

MAC-TR-24

MAP

A System for

On-Line Mathematical Analysis

Description of the Language

and

Instruction Manual

Roy Kaplow, Stephen Strong

and John Brackett

Department of Metallurgy

Massachusetts Institute of Technology

January 1966

Copyright @ 1966 by

Massachusetts Institute of Technology, Cambridge, Massachusetts

Foreword

This report relates to a project within the M.I.T. Metallurgy

Department, under the supervision of Professors

Roy Kaplow. The effort has been greatly assisted

B.L.

by

Averbach

Project

under the direction of Professor .Robert Pano, which contributed

and

MAC,

the

major financial support, computer facilities and frequent advice.

Mr. Stephen Strong, presently Research Assistant in the Department

of Metallurgy , and Dr. John Brackett, Research Associate in the

Department of Metallurgy, are responsible for the programming and

adaptation of existing proqrams in the development of the system to

its present state.

New developments in any field are usually heavily dependent on

previous work. This is especially true in this instance; we have

taken advantage of existing programs as well as the entire

Time-Sharing System. The present work would not have been possible

without that background, which is due to the staffs of the M.I.T

Computation Center and Project MAC. In addition, the graphical

output commands in MAP rely heavily upon the work of Professor

Thomas G. Stockham of the M.I.T. Electrical Engineering Department.

i

Table of Contents

Forward •.•••••••••• i

Introduction ••••... 1

2 Section

Section

Section

Section

Section

Section

Section

Section

Section

Appendix

Appendix

A.

B.

c.

D.

E.

F.

Scope of the System ••••••

Language of the System ••••••••••••••.•••••••.•.••••• 3

Numbers,Constants and Functions ••••••••••••••••••••• 4

Arithmetic Equations ••••• 6

Operational Functions •••.•••••.•••••• 15

Complex Procedures ••••••••••••••••••• 16

Fl. Integration •.••••••••••••••••••••••••••••••••••••••• 17

F2.

F3.

F4.

F5.

F6.

Convolution •••

Least Square Analysis •••••••.•••••••••..•••.••••••••

Basis Change (Interpolation) •

Fourier Transform •••••••••••••••••••

Change of Range of a Function •.••••••.••••.•

22

25

30

32

F7. Manipulation of a Portion of a Function ••••••••••••• 34

G. Command Sequences ••••••••••••••.•••••••••••.•..••••• 3 7

H. Data Input, Output, Listing and Erasing ••••••••••••• 45

Hl. Data Input ••••••••••••••••••••••••••••••••••••.•.••• 45

H2. Printed Output ••••••••••••••••••.•••••• 46

H3. Graphical Output •••••••••••••••••••••••.•••••••.•••• 49

H4. Data Handling Requests •••••••••••••••••••••••••••••• 60

HS. Correction of Errors •••••••••••••••••••••••••••••••• 63

I.

I

II

The Execute Command and the Use of Auxiliary

Programs ••••••••••••••••••••••..•••••

Summary of Elements in System MAP •.•.•••••••••

65

69

Appendix III

Formats and Off-Line Data Input •••••••••••..••.••.•• 76

Editor for Input Data and Command Sequences ••••••••• 78

Programs for the Execute Command ••••••••••••••••••.• 83 Appendix IV

iii

Introduction

This manual describes a computer system suitable for use on the

time sharing facility at the M.I.T. Computation Center or at

Project MAC. Designed for direct computer access through a remote

console, the system replaces the normal procedures of programming

with a question and answer interchange between the user (hereinafter

called U) and the computer (hereinafter called C) • The system is

intended for the solution of mathematical problems. It should be

usable by a person with no knowledge of computers or programming and

little knowledge of numerical analysis. Within its range of

capabilities, it should be as efficient as are the normal means of

computer access for the more sophisticated user.

The system establishes a "conversation" between U and C with an

electric typewriter as the means of communication. U can give

information to C and can ask it certain questions. C can answer

those questions if it is given enough information. C can also ask

questions and can therefore request any missing information. In

addition, C can explain procedures to u in order to help the latter

transmit the required information in a proper form.

only needs to know a few basic rules, such as how

questions and how to name and tabulate his data.

u, therefore,

to phrase his

2 The Scope of the System Section A

A. The Scope of the System

An ideal computer could understand and answer any question. We

must keep in mind, however, that qualities attributed to a computer

or a computer system are, in fact, attributes of a total agglomerate

of hardware and software. The hardware consists primarily of the

electrical, electronic and mechanical devices of the basic computer

and various input and output accessories. The software is composed

primarily of programs of three types: those which oversee the

entire operation; those designed to interpret questions or

statements which actually pose questions; and those which "know", or

can look up, or can determine how to calculate the answer. Each

program consists of a properly planned sequence of simple

instructions to be executed in turn by the hardware. In other

words, computers must be given procedures for getting answers;

accordingly, the ideal must be limited to that class of questions to

which at least one person knows either the answer or a procedure for

determining the answer. Considerations of economy of manpower and

equipment further limit any computer system to types of questions

which will prove to be of general usefulness.

The foregoing limits still leave a diversity of classes; of

these we consider only those questions the answers to which require

primarily mathematical computation. For this class of problems

fifty or more general procedures might be required in order to

handle 90% of the questions commonly occurring. Far fewer than

fifty procedures are now available in the system. The system,

however, is open-ended, and additional capabilities can and will be

added.

Language of the System Section B 3

B. The Language of the System

For a majority of users, communication between U and C must

pass through a standard IBM 1050 console or type 35 teletypewriter.

The console typewriter may be actuated manually by U and "read"

electronically by C, or actuated electronically by C and read

visually by u. On the 1050 console U's input will appear in lower

case type, and C's responses in upper case.

The language used is a combination of English and arithmetic

operation symbols. In choosing a language for user-machine

communication, it is necessary to strike a balance between a

terminology commonly understood and an efficient but cryptic code

system. At one extreme is the possibility of using English prose

throughout, and at the other the possibility of using a two or

three-letter code just complex enough to eliminate ambiguities. The

former choice requires a great deal of rather useless translation

and elimination of redundancies by C, and a significant amount of

typing by both U and c. On the other hand, codes are a nuisance for

U to memorize or decipher.

The major requirement, of course, is that the demands on the

user should be minimized, in terms of both typing and deciphering

effort. We have therefore chosen neither of the extremes, but a

combination of modifications of both. U "talks" in one or two-word

phrases or in arithmetic equations, while C uses a passable form of

English. Conversation between U and C consists primarily of

questions and answers, with statements (for informational purposes)

and outright commands occasionally admixed. Questions, which, in

the present context, are any requests for information, are often

phrased in the normal form of commands, because of the simpler

grammatical form of the latter.

4 Numbers, Constants, and Functions Section c

c. Numbers, Constants and Functions

Mathematical problems are usually stated in terms of variables

as in the equation

g(x) = a h(x)

Such an equation normally means the following: at each and every

value of the independent variable x, the value of the variable g,

which is a function of x, is equal to the value of the constant

variable a times the value of the variable h, which is also a

function of x. "a" is the name of a constant, the value of which is

unspecified. Hence, to distinguish it from a simple number which

might appear explicitly in an equation, we call it a "constant

variable". For simplicity, however, in the remainder of the text we

shall call both such variables and explicit numerical values,

"constants". In using the system, U may employ variable names in

exactly the same sense as illustrated above. For example, he may

refer to the value of a constant by the name "a". Constants, in

fact, may be named almost any combination of one to six letters,

except those ending in f. Functions are given two names, with the

second enclosed in parentheses, just as in normal usage: e.g. y(x).

Each of the two names are subject to the same restrictions that

apply to names of constants.*

Numbers themselves often occur in the statement of a

mathematical problem and are required in any case in order to

specify the values of variables. Numbers can be used in three

forms: 1) Integers, such as 22; 2) Decimals, such as 19.385, and

3) Exponentials, such as 2.156 x 1~~1~

* At present the only additional restrictions are that the words

"minmax" and "input" can not be used as first names for a variable

and "loop" and "data" cannot be used as second names for a variable.

Numbers, Constants, and Functions Section c 5

Digital computers are discrete state machines, and hence cannot

operate on. continuous functions. Rather, the specific values of any

function, such as y(x), must be specified or calculated at specific

values of x, adequately covering the range of interest. If y(x)

refers to the values of y, the corresponding values of x may be

referred to by another name, such as x(x) , if they will be required

for calculations. In many instances, the values of y(x) will be

available (or calculable) at equal intervals in x, a form which is

advantageous for most numerical procedures. It is then unnecessary

to tabulate all the values of x: only the first, the last and the

interval between values of x are required. Because of the general

simplicity of operation when equal intervals in the independent

parameter are used, the system is set up to handle such tabulation

automatically, but the more general form is not excluded.

When the values of a function are defined, they will be stored

as an array of numbers and identified by the name of the function.

Each value in the array will also be associated with a subscript.

When U defines a function, he will also be asked to define three

additional numbers, which C calls MIN, MAX and DEL. MIN, if given

in integer form, specifies the subscript which will be assigned to

the first value in the array and MAX the subscript of the last

value. Intermediate values will be assigned subscripts MIN+l,

MIN+2, ••• ,MAX-l, MAX so the total number of values in the array

should be (MAX-MIN+l). In operations which involve more than one

function, C will assume that values in the respective arrays which

have been assigned identical subscripts have a meaningful

correspondence. For example, in an operation which involves the two

functions, g(x) and h(x), C will assume that the value in the g(x)

array which has been assigned subscript 23 corresponds to the same

value of x as the value in the h(x) array with subscript 23.

When U defines an array for which the values correspond to

equal intervals in the independent variable, he may specify the

interval with DEL. When the values of the independent variable are

required, C will then assume that they are the subscripts multiplied

by DEL. In such instances, however, U need not concern himself with

subscripts at all. In response to the request for MIN and MAX he

may type the actual values of x, as decimal numbers, which

correspond to the first and last values of the function. The only

restriction is that both MIN/DEL and MAX/DEL be integers (within the

allowable round-off error of O.OOl*DEL). C will automatically

calculate appropriate subscripts, such that subscript*DEL = x and

will maintain the proper correspondence between different functions.

6 Arithmetic Equations Section D

D. Arithmetic Equations

Since the major purpose of the system is to facilitate the

handling of computational problems, it is necessary that a simple

method be provided for indicating any necessary arithmetic. Here it

is reasonable to deviate from the use of English words, because of

the simplicity of arithmetic operation symbols. The following

symbols may be used:

+ plus

minus

* multiply by

I divide by

** raise to the power

(...) grouping specification

Using these symbols, U may ask arithmetic questions in the form of

equations, with the unknown to the left of the equal sign. Consider

the following example, which appears just as it would on the paper

of the 1050 console.

Example D.l

(v=2.7183**(a*2.*10**(-4)))

COMMAND PLEASE

Uhas asked, "What is the value of 2.7183 raised to the power, 2xl<f4

a?" He must give the answer a name, since he may want to refer to

it later, so he tells C to call the answer "v". The left-hand side

of the equation is therefore simply the name of the answer, that is,

the name to be given to the value of the expression to the right of

the equal sign. The arithmetic expression on the right may include

any of the arithmetic operation symbols, the names of any variables

(whether defined previously or not) and any of a large number of

special operation functions (which will be described later in this

section and in Section E). The only restriction is that the

expression be mathematically meaningful. The first and last

parentheses, which enclose the equation, are required. They

indicate to C that the enclosed statement is an arithmetic equation.

If the value of the constant a has been defined previously, C can

proceed to evaluate the expression and will define v with the

resulting value. C will then be finished with the question and will

ask for another one by saying "COMMAND PLEASE." Note that C does

not print out the answer automatically.

question is just an intermediate step in

will not be interested in intermediate

The system assumes that the

a larger problem and that U

results which might fill

yards of paper (and use up considerable time in being typed). U can

Arithmetic Equations Section D 7

easily obtain printed output, however, as will be seen in Section

H.2.

If the value of a had not been defined previously, C could not

have answered the question, and the conversation would have

proceeded as in the next example.

Example D.2

(v=2.7183**(a*2.*10**(-4)))

DECIMAL VALUE OF CONSTANT A PLEASE 3.152e+4

COMMAND PLEASE

Whenever C finds that undefined variables have been specified, it

simply asks for the values of the variables. In the above example,

only one value is missing, that of the constant

missing C would request them all, one by one.

a, but if many were

u, in this instance,

has replied "3.152e+4", meaning that the value which should be used

for the variable a in this or any subsequent question is 3.152 x 10- 4

Notice that in answer to specific questions, U can use "e" as an

abbreviation for power of 10 exponentiation. On the other hand an

integer may not be used in reply to a request for a decimal value.

As soon as U types his reply and gives a carriage return, C has all

the required information, finishes the question and asks for

another.

The number being exponentiated in the above example is equal to

the base of natural logarithms, e. Powers of e are often required

in computations, so a special operation function is provided,

f () h ' h (E) f ' h t' ' E d exp E , w ic represents e , or any arit me ic expression, , an

may be used as in the following example.

Example D.3

(v = expf (a*2*10**(-4)))

COMMAND PLEASE

As far as U is concerned, the above sequence is identical to the

first example and not much simpler, since

operation is also available as an arithmetic

the exponentiating

symbol. Many more

complex functional procedures are also commonly required, however,

so a variety of operational functions, like expf, have been made

available. Included are those for the sine, cosine, arc sine,

absolute value, square root, logarithm and others, which are listed

in Section E. These make it unnecessary for U to worry about

numerical methods for evaluating common functions and also allow him

to write his arithmetic questions in much the same way as he would

an analytical equation. The next example further illustrates the

use of operational functions.

8 Arithmetic Equations Section D

Example D.4

(h = g*sinf(2.*pi*v)/sqrtf(g*v)-logf(absf(cosf(v**2-g))))

DECIMAL VALUE OF CONSTANT PI PLEASE 3.14159

DECIMAL VALUE OF CONSTANT G PLEASE 0.3182

COMMAND PLEASE

U has asked c to evaluate the expression:

gs in (2 rrvl I /gv-ln ([cos (v 2-g) l).
It will be noted that all of the operational functions end in f,

which is the reason why "f" must be excluded as a possible final

character in the name of a variable. Note the importance of the

parentheses, particularly the four which terminate the expression.

The first of these indicates the end of the argument of the cosine

function, v 2-g; the second the argument of the absolute value

function, cos(v 2 -g); the third the argument of the logarithm

function, icos(v 2 -gll; and the fourth mates with the left

parenthesis before the h to enclose the entire question. The total

number of left parentheses must always equal the number of right

parentheses, and C will tell U if they do not. Since the question

in this example is rather long, we should point out here that U can

only use 72 spaces on a given line of type. If the equation is too

long to be specified on one line, U can give a carriage return at

any point, other than in the midst of a name. C will then note that

the number of left and right parentheses do not correspond and will

give U the option of continuing the expression or, if he has made a

mistake, of retyping it. C's questions in example D.4 indicate that

the constant variables pi and g had not been defined previously, but

that v had been, perhaps with a question like that in example D.2.

Note once again that U terminates each of his questions and answers

with a carriage return.

Thus far we have not shown any examples of arithmetic equations

which involve multi-valued variables, or -as we have refered to them

earlier- functions. Suppose that y(x) represents an experimental

variable which had been measured at equal intervals in an

independent variable, x. Say the values of the latter were -3.5,

-3.0, -2.5 and so on up to +1.5. Suppose also that z(x) represents

a second experimental variable, measured at the same values of x.

The following example indicates a computation which involves the two

functions, y(x) and z(x), neither of which have been defined

previously.

Arithmetic Equations Section D

Example D.5

(g(x) = y(x)*sinf(z(x)))

Z(X) IS NOT DEFINED. IF IT HAS A DIFFERENT NAME,

TYPE THAT NAME. IF YOU WANT TO TYPE IN NUMERICAL

VALUES NOW, TYPE THE WORD INPUT. OTHERWISE, GIVE

A CARRIAGE RETURN AND DEFINE THE FUNCTION BEFORE

USING THE NAME AGAIN.

input

PLEASE PRINT ON THE NEXT LINE MIN, MAX, AND DEL FOR

THE VARIABLE X.

-3.5 1.5 .5

MIN = -7 MAX= 3

TYPE IN DATA IN ARBITRARY FORMAT, EACH DATA POINT SEPARATED

BY A SPACE. THE INPUT DATA CAN BE EDITED BY USING

THE CONVENTIONS GIVEN IN THE MANUAL. WHEN ALL DATA POINTS

HAVE BEEN ENTERED, GIVE TWO CARRIAGE RETURNS. COMPLETE

EDITING IF NECESSARY, AND GIVE COMMAND 'FILE INPUT DATA'.

INPUT:

5.136 12.175 11.321 15.391 16.784

11.623 11.591

17.211 19.002 13.5672 17.69

EDIT:

file input data

Y(X) IS NOT DEFINED. IF IT HAS A DIFFERENT NAME, TYPE

THAT NAME. IF YOU WANT TO TYPE IN NUMERICAL

VALUES NOW, TYPE THE WORD INPUT. OTHERWISE,

GIVE A CARRIAGE RETURN AND DEFINE THE FUNCTION BEFORE USING

THE NAME AGAIN.

input no

PREVIOUS INPUT DATA rs STILL AVAILABLE.

DO YOU WANT TO EDIT THOSE VALUES. no

PLEASE PRINT ON THE NEXT LINE MIN, MAX, AND DEL FOR THE

VARIABLE x.
-3.5 1.5 .5

MIN = -7 MAX 3

INPUT:

1.00 1.1 1.29 1.327

1.9 2.73 4.16

5.15

7.936 9.223 14.325

EDIT:

file input data

COMMAND PLEASE

9

- ------------

10 Arithmetic Equations Section D

In the example above we note, first of all, that whenever a

required function has not been defined previously, C will ask U to

type in numerical values. Thus a specific input command is

unnecessary and is not provided. If, for some reason, the desired

values had previously been given a different name, the initial part

of c•s response would be pertinent and U is thereby given the

opportunity to pick up those values while simultaneously changing

the name to z(x). The latter facility is of some value,

particularly when blocks of data are input through off-line

equipment (using a procedure described in Appendix II) in which case

they initially carry rather awkward names. The data input procedure

should be reasonably obvious from the example, except for the

editing facilities which are not illustrated. After U gives the two

successive carriage returns to indicate the termination of a data

input, C always types "EDIT:". U may then correct any previously

unnoticed typing errors, insert omitted values or make virtually any

other change in the data, by using a few editing requests which are

described in detail in Appendix III.

The values of MIN and MAX are immediately and automatically

used to compute subscripts for the function tabulation, as has been

previously mentioned. Though U need not concern himself with the

subscripts, the first and last subscripts for the array are

nontheless printed out and provide a convenient check on the total

number of values which C expects, (MAX-MIN+l). The numerical values

of the functions may be given in decimal form (as used in this

example) or as integers or as exponentiated numbers using the "e"

abbreviation.

