
,--
..

-~------~--~-------.-

PILOT: A STEP TOWARD

MAN-COMPUTER SYMBIOSIS

by

Warren Teitelman

B.S., California Institute of Technology
(1962)

S.M., Massachusetts Institute of Technology
(1963)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF
PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

September, 1966

Signature of v~ ::J~ Author•.........................

Certified

Department of Mathematics, June 14, 1966

Chairman, Departmental Conunittee
on Graduate Students

This empty page was substih1ted for a
blank page in the original document.

PILOT: A Step Toward Man-Computer Symbiosis

by

Warren Teitelman

Submitted to the Department of Mathematics on June 14, 1966, in

partial fulfillment of the requirements for the degree of Doctor

of Philosophy.

ABSTRACT

PILOT is a programming system constructed in LISP. It is
designed to facilitate the development of programs by easing the
familiar sequence: write some code, run the program, make some
changes, write some more code, run the program again, etc. As a
program becomes more complex, making these changes becomes harder
and harder because the implications of changes are harder to anti
cipate.

In the PILOT system, the computer plays an active role in this
evolutionary process by providing the means whereby changes can be
effected immediately, and in ways that seem natural to the user.
The user of PILOT feels that he is giving advice, or making sug
gestions, to the computer about the operation of his programs,
and that the system then performs the work necessary. The PILOT
system is thus an interface between the user and his program,
monitoring both the requests of the user and the operation of his
program.

The user may easily modify the PILOT system itself by giving
it advice about its own operation. This allows him to develop his
own language and to shift gradually onto PILOT the burden of per
forming routine but increasingly complicated tasks. In this way,
he can concentrate on the conceptual difficulties in the original
problem, rather than on the niggling tasks of editing, rewriting,
or adding to his programs. Two detailed examples are presented.

PILOT is a first step toward computer systems that will help
man to formulate problems in the same way they now help him to
solve them. Experience with it supports the claim that such "symb
iotic systems" allow the programmer to attack and solve more dif
ficult problems.

Thesis Supervisor: Marvin L. Minsky

Title: Professor of Electrical EQgineering

i

ACKNOWLEDGEMENTS

The work herein was supported in part by Project MAC, an MIT re
search program sponsored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract
number Nonr-4102(01), in part by the National Science.Foundation
Fellowship Program, and in part by Bolt Beranek and Newman, Inc.,
Cambridge, Massachusetts, under the Advanced Research Projects
Agency, Contract No. AF19(628)-5065. Reproduction in whole or
in part is permitted for any purpose of the United States Govern
ment.

I wish to express my gratitude to Marvin Minsky, for his super
vision of this thesis, and to Seymour Papert and Oliver Selfridge,
the other members of my thesis committee, for their critical read
ing of the manuscript. Oliver Selfridge's interest in the project
and personal encouragement went far beyond the call of duty. It
would be impossible to acknowledge all those not officially con
cerned with my thesis who both influenced and raassured me through
out the last three years. However, I want especially to mention
Danny (Daniel G. Bobrow), who was always there when I needed him,
and Claudia, who was never really away.

ii

TABLE OF CONTENTS

Chapt~E

Abstract

Acknowledgements

List of Figures

l Introduction

2 Symbiotic Systems

3 The PILOT System

4 Facilities in the PILOT System

5

6

7

Experiments with a Question
Answering System

Experiments with a Problem Solver

Improving PILOT

Appendices

l Symbolic Differentiation in LISP

2 Using PILOT

3 List of Modifications

Bibliography

Biographical Note

iii

i

ii

iv

l

9

21

45

65

93

139

151

153

179

187

193

LIST OF FIGURES

Number

l The function ADVISE 36

2 HISTORY 39

3 User-PILOT Interfaces 40

4 A Simple Problem Solver 95

5 Flow Chart of PILOT 156

iv

CHAPTER 1

INTRODUCTION

The goal of artificial intelligence is to construct computer
programs which exhibit the kinds of behavior that we call 'in
telligent' when we observe it in human beings. These programs
are usually so complex that the programmer cannot accurately pre
dict their behavior. He must run them to see whether any changes
should be made. Developing these programs thus involves a
lengthy trial and error process in which most of the programmer's
effort is spent in making modifications. PILOT is a system de
signed specifically to facilitate making modifications in pro
grams. Examples of actual user-PILOT dialogue are presented.

This thesis is concerned with the problem of using computers

more effectively for solving very hard problems, particularly

* problems in artificial intelligence. These problems are ex-

tremely difficult to think through in advance, that is, away

from the computer. In some cases, the programmer cannot foresee

the implications of certain decisions he must make in the design

of the program. In others, he can compare several alternatives

only by trying them out on the machine. Since he cannot accur-

ately predict the behavior of his program because of its size

and complexity, he must instead adopt the more pragmatic policy

of: "Let's run it and see what happens." The result is that

solving these problems involves a lengthy trial and error pro-

cess of "write some code, run the program, make some changes,

write some more code, run the program again, etc.," even assuming

* For the definitive paper on Artificial Intelligence, see
Minsky's "Steps Toward Artificial Intelligence" in Feigenbaum
and Feldman (see bibliography.) This latter book also contains
Minsky's bibliography on artificial intelligence as well as
some of the more significant and interesting papers of recent
years.

1

that the programmer does not make any "programming errors,"

which is rarely the case.

Moreover, in artificial intelligence problems," this process

must often be prolonged beyond the debugging phase. It is im

portant for the programmer to experiment with the working program,

making alterations and seeing the effects of the changes. Only

in this way can he evaluate it or extend it to cover more gen

eral cases.

Unfortunately, it is often not a simple matter to make

changes in programs, especially large and complex ones. As a

result, they frequently become "frozen," sometimes even before

they are fully operational. Advances in programming languages

have simplified the task of writing code. Time-sharing systems

make the computer more accessible in the "run the program"

phase. However, neither of these directly attacks this problem

of making changes.

PILOT is a programming system that is designed specifically

for this purpose. It improves and raises the level of interac

tion between programmer and computer when he is modifying a

program. It takes over many of the chores of programming

debugging-changing, leaving the programmer to concentrate on

conceptual problems. PILOT is not a static system; it can grow

and evolve along with the programs the user is developing. As

a result, it can be tailored to any particular user and any

particular problem. In sum, PILOT helps the programmer to be

more effective. This in turn enables him to attack and solve

more difficult problems.

2

PILOT is written in LISP[l,
32

'
331

and operates in the

Project MAC time-sharing system at the Massachusetts Institute

[14,10]
of Technology. The next pages give some examples of

actual user-PILOT dialogue. The user's inputs are in lower case

and PILOT'S responses in upper case.

In the first example, the user is experimenting with a

version of the Deductive Question Answering System of Fischer

Black. [2] In this system, there are direct statements, such as

"at(I,home)" and "want(at(I,airport)) ,"and conditionals, such

as "smaller (x, y) , smaller (y, z) ~smaller (x, z) . " Deductions are

performed by substitution and by "detachment," which is a gen-

eralized modus ponens. Thus given the two airect statements

"smaller(car,house)" and "smaller(dog,car)," and the above

conditional, the program can deduce "smaller(dog,house)" by

substituting dog for x, car for y, and house for z.

One difficulty with this scheme is that the deduction of

even a "true" statement may not terminate because the same con-

ditional may be considered repeatedly. This cannot be avoided

in general, because of the existence of "undecidable" proposi-

tions; but in many cases it can be circumvented. In this ex-

ample the user is experimenting with different methods to

achieve this.

The most straightforward approach would be for the program

to keep track of what it was doing. It could then apply some

simple criterion to decide whether or not it was "looping," and

if it was, to abandon the deduction. The danger with this is

that a particular criterion might stop a deduction which would

otherwise terminate - or it might not recognize one that would

3

not. But, this is the point of experimenting with a working

program: to try out various ideas.

In our example, SOLUTION! is the function that handles new

"questions." The user wants to prevent it from entering itself

more than twice recursively. In other words, this is the cri-

terion he is considering.

(tell solution 1, (before number advice).
If (countf history ((solution! -))) is greater t~an 2, t~en quit)

The user tells PILOT to modify the function SOLUTION!. The

phrase "(before number advice)" tells PILOT to insert this ad-

vice immediately before the advice containing the key word

"number." (This refers to advice the user has previously given

SOLUTION! - see Chapter 5 for complete experiment.) The user

wants SOLUTION! to cease computation whenever "(countf history

((solution!-))) is greater than 2." COUNTF is a general count-

ing function available in PILOT. Its arguments here specify a

search through the current "history" of the computation counting

the number of times the function SOLUTION! has previously been

entered. · The "history" is provided and kept up to date auto-

matically by PILOT.

TRANSLATION: (EDIT SOLUTION! BEFORE ((INSERT (ADVICE COND
((GREATERP (COUNTF HISTORY (QUOTE ((SOLUTION! -))) HISTORY

) 2) (LIST
NIL))

(T NIL)) BEFORE NUMBER (BACKTO ADVICE) UPl) STOP))

This is the translation of the user's request. It has been

interpreted as a call to the function EDIT. EDIT will INSERT

at the correct place the piece of advice that is the translation

4

of "if (countf history ((solution!--))) is greater than 2,

then quit."

TRANSLATION: (FLIP
($ NUMBER (BACKTO ADVICE) UPl $)
(1 2 3 (ADVICE COND

((GREATERP (COUNTF HISTORY (QUOTE ((SOLUTION! -)))
HISTORY) 2) (LIST

NIL))
(T NIL)) -2 -1))

(SOLUTION! BEFORE)

This second translation takes place inside of EDIT. (INSERT

BEFORE .••) has been transformed into a call to FLIP. FLIP

will insert the advice at the correct point. Actually FLIP

will construct a new list with this advice inserted. EDIT then

replaces the old advice structure wi~h the new one, and returns

control to PILOT for more requests.

* * *

Later, the user considers a more sophisticated criterion for

terminating deductions. For this, he needs a function to deter-

mine whether two questions are identical, except for substitu-

tion of variables. He defines a new function, MATCHES.

(define matches (x y) as
If x is null, then y is null,
If (car x) is equal to (car y} or

(variable car x) and (variable car y),
then (matches cdr x cdr y})

using PILOT to translate from his own.language into LISP.

5

TRANSLATION: (DEFLIST ((MATCHES (LAMBDA (X Y) (COND
((NULL X) (NULL Y))
((OR

(EQUAL (CAR X) (CAR Y))
(AND

(VARIABLE (CAR X))
(VARIABLE (CAR Y)))) (MATCHES (CDR X) (CDR Y

)))
(T NIL))))) EXPR)

(MATCHES)

This is the translation of his request. Here instead of calling

EDIT, PILOT calls DEFLIST, which defines MATCHES as a function

(an EXPR) of two variables, X and Y. Note that PILOT, because

it knows how many arguments a function takes, has correctly

parsed (MATCHES CDR X CDR Y) as (MATCHES (CDR X) (CDR Y)),

(VARIABLE CAR X) as (VARIABLE (CAR X)), etc.

* * *

One of the claims of PILOT is that it frees the user from haying

to consider the inner workings of his system. This is illus-

trated in the above example. Here the user has taken an

unfamiliar system, written by a different person, and performed

certain nontrivial modifications. This was done with only a

superficial knowledge of the design and construction of this

system.

However, it is when the user programs within PILOT, taking

into account its capabilities, that the greatest returns are

obtained. He can proceed almost directly from flowchart to

working system, filling in the details using PILOT. Thus it is

no longer necessary to complete the details of planning before

commencing to program. The program can be developed on-line.

6

This is the case with our second example. The user has

programmed a simple flowchart. Some of the functions even have

null definitions, that is (LAMBDA NIL NIL). The following dia-

logue shows how he can modify his system to solve a problem new

to it: the cannibal and missionaries problem. (Note that in the

last line, the computer, with the line *T*, announces that it

has, in fact, successfully solved the problem.)

solve (cannibal and missionaries)
(DONT KNOW HOW)

(start with side! (mm m c c c) side2 nil, to side2, from sidel)
START

(tell goalp, return with side! is null)
GOA LP

(tell moves, return with '((move!) (move2)))
MOVES

(define move! as alltran valueof from '($1) '((2) 1 3))
MOVE!)

(define move2 as alltran valueof from '($1 $ $1) '((2 4) 1 3 5))
(MOVE2)

(tell make, to (y) (setq y from) and bind (valueof ' from)
to (cdr move) and bind (valueof ' to) to (append car move valueof to)
and bind from to to and bind to to y)

MAKE

(tell progress, if ' m is a member of side! and ' m is a
member .of side2 and (countq side! ' m) is not equal to
(countq side! ' c), then quit)

PROGRESS

(gps : save (cons from side2) on hist)
GPS

(after gps : pop hist)
GPS

(tell progress, if searchf hist (((= from) $ / (setequal (= side2))))
then quit)

PROGRESS

solve (cannibal and missionaries)
T

7

These examples give the flavor of the interactions between the

user and PILOT. It is not expected that the details of the

dialogue will be self-evident. Remember that while there are

many conventions used in communicating with PILOT, they are the

user's conventions, in this case mine, and as such have intui

tive meaning to me. Learning to use PILOT involves building a

language for communicating certain operations. The above ex

amples indicate, to some extent, the type of language ! have

found useful. If you were using the system, you could, and

undoubtedly would, change the format of some or all of the oper

ations specified to PILOT in these examples. This in part, is

what makes PILOT symbiotic.

8

CHAPTER 2

SYMBIOTIC SYSTEMS

Man-computer symbiosis involves very close coupling of man
and machines. This chapter describes several of the more suc
cessful "symbiotic" programming systems. While none of these
perform operations for the man that he could not do himself, they
allow him to operate at a greater level of abstraction, and
thereby to concentrate more fully on the problem he is trying to
solve. This in turn has a substantial effect on his productivity.

Symbiosis is a mode of living characterized by intimate or

constant association or close union of two dissimilar organisms.

T·he usual implication is that the association is advantageous to

One Or both. [l S] Th 1 f b . . . b h ere are many examp es o sym iosis in ot

the botanical and zoological worlds, among these the symbiosis

of algae and fungi (called lichens), ants and aphids, and the

* pilot fish and the shark. But until 1960, the term symbiosis

had only been applied in the biological context.

In 1960, Dr. J.C.R. Licklider introduced the term man-

(22]
computer symbiosis in an often-cited paper by that name.

Concerning the problems involved in developing symbiotic systems

he stated:

"Among the problems toward which man-computer symbiosis is
aimed -- problems that men and computers should attack in part
nership -- are some of great intellectual depth and intrinsic
difficulty. The main problems that must be solved to bring man
computer symbiosis into being, however, appear not to be of that
kind. They are not easy, but their difficulty seems due more
to limitations of te-:hnology than to limitations of intelligence."
[23] (italics mine)

* the latter symbiosis, that of pilot
of the derivation for the name PILOT.
reflect the fact that this is a pilot
symbiosis.

9

fish and shark, is part
The name is also meant to

system for man-computer

Much effort has been devoted to developing symbiotic systems

in the few years since this statement was made. In these systems,

the computer performs the routine work a surprisingly large

percentage of the total amount -- that must be done to prepare

for insights and decisions in technical and scientific thinking.

Man sets the goals, performs the evaluations, and in general,

guides the course of the investigation.

In evaluating these systems, one must realize that there are

degrees of symbiosis. You can always improve a system. However,

Licklider has set as a subgoal the development of "a mechanism

that will couple man to computer as closely as man is now

coupled to man in good multidisciplinary scientific or engineer-

ing teams." The systems described in the following pages cer-

tainly achieve this goal.

Sketchpad[46 l

Most computers use keyboards for on-line input and output.

This excludes the use of diagrams for communication with the

machine. About 1960, an inter·est began to build up in developing

computer display systems whereby man and computer could converse

rapidly through the medium of line drawings. The most signifi-

cant system to arise from this impetus was "Sketchpad," the work

[4 6] .
of Ivan Sutherland. Using Sketchpad, the user could make

two-dimensional sketches with a light pen directly on a computer

CRT display, and then modify and move parts of the drawing around

as he wished. Sketchpad would preserve the topology of the draw-

ing and carry out computation on the figures so drawn. For

example, in one mode, when the user drew a line, the computer

would draw an absolutely straight line. When the user made two

lines come almost together at a corner, the· computer would make

10

them come exactly together, etc. Furthermore, Sketchpad would

remember that the lines were joined so that if the operator

moved one of the lines, it would move the other one in such a

way as to maintain the intersection at the corner.

In other modes of operation, Sketchpad would make perfect

arcs, straighten up figures so that nearly horizontal lines were

made exactly horizontal· and nearly vertical lines were made ex-

actly vertical. It would remember the shape of a figure or sub-

figure so that the user could request replicas of this figure at

various points of the dia9.ram. Sketchpad thus permitted the user

to make an assembly of several elementary figures, to replicate

assembles, to make assemblies of assemblies, etc.

In one impressive demonstration, Dr. Sutherland sketched

the girder of a bridge, and indicated the points at which members

were connected together by rivets. He then drew a support at

each end of the girder and a load at its center. The sketch of

the girder then sagged under the load, and a number appeared on

each member indicating the amount of tension or compression to

, which the member was being subjected.

Sketchpad has been extended to three dimensions by

Johnson. (2 0] In Sketchpad III, the user can add a line to a

plan and have it appear simultaneously in the front field, the

side view, and the oblique representation. When he rotates the

oblique representation, the orthogonal views change appropri-

ately, etc.

Sketchpad is primarily a research system; no one today is using

Sketchpad. However, the insights gained during its development,

11

and the psychological impact of the program itself have greatly

influenced the construction of symbiotic systems, especially

those involving graphical input and output.

Computer-Aided Circuit Design

Another graphical research program involves the on-line con-
. [41)

struction of electrical networks. An electronic circuit

designer interacts directly with the computer through a type

writer and CRT graphical input-output equipment. He builds his

circuit by keying in an element at a time to the computer, plac-

ing the light pen on the CRT to show where it goes. In this way,

he can compose on the screen ·any circuit he wishes; then he can

ask the computer to analyze it.

The most significant consequence of this man-machine inter-

action, as with the other systems described, is the short time,

usually on the order of seconds, between a user request and the
[26)

computer response. Lindgren states: "the 99.99 percent of

engineers who are designing circuits without on-line graphical-

language facilities, are, in one sense, already 'living in the

past.'"

* * *

One of the most obvious areas in constructing symbiotic

systems is mathematics, since mathematical tasks are usually

better defined than those in other fields. Many "mathematical

laboratories" have been developed to provide the mathematical

scientist with the services of an on-line computer. Some of

these are described below.

12

The Symbolic Mathematical Laboratory[291

One of the problems a user performing any realistic mathe-

matical computations soon encounters is the inadequacy of the

keyboard for communica.tion with the machine. Consider the follow-

ing expression:

For writing such expressions, the mathematician employs a large

character set, and utilizes subscripts and superscripts extremely

liberally. He observes certain conventions concerning the phys-

ical size, grouping, and placement of subexpressions. All of

these make it easier for him to read and comprehend mathematical

formulae. Even if a keyboard could be designed to handle ex-

pressions of the above type, it would have to be unreasonably

large and complex. In addition, how are subexpressions to be

referred to? The mathematician can point to them or in other

ways refer to them directly, when he is working on paper or

blackboard. Requiring him to input a subexpression each time

that he wishes to refer to it would make for a very unsatisfact-

ory system.

[28,29,37]
The Symbolic Mathematical Laboratory is a system

d ' d 1 h bl h . . 1 1 [37 l esigne to so ve t ese pro ems. In t e origina proposa

Minsky describes a program "for displaying publication-quality

mathematical expressions given symbolic (list-structure) repre-

sentations of the expressions." The goal is to produce

"portraits" of expressions that are sufficiently close to con-

ventional typographical conventions that mathematicians will be

able to work with them without much effort -- so that they do

13

not have to learn much in the way of a new language, so far as

the representation of mathematical formulae is concerned." [37 l

"We imagine that the user is engaged in performing a math
ematical exploration. For example, he might be trying to find
a solution to a differential equation. At the moment, he has
displayed on the screen one or two equations, and he has in his
head the name of sever~l other expressions or partial results
already studied and filed away. He decides to perform one action,
e.g., substituting a displayed equation, solving it for some
variable, expanding some subexpression in a certain way, or
perhaps simply displaying something else. This action is re
quested by some combination of light-pen and keyboard signals.
These signals are encoded and transmitted to LISP, which com
putes or retrieves the required new expressions and transmits
them back to the display system. The latter then compiles and
displays the desired new picture."[37]

The basic ingredient of this system is the program sequence

that converts an internal mathematical expression into a conven-

tional printed representation. Martin uses a Polish prefix

notation convenient for LISP operations to represent expressions.

internally. For example, (PRD (PRD 2 *L (PWR PI -1 NIL) NIL)

(PRD (LOG OMEGA NIL) (PWR (PLS *A 1 NIL) -1 NIL) NIL) NIL) is

2.J. log w *
the internal representation of -:;;- · o+l Since the corres-

pondence between internal representations and wnat is being dis-

played is maintained by the program, the user can refer to any

particular subexpression, by pointing at it, and the program

selects and operates upon the corresponding internal structure.

The converse problem of converting the external printed

representation to internal representation has not been treated

as extensively in Martin's program, although he intends to add

a character recognition scheme based on ARGUS[47 l for direct

input from the CRT. However, it is not as serious as the display

* The R0 (w) expression on the previous page is an actual example.
See [28] for a photograph of this expression as it appears in
his system.

14

problem, because it is not done as often since most of the ex-

pressions used by the mathematician will either be generated by

the program or be subexpressions of expressions already in the

system. Therefore, the user can tolerate entering expressions

by some tedious, more conventional keyboard method, especial1y

since he can see the displayed expression as it goes in and

correct the computer if it, or he, has made any mistakes.

Other Mathematical Systems

D. Maurer has designed a system for a more sophisticated
[30]

mathematician, specifically the algebraist. His program is

conversant in such subjects as groups, subgroups, ideals, etc.,

and can respond to requests of the form: generate the set of all

normal subgroups of a particular group; generate subsemigroup z

from element x of y; etc. Maurer has preprogrammed many of the

operations needed by the algebraist, and has included facilities

for introducing new ones as needed. However, the system has

not yet been put to practical use.

[13]
MATHLAB is a LISP program which emphasizes continually

increasing powers. MATHLAB can formally integrate certain

functions, differentiate, factor, expand, simplify, etc. Since

it is written in LISP, new operations can be added very easily.

MATHLAB is currently operating on the Project MAC time-sharing

system.

CALCULAID and MAP are two more systems for using the com-

• • I [50] • • d puter as a mathematician s helper. CALCULAID is oriente

towards writing programs'to solve large problems with much data.

It has built in FIT and REGRESSION operator.s, and a convenient

way of specifying matrix operations. MAP[
2
l] has facilities for

15

performing convolutions, Fourier transforms, and other more

sophisticated analytical operations. In MAP the user is en-

couraged to consider himself as conversing with the computer,

which then performs the operations. This is in contrast to

CALCULAID, where the system is not viewed as an agent so much

as a collection of useful subroutines, easily available.

* MUSIC Laboratory

Perhaps at the other end of a spectrum is an attempt to

create an environment, on the computer, which is conducive to

the composition and analysis of music. Using the computer as. an

expensive instrument is not a new idea. In 1961, Peter Samson

wrote a music compiler for the Digital Equipment Corporation
[4 3]

PDP-1 computer. The basic idea was that the user would en-

code the musical score into a series of numbers, each note being

denoted by two numbers - one for its pitch, the other for its

duration. The computer would then play the music, utilizing its

digital-analog converter to control the voltage on a speaker

directly. Thus the computer would play a middle C by varying

the voltage 256 times a second, essentially building its own

square wave. The computer was even fast enough to construct in

real time the wave form corresponding to a three part harmony.

However, the MUSIC Laboratory project currently underway at

M.I.T. has even more ambitious goals.

The standard teletype of the DEC PDP-6 has been augmented

by an 88 key piano keyboard which is connected directly to the

computer. Thus the user can play a melody, hear what it sounds

like - as performed by the PDP-6 - and also see the score dis-

played visually on the scope. He can then edit the score, using

* No documentation is available.

16

·-. ----- ---------~~-~-~---.,._-...,........,,.=--~~-~--------

the light pen, the teletype, or the piano keyboard, and hear it

played again. Programs are being written to allow the user to

request the computer to fill in a harmony to a particular

melody, or to construct variations on a theme and to play them

back to the user.

Synergetic Systems

The most important point about the systems described above,

a point which also applies to PILOT, is not so much that they

are symbiotic, i.e., cooperative, as that they are synergetic.

Synergism is the cooperative action of discrete agencies such

that the total effect is greater than the sum of the two effects

taken independently. An example of this is the action of peni

cillin and streptomycin when taken together. The extreme potency

of the combination of tranquilizers and alcohol presents another,

more familiar example.

The most significant aspect of the systems described above

is the synerqetic action of man and machine that they foster.

Close examination of these programs reveal that they do not, in

themselves, do anything remarkable, nor do they represent any

significant advance in sophistication. Computer programs that

analyze circuits or invert matrices in the course of solving.a

problem are not unconunon. However, there is a substantial

effect on the productivity of a man if he can inunediately sub

stitute an expression for a variable and integrate. The mere

fact that he could have performed each individual operation him

self is not important, nor does it affect the synergetic quality

of the interaction. What is important is that the overhead in

volved in switching tasks is eliminated, or at least substan

tially reduced. Thus the user can operate at a greater level of

17

abstraction and thereby concentrate more fully on the problem

itself.

This same phenomenon occurs with the so-called higher level

programming languages. These languages do not do anything for

the programmer that he could not do himself. In other words,

you could program everything in machine language directly. How-

ever, the fact of the matter is that suitable programming lang-

uages do allow the programmer to attack and solve much more diffi-

cult problems. As an example, ten years ago an M.I.T. graduate

student in electrical engineering received a master's degree with

a thesis (program) for performing symbolic differentiation. This

same feat can be duplicated today in a half dozen lines of LISP

* coding. The point is not that LISP makes it easier to solve

problems, but that thereby LISP makes it possible to solve harder

problems. In this particular example, the amount of effort re-

quired to construct a differentiation routine in LISP was com-

parable to that required for a small subroutine. This is where

the synergetic effect enters because now the programmer can

build systems in which this differentiation routine is precisely

that: just a small subroutine (as it is in the systems of Martin

and Engelman).

The question here is one of human limitations. Once the

programmer has constructed and debugged a differentiation routine,

it should not matter whether it was written in six lines of LISP

or five thousand machine instructions. In practice, however,

there is a limit to the size and complexity of a system that one

person can successfully construct, assuming that he is starting

from scratch. Unfortunately, with artificial intelligence pro-

* See Appendix 1.

18

----- --------------------------

grams, this limit is frequently encountered while there are

still ideas remaining to be tried.

The PILOT system represents an exercise in applied synergism

that parallels and complements that of high level programming

languages. We might draw the analogy that PILOT is to an edit

ing program what high level programming languages are to machine

code. PILOT does not do anything for the user in the way of

making changes that he could not do himself by editing or re

writing. But the fact that PILOT does do it means that the user

does not have to. As with the systems described earlier, he is

free to operate at a much higher level of abstraction and un

encumbered by bookkeeping. He thus finds himself able to solve

problems he could not even consider before. This is what makes

user-PILOT a synergetic system.

19

This empty page was substih1ted for a
blank page in the original document.

CHAPTER 3

THE PILOT SYSTEM

The function of PILOT is to allow the programmer to treat
his program as if it were a block diagram. This places certain
requirements on PILOT in terms of the structure of programs, data
in programs, and modifying programs. This chapter presents a
model of programs and programming that emphasizes how a program
looks to its author. The basic building blocks of programs in
the model are procedures, and the operation of advising consists
of modifying the interfaces between these procedures. Imple
mentation of a system that permits advising is described within
the LISP programming system. Viewing the entire system of user
PILOT-programs as one program, it is possible to modify the
interface between the user and PILOT to permit more flexible
interaction, as well as modifying the interface between PILOT
and the user's program to allow more complex types of advice to
be specified.

One of the most useful ways of describing and representing

a computer program is the block diagram. In it, the individual

processes that take place inside the program are clearly isolated.

Furthermore, it permits either elaboration of the details of some

part of the computation, or bypassing details (by merely drawing

a small rectangle and labeling it PROCESS). It is valuable in

planning a program, because it makes it easy to see the flow of

control and the interactions between various parts of the program.

Moreover, a program in this representation can easily be modified,

e.g., move blocks from one point to another, change lines of

communication, add new blocks, replace old blocks, etc.

Unfortunately, computer ,programs tend to lose the nice

features of block diagrams once they are written as a sequence

of instructions.

21

The function of PILOT is to allow the programmer to continue

to treat his program as if it were a block diagram. This places

certain requirements on PILOT in terms of the structure of pro

grams, data in programs, and modifying programs. These are

discussed below.

