
OCAS - ON-LINE CRYPTANALYTIC AID SYSTEM - -
by

DANIEL JAMES EDWARDS

S.B., Massachusetts Institute of Technology

(1959)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 17, 1966

(---=:::r- ' ~· 91 _ , I .
Signature of Author ~~ ;'l.Y'nJL..t f..f:;t..4~'/.t:Vj

------------""-'-';.;..>.i.+--+----'-.;,_""--"'-.:...;;.~=-;.,.;...~~----~-----

De part men t of Electr al Engineering, January 17, 1966

Certified by
(Original signed by Marvin L. Minsky)

Thesis Supervisor

(Original signed by Truman S. Gray)

Accepted by --~-------------
Chairman, Departmental Committee on Graduate Students

This empty page was substih1ted for a
blank page in the original document.

OCAS - ON-LINE CRYPTANALYTIC AID SYSTEM

by

DANIEL JAMES EDWARDS

Submitted to the Department of Electrical Engineering on January 17,
1966, in partial fulfillment of the requirements for the degree of
Master of Science.

ABSTRACT

Deficiencies of various programming languages for dealing with
quantities frequently encountered in cryptanalysis of simple cipher
systems are discussed. A programming system is proposed which will
permit a cryptanalyst to write and debuq programs to aid in the
solution of cryptograms or cryptographic systems. The basic
elements of the proposed programming system are discussed in detail,
They include: 1) a programming language to handle both algebraic
quantities and character strings, 2) a d~splay generator to permit
quick specification of a display frame containing both alphanumeric
strings and numerical data for an on-line CRT display device, and 3)
an on-line program to control operation of the system and aid in

debugging programs written in the proposed language.

Thesis Supervisor: Marvin Lee Minsky

Title: Professor of Electrical Engineering

i

ACKNOWLEDGEMENTS

The author would like to express his appreciation to Prof. Marvin L.

Minsky who acted as thesis supervisor~ to Messrs. Edward L. Glaser

and Oliver G. Selfridge for their constant source of inspiration in

completing this thesis, to Mr. Donald K. Pollock for his help in

obtaininq hard to get crvptoqraphic literature: and to my wife Joyce

for her patience durinq the entire project and help in typinq the

final manuscript.

ii

TABLE OF CONTENTS

SECTION

ABSTRACT

ACKNOWLEDGEMENT

1

2

3

DEFINITIONS

INTRODUCTION

ON-LINE CRYPTANALYTIC ~D ~YSTEM (OCAS)

3.1 Qn-line £ryptanalytic ~id ~anguage (OCAL)

3.1.1 Basic Data Types

3.1. 2 Compound Data Structures

3.1. 3 Declarations

3.1. 4 Statements

3.1. 5 Procedures

3.1. 6 Relations

3.1. 7 Arithmetic

PAGE

i

ii

1

3

7

7

8

9

9

10

10

11

11

3.1. 8 Logical Expressions 11

4

5

6

3.2 On-line fryptanalytic Display Generator (OCDIS) 11

3.3 Qn-line ~bugging and Control Program (ODBUG) 12

IMPLEMENTATION

EXAMPLES OF OCAL APPLIED TO CRYPTOGRAPHIC PROCESSES

5.1 Simple Frequency Count

5.2 Longest Repeated Sequence

CONCLUSIONS

13

15

15

16

17

APPENDICES PAGE

A

B

c

COMMON CIPHER SYSTEMS

SOLUTION OF THE RAILFENCE CIPHER IN SNOBOL

DETAILED DESCRIPTION OF OCAL SYNTAX

C.l

c.2

c. 3

Syntax Notation

Basic Program Elements

c.2.1 Character Set

c.2.2 Identifiers

C.2.3 Use of Blanks

c.2.4 Comments

c.2.s Statements

C.2.6 Blocks

C.2.7 Statement Labels

Basic Data Types

C.3.1 Logic

C.3.2 Integer

iii

19

21

27

27

28

28

28

28

28

28

29

29

29

29

TABLE OF CONTENTS

APPENDICES

D

E

C.3.3 Real

C.3.4 Character

C.3.5 String

C.3.6 Reader

C.3.7 Alphabet

C.3.8 Type Transfer Proce<'lures

c. 4 Basic Declarations

C.5 Compound Data Structures

C.6 Expressions

C.7

c. 8

c.9

c.10

C.6.1 Arithmetic Expressions

C.6.2 Relational Expressions

C.6.3 Logic Expressions

Statements

c.1.1 PROCEDURE

C.7.2 BEGIN and END

c.7.3 Assignment

C.7.4 PROCEDURE Calls

c.7.5 Iteration

c.7.6 Conditional

c.1.1 GO TO

C.7.8 VALUE

C.7.9 RETURN

C.7.10 ERROR

c. 7. ll ON

c.1.12 SNOBOL Pattern Matching

Input/Output Procedures

Reader Functions

Resource Allocation

ON-LINE CRYPTANALYTIC DISPLAY GENERATOR (OCDIS)

D. l Procedures

D.2 Formats

D.3 Display Descriptors

ON-LINE DEBUGGING AND CONTROL PROGRAM (ODBUG)

F AN EXAMPLE IN OCAL -

FINDING THE PERIOD OF A PERIODIC CIPHER

BIBLIOGRAPHY

iv

PAGE

29

30

30

31

31

32

32

33

33

33

34

34

35

35
35

36

36

36

37

37

37

37

37

38

39

40

41

43

45

45

46

47

49

51

53

l

SECTION l

DEFINITIONS

This thesis is primarily concerned with an on-line computer

programming system designed to ease the work of a cryptanalyst.

The following definitions are given to acquaint the reader with

some of the terms commonly encountered in the field of

cryptanalysis.

Cryptology is the branch of knowledge that deals with the

development and use of all forms of secret communication.
• Cryptography is the branch of cryptology that deals with secret

writing.

Cryptanalysis is the branch of cryptology that deals with the

analysis, and solution of cryptographic systems.

A Cipher is a cryptographic system which conceals, in a

cryptographic sense, the letters or groups of letters in the

message or plaintext. (Appendix A gives a list of common cipher

systems.)

Enciphering is the operation of concealing a plaintext, and the

result is a cipher text, or in general a cryptogram.

Deciphering is the process of discovering the secret meaning

of a cipher text.

A key is the variable parameter of a cipher system, prearranged

between correspondents, which determines the specific application of

a general cipher sysem being used. The use of keys permits almost

endless variations within a given cipher system. In fact, the

value of a specific cipher system is based on how hard it is for an

•enemy" to break a cryptogram or series of cryptograms, assuming he

knows the complete details of the system but lacks the keys which

were used to encipher the cryptograms originally. (See Appendix B

for an example of a cipher and a key.)

A code is a cryptographic system which substitutes symbol

groups for words, phrases, or sentences found in the plaintext. It

involves the use of a codebook, copies of which are kept by each

correspondent.

Encoding is the operation of concealing a message using a code.

Decoding is the process of recovering an encoded message.

A code differs from a cipher because a code deals with

plaintext in variable size units, such as words or phrases, while a

cipher deals with plaintext in fixed size units, usually a letter at

a time.

This empty page was substih1ted for a
blank page in the original document.

3

SECTION 2

INTRODUCTION

The history of using ciphers to convey messages from one person

to another goes back to earliest times. The Scytale, a trans

position cipher device, was originated by Lacedaemonians and used

extensively in Cicero's time. Modern substitution ciphers can be

traced back to the cipher used by Julius Caesar, who substituted D

for A, E for B, F for C, ••• to B for z, etc. in correspon<lence that

he wished to keep from prying eyes.

The invention of the printing press brought many people in

contact with the field. The first of a nearly constant stream of

books on cryptology was Chronologia Mystica, published by

Trithemius, abbot of Spanheim and Wuerzburg, in 1516. Since that

time much progress has been made in the use of ciphers and codes for

diplomatic, military, and even criminal purposes. Books by Yardley

and Pratt (see Bibliography) give graphic pictures of the uses of

codes and ciphers from the middle aqes up through the late l920's.

By the late 1930's, advances in the art of communications made

cryptology a very sensitive area. The first rumblings of World War

II led the governments of the major world powers to impose an

information blackout on new literature available on the general

subject of cryptanalysis. Since then, no new major works on the

subject have been made available to the general public (with the

possible exception of EYRAUD's book - see Bibliography). All books

published since 1940 have dealt with analysis of cryptographic

systems which have been common knowledge since the late 1920's.

Public interest in the field has been maintained by the American

Cryptogram Association (ACA) which was founded in 1929 and still

publishes The Cryptogram, a bi-monthly magazine of articles and

cryptograms. The hobby of solving cryptograms provides a

fascinating intellectual challenge to those so inclined. Patient

analysis and flashes of insight, combined with the thrill of

uncovering something hidden, give cryptanalysis an enjoyment which

is almost unique.

The advent of modern high-speed digital computers raises

speculation as how best to apply the computer's vast bookkeeping

powers to the field of cryptanalysis. Cryptanalysis may be thought

of as a recursive process where one forms hypotheses and then checks

the validity of the resulting implications. And creativity is

associated with the forming of new hypotheses. Dy rapidly and

accurately checking the validity of implications, computers can

4 SECTION 2

provide the analyst with information needed to form new hypotheses.

The kind of aid a computer would provide can be seen in

Yardley's discussion of breaking the Japanese diplomatic code

preceding the Washington Armament Conference of 1921-22. The

clerical work in this instance required preparing 60,000 index cards

with fragments of Japanese messages in both plain and code text.

This preparation was done by a "corps of typists" working many

hours. After the cards were prepared, they were sorted into various

categories and summerized by hand onto large summary sheets. Tasks

like this could easily be accomplished by a digital computer.

Solution of ciphers also requires a certain amount of routine

bookkeeping, such as counting letter frequencies and looking for

repeated digraphs. Also, Colonel Friedman's advice about using a

soft pencil with a big eraser is well taken, for in solving

cryptograms by hand the eraser is used almost as frequently as the

pencil.

Let us again examine the idea of using a computer, this time

with a CRT display. Why not have the computer allow an operator to

make a guess and watch the computer work out the consequences? If

the guess does not "prove out", the operator can erase the guess and

its consequences with a single key stroke. The advent of modern

time-shared computer systems, complete with CRT displays, places all

of the above-conjectured uses of a computer within the realm of

practicability, because an expensive computer need not be tied up

while the analyst is trying to figure out what to do next.

The problem then resolves to: what language can a cryptanalyst

use to program an on-line computer to perform thP. various tasks

Pertaining to solving a cryptogram? Let us list some of the

requirements for such an £n-line £ryptanalysis Aid ~anguage (OCAL)

and then examine some existing lanquaqes in light of these

requirements. First, the OCAL must handle strings of alphabetic

characters and manipulate these strings easily. Second, the OCAL

must handle algebra with ease, including matrix o~erations. Third,

the OCAL should be embedded in a machine environment which allows

the cryptanalyst to write and check out programs on-line. Finally,

the OCAL must be reasonably efficient in its use of computer time

and storage, if reasonable response times are desired in a

time-shared computer environment.