Two further points about the input procedure: note (after the

request for values of y(x)) that by appending the word "no" to the

response "input" U informs C that he no longer needs the five lines

of instructions which follow the MIN, MAX and DEL input. In

addition C gives U one additional opportunity to edit the input data

for z(x) before replacing the temporary input data file with the

values for y(x).

In example D.5, the two functions involved in the calculation

are defined over the same range and with the same interval in x.

The answer, g(x), will of course be assigned the same values for

MIN, MAX and DEL and will therefore also correspond to x values of

-3.5, -3.0, -2.5, ••• up to +1.5. That is, there is an exact

one-to-one correspondence between all the tabulated values. Though

this circumstance is expected for most real problems, it is neither

assumed nor required by c. c asks for MIN, MAX and DEL values

Arithmetic Equations Section D 11

whenever the values for a function are being provided by u. Thus u
may, if he chooses, define different ranges and intervals for

different functions, whether or not they are actually functions of

the same variable. If an arithmetic equation includes functions

which are not defined over the same range of the independent

variable then the result will be computed only for that range which

is common to all the functions in the arithmetic expression.

Therefore, if an equation involves functions of various ranges, the

answer function will have a range extending from the largest MIN in

the set to the smallest MAX.

If the DEL values of the functions do not agree, C will

interpolate as required to use whichever DEL U chooses. Since the

grouping of functions with mixed intervals is more likely an

indication of error than intent, C will ask U to pick a DEL before

doing any calculations. In addition, it should be noted that if U

knows that a function will require such an interpolation in more

than one arithmetic equation, it will be far more efficient to

interpolate and re-tabulate once-and-for-all using the "basis"

request which is described later.

The MIN, MAX and DEL values are by themselves sufficient to

establish proper correspondence between functions. C therefore does

not demand that all functions in an equation have identical second

names1 such a convention is most likely to be a convenient one for U

to use, but he may, in fact, use any name convention which he

desires. On the other hand, the concept that the second name is the

independent variable is not without meaning. If U writes an

arithmetic equation in which the second name of the answer function

appears as a variable in the arithmetic expression, that

will take on the successive values indicated by the values

MAX and DEL. U need not, therefore, tabulate the values

variable

of

of

independent variable when equal intervals are used.

next example:

Consider

MIN,

the

the

Example D.6

(tv(x) = x*g(x))

COMMAND PLEASE

Uhas asked, "What are the values of x g(x)?", where we may assume

that g(x) has been defined, perhaps as in example D.5. Since x,

which appears as a variable in the expression, is the second name of

the answer function, tv(x), C will treat it as a true independent

variable having values prescribed by the MIN,MAX and DEL values of

the function g(x). Referring back to example D.5, we note that g(x)

is associated with x values of -3.5, -3.0, -2.5 •••• to +1.5. Those

values are therefore used for x along with the corresponding values

12 Arithmetic Equations Section D

of g(x) in calculating tv(x).

If more than one array appears in the expression, an explicit

independent variable will still take on the values prescribed by the

ultimate MIN, MAX and DEL of the answer array.

If no functions appear in the expression, the values of the

independent variable would be undefined and C would have to request

them, as in the next example.

Example D.7

(wa(x) = x**3.5)

PLEASE PRINT ON THE NEXT LINE MIN, MAX AND DEL FOR THE VARIABLE

x.
-12. 12. 1.0

MIN=-12 MAX=l2

COMMAND PLEASE

u has defined the values of x to be -12.,

10.,11.,12. Whenever C requests MIN,

-11.,

MAX

-10.,

and DEL

etc.,

for

to

the

independent variable associated with a specific function, such as

y(x) in example D.5, those values refer only to the specific

function in question. Other functions with x for the second name

may have different ranges and intervals, as has been discussed. In

example D.7, the specification is associated specifically with the

variable x and will be used as the definition of the values of x

only in any similar question where they would otherwise be

undefined, that is whenever no arrays appear in the expression.

(See examples FS.l and FS.2, also.)

To summarize: In order to allow U the greatest flexibility,

all functions of a given independent variable may be defined over

different ranges and with different intervals, and in addition, the

independent variable itself may have a different range and interval.

In arithmetic equations, the answers will be computed for the region

of overlap among those functions which appear in the arithmetic

expression even if a different range has been defined separately for

the independent variable. The latter definition is used only if

functions are not included in the arithmetic expression (or if an

entirely new independent variable must be specified as occurs, for

example, in a Fourier transform).

Under certain circumstances, the assumption that C makes about

equal intervals in the independent variable will not be particularly

useful, but neither is it restrictive. Suppose for example, that

the x's corresponding to the y(x) and z(x) functions in example D.5

were just 11 arbitrary values, not corresponding to equal intervals,

or for that matter that those two sets of numbers could not be

Arithmetic Equations Section D 13

associated with an independent variable at all. It may be seen that

example D.5 would nonetheless be acceptable in its exact form, with

no changes. MIN, MAX and DEL would have no meaning so far as x were

concerned, and it would be more convenient to use the integers 1 and

11 for MIN and MAX, and to leave DEL blank, but the original values

would nonetheless give the proper correspondence between y(x) and

z(x). Example D.6, however, would have to be different. Since 11

arbitrary values of x have to be specified, U must define an

appropriate array, say x(x). The corresponding question would be

(tv(x) = g(x)*x(x)), and if x(x) had not been defined previously C

would request the values in the manner which has been illustrated.

As far as C is concerned, the x(x) array will be just like any

other, so that U only needs to be certain that he maintains the

correct order and a consistent MIN, MAX specification.

In certain instances the use of integers for MIN and MAX may be

convenient even though equal intervals are available. Suppose U

desires to compute n(x) = x*m(x) with rn(x) available only at x

-1.6, -1.l, -0.6, -O.l, +0.4, +0.9, +1.4. Though the spacing

between each point is 0.5 he is restricted by the fact that neither

1.6/.5 nor 1.4/.S are integers. U may readily obviate the

difficulty without actually typing in the separate values of x, as

follows:

Example D.8

(x(i) = i*O.S-1.6)

PLEASE PRINT ON THE NEXT LINE, MIN MAX AND DEL FOR THE

VARIABLE I.

0 6 1.0

COMMAND PLEASE

(v(i) = x(i) * rn(i))

M(I) IS NOT DEFINED, IF IT HAS A DIFFERENT NAME,

TYPE THE NAME. IF YOU WANT TO TYPE IN NUMERICAL VALUES NOW,

TYPE THE WORD INPUT. OTHERWISE, GIVE A CARRIAGE RETURN

AND DEFINE THE FUNCTION BEFORE USING THE NAME AGAIN.

input no

PLEASE PRINT ON THE NEXT LINE MIN, MAX, AND DEL FOR THE

VARIABLE I.

0 6 l.

INPUT:

1.3 2.45 3.72

6. 71 7 .15

EDIT:

file input data

COMMAND PLEASE

4.6 5.3

14 Arithmetic Equations Section D

Generally speakinq, equations which involve only constants in

the expression will have a constant as the answer, and those which

contain functions will have a function as the answer. These are

not rules, however, and exceptions are allowable and sometimes

required. In particular, the summation operation yields a

single-valued result, so the equation

(con= sumf(m(c}})

is perfectly legitimate. On the other hand,

(con = g(x))

is probably not meaningful, but C will define con

tabulated value of g (x) (or the first resulting

expression is more complicated). The equation

(b (x) = con)

with the first

value if the

is meaningful and C will set all values of b(x} equal to the value

of con, first requesting if necessary, MIN,MAX and DEL values for x.

Since the arithmetic equations are a "define the values to

be ••• " operation rather than a true statement of equality,

equations such as

(g(x) = g(x) * y(x))

are also meaningful.

"replace the values

g (x) *y (x)."

In the present

of g(x) with

example the

the values

equation means

of the product

Operational Functions Section E 15

E. Operational Functions

The operational functions available for use in arithmetic

equations can be divided into two classes: those which operate upon

a single value at a time and those which operate simultaneously on

all or part of a stored function.

1. The argument, E, of the following operational functions

can be any arithmetic expression.

sinf (E)

cosf(E)

tanf(E)

cotf(E)

asinf(E)

acosf(E)

atanf (E)

sinhf (E)

coshf (E)

tanhf(E)

expf(E)

logf(E)

absf(E)

sqrtf(E)

sine (radian argument)

cosine (radian argument)

tangent (radian argument)

cotangent (radian argument)

arc sine (radian result)

arc cosine (radian result)

arc tangent (radian result)

hyperbolic sine

hyperbolic cosine

hyperbolic tangent

exponential (power of e)

logarithm (base e)

absolute value

square root (positive root)

2. The argument of the following operational functions must

be an arithmetic expression which includes at least one function.

sumf(E(x)) summation over all values
MAX

of E (x), l E (x).
MIN

intf (E (x)l definite integral over

the entire range of E(x).

derif (E (x)) derivative of E (x).

MAX

Intf(E(x)) evaluates the integral I E(x)dx,

. h. d . . t1IN using a t ir order numerical integration (Simpson's

statement

(g(x)=derif(a(x)))

rule). The

will obtain the derivatives of a(x) at the same values of x for

which a(x) is tabulated and will set g(x) equal to the answers. A

five point differentiation is used, except at the end points. Both

intf and derif assume that the function being operated upon is

tabulated at equal intervals in the independent variable.

16 Complex Procedures Section F

F. Complex Procedures

More complex procedures have not been included among the

operations possible in an arithmetic expression because a

significant amount of subsidiary information is often required.

Provision has therefore been made for such procedures in the form of

separate questions. The following operations on linear arrays are

available.

Integrate

Basis

Transform

Convolute

Least Square

Mi nm ax

Select

(between fixed or variable limits)

(F(x) + F(any function of x))

(sine, cosine, or sine and cosine)

(folding of two functions)

(least square analysis)

(changes the range of definition of a function)

(manipulation of a portion of a function)

The integrate, basis, transform, and convolute procedures are

designed to operate on arrays, such as y(x), which are tabulated at

equal intervals in x and therefore use the associated values of MIN,

MAX and DEL to specify the values of x.

All the procedures are initiated by simply typing the desired

procedure name, followed by a carriage return. All require the

names and values of a number of parameters, but C will request those

whenever necessary. However, U will be able to avoid interrogation

by C if he learns which and, in what order, parameter names and/or

values should be specified, and specifies them on the same line as

the procedure name.

In the following section the individual procedures are

described in some detail. In each case an example is shown in which

U does not specify any of the required parameters, so that C is

required to request that information. Examples are also given which

indicate how U may avoid all or part of C's explanations and

interrogations by giving some or all of the information when he

specifies the procedure.

Section Fl Integrate

1. Integration

Example Fl.l

integrate

INTEGRATE HAS THREE OPTIONS ON THE LIMITS

1. BOTH LIMITS FIXED

2. LOWER LIMIT FIXED, UPPER LIMIT VARIABLE

3. SYMMETRIC INTEGRATION BETWEEN VARIABLE LIMITS

PLEASE INDICATE WHICH OPTION BY TYPING 1,2,0R 3

l

WHAT WOULD YOU LIKE TO INTEGRATE y (x)

NAME OF ANSWER PLEASE integ

DECIMAL VALUE OF LOWER LIMIT PLEASE 1.

DECIMAL VALUE OF UPPER LIMIT PLEASE 12.

COMMAND PLEASE

17

As C has explicitly stated, there are three options to an integrate

question. In all three options the integrals are obtained with a

third order numerical integration (Simpson's rule). The first
b

option, illustrated above, is the Jy(x)dx with a and b both

a
constants. The result will be a single value, so the answer must be

given a constant variable name, such as integ in the

illustration. The limits, a and b, must lie within the range

present

of x

for which y(x) is (or will be) defined. This condition is

apparently satisfied in example Fl.l, for C would otherwise have

rejected the question, with the comment "THE LIMITS ARE NOT WITHIN

THE RANGE FOR WHICH THE FUNCTION IS DEFINED." Notice once again

that C does not automatically print out the answers. The "COMMAND

PLEASE", however, will indicate that the answer has been obtained.

If the y(x) array had not been defined previously, C would

request the values in the same manner that undefined variables are

requested for arithmetic questions. If U had intended to define

y(x) in an arithmetic statement, he should give a carriage return in

response to the question and proceed to define y(x} after the

subsequent "COMMAND PLEASE". After defining y(x) in that way, U

must again give the command "integrate". The following example

illustrates a conversation when U wished to supply numerical values

for y(x).

18 Section Fl Integrate

Example Fl.2

integrate

INTEGRATE HAS THREE OPTIONS ON THE LIMITS

1. BOTH LIMITS FIXED

2. LOWER LIMIT FIXED, UPPER LIMIT VARIABLE

3. SYMMETRIC INTEGRATION BETWEEN VARIABLE LIMITS

PLEASE INDICATE WHICH OPTION BY TYPING 1,2 OR 3

1

WHAT WOULD YOU LIKE TO INTEGRATE Y (x}

NAME OF ANSWER PLEASE integ

DECIMAL VALUE OF LOWER LIMIT PLEASE= 1.

DECIMAL VALUE OF UPPER LIMIT PLEASE= 12.

y (X} IS NOT DEFH:ED. IF IT HAS A DIFFERENT NAME, TYPE

THE NAME. IF YOU WANT TO TYPE IN NUMERICAL VALUES NOW,

TYPE THE WORD INPUT. OTHERWISE, GIVE A CARRIAGE RETURN

AND DEFINE THE FUNCTION BEFORE USING THE NAME AGAIN.

input no

PLEASE PRINT ON THE NEXT LINE MIN, MAX, A."lD DEL FOR THE

VARIABLE X.

1. 12. • 5

MIN = 2 MAX 24

INPUT:

6. 6.5 7.6 8.2 9.1

15.6 17.8 15.9

12.1 13. 2 14.5

21. 2 23.4 25.6

EDIT:

file input data

COMMAND PLEASE

10. 8

14.3

17.8

27.8

11. 5 12. 4

13. 2

19.7 20.2

Once the y(x) values and the MIN, MAX and DEL have been filed,

C proceeds to find the integral exactly as in example Fl.l. Values

for arrays which have not been defined prior to their being

specified in any of the complex procedures will always be requested

by C in a similar manner, but no further examples of this procedure

will be given.

Section Fl Integrate

Example Fl.3

integrate

INTEGRATE HAS THREE OPTIONS ON THE LIMITS

l. BOTH LIMITS FIXED

2. LOWER LIMIT FIXED, UPPER LIMIT VARIABLE

3. SYMMETRIC INTEGRATION BETWEEN VARIABLE LIMITS

PLEASE INDICATE WHICH OPTION BY TYPING 1,2, OR 3

2

WHAT WOULD YOU LIKE TO INTEGRATE y(x)

NAME OF ANSWER PLEASE integ(x)

DECIMAL VALUE OF LOWER LIMIT PLEASE 1.

COMMAND PLEASE

x

The second option is the f y(x)dx. Integrals will be obtained for

19

a
values of the upper limit equal to all of those values of x at which

y(x) is defined and which are greater than a. The result will

therefore be an array and must be given an array variable name, such

as integ(x). The DEL and MAX values for the answer array will be

the same as that for y(x), but the MIN value will depend on the

lower limit, a.

Option 3 is illustrated below.

Example Fl.4

integrate

INTEGRATE HAS THREE OPTIONS ON THE LIMITS

l. BOTH LIMITS FIXED

2. LOWER LIMIT FIXED, UPPER LIMIT VARIABLE

3. SYMMETRIC INTEGRATION BETWEEN VARIABLE LIMITS

PLEASE INDICATE WHICH OPTION BY TYPING 1,2, OR 3

3

WHAT WOULD YOU LIKE TO INTEGRATE y(x)

NAME OF ANSWER PLEASE

COMMAND PLEASE
x

integ(x)

The third option is the_xf y(x)dx, which is meaningful only for

arrays which are defined for both positive and negative values of x.

Integrals will be obtained for values of the limit equal to all of

those values of x for which both y(x) and y(-x) are defined.

Therefore, the result will be an array and must be given an array

name, such as integ(x). The DEL value for the answer array will be

the same as that of the y(x) array. The MIN value will always be

zero, and the MAX will be the smaller of the jMIN I and I MAX I of

y(x). As an example, if y(x) is tabulated for values of x in the

range -S<x<lO with an interval of o.s, the answer array will

20 Section Fl Integrate

contain eleven values, corresponding to values of x in the range 0

to 5 and the same interval, o.s.

U may specify the option and give all or part of the parameter

name information immediately, and thereby avoid all or part of C's

responses. Examples Fl.5 through Fl.B illustrate various

possibilities.

Example Fl.5

integrate 1 y(x) integ

DECIMAL VALUE OF LOWER LIMIT PLEASE

DECIMAL VALUE OF UPPER LIMIT PLEASE

COMMAND PLEASE

= o.o
=10.

Whenever U gives any information immediately, C will skip the

information about the options and ask for the remaining parameters.

Example Fl. 6

integrate 2 y(x) integ(x)

DECIMAL VALUE OF LOWER LIMIT PLEASE 0.

COMMAND PLEASE

ExamEle Fl. 7

integrate 3 y(x) integ (x)

COMMAND PLEASE

Exam12le Fl. 8

integrate 1 y(x) integ o.o 10.0

COMMAND PLEASE

Section F2 Convolution

2. Convolution

The convolution of two functions is defined as
+oo

L:: (£) q(x-£)dc

The example below illustrates a request for such an operation.

Example F2.l

convolute

THIS COMl-1.AND PERFORMS CONVOLUTION OF THE EXPRESSION

A(X)*B(R-X)*DX.

WHAT IS THE NAME OF THE FUNCTION OF THE TYPE A(X) y(x)

WHAT IS THE NAME OF THE KERNEL FUNCTION sin(r)

NAME OF ANSWER PLEASE conv(x)

COMMAND PLEASE

21

The DEL values for the two arrays, y(x) and sin{r), should be the

same, though of course there is no need for correspondence in the

ranges. However, if the DEL's are not identical, C will ask U which

of the two DEL's should be used and will perform the required

interpolation. Note that the fact that y(x) and sin(r) have

different second names is of no consequence whatsoever.

Once again U may provide all the necessary information

immediately, as shown below.

Example F2.2

convolute y(x) q(x) conv(x)

COMMAND PLEASE

The answer array, conv(x), resulting from the convolution, will have

a DEL value identical to that of the two convoluted arrays (or the

chosen one, if the DEL's were not equal), but the range in x will

depend on the separate ranges of y(x) and q{x) and will always be

different from either of those two.

22 Section F3 Least Square Analysis

3. LEAST SQUARE ANALYSIS

The least square analysis allows the fitting of data with

equations of the form

g{x) = z
1

f
1

(x) + z 2 f 2 (X) + z 3f 3 (x) +z 4 f 4 (x) +z
5
f

5
(x).

Since the data are tabulated at discrete values of x

computer, for simplicity one may use the alternate notation

M
g. = l z.f .. ,

1 j=l J 1J

in

where M is the number of fitting functions, whose values are the

and the unknown coefficients are the z .•
J

the

f ..
1]

As the data will not generally be perfectly consistent with the

assumed fitting functions, the mathematical problem is to determine

an approximate set of z. (z.') such that
J J

N M
l g · - l z . ' f. . I 2 = minimum,

i=l 1 j=l J 1 J

where N is the number of points at which the data are defined.