Structure of Programs

One of the principal advantages of block diagram representa

tions is their flexibility. They do not require him to be con

sistent about the amount of detail from diagram to diagram. If

it seems appropriate to the programmer to describe a certain

section of his program in great detail, while only sketching

briefly some other portion -- for whatever reason he may have

he can easily do this. Furthermore, he can represent the same

program in different ways at different times; he is not compelled

to make one choice and be bound by it.

If this flexibility is to be captured in PILOT, the system

cannot restrict the user to some narrow range of preconceived

structures. With respect to describing and representing programs,

PILOT should enable the user to maintain a wide range of choice.

Regardless of objective criteria for choosing one representation

over another, the user must be allowed to choose whatever

structure seems the most convenient or desirable to him. In

other words, he must be allowed to make a subjective choice.

Subroutines

The standard way of structuring a program (as opposed to a

block diagram) is by means of the subroutine. Programmers use

subroutines to make their programs look more like their block

22

diagram representation.* This makes constructing and debugging

a program much easier. Subroutines in a program are the analogue

of the blocks in the block diagram, and, to a certain extent,

their use retains many of the advantages of the block diagram.

For example, to move a subroutine from one place to another in

the program, all that is necessary is to move the call to the

subroutine - usually only one or two instructions. To insert a

subroutine, all that is necessary is to insert a call {assuming,

of course, that the subroutine has been written). In the same

way that blocks can be treated as separate entities, it is often

possible to treat subroutines as separate from the rest of the

program, and to construct and modify them accordingly. Thus, at

least to the level of the subroutine, programs can be treated

as block diagrams.

However, below this level, rigor mortis sets in. The indi-

vidual blocks correspond to the way the programmer partitions

the task, and the subroutines correspond to these blocks. But

he may change his mind. What was viewed as a single operation

initially may at some later point best be considered as three or

four distinct operations. Remedying this in the block diagram

is simple: replace the block by several smaller blocks. However,

breaking a subroutine into three or four smaller sections is

often not that easy. And yet frequently the programmer must be

able to deal with units smaller than the subroutine.

Procedures

The "atomic" unit of structure in my model of programming

will be the procedure, not the subroutine. A procedure is

* Other considerations such as computation time, and program
space also affect the use of subroutines.

23

•• -o:,

defined as a collection of n entrances and m exits together with

input-output characteristics. This definition purposely does not

require a procedure to be any easily isolated part of the program.

If, of course, a procedure is a subroutine, identifying it is

simplified. However, a procedure may be a part of a subroutine,

or even parts of several subroutines. Essentially, a procedure

is a chunk of code that the programmer wants to treat as a single

unit. PILOT enables him to do so.

Data in Programs

Procedures are defined in terms of what they do, that is in

terms of transformations on certain variables. These variables

are called essential variables. Essential variables are not the

only variables that are altered by a procedure. For example, in

a time-sharing environment, the state of certain disc and drum

variables (registers) may change thousands of times while execut

ing a program. Even if we consider only variables specifically

utilized in or changed by the operation of a program, many of these

will be low-level, or local variables, and thus not important to

the programmer. Describing the state of the computer at any time

during a computation in terms of essential variables is more in

keeping with the block diagram.

Essential variables are similar to the arguments of a sub

routine. However, in many subroutines the essential variables are

not passed through the calling sequence. Furthermore, procedures

need not be subroutines, nor have a specific call. Thus the data

used by the procedure may be scattered throughout the program.

However, it must be available to the procedure. Some information is

not available to a procedure. For example, the only variables that

may be referenced inside of a FORTRAN subroutine, besides the

arguments to the subroutine, are those specifically declared to

24

be COMMON. Some information may not be available to the program

at all. For example, information regarding the function that

originated the call to a particular FORTRAN subroutine is not,

in general, available anywhere within the program. (Of course,

the programmer can specifically provide this information by

including the name of the function as one of the inputs to the

subroutine in question.)

Variables that are available but non-essential are called

extraneous. In many programming languages, there can be no

extraneous variables -- everything is either mentioned or else

* not available. {At the level of machine language, of course,

everything is available.) This immediately precludes the compu-

tation of the name of a variable, i.e., indirect reference to it.

Extraneous variables are important because they may at some

time become essential to some procedure, as a result of program

modificat~on. If they are not available, they- cannot be used.

PILOT automatically makes available information regarding what

is happening "above," i.e., what functions have been called,

what their essential variables are, etc., so that the programmer

does not have to foresee explicitly what information he will

need in a particular procedure.

Modifying a Program

There are two ways a user can modify programs in this sub-

jective model of programming: he can modify the interface between

* There are exceptions. In LISP 1.5, uncompiled functions have
their arguments bound on the ALIST so that in any particular
function, all of the essential variables of func:;Sbons entered
previously are available. Similarly, in COMIT,L J the 127 shelves
are available, but often are extraneous variables. But, by and
large, the above statement is true.

25

procedures, or he can modify the procedure itself. (Since pro-

cedures are themselves made up of procedures, modifying a pro

cedure at one level may correspond to modifying the interface

between procedures at a lower level.) Modifying the interface

between procedures is called advising. Modifying a procedure

itself is editing.

Advising is the basic innovation in the model, and in the

PILOT system. Advising consists of inserting new procedures at

any or all of the entry or exit points to a particular procedure

(or class of procedures) • The procedures inserted are called

"advice procedures" or simply "advice." Since each piece of

advice is itself a procedure, it has its own entries and exits.

In particular, this means that the execution of advice can cause

the procedure that it modifies to be bypassed completely, e.g.,

by specifying as an exit from the advice one of the exits from

the original procedure; or the advice may change essential vari~

ables and continue with the computation so that the original

procedure is executed, but with modified variables. Finally,

the advice may not alter the execution or affect the original

procedure at all, e.g., it may merely perform some additional

computation such as printing a message or recording history.

Since advice can be conditional, the decision as to what is to

be done can depend on the results of the computation up to that

point.

The principal advantage of advising is that the user need

not be concerned about the details of the actual changes in his

program, nor the internal representation of advice. He can

treat the procedure to be advised as a unit, a single block,

and make changes to it without concern for the particulars of

26

this block. This may be contrasted with editing in which the

programmer must be cognizant of the internal structure of the

procedure.

In the PILOT system, both of these facilities are available.

Considerable effort has been devoted to providing the user with

a sophisticated editor, with expandable syntax and semantics, in

order to match the flexibility of the advice-giving mechanism.

The editor allows the user to specify structural changes con

veniently, while the advisor handles interface modifications.

The advisor is usually more convenient, since it handles more of

the details. However, the user may wish to perform what could

be an interface modification by editing the procedure itself,

possibly because of efficiency. In fact, for certain types of

operations, the advisor itself uses the editor.

It is clear that both advising and editing complement each

other, and that both are needed to ensure the programmer freedom

to treat his program in ways that seem desirable to him. The

choice of which of the two facilities he wishes to use for a

particular operation is a matter of his personal preference, and

depends on the nature of the change.

Class Modifications

It is most important that the user be able to modify a class

of procedures, as well as individual procedures, i.e., to refer

to procedures associatively as well as nominally. Until now we

have assumed that the procedure to be modified had already been

identified and located, but this is not necessarily the case.

For example, the user may wish to specify changes to a class of

procedures in which certain members have not yet been defined.

27

r .

Alternatively, the decision of whether or not a modification

applies to a particular procedure may have to be postponed until

the procedure itself is actually entered. In the former case,

it will be necessary to monitor the definition of new procedures

in order to make the appropriate~modifications. In the latter

case, it may even be necessary to require all procedures (or a

sufficiently large class of procedures) to inquire at the time

they are called whether or not there are any modifications that

should affect them. In both cases, it is not possible to locate

procedures that are to be modified at the time the user specifies

the modification.

Implementation

It is clear that implementing PILOT will be greatly facil

itated by an appropriate choice of programming language. We

must avoid translators, assemblers, and compilers that assume

that the programming will be completed before the translation

is begun, and that the program will not actually be run until

all the assembling and compiling has been finished. In languages

of this type, FORTRAN, COMIT, MAD, etc., it is difficult to

write programs that construct or modify procedures because the

communication between procedures is so deeply embedded in the

machine instruction coding, that it is very difficult to locate

entrances, exits, essential variables, etc.

The language I have chosen to use is LISP 1.5.
[32,33,H

The LISP formalism is convenient for programming recursive tasks,

which makes it good for problem solving and other heuristic pro

grams. It is a list processing language, which is a necessity

for programs of this type because storage allocation requirements

cannot be predicted prior to run time, as the size and structure

28

,J!., . t; s _z .·"·

of .the data are determined by the computation. LISP is well

suited to symbol manipulation, which means that it is possible

to talk about the names of variables, and perform computations

which produce them. Finally, I chose LISP, over IPL or SLIP

for example, which also possess several of the attributes above,

because I am familiar with LISP and find it convenient to pro

gram in the functional notation it provides.

In LISP, all data are in the form of symbolic expr_essions,

or s-expressions. S-expressions are of indefinite length and

have a branching tree structure in which subexpressions can be

readily isolated. LISP computations are,also written in the

form of S-expressions. This makes LISP especially adaptable

for our purposes. Like machine languages, and unlike most other

higher level languages, one can write programs in LISP which

will generate programs for further execution. Furthermore, it

is possible to execute data as prog.rams, and conversely treat

programs as data.

This suggests an easy way of implementing advising: define

a-LISP function, ADVISE, which treats as data the advice to a

procedure and the procedure itself, and executes the procedure

with the appropriate modifications. By giving a name to each

procedure that is advised, we create a canonical place where

information associated with the procedure can be stored: its·

property list. The definition of the procedure, and the advi.ce

associated with it can be stored on and retrieved fro~ its prop

erty list by the function ADVISE. Thus ADVISE requires only

the name of the procedure, and the name of the entry or exit of·

the procedure. The operation of advising a procedure i·s· there

fore reduced to locating its entry and exit points,· and replacing

29

them with a call to ADVISE, specifying the name of the procedure,

the name of the entry or exit. The advice is stored on the prop-

erty list of the name of the procedure, and the corresponding

modifications are automatically performed when ADVISE is called.

The actual -definition of the function ADVISE is not this

general. The current implementation imposes the restriction that

only one entry and exit may be allowed. This is because the

effect of multiple entries and exits can be achieved within the

current implementation, and because it is questionable whether

the greater generality would justify the extra effort.

* Multiple Entries and Exits in LISP

The notation of LISP is function oriented. It encourages

the user to define different functions for different tasks,

especially because LISP makes it easy to call functions, and to

nest sequences of function calls. Each function call in LISP

has a single, canonical entry and exit, namely that provided by

the LISP interpreter or compiler. The user normally does not

concern himself with entries and exits; instead he thinks in

terms of inputs (arguments) and outputs (values). The only ex-

ception to this occurs within the special form "PROG."

The PROG feature in LISP allows one to write ALGOL-like

programs containing a sequence of LISP statements to be executed.

* This discussion presumes some familiarity with the LISP
notation.

30

This is a concession to the fact that certain tasks are easier

* when not expressed in functional notation.

In a PROG, the programmer can explicitl1 control the flow

of computation by using labels and GO statements. For example,

the function LENGTH defined without using a PROG is:

(LAMBDA (X) (LENGTH! X 0))

where LENGTH! is defined as:

(LAMBDA (X Y) (COND

((NULL X) Y)

(T (LENGTH! (CDR X) (ADD! Y)))))

Here using a PROG results in a more natural definition:

(LAMBDA (X) (PROG (U V)

(SETQ V 0)

(SETQ U X)

A (COND ((NULL U) (RETURN V)))

(SETQ U (CDR U))

(SETQ V (ADD! V))

(GO A)))

It is only inside a PROG that the LISP programmer can effect

multiple entries and exits, namely by entering or leaving a pro

cedure, i.e., a collection of LISP statements, at different labels.

Multiple entries and exits from LISP functions are simulated by

transmitting extra information in the calling sequence or value

of the function. For example, in machine language programming

* FROGS are also used because they produce more efficient compu
tations when compiled then the corresponding recursive definitions.
This occurs because it is not necessary to rebind all of the argu
ments of the function on the push-down list for each iteration
of the process. For this reason, experienced LISP programmers
occasionally use PROGS even when a recursive definition would be
more natural and intuitive.

31

it is often corrunon practice to write the trigonometric functions

as one subroutine with different entrances. This could be done

in LISP by defining TRIG as a function of two variables, X and Y,

where X was either SIN, COS, TAN, etc., and have the appropriate

routing performed inside TRIG. Since it is so easy to transmit

extra information in LISP, this is usually the way it is done,

especially since there is an advantage in having separate oper-

ations, or procedures, correspond to separate functions: many

facilities such as TRACE, BREAK, COMPILE, are oriented around

functions.

Implementing an advising algorithm in which multiple entries

and exits were possible would involve placing traps at each

entry and exit and calling the function ADVISE at that point.

This could be done, because one can only "GO" to a labelled

statement, and PROG labels are easily distinguishable from LISP

forms that are to be executed. This has not been done because

* it has not, as yet, been needed.

ADVISE

ADVISE, as currently implemented, is designed to modify

the interface of a procedure which has only one entry and one

exit. ADVISE has four arguments: the name of the procedure,

the names of its arguments, the values of its arguments, and the

* There would be some slight complication_s because of the par
ticular implementation of LISP at Project MAC, where PILOT is
now operating. "GO" statements cannot be used when the label
is not local. Thus if we inserted a call to ADVISE at each label,
and then, inside of ADVISE, wished to execute (GO label), we
could not do so. The alternative would be to build our own
version of the LISP interpreter inside of the ADVISE function.
This would be cumbersome and inefficient.

32

S-expression definition of the procedure. ADVISE records on the

HISTORY list that this procedure has been entered with certain

argwnents, and retrieves the advice associated with entry to this

procedure under the property BEFORE on the p~operty list of the

name_of the procedure. (We can think of the procedure as having

a canonical entry point labelled BEFORE.)

If a LISP form appears under the property BEFORE, instead

of a list of advice, ADVISE treats it as a function of one vari

* able and applies it to the single argument HISTORY. The value

of this computation is then used as the advice associated with

the entry to the procedure. In this way, the user can achieve

the effect of a multiple entry, i.e., different advice can be

used for different entering conditions.

Each piece of advice is a LISP computation. ADVISE evaluates

in turn each individual piece of advice, making available all

information that is available to the original procedure. The

evaluation of advice may cause these variables to be modified,

or even create new, available variables by modifying the HISTORY

list. (Communication between pieces of advice can be achieved

this way.) When all of the advice has .been evaluated, the pro-

cedure itself is executed, and its value is stored on the vari-

able VALUE and put on the HISTORY list.

ADVISE then gets the advice associated with the exit from

the procedure from the property AF~ER, and operates in a manner

similar to that with BEFORE. When all of the AFTER advice has

been evaluated, ADVISE restores the HISTORY list and returns as·

* HISTORY contains information relevant to the computation. It
is described below on page 38.

33

the value of the procedure the value of the variable VALUE (which

may have been changed during the execution of the AFTER advice).

This discussion presumes that the value of each piece of

advice in NIL. The user can affect the flow of control - from

advice to procedure to advice - by returning a non-NIL value from

a piece of advice. If the value is a list, the first element of

this list is taken as the value of the procedure, and the rest

of the advice is ignored. If this happens BEFORE the procedure

is entered, ADVISE binds the first element of the list to VALUE

on the HISTORY list, gets the AFTER advice, and proceeds from

there. If it happens AFTER evaluating the procedure, the first

element of the list is taken as the value of the procedure and

returned immediately. In this way, the user can indicate that

the original procedure is to be bypassed entirely.

If the value of a piece of advice is an atom other than NIL,

it is interpreted by ADVISE as a GO instruction. ADVISE treats

the value as a label, and searches for the label in the list of

advice, and continues with the evaluation of advice from that

point. For example, the user can abandon evaluation of advice

without bypassing the original procedure by returning BOTTOM as

the value of a piece of BEFORE advice. (TOP and BOTTOM are labels

interpreted specially by ADVISE.)

Since ADVICE is a variable made available by ADVISE, the

execution of any piece of advice can also modify the advice list.

For example, the advice (PROG2 (SETQ ADVICE NIL) NIL) will produce

the same effect as the advice (QUOTE BOTTOM), i.e., cause the

rest of the advice to be ignored. Similarly the user could in

terpret GO instructions himself by searching for labels and

34

modifying ADVICE accordingly.

With the discussion of one more feature, the description of

the operation of ADVISE will be complete. ~his is the provision

for modifying classes of procedures. This is done by referring

to the property list of the atom ALL, under the properties BEFORE

and AFTER as discussed above, before getting the advice specific

to this procedure. Since arbitrary LISP functions can appear on

these properties, it is clear that one can specify advice for any

recursive set of functions. For example, to determine whether

or not the procedure in question has called itself more than

twice, one need merely search the HISTORY list.

The flow chart in fig. 1 illustrates the operation of

ADVISE.

Advising

Advising a function consists of storing a piece of advice

on the property list of the function under the appropriate prop

erty. If this is the first time the function has been advised,

it is also necessary to replace the function definition with a

call to ADVISE. Both of these operations may be performed by

calling the function provided for this purpose: SYSTEMl.

SYSTEMl is a function of three arguments: NAME, the name of

the function to be advised, ADVICE, the piece of advice, and

WHERE, the place (property) it is to be stored. SYSTEMl appends

ADVICE to the list of advice (if any) that appears under the

property WHERE. If this is the first time NAME has been advised -

as indicated by the fact that the property ADVISED does not

appear on NAME's property - SYSTEMl also replaces the definition

35

w

°'

RECORD
INFORMATION
ON HISTORY

RETRIEVE
ADVICE FROM
ill BEFORE

RETRIEVE
ADVICE FROM

BEFORE

SET VALUE
TO CAR
VALVE

STORE
VALUE

ON HI STORY

RETRIEVE
ADVICE FROM

ALL AFTER

NO

RETRIEVE
ADVICE FROM

AFTER

CALL
ADVISE!

R E S ET H I ST ORY
RETURN VALUE

FIG. la ADVISE

EVALUATE
NEXT ADVICE

RETURN
NIL

SET ADVICE SET ADVICE
CDR ADVICE APPROPRIATELY

FIG lb ADVISE!

RETURN
VALUE

of NAME by a call to ADVISE. If NAME is not compiled, SYSTEM!

can get the names of its arguments from its definition (which is

also on its property list). If NAME is compiled, SYSTEM! re

quests the names of its arguments from the user. SYSTEM! then

redefines NAME, but saves its old definition as the definition

of a new function, whose name is placed under the property

REALNAME. SYSTEM! also puts the property ADVISED with value *T*

on NAME'S property list to indicate that NAME is ready for

advising.

Thus if FOO has the definition (LAMBDA (X Y) a) , and the

user calls SYSTEM! with NAME = FOO, ADVICE = {3, WHERE = BEFORE,

the property list of FOO after SYSTEM! has been executed is:

EXPR (LAMBDA (X Y) (ADVISE (QUOTE FOO) a (QUOTE (X Y))

(LIST X Y)))

BEFORE {3

ADVISED *T*

REALNAME OLDFOO

and the property list of OLDFOO:

EXPR (LAMBDA lX Y) a)

If the user wishes to perform other operations with advice,

for example, placing the advice at the beginning of the advice

list under WHERE, instead of appending it at the end, it is a

simple mat~er to define a function to do this. (In PILOT, the

function SYSTEM3 performs this task.) Similarly, by calling

EDIT he can specify arbitrary manipulations of advice.

No provision is made specifically for advising procedures

that are not LISP functions, even when they satisfy the one

entry, one exit requirement. Whereas the definition of a function

37

can always be found on its property list, locating an arbitrary

procedure must be done by prescribing both the name of the

function in which it appears and some indication of where in its

definition it is. However, it is easy to write a function which

uses the editor to locate an arbitrary procedure inside a function

and replace the procedure with a call to ADVISE. A similar

function already exists for locatin9 and defining as a new function

an arbitrary piece of advice, so tha~ one may subsequently pre

scribe advice on it. This is described under the NAME feature

in appendix 2 (page 174).

HISTORY

The HISTORY list is a globally available variable which

contains information regarding computation in progress. HISTORY

is maintained by the function ADVISE and consequently only

functions that have oeen advised will have their passage recorded

on it. The presence of HISTORY means that user programs, or user

advice (which is really the same thing), can "look back" and see

"what is happening above." This is valuable for avoiding looping,

and in making decisions about allocation of resources.

HISTORY has the form of an Alist; that is, it is a list of

dotted pairs which represent variable bindings. Thus, it can

be used to evaluate a variable, or it can be searched directly

by the user's program.

The individual function calls are clearly segmented on

HISTORY. This is done by having each call prefaced by an appear

ance of a special variable named *FN*, followed by a binding

for the name of the function. After the name of the function,

the arguments of the function are strung out, eventually followed

38

by the next binding for the variable *FN*. Thus, the segment of

HISTORY corresponding to the function FOO, with arguments X and Y,

looks like:

(..... (* FN * . ?) (FOO . ?) (X • ?) (Y • ?) (* FN * . ?) ••.•)

In this segment, the value of *FN* is a pointer to the next

entry on the HISTORY list, i.e., the list beginning with (FOO • ?) .

The value of FOO itself is a dotted pair consisting of a pointer

to the next entry on the HISTORY list, i.e., (X. ?) .•• , and a

pointer to the next (earlier) function call, i.e., (*FN* . ?) .

The value of X and Y are, of course, whatever their value is.

The structure of the FOO segment of the HISTORY list thus

looks like:

FIG.2

X VALUE
OFX

STRUCTURE OF HISTORY

Because of this structure, one can immediately locate the

* function called just before FOO - by evaluating (CAADDR FOO).

Similarly, one can locate the last call to the function FIE that

occurred before FOO was entered by evaluating FIE against the

* CDR of the value of FOO is the HISTORY list beginning with
the last function call. The second pair in this list, CADR,
corresponds to the binding of the function name. CAR of this
pair is the name itself. Hence CAADDR.

39

HISTORY list before FOO, i.e., (EVAL (QUOTE FIE) (CDR FOO)), etc.

The HISTORY list can be used to create new variables. In

fact, ADVISE does this each time a function is evaluated when it

creates the variable VALUE and binds it to the value of the

function. This dotted pair, (VALUE . value), is inserted between

the binding of *FN* and the binding of the function name. Thus,

later functions can determine whether this function is in the

BEFORE or AFTER phase, and if AFTER, what the value of the

* function was.

The User-PILOT Interface

If we consider the entire system consisting of the user,

PILOT, and the user's programs as one program, then it should

be possible to modify the interfaces between the user and PILOT,

and PILOT and the user's program with the same techniques one

uses to modify the interfaces between procedures inside of the

.user's programs. This section describes modifications of this

type that have been carried out in the current version of PILOT.

The user-PILOT-program configuration can be illustrated by

the following diagram:

CD ®
~ ~ USER'S USER PI LOT PROGRAMS

© @
FIG.3 USER-PILOT I NT ER FACE

* Since HISTORY records only computations in progress, these
bindings last only until the return 'from the function. Thus
VALUE has a binding only during the time that AFTER advice is
being evaluated.

40

In this diagram, the user, CI), requests PILOT to perform

an operation, such as advising a user function. PILOT performs

this operation on the user's program, ~, and acknowledges com

pletion of the request, ~- When the user's programs are ex

ecuted, they may interact with PILOT, at ~ and <i), either

through the medium of the function ADVISE, or by specifically

calling for services provided by PILOT, such as BREAK or FLIP.

It is important to observe that if the user utilizes PILOT

in writing and debugging his programs, as well as in modifying

them, i.e., if all of his communication with the machine is

under PILOT's auspices ~nd go through interface (I), then there

is certain amount of tradeof f between efforts at improving inter

face Q), and those concentrated on interfaces ~and ~-

For example, we can relax the conventions imposed on commun-

ication between the user's programs and PILOT, so that when writ-

ing his programs, the user need not be concerned about the de

tails of the interaction at ~· Alternatively, we can impose

very stringent requirements on this interaction, but still relieve

the user of the burden of conforming to these conventions by

transforming his requests into a form which adheres to these

conventions at interface Q). The only important features of

the process are the two endpoints: relaxed and flexible inputs

by the user, and, ultimately, instructions recognized by the

machine, i.e., LISP computations.
I

The choice of where along the

way the interpretations and transformations take place is

arbitrary except for questions of efficiency.

What has been done in the current PILOT system is to im-

plement a collection of powerful text-manipulating functions

41

within LISP in the form of FLIP, format list processing lang-

uage.
[48]

The presence of FLIP makes it easy to introduce, at

interface G), a translation scheme that transforms the user's

requests into calls to appropriate LISP functions. This is be-

cause FLIP is sufficiently sophisticated to allow a single rule

to specify many variations on a particular transformation. This

is a necessity for constructing the many-one mapping required

for flexible input. A less sophisticated language would either

restrict the user excessively or else force him to specify so

many different transformations as to be impractical.

In effect, by using FLIP, the user can devise his own con-

ventions and rules, essentially develop his own language, for

communicating with PILOT. The interpretation of this source

language in terms of LISP functions provide the semantics of the

language, which can be expanded by defining new LISP functions

as needed, such as SYSTEM3. These correspond to the operatious

PILOT performs at interface ~· The ~ntax of the language is

also controlled by the user and is therefore easily expanded and

modified to suit the users own ideas as to what is intuitive and

natural. (The particular conventions and translation scheme I

have adopted for working with PILOT are described in the

Appendix 2.)

FLIP is also available to the user for more conventional

* tasks. A surprising number of the operations performed by

programs fall under the heading of pattern-driven data manipu-

lation. The availability of FLIP considerably simplifies the

problem of specifying these operations. The user does not have

* It is the presence of FLIP that makes possible the sophisticated
editing available in the PILOT system.

42

to program each operation anew, nor is he faced with the problem

of devising a scheme which will translate and/or interpret these

operations at interface Ci). All of this may be postponed until

FLIP itself is called from within the user's programs. In this

case, FLIP may be thought of as improving interface (I), as well

as interface ~· Furthermore, enough attention has been devoted

to efficiency in the construction of FLIP that the most sophis-

ticated programmer need not hesitate to use it in writing his own

programs.

Although most of the effort at modifying the user-PILOT

interface has been directed at interface CI), the user may also

wish to improve interface ~· The appendix describes some mod

ifications I have carried out with advice that affect this inter-

face, especially with regards to the procedure followed· when an

error occurs somewhere between the user's initial request and

the successful completion of the indicated operation at 0·

43

This empty page was substih1ted for a
blank page in the original document.

CHAPTER 4

FACILITIES IN THE PILOT SYSTEM

This chapter describes three of the facilities provided for
the user by the PILOT system. Central to these is the language
FLIP which is used by the system to process the user's requests,
as well as being available to the user for a variety of tasks.
FLIP is integral to EDIT, a collection of fairly sophisticated
editing routines that may be readily expanded by means of advi~e.
BREAK and BREAKPROG provide facilities for arresting the flow
of computation at a procedural interface so that the user can
perform computations, perhaps make modifications in the system,
and then either continue with the computation or specify some
alternate path.

I. FLIP

FLIP incorporates a notation ~nd a progranuning language for

expressing, from within the LISP system, string transformations

such as those performed in COMIT or SNOBOL. These transforma-

tions may be exemplified by the following instructions for a

transformation: find in this string the substring consisting of

the three elements immediately preceding the first occurrence

of an ~' and find the element just after the occurrence of a

b which follows this ~; if such elements exist, exchange the

position of the three elements and the one element, delete the

~' and replace the £ by a £·

Transformations of this type are fundamental for editing,

translating, in fact for performing any operation that is basic-

ally pattern-driven, i.e., specified by giving the~ of the

output in terms of the form of the input. However, they are

difficult to express in the explicit function-oriented nature

45

of LISP, although each could be individually programmed. A

notation for expressing such transformations is the basis for

a number of programming languages that exist today, such as
(51] [15] [9]

COMIT, SNOBOL, and AXLE. Each provides a formal

method for selecting substrings from a string, and then indica-

ting the structure of the transformed string.

These formalisms make it easy to write rules which perform

string transformations such as rearrangement, deletion, insertion,

and selection of elements from contents. However, it is cum-

bersome to express in these languages some of the operations

which are expressed quite easily in LISP. Some of the latter

operations depend very strongly on the fact that LISP can have

sublists within lists to unlimited depth, whereas COMIT has

lists only to depth 3 and SNOBOL and AXLE deal only with linear

strings.

An obvious solution to this notational difficulty is to

provide both types of language capability, function-directed

and format-directed list processing notation, within the same

programming system. These two. capabilities are provided in

PILOT by embedding FLIP[?, 49 l in the LISP 1.5 programming

* system.

FLIP Transformations

A transformation is specified in FLIP by providing a pattern,

which must match the structure to be transformed, and a format,

*The implementation of FLIP in LISP 1.5 is based upon but is a
considerable generalization over, programs and writings of
Bobrow. (5,6] In addition, it has been influenced by features of
the string processing languages described above, as well as by
those of CONVERT[l9] another string processing language embedded
in LISP.

