
ADDENDUM

Development of the analytical model
for time sharing and calculation of
the results reported in Figures 4 and
5 were facilitated by the OPS on-line
computer system. This system is de
scribed in the book On-Line Computation
and Simulation: The OPS-3 System, by
Martin Greenberger, Malcolm M. Jones,
James H. Morris, Jr., and David N. Ness,
MIT Press, 1965.

This empty page was substih1ted for a
blank page in the original document.

MAC-TR-22

Massachusetts Institute of Technology

Project MAC

and the

Sloan School of Management

THE PRIORITY PROBLEM

by

Martin Greenberger

November 1965

Portions of this paper were presented in a talk at the 27th
National Meeting of the Operations Research Society of
America in Boston on May 6, 1965.

This empty page was substih1ted for a
blank page in the original document.

ABSTRACT

Priority decisions arise whenever limited facilities must be apportioned

among competitive demands for service. Broadly viewed, even the familiar

first-come-first-served discipline is a priority rule. It favors the longest

waiting user, and guards against excessive delays. Other priority rules,

such as shortest-job-next, are keyed instead to considerations of operating

efficiency. Urgency of request is still another common consideration. Since

these considerations often conflict, the priority rule serves as mediator.

Use of a common cost measure can help effect this mediation, as results

from recent job-shop simulations illustrate.

A priority operation of contemporary interest is scheduling a time

shared computer among its concurrent users. Service requirements are not

known in advance of execution. To keep response times short for small re

quests, service intervals are partitioned and segments are served separately

in round-robin fashion. A mathematical analysis pinpoints the tradeoff be

tween overhead and discrimination implicit in this procedure, and allows

alternate strategies to be costed. Extensions of the simple round-robin pro

cedure are suggested, the objectives of time sharing are reviewed, and

implications are drawn for the design of future priority and pricing systems.

i

""·· ·S: '#PPI'+.'

ACKNOWLEDGEMENTS

The author's interest in the priority problem was stimulated by a 1960

summer study on problems in Naval Command, Control, and Communications,

and by informal discussions with E. H. Bowman, P. M. Morse, other

colleagues who participated in that study, and J. D. C. Little. Also enjoyable

and helpful were more recent conversations with students and co-workers

at Project MAC including M. M. Jones, N. Patel, M. Rothkopf, A. L. Scherr,

J. H. Saltzer, and M. Wantman.

TABLE OF CONTENTS

Section

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF ILLUSTRATIONS

INTRODUCTION

CONFLICTING OBJECTIVES

COST RA TE CURVES

THE c/t RULE

JOB SHOPS AND DEADLINES

THE COMPUTATION CENTER

TIME SHARING

ROUND-ROBIN SCHEDULING

AN ANALYTICAL MODEL

COSTING THE MODEL

MULTIPLE LEVELS AND VARIABLE QUANTA

CONCLUDING REMARKS

REFERENCES

iii

Page

i

ii

iv

1

2

3

5

8

10

11

13

16

20

24

26

28

LIST OF ILLUSTRATIONS

Figures

1

2

3

4

5

Examples of Cost Curves

Nonlinear Costs

Service Completions Under Three Priority Rules

Cost Performances as a Function of Quantum Size
(N and y parametric)

Cost Performances as a Function of Quantum Size
(N and y fixed)

iv

4

6

14

21

23

INTRODUCTION

Granting preferred treatment is a basic part of man's way of life, demo

cratic principles notwithstanding. Whenever demand temporarily exceeds

supply, or a limited facility must be rationed, or only one of several can be

served at a time, someone accepted means someone else refused or deferred.

Implicitly or explicitly, a question is being posed and resolved. In formal

terms, we refer to the question as a priority problem and its solution as a

priority decision. A strategy or objective plan for routinely making priority

decisions, we call a priority rule.

The priority problem arises in a variety of contexts. In a supermarket,

customers with small orders are ushered to a special check-out counter.

This expedites their service, and has the desirable secondary benefit of re

ducing congestion in the store. Giving priority to small requests is often a

very good idea, but not always easy, as later discussions will illustrate.

Importance or urgency is a second factor entering into priority deci

sions. At an airport with a single runway that is used jointly (but not simul

taneously) by arriving and departing aircraft, a landing plane may be given

precedence qver one waiting to take off, even though the departing plane was

the first to request permission from the tower. This is especially true for

an arriving jet whose tight budget of fuel is close to exhaustion.

A priority rule comes closest to being democratic in the familiar first

come-first-served or first-in first-out dicipline. But even this policy is

preferential, in the sense that it systematically favors the customer who has

been waiting the longest. In doing so, it safeguards against excessive waits

and controls the variance of waiting.

1

CONFLICTING OBJECTIVES

There are at least three different, and usually conflicting objectives

that can influence a priority decision and affect the design of a priority

rule:

1. Reduce average response time and number waiting; thus
increasing throughput or rate of output,

2. Acknowledge customer importance and urgency of request,

3. Serve in fair order and limit length of wait.

For the best average performance, the shortest-service-time-next rule may

be just right. But this rule allows a steady stream of short requests to

delay a long request indefinitely. The mean wait is minimized at the ex

pense of the variance, and the special interests of the long user are sacri

ficed for the general welfare. To accord special interests their due, a

balance must be struck among conflicting objectives. This requires a common

measure of performance that incorporates the interests of the individual.

Any contrived measure is going to be susceptible to challenge, but that is

healthier than grumblings about seeming arbitrariness.