Available languages for programming computers include basic

machine language, LISP and its derivatives, the ALGOL family of

languanes, and string-processing languages such as METEOR and

SNOBOL. Machine language, even with macros, is rejected because it

is much too hard to program and quickly check ideas. The OCAL

should be a tool which a cryptanalyst can use easily, while machine

SECTION 2

language, even in the hands of a skilled programmer,

instrument at best. LISP on the other hand, while

learn, is a powerful language for

manipulation tasks. LISP handles

many types of

algebraic tasks

5

is a blunt

not easy to

complex data

with moderate

ease, matrix manipulations with some difficulty, and strings with

still more difficulty. Finally, storage efficiency leaves much to

be desired, and this objection is especially critical when the

problem of using large dictionaries in the OCAL is considered.

Therefore, LISP is rejected as the OCAL. The other LISP-like

languages, such as SLIP, threaded lists, and IPL (the machine

language of list processing) suffer similar deficiencies.

Next, the ALGOL family of languages, such as ALGOL, MAD, AED,

PL/I, and even FORTRAN is considered. These languages handle

algebra with ease, but their string-handling abilities are almost

non-existent. Furthermore, none of these languages is particularly

well adapted to on-line use. This, coupled with the difficulty of

adding good string-processing features to any current time-sharing

version, leads us to look elsewhere for the OCAL.

Finally, let us examine the rather interesting

string-processing language SNOBOL. The heart of SNOBOL is an

elegant pattern-matching algorithm which allows a string to be

tested for a complicated pattern in one statement. In order to test

the suitability of SNOBOL for cryptanalysis, a program to solve the

simple railfence cipher was written and debugged in about 15

man-hours using the Compatible Time-Sharing System at Project MAC.

(See Appendix B for a discussion of the railfence cipher and a

resulting SNOBOL program.)

Writing the railfence program revealed several weaknesses in

SNOBOL. First, the arithmetic was workable but somewhat awkward.

Second, there was no provision for arrays, which made the solution

scoring by digraphs rather difficult. This problem was solved in

the railfence program by making the digraph scoring array into a

series of fixed strings which were accessed by the pattern-matching

statement.

The most serious deficiency of SNOBOL was the lack of a

functional argument provision in the pattern-matching statement.

That is, pattern elements could be fixed strings, arbitrary strings,

arbitrary strings of fixed length, or repeats of previously-matched

pattern elements. Missing was provision for making a pattern

element into an arbitrary string, subject to a predicate procedure

which could examine the state of the pattern match to that point.

(This deficiency is not present in the string-processing language

METEOR which is an improved LISP implementation of the

string-processing language COMIT. However, METEOR still suffers

6 SECTION 2

from the same problems as LISP, regarding efficient use of time and

storage.)

These deficiencies ruled out SNOBOL as the OCAL, but the

pattern-matching concept was considered important and was extended

along the lines of allowing a pattern element to specify a prerlicate

procedure. This extended SNOBOL statement was then incorporated in

the final design of OCAL.

With no single language suitable for the OCAL, two courses of

action were open. Either take an existing language and extend it to

overcome deficiences, or design a new language aimed specifically at

the field of cryptanalysis. The first alternative was rejected,

because extending an existing language does not usually allow one to

insert new ideas without redesigning the entire language. The

author was interested in what could be done from scratch, and

therefore he chose the second alternative, design of a new language.

Hence, the specific goal of this thesis is to specify and

demonstrate an £n-line £ryptanalytic ~id ~ystem (OCAS) which will

permit a computer programmer, who is already familiar with

cryptanalytic procedures, to easily program and test an attack on

any of the 30 different cipher systems that regularly appear in

The Cryptogram (Again, see Appendix A).

7

SECTION 3

ON-LINE CRYPTANALYTIC AID SYSTEM (OCAS)

The proposed Qn-line £ryptanalytic ~id ~ystem (OCAS) has the

following parts. First, a computer proqramming language, OCAL,

which easily handles both algebraic calculations and character

string manipulations. Second, an On-line £ryptanalytic Display

~nerator (OCDIS) to allow people to interact more rapidly with the

program than using just a teletypewriter. And finally, an On-line

.Q_ebugging and Control Program (ODBUG).

Each of these parts will be discussed in later sections. This

section will discuss some of the basic design criteria of the OCAS.

First, the system should be reasonably easy to use, once the basic

languages involved are learned. Second, the system should contain a

complete set of text-editing and program-debugging aids. Third, the

system should be "fail-soft". That is, it should be forgiving to

common programming mistakes and the operator should be able to

regain control of a run-away program. Finally, the system should be

open-ended so that new programs can be added with ease. And usinq

OCAS, the cryptanalyst should be able to let the computer handle

most of the bookkeeping tasks involved in solving a cryptogram or

cryptographic system.

Another design criterion for the OCAS was ease of

implementation. The difficulties of fully implementing ALGOL are

well known. Everything in OCAS had to be easily implementable on a

reasonable machine. It was hoped that a skeletal implementation of

OCAS could be completed in four months. This introduced the

conflicting design goals of a complete language versus speed of

implementation. During development of system specifications, this

conflict was usually resolved in favor of a complete language: so

as a consequence, the skeleton implementation was started but not

completed.

3.1 ON-LINE CRYPTANALYTIC AID LANGUAGE (OCAL)

OCAL is a problem-oriented computer programming language with

the general area of cryptanalysis as the problem domain. OCAL is

basically a synthesis of the MAD and SNOBOL computer programming

languages, combined with ideas taken from SLIP and PL/I. This

section describes the basic features of OCAL. (A complete descrip-

tion of OCAL syntax can be found in Appendix c.)

8 SECTION 3

3.1.1 Basic Data T}'pes

The following quantities comprise the OCAL basic data types:

a) Logic - a two-bit quantity standing for True, False,

Neither, or Undefined. The reason for introducing a basic

four-value logic is to make the results of certain logical

comparisons more obvious to the programmer. For instance, the

question •Is ten greater than an orange?• could be answered

•undefined• because the quantities involved in the comparison are

not comparable. An example of use for logic value •Neither• might

be in response to the question •Given that cipher A stands for

plaintext O in a simple substitution cipher, does cipher text MKP

stand for plaintext THE?• The answer •Neither• in this case means

undecided, for the information given is insufficent.

Situations requiring a simple Boolean decision can be made on a

•True• or •Not True• (e.g., "False•, •Neither•, or •undefined•)

basis.

b) Integer - the standard computer quantity used for integer

arithmetic and subscripting expressions for compound data

structures.

c) Real - floating-point numbers used primarily in arithmetic

calculations.

d) Character - a two- to eight-bit representation of a member

of the ASCII character set. Each character is associated with an

alphabet (defined next) which gives the mapping from a particular

ASCII character subset into the full ASCII character set. The

Character is the basic constituent of the string (defined later) and

may also be used in subscripting expressions for compound data

structures.

e) String - an ordered set of characters all taken from the

same alphabet. A string may be arbitrarily long and is associated

with an alphabet that gives the mapping of character representations

into ASCII characters. Also associated with a string is an integer

giving its current length in characters.

f) Reader - an object which may be associated with

A reader may be thought of as the reading head of a Turing

with the associated string being the Turing-machine tape.

a string.

machine,

A reader

can move up and down a string, read characters out, or write

characters into a string. In addition, a reader can be positioned

---------"---------,---- ---

SECTION 3 9

at the head of a string, at a preset place on the string, or at an

arbitrary place on the string.

g} Alphabet - defines a mapping function from the ASCII

character set (the standard OCAL alphabet} into a subset of ASCII.

The alphabet concept is used to gain storage and

efficiency when dealing with characters and strings.

subscripting

An alphabet

may map any number of characters in the domain (ASCII) into a single

character in the range. Characters appearing in the domain, but not

in the range, are mapped into the null character (i.e., ignored).

In addition, each alphabet provides two extra characters in the

range corresponding to logic values •Neither• and •undefined•. This

feature allows OCAL to indicate certain logical decisions or

conditions within a string.

Also associated with each alphabet is an integer equal to the

cardinality of the mapping range, excluding the logical characters

•Neither• and •undefined•. This permits character and string

arith-metic to be done modulo the size of the alphabet.

h) Statement Label - a special data type referring to

of an OCAL procedure. Statement labels are data types to

assigned GO TO statements and functional arguments in OCAL.

a part

permit

3.1.2 Compound Data Structures

The OCAL compound data structure

language. Compound data structures can

previously-mentioned basic data types

structures. Various parts of a compound

is taken from the PL/I

consist of any of the

and other compound data

data structure can be

accessed either by name or by subscripting expressions. Thus, a

real array in OCAL is simply an n-dimensional compound data

structure consisting of real numbers.

3.1.3 Declarations

Declarations are used in OCAL to associate data types with the

local variables used in a procedure. All variables must be declared

at the head of the procedure or block in which they appear.

Variables may be either local or global in scope: local variables

are defined only within the block or procedure containing the

declaration, and global variab.les are defined in all blocks and

procedures.

Declarations are also used to define compound data structures1

in which case all the elements of the declaration must be basic data

types or already-declared compound data structures. That is,

recursive definition of a compound data structure is not permitted.

10 SECTION 3

3.1.4 Statements

Statements in OCAL may be either simple or compound. Simple

statements are terminated by a semi-colon, or the end of the line on

which they appear, unless the continuation character " " (period)

appears as the first character on the following line. Executable

statements may be symbolically labeled with one or more labels.

Compound statements are groups of statements enclosed within

the statement parentheses, BEGIN and END. A compound statement is

called a block, and blocks may be nested to any depth.

OCAL statements fall into the following categories:

a) Declarations - type identification, data structure,

and procedure structure;

b) Control - GO TO, conditional, and iteration;

c) String pattern matching similar to the basic

SNOBOL string pattern-matching statement;

d) Assignment - assigns values to symbolic quantites;

e) Execute - calls a specific procedure, but ignores

any values returned;

f) Error control - allows an OCAL procedure to retain

control even though a called procedure has taken an

error return.

(A detailed list of statements with their syntax is in Appendix C.)

3.1.5 Procedures

Procedures may have a fixed or variable number of arguments or

parameters. If the procedure has a variable number of parameters,

the global integer variable "NUMBEROFPSETS" gives the number of

parameter sets for any particular procedure call. Parameters are

referenced by the local name which is given procedure declaration.

Procedures may be defined recursively and keep their working

storage on push-down lists. Procedure calls are made in the form

fn. (al ,a2, ••• ,an)

where "fn" is the procedure name and the period [.] distinguishes a

procedure call from a subscripted variable. The "ai"s are the

parameters for the called procedure.

A procedure with no arguments is called by the procedure name

followed by a period.

A procedure may be given a value by the statement

VALUE e

where "e" is any expression.