46

which specifies how to construct a new structure according to

the segmentation, or parsing, specified by the pattern. These

patterns and formats are greatly generalized versions of the

left-half and right-half rules of COMIT and SNOBOL. For example,

elementary patterns and formats can be variable names, results

of computations, disjunctive sets, or repeating subpatterns:

predicates can be associated with elementary patterns which

check relationships among separated elements of the match: it is

no longer necessary to restrict the operations to linear strings

since elementary patterns can themselves match structures.

Furthermore, it is relatively easy to expand the semantics of

FLIP, adding new types of patterns and formats, by defining

appropriate LISP functions.

Since FLIP is embedded within LISP, it does not have its

own control mechanisms. In fact, several different useful ex

ecutive programs have been written in LISP to facilitate using

sets of rules. Some of these do the following:

1. Repeat use of each rule until it fails, and then go on

to the next.

2. Every time a rule is successful go back to the top of

the set of rules. On failure go to the next rule.

3. On a successful match, go to a specified labelled rule

(similar to COMIT).

(The latter algorithm is embodied in the LISP function

TRANSFORM, which is used in the translating scheme as well as

in the editor.) Since executive programs can easily be changed

or written anew for each applications, the flow of control be

tween rules is obviously not an important factor in the design

of FLIP.

47

Notation in FLIP

Let us return to the transformation described earlier: find

in this string the substring consisting of the three elements

immediately preceding the first occurrence of an ~· and find the

element just after the occurrence of a ~ which follows this ~;

if such elements exist, exchange the position of the three ele

ments .and the one element, delete the~· and replace the~ by a c.

In COMIT, this operation is expressed by the following rule:

$ + $3 + a + $ + b + $1 + $ = 1 + 6 + 4 + c + 2 + 7

In the COMIT notation, the "$" matches anything, the $n

where n is a number, matches a segment of length~· and~

matches~· i.e., a segment of length 1 consisting of the single

item x. The numbers in the right hand side of the rule refer

to the corresponding elements in the left hand side of the rule,

e.g., "S" refers to the single element "b" ,. "i" refers to the

three elements preceding "a."

The external notation of FLIP is in fact quite similar to

that of COMIT. Giving FLIP the pattern ($ $3 A $ B $1 $) and

the format (1 6 4 C 2 7) will cause the transformation described

above to be performed, i.e., (FLIP X (QUOTE ($ $3 A$ B $1 $))

(QUOTE (1 6 4 C 2 7))) specifies a LISP computation which trans

forms the variable x according to this rule.

However, since FLIP may also be used on nonlinear strings

and has in it many features which do not have counterparts in

COMIT, e.g., use of predicates, repeating subpatterns, etc., it

has been necessary to expand the COMIT notation considerably.

For example, to cancel out the common factor in LISP expressions

48

such as (QUOTIENT X (TIMES ABX Y)), one uses the pattern

(QUOTIENT $1 (TIMES$ (/T 2) $)) and the format (TIMES (/T 3 2)

(/T 3 4)). The "/T" indicates that the numbering should begin

at the "!_op" of the parsing, i.e., {/T 3 2) is the second element,

in the third element of the parsing, or (AB), and (/T 2) is the

second element, or x. (Alternatively, one can specify that the

numbering is to begin at the current level, or up a certain

number of levels.) To find a string of three elements which are

immediately followed by their mirror image, one uses the pattern

($ $3 $3 / (EQUAL (=REVERSE 2)) $),where the predicate (EQUAL

(=REVERSE 2)), associated with the second "$3", signifies that

the result of applying the LISP function REVERSE to the element

corresponding to the first $3, indicated by· "2", must be equal

to this element in order for the pattern to match.

However, it is not the intent of this discussion to describe

the operation of FLIP in detail, but instead to indicate the

ways in which it can be useful, ahd the problems to which it is

applicable. For this purpose, the manner in which certain oper

ations are expressed is not at all important, especially since

the current notation is arbitrary and ad hoc. (A large part

of the awkwardness of this notation is due to the clumsy way in

which reading and printing occur in the present LISP 1.5 system,

and to the dearth of available symbols.) In any event, since

utilization of FLIP involves a translation from an external lang

uage to a more efficient form for internal use, it would be

possible with more sophisticated translators to provide whatever

notation the user wishes. Thus the important thing about FLIP

is the semantic features made available by it. The examples on

the next pages are designed to illustrate some of these.

49

Applications of FLIP

Translation. FLIP was originally conceived and implemented

for a specific purpose: to provide in PILOT a capability for

transforming user requests into LISP computations. The details

of this translating scheme are described in appendix 2. In

this example, I shall motivate and construct in greater detail

one of these transformation rules.

Prefix notation plays a~ important part of the LISP formal

ism. Relations are expressed with the name of the relation

first, e.g., (XIS A MEMBER OF Y) is (MEMBER X Y), (XIS LESS

THAN Y) is (LESSP X Y). This is convenient because it puts the

name of the operation i~ a canonical position, and so avoids

the problem of identifying that member is the key word in (X IS

A MEMBER OF Y). However, since English is basically an infix

notational language, the user must continually perform mental

transformations when programming in LISP. The translation scheme

implemented in PILOT is designed to lessen the user's burden.

This translator is basically a sequence of FLIP rules

which perform transformations on the input. Thus including a

rule such as:

((-- $1 IS A MEMBER OF $1 --) (-- (MEMBER 2 -2) --))

will allow the user to write

(••• XIS A MEMBER OF Y ..•)

50

for

* (. . • (MEMBER X Y) ..••) •

Similarly, ((-- $1 IS LESS THAN $1 --) (-- (LESSP 2 -2) --)) ,

and ((-- $1 IS GREATER THAN $1 --) (-- (GREATERP 2 -2) --)) , etc.

However, as we introduce further "IS RULES," the translation

process will be slowed down considerably, because of the increas-

ing number of attempted matches. In addition, the question of

space may become crucial. We would like to have a single rule

handle all of the "IS" transformations. This would have the

added advantage that we could also transform (X IS NOT A MEMBER

OF Y) into (NULL (MEMBER X Y)) with the same rule.

The way to construct such a rule is to use the disjunctive

"EITHER" pattern, with a variable pattern name. For example,

if we store the patterns for the IS transformations on the

property list of the atom IS under the property PATTERNS, then

(-- $1 IS (EITHER (=GET IS PATTERNS)) --) will match if the

input list is of the form of one of the IS PATTERNS. The

format (-- ((EITHER (=GET IS FORMATS))) --) will then perform

the desired transformation, selecting the format corresponding

to this match. To incorporate the NOT feature, we write instead

* A word about notation:
1. The above rule translates the same as

(($ $1 IS A MEMBER OF $1 $) (1 (MEMBER 2 -2) -1)).
"--" means ·either "$" or "l" or "-1" or even "NIL," depending on
the context. It represents a DWIM statement - "DO WHAT I MEAN."

2. Negative numbers, such as -2, -1, serve the same function
as positive numbers, they refer to elements in the parsing.
However, with negative numbers, the numbering starts from the
right hand side and counts backward. Thus in the above,
(MEMBER 2 -2) is the same as (MEMBER 2 7) and also (MEMBER -7 7).

51

r

and

(-- $1 IS (EITHER (NOT) --) (EITHER (=GET IS PATTERNS)) --)

(-- ((EITHER (NULL (EITHER (/T -2) (= GET IS FORMATS)))

((EITHER (/T -2) (= GET IS FORMATS))))) --)

With this rule, it is necessary to specify by (/T -2) which

of the two "EITHER's" we are referring to in the match (FLIP will

select the first one if none is specified).

Now, if we put on IS PATTERNS: (MEMBER OF $1), GREATER THAN

$1), (LESS THAN $1), even (ATOMIC) and (A NUM~ER); and on IS

FORMATS: (MEMBER 2 (/T -2 -1)) I (GREATERP 2 (/T -2 -1)), (LESSP 2

(/T -2 -1)), (ATOM 2), (NUMBERP 2), etc., the appropriate trans

formations will be performed. Furthermore, it is a simple matter

to write another rule which automatically does this, i.e., we

can say (X IS GREATER THAN Y MEANS GREATERP) and (GREATER THAN $1)

will be put on IS PATTERNS and (GREATERP 2 (/T -2 -1)) on IS

FORMATS ; if we say (X IS A NUMBER MEANS NUMBERP) I then (A NUMBER)

will go on IS PATTERNS and (NUMBERP 2) on IS FORMATS, etc.

Output

Frequently a programmer will content himself with relatively

sterile output because the extra labor involved in programming

fancier output does not justify the returns. FLIP makes it easy

for programs to communicate with the user. in text, as opposed to

list structure.

Suppose a program deals with data such as (AT PENCIL Y) ,

(NIL AT PENCIL COUNTY), and (((AT PENCIL DESK) (AT DESK HOME))

AT PENCIL COUNTY). The first list is the representation of the

52

question: "Is the pencil at any y?" The second that of the state-

ment, "The pencil is at the county" and the third, "If the pen-

cil is at the desk and the desk is at the home, the pencil is at

* the county." We would like to have the program output this in-

formation this latter way instead of the way it is internally

represented.

To do this, we proceed as follows:

First we define a function PHRASE which transforms (AT

PENCIL COUNTY) into (THE PENCIL IS AT THE COUNTY). The defini-

tion of this function, using FLIP, is:

(LAMBDA (X) (FLIPQ X

($1 (EITHER ($1 I (VARIABLE)) ($1)) (EITHER ($1 I (VARIABLE))

($1)))

((EITHER (ANY) (THE)) 2 IS 1 (EITHER 3 (ANY) (THE)) 3)))

FLIPQ is the same as FLIP, except we don't have to quote the

latter two arguments. VARIABLE is a function which is true if

its argument is a variable, false otherwise. Note that PHRASE

applied to (AT PENCIL Y) is (THE PENCIL IS AT ANY Y) •

Next we define a function QUESTION which transforms (AT

PENCIL COUNTY) into (IS THE PENCIL AT THE COUNTY). The definition

of this function is:

(LAMBDA (X) (FLIPQ X

($1 (EITHER ($1 I (VARIABLE)) ($1)) (EITHER ($1 I (VARIABLE))

($1)))

(IS (EITHER (ANY) (THE)) 2 1 (EITHER 3 (ANY) (THE)) 3)))

* This example is from Chapter 5, Experiments with a Question
Answering System.

53

Using these two functions, we can define OUTPUT to handle

the three different data types:

(LAMBDA (X) (FLIPQ X

(EITHER (NIL --) ($1 I (ATOM) --)

(($1 (EITHER ($1) --)) --))

(EITHER

((** (= PHRASE 2)) (= PERIOD))

((** (= QUESTION (/T 1))) (= QMARK))

(IF (** (=PHRASE (=CAR (/C 1 1))))

(EITHER (AND (** (=PHRASE 1))) --)

(** (= PHRASE 2)) (= PERIOD)))))

(= COMMA)

In this definition, "**" denotes that the result of the

LISP computation is not to be treated as a single element and

inserted, but to be treated as a list and appended, so that the

resulting structure will be a linear list. The (/T l) in the

call to QUESTION gives it as input what matched the top level

EITHER, or the entire list X. Finally, the (/C 1 l) denotes

the first element in the first element of the current structure.

In this case, it is the same as writing (/T l l l) , or (= CAR l) .

Searching and Sorting

A surprising number of the more common tasks performed by

programs fall under the heading of pattern-driven data manipula

tion. Thus, they could be written in FLIP. For example, when

we search a list for a particular item or group of items, as

specified by some relationship, we are performing the same oper

ation as that performed by the function MATCH in FLIP. Even

such mundane operations as sorting a list can be expressed simply

in the FLIP notation.

54

Suppose we wish to define a function which will take the list

(Xx Y W X Z Y) and produce as output the list ((3 X) (2 Y) (1 W)

(1 Z)). The following function, using TRANSFORM, (see page 47),

will do this:

(LAMBDA (X) (TRANSFORM X (QUOTE

LOOP ((-- $1 / (ATOM) (REPEAT$ (/T 2)) --)

(-- 4 (REPEAT N 2) ((= (CARN)) 2)) LOOP)))))

In this rule, N is the index of repetition. When the REPEAT

format completes operation, CAR of N is the number of times it

repeated.

If instead we wanted as output (X x x Y Y W Z), we would add

to the above list of rules for TRANSFORM:

((REPEAT $1) (REPEAT (= CAR 1) (= CADR 1)))

This rule will transform ((3 X) (2 Y) (1 W) (1 Z)) into

(X X X Y Y W Z) •

* * *
II. EDIT

Programmers must have a way of editing their programs.

This is a simple consequence of the fact that programmers make

mistakes. Unfortunately, however, editing facilities are often

primitive; the limiting factor in debugging programs may be the

interaction time with a keypunch.

One approach to finessing the duplicate button on the key

punch is to construct a context editor for the source material,

55

r

usually paper tape or card decks. This is the approach of Tape

Editor[421 and ED. [ll] Here the user moves an imaginary pointer

through his program listing using context search, e.g., locate

the character string "CONS (CAAR X," and performs insertions,

deletions, and replacements. The editing program makes the

corresponding changes in the source material and issues the user

a fresh version at the end of the editing session.

For LISP programmers, the above procedure necessitates

leaving the LISP system and the original program. This may be

undesirable if the user is in the midst of a debugging sequence,

especially if returning to the LISP system involves a lengthy

loading process. Another approach to the problem of editing,

therefore, is to provide some form of editing facility within
. (2 8]

the LISP programming system. This is the approach of Martin

and Bobrow. [Bl Here the user has the added advantage that he

can edit list structure, instead of text, although this may make

it difficult to correct a simple parenthesis error. The opera-

tions corresponding to moving the pointer allow the user to

refer to pieces of list structure. Similarly, insertion, de-

letion, and replacement commands specify changes in the structure.

At the end of the session, the editor produces a new version of

the list structure. The programmer can then proceed with his

debugging immediately.

From the standpoint of the LISP user, this latter approach

is superior. However, for efficient LISP editing, the properties

of a structure editor and a text editor are ~ required. The

user should be able to manipulate individual parentheses as

easily as pieces of list structure.

56

Another desirable feature of an editing program is a language

for expressing editing operations. The absence of a language

tends to preclude conditional operations. The user cannot specify

operations involving decisions, even simple ones, such as find an

"X" that immediately follows a "Y" - except by searching for a

* "Y" and examining the next element himself. A language is also

necessary to enable the user to define new operations, without

reprogramming the editor.

Using FLIP for Editing

The presence of FLIP provides a language for describing

editing operations. In fact, all that is necessary to construct

an editor is to write an executive program which accepts requests

from the user and calls FLIP. The insertions, deletions, and

replacements of editing are specified by FLIP patterns and for-

mats. Furthermore, since FLIP rules are themselves list structure,

it is easy to modify them using other FLIP rules - e.g., by giving

advice. In this way, a sophisticated editor can be built around

the FLIP language with very little additional effort.

Such an editor has been included in the PILOT system. The

f 11 ' d' . . l. f [48] o owing iscussion presents its sa ient eatures.

Example

To give the general flavor of editing using FLIP, suppose

the definition of the function FOO is

(44]
* TECO, tape editor and £Orrector,is an excellent example
of the advantages-of an editor with a language.

57

(LAMBDA (X) (PROG NIL (COND

((EQ (CAR X) -1) (RETURN NIL)))

(SETQ Y (PLUS (Y CAR X)))

(SETQ X (CDR X))

(GO START)))

Let us add Y to the argument list, and label the COND state-

ment START.

edit (foo expr nil)
(match -- x --}

* (form 1 2 y 3)
(match -- nil --)
(form 1 2 start 3)
stop

FOO

[find the left-most x]
[follow it by y]
[the first NIL]

[value of EDIT]

We could perform both changes in a single match and construct

if we desired. Also, we could check our intermediate results by

examining the output of the matches.

expr nil) edit (foo
(flip (-
(match --
1

x -- nil --) (1 2 y 3 4 start 5))
prog -- cond --)

[what is 1 in last match?]

3

stop

(LAMBDA (X Y)

NIL START (

FOO

[this is 3]

[the value of EDIT]

Flattening Lists and Balancing Parentheses

For all intents and purposes, in the above example, we were

editing a string of atoms. This effect is achieved by "flattening"

all S-expressions that are to be edited into a single list of

atoms, substituting the special atoms L* for left parentheses,

* "form" is used instead of "cons" for "construct" because the
word "cons" would be confused with the LISP function CONS.

58

·--------

R* for right parentheses, and P* for dot. For example, ((A. B)

(C . D)) flattens to (L* L* AP* BR* L* C P* DR* R*). Since

L*, R*, and P* are atoms the same as X, Y, and NIL, we can insert

and delete them as well as any other. While inside of the editor,

we can even manipulate "partial" lists such as "(LAMBDA (X Y) (",

represented as (L* LAMBDA L* x Y R* L*). The only restriction

is that the list must "unflatten" correctly when we wish to

leave the editor.

To restore the properties of list structure to the editor,

i.e., to allow us to refer to pieces of list structure as well

as strings of atoms, we now expand the semantics of FLIP by adding

a new elementary pattern, UPN. This elementary pattern signals

FLIP to find the £th matching pair of parentheses, that is, to

go UP n pairs of parentheses starting from the current position.

In effect, what the UPN pattern says, for n=2, is "I didn't

really want to match with (..) but with the list containing the

list containing (..). However, it was easier to find this list

by first locating (..), and then backing up two sets of paren

theses." Thus in the example on the previous page, we could

find the structure ((EQ (CAR X) -1) (RETURN NIL)) by matching

with (-- ((EQ (CAR X) -1) (RETURN NIL)) --) (FLIP will auto

matically flatten the input pattern) , or by matching with

(-- EQ UP2 --) , or (--CAR UP3 --),or (--RETURN UP2 --).

The UPN pattern would then match with the structure ((EQ (CAR X)

-1) (RETURN NIL)), which could be transformed as desired.

59

Adding New Operations

Suppose we want to

INSERT (SETO X 1) (SETO Y NIL) AFTER CAR -- CDR UP2

i.e., after the UP2. We match with (--CAR -- CDR UP2 --) , and

construct with (1 2 3 4 5 (SETO X 1) (SETO Y NIL) -1). To

REPLACE CONS UP2 WITH (LIST Z),

we match with (-- CONS UP2 --)

(1 2 (LIST Z) -1).

and construct with

In fact, to insert a after f3, match with (--/3--) and con-

struct with (1 2 3 n -2 a -1), where~ is the length of f3.

To insert a before f3, match with (-- /3 --)'and construct with

(1 2 3 ... n a -2 -1). To replace /3 with a , match with (-- /3 --)

and construct with (1 2 3 ... n a-1), etc.

This suggests that it should be possible to give the editor

requests such as (INSERT (SETO x 1) (SETO y NIL) AFTER CAR -

CDR UP2), and (REPLACE CONS UP2 WITH (LIST Z)), by defining the

operations INSERT AFTER, INSERT BEFORE, REPLACE WITH, etc.

This is in fact easy to accomplish by first transforming

the request to EDIT according to a set of EDIT RULES. Adding

new FLIP rules to this list allows the user to define new opera

tions. For example, to define

60

(REPLACE ••• WITH ...) we add the rule

((REPLACE$ WITH$) (FLIP ($ 2 $) ((REPEAT (=LENGTH 2)

(= (CARN))) 4 (QUOTE -1)))).

This transforms (REPLACE CONS UP2 WITH (LIST Z)) into

(FLIP ($CONS UP2 $) (1 2 (LIST Z) -1)), which is then recognized

as a request for FLIP. New operations can even be defined in

terms of old ones, e.g., ((DELETE$) (REPLACE 2 WITH)) allows

the user to specify (DELETE CONS UP2). With a little practice,

the user can define fairly complicated operations such as

(CHANGE ALL a TO {3) , (SUBEXP a BEFORE {3) (which allows one

to move structure from one place to another) and (WHAT IS a) ,

for interrogating the current status of the edited structure.

In this way, the user can build up his own vocabulary and lang

uage for editing, always returning to the basic FLIP operation

for complicated and/or special purpose operations.

* * *

III. BREAK AND BREAKPROG

In order to edit (or advise) an incorrect procedure, we

must first know what procedure is at fault, and the precise

nature of the problem. Finding this out can be a very difficult

task. If the error is such that the program does not produce

any meaningful output at all, there may be no course of action

left but to examine the action of a large number of procedures

in detail. Even when we have some idea of where the trouble

spot may lie, and in inkling of what it is, we must still be

able to examine closely the operation of a procedure. We want

to find out what changes it makes, if any, in its essential

61

variables. Basically, what we want to do is arrest the flow of

computation at the entry and exit to a procedure, perform various

computations, and then either continue with the normal flow of

control, or indicate alternate routing.

There is great similarity between this operation and that

of advising. In fact, the two are identical, except that with

advising, the computations are prespecified on the property list

of the procedure, whereas with this operation, which I call

breaking, they are entered through the keyboard at the time of

the break. This of course is the essential point of breaking.

Since the user does not know what the trouble is, he cannot

fully anticipate the questions (computations) he will want to

ask, prior to the time of the break. In general, each question

will depend on the "answer" he receives to the previous one.

[4 8]
Breaking is implemented in PILOT by a function BREAKl.

BREAK! takes as input the definition of a procedure, and allows

the user to execute LISP computations before and after evaluating

this procedure. These computations are entered from the key-

board, and, after execution, their value is printed.

BREAKl plays a role in breaking similar to that of ADVISE

in advising. However, since efficiency is not important in

* BREAKl, the various advising conventions concerning exit from

a procedure have been replaced with four special commands: QUIT,

STOP, RETURN, AND EVAL, for which BREAK! makes a special check.

* In general, whenever input or output is required, efficiency
of computation is not important, because the computation time
is so small compared with the time required for the input and
output processes.

62

QUIT, STOP, AND RETURN specify exits from the entire breaking

operation: QUIT induces a L~SP error; STOP is the normal (un

broken) return from the procedure; and RETURN specifies a return

with some other value, i.e., via another computation. EVAL

is used when the user wishes to evaluate the procedure, without

exiting from the break. This corresponds to going from the

BEFORE to AFTER phase in advising, except that with breaking,

this can be done more than once. For example, after an EVAL

command, the user can check the value of the procedure, make

some changes, and EVAL again.

Breaking a procedure involves replacing its definition with

a call to BREAK!. Again, note the similarity to advising. There

are two functions available for this purpose. BREAK is used

when the procedure is a LISP function. BREAKPROG is used when

the procedure occurs inside of a LISP function. BREAK gets the

function definition from the property list. BREAKPROG calls

' EDIT to locate the procedure in question and to make the appro

priate changes. Since one of the arguments of BREAK! is a

breaking condition, the user can specify that a break is to be

conditional upon the result of some computation, and thereby

postpone examination of the procedure until a crucial point in

the calculation occurs.

63

This empty page was substih1ted for a
blank page in the original document.

CHAPTER 5

EXPERIMENTS WITH A QUESTION-ANSWERING SYSTEM

Two detailed examples are presented in this chapter and the
next. They illustrate the use of the PILOT system. An attempt
has been made to give the reader the flavor of an actual session
at the console. The complete user-PILOT dialogue is included,
along with anecdotal comments explaining what is happening.

Pref ace

Because it is impossible to allow to each reader himself

interaction with the system, I have tried, in ~hese chapters,

to give its flavor by going through an example; I have attempted

to impart the idea behind each interaction without dwelling on

the details. Appendix 2, Using PILOT, delves more deeply into

the conventions and operation of the system.

Experiments with a Deductive Question-Answering System

In 1964, Fischer Black programmed in LISP a Deductive

• . • C2 l • • • 'l h Question-Answering System. This system is sirni ar to t e
[31]

Advice Taker proposed by McCarthy, and solves McCarthy's

"airport problem," among others.

In the airport problem, the program is supplied with certain

facts: at (I,desk) (which is McCarthy's formalization of "I am

at the desk"), at(uesk,home),at(car,home),at(horne,county},

at(airport,county) ,walkable(horne) ,drivable(county), along with

general and specific rules relating those facts, such as the

transistivity of the "at" relationship: at(x,y) at(y,z) at(x,z).

65

It is then asked to solve the "problem" posed by the premise

"want(at, (I,airport}}", in other words to produce a deductive

chain which terminates with "at(I,airport} ."

The operation of Black's system can better be explained with

a simpler corpus. Let us assume the program is given:

in(pencil,desk},

in(desk,home},

in(home,county},

in(x,y}_.at(x,y},

in(x,y} ,at(y,z}-at(x,z}.

When asked the question "Is my pencil at the county," i.e.,

at(pencil,county}, the program looks for a statement whose con-

sequent .matches the question, and finds two: in(pencil,county)--
··~U

at (pe.ncil ,county}, and in (pencil ,y} ,at (y ,county)-at (pencil ,county).

It then considers as a subquestion "is my pencil in the county"

and finding no statements that match, concludes that this question

cannot be answered. It therefore considers as a subquestion,

the first antecedent in the remaining statement, namely

"in(pencil,y) ," which asks "what is my pencil in?" "in(pencil,y)"

matches "in(pencil,desk} ." Since this is a known fact, the

deducti9n is immediate, and since there are no other matches,

the answer to the question "in(pencil,y}" is "in(pencil,desk}."

The program then attempts to answer "at(desk,county} ," because

then it could deduce "at(pencil,county} ," etc.

One of the interesting problems of this system is that

endless deductions can result because the same question occurs

as a subquestion of itself. For example, if the corpus were

66

at(pencil,desk) ,at(desk,home) ,at(home,county) ,at(x,y) & at(y,z)-

at(x,z), then given the question "at(pencil,county) ," the sub-

ques_tion "at(pencil,y)" would keep repeating. Dr. Black dis-

cusses various ways to prevent endless deduction in his thesis,

and raises various objections to each of them. Unfortunately,

implementing and testing each.method involved considerable re-·

programming. D.G. Bobrow suggested that PILOT could be used

to make these modifications and that this would provide an ex-

cellent test for it. In particular, since the procedures used

in this example would not only be compiled subroutines but would

have been written by an entirely different person, it would

demonstrate whether or not PILOT really allowed the user to

think of a procedure as a little black box with input-output

characteristics. Accordingly, I copied the function definitions

for Black's system from the appendix of his thesis, and loaded

them into PILOT.

A Summary of the Experiment

Since the only output provided by Black's program was an

exhaustive trace of the two main functions, SOLUTIONl and

SOLUTION2, the first step was to get the program to print out

the deductive chain in some readable fashion. When this was

done, I discovered that the program was written to produce all

possible answers to a question. When the question contained

no variables, e.g., at(pencil,county), this meant that the pro-

gram would continue to look for an alternative way of answering

the question even if it had already satisfactorily deduced the

* answer. This situation was readily corrected by advice.

* The way the program operates is as follows: if the question is
(AT PENCIL Y) , it returns a list of .all the facts satisfying the
question. If the question is (AT PENCIL COUNTY), it also returns
a list of all facts satisfying the question, but in this case
there can be only one - (AT PENCIL COUNTY). Essentially what it
does is say "Yes, the pencil is at the county."

67

At this point, I decided that it would be easier for me to

follow the deduction if the output were in a more readable for

mat. Dr. Black had described the internal representations used

for questions, facts, and deductive ~ules. I therefore wrote

three functions, QUESTION, PHRASE, AND CLAUSE, which used FLIP,

and transformed the internal representation into English.

PHRASE would take something of the form (AT PENCIL COUNTY) and

transform it into (THE PENCIL IS AT THE COUNTY). QUESTION

produced (IS THE PENCIL AT THE COUNTY Q) from (AT PENCIL COUNTY),

(when it was designated as a question). CLAUSE would take an

arbitrary expression, decide whether it was a question or a

statement, and then perform the appropriate transformation,

e.g., (((AT PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY) become

(IF THE PENCIL IS IN ANY Y AND ANY Y IS AT THE COUNTY, THE

PENCIL IS AT THE COUNTY).

The protocol that follows gives the definition of these

functions. It shows how BREAK was useful in debugging them and

how advice was used to correct the one bug that was found.

After I nad the program more or less talking to me, I

attempted to solve the original problem, that of endless de

duction. The first solution was to limit the number of questions

considered. When this limit was set at 2, the program could

not get an answer to "at(pencil,county)." Since I was going

to play with this parameter, I advised the function to allow

me to input this parameter along with the question. Giving it

a limit of 3, the program could answer "at (pencil ,county),"

although it was clear it did so inefficiently. I also tried

the question "at(pencil,y)." With a limit of 1, the program

got one answer: at(pencil,desk). With a limit of 2, it got two

68

answers: at(pencil,home) and at(pencil,desk). With a limit of

3, after much labor, all three answers, at(pencil,county),

at(pencil,Home) and at(pencil,desk) were obtained.

The last modification undertaken was to instruct the program

to look for a repeated subquestion, and if one were encountered,

to return with any answers already found to that question in-

stead of considering it anew. With this modification the program

obtained all three answers to at(pencil,y) in a very satisfactory

manner, with less than half of the effort of the previous method

(i.e., setting an arbitrary limit on the number of recursive

function calls allowed) .

