
INPUT/OUTPUT IN TIME-SHARED, SEGMENTED, MULTIPROCESSOR SYSTEMS

by

ARTHUR ANSHEL SMITH

S.B., Massachusetts Institute of Technology
(1964)

SUBMITTED IN PARTIAL FULFILIMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1966

Signature of Author 't:t~-JtJ. - Q. ~
Department of Electric;r-;~eriig°7 Jaii{4ry I1"7I966

Certified by ----~-.-:/3%~----
~ Thesis Supervisor

Accepted by_-~~ ~ ~.J~ ___ _

Chairman, Departmental Committee ~~~-Students

-2-

INPUT/OUTPlIT IN TIME-SHARED, SEGMENTED, MULTIPROCESSOR SYSTEMS

by

ARTHUR ANSHEL SMITH

Submitted to the Department of Electrical Engineering
on January 17, 1966 in partial fulfillment of the
requirements for the degree of Master of Science

ABSTRACT

After introducing and defining the concepts of time-sharing,
segmentation, and multiprocessing, two classes of systems incor­
porating these are introduced. Both classes use associative
memories, as 'look behind' devices to speed the operation
of addressing the segmented memory, with the distinction
between classes being the location of the associative memory.
In one class, there is one associative memory for each
processing element, no matter how many main memory units
are connected to a processor; in the second class, there
is one associative memory for each main memory unit, with
the processors sharing the associative memory. After introducing
two criteria for input/output systems,that the overhead
associated with their use be small and that they may be
physically and logically simple, and describing further
operations of the systems, it is concluded that members of
the second class, having shared associative memories, best
meet these criteria.

Thesis Supervisor: Jack B. Dennis
Title: Associate Professor of Electrical Engineering

-3-

ACKNOWLEDGEMENT

Appreciation to Prof. J. B. Dennis, my thesis supervisor, and
E. c. Van Horn, for their many hours of spent discussing the ideas
contained herein; to P. J. Denning, and F. L. Luconi for their
constructive and enlightening criticisms; and to Marsha Baker,
my typist, for her patience with my handwriting.

''Work reported herein was supported by Project MAC, an M.I.T.
research program sponsored by the Advanced Research Projects
Agency, Department of Defense, under Office of Naval Research
Contract Number Nonr-4102(01). Reproduction in whole or in
part is permitted for any purpose of the United States
Government."

(

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

CHAPTER 5.

CHAPTER 6.

APPENDIX L

APPENDIX 2.

APPENDIX 3.

APPENDIX 4.

- --- --··--- --· .. ·------··--

-4-

TABLE OF CONTENTS

INTRODUCTION ••.

Time-sharing

Memory protection and relocation

Segmentation • •

Multiprocessors •

DETAILS OF 'lWO CIASSES OF CONFIGURATIONS •

.

6

6

8

12

13

18

Class 1: Associative memory in the processor • 18

Class 2: Associative memories pooled in the
arbiters • • . • • . 22

Subclass 1: Sequential probing of associative
memories • . . . 23

Subclass 2: Broadcasting to multiport associa-
tive memories • • • • • • • • • • • 24

Further considerations for both classes •

INTRODUCTION TO INPUT/OUTPUT • • • •

First criterion for input/output low-overhead

Second criterion for input/output-simplicity

Realizing the first criterion-addressing

SCHEDULING •• . .
DETAILS OF INPUT/OUTPUT

Example • • • • • •

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

NOTATION • • • . . • • • • • • • • • •

FLOW CHARTS FOR THE ADDRESSING SCHEMES OF AMP, AMAS,
AN1l 'MP AMA • • • • . • • . • • • • . • . .

27

31

31

33

36

38

43

46

49

52

• 54

A CONFIGURATION FOR MINIMUM RESPONSE TIME • • 64

MINIMUM EQUIPMENT INPUT/OUTPUT DEVICES • • • • • . . • • • 68

BIBLIOGRAPHY • • . • • . • • . . • • • • • • • • • • • • . • • . • • • • • 7 2

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 4.1

Figure A2. l

Figure A2.2

Figure A2.3

Figure A3.l

Figure A4.l

-5-

LIST OF ILLUSTRATIONS

Simple state word storage •••

A simple segmentation scheme. •

Overall system configurations •

9

14

14

An associative memory being used a a 'look behind device. 20

Processor in AMP system • • •••

Diagram of an AMAS system

Diagram of an MPAMA system

State word organization • • • • • • • • • • • • • • • •

Typical ring of queues for a two processor type system

Flow chart for the addressing scheme of AMP • . .
Flow chart for the addressing scheme of AMAS

Flow chart for the addressing scheme of MPAMA

Ring structure for the sample program •
Sequence of signals betwen arbiter and punch . .

.

.

.

.

.

21

25

26

30

39

57,58

59,60,61

62,63

. . 67

. . 71

-6-

CHAPTER .l· INTRODUCTION.

With the rapid advances made recently in high speed digital computers,

there has been a proliferation of ad hoc solutions to the various problems

arising from ever larger configurations. This paper is a study of the

effects of various requirements, especially those associated with

input/output, on a specific type of computing system. The system under

study is assumed to have three properties.

1) The computer operates in a time~sharing mode, with many users
. d . h . 1 . 2,13,17 being service wit apparent simu taneity.

2) Memory is segmented, according to the scheme of Dennis, with
5 8 11 14

individual words being referred to as elements of segments. ' ' '

3) There are several processing units using the main memory
5,8

simultaneously.

A brief discussion of these properties is now given.

Time-sharing

A time-shared computer is one in which any one of a number of processes

(called user processes or user programs, or simply users) may be being

executed at any instant of time. The time during which any given process

is in execution, and the length of time during which it remains in

execution, are both unpredictable as far as the user is concerned. The

determination of which program should be in execution, and for what

amount of time, is the job of the supervisor, a program which enjoys

a certain amount of immunity from the randomness of the users. The

supervisor may perform other tasks also, but it is, primarily the

scheduler and hence, originator of all activity within the system.

-7-

In such a system those users which are not in execution must be

stored someplace. If there are only a few users, and the length of

their program and data is small then perhaps they can all be stored

in~ memory, i.e. the set of memory cells referenced by the

address portion of a typical instruction, or by the program counter.

If, however, there is too much information to be held in main memory

all at once, then auxiliary memory must be used. By auxiliary memory

is meant the set of all disks, drums, tapes, etc. which may contain

information capable of being brought into main memory, or which may

accept information from main memory.

It is important to note, at this point, that, if a user is to

produce the proper results regardless of when he is executed, there

must be more than his program and data saved away in memory when he

is not being executed. There must be at least the location of the

instruction being executed, and the values of various processor

registers (accumulators, index registers, etc.). Perhaps more

information such as the allocation of certain external devices,

is also needed. The set of all information needed to successfully

restart a user after another user has been executed is defined to

be the~ word of that user. Each user, from the time he is first

in execution, until the time he is finished, must have some storage

assigned to his state word. Since, furthermore, the state word will

spend most of its time in storage, rather than in a processor, there

is no need to continually shift it about in memory. In fact, we shall

-8-

------------------------ . assume that the location of the state word of a--grven process remains the

same throughout the period from the beginning of execution to the

termination of that process. Figure 1.1 shows state words as they

are stored in memory.

Memory protection and relocation

Since part of one users program may be in main memory while another

user's process is being executed, there must be some scheme to protect

the dormant (Le. not being executed) process from the one being

executed. There are two rather simple ways to provide this protection.