2

COST RATE CURVES

We choose an inverse measure of performance: the cost of delay. De

pending on the context, it may be thought of as a disutility, penalty cost, loss

of goodwill, opportunity cost, postponement of revenue, customer dissatisfac

tion, storage cost, poorness of service. or some equivalent. We first used

the cost measure several years ago during a study of message priority in a

communication system 7 . Each message (or customer) type was considered

to have a separate cost rate curve, as illustrated in Figure 1. These curves

plot rate-of-accrual of cost versus time of waiting. Curve (a) shows the

simplest case of cost accruing at a constant rate, c, throughout the period

that a message is waiting to be transmitted, coded, decoded, or, in general,

served. If the message waits a time w, the total cost added to the books of

the operation is cw. This is the case of linear costs. An order to replace

an aircraft engine for a grounded plane might have such a curve.

Curve (b) depicts a quadratic cost case. The longer a message waits,

the greater its marginal cost. An important command from higher head

quarters might have either this characteristic or the exponential variations

of it portrayed by curves (c) and (d).

Curve (e) illustrates a message whose quick transmission is impor

tant, but whose timeliness decays exponentially. Examples might include

the warning of a missile attack, or, on a different scale, a weather forecast.

Curve (f) is an artist's rendition of what a general cost curve looks

like. Note that in each of these examples the integral of the curve over the

duration of wait equals the total cost attributable to the message.

Assignment of eost rate curves to customers makes the conflicting

objectives commensurable by reducing them to a common measure of sys

tem performance. The importance of a customer is reflected by the height

of his curve. His aversion or intolerance to delay is represented by the

shape of his curve. Minimizing the total cost accrued by all customers be

comes the single system objective.

If all customers have identical cost rate curves, and if this curve is

constant as in the first case of Figure 1, then minimizing cost accrual is

equivalent to minimizing average wait. Thus, in this very simplest case,

introduction of the cost measure does not complicate the traditional analysis.

We shall see, however, that the complexity of the analysis rises sharply

with even small complications to the cost measure.

3

THE cit RULE

The next simplest case is that of constant cost-rate curves, where the

constants are different for different customers. In a classical single-server

situation, this leads to what has been called the cµ or cit rule. That is, if ci

is the cost rate of the ith unit waiting for service, and ti is its expected service

time (µi = llti is its service rate), then the unit with highest qlti should be

served next. When all ci are equal, servicing in ascending order of ti is

optimal and the cit rule reduces to the rule of shortest-service-time-next.

References on the cit rule are available in many places 1•4•12 .

Note that the dimensions of cit are costl(time2). Thus, the c/t of a

unit is an acceleration that indicates how quickly the cost accrual velocity

could be reduced by serving that unit next. Past history is not relevant to

the priority decision in the linear case; nor is there interaction among units.

Unfortunately, these simplifications do not apply to the general nonlinear

case.

To examine the nonlinear case in a simple situation, suppose that at

time t0 a choice must be made between two units waiting for service. The

first unit has a service requirement of t 1 and the second unit of t 2 . Assume

that during the interval (t0, t0+t 1 +t2) both of these units are served and no

other units arrive.

The cost rate curves of the two units are given in Figure 2. If the

first unit receives priority, the cost accumulated during the interval is

+

whereas, if the second unit receives priority, it is

+

(1)

(2)

The first unit should be given priority if and only if expression (2) is greater

than or equal to expression (1). That is,

(3)

If we let c 1 be the average value of c 1 (t) during a period of duration t 2 begin

ning at t 0+t
1
, and 1:!'2 be the average value of c 2(t) during a period of duratio11