Example F3.l

least square

I CAN FIT EQUATIONS OF THE FORM

V(Y) = XA*FA(Y) + XB*FB(Y) + XC*FC(Y) + XD*FD(Y) + XE*FE(Y)

WITH A MAXIMUM OF 5 UNKNOWNS, XA, XB, ETC., AND 100 DATA POINTS.

WHAT IS THE NAME OF THE VARIABLE COMPARABLE TO V(Y). data(x)

HOW MANY FUNCTIONS, FA (Y) , FB (Y) , ETC. , WILL BE REQUIRED TO FIT THE

DATA. 4

PLEASE PRINT ON THE NEXT LINE THE NAMES OF THE 4 FUNCTIONS REQUIRED.

a(x) b(x) c(x) d(x)

If a(x), b(x), c(x) and d(x) had not been previously defined,

numerical values for each of the functions would have been

requested. v(y) cannot be defined over a range greater than the

smallest of the ranges defining the fitting functions. It is

important to note that neither the data nor the fitting functions

need be tabulated at equal intervals in the

However, the values of v(y), fa(y), fb(y),

independent

etc. with

variable.

the same

subscripts must have a meaningful correspondence. If no errors are

detected in U's responses, the set of simultaneous equations

resulting from the least square analysis will be printed, followed

by the results of the procedure. A double precision matrix

inversion procedure is used to solve the simultaneous equations.

Section F3 Least Square Analysis 23

THE EQUATIONS RESULTING FROM THE LEAST SQUARE ANALYSIS ARE

.3133E03 .9455E02 *XA+.8074E01 *XB+.1806E02 *XC+.3137E02 *XD

• 5072E02 .B074E01 *XA+.SSOSEOl *XB+.654SE01 *XC+.2993E01 *XD

• 9911E02 .1806E02 *XA+.6545E01 *XB+.1231E02 *XC+.7587E01 *XD

.1123E03 = .3137E02 *XA+.2993E01 +XB+.7587E01 *XC+.1231E02 *XD

LEAST SQUARE SOLUTION. THE FOLLOWING ARE THE 4 UNKNOWNS

CORRESPONDING TO XA,XB,ETC.

.2162E 01 .1309E 01 .3399E 01 .1273E 01

ESTIMATES OF THE ERROR IN THESE VALUES ARE

.1426E-04 .1091E-03 .6910E-04 .1344E-03

DO YOU WANT THE VALUES OF THE FITTED CURVE PRINTED. THESE VALUES

ARE AVAILABLE FOR FURTHER CALCULATIONS AS THE FUNCTION 'FITTED

(X) •• TYPE YES OR NO AND GIVE A CARRIAGE RETURN. yes

THE FOLLOWING ARE THE VALUES OF THE FITTED CURVE AT VALUES OF X FOR

WHICH DATA (X) IS TABULATED •

• 2583E01 .2947E01 .3346E01 • 3772E01 .4212E01 .4656E01

.5091E01 .SSOSEOl .5885E01 .6223E01 • 6511E01 .6745E01

.6926E01 .7054E01 • 7134E01 • 7173E01 • 7179E01 • 7160E01

• 7l23E01 .7076E01 .7024E01 .6974E01 .6929E01 .6984E01

.6870E01 .6861E01 .6868E01 .6893E01 .6937E01 .6999E01

DO YOU WANT THE DIFFERE~JCES BETWEEN THE FITTED AND ORIGINAL CURVES

PRINTED. yes

-.2498E-Ol -.6710E-02 .6881E-02 .1526E-Ol .1840E-01

.1164E-Ol .4287E-02 -.3814E-02 .3177E-01 .9490E-01

-.1469E-Ol -.lOlBE-01 -.3814E-02 .3177E-01 .9490E-01

.1683E-Ol

.1398E-Ol

.1398E-01

.lSBSE-01 .1478E-Ol .1096E-01 .S070E-01 -.1876E-02 -.8650E-02

-.1400E-Ol -.1682E-Ol -.162SE-01 -.1178E-Ol .3273E-02 .9052E-02

COMMAND PLEASE

24 Section F3 Least Square Analysis

The error estimates, b. z ., are calculated from
J

N
!'iz. = Q .. l 11. 2 /(N - M),

J JJi=l l

where Q .. is the appropriate diagonal element in the inverse of the
J J

coefficient matrix of the simultaneous equations, and the 11. are
l

the deviations between the data points and the fit values,

M

l
j=l

The error estimates provide only a rough indication of the errors in

the calculated coefficients. However, when their values become

appreciable in comparison to the calculated coefficients, the

validity of the results is questionable.

In this example, data (x) was generated from the equation

2 2
data(x) = 2.lx + l.5e-· 9 X + 3.2e- 1 • 1 <x-i) + i.se-.B9(x-2)

while the fitting functions used were

a(x) = x

b(x)

c(x)

d (x)

e-(x-1)2

-(x-2) 2
e

It may be seen that one can readily obtain an excellent fit although

the assumed fitting functions are not in fact equivalent to those

upon which the data is actually based. In general one must exercise

caution in drawing conclusions from multiparameter fits to

experimental data.

As usual, U may give all or part of the

information immediately. In the following

required information is supplied.

Example F3.2

least data(x) 4 a(x) b(x) c(x) d(x)

necessary

example all

parameter

of the

The name "least" can be used as an abbreviation for the "least

square" command. If only a portion of the required information is

supplied, the remainder will be requested.

Section F4 Basis Change 25

4. Basis Change

It will often occur that an experimental function is readily

measured at equal intervals in one independent variable, while the

analysis requires equal intervals in a second independent variable

which is itself a function of the first. For example, one may

measure g(angle) at equal increments in the angle but the analysis

of the data may require the transform,
k

MAX

g(r) = f i(k)sin(kr)dk
kMIN

where k = A*sin(angle).

Since the transform procedure, which will be discussed in the

next section, will assume that the data are tabulated at equal

intervals ink, the original tabulation, i(angle), will not do. A

new array must be created from the data, by interpolation, using the

known relationship between angle and k, i.e. anglem = arcsin(km/A),

where the angle are the values of the angle which correspond to
m

equally spaced values of k, k • To illustrate, we assume a) that
m

i(angle) contains only 5 points, corresponding to 0°, 22.5° , 45° ,

67.5° and 90°~ b) that the value of the constant A is 16.8~ c)

that five values of i(k) are desired, the first at k=O and the last

at k=l6.8. The following tables and figures 1 and 2 show the

relationship between the angles at which i(angle) is available

(angl8T) and the corresponding values of k, and the relationship

between the desired values of k(k) and the corresponding values of
m

the angle.

26 Section F4 Basis Change

Independent Variable in i(angle)

angleT sin(angle) kT=l6.8sin(angle)

00 0 0

22.5° .383 6.43

45° .707 11. 89

6 7. 5° .924 15.51
90° 1. 000 16.80

IndeEendent Variable in i(k)

k k/16.8 angle =arcsin(k/16.8) m m

0 0 0

4.2 0,25 14.48°
8,4 0.50 30. 00°

12.6 0.75 48.59°

16.8 1. 00 90,00°

The procedure for obtaining the required interpolated function,i(k),

begins with the definition of the change-of-basis function,

angle (k):

Example F4.l

angle(k)=asinf (k/16.8)

PLEASE TYPE ON THE NEXT LINE MIN, MAX, AND DEL FOR THE VARIABLE

K.

o.o 16.8 4.2

MIN=O MAX=4

COMMAND PLEASE

The interpolation is actually accomplished by the basis procedure:

basis

THIS COMMAND EVALUATES AN EXPRESSION OF THE FORM

F(R)=G(X(R)), WHERE X(R) MAY BE SPECIFIED BY A

FUNCTION OR BY A NUMBER WHICH REPRESENTS A NEW VALUE

OF DEL TO BE USED IN RETABULATING THE SPECIFIED FUNCTION,

IN WHAT FUNCTION WOULD YOU LIKE TO MAKE A CHANGE OF BASIS.

i(angle)

NAME OF ANS,'lER PLEASE i (k)

PLEASE GIVE THE NAME OF THE CHANGE-OF-BASIS FUNCTION OR THE NEW

VA.LUE OF DEL,

COMMAND PLEASE

angle(k)

As is always the case, there is a short form available, so that U

may avoid the conversation if he remembers the required order for

the parameters.

Section F4 Basis Change 27

Figure I

0 k
1
s desired for i (k)

90 x Angles used in i (angle)

80

- 70 x (/)
Q)
Q)

60 r....
O'I
Q)

"C
- 50
Q) x -
~ 40

<:t

30

x
20

10

0
0 2 4 6 8 10 12 14 16 18

k=l6.8*sin (angle)

28

I
I

I
I

n

0

0

Section F4 Basis Change

Figure 2

x Tabulated values, i (angle)

o Values to be calculated

I

I
I

I
0

by interpolation, i (k)

x
I

I

l

,,-x-o........_
/

/ '
lo ' I x

\
\

\

F·t t . . I/\ 1 o or1g1no \
tabulated values \

l l
22.5 45 67.5

Angle (degrees)

4.2 8.4 12.6

k= 16.8 sin (angle)

\
\
\
\
~p

90

16.8

Section F4 Basis Change

Example F4.2

basis i(angle) i(k)

COMMAND PLEASE

29

angle(k)

Basis will always use a four point interpolation and will

calculate all the values of the new function which lie within the

range available in the old function. If values for k had been

specified, by its MIN, MAX and DEL, which were outside the range

available in i(angle) the corresponding values of i(k) would have

been set equal to zero.

It is also important to note that there are no general

restrictions on the change-of-basis function; in particular it need

not consist of steadily ascending values, but may oscillate or vary

in any other way that is meaningful to u, providing in such

instances that it does not contain points outside the range of the

original function.

The basis procedure can also be used to simply change the

interval of tabulation by interpolation. In this case U should type

just the new value of DEL instead of a change-of-basis function.

That is, to create a new function, newg(x), with DEL = o.s, from an

available one, g(x), which may have been tabulated with any DEL, the

request would be:

Example F4.3

basis g(x) newg(x) o.s

30 Section FS Fourier Transform

s. Fourier Transformation

The next step in the problem discussed at the beginning of the

preceding section is to obtain the Fourier sine transform of i(k).

U may obtain his result in the manner illustrated in the following

example:

Exam12le FS.l

transform

TRANSFORM TAKES SINE AND COSINE TRANSFORMS WITH CONSTANT = 1.0.

WHAT WOULD YOU LIKE TRANSFORMED i(k)

IF YOU DO NOT WANT ONE OF THE TRANSFORMS, GIVE ONLY A SIMPLE

CARRIAGE RETURN AS THE A..~SWER TO REQUESTED NAME.

WHAT WOULD YOU LIKE TO CALL THE SINE TRANSFORM g(r)

WHAT WOULD YOU LIKE TO CALL THE COSINE TRANSFORM

PLEASE PRINT ON THE NEXT LINE MIN, MAX AND DEL FOR VARIABLE R

o.o 20.0 0.1

MIN = 0 MAX = 200

COMMAND PLEASE

U has asked C to evaluate the integral

f
~AX

g Cr) -= i (k) sin (kr) dk
kMIN

for values of r separated by 0.1, ranging from o.o to 20.0.

If both the sine and cosine integrals are requested, the same

MIN, M.~X and DEL will apply to both answer arrays. While no

explicit provision is made in this procedure for complex number

notation, the two integrals combined are equivalent to the general

complex exponential transform, with the sine integrals associated

with .r:I. The integrals in each case will include the entire range

of k for which i(k) is defined. By defining the range and interval

in r correctly, the transform procedure may also be used to

calculate the integrals required in obtaining the coefficients of a

Fourier Series.

As usual, U may give all or part of the necessary parameter

information immediately. In the following example the name of the

array to be transformed and the name of the answer arrays are

specified.

Section FS Fourier Transform 31

Example FS.2

transform y(x) sin(s) cos(s)

PLEASE PRINT ON NEXT LINE MIN, MAX, A.~D DEL FOR THE VARIABLE S

o.o 10.0 1.0

MIN 0 MAX 10

COMMAND PLEASE

Note that it is not possible to define the MIN, MAX and DEL for the

variable s on the original question line. These are "data" values,

which are requested only because they had not been previously

defined. The MIN, M.~X and DEL specifications for r and s in the

preceeding examples are associated specifically with the variables r

and s, just as the specifications for x in example D.6 were

associated specifically with the variable x. It should be noted

that such specification does not preclude the subsequent definition

of array variables which have those second names, but which have

different ranges and intervals. On the other hand, C will not have

to request MIN, 1\1}\.X, and DEL for r or s when those appear as the

second name for the answer arrays in subsequent transform questions,

or when they appear by themselves in arithmetic questions. The

values of an independent variable may also be defined by a separate

procedure, "minmax".

32 Section F6 Minmax

6. Minmax

The "minmax" request may be used to redefine the

which a function is defined or to define MIN, MAX, and

independent variable.

range over

DEL for an

Example F6.l

minmax

FOR WHAT FUNCTION OR INDEPENDENT VARIABLE WOULD YOU LIKE TO

CHANGE THE RANGE. r

PLEASE PRINT ON THE NEXT LINE MIN, MAX AND DEL FOR THE

VARIABLE R.

o.o 10.0 .s
MIN = 0 MAX = 20

COMMAND PLEASE

The MIN, MAX and DEL for the independent variable r is now

defined, and will be used whenever equations of the type g(r)=r or

g(r)=const are to be evaluated or whenever r is the independent

variable of transform space in a Fourier transform. The use of the

above minmax request will ~ alter the MIN, MAX, and DEL for any

previously defined function of r.

If u desires to change the MIN and MAX for a previously defined

function, such as g(x), he could proceed in the followinq manner,

using the abbreviated form of the command:

Example F6.2

minmax g (x)

PLEASE PRINT ON THE NEXT LINE MIN, MAX AND DEL FOR THE

VARIABLE X.

-2. 3. .s
MIN = -4 MAX 6

COMMAND PLEASE

The request will change the MIN and MAX subscripts of g(x) to

-4 and +6 respectively. If MIN is less than the former MIN, or MAX

is greater than the former MAX, the additional values

be equal to zero. If the new MIN and MAX specify a

for the function, the values of the function outside

created will

smaller range

of the new

range will be destroyed. The request to change the range of g(x)

will have no effect on any other previously defined function, nor

will the command change or set the range to be used for x when it

appears alone.

Section F6 Minmax 33

U can not use the minmax request to interpolate a function by

providing a DEL different from that used in originally defining the

function1 the basis request should be used to obtain such an

interpolation. If a different value of DEL is provided to the

minmax request, the value of DEL stored as part of the function will

be modified, but the values of the function will not be altered.

Section FS Fourier Transform

Example FS.2

cos(s)

31

transform y(x)

PLEASE PRINT

o.o 10.0

sin(s)

ON NEXT

1.0

LINE MIN, MAX, AND DEL FOR THE VARIABLE S

MIN 0 MAX 10

COMMAND PLEASE

Note that it is not possible to define the MIN, MAX and DEL for the

variable s on the original question line. These are "data" values,

which are requested only because they had not been previously

defined. The MIN, MAX and DEL specifications for r and s in the

preceeding examples are associated specifically with the variables r

and s, just as the specifications for x in example D.6 were

associated specifically with the variable x. It should be noted

that such specification does not preclude the subsequent definition

of array variables which have those second names, but which have

different ranges and intervals. On the other hand, C will not have

to request MIN, MAX, and DEL for r or s when those appear as the

second name for the answer arrays in subsequent transform questions,

or when they appear by themselves in arithmetic questions. The

values of an independent variable may also be defined by a separate

procedure, "minmax".

34 Section F7 Manipulation of a Portion of a Function

7. Manipulation of a Portion of a Function

The request "select" allows u to manipulate a portion of a

function or to create a constant equal to a single value of a

function.

Example F7.l

print g (x)

MIN = -10 MAX = 7

.2500E02

.4000E01

.lOOOEOl

.2025E02

.2250E01

.2250E01

COMMAND PLEASE

select

DEL = .50000

.1600E02

.lOOOEOl

.4000E01

.1225E02

.2500E00

.6250E01

.9000E01

.OOOOEOO

.9000E01

0 6250E01

.2500EOO

.1225E02

SELECT WILL CREATE A NEW FUNCTION WHICH WILL BE EQUAL TO A

PREVIOUSLY DEFINED FUNCTION OVER A SPECIFIC RANGE OF THE INDEPENDENT

VARIABLE, OR IT WILL CREATE A CONSTANT EQUAL TO THE VALUE OF A

FUNCTION AT A PARTICULAR VALUE OF THE INDEPENDENT VARIABLE.

FROM WHICH FUNCTION WOULD YOU LIKE TO SELECT THE VALUE(S). g(x)

WHAT WOULD YOU LIKE TO CALL THE SELECTED VALUE (S) • p (x)

PLEASE DEFINE THE RANGE OF X TO BE USED IN CREATING p(x) FROM

g (x) • -2. 1.

COMMAND PLEASE

print p(x)

MIN = -10 MAX = 7

.OOOOEOO .OOOOEOO

.4000E01 .2250E01

.lOOOEOl .OOOOEOO

COMMAND PLEASE

DEL = .50000

.OOOOEOO

• lOOOEOl

.OOOOEOO

.OOOOEOO

.2500E00

.OOOOEOO

.OOOOEOO

.OOOOEOO

.OOOOEOO

.OOOOEOO

.2500EOO

.OOOOEOO

In the example, U has requested that the values of p(x) be

by the values of g(x) over the specified range in x, -2.

replaced

to +l.

With p(x) previously undefined, as was true in this example, the

overall range of p(x) is arbitrarily set equal to the full range of

g(x), with zeroes filled into the region outside the range of

selection, and g{x) 's DEL is also transferred. If p(x) had been

previously defined, the request would be rejected unless both

functions had the same DEL; values of p(x) lying outside the range

of selection would not be altered. The range of p(x) would be

extended, if necessary, to include the range of selection.

As with the other requests, providing all the required

parameters on the command line eliminates C's explanatory notes.

Section F7 Manipulation of a Portion of a Function

Example F7.2

select g(x) p(x) -2. 1.

COMMAND PLEASE

35

It is possible, as with most

derived function the same name as

of the commands, to give the

the primary function. Select

treats such an occurance as a special case.

Example F7.3

select w(x) w(x) -1.0 1.5

COMMAND PLEASE

The result, in this instance, is simply that any previously defined

values of w(x) which lie outside the range -1.0< x<l.5 are set to

zero, but the range of the function is not changed.

An important use of the select command is to generate a

composite function, the various sections of which are drawn from

different functions. Suppose, for example, that: v(x) =y(x),

[-5.2._x.::_-2.5 [1 v(x) = y(x) + g(x), l-2.5._X2_1.l 1 and

v(x) = g(x), [1.5 .::_x ~6. [.

