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ABSTRACT 

After introducing and defining the concepts of time-sharing, 
segmentation, and multiprocessing, two classes of systems incor­
porating these are introduced. Both classes use associative 
memories, as 'look behind' devices to speed the operation 
of addressing the segmented memory, with the distinction 
between classes being the location of the associative memory. 
In one class, there is one associative memory for each 
processing element, no matter how many main memory units 
are connected to a processor; in the second class, there 
is one associative memory for each main memory unit, with 
the processors sharing the associative memory. After introducing 
two criteria for input/output systems,that the overhead 
associated with their use be small and that they may be 
physically and logically simple, and describing further 
operations of the systems, it is concluded that members of 
the second class, having shared associative memories, best 
meet these criteria. 
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CHAPTER .l· INTRODUCTION. 

With the rapid advances made recently in high speed digital computers, 

there has been a proliferation of ad hoc solutions to the various problems 

arising from ever larger configurations. This paper is a study of the 

effects of various requirements, especially those associated with 

input/output, on a specific type of computing system. The system under 

study is assumed to have three properties. 

1) The computer operates in a time~sharing mode, with many users 
. d . h . 1 . 2,13,17 being service wit apparent simu taneity. 

2) Memory is segmented, according to the scheme of Dennis, with 
5 8 11 14 

individual words being referred to as elements of segments. ' ' ' 

3) There are several processing units using the main memory 
5,8 

simultaneously. 

A brief discussion of these properties is now given. 

Time-sharing 

A time-shared computer is one in which any one of a number of processes 

(called user processes or user programs, or simply users) may be being 

executed at any instant of time. The time during which any given process 

is in execution, and the length of time during which it remains in 

execution, are both unpredictable as far as the user is concerned. The 

determination of which program should be in execution, and for what 

amount of time, is the job of the supervisor, a program which enjoys 

a certain amount of immunity from the randomness of the users. The 

supervisor may perform other tasks also, but it is, primarily the 

scheduler and hence, originator of all activity within the system. 
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In such a system those users which are not in execution must be 

stored someplace. If there are only a few users, and the length of 

their program and data is small then perhaps they can all be stored 

in~ memory, i.e. the set of memory cells referenced by the 

address portion of a typical instruction, or by the program counter. 

If, however, there is too much information to be held in main memory 

all at once, then auxiliary memory must be used. By auxiliary memory 

is meant the set of all disks, drums, tapes, etc. which may contain 

information capable of being brought into main memory, or which may 

accept information from main memory. 

It is important to note, at this point, that, if a user is to 

produce the proper results regardless of when he is executed, there 

must be more than his program and data saved away in memory when he 

is not being executed. There must be at least the location of the 

instruction being executed, and the values of various processor 

registers (accumulators, index registers, etc.). Perhaps more 

information such as the allocation of certain external devices, 

is also needed. The set of all information needed to successfully 

restart a user after another user has been executed is defined to 

be the~ word of that user. Each user, from the time he is first 

in execution, until the time he is finished, must have some storage 

assigned to his state word. Since, furthermore, the state word will 

spend most of its time in storage, rather than in a processor, there 

is no need to continually shift it about in memory. In fact, we shall 
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------------------------ . assume that the location of the state word of a--grven process remains the 

same throughout the period from the beginning of execution to the 

termination of that process. Figure 1.1 shows state words as they 

are stored in memory. 

Memory protection and relocation 

Since part of one users program may be in main memory while another 

user's process is being executed, there must be some scheme to protect 

the dormant (Le. not being executed) process from the one being 

executed. There are two rather simple ways to provide this protection. 

First, if each process occupies one contiguous piece of memory (at least 

while it is being executed), then any address generated can be compared 

to an upper and lower bound. If the address is not within these bounds, 

an error condition exists. Second, each address generated may be 

compared to a table of valid addresses for this process. In either 

event it is more practical to consider not the individual words of 

}.., 
memory, but larger pieces, of size 2 words, called blocks. In the 

first case, this permits the checking apparatus to be smaller by}... bits, 

while in the second case, it permits the reduction of the search to 

a table lookup. In both cases, the effect is to partition main memory 

into blocks. To lend concreteness to this argument, assume that main 

memory is 2° words large, and that each block of 2}.., words long; then 

a-A 
there are 2 blocks. For a reasonable size memory, 64k words(a=l6), 
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Figure 1.1. Simple state word storage 
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and reasonable size blocks, 1000
8 

words (A=9), then there are 128 blocks, 

and a table lookup to determine validity is certainly possible. 

Since main memory is divided into blocks, the allocation of it must 

also be in terms of blocks, and hence, the auxilary storage devices may 

be designed to perform data transfers in multiples of one block. This 

is a further argument for dividing main memory into blocks. For convenience, 

we shall refer to the A low order bits of the address as the line number, 

and the (a-A) high order bits as the block number. See also appendix 1. 

Since there may be many users, many blocks of a given user may be 

placed on auxiliary stoFage between periods of execution, and it may be 

more convenient to return these blocks to main memory locationsother than 

those in which they were initially stored. It this is to be done, some 

facility must exist for forcing the program to perform as it would if it had 

not been moved about in main memory. This facility is called relocation. 

There are many possible alternatives for this. One is to provide enough 

information to permit the supervisor to modify the words of the program 

whenever it is moved. This is not particularly desirable since it may 

involve considerable overhead expense. A second alternative is to 

provide a mapping from the addresses which the user generates into 

addresses which represent the proper locations in main memory. At this 

point, we introduce some terminology to facilitate the discussion. 

First, the block number, line number pair which is actually used to perform 
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the memory access is termed a location. Tite configuration of bits which the 

program generates which correspond to a location is termed an address. Since 

protection is provided on the basis of blocks, it is not unreasonable to provide 

relocation on the basis of blocks also. Tite line number of the location and of 

the address are then the same, while the block number of the location corresponds 

to the~ number of the address. All that is needed for automatic relocation, 

therefore, is a table, for each user, which gives the correspondence between 

page numbers and block numbers. 

Note that there exists the possibility of more addressses than locations. 

Titis situation is entirely acceptable if no more words are actually needed 

than there are locations; bhe other words may be stored on auxiliary storage. 