5

~ t2 >I
I I-< t I ~
I I I
I I I

I I I
I I
I
I

to+t I

!Ao---t1 ~1

~~~~-t2----~ 

Figure 2. Nonlinear Costs 

6 





JOB SHOPS AND DEADLINES 

The priority problem is found in too many places for us to make an 

exhaustive list. All of us face priority problems every day of our iives, no 

matter what our occupation. We shall focus on two areas where the priority 

problem assumes central importance: job shops and computers. 

Work on job-shop priorities has been going on for a number of years 

and several good surveys exists. Carroll, for example, gives a comprehen

sive overview of the field and presents some interesting new results that 

illustrate the value of costing1. 

In a job shop, jobs are typically promised by a certain date called the 

due date or deadline. Each job consists of a number of tasks to be per

formed on different machines. Call this number N. Since a job must be 

served N separate times, it is subject to N successive priority decisions: 

when it has N tasks left to accomplish, when it has N-1 tasks left, and so on, 

until it has only one task left. 

Suppose that a pair of tasks from two different jobs are competing for 

service at a machine. The first task requires less machine time than the 

second, but the second job is in greater danger of missing its deadline. 

Which job should be given priority? 

Giving priority to the first job contributes to the objectives of high 

throughput and low average wait, but may cause a default on the second job's 

deadline. Giving priority to the second job has the opposite effect. This is 

the classical trade-off. Carroll's results indicate that cost curves can help 

in striking a balance. 

Carroll postulates a cost rate equal to the probability of a job's being 

late. In his model, this is the rate of change of the job's expected amount 

of lateness. The rate applies to the task of the job that is currently awaiting 

service. It increases monotonically toward a value of one, as the deadline of 

the job is approached, then remains at one from the deadline until the last 

task of the job has been completed. 

The conceptual model is straightforward, but the probability of being 

late is difficult to estimate accurately. Even if precise machine times for 

all tasks are known with certainty, waits between task initiations can only be 

approximated. The approximations should be based on current loads and re

vised as loads shift. Moreover, estimated probability of being late for a job 

should depend on the number of its remaining tasks, as well as on the 

approximated distribution of wait for each of these tasks. 

8 



Carroll sets aside such refinements for later study, and chooses a 

simple expedient. He estimates the sum of expected waits over the remain

ing tasks, and uses this estimate to postulate a threshold time beyond which 

he assumes the probability of being late rises linearly from zero to one at 

the deadline. With this probability as c, he invokes the c/t rule at each de

cision point. Theoretically, c should not vary, but in Carroll's model it is 

changing all the time. The end result of this compounding of assumption upon 

simplification upon approximation is a rule that produces consistently fewer 

late jobs in simulations than any previously simulated rule. 

The implications of this work extend beyond the scheduling of job 

shops. As one example, there is a decided trend today toward greater com

plexity in the organization of computer systems. It is a safe guess that 

future computer systems will consist of many processors, many separate 

memory modules, many input-output terminals and data coordinators, with 

flexible interconnections, simultaneous users, and concurrent operation. 

Lessons learned from the study of job shops will carry over to questions of 

scheduling space, time,, and program access in these computer systems of 

the future. 

9 



THE COMPUTATION CENTER 

The computer field is beginning to show greater interest in the priority 

problem as machine structures grow more complex. but some concern with 

the problem has existed in the field from the very start. Historically. as 

soon as a computation center had two users, it also had priority decisions to 

make. Most open-sho.p centers provided an informal solution: sign-up 

sheets. First on the sheet was first on the machine, or at least had first 

choice. 

Other centers used more elaborate procedures. The IBM 701 Scien

tific Computing Service in New York City. circa 1954, had a dispatcher who 

sat on a glass-enclosed balcony overlooking the 701 computer. One or more 

eager customers sat alongside her, ready to pounce whenever their prede

cessor on the machine signalled completion (or frustration) and punched out 

on the IBM time clock at the console. The dispatcher made certain that the 

queue on the balcony was never empty by phoning users in their offices and 

alerting them well ahead of time. A carefully-designed priority formula 

allowed certain customers, like Los Alamos, to gain access to the computer 

on very short notice. 

Even this did not prevent momentous inefficiency and idle time. As 

computers became more advanced and more expensive, inefficiency had to 

be wrung out of the operation. The larger computation centers became 

closed-shop, and jobs were batched serially on tape before run time to pro

vide fast transition between successive executions. 

At heavily-loaded centers, such as the M.I. T. Computation Center in 

1958, turnaround times soared to several days, and sometimes to a week or 

more. despite batching and the use of professional operators: Priority rules 

gave some relief to special users. Urgent needs. such as the Sputnik orbital 

calculations (which provided settings for camera and telescope stations 

around the world) were given preemptive rights. Other business ceased 

when a satellite was launched. In normal periods, short jobs were awarded 

express service at prescribed times of day. and very long jobs were defer

red to night•time shifts. 

10 



TIME SHARING 

Expediting service for the short user just whetted the appetite for 

more frequent access. Freeing a modest-sized program of errors by means 

of the customary iteration of running, modifying, running, and modifying, 

could require weeks or months in a batch-processed operation, as compared 

to an afternoon or evening spent at a computer (such as M.I.T.'s TX-0 or 

TX-2) which the programmer had to himself for a while. A private com

puter not only saved the user time, it also allowed him to interact with his 

program, view preliminary results, and alter experimental strategy on

line10. 