There are two procedure returns in OCAL; first, the normal

return is specified by the statement

RETURN e

SECTION 3 11

or by executing the last statement of a procedure, and the second

return is given by the statement

ERROR s

where "s" is a string. On executing an error return, control is

returned to the last procedure which executed the statement

ON ERROR, s

where "s" is any simple or compound statement (usually a GO TO

statement, or a block ending with a GO TO or DISMISS statement).

3. l. 6 Relations

These are logical operators that compare integer, real,

character, and logical quantities. The value of a comparison is the

logical quantity "True" if the relation holds, "False" if the

relation does not hold, and "Undefined" if the quantities are

incomparable (e.g., is "blue" equal to 3.14?).

3.1.7 Arithmetic

Normal infix operators may be used in arithmetic expressions in

OCAL. Each operator takes operands whose type is character,

integer, or real and produces a result which is the same type as the

highest type of any operand: the ranking between types is character

lowest, integer next, and real highest. Furthermore, if characters

appear in any arithmetic expression, the result is taken modulo the

alphabet size associated with the first-mentioned character. This

feature may be suppressed if desired.

3.1.8 Logical Expressions

Standard logical infix operators are available in OCAL. Each

operator takes two arguments whose type is logic, character, or

integer. The logical operators produce a result which is the same

type as the highest types of any operands: the types being ranked

with logic lowest, character next, and inteqer hiqhest. The value

of a logical operator is the bit-wise combination of the operands

after type transfers (if any) have been performed.

3. 2 ON-LINE CRYPTANALYTIC DISPLAY GENERATOR (OCDIS)

OCDIS is intended to permit a cryptanalyst to easily specify a

CRT display of the quantities available in OCAS. The display may

either be fixed (unchanged until the cryptanalyst interacts with the

computer) or dynamic (changed periodically to reflect intermediate

results associated with some continuing set of procedures being

executed by the computer). The display is organized using a set of

formats which correspond to pages in a book. The operator can

12 SECTION 3

"flip" pages with pushbutton commands from the display console. A

static display is compiled once, each time it is brought onto the

screen. A dynamic display is compiled when brought onto the screen

and then portions of it are periodically recompiled to keep up with

changing portions of input data.

The CRT display itself is run in program-interrupt mode, so

that computations can proceed even when a display is visible. (A

summary of the features of OCDIS is given next, and detailed

specifications for the OCDIS programs may be found in Appendix D.)

Each display contains a log in the upper left hand corner which

gives the current date, time, frame number, and title for identifi

cation of still photographs taken of the display. This log is main

tained by the system and thus is not a burden to the cryptanalyst.

The main data type used in a cryptographic display is the

string. A string display may be organized by the number of strings

to be displayed in parallel. For a simple substitution display this

could be three lines; one for the cipher text, one for the plain

text, and one blank line for general eye relief. The line length in

characters is preset, and when data is supplied this basic three

line format is repeated down the display until all data are used.

In addition to strings, OCDIS can display other basic data

types and compound data structures, such as matrices and character

arrays. Vectors can be displayed either as a table of numbers or as

a bar graph.

3.3 ON-LINE DEBUGGING AND CONTROL PROGRAM (ODBUG)

ODBUG is similar to the DDT family of debugging

the Digital Equipment Corporation PDP-1,4,5,6, and

ODBUG permits the cryptanalyst to examine and set the

packages for

8 computers.

contents of

variables. It can also execute OCAL statements interpretively, and

thus acts as the OCAS control program by calling the various OCAL

programs the cryptanalyst wants to use.

ODBUG can also be used to set break-points in OCAL programs

which, when executed, will return control to ODBUG. If the analyst

is satisfied with the program's performance, he can resume the

program at the break-point or he can initiate another procedure.

Since OCAS is adept at handling strings, and since an OCAL

program is basically an ASCII string until it is compiled, ODBUG can

call procedures to perform simple editing functions on OCAL programs

that are stored as strings. Thus, with ODBUG as a control program,

OCAS will be a complete system for writing, editing, debugging, and

running programs written in OCAL.

ODBUG can be found in Appendix E.)

(Complete specifications for

13

SECTION 4

IMPLEMENTATION

The initial implementation of OCAS will be as an interpreter

for the Digital Equipment Corporation (DEC) PDP-6 computer, using

the DEC Type 340 display located at Project MAC. This computer is

run by the Project MAC Artifical Intelligence Group, under the

direction of Prof. Marvin L. Minsky, and

on-line

displays.

experimentation with systems

has many advantages for

using computer-generated

The SNOBOL-type, string pattern-matching algorithm, a simple

storage-control algorithm, and the elementary reader functions have

already been programmed in PDP-6 machine language. The next step is

to program the OCAL interpreter in machine language. After that,

input/output procedures will be programmed around the standard PDP-6

input/output package for the on-line teletype, paper tape reader,

paper tape punch, and DECtape unit. Finally, the basic OCDIS and

ODBUG routines will be programmed in machine language. It is

estimated that this first implementation of OCAS will take from 500

to 1000 man-hours to program and check out.

After experience is gained with OCAS in an interpreted form, an

OCAL compiler and loader can be written to increase the efficiency

of debugged OCAL programs. Specifying, programming, and debugging

this package will take an additional 1000 man-hours.

This empty page was substih1ted for a
blank page in the original document.

15

SECTION 5

EXAMPLES OF OCAL APPLIED TO CRYPTOGRAPHIC PROCESSES

So far, the design of OCAS has been based on the author's

intuition of what he would like to have the computer do as an aid to

solving cryptograms. This intuition is based both on experience

with inter-active computer systems, and with solving ACA cryptograms

in several cryptographic systems using pencil and paper. Let us

examine some of the elementary cryptographic bookkeeping tasks and

see how these would be expressed in OCAL. (An example of a complete

OCAL procedure to find the period of a periodic cipher, such as a

Vigenere or Beaufort, can be found in Appendix F.)

5.1 SIMPLE FREQUENCY COUNT

Often a count is made to determine how many times each letter

is contained in a cryptogram. To do this kind of count in OCAL

would require the declarations:

CHARACTER C

READER SCAN

ALPHABET ENG ('ABCDEFGHIJKLMNOPQRSTUVWXYZ')

STRING CRYPT

INTEGER FCOUNT

DECLARE FCOUNT(ENG)

[The last declaration makes FCOUNT a vector equal in length to the

alphabet ENG, which contains just the letters A through Z.]

CRYPT = READ. ('PTR','. I)

[Read an ASCII string from the photoelectric paper tape reader, up

to and including the first period.]

CRYPT= ENG.(CRYPT)

[Convert the string into the alphabet ENG.]

ATTACH. (SCAN ,CRYPT)

[Attach the reader SCAN to the string CRYPT.]

C = $C.(SCAN)

ENDSTRING = F!

DO UNTIL ENDSTRING, BEGIN

FCOUNT(C) = FCOUNT(C)+l

[Enter a DO loop with character variable C set to the first

character of the string CRYPT.]

C = $IC. (SCAN)

END

16 SECTION 5

The reader function $IC. advances the reader one character position

and reads the next character into the variable c. When the reader

reaches the end of the string CRYPT, the frequency count will be

found in the vector FCOUNT.

S.2 LONGEST REPEATED SEQUENCE

The problem here is to find the longest, non-overlapping,

repeated sequence in the string CRYPT. This example demonstrates the

SNOBOL-type pattern-matching statement in OCAL:

INTEGER N

STRING CRYPT,FILL,RPT,R

N = 1

[Set the length of the first trial repeated string to one.]

SCANFLAG = T:
DO WHILE SCANFLAG, BEGIN

CRYPT *R/N* *FILL* R

[Scan the string CRYPT for the first instance of a string of length

N followed by an arbitrary string, followed by a repeat of the first

string. If a match is found, set the string variables R and FILL to

the substrings of CRYPT that they match.]

N = N+l

RPT .. R

END

When ·the SNOBOL pattern scan succeeds in finding a match, the length

of the trial string is incremented by one and the repeated string

found on this trial is remembered in the string RPT. When the DO

loop terminates, the first occurrence of the longest non-overlapping

repeated string will be found in RPT.

17

SEC'I'ION 6

CONCLUSIONS

This thesis describes an inter-active computer programming

system (OCAS) which is intended to ease the solving of cryptograms

by giving a cryptanalyst the necessary tools to easily program a

computer. As may be expected in this type of project, the system

has grown considerably since its inception. Unfortunately, it was

not possible to completely program and debug the described system in

the time available for this thesis.

A computer programmer.who is working with cryptographic systems

frequently deals with both character strings and algebraic

quantities. The programming system described has a computer

programming language (OCAL) which is intended to manipulate both of

these kinds of data. Note, however, that OCAL is definitely a

language for computer programmers who are familar with cryptographic

procedures: it is not an attempt to produce a "COBOL" for

cryptanalysis.

The programming system also includes a display generator to

permit easy specification of CRT displays to accompany OCAL

programs. In addition, the programming system includes an on-line

debugging and control program (ODBUG) to ease debugging of programs

written in OCAL.

Even though the system described was intended to provide

computer aid for solving cryptograms, certain parts of the system

may be of interest to people designing other inter-active computer

software. The concepts to be emphasized in this respect are:

first, the general "fail-soft" design philosophy of not letting

innocent programming mistakes "bring the house down", and second,

the integrated system of program writing, editing, debugging, and

running.

The other portion of this thesis which may be of interest to

persons not intereste~ in the field of cryptanalysis is a discussion

of deficiencies in the SNOBOL string-manipulation language. For

example, addition of predicate procedures to the SNOBOL scan

algorithm greatly enhances the power of the language. This

additional power may be of use to those interested in

natural-language processing.

This empty page was substih1ted for a
blank page in the original document.

19

APPENDIX A

COMMON CIPHER SYSTEMS

Problems enciphered in the following cipher systems appear

regularly in the bi-monthly magazine THE CRYPTOGRAM published by the

American Cryptogram Association. This list is included to show the

variety of cipher systems that people frequently solve with pencil

and paper. It has been the goal of this thesis to write a computer

programming language which will permit a cryptanalyst to attack any

one of these systems quickly and easily.

Ams co

Beaufort

Beaufort, Variant

Bifid

Caden us

Fractionated Morse

Grandpre

Grille

Gronsfeld

Keyphrase

Myskowsky

Nihilist Substitution

Nihilist Transposition

Phillips

Playfair

Playfair, Seriated

Porta

Port ax

Quagmire (Vigenere with mixed tableaus)

Rag baby

Rail fence

Simple Substitution

Slidefair

Transposition, Auto

Transposition, Columnar

Transposition, Route

Tri-Digital

Trifid

Tri-Square

Vi gene re

Vigenere, Auto Key

Vigenere, Running Key

This empty page was substih1ted for a
blank page in the original document.

21

APPENDIX B

SOLUTION OF THE RAILFENCE CIPHER IN SNOBOL

The Railfence cipher is a simple form of transposition cipher.