First, if each process occupies one contiguous piece of memory (at least

while it is being executed), then any address generated can be compared

to an upper and lower bound. If the address is not within these bounds,

an error condition exists. Second, each address generated may be

compared to a table of valid addresses for this process. In either

event it is more practical to consider not the individual words of

}..,
memory, but larger pieces, of size 2 words, called blocks. In the

first case, this permits the checking apparatus to be smaller by}... bits,

while in the second case, it permits the reduction of the search to

a table lookup. In both cases, the effect is to partition main memory

into blocks. To lend concreteness to this argument, assume that main

memory is 2° words large, and that each block of 2}.., words long; then

a-A
there are 2 blocks. For a reasonable size memory, 64k words(a=l6),

for
process

1

for
process

2

-9-

Accumulator 1

Accumulator 2

index register 1

-

sense indicators

allocation information

Accumulator 1
Accumulator 2

-

index register 1

-

sense indicators

allocation information

Figure 1.1. Simple state word storage

-10-

and reasonable size blocks, 1000
8

words (A=9), then there are 128 blocks,

and a table lookup to determine validity is certainly possible.

Since main memory is divided into blocks, the allocation of it must

also be in terms of blocks, and hence, the auxilary storage devices may

be designed to perform data transfers in multiples of one block. This

is a further argument for dividing main memory into blocks. For convenience,

we shall refer to the A low order bits of the address as the line number,

and the (a-A) high order bits as the block number. See also appendix 1.

Since there may be many users, many blocks of a given user may be

placed on auxiliary stoFage between periods of execution, and it may be

more convenient to return these blocks to main memory locationsother than

those in which they were initially stored. It this is to be done, some

facility must exist for forcing the program to perform as it would if it had

not been moved about in main memory. This facility is called relocation.

There are many possible alternatives for this. One is to provide enough

information to permit the supervisor to modify the words of the program

whenever it is moved. This is not particularly desirable since it may

involve considerable overhead expense. A second alternative is to

provide a mapping from the addresses which the user generates into

addresses which represent the proper locations in main memory. At this

point, we introduce some terminology to facilitate the discussion.

First, the block number, line number pair which is actually used to perform

-11-

the memory access is termed a location. Tite configuration of bits which the

program generates which correspond to a location is termed an address. Since

protection is provided on the basis of blocks, it is not unreasonable to provide

relocation on the basis of blocks also. Tite line number of the location and of

the address are then the same, while the block number of the location corresponds

to the~ number of the address. All that is needed for automatic relocation,

therefore, is a table, for each user, which gives the correspondence between

page numbers and block numbers.

Note that there exists the possibility of more addressses than locations.

Titis situation is entirely acceptable if no more words are actually needed

than there are locations; bhe other words may be stored on auxiliary storage.

In fact this situation is actually desirable; for example, if a user has two

arrays which may grow exceedingly large, but of which only the last few entries

are relevant at any given time, then the user may start one array at L/2, and

3L the other array at - , where L is the largest possible address. Eit.her array
4

may then grow to occupy one quarter of the total possible addresses, and the

programmer need not concern himself with the problems of dynamic arrays, if

there are enough addresses. A large number of addresses implies a large number

of bits in the address portion of an instruction, most of which will be zero in

most cases. To avoid the expense inherent in many bits in the address, we simply

8 11 abbreviate some of the bits by using a scheme called segmentation. '

-12-

Segmentation

In the segmentation scheme, we assume there exist several attachment

registers which can be loaded, in essence, with the particular high order

address bits desired. Then, in the instruction, instead of providing large

page numbers, a few high order bits, called the attachment!!.& or segment

tag, are used as the number of the attachment register to be used with

this address. The total address is formed by concatenating the contents

of the proper attachment register with the page number and line number

from the instruction. Everything but the line number is then transformed

to a block number which, with the line number, forms a location. Any

configuration of bits which can be loaded into an attachment register

determines a segment, the particular configuration being called the name

of the segment. The number of bits provided in an instruction for the page

number and line number and the size of index registers, determine the

maximum possible size of a segment; since this maximum size is very large

(presumably) the following fiat will be made to simplify the resulting

system: there is no relation between the addresses of two different

segments. Til.at is, whereas if 1 is added to the address of the last

word of page 1 of a given segment, the resulting address is that of the

first word of page 2 of that segment, if 1 is added to the address of the

last word of the last page of segment 1, the resulting address is meaningless;

it is not the address of the first word in segment 2! Repeating, the words

of any one segment are contiguous if their page number, line number pairs

-13-

5 are contiguous; the words of two different segments are unrelated.

This simple restriction permits much simplification of the hardware.

In particular, it means that relocation for each segment may be done without

regard to other segments. Namely, for each segment, there exists a segment

th
l?!.&!:.~• or simply ~l!.!?1£, the i entry of which gives the block

th number corresponding to the i page of the segment. The page table may

also give protection information for each block, although this, in general,

will be the same for each page of a given segment. Note that in this way

several users may use the same segment without establishing too elaborate

conventions. Note also, that there is implied a relationship between a

segment tag and the page table for the associated page table; t~is relationship

is established by the supervisor. Figure 1.2 shows schematically the operation

of a segmentation scheme.

Multiprocessors

Up to this point, it has been assumed that there was only one processor

utilizing memory. In a large time-sharing system, however, it is unlikely

that this will be the case, especially since it is, after a certain point,

less expensive to build two processors than to build one processor which

is twice as fast as either of the two. All of the previous discussion is

valid, but a few more points may be made which arise from the fact that

there is more than one processor.

Attachment

registers

segment

tag

Figure 1.2.

-14-

Arithmetic index

and
control registers

Segmentation ...
~

hardware
segment __...
tag ..

_page
number"

page line

number number

Address register

Block
Numoer

Line
Number

A simple segmentation scheme

~

I __.,

To
Memory

-15-

The most important point is that there must be a device called an

arbiter, in the system which resolves conflicts in the use of memory,

i.e. it decides who goes first if two processors desire access to the same

block of main memory. This is necessary, since, by the way they are

constructed, core memories are capable of accessing only one word at

a time. This consideration also dictates that instead of one large

core memory for a main memory, there should be a multiplicity of smaller

core memories. Of course, each of the smaller core memories must have

an arbiter for its own, to take advantage of the multiple memories.

If input/output devices, furthermore, are treated as processors i.e.

they are capable of executing a certain limited set of inst~uctions which

must be fetched from main memory, then there must also be a device in

the system which routes I/O instructions fetched by a main processor to the

proper I/O device. This function is most easily made part of the arbiter,

which must already be connected to each processor and I/O device. Clearly,

this function of the arbiter need not be duplicated for multiple memories.

Having added this much to the arbiter, it is not unreasonable to consider

adding slightly more, and making the arbiter the controlling element in the

system. In particular, the arbiter should have the ability to store a

processors state word, load a processor with a state word, and, perhaps,

automatically decide what state word should be loaded into what processor.

-16-

The first two abilities are needed to handle for example, malfunctions of

the I/O system where the process manipulating the I/O device should be

halted, and an error routine initiated. The last ability is not needed,

but makes a large portion of the scheduling problem quite quickly solvable.

More will be said about the arbiter in later chapters.

Finally, reliability dictates that, for every device in the system,

there will be at least one duplicate. This permits any element of the

system to be disconnected for maintainence purposes without shutting

down the system. This then leads to an overall system arrangement as

shown in Figure 1.3.

memory

memory

processor

arbiter

I/O
control

-17-

processor

arbiter

I/O
control

input/output devices

Figure 1.:1.. Overall system configuration

memory

memory

-18-

CHAPTER 2. DETAILS OF 'IWO CIASSES OF CONFIGURATIONS.

Given the properties of a time-shared, segmented, multiprocessor

system, there are, of course, several possible ways to realize it.

That is, there are several differing system designs which meet all

of the criteria laid down in the previous chapter. At this point,

two classes of such systems, differing only in the way attachment

registers are implemented, are presented and examined.