In fact this situation is actually desirable; for example, if a user has two 

arrays which may grow exceedingly large, but of which only the last few entries 

are relevant at any given time, then the user may start one array at L/2, and 

3L the other array at - , where L is the largest possible address. Eit.her array 
4 

may then grow to occupy one quarter of the total possible addresses, and the 

programmer need not concern himself with the problems of dynamic arrays, if 

there are enough addresses. A large number of addresses implies a large number 

of bits in the address portion of an instruction, most of which will be zero in 

most cases. To avoid the expense inherent in many bits in the address, we simply 

8 11 abbreviate some of the bits by using a scheme called segmentation. ' 
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Segmentation 

In the segmentation scheme, we assume there exist several attachment 

registers which can be loaded, in essence, with the particular high order 

address bits desired. Then, in the instruction, instead of providing large 

page numbers, a few high order bits, called the attachment!!.& or segment 

tag, are used as the number of the attachment register to be used with 

this address. The total address is formed by concatenating the contents 

of the proper attachment register with the page number and line number 

from the instruction. Everything but the line number is then transformed 

to a block number which, with the line number, forms a location. Any 

configuration of bits which can be loaded into an attachment register 

determines a segment, the particular configuration being called the name 

of the segment. The number of bits provided in an instruction for the page 

number and line number and the size of index registers, determine the 

maximum possible size of a segment; since this maximum size is very large 

(presumably) the following fiat will be made to simplify the resulting 

system: there is no relation between the addresses of two different 

segments. Til.at is, whereas if 1 is added to the address of the last 

word of page 1 of a given segment, the resulting address is that of the 

first word of page 2 of that segment, if 1 is added to the address of the 

last word of the last page of segment 1, the resulting address is meaningless; 

it is not the address of the first word in segment 2! Repeating, the words 

of any one segment are contiguous if their page number, line number pairs 
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5 are contiguous; the words of two different segments are unrelated. 

This simple restriction permits much simplification of the hardware. 

In particular, it means that relocation for each segment may be done without 

regard to other segments. Namely, for each segment, there exists a segment 

th 
l?!.&!:.~• or simply ~l!.!?1£, the i entry of which gives the block 

th number corresponding to the i page of the segment. The page table may 

also give protection information for each block, although this, in general, 

will be the same for each page of a given segment. Note that in this way 

several users may use the same segment without establishing too elaborate 

conventions. Note also, that there is implied a relationship between a 

segment tag and the page table for the associated page table; t~is relationship 

is established by the supervisor. Figure 1.2 shows schematically the operation 

of a segmentation scheme. 

Multiprocessors 

Up to this point, it has been assumed that there was only one processor 

utilizing memory. In a large time-sharing system, however, it is unlikely 

that this will be the case, especially since it is, after a certain point, 

less expensive to build two processors than to build one processor which 

is twice as fast as either of the two. All of the previous discussion is 

valid, but a few more points may be made which arise from the fact that 

there is more than one processor. 
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The most important point is that there must be a device called an 

arbiter, in the system which resolves conflicts in the use of memory, 

i.e. it decides who goes first if two processors desire access to the same 

block of main memory. This is necessary, since, by the way they are 

constructed, core memories are capable of accessing only one word at 

a time. This consideration also dictates that instead of one large 

core memory for a main memory, there should be a multiplicity of smaller 

core memories. Of course, each of the smaller core memories must have 

an arbiter for its own, to take advantage of the multiple memories. 

If input/output devices, furthermore, are treated as processors i.e. 

they are capable of executing a certain limited set of inst~uctions which 

must be fetched from main memory, then there must also be a device in 

the system which routes I/O instructions fetched by a main processor to the 

proper I/O device. This function is most easily made part of the arbiter, 

which must already be connected to each processor and I/O device. Clearly, 

this function of the arbiter need not be duplicated for multiple memories. 

Having added this much to the arbiter, it is not unreasonable to consider 

adding slightly more, and making the arbiter the controlling element in the 

system. In particular, the arbiter should have the ability to store a 

processors state word, load a processor with a state word, and, perhaps, 

automatically decide what state word should be loaded into what processor. 
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The first two abilities are needed to handle for example, malfunctions of 

the I/O system where the process manipulating the I/O device should be 

halted, and an error routine initiated. The last ability is not needed, 

but makes a large portion of the scheduling problem quite quickly solvable. 

More will be said about the arbiter in later chapters. 

Finally, reliability dictates that, for every device in the system, 

there will be at least one duplicate. This permits any element of the 

system to be disconnected for maintainence purposes without shutting 

down the system. This then leads to an overall system arrangement as 

shown in Figure 1.3. 
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CHAPTER 2. DETAILS OF 'IWO CIASSES OF CONFIGURATIONS. 

Given the properties of a time-shared, segmented, multiprocessor 

system, there are, of course, several possible ways to realize it. 

That is, there are several differing system designs which meet all 

of the criteria laid down in the previous chapter. At this point, 

two classes of such systems, differing only in the way attachment 

registers are implemented, are presented and examined. 

Class 1: Associative memory in the processor 

The first system to be studied resembles both the one currently 

being constructed at Project MAc5 •7 ; 14 •18 •20 and the one originally 

. 8 11 12 
proposed by Dennis. ' ' As far as the user can tell, this system 

differs from a standard computer only in the addressing scheme, which 

uses the segmented form of addressing described in Chapter 1. The 

address consists of a segment tag, a page number, and a line number; 

as mentioned before, the supervisor establishes a relationship between 

the contents of a attachment register and the page table for the 

appropriate segment. In particular, corresponding to each attachment 

register, there is a segment~~ register which gives the location 

in main memory of the initial word of the page table for the segment 

named in that attachment register. The appropriate block number for 

any segment tag, page number pair, therefore, is determined from the 

contents of the location formed by adding the page number to the contents 
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of the appropriate segment page table register. As described, this 

system requires two memory references for each word of memory actually 

desired; the first reference is to determine the correct block number, 

the second to actually fetch the word. 

The effective speed of the system is, therefore, halved by using 

segmentation. Since this is a rather heavy penalty, the speed of the 

system is improved by adding, to each processor, an associative memory to 

be used as a 'look behind' device for determining the proper block number, 

given the segment tag, page number pair; Le. an associative memory of 

n words holds the n most recently used segment tag, page number pairs 

and the corresponding block numbers, for this user. (See Figure 2.1) 

Instead of using the segment page table registers to determine the 

proper block number, the associative memory is consulted first, and 

only when the segment tag, page number pair is not found, are the 

segment page table registers used. In this way, much of the time spent 

in determining block numbers can be eliminated, and/or overlapped with 

the cycle of main memory. Figure 2.2 shows a typical processor for this 

system; since the associative memory is located in the processor, this 

system will be called AMP. 
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Class 2: Associative memories pooled in the arbiters 

Since AMP is assumed to be a multiprocessor system an alternative 

method of organization immediately presents itself. In particular since 

the processors all share a coamon main memory, there exists the 

possibility of their sharing associative memory also. Just as sharing 

permits more efficient use of main memory, the same statistical 

properties should permit more efficient utilization of the associative 

memory. Since associative memories are currently rather expensive, this 

may in fact be an important economic factor. The issue is not one sided, 

however, since if the associative memory is pooled among several devices, 

its entries must contain information telling to which processor it belongs. 