The following example will accomplish the formation of v(x),

assuming that g(x) had previously been defined over the range

-2 • .::_x.::_6., y(x) at least over the range -5 • .::_ x.::_ l. and that both

functions have a DEL of .5. p(x) is used only as an intermediate

function in the example, and is assumed not to have been defined

previously.

Example F7.4

select g(x) p(x) -2.0 1.0

COMMAND PLEASE

select y(x) v(x) -5.0 1.0

COMMAND PLEASE

select g(x) v(x) 1. 5 6.0

COMMAND PLEASE

minmax p(x)

PLEASE TYPE ON THE NEXT LINE MIN, MAX, and DEL FOR THE VARIABLE x.
-5. 6. .5

MIN = -10 MAX 12

COMMAND PLEASE

(v(x) = v(x) + p(x))

COMMAND PLEASE

36 Section F7 Manipulation of a Portion of a Function

In those instances in which U is working with tabulations of

values which do not correspond to equal intervals in an independent

variable, he will probably have used integers to define the MIN and

MAX of the functions. The use of integers, in specifying the

desired range for a select request, tells C to pick out those values

carrying the prescribed subscripts. Though the values of DEL are

still checked to ensure consistency, they are then not further

utilized and can be equal to zero. In any case, whether values of

the independent variable or subscripts are used to specify the range

of selection, it is not necessary that the second names of the

primary and derived functions be the same.

The following example illustrates how a constant, equal to a

particular value of a function, may be created.

Example F7.5

select g (x)

WHAT WOULD YOU LIKE TO CALL THE SELECTED VALUE(S). a

TO WHAT VALUE OF X SHOULD A CORRESPOND. 2. 3

THE VALUE OF X AT WHICH A IS TO BE DEFINED DOES NOT CORRESPOND TO A

DATA POINT. LINEAR INTERPOLATION WILL BE PERFORMED USING THE

ADJACENT DATA POINTS.

COMMAND PLEASE

print a

A = • 5300E01

Notice that C will interpolate, if necessary, to estimate the

value of the function at the desired value of the independent

variable. Such an interpolation is meaningful only if the function

is tabulated at equal intervals. Of course, if the chosen value of

the independent variable corresponds precisely to a tabulated value

or if an integer is used to specify a subscript, no interpolation

will be necessary.

Section G Command Sequences 37

G. SPECIFICATION AND EXECUTION OF COMMAND SEQUENCES

For certain problems it may be necessary to repeat a particular

sequence of MAP commands, perhaps varying certain of the parameters.

In other instances U may find a certain sequence of commands to be

particularly suited to his work and therefore recurring often in

many sessions at the console. In order to relieve u of repetitive

typing, a mechanism is provided for setting up and saving a sequence

of commands, which may subsequently be executed as often as

required.

The command "create" allows a sequence of 18 or fewer lines of

MAP statements to be defined and stored. Whenever "create" is

typed, C will reply with a message explaining the command and will

then type "INPUT:". U may then type as many successive statements

as are required for the sequence. The commands are not executed

after each carriage return. When U gives two successive carriage

returns, C will type "EDIT:". Using the procedures described in

Appendix III, u may then correct or alter the sequence. When the

command sequence is complete and edited, the request "file name"

should be given, where "name" is a name of 6 or fewer characters

used to designate that particular command sequence. Subsequent use

of an associated request, "run" or "run name" will cause C to

execute the designated sequence, each command being handled as if it

had just then been typed by U in its precise form.

As an illustration consider the following problem. U would

like to evaluate the integral
v

Jz(x)dx, with z(x) =[exp (-a*y(x)) +q] and y(x) = x 2

u
for a variety of values of the constants, a and q, and various

limits, u and v, on the integral.

38 Section G Command Sequences

Example H.l

(y(x)=x**2)

PLEASE PRINT ON THE NEXT LINE MIN, MAX, AND DEL FOR THE

VARIABLE X.

0. 10. l.

MIN 0 JVIAX 10

COMMAND PLEASE

create

TYPE IN COMMANDS, ONE PER LINE, WHEN ALL COMMANDS HAVE BEEN

ENTERED, GIVE TWO CARRIAGE RETURNS, EDIT IF NECESSARY

AND GIVE COMMAND 'FILE XXXXXX' (WHERE XXXXXX IS A NAME

OF 6 OR FEWER CHARACTERS BY WHICH YOU CAN IDENTIFY YOUR

COM.l\1AND SEQUENCE), THE COMMAND SEQUENCE CAN BE EDITED

AND PRINTED BY USING THE CONVENTIONS GIVEN IN THE MANUAL.

INPUT:

(z(x) =expf(-a*y(x)) +q)

integrate l z(x) ann

print ans

delete q const a

EDIT:

top

verify

locate ann

INTEGRATE l Z(X) ANN

change /ann/ans/

INTEGRATE l Z(X) ANS

file param

COMMAND PLEASE

Notice that U has defined y(x) outside of the command sequence,

so that C will not be required to recalculate it unnecessarily

during each repetition of the sequence. In order that the limits on

the integral, u and v, be treated as variable parameters of the

sequence, U has not specified the integration limits in the

definition of the command sequence so that C will request values for

them at each repetition. The last command in the sequence is a

request that C "forget" the values of the constants a and q so that

it will request new values each time the sequence is executed (this

command will be discussed along with the other data handling

commands in Section H) • The example also shows the use of the

editing facility which is automatically available after U signals

the end of his input with two successive carriage returns. The

editing requests required to correct errors in the input file are

discussed in detail in Appendix III. The last request given, "file

Section G Command Sequences 39

param", is a request to store the corrected command sequence under

the name param. It will then be available for subsequent usaqe.

At this point, if U were ready to execute the sequence, he

would give the command "run param". C will type the commands as

they are executed and will request any missing information.

COMMAND PLEASE

run

WHAT LOOP WOULD YOU LIKE TO EXECUTE

THE COMMAND BEING EXECUTED IS

(Z(X) = EXPF(-A*Y(X))+Q)

DEC. VALUE OF CONSTANT Q PLEASE

DEC. VALUE OF CONSTANT A PLEASE

THE COMMAND BEING EXECUTED IS

INTEGRATE l Z(X) ANS

DECIMAL VALUE OF LOWER LIMIT PLEASE

DECIMAL VALUE OF UPPER LIMIT PLEASE =

THE COMMAND BEING EXECUTED IS

PRINT ANS

ANS = .10084E 03

THE COMMAND BEING EXECUTED IS

DELETE Q CONST A

COMMAND PLEASE

run param

THE COMMAND BEING EXECUTED IS

(Z(X) = EXPF(-A*Y(X))+Q)

DEC. VALUE OF CONSTANT Q PLEASE

DEC. VALUE OF CONSTANT A PLEASE

THE COMMAND BEING EXECUTED IS

INTEGRATE l Z(X) ANS

DEC. VALUE OF LOWER LIMIT PLEASE

DEC. VALUE OF UPPER LIMIT PLEASE

THE COMMAND BEING EXECUTED IS

PRINT ANS

ANS = .20084E 03

THE COMMAND BEING EXECUTED IS

DELETE Q CONST A

pa ram

10.

1.

o.
10.

20.

1.

o.
10.

The example shows just two repetitions of the sequence though,

of course, u could try as many variations of the parameters as he

desired. In addition he miqht interpose whatever other calculations

he desired between repetitions.

40 Section G Command Sequences

If the results obtained were not satisfactory to U,

change the sequence by typing the MAP command "edit param".

he could

C would

respond by typing "EDIT:" to indicate it's readiness to accept

editing requests. u could then give requests to correct or to make

alterations. After making all the necessary changes, U would

request "file param" and again could execute the sequence by

the "run" command in order to determine if his corrections had

again

using

been

sufficient. If the command sequence had involved

rather than only three, and had an error been found

many commands

in the tenth

line of the sequence, U might not need to repeat the entire command

sequence, but might need only to repeat the sequence beginning with

the first erroneous command. For example in this case he could use

the command "run param 10" to start execution at the tenth line of

the sequence. The "run" command will assume that the sequence is to

be executed from the beginning unless a line number is provided

after the name of the sequence.

The use of a command sequence is obviously useful to study the

effects of variations of the parameters, but it also has

applications in other areas, such as iterative solutions. For

example, suppose U would like to solve the integral equation,

r

U(r} Hr) + c Jr U(r)dr.

0

From the physical nature of the problem he has concluded that ¢ (r)

would be a good initial approximation to U(r). One procedure for

solving the equation iteratively is illustrated in the following

example. Before defining the comrnand sequence U printed ¢ (r)

simply to record the initial approximation to U(r). Notice also

that by following the "create" request with the word "no", U avoids

the descriptive message.

~-- --~------------

Section G Command Sequences

Example G.2

print phi (r)

MIN 0 MAX 29 DEL = .50000

.OOOOE 00 .9996E 00 .l997E 01

• 5910E 01 .6857E 01 • 77 8 7E 01

.ll28E 02 .l208E 02 .l286E 02

.1557E 02 .1614E 02 .1667E 02

.1824E 02 .1849E 02 .l868E 02

COMMAND PLEASE

(u(r) = phi (r))

COMMAND PLEASE

create no

INPUT:

(q(r) =c*r*u(r))

integrate 2 q(r) ans(r) O.

(u(r) =phi(r) +ans(r))

print u(r)

EDIT:

file intequ

COMMAND PLEASE

.2989E

.8696E

.l359E

• l 714E

.1880E

41

01 .3975E 01 .4948E 01

01 .9583E 01 .1045E 02

02 • l429E 02 .l495E 02

02 .1756E 02 .l793E 02

02 .l885E 02 .l884E 02

42 Section G Command Sequences

run intequ

THE COMMAND BEING EXECUTED IS

(Q(R)=C*R*U(R))

DEC. VALUE OF CONSTANT C PLEASE

THE COMMAND BEING EXECUTED IS

INTEGRATE 2 Q(R) ANS(R) O.

THE COMMAND BEING EXECUTED IS

(U(R)=PHI(R)+ANS(R))

THE COMMAND BEING EXECUTED IS

PRINT U (R)

MIN = 0 MAX = 29 DEL = .50000

.OOOOEOO .lOOOEOl .2000E01 .3000E01

.5999E01 .6998E01 .7997E01 .8994E01

.1197E02 .1296E02 .1394E02 .1492E02

.1780E02 .1874E02 .1967E01 .2075E02

.2317E02 .2398E02 .2476E02 .2551E02

COMMAND PLEASE

.oos

.4000E01 .SOOOEOl

.9990E01 .1098E02

.1589E02 .1685E02

.2146E02 .2233E02

.2621E02 .2686E02

Section G Command Sequences

run intequ

THE COMMAND BEING EXECUTED IS

(Q(R) =C*R*U(R))

THE COMMAND BEING EXECUTED IS

INTEGRATE 2 Q(R) ANS(R) O.

THE COMMAND BEING EXECUTED IS

(U(R)=PHI(R)+ANS(R))

THE COMMAND BEING EXECUTED IS

PRINT U(R)

MIN 0 MAX = 29 DEL = .50000

.OOOOE 00

.6000E 01

.lOOOE 01

.7000E 01

.2000E 01

.BOOOE 01

.3000E 01 .4000E 01

.9000E 01 l.OOOOE 01

.SOOOE 01

• llOOE 02

.1200E 02 .1300E 02 .1400E 02 .lSOOE 02 .1600E 02 .1699E 02

.1799E 02 .1898E 02 .1998E 02 .2097E 02 .2195E 02 .2294E 02

.2391E 02 .2489E 02 .2585E 02 .2681E 02 .2775E 02 .2868E 02

COMMAND PLEASE

run intequ

THE COMMAND BEING EXECUTED IS

(Q (R) =C*R*U (R))

THE COMMAND BEING EXECUTED IS

INTEGRATE 2 Q(R) ANS(R) O.

THE COMMAND BEING EXECUTED IS

(U (R) =PHI (R) +ANS (R))

THE COMMAND BEING EXECUTED IS

PRINT U(R)

MIN 0 MAX = 29 DEL = .50000

.OOOOE 00 .lOOOE 01 .2000E 01

.6000E 01 .7000E 01 .BOOOE 01

.1200E 02 .1300E 02 .1400E 02

.lBOOE 02 ,l900E 02 .2000E 02

.2399E 02 .2499E 02 .2599E 02

COMMAND PLEASE

.3000E 01 .4000E 01

.9000E 01 .lOOOE 02

.1500E 02 .1600E 02

,2100E 02 .2200E 02

.2698E 02 .2797E 02

• SOOOE 01

• llOOE 02

.l700E 02

,2300E 02

.2896E 02

Each time the sequence "intequ" is executed U can compare the

values of U(r) thus obtained with those obtained from the previous

iterative cycles. After the third cycle the changes in the values

are sufficiently small that he would probably not request further

43

44 Section G Command Sequences

iterations.

The "create" and "run" commands allow U to create a particular

structure of MAP statements pertinent to his problem. Since command

sequences can themselves contain "run" commands, an increasingly

elaborate structure of commands may be referred to by a single name.

The complexity of such structures is limited only by the restriction

that sequences may not be nested more than three deep; that is, a

sequence, loopl, may call another, loop2, which may call a third,

loop3, but the third sequence may not contain a "run" command to

call a fourth.

For problems which require more than three levels of sequences,

or for operations not yet available as MAP commands or for sequences

which require long or numerous arithmetic equations and which will

be used often, simplified MAD programs which can be used in

conjunction with the MAP command "execute", are recommended. The

"execute" command is briefly discussed in section I and instructions

are given in Appendix IV for writing MAD programs to be used by MAP.

In addition to providing a more efficient mechanism for repetitive

evaluation of arithmetic equations, this procedure allows MAP to be

extended indefinitely in whatever directions are desired by a

particular user.

Section Ul Data Input

H. Data Input, Output, Listing and Erasing

1. Data Input

Since C will specifically request values to be defined whenever

an undefined parameter is used in a question, there is no need for a

separate mechanism for data input, and none is provided within the

language of the system. However, provision has been made for

off-line loading of large blocks of data (from tapes or punched

cards) directly into the system storage. Data which is entered in

this way, however, is initially identified by a special name which

includes the numerical form (i.e., format) of the data. It is this

fact which gives rise to the "other name" question in C's response

to finding an undefined array. It is expected that the off-line

process of data input will not be commonly used, but the exact

procedure to be followed is described in Appendix II.

45

46 Section H2 Printed Output

2. Printed Output

In all of the examples of questions, it was noted that C does

not automatically print out the results. However, U may obtain

printed results at any time simply by using the procedure name

"print".

Example H2.l

print

WHAT WOULD YOU LIKE PRINTED a

A= 3.152

COMMAND PLEASE

Here, U has asked the question, "What is (are) the value (values) of

••••• ?" c understands the question, but cannot proceed because it

does not know the name of the parameters desired. It therefore asks

for the missing information. Apparently the value of a has been

previously defined, since c then responds by printing out the value,

3.152. If a had not been defined, C would, as usual, request the

value. U may avoid C's interrogation by specifying the desired

variable immediately.

Example H2.2

print integ

INTEG = 0.50000E 02

COMMAND PLEASE

The procedure is identical for array variables.

Example H2.3

print integ(x)

MIN=O MAX=9 DEL=2.0000

0.2000E 01 0.8000E 01 0.1800E 02 0.3200E

0. 7200E 02 0.9800E 02 O.l280E 03 0.1620E

COMMAND PLEASE

02 0.5000E 02

03 0.2000E 02

Notice that C will print the MIN and MAX (as subscripts) and DEL

values for the array, as well as the values of the array itself. In

this instance the MIN, MAX, DEL specification shows that there are

ten values of integ(x) tabulated, corresponding to values of x equal

to O.O, 2.0, 4.0 and so on up to 18.0.

In response to a print request which refers to an array, C will

normally use the format indicated in the example, that is, a four

significant figure exponentiated number, six values to a line. If

this format is not satisfactory to u, he may change the form by

specifying an alternative format with the original "print". For

example,

Section H2 Printed Output 47

print y(x) SF12.7

The format, 5Fl2.7, is a request for 5 decimal numbers to a line,

each number allotted twelve spaces with seven significant fiqures to

be given after the decimal point. Examples of other possible format

specifications are given in Appendix II.

The "print" question is an excellent one to use for data input,

since U may immediately compare his input data list with C's output

to ensure that neither has made an error.

The print request also permits U to print a function over a

limited range, rather than over the entire range for which the

function is defined. The interval at which the function is to be

printed can be different from the DEL at which the function is

tabulated. If the desired interval for printing is not a multiple

of DEL, interpolation will be performed. The additional features of

the print command require that U give all of the necessary

information on the same line as 'print'; if such information is not

provided, C will assume the entire function is to be printed using

the interval at which the function is defined. The following

examples will illustrate the use of the additional features:

a. print y(x) .s

y(x) will be printed at intervals in x of .s, rather than with

whatever interval for which y(x) may have been defined. Four point

interpolation will be performed if necessary.

b. print y(x) 2. 4.

y(x) will be printed for values of x between x=2. and x=4. using the

interval at which y(x) is tabulated. Integers may be used to

specify the range to be printed; C will print the values of y(x)

having subscripts between the two values given in the request. The

restrictions upon the use of decimal values in defining the MIN and

MAX of a function applies to this request; i.e. the limits of the

range must be integers or differ from integers by .OOl*DEL or less.

If this condition is not satisfied, c will not print the function

over exactly the range expected. The range for which the function

is to be printed must be within the range for which the function is

defined.

c. print y(x) 5Fl2.7 2. 4. .OS

y(x) will be printed for values of x between x=2. and x=4. at

intervals of x=.05. As in b., integers may be used to specify the

range of y(x) to be printed. If a format specification is included

in the print :r..,,...t, the foraat -t
the fuction w 1MI pri1tUd.

~-'

·ti;i••;'~~
o~

:~.'.

Section H3 Graphical Output 49

3. Graphical Output

U may obtain a graphical presentation of his results by means

of the "plot" or "compare" requests if he has access to the required

display equipment. MAP can be used to generate graphs on either

the ESL display console or on storage oscilloscopes. Unfortunately,

limitations in the present data transmission facilities make it

impossible to provide graphical output terminals at remote stations,

so the requisite display units are available only at the Project MAC

facilities at 545 Technology Square. Until graphical display

facilities beco~e available at the M.I.T. Computation Center, the

"plot" and "compare" requests will not be recoanized by the version

of the ~.AP system at the Center.

The two types of available terminals differ in both the quality

of the display and the amount of information that can be presented

at one time. The ESL display console uses a cathode-ray tube on

which the picture is redrawn several times a second, the rate

depending upon the complexity of the picture being displayed. The

more information to be presented, the less frequently each part of

the picture can be redrawn. In many cases the picture will flicker

or even fade away for an instant, before being restored. However,

the display is both sharp and bright, and graphs of high quality

can be obtained. The time sharing system limits the amount of

information that can be displayed at one time on the ESL unit, since

a portion of the memory of the computer is used to store the data

being drawn. Currently U is permitted to plot graphs that include

not more than a total of about 150-200 data points. In order to

reduce the flickering and to allow more than one function to be

plotted on a single graph, all functions should be plotted using the

largest interval that will give a meaningful representation when the

data points are connected by straight lines.