The plaintext is written in a zig-zag route thus:

S R
A EA
ML

p

N H
E C P E

I F E I R
L C

The cipher text is then taken off in rows giving the following

cryptogram:

SRNHA EAECP EMLIF EIRPL C.

The key consists of how many letters deep the zig-zag is (known as

the rail depth) and whether the zig-zag starts off in w form (as the

example does) or in inverted W form.

The railfence program was written to test SNOBOL's suitability

as a computer programming language for solving cryptograms. The

method of attack used in the railfence program was to prepare a

string as long as the cryptogram in the form:

1234543212345432123 •••

where the highest number in the string indicates the rail depth

being tested. The letters of the cryptogram are taken off one by

one and substituted for the l's first, then the 2's, etc. The

resulting string is the trial decipherment which is then scored by

using a digraph weight table. This table is found in strings CWA

through CWZ in the program. The score is the sum of the weights for

each digraph. In making a sequence of trials, the one with the

highest score is chosen as the best solution for the cryptogram.

The program in SNOBOL was written to allow the operator to

direct the search aJT1ong the various rail depths and forms by asking

for instructions. The instructions consist of simple entries

indicating a particular depth and form, trials over a series of

depths in both forms, or END which terminates the program.

Writing the program in SNOBOL revealed some serious limitations

of the overall suitability of SNOBOL for general cryptographic work.

Among these are: 1) lack of arrays and floating-point numbers, 2)

lack of generalized functional arguments for the string

pattern-matching elements, and 3) overall system slowness in running

relatively simple examples. (The total main-frame computer time was

22 APPENDIX B

often more than 30 seconds even for simple examples).

The railfence program example is included here to demonstrate

the kind of problem OCAL was designed to solve. In th~ exampl~,

bold capital letters are the computer program typing and lower-case

letters are operator responses. Explanatory remarks added for this

manuscript are set off by brackets.

AN EXAMPLE OF THE RAILFENCE PROGRAM

snobol rfence
w 1314.2
EXECUTION

WHICH PROBLEM
Cm-a 63)

PROB LEM IS

[calling the program in CTSS]
[time of day furnished by CTSS]
[CTSS indication that the program is ~perating]

[railfence program asking for problem ident.]
[problem found in the March - April 1963
issue of The cryptogram]

SASEP AISNI CRPOB INGAF COEAH OCNNR NSOIS OllAH RT. (M-A 63)

TRY
help
OPTIONS ARE
ALL M THRU N

[railfence program asking for directions]
[operator asking for directions]

WHERE NANO MARE POSITIVE INTEGERS INDICATING
THE INCLUSIVE RAIL DEPTHS TO BE TESTED BOTH IN
STRAIGHT AND INVERTED W STYLE,
END
WHICH TERMINATES THE RUN,
+N
-N
FOR A SINGLE TRIAL
WHERE N IS THE NUMBER OF RAILS AND
THE SIGN INDICATES STRAIGHT OR
INVERTED W STYLE RAILS.

TRY
a 11 4 thru 6
RAIL DEPTH

+4
-4
+5
-5
+6
-6

SOLUTION

SCORE
37
39
60
54
53
50

SCORE ON 5 W STYLE RAILS IS 60
SIGNINASANFRANCISCOSHOEREPAIRSHOPBOOTICIAN

TRY
end

R 15.466+5.083

[operator is satisfied with result and
terminates the run]

[15 seconds of computer time were spent
running the program and 5 seconds were spent
swapping it in and out of core. Statistics
are from an actual CTSS run]

APPENDIX B

*
*
START

RD
RDA

ROB

RDC

ROD

RDl

ON

TRY

TRYl

DNA

RAIL FENCE PROGRAM

CWA = 1 B2C2DlF1GlllJ1KlL2MlN3P2R2S2T2V2WlX1Yl 1

CWB = 1 A1BlE411L201RlU2Yl 1

ewe 'A2E2H211K2uo2R1nu1 1

CWD = 1 A2DlE2Fll2Jl01RlUlV1Yl'
CWE 1 A2ClD2FlGlL1MlN2PlQ2R2S2VlWlX3 1

CWF = 'AlE1FlllL102RlT1Ul'
CWG = 1 AlE2H211Ll02R2Ul 1

CWH • 1 A3E41202Tl 1

CWI = 'AlBlC2DlElF2GlK2L2MlN302RlS2T2V2X2 1

CWJ = 1 A1El02Ul 1

CWK 1 AlE312N101SlY1 1

CWL 1 A2D2E312KlL202SlT1UlY3'
CWM = 1 A3BlE312Ml02PlU1 1

CWN 1 A1ClD2ElG211JlKlN101SlT2UlVlX1Yl'
CWO = 1 AlBlC1DlF3GlllK2LlM2N301P2R2SlT2U3V2W2Xl 1

CWP • 1 A2E2HlllL202R2TlU1 1

CWQ = 1 U 5 1

CWR = 1 AlDlE2Gll 1KlllM101TlU1Vl 1

CWS = 'A2E2H212KlLlM1Nl02P2QlSlT3U2Wl'
CWT 'A2E2H41303R1SlT2U2Wl 1

CWU • 1 AlBlC1DlE1GlL1MlN2PlR2S2T2'
CWV = 1 A2E41202 1

CWW = 'A2E2H31201 1

CWX 1 AlC1Ell 101P1Tl'
CWY I A1El02 I

cwz = I E302 1

MAXRAILS = 1 9 1

WRFLX(1 WHICH PROBLEM')
IDA• RDFLX()
ID = TRIM(IDA)
HO LO = I I

SYSPIT •LINE•
LINE 'END OF PROBLEMS'
WRFLX('PROBLEM NOT FOUND')
LINE ID /SCRDC)
LINE '.' /SCRO)
HOLD =HOLD LINE
WRFLXC'PROBLEM IS')
HOLD •(C)• /F(RDD)
WRF LX (HO LO)
~'JRFLX(LI NE)
LINE =HOLD LINE
LINE'.' /S(RDl)
HOLD = LI NE
SYSPIT •LINE• /(RDD)
LINE •(C)• =
EQUALSCC,'.') /SCDN)
EQUALSCC,' 1) /S(RDl)
CIPHER• CIPHER C
WORK .. CIPHER
COUNT = SIZE(WORK)
WRFLX(11

)

WRFLX('TRY')
GUESS = RDFLXC)
GUESS = TRIM(GUESS)
DELTA= 1 1 1

OSC • IQ I

N "' 1 1 1

/F(RDB)
/(END)

/(RDA)

IC RD 1)

23

GUESS 'ALL' •Fl• I I •Nl• I I •F2• I I •N2• /S(MLPA)
GUESS I+ I •

GUESS I END I

GUESS 1
-

1 =
DELTA= 1 0 1

N • GUESS
• NUM (GUESS)

/S(END)
/FCDNA)

- DELTA

/SCDNB)

24

DNB
MLPA

MLP

MLP2

ML Pl

REV
Pl

MOR
MRl

SLl

FIN

AGN

AGNl

FINIS

END

WRFLXC'OPTIONS ARE')
WRFLXC'ALL N THRU M1

)

APPENDIX B

WRFLX(1 WHERE N AND MARE POSITIVE INTEGERS INDICATING'>
WRFLXC'THE INCLUSIVE RAIL DEPTHS TO BE TESTED BOTH IN')
WRFLX('STRAIGHT AND INVERTED W STYLE.')
WRFLX(I END I)

WRFLXC'WHICH TERMINATES THE RUN,')
WRFLX('+N 1)

WRFLXC'-N')
WRFLX('FOR A SINGLE TRIAL')
WRFLX(1 WHERE N IS THE NUMBER OF RAILS AND')
WRFLXC'THE SIGN INDICATES STRAIGHT OR')
WRFLX('INVERTED W STYLE RAILS.') /(TRY)
RAILS• GUESS /CMLP2)
.GT(Nl, 1 11

) /FCTRYl)
.LT(Nl,N2) /FCTRYl)
RA I LS '" Nl - 1 1 1

MAXRAILS = N2
WRFLXC'RAIL DEPTH SCORE')
RAILS• RAILS+ 1 1 1

.GTCRAILS,MAXRAILS) /SCFINIS)
N = 1 1 1

PATTERN •
D • DELTA
C .. COUNT
PATTERN • PATTERN N
N • N + D
c = c - 1 1 1

.EQCC, 1 0 1
) /SCPI)

.GECN,RAILS) /S(REV)

.LECN,'l') /F(MLPl)
D = 1 0 1 - D /(MLPl)
WORK = CIPHER
N • I 1 1

WORK •CH/ 1 1 1
• =

PATTERN N '" CH /S(MOR)
N,. N + 1 1 1

.GTCN,RAILS) /F(MRl)
NS c = I 0 I
WORK = PATTERN
WO R K * s c I I 1 I *
FC = SC
WORK •SC/ 1 1 1

• = /FCFIN)
PNT = I C\·J' FC
$PNT SC •W/ 1 1 1

• /F(SLl)
NSC = NSC + W /(SLl)
.GTCNSC,OSC) /FCAGN)
WIN = PATTERN
RLS=RAILS
DSC = NSC
TYPE = I I

.GTCDELTA, 1 0 1
) /SCAGN)

TY PE = 1 INVERTED 1

.NUM(GUESS) /S(FINIS)
M =DELTA* RAILS
.LTCM, 1 0 1

) /SCAGNl)
M • 1 + 1 M
WRFLXC' I M I I NSC)
DELTA = 1 0 1 - DELTA
.EQCDELTA, 1 1 1

) /SCMLP)
N =RAILS /CMLP2)
WRFLXC I I)

WRFLXC'SOLUTION 1
)

WRFLXC'SCORE ON 1 RLS TYPE 1 W STYLE RAILS IS 1 OSC}
WRFLX(WIN)
/(TRY)
START

APPENDIX B 25

RAILFENCE PROBLEMS FROM THE CRYPTOGRAM

TOTIA SHHSI SESRL REEWE FTEBU OUMNN MOTNT FOAOA AC. (S-0 65)

ITEER OANSO EOXRE TNIRL EFNSE SDOOT BIRTY RRIRK CIEKE HOEAZ OENOH
EHEOG LENE! NTTBU IP. (J-A 65)

DESDH DHSAN GEUHA TNNST AETYO OHNTY EIAPE LRIDN TGECM GTEOL OESOO
HET. CM-J 65)

OEOWA RHRKS EPWHM KESTI ASPLO ITEHS LUTMO EERLI STWLA YMGEO E.
CM-A 65)

ENELY MSVRI VAYOB BNYWI EONAH RTAIO WOLRM GHUGO BRSID LYINF ON.
(J-F 65)

SI TWS I IBHO VCUHE OEYVN ETAAA GUOEO IHRWO IGTOS DTLWN AIYNT LOULW
IFADB AODFK DARFE S. { N-D 64)

RIOAN RI SEW NGMTS DADAE HFMEH OEHTH KATIS LSTEL TRHTF ERYFH DEOLH
VAKTS IROSI El FTO TEFSH WHKTR s. cs-o 64)

VSDIH HLRAN ENITO SO TEL BC A CO NESIN ERDLA EEBAI DHPSS HENAN CMBTW
OTA\'10 Y. CJ-A 64)

WU AAA I YRTB YLFBR AES IL FLA EH GATNA ALEOP OOIFE NFSO. (M-J 64)

ADHNR EDS AM NLOSI IHEHF SLARA BT EWE MDMFO TAIEA UENEH MLHSF NS L TA
SWVRG TDNRO TOI EW AEHOO. (M-A 64)

SASEP AISNI CRPOB INGAF COEAH OCNNR NSOIS 01 IAH RT. (M-A 63)

END OF PROBLEMS

[The above-listed problems where included as an appendage of

the railfence program to facilitate testing. A more realistic

cryptanalysis program would allow an analyst to type in a

specific problem following the WHICH PROBLEM query of the

program, rather than call a preloaded problem out of the program.]