This means that each word of the associative memory must contain more bits, 

and consequently be more expensive. 

There are other problems involving the pooling of the associative 

memory, however, which are not simply economic. The problem of many 

devices communicating with the same associatve memory is the same as 

that which arose with regard to many devices and the main memory; and 

the place to solve both problems is the same, in the arbiter. A 

distinction between the problems exists, however, in that the block 

number of a word of memory uniquely determines one arbiter which has 

control over that word, whereas, a segment tag, page number pair does 

not determine an associative memory with a matching entry. In particular, 
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the only way of determining the presence of a segment tag, page number 

pair somewhere in the associative memory, is to probe the associative 

memory in each arbiter. This can be done in two ways, either by 

interrogating the arbiters in sequence, or by broadcasting the 

interrogation to all arbiters at once. 

Subclass 1: Sequential probing of associative memories 

In this system, called AMAS since the associative memories in the 

arbiters are sequentially probed, the device attempting to access main 

memory directs a request to some particular arbiter, 'A', for the word 

corresponding to some segment tag, page number pair, for this user. 

'A' may respond either with the desired word, or with an error flag 

indicating that the associative memory associated with 'A' does not 

contain a match for this segment tag, page number pair. If the error 

response occurs, the process is repeated with arbiter 'B', and so on, 

until either a match is found, or some predetermined number of arbiters 

has been unsuccessfully probed. If a match is found, then the block 

number is known, and the desired word may be fetched from main memory. 

If no match is found, the segment page table registers are used to 

determine the block number. Note that at each arbiter, there may be 

some time wasted in queues, and that, if no match exists in any 

associative memory, this time may be more than that which would have 

been wasted by using the segment page table registers in the first place. 
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A diagram of processors and arbiters in AMAS is shown in Figure 2.3. 

Subclass 2: Broadcasting to-multiport associative memories 

In this system, the device requesting access to main memory "broadcasts" 

to several arbiters at once, the segment tag, the page number pair, and 

the user's identification bits. If a match is found, and it is assumed 

that the associative memories are loaded in such a way that only one 

match will be found, then the output of the associative memory is the 

proper block number, and a fetch from main memory is performed by the 

appropriate arbiter. It is clear in this scheme that the several associative 

memories will be rather busy looking for matches, since each arbiter must 

probe its associative memory for every request of every processor connected 

to it. In comparison with AMAS, assuming that the interconnections between 

arbiters and processors is the same, this system generates twice as many 

requests on the average [assuming uniform distribution of requests to 

arbiters]. This could present a problem of time being spent waiting in 

line to use the associative memory; using current, integrated circuit 

technology, however, it is possible to build an associative memory with 

many input and output pairs, so that each processor could have its own 

private input and output buffers, and no waiting would ever need to occur 

in normal operation. Since this system uses a multiport associative memory 

in the arbiter, it is called MPAMA. A diagram of the processors and arbiters 

is shown in Figure 2.4 
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Further considerations for both classes 

Having sketched the basic principles of the two classes of systems, 

the operation will be examined more closely. Consider first the problem 

of loading an attachment register so that references involving that 

register are defined. The most obvious instruction for performing 

this operation is 

Load Attachment Register from Y 

where Y contains the segment name. Although obvious this method is 

undesirable since the formation of an association between the segment 

name and the location of its page table, which will probably involve 

much overhead, must be repeated each time an attachment register is 

loaded. A more devious system, involving two instructions, is therefore 

assumed; the first involves all the overhead present in the above scheme, 

but is used less frequently; the second requires very little overhead, 

and is executed whenever it is desired to load an attachment register. 

The first instruction is really a call to the supervisor. The 

notation for this instruction shall be 

j :=acquire Y 

where Y contains a segment name. The notation means that the supervisor 

should perform all the bookeeping needed to permit the user to reference 

the segment, and should place the address of the page table for this 

segment [along with protection information] into a special segment 

called the user's segment directory. The location within the segment 

directory at which this information is stored, called Y's directory 

index, is placed in j. 
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nte second instruction is a true machine instruction: 

I.AR n,j ,!pad !ttachment !egister n from j 

where j contains a directory index. Notice that it should be no more 

difficult to implement the I.AR instruction that it is to implement a 

~~register instruction. If the user, furthermore, cannot 

alter his segment directory, except by way of the supervisor, then 

it is impossible for the user to load an attachment register with 

invalid information. In actual operation, the I.AR instruction places 

the address on the page table of a segment into the segment page table 

register. 

Next consider the use of the associative memory. As first described, 

the associatfve memory was merely a look behind device, and the attachment 

registers and segment page table registers were actually distinct hardware 

registers. A little thought will reveal that the attachment registers 

are no longer needed, since only the address of the page table is really 

used, and it exists in the segment page table register. Since all systems 

are coumitted to an associative memory, furthermore, it is possible to 

eliminate the page table registers as distinct hardware items, and 

implement then as specially flaged entries in the associative memory. 

ntis should, in addition to eliminating registers, improve the statistical 

properties df the pooled associative memory. 
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If the entries in the associative memory correspond to page table 

registers are not used frequently, it is quite likely that these entries 

will be purged from the memory. Since this would make it impossible to 

determine the block number of a page of some segment if the segment tag, 

page number pair were not already in the associative memory, some trickery 

is needed. Observe first that someplace in the state word of a user, there 

must be storage provided for the attachment registers so that a process, 

once stopped, can be restarted. All that is really needed then is the 

directory index for each attachment register, corresponding to the most 

recent LAR n,j instruction. One way to insure this information being 

always present, is to have the LAR n,j instruction copy the,contents of 

j into a location, say k2+n within the state word. "nle contents of a 

segment page table register can always be reconstructed, in this case, 

by effectively executing an LAR n, k2+n instruction. "nle organization 

of the state word for this system is shown in Figure 2.5. Details of 

all three addressing schemes are given in Appendix 2. 
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CHAPTER 3. INTRODUCTION TO INPUT/OUTPUT. 