Class 1: Associative memory in the processor

The first system to be studied resembles both the one currently

being constructed at Project MAc5 •7 ; 14 •18 •20 and the one originally

. 8 11 12
proposed by Dennis. ' ' As far as the user can tell, this system

differs from a standard computer only in the addressing scheme, which

uses the segmented form of addressing described in Chapter 1. The

address consists of a segment tag, a page number, and a line number;

as mentioned before, the supervisor establishes a relationship between

the contents of a attachment register and the page table for the

appropriate segment. In particular, corresponding to each attachment

register, there is a segment~~ register which gives the location

in main memory of the initial word of the page table for the segment

named in that attachment register. The appropriate block number for

any segment tag, page number pair, therefore, is determined from the

contents of the location formed by adding the page number to the contents

-19-

of the appropriate segment page table register. As described, this

system requires two memory references for each word of memory actually

desired; the first reference is to determine the correct block number,

the second to actually fetch the word.

The effective speed of the system is, therefore, halved by using

segmentation. Since this is a rather heavy penalty, the speed of the

system is improved by adding, to each processor, an associative memory to

be used as a 'look behind' device for determining the proper block number,

given the segment tag, page number pair; Le. an associative memory of

n words holds the n most recently used segment tag, page number pairs

and the corresponding block numbers, for this user. (See Figure 2.1)

Instead of using the segment page table registers to determine the

proper block number, the associative memory is consulted first, and

only when the segment tag, page number pair is not found, are the

segment page table registers used. In this way, much of the time spent

in determining block numbers can be eliminated, and/or overlapped with

the cycle of main memory. Figure 2.2 shows a typical processor for this

system; since the associative memory is located in the processor, this

system will be called AMP.

Segment
Tag

From
Pro cessor

Page
Number

\

J
7

~

\
/

7

Figure l..:.l•

A

-20-

r g u m e n t

F i e 1 d s

_\

Block
v a 1 u e Number
F i e 1 d

7
To
Memory

N
words

An associative memory being used
as a 'look behind' device

-21-

Arithmetic and index

Attachment

registers

se nt
tag
page
nwn er

registers

Associative

memory

line number

Segment
page

t11.ble
t'egisters

k
nwnber

Figure U· Processor in AMP system

To
Arbiters

-22-

Class 2: Associative memories pooled in the arbiters

Since AMP is assumed to be a multiprocessor system an alternative

method of organization immediately presents itself. In particular since

the processors all share a coamon main memory, there exists the

possibility of their sharing associative memory also. Just as sharing

permits more efficient use of main memory, the same statistical

properties should permit more efficient utilization of the associative

memory. Since associative memories are currently rather expensive, this

may in fact be an important economic factor. The issue is not one sided,

however, since if the associative memory is pooled among several devices,

its entries must contain information telling to which processor it belongs.

This means that each word of the associative memory must contain more bits,

and consequently be more expensive.

There are other problems involving the pooling of the associative

memory, however, which are not simply economic. The problem of many

devices communicating with the same associatve memory is the same as

that which arose with regard to many devices and the main memory; and

the place to solve both problems is the same, in the arbiter. A

distinction between the problems exists, however, in that the block

number of a word of memory uniquely determines one arbiter which has

control over that word, whereas, a segment tag, page number pair does

not determine an associative memory with a matching entry. In particular,

-23-

the only way of determining the presence of a segment tag, page number

pair somewhere in the associative memory, is to probe the associative

memory in each arbiter. This can be done in two ways, either by

interrogating the arbiters in sequence, or by broadcasting the

interrogation to all arbiters at once.

Subclass 1: Sequential probing of associative memories

In this system, called AMAS since the associative memories in the

arbiters are sequentially probed, the device attempting to access main

memory directs a request to some particular arbiter, 'A', for the word

corresponding to some segment tag, page number pair, for this user.

'A' may respond either with the desired word, or with an error flag

indicating that the associative memory associated with 'A' does not

contain a match for this segment tag, page number pair. If the error

response occurs, the process is repeated with arbiter 'B', and so on,

until either a match is found, or some predetermined number of arbiters

has been unsuccessfully probed. If a match is found, then the block

number is known, and the desired word may be fetched from main memory.

If no match is found, the segment page table registers are used to

determine the block number. Note that at each arbiter, there may be

some time wasted in queues, and that, if no match exists in any

associative memory, this time may be more than that which would have

been wasted by using the segment page table registers in the first place.

r--·---- ------ - ---~ ------ --~------·~w~-~---------- ---- - ·---- --~----- -- ----~----~~,-.
I

-24-

A diagram of processors and arbiters in AMAS is shown in Figure 2.3.

Subclass 2: Broadcasting to-multiport associative memories

In this system, the device requesting access to main memory "broadcasts"

to several arbiters at once, the segment tag, the page number pair, and

the user's identification bits. If a match is found, and it is assumed

that the associative memories are loaded in such a way that only one

match will be found, then the output of the associative memory is the

proper block number, and a fetch from main memory is performed by the

appropriate arbiter. It is clear in this scheme that the several associative

memories will be rather busy looking for matches, since each arbiter must

probe its associative memory for every request of every processor connected

to it. In comparison with AMAS, assuming that the interconnections between

arbiters and processors is the same, this system generates twice as many

requests on the average [assuming uniform distribution of requests to

arbiters]. This could present a problem of time being spent waiting in

line to use the associative memory; using current, integrated circuit

technology, however, it is possible to build an associative memory with

many input and output pairs, so that each processor could have its own

private input and output buffers, and no waiting would ever need to occur

in normal operation. Since this system uses a multiport associative memory

in the arbiter, it is called MPAMA. A diagram of the processors and arbiters

is shown in Figure 2.4

-
p rocessor

A rbiter t---

elector I--

Figure 2.3.

_lo

\
From another processor

I -,

R~uest
Associative

--
Process identification memory

Se_g_ment tag_, _E_a_g_e number
BlQC.k ... number

Line number

Arbiter

R~uest \.

Process indentification ~
Se_g_ment tag_, -~age number To another arbiter

Line number 7
7

Diagram of an AMAS system

The arbiter selector in the processor turns on a request
to one arbiter at a time.

To
memory I

I
I'.)

lJ1
I

From
another

Processor 1

Figure 2.4.

Request

Line number

Block number
for other

Associative /processor
memory

Reauest (multiport)
Process indentification I

Block number
a2e number for processor-1

Line number

Arbiter
Reauest

To another arbiter

Diagram of a MPAMA system

The processor turns on all requests simultaneously.
The multiport associative memory services all
processors simultaneously.

To
Memory

I
N

°' I

I
j

r

-27-

Further considerations for both classes

Having sketched the basic principles of the two classes of systems,

the operation will be examined more closely. Consider first the problem

of loading an attachment register so that references involving that

register are defined. The most obvious instruction for performing

this operation is

Load Attachment Register from Y

where Y contains the segment name. Although obvious this method is

undesirable since the formation of an association between the segment

name and the location of its page table, which will probably involve

much overhead, must be repeated each time an attachment register is

loaded. A more devious system, involving two instructions, is therefore

assumed; the first involves all the overhead present in the above scheme,

but is used less frequently; the second requires very little overhead,

and is executed whenever it is desired to load an attachment register.

The first instruction is really a call to the supervisor. The

notation for this instruction shall be

j :=acquire Y

where Y contains a segment name. The notation means that the supervisor

should perform all the bookeeping needed to permit the user to reference

the segment, and should place the address of the page table for this

segment [along with protection information] into a special segment

called the user's segment directory. The location within the segment

directory at which this information is stored, called Y's directory

index, is placed in j.

-28-

nte second instruction is a true machine instruction:

I.AR n,j ,!pad !ttachment !egister n from j

where j contains a directory index. Notice that it should be no more

difficult to implement the I.AR instruction that it is to implement a

~~register instruction. If the user, furthermore, cannot

alter his segment directory, except by way of the supervisor, then

it is impossible for the user to load an attachment register with

invalid information. In actual operation, the I.AR instruction places

the address on the page table of a segment into the segment page table

register.