This empty page was substih1ted for a
blank page in the original document.

~---- ·~------

27

APPENDIX C

DETAILED DESCRIPTION OF OCAL SYNTAX

This appendix describes current specifications of the on-line

cryptanalytic aid language. OCAL is intended to be a problem

oriented computer programming languaqe, designed to make the

solution of cryptograms easier by providing a cryptanalyst with

computer aid. The ideas incorporated in OCAL have been taken from

many languages, such as MAD, PL/I, SNODOL, LISP, and sr~IP. However,

OCAL was not intended to have the full generality of a language such

as PL/I. Instead, OCAL was originally specified for easy implemen

tation on a computer such as the Digital Equipment Corporation

PDP-6. As the design continued, some compromises were made to

provide more features in the language, so that some of the

specifications may change when the languaqe is finally implemented

on a computer.

C.l SYNTAX NOTATION

In this appendix, meta-variables will be typed in small letters

without intervening blanks, as the following:

identifier

label

boolean-expr

Capital letters indicate words that are part of the lanquage, such

as:

PROCEDURE

DO

STRING

BEGIN

The meta-symbol ••• is used to indicate that an arbitrary number of

the preceding meta-symbol can follow. All other punctuation marks

such as • , : : must appear as indicated. Optional portions of

definitions will be set off using pairs of slashes (/]. For

example,

LABEL namel/,name2, ••• /

means that the declaration LABEL is followed by at least one name

and optionally, an arbftrary number of names separated by commas.

28 APPENDIX C

C.2 BASIC PROGRAM ELEMENTS

C.2.l Character Set

The basic character set for OCAL is the revised ASCII character

set. This character set is used for both language and data.

C.2.2 Identifiers

An identifier is a string of 29 or fewer alphanumeric

characters; the initial character must be alphabetic. Identifiers

are used for variable names, array names, statement labels,

procedure names, and keywords.

C.2.3 use of Blanks

Identifiers and constants (except string constants) may not

contain blanks. Identifiers and/or constants may not be immediately

adjacent. They must be separated by an operator, equal siqn, paren,

colon, semi-colon, period, or blank. All format effecters, such as

horizontal tab, vertical tab, and line feed are treated as blanks,

and multiple blanks are treated as one blank.

C.2.4 Comments

If the first character at the beginning of a line (i.e., after

a Carriage-Return Line-Feed [CRLF] combination) is a star [*) then

the entire line up to the next statement terminater (i.e., semi

colon or CRLF) is treated as a comment and is ignored in OCAL.

C.2.5 Statements

A statement is any single statement found in the language and

is terminated by a semi-colon or a CRLF. Sometimes a statement can

contain another statement as a sub-piece. (For example, see the IF

statement). If a complete statement does not fit on one line, it

may be continued on the next line by making the first character on

the next line a period [.]. In this case, both the CRLF and the

period are ignored by OCAL. This is true even within string

constants.

c.2.6 Blocks

A block is a group of statements enclosed between the

statements BEGIN and END. BEGIN and END act as statement paren

theses and define a block. Blocks may be nested to any depth. A

block may appear anywhere in the language a

except that a block cannot appear in place

PROCEDURE statement.

statement can appear,

of a declaration or

APPENDIX C 29

C.2.7 Statement Labels

Statements may be labeled to permit reference to them. A

statement label has the form,

id:/id: ••• / statement

where "id"s are identifiers. In this case, the identifiers are

called statement labels and may be used interchanqeably to refer to

the labeled statement. Labels before procedures are special cases

and are called procedure names (see Section C.7.1, PROCEDURE

Statement). Only one label may appear before a PROCr.DURE statement.

Statement labels appearing before declarations in OCAL are

ignored.

C.3 BASIC DATA TYPES

C.3.1 Logic

A four-value logic is used in OCAL.

meanings are:

T! - true

F! - false

N! - neutral or neither

U! - undefined

The values and their

The logic values are ranked from lowest to highest, with N! lowest,

then F!, T!, and U! highest. The result of logic constants combined

under the operation .A. [AND) produces the lowest of the operands.

Similarly, the operator .v. [inclusive OR) produces the highest of

the operands. The operator .N. [NOT) inverts T! with F!, and N!

with U!. The operator .x. [exclusive OR) behaves like .v.
[inclusive OR] unless both operands are the same, in which case the

result is the .N. [NOT) of the first operand.

C.3.2 Integer

An integer is an optionally-signed string of decimal digits, or

an optionally-signed string of octal digits, followed by the letter

K. For an octal integer, the K may be followed by an octal exponent

given as a one- or two-digit decimal integer. The maximum size of

an integer depends upon the particular OCAL implementation. On the

PDP-6, up to ten decimal digits or twelve octal digits are

permitted.

C.3.3 Real

A real number is an optionally-signed string of decimal digits

including a decimal point [period). In addition, a real number may

have an exponent, indicated by the letter E, followed by an

optionally signed one- or two-digit, decimal-integer exponent. The

30 APPENDIX C

maximum precision of real numbers is dependent on the particular
implementation of OCAL. On the PDP-6, the exponent magnitude must be

less than 10-to-the~38th power and the precision is limited to eight
decimal digits.

C.3.4 Character

A character is a two- to eight-bit quantity representing an
element of the ASCII character set mapped by an associated alphabet

(see Section C.3.7). Characters are indicated in the language by a
double quote mark ["] followed by one ASCII character or by a number
sign [f) followed by exactly three octal digits. Characters may be

mapped by alphabets from the ASCII character set to a subset of
ASCII and back again.

For example, the ASCII character A may be represented by either
of the following:

#201

C.3.5 String
A string is an arbitrarily long sequence of

delimited by single quote marks [']. A string
ASCII characters

combination of ASCII characters.

double quote ["),and number sign

may
The characters single

[f] have special

contain
quote

meaning

any
(I) I

when

denoting a string in OCAL. Single quotes delimit the string, which
means that one double quote mark is ignored and the character
inunediately following it is inserted in the string, no matter what
that character may be. The double quote mark is used as a "quote•

characterl so that a single quote may be inserted in the string
using the double quote mark. Since not all eight-bit ASCII

characters can be generated from a normal teletypewriter keyboard, a
special quote character, the number sign [#), is used to insert

untypable characters in a string. A number sign must be followed by
three octal digits, from 000 to 377, inclusive. This octal number

represents the desired ASCII character.
Note that the carriage return and line feed characters may

appear in a string. If a desired string will not fit on one line,
the statement continuation convention may be used, in which case
neither the CRLF nor the following period will appear in the string.

For example, the following all represent the same ASCII string
in OCAL:

1 #201B#203'

APPENDIX C 31

C.3.6 Reader

A reader is a special data type which may be associated with a

given string. Using special reader functions, a reader may be moved

up and down the string. A reader can also read characters from a

string and write characters into a string (see Section C.9, Reader

Functions). The reader was introduced into OCAL as a flexible way

of transforming character strings into characters, and vice versa.

C.3.7 AlEhabet

An alphabet specifies

into ASCII. The idea was

a mapping from

introduced into

the

OCAL

ASCII

to

character set

add efficiency

when dealing with characters as subscripts for compound data

structures and arrays. Alphabets also allow core stora<Je to be used

more efficiently when storing character strinqs. In addition,

alphabets can be used to exploit certain mathematical relationships

often found between the characters of a particular cryptogram or

cryptographic system. The alphabet declaration has two parts: the

name, and the defining string given in OCAL

addition to the characters in the defining

string

string,

notation. In

each alphabet

includes two extra characters in the domain, standing for the logic

values N! and U!. These are included to give OCAL the ability to

indicate certain logical decisions within a string. However, the

character corresponding to N! and u: are not included in the

cardinality of the alphabet.

The declaration of an alphabet defines two objects within OCAL.

First, a mapping function is called like an OCAL procedure which

converts an ASCII string or character into a string or character in

the given alphabet. Under this mapping, any character appearing in

the domain (ASCII), but not in the range, is mapped into the null

character (i.e., ignored). Second, the declaration permits the

alphabet name to be used as a global integer variable whose

magnitude is equal to the cardinality of the the defined alphabet.

An alphabet can also specify the mapping of many characters in

the domain into one character in the range. This is accomplished by

observing the following conventions in the defining string. All

characters enclosed within parentheses in the defining string are

mapped into the same character as the first character after the open

parenthesis. If either of the literal characters open parenthesis

•c• or close parenthesis•)" is desired in the range, it must be

preceded by a double quote mark in the defining string.

(NOTE: a double quote mark is introduced into an OCAL string using

the form••.)

For example, the following will declare a five-letter alphabet

called AS, consisting of the cnaracters ABC (and). In addition,

32 APPENDIX C

the ASCII characters D and E will be mapped into the character c.
ALPHABET AS('AB(CDE)""("")')

Using the alphabet AS, the ASCII string 'ABCDEF(ABZ)' will be mapped
into the string 'ABCCC(AB)',

C.3.8 Type Transfer Procedures

The following procedures are available to transform quantities

from one basic type to another. They are:
CHARACTER. (q)

where "q" is a logic, integer, or real quantity and the result is a
character in the ASCII alphabet;

STRING.(q)
where "q" is a logic, character, integer, or real quantity and the

result is a string in the ASCII alphabet;

LOGIC. (q)

where "q" is a character, integer or real quantity;

INTEGER.(q)
where "q" is a logic, character, ASCII string of digits, or real

quantity; and

REAL.(q)

where "q" is a logic, character, ASCII string of digits in REAL

form, or integer quantity.

The procedure

ASCII.(s)
will transform the string •s• in any alphabet to an ASCII string.

C.4 BASIC DECLARATIONS

In an OCAL procedure, each variable must be declared before it

is used. The following forms are used to declare variables in an
OCAL procedure:

LOGIC id/,id,id ••• /
INTEGER id/,id,id ••• /

REAL id/,id,id ••• /

CHARACTER id/,id,id ••• /

STRING id/,id,id ••• /

READER id/,id,id ••• /
ALPHABET id(st)

LABEL id/,id,id ••• /
EXTERNAL id/,id,id ••• /

GLOBAL id/,id,id ••• /

where "id" is an identifier and "st" is an OCAL strinq. The

declaration means that the variable stands for a statement

LABEL

label.