In contrast to the ESL console the picture on the storage

oscilloscope need be drawn only once by the computer. The storage

tube will maintain a good quality picture for at least 10 minutes,

at which time the picture can be regenerated, if desired, with

another "plot" request. The screen on this oscilloscope is less

than one quarter the size of the ESL display (about the size of a

postcard) and the amount of detail that can be resolved is

correspondingly less. On the other hand, any amount of information

can be presented on the screen without introducing the flicker which

is characteristic of the ESL console.

50 Section H3 Graphical Output

In addition to providing on-the-spot display of data, both

units can also be used to obtain photographic copies for reference

or presentation at a later time. At present there is no provision

in the time sharing system for easily obtaining hard copy graphs

other than by photography.

MAP will use either type of display device to produce graphs

consisting of scaled graph paper and the desired functions. C

examines the range of both the dependent and independent variables

and creates a graph paper with the appropriate scales. Either scale

can be linear or logarithmic, and the axes will be labelled with

convenient values. Unless a point plot is requested, the data

points will be connected by straight lines, which will create a good

visual approximation to the function if the data points are

sufficiently closely spaced.

Example H3.l

plot

PLOT WILL CREATE A GRAPH OF THE DESIRED FUNCTION(S).

WHAT FUNCTIONS WOULD YOU LIKE TO PLOT. g (x) a (x)

SHOULD THE PLOT BE LINEAR, LOG-LOG, LINEAR-LOG, or LOG-LINEAR.

log-linear

DO YOU WANT A POINT OR LINE PLOT OF G(X). point

DO YOU WANT A POINT OR LINE PLOT OF A(X). line

IF YOU DO NOT WANT ALL OF THE POINTS OF THE FUNCTION(S)

PLOTTED, TYPE THE RANGE AND/OR INTERVAL IN X TO BE USED.

OTHERWISE JUST GIVE A CARRIAGE RETURN. 2. 100. 2.

COMMAND PLEASE

By typing only "plot", Uhas requested the use of the ESL display

console. In order to use the storage oscilloscope, the equivalent

command is "plot storage". He has requested that two functions be

plotted, g(x) and a(x)~ a maximum of three functions may be called

for simultaneously. Uhas indicated, by typinq "log-linear", that

he wants to plot the log of g(x) and the log of a(x) versus the

independent variable, x. The "point" and "line" responses request

that only the data points of g(x) should be displayed, but that the

plot of a(x) should be constructed by connecting the points defining

a(x) with straight lines. In order for the two functions to be

plotted on the same scaled graph paper it is necessary that the

DEL's of g(x) and a(x) be equal. Obviously, if the g(x) and a(x)

tabulations do not correspond to equal intervals in the independent

variable, the values of x which C generates from MIN, MAX and DEL

are meaningless. In such instances, U must tabulate the values of

the independent variable in a function such as x(x), and use the

Section H3 Graphical Output 51

command "compare", which is described in the following section, in

order to generate a meaningful graph.

The values of g(x) and a(x) will be examined to determine the

largest and smallest values which are required for the vertical

axis, in order to properly generate and scale the graph paper.

Since the logarithm of a negative number or zero is not defined,

negative or zero values for g(x) and a(x) will cause an error

comment followed by "COMMAND PLEASE" to be typed. u has also

indicated a range and interval to be used in plotting the graph,

which is presumably different, at least in part, from that used in

the original definition of g(x) and/or a(x). In the case of the ESL

console the interval should be as large as is consistent with the

use of linear segments between the data points. The range can also

be provided as integers, in which case c will take them to be the

subscripts of the tabulated values.

On the ESL console there may not be sufficient buffer space

available in the main computer memory area to store the information

required to plot the graph paper and the desired functions.

Therefore, if U does not indicate a sufficiently large interval, the

data will be sampled automatically in order to plot the graph. If

this sampled data produces a poor representation of the functions, U

should not attempt to plot as many functions on the same graph, or

should use the storage oscilloscope.

A short form of the plot command is available to allow u to

avoid C's interrogation. C will make several assumptions about the

type of graph desired unless u provides information to the

contrary. The short form of any MAP command can not consist of more

than 72 characters or 13 parameter names, a function name such as

z(x) being counted as 2 names. Therefore if three functions are to

be plotted, it is not possible to specify all of the possible

options on one line as is required. In this regard it should be

recalled that a change in the range and/or interval could be

accomplished by using the minmax and/or basis commands prior to the

plot request. Unless information is supplied to the contrary, C

will make the following assumptions in generating the graph:

a. The ESL display console should be used.

b. Each axis should be linear.

c. A line plot should be made of each function.

d. The range of the graph should be sufficient to include

the entire range of all the functions.

e. All the tabulated data should be used in the plot unless

(with the ESL console) the available buffer space

52 Section H3

is exceeded; in this case the data

sampled as required.

Graphical Output

will be

Example H3.2 (See Figure 3)

plot h(x)

COMMAND PLEASE

C will plot h(x) on the ESL console on graph paper with linear

scales. Only the origin of the graph is labelled with complete

numerical values, and these labels are of the "E" format for decimal

numbers. In this example, the value of the origin on the dependent

axis is -1. x 10 12 and the value on the independent axis is o. The

other labels on an axis omit the power of ten given at the origin

for that axis. For example, the main divisions on the dependent

axis correspond to: -.8 x 10 12 , -.6 x 1012, ••• , 1 x 1012.

Example H3.3

plot g(x) h(x) 3.2 6.8

DUE TO THE LENGTH OF THE ESL DISPLAY BUFFER,

THE DATA HAVE BEEN SAMPLED IN ORDER TO

PRODUCE THE PLOT.

COMMAND PLEASE

U has requested that g(x) and h(x) be plotted simultaneously over

the range x = 3.2 to x = 6.8. The graph is shown in Figure 4 and it

can be noted that the axes have been rescaled. The use of fewer

points in creating the plot is particularly evident in the regions

of the curve where the slope is rapidly changing, since in

generating the graph to be photographed the sampling procedure was

simply to omit every other data point.

Example H3.4

plot storage g(x) h(x) 3.2 6.8 lines points

COMMAND PLEASE

C will plot the graph shown in figure 4, with two exceptions: only

the points of h(x) will be displayed and the.graph will be plotted

on the storage oscilloscope. The first occurence of the word

"lines" or "points" refers to the first function named to be

plotted. In this case U did not intend g(x) to be point plotted so

he had to use the form in this request. If g(x) was to have been a

point plot and h(x) drawn with lines only, the single word "points"

would have been required; "lines" would be assumed for h(x). The

words "lines" and "points" may occur at any point in the sequence of

parameter names.

Logarithmic scales can be used on either or both of the axes.

Figure 5 illustrates the four possible ways of plotting a function

Section H3

1

• 8

• 6

.4

.2

0

.2

• 4

.6

• 8

-lE 12

OE 0

.5

Graphical Output

1f\
r l

\}

.5

1

~

7 ' I h~
~ ~ if

~r

• 5 .5 • 5

2 3 4

Figure 3
plot g(x)

[7 '-J

.5

5

53

"P

~ Iii..
~

.5

6 7

54

5

.s

2

• 5

1

• 5

0

.5

-1

• 5

-2

• 5

-3E 11
3E 0

~

' ~

l

~

.5

Section H3 Graphical Output

rP

~ ~
r~ ~ Iii....

7 '
"'"""Ill!__

L"\. .__

7 ~
,

~ 1 r l I ' J ,
\ 7 j

7 ~
,...

r

• 5 • 5 • 5
4 5 6 7

Figure 4
plot g(x) h(x) 3.2 6.8

Section H3 Graphical Output 55

g(x). Figure Sa is the representation of the function using linear

axes. Figure Sb and Sc are the two possible semi-logarithmic plots

and Figure Sd is the log-log plot. The command used to generate

each figure is given below the figure. The words "log-linear",

etc., can appear at any point in the sequence of parameter names.

If these words are not spelled correctly, a graph with linear axes

will be created.

Many complex short forms of the plot command can be used, as

seen by the following example.

Example H3.5

plot storage log-linear a(t) b(t) c(t) l.S lines points

COMMAND PLEASE

Uhas requested that a(t), b(t) and c(t) be plotted at intervals in

t of 1.5 on the storage oscilloscope. The dependent axis will be

logarithmic, and b(t) will be a point plot. Note that if only one

decimal number is given it is assumed to specify the plot interval.

If two numbers are given (decimal or integer) they are taken to be

the range, while three, of course, completely specify MIN, MAX and

DEL for the plot.

If U has tabulated a function such as a(t) at unequal intervals

and the corresponding values of the independent variables are given

by ind(t), the "compare" command should be used instead of the

"plot" command.

6

5

4

3

2

1

OE

..
• 5

~ ~

• 5 L ~

_.Lj """
• 5 ~

v
z

.s £
[Z

.s L v
.s

1

ZJ
~

IL
OE 1

.2 .4 • 6 • B

Sa
plot g(y)

1
.2 .4 .6 .B

2

1

0

l
-lE

2 OE 1

Figure 5

.,,,.,,,;.
I/

~
z

L

L
r:r.. ,-

1
I

.2 .4 .6 .B
1

• 2 • 4 • 6 • B

5b

plot g(y) log-linear

2

U1

"'

(/)

<D
0
rt
f-'·
0
::J

::r:
w

Gl
11
pi
'O
!:1
f-'·
0
pi
I-'

0 c
rt

'O
c
rt

6

.s

5 .~
.s 1

4 I
r

• 5

3

.s

2

.s
I/

1

.s

OE 1

)I
~

~

-lE 0 1

5c
plot g(y) linear-log

2

-L

~

1
~

.L
L ,

L
0 L

, ,
'f

-lE
2 -lE 0 1

5d
plot g(y) log-log

Figure 5

'

2

trJ
<D
()

rt
I-'·
0
~

::i::
w

Gl
t1
Pl
'O
::r
I-'·
()
Pl
I-'

0
i::
rt

'O
i::
rt

Ln
--I

58 Section H3 Graphical Output

Example H3.6

compare

COMPARE WILL CREATE A SCALED GRAPH BY PLOTTING THE DESIGNATED

FUNCTION(S) ON THE VERTICAL AXIS VERSUS THE VALUES

OF ANOTHER FUNCTION.

WHAT FUNCTION SHOULD BE USED TO SPECIFY THE HORIZONTAL AXIS.

ind(t)

WHAT FUNCTIONS SHOULD BE PLOTTED AS A FUNCTION OF IND(T). a(t)

SHOULD THE PLOT BE LINEAR, LOG-LOG, LINEAR-LOG, OR LOG-LINEAR.

log-linear

DO YOU WANT A POINT OR LINE PLOT OF A(T). line

IF YOU DO NOT WANT ALL OF THE POINTS OF THE FUNCTIONS

PLOTTED, TYPE THE INTEGERS SPECIFYING THE RANGE

OF A(T) TO BE USED. OTHERWISE JUST GIVE A CARRIAGE RETURN.

10 30

COMMAND PLEASE

Uhas requested that log(a(t)) should be plotted aqainst ind(t) on

the ESL console, and that a line segment curve should be drawn. The

values of a(t) having subscripts between 10 and 30 will be plotted

against the values of ind(t) with the same subscripts. Only U

himself can assure that the desired correspondence exists between

those values.

In the short form of the command C makes the same assumptions

that were stated in the description of the plot command, unless U

provides information to the contrary. The possible short forms of

the commands are identical to those for plot, with the exception of

the extra function name required to specify the independent axis.

For example:

Example H3.7

compare storage d(t) a(t) b(t) c(t) log-linear

COMMAND PLEASE

Y has requested that a(t), b(t), and c(t) be plotted on semilog

paper as a function of d(t), ~ !• The storaqe oscilloscope will

be used, and line plots for a(t), b(t) and c(t) will be generated

over the entire range of d(t). c will always assume that the first

function listed specifies the one to be used for the horizontal

axis.

The second names of all the functions specified in either a

"plot" or "compare" request need not be identical. In a "compare", C

will not even check to see if the DEL's correspond, and only the

correspondence of the subscripts between the functions is used in

Section H3 Graphical Output 59

creating the graph: that is, a(t)
10

, b(t)
10

, and c(t)
10

will all be

plotted versus d(t) 10 • A range of d(t) provided in decimal form

will be regarded as meaningless and will cause an error message,

followed by "COMMAND PLEASE" to be printed.

We have discussed the application of the "compare" request to

the plotting of functions tabulated at unequal intervals. As the

name implies, however, "compare" may be most useful for providing a

visual display of the relationship between two functions. A

comparison between an experimental and a theoretical function is

readily obtained~ for example, if the two functions are identical

the plot will consist of a single diagonal line, sloping up to the

right. Wherever the function named first in the "compare" request

has larger values, the curve will dip below the ideal line, and

conversely. The "compare" request is, in fact, exactly analogous to

using an ordinary oscilloscope with both x- and y-axis inputs

(except that MAP can have three simultaneous y-inputs). Thus one

can also obtain the magnitude and phase shift information inherent

in Lissajous-type figures with aperiodic and semi-periodic functions

as well as those which are fully periodic.

60 Section H4 Data Handling Requests

4. Data Handling Requests

There are, so far as general usage is concerned, two levels at

which data, command sequences and programs are stored in the MAP

system; one for temporary or current purposes and the other for

information required on a permanent basis. All variables and

command sequences are stored in the temporary level from which they

may be readily erased. If specifically requested, however, C can

raise any stored information to the permanent level so that it will

not be destroyed by the normal requests for erasure. Five requests,

"data", "data restore", "delete", "data delete" and "data update",

are available to U for the purposes of reviewing, erasing and savinq

data. A knowledge of the conventions used internally for data

storage is required in order to use these commands. Any block of

information, such as the function "g(x)", the constant "a", or one

of the programs making up the MAP system is considered by C to be a

file. Due to the overall structure of the time-sharing system all

files must have two separate names. The following name conventions

have been adopted in the MAP system:

1. All functions are stored with the name of the dependent

variable as the second name. For example, phi(r) would have

first name "phi" and second name "r"; the parentheses are not

part of the name C uses to refer to the function.

2. All constants are automatically given the second name "const".

For example, the constant "a" would be stored with first name

"a" and second name "canst".

3. All command sequences are automatically given the second name

"loop". The first name is the one assigned by U to the command

sequence.

4. The MIN, MAX, and DEL for an independent variable will be

stored in a file with "MINtJIAX" as the first name and the name

of the independent variable as the second name.

S. All programs comprising the MAP system have a second name

"BSS" or "SAVED". These should never be erased.

data

After a prolonged session at the console, or when a number of

persons have access to the MAP system on the same problem number

(and hence the same disk storage space), U may need to be reminded

of the names of all the variables, command sequences and programs in

temporary storage. If he types

Section H4 Data Handling Requests 61

data

c will respond by typing out a list of the names of all files at the

temporary storage level.

data restore

If U would like to obtain a completely clean slate, he may

request

data restore

in which case C will type out the same list and then erase all the

data on the list. No files at the permanent storage level will be

erased by the request. U should generally finish his work with

"data restore" so that the list will be empty for the next user.

delete

The "delete" command permits U to erase specific files from the

disc storage. If U wanted C to forget the value of the constant a

and the function g(x) in order that new values of these variables

would be requested when they were next used, he could type:

delete

WHAT FILES WOULD YOU LIKE TO DELETE.

g(x) a

COMMAND PLEASE

c will ignore the parentheses in the name g(x) and delete the file

with first name g and second name x and the file with first name a

and second name const. If a second name is not qiven for the last

file in the string, it is assumed to be "const". In order to erase

the command sequence param and the constants a and b, u should give

the request:

delete param loop a const b

In this case U has given all the required information on the same

line and has had to provide the second name "canst" for the constant

a in order to make his request clear to c. The request:

delete param loop a b

is identical to the request

delete param loop a(b)

since C ignores the parentheses in determining what files are to be

deleted from the disc storage. Therefore, in case of possible

ambiguity, both names of the files must be used in the data handling

requests. If the delete request cannot locate the file to be

deleted, it does not print a message and no action is taken.

62 Section H4 Data Handling Requests

data update

The "data update" comJT1ana allows u to raise information to the

permanent storage level. Assume that g(x), a, a command sequence

called "param" and a MAD program called "root" had been defined

since the last "data restore" request. If U desires to save the

command sequence, the MAD program, and the translation of the MAD

program, he could use the data update request:

Example H4.l

data update

THE FOLLOWING DATA ARE KNOWN TO THE SYSTEM

Pl\RAM LOOP

G X

A

ROOT

ROOT

CONST

MAD

BSS

PLEASE TYPE IN NAMES OF THE NEW FILES TO BE SAVED, TERMINATE

WITH WORD END.

pa ram loop

COMMAND PEASE

root

G

A

mad root

x
CONST

bss end

After U types the names of those files to be given permanent status,

C types back the remaining file names. The three files which were

saved can subsequently be removed from the disc storage only by

pushing the "reset line" button (on the 1050 console) twice in order

to leave the MAP system, and giving a "delete" command identical to

the all-on-one-line form of the delete command in the MAP system.

In this case the parentheses must be omitted from function names.

data delete

The "data delete" request is equivalent to a "data update" and

"data restore" request given in succession. When U

delete" C will delete the files not desiqnated

retention.

requests "data

for permanent

While using the MAP system, U may receive a message

that he is trying to use more disc storaqe space than

allotted. To restart the system if control has been

indicating

had been

taken from

System MAP, U should type "resume map". The first statement after

the "COMMAND PLEASE" must be a request to delete enough files so

that U will not be using more than his allotment of disc storage.

Section HS Correction of Errors 63

s. Correction of Errors

Typing errors are easily corrected, since they only need to be

cancelled and not erased. Two options are available for deleting

mistakes. A quotation mark, ", deletes the previous character in a

line of typing. Two quotation marks, "", delete the previous two

characters, three delete three characters, and so on.

lines which re~d

(na=) "O. 0)

or

(n=+3"""a=O.O)

are both interpreted as

(na=O.O)

Therefore,

If the mistake is so far back that a character by character deletion

would be tedious, all of the characters on the line may be deleted

by typing a question mark, ? • The line which reads

(n=3.0?(n=O.O)

is interpreted as

(n=O.O)

Neither erased characters nor the erasure marks (" or ?) count

when considering the limitation of 72 characters per line.

If a mistake is not noticed until after a carriage return, it

will be too late for U to make any corrections, unless he is

defining a command sequence or typing input data, which may be

edited using the requests described in Appendix III: however, C will

reject most typing errors and request a new question. If, however,

the error is acceptable to C, or if U changes his mind, C may be in

the process of answering the question before U decides to change it.