Next consider the use of the associative memory. As first described,

the associatfve memory was merely a look behind device, and the attachment

registers and segment page table registers were actually distinct hardware

registers. A little thought will reveal that the attachment registers

are no longer needed, since only the address of the page table is really

used, and it exists in the segment page table register. Since all systems

are coumitted to an associative memory, furthermore, it is possible to

eliminate the page table registers as distinct hardware items, and

implement then as specially flaged entries in the associative memory.

ntis should, in addition to eliminating registers, improve the statistical

properties df the pooled associative memory.

-29-

If the entries in the associative memory correspond to page table

registers are not used frequently, it is quite likely that these entries

will be purged from the memory. Since this would make it impossible to

determine the block number of a page of some segment if the segment tag,

page number pair were not already in the associative memory, some trickery

is needed. Observe first that someplace in the state word of a user, there

must be storage provided for the attachment registers so that a process,

once stopped, can be restarted. All that is really needed then is the

directory index for each attachment register, corresponding to the most

recent LAR n,j instruction. One way to insure this information being

always present, is to have the LAR n,j instruction copy the,contents of

j into a location, say k2+n within the state word. "nle contents of a

segment page table register can always be reconstructed, in this case,

by effectively executing an LAR n, k2+n instruction. "nle organization

of the state word for this system is shown in Figure 2.5. Details of

all three addressing schemes are given in Appendix 2.

Location
within
state
word

PC

Al

Il

directot"Y

directory

Figure U·

-30-

state word

control information

Program counter

Accumulator 1

Index register 1

Pointer to directory

index for attachment register 0

index for attachment register 1

State word organization

-31-

CHAPTER 3. INTRODUCTION TO INPUT/OUTPUT.

At this point it is appropriate to consider the processes by which

programs acquire data and demonstrate results. Although there are many

aspects of these processes, the general term for the processes as a

whole is input/output; these input/output processes are characterized

by the fact that they interact with elements of the system other

than the main memory and processors, and hence may involve relatively

long times for completion.

First criterion for input/output-low overhead

As a preface, two criteria for any input/output system are

introduced. First and foremost is the requirement that whatever

input/output is performed, the overhead shall be minimal. By overhead

is meant that expense, in terms of time and money, which would not be

incurred had the equivalent operation been done on a non time-shared,

segmented, multiprocessor system. This goal is, of course, reasonable,

but it has been made a primary objective as a simple economic consideration;

namely, most of the computing being done at the present time is limited,

not by the speed of processing, but by the speed of input/output devices.

This is entriely understandable, since most input/output devices, such as

tape drives, line printers, and punched card equipment, are electromechanical

by nature, rather than electronic.

-32-

This limitation means, however, that if there is overhead associated with

input/output, then certain programs will never be reasonably run in a

time-shared, segmented, multiprocessor system. In particular, if a

program is limited by input/output time, then, although the computations

can be performed more efficiently, and even less expensively, by a

time-shared, segmented, multiprocessor system, the expense of the

overhead in doing input/output will overshadow the other savings, and

such a job will always be best performed on a conventional machine.

More concretely, consider a typical business type data processing problem,

such as the production of a weekly payroll. Such a job is typically

done on a small, slow, business oriented machine [such as the ubiquitous

IBM 1401], even though it might be performed more efficiently, and with

less programmer effort, on a large machine. This reason for doing it

on a slow machine is simply that, since most of the processor time will

be spent waiting for input/output to be completed, it is less expensive

to have a small processor wait than a large one. It is clear then

that there might be some slight advantage for the individual with an

input/output limited problem to using a time-shared segmented multiprocessor

system, if there is no overhead in performing input/output.

-33-

The important reasons for wanting to be able to accomodate such users,

however, are not the advantages to the user, but the advantages to the

system. It is important to recall at this point, that, classically, the

reason for wanting to time-share a computer system is that, in this way,

the load upon the various elements of the system would be averaged over

several users, and hence would be more nearly constant. Inherent in

this philosophy is the idea that some tasks will be limited by computation

speed [these are called scientific jobs) and others will be limited by

input/output speeds [these are called 'business' jobs]. In fact,

however, if there is any overhead in input/output, then the business

jobs will never enter the system, and the efficiency of the system

as a whole will decrease.

Second criterion for input/output-simplicity

The second criterion for input/output system is that there must be

an interface to which rather simple data acquisition systems may attach.

This is to attract more potential users to the system, and hence to improve

the statistics of usage. In particular, it is desired that some inefficiency

of processor time maybe exchanged for simplicity of hardware, and the

resulting increase in the number of problems actually being solved on the

system will compensate in overall efficiency for this local inefficiency.

"nl.is goal is really an attempt to prevent small conventional system from

-34-

flourishing because certain small data acquisition devices, such as analog­

digital converters, and counters, are more easily connected to small systems

than to large ones. "nlis second goal suggests the idea that the solutions

of some problems associated with input/output are really no more than

special cases of solutions to general problems associated with multiple

processors. The specific problem of allocating input/output devices

ought really to be considered part of the problem of allocating processors

to parallel paths within one program. If, indeed, this approach is taken,

then there immediately arises the question of whether all processors are

equivalent; that is, can any processor perform any task? If the processor

is an input/output channel (in the IBM sense of channel] then the response

to such a question must be in the negative; one should not e~ct a data­

channel to perform floating point division. Closer examination, however,

reveals that such an answer is really avoiding the question, since it

already assumes the existence of a data channel. The real question is

whether or not such a channel should be built. Without attempting to

answer this question, it is simply noted that data channels were added

to the IBM 704, to form the IBM 709; it was easier to add them than to

redesign the entire processor. Recently, however, the DEC PDP-6 has

appeared, aimed at the same market as the IBM 7090/7094, without any data

channels, using instead, _a highly flexible system of priority interrupts. The

philosophy is simply that, using this interrupt system, input/output activity

requires a sufficiently small percentage of the processor time that the cost

-35-

of building a data channel would be greater than the savings which would

result. If, in fact, in a large system, some processors are used as data

channels, the prime benefit is in reliability, since now not only may

processors replace processors, and data channels replace data channels,

but data channels can replace processors and vice versa.

It is impossible to resolve the questions of philosophy involved in

one paragraph, however, it is worthwhile to note that no program can keep

all parts of a modern sophisticated processor equally busy, without

extremely careful (and unlikely) planning. [The CDC 6600 provides

the biggest challenge in this respect). It is not unreasonable, therefore,

to consider any large system to be built from many blocks of similar but

not identical nature; something similar to the IBM system 360 will

probably exist, with the exact mix of models depending on the expected

type of job for each particular installation. A user may then specify

which processor he wanted to execute his program, cliosing on the basis

of what he needs, and how much he is willing to pay. A user with little

or no floating point calculation should not have to pay for expensive

floating point hardware; he may even be willing to let all floating point

calculations be done interpretively, by software. A user doing no

variable length comparisons, similarly, should not pay for hardware to

do them. Each user will normally request the minimum hardware to do his

job efficiently. If, however, the exact item he wants is not available,

-36-

no matter; the supervisor can assign a different processor, and adjust

his charges accordingly. This scheme tacitly assumes that all processors

have a common order code; with the exception of specialized I/O processors~

this is not an unreasonable assumption, and will in fact be made.

Just as a variety of processors was postulated, so also a broad

spectrum of input/output processors will be assumed. These will vary

from "standard" units, such as tape drives and controllers, to "non­

standard" units such as on-line mass spectrometers. Of course, the

supervisor can only be expected to "know" about standard units; its

knowledge of non-standard units will be limited to their existance

and a list of authorized users. As will be seen shortly, this is really

all that is needed.