At this point it is appropriate to consider the processes by which 

programs acquire data and demonstrate results. Although there are many 

aspects of these processes, the general term for the processes as a 

whole is input/output; these input/output processes are characterized 

by the fact that they interact with elements of the system other 

than the main memory and processors, and hence may involve relatively 

long times for completion. 

First criterion for input/output-low overhead 

As a preface, two criteria for any input/output system are 

introduced. First and foremost is the requirement that whatever 

input/output is performed, the overhead shall be minimal. By overhead 

is meant that expense, in terms of time and money, which would not be 

incurred had the equivalent operation been done on a non time-shared, 

segmented, multiprocessor system. This goal is, of course, reasonable, 

but it has been made a primary objective as a simple economic consideration; 

namely, most of the computing being done at the present time is limited, 

not by the speed of processing, but by the speed of input/output devices. 

This is entriely understandable, since most input/output devices, such as 

tape drives, line printers, and punched card equipment, are electromechanical 

by nature, rather than electronic. 
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This limitation means, however, that if there is overhead associated with 

input/output, then certain programs will never be reasonably run in a 

time-shared, segmented, multiprocessor system. In particular, if a 

program is limited by input/output time, then, although the computations 

can be performed more efficiently, and even less expensively, by a 

time-shared, segmented, multiprocessor system, the expense of the 

overhead in doing input/output will overshadow the other savings, and 

such a job will always be best performed on a conventional machine. 

More concretely, consider a typical business type data processing problem, 

such as the production of a weekly payroll. Such a job is typically 

done on a small, slow, business oriented machine [such as the ubiquitous 

IBM 1401], even though it might be performed more efficiently, and with 

less programmer effort, on a large machine. This reason for doing it 

on a slow machine is simply that, since most of the processor time will 

be spent waiting for input/output to be completed, it is less expensive 

to have a small processor wait than a large one. It is clear then 

that there might be some slight advantage for the individual with an 

input/output limited problem to using a time-shared segmented multiprocessor 

system, if there is no overhead in performing input/output. 
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The important reasons for wanting to be able to accomodate such users, 

however, are not the advantages to the user, but the advantages to the 

system. It is important to recall at this point, that, classically, the 

reason for wanting to time-share a computer system is that, in this way, 

the load upon the various elements of the system would be averaged over 

several users, and hence would be more nearly constant. Inherent in 

this philosophy is the idea that some tasks will be limited by computation 

speed [these are called scientific jobs) and others will be limited by 

input/output speeds [these are called 'business' jobs]. In fact, 

however, if there is any overhead in input/output, then the business 

jobs will never enter the system, and the efficiency of the system 

as a whole will decrease. 

Second criterion for input/output-simplicity 

The second criterion for input/output system is that there must be 

an interface to which rather simple data acquisition systems may attach. 

This is to attract more potential users to the system, and hence to improve 

the statistics of usage. In particular, it is desired that some inefficiency 

of processor time maybe exchanged for simplicity of hardware, and the 

resulting increase in the number of problems actually being solved on the 

system will compensate in overall efficiency for this local inefficiency. 

"nl.is goal is really an attempt to prevent small conventional system from 
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flourishing because certain small data acquisition devices, such as analog­

digital converters, and counters, are more easily connected to small systems 

than to large ones. "nlis second goal suggests the idea that the solutions 

of some problems associated with input/output are really no more than 

special cases of solutions to general problems associated with multiple 

processors. The specific problem of allocating input/output devices 

ought really to be considered part of the problem of allocating processors 

to parallel paths within one program. If, indeed, this approach is taken, 

then there immediately arises the question of whether all processors are 

equivalent; that is, can any processor perform any task? If the processor 

is an input/output channel (in the IBM sense of channel] then the response 

to such a question must be in the negative; one should not e~ct a data­

channel to perform floating point division. Closer examination, however, 

reveals that such an answer is really avoiding the question, since it 

already assumes the existence of a data channel. The real question is 

whether or not such a channel should be built. Without attempting to 

answer this question, it is simply noted that data channels were added 

to the IBM 704, to form the IBM 709; it was easier to add them than to 

redesign the entire processor. Recently, however, the DEC PDP-6 has 

appeared, aimed at the same market as the IBM 7090/7094, without any data 

channels, using instead, _a highly flexible system of priority interrupts. The 

philosophy is simply that, using this interrupt system, input/output activity 

requires a sufficiently small percentage of the processor time that the cost 



-35-

of building a data channel would be greater than the savings which would 

result. If, in fact, in a large system, some processors are used as data 

channels, the prime benefit is in reliability, since now not only may 

processors replace processors, and data channels replace data channels, 

but data channels can replace processors and vice versa. 

It is impossible to resolve the questions of philosophy involved in 

one paragraph, however, it is worthwhile to note that no program can keep 

all parts of a modern sophisticated processor equally busy, without 

extremely careful (and unlikely) planning. [The CDC 6600 provides 

the biggest challenge in this respect). It is not unreasonable, therefore, 

to consider any large system to be built from many blocks of similar but 

not identical nature; something similar to the IBM system 360 will 

probably exist, with the exact mix of models depending on the expected 

type of job for each particular installation. A user may then specify 

which processor he wanted to execute his program, cliosing on the basis 

of what he needs, and how much he is willing to pay. A user with little 

or no floating point calculation should not have to pay for expensive 

floating point hardware; he may even be willing to let all floating point 

calculations be done interpretively, by software. A user doing no 

variable length comparisons, similarly, should not pay for hardware to 

do them. Each user will normally request the minimum hardware to do his 

job efficiently. If, however, the exact item he wants is not available, 
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no matter; the supervisor can assign a different processor, and adjust 

his charges accordingly. This scheme tacitly assumes that all processors 

have a common order code; with the exception of specialized I/O processors~ 

this is not an unreasonable assumption, and will in fact be made. 

Just as a variety of processors was postulated, so also a broad 

spectrum of input/output processors will be assumed. These will vary 

from "standard" units, such as tape drives and controllers, to "non­

standard" units such as on-line mass spectrometers. Of course, the 

supervisor can only be expected to "know" about standard units; its 

knowledge of non-standard units will be limited to their existance 

and a list of authorized users. As will be seen shortly, this is really 

all that is needed. 