If C happens to pause, in order to ask for some information, U may

cancel most questions by typing "quit". C will oblige by typing

"COMMAND PLEASE". However, if C has already started on a long

calculation which U would like to interrupt, he may stop it only by

pushing a special key marked "reset line" on the IBM 1050: C will

usually type "INT." to signify receipt of the interrupt. If U then

gives a carriage return, C will type "COMMAND PLEASE". If the reset

line key is pushed twice in succession, control of the computer will

be taken from System MAP: normal operation can be resumed by typing

"resume map". Typing "resume map" will also return control to

System MAP if certain errors cause control to be transferred to the

time-sharing system.

The Execute Command Section I 65

I. The "Execute" Command and the Use of Auxiliary Programs

In section G it has been demonstrated that U may create

personalized commands by combining separate statements already

available as MAP requests. Another facility is also available to

allow the creation of new commands, which is more general and likely

to be more efficient in execution than command sequences which

contain long arithmetic equations. The command "execute prog", with

"prog" being the name of a suitable binary coded program, will cause

that program to be executed. U may therefore write his own

commands, in a language such as ~1\D, FAP or AED, and execute them

together with the commands already available within MAP. A variety

of subroutines are available to assist the user in achieving full

compatibility with the MAP language, not only regarding required

technicalities but also in less tangible aspects such as the level

of communication between U and c. Thus all the MAP procedures, such

as transform and convolute, are available as program subroutines and

will execute in the usual manner. Other subroutines will allow U to

retain the question and answer form of communication, to use the

all-on-command-line short form of transmittinq parameters, or to

predefine the names of some or all of the parameters, even for those

parts of his program which are entirely novel.

Such programming nonetheless requires a knowledge of a

programming language as well as the particular

programming for the execute command. These latter

are extensive, are described in Appendix IV.

requirements of

details, which

MAP Summary Appendix I 69

APPENDIX I

Summary of the Elements in System MAP

I. Numbers and Variables

A. Numbers

Constants may be specified in the

fixed decimal point numbers (2245.0)

(2.245 x 10 3). The three forms may be

the following exceptions:

form of integers (2245),

and exponentiated numbers

used interchangeably with

a. the exponential form required in equations is 2.245*10**3,but in

all other places the abbreviation 2.245e3 is used.

b. integers may not be used in reply to a specific request for a

decimal number.

B. Constant Variables

Constants may be referred to by a symbolic name, and are then

called constant variables. A constant variable has a single name

which may be almost any combination of 1 to 6 characters, except

those ending in f. Corresponding to the name there will be a single

number which C will use as the value of the constant.

C. Functions or Array Variables

An array has a name composed of two parts, each of which may be

almost any combination of l to 6 characters, except those ending in

f. The two parts are written together, with the second enclosed in

parentheses, as name(x). Corresponding to this name there will be

a block of numbers which c will use as the values of the function.

Subscripts, which will be associated with each value in the array,

are defined whenever the values themselves are defined, using

quantities which c calls MIN and MAX or MIN, JVIAX and DEL. In

operations involving more than one function, values which carry

identical subscripts in their respective arrays will be assumed to

have a meaningful correspondence.

When a function is tabulated at equal intervals of an

independent parameter, C will then take the values of the

independent parameter to be specified by the products of the

subscripts and DEL. u may then consider the second part of the

array name, such as x, to be the name of the independent parameter,

and may, in fact, use it as such in arithmetic equations.

70 MAP Summary Appendix I

II. Arithmetic Equations

An arithmetic equation is phrased in the form:

(answer = arithmetic expression)

where "answer", in general, may be either a constant variable name

or an array variable name. It is not necessary that all (or any)

of the variables appearing in the expression be previously defined.

A. Arithmetic Expressions

The expression can be any mathematically meaninqful combination

of variable names, constants, arithmetic operation symbols and

operational functions.

B. Arithmetic Operation Symbols

The following operation symbols are available:

+ plus

minus

* times

I divided by

** raise to the power
() group specification

The order in which these operations will be actuated will be

effectively just the reverse of the above listing.

c. Operational Functions

The functions sine, cosine, arc sine, arc cosine, exponential(eE)

log , absolute value, tangent, cotanaent, arc tangent, hyperbolic
e

sine, hyperbolic cosine, hyperbolic tangent,

derivative and definite integral are presently

square root,

available.

sum,

These

functions of an argument E may be specified in any arithmetic

expression by using the function names, which are, respectively:

sinf(E), cosf(E), asinf(E), acosf(E), expf(E), logf(E), absf(E),

tanf(E), cotf(E), atanf(E), sinhf(E), coshf(E), tanhf(E), sqrtf(E),

sumf(E), derif(E) and intf(E).

The argument, E, may itself be any arithmetic expression, as defined

above and in Section D of the manual.

III. Complex Procedures

Under this heading are included various mathematical procedures

which are not included as possible operations within arithmetic

expressions. The first group of procedures, transform, convolute,

integrate and basis, are designed to operate only on arrays which

are tabulated at equal intervals in the independent variable. In

MAP Summary Appendix I 71

every case for which the answer is an array, it will also be

tabulated at equal intervals. The subtitles listed below are in the

form of the actual commands which miqht be used durinq operation,

assuming (except for item C) that the user gives names for all the

required parameters on the command line.

A. transform g (x) sin (k) cos (k)

This command is a request for the values of:

cos(k)

and sin(k)

Jg(x) cos(xk)dx

Jg(x) sin(xk)dx

The limits on the integral will be determined by the ranqe of g(x).

B. convolute g(x) h(x) ans(x)

This command is a request for the convolution:

ans(x) I g (£) h (X-£) d £

The limits on the integral and the range of ans(x) will be

determined by the combined ranges of g(x) and h(x).

c. integrate

This command has three options. U may obtain

ans J~(x) dx, where a and b are constants within the

a

tabulated range of g(x).

or, ans (y)
y

Jg(x) dx

a

or, ans(y) = J~(x) dx.

-Y

C will ask U which option is desired and for the names (and values)

of the required parameters.

D. basis g(x) h(k) x(k)

This corrunand has two options. The above is a request for an

interpolation in the g(x) array, in order to obtain values tabulated

at equal intervals in a new independent variable k, where the

functional dependence between x and k is expressed by the array

x(k). The new array will be called h(k). Alternatively,

basis g{x) h(k) 0.05

would be a request for an interpolation in the g(x) array, to obtain

values tabulated at a presumably new interval in x, o.os. The new

array will be called h(k).

72 MAP Summary Appendix I

E. least square data(x) 4 a(x) b(x) c(x) d(x)

This command is a request for a least square fit of the

function data(x) using the 4 fitting functions, a(x), b(x), c(x),

and d(x). A maximum of 5 fitting functions may be specified.

F. minmax g(x)

This command is a request to redefine the range over which g(x)

is defined. The command may also be used to define MIN, MAX, and

DEL for an independent variable, such as x, by the statement

minmax x

G. select g(x) p(x) 2. 4.

This command has two options. The above is a request to define

the function p(x) to have the values of g(x) over the ranqe x=2. to

x=4. Alternatively,

select g(x) a 2.3

would be a request to define the constant a to have the value of

g(x) at x=2.3.

It should be stressed that it is not necessary for U to

remember any of the details described above for these procedures,

If he does not specify any parameter names with the command, C will

describe the procedures and the options and will request all the

required information.

IV. Input and Output Requests

A. Data Input

No specific procedure is provided for on-line data input, since

all of the requests listed in Sections II, III and IV will

automatically initiate specific requests for the values of

previously undefined variables, The off-line loading of large

blocks of data is described in Appendix II.

B. Printed Output

print cons

is a request for the value of the constant, cons.

print g(x)

is a request for the values of q(x) and its associated range and

interval.

print g(x) 2, 4 •• 1

MAP Sununary Appendix I 73

is one of several possible requests which will cause the printing of

g(x) over a specified range with a selected interval; interpolation

will be performed if necessary. In this case q(x) will be printed

at intervals of x = .1 in the interval x = 2. to x = 4.

C. Graphical Output

plot g(x) log-log points 2. 4.

is a request for a graph of the loq of q(x) as a function of the log

of x over the range x=2. to x=4. Only the data points will be used

in plotting the graph. A maximum of three functions may be plotted

on the same graph. Each axis can be either logarithmic or linear,

and the data points will be connected by straight line seqments

unless a point plot is requested.

compare a(x) g(x) log-linear 10 30

is a request for a graph of the log of g(x) as a function of a(x).

The values of a(x) and g(x) having subscripts between 10 and 30 will

be used in plotting the graph, which will have the data points

connected by straight lines. A maximum of three functions can be

plotted versus another function.

With the output commands as well as with the complex procedures

(section III) the user need not present any parameter information on

the command line. If, for example, only the word "compare" is

typed, the system will explain the operation and will request the

necessary information.

74 MAP Summary Appendix I

v. Data Handling Requests

A. Listing of Variable Names

data

is a request for a listing of all of the names of variables, command

sequences and programs which have been defined since a previous

"data restore", that is, of the temporary data.

B. Deletion of Temporary Data

data restore

is a request to erase the names and, in effect, the values of all

variables, command sequences and programs not specifically raised to

permanent status.

c. Raising Data to the Permanent Storage Level

data update

is a request to raise certain variables, command

programs to the permanent storage level from which

deleted only by a CTSS "delete" request. A listing

provided by the "data" request is also printed.

sequences or

they can be

of the type

D. Raising Data to Permanent Level and Deleting Temporary Data

data delete

is a request to raise certain variables, command sequences or

programs to the permanent storage level and to delete all of the

remaining temporary data. The request is equivalent to a "data

update" followed by a "data restore" request.

E. Deletion of Specific Data

delete g(x) a

is a request to delete from temporary or permanent storage the

function g(x) and the constant a. No other information in MAP

storage is affected by the request.

VI. Defining, Editing, and Executing Command Sequences

A sequence of MAP commands can be defined,edited, and executed

by use of the "create", "edit" and "run" requests. The "create"

request allows the definition and initial editinq of a

MAP commands. The user will assign the sequence a

sequence will be stored by MAP until deleted by one

handling requests.

sequence

name and

of the

of

the

data

MAP Summary Appendix I 75

run value 4

is a request to execute the command sequence assigned the name

"value" starting at line 4. The execution of the sequence will

proceed exactly as if each statement had been individually typed on

the console.

edit value

is a request to edit the command sequence with the name "value".

Changes can be made at any time and the edit request may be followed

immediately by another "run" request.

VII. Creation of New Commands and Use of Auxiliary Programs

execute prog a(x) b(x) c(x)

is a request for the execution of the program "prog", which must be

a program available in BSS or SAVED form within the time-sharing

system. If the program is written using the conventions described

in Appendix IV, the user can create new commands or use his own

programs within the MAP System by means of the execute request. The

parameter names a(x), b(x), and c(x) are available for use by the

program to be executed (up to 13 arbitrary parameter names and/or

values may be supplied).

VIII. Typing Errors

A. A number of consecutive quotation marks (") cancel an equal

number of immediately preceding characters on a line.

B. A question mark (?) cancels all of the preceding

characters on a line.

c. A single depression of the "Reset Line" key on the 1050

IBM or the "break" key on the Model 35 teletype followed by a

carriage return generally interrupts the computer and allows a new

question to be phrased.

D. Typing the word "quit" in response to an interrogation by

the computer will generally stop the operation in progress and allow

the user to give another command.

E. The editing requests described in Appendix III can be used

to edit command sequences and numerical values provided as input

data.

76 Formats and Off-Line Data Input Appendix II

APPENDIX II

I. Formats for Printed Output

The form which will be used for printing out an array variable

in response to a print request will be four-significant-figure

exponentiated numbers, six values to a line. If that form is not

satisfactory, it may be altered by specifying an alternative format

on the request line such as:

print y(x) 5Fl2.7

Two general types of format may be used:

A. nFm.p specifies n values to a line, each value to be typed as

a fixed point decimal number with p digits retained after the

decimal point, and m places allotted to the entire value (including

the decimal point, the sign and any leading blank spaces desired) •

B. nEm.p specifies n values to a line, each value to be typed as

a normalized exponentiated number with p significant figures

retained, and m places allocated to the entire value (including the

decimal point, the preceding zero, the exponentiating symbol (E),

the signs of the value and the exponent and any blank spaces

desired).

A maximum of 72 characters, including blanks, may be specified

for any one line.

No more than eight significant figures should be requested for

any value. If an "F" format is used and the number is too large to

be printed by that format, control of the printing will be taken

from System MAP. The command "resume map" must then be given to

restore normal operation.

II. Off-Line Input of Data

When a large amount of experimental data is to be input to the

computer, it may be more convenient to submit the values on punched

cards than to type the~ in on the console. A format for punching

the cards should be chosen that allows all of the values of the data

to be represented. This format must be used in all cards of a given

set. Only the first 72 columns on each card should be used, and

each value of the data must be positioned as far to the right in the

field as possible when using an "E" format.

Formats and Off-Line Data Input Appendix II 77

The data should be preceded by a card of the form:

INPUT PROB PROG NAME FORMJ\T

on which the fields are separated by one or more blanks.

PROB is the user's problem number.

PROG is the user's programmer number.

NAME is the name the user desires to specify for his input

data. The name can not contain more than 6 characters.

FORMAT is the format used in punching the cards. The format

specification can not consist of more than 6 characters.

The last card of the deck must have *EOF* beginning in column

8. The deck should be submitted for loading onto the disk at the

appropriate location at either Project MAC or the Computation

Center, depending on the computer beinq used.

When the data has been loaded and is to be used in the MAP

System, U should refer to it by a new name, which he plans to use

throughout his calculations. The new name is required since the

data will be loaded with first name NAME and second name FORMAT, and

FOR!1AT will contain numbers, which are illegal in a MAP variable

name. When C asks if the values have been defined under a different

name, U should type "Nh'1E FORMJ..T" as the old name. The data on the

cards will then be converted to the required binary form and will be

available as a MAP function with the new name.

78 Editing Requests Appendix III

Appendix III

Editor for Input Data and Command Sequences*

When the numerical values of a function have been requested by

C or whenever the command "create" has been given in order to define

a command sequence, C will type "INPUT:". U may then type, as

rapidly as he desires, as many lines of input as necessary. When U

gives two successive carriage returns to indicate the end of the

input, C will type "EDIT:". U may then alter the block of input,

which we will refer to as a file, with various specific requests to

the editor. These requests will be described below. In order to

alter a previously defined command sequence, U may reach the editor

directly by typing the MAP command "edit xxxxxx", where xxxxxx is

the name of the stored sequence.

Since the requests refer to specific lines in the file, it will

be useful to imagine a pointer which designates the line in

question. When the editor is called automatically by the two

carriage returns terminating the input, the pointer will be

positioned at the last line of the file. When U uses the MAP

command "edit", the pointer will be before the first line at the top

of the file. If a request causes the pointer to move past the end

of the file, C will type "END OF FILE REACHED BY ••••• ", where

will be the responsible request.

* The MAP editing facility utilizes the CTSS 'ED' command developed

by R.C. Daley and c. Garman of the M.I.T. Computation Center. This

appendix discusses only the editing features necessary for use

within the MAP system: additional information about the 'ED'

command is available in the CTSS Programmer's Guide.

Editing Requests Appendix II I 79

EDIT REQUESTS

No response is made by C to a request unless the response is

indicated in the description of the request.

REQUEST: FIND LINE

ABBREVIATION: F

ERRORS: END OF FILE

The FIND request is used to move the pointer down from its

present position to the line specified by LINE. LINE is a

sufficient portion of a line, starting from the left side, to

designate that line uniquely. Matching is done only on the

non-blank characters specified in LINE. For example, the request,

F (u (r)

might be used to find the line,

(u(r) = sinf(a(r))

REQUEST: LOCATE STRING

ABBREVIATION: L

ERRORS: END OF FILE

The LOCATE request is used to move the pointer down from its

present position to the first line which contains the entire

character string specifed by "STRING".

REQUEST: NEXT I

ABBREVIATION: N

ERRORS: END OF FILE

This request is used to move the pointer down from its present

position in the file. "I" specifies the number of lines to be

skipped over. If I is "O" or not specified, it is assumed to be "l"

and the pointer will be moved to the next line in the file. If the

NEXT request is given after the end of file has been reached, the

pointer will reset to the beginning of the file and moved "I" lines

from there.

REQUEST: DELETE I

ABBREVIATION: D

ERRORS: END OF FILE

The DELETE request will delete "I" lines from the file starting

with the line at which the pointer is currently positioned. The

pointer is left at the position vacated by the last line deleted by

this request. If I is "O" or left unspecified, only the current

line will be deleted.

80 Editing Requests Appendix III

REQUEST: PRINT I

ABBREVIATION: P

RESPONSE: printed lines

ERRORS: END OF FILE

The PRINT request will print "I" lines from the file starting

with the line at which the pointer is currently positioned.

completion of this request, the pointer will be left pointing

last line printed. I'f I is "O" or left unspecified, one line

be printed.

REQUEST: RETYPE LINE

ABBREVIATION: R

ERRORS: none

Upon

to the

will

This request will cause the line at which the pointer is

currently positioned to be replaced by LINE. The pointer is not

moved by this request. The first blank following "RETYPE" is part

of the request and, therefore, is not part of the new line.

REQUEST: TOP

ABBREVIATION: T

ERRORS: none

This request will cause the pointer to be reset and positioned

just above the first line in the file.

REQUEST: BOTTOM

ABBREVIATION: B

RESPONSE: INPUT:

ERRORS: none

This request will cause the pointer to be positioned after the

last line in the file. All subsequent typing will be treated as

input and added to the file.

REQUEST: INSERT or carriage return

ABBREVIATION: I

RESPONSE: INPUT:

ERRORS: NONE

All subsequent typing will be treated as input and inserted

after the line at which the pointer is currently positioned. If the

INSERT request is given immediately following a TOP request, the

inserted lines will be placed at the beginning of the file.

REQUEST: INSERT LINE

ABBREVIATION: I

ERRORS: none

Editing Requests Appendix III

The INSERT request may also be used to insert a

immediately after the current position of the pointer.

blank following "insert" is part of the request and,

not part of the new line.

REQUEST: CHANGE /stringl/string2/ J G

ABBREVIATION: C

ERRORS: END OF FILE

81

single line

The first

therefore, is

This request will examine "J" lines starting at the line at

which the pointer is currently positioned. If the character "G" is

present, every occurrence of string! will be replaced by string2 in

the lines examined. If "G" is not present, only the first

occurrence of stringl will be replaced by string2 in each line.

Upon completion, the pointer will be left positioned at the last

line examined by this request. If J is "O" or left unspecified, it

is assumed to be "l" and only the current line will be examined. If

the character "/" appears in stringl or string2, another character

not appearing in stringl or string2 must be used to delineate the

two strings. "stringl" and "string2" may be of different lengths.

EXAMPLES:

line: ALPHA = ALPHA + ALPHA

request: c /ALPHA/BETA/

new line: BETA = ALPHA+ALPHA

request: c /ALPHA/DELTA/ l G

new line: BETA = DELTA+DELTA

request: c /DELTA//

new line: BETA +DELTA

REQUEST: VERIFY

ABBREVIATION: VE

ERRORS: none

The VERIFY request sets the verify mode. In the verify mode

the lines selected by the requests FIND, LOCATE and NEXT and all

lines altered by a CHANGE request will be printed. It is

recommended that VERIFY be the first request given to the editor in

order to avoid errors.