The recent development of time-sharing gives the impression and 

advantages of a private computer to simultaneous users at remote consoles 

of a large computer3•5•8 . This development is a concession to the user and 

recognizes his point of view. Overall system objectives suffer initially, but 

equipment being built with new system concepts will restore and ultimately 

improve past levels of operating performance. 

If we view the purpose of time sharing as the creation of a privileged 

class of user for whom the computer is continually accessible and immedi

ately responsive, then, in the spirit of traditional express service, we are 

led naturally to establish the short request as the privileged user. It is im

possible, by definition, to serve a long request instantly. Moreover, to the 

extent that the computer does give precedence to long requests, its respon

siveness to short requests is degraded and the purpose of time sharing is 

undermined. 

Thus, we tend to favor the class of requests for whom we can offer 

fast service. This produces an unusual situation. User and system objec

tives are of a single mind in that both direct us to favor the short request, 

assuming that we can identify it ahead of time. Unfortunately, we generally 

cannot. It is only after execution that we really know which was the short 

request and which was the long request. 

The typical time sharer sits at his console for an hour or more issu

ing requests, being served, making inquiries, and receiving replies. We do 

not want to ask him before each interaction how much time he expects to 

take for two reasons. First, we could not place much faith in his response, 

because the mind consciously or subconsciously tends to underestimate re

quirements. Second, time sharing is at its best when the computer and its 

characteristics are inconspicuous. The user should not have to be aware of 

his consumption of computer time for each step he takes. 

11 



Can the computer anticipate time requirements without being told? 

Yes, to some extent; especially when a request is a standard command or 

program which the computer knows by name. A scheduling based on such 

information would be context-sensitive, to borrow a term. M.I.T.'s time

sharing supervisor infers the size of a program from its name, but does not 

make inferences about its expected time of execution 13. For the following 

mathematical discussion, we shall adopt this conservative position of assum

ing no prior knowledge of request time. 

12 



ROUND- ROBIN SCHEDULING 

Discriminating against long requests, when we are able to identify 

which ones are long, prevents them from delaying short requests. When we 

cannot identify them, we hedge. We serve a request for some fixed amount 

of time, called a quantum. If that is not sufficient, we suspend its service, 

place the balance of the request at the end of the queue, and go on to the next 

request. If the quantum is sufficient, we give the unit only enough time to 

complete its service. This types of a priority rule has been called round

robin schedulinglO. 

Under round-robin scheduling, the longer request is split or partitioned 

during execution, and its segments served at separate times. In general, 

there are two instances when it may pay to partition jobs in a service opera

tion: when there is more than one server, and when there is uncertainty in 

service times 12 . Only the second case applies here, since we shall be as sum -

ing a single processor, but both cases are relevant to future time-sharing 

systems with multiple processors. 

To illustrate how partitioning can be helpful under conditions of E_!!

certainty, suppose that half of all requests are for 1 second of computer 

time, and the other half for 10 seconds. The computer does not know which 

is the 10-second request before execution, but by partitioning with a quantum 

of 1 second it acquires this information at a charge of 1 second, plus an 

additional overhead charge of V occasioned by suspension of service on the 

incomplete request. Thus a 1-second request arriving for service immedi

ately after a 10-second request is detained by its predecessor l+V seconds 

rather than 10 seconds. The l+V charge is like a cost of information, al

though its 1-second component does substract from the 10-second request. 

Partitioning contributes to the system objective of lower average wait, as 

well as to the user objective of better response time for the short request, 

giving a double advantage in this example. 

Now we consider an example where partitioning does not even offer a 

single advantage. Suppose that all requests are known in advance to be for 

10 seconds of computing time. Round-robin scheduling with a quantum of 1 

second is then absurd. It introduces unnecessary delays without providing 

any new information. Round-robin scheduling with a quantum of 10 seconds 

(or greater) makes better sense, but is nothing more than a first-come

first-served rule. 

These observations lead us to the first of a few informal points that 

will be made without proof or detailed discussion. 

13 



Point 1 The benefits of round-robin scheduling (RRS) relative 
to first-come-first-served (FCFS) increase with the 
uncertainty of request sizes. The variance of the dis
tribution of request sizes may be taken as a measure 
of this uncertainty. 

In general, we consider both request size and the user's think time at 

his remote console as random variables. The think time is defined to be the 

interval between completion of a user's request and initiation or arrival at 

the processor of his next request. The time-shared operation is character

ized by periods during which one request is in service and others may be in 

queue, called busy periods, and periods during which no request is either in 

service or in queue, called idle periods. Idle periods may be utilized by the 

processor to nibble at deferred work stored in reserve. 

We now consider another situation. Suppose that an idle period has 

just been terminated by the arrival, in quick succession, of four requests 

for service. The first request is for four quanta of time, the second for two 

quanta, the third for three quanta, and the fourth for one quantum. If the re

quests were served in their entirety in strict first-come-first-served order, 

,, the service intervals and service completions would be as in Figure 3a. The 

scales shown are in quantum units, and overhead is assumed to be negligible. 

If it were possible to serve the shortest job next, the service completions 

would be, instead, as in Figure 3b, whereas under round-robin scheduling, 