Realizing the first criterion-addressing 

One of the most obvious methods of reducing overhead in input/output, 

or in anything else, is to reduce the work the supervisor program must 

perform. When an input/output operation is begun, the location of some 

data must generally be communicated to the input/output device; since 

true locations are known only to the supervisor, whereas segmented addresses 

only are known to the user programs, locations must be transmitted to input/ 

output devices as segmented addresses, to avoid calling the supervisor every 

time input/output is desired. It thus follows as an immediate consequence 

of the first criterion, low overhead in input/output, that all processors 

and input/output devices must use segmented addresses, and must, accordingly, 
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have attachment and segment page table registers. In fact, the need 

for calling the supervisor lo provide locations for each input/output 

operation generates so high a percentage of the total input/output 

overhead, that the requirement of segmented addressing for input/output 

devices will be considered equivalent to the first criterion. 
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CHAPTER 4: SCHEDULING. 

Before proceeding, it is necessary to make some assumptions about the 

method by which jobs are scheduled on the microscopic level. The question 

of macroscopic scheduling, of which programs enter core, or of how users 

are allotted the various resources of the system, is not relevant; such 

schemes exist in infinite variety. What is relevant is the scheme by 

which the system's resources are kept maximally busy on a millisecond 

to millisecond basis, by reallocating processors to the various programs 

as events occur within the system. The most important event, for our 

purposes, is the requesting, by a program, of a different processor, 

when the program requires different facilities for its execution. One 

important instance of such an event occurs when a program desires to 

perform input/output activity. 

For the purpose of performing this scheduling, a system of queues is 

assumed, one for each processor type, with these queues arranged into 

rings of processes, one ring for each priority level. A diagram of this 

structure is shown in Figure 4.1 

The Permanent Priority Entries, labelled PPE, one for each processor 

type, for each priority, always exist; the locations for them are 

recognized by the hardware. Each entry contains two pointers; one is 
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Figure 4.1. Typical ring of queues for a two processor 
type system 

PPE =-Permanent Priority Entry 
RPE .'!" Ready Process Entry 
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the first pointer in a list running forward through all the Ready Process 

Entries for this processor type and priority; the other is the first 

entry in a list running backward through these entries. At any instant, 

therefore, the first(head) and last(tail) entries for any given processor 

type and priority are known. Since a Ready Process entry contains a 

pointer to the state word of the associated process, given the Ready 

Process entry, the processor can find all the information needed to 

execute the corresponding process. 

Scheduling within this system is rather simple; each processor executes 

the job at the head of its highest priority non-empty ring, removing the 

corresponding Ready Process entry from the ring structure as it begins 

execution. As time progresses, the priority of the job under execution 

decreases. The highest priority in the ring structure is constantly 

compared with the priority of the jobs being executed, and, if the ring 

structure contains a job of higher priority than any job being executed 

by any processor of the corresponding type, a process swap occurs. During 

a process swap, the state word of the processor is stored in the appropriate 

place in memory, a Ready Process entry corresponding to the process being 

executed is placed at the appropriate point in the ring structure, another 

Ready Process entry is removed from the ring structure, and the corresponding 

state word is· loaded into the processor. 
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A little reflection will reveal several interesting points. First, 

since each processor must have the ability to keep track of its ring 

structure and to execute a process swap, and since these abilities will 

not be in constant use, it is reasonable to make the hardware for these 

abilities shareable by incorporating it into the arbiter, and, in 

effect, providing the processor with instructions, which can be 

issued to the arbiter, for using the hardware to modify the ring 

structure and load and store the elements of the state word. Second, 

loading and storing of the state word of a process ought to be under 

control of the processor; although performed by the arbiter in fact, 

the first thing to be loaded should be an indication of what else 

must be loaded. This lets the programmer control more precisely the 

overhead involved in his being activated; thus if a user is using only 

one of sixteen accumulators, he can avoid storing and loading fifteen 

assumulators every time he is activated. Furthermore, different 

processors may have different elements in their hardware; one processor 

may have hardware index registers, while another may use memory locations 

instead. A third point is that Ready Process entries, instead of having 

pointers to state words, may be made part of the state word, i.e. given 

the location of a Ready Process entry, the location of the rest of the 

state word may be implicitly rather than explicitly determined. This 

point is mentioned simply to indicate that there is nothing scared about 

h . . d 'b d 9 t e exact organ1zat1on escr1 e • 
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More interesting is the observation that, in this system, changing from 

one processor to another is simply a special type of process swap; the 

appropriate point, mentioned above for the Ready Process entry corresponding 

to the process being executed, lies, not in the ring structure for this 

processor type, but in the ring structure for another processor type. 

More on this later. 

It is important, also, to note that processors in the sense used 

above need not correspond to different physical entities. For example, 

one physical magnetic disk storage unit may correspond to as many 

processors as there are disk access mechanisms. 
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CHAPTER 5. DETAILS OF INPUT/OUTPUT. 

Allocation of input/output devices or other processors, and protection 

of these from tampering by other users, is very similar to allocation and 

protection of core memory. It is desirable in both cases to provide the 

protection in hardware, so that devices or memory may be used with 

minimum overhead. In both cases, also, it is desirable to lump all 

the overhead into one call to the supervisor, which is executed once, 

all necessary allocation and protection thereafter being handled by 

hardware. More precisely, since a system of memory allocation has 

been designed, a slight extension makes it suitable for allocation 

of processors. This extension is simply that in 

j : = acquire(Y) 

Y may be, not only a segment name, as before, but also a processor name. 

Since the same instruction is being used, the distinction, if it need 

be made, must lie in the names; segment names must be distinguishable 

from processor names so that the supervisor can tell what is being 

allocated. The only things the supervisor needs to know about the 

processor being allocated is its existence~ and whether or not a 

particular user is permitted to acquire it. This last restriction is 

not really meaningful if the processor is a standard arithmetic 

processor; however, if the processor is a line printer control, then 
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this restriction is reasonable. In any case, the supervisor allocates the 

processor, and places an entry at location j in the user's segment directory. 

[Incidentally, the term segment directory is no longer appropriate since 

it will contain entries other than those for segments. The name c@pability 

directory will therefore be used]. 