REQUEST: BRIEF

ABBREVIATION: BR

ERRORS: none

The BRIEF request turns off the verify mode.

REQUEST: FILE NAME

82 Editing Requests Appendix III

ABBREVIATION: FL

RESPONSE: COMP.AND PLEASE (or another MAP response)

ERRORS: NO FILE NAME GIVEN

This request is used to terminate the editing processi the new

file will be written onto the disk. In the case of data input, NAME

must be "input data". When defining a command sequence NAME must be

a name of 6 or fewer characters used to designate the sequence.

Formats and Off-Line Data Input Appendix II 77

The data should be preceded by a card of the form:

INPUT PROB PROG NAME FORMAT

on which the fields are separated by one or more blanks.

PROB is the user's problem number.

PROG is the user's programmer number.

NAME is the name the user desires to specify for his input

data. The name can not contain more than 6 characters.

FORMAT is the format used in punching the cards. The format

specification can not consist of more than 6 characters.

The last card of the deck must have *EOF* beginning in column

8. The deck should be submitted for loading onto the disk at the

appropriate location at either Project MAC or the Computation

Center, depending on the computer beinq used.

When the data has been loaded and is to be used in the MAP

System, u should refer to it by a new name, which he plans to use

throughout his calculations. The new name is required since the

data will be loaded with first name NAME and second name FORMAT, and

FORMAT will contain numbers, which are illegal in a MAP variable

name. When C asks if the values have been defined under a different

name, U should type "NA.."1E FORMJ..T" as the old name. The data on the

cards will then be converted to the required binary form and will be

available as a MAP function with the new name.

Programs for the Execute Command Appendix IV 83

Appendix IV

Programs for the Execute Command

The "execute" request facilites the expansion and

personalization of the MAP System, and also allows the possibility

of improved efficiency in the event that certain command sequences

(particularly those with long arithmetic equations) are to be used

frequently. Its use, however, presupposes the existence of suitable

programs. Even though many subroutines have been written to

simplify the process, the writing, translating and error correction

of the programs may require a significant amount of time and a

technical compentence on the part of U beyond that required to use

MAP.

Before we discuss the mechanics of programming for "execute",

it will be useful to recall the following basic attributes of the

MAP system, which are, in the main, responsible for the special

requirements of such programming.

1. All variables are referred to by name: in particular, tabular

data (or functions) are referred to in standard mathematical

form, such as "y(x)".

2. None of the available procedures have pre-defined parameter

names. That is, at execution time U can request the procedure

to operate on any functions rather than ones of specific names.

3. If the parameter names are not supplied on the command line, C

will request them.

4. If specified parameters (i.e. functions or constants) have not

been defined previously, C will request values for them.

For "execute", U must keep the first of these in mind in order to

transfer data to and from other MAP procedures. The other points

may be relaxed, as suits U's needs.

In the following discussion it will be assumed that U has a

basic knowledge of CTSS (the time sharing system) and the MAD

programming language. Actually, programs can be written in any

language which produces a compilation acceptable to the BSS loader.

If any MAP System subroutines are used, the language must be able to

call subroutines written in MAD, but it need not produce subroutines

that can be called by MAD.

84 Programs for the Execute Command

Consider the following conmand sequence:

(g(x)=x*sinf(a(x)+d))

transform g(x) sint(u)

integrate 1 sint(u) ans

cost(u)

Appendix IV

which might represent a sequence that U would want to use many times

in analyzing experimental data. When

executed C would ask for any additional

as the values of the integration limits) •

the command sequence was

required information

We will assume

(such

that u
would like to write a program for the "execute" command, which will

simulate this sequence. The following MAD program will serve that

purpose, and will be discussed in detail to illustrate how the

facilities within the MAP system can be used.

Example A.l

INTEGER MIN, MAX, I

DIMENSION AA(lOOO), G(lOOO)

EXECUTE IN. ($A(X) *$,AA, MIN, MAX, DEL)

C=VALUE. ($D* $)

THROUGH LOOP, FOR !=MIN, 1, I. G. MAX

LOOP G(I-MIN)=I*DEL*SIN.(AA(I-MIN)+C)

EXECUTE OUT.($G(X)*$,G, MIN, MAX, DEL)

VECTOR VALUES TRANSF=$G(X) SINT(U) COST(U)*$

EXECUTE TRANSl.(TRANSF)

VECTOR VALUES INT=$1 SINT(U) ANS*$

EXECUTL INTEGl.(INT)

EXECUTE CHNCOM.

END OF PROGRAM

The first two statements, like all the rest in such programs,

are standard MAD statements. These serve to specify that the MAD

variables min, max and i are integers and to allocate 1001 storage

units each to the arrays aa and g. Notice that the program must be

written as a "main program" rather than as subroutine. It must be

given a name, which is assigned using the standard CTSS procedure

(not shown here) • The transfer of variables between this program

and the disc storage where they are stored by MAP, will be described

below. The dimension of 1000, for aa and g, is the most general

one for variables to be transfered since no MAP function may contain

more than 1000 points. If U were certain that the program would

never use that large an array he could use any safe smaller number.

The subroutine "IN." loads the function a(x) from the disc storage

into the array "aa" and will set the MAD variables min, max and del

equal to the MIN and MAX subscripts and DEL for a(x). If no values

are found for a(x), values will be requested in the normal MAP

Programs for the Execute Command Appendix IV 85

manner. The function name must be provided to the subroutine in

Hollerith (BCD) form; hence the MAD notation involving the $'s. The

"*" indicates the end of the BCD information, much as the carriage

return signifies the end of a line of console input.

The use of the "VALUE." subroutine in line 4 illustrates how

the value of the constant d is obtained; if d had not been

previously defined, a value will be requested when the program is

executed.

In lines 5 and 6 the values of g(x) are calculated using a

"through" statement which includes all the values between MIN and

MAX. A convention of the MAP system is that "IN." will transfer a

function so that the value with subscript MIN is stored in the first

storage unit allotted to the corresponding program array. For

example, the element of a(x) with subscript MIN is loaded into that

storage element which is called aa(O) by MAD. This convention

results in a large saving in storage space when MIN is a large

number. In refering to the elements of the array, therefore, U must

always account for the shift; in this instance the value of a(x)

corresponding to x=I*DEL will be stored with subscript (I-MIN). The

OUT. subroutine, as is probably obvious, is just the reverse of IN.

and, as used here, will create a MAP function, "g(x)", having the

values of the MAD array "g".

All the procedures, such as transform, are called by giving the

first five letters of the procedure name followed by a 11 1. 11
• For

example, TRANSl. calls the transform procedure. Notice that the

entire argument of all of the MAP procedure subroutines must always

be Hollerith (BCD), which is the form in which the arguments would

normally be supplied via the typewriter. Only if the required BCD

argument contains fewer than six characters (including the

terminating asterisk) may it be provided within the argument

parentheses (as has been done with both "d" and "a(x)" in the calls

to "IN." and "VALUE.") • In this example, the arguments of both

"TRANSl." and "INTEGl.", which simulate the short form of the

command, are too long to be provided directly. They are therefore

preset using "vector values" definitions of the arays "transf" and

"int", which are in turn provided as the arguments in the calling

sequences. Any additional required information (such as the

integration limits) will be requested by C each time the program is

executed.

The call to the subroutine CHNCOM. automatically returns

control to the MAP System. This statement, which is analogous to

the MAD "function return" statement in a subroutine, must be used

whenever the next response from C is expected to be "COMMAND

86 Programs for the Execute Command Appendix IV

PLEASE". All of the MAP system subroutines, such as "IN.", "OUT.",

etc. will be automatically loaded when the "execute" command is

given. In a subsequent portion of the appendix all of the MAP

subroutines available for use by U in writing programs are described

in detail.

Once U had successfully translated the MAD program he could

execute it at any time during normal use of the MAP System.

Assuming the name given to it had been "test", the MAP request would

be given in the following manner:

Example A.2

COMMAND PLEASE

execute test

DEC. VALUE OF CONSTANT

TRANSFORM BEING PERFORMED

D PLEASE 3.4

PLEASE PRINT ON THE NEXT LINE MIN,MAX, AND DEL FOR THE

VARIABLE U •

-6. 6. • 2

MIN = -30 MAX 30

INTEGRATION BEING PERFORMED

DECIMAL VALUE OF LOWER LHAIT PLEASE -3.

DECIMAL VALUE OF UPPER LIMIT PLEASE 3.

COMMAND PLEASE

Evidently U had previously defined a(x); otherwise, numerical values

would have been requested in the usual manner. The MIN, MAX, and

DEL for the independent variable u and the value of the constant d,

being "data", would not be requested again unless the values given

here were subsequently erased. On the other hand the integration

limits will be requested each time since they are simply parameters

of a specific execution which, in this case, are not supplied "on

the command line."

Although this MAD program might satisfy U's immediate

requirements, it is doubtful that he would always name his data a(x)

and he also might want to name the results of the transform

differently whenever the program was executed. In that case U could

write the MAD program with qreater generality so that the names of

the important functions could be supplied at the time the "execute"

statement was given. In the following example, the program has been

written such that U can use arbitrary names in place of the specific

names a(x), g(x), sint(u), cost(u) and ans which were used in the

previous example.

Programs for the Execute Command Appendix IV

Example A.3

INTEGER MIN, MAX, I, ARG, NAMES

DIMENSION AA(lOOO), ARG(6), NA}'l.ES(8), G(lOOO)

EXECUTE SETUP.(NAMES,9)

ARG(O) NAMES(O)

ARG(l) NAMES(l)

ARG(2) = $*$

EXECUTE IN.(ARG, AA, MIN, MAX, DEL)

C=VALUE. ($0*$)

THROUGH LOOP, FOR !=MIN, l, I. G. MAX

LOOP G(I-MIN)=I*DEL*SIN.(AA(I-MIN)+C)

ARG(O)=NAMES(2)

ARG(l)=NAMES(3)

ARG(2)=$*$

EXECUTE OUT.(ARG, G, MIN, MAX, DEL)

ARG(2)=NAMES(4)

ARG(3)=NAMES(S)

ARG(4)=NAMES(6)

ARG(S)=NAMES(7)

ARG(6)=$*$

EXECUTE TRANSL (ARG)

ARG(0)=l

ARG(l)=NAMES(4)

ARG(2)=NAMES(S)

ARG(3)=NAMES(8)

ARG(4)=$*$

EXECUTE INTEGl.(ARG)

EXECUTE CHNCOM.

END OF PROGRAM

87

In order to use the same names as were predefined in the previous

example the program would be executed in the following manner:

execute test a(x) g(x) sint(u) cost(u) ans

To write a program in which the names of the important

parameters are substitutable, u must decide which parameters he will

want to supply each time the program is executed. In the first

example the program was written in such a way that none of the

function names could be changed at the time the program was

executed; changes in the names could be made only by altering one

or more of the statements in the program and then recompiling the

entire program. In the second example U wrote the program in such a

manner that the name of the argument of the sine, the name of the

function to be transformed, the name of the sine and cosine

transforms, and the name of the result of the integration are to be

88 Programs for the Execute Command Appendix IV

provided as part of the execute command. Obviously the user of the

program must be aware of the order in which the author expects the

parameter names to be provided, just as U must know how to use the

short form of the MAP commands.

At execution time the parameter names must be obtained by the

subroutine SETUP. This subroutine is called with two arguments:

the first is an array which will ultimately contain the information

typed on the command line after the word "execute" and the name of

the MAD program. Note that this array must be specified to be of

integer mode. The second argument is the number of parameters

expected to be supplied when the execute command is given. This

number should be calculated assuming that a quantity within a

parentheses is a separate parameter, that is, a(x) is two

parameters. If the correct number of parameters is not supplied as

part of the "execute" command, C will give U an opportunity to

retype the portion of the line following the name of the MAD prgram.

The array "names" will contain in successive computer words the

parameters typed on the line with the execute command: for example,

names(4), in the calling sequence given above, will be the word

created by MAD from $ sint$. Since SETUP obtains all the parameter

names provided on the command line, it is necessary to break up the

list into the separate groups of names required for each of the

subroutines which may be involved and to provide the asterisks at

the end of each group. This has been accomplished by repetitively

setting the "arg" vector equal to the appropriate elements of the

vector "names", which was obtained by SETUP. In all other respects

this procedure is equivalent to the use of a vector values

definition since all of the subroutines for calling MAP procedures

will replace, if necessary, any parentheses in the "vector values"

definition of the parameter names by blanks and will separate all

the parameters into separate computer words by the presence of the

blanks, just as "SETUP." does.

The subroutines stored in the MAP system library and available

for use in programming can be divided into two categories: those

necessary for utilizing the present capabilities of the MAP system

and those which will be useful in attaining an

sophistication in the novel parts of proqrams written

"execute" command.

equivalent

for the

90 Programs for the Execute Command Appendix IV

A. Subroutines for Access to MAP System Facilities

1. Subroutines for Calling MAP Procedures

In order to use "basis" for example, the calling sequence is:

execute basisl. (arg)

where "arg" may have one of three different forms, depending upon

the amount of information U desires to provide in the call to the

subroutine.

a. The simplest way to call BASISl. is equivalent to typing just

"basis" on the console1 all of the required information will be

requested at execution time. In this case arg is simply $*$, which

indicates that no parameter names are predefined and that none will

be provided with the MAP "execute" request. The callinq sequence in

a MAD program would be:

execute basisl.($*$)

b. The second type of call is one in which U predefines some or

all of the necessary parameter names and expects any unspecified

ones to be requested at execution time, as in (a). Such calls will

be equivalent to such MAP commands as:

basis g (x) a (k) x(k)

or

basis g (x) a (k)

For both simulations arg should be defined in the MAD program with a

vector values statement, such as

vector values arg=$g(x) a(k) x(k)*$

for the first case, and

vector values arg=$g(x) a(k)*$

for the second case.

U must follow the convention common to all MAP procedures: the

names provided must be supplied in the same order that they would be

requested by C, and no intermediate name in the expected sequence

can be omitted.

If the information provided within the $ 1 s of the vector values

statement contains 6 or fewer characters,

sequence can be used. In order to call

equivalent to the MAP command

a simplified calling

BASISl. in a manner

Programs for the Execute Command Appendix IV 91

basis g(x)

the "vector values" statement may be avoided and the argument

provided directly, as

execute basisl.($g(x)*$)

Of course, no other name can be substituted for g(x) without

changing this statement and recompiling the entire program.

c. In general U will want to provide different parameter names

each time he runs the program containing

may not desire to recieve the individual

Then, as in example A.3, the program

parameter names typed on the line with

the call to BASISl. and

specific requests by

must expect to find

the execute command,

yet

c.
the

and

these names will be used in the call to BASISl •• Of course the user

of the program must know which parameter names the author expected

him to provide with the execute command, which names c is expected

to request and which names, if any, are predefined.

must use the subroutine SETUP. to obtain parameter

The program

names from the

execute command line and some (or all) of these names will be used

in the call to BASISl. The pertinant names must be assembled by the

program into an array, such as "ar9", the last word of which

contains an asterisk, which indicates the end of the list of

parameter names for BASISl. The calling sequence is

execute basisl.(arg)

This is exactly the same procedure as was used in example A.3. The

array arg must be included in an integer statement.

All of the MAP prodecures are available as subroutines. The

following subroutines call the corresponding MAP procedure:

Procedure

Compare

Convolution

Differentiation

Integration

Least Square Analysis

Minmax

Plot

Print

Select

Transform

subroutine

COMPARl.

CONVOl.

DIFFEl.

INTEGl.

LEAS Tl.

MINMAl.

PLOTl.

PRINTl.

SELECl.

TRANSL

A subroutine for performing differentiation is included in the

list although this operation is provided in MAP as an operational

function for equations, rather than as a separate procedure. The

92 Programs for the Execute Command Appendix IV

procedure expects two function names as parameters~ the first is the

name of the function to be differentiated and the second is the name

of the answer. If both names are not provided, they will be

requested.

Whenever an additional procedure is included within

system, the appropriate subroutine will be added to the

library with a name consisting of the name of the procedure

the first five letters) followed by "l.".

2. Subroutines for Manipulatinq MAP Functions and Constants

the MAP

system

(or of

The following subroutines facilitate the use of MAP-created

functions, such as g(x), and "1AP constants within a MAD program. In

all cases the array "arg" specifying a MAP name must be of integer

mode.

a. IN. loads a MAP function into a designed array and provides the

values of MIN, MAX, and DEL for the function.

Calling sequence from MAD:

execute in.(arq, array, a,b,c)

arg The name of a MAP function in one of the forms

described in the preceding section,

array

a,b,c

An array into which the values of the function

having the specified name will be loaded,

Variables that will be set equal to the MIN,

MAX, and DEL, respectively, of the function.

If the function is not defined, numerical values will

in the usual manner. If arg contains more than

be

the

requested

two names

necessary to specify a function, or if arq does not contain the

terminating "*", an error message will be printed, followed by

"COMMAND PLEASE". arg, a, and b must be defined to be of inteqer

mode.

b. OUT. creates a MAP function and stores it on the disc.

Calling sequence:

execute out.(arg, array, a,b,c)

The function with the name specified by arg will be created from the

values stored in array and will have MIN=a, MAX=b and DEL=c~ a, b,

and arg must be integers. The number of points in the array must be

(b-a+l) • The error returns are identical to those for IN.

Programs for the Execute Command Appendix IV 93

c. VALUE. will load the value of a MAP constant.

Calling sequence:

d=value.(arg)

d will be set equal to the value of the MAP constant specified by

arg. The constant is always a floatinq point number. If the

constant is not defined, the value will be requested in the usual

manner. If arg contains more than a single variable name, an error

message will be printed, followed by "COMMAND PLEASE".

d. CONST. will create a MAP constant and write its value on the

disc.

Calling sequence:

execute const.(arg,val)

A MAP constant with the name specified by arg and with the value of

val will be created. Val must be a floating point number.

e. RANGE. will obtain the MIN,MAX and DEL for an independent

variable from the disc whenever a file with the first name MINMAX

and a second name equal to the name of the variable exists. If this

file does not exist, the values of MIN, MAX, and DEL will be

requested from the console. U may then supply either decimal or

integer values for MIN and MAX; decimal values will be converted to

the appropriate integers by using the value of DEL provided. The

appropriate MINMAX file will also be created.

Calling sequence:

execute range. (arg,min,max,del)

where arg is the name of the variable of interest. min, max, and

del will be set equal to the appropriate values; min, max and arg

must be of integer mode.

In general RANGE. will not need to be used whenever a function

is being obtained by either IN. or FGET. (which will be described in

Section B of the Appendix). When values of MIN, MAX or DEL are

required, they will be requested by these routines.

f. BCDBIN. will convert a number provided as one of the parameters

of a MAP execute statement into a floating point number.