Protocol

Initially the only facility for monitoring the operation

of the program was the trace feature in LISP. I traced SOLUTIONl

and SOLUTION2, which were the main functions. From the text of

the thesis, I knew that (AT PENCIL COUNTY) was a question, and

(NIL IN DESK HOME), (((IN PENCIL COUNTY)) AT PENCIL COUNTY)

were the way statements were represented. It thus became clear

that SOLUTIONl handled questions and SOLUTION2 took a state~nt

and tried to find a deduction that produced it.

solution! ((at pencil county))

ARGUMENTS OF SOLUTION!
(AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION2
(((IN PENCIL COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION!
(IN PENCIL COUNTY)

69

VALUE OF SOLUTION!
NIL

VALUE OF SOLUTION2
NIL

ARGUMENTS OF SOLUTION2
(((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION!
(IN PENCIL Y)

ARGUMENTS OF SOLUTION2
(NIL IN PENCIL DESK)

VALUE OF SOLUTION2
((IN PENCIL DESK))

VALUE OF SOLUTION!
((IN PENCIL DESK))

ARGUMENTS OF SOLUTION2
(((AT DESK COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION!
(AT DESK COUNTY)

ARGUMENTS OF SOLUTION2
(((IN DESK COUNTY)) AT DESK COUNTY)

ARGUMENTS OF SOLUTION!
(IN DESK COUNTY)

VALUE OF SOLUTION!
NIL

VALUE OF SOLUTION2
NIL

ARGUMENTS OF SOLUTION2
(((IN DESK Y) (AT Y COUNTY)) AT DESK COUNTY)

etc.

ARGUMENTS OF SOLUTION2
(((IN COUNTY Y) (AT Y COUNTY)) AT COUNTY COUNTY)

ARGUMENTS OF SOLUTIOltl
(IN COUNTY Y)

VALUE OF SOLUTION!
NIL

VALUE OF SOLUTION2
NIL

VALUE OF SOLUTION!
NIL

VALUE OF SOLUTION2
NIL

70

VALUE OF SOLUTION2
NIL

VALUE OF SOLUTION!
({AT HOME COUNTY))

ARGUMENTS OF SOLUTION2
(NIL AT DESK COUNTY)

VALUE OF SOLUTION2
((AT DESK COUNTY))

VALUE OF SOLUTION2
((AT DESK COUNTY))

VALUE OF SOLUTION2
{(AT DESK COUNTY))

VALUE OF SOLUTION!
({AT DESK COUNTY))

ARGUMENTS OF SOLUTION2
(NIL AT PENCIL COUNTY)

VALUE OF SOLUTION2
({AT PENCIL COUNTY))

VALUE OF SOLUTION2
{(AT PENCIL COUNTY))

VALUE OF SOLUTION2
({AT PENCIL COUNTY))

VALUE OF SOLUTION!
({AT PENCIL COUNTY))
((AT PENCIL COUNTY))

csetq (corpus corpus2)

({NIL AT PENCIL DESK) (NIL AT DESK HOME) (NIL AT HOME
COUNTY) (((AT X Y) (AT Y Z)) AT X Z))

solution! ((at pencil county))

ARGUMENTS OF SOLUTION!
(AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION2
(((AT PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION!
(AT PENCIL Y)

ARGUMENTS OF SOLUTION2
(NIL AT PENCIL DESK)

71

VALUE OF SOLUTION2
((AT PENCIL DESK))

ARGUMENTS OF SOLUTION2
(((AT PENCIL U) (AT U Z)) AT PENCIL Z)

ARGUMENTS OF SOLUTION!
(AT PENCIL U)

ARGUMENTS OF SOLUTION2
(NIL AT PENCIL DESK)

VALUE OF SOLUTION2
((AT PENCIL DESK))

ARGUMENTS OF SOLUTION2
(((AT PENCIL Y) (AT Y Z)) AT PE~CIL Z)

ARGUMENTS OF SOLUTION!
(AT PENCIL Y)

ARGUMENTS OF SOLUTION2
(NIL AT PENCIL DESK)

VALUE OF SOLUTION2
((AT PENCIL DESK))

ARGUMENTS OF SOLUTION2
(((AT PENCIL U) (AT U Z)} AT PENCIL Z}

ARGUMENTS OF S

Here I used corpus2, the corpus in which looping may occur.

As can be seen from the trace, the program is in an endless

deduction.

What I plan to do is to define a new func~ion, SOLVE,

which will call SOLUTIONl and initiate the deduction. Each

time I enter SOLUTIONl or SOLUTION2 during the deduction, I

will save their arguments on a dummy variable - which I will

call SOLU'I'ION. If when I leave the function, its value is

NIL, I'll then remove its argument from SOLUTION. SOLUTION is

thus a first-in first-out list of arguments for SOLUTIONl and

SOLUTION2. When I get finished, SOLUTION will have all of the

questions and statements that produced non-null values, i.e.,

those actually part of the deduction.

72

(define solve (x) as solutionl x}
(SOLVE)

Defining SOLVE.

(tell solve before, do bind solution to nil)
SOLVE

Telling SOLVE to BIND solution to NIL. The DO means this

advice is to be executed without disrupting the normal flow of

control - i.e., SOLUTIONl will still be entered.

(tell solutionl before, do save x on solution)
SOLUTIONl

Telling SOLUTIONl to SAVE on SOLUTION.

(translate ((either (before $1) (after $1) ($1 $1) ($1))
: --) as (tell (either (2 1) (2 1) (1 2) (1 (=normal)))

do --)}
(TRANSLATE RULES)

At this point I realize that frequently I use this sort of

advice, i.e., DO something and go on, so I add a new translation

rule to handle it. With this rule, (solution2 save y on

solution) will become (TELL SOLUTION2 BEFORE DO SAVE YON SOLUTION).

(solution2
SOLUTION2

save y on solution)

Telling SOLUTION2 to SAVE Y.

(after solutionl
SOLUTIONl

if value is null. then pop solution)

73

After I come out of SOLUTION!, if its value is NIL, I

want to remove X from SOLUTION.

(use solution! after for solution2 after)
(SOLUTION! AFTER)

Similarly for SOLUTION2.

(after solve mapc solution (print x))
SOLVE

After I get done, I want to see SOLUTION.

solve ((at pencil county))
(NIL AT PENCIL COUNTY)
{NIL AT DESK COUNTY)
{IN HOME Y)
({(IN HOMEY) (AT Y COUNTY)) AT HOME COUNTY)
(NIL AT HOME COUNTY)
{NIL IN HOME COUNTY)
(IN HOME COUNTY)
(((IN HOME COUNTY)) AT HOME COUNTY)
(AT HOME COUNTY)
(((AT HOME COUNTY)) AT DESK COUNTY)
(NIL IN DESK HOME)
(IN DESK Y)
(((IN DESK Y) {AT Y COUNTY)) AT DESK COUNTY)
(AT DESK COUNTY)
(((AT DESK COUNTY)) AT PENCIL COUNTY)
(NIL IN PENCIL DESK)
(IN PENCIL Y)
(((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
(AT PENCIL COUNTY)
((AT PENCIL COUNTY))

Now I ask the question at(pencil,county) again.

The first thing I notice is that I forgot to reverse

SOLUTION and the deduction is reversed. I also notice that

after answering the question (IN HOME COUNTY) with the fact

(NIL IN HOME COUNTY) , the program went on trying to get other

answers via the statement (((IN HOMEY) (AT Y COUNTY)) AT HOME

74

COUNTY). I plan to remedy this. In order to evaluate the

program's performance before and after this change, and others,

I will make the program count the number of times it enters

SOLUTION! and SOLUTION2.

(change solve after
(replace solution with (reverse solution)))

(SOLVE AFTER)

Reversing solution.

(solve
SOLVE

bind number to 0)

Setting up a dummy variable NUMBER and binding it to 0.

(translate (- increment $1 -) as (- (setq 3 (addl 3)) -))
(TRANSLATE RULES)

Defining what INCREMENT means.

(solution! increment number)
SOLUTION!

Telling SOLUTION! to INCREMENT NUMBER.

(solution2
SOL UT ION2

increment number)

Similarly for SOLUTION2.

(after solve
SOLVE

(print cons number '(function calls)))

Telling SOLVE to print NUMBER.

75

solve ((at pencil county))
(AT PENCIL COUNTY)
(((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
(IN PENCIL Y)
(NIL IN PENCIL DESK)
(((AT DESK COUNTY)) AT PENCIL COUNTY)
(AT DESK COUNTY)
(({IN DESK Y) (AT Y COUNTY)) AT DESK COUNTY)
(IN DESK Y)
(NIL IN DESK HOME)
(((AT HOME COUNTY)) AT DESK COUNTY)
(AT HOME COUNTY)
(((IN HOME COUNTY)) AT HOME COUNTY)
(IN HOME COUNTY)
(NIL IN HOME COUNTY)
(NIL AT HOME COUNTY)
(((IN HOME Y) (AT Y COUNTY)) AT HOME COUNTY)
(IN HOME Y)
(NIL AT DESK COUNTY)
(NIL AT PENCIL COUNTY)

(30 FUNCTION CALLS)

((AT PENCIL COUNTY))

I am now ready to tell the program not to look for additional

answers to questions which do not contain any variables.

(solution! bind val to nil)
SOLUTION!

I create the variable VAL and bind it to NIL. This will

bind VAL to NIL each time SOLUTIONl is entered. Thus there will

be a value for VAL associated with each question.

(after solution2
SOLUTION2

(setq val value))

When I leave SOLUTION2, I will set VAL to the value of

SOLUTION2. The particular VAL that will be set will be the

one associated with the question which created the statement

that SOLUTION2 is considering currently.

76

(tell solution2, {before number advice),
if val and (variables x) is null, then quit)

(SOLUTION2 BEFORE)

Now I tell SOLUTION2, before the advice which increments

• number if VAL is true, which means I already obtained one

answer to this question, and if (VARIABLES X) is NIL, which
••

means that there are no variables in the question, then it,

SOLUTION2, should quit, i.e., return with NIL.

solve ((at pencil county))
(AT PENCIL COUNTY)
(((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
(IN PENCIL Y)
(NIL IN PENCIL DESK)
(((AT DESK COUNTY)) AT PENCIL COUNTY)
(AT DESK COUNTY)
(((IN DESK Y) (AT Y COUNTY)) AT DESK COUNTY)
(IN DESK Y)
(NIL IN DESK HOME)
(((AT HOME COUNTY)) AT DESK COUNTY)
(AT HOME COUNTY)
(({IN HOME COUNTY)) AT HOME COUNTY)
(IN HOME COUNTY)
(NIL IN HOME COUNTY)
(NIL AT HOME COUNTY)
(NIL AT DESK COUNTY)
(NIL AT PENCIL COUNTY)

(21 FUNCTION CALLS)

((AT PENCIL COUNTY))

Now I run the program again. Note that this time there

are only 21 function calls, and· that the extra effort at the

end has been eliminated.

* I will not count as a bona fide call to SOLUTION2 if it is
not actually entered.

** VARIABLES is a function in Black's original system.

77

English Output

From the thesis, I know that a list beginning with a list,

including the empty list, is a statement, and lists headed by

atoms represent questions. Why not make SOLVE talk English to me?

(define phrase (x) as flipq x
($1 (either ($1 I (variable)) ($1)) (either ($1 I (var
iable)) ($1))) ((either 2 (any 1) (the 1)) is 1 (either

3 (any 1) (the 1))))
(PHRASE)

I define the function PHRASE. PHRASE given (AT PENCIL

COUNTY) will produce (THE PENCIL IS AT THE COUNTY) • PHRASE

given (AT PENCIL Y) will produce (THE PENCIL IS AT ANY Y).

(define question (x) as flipq phrase x ($ is $)
((= er) 2 1 3 q))

(QUESTION)

QUESTION is similar to PHRASE. QUESTION ((AT PENCIL COUNTY))

is (IS THE PENCIL AT THE COUNTY Q). QUESTION ((AT PENCIL Y)) is

(IS THE PENCIL AT ANY Y Q) •

(define clause (x) as flipq x ((either
(nil -)
(($1 (either ($1) -)) -)
(-)))
({either
((** (= phrase 2)))
(if (** (= phrase (/c 1 1))) (either (/c 1 2) (and

(** (= phrase 1))) -) (=comma) (** (=phrase 2))
((** (=question 1)))) (= period) (= er)))

(CLAUSE)

CLAUSE will transform questions or statements from Black's

internal representation into English.

78

phrase ((at pencil county))
(THE PENCIL IS AT THE COUNTYl

question ((at pencil y))
(
IS THE PENCIL AT ANY Y Q)

clause ((at pencil county))
(
IS THE PENCIL AT THE COUNTY Q .

)
clause ((nil at pencil county))

(THE PENCIL IS AT THE COUNTY .
)
clause ((((at pencil y) (at y county)) at pencil county))

(IF AND , THE PENCIL IS AT THE COUNTY .
)

A Bug in CLAUSE! Let's see if PHRASE is doing the right thing.

break (phrase t x)
PHRASE

I BREAK on PHRASE, the "t" means that it will always break,

and "x" that it will print the value of x.

clause ((((at pencil y) (at y county)) at pencil county))
(BREAK IN PHRASE)
((AT PENCIL Y))

quit

PROCEED:

The trouble is an extra set of parentheses in certain situ-

ations.

I UNBREAK PHRASE and advise it that when (CDR X} is null,

to take (CAR X} instead of X.

unbreak (phrase)
PHRASE

(phrase : if (cdr x) is null, then (setq x car x))
PHRASE

79

clause ((((at pencil y) (at y county)) at pencil cou'nty))
(IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY, THE
PENCIL IS AT THE COUNTY .

Now CLAUSE works correctly.

(tell solve after, (instead of reverse advice),
mapc (append corpus reverse solution) (fancyprint clause x))

(SOLVE AFTER)

Now instead of merely printing out the solution, I'll go

* through its solution and FANCYPRINT the result of applying CLAUSE

to each element on SOLUTION. I will also FANCYPRINT the corpus.

solve ((at pencil county))
THE PENCIL IS IN THE DESK.
THE DESK IS IN THE HOME.
THE HOME IS IN THE COUNTY.
IF ANY XIS IN ANY Y, ANY X IS AT ANY Y.
IF ANY X IS IN ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS IN ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

IS THE PENCIL IN ANY Y Q.
THE PENCIL IS IN THE DESK.
IF THE DESK IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

IS THE DESK AT THE COUNTY Q.
IF THE DESK IS IN ANY Y AND ANY Y IS AT THE COUNTY, THE
DESK IS AT THE COUNTY.

IS THE DESK IN ANY Y Q.
THE DESK IS IN THE HOME.
IF THE HOME IS AT THE COUNTY, THE DESK IS AT THE COUNTY.

IS THE HOME AT THE COUNTY Q.
IF THE HOME IS IN THE COUNTY, THE HOME IS AT THE COUNTY.

* FANCYPRINT is a trivial function which prints a list, suppressing
initial and final parentheses without spacing before periods,
commas, and colons.

80

IS THE HOME IN THE COUNTY Q.
THE HOME IS IN THE COUNTY.
THE HOME IS AT THE COUNTY.
TllE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.

(21 FUNCTION CALLS)

((AT PENCIL COUNTY))

81

the advice will be appended at the end of the list of advice.

I need to be able to put something on the front of the list of

advice.

(translate (tell $1 (either (first} ($1 I (atom) first})
$1) as ($ system3 2 (=translate -1} (either ((=normal))
(1))))

(TRANSLATE RULES}

Whenever I use the word FIRST it will mean to call SYSTEM3

instead of SYSTEMl.

(define system3 (what advice where) as
if (get what ' advised) is null, then (systeml what

advice where},
else {prog2 put cons if advice is atomic then advice,

else (cons ' advice advice} end get what where
what where, what))

(SYSTEM3)

SYSTEM3 will put the advice on the front.

(solutionl first
SOLUTIONl

save x on record)

Now I tell SOLUTIONl FIRST to save x on RECORD.

(solution2 first
SOLUTION2

Similarly SOLUTION2,

save y on record}

(after solve
SOLVE

mapc (reverse record) (fancyprint clause x))

and after SOLVE, to print RECORD.

83

Now I repeat the question. I can see that the program is

on the right track. The last question it considered was "is

the desk at any y." If it deduces "the desk is at the home,"

and the home is at the county," it will have deduced "the

pencil is at the county."

solve ((at pencil county))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

(8 FUNCTION CALLS)

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

IS THE DESK AT THE COUNTY Q.
IF THE DESK IS AT ANY Y AND ANY Y IS AT THE COUNTY, THE
DESK IS AT THE COUNTY.

IS THE DESK AT ANY Y Q.
NIL

Since I am going to have to manipulate the COUNTF parameter

now set at 2, I would like to give it to SOLVE as one of its

inputs.

(tell solve to bind n to (car x) and pop x)
SOLVE

84

I tell SOLVE to BIND N to the first element of x, which

will be this number, and to reset x to the rest of x.

(change solution!, (replace greaterp nl $1 with n))
(SOLUTION! BEFORE)

I replace the "2" in GREATERP (countf something) 2, by N.

I could also have said (REPLACE (COUNTF HISTORY · ((SOLUTIONl $)))

IS GREATER THAN 2 WITH (COUNTF HISTORY ((SOLUTIONl $))) IS GREATER

THAN N).

Now try it with N set to 3.

solve {(3, at pencil county))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT· THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

IS THE HOME AT THE COUNTY Q.
THE HOME IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.

(17 FUNCTION CALLS)

85

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

IS THE HOME AT THE COUNTY Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT THE COUNTY, THE
HOME IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
IF THE DESK IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

((AT PENCIL COUNTY}}

The deduction took 17 function calls, and it considered

(IS THE PENCIL AT ANY Y) 3 times.

I also try the (AT PENCIL Y) question (previously I was working

with (AT PENCIL COUNTY)) to see how far I must allow it to run

in order to produce all three answers.

86

solve ((1, at pencil y))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.

(3 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
((AT PENCIL DESK))

With N set to 1, it got one answer - the desk.

solve ((2, at pencil y})
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
THE PENCIL IS AT THE HOME.

(11 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

87

f.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE PENCIL IS AT THE HOME.

((AT PENCIL HOME) (AT PENCIL DESK))

With N at 2, it also got the home.

solve ((3, at pencil y))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE. DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE HOME AT ANY Z Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY U, THE HOME
IS AT ANY U.

IS THE HOME AT ANY Y Q.
THE PENCIL IS AT THE COUNTY.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE DESK IS AT THE HOME.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

88

IS THE HOME AT ANY U Q.
THE HOME IS AT THE COUNTY.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
THE PENCIL IS AT THE HOME.

(39 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE HOME AT ANY Z Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY U, THE HOME
IS AT ANY U.

IS THE HOME AT ANY Y Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY U AND ANY U IS AT ANY Z, THE HOME
IS AT ANY Z.

IS THE HOME AT ANY U Q.
IF THE COUNTY IS AT ANY U, THE HOME IS AT ANY U.

IS THE COUNTY AT ANY U Q.
IF THE COUNTY IS AT ANY Y AND ANY Y IS AT ANY Z, THE
COUNTY IS AT ANY Z.

IS THE COUNTY AT ANY Y Q.
THE PENCIL IS AT THE COUNTY.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

89

IS THE DESK AT ANY Y Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY U AND ANY U IS AT ANY Z, THE DESK
IS AT ANY Z.

IS THE DESK AT ANY U Q.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

IS THE HOME AT ANY U Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY Z, THE HOME
IS AT ANY Z.

IS THE HOME AT ANY Y Q.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
THE PENCIL IS AT THE HOME.

{(AT PENCIL HOME) {AT PENCIL COUNTY) (AT PENCIL COUNTY) (AT
PENCIL DESK))

With N at 3, it got the county, as it should, but it took

39 function calls, because it kept reconsidering the same ques-

tions until it ran out of room. Only then did it abandon this

question and proceed to the next one.

What I really want to do is note when a question repeats and take

the answers found so far. I can do this because HISTORY is

available and I can look back on it and find VAL, which has all

of the answers bound to it.

Instead of the countf advice, I will use a FLIP rule which

will look for SOLUTIONl on the HISTORY list, provided its argu-

ment x', matches the current x. In this case, it will return

with the value of VAL.

(tell solution!, (instead of countf advir.e), (flipl history
' (- (solution! -) (val -) (x $ / (matches (= x))) -)
'(((/t 3 2))) history))

(SOLUTION! BEFORE)

(define matches (x y) as
if x is null, then y is null,
if (car x) is equal to (car y) or
(variable car x) and (variable car y),

then (matches cdr x cdr y))
(MATCHES)

90

Two questions will match if they are identical except for

substitution of variables. Black's function VARIABLE is true

if its input is the name of a variable, e.g., X, Y, U, V, etc.

(change solve, (delete n (backto advice) upl))
(SOLVE BEFORE)

I don't need the advice concerning N.

solve ((at pencil y))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

IS THE HOME AT ANY U Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY Z, THE HOME
IS AT ANY Z.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
THE PENCIL IS AT THE HOME.

(17 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

91

IS THE DESK AT ANY Y Q.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

IS THE HOME AT ANY U Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY Z, THE HOME
IS AT ANY Z.

IS THE HOME AT ANY Y Q.
IF THE COUNTY rs AT ANY Z, THE HOME rs AT ANY z.

rs T':r COUNTY AT ANY z Q.
IF T~E COUNTY rs AT ANY y AND ANY y rs AT ANY u, THE
COUNTY IS AT ANY U.

rs THE COUNTY AT ANY y Q.
THE DESK IS AT THE COUNTY.
THE PENCIL rs AT THE COUNTY.
THE PENCIL IS AT THE HOME.

((AT PENCIL HOME) (AT PENCIL COUNTY) (AT PENCIL DESK))

Now the deduction requires only 17 function calls, and

looks reasonable!

92

CHAPTER 6

EXPERIMENTS WITH A PROBLEM SOLVER

The central aim of the General Problem Solver of Newell,

. d h [38] . . Simon an S aw was to divorce problem solving techniques

and heuristics from any task environment, and thus construct

a program that was truly general. A system was constructed that

succeeded in proving theorems in logic, and solving problems

such as the cannibal and missionary problem. However, the

system grew so massive and cumbersome, and the effort involved

in making modifications so enormous, that it has become more

or less frozen. (Newell has informed me that after some time

away from the program, it takes him weeks just to "get into the

listing" and remember what the program does.)

I thought it might be worthwhile to use PILOT to construct

a system with the same goals as GPS, i.e., flexibility and

generality, although not as complex. I started with a minimal

configuration and used PILOT to make modifications as I went

along. In this way I did not give much forethought to the de-

sign of the system, but allowed it to develop as the experi-

mentation proceeded. The next section summarizes what happened,

and the following section contains a protocol which is an

extract from my sessions at the console.

93

r

Summary of Experiments

The basic design of the system is illustrated in the accom-

panying flow chart. I implemented this flow chart by dividing

the various tasks among five functions, thus facilitating making

subsequent changes with advice. These functions are MOVES,

GOALP, GPS, MAKE, AND PROGRESS. MOVES generates a list of moves

for any given situation. GOALP recognizes when the problem has

been solved. The main loop of the program is GPS--MAKE-

* PROGRESS--GPS. GPS is the executive routine which calls MOVES,

selects the first move on the list of possible moves, and calls

MAKE. MAKE makes the move, i.e., performs the necessary changes

in the problem representation, and calls PROGRESS. PROGRESS

checks whether the problem has been solved by calling GOALP,

and, if not, calls GPS with the new position.

The first problem I attempted to solve with the system was

the cannibal and missionary problem. In this problem, three

cannibals and three missionaries are on one side of a river with

a boat that can carry only two men. The object is to transport

everyone across the river. The catch is that if there are

more cannibals than missionaries on any side at any time, the

cannibals will eat the missionaries. This is undesirable. It

is also assumed that the boat will not float across the river

by itself, i.e., someone has to be in it to take it across.

I set up the problem using four variables: SIDE!, SIDE2,

FROM, and TO. SIDEl would represent the contingent on the near

side of the river, and SIDE2 those on the far side. FROM and

* I hope Messrs. Newell, Simon, and Shaw will forgive me for
naming my program after theirs.

94

NO

START

GENERATE
MOVES FOR

THIS SITUATION

MAKE NEXT
MOVE

NO REPORT
FAILURE

FIG. 4 A SIMPLE PROBLEM SOLVER

95

F

TO would represent the direction of transfer, in other words,

the location of the boat. I advised GOALP of the terminal con

ditions, and told MOVES to return with MOVEl and MOVE2, corres

ponding to moving 1 person and 2 people. (I had to define the

operation of moving appropriately.) I then advised MAKE to

make the appropriate changes in FROM, TO, SIDE!, and SIDE2, and

instructed PROGRESS to quit if the cannibals outnumbered the

missionaries. The only thing remaining was to ensure that GPS

did not loop, i.e., send a cannibal across, bring him back, send

him across, bring him back, etc. I advised GPS to avoid looping

by saving the positions encountered, searching this list of

positions, and terminating a branch when a position repeated.

With this set of advice1 GPS solved the problem.

Unfortunately, as one can see from the interaction shown

below, solving the problem simply meant that ten seconds after

input,GPS printed *T*, indicating the problem had been solved.

This was not very informative. Therefore, I modified the program

to count the number of moves it considered, and to print the

solution. At this stage, I decided to see if I could get a

nice English output.

I defined a function PLURAL, which took the plural of

nouns, and by advice, enabled it to handle the plurals of words

like both CANNIBAL and MISSIONARY - drop the "y" and add "i e s,"

etc. I defined a function PHRASE, which took a list of the form

(CM c MM), c standing for CANNIBAL and M for MISSIONARY, and

produced (TWO CANNIBALS AND THREE MISSIONARIES). (This was

necessary because there was no guarantee that the representation

would be sorted, and indeed it usually wasn't.) When I got

PHRASE working, I had the program print the solution and then

96

added a facility to have it print out each move considered.

Since nothing was built into the program to distinguish one

cannibal from another (MOVE! simply meant take 1 person and move

him), the program would attempt to send across one cannibal, then

to bring him back - that then being the only legal move - realize

that it was back where it started, abandon this line of attack,

and generate as its next move, sending across the next cannibal,

etc. It was obvious that heuristics were needed.

As a first heuristic I told GPS that if it was trying to

send people across, i.e., going FROM SIDE! and TO SIDE2, then

it should try to send as many men as possible, i.e., to consider

moving ~ before moving !· This was to avoid fruitless consider

ations of trying to send each one of the original six people

across before trying combinations of two. This heuristic reduced

the number of moves attempted from 68 to 35. I then added a

second heuristic which had the effect of making the program

realize that once it had tried sending across a particular boat

load, and failed, it should not try the same move again. This

reduced the number of moves considered to 20. The length of the

solution in each case was 11 moves, which is the minimum number

required.

Since GPS was supposed to be a general problem solving

program, I now asked it to solve the fox, goose, and corn problem.

In this problem, a farmer wants to carry a fox, a goose, and

some corn to the barn, but can't leave the fox alone with the

goose or the goose alone with the corn. In addition, he can

only carry one object at a time.

97

Since this problem was similar to the cannibal and mission

ary problem, I was able to carry over much of the advice already

given to GPS, GOALP, MOVES, MAKE, and PROGRESS, making only a

few modifications. GPS then solved the problem.

Professor Minsky suggested that I try the cannibal and

missionary problem again, this time with a boat that could

carry three people. This modification turned out to be easy

to achieve by advising MOVES. GP.s only considered 12 moves

to find the solution, now requiring only five moves.

I decided I would now like to be able to solve the problem

using the number of missionaries and cannibals as input para

meters. I modified PROGRESS, changing the advice that checked

on the missionaries' safety to work with any size population.

I then gave the program the problem with 4 missionaries and

4 cannibals, which can't be solved with a two man boat, as

the program discovered. This problem can be solved with a

larger boat,and the program found solution for the modified

problem.

I decided I would like to specify the size of the boat as

an input parameter also. After doing this, I asked the program

to SOLVE (CANNIBAL AND MISSIONARY PROBLEM FOR 3 IN A BOAT AND

FOR 4 CANNIBALS AND 5 MISSIONARIES) •

At this point, the program ran out of space, primarily be

cause I had, resident in core, all of FLIP, the SYSTEM functions,

and the EDIT package, in addition to the problem solving program.

I made room by removing the EDIT functions and continued to a

solution of the problem. When I finished, I enabled the system

98

to make room in the future when it required it, by telling the

system whenever there were less than 500 words of free storage

left, to remove the least essential package. GPS then solved

a number of other problems.

I made two more interesting modifications to the program.

First, I advised it how to solve (HOW BIG A BOAT DO YOU NEED FOR

4 CANNIBALS AND 4 MISSIONARIES) . This was a change conceptually

simple, since it only involved GPS .calling itself with different

size boats until one was found that worked. However, I made a

more sophisticated revision that involved a problem in which some

of the missionary population might not be eaten by cannibals,

even though outnumbered. I called such a missionary TARZAN,

and asked the system to solve problems such as (HOW BIG A BOAT

DO YOU NEED FOR 3 MISSIONARIES, 1 TARZAN, 4 CANNIBALS) - answer 2.