Having created an entry in the capability directory, the only operation 

which can be performed is placing the entry in an attachment register. As 

before, this is a hardware operation which places the directory index in an 

appropriate location in the state word of the process. Now, in order to 

force execution of the current process by the processor named in 

attachment register n, a special instruction is executed: 

GP n Get frocessor from attachment register n 

This instruction causes the processor to instruct the arbiter to perform a 

special process swap, described earlier, in which the Ready Process Entry 

for the current process is placed in the ring structure for the processor 

named in attachment register n. The exact point in which to place the Ready 

Process Entry is determined by the equivalent of the contents of the segment 

page table register for attachment register n. In particular, this register 

contains, instead of the location of a page table, the location of the 

Permanent Process Entry for the prpcessor and priority desired. Thus when 

the 'GP n' instruction is decoded by the processor, the processor sends 
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instructions to the arbiter to store its current state word {exactly 

what is stored is determined by the processor], insert a Ready Process 

entry into the ring whose Permanent Priority Entry is specified by the 

contents of the segment page table register for attachment register n, 

pick the highest priority Ready Process ntry from its own ring structure, 

and finally, pick up the corresponding state word. 

Since the number of Permanent Process Entries is small, there will 

be unused bits in the segment page table register when it is being used 

in this manner. These bits should be made part of the state word of 

the process and should be available to the processor if desired. The 

particular purpose of this is to provide for many different protected 

entities with entries in the same ring structure. Consider the problem 

of two processes wanting to use the same tape controller, but different 

drives. The supervisor must protect the two users from one another, but 

the controller should have a simple method of determining to which unit 

the instructions issued by a process apply. By placing the unit number 

in the unused bits in the page table register, it is protected from 

alteration by the user, and at the same time is readily available to 

the processor. 
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Example 

In order to clarify and illuminate some of these ideas, a program 

for simulating a card reproducer is shown. The program is written in 

MAD except that machine code instructions are sprinkled in where needed. 

These instructions are: 

LAR n,Y 

GP n 

READ y 

WRITE Y 

STATUS Y 

The program follows: 

Load Attachment Register n from location Y 

Get the Processor named in attachment register n 

Read a card into location Y, Y+l, etc. until the 
entire card has been read. 

Write a card from locations Y, Y+l, etc. until 
an-entire card has been filled. 

Place the status information for the processor 
into location Y. 

VECTOR VALUES CR • $10, CARD READER, 1$ 

R FOR ACQUIRING CARD READER NUMBER 1 FOR THIS PROCESS 

VECTOR VALUES CP • $10, CARD PUNCH 1$ 

R FOR PUNCH 

VECTOR VALUES DSEG "' $ SECJmNT, READ, WRITE, CREATE$ 

R FOR ACQUIRING A NEW SEGMENT WITH READ AND WRITE 

R CAPABILITIES 

VECTOR VALUES ZERO .. 0 

R THE NAME OF THE CURRENT PROCESSOR IS ASSUMED 
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R TO BE STORED AT INDEX 0 IN THE CAPABILITY 

R DIRECTORY 

J CR = ACQUIRE (CR) 

JCP = ACQUIRE (CP) 

JDSEG = ACQUIRE (DSEG). 

R GET ALL NEEDED DEVICES AND STORAGE FROM TH13 SUPERVISOR 

I.AR 3,JCR 

I.AR 4,JCP 

I.AR 5,JDSEG 

I.AR 6,ZERO 

R AT THIS POINT, THERE IS NO ENTRY IN ANY RING STRUCTURE 

R CORRESPONDING TO THIS PROCESS, SINCE IT IS ACTIVE 

GP 3 

R THIS CREATES AN ENTRY IN THE RING STRUCTURE FOR THE 

R CARD READER. THE ARITHMETIC PROCESSOR IS NCM WORKING 

R ON ANOTHER JOB. THE CURRENT PROCESS WAITS UNTIL 

R THE CARD READER WILL SERVICE IT. 

READ [6 ,2] 

STATUS [6,0] 

R THE ABOVE l'WO INSTRUCTIONS ARE EXECUTED BY 

R THE CARD READER AFTER THE READY PROCESS ENTRY 

R HAS BEEN REMOVED FllCM THE RING STRUCTURE 

GP 6 

R PUT READY PROCESS ENTRY INTO ARITHMETIC PROCESSOR'S 

R RING STRUCTURE, AND WAIT 

WHENEVER ([6,10] .AND. EMASK .NE. 0), EXECUTE ERROR. ((6,0]) 
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R EMASK MAR.KS OFF ALL BUT THE ERROR INDICATIONS 

WHENEVER ( [6 ,OJ .AND. EOFMSK .NE. 0), EXECUTE EKIT. 

R TEST FOR NO MORE CARDS. EOFMSK MARKS ALL BUT END OF 

R FILE FIAG 

GP 4 

R PIACE READY PROCESS ENTRY INTO RING FOR CARD PUNCH, AND 

R WAIT 

WRITE [6,2} 

STATUS [6, 1] 

R EXECUTED BY THE CARD PUNCH AFTER REMOVING READY 

R PROCESS ENTRY FROM ITS RINGS 

GP 6 

R WAIT IN ARITHMETIC PROCESSOR RING 

WHENEVER ([6,1] .AND. ERMSK .NE. 0), EXECUTE ERROR. ([6,1}) 

TRANSFER TO LOOP 

END OF PROGRAM 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH. 

In Chapter 2, two classes of systems, which appeared only trivially 

different then, were described. If the proposals made in the preceeding 

chapters are valid, however, there is only one reasonable choice for the 

organization of a time-shared, segmented, multiprocessor system. 

This choice is MPAMA, systems using multiport associative memories 

located in the arbiters. 

MPAMA is chosen instead of AMAS, systems with associative memories 

in the arbiters sequentially probed, simply because of speed. By probing 

all associative memories simultaneously rather than sequentially, MPAMA 

should require less time than AMAS to determine the proper block nuniber 

for a given page number,segment tag pair, a~suming that the size and 

time for a single probe of the associative memory is the same in both 

systems. MPAMA should, therefore, require less time for a memory reference, 

on the average, and correspondingly be faster than AMAS, although the 

two systems are otherwise identical. 

AMP, with the associative memories located in the processors, is 

discarded because of the difficulty in meeting the two criteria for 

input/output systems, low overhead and hardware simplicity, as discussed 

in Chapter 3. The second criterion, hardware simplicity, is violated 

by the fact that each input/output device must have special hardware, 

perhaps an associative memory, for dealing with segmentation. Since 

this argues strongly for input/output devices dispensing with segmented 
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addressing, and referencing memory by location, it is necessary to recall 

from Chapter 3 that this plan would require supervisory intervention for 

each input/output operation, and hence violate the first criterion for 

input/output,low overhead. 