APPENDIX C 33

The GLOBAL declaration means that the variable is to be made

available to all OCAL procedures and is always defined. The

EXTERNAL declaration means that the variable is a GLOBAL variable

defined by some other OCAL procedure. The variables mentioned in a

GLOBAL or EXTERNAL declaration must also appear within one of the

type declarations. Variables not mentioned in a GLOBAL or EXTERNAL

declaration are defined only within the procedure or block which

contains the declaration.

C.5 COMPOUND DATA STRUCTURES

The compound data structures in OCAL are taken from the data

structures found in the programming language PL/I. To avoid

repetition of material, the following sections in Chapter 2 of the

PL/I manual (IBM Form C28-6571-0) should be implemented in OCAL:

DATA AGGREGATES - page 43

ARRAYS - page 44

STRUCTURES - page 44

ARRAYS OF STRUCTURES - page 44

NAMING - page 45

SIMPLE NAMES - page 45

SUBSCRIPTED NAMES - page 45

QUALIFIED NAMES - page 46

SUBSCRIPTED QUALIFIED NAMES - page 46

The only restriction on the data structures in OCAL is that blanks

are not permitted within qualified names. In implementing these

data structures in OCAL, it should be noted that each element of a

compound data structure must be previously declared to be one of the

basic data types, or must be a previously declared compound data

structure. The recursive definition of a compound data structure is

expressly prohibited in OCAL.

C.6 EXPRESSIONS

C.6.1 Arithmetic Expressions

The following infix operators are available for arithmetic

expressions in OCAL:

+ addition

subtraction

*
I

multiplication

division

Arithmetic is performed on character, integer, and real data; the

data types being ranked with character lowest, integer next, and

real highest. The operands of any operator are converted to the

34 APPENDIX C

type of the highest operand, and the result is of that type unless

one of the operands was a character. In that case, the result of

the arithmetic expression is of character type and is taken modulo

the size of the alphabet corresponding to the first character

encountered. If this action is not desired, the followinq "dotted"

operator set may be used:

.+.

.-.
* . .

./.

.R.

addition

subtraction

multiplication

division

remainder

The "dotted" operators perform only the necessary type matching and

indicated arithmetic.

c.6.2 Relational Expressions

Relational expressions return logic values and are used in

making comparisons between various quantities. The relational

operators are:

.G. greater than

.GE. greater than or equal

.L. less than

.LE. less than or equal

.E. equal

.NE. not equal

The operands may be of logic, character, integer, or real type. As

in arithmetic expressions, type conversion takes place between

character, integer, and real data types. However, if one operand is

of logic type, then they both must be of logic type or the result

will be U! [undefined). Normally, the result of a relational

expression is T! [true) if the relation holds and F! [false) if it

does not.

C.6.3 Logic Expressions

The logical operators available in OCJ\L are:

.A. and

.v. inclusive or

.x. exclusive or

.N. not

The operands of a logical operator may be of logic type (ranked

lowest), character, or integer (ranked highest). The result is of

the same type as the highest operand and is the bit-wise combination

of the operands according to the operator, unless both operands are

of logic type. In this case, the truth tables indicated in Section

C.3.1 are used.

APPENDIX C 35

C.7 STATEMENTS

C.7.1 PROCEDURE

The PROCEDURE statement marks the beginning of an OCAL function

or procedure. It gives both the procedure name and the list of

parameters the procedure is to receive. OCAL procedures may be

recursively defined without any special declaration. The parameter

list for a procedure may specify either a fixed or variable number

of parameters. The form of the PROCEDURE statement for a fixed

number of parameters is

id: PROCEDURE/(namel,name2, •••)/

where "id" is the identifier giving the procedure name and the

optional parameter list is enclosed in parentheses. Names in the

parameter list give dummy names for arguments used by the procedure.

Each dummy name must appear in a type declaration statement in the

procedure.

For a variable number of parameters, the PROCEDURE statement

has the form

id: PROCEDURE (/f,f, ••• /(v,v, •••)/,f,f ••• /)

where "id" is the procedure name and the "f"s indicate optional

parameters that are always present in the procedure call. The "v"s

in parentheses indicate a set of parameters which may be repeated

zero or more times in any procedure call. Again, all the dummy

parameter names must appear in type declaration statements for the

procedure. At each activation of the procedure, the global integer

variable NUMBEROFPSETS will contain the number of parameter sets in

this procedure call. Individual members of a parameter set may be

referenced by the convention

parn[n]/(subs)/

where "parn" is the dummy name in the procedure parameter list, [n]

is an integer or integer variable referring to a particular

parameter set, and the optional (subs) is any subscripting

expression associated with the parameter. Note that it does not

make sense for the value of n to exceed the value of the integer

variable NUMBEROFPSETS.

An OCAL procedure is terminated by an END statement (see next

section). If control reaches an END statement for a procedure, it

is equivalent to executing a RETURN statement with no return

expression specified.

C.7.2 BEGIN AND END

The BEGIN statement or block marks the beginning of a compound

statement which may appear any place a single statement can appear

(except for a PROCEDURE statement or declaration). In addition, a

36 APPENDIX C

compound statement may start with type declaration statements,

declaring local variable3 defined only within that compound

statement or block. Variables used but not declared within a block

are assumed to be declared in the procedure or in a block which

encloses this one.

The statement

END /statement-label/

is used to terminate both a block and a procedure. The optional

statement label, if present, must match the label on the

corresponding BEGIN or PROCEDURE statement.

C.7.3 Assignment

The = sign is used to denote assignment in OCAL. This form

gives

vl/,v2,v3 ••• / = el/,e2,e3 ••• /

where the "v"s are either variables which may be subscrigted, or

certain reader functions, and the "e"s are any OCAL expressions. If

more than one variable or expression occurs, the assignments are

made in pairs, el assigned to vl, e2 assigned to v2, etc. If there

are more expressions than variables, the excess expressions are

evaluated but the values are ignored. If there are more variables

than expressions, the last expression value is assigned to the

remaining variables.

Automatic type conversion is done within the following groups

of data types:

character-integer-real

logic-character-integer

Assignments made to a character

the expression is of character type.

taken modulo the size of the alphabet

character.

C.7.4 PROCEDURE calls

Procedures are called with

var.iable are made as stated, if

Otherwise, the expression is

(if any) associated with the

procedurename./(pl,p2, •••)/

This uses the MAD convention of following the procedure name with a

period to differentiate it from a subscripted variable. The "p"s

are optional parameters which, if present, are enclosed in

parentheses. However, a statement may consist of only a procedure

call, in which case any value returned by the procedure is ignored.

C.7.5 Iteration

The iteration statement DO allows a statement or block to be

repeated zero or more times until some logical condition is met.

APPENDIX C

The DO statement takes the following forms:
DO tfiTIL loqicexpr, statement

DO WHILE logicexpr, statement
DO NEITHER loqicexpr, statement

37

The UNTIL form repeats the statement until the logical expression

logicexpr is not F! [false). The WHILE form renPats while logicexpr

is T! [true). The NEITHER form repeats statement while loqicexpr is
N! (neither or neutral).

C.7.6 Conditional
The conditional statement takes the form

IF loqicexpr, statement
If the logical expression •109icexpr• is T! (true), the statement is
executed. Otherwise, the statement is skipped.

C.7.7 GO TO
The GO TO statement has the form

GO TO label
where label is a statement label or variable of LABF..L type.

C.7.8 VALUE
The value returned by on OCAL procedure may be indicated by the

statement
VALUE expr

where expr is any expression.

C.7.9 RETURN
A particular activation of an OCAL procedure, is terminated by

executing the END statement associated with the procedure or by

executing the statement
RETURN /expr/

The value returned by the procedure is the value of the optional
expression "expr". If expr is not present, the value is taken from
the last VALUE statement executed in the procedure. If expr is not

present and no VALUE statement has been executed, the procedure
returns a null value.

C.7.10 ERROR
A particular OCAL procedure may be terminated by the statement

ERROR /string/
Executing this statement causes control to return to the last ON

ERROR statement executed (see ON statement). The value of the
optional string associated with the last error statement is found as

the value of the global string variable ERRORSTRING.

38 APPENDIX C

C. 7 .11 ON

The ON statement (an idea taken from PL/I) allows a programmer

to retain control in spite of certain interrupts which might cause

the OCAS job to terminate. The form of the ON statement is

ON condition, statement

where the "statement" (usually compound) is executed when the

interrupt corresponding to "condition" is found. The interrupt

conditions which the programmer can interc0 pt with the ON statement

are:

ERROR - error return from an OCAL procedure

CLOCKTICK - every time the system clock ticks

PDLOVERFLOW - overflow of push-da,.'n list

STORAGEFULL - no free storage lef~

DISBUFFERFULL - overflow of display buffer

DISPLAYSTOP - the display has executed

a stop instruction

STORAGEUSED - allotted storage has been used

(see Storaqe Allocation, Section C.10)

KEYSTROKE - one character has entered the

on-line teletype buffer

If appropriate, the programmer can return control from the interrupt

to the statement OCAL was executing when the interrupt occured by

executing the statement

DISMISS

This permits OCAL to resume processing the previous calculation

after some interrupt processing has been done.

The effect of an ON statement may be canceled by leaving the

procedure in which the ON was executed, or by the statement

REVERT condition

which causes any interrupts corresponding to condition to be handled

by an ON statement executed in a higher procedure.

The system may be requested to handle interrupts by the

statement

SYSTEM condition

This instructs the system to do normal processing (if any) of any

interrupt corresponding to this condition. The effect of a SYSTEM

statement is canceled by leaving the procedure in which it was

executed, or by executing a REVERT or ON statement specifying the

same condition.

An interrupt on a particular condition may be simulated by the

program by executing the statement

INTERRUPT condition

APPENDIX C 39

This has the same effect on OCAL as if the interrupt corrP.QPonding

to condition hAd happened when the INTERRUPT statement was executed.

Once an interrupt corresponding to a certain condition has

happened, further interrupts for the same condition are inhibited

until a DISMISS statement has been executed or until an ON, REVERm,

or SYSTEM statement specifing the same condition is executed.

C.7.12 SNOBOL Pattern Matching

The pattern-matr.hinq statement in OCAL is taken directly from

the SNOBOL string-processing language. The basic forms of the

SNOBOL statement are:

input /pe pe ••• /

input= st st /st ••• /

input pe pe ••• =/st st ••• /

where "input" is a string or string variable, "pe"s are pattern

elements (defined later), and "st"s are strings or string variables.

The SNOBOL statement works in this manner: the input string is

scanned from left to right for a match against the pattern elements

in the given order. If a match is found and the = sign is present,

matched pattern elements are replaced by the concatenation of

strings "st" (if any).

Pattern elements may be string constants, string variables or

arbitrary strings found in the input string itself. Arbitrary

strings are denoted by string variables bracketed by stars.