Protocol

(define gps as prog (x y)
setq x moves
gl if xis null then (return nil) end
setq y valueof car x
g2 if y is null then (go g3),

if (make car y) then (return t) end
pop Y
go g2
g3 pop x
go gl)

(GPS)

This is the definition of GPS. GPS calls MOVES which re-

turns with a list of the move types, not the moves themselves.

GPS then computes all of the moves corresponding to a particular

type, and runs through them calling MAKE on each one.

99

(define moves as)
(MOVES)

(define make (move) as progress)
(MAKE)

(define progress as goalp or gps)
(PROGRESS)

(define goalp as)
(GOALP)

Definition of MOVES, MAKE, PROGRESS, GOALP. MOVES and GOALP

are defined as nothing - which means they return NIL. MAKE is

a function of one variable - its name being MOVE.

(define solve (fexpr) as
if (get 1 start csetq normal car 1) is null.

then 1 (dont know how).
if (csetq history list cons • solve 1) then (start nil))

(SOLVE)

SOLVE takes the statement of the problem and determines

whether the problem can be solved. It looks on the property

list of START for advice on this problem. (Problems are labeled

by the first word in the statement, for example CANNIBAL.) If

there is none, SOLVE returns (DONT KNOW HOW). Otherwise it

calls START to begin solving the problem. SOLVE also sets the

NORMAL mode to the problem name so that further advice is inter-

preted in the context of this problem.

(define start (hist) as gps)
(START)

START performs the initialization and calls GPS. START

has one variable, HIST, which may be used for saving informa-

tion to be printed out at the end.

100

Since I would like to use the same program for several

different problems, I will prepare for different entrance points

corresponding to the various problems. This is done by placing

a computation which will produce the advice at the canonical

entry point labeled BEFORE,instead of the actual list of advice.

This is the role of the function SETUP.

(define setup (x) as mapc x (nconc x list ' before
'(lambda (y) (get (caadr y) normal))))
(SETUP)

SETUP places under the property BEFORE, the S-expression

(LAMBDA (X) (GET (CAADR Y) NORMAL)), which is evaluated by

ADVISE. This will get the list of advice from the correct pro-

perty. As described in Chapter 3,the input to this LAMBDA

expression is the HISTORY list, and CAADR of the HISTORY list

is always the name of the function just entered.

setup ((gps moves make progress goalp start))
NIL

(translate (start with $1 $1 (repeat $1 $1)) as
(tell start to bind 3 to ($* quote 4)
(repeat n and bind 1 to ($*quote 2)) and nil))

(TRANSLATE RULES)

This rule causes instructions of the form (START WITH

uuu vvv xxx yyy .••) to be transformed into advice for START

which will perform the appropriate operation of binding uuu to

vvv, xxx to yyy, etc. This advice corresponds to the initial-

ization process.

101

I now try to SOLVE (CANNIBAL AND MISSIONARIES) and GPS

responds (DONT KNOW HOW) because under the property CANNIBAL

on the property list of START there is no advice - yet. NORMAL

is set to CANNIBAL.

solve (cannibal and missionaries)
(DONT KNOW HOW)

(start with sidel (mm m cc c), side2 nil, to side2,
from sidel)

START

Start with sidel (m mm c c c), go to side2 from sidel.

(tell goalp, return with sidel is null)
GOALP

Final condition - no one left on sidel.

(tell moves, return with '((movel) (move2)))
MOVES

Moves.

(define movel as alltran valueof from '($1) '((2) 1 3))
MOVE!)

MOVE! goes through VALUEOF FROM and makes a list containing

a move corresponding to every single element on FROM. In other

words, if FROM is SIDEl, and SIDEl is (MC MC), then the value

of MOVEl is ((M) C M C) , ((C) M M C) , ((M) M C C), ((C) M C M)).

Each member corresponds to a move, namely the one in which the

first item is moved, leaving the rest. MOVEl. is easily defined

using a FLIP function ALLTRAN. ALLTRAN yields all possible

102

a point in the solution in which the position is repeated with

respect to the values of SIDEl and SIDE2, but the boat is on

a different side.

(after gps
GPS

pop hist)

After leaving GPS, I have to pop hist.

(tell progress, if searchf hist (((= from) $ I
(setequal (= side2)))) then quit)

PROGRESS

This advice tells progress to search through HIST looking

for an element whose first member is equal to the value of FROM,

and the rest of which is equal, in the set terminology sense,

to the value of SIDE2. We must use set equality because the

representation may have become rearranged.

solve (cannibal and missionaries)
T

Now it can solve the problem.

Unfortunately, GPS gives me little information about what

it did, so I set up two more variables, NUMBER, and SOLUTION.

(start with number 0, solution nil)
START

(make
MAKE

increment number)

At MAKE, I increment number.

104

{after goalp
GOA LP

if value then {setq solution history))

After GOALP, if its value is not NIL, which mean-s the

answer has been found, I save the HISTORY list on SOLUTION.

{after start : if value is not equal to '{dont know
how), then {printred cons number '{moves considered)))

START

When I get back to START, if the value is not (DONT KNOW

HOW), I print the number of moves considered,

{after start : mapc {listf reverse solution
'{(move$)) '(({/t 2 2))) nil) {print x))

START

and a summary of what they were. Here I use another FLIP

function LISTF, to look through the HISTORY list and make a list

of all of the bindings of the variable MOVE (which is the name

of the argument of MAKE).

solve (cannibal and missionaries)

(68 MOVES CONSIDERED)

{{MC) MMC C)
{{M) C)
({CC)MMM)
({C) CC)
({MM) CM)
{{MC)MC)
({MM) CC)
{{C) MM M)
{{C C) C)
{(C) C M M M)
((CC))
T

105

This is the solution. The first move was to take a mission-

ary and a cannibal across, leaving two missionaries and two

cannibals on the near side. Then a missionary came back leaving

a lone cannibal on the far side.

etc.

l 0 6

Next two cannibals went across,

English Output

(define plural I (x y) as ~rog3 clearbuff
ma pc (append x y) (pack x), intern mknam)

(PLURALl)

PLURALl is a function which takes its two arguments and

makes one word out of them.

(define plural (x) as plurall explode x '(s))
(PLURAL)

PLURAL calls PLURALl with its input and "(s)." Thus

PLURAL (CANNIBAL) IS CANNIBALS.

plural (cannibal)
CMNIBALS

plural (missionary)
MISSIONARYS

(plurall: if (last x) is equal to '(y),
then to (rlast x) and (setq y '(i es)))

PLURALl

Telling PLURALl if the last letter is a "y," is should

RI.AST, remove the last letter, and use "I E S" instead of "S."

plural (missionary)
MISSIONARIES

Now it works correctly.

107

(define phrase (x y) as if xis null, then '(nobody),
else (transform sublis y x 1

(

((-- $1 I (atom) (rel'eat $ (It 2)) --)
(-- 4 (repeat 1) ((= (car n)) 2)) top)

(((repeat ((either ((= 1) $1) ((= 2) $1) ((= 3) $1)
($1 $1))}}}

((repeat (either (/c 1 1) (a 2) (two (= plural 2))
(three (= plural 2)) (1 (= plural 2)))
(= comma))))

(($2 $1) (1) exit)
(($2 $1 $2 $1 (1 and 3) exit)
(((back 3) $2 $1) (1 and 2))))

(PHRASE)

PHRASE sorts the people on a side, substituting their proper

names, i.e., cannibal for "c" and missionary for "m," and then

makes a nice phrase out of it.

I test PHRASE.

phrase ((c) ((c . cannibal)))
(A CANNIBAL)

phrase ((cm) ((c . cannibal) (m . missionary)))
(A CANNIBAL AND A MISSIONARY)

phrase ((cm cm m) ((c . cannibal) (m . missionary)))
(TWO (CANNIBAL)S AND THREE (MISSIONARY)S)

A Bug, because I have extra parentheses.

(plural
PLURAL

if x is not atomic, then (setq x car x))

Fix the BUG

phrase ((cm cm m) ((c . cinnibal) (m . missionary)))
(TWO CANNIBALS AND THREE MISSIONARIES)

phrase ((cm cm mm l) ((c . cannibal) (m . missionary)
(l . lion)))

(TWO CANNIBALS , 4 MISSIONARIES , AND A LION)

and it works correctly.

108

(tell start after, (instead of listf advice),
if value and (cadr solve) is equal to ' and, then
(fancyprint listf reverse solution '((move ($) $) $

(either ((from . sidel}) {{from . side2))))
'(bring {** {= phrase {/t 2 2 1) (= a)))

(either (back) (across}) (= comma) leaving
(** (= phrase (/t 2 3) (= a))) on
(either (side2} (sidel}} (= period) (= er) (= er}}

'({a (c . cannibal} (m . missionary}))))
{START AFTER}

I replace the LISTF advice with advice for producing fancy

output. The result is shown below.

solve (cannibal and missionaries)

(68 MOVES CONSIDERED}

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDEl.

BRING A MISSIONARY BACK, LEAVING A CANNIBAL ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING THREE MISSIONARIES
ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL AND
A MISSIONARY ON SIDEl.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING A
MISSIONARY AND A CANNIBAL ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
ON SID El.

BRING A CANNIBAL BACK, LEAVING THREE MISSIONARIES ON
SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL ON
SIDEl.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL AND THREE
MISSIONARIES ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING NOBODY ON SIDEl.

T

109

In order to evaluate new heuristics, I also need a facility

for printing each move as it is considered. I will modify MAKE,

so that if the word "PROBLEM" appears in the input, MAKE will

print each move in a nice format.

(make : if ' problem is a member of solve, then
(fancyprint construct! nil '(bring (** (= (phrase car
move a)))

(= (sublis '((sidel . back) (side2 . across))
from)) (=er)

sidel : (** (= (phrase sidel a))) (=er)
side2 : (** (= (phrase side2 a))) (=er) (= er))

cons '(a (c . cannibal) (m . missionary)) history))
MAKE

solve (cannibal problem)
BRING A MISSIONARY ACROSS
SIDEl: TWO MISSIONARIES AND THREE CANNIBALS
SIDE2: A MISSIONARY

BRING A MISSIONARY ACROSS
SIDEl: TWO MISSIONARIES AND THREE CANNIBALS
SIDE2: A MISSIONARY

BRING A MISSIONARY ACROSS
SIDEl: TWO MISSIONARIES AND THREE CANNIBALS
SIDE2: A MISSIONARY

BRING A CANNIBAL ACROSS
SIDEl: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL

BRING A CANNIBAL BACK
SIDEl: THREE CANNIBALS AND THREE MISSIONARIES
S IDE2: NOBODY

BRING A CANNIBAL ACROSS
SIDEl: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL

BRING A CANNIBAL BACK
SIDE!: THREE CANNIBALS AND THREE MISSIONARIES
SIDE2: NOBODY

BRING A CANNIBAL ACROSS
SIDEl: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL

BRING A CANNIBAL BACK
SIDEl: THREE CANNIBALS AND THREE MISSIONARIES
SIDE 2: NOBODY

11 0

BRING TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY AND THREE CANNIBALS
SIDE2: TWO MISSIONARIES

BRING TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY AND THREE CANNIBALS
SIDE2: TWO MISSIONARIES

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: TWO MISSIONARIES AND TWO CANNIBALS
SIDE2: A MISSIONARY AND A CANNIBAL

etc.

These are the first 12 moves considered. Note that the

program does not assume that any one missionary is different

from any other.

The first heuristic is to try MOVE2 before MOVE!, when the

boat is going across the river, but keep MOVE! first when coming

back. I i-0struct MOVES to reverse its value if TO is equal to

SIDE2.

(tell moves after, if to is equal to ' side2, then
return with (reverse value))

MOVES

solve (cannibal)

(35 MOVES CONSIDERED)

T

Now the number of moves is reduced to 35. The next heur-

istic is to save the moves considered at each ply, and not attempt

one which is SETEQUAL to a move considered before. SETEQUAL

must be used because the move (M C) should eliminate (C M) •

(gps bind moves to nil)
GPS

111

Setting up the dwmny variable MOVES.

(tell make first, if searchp moves (setequal (car
move}}, then quit, else do save (car move} on moves}

MAKE

Telling MAKE, FIRST, to search MOVES, and if it finds

something which is SETEQUAL to (CAR MOVE), then quit. Otherwise,

save (CAR MOVE). This cuts the solution down to 20 moves, re-

produced here in full.

solve (cannibal and missionary problem)
BRING TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY AND THREE CANNIBALS
SIDE2: TWO MISSIONARIES

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: TWO MISSIONARIES AND TWO CANNIBALS
SIDE2: A MISSIONARY AND A CANNIBAL

BRING A MISSIONARY BACK
SIDEl: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL

BRING TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

BRING TWO CANNIBALS ACROSS
SIDEl: THREE MISSIONARIES
SIDE2: THREE CANNIBALS

BRING A CANNIBAL BACK
SIDEl: A CANNIBAL AND THREE MISSIONARIES
SIDE2: TWO CANNIBALS

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDEl: TWO MISSIONARIES
SIDE2: THREE CANNIBALS AND A MISSIONARY

BRING TWO MISSIONARIES ACROSS
SIDE!: A CANNIBAL AND A MISSIONARY
SIDE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDEl: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

112

BRING A CANNIBAL BACK
SIDEl: TWO CANNIBALS AND A MISSIONARY
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING TWO MISSIONARIES BACK
SIDEl: THREE MISSIONARIES AND A CANNIBAL
SIDE2: TWO CANNIBALS

BRING A MISSIONARY AND A CANNIBAL BACK
SIDE!: TWO MISSIONARIES AND TWO CANNIBALS
SIDE2: A MISSIONARY AND A CANNIBAL

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: A CANNIBAL AND A MISSIONARY
SIDE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING TWO MISSIONARIES ACROSS
SIDEl: TWO CANNIBALS
SIDE2: THREE MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY BACK
SIDEl: A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING A CANNIBAL BACK
SIDEl: THREE CANNIBALS
SIDE2: THREE MISSIONARIES

BRING TWO CANNIBALS ACROSS
SIDEl: A CANNIBAL
SIDE2: TWO CANNIBALS AND THREE MISSIONARIES

BRING A CANNIBAL BACK
SIDEl: TWO CANNIBALS
SIDE2: A CANNIBAL AND THREE MISSIONARIES

BRING TWO CANNIBALS ACROSS
SIDEl: NOBODY
SIDE2: THREE CANNIBALS AND THREE MISSIONARIES

(20 MOVES CONSIDERED)

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
TWO MISSIONARIES AND TWO CANNIBALS ON SIDEl.

BRING A MISSIONARY BACK, LEAVING A CANNIBAL ON
SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING THREE MISSIONARIES
ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDEl.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING
A MISSIONARY AND A CANNIBAL ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
ON SIDEl.

113

BRING A CANNIBAL BACK, LEAVING THREE MISSIONARIES ON
SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL ON SIDEl.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL AND THREE
MISSIONARIES ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING NOBODY ON SIDEl.

T

Now I try the fox, gooose, and corn problem.

solve (fox, goose, and corn problem)
(DONT KNOW HOW)

I can use GPS, START, GOALP, MOVES, MAKE, and PROGRESS

CANNIBAL, for GPS, START, •.. FOX, with only a few slight changes:

I must change (m m m c c c) to (fox goose corn) in starting con

ditions; MOVES must return (MOVEO) and (MOVEl) instead of (MOVEl)

and (MOVE2), and

(use gps cannibal)
(GPS CANNIBAL)

(use start cannibal but (replace m upl with (fox goose
corn)))

(START CANNIBAL)

(use goalp cannibal)
(GOALP CANNIBAL)

(use moves cannibal but
(replace movel with moveO) (replace move2 with movel))

(MOVES CANNIBAL)

(define moveO as list cons nil valueof from)
(MOVEO)

(use make cannibal)
(MAKE CANNIBAL)

(use progress cannibal)
(PROGRESS CANNIBAL)

114

I must change the forbidden conditions. Instead of the

countq advice, PROGRESS must check to see whether the goose is a

member of the TO side. If anything else is also a member, it

should quit.

(tell progress (instead of countq advice),
if ' goose is not a member of (valueof to), then ignore,
if (cdr valueof to) then quit)

PROGRESS FOX)

Now GPS begins to solve the problem.

solve (fox, goose, and corn problem)
BRING A FOX ACROSS
SIDEl: A GOOSE AND A CORN
SIDEZ: A FOX

BRING A GOOSE ACROSS
SIDEl: A FOX AND A CORINT. 0

*** ERROR CALLED

I interrupt it because

(tell phrase after, if normal is equal to ' fox,
then return with (subst ' the ' a value))

PHRASE

"THE FOX" sounds much better than "A FOX," and it's easy

to change.

solve (fox, goose, and corn problem)
BRING THE FOX ACROSS
SIDEl: THE GOOSE AND THE CORN
SIDE2: THE FOX

BRING THE GOOSE ACROSS
SIDEl: THE FOX AND THE CORN
SIDE2: THE GOOSE

115

BRING NOBODY BACK
SIDEl: THE FOX AND THE CORN
SIDE2: THE GOOSE

BRING THE FOX ACROSS
SIDEl: THE CORN
SIDE2: THE FOX AND THE GOOSE

BRING NOBODY BACK
SIDEl: THE CORN
SIDE2: THE FOX AND THE GOOSE

BRING THE FOX BACK
SIDEl: THE FOX AND THE CORN
SIDE2: THE GOOSE

BRING THE GOOSE BACK
SIDEl: THE GOOSE AND THE CORN
S IDE2: THE FOX

BRING THE GOOSE ACROSS
SIDEl: THE CORN
SIDE2: THE GOOSE AND THE FOX

BRING THE CORN ACROSS
SIDEl: THE GOOSE
SIDE2: THE CORN AND THE FOX

BRING NOBODY BACK
SIDEl: THE GOOSE
SIDE2: THE CORN AND THE FOX

BRING THE GOOSE ACROSS
SIDEl: NOBODY
SIDE2: THE GOOSE, THE CORN, AND THE FOX

(11 MOVES CONSIDERED)

T

The solution takes 7 ·moves. GPS only considers 11 moves

all together.

solve (fox and goose)

(11 MOVES CONSIDERED)

BRING THE GOOSE ACROSS. LEAVING THE FOX AND THE CORN
ON SIDEl.

BRING NOBODY BACK. LEAVING THE GOOSE ON SIDE2.

BRING THE FOX ACROSS, LEAVING THE CORN ON SIDE!.

BRING THE GOOSE BACK. LEAVING THE FOX ON SIDE2.

116

BRING THE CORN ACROSS, LEAVING THE GOOSE ON SIDEl.

BRING NOBODY BACK, LEAVING THE CORN AND THE FOX ON
SIDE2.

BRING THE GOOSE ACROSS, LEAVING NOBODY ON SIDEl.

T

I return to the cannibal and missionary problem and add

(MOVE3) to the list of move types.

(change moves (insert (move3} after (move2}}}
(MOVES CANNIBAL}

(define move3 as alltran valueof from '($1 - $1 - $1}
'((2 4 6} 1 3 5 7}}

(MOVE3}

MOVE3 is defined in a fashion similar to MOVE2 and MOVE!

using ALLTRAN.

solve (cannibal and missionary problem}
BRING THREE MISSIONARIES ACROSS
SIDEl: THREE CANNIBALS
SIDE2: THREE MISSIONARIES

BRING A MISSIONARY BACK
SIDEl: A MISSIONARY AND THREE CANNIBALS
SIDE2: TWO MISSIONARIES

BRING TWO MISSIONARIES BACK
SIDEl: TWO MISSIONARIES AND THREE CANNIBALS
SIDE2: A MISSIONARY

BRING THREE MISSIONARIES BACK
SIDEl: THREE MISSIONARIES AND THREE CANNIBALS
SIDE2: NOBODY

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEl: A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY AND TWO CANNIBALS ACROSS
SIDEl: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

117

BRING THREE CANNIBALS ACROSS
SIDEl: THREE MISSIONARIES
SIDE2: THREE CANNIBALS

BRING A CANNIBAL BACK
SIDEl: A CANNIBAL AND THREE MISSIONARIES
SIDE2: TWO CANNIBALS

BRING A CANNIBAL AND TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY .
SIDE2: THREE CANNIBALS AND TWO MISSIONARIES

BRING THREE MISSIONARIES ACROSS
SIDEl: A CANNIBAL
SIDE2: THREE MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDEl: A MISSIONARY AND A CANNIBAL
SIDE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: NOBODY
SIDE2: THREE MISSIONARIES AND THREE CANNIBALS

(12 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING THREE MISSIONARIES
ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL ON
SIDEl.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES AND
TWO CANNIBALS ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEl.

T

Now the solution only takes five moves instead of the eleven

required for a two man boat. Only 12 moves are considered in-

stead of 20. Both heuristics introduced earlier still operate

in conjunction with this problem.

I would now like to be able to indicate the number of cannibal(s)

or missionary(ies) in the initial statement of the problem. Pre

paratory to this, I'll have to make the PROGRESS evaluation a

little more subtle.

118

(tell progress (instead of countq advice),
if (eaten side!) or (eaten side2) then quit)

(PROGRESS CANNIBAL)

This replaces the old counting method with a call to the

function EATEN.

(define eaten (x) as' mis a member of x and
(eval cons ' plus x '((m . -1) (c . 1))) is greater than
0)

(EATEN)

Basically what EATEN does is take the representation of a

side, e.g., (m cm m c), puts "PLUS" in front of it, which yields

(PLUS m c m m c), and evaluates this with m=-1 and c=l. If the

resulting score is greater than zero, then the cannibals win,

and the program must abandon this line of attack.

(change start (replace m up2 with (flipq (sublis
'((cannibals . c) (cannibal . c) (missionaries . m)
(missionary . m)) solve)
((either (- for $1 $1 and $1 $1) (-)))
(leither ((repeat (= car 3) (/t I 4)) (repeat (= car -2)
(/t I -1)))

(mm m c c c))))))
(START CANNIBAL)

START must be modified accordingly. When I say SOLVE

(••• FOR NY AND M Z), START will make a list of N Y's and M Z's

be the starting conditions; otherwise it uses (mm m c c c).

I give GPS an easy problem to check it out.

solve (cannibal and missionary problem for I cannibal
and I missionary)

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDE!: NOBODY
SIDE2: A CANNIBAL AND A MISSIONARY

(I MOVES CONSIDERED)

119

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING
NOBODY ON SIDEl.

T

Now I am going to make it say (1 MOVE CONSIDERED). First

I'll define a function AGREE, which does what a portion of

PHRASE used to do.

(define agree (x y} as list sublis '((1 . 1) (2 . two)
(3 . three)) x, if x is equal to 1 then y, else
(plural y})

(AGREE)

agree (1 cannibal)
(1 CANNIBAL)

a~ree (2 missionary)
(TWO MISSIONARIES)

This is what AGREE is supposed to do.

(change start after (replace printred nl with
(nconc agree number ' move '(considered})))

(START AFTER)

Now I change START.

solve (cannibal and missionary problem for 1 cannibal
and 1 missionary}

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDEl: NOBODY
SIDE2: A CANNIBAL AND A MISSIONARY

(1 MOVE CONSIDERED)

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING
NOBODY ON SIDEl.

T

120

Now I try the problem with 4 cannibals and 4 missionaries.

This can't be solved with only a two man boat.

solve (cannibal and missionaries for 4 cannibals and
4 missionaries)

(72 MOVES CONSIDERED)

NIL

I read in the advice for the three-man boat that was made

earlier. (PILOT had saved it under the file GPS7 LISP.)

evalread (gps7 lisp speak)
(CHANGE MOVES (INSERT (MOVE3) AFTER (MOVE2)))
(MOVES CANNIBAL)
(DEFINE MOVE3 AS ALLTRAN VALUEOf FROM ' ($1 $ $1 $ $1)
I ((2 4 6) 1 3 5 7))
(MOVE3)
STOP

solve (cannibal and missionaries for 4 cannibals and
4 missionaries)

(17 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
4 MISSIONARIES ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES ON
SIDE!.

BRING A CANNIBAL BACK, LEAVING THREE CANNIBALS ON
SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDEl.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNIBAL ON SIDEl.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEl.

T

121

Now GPS solves this problem and another one.

solve (cannibal and missionaries for 4 cannibals and
5 missionaries)

(10 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
5 MISSIONARIES ON SIDE!.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
AND TWO MISSIONARIES ON SIDEl.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES AND
TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNIBAL AND A MISSIONARY ON SIDEl.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEl.

T

(change moves (delete move3 upl})
(MOVES CANNIBAL)

I would like to solve this latter problem with the original

two man boat so I delete the MOVE3 advice.

solve (cannibal and missionaries for 4 cannibals and
5 missionaries)

(30 MOVES CONSIDERED)

BRING TWO CANNIBALS ACROSS, LEAVING TWO CANNIBALS
AND 5 MISSIONARIES ON SIDEl.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL AND
5 MISSIONARIES ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING TWO MISSIONARIIS ACROSS, LEAVING TWO CANNIBALS
AND THREE MISSIONARIES ON SIDEl.

122

BRING A CANNIBAL BACK, LEAVING TWO MISSIONARIES AND
A CANNIBAL ON SIDE2.

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING TWO
CANNIBALS AND TWO MISSIONARIES ON SIDE!.

BRING A MISSIONARY BACK, LEAVING TWO CANNIBALS AND TWO
MISSIONARIES ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING A
CANNIBAL AND TWO MISSIONARIES ON SIDE!.

BRING A CANNIBAL BACK, LEAVING THREE MISSIONARIES
AND TWO CANNIBALS ON SIDE2.

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING A
CANNIBAL AND A MISSIONARY ON SIDE!.

BRING A MISSIONAR1 BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING A
MISSIONARY ON SIDE!.

BRING A CANNIBAL BACK, LEAVING 4 MISSIONARIES AND
THREE CANNIBALS ON SIDE2.

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING
NOBODY ON SIDEl.

T

This solution takes 15 moves, as opposed to a seven move

solution for a larger boat. In the latter case, 10 moves were

considered, while in this one 30 moves were considered.

Rather than continually adding and removing the MOVE3 advice,

I would like to specify the size of the boat as an input parameter.

(start i (put (list (flipq solve ((either (- for $1
($set num (= car -1)) in a boat -) (($set num 1 2) -)))
(advice quote (((repeat (= num) (moven (= (car n
Ill list 1 moves 1 cannibal)))))))))))))
START

If I say "a boat that can carry 3, 11 MOVES will return with

((MOVEN 1), (MOVEN 2) I (MOVEN 3)).

123

MOVEN is similar to MOVEl, MOVE2, and MOVE3; it computes the

appropriate pattern and format for ALLTRAN. If n is 3, it con-

structs the list (1 2 3 4 5 6 7), and uses this to assemble the

pattern ($1 $ $1 $ $1) and the format ((2 4 6) 1 3 5 7) for

ALLTRAN. Note that these are identical to those in the original

definition of MOVE3.

(define moven (n) as pro92 setq n flipq thrun
(times 2 n) ((repeat $2 $1) $I) (((repeat
(repeat 2) (repeat 1) -I), alltran valueof
n cdr n)

*** ERROR CALLED

addl
$ $1))
from cdar

(PARSING : PROG2 SETQ N FLIPQ THRUN ADDI (TIMES 2 N)
((REPEAT $1 $1) $1) (((REPEAT $ $1)) (REPEAT 2)
(REPEAT 1) -1) ALLTRAN VALUEOF FROM COAR N CDR N)

(EDIT OR FORGET IT)

This error is because THRUN has not been defined at this

point. Therefore, the parsing routine doesn't know how many

arguments is has. (THRUN will be the function that constructs

the list (1 2 3 4 5 6 7).) I do this section of parsing myself

by substituting in (THRUN (ADDl (TIMES 2 N))) for the unparsed

segment.

(replace thrun n2 with (thrun (addI (times 2 n))))
*** ERROR CALLED

(PARSING : PROG2 SETQ N FLIPQ THRUN (THRUN (ADDI
(TIMES 2 N))) ((REPEAT $1 $1) $I) (((REPEAT $ $I))
(REPEAT 2) (REPEAT 1) -1) ALLTRAN VALUEOF FROM
COAR N CDR N)

(EDIT OR FORGET IT)

I forgot to take out THRUN.

124

edit
(delete thrun}
(insert (quote -) after repeat - repeat)
x

(DEFINE MOVEN (N) AS PROG2 SETQ N FLIPQ (THRUN (ADDl
(TIMES 2 N))) ((REPEAT $1 $1) $1) (((REPEAT -- $ $1))
(REPEAT 2) (REPEAT 1) -1) ALLTRAN VALUEOF FROM COAR
N CDR N)

stop
(MOVEN)

(define thrun (n) as prog (x)
loop setq x cons n x,
if (zerop setq n subl n) then {return x) end,
go loop)

(THRUN)

thrun (7)

{1234567}

Now I define THRUN

breaklist (moves moven)
(MOVES MOVEN)

and BREAK on MOVES and MOVEN to see if they are correct.

solve (cannibal and missionary problem for 3 in a boat
and for 4 cannibals and 5 missionaries)

(BREAK IN MOVES)

I g~t a BREAK in MOVES,

stop
(VALUE OF MOVES)

((MOVEN 3) (MOVEN 2) (MOVEN 1))

with the correct value. Note that it is reversed because of

the heuristic introduced earlier.

