lllCIAICllll 
CCMONOMORPHISMCfl A lllllAl(llll 
CCISOMOAPHISMCFl A lllCCAICllll 
((SUBGROUP A llCU lllU BIJ 
CC IMAGE A CFl 8 CllCCA CllCA Ctl 
CCKERNEL A Cfl 8 CllCCA lllCA 811 
CCRIMAGE A 8 Cfl C DllCCI CICA 01111 CICA 011 
CCINVIMAGE A 8 CFl C OllCCA CICB OllCA CICB 011 
CCSUBFGAP ABC DICCAICB C DllCB CllB DICC 011 
CIABELIAN A BICCA lllCA Ill 
CCCENTER A llCCA BllCA Bii 
CC INTERSECTION AB CICCA 8 CllCA BICA Cll 
CC NORMAL .A 8 CIC CA 8 CllU BICA CIC8 Cll 
CCNORMALIZER A 8 CJCCA 8 ClllA CICB Cll 
CCCONJUGATE A Al I CICIA 8 CIJCA CICI Cll 
CIRCOSET A Al I CICIA I CllCA CICB Cll 
CILCOSET A Al 8 CICCA 8 C)ICA CICB Cll 
CCSETINV A I CICCA I ClllA Clll Cll 
CCINVPNT A Al CFl B CllCCA lllCA 811 
CCCENTRAL A 8 CICCA 8 CllCA CllB Cll 
I 
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00810 
00820 
OOHO 
00840 
00850 
00860 
00870 
00880 
00890 
00900 
00910 
00920 
00930 
OOMO 
00950 
00960 
00910 
00980 
00990 
01000 
01010 
01020 
01030 
01040 
01050 
01060 
01010 
01080 
01090 
01100 
01110 
01120 
01130 
Ollo\O 
OlUO 
01160 
01110 
01180 
01190 
01200 
OlZlO 
ouzo 
01230 
OlZ40 
01Z50 
01260 
01210 
01280 
01290 
01300 
01310 
ouzo 
01330 
01340 
01350 
01360 
01370 
01380 
01390 
01"00 
01410 
014ZO 
0100 
01440 
01450 



~=-~----

COMP IL LISP 
COMMONllWl W Z4 N QFl VVl VV2 QM5 CXll 
LOADllPUT211 
COMMONllQMl QM2 QM3 QM4 QM6 ZNll 
COMMONllZl Z2 Z3 Q QF2 XX QLl Ql21l 
COMMONllX Y Z6 FQM2 FQM3 FQM4 CL Z4A 148 CXl LDNll 
LOAD( ISOLVEXI I 
LOADllVERIFYll 
LOADI I PUTDNl 11 
COMPILEllPUTONlll 
LOADICGTFRMll 
COMPILE I IGTFRMI I 
LOAD( CHFMI I 
COMPILEICHFMll 
LOAD( IGMATCHI I 
LOAD( INEXT 11 
LOAOl IROFVI I 
COMPILEllNOLOOK SPREAD ASTERISKED FIFTH SIXTHll 
COMPILEllALLSU8STS ASSOCM PMATCH ROFV CHNGWll 
LOAD( I SCNX 11 
COMPILE I l SCNXI I 
LOADlllNVMll 
COMPILEllINVM2 SIFTll 
COMMON 11SUP11 
LOADCCV8LESll 
COMPILEICSuPXEC SUPSU811 
LOADllRPTSU811 
LOAD(( GF INDI I 
LOADI I MATCH I I 
LOADllATMSll 
COMPILEllATMS GENV8LE RPLCEFll 
LOADI lHOMOMFI I 
COMPILEllHOMOMF ONLYll 
LOADllPUTON211 
LOADllMOOELll 
COMJ>ILEllMODELMAKE CHECKMOOELll 
COMPILE I lMEET SWMEM8 NOWWH1CH GENSEll I 
LOAOll SLYX 11 
COMPILE I lSLVXI I 
LOADllMONOMFll 
COMPILEllMONOMFll 
LOAD 11WLOFN11 
COMPILEllCOMPOSITIONll 
EXCISEl•T•I 
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00010 
00020 
OC030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 

.. 00430 
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INDEX 

(Underlined references indicate definitions) 

advice-taker, 7, 101 ff, 127 ff 

argument (of object or statement), 

16, 17 

backtracking, 10, 68, 73 

"built-in" axioms, 33, 56 ff 

"change of variables", 50 

connective, li 
constant, Q, 20 

logical constant, 14 

syntactic constant, 12. 
construction, 77, 86, 88, 113 

definitions, 15, 19, 24, 25 ff 

detachment, 41, 58, 107, 109, 112 

EQUAL, 14, 32, 38, 44, 87 

EQUAL2, .!.!!:.. 

existential generalization, 47 

existential specification, 45, 47 

EXISTS, 12. 
"explore consequences", ~. 34, 

106 

FEQUAL, 14, 50, 80 

GENFCN, ~, 81 

head (of tree), 21 

HOMOMF, 26, 50, 105 

IMPLIES2 , .!.!!:.. 

!SOLVE, 2.Q....!.f, 64, 81 ff, 105 

isomorphism, (see !SOLVE) 

lemma, 34, 36, 37, i!.....!f, 72 ff, 

91 

LISP, 13 

logical class, 21, 34, 59, 107 

logical constant, 14 

matching, 55, 57, 124 

mathematical induction, 94, 96 ff 
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MODEL heuristic, 44, 45, 46, ~. 

81, 90, 110 

necessary condition, 27, (also see 

definitions) 

object, .!l 
compound object, 12. 

Project MAC, 13, 23, 28 

progress, 10, 29, 34, 41, 58 ff, 

112 ff 

heuristic A, 58 ff 

heuristic B, 59, 87, 107, 112 

property list, 19 

of a condition or definition, 19 

of a table I entry, 21, 30 

of a table II entry, 21 ff, 30 

PNT, ll 
PUTONl, 45 

PUTON2, 46 

quantifier, 15, 20, 48 

reduction, ll 
related substitution, 33, 34, 39, 52, 

73, 74, 75 

scanning, 33 ff 

SCANW, 26, ~. 49, 50, 54 

SCNX, 37, 49 

semantic model, 61 ff, 126 ff 

SLVX, 46, 49, 91 

SOLVEX, 26, ~, 90 

statement, ll. 
status, 23 

subordinate tree, 23, 37, ~. 

61 ff, 72 ff 

subscript, 94 ff 

sufficient condition, 15, 19, 24, 

25 ff 



symbol, 13 

synLactic constant, 15 

tah1e I, 19, 21, 25 ff 

table II, 19, 21 ff, 25 ff 

tab le en try, 19 

term, 15 

asterisked Lerm, 15, 16, 18, 53, 

91, 92n 

non-asterisked term, 15, 17, 18, 

53, 91, 92n 

time, 64, 81, 100, 102 

tree, 21 ff, 47 

type, 13 

universal specification, 28 

variable, _!]_, 20 

verification, 47 ff 

working backward, ~, 21, 25, 28, 122, 

124 

working forward, 42, 53, 89 
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