Calling sequence:

a= bcdbin.(arg)

a will be set equal to the floating point value of the BCD number

which had been obtained from the execute command line by using

94 Programs for the Execute Command Appendix IV

subroutine SETUP. The initial number must consist of 6 or fewer

characters including the decimal point and the "e" (if one is used

to indicate exponentiation) •

g. SETUP. will obtain the parameters provided as part of the MAP

"execute" command for use within a MAD program. SETUP. must be used

if any of the parameter names within a program are to be

substitutable.

Calling sequence:

execute setup.(names,num)

or a= setup.(names, num)

num can be either 0 or the number of parameters expected to be

provided as part of the execute command and must be designated to be

an integer in the program. names is the array in which the

parameter names given with the MAP execute command will be stored

and likewise must be of integer mode. All parentheses are replaced

by blanks, and the blanks are used to separate the parameters. Each

parameter is stored in a separate computer word in the array

"names", and is right justified with leading blanks. If the second

calling sequence is used, a will contain the

obtained from the execute command and both a

included in an integer statement.

number of parameters

and SETUP. must be

If num is specified as o, SETUP. will assume that the first

parameter in the execute command is the number of additional

parameters to be provided. In this case the array "name" will

contain only the additional parameters and will not include the

first parameter specified. If that number of parameters is not

found, the value of a will be the number of additional parameters

actually found. If the proper number of parameters are not found, C

will ask U if he wishes to retype the required parameters. If he

answers "no" arg will contain only the parameters found, and a will

be the number found.

Programs for the Execute Command Appendix IV 95

B. Subroutines Useful in Adding Commands to the MAP System

The subroutines described in part A should enable U to write a

private command for use with the MAP execute command if he has no

need to communicate with the program during its execution (other

than is implied by the use of ~.AP subroutines) and intends to

include only minimal error checking. The following groups of

subroutines will aid U in writing more sophisticated private

commands.

1. Subroutines Assisting Error Checking

a. DOI2. The subroutine will check 2 successive computer words

containing BCD information for the existence of a decimal point.

Calling sequence:

a= doi2.(name(O))

a will equal 1 if name(O) or name(l) contains a decimal point; if

no decimal point is located, a will equal o. If only one word is to

be examined, the entry DOil. should be used. a, DOI2. or (DOil.)

and name must be of integer mode.

b. ERROR. This subroutine provides, with a single call, the

printing of a message and an exit from the program. The status of

the program being executed will be destroyed. The calling sequence

in a MAD program is

execute error.(mess)

where mess is the name of a vector which contains the error message.

The message can be defined in a "vector values" statement, such as

vector values mess=$ any error message $,777777777777K

The message will be printed on the console, 72 characters per

line, and followed by "COMMAND PLEASE". (The subroutine PRNTP.,

described in the CTSS Programmer's Guide, section AG.l.03, can be

used to print a message at any point in a program, without leaving

the program. The subroutine CHNCOM., illustrated in example A.land

described in section AG.8.03 of the CTSS Programmer's Guide, can be

used to leave a program at any point, without printing a message.)

c. EXIT. A subroutine of this name is included in the MAP

library to avoid transfers out of the control of M.AP whenever

system

this

subroutine name is used inadvertently in a MAD proqrarn written for

the "execute" request or called as an error exit by an existing CTSS

subroutine. In its MAP form the EXIT. subroutine is identical to a

96 Programs for the Execute Command Appendix IV

call to CHNCOM. except that it will erase any core images which have

been saved on the disc by the MAP system, whereas CHNCOM. will not.

Therefore EXIT. provides a method for immediately obtaining a

"COI-lMAND PLEASE", even if the program in question has been called

with an "execute" request in the middle of a command sequence.

a. NUM. The subroutine will determine whether a word of

alphabetic (BCD) information contains any number and/or decimal

points, and will provide the total number of such characters. NUM.

is particularly useful in determining if U has provided a possible

MAP variable name since MAP names can not contain numerical

characters.

Calling Sequence:

a = num. (b)

a will be equal to the number of digits and decimal

BCD word b. a,b, and NUM. must all be declared to

mode.

points

be of

in the

integer

2. Subroutines Facilitating Program Communication with the Console

The most important feature of the time-sharing system is the

variety of ways in which it allows U and C to communicate during the

solution of a problem. In order to write a MAP command it is

necessary to have available subroutines for printing messages on the

console, and for converting the console input into a form that can

be used by a program.

a. Printing messages on the console.

MAP uses the subroutine ERROR. or the CTSS system subroutine

PRNTP. to print text messages on the console.

feature of MAD is used in the print command.

b. Reading information from the console.

The PRINT FORMAT

All information read from the console is obtained in BCD

used

form

for and must be converted to binary form if it is

numerical calculations.

before processing or

Manipulations upon the

printing are frequently

available subroutines are:

to be

BCD information

necessary. The

GET. obtains an input line from the console, deletes leading

blanks, replaces any parentheses by blanks, and divides groups of

characters separated by blanks into individual computer words. If a

group of characters contains more than 6 characters, only the first

6 characters are retained. The resulting character groups are right

Programs for the Execute Command Appendix IV 97

justified with leading blanks.

Calling sequence:

execute get.(arg,m)

or k = get. (arg,m)

The array "arg" wil contain k words of information derived from the

input line by replacing all parentheses by blanks, and storing each

group of characters in one word. The number of words, m, to be

obtained must be specified in the call. m and arg must be of

integer mode as must k and GET. if the second calling sequence is

used. If one of the character groups is the word "quit", EXIT. will

be called. For example, if the input line were

alpha a(x) g(gamma)

arg would contain:

Word BCD contents

arg(O) alpha -
arg (1) a

arg(2) x

arg(3) ---q

arg(4) gamma -
(where is used to represent a blank)

and k would have the value 5. Due to the way MAD stores arrays,

arg(4) will be in the numerically lowest storage location, a fact

which will be important to U only if he plans to write part of his

command in a language other than MAD.

GET2. performs much the same function as GET. with two execptions:

groups of characters can contain up to 12 characters and are

allotted 2 computer words, and the resulting character groups are

left justified with trailing blanks. If a

contains 6 or fewer characters, the second of

group of characters

the two words will

only contain blanks. The calling sequence for GET2. is the same as

for GE'l'.. If an input line were:

3.1415926 7.5e2 a(x),

and GE'l'2. were called by the statement

k = get2.(arg,4)

the array would contain:

98 Programs for the Execute Command

word

arg(O)

arg(l)

arg{2)

arg(3)

arg (4)

arg (5)

arg{6)

arg{7)

BCD contents

3.1415

926

7.5e2

a

x

k would have the value 4, the number

characters found. k, GET2., arg, and m

of separate

must all be

"quit" among

Appendix IV

groups of

of integer

the input mode, As was the case for GET., the word

will result in a call to EXIT. GET2. can also be called by an

"execute" statement if the value of k is not required.

In general GET. is used when the input line is expected to

contain MAP names, which by convention are expected to be right

justified, GET2. is used primarily for numerical input.

The conversion routines IOHF. and !OBI. assume that all

numbers to be converted from BCD to binary are in the form produced

by GET2., left justified with trailing blanks.

IOHF. will convert two consecutive BCD words of the form produced

by GET2. to a floating point number. The "E" notation for power of

10 exponentiation is acceptable, so short forms such as 7.Se2 can be

used to indicate 7.5 x 102.

Calling Sequence:

num = iohf.{arg{2))

num will be set equal to the binary floating point values of the BCD

number stored in arg{2) and arg{3).

IOHI. will convert two consecutive BCD words of the form produced

by GET2. into a binary integer. IOHI, will regard both a decimal

point and an "E" as illegal characters and will generate the error

message "ILLEGAL CHARACTER IN NUMBER." The calling sequence is the

same as for IOHF., but num and IOHI. must be of integer mode,

PARENS. will examine two successive computer words containing the

two names of a function and will insert parentheses around the

second so that, when printed, the full name will have the standard

MAP form.

Calling Sequence:

Programs for the Execute Command Appendix IV 99

execute parens.(name)

where name(O) and name(l) contain the function name. Each name

should be right justified with leading blanks, and the array name

should be of integer mode. If the two names consist of a total of

more than 10 characters, no action will be taken.

VERIFY. will examine a string of BCD characters, replace all

parentheses by blanks, and store all groups of non-blank characters

terminated by a blank in separate computer words. Scanning will

terminate whenever a specified number of character groups are found,

an "*" is encountered, or 76 consecutive blanks occur.

As was the case with GET2., each group of characters may not

consist of more than 12 characters and the group will always be

stored in two consecutive computer words and left justified. If a

group consists of 6 or fewer characters, the second of the two words

will contain only blanks.

Calling sequence:

execute verify.(h,arg,k)

The array h should contain the line to be analyzed, and arg will

contain the character groups found in the line, each character group

occupying 2 successive words. Groups are left justified with the

beginning of each character group located in the word of the pair

with the lowest value of the MAD subscript. When VERIFY. is called,

k should be the number of character groups to be located. After the

return from the subroutine, k will be equal to the number of groups

actually found. h, arg, and k must all be of integer mode.

As an example, consider h to have been created by

vector values h=$a(xx) 2.5 3.1415926*$

If VERIFY.were called with k 2 4 arg would then contain:

Word BCD contents

arg (0) a

arg(l) xx

arg(2) 2.5

arg (3)

arg(4) 3.1415

arg (5) 926

The values of k after execution would be 4.

VERIFY. is used as the basis of the system subroutines that

require input from the console. The subroutine is called by GET.and

100 Programs for the Execute Command Appendix IV

GET2. and by all of the subroutines for access to the MAP

procedures,

arguments.

such as BASISl., in order to analyze the input

3. Additional MAP System Subroutines

a. CARGS. will obtain the parameters of a CTSS "resume" command

when called within the program that was "resumed".

must contain 6 or fewer characters.

Calling Sequence:

m = cargs. (arg)

Each parameter

arg will contain the parameters of the most recent "resume" command

in the form previously given for GET. m will be equal to the number

of parameters found, and both m and CARGS. must be of integer mode.

The use of CARGS. is basic to transmitting the information supplied

in the short form of a MAP C0!1".mand to the appropriate program when

the subroutine CHAIN. is used.

b. CHAIN. allows one program to begin execution of a second

program (not a subroutine) , and upon completion of that program, to

restore control to the first program at the point where execution

had been temporarily interrupted.

Calling Sequence:

execute chain.(arq)

where arg is the name of an integer array containing a CTSS

command, generally a "resume", followed by a fence of 7's. For

example, to resume the program "print" in order to print q(x)

between x = 2. and x = 4., arg would be generated with:

vector values arg=$resume print g(x) 2. 4.$.7 .•. ?k

where 7 ••• 7k indicates a fence of 7's, i.e., 777777777777k. The

array created by the vector values statement must be composed of

computer words containing 6 characters, and each parameter must be

right justified in a word. Therefore, arg, would be the array:

Word BCD Contents

arg(O) resume

arg (1) _print

arg(2) __ g

arg(3) x

arg(4) 2. --

Programs for the Execute Command Appendix IV 101

arg(S) 4.

The following discussion of the operation of CHAIN. need not be

completely understood in order to use the subroutine, but it is the

basic mechanism for the operation of the MAP system.

When CHAIN. is called with the preceding arguments, for

example, the subroutine will save the present core image and machine

status in a file of temporary mode with name "CHAIN* SAVED", where *

is the number of core images already saved by previous calls to

CHAIN. The subroutine will then determine, in the case of the

preceding calling sequence, if the file "print saved" exists: if it

does, that program will then be resumed. The system command lists

will be modified so that the most recently saved core image will be

resumed when "print" terminates, i.e. control will return to the

program which called "print". If "print saved" is not available,

the system command lists are modified as in the previous case, and

the following CTSS commands are given automatically:

vload

save

resume

print

print

print

(libe) sub

where "sub" is the MAP System subroutine library. The created saved

file will be available at the ~.AP temporary storage level until a

MAP data restore command is given, or until the program is raised to

the MAP permanent level by the use of the data update command. (The

names of saved programs are not printed by the MAP data handling

requests.)

It should be noted that only the MAP library and the usual CTSS

library are searched as part of the loading procedure. Therefore,

if display routines, AED subroutines, etc., are required, the

program must exist in saved form or must be combined with the

appropriate subroutines before CHAIN. is called. If a called

program is not found in saved form or can not be loaded using the

MAP and CTSS libraries and the user's files, the usual error

comments will be printed by the loader. If an error during

execution of the called program causes an error message to be

printed, followed by a "COM .. MAND PLEASE", all of the saved files

created by CHAIN. will be deleted.

c. FGET. will obtain from a MAP function the values having

subscripts between a given set of inteqers and will load those

values into a specified array.

Calling Sequence:

102 Programs for the Execute Command Appendix IV

execute fget.{arg,f, min, max, del)

arg is the name of an array containing in the first computer word

the first name of the function and in the second computer word the

second name of the function. Both names must be right justified

with leading blanks: f is the array into which the values of the

function will be loaded. The value with subscript min will be

loaded into f{O) and the value with subscript max into f{max-min):

del will be set equal to the DEL of the function. arg, min and max

must be of integer mode.

d. CHECK. This subroutine is useful in programs that request a

range in the independent variable to be used in operating upon a

function. The routine will determine if the range, as given in BCD

form, consists of decimal or integer numbers, and if it is decimal,

will determine whether the limits of the range are compatible with

the DEL of the function. If "limit" is the value of one of the

specified limits, the MAP criterion for compatibility is that the

absolute value of [INTEGER {limit/DEL)*DEL - limit] is less than

.Ol, where INTEGER () indicates the integral part of the quotient.

The routine returns, as binary numbers, the integer subscripts

necessary to specify the desired range of the function.

Calling Sequence:

error=check.(arq,a,del,rmin, rmax)

The arg array should contain the range to be checked in one of two

BCD forms: if a=O it will be assumed that the BCD numbers are in

the form produced by GET. while if atO the form produced by GET2.

will be expected. del, which must be supplied by the calling

program, should be the DEL of the function for which the

being provided: this value will not be used and can be

range

0 if

is

the

range is provided as BCD integers. rmin and rmax are the integer

subscripts generated by the subroutine and specify the range of the

function. error will equal 0 if the routine was successfully

executed: 1 otherwise. CHECK does not determine whether the range

is within the interval for which the function is defined. error,

rmin, rmax, arg, a and CHECK must be of integer mode.

Programs for the Execute Command Appendix IV 103

C. Procedures for Making Private Commands Public MAP Commands

In some cases a procedure written as a private command may be

of sufficient interest to warrant making it a MAP command and

thereby available to all MAP users. To be acceptable as a MAP

command the program must satisfy five conventions:

a. If U does not provide all the necessary information on the

command line, the program must either request the necessary

parameters or assume values (or options), preferably those that

would be used most often. No command can be included in MAP that

fails to operate intelligently if U correctly answers the questions

presented to him, and it should provide reasonable error messages if

he answers the questions incorrectly.

b. All commands must have a short form so that U need not receive

extensive informative print-outs if he wishes to avoid them.

c. All MAP functions must be considered to be of dimension 1000.

d. The program for the command must have the name of the command

(or the first six characters of the name) as its first name. The

second name should be BSS or SAVED, as appropriate. A BSS program

for a command will be loaded in the MAP system by the CHAIN.

subroutine, which uses the system command

vload name (libe) sub

where name is the name of the command and sub is the MAP System

library.

e. The program should be as short as possible. In particular the

author should consider breaking the program into separate parts if

it is necessarily long and "chaining" from one part to the next. u

should be expected to print or plot any numerical results after

completion of the operation.

If a program satisfies all

be of general utility, the

(13-5118, x6919) or R.

of these conventions, and appears to

author should furnish J. Brackett

Kaplow (13-5106, x3322) with the

documentation regarding his command. If the command is considered

to be a suitable addition to the MAP System, it will be added to the

list of commands and will be made available to all users. The

linkable file "MAP NEWS" will contain information about all new

commands as they are added to the system.

CS-TR Scanning Project
Document Control Form

Report# Le :-·-TR-J,.4

Date : IA I I { I ? s

Each of the following should be identified by a checkmark:
Originating Department:

B Artificial lntellegence Laboratory (Al)
"°"Laboratory for Computer Science (LCS)

Document Type:

~.Technical Report (TR) D Technical Memo (TM)

D Other: ---------------
Document Information Number of pages: 110(I 11- i' f'h~~0 J

• Not to include DOD forms, printer intstructions, etc ... original pages only.

Originals are:

D Single-sided or

~ Double-sided

Print type:
D Typewriter D Offset Press D Laser Print

Intended to be printed as :

D Single-sided or

°)&'. Double-sided

~. Ink.Jet Printer D Unknown D Other: ______ _

Check each if included with document:

~ DODFonn

D Spine

D Other:

~ Funding Agent Fonn

D Printers Notes

Page Data:

~CoverPage
D Photo negatives

Photographs/Ton al Material (b'(1'11118 number): ____________ _

Other <"""' dwripliaoolpage number):

Description :

(111- 111

Scanning Agent Signoff:

Date Received: lr.L1_/_I / t5 Date Scanned: _/_1.!1__1 y~ Date Returned: _/_/ _!_!__1 .J.f.

Scanning Agent Signature: ____ ~......._=' '7~1...,14"'"'4i---.i'""o,._1...,. G_~.._...,,=" =---

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstrect and indexing annotation must be entered when the overall report iB classified)

1. ORIGINATING ACTIVITY (Corporate author) 2•. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC 2b. GROUP

3. REPORT TITLE

MAP: A System for On-Line Mathematical Analysis

.. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Description of the Language and User Manual .. AUTHORIS) (Last name, first name, initial)

Kap low, Roy, Stephen L. Strong, and John W. Brackett

6. REPORT DATE 7•. TOTAL NO. OF PAGES l'b. NO.OF REFS

January 1966 104 0
Ba. CONTRACT OR GRANT NO. ... ORIGINATOR'S REPORT NUMBER($)

Office of Naval Research, Nonr-4102(01)
MAC-TR-24 b. PROJECT NO.

Nr-048-189 ob. OTHER RE?ORT NO(S) (Any other numbers that may be
Co assigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentegon

Washington, D. c.
13. ABSTRACT

A system for on-line mathematical analysis, called MAP, has been developed
for use within the M.I.T. Compatible Time Sharing System. Taking advantage of
the varied user-machine interactions which are possible, MAP provides a facility
for handling complex analyses, data input and presentation of results without
requiring any computer programming by the user. This report is a description
of the language and a self-teaching user manual; it does not describe the
techniques used to implement the system.

When given incomplete requests, the system will provide instructions re-
garding the use of its procedures and will ask for all the parameters, values
and option decisions which may be required. If the requests are correct and
sufficiently detailed, the computer will proceed directly to the calculations
and, on command, present the results in graphical or typewritten form. Pro-
visions have also been included to allow the expansion and personalization of
the system in whatever manner is desired by individual users.

14. KEY WORDS

Computer Multiple-access Computers
Graphical Input-Output Numerical Analysis
Man-Machine Interaction On-Line computer systems
Mathematical Analysis Time-sharing

Time-shared computer systems

DD FORM
I JAN e4 1473 (M.l.T.) UNCLASSIFIED

Security Classification