they would be as in Figure 3c. 

unit served 2 2 3 3 3 4 

time 0 2 3 4 5 6 7 8 9 10 

a. First-Come-First Served 

unit served 4 2 2 3 3 3 

time 0 2 3 4 5 6 7 8 9 10 

b. Shortest-Job-Next 

unit served 2 3 4 2 3 3 

time 0 2 3 4 5 6 7 8 9 10 

c. Round-Robin-Scheduling 

Figure 3. Service Completions Under Three Priority Rules 

14 



Notice the differences. The total time spent in waiting and service under 

the first-comc:-first-served rule is 

W FCFS = 4 + 6 + 9 + 10 = 29, 

and the shortest request is completed at the end of quantum 10. Under the 

shortest-job-next rule 

WSJN = 1 + 3 + 6 + 10 = 20, 

and the shortest request is completed at the end of quantum 1. Under round

robin scheduling 

WRR = WFCFS = 29, 

and the shortest request is completed at the end of quantum 4. Observe that 

the RR and FCFS rules have identical schedules of service completions. The 

identity is coincidental, although it suggests two general points, namely: 

Point 2 When the sizes of service requests are exponentially 
distributed, spacings between service completions in 
the busy period under round-robin scheduling are also 
exponentially distributed with the same mean. The 
service completions under RRS may be thought of as 
reordered FCFS service completions, with completions 
of the shorter requests moving forward and those of 
the longer requests moving backward. Average through
put is unchanged if overhead is ignored. 

Point 3 When the sizes of service requests are exponentially 
distributed, the balances of these requests in excess 
of the quantum size are also exponentially distributed 
with the same mean. The same is true of the balances, 
and so on. The segments of partitioned requests from 
an exponential distribution all share a common trun
cated exponential distribution, regardless of their posi
tions in the partitioning. 

15 



AN ANALYTICAL MODEL 

Points 2 and 3 provide the theoretical groundwork for an analytical 

model of round-robin scheduling. Let there be N consoles connected to a 

single time shared processor. Requests for service are assumed indistin

guishable between consoles and exponentially distributed with mean 1/o 

and density function 

f(R) ::: ae -aR R ~ 0 

The scheduler employs a quantum of size Q which, by Point 2, implies a 

cumulative distribution of segment sizes equal to 

F(S) ::: 1-e-oS 

1 

Q>S>o 

S>Q 

(9) 

(10) 

Requests for service are assumed to arrive at the processor from thinking 

consoles randomly, at a rate a. per console. Thus, if J is the number of con

soles waiting for service at some arbitrary time t, (N - J)a. is the arrival 

rate of requests at t. Thinking times are assumed indistinguishable between 

consoles and exponentially distributed with mean 1/a and density function 

f( T) ::: a.e -a.T T~O ( 11) 

The assumption of exponentially-distributed think and request times holds up 

well in a time-sharing operation where there is wide diversity of users, as 

there is at M.I. T. 

The formulation permits us to employ the queuing model for machine 

servicing (or interference) which was developed in 1933 and has had consid

erable practical application since then4,6. We draw an analogy between 

time-sharing and machine servicing by viewing consoles in the role of 

machines, and the computer processor in the role of a repairman who serv

ices the machines. A console thinking is like a machine working, and a con

sole waiting is like an idle machine in need of repairs. The machine-servic

ing model extends easily to the case of several repairmen, and is therefore 

applicable to a time-sharing system of multiple processors. This extension 

would be useful for further development of the present work, and is employed 

in the doctoral dissertation by Scherr14. 

An equivalent .. but more subtle analogy exists between time-sharing 

and calls coming into a telephone exchange containing N trunk lines and no 

facility for holding. The arrival and server processes are interchanged in 

this analogy. Waiting consoles become open trunk lines; thinking consoles 

become busy trunk lines; the arrival of a request for computer time becomes 

16 



termination of a telephone call; and completion of a computer request be

comes arrival of a telephone call when one or more lines are open. Calls 

that arrive when all lines are busy do not enter the exchange, and are lost. 

This model has been widely applied in the communications field and produces 

the well-known loss formula attributed to Erlang. The finiteness of trunk 

lines, like the finiteness of machines in machine servicing and the finiteness 

of consoles in time- sharing, is a distinguishing characteristic of the model. 

To apply the machine-servicing model to round-robin scheduling of a 

time-shared computer, we must incorporate partitioning of service requests 

and introduce overhead. Partitioning is represented by f(S), the density 

function of segment sizes, whose first two moments are 

Sl=~(l-e-oQ) 

S = ~ (S - Qe -oQ) 
2 0 1 

( 12) 

( 13) 

Overhead is accounted for by adding the constant V to s1, and (2S 1 V + v2> to 

s2 . We may think of Vas an average time required to bring a program into 

and out of primary storage. The effect of Vis to lengthen request sizes and 

degrade the rate of processing. The smaller that quantum size Q is for a 

given R, or the larger that request size R is for a given Q. the greater num

ber of segments into which R is partitioned and the more R is prolonged by 

overhead. The mean of f(R'). the distribution of prolonged request sizes, is 

given by 

1/cr' = 1/cr+ V/(1-e-oQ) (14) 

In practice, f(R) is only approximately exponential, and extending the 

exponential assumption to include f(R') may not weaken the approximation 

significantly. We take this liberty, even though there do exist non-exponen

tial formulations for the machine-servicing problem 15 . Using o' in the 

simple exponential formulation, and letting PJ be the steady-state proba

bility that J of the N consoles are waiting, we get 

= ( (a'/a.)N-J)..:. ( ¥ (a'/a)N-1) _ 
p J (N-J) ! . I=O (N-1) ! J-O, l, .. .,N (15) 

PJ is a truncated Poisson probability. J=O produces Erlang's loss formula. 

When a request arrives at the processor from a console that has just 

passed from thinking to waiting, an interval may elapse before its first seg

ment begins receiving service. Call the expected value of this interval, Y 1• 

its first cycle time. In the same manner, let Yi be the expected value of the 

interval from the time its (i-1) segment is completed until the time its i 

17 



segment is initiated, for i::?: 2. Notice that the same ¥i is common to all re

quests containing i or more segments. 