(BREAK IN MOVEN)
n

3

125

A Break in MOVEN; I ask for the value of N; it is 3. I

ask that MOVEN be evaluated.

eval
GC AT 03041 FULL WORDS 723 FREE 148 PUSH DOWN
DEPTH 270 .. *** ERROR NOROOM
NIL

(BREAK IN MOVEN)

The BREAK is maintained in spite of the error. I wipe out

the EDIT routines to make space, and go on.

(wipe edit)
(EDIT)

eval
*** ERROR NUMVAL

(($ $1 $ $1 $ $1) 2 4 6 1 3 5 7)
(BREAK IN MOVEN)

This error is because N has been changed by MOVEN, I must

reset it to 3, which I do.

(setq n 3) eval
3
(MOVEN EVALUATED)

(car moven)
(C C C C M M M M M)

(cadddr moven)
(C C M C C M M M M)

MOVEN is evaluated, I look at the first element of its value,

and at the third element - both are wrong. I BREAK ALLTRAN,

reset n and try again.

(breaklist alltran)
(ALLTRAN)

(setq n 3)
3

eval
(BREAK IN ALLTRAN)

z
(2 4 6 1 3 5 7)

126

ALLTRAN is not getting the right value for z. I'll set it

correctly and see if anything else is wrong.

(setq z 1 ((2 4 6) 1 3 5 7))
((2 4 6) 1 3 5 7)

eval
GC AT 03041 FULL WORDS 730 FREE
DEPTH 361

*** ERROR NOROOM
NIL
(BREAK IN ALLTRAN)

106 PUSH DOWN

I ran out of space again. This time I wipe the SYSTEM

routines.

(wipe • 1 system)
(SYSTEM)

eval
(ALLTRAN EVALUATED)

(car alltran)
((C C C) CM MM MM)

(cadddr alltran)
((C C M) C C MM MM)

ALLTRAN is correct. I quit, and go back to the top, and

restore SYSTEM and EDIT.

ok
(ALL TRAN)
(MOVEN EVALUATED)

quit
*** ERROR CALL~D

(MOVEN)
restore (system edit)

(SYSTEM EDIT)

The first thing to do is correct the bug in MOVEN.

(change moven expr (replace '(repeat 2) with ((repeat
2))))

(MOVEN EXPR)

127

(before all
ALL

if fsleft is less than 500, then (makeroom))

I decide to have the system itself make room, I can do this

by advising ALL functions to check the number of words left.

(define makeroom as prog (x)
setq x '(update edit system break),
fancyprint cons lastfn append '(: only) cons fsleft

append '(words left) (list period er),
loop if (get car x ' wiped) is null then

(fancyprint append ' (i had to wipe) cons wipel car x
list period er),

if pop x then (go loop)
(MAKEROOM)

MAKEROOM calls WIPE on (UPDATE EDIT SYSTEM BREAK) until it

can find something to wiee out, and then prints an appropriate

message.

solve (cannibal and missionary problem for 3 in a boat,
and for 4 cannibals and 5 missionaries)

(BREAK IN MOVES)
(unbreaklist '' moves)

(MOVES)
ok

(MOVES)
(BREAK IN MOVEN)

eval
(BREAK IN ALLTRAN)

eval
GC AT 03041 FULL WORDS 715 FREE 140 PUSH DOWN
DEPTH 450

*** ERROR NOROOM
NIL
(BREAK IN A~LTRAN)

The system didn't call MAKEROOM because it ran out of space

while inside of a function that is not advised, namely AMl, a

subfunction of ALLTRAN. If I give AMl some advice, then the

check for available space will also be performed here.

128

(system)
(tell aml before nil}

SYSl: ONLY 994 WORDS LEFT.
I HAD TO WIPE EDIT.

AMl

ok
NIL

While advising AMl, SYSl ran into a situation in which there

were fewer than 994 words left - actually there were only 140

according to the error message. However, a garbage collection

occurred before the print out of the message and so it states,

somewhat contradictorily, that there are only 994 words left.

eval

I go on with the GPS problem.

AM 1 : ONLY 453 WORDS LE FT.
I HAD TO WIPE SYSTEM

(ALLTRAN EVALUATED}
(car alltran)

((C C C) C M MM MM)

Correct.

(unbreaklist alltran moven)
(ALL TRAN MOVEN)

Unbreak everything and go.

ok
(ALL TRAN)
(MOVEN EVALUATED}

ok
(MOVEN}

BRING THREE CANNIBALS ACROSS
SIDEl: A CANNIBAL AND 5 MISSIONARIES
SIDE2: THREE CANNIBALS

129

I'
,. - -. ,··-:-- -.

BRING A CANNIBAL BACK
SIDEl: TWO CANNIBALS AND 5 MISSIONARIES
SIDE2: TWO CANNIBALS

BRING TWO CANNIBALS AND A MISSIONARY ACROSS
SIDEl: 4 MISSIONARIES
SIDE2: 4 CANNIBALS AND A MISSIONARY

BRING A CANNIBAL AND TWO MISSIONARIES ACROSS
SIDEl: A CANNIBAL AND THREE MISSIONARIES
SIDE2: THREE CANNIBALS AND TWO MISSIONARIES

BRING THREE MISSIONARIES ACROSS
SIDEl: TWO CANNIBALS AND TWO MISSIONARIES
SIDE2: THREE MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDEl: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY AND TWO CANNIBALS ACROSS
SIDEl: TWO MISSIONARIES
SIDE2: THREE MI~SIONARIES. AND 4 CANNIBALS

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEl: A CANNIBAL AND A MISSIONARY
SIDE2: 4 MISSIONARIES AND THREE CANNIBALS

BRING A MISSIONARY BACK
SIDEl: TWO MISSIONARIES AND A CANNIBAL
SIDE2: THREE CANNIBALS AND THREE MISSIONARIES

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEl: NOBODY
SIDE2: 5 MISSIONARIES AND 4 CANNIBALS

(10 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
5 MISSIONARIES ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
AND TWO MISSIONARIES ON SIDEl.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES AND
TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNIBAL AND A MISSIONARY ON SIDEl.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEl.

T

130

I now solve various problems.

solve (cannibal)

(20 MOVES CONSIDERED)

T
solve (cannibal and missionaries for 3 in a boat)

(12 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING THREE
MISSIONARIES ON SIDE!.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVlNG A CANNIBAL
ON SIDE!.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES
AND TWO CANNIBALS ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDE!.

T
solve (cannibal and missionaries for 3 in a boat and
for 4 cannibals and 4 missionaries)

AMI: ONLY 463 WORDS LEFT.
I HAD TO WIPE EDIT.

(17 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL
AND 4 MISSIONARIES ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES
ON SIDE!.

BRING A CANNIBAL BACK, LEAVING THREE CANNIBALS ON
SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL
A~D A MISSIONARY ON SIDE!.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNIBAL ON SIDE!.

131

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS
AND THREE MISSIONARIES ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDE!.

T

Now I try a new problem -·which GPS can't solve.

solve (how big a boat do you need for 4 cannibals
and 4 missionaries)

(DONT KNOW HOW)

(start : bind conditions to (flipq solve (- for -)
(solve cannibal and missionary for n in a boat and
for -)))

START

If I say (HOW BIG A BOAT DOES IT TAKE FOR •••), CONDITIONS

will be bound to (SOLVE CANNIBAL AND MISSIONARY FOR N IN A BOAT

AND FOR •••) •

(tell start, return with (prog (n)
setq n 1,
loop if (valueof subst n ' n conditions) then

(return append '(a boat that can carry) list n) end,
increment n, go loop))

START

This advice will cause START to loop, calling SOLVE for

different values of N. Now GPS can solve the problem.

solve (how big a boat do you need for 4 cannibals and
4 missionaries) •

(THREE MOVES CONSIDERED)

MAKE: ONLY 382 WORDS LEFT.
I HAD TO WIPE EDIT.

(72 MOVES CONSIDERED)

(17 MOVES CONSIDERED)

132

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL
ANO 4 MISSIONARIES ON SIOEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIOE2.

BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES
ON SIOEl.

BRING A CANNIBAL BACK, LEAVING THREE CANNIBALS ON
SIOE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL
ANO A MISSIONARY ON SIOEl.

BRING A MISSIONARY ANO A CANNIBAL BACK, LEAVING TWO
MISSIONARIES ANO TWO CANNIBALS ON SIOE2.

BRING TWO MISSIONARIES ANO A CANNIBAL ACROSS,
LEAVING A CANNIBAL ON SIOEl.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS
ANO THREE MISSIONARIES ON SIOE2.

BRING A MISSIONARY ANO A CANNIBAL ACROSS, LEAVING
NOBODY ON SIOEl.

(A BOAT THAT CAN CARRY 3)

GPS considered three moves with a boat that could only carry

1, 72 moves with a boat that could carry 2, and found the answer

with a boat that can carry ·3.

Now I am going to introduce a new supermissionary - a tarzan,

who cannot be eaten, although he can help to outnumber the

cannibals and protect the missionaries, and can also row the

boat across.

(change eaten expr (insert (x . -1) after (m . -1)))
(EATEN EXPR)

I use x to stand for the new element.

133

(change start
(insert (tarzan . x) (tarzans . x) after (missionary

. m))
(replace either nl with (- for (repeat 2 $1 /

(numberp) $1) -))
(replace either - either nl with

((repeat m (repeat (= car 1) (/rm 2))))))
(START CANNIBAL)

Instead of saying SOLVE (CANNIBAL FOR N MISSIONARIES AND

N CANNIBALS) I now say SOLVE (CANNIBAL FOR N MISSIONARIES

M CANNIBALS P TARZANS). Actually this advice modification to

START will allow it to handle any number of different types of

people.

(change start after (insert (x . tarzan) after
(m . missionary)))

(START AFTER)

(change make (insert (x . tarzan) after (m .
missionary)))

(MAKE CANNIBAL)

Now I try it out. Note that since I don't tell it how big

a boat to use, GPS assumes a two man boat.

solve (cannibal and missionary problem for 3
cannibals, 2 missionaries, 1 tarzan)

BRING TWO CANNIBALS ACROSS
SIDEl: A CANNIBAL, TWO MISSIONARIES, AND A TARZAN
SIDE2: TWO CANNIBALS

BRING A CANNIBAL BACK
SIDE!: TWO CANNIBALS, TWO MISSIONARIES, AND A TARZAN
SIDE2: A CANNIBAL

BRING TWO CANNIBALS ACROSS
SIDEl: TWO MISSIONARIES AND A TARZAN
SIDE2: THREE CANNIBALS

BRING A CANNIBAL BACK
SIDEl: A CANNIBAL, TWO MISSIONARIES, AND A TARZAN
SIDE2: TWO CANNIBALS

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDE!: A MISSIONARY AND A TARZAN
SIDE2: THREE CANNIBALS AND A MISSIONARY

134

BRING A CANNIBAL AND A TARZAN ACROSS
SIDEl: TWO MISSIONARIES
SIDE2: THREE CANNIBALS AND A TARZAN

BRING A CANNIBAL BACK
SIDEl: A CANNIBAL AND TWO MISSIONARIES
SIDE2: A TARZAN AND TWO CANNIBALS

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDEl: A MISSIONARY
SIDE2: THREE CANNIBALS, A MISSIONARY, AND A TARZAN

BRING TWO MISSIONARIES ACROSS
SIDEl: A CANNIBAL
SIDE2: TWO MISSIONARIES, A TARZAN, AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDEl: A MISSIONARY AND A CANNIBAL
SIDE2: A MISSIONARY, A TARZAN, AND TWO CANNIBALS

BRI~G A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: NOBODY
SIDE2: TWO MISSIONARIES, A TARZAN, AND THREE

CANNIBALS

(11 MOVES CONSIDERED)

AGREE: ONLY 493 WORDS LEFT.
I HAD TO WIPE EDIT.
BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL, T~O
MISSIONARIES, AND A TARZAN ON SIOEl.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING TWO MISSIONARIES
AND A TARZAN ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING A CANNIBAL AND A TARZAN ACROSS, LEAVING TWO
MISSIONARIES ON SIDEl.

BRING A CANNIBAL BACK, LEAVING A TARZAN AND TWO
CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
ON SIDEl.

BRING A MISSIONARY BACK, LEAVING A MISSIONARY, A
TARZAN, AND TWO CANNIBALS ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEl.

T

135

The solution is only nine moves long, the minimum to

transfer six people, as opposed to the eleven without Tarzan's

help.

Now I give it a trivial problem - nobody can get eaten,

solve (cannibal and missionaries for 3 cannibals,
3 tarzans)

(9 MOVES CONSIDERED)

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL AND
THREE TARZANS ON SIDEl.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING THREE TARZANS
ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRIJG A CANNIBAL AND A TARZAN ACROSS, LEAVING TWO
TARZANS ON SIDEl. -

BRING A CANNIBAL BACK, LEAVING A TARZAN AND TWO
CANNIBALS ON SIDE2.

BRING A CANNIBAL AND A TARZAN ACROSS, LEAVING A
TARZAN ON SIDEl.

BRING A CANNIBAL BACK, LEAVING TWO TARZANS AND TWO
CANNIBALS ON SIDE2.

BRING A CANNIBAL AND A TARZAN ACROSS, LEAVING
NOBODY ON SIDEl.

T

and this problem combining all of the things I have told the

problem solver.

solve (how big a boat do you need for 3 missionaries,
1 tarzan, 4 cannibals)

(4 MOVES CONSIDERED)

(30 MOVES CONSIDERED)

136

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
TWO MISSIONARIES, A TARZAN, AND THREE CANNIBALS
ON SIDEl. .

BRING A MISSIONARY BACK, LEAVING A CANNIBAL ON SIDE2.

BRING A TARZAN AND A CANNIBAL ACROSS, LEAVING THREE
MISSIONARIES AND TWO CANNIBALS ON SIDE!.

BRING A TARZAN BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING A TARZAN AND A MISSIONARY ACROSS, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDEl.

BRING A MISSIONARY BACK, LEAVING A TARZAN AND TWO
CANNIBALS ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING THREE MISSIONARIES
ON SIDEl.

BRING A CANNIBAL BACK, LEAVING THREE CANNIBALS AND
A TARZAN ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
ANO A MISSIONARY ON SIDEl.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING A
MISSIONARY, A TARZAN, AND TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
ON SIOEl.

BRING A TARZAN BACK, LEAVING THREE MISSIONARIES
ANO TWO CANNIBALS ON SIDE2.

BRING A TARZAN AND A CANNIBAL ACROSS, LEAVING A
CANNIBAL ON SIDEl.

BRING A TARZAN BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING A TARZAN AND A CANNIBAL ACROSS, LEAVING NOBODY
ON SIOEl.

(A BOAT THAT CAN CARRY 2}

137

This empty page was substih1ted for a
blank page in the original document.

CHAPTER 7

IMPROVING PILOT

PILOT is the result of an evolutionary process extending
over more than two years. However, there is no reason to assume
that this process has terminated, nor

0

that PILOT has reached
some sort of ultimate state. This chapter discusses ways that
PILOT might be improved at several levels, ranging from specific
suggestions for modifying the function ADVISE, through changes
in FLIP and the translator, to extensions of the subjective
model for programming. However, the significance of PILOT lies
not in any specific characteristics or features it possesses,
but rather in that it demonstrates that it is possible to get
computers to participate in, and cooperate with, research efforts
in programming to a much greater extent than is now being done.

Questions of Efficiency

The heart of the PILOT system is the function ADVISE,

which executes a procedure along with its advice. In attempting

to evaluate PILOT's efficiency, we must compare programs written

using PILOT, i.e., in which ADVISE is called to interpret pro-

cedures, with those written directly in LISP. The same program

written in machine language would probably be more efficient.

But, there is always a tradeoff in efficiency between generality

and specificity. Presumably the ease of programming compensates

for this factor, or you would not use the more general system.

The question, therefore, is: assuming your program is to

be written in LISP, how much does it cost you to do it within

PILOT, i.e., using ADVISE? This will then have to be weighed

against the conveniences of being able to make changes irnmed-

iately by advising.

139

If the program is to be run interpretively, as opposed to

compiled, the cost is practically zero. This is because ADVISE

and its satellite functions are all compiled. Therefore, the

overhead involved in calling ADVISE is small compared with the

time required to interpret the pieces of advice. These would

~ave to be interpreted in some form anyway, either as advice,

or as a part of the definition of the function. For example,

suppose you wish to modify the function PROGRESS in the example

in Chapter 6 so that whenever the cannibals would eat the mission-

aries, PROGRESS returns NIL. Then somewhere, either in the

definition of PROGRESS or as a piece of advice, there must be

some s-expression representation of this computation, in the

form of a conditional with appropriate clauses. This conditional

must at some point be interpreted for PROGRESS to work as in

tended. If PROGRESS is uncompiled, the difference between

interpreting this modification as advice, and including it in

the function definition directly, is small.

For completeness, I include here computation times* for

some of the experiments in Chapters 5 and 6. These are for

programs run interpretively, using ADVISE. These figures do

not include time spent in garbage collection.

Remarks

[Chapter 5: Deductive Question-Answering System]

Question: (AT PENCIL COUNTY)

no modifications

questions not containing variables are
answered only once

with English output

Time (seconds)

18.2

14.2

27.0

* Although PILOT operates in a time-shared environment, these
times are actual CPU times as computed by interrogating an
internal clock.

140

Remarks Time (seconds)

Question: (AT PENCIL Y) - corpus permits endless
deduction

limit on number of recursive calls to SOLUTIONl
set at l; answer (AT PENCIL DESK); 3 questions
considered 3.5

limit set at 2; answer ((AT PENCIL DESK) (AT
PENCIL HOME)): 11 questions considered

limit set at 3, answer ((AT PENCIL DESK) (AT
PENCIL HOME) (AT PENCIL COUNTY) : 39 questions

no limit - if question is repeated, return all
answers found so far; 17 questions considered

[Chapter 6: General Problem Solver]

Problem: Cannibal and Missionary

No heuristic, 68 moves

Heuristic: bring two across, one back; 35 moves

Heuristic: do not attempt moves considered
previously; 20 moves

11.5

41.7

14.2

14.5

8.9

7.5

If the user wishes to compile his programs, the question of

efficiency becomes more serious. Although each individual piece

of advice can be compiled, the overhead involved in calling

ADVISE is now proportionally larger. It might even be desirable

to include in PILOT a feature for collapsing advice into the

function definition prior to compilation, so that it would then

run as one compiled subroutine, without calling ADVISE. However,

if it became necessary to make modifications subsequent to com-

pilation, the user must either revert to calling ADVISE with the

function, or else save its symbolic definition and recompile.

In addition, eliminating the call to ADVISE means that HISTORY

would not record an entry for this function.

The question here is basically one of open subroutines

versus closed subroutines. The principal advantage of using

closed subroutines for making modifications, as implemented with

141

ADVISE, is that it is easy to locate individual pieces of advice,

and to change them, perhaps even by advising. It is also easier

to continue making modifications after the function is compiled.

This may be outweighed by considerations of speed. Probably both

options should be included in future systems - provided that

space is not an important factor. The user could then allow the

particulars of the situation dictate his choice on which method

to use.

* * *
This entire discussion has compared the efficiency of

interface modifications performed with ADVISE with those per

formed editing the LISP function. There are, modifications

which do not properly fall under the heading o'f interface mod

ifications, even though they could be performed that way. For

example, suppose FOO is a function of two arguments X and Y,

and it is discovered that the order of these arguments has been

reversed in the definition of FOO. It would be possible to

correct this by advising: exchange X and Y before FOO was entered.

Obviously this is much less efficient than correcting the

function definition. The previous discussion compares the

adv!ce method with editing FOO by inserting a computation which

exchanged X and Y, and not with reversing the order of the

arguments in the definition. Comparing advising with the optimal

method of modifying would bring us into a discussion of what is

the most efficient program for a particular task. I am not

prepared to discuss this latter question.

Improving FLIP

FLIP is also the result of an evolutionary process. Since

it forms the basis for the translating and editing functions,

and is also used by the programm~r directly, it is worthwhile

142

to concentrate efforts on improving it. In particular, two

additional semantic features in FLIP would be most useful. These

are the multiple workspac.e. and the depth search pattern.

Multiple Workspace

In most pattern-driven languages, the user matches a piece

of data against a pattern. However, occasionally you want to

match a piece of data against another piece of data, according

to some pattern. For example, A matches B if whenever A is of

the form (x y z ...),Bis of the form ($1 x $1 y $1 z ...).

Determining a match of this type involves a back and forth pro

cess that cannot easily be expressed except in programs written

specifically for this purpose.

More generally, suppose it is necessary to process two lists

using FLIP-type of operations, where the processing must go on

simultaneously because the processing of one list affects the

other. For example, suppose you wanted to find the longest

common substring of two strings. This type of problem can best

be solved by allowing two workspaces, instead of only one.

Some syntactic and semantic problems remain to be solved.

The user must be able to indicate under what conditions to

abandon processing one list and go to the other - since nothing

can really occur simultaneously. It may also be necessary to

specify more than one pattern.

Depth Search Pattern

When the user writes ($ A ·$ D $), he intends to find the

first A followed by the first D, regardless of where it appears.

In COMIT, this presents no difficulty because everything is at

143

the same level. However, in LISP this pattern will not match

with the list (X y z (ET A I 0 N) x y z (SH RD LU) x y Z).

To match with this list, one must use the pattern

($ (A) $ ($ D $) $). However, this latter pattern will not

match with the first list. How can the user specify a match

that is to occur at any depth?

This problem is of obvious importance in searching list

structures. The user may not know at what depth a particular

structure occurs, even though he may be able to specify a trans

formation on it. The depth search pattern would allow him to

write ($$ $1 2 2 $$) to search for three repeated elements, at

any depth as indicated by the"$$". The format (1 2 -1) would

then transform the structure, deleting the two repetitions.

Improving the Language Syntax

One obvious place to improve PILOT is in the translator.

This device is a collection of transformations, each of which is

irrevocable, each of which operates with no information concern

ing the others. Often, a translation will succeed or fail

depending on the chance order to which two transformations are

applied. In the current translator, this situation. is avoided

by having the user segment parts of thP. input string with par-

entheses whenever there is a danger of misinterpretation.

However, this quickly becomes cumbersome. Moreover, it places

the burden on the user, instead of on the system, where it

should be.

(3,4]
Bobrow · has shown that in a limited semantic context,

that of algebra story problems, it is possible to relax syntactic

conventions considerably. The input to his STUDENT program is

144

in the form of natural language, which the program "understands"

in the context of algebra story problems.

Since the inputs to PILOT represent computations, it should

similarly be possible to relax the syntactic restrictions. If

an input string does not parse, i.e., if it does not translate

into a recognizable computation - in our case a LISP function

with its arguments - then clearly something is wrong. Somewhere

a transformation was applied that should not have been. Before

the system complains, we should have it back up and "undo" some

of the transformations it executed. By this simple device,

many ambiguities could be resolved.

For example, consider the input (TELL FOO TO INCREMENT X AND

(PRINTY)). The user intends this piece of advice to consist

of two operations: incrementing the variable x and printing the

value of y. However, this will translate into (TELL FOO TO

INCREMENT (AND X (PRINTY))), at which point the system complains.

This is because the AND transformation, in the sense of

(A AND B OR C), operated before the INCREMENT transformation.

This AND, however., is intended to be the AND in the

(TO ••• AND ••. AND •••) transformation. But, it is not recog

nized because INCREMENT has not yet operated.

Of course, this situation could be rectified by hpving

I?«:REMENT operate first, perhaps by establishing a precedence on

transformations. However, as the number of transformations used

in the translator increases, the number of words used in two

or more different contexts, e.g., AND, will also increase. Unless

the user is constrained to writing AND! and AND2 to indicate the

two meanings of AND, some device for tentatively trying a

145

transformation becomes a necessity.

Extending the Language Semantics

Progranuning languages are designed to allow the programmer

to express the operations he wants the computer to perform in

a simple and concise fashion. However, often the programmer may

not know precisely what operations he wants the computer to

perform. It is here that these languages become inadequate,
I

for they presuppose knowledge on the part of the human, and just

facilitate transmission of this information to the computer.

Obviously when the user approaches the computer, he has

some problem in mind, but it may be formulated only in terms of

the results he wants achieved, and perhaps some of the goals

along the way. His problem is thus not only of transmitting

goals, but also one of defining more precisely the process to

achieve these goals.

Newell[39 l gives a spectrum of increasing specification as

it goes on in the human, which we can roughly picture as follows:

goal - idea of solution -detail of solution -computer

At the far left, the human already has some way of recognizing

the adequacy and desirability of results. Clearly several prior

stages of ill-definition exist even further to the left. How-

ever, a long way also exists toward the right before the pro-

cedures for solving the problem are well enough defined to be

communicated to a computer using current programming languages.

146

PILOT represents one approach to this problem. It leaves

the language essentially unchanged; it is still a language of

procedure, i.e., of detailed instruction. However, the human

and the computer interact with very short delays, of the order

of seconds. The language is highly incremental, so that the

human can introduce new semantic as well as syntactic features,

and it provides some way of talking about the changes and modi

fications one wishes to effect. Using PILOT, the human, still

somewhat vague about just how he wants to proceed, operates ex

perimentally. He constructs parts of programs that seem clearly

needed, tries them out, organizes them into bigger routines, etc.

In short, he finesses the.restrictive effects of a language that

demands explicit detail in favor of trial, rapid feedback, and

correction.

However, this is not the only approach that can be taken

to this problem. An alternative one would be to try to change

the language, and move the communication boundary in the diagram

above from the right side of the place marked "detail of solution

to the left side. This approach is the "planning language

approach" of Newell. l 39 l It attempts to understand the nature

of communication between man and computer when he has only an

idea of a solution. How can man and computers communicate

before the man has worked out exactly what he wants to do?

The solution: communication takes place in the language of plans.

The man formulates only a general plan. The computer fills in

the details and carries them out.

The situation is similar when we use high level languages

for machine coding. The computer "fills in the details" of

the program. However, while translating from ALGOL or FORTRAN

147

to machine language is algorithmic, to interpret a language of

plans is, to some extent, to solve problems. That is, "the

problem •.. in developing a system that will take as input a

linguistic expression for a plan is essentially one of artificial

intelligence."[39 l The real problems for the computer system

are attaining all the unattained goals that comprise the plan.

To do this the system must clearly be able to construct its

own subgoals, and perhaps even be able to plan itself. This is

far from what goes on inside of the FORTRAN compiler or LISP

interpreter.

I feel that this approach complements the one taken by

PILOT, and should certainly be explored. Any facility included

in PILOT for interpreting plans would greatly aid the user.

Since developing a "planning language" seems to be an artificial

intelligence problem, perhaps the current PILOT system would be

helpful for this purpose. In this way, we would be using PILOT

to refine and improve itself.

Improving the Theory

The discussion of programming from the standpoint of block

diagrams presented in Chapter 3 gives little more than a

framework for introducing the concepts essential to PILOT. Much

work remains to be done on defining more precisely what is meant

by a procedure, and similarly, in what ways does one modify

procedures. For example, we might start by attempting to for

malize the block diagram by talking about its primitive elements

and the allowable combinators.

Advances in this area would result in an immediate improve-

ment to PILOT and similar systems. However, perhaps of even

148

greater significance, is the influence such work would have on

the design and development of future programming languages. If

we could obtain a really good formalization of the ideas dis

cussed in this thesis, then it would be possible to construct

languages and systems which would drastically simplify the task

of programming. And until such time as these ideas are formal

ized, systems such as PILOT will only be a potpourri of ad hoc,

although useful, subroutines.

Concluding Remarks

This thesis has described an approach to the solution of

hard problems by computers. Basically, this approach, actually

a philosophy, is: let,the computer do it. Let the computer do

anything and everything for you that is possible. The extra

effort involved in automating even difficult processes will be

retur~ed in the freedom you receive to concern yourself with

the problem.

PILOT is merely an example of this approach. If we were

to implement a similar system on another machine, in another

programming language, the resemblance to PILOT probably would

be only superficial, although the concepts of procedures,

essential variables, and advising might still be useful. How

ever, the significance of PILOT is that it demonstrates the

feasability and desirability of this approach. It clearly shows

that it is possible to get computers to participate in, and

cooperate with, research efforts in programming to a much greater

extent than is now being done. I think we are far from developing

a programming system that can truly be called symbiotic. However,

PILOT is a step in the right direction.

149

This empty page was substih1ted for a
blank page in the original document.