For example: *Al*

HOLD

Arbitrary strings match any substring in the string input, including

the null string. Arbitrary strings may be subject to a number of

conditions. An arbitrary string designated

AA/3

will match a substring exactly three characters long.

form of a fixed-length arbitrary string is

name/n

The general

where "name" is a string variable and "n" is an integer or integer

variable. An arbitrary string may be subject to the condition of

containing a matching number of left and right parentheses. This

condition is designated by

(name)

where "name" is a string variable.

An arbitrary string may be subject to a condition specified by

a general logical procedure by using the form

name/proc.(argl,arg2, •••)

where "name" again is a string variable, "proc" is a logical

procedure, and the "args" are any procedure arguments. The "args"

40 APPENDIX C

may specifically contain string variables which are substrings
matched earlier in the SNOBOL pattern-matching statement. The logic
procedure should return the value T! [true) if the proposed contents
of name are satisfactory, N! [neither} if the proposed contents of
name are not satisfaetory because the string is too short, and the
value F! (false] if the proposed contents of name are
for any other reason. If the logic procedure returns
[undefined), the SNOBOL pattern scanner will take an

unsatisfactory
the value U!

ERROR retum
with the input string as the ERROR strin9.

After the pattern match is complete, the arbitrary
string-variable names contain copies of the strings they matched in
the input. These names may be mentioned in the concatenation
section of the SNOBOL statement or in any other statement following
the pattern-matching statement. Note also that string-variable
pattern elements may have the same name as arbitrary pattern

elements matched earlier in the pattern-matching statement. This
makes it possible to search the input string for non-overlapping
repeats of an arbitrary pattern element.

If the SNOBOL pattern match succeeds, the global logic variable
SCANFLAG is set to T! [true]. Failure to find a match causes
SCANFLAG to be set F! (false]. This condition can be tested by the
IF or DO statements.

C. 8 INPUT/OUTPUT PROCEDURES

Input/output procedures in OCAL will initially be limited to
handlinq strin9s. Since the OCAL character set (ASCII) is quite
general, strings can be converted to any other data type in OCAL.
Conversely, output material can be converted to ASCII strings in

OCAL. 'l'Wo basic procedures are furnished with OCAL. They are:
READ. (file/ ,termin/)
WRITE.(file,string)

The arqwnent file is either 'PTR', 'PNCH', 'TTY' or
specifing photoelectric· tape reader, paper tape
teletype, or file names on backup storage (DECtape

'namel name2'

punch; on-line
on the POP-6).

Only one file from backup storage may be open for reading and one
file ophn ~or writing at a time. If the optional second argument
"t.:rmin" is present· in the READ· call, the READ procedure returns as
val•ie the ASCII string of all characters up to and including the
firs; match of the string termin. If termin is not present, the
value of the READ procedure is all characters then in the input
buffer. An end-of-file on backup storaqe is si90aled by havinq the
last character be ASCII character EOT.

APPENDIX C 41

The second argument of the WRITE procedure is the output
string.

A file on backup storage may be closed by using the call

CLOSE. (file)
where •file• is a string 'namel name2 1 as described above.

Examples:

INP • READ.('TTY','12151212')
will read one line from the on-line teletype, up

the Carriage-Return (f215) Line-Feed {#212). The

will be placed in the string variable INPJ
. WRITE. (1 PNCH' ,OUT)

to and including

resulting string

will punch the contents of the string OUT on the paper tape punch:

IN • READ. (1 Al.PHA DICT' 1 ' ')

will read from backup storage file ALPHA DICT the first string up to

and including a space.

C.9 READER FUNCTIONS

Special functions for using the READER data type are available

in OCAL. The general form of these functions is
$fn/fnfn ••• /.(readv)

where the •fn•s are elementary reader functions and •readv• is a

variable of reader type. The elementary reader functions are:

C - Write one Character into a string if this appears on the

left side of an assignment statement, otherwise read one

character out of a string.

V - Set the reader position to the integer Value if this

appears on the left side of an assignment statement. Otherwise

return the integer value of the current reader position in

characters from the head of the string.

I - !ncrement the reader position which moves the reader one
character position forward on the string. If an attempt is
made to pass the end of the string, the global logic variable

ENDSTRING is to T! [true]. Otherwise, the ENDSTRING is set to
F! (false]. If the •1• is on the left side of an assiqnment
statement and an attempt is made to pass the end of the string,

the string is extended one character position and the global
logic variable EXTENDSTRING is set to T! (true). In any other

case EXTENDS~RING is set to F! (false], and attempts to pass
the end of the string leave the reader p0sition unchanged and

set the ENDSTRING variable.

42 APPENDIX C

D - Qecrement the reader position which moves the reader one

character position towards the beginning of the string. Any

attempt to pass the beginning of the string will leave the

reader position unchanged and the global logic

BEGINSTRING set to T! [true]. If no attempt is made

the beginning of the string, BEGINSTRING is set to F!

variable

to pass

[false].

RI - ~tary Increment. This behaves like I [increment], except

that passing the end of a string will position the reader at

the beginning of the string.

RD - ~otary Qecrement. This behaves like D [decrement], except

that attempts to pass the beginning of a string will position

the reader at the end of the string. No global variables are

altered by RI and RD.

M - Mark. This notes the ,.urrent position of the reader on the

string for future reference.

P - Position. Return the reader to the position set by the

last M [mark] •

N - Initialize. Return the reader to the beginning of the

string.

A reader may be attached to a given string by calling the

ATTACH procedure with

ATTACH. (rdr,st)

where "rdr" is a variable of the READER type and "st" is any

non-null string.

Example: (The following declarations hold throughout this

example: R is a READER variable, s is a STRING variable, C and D

are CHARACTER variables, and I is an INTEGER variable. The initial

contents of s are 'LMNOPQ'.)

ATTACH. (R,S)

[attach reader R to string SJ

C = $C. (R)

[set c equal to the character L]

D = $IC. (R)

[set D equal to the character Ml
I = $VM. (R)

[set I equal to 2 and remember the value as a mark]

APPENDIX C

$V. (R) = 4

[position the reader over the character OJ

$IC. (R) = D

[replace the character P with the character M)

$II. (R)

43

[this will produce no value but will set the global logic variable

ENDSTRING to T![true). The reader will be left positioned over the

character R)

$IC. (R) = C

[set the global variable EXTENDSTRING to T! [true] and will append

the character L to the end of the string]

$P. (R)

[return the reader to the mark. The reader will be positioned over

the first M on the string)

$N. (R)

[return the reader to the head of the string]

As a result of previous reader functions, the string S will now

contain 'LMNOMQL'.

C.10 RESOURCE ALLOCATION

Two resource allocation statements are available in OCAL. The

statement

ALLOT PUSHDOWNLIST n

will allot "n" registers to the system push-down list where n is an

integer or integer variable. The push-down list space allotment may

be changed at any time, but an insufficient push-down list will

cause a system interrupt.

The statement

LIMIT STORAGE n

will cause a system interrupt after n words have been used from free

storage. The number of words of storage used since the beginning of

the current OCAS job is found in the global integer variable

STORAGE USED.

Push-down overflow or storage-limit interrupt may be handled in

OCAL by using the ON statement. These features allow the OCAL

program to limit large searches or catch certain procedures that are

in an infinite loop.

This empty page was substih1ted for a
blank page in the original document.

45

APPENDIX D

ON-LINE CRYPTANALYTIC DISPLAY GENERATOR (OCDIS)

The following procedures will be available to generate CRT

displays in OCAS. The inital implementation of OCDIS will be for

the DEC Type 340 display attached to the Project MAC PDP-6.

D. l PROCEDURES

The display is organized about a display format which is the

argument to several display procedures. Only one format may be on

the CRT at one time. Different formats may be thought of as

different pages which may be displayed in any order under the

control of an OCAL program. The basic display procedure is

COMPILEDIS.(frm/,q,q,q ••• /)

where "frm" is a string or string variable giving the display format

and the optional "q"s are the variables or constants which are to be

displayed in the given format.

Individual items within an already-compiled format may be named

and named items may be changed using the procedure

CHANGE DIS. (frm,name, i tern)

where "frm" is the format, "name" is a string or string variable

giving the name of the item in the format, and "item" is the new

value of the quantity to be displayed. The advantaqe of this

procedure is that individual display items in a large format may be

changed without recompiling the entire display.

The display is started by the procedure

STARTDIS. (frm)

where "frm" is the format. In addition to the requested format,

each STARTDIS will cause a log display to appear in the upper left

hand corner of the screen. The log gives the current date, time,

frame number, and a short title for the display. The log

information is useful in identifying still photographs taken of the

display and is maintained by the system without being a burden to

the progranuner. The log information for a particular console session

may be initialized using the procedure call

46 APPENDIX D

LOG. (date,time,frame,title)

where "date" is an integer giving the current Julian day, "time" is

an integer giving the current time in 60ths of seconds after

midnight, "frame" is the inital frame number, and "title" is a

short string used to title the display. A negative number in the

date, time, or frame positions will leave those constants unchanged.

The frame number is incremented by one every time a new format is

displayed. The system will automatically update the date, time, and

frame number once they are initialized.

The display may be turned off using the procedure call

STOPDIS.

Room for the display buffer may be dynamically allocated by

calling the procedure

BUFFERDIS.(n)

where "n" is an integer variable or constant giving the size of the

display buffer in words of core storage. If the display buffer is

too small for a particular display, the buffer will overflow. This

condition may be detected in an OCAL program with the ON statement

using the DISBUFFERFULL condition.

All displays are maintained in program interrupt mode, so that

calculations may continue even when a display is visible.

D.2 FORMATS

A format is an ASCII string in the form

'x y item item •••

where x and y are octal integers giving the absolute reference point

in screen co-ordinates for the rest of the format. Each item is a

list of display descriptors1 the entire list for any one item being

enclosed in parentheses. The display descriptors for a particular

item may be in any order and only those descriptors relevant to the

item being displayed need be included in the list. Certain display

descriptors, such as SIZE, INTENSITY, and RELOC effect each item in

the display. If they are not specified for a particular display

item, the previous item's value is used for SIZE and INTENSITY, and

the RELOC is taken from wherever the last item finished.

APPENDIX D 47

D.3 DISPLAY DESCRIPTORS

Each display descriptor is enclosed in parentheses. It

consists of a descriptor type followed by modifiers or values

separated by spaces. The display descriptors are:

(TYPE t) - gives the basic type of data quantity to be displayed as

this item. Permitted types are STRING, CHARACTER, INTEGER, REAL,

and LOGIC.

(RELOC x y) - the octal integers x and y give the starting location

of the display item in screen co-ordinates relative to the format

reference location. If RELOC is not specified, the item will be

displayed starting wherever the last item stopped.

(NAME nm) gives the external name of this display item.

items may be changed without recompiling the entire display

by using the CHANGEDIS procedure.