To obtain an expression for Yi, we modify the reasoning of Cobham2 

to take account of partitioning and the state-dependent arrival rate. The 

probability that there are J consoles waiting (and in service) immediately 

prior to an arrival is 

J=O, 1, •.. ,N-1 (16) 

This is also the probability that there are J+l consoles waiting, given that 

the system is busy, which implies that the expected number of consoles wait

ing, immediately prior to an arrival, and the expected number of consoles 

in line (exclusive of the possible one in service) when the system is busy, 

are equal to each other and to 

~ = N/(1-P0) - o'/a. - 1 

The expected number of consoles in line (exclusive of the possible one in 

service) immediately prior to an arrival is 

1-P -P 
L _ L 0 1 

1 - B - 1-P 
0 

(17) 

(18) 

The expected time to completion of the possible segment in service, given an 

arrival, is 

- ( S2+2Sl v+v
2 

) ( 1-Po-P 1) 
Yo - 2(Sl+V) x 1-Po (19) 

An expression for Y 
1 

is 

yl = Yo+ Ll (Sl+V) (20) 

which is the expected time to finish the segment in service, plus the expected 

time to serve the segments in line ahead of the new arrival. 

Let us tag the new arrival and follow its progress through the system. 

After its first segment has completed service, assuming there is a positive 

balance remaining, the balance returns to the end of the line. Call the ex

pected number of segments ahead of the tagged balance, including the one 

that is entering service, L 2. Here, L 2 is the sum of the expected numb~r of 

the L 1 requests which were not completed during the first cycle, plus the 

expected number of new arrivals during the first cycle while the tagged unit 

was in service. 

Thus, 

(21) 

18 

--- ----------------------------,-



where a. 1 is the average arrival rate from the beginning of the first cycle 

through the beginning of the second cycle. The actual arrival rate depends on 

the number of consoles thinking, and hence changes with each new arrival and 

each service completion. We estimate its mean by averaging its value at the 

beginning of cycle 1 with its value at the beginning of cycle 2. For simplicity, 

we ignore the possible unit initially in service. 

Ll+L2 
a.

1 
= a.(N-1-

2 
) (22) 

Solving equations (21) and (22) for L 2(and Y2), and replacing the subscript 2 

by i, gives 

(23) 

i = 2,3, ... (24) 

For a still simpler approximation to Yi, we can assume that all cycles 

after the first have the same average length, and set this length equal to 

(25) 

The approximations (24) and (25) for Yi were both used to cost round-robin 

strategies with parameter values from the M.I. T. operation, and yielded costs 

within zero to five percent of each other. The approximations compare well 

with results from simulations and statistics from actual running experience. 

19 



COSTING THE MODEL 

Analytical studies of time sharing have tended to conclude with de -

rivations of operating efficiency, average number waiting, and average 

delay9• ll, 14 . This leaves the matter of optimum quantum size still ambigu

ous. We shall approach the problem directly by applying the earlier discus

sion of cost curves to the model just proposed. 

We postulate that a request of size R waiting a time W adds CR W to 

the cost accumulated by the operation. The cost rate CR is chosen to be 

constant with respect to W, corresponding to the linear case depicted by 

Figure la. This choice permits us to use the preceding expected value 

arguments. 

To express preference for short requests, we let CR be a monotonically 

non-increasing function of R. If a request of size R contains k segments for 

a given Q, then its expected wait, exclusive of its own service, but including 

its overhead, is 

k 
W = I: Y. +kV 

k i= 1 1 
(26) 

A measure of total cost is therefore 

C = ~ [.~ Yi+ kV] { kQ CR f(R)dR 
k= 1 i= 1 J(k- l)Q 

(27) 

In particular, if 

C =(o+y)e-yR 
R o (28) 

and we use approximation (25) for Yi (i :2: 2), then 

C = y 1 + ( ~~~~~~:) + ( 1-e -{!+y)Q) (29) 

The exponential cost function (28) has the effect of steepening the pitch of 

f(R') while maintaining its exponential form. It is as though we pretend that 

small requests are more numerous than they really are, then use average 

wait to measure the performance of the operation. 

Expression (29) has been used to compare the cost implications of 

different choices of Q. Notice that an infinite quantum, corresponding to a 

FCFS discipline, produces C=Y 1+v, independent of y. In the calculation of C 

as a function of Q, values for a. and o observed by Scherr14 were combined 

with a range of values for N, V, and y. The results are shown as log-log 

plots in Figure 4. 

20 



t.:I 
...... 

c 
40 

20 

10 

.4 

.2 

v = . I 
y =.Iv 

.2 .4 2 

a = .0284 
o--·:f ht364 

N = 50 

4 Q .2 
seconds 

y=.lv v =. 2 

N =50 

.4 2 4 Q 

Figure 4. Cost Performances as a Function of Quantum Size; (N and y parametric) 

·11' 

;; 
31 ., 

;• 

,l ,· 
1 

·j~ 
''l· 

.:·;; 

,~l~ 

.'~t 
•'.':' 

·) 

:. ~· 

·-~ ~ 
')'' 

;,\ 

' . ). 

·--~ 
·~· 
., 

:A 
·_,_'-· 



The larger y, the more we are advised to favor short requests and the 

smaller is the optimal quantum. The steepness of the curves in Figure 4 to 

the left of their minima is due to V, and declines as V approaches zero. This 

is shown better by the semi-log plot in Figure 5 for y=a and N=30. The 

relative flatness of the curves to the right of their minima suggests that it is 

better to be high in the selection of Q. rather than low, except when V is 

negligible. 

As V increases, the maximum cost saving possible from partitioning 

diminishes, and the optimal quantum grows in size. This is hardly surpris

ing, since overhead is pure cost to the operation. In the absence of overhead 

(V=O), partitioning is able to favor the short requests without degrading 

average service. In fact, when V=O, the cost can be reduced by as much as 

I -1 1 - C(Q=O) C(Q=oo) = 1 - (l+cr /y) (30) 

a cost saving of 50 percent for 'Y=cr, up to a theoretical limit of 100 percent 

as y goes to infinity. When V > 0, however, even though partitioning still 

benefits some requests, average service must suffer; the smaller Q. the more 

it suffers. 

The requests that benefit are those whose expected wait is smaller 

than the average FCFS system wait. That is, those requests for which Wk 

from equation (26) is less than 

WFCFS = Lp,/cr' (31) 

where Ls is given by equation (17). with Q=oo and a'=(l/a+V)- 1. Equation (31), 

with cr' calculated from equation (14), can be used to infer the average RRS 

system wait for finite Q. This wait increases monotonically with decreasing 