APPENDIX 1

SYMBOLIC DIFFERENTIATION IN LISP

Suppose that ~ is an expression to be differentiated with

respect to the variable ~' where ~ is represented in Polish pref ix

form, e.g., 11 3xy + 3yz + 3xz" is represented as (PLUS (TIMES 3 X Y)

(TIMES 3 y Z) (TIMES 3 x Z)). The following function, DIFF, will

differentiate s with respect to v.

diff [s ;v] = [atom[s]---[eq[s;v)---1; TRUE--0)

eq[f[s];PLUS]---cons[PLUS;maplist[r[s]; A [(x];diff[f[x];v]]]];

eq[f[s];TIMES]--cons[PLUS;maplist(r[s]; ~ [[x] ;cons[TIMES;
. cons[diff[f(x];v];delete[f[x];r[s)]]])]] 1 *

To make DIFF completely general, we must add a fourth clause:

TRUE--cons[PLUS;map2[sublis[pair(fogradientof[s];r[s)];
fr 0 gradient 0 f[s] ;r[s]; ~ [(x;y];list[TIMES;f[x];diff
[f[y];v]]])] * ·

This clause allows us to introduce new operations to DIFF

by making their gradients available to it, via the function

GRADIENT. The argument of GRADIENT is the name of an operation,

e.g., SIN, POWER, ARCTAN, etc., and its value is the gradient of

* f[s] denotes the first element of sand r[s] the rest of s,
in other words, the-functions CAR and CDR; the value of delete
[x;y] is the list ~ with the element x deleted; map2 is similar
to map list but operates on two lists Tn parallel; II 0 II denotes
function composition.

151

that operation. GRADIENT thus plays the role of a table of

derivatives.

The form of each gradient is a pair of lists of equal length,

the first list being a list of variables, and the second list the

partial derivatives with respect to those variables. For example,
y

if we represent X by (POWER x Y), the gradient of POWER is ((X Y)

((TIMES Y (POWER X (PLUS Y -1))) (TIMES (LOG X) (POWER X Y)))).

This says that the derivative of xY with respect to X is xY-1,

with respect to Y, xYlog x. Similarly, the gradient of SIN would

be ((X) ((COS X))), etc.

If we restrict PLUS and TIMES to be binary operations, i.e.,

represent 3xy + 3yz + 3xz as (PLUS (TIMES 3 X Y) (PLUS

(TIMES 3 Y Z) (TIMES 3 X Z))), then the gradient of PLUS is

((X Y) (1 1)) , and the gradient of TIMES is ((X Y) (Y X)) • In

this case, the definition of DIFF can be written simply as:

diff[s;v] = [atom[s} -[eq[s;v]- l; TRUE-O]

TRUE--cons[PLUS;map2[sublis[pair[fogradientof[s];r[s]];
frogradientof[s]; r[s); X [[x;y] ;list TIMES~f[x],
diff[f[y);v]]]J] J

152

APPENDIX 2

USING PILOT

The PILOT system is a collection of useful functions centered

around the concept of advising, and the function ADVISE. This

function is the only one crucial to the operation of PILOT. All

' of the other functions merely make it easier for the user to

perform modifications. In this sense, these functions are not

essential to the operation of PILOT, although it is difficult to

see how PILOT would be useful, much less symbiotic, if these

iunctions, or similar ones, were not available. This is parti-

cularly true with the translation scheme displayed in Chapters

'5· and 6. The interface between PILOT and the user may and should

b,e tailored to meet his own needs and desires. However, since

the configuration and conventions I have found to be useful may

-'provide a convenient starting point, I shall describe them in

detail here. I must re-emphasize that this configuration, and

these particular conventions, were adopted by me because they

seemed useful and intuitive to me. I make no attempt to justify

them, but merely present them to be taken at their face value.

SYSTEM

Normally, when_a person uses LISP, he directs his requests

to the EVALQUOTE operation. Computations are specified by

giving this operator a pair consisting of a function and its

arguments. EVALQUOTE evaluates this pair, types its value, and

then awaits the next request.

153

•

To talk to PILOT, the user gives EVALQUOTE the pair "SYSTEM ()."

This calls SYSTEM, the top level function of PILOT, which is a func

tion of no arguments. SYSTEM plays a role in PILOT similar to that

of EVALQUOTE. It accepts pairs and evaluates them in much the same

fashion as EVALQUOTE. In fact, if the user specifies a function

name and its arguments, the behavior of the two systems, PILOT and

LISP itself, is indistinguishable. The user therefore could do all

of his work while inside SYSTEM, although provision is made for

exiting by typing "ok." In this case, SYSTEM returns the value

NIL, and the user is back talking to EVALQUOTE, or wherever SYSTEM

was called from.

The reason for introducing the function SYSTEM, is that the

action of SYSTEM can be modified by advice. In fact, the construc

tion of SYSTEM is designed for easy modification. The procedures

that read and evaluate the EVALQUOTE pair are separated into two

subfunctions. SYSTEM reads the first member of the pair, and calls

SYSl, which reads the second member of the pair. SYSl calls SYS2,

which then evaluates the pair. This construction makes it easy

to "drive a wedge" between SYSTEM and SYSl, or SYSl and SYS2, and

radically change the operation of the system.

What I have done in the current PILOT system is to advise

SYSl, which has as its input the first member of the pair, and

normally reads the second member giving both to SYS2, that when

its argument is nonatomic, instead of reading the second member

of the pair and going to SYS2, it should instead call the

function DO. Thus if the user types "CAR ((A))" (two inputs),

SYSTEM will type "A," having gone through the normal flow in

SYSl and SYS2. But if the user types (TELL FOO IF X IS LESS THAN

154

Y THEN QUIT) (one input), this expression will be given as input

to the function DO, and SYS2 will not be entered.

It is the task of DO to determine and perform the operation

specified by this input. DO does this by calling the function

TRANSLATE, which transforms the input list using a sequence of

FLIP transformations.

If all goes well, the transformed list, the value of

TRANSLATE, will consist of the name of a function and its argu

ments. In this case, the first atom will be a special symbol

"$." DO then treats the second atom as the name of a function,

and the rest of the list as arguments. If the first atom is not

"$," DO prints out "I DONT UNDERSTAND," followed by the offending

list, which may have been partially transformed.

TRANSLATE, the function which does the translation, is also

conceptually very simple. It obtains a list of rules for the

translation process from the property list of the atom TRANSLATE,

under the property RULES. Thus these rules are not intrinsic in

the system, in fact, initially there are none, and the user can

add them readily. TRANSLATE then calls a FLIP function TRANSFORM,

giving it the rules and the input list. It is this latter

function which does most of the work in translating. TRANSLATE

also calls a function PARSE.

The entire structure of SYSTEM and its satellite functions

is shown in Figure 5. The remainder of the appendix is devoted

to describing the action of TRANSLATE, and the TRANSLATE RULES,

in greater detail.

155

SYSTEM SYSl SYS2 SYSl ADVICE

~o *
READ AN READ ANOTHER EVALUATE

CONTINUE
LL

EXPRESSION EXPRESSION PAIR SLATE

CALL
INSTEAD SYS2
CALL DO ~M~E~E I T

V1
0\ *EXIT IS ACHIEVED BY ~ TRANtLATE '. TYPING 1 OK" I ERROR

TRANSFORM
BY RULES

r=:-
PARSE

FIG.5 FLOW CHART OF PILOT

TRANSLATE

TRANSLATE is designed to allow the user to specify an opera

tion in what looks like a sentence, interspersed perhaps with

some LISP expressions. The translation process operates by

collapsing sections of this sentence into LISP computations until,

if successful, all that is left is a single computation. In

this case, the form of the list will be ($ function-name function

arguments). For example, if the user wishes to modify the

function FOO so that after it is evaluated, if its VALUE is not

a member of the list ~· or if it is greater than ~· FOO should

return with twice its VALUE, he might type (TELL FOO AFTER IF

VALUE IS NOT A MEMBER OF X OR VALUE IS GREATER THAN Y THEN RETURN

WITH (TIMES 2 VALUE)). This becomes (TELL FOO AFTER IF (NULL

(MEMBER VALUE X)) OR VALUE IS GREATER THAN Y THEN RETURN WITH

(TIMES 2 VALUE)), and then (TELL FOO AFTER IF (NULL (.MEMBER VALUE

X)) OR (GREATERP VALUE Y) THEN RETURN WITH (TIMES 2 VALUE)), and

then (TELL FOO AFTER IF (OR (NULL (MEMBER VALUE X)) (GREATERP

VALUE Y)) THEN RETURN WITH (TIMES 2 VALUE)), and then (TELL FOO

AFTER IF (OR (NULL (MEMBER VALUE X)) (GREATERP VALUE Y)) THEN

(LIST (TIMES 2 VALUE))), and then (TELL FOO AFTER (COND ((OR

(NULL (MEMBER VALUE X)) (GREATERP VALUE Y)) (LIST (TIMES 2 VALUE)l)

(T NIL))), and finally ($ SYSTEMl FOO AFTER (COND ((OR NULL

(MEMBER VALUE X)) (GREATERP VALUE Y)) (LIST (TIMES 2 VALUE)))

(T NIL))) •

If the user had typed any of the intermediate expressions as

input directly, the end result would have been the same. If he

added a rule which transformed (... TWICE xxx •..) into (TIMES 2

xxx), he could have written (TELL FOO AFTER IF VALUE IS NOT A

MEMBER OF X OR VALUE IS GREATER THAN Y THEN RETURN WITH TWICE

VALUE).

157

There are two processes that take place inside of TRANSLATE.

The major one, of course, is the transformation of the input list

according to TRANSLATE RULES. However, since TRANSLATE is called

from inside of these rules, at various levels, to perform

translations on parts of the input list, a parsing feature has

been added so that where the user wishes to express a LISP corn-

putation, because he has not included a translation rule that

will handle it, he can do so with a minimum of parentheses. I

shall describe this operation first because it is fairly simple.

PARSE is a function which utilizes information about the,

number of arguments of a function is order to insert parentheses

in an otherwise unstructured list. For example, PARSE transforms

(CONS CAR X CDR Y) into (CONS (CAR X) (CDR Y)). PARSE has no

effect on lists which do not begin with function names, or for

other reasons are not appropriate for parsing, e.g., they are

already parsed. For those lists which do look like they should

parse, but do not, PARSE gives appropr~ate errors. The appli

cation of parsing permits a vast reduction in the number of
/

parentheses the user must employ, and greatly increases the

readability (and writeability) of LISP expressions. Since PARSE

is called from TRANSLATE, any expression which will normally be

translated will also be parsed. Thus, in the previous example,

the user could write (TELL FOO AFTER IF (OR NULL MEMBER VALUE X

GREATERP X Y) THEN (LIST TIMES 2 VALUE)), and the end result would

be the same.

TRANSLATE RULES

TRANSLATE makes use of a FLIP function TRANSFORM to trans-

form the input list. The input to TRANSFORM is an item to be

transformed and a list of rules. Each rule consists of three

158

parts, a pattern for matching, an (optional) format for con

structing, and an (optional) label for transferring control.

If the input matches the pattern, it is transformed according

to the format, if any, and control goes to the labeled rule,

or else to the next one. If the input does not match, control

goes to the next rule regardless. TRANSFORM thus acts very much

like METEOR, and allows one to write little COMIT-like programs

using FLIP. Exit is achieved either by "dropping off" the end

of the list of rules, or by going to a fictitious label EXIT.

One can also return to the top of the list of rules by going

to TOP. With my translation scheme, this is done after every

successful match-construct operation, except those which produce

the special "$" symbol indicating the transformation process is

complete. For these, the transformation process is terminated

by a call to EXIT.

The philosophy behind each rule has been that where there

is no ambiguity, I should be allowed to suppress parentheses.

For example, there is a rule which transforms (XIS NULL) into

(NULL X), and a rule which transforms (IF xxx THEN yyy ELSE zzz)

into (COND (xxx yyy) (T zzz)). Thus (IF (XIS NULL) THEN yyy

ELSE zzz) becomes (COND ((NULL X) yyy) (T zzz)). However, I can

also write (IF X IS NULL THEN yyy ELSE zzz), because the IF-THEN

rule will not be applied until "X IS NULL" is changed to (NULL X).

I should mention that when the user writes (IF X IS NULL

THEN yyy ELSE zzz), instead of (IF (X IS NULL) THEN yyy ELSE zzz),

he is sacrificing computation time for ease of writing and

reading. This is because the translator will try to transform

(NULL X) in (IF (NULL X) THEN yyy ELSE zzz), while making the

159

* IF-THEN transformation. However, for those rules where exit

is normally achieved, with the special symbol "$" at the head

of the list, more meaningful errors will be found and cornmunicated

to the user if he does not use extra parentheses.

For example, I have a rule which transforms (TELL FOO xxx)

into ($ SYSTEMl FOO BEFORE xxx), a call to one of the advising

functions. If I say (TELL FOO (IFF XIS NULL THEN QUIT)), this

will become ($ SYSTEMl FOO BEFORE (IFF XIS NULL THEN QUIT)).

Although I intended this piece of advice to be transformed into

a COND, it wasn't because it contained IFF, instead of IF. How-

ever, the advice (TELL FOO !FF X IS NULL THEN QUIT) would not

be transformed into a list with a "$" at the front, and DO would

tell me about the error at this point - instead of LISP telling

me later that IFF was not a bona fide function. At that point,

I would have to figure out where the error came from, why, and

what should have happened, whereas with DO I would know immediately.

One further point: occasionally, you must use extra paren-

theses - to indicate precedence. For example, (A AND B OR C) is

transformed into (OR (AND A B) C) . To make the AND relationship

be the primary one, one must say (A AND (B OR C)). Normally, this

cannot be avoided, because you have to decide which will take

precedence - AND or OR. However, in some cases, by being clever

about the particular translation rule, you can rule out most of

the cases where extra parentheses would be necessary. For

example, I have a transformation which takes something of the

form (DO xxx) into (PROG2 xxx NIL) . This is for ADVICE which

* This could be avoided by having TRANSLATE recognize when an
expression had been translated pr~viously.

160

should be executed, i.e., the xxx, but not affect the flow of

computation, hence the NIL. However, if you type (DO IF X IS

NULL THEN .•.), you would get ((PROG2 IF NIL) (NULL X) THEN .••) /

which is nonsense. But, if this rule required xxx to be non-

atomic, it would not operate in this case until after the IF

rule had operated. Thus, you obtain the correct result: (PROG2

(COND ((NULL X) ...) .

Of course, with a more sophisticated parsing scheme, one

could back up from incorrect transformations, and much of this

would not be necessary. However, TRANSLATE is extremely ad hoc,

and it is interesting that it can do as well as it does.

* * *
I shall now describe each individual rule. For reference,

a complete list is contained in Appendix 3. In this discussion

rules marked with "*" differ from the corresponding ones actually

in the system as listed in Appendix 3, although in all cases

both perform identical operations. The difference is usually a

question of efficiency versus intelligibility. The rules in

the system are more efficient, their counterparts here more

understandable.

SYSTEMl (SYSl (COND
((AT OM X) NIL)
(T (LIST (PRINT (DO X))))) BEFORE)

This is the initial modification to SYSl that causes it to

call DO in the event its input is nonatomic. SYSTEM!, as

described earlier, has three arguments: the name of the function

to be modified, here SYSl, the expression that constitutes the

advice, which is the COND, and the place where the advice is to

be inserted - BEFORE.

161

ADD (((TRANSLATE $1 AS (EITHER
($1 I (NOT ATOM))
($))) ($ ADD (2 (EITHER
(1 TOP)
(1))) TRANSLATE RULES) EXIT) TRANSLATE RULES)

This input adds the first translation rule to the property

list of TRANSLATE under the property RULES. The rule is ((TRANS

LATE $1 AS ••• EXIT) and transforms an input such as (TRANSLATE

xxx AS yyy) into ($ ADD (xxx yyy TOP) TRANSLATE RULES). If the

user wishes to specify a label for transfer if the rule matches,

he can say (TRANSLATE xxx as yyy FOO) which is transformed into

($ ADD (xxx yyy FOO) TRANSLATE RULES). This rule is a device to

enable one to add other rules without calling ADD specifically.

Note that if this rule matches, no further transformations occur,

i.e., if one says (TRANSLATE xxx AS yyy), it becomes ($ADD etc ••)

and an exit occurs, as specified by the label EXIT.

(TRANSLATE

AS

(TELL $1 (EITHER
(FIRST)
($1 I (ATOM) FIRST)
($1 I (ATOM))
--) $1)

($ (EITHER
(SYSTEM3)
(SVSTEM3)
(SVSTEMl).
(SVSTEMl))
((= NORMAL))
(1)

2 (= TRANSLATE -1) (EITHER

(1)
((= NORMAL))))) *

This rule has been entered using the (TRANSLATE xxx AS yyy

EXIT) format made possible by the previous rule. Basically, once

the input has been reduced to the form (TELL xxx zzz) , (TELL

xxx yyy zzz) , (TELL xxx FIRST zzz) or (TELL xxx yyy FIRST zzz) ,

translation is complete and SYSTEM! or SYSTEM3 can be called.

162

(TRANSLATE
(-- END (BACKTO BEG) $1 $ END --)

AS
(-- (=TRANSLATE -3) --))

While it would be possible to make TRANSLATE be completely

recursive and tear apart every list structure looking for some-

thing recognizable, this seemed to be a slow and inefficient

process. In particular it penalizes the user for material al-

ready translated, i.e., legitimate LISP expressions. A problem

arises, however, when it is desirable to have something be trans

lated that is inside of an expression that itself normally would

not be translated. BEG and END are here introduced as pseudo-

parentheses to finesse this situation. By using BEG and END in

place of parentheses, you can write everything at the same level

so that translation will occur. This particular rule locates

the first END, and then backs up to the first BEG before it,

so that one can nest BEG's and ENrr's.

(TRANSLATE
(-- DO $1 I (NOT ATOM) --)

AS
(-- (PROG2 (=TRANSLATE 3) NIL) --))

Frequently one wishes to perform a LISP computation in

advice without disrupting the normal flow into or out of the

function in question. Since the ADVICE function will interpret

a non-null value as a signal to bypass the function, this compu-

tation is embedded in the form (PROG2 xxx NIL) , where xxx is the

desired computation. PROG2 is a LISP function which evaluates

both its inputs and returns the second one, here NIL. This

rule transforms DO xxx into (PROG2 xxx' NIL), where xxx' is the

translation of xxx. Note that xxx is restricted to be non-

atomic (see previous discussion, page 161).

163

(EITHER
(A TOM))

(TRANSLATE
(-- BIND

($1 I
($1)) TO $1 --)

AS
(-- (ATTACH (CONS (EITHER

((- CONS QUOTE 1))
((= TRANSLATE 1))) (= TRANSLATE 5)) (COOR

HISTORY)
) --))

This rule allows the user to create and bind a new variable

to some value; the binding will hold until the current function

is left. This is done via a call uo ATTACH giving it the name of

the variable and its value, and (CDDR HISTORY) which is the

appropriate place to ATTACH it, i.e., just after the function's

name. One can specify the variable name directly or as a result

of a computation.

(TRANSLATE
(-- SAVE $1 on $1 --)

AS
(-- {SETQ 5 (CONS (= TRANSLATE 3) 5)) --))

This transforms (••• SAVE X ON Y ...) into (.•. (SETQ Y

(CONS X Y)) ..•) with appropriate translations.

(TRANSLATE
(-- POP $1 --)

AS
(-- {SETQ 3 (CDR 3)) --))

The inverse of the above operation.

(TRANSLATE
(-- IGNORE --)

AS
(-- NIL --))

164

This rule allows the user to use IGNORE for NIL. IGNORE

has intuitive meaning when used in the context of advice, e.g.,

(IF x IS NULL THEN IGNORE) means if x is null then go on with

the rest of the computation.

(TRANSLATE
(-- QUIT --)

AS
(-- (LIST NIL) -))

Similarly for QUIT and (LIST NIL) -- do not enter this

procedure but instead return with NIL.

(TRANSLATE

AS

(X IS $ (EITHER
(Y MEANS)
(MEANS)) $1)

($ ADD2 IS PATTERNS
($1)
--)) FORMATS
(/T 2))) (EITHER
--))))

(3 {EITHER

{-1 (QUOTE (= TRANSLATE
{{QUOTE (= TRANSLATE -1))}

*

This rule makes it possible to add definitions such as

(X IS GREATER THAN Y MEANS GREATERP) , (X IS A NUMBER MEANS

NUMBERP), etc., so that (IF x IS GREATER THAN y AND z IS A

NUMBER .•.) becomes (IF (GREATERP X Y) AND (NUMBERP Z) •••).

The pattern for each transfoi;rnation is stored on the property

list of the atom IS under the property PATTERNS. The format

is stored under the property FORMATS. The actual transformation

is handled by the rule below:

165

(TRANSLATE
(-- $1 IS (EITHER

(NOT)
--) (EITHER
(= GET IS PATTERNS)) --)

AS
(-- ((EITHER

(NULL ((EITHER
(IT -2)
(= GET IS

((EITHER
FORMATS))))

(/T -2)
(= GET IS FORMATS))))) --)) *

This rule handles the transformations of both (••• xxx IS •••)

and (••• xxx IS NOT •••). It gets the appropriate patterns from IS

PATTERNS, and transforms according to formats on IS FORMATS.

(TRANSLATE

AS

(-- TO (EITHER

(--

(($1 I (NOT FUNCTIONP) $))
--) (REPEAT 1 $1 AND) $1)

(PROG (EITHER
((/T 3))
(NIL))

(REPEAT (QUOTE (=
(=TRANSLATE -1))

TRANSLATE 1)))
))

(.•• TO xxx AND yyy AND zzz .•.) becomes (••• (PROG NIL

xxx yyy zzz) •.•) as a result of this rule. This is so the user

can specify a number of operations in one piece of advice. If

PROG variables are necessary, they can be inserted just after the

TO. The list of PROG variables can be distinguished from a form

because it does not begin with a function. Thus (TO (x y z)

xxx AND yyy AND zzz) becomes (PROG (x y z) xxx' yyy' zzz').

(TRANS LA TE

AS

($ I I (NILL) (REPEAT IF $1) (EITHER
(ELSE $1)
--) (EITHER
(END --)
--))

(-- (COND
(REPEAT ((= TRANSLATE 2) (= TRANSLATE 4)))
(EITHER

166

((T (= TRANSLATE
((T NIL))})

-1
(2)
- -)))

2)))
(EITHER

This rule translates IF THEN statements into conditionals.

The form of the statement must be IF $1 THEN $1 IF $1 THEN $1 etc

terminated either by END, or by the end of the list. This is to

help the user catch errors at translation time. Thus (IF POP X

THEN QUIT) becomes (COND ((SETQ X (CDR X)) (LIST NIL)) (T NIL)),

but (IF POPP X THEN QUIT) does not translate. Note however that

both (IF (POP X) THEN QUIT) , and (IF (P6PP X) THEN QUIT) will

satisfy the IF-THEN rule. At some later point, however, a LISP

error will occur because of POPP.

This rule also allows the user to insert an optional ELSE

clause at the end of the IF-THEN statement. If none appears,

(T NIL) is used.

The appearance of the NILL in $ / / (NILL) causes the .
rule to fail if the first IF-THEN is not correct. This is to

avoid partial transformations of IF-THEN clauses inside of a

longer statement, i.e., IF XIS NULL THEN Y IF A THEN B ELSE D

becoming (IF XIS NULL THEN Y (COND (AB) (TD)))

(TRANSLATE
(-- IF $1)

AS
(-- (SYSTEM4 (=TRANSLATE 3))))

Occasionally, if a computation is not NIL, you want to

return with that computation. Essentiall~, you want to write

(IF xxx THEN xxx). However, this will cause xxx to be evaluated

twice. One finesses this by writing simply (IF xxx), which

167

results in a call to SYSTEM4 which performs the appropriate action.

(TRANSLATE

AS
(-- AND (BACK 2) (REPEAT $1 AND) $1 --)

(-- (AND (REPEAT (QUOTE (= TRANSLATE 1))) (= TRANSLATE
-2

)} --))

This rule handles expressions such as xxx AND yyy AND zzz .••

which become (AND xxx' yyy' zzz'). It locates the first AND and

then backs up. There may be some confusion between this rule

and the rule which handles TO xxx AND yyy

always use BEG and END or parentheses:

(TRANSLATE

However, one can

(-- OR (BACK 2) (REPEAT $1 OR) $1 --)
AS

(-- (OR (REPEAT (QUOTE (=TRANSLATE 1))) (=TRANSLATE
-2)) --))

Similar to above for AND. Note that (A AND B OR C) becomes

(OR (AND A B) C), because the AND rule is before the OR rule.

To produce (AND A (ORB C)) one writes (A AND (B OR C)).

(X IS A MEMBER OF Y MEANS MEMBER)

(X IS A NUMBER MEANS NUMB ERP)

(X IS (EITHER
(AN ATOM)
(ATOMIC)) MEANS ATOM)

(X IS GREATER THAN Y MEANS GREATERP)

(X IS LESS THAN Y MEANS LESSP)

(X IS EQUAL TO Y MEANS EQUAL)

(X IS NULL MEANS NULL)

IS RULES in the system.

168

(TRANSLATE
(-- RETURN WITH $1 --)

AS
(-- (LIST (=TRANSLATE -2)) --))

If one wishes to return with xxx from a function, the advice

should actually yield (LIST xxx) • This rule transforms

(••• RETURN WITH xxx .•.) into (•.. (LIST xxx) ..•). Thus QUIT

is the same as RETURN WITH NIL.

(TRANSLATE
(DEFINE $1 (EITHER

((FEXPR) ($SET FOO (QUOTE -1)))
($1 ($SET FOO (=LENGTH (= CAR -1))))
(($SET FOO (QUOTE 0)))) AS --)

AS
($ DEFLIST (({= CAR (= PUT (= FOO) (= CAR 2)
ARGS)) {LAMBDA

(EITHER
((L A))
(1)
(NIL)) (= TRANSLATE -1)))

(FEXPR)
(EXPR)
(EXPR}} }}

) (EITHER

This rule is to allow the user to avail himself of the

translation process in defining new functions; you can write

(DEFINE FOO AS ••••). If no arguments follow FOO, NIL is

supplied. If (FEXPR) follows FOO, (L A) are used as arguments

and DEFLIST is called with FEXPR as its second argument. Other-

wise EXPR is used. The reference to PUT in the format puts

the number of arguments in the function being defined onto its

property list so that PARSE can be used even though the function

is not yet defined, e.g., in (DEFINE MEMBER (X Y) AS IF XIS

EQUAL TO (CARY) THEN T ELSE (MEMBER X CDR Y)) 1 PARSE would

know how many arguments MEMBER had.

169

(TRANSLATE
(-- INCREMENT $1 --)

AS
(-- (SETQ 3 (ADDl 3)) --))

Transforms (... INCREMENT xxx ...) into (.•• (SETQ xxx

(ADDl xxx)) •..) .

(TRANSLATE

AS

(-- (EITHER
(SEARCHF)
(COUNTF)
(SEARCHP)
(LISTP)
(COUNTP))
($2 $)
- -))

$1 $1 I (NOT ATOM) (EITHER

(-- (2 3 (= CONS QUOTE 4) HISTORY) -1))

SEARCHF, COUNTF, SEARCHP, LISTP, COUNTP are functions useful

in problem solving. SEARCHP, LISTP, COUNTP all take a list, a

predicate, and an ALIST, as inputs. SEARCHP searches for an

item that satisfies the predicate. LISTP lists all items that

satisfy the predicate. COUNTP counts the number of items that

satisfy the predicate. SEARCHF and COUNTF are similar except

they take FLIP patterns instead of predicates, and therefore

you can express relations between elements in the list. The

ALIST is used for evaluating free variables. Since in the

most frequent use of these functions you specify only the list

and the predicate or pattern, this rule will quote the predicate

or pattern, and supply HISTORY as the ALIST. (LISTF, another

function, is not handled by this rule because it requires an

extra argument that the other functions do not take.) You can

specify an ALIST yourself, in which case this rule will not

match.

170

(TRANSLATE
(-- BREAK $1 --)

AS
(-- (BREAKl NIL T (ADVICE) (CONS I (COND

((EQ (CAADR HISTORY) ' VALUE) (CAADDR HISTORY))

)) })
(T (CAADR HISTORY)))) (CONS TYTAB (= CONS QUOTE 3)

This rule allows you to insert a BREAK inside of advice.

This is done via a call to the function BREAK! described earlier.

BREAK! prints as its message the name of the function, which it

obtains from the history list, and the message corresponding to

the $1.

ADO (CHANGE TRANSLATE RULES)

(TRANSLATE

AS

(CHANGE $1 (EITHER
($1 I {ATOM)}
--) {REPEAT ((REPEAT $ $1 I (NOT ATOM}) $)))

($ EDIT 2 (EITHER
(1)
((= NORMAL))) ((REPEAT {(REPEAT M (/C 1 1) 1
{= TRANSLATE 2)) (/C 1 2))) STOP)) EXIT))))

This rule result allows you to call EDIT giving it a

sequence of changes. You can include item~ to be translated

in these changes, e.g., (CHANGE FOO (INSERT IF XIS A MEMBER OF

y THEN QUIT BEFORE SAVE x ON Z)). The request "ADD (CHANGE

TRANSLATE RULES)" serves to label this rule so that other rules

(below) can transfer to this label instead of to TOP or EXIT.