Realizing the first criterion-addressing

One of the most obvious methods of reducing overhead in input/output,

or in anything else, is to reduce the work the supervisor program must

perform. When an input/output operation is begun, the location of some

data must generally be communicated to the input/output device; since

true locations are known only to the supervisor, whereas segmented addresses

only are known to the user programs, locations must be transmitted to input/

output devices as segmented addresses, to avoid calling the supervisor every

time input/output is desired. It thus follows as an immediate consequence

of the first criterion, low overhead in input/output, that all processors

and input/output devices must use segmented addresses, and must, accordingly,

-37-

have attachment and segment page table registers. In fact, the need

for calling the supervisor lo provide locations for each input/output

operation generates so high a percentage of the total input/output

overhead, that the requirement of segmented addressing for input/output

devices will be considered equivalent to the first criterion.

-38-

CHAPTER 4: SCHEDULING.

Before proceeding, it is necessary to make some assumptions about the

method by which jobs are scheduled on the microscopic level. The question

of macroscopic scheduling, of which programs enter core, or of how users

are allotted the various resources of the system, is not relevant; such

schemes exist in infinite variety. What is relevant is the scheme by

which the system's resources are kept maximally busy on a millisecond

to millisecond basis, by reallocating processors to the various programs

as events occur within the system. The most important event, for our

purposes, is the requesting, by a program, of a different processor,

when the program requires different facilities for its execution. One

important instance of such an event occurs when a program desires to

perform input/output activity.

For the purpose of performing this scheduling, a system of queues is

assumed, one for each processor type, with these queues arranged into

rings of processes, one ring for each priority level. A diagram of this

structure is shown in Figure 4.1

The Permanent Priority Entries, labelled PPE, one for each processor

type, for each priority, always exist; the locations for them are

recognized by the hardware. Each entry contains two pointers; one is

f ~
>. .u

~
"" 0
"" 0.

"" Q)

..c
00 =

~

f ~
>.
.u

~
....
"" 0
"" 0.

"" Q)
..c
00 =

-39-

~ PPE M RPE n RPE
To SW To SW

~ n PPE RPE
To SW

~ PPE n RPE M RPE n RPE
To SW To SW To SW

Processor type A ring structure

~ PPE n ~E To SW

~ .Fl if E Ff Fl PPE RPE RPE
To SW To SW To SW

PPE

Processor type B ring structure

Figure 4.1. Typical ring of queues for a two processor
type system

PPE =-Permanent Priority Entry
RPE .'!" Ready Process Entry

-40-

the first pointer in a list running forward through all the Ready Process

Entries for this processor type and priority; the other is the first

entry in a list running backward through these entries. At any instant,

therefore, the first(head) and last(tail) entries for any given processor

type and priority are known. Since a Ready Process entry contains a

pointer to the state word of the associated process, given the Ready

Process entry, the processor can find all the information needed to

execute the corresponding process.

Scheduling within this system is rather simple; each processor executes

the job at the head of its highest priority non-empty ring, removing the

corresponding Ready Process entry from the ring structure as it begins

execution. As time progresses, the priority of the job under execution

decreases. The highest priority in the ring structure is constantly

compared with the priority of the jobs being executed, and, if the ring

structure contains a job of higher priority than any job being executed

by any processor of the corresponding type, a process swap occurs. During

a process swap, the state word of the processor is stored in the appropriate

place in memory, a Ready Process entry corresponding to the process being

executed is placed at the appropriate point in the ring structure, another

Ready Process entry is removed from the ring structure, and the corresponding

state word is· loaded into the processor.

-41-

A little reflection will reveal several interesting points. First,

since each processor must have the ability to keep track of its ring

structure and to execute a process swap, and since these abilities will

not be in constant use, it is reasonable to make the hardware for these

abilities shareable by incorporating it into the arbiter, and, in

effect, providing the processor with instructions, which can be

issued to the arbiter, for using the hardware to modify the ring

structure and load and store the elements of the state word. Second,

loading and storing of the state word of a process ought to be under

control of the processor; although performed by the arbiter in fact,

the first thing to be loaded should be an indication of what else

must be loaded. This lets the programmer control more precisely the

overhead involved in his being activated; thus if a user is using only

one of sixteen accumulators, he can avoid storing and loading fifteen

assumulators every time he is activated. Furthermore, different

processors may have different elements in their hardware; one processor

may have hardware index registers, while another may use memory locations

instead. A third point is that Ready Process entries, instead of having

pointers to state words, may be made part of the state word, i.e. given

the location of a Ready Process entry, the location of the rest of the

state word may be implicitly rather than explicitly determined. This

point is mentioned simply to indicate that there is nothing scared about

h . . d 'b d 9 t e exact organ1zat1on escr1 e •

'. ' """· . "', ~-'!I?- ' ?"'"- .

-42-

More interesting is the observation that, in this system, changing from

one processor to another is simply a special type of process swap; the

appropriate point, mentioned above for the Ready Process entry corresponding

to the process being executed, lies, not in the ring structure for this

processor type, but in the ring structure for another processor type.

More on this later.

It is important, also, to note that processors in the sense used

above need not correspond to different physical entities. For example,

one physical magnetic disk storage unit may correspond to as many

processors as there are disk access mechanisms.

-43-

CHAPTER 5. DETAILS OF INPUT/OUTPUT.

Allocation of input/output devices or other processors, and protection

of these from tampering by other users, is very similar to allocation and

protection of core memory. It is desirable in both cases to provide the

protection in hardware, so that devices or memory may be used with

minimum overhead. In both cases, also, it is desirable to lump all

the overhead into one call to the supervisor, which is executed once,

all necessary allocation and protection thereafter being handled by

hardware. More precisely, since a system of memory allocation has

been designed, a slight extension makes it suitable for allocation

of processors. This extension is simply that in

j : = acquire(Y)

Y may be, not only a segment name, as before, but also a processor name.

Since the same instruction is being used, the distinction, if it need

be made, must lie in the names; segment names must be distinguishable

from processor names so that the supervisor can tell what is being

allocated. The only things the supervisor needs to know about the

processor being allocated is its existence~ and whether or not a

particular user is permitted to acquire it. This last restriction is

not really meaningful if the processor is a standard arithmetic

processor; however, if the processor is a line printer control, then

-44-

this restriction is reasonable. In any case, the supervisor allocates the

processor, and places an entry at location j in the user's segment directory.

[Incidentally, the term segment directory is no longer appropriate since

it will contain entries other than those for segments. The name c@pability

directory will therefore be used].

Having created an entry in the capability directory, the only operation

which can be performed is placing the entry in an attachment register. As

before, this is a hardware operation which places the directory index in an

appropriate location in the state word of the process. Now, in order to

force execution of the current process by the processor named in

attachment register n, a special instruction is executed:

GP n Get frocessor from attachment register n

This instruction causes the processor to instruct the arbiter to perform a

special process swap, described earlier, in which the Ready Process Entry

for the current process is placed in the ring structure for the processor

named in attachment register n. The exact point in which to place the Ready

Process Entry is determined by the equivalent of the contents of the segment

page table register for attachment register n. In particular, this register

contains, instead of the location of a page table, the location of the

Permanent Process Entry for the prpcessor and priority desired. Thus when

the 'GP n' instruction is decoded by the processor, the processor sends

-45-

instructions to the arbiter to store its current state word {exactly

what is stored is determined by the processor], insert a Ready Process

entry into the ring whose Permanent Priority Entry is specified by the

contents of the segment page table register for attachment register n,

pick the highest priority Ready Process ntry from its own ring structure,

and finally, pick up the corresponding state word.

Since the number of Permanent Process Entries is small, there will

be unused bits in the segment page table register when it is being used

in this manner. These bits should be made part of the state word of

the process and should be available to the processor if desired. The

particular purpose of this is to provide for many different protected

entities with entries in the same ring structure. Consider the problem

of two processes wanting to use the same tape controller, but different

drives. The supervisor must protect the two users from one another, but

the controller should have a simple method of determining to which unit

the instructions issued by a process apply. By placing the unit number

in the unused bits in the page table register, it is protected from

alteration by the user, and at the same time is readily available to

the processor.