Qwhen V> 0. 

22 



c 

6 

.2 .4 .6 

a = .0284 
u = 
y = 
N --

1.1364 
u 

30 

2 4 6 
seconds 

Figure 5. Cost Performances as a Function 

of Quantum Size; (N and y fixed) 

23 

Q 



MULTIPLE LEVELS AND VARIABLE QUANTA 

Round-robin scheduling, as we have been discussing it, is a little like 

traffic flow on a single-lane highway. A faster car must wait until it is safe 

to pull out and pass a slower car. Throughout the duration of its travel, a 

slower car delays all of the faster cars that come upon it. 

This is in contrast to a multiple-lane highway where the slower cars 

can stay to the right, out of the way of the speedier ones. The multiple-lane 

highway has a counterpart in round-robin scheduling. It is a scheduler 

with more than one level of priority. The multi-level type of scheduler was 

proposed by Corbato3 in one of the first papers on time-sharing. 

With a multi-level scheduler, if a request is not completed within its 

quantum, its balance falls to the next priority level and is not served until 

everything ahead of it has been served, including new arrivals at the higher 

levels. A request arriving at a higher level (than the one occupied by the 

request in service) may preempt this request immediately, or at the end of 

some prescribed time, such as the quantum of the higher level. Each level 

may have a different quantum associated with it. To reduce overhead, 

Corbat6 suggested quantum sizes increasing exponentially for each lower 

level of priority. He also recommended discriminating against a new 

arrival whose program size was large, since larger programs have greater 

overhead requirements than smaller programs. Small programs may be 

entered at the highest priority level, medium-sized programs at the next 

higher level, and so on. 

Going to multiple levels of priority, and then to different quanta for 

each level, presents two additional degrees of freedom to the scheduling 

problem. A third element of flexibility is obtained by allowing the size of 

quanta to vary with the state of the system. Thus, when there are relatively 

few consoles waiting, we might lengthen the quantum in order to reduce 

overhead and response time for the request in service. The request at the 

end of the line is still served without undue wait. 

Conversely, if the system is heavily congested, we might wish to 

shorten the quantum to allow for the possibility that some of the later re

quests are small ones. This maneuver does preserve reasonable response 

times for a priveleged few, but has the unfortunate effect of further degrad

ing the processor just when its speed is needed most. 

A quantum that is state-dependent is familiar to those of us who think 

of our work schedules as round-robin in spirit. We spend as much time as 

we can on the task of greatest immediate importance, finishing it if possible 

24 



without getting too far behind in other responsibilities that accumulate. We 

make our priority decisions heuristically. and adapt to changing work loads. 

This flexibility can be imitated by a computer. The decision procedure of 

the computer need not be rigid, although rigid procedures do have certain 

advantages. They tend to make analysis simpler, and are generally more 

economical in computational requirements. Excessive flexibility can cost 

more than it saves. 

25 



CONCLUDING REMARKS 

It is time to look back over the road we traveled and raise certain 

questions that have been put aside. We began by introducing a general method 

of costing a service operation, and sketched its application to the priority 

scheduling of a job shop. Then we discussed the simple round-robin schedul

ing of a time-shared computer system, and used expected-value arguments 

and linear costing to measure its performance as a function of quantum size. 

Now we have just mentioned possible extensions to the simple round-robin 

procedure. Our main energy has been devoted to finding better ways of 

favoring the short request. 

As the lot of the short request improves, that of the longer request 

must worsen, assuming that average performance gets no better. Does 

linear costing give adequate attention to the growing wait suffered by the 

longer request? No, if we believe that the second minute of waiting is worse 

than the first. To take account of such nonlinearities, we must do nonlinear 

costing, using curves like (f) of Figure 1. 

Nonlinear costing cannot be accomplished analytically with expected

value arguments,, but it is easily applied to the results of a simulation or to 

actual operating statistics. Each wait is costed as it is recorded, by means 

of an appropriate cost curve. Choice of a cost curve may have to be some

what arbitrary, but it can also be reasonable. This is illustrated by our 

selection in the expected-value analysis of a constant cost rate whose loga

rithm was negatively proportional to size of request. 

One approach to nonlinear costing is to postulate for each request a 

desirable response time or deadline as in the job shop. This leads to cost 

curves that are step functions. Deadlines are assigned on the basis of 

name of command, importance of problem, nature of use, or some combina

tion of such factors. Priorities may then be awarded by a c/t rule, where c 

reflects the probability that a request will miss its deadline, and t is an 

estimate of the expected time to complete the request. Round-robin schedul

ing provides a hedge on this estimate. Quantum sizes can vary with the 

number of users waiting and the imminence of a deadline. 

Is shortness of request really a valid criterion for awarding priority? 

The answer is yes, if we believe that the main purpose of time sharing is to 

create quick access and brief response times for small users; no, if we pre

fer to believe that responsiveness should be tailored to individual need. Who 

should get better service: the highly interactive researcher who is amplify

ing his creative powers by requesting lengthy statistical regressions and 

26 



complex data transformations in rapid succession as though they were simple 

additions; or the casual user who requests minor editoral changes in his pro

gram once every fifteen minutes or so? And what of the user who is doing a 

little of both? 

These are difficult questions. There are at least three ways to answer: 

1. We can shrug our shoulders at the multiplicity of different possi
bilities, and continue to operate in the manner assumed by the 
previous analysis, hoping that the strategy of favoring the short re
quest is best on the average. 

2. We can try to discriminate between more and less interactive users 