The first criterion, furthermore, is violated by the need for duplicating 

entries in the associative memories of the arithmetic processor and an input/ 

output device, if both are used by the same process. In particular, since 

processors in MPAMA use the same associative memory, when a process is 

transferred from one processor to another, memory cycles are not necessarily 

spent in reloading the associative memory. Further details of how MAPMA 

meets both criteria of Chapter 3, are shown in Appendices III and IV. 

It is acknowledged that the ideas in this paper are not a complete 

solution to the problems of input/output. There are those who will say 

that these proposals are too extreme, and that the current method of 

program interrupt is sufficient; there are those who will say that these 

proposals are too conservative, that in a few years, processors will 

consist of small elements, with highly complex interconnections, so that getting 

a tape drive to operate and performing a floating point addition will be 

equally simple. It is recommended that the former study the arguments in 

this paper, and question their validity, and that the later study this 

paper as a starting point. 
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If this paper is taken as a starting point, then several projects 

should be undertaken as soon as possible. First, all three systems should 

be extensively simulated, so that any non-obvious properties of the system 

will be made apparent. Second, a detailed design and cost analysis of 

associative memories of the conventional type, and of the proposed multiport 

type, should be undertaken both for its own sake, and for the sake of 

comparing the actual cost of the three systems. Finally, as many computation 

centers as possible should collect statistics on the exact instruction mixes 

actually being run, so that more exact planning for optimizing response will 

be possible. 

It is impossible to determine the future. If this paper in any way 

affects that future for the better, that is a sufficient justification 

for its being written. The only possible strategy is to wait and see. 
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APPENDIX 1. NOTATION. 

Let a be a memory word. 

Then a contains an address portion. (i.e. 

which is normally interpreted by the hardware as an 

Then PN ( a ) represents the page number 

ST ( a ) represents the segment tag 

LN ( a ) represents the line number 

A ( a ) represents the address 

e.g.' a = 625113 6 73 2551 

address portion 

LN ( a ) = 2551 

PN ( a ) = 73 

ST ( a ) 6 

a section of the word 

address.) 

of the address 

Furthermore, if there are A bits used to indicate the line number, 

n bits used to indicate the page number, 

and ~bits used to indicate the segment tag, 

then the entire address A(a) is only determined insofar as the contents 

of attachment register ST(a) are known. At any instant, however, there 

are exactly 3 possibilities. Either 1) A(a) is an invalid address, in 

the sense that attachment register ST(a) has never been loaded, or 

2) A(a) corresponds to some location L(a), in main memory. In this 

n case, ST(a)·2 + PN(a) corresponds by some mapping to BN(a), and A(a) 

corresponds to L(a) =BN(a)"2A + LN(a), or 3) A(a) corresponds to some 

location in secondary storage. 
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When addresses are used in examples, Lhey will be written as [A, i] 

where A is an attachment tag, and i is an address without an attachment 

tag. Th<Jt is, i is A.+ Jc bils long, and i = LN([A, i]) + PN([A, i])'2A.. 
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APPENDIX 2. Flow charts for the addressing schemes of AMP, AMAS, and MPAMA 

The following flow charts describe the way in which the three classes 

of systems address main memory to produce, for process p, the word 

corresponding to attachment tag at, page number pn, and line number ln. 

The block number corresponding to the attachment tag, page number pair 

>.. (at, pn) is bn, and the location of the desired word is bn ·2 +ln 

(see appendix 1). It is assumed that the first element of the state word 

of process p is located in the first word of block sw; that location 

sw•2>..+k1 contains the block number for the first block of the capability 

>.. directory; and that location sw·2 +k2+n gives the directory index for 

attachment register n (see figure 2.5) 

In all three systems, the associative memory is probed, and if an entry 

is found corresponding to (at, pn), the value returned by the associative 

memory is the appropriate block number. If no such entry is found, the 

associative memory is probed to find the page table entry for segment 

tag at, and, if found, the value returned is the block number for the first 

word of the page table; this block number and the page number are used to 

get the block number of page pn for segment tag at; this information is loaded 

into the associative memory, and the cycle of probing the associative memory 

is begun again. If neither a segment tag, page number entry nor a page table 

entry is found, the location of the capability directory and the directory 

index for attachment tag at are found in the state word, and, from these, 

the block number of the first word in the page table for attachment tag 

at is found; the corresponding entry is made in the associative memory. 
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It is assumed that the associative memory has a hardware algorithm for 

determining which entry should be destroyed when a new entry is made. 

The words of the associative memory are divided into fields, Fl 

through F4 for AMP, and FO through F4 for AMAS and MPAMA. FO contains 

the process identification, which is not needed in AMP; Fl contains 

the segment tag; F2 contains the page number for segment ~ag, page 

number entries and zero for page table entries; F3 contains a flag 

which is zero for segment tag, page number entries and one for page 

table entries; F4 contains the corresponding block number for segment 

tag, page number entries and the block number for the first word 

of the corresponding page table for page table entries (page tables 

are assumed to be no longer than one block). The following notation 

is used in the flow charts: 

AMT(MO, Ml, M2, M3, M4) is a boolean function which is true 

if associative memory M4 contains an entry with FO=MO, Fl=Ml, 

F2=M2, and F3=M3. For AMP, the first and last arguments are 

omitted; for MPAMA, the last argument is omitted. 

AM(MO,Ml,M2, M3,M4) is a function which gives the value of F4 

for the cell in associative memory M4 with FO=MO, Fl=Ml, 

F2=M2, and F3=M3. For AMP, the first and last arguments are 

omitted; for MPAMA, the last argument is omitted. · 

MEM(B,L) is a function which gives the value of the Lth word 

of block B of main memory. 
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WRITAM(MO,Ml,M2,M3,M4,M5) writes an entry into associative memory 

MS with FO=MO,Fl=Ml,F2=M2,F3=M3, and F4=M4. For AMP, the first 

and last arguments are omitted. 

ARB(LOC) is a function, for AMAS and MPAMA only, which has as its 

value the number of the arbiter which controls location LOC. 

AMQ(MO,Ml,M2,M3) is a function, for MPAMA only, with value equal 

to the number of the arbiter for which the associative memory 

contains an entry with FO=MO, Fl=Ml, and F2=M2, and F3=M3. 

tl,t2,t3, and j are temporary storage registers. 

word is the register where the contents of the desired address 

are finally placed. 