-46-

Example

In order to clarify and illuminate some of these ideas, a program

for simulating a card reproducer is shown. The program is written in

MAD except that machine code instructions are sprinkled in where needed.

These instructions are:

LAR n,Y

GP n

READ y

WRITE Y

STATUS Y

The program follows:

Load Attachment Register n from location Y

Get the Processor named in attachment register n

Read a card into location Y, Y+l, etc. until the
entire card has been read.

Write a card from locations Y, Y+l, etc. until
an-entire card has been filled.

Place the status information for the processor
into location Y.

VECTOR VALUES CR • $10, CARD READER, 1$

R FOR ACQUIRING CARD READER NUMBER 1 FOR THIS PROCESS

VECTOR VALUES CP • $10, CARD PUNCH 1$

R FOR PUNCH

VECTOR VALUES DSEG "' $ SECJmNT, READ, WRITE, CREATE$

R FOR ACQUIRING A NEW SEGMENT WITH READ AND WRITE

R CAPABILITIES

VECTOR VALUES ZERO .. 0

R THE NAME OF THE CURRENT PROCESSOR IS ASSUMED

START

LOOP

-47-

R TO BE STORED AT INDEX 0 IN THE CAPABILITY

R DIRECTORY

J CR = ACQUIRE (CR)

JCP = ACQUIRE (CP)

JDSEG = ACQUIRE (DSEG).

R GET ALL NEEDED DEVICES AND STORAGE FROM TH13 SUPERVISOR

I.AR 3,JCR

I.AR 4,JCP

I.AR 5,JDSEG

I.AR 6,ZERO

R AT THIS POINT, THERE IS NO ENTRY IN ANY RING STRUCTURE

R CORRESPONDING TO THIS PROCESS, SINCE IT IS ACTIVE

GP 3

R THIS CREATES AN ENTRY IN THE RING STRUCTURE FOR THE

R CARD READER. THE ARITHMETIC PROCESSOR IS NCM WORKING

R ON ANOTHER JOB. THE CURRENT PROCESS WAITS UNTIL

R THE CARD READER WILL SERVICE IT.

READ [6 ,2]

STATUS [6,0]

R THE ABOVE l'WO INSTRUCTIONS ARE EXECUTED BY

R THE CARD READER AFTER THE READY PROCESS ENTRY

R HAS BEEN REMOVED FllCM THE RING STRUCTURE

GP 6

R PUT READY PROCESS ENTRY INTO ARITHMETIC PROCESSOR'S

R RING STRUCTURE, AND WAIT

WHENEVER ([6,10] .AND. EMASK .NE. 0), EXECUTE ERROR. ((6,0])

-48-

R EMASK MAR.KS OFF ALL BUT THE ERROR INDICATIONS

WHENEVER ([6 ,OJ .AND. EOFMSK .NE. 0), EXECUTE EKIT.

R TEST FOR NO MORE CARDS. EOFMSK MARKS ALL BUT END OF

R FILE FIAG

GP 4

R PIACE READY PROCESS ENTRY INTO RING FOR CARD PUNCH, AND

R WAIT

WRITE [6,2}

STATUS [6, 1]

R EXECUTED BY THE CARD PUNCH AFTER REMOVING READY

R PROCESS ENTRY FROM ITS RINGS

GP 6

R WAIT IN ARITHMETIC PROCESSOR RING

WHENEVER ([6,1] .AND. ERMSK .NE. 0), EXECUTE ERROR. ([6,1})

TRANSFER TO LOOP

END OF PROGRAM

-49-

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH.

In Chapter 2, two classes of systems, which appeared only trivially

different then, were described. If the proposals made in the preceeding

chapters are valid, however, there is only one reasonable choice for the

organization of a time-shared, segmented, multiprocessor system.

This choice is MPAMA, systems using multiport associative memories

located in the arbiters.

MPAMA is chosen instead of AMAS, systems with associative memories

in the arbiters sequentially probed, simply because of speed. By probing

all associative memories simultaneously rather than sequentially, MPAMA

should require less time than AMAS to determine the proper block nuniber

for a given page number,segment tag pair, a~suming that the size and

time for a single probe of the associative memory is the same in both

systems. MPAMA should, therefore, require less time for a memory reference,

on the average, and correspondingly be faster than AMAS, although the

two systems are otherwise identical.

AMP, with the associative memories located in the processors, is

discarded because of the difficulty in meeting the two criteria for

input/output systems, low overhead and hardware simplicity, as discussed

in Chapter 3. The second criterion, hardware simplicity, is violated

by the fact that each input/output device must have special hardware,

perhaps an associative memory, for dealing with segmentation. Since

this argues strongly for input/output devices dispensing with segmented

-50-

addressing, and referencing memory by location, it is necessary to recall

from Chapter 3 that this plan would require supervisory intervention for

each input/output operation, and hence violate the first criterion for

input/output,low overhead.

The first criterion, furthermore, is violated by the need for duplicating

entries in the associative memories of the arithmetic processor and an input/

output device, if both are used by the same process. In particular, since

processors in MPAMA use the same associative memory, when a process is

transferred from one processor to another, memory cycles are not necessarily

spent in reloading the associative memory. Further details of how MAPMA

meets both criteria of Chapter 3, are shown in Appendices III and IV.

It is acknowledged that the ideas in this paper are not a complete

solution to the problems of input/output. There are those who will say

that these proposals are too extreme, and that the current method of

program interrupt is sufficient; there are those who will say that these

proposals are too conservative, that in a few years, processors will

consist of small elements, with highly complex interconnections, so that getting

a tape drive to operate and performing a floating point addition will be

equally simple. It is recommended that the former study the arguments in

this paper, and question their validity, and that the later study this

paper as a starting point.

-51-

If this paper is taken as a starting point, then several projects

should be undertaken as soon as possible. First, all three systems should

be extensively simulated, so that any non-obvious properties of the system

will be made apparent. Second, a detailed design and cost analysis of

associative memories of the conventional type, and of the proposed multiport

type, should be undertaken both for its own sake, and for the sake of

comparing the actual cost of the three systems. Finally, as many computation

centers as possible should collect statistics on the exact instruction mixes

actually being run, so that more exact planning for optimizing response will

be possible.

It is impossible to determine the future. If this paper in any way

affects that future for the better, that is a sufficient justification

for its being written. The only possible strategy is to wait and see.

-52-

APPENDIX 1. NOTATION.

Let a be a memory word.

Then a contains an address portion. (i.e.

which is normally interpreted by the hardware as an

Then PN (a) represents the page number

ST (a) represents the segment tag

LN (a) represents the line number

A (a) represents the address

e.g.' a = 625113 6 73 2551

address portion

LN (a) = 2551

PN (a) = 73

ST (a) 6

a section of the word

address.)

of the address

Furthermore, if there are A bits used to indicate the line number,

n bits used to indicate the page number,

and ~bits used to indicate the segment tag,

then the entire address A(a) is only determined insofar as the contents

of attachment register ST(a) are known. At any instant, however, there

are exactly 3 possibilities. Either 1) A(a) is an invalid address, in

the sense that attachment register ST(a) has never been loaded, or

2) A(a) corresponds to some location L(a), in main memory. In this

n case, ST(a)·2 + PN(a) corresponds by some mapping to BN(a), and A(a)

corresponds to L(a) =BN(a)"2A + LN(a), or 3) A(a) corresponds to some

location in secondary storage.

-53-

When addresses are used in examples, Lhey will be written as [A, i]

where A is an attachment tag, and i is an address without an attachment

tag. Th<Jt is, i is A.+ Jc bils long, and i = LN([A, i]) + PN([A, i])'2A..