Named

format -,

(SIZE n) - where n is a decimal integer from l to

character size or dot separation to be used. (See

section of the PDP-6 manual.)

4 giving the

the Type 340

(INTENSITY n) - where n is a decimal integer from 1 to 8 giving the

relative intensity of the displayed item.

(CASE c) - where c is UPPER or LOWER. This is used to determine the

case of an alphabetic character or strinq display

(SPACE n) - where n is NO or a decimal integer. This descriptor is

for string displays. NO causes spaces

suppressed. An integer will cause a space

every nth letter (5 is a typical value).

(WIDTH n) - where n is a decimal integer.

width in characters for a string display.

in the string to be

to be inserted after

This descriptor sets the

If the string to be

displayed is longer than n characters, the string is broken into

lines of length n. The space between successive lines is normally
/

one vertical character space, but this may be increased to n

character spaces using the VSPACE descriptor.

(DEPRESS n) - where n is a decimal integer. This descriptor, used

in string displays, declares that the string should begin n vertical

character spaces below the position specified by RELOC.

48 APPENDIX D

(VSPACE n) - where n is a decinal integer giving the number of

vertical character spaces between successive lines of a string

display.

(BASE) - declares this item to be a control string which is not

displayed. The control string is used as a reference for the

variable spacing descriptor BELL.

(BELL n) - where n is a decimal integer number of characters. It is

used to prevent words in a string from being broken between succes

sive lines in the display. DELL causes the display line to end at

the first space after n characters relative to the BASE reference

string. If no BASE string is specified, the string being displayed

will be used as the reference string.

(OFFSET) - declares that the next parameter in the argument list is

an integer offset to be applied to the current string. This

descriptor is useful when displaying cryptographic slides.

(CONSTANT ••• #000) - every character after the space following

CONSTANT up to the special terminating character #000 is taken as a

constant string to be displayed. CONSTANT's need no argument in the

corresponding position in the COMPILEDIS call.

(ARRAY nl:ml /n2:m2/) - where the arguments are array subscript

ranges in the OCAL format. This descriptor is used to declare that

the display argument is a one- or two-dimensional ARRAY. Only

arrays of type CHARACTER, INTEGER, or REAL may be displayed.

(BARGRAPH n:m) - where n and m are integers. This descriptor

indicates that the display is a one-dimensional array that is to be

displayed as a bar graph. Only INTEGER or REAL arrays may be

displayed as a bar graph.

(SCALEFACTOR) - is used with the BARGRAPH descriptor. It indicates

that the next item in the call is a real number which is to multiply

each item in the bar graph display.

(LINE x y) - where x and y are octal integers. This causes a line

to be drawn from the current relative location to the point x,y

relative to the format reference point. The line may be solid or

dotted, depending on the SIZE descriptor.

49

APPENDIX E

ON-LINE DEBUGGING AND CONTROL PROGRAM (ODBUG)

This appendix describes the features of the on-line debugqing

and control program for OCAS. The program makes use of an OCAL

interpreter so that an OCAL statement may be executed by typing it

on the console. In addition, the following features are included:

:var - causes the contents of the variable "var" to be printed out

on the on-line console. After the printout the varible is "open",

which means new contents may be inserted by typing them using

conventions. A statement terminater "closes" the variable.

nothing is typed before the statement terrninater, the contents

the variable remain unchanged.

OCAL

If

of

/S - causes the current OCAL table of active symbols to be typed out

giving both the symbol names and their types.

/D name - causes the entire current state of OCAS to be dumped on

backup storage in a file called NAME SAVED.

/R name - restores the state of OCAS from the NAME SAVED file on

backup storage.

/P pro - where pro is the name of an interpreted OCAL procedure.

This permits ODBUG to insert a breakpoint in this procedure (see

/B).

/B id - places a breakpoint at the statement label "id" in the

currently-addressed OCAL procedure. Executing a breakpoint returns

control to ODBUG. If "id" is not specified, any outstanding

breakpoint is removed.

/C - allows OCAS to continue executing statements after the last

breakpoint was executed.

/G id - starts the OCAL interpreter at the statement label "id" in

the currently-addressed procedure (see /P) •

BREAK - a single depression of the BREAK button will return control

to ODBUG as if a breakpoint had been executed. The program may be

restarted using the /C command.

This empty page was substih1ted for a
blank page in the original document.

51

APPENDIX F

AN EXAMPLE IN OCAL - FINDING THE PERIOD OF A PERIODIC CIPHER

The following example is based on a method suggested by William

G. Bryan in Cryfto2raphic ABC's for finding the period of a

cryptogram enciphered with a periodic cipher (e.g., Vigenere or

Beaufort). The method consists of finding the distance in

characters between each and every A in the cryptogram. The

distances are then factored and tallies are made for each factor

corresponding to a suspected period of the cryptogram. Usually a
range of periods from 3 to 12 is tested. This procedure is repeated

for each B, each c, etc., down to each z. Next, the tallies

corresponding to each period are summed and weighted by the period.

The highest weight usually indicates the period of the cryptogram.

This method of finding the period is known as the •Kasiski•

method after Major F. w. Kasiski, a

published a paper on it in 1863 (see page

German cryptanalyst,

127 in GAINES).

who

This

method works because in a periodic cipher, the key must be repeated

a number of times to produce a cryptogram and, as a result, many

times the distance between two occurences of the same cipher text

letter is a multiple of the key length which is the period.

EXAMPLE

* * KASISKI METHOD IN OCAL
*
PERIOD: PROCEDURE (CRYPT,PER,N,M)
* * PARAMETERS ARE:
* CRYPT - A STRING GIVING THE CRYPTOGRAM
* PER - AN INTEGER VECTOR WITH SUBSCRIPT RANGE N TOM
* THE WEIGHTED TALLIES ARE RETURNED IN THIS VECTOR
* N - AN INTEGER GIVING THE LOWEST PERIOD TO BE TESTED
* M - INTEGER GIVING HIGHEST PERIOD TO BE TESTED
* * DECLARATIONS NEXT
*

*

STRING CRYPT
CHARACTER C
INTEGER PER,N,M
INTEGER DIST,INDEX,ALPS,K,Ll,L2
INTEGER SEP,TR
READER R
DECLARE PER(•)

* THE VECTOR PER IS DIMENSIONED IN THE CALLING PROCEDURE
* DECLARE DISTCLENGTH.CCRYPT)/5)
* * DECLARING THE LOCAL VECTOR DIST
*

S2

READER R
* * THE ACTUAL PROCEDURE BEGINS HERE
*

*

ATTACH. CR, CRYPT>
ALPS = SIZE.(ALPHABET.(CRYPT))
INDEX .. 1
DO WHILE INDEX .LE. ALPS, LOOPl: BEGIN

* ITERATE OVER THE SIZE OF THE ALPHABET
* C •$NC.CR>
*

APPENDIX F

* RETURN READER TO HEAD OF STRING AND READ FIRST CHARACTER
* K = 1

DO UNTIL ENDSTRING, LOOP2: BEGIN
* *READ THE STRING CRYPT CHARACTER BY CHARACTER
*

*

IF C .E. INDEX, CONDl: BEGIN
DIST(K) = $V.CR)

*RECORD DISTANCE FROM HEAD OF STRING
*

*

K = K + 1
END CONDl

C =$IC.CR)

* INCREMENT THE READER AND READ NEXT CHARACTER
*

*

END LOOP2
Ll .. 1
DO UNTIL Ll .E. K, LOOP3: BEGIN

* COMPUTE THE CHARACTER DISTANCE BETWEEN EACH OCCURENCE
*

*

L2 = Ll + 1
DO UNTIL L2 .G. K, LOOP4: BEGIN

SEP = DIST(L2) - DIST(Ll)
TR • N
DO UNTIL TR .G. M, LOOPS: BEGIN

* TEST EACH PERIOD FROM N TOM FOR REMAINDER 0
*

*

IF (SEP .R. TR) .E. 0,
PERCTR) = PERCTR) + 1

TR = TR + 1
END LOOPS

L2 = L2 + 1
END LOOP4

Ll=Ll+l
END LOOP3

INDEX = INDEX + 1
END LOOPl

* NOW WEIGHT EACH ITEM IN PER BY THE RESPECTIVE PERIOD
*

*

K = 1
DO UNTIL K .G. M, LOOP6: BEGIN

PER(K) • PER(K) + 1
K = K + 1
END LOOP6

* ALL DONE
* END PERI OD

53

BIBLIOGRAPHY

ARDEN, Bruce et al, The Michigan Algorithm Decoder (MAD), University

of Michigan, November, 1963

BAZERIES, Commandant E., Les Chiffres Secrets Devoiles, Paris, 1901

BOBROW, Daniel G., "METEOR: a LISP Interpreter for String

Transformations", The Programming Language LISP: Its Operation and

Applications, Information International Inc., Cambridge, Massachu

setts, 1964

BRYAN, William G., Cryptographic ABC's, American Cryptogram Associ

ation, 1960

DEC, DDT-6 Reference Manual, Digital Equipment Corporation, Maynard,

Massachusetts, 1965

DEC, Programmed Data Processor-6 Handbook, Form F-65, Digital Equip

ment Corporation, Maynard, Massachusetts, 1965

EYRAUD, Charles, Precis de Cryptographie Moderne, 2nd edition, 1959

FARBER, David, et al, "SNOBOL, A String Manipulation Language",

Journal of the Association of Computing Machinery, Vol. 11, No. 2

(January 1964), pp. 21-30

FRIEDMAN, William F., An Introduction to Methods for the Solution of

Ciphers, Riverbank Laboratories Publication No 17, Geneva, Illinois,

1918

GAINES, Helen F., Cryptanalysis, Dover Publications, New York, 1956

GRISWOLD, Robert E. and POLANSKY, I. P., String Pattern-Matching in

the Programming Language SNOBOL, Memorandum MM-63-3344-3, Bell Tele

phone Laboratories Inc., July, 1963

IBM Operating System/360 - PL/I: Language Specifications, Form C28-

6571-0, 1965

McCARTHY, John, et al, LISP 1.5 Programmer's Manual, MIT Press,

Cambridge, Massachusetts, 1963

54

NAUR, Peter, et al, "Revised Report on the Algorithmic ~anguage

ALGOL 60", Communications of the Association for Computing Machinery

Vol. 6, No. l, (January 1963), pp l-17

PRATT, Fletcher, Secret and Urgent, Blue Ribbon Books, New York,

1939

SACCO, General L., Manuale di Crittografia, 2nd edition, Rome, 1936

WEIZENBAUM, Joseph, "~metric List Processor (SLIP)", Communica-

tions of the Association of Computing Machinery,

(September 1963), pp. 524-536

Vol. 6, No. 9

YARDLEY, Herbert o., The American Black Chamber, Blue Ribbon Books,

New York, 1939

YNGVE, Victor H., et al, COMIT Programmers Reference Manual, MIT

Press, Cambridge, Massachusetts, 1961

ZANOTTI, Mario, Crittographia: Le Scritture Segrete, Milan, 1928