by shifting our attention from request sizes to think times, conjec
turing that the length of time a user pauses (or works) between 
successive requests indicates the quality of service he requires to 
keep him creative. 

3. We can accede to the special needs of highly interactive users with 
long requests, but insist that they identify themselves by making 
known their willingness to pay a premium price per unit of compu
tation. 

A pricing system can be based either on real money or budgeted com -

puter allotments in dollar units. If the user is able to change his bid on-line, 

and if the computer favors the highest bidder, then time-sharing assumes the 

appearance of a one-sided auction market. As in the two-sided stock ex

change, the buyer submits either a limit bid for service at a particular price, 

or a market bid for service at the current price. Like a specialist on the 

floor of the exchange, the computer can keep the price stable by taking a 

position; namely, working on its reserve of deferred jobs whenever the price 

threatens to fall too low or move too abruptly. 

If requests are still partitioned under a pricing system, the price paid 

can influence both a user's quantum and his priority level. Priorities and 

prices are related concepts. They each serve to allocate limited resources. 

A pricing-priority system makes the relationship explicit. In the process, it 

permits the user to be party to the priority decision. 

27 



REFERENCES 

1. Carroll, D. C., Heuristic Ser,uencing of Sin~le and Multiple Component 
Jobs, Unpublished Doctoral issertation, Afred P. Sloan School of 
Management, M.I. T., June; 1965 

2. Cobham, A., "Priority Assignment in Waiting Line Problems, 11 Opera
tions Research, Vol. 2, 1954 

3. Corbat6, F. J ., et. al., 11 An Experimental Time-Sharing System, 11 

Proceedings of the SJCC, 1962 

4. Cox, D. R., and Smith, W. L., Queues, Methuen and Wiley, 1961, pp. 
76-109 

5. Fano, R. M., "The MAC System: A Progress Report," IEEE Spectrum, 
January 1965 

6. lications, 

7. Greenberger, M., "A Mathematical Study of Priority Assignment" (un
classified), Re ort of OEG Panel on Problems in Naval Command, 
Control, and Communications classified , fice of Chief of Naval 
Operations, Department of the Navy, 1960 

8. Greenberger, M., "The Two Sides of Time Sharing, 11 Datamation, 
November 1965 

9. Krishnamoorthi, B., and Wood, R. C., Time-Shared Computer Opera
tions w.ith Both Interarrival and Service Times Ex onential, System 

evelopment orporation, - 848 00 ctober 1 64 

10. McCarthy, J ., "Time-Sharing Computer Systems, 11 Computers and the 
World of the Future (M. Greenberger, Ed.), M.I.T. Press, 1964 

11. Patel, N., A Mathematical Analysis of Computer Time-Sharing Sys
tems, Master1s Thesis, Alfred P. Sloan School of Management, M.I.T., 
June 1964 

12. Rothkopff M., "Scheduling Independent Tasks on One or More Pro
cessors, ' Interim Technical Report No. 2, Operations Research Center, 
M.I.T., January 1964 

13. Saltzer, J. H., CTSS Technical Notes, Project MAC-TR-16, M.I. T. 

14. 

15. Takacs, L., Introduction to the Theory of Queues, Oxford, 1962, Chapters 
4 and 5 

28 



CS-TR Scanning Project 
Document Control Form 

Report # Le. s-T R - J. .2... 

Date : )l.. / ll I <{.)"' 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory {Al) 
fll Laboratory for Computer Science (LCS) 

Document Type: 

)i, Technical Report (TR) D Technical Memo (TM) 

D Other: 
~----------

Document Information Number of pages:](, (~J -itn~<"IJ 
- Not to include DOD forms, printer lntstructions, etc ... original pages only. 

Originals are: Intended to be printed as : 

D Single-sided or D Single-sided or 

~ Double-sided ~ Double-sided 

Print type: 
D Typewriter D Offset Press D Laser Print 

~ InkJet Printer D Unknown D Other:.~-------
Check each if included with document: 

')( DODFonn 

D Spine 

D Other: 

~ Funding Agent Fonn 

D Printers Notes 

------------
Page Data: 

0( Cover Page 

D Photo negatives 

PhotographsfTonal Material {byJlllll8 nutrlber): ________ _ 

Other tnai. c1aeiiptia111J111119 numbell: 
Description : Page Number: 

-X:rnP-c;i.$' MP.~! ( (-36 )lA.N:i\> 1
.<o f'ioD~N.l)\,lJJ\)·'L~Nk,Ti"T~1 ~{JD 

(}L6tvk (f'~c;;r.SJ j u.i.A.t Ack.J -, fr - j VJ/ -J..<g 

Scanning Agent Signoff: 

Date Received: /J./_.!J_/ ~S Date Scanned: _/_/_J:!/ '1~ Date Returned: _/_I }_J_1 ~ ~ 

Scanning Agent Signature: __ ~--~-__.__W_-_c; __ ,,.._i_-__ 
Rev 111114 DSILCS Dacument Conllol Fann cstrlann.vsd 



..... 

UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DAT A - R&D 
(Security cl•••llication of ritJe, body ot abatract and indexing .,.,notation muat be entered when the overall report is classified) 

I, ORIGINATING ACTIVITY (Corporate author) 2•. REPORT SECURITY CLASSIFICATION 

Massachusetts Institute of Technology UNCLASSIFIED 

Project MAC 2b. GROUP 

3. REPORT TITLE 

The Priority Problem 

4. DESCRIPTIVE NOTES (Type of report and Jnclua,ve d•tes) 

Technical description of computer scheduling .. AUTHORlSJ (L••t name, llr•t name, initial) 

Greenberger, Martin 

.. REPORT DATE 7e . TOTAL NO. OF PAGES rb. NO. ~~REFS 
November 1965 34 

a.. CONTRACT OR GRANT NO. . .. ORIGINATOR'S REPORT NUM8ER(S) 

Office of Naval Research, Nonr-4102(01) MAC-TR-22 b. PROJECT NO. 

Nr-048-189 Ob. OTHER REPO~T NOISJ (Any other numbers that may be 
c. aaaJ,ned this report) 

d. 

10. AVAILA81 LITY/ LIMITATION NOTICES 

Qualified requesters may obtain copies of this report from DDC. 

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

Advanced Research Projects Agency 
None 3D-200 Pentagon 

Washington, D.c. 20301 
13. ABSTRACT 

Priority decisions arise whenever limited facilities must be a pp or-
tioned among compe~itive demands for service. A priority operation of 
contemporary interest is scheduling a time-shared computer among its 
concurrent users. Service requirements are not known in advance of 
execution. To keep response times short for small requests, service 
intervals are partitioned and segments are served separately in round-
robin fashion. A mathematical analysis pinpoints the tradeof f between 
overhead and discrimination, implicit in this procedure, and allows 
alternate strategies to be costed. Extensions of the simple round-robin 
procedure are suggested, the objectives of time sharing are reviewed, 
and implications are drawn for the design of future priority and pricing 
systems. 

14. KEY WORDS 

Computer On-line computer systems Time-sharing 
Machine-aided cognition Real-time computer systems Time-shared computer systems 
Multiple-access computers Scheduling 

DD FORM 
t .JAN e .. 1473 (M.l.T.) UNCLASSIFIED 

Security Classification 