-54-

APPENDIX 2. Flow charts for the addressing schemes of AMP, AMAS, and MPAMA

The following flow charts describe the way in which the three classes

of systems address main memory to produce, for process p, the word

corresponding to attachment tag at, page number pn, and line number ln.

The block number corresponding to the attachment tag, page number pair

>.. (at, pn) is bn, and the location of the desired word is bn ·2 +ln

(see appendix 1). It is assumed that the first element of the state word

of process p is located in the first word of block sw; that location

sw•2>..+k1 contains the block number for the first block of the capability

>.. directory; and that location sw·2 +k2+n gives the directory index for

attachment register n (see figure 2.5)

In all three systems, the associative memory is probed, and if an entry

is found corresponding to (at, pn), the value returned by the associative

memory is the appropriate block number. If no such entry is found, the

associative memory is probed to find the page table entry for segment

tag at, and, if found, the value returned is the block number for the first

word of the page table; this block number and the page number are used to

get the block number of page pn for segment tag at; this information is loaded

into the associative memory, and the cycle of probing the associative memory

is begun again. If neither a segment tag, page number entry nor a page table

entry is found, the location of the capability directory and the directory

index for attachment tag at are found in the state word, and, from these,

the block number of the first word in the page table for attachment tag

at is found; the corresponding entry is made in the associative memory.

-55-

It is assumed that the associative memory has a hardware algorithm for

determining which entry should be destroyed when a new entry is made.

The words of the associative memory are divided into fields, Fl

through F4 for AMP, and FO through F4 for AMAS and MPAMA. FO contains

the process identification, which is not needed in AMP; Fl contains

the segment tag; F2 contains the page number for segment ~ag, page

number entries and zero for page table entries; F3 contains a flag

which is zero for segment tag, page number entries and one for page

table entries; F4 contains the corresponding block number for segment

tag, page number entries and the block number for the first word

of the corresponding page table for page table entries (page tables

are assumed to be no longer than one block). The following notation

is used in the flow charts:

AMT(MO, Ml, M2, M3, M4) is a boolean function which is true

if associative memory M4 contains an entry with FO=MO, Fl=Ml,

F2=M2, and F3=M3. For AMP, the first and last arguments are

omitted; for MPAMA, the last argument is omitted.

AM(MO,Ml,M2, M3,M4) is a function which gives the value of F4

for the cell in associative memory M4 with FO=MO, Fl=Ml,

F2=M2, and F3=M3. For AMP, the first and last arguments are

omitted; for MPAMA, the last argument is omitted. ·

MEM(B,L) is a function which gives the value of the Lth word

of block B of main memory.

-56-

WRITAM(MO,Ml,M2,M3,M4,M5) writes an entry into associative memory

MS with FO=MO,Fl=Ml,F2=M2,F3=M3, and F4=M4. For AMP, the first

and last arguments are omitted.

ARB(LOC) is a function, for AMAS and MPAMA only, which has as its

value the number of the arbiter which controls location LOC.

AMQ(MO,Ml,M2,M3) is a function, for MPAMA only, with value equal

to the number of the arbiter for which the associative memory

contains an entry with FO=MO, Fl=Ml, and F2=M2, and F3=M3.

tl,t2,t3, and j are temporary storage registers.

word is the register where the contents of the desired address

are finally placed.

Figure A2.l is the flow chart for AMP; Figure A2.2 is the flow chart

for AMAS; and Figure A2.3 is the flow chart for MPAMA.

tl ...

AM (at,0,1)

t l+-

Mt M (t1,pn)

'w'RI TAM

(at,pn,o,h.)

-57-

bn .._

AM (•t,pn,o)

word~

ME.M (b n,\f\)

Figure A2.l. Flow chart for the addressing scheme
of AMP

Figure A2.l (con't)

-58-

tl+-

M E-M (Gw,k:i.+at)

t3

M EM (t1,t1.)

\,,/P-.ITAM

(dt, o, 1,t3)

j 4fr- 0

t1 .,._o

bn.,._

ME. M(~n,\n)

Figure A2.2. Plow chart for the addressing scheme
of AMAS

t 3

MEM (~w,ki.+at)

t l.~

ME.M (t1,t3)

. .__
J

AP..e (tl)

WRIT AM

{p, a t 1 0,1,t;i.,j)

>

Figure A2.2 (con't)

-60-

tt
M EM (tl.,pn)

j +-­

A~B (t1)

W'RITAM

{p,at ~ pn,o ,t1,i)

-61-

L -- ---,-__J
I

~---L--1
ti-- I

\

i AM (p,at,0,1,j) Ii

l ___ Cb __

Figure ,\2.:.' <coll't)

-62-

j

AMQ (p,~t,o~)

ti+--

AM (~at,o,1.j)

j ..,_

AMQ (pic.l,pnp}

bn ~

iwor c\ +­

MtM(\)n,\n)

Figure A2.3. Flow chart for the addressing scheme
of MPAMA

tl'

M£M (s'41,k:i. ~.t}

. ...
J
A~B(t~)

WRIT AM

{p,•t') o,1,t~,j)

Figure A2. 3 (con' t)

-63-

t'l_

MEM (tt,pn)

j~

AR~(t =t)

'WR\TAM

Cp,at,pn,o,ti,j)

-64-

APPENDIX 3. A CONFIGURATION FOR MINIMUM RESPONSE TIME

As discussed in Chapter 6, having the associative memory in the

arbiter permits the saving of some time when a process changes from

one processor to another. This appendix shows one possible system,

'not the ideal one, for obtaining this saving. 'lbis system preempts

one entire processor for the control of a single program. It need

not be a particularly expensive processor, and, considering the aim

of the second criterion, it is not expected to be. The exact program

to be described monitors incoming analog data, converts it to digital

form to be stored for reference, and also activates the arithmetic

processor whenever the input exceeds a certain level. The arithmetic

processor then classifies the level of the input into one of three

categories, and increments a counter corresponding to the category.

Such a program might be used, for example, in monitoring a biological

experiment, with appropriate warnings being printed when the counters

overflow.

It is assumed that the analog-digital converter has an internal

clock which determines the sampling rate, and an internal register

for holding the critical level for activating the arithmetic processor.

This register and the clock are set by certain instructions which are

assumed to have been given. During normal operation, the base address

for storing the digitized data is determined by the instruction, SAMPLE.

-65-

The exact location for the data is formed by modifying the SAMPLE address

by index register 4. After a sample is stored, index register 4 is incremented

and index register 5 is decremented. When index register 5 reaches zero,

or when the critical level is exceeded, the instruction following the

SAMPLE is executed; this will normally be a GP instruction.

Further, it is assumed that the arithmetic processor is named in

attachment register 1, that the analog-digital converter is named in

attachment register 2, and that the data segment is named in attachment

register 3. The pseudo-7094 coding follows; and Figure A3.l shows the

structure of the scheduling rings during execution.

START STZ [3'1] zero counters

STZ. [3 ,2] II "

STZ [3 ,3] " "

PAX 0,4 zero XR4

PAX 5000,5 set maximum number of samples to 5000

LOOP GP 2

SAMPLE [3,100]

LOOP 2 GP 1

CIA [3 ,100] ,4 Note that no reloading of the associative
memory is needed, since the converter
referenced this location during the last
data cycle.

SUB [3 ,5] perform classification

-66-

TPL *+5

CIA =l

ADD [3'1]

STD [3 'l]

TRA LOOP

SUB [3 '6]

TPL *+5

CIA =l

ADD [3 ,2]

STO [3 ,2]

TRA LOOP

CIA =l

ADD [3 ,3 J

STO [3 ,3]

TRA LOOP the end

-67-

PPE

PPE PPE

PPE PPE

Analog-digital converter
ring structure

Arithmetic processor
ring structure

Just after execution of LOOP

PPE

PPE PPE

PPE PPE

Analog-digital converter
ring structure

Arithmetic processor
ring structure

Just after execution of LOOP2

Figure A3.l. Ring structures for the sample program.