171

(TRANSLATE

AS

(TELL $1 (EITHER
($1 I (ATOM))
--) ((EITHER
(BEFORE)
(AFTER)
(INSTEAD OF)) (EITHER
($1)
($ADVICE)) (EITHER
($1 I (ATOM))
($1)))

($ EDIT 2 (EITHER
(1)
((=NORMAL))) ($SET FOO (== (EITHER
(IT 4 2)
(1)
((= TRANSLATE 1) (BACKTO ADVICE) UPI))))
($SET FIE

(== (EITHER
-1
(1)
((ADVICE (** (=TRANSLATE 1))))))) (((EITHER
(/T 4 1)
(INSERT (** (=FIE)) BEFORE (** (= FOO)))
(INSERT (** (= FIE)) AFTER{** (= FOO)))
(REPLACE (** (= FOO)) WITH (** (= FIE))))))
STOP)) *

The CHANGE rule is designed primarily for editing. When

the user wants to insert advice at some point, other than the

beginning or end, or to replace one piece o.f advice with another,

he uses this rule so that he does not have to specify the entire

editing sequence. If the user specifies (BEFORE SAVE X ON Y

ADVICE), this becomes (BEFORE (SETQ y (CONS x Y)) (BACKTO ADVICE)

UPl) (each piece of advice is a list headed by the atom ADVICE) •

If the user writes just (BEFORE FOO), EDIT will look for the

label FOO instead of for a piece of advice.

172

(TRANSLATE

AS

(USE (EITHER
($1 FOR $1 $1)
($1 FOR $1)
($1 $1 FOR $1 $1)
($1 $1 FOR $1)
($1 $1)) (EITHER
(BUT $)
- -))

(CHANGE (/T 2 1) (EITHER
((=NORMAL))
((= NORMAL))
(2)
(2)
(2))) (SETQ NAME ($*QUOTE (EITHER
(3)
(3)
(4)
(4)
(1)))) (SETQ VAL ($* QUOTE (EITHER
(4)
((=NORMAL))
(5)
((= NORMAL))
((= NORMAL))))) (EITHER
-1
(2)
NIL)))

This rule facilitates shifting advice from atom to atom and

property to property. The various options are included to allow

the normal mode to be suppressed. The USE instruction may also

have a sequence of changes following it as in (USE xxx yyy BUT

(REPLACE ...) (INSERT ... }). This rule transforms the input into

the format for CHANGE and then goes to that label. The SETQ

NAME and SETQ VAL are instructions for EDIT telling it where to

put the edited list after it is finished.

(TRANSLATE
(-- (EITHER

((EITHER
(MAPLIST)
(MAP)))

((EITHER
(MAPCAR)
(MAPC))))
--) --)

AS

173

$1 ($1 I (NOT EQ FUNCTION)

) --))

(-- ((EITHER
(/T 2 1)
(MAPLI ST)
(MAP)) (=TRANSLATE 3) (FUNCTION (LAMBDA (X)
(EITHER

((= TRANSLATE (/T 4)))
((= SUBST (CAR X) X (=TRANSLATE (/T 4)))))))

Frequently, one would like to process a list and perform

some operation on each member of the list. The function MAPLIST,

for example, has two arguments, a list, and a function. It

constructs a new list in which each element is the result of

applying the function to the corresponding position in the old

list, e.g., (MAPLIST X (FUNCTION (LAMBDA (Y) (ADDl (CARY))))),

increments each element in a list. This rule is designed to make

it easier to call such functions. It supplies the FUNCTION CU,ld

LAMBDA, and also translates the functional argument. It also.'

allows the user to specify whether the function is to be applied

to the remainder of the list, as in MAPLIST and MAP (MAP only

differs from MAPLIST in that it does not construct a new list),

or the next element in the remainder of the list, as in MAPCAR

and MAPC. Thus MAPC FOO (PRINT CADR X) becomes MAP FOO (FUNCTION

(LAMBDA (X) (PRINT (CADR (CAR X))))) •

(TRANSLATE
(NAME $1

($1)
--)

AS

$ IN $1 (EITHER

)

(CHANGE -2 -1 (FLIP
($ (= TRANSLATE 3) (BACKTO ADVICE) UPl $)
((QUOTE 1) ({QUOTE=) NAMEl (QUOTE -2) 2) (QUOTE -1)}

))

This rule allows you to locate a particular piece of advice

and define it as a function, so that the advice itself may

174

~--·-~--···----------

subsequently be advised. This is done by calling EDIT to locate

the advice and replacing it with a call to the new function,

which is then defined. Thus (NAME FOOl SAVE x ON y IN FOO)

becomes (CHANGE FOO (FLIP ($ (SETQ Y (CONS X Y)) (BACKTO ADVICE)

UPl $) (1 (= NAMEl -2 FOOl) -1))), and control goes to CHANGE

label. When EDIT is called, NAMEl will define FOOl as the old

advice.

(DEFINE NAMEl (X Y) AS CONS ' ADVICE DEFINE LIST LIST Y
LIST ' LAMBDA NIL CDR UNFLATTEN X) ·

DEFLIST (((NAMEl (LAMBDA (X Y) (CONS (QUOTE ADVICE) (DEFINE
(LIST (LIST Y (LIST (QUOTE LAMBDA) NIL (CDR (UNFLATTEN X))

)))))))) EXPR)

This is the definition of the function NAMEl used in the

above rule. It defines a piece of advice as a function. The

.value of NAMEl is (ADVICE name), which will be substituted for

the original piece of advice.

(TRANSLATE
((EITHER

(BEFORE $1)
(AFTER $1)

($1 $1)

AS
($1)) --)

(TELL (EITHER
(2 1)
(2 1)
(1 2)
(1 (= NORMAL))) DO --))

This rule allows you to write (AFTER FOO

instead of (TELL FOO AFTER DO INCREMENT X).

175

INCREMENT X) ,

(CHANGE SYSl (REPLACE PRINT UPl WITH (PROG (Y)
IF (ERSETQ PRINT DO X)
THEN (TERPRI)
IF (PROG2 PRINTRED ' (EDIT OR FORGET IT) SETQ Y IF

(SETQ Y (RDFLX)) IS EQUAL TO ' EDIT THEN (EDIT NIL X NIL)
IF Y IS EQUAL TO ' PILOT THEN (PROG2 SYSTEM X) IF (TRANSFORM

y GET I EDIT I RULES) IS NOT EQUAL TO y THEN (EDIT NIL x LIST
y I STOP) ELSE Y)

THEN (SYSl Y)
ELSE (PRINT I OK))))

This operation modifies the original advice on SYSl, which

told it to call DO. The intent is to cause the system to allow

the user to correct errors detected inside of DO. If an error

occurs, the value of ERSETQ will be NIL, and (EDIT OR FORGET IT)

is printed. The user can then modify his input, without re-

typing the entire string. The user may type EDIT, to utilize

EDIT on the input. A. single editing operation, can be typed

and will be recognized as such because it will be transformed by

EDIT RULES. This editing operation will then be performed. The

user cqn also type PILOT, in which case the system is called

recursively. This allows the user to make modifications, and

return for another attempt at translating the input which caused

the error. This feature of "remembering" the last input if an

error occurs is extremely useful and was suggested by Professor

Minsky during a session with PILOT. It is illustrated in the

example below.

(x is negative means minusp)
(IS RULES)

cset (print *T*)
T

(define abs (n) as
if n is negative then complement of n,
else n)

I DONT UNDERSTAND:
(DEFINE ABS (N) AS IF (MINUSP N) THEN COMPLEMENT OF
N ELSE N)

*** ERROR CALLED

(EDIT OR FORGET IT)

176

pilot (translate (- complement of $1 -) as (- (minus 4)
-))

TRANSLATION: (ADD ((- COMPLEMENT OF $1) (- (MINUS 4)
-) TOP) TRANSLATE RULES)

(TRANSLATE RULES)

ok

TRANSLATION: (DEFLIST ((ABS (LAMBDA (N) (COND
((MINUSP N) (MINUS N))
(T N))))) EXPR)

(ABS)

EDIT (SYSl BEFORE ((REPLACE PRINT UPl WITH (PROG (Y)
(COND

((ERSETQ (PRINT (DO X))} (TERPRI))
((PROG2 (PRINTRED (QUOTE (EDIT OR FORGET

IT)
) } (S ETQ Y (COND

({EQUAL (SETQ Y {RDFLX)) (QUOTE EDIT))
(EDIT.

NIL X NIL)) .
{{NULL {EQUAL (TRANSFORM Y (GET {QUOTE EDIT

{QUOTE RULES))) Y)) {EDIT NIL X (LIST Y {QUOTE STOP))))
(T Y)))) {SYSl Y))

(T {PRINT {QUOTE OK))))) STOP))

This is the translation of the CHANGE SYS! modification above.

177

APPENDIX 3

LIST OF MODIFICATIONS

SYSTEM! (SYSl (COND
((ATOM X) NIL)
(T (LIST (PRINT (DO X))))) BEFORE)

ADD (((TRANSLATE $1 AS (EITHER
($1 I (NOT ATOM))
($1))) ($ ADD (2 (EITHER
(1 TOP)
(1))) TRANSLATE RULES) EXIT) TRANSLATE RULES)

(TRANSLATE

AS

(TELL $1 (EITHER
(FIRST)
($1 I (ATOM) (EITHER

(FIRST)
--))

--) $1)

($ (EITHER
(SYSTEM3)
((EITHER

(SYSTEM3)
(SYSTEM!)))

(SYSTEM!)) 2 (= TRANSLATE -1) (EITHER
((= NORMAL))
(1)
((= NORMAL)))))

(TRANSLATE
(-- END (aACKTO BEG) $1 $ END --)

AS
(-- (= TRANSLATE -3) --))

(TRANSLATE
(-- DO $1 I (NOT ATOM) --)

AS
(-- (PROG2 (= TRANSLATE 3) NIL) --))

(TRANSLATE
(-- BIND (EITHER

($1 I (ATOM))
($1)) TO $1 --)

179

AS
(-- (ATTACH (CONS (EITHER

((= CONS QUOTE 1))
((= TRANSLATE 1))) (=TRANSLATE 5)) (COOR HISTORY)

) --))

(TRANSLATE
(-- SAVE $1 ON $1 --)

AS
(-- (SETQ 5 (CONS (=TRANSLATE 3) 5)) --))

(TRANSLATE
(-- POP $1 --)

AS
(-- (SETQ 3 (CDR 3)) --))

(TRANSLATE
(-- IGNORE --)

AS
(-- NIL --))

(TRANSLATE
(-- QUIT --)

AS
(-- (LIST NIL) --))

(TRANSLATE
. (X IS $ (EITHER

(Y MEANS)
(MEANS)) $1)

AS
($ ADD (3 (EITHER

($1 ($*$SET FOO ({/T -1) (QUOTE {=TRANSLATE (/T 2))
) (QUOTE (= TRANSLATE (/T"-2 -2))))))

(($*$SET FOO {(/T -1) (QUOTE (=TRANSLATE (/T 2)))))
))) IS RYKES))

(TRANSLATE

AS

(-- $1 IS (EITHER
(NOT)
--) (EITHER
(= (COPYTOP (GET

(-- ((EITHER

(QUOTE IS) (QUOTE RULES)))))

(= (LIST (QUOTE NULL) FOO))
(= FOO))) --)}

180

--)

(TRANSLATE

AS

(-- TO (EITHER
(($1 I (NOT FUNCTIONP} $}}
--} (REPEAT 1 $1 AND} $1}

(-- (PROG (EITHER
((IT 3))
(NIL)}

(REPEAT (QUOTE (= TRANSLATE 1)))
(= TRANSLATE -1}} }}

(TRANSLATE
($ I I (NILL} (REPEAT IF $1 THEN $1} (EITHER

(ELSE $1}

AS

--} (EITHER
(END --}
--} }

(-- (COND
(REPEAT ((= TRANSLATE 2) (= TRANSLATE 4}}}
(EITHER

((T (= TRANSLATE 2}}}
((T NIL}}} } (EITHER

-1
(2)
-- } }}

(TRANSLATE
(-- IF $1}

AS
(-- '(SYSTEM4 (= TRANSLATE 3))))

(TRANSLATE
(-- AND (BACK 2) (REPEAT $1 AND) $1 --}

AS
(-- (AND (REPEAT (QUOTE (= TRANSLATE 1))) (= TRANSLATE -2

)} --)}

(TRANSLATE
(-- OR (BACK 2) (REPEAT $1 OR) $1 --)

AS
(-- (OR (REPEAT (QUOTE (= TRANSLATE 1))) (= TRANSLATE -2

)} --})

181

(X IS A MEMBER OF Y MEANS MEMBER)

(X IS A NUMBER MEANS NUMBERP)

(X IS (EITHER
(AN ATOM)
(ATOMIC)) MEANS ATOM)

(X IS GREATER THAN Y MEANS GREATERP)

(X IS LESS THAN Y MEANS LESSP)

(X IS EQUAL TO Y MEANS EQUAL)

(X IS NULL MEANS NULL)

(TRANSLATE
(DEFINE $1 (EITHER

((FEXPR) ($SET FOO (QUOTE -1)))
($1 ($SET FOO (= LENGTH (= CAR -1))))
(($SET FOO (QUOTE 0)))) AS --)

AS
($ DEFLIST (((= CAR (= PUT (= FOO) (= CAR 2) ARGS)) (LAMBDA

(EITHER
((L A))
(1)
(NIL)) (= TRANSLATE -1)))) (EITHER

(FEXPR)
(EXPR)
(EXPR))))

(TRANSLATE
(-- RETURN WITH $1 --)

AS
(-- (LIST (= TRANSLATE -2)) --))

(TRANSLATE

AS

(-- (EITHER
(SEARCHF)
(COUNTF)
(SEARCKP)
(COUNTP)
(LISTP))
($2 $) --))

$1 $1 I (NOT ATOM) (EITHER

(-- (2 3 (= CONS QUOTE 4) HISTORY) -1))

182

(TRANSLATE
(-- BREAK $1 --)

AS
(-- (BREAKl NIL T (ADVICE) (CONS I (COND

((EQ (CAADR HISTORY) ' VALUE) (CAADDR HISTORY))
(T (CAADR HISTORY)))) (CONS TYTAB (= CONS QUOTE 3)

))))

ADD (CHANGE TRANSLATE RULES)

{TRANSLATE

AS

(CHANGE $1 (EITHER
{$1 I (ATOM))
--) (REPEAT ((REPEAT $ $1 I (NOT ATOM)) $)))

($ EDIT 2 (EITHER
(1)
((= NORMAL))) ((REPEAT ((REPEAT M (/C 1 1) 1 (= TRANSLATE

2)) (/C 1 2))) STOP)) EXIT) .

(TRANSLATE

AS

{TELL $1 (EITHER
($1 I (ATOM))
--) ({EITHER
(BEFORE)
(AFTER)
(INSTEAD OF))
($1)
($ADVICE))
($1 I (ATOM))
($1)))

($ EDIT 2 (EITHER
(1)
((= NORMAL)))
(IT 4 2)

(EITHER

(EITHER

($SET FOO (== (EITHER

(1)
((= TRANSLATE 1) {BACKTO ADVICE) UPl)))) ($SET FIE

(== (EITHER
-1
(1)
((ADVICE (** (=TRANSLATE 1))))))) (((EITHER
(IT 4 1)
(INSERT (** (= FIE)) BEFORE (** (= FOO)))
(INSERT (** (= FIE)) AFTER (** (= FOO)))
(REPLACE (** (= FOO)) WITH {** (= FIE)))))) STOP))

183

(TRANSLATE

AS

(USE (EITHER
($1 FOR (EITHER

($1 $1)
($1)))

($1 $1 (EITHER
(FOR $1 $1)
(FOR $1)
--))) (EITHER

(BUT $)
--))

(CHANGE (/T 2 1) (EITHER
((= NORMAL))
(2)) (SETQ NAME ($* QUOTE (EITHER
(IT 2 3)
(-2)
(-1)
((/T 2 1))))) (SETQ VAL ($*QUOTE (EITHER
(/T 2 3)
(-1)
((= NORMAL))
((= NORMAL))))) (EITHER
-1
(2)
NIL)))

(DEFINE NAMEl (X Y) AS CONS ' ADVICE DEFINE L.IST LIST Y
LIST ' LAMBDA NIL CDR UNFLATTEN X)

DEFLIST (((NAMEl (LAMBDA (X Y) (CONS (QUOTE ADVICE) (DEFINE
(LIST (LIST Y (LIST {QUOTE LAMBDA) NIL (CDR (UNFLATTEN X))

)))))))) EXPR)

(TRANSLATE·

AS

(NAME $1 $ IN $1 (EITHER
($1)
--))

(CHANGE -2 -1 (FLIP
($ (= TRANSLATE 3) (BACKTO ADVICE) UPl $)
{{QUOTE 1) ((QUOTE =) NAMEl (QUOTE -2) 2) {QUOTE -1))

))

(TRANSLATE

AS

(-- (EITHER
((EITHER

(MAP LI ST)
(MAP)))

((EITHER
(MAPCAR)
(MAPC))))

(== ((EITHER
(IT 2 1)
(MAPLIST)

$1 ($1 I (NOT EQ FUNCTION) --) --)

(MAP)) (=TRANSLATE 3) (FUNCTION {LAMBDA (X) (EITHER
((= TRANSLATE (/T 4)))
((= SUBST (CAR X) X (= TRAN.SLATE (/T 4)))))))

) --))

184

(TRANSLATE
(-- INCREMENT $1 --)

AS
(-- (SETQ 3 (ADDI 3)) --))

(TRANSLATE

AS

((EITHER
(BEFORE $1)
(AFTER $1)
($1 $1)
($1)) : --)

(TELL (EITHER
(2 1)
(2 1)
(1 2)
(1 (= NORMAL))) DO --))

(CHANGE SYSl (REPLACE PRINT UPl WITH (PROG (Y)
IF (ERSETQ PRINT DO X)
THEN (TERPRI)
IF (PROG2 PRINTRED ' (EDIT OR FORGET IT) SETQ Y IF

(SETQ Y (RDFLX)) IS EQUAL TO ' EDIT THEN (EDIT Nil X NIL)
IF Y IS EQUAL TO ' PILOT THEN (PROG2 SYSTEM X) IF (TRANSFORM
Y GET ' EDIT ' RULES) IS NOT EQUAL TO Y THEN (EDIT Nil X LIST
y I STOP) ELSE Y)

THEN (SYSl Y)
ELSE (PRINT I OK))))

EDIT (SYSl BEFORE ((REPLACE PRINT UPl WITH (PROG (Y)
{COND

((ERSETQ (PRINT (DO X)}) (TERPRI)}
((PROG2 (PRINTRED (QUOTE (EDIT OR FORGET IT}

)) (SETQ Y (COND

Nil X Nil))
((EQUAL (SETQ Y (RDFLX)) (QUOTE EDI.T)) (EDIT

((NULL (EQUAL (TRANSFORM Y (GET (QUOTE EDIT
) (QUOTE RULES))} Y)) (EDIT Nil X (LIST Y (QUOTE STOP)))}

(T Y)))) (SYSl Y))
(T (PRINT (QUOTE OK)))))) STOP))

185

This empty page was substih1ted for a
blank page in the original document.

- -----~----·-----

BIBLIOGRAPHY

[l] Berkeley, E.C., and Bobrow, D.G., (eds.) The Programming

Language LISP: Its Operation and Applications, Informa

tion International, Inc., Cambridge, Massachusetts, 1964

[2] Black, F., "A Deductive Question Answering System," Ph.D.

Thesis in Applied Mathematics, Harvard University,

Cambridge, Massachusetts, June, 1964

[3] Bobrow, D.G., "A Question Answering System for High

School Algebra Word Problems," Proc. FJCC, Spartan Press,

Baltimore, Maryland, 1964

[·4] Bobrow, D.G., "Natural Language Input for a Computer

Problem Solving System," Ph.D. Thesis in Mathematics,

M.I.T., Cambridge, Massachusetts, September, 1964

[5] Bobrow, D.G., "METEOR: A LISP Interpreter for String

Transformations," in [l]

[6] Bobrow, D.G., "The Comit Feature in LISP II," M.I.T.

Project MAC Memo M-219, Cambridge, Massachusetts,

February 18, 1965

[7] Bobrow, D.G., and Teitelman, W., "Format-Directed List

Processing in LISP," BBN Report #1366, Bolt Beranek and

Newman Inc., Cambridge, Massachusetts, April 1966

187

[8] Bobrow, D.G., Darley, D., Murphy, D., Solomon, C.J.,

and Tei telrnan, W. , "The BBN LISP System," BBN Report

#1346, Bolt Beranek and Newman Inc., Cambridge,

Massachusetts, February 1966

[9] Cohen, K., and Wegstein, J.A., "AXLE: An Axiomatic Lang

uage for String Transformations," Comm. ACM 8, 11,

November, 1965

[10) Crisman, P.A., (ed.) The Compatible Time-Sharing System -

A Programmer's Guide, Second Edition, M.I.T. Press,

Cambridge, Massachusetts, 1965

[11) Daley, R.C., and Garman, c., "ED: A Context Editor for

Card Image Files," M.I.T. Project MAC Memo M-195,

Cambridge, Massachusetts, March 15, 1965

[12) Edwards, D.J., and Minsky, M.L., "Recent Improvements in

DDT" M.I.T. Project MAC Memo M-60, Cambridge, Massa

chusetts, November 15, 1963

[13) Engleman, C., "MATHLAB: A Program for On-Line Machine

Assistance for Symbolic Computations," Proc. FJCC,

Spartan Press, Baltimore, Maryland, 1965

[14) Fano, R.M., "The MAC System: The Computer Utility

Approach," IEEE Spectrum, January, 1965

[15) Farber, D.J., Griswood, R.E., and Polawsky, I.P.,

"SNOBOL, A String Manipulation Language," JACM II, !•

1964

[16) Feigenbaum, E., and Feldman, J., (eds.) Computers and

Thought, McGraw Hill, New York, 1963

188

(17) Geldard, Frank A., (ed.) Communication Processes, Nato

Conference Series, Vol. 4, Pergammon Press, New York,

1965, (Proceedings of a Symposium held in Washington

in 1963)

(18) Gray, P., The Encyclopedia of the Biological Sciences,

pp 984-986, Reinhold Publishing, New York, 1961

(19) Guzman, A., and Mcintosh, H.V., "CONVERT" to appear in

Comm. ACM, August, 1966

(20) Johnson, T.E., "Sketchpad III: A Computer Program for

Drawing in Three Dimensions," Proc SJCC, Spartan Press,

Baltimore, Maryland, 1963

(21) Kaplow, R., Strong, s., and Brackett, J., "MAP: A

System for On-Line Mathematical Analysis," M.I.T.

Project MAC Report TR-24, Cambridge, Massachusetts,

January, 1966

(22) Licklider, J.C.R., "Man-Computer Symbiosis," IRE

Transactions on Human Factors in Electronics, March 1960

(23) Licklider, J.C.R., and Clark, W.E., "On-Line Man Compu

ter Communication," Proc. SJCC, Spartan Press, Baltimore,

Maryland, 1962

(24) Licklider, J.C.R., "Problems in Man-Computer Communica

tion," in (17)

(25) Licklider, J.C.R. Introductory Remarks in (17)

(26) Lindgren, N., "Human Factors in Engineering, Part II -

Advanced Man-Machine Systems and Concepts," IEEE

Spectrum, April, 1966

189

[27] Martin, W.A., and Hart, T., "Syntax and Display of

Mathematical Expressions," M.I.T. Project MAC Memo

M-257, July 29, 1965

[28] Martin, W.A., "Time-Sharing LISP," M.I.T. Project MAC

Memo M-153

[29] Martin, W.A., "A Symbolic Mathematical Laboratory," Ph.D.

Thesis in Electrical Engineering, M.I.T., Project MAC,

Cambridge, Massachusetts, (In preparation)

[30] Maurer, W.D., "Computer Experiments in Finite Algebra,"

M.I.T. Project MAC Memo M-246, Cambridge, Massachusetts,

June 14, 1965

[31] McCarthy, J., "Programs with Common Sense," Proc. Symp.

on Mech. of Thought Processes I, HMSO, London, 1959

[32] McCarthy, J., "Recursive Functions of Symbolic Ex

pressions," Comm. ACM, April, 1960

[33] McCarthy, J., et al, LISP 1.5 Programmers Manual, M.I.T.

Press, Cambridge, Massachusetts, 1963

[34] Miller, G.A., "Man-Computer Interaction," in [17]

[35] Minsky, M.L., "Steps Toward Artificial Intelligence,"

in [16]

[36] Minsky, M.L., "A Selected Descriptor-Indexed Bibliq

graphy to the Literature on Artificial Intelligence,

in [16]

· [37] Minsky, M.L., "MATHSCOPE - A Proposal for a Mathematical

Manipulation-Display System," M.I.T. Project MAC Memo

M-118, Cambridge, Massachusetts, November 18, 1963

190

[38) Newell, A., Shaw, J.C., and Simon, H.A., "Report on a

General Problem Solving Program," Intern. Conf~r.

Information Processing, UNESCO House, Paris, 1959

[39) Newell, A., "The Possibility of Planning Languages in Man

Computer Communication," in [17)

[40) Project MAC Progress Report II, July 1964-July 1965,

M.I.T. Press, Cambridge, Massachusetts, 1965

[41) Reintjes, J.F., and Dertouzos, M.L., "Computer-Aided

Design of Electronic Circuits," presented at WINCON Confer.,

Los Angeles, California, February 2-5, 1966

[42] Rudloe, H., "Tape Editor," Program Write-up BBN-101, Bolt

Beranek and Newman Inc., Cambridge, Massachusetts,

January 3, 1962

[4 3) Samson, P. , "Music Compiler," Program Write-up PDP-1,

M.I.T. RLE Computation Center, Cambridge, Massachusetts,

Circa 1962

[44) Samson, P., "TECO," M.I.T. Project MAC Memo M-250,

Cambridge, Massachusetts, July 23, 1965

[45) Schwartz, J.I., Coffman, E.G., and Weissman, C., "A

General Purpose Time-Sharing System," Proc. SJCC,

Spartan Press, Baltimore, Maryland, 1964

[46) Sutherland, I.E., "SKETCHPAD: A Man-Machine Graphical

Communication System," Proc. SJCC, Spartan Press,

Baltimore, Maryland, 1963

[47) Teitelman, W., "Real-Time Recognition of Hand-Drawn

Characters," Proc. FJCC, Spartan Press, Baltimore,

Maryland, 1964

191

.~

[48]

[4 9]

Teitel.man, w., "EDIT and BREAK Functions for LISP,"

M.I.T. Project MAC Memo M-264, Cambridge, Massachusetts,

September 1, 1965

Teitelman, W., "FLIP - A Format List Processor," M.I.T.

Project MAC Memo M-263, Cambridge, Massachusetts,

September 1, 1965

[SO] Wantman, M.E., "CALCULAID: An On-Line System for Alge

braic Computation and Analysis," M.I.T. Project MAC

Report TR-20, Cambridge, Massachusetts, September, 1965

[51] Yngve, V. , "COM IT Programmer ' s Reference Manual, M. I. T.

Press, Cambridge, Massachusetts, 1961

192

BIOGRAPHICAL NOTE

Warren Teitelman was born in Philadelphia on February 21,
1941. He attended Miami Senior High school, Miami, Florida, and
received a B.S. degree in Mathematics from the California Institute
of Technology in 1962, and an S.M. degree in mathematics from the
Massachusetts Institute of Technology in 1963.

Mr. Teitelman held several scholarships at Caltech from 1958
to 1962, was elected to Tau Beta Pi, and upon graduating with honor,
was awarded both National Science Foundation and National Defense
Education Act Fellowships. At MIT, he was an NSF fellow and a re
search assistant with Project MAC. He was elected to Sigma Xi in
1963, and received the General Electric Prize in 1964. ·

Mr. Teitelman has been interested in automatic computation and
computer programming since 1959. He has been employed by the Syn
chrotron laboratory and the Computation Center at Caltech; the
System Development Corporation of Santa Monica, California; Bolt,
Beranek, and Newman, Inc., of Cambridge, Massachusetts; and Inform
ation International, Inc., also of Cambridge. He has accepted a
position as Senior Scientist at Bolt, Beranek, and Newman, begin
ning June, 1966

His publications include:

New Methods for Real-Time Recognition of Hand-Drawn Characters,
Master's Thesis, Massachusetts Institute of Technology,
Department of Mathematics, June 1963

"Real-Time Recognition of Hand-Drawn Characters," Proceedings of
the Fall Joint Computer Conference, ~partan Press, Baltimore,
Maryland, 1964

"FLIP-A Format List Processor" MIT Project MAC Memo Mac-M-263,
September, 1965

"EDIT and BREAK Functions for LISP" MIT Project MAC Memo Mac-M-264,
September, 1965

"Format Directed List-Processing In LISP" with D.G. Bobrow, BBN
Report #1366, Bolt Beranek and Newman Inc. Cambridge, Mass
achusetts, April, 1966

"The BBN LISP System" with D.G. Bobrow, et al, BBN Report #1346,
Bolt Beranek and Newman, Inc., Cambridge, Massachusetts,
February, 1966

193