Figure A2.l is the flow chart for AMP; Figure A2.2 is the flow chart 

for AMAS; and Figure A2.3 is the flow chart for MPAMA. 
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Figure A2.l. Flow chart for the addressing scheme 
of AMP 
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APPENDIX 3. A CONFIGURATION FOR MINIMUM RESPONSE TIME 

As discussed in Chapter 6, having the associative memory in the 

arbiter permits the saving of some time when a process changes from 

one processor to another. This appendix shows one possible system, 

'not the ideal one, for obtaining this saving. 'lbis system preempts 

one entire processor for the control of a single program. It need 

not be a particularly expensive processor, and, considering the aim 

of the second criterion, it is not expected to be. The exact program 

to be described monitors incoming analog data, converts it to digital 

form to be stored for reference, and also activates the arithmetic 

processor whenever the input exceeds a certain level. The arithmetic 

processor then classifies the level of the input into one of three 

categories, and increments a counter corresponding to the category. 

Such a program might be used, for example, in monitoring a biological 

experiment, with appropriate warnings being printed when the counters 

overflow. 

It is assumed that the analog-digital converter has an internal 

clock which determines the sampling rate, and an internal register 

for holding the critical level for activating the arithmetic processor. 

This register and the clock are set by certain instructions which are 

assumed to have been given. During normal operation, the base address 

for storing the digitized data is determined by the instruction, SAMPLE. 
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The exact location for the data is formed by modifying the SAMPLE address 

by index register 4. After a sample is stored, index register 4 is incremented 

and index register 5 is decremented. When index register 5 reaches zero, 

or when the critical level is exceeded, the instruction following the 

SAMPLE is executed; this will normally be a GP instruction. 

Further, it is assumed that the arithmetic processor is named in 

attachment register 1, that the analog-digital converter is named in 

attachment register 2, and that the data segment is named in attachment 

register 3. The pseudo-7094 coding follows; and Figure A3.l shows the 

structure of the scheduling rings during execution. 

START STZ [3'1] zero counters 

STZ. [3 ,2] II " 

STZ [3 ,3] " " 

PAX 0,4 zero XR4 

PAX 5000,5 set maximum number of samples to 5000 

LOOP GP 2 

SAMPLE [3,100] 

LOOP 2 GP 1 

CIA [3 ,100] ,4 Note that no reloading of the associative 
memory is needed, since the converter 
referenced this location during the last 
data cycle. 

SUB [3 ,5] perform classification 
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TPL *+5 

CIA =l 

ADD [3'1] 

STD [3 'l] 

TRA LOOP 

SUB [3 '6] 

TPL *+5 

CIA =l 

ADD [3 ,2] 

STO [3 ,2] 

TRA LOOP 

CIA =l 

ADD [3 ,3 J 

STO [3 ,3] 

TRA LOOP the end 



-67-

PPE 

PPE PPE 

PPE PPE 

Analog-digital converter 
ring structure 

Arithmetic processor 
ring structure 

Just after execution of LOOP 

PPE 

PPE PPE 

PPE PPE 

Analog-digital converter 
ring structure 

Arithmetic processor 
ring structure 

Just after execution of LOOP2 

Figure A3.l. Ring structures for the sample program. 

Note that much system capacity is being 
wasted in order to obtain fast response 
and simplicity of input/output. 
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APPENDIX 4. MINIMUM EQUIPMENT INPUT/OUTPUT DEVICES 

The second criterion specified for the input/output subsystem was 

that simple devices may be connected to it. An example of just how 

minimal this arrangement may be is given in this appendix. 

A paper tape punch will be used to illustrate the simplicity of 

which an MPAMA system is capable. The procedure for operating the 

punch is to load the arithmetic processor's accumulator with the word 

to be punched [in the low order eight bits for example], and then give 

a GP instruction. This causes the state word -0f the process, and, in 

particular, the.accumulator, to be stored by the arbiter and permits 

the arithmetic processor to be used for other processes. The arbiter 

places a Ready Process Entry into the ring structure for the punch, 

and,since it is assumed that there is only one process using the 

punch, the arbiter directs the punch to perform a process swap in 

order to accept the new, high priority process entry. This means 

simply that one control line ["Process Swap"] to the punch was turned 

on. Since the punch was not executing any other process, the first 

two steps of the process svap are ignored, and the punch immediately 

turns on a control line ["Process Accept"] to the arbiter telling it 

to remove a Ready Brocess Entry from the queue and begin tranferring 

the corresponding state word to the punch. The punch would then put 
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codes corresponding to the elements of the state word on the address 

lines, and turn on a "Data Request" control line, indicating to the 

arbiter that it should transmit the designated element on the data 

lines. In particular, the punch uses a code designating the accumulator. 

The arbiter examines the code, places the appropriate part of the state 

word [the accumulator] on the data lines and turns on a "Data Available" 

control line. The punch, detecting the Data Available line on, places 

the data in a buffer, starts the physical punching, and turns.off all 

its control lines to the arbiter. 

When the physical punching is completed, the punch simply puts an 

attachment tag number on the address lines, and turns on the GP control 

line to the arbiter. This causes the arbiter to place the Ready Process 

Entry back into the ring structure for the arithmetic processor and turn 

on the process swap control line, to store the state word for the process 

currently being executed by punch. Since the state word hasn't changed, 

the punch turns on the process accept signal, telling the arbiter that 

it is ready to accept a new state word. Since there isn't any other 

state word, this completes the procedure until the process wants to 

punch another character. 

The number of lines connecting the punch with the arbiter then, is 

not impossibly large, and in fact the punch described is not much more 

complex than that for some existing systems. The lines, and the sequence 

of events occuring on them are now summarized. 
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Lines for communication between punch and arbiter: 

Data lines (for this case, only 8 are needed) 

Address lines (again, for this case not all are needed) 

Control lines: 

Process Swap 

Process Accept 

Data Request 

Data Available 

Get Processor 

Sequence of signals between arbiter and punch (refer to Figure A4.l.) 

(1) Process Swap turned on by arbiter 

(2) Process Accept turned on as a response by punch 

(3) Code for Accumlator placed on address lines, and Data Request 
turned on by punch 

(4) Accumulator contents placed on data lines, and Data Available 
turned on by arbiter. Punching may begin. 

(5) Data Request turned off by punch in response to (4) 

(6) Data Available turned off by arbiter in response to (5) 

(7) Process Accept turned off by punch 

(8) Process Swap turned off by arbiter in response to (7) 

(9) Attachment register number placed on address lines, and 
Get Processor turned on by punch 

(10) Process Swap turned on by arbiter in response to (9) 

(11) Process Accept turned on by punch 
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Figure A4.l. Sequence of signals between arbiter and punch 
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