Note that much system capacity is being
wasted in order to obtain fast response
and simplicity of input/output.

-68-

APPENDIX 4. MINIMUM EQUIPMENT INPUT/OUTPUT DEVICES

The second criterion specified for the input/output subsystem was

that simple devices may be connected to it. An example of just how

minimal this arrangement may be is given in this appendix.

A paper tape punch will be used to illustrate the simplicity of

which an MPAMA system is capable. The procedure for operating the

punch is to load the arithmetic processor's accumulator with the word

to be punched [in the low order eight bits for example], and then give

a GP instruction. This causes the state word -0f the process, and, in

particular, the.accumulator, to be stored by the arbiter and permits

the arithmetic processor to be used for other processes. The arbiter

places a Ready Process Entry into the ring structure for the punch,

and,since it is assumed that there is only one process using the

punch, the arbiter directs the punch to perform a process swap in

order to accept the new, high priority process entry. This means

simply that one control line ["Process Swap"] to the punch was turned

on. Since the punch was not executing any other process, the first

two steps of the process svap are ignored, and the punch immediately

turns on a control line ["Process Accept"] to the arbiter telling it

to remove a Ready Brocess Entry from the queue and begin tranferring

the corresponding state word to the punch. The punch would then put

-69-

codes corresponding to the elements of the state word on the address

lines, and turn on a "Data Request" control line, indicating to the

arbiter that it should transmit the designated element on the data

lines. In particular, the punch uses a code designating the accumulator.

The arbiter examines the code, places the appropriate part of the state

word [the accumulator] on the data lines and turns on a "Data Available"

control line. The punch, detecting the Data Available line on, places

the data in a buffer, starts the physical punching, and turns.off all

its control lines to the arbiter.

When the physical punching is completed, the punch simply puts an

attachment tag number on the address lines, and turns on the GP control

line to the arbiter. This causes the arbiter to place the Ready Process

Entry back into the ring structure for the arithmetic processor and turn

on the process swap control line, to store the state word for the process

currently being executed by punch. Since the state word hasn't changed,

the punch turns on the process accept signal, telling the arbiter that

it is ready to accept a new state word. Since there isn't any other

state word, this completes the procedure until the process wants to

punch another character.

The number of lines connecting the punch with the arbiter then, is

not impossibly large, and in fact the punch described is not much more

complex than that for some existing systems. The lines, and the sequence

of events occuring on them are now summarized.

-70-

Lines for communication between punch and arbiter:

Data lines (for this case, only 8 are needed)

Address lines (again, for this case not all are needed)

Control lines:

Process Swap

Process Accept

Data Request

Data Available

Get Processor

Sequence of signals between arbiter and punch (refer to Figure A4.l.)

(1) Process Swap turned on by arbiter

(2) Process Accept turned on as a response by punch

(3) Code for Accumlator placed on address lines, and Data Request
turned on by punch

(4) Accumulator contents placed on data lines, and Data Available
turned on by arbiter. Punching may begin.

(5) Data Request turned off by punch in response to (4)

(6) Data Available turned off by arbiter in response to (5)

(7) Process Accept turned off by punch

(8) Process Swap turned off by arbiter in response to (7)

(9) Attachment register number placed on address lines, and
Get Processor turned on by punch

(10) Process Swap turned on by arbiter in response to (9)

(11) Process Accept turned on by punch

GP given by
arithmetic
processor

(2) (3) (5) (7) (9) (11)

1 pt r r pt 1 p pl A
Time> * + + l:L - l - funching + r + Wai~

+

PIS DIA DIA PIS

(l) (4) (6) (8)

Figure A4.l. Sequence of signals between arbiter and punch

+ • Signal turned on

- • Signal turned off

+

PIS

(10)

I
...... ,....
I

--~

)'
~~·I

1
,n
ii
:~
i~
'P

J .. j'l·· .,

I
{

:1
~,
I• ,,
'· ·4,
~

:v
:i
\fi
·\~

:¥
:'~

!,

)t

:~

r
i

';ii'' , ..
: ~ '

;\·'·· l
:~

l .:a

-72-

BIBLIOGRAPHY

1. Buchholz, w., (Ed.), Planning a Computer System-Project Stretch,
McGraw-Hill, New York, 1962.

2. Codd, E. F., Multiprogramming. Advances in Computers, Vol. 3,
1962, pp 77-153.

3. Codd, E. F.; E. s. Lowry; E. McDonough; c. A. Scalzi, Multi­
programming stretch: Feasibility considerations, Comm. of the
ACM, Vol. 2, Nov. 1959, pp 13-17.

4. Conway, Melvin E., A multiprocessor system design, AFIPS Conference
Proceedings, Vol. 24, 1963, pp 139-146.

5. Corbato', F. J., and v. A. Vyssotsky, Introduction and overview
of the multics system, AFIPS Conference Proceedings, Vol. 27,
1965, pp 185-196.

6. Critchlow, A. J., Generalized multiprocessing and multiprogramming
systems, AFIPS Conference Proceedings, Vol. 24, 1963, pp 107-126.

7. Daley, R. c., and P. G. Neumann, A general purpose file system for
secondary storage, AFIPS Conference Proceedings, Vol. 27, pp 213-229.

8. Dennis, J. B., Program structure in a multi-access. computer, Project
MAC Technical Report, MAC-TR-11.

9. Dennis, J. B., Automatic scheduling of priority processes, Project
MAC memorandum MAC-M-187, October, 1964.

10. Dennis, J.B., An example of intersphere communication and asynchronous
parallel processing - typewriter console message handling by protected
service routines, Project MAC memorandum MAC-M-189, September, 1964.

11. Dennis, J. B. , Segmentation and the design of multiprogrammed computer
systems, Journal of the ACM, Vol. 12, No. 4, October, 1965, pp 589-602.

12. Dennis, J.B., and E. L. Glaser, The structure of on-line information
processing systems, Project MAC memorandum, MAC-M-181, October, 1964.

-73-

13. Gill, s. Parallel progranuning, The Computer Journal, Vol. 1, No.l,
April, 1958, pp 7-10.

14. Glaser, E. L.;Couleur; J. F., and G. A. Oliver, System design of
a computer for time-sharing applications, AFIPS Conference Proceedings
Vol. 27, pp 197-202.

15. Iliffe, J. K. The role of addressing in progranuning systems,
Introduction to Systems Progranuning, Peter Wegner, Ed. Academic
Press, New York, 1964, pp 256-275.

16. Kilburn, T.; Edwards, D. B. G.; Lanigan, M. J.; and F. H. Sumner,
One level storage system, IRE Trans. on Electronic Computers,
Vol. EC-11, No. 2, April 1962.

17. M.I.T. Computation Center, The Compatible Time-Sharing System:

18.

A Programmer~s Guide, M.I.T. Press, Cambridge, Mass., 1963.

Ossanna, J. F.; Mikus, L. E.,
and input/output switching in
AFIPS Conference Proceedings,

and S. D. Dunten, Communications
a multiplex computing system,
Vol. 27, 1965, pp 231-241.

19. Scherr, A. L., A system for multiprocessing, I.B.M. Technical
Report TR 00.900, October, 1962.

20. Vyssotsky, v. A.; Corbat6, F. J.; and R. M. Graham, Structure of
of the multics supervisor, AFIPS Conference Proceedings, Vol. 27,
pp 203-212.

21. Witsenhausen, H., A note on asynchronous parallel processing,
Project MAC memorandum MAC-M-163, July, 1964.

Also, manufacturer's descriptive literature and programming manuals
for the following systems: IBM 704, IBM 7090, DEC PDP-1, DEC PDP-6,
UNIVAC 1107, Burroughs D-825.

