This blank page was inserted to preserve pagimation.

QUEUEING MODELS FOR FILE MEMORY OPERATION
by
PETER JAMES DENNING
B.E.E., Manhattan College
(1964)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

QUEUEING MODELS FOR FILE MEMORY OPERATION

by
PETER JAMES DENNING

Submitted to the Department of Electrical Engineering on May 21, 1965, in partial fulfillment of the requirements for the degree of Master of Science.

ABSTRACT

A model for the auxiliary memory function of a segmented, multi-processor, time-shared computer system $1 s$ set up. A drum system in particular is discussed, although no loss of generality is implied by limiting the discussion to drums. Particular attention is given to the queve of requests waiting fer drum use. It is shown that a bhortest access time first queue discipline is the most efficient, with the access time being defined as the time required for the drum to be positioned, and is measured from the finish of service of the last request to the beginning of the data transfer for the present request. A detailed study of the shortest access time queue is made, giving the minimum access time probability distribution, equations for the number in queue, and equations for the wait in the queue. Simulations were used to verify these equations; the results are discussed. Finally, a general Markov Model for Queues is discussed in an Appendix.

Thesis Supervisor: J. B. Dennis
Title: Associate Professor of Electrical Engineering

ACKNOWLEDGEMENT

```
    I wish to express my appreciation to Project
MAC for the use of 1ts computational facilities, without
which this paper would not have evolved; to Professor
J.B. Dennis, my thesis advisor, for the many hours
spent in discussing the ideas contained here; to
A. L. Soherr for the use of his simulation language
and for the many useful ideas that he gave; to
Professor A. W. Drake, Professor D. C. Carroll,
A. A. Smith, and E. Van Horn for constructive and
enlightening criticisms; and to my wife Anne for her
patience and encouragement.
```


4

TABLE OF CONTENTS

CHAPIER 1. INTRODUCTION 6
CHAPTER 2. BACKGROUND 9
CHAPTER 3. THE DRUM SYSTEM. 17
3.1. Introduction 17
3.2. The Users' Processes Model 18
3.3. The Queue 29
3.4. The Drums 40
CHAPTER 4. THE SHORTESS ACCESS TIME QUEUE 46
4.1. Introduction. 46
4.2. The Minimum Access Time Distribution. 47
4.3. Examination of the Shortest Access Queue 56
CHAPTER 5. THE SIMULATION RESULTS. CONCLUSIONS 65
5.1. Introduction 65
5.2. The Drum Simulation 66
5.3. Shortest Access Time Queue Simulation 24
5.4. Conclusions 76
5.5. Suggestions for Future Study 77
APPENDIX 1. THE POLLACZEK-KHINTCHINE FORMULA 79
APPENDIX 2. WAITING TIME IN A SHORTEST ACCESS QUEUE 87
APPENDIX 3. DESCRIPTION OF A MIXED-POLICY QUEUE 91
APFENDIX 4. A CONTINUCUS-TIME MARKOV MODEL 99
BIBLIOGRAPHY 105

IIST OF ILLUSTRATIONS

Figure 2.1. One user in a segmented system 12
Figure 3.1. The overall System Model. 19
Figure 3.2. Read and Write requests. 25
Figure 3.3. Number of Segments per request 25
Figure 3.4. Number of pages per segment 26
Figure 3.5. Inter-request times 26
Figure 3.6. Requested drum positions. 27
Figure 3.7. Requested drum. 27
Figure 3.8. The Processes Model 28
Figure 3.9. A structure for the queue. 31
Figure 3.10. The Queue Model. 39
Figure 3.11. The Organization of the Drum 41
Figure 3.12. The Delete Mechanism 45A
Figure 3.13. The Drums Model. 45B
Figure 4.2.1. Operation of the Shortest Access Queue 48
Figure 4.2.2. Access time for $i^{\text {th }}$ request 49
Figure 4.2.3. Shortest Access time Distribution. 50
Figure 4.2.4. Mean Access time 54
Figure 4.2.5. Standard deviation of access time 55
Figure 5.1. Waiting times in queue 71
Figure 5.2. Number in queue 72
Figure 5.3. Number of fields used per sector. 73
Figure A3.1. A structure of a mixed policy queue 92
Figure A3.2. Position of tagged request 96
Figure A3.3. Window movement 97
Figure A3.4. Comparison of window movement and
tagged request position 98

CHAPTER I. INTRODUCTION.
With the advent of more and more complex computing systems it has become increasingly important to have some rellable means for evaluating the performance of the system. In the Compatible Time-Shared System (CTSS) at Project MAC (2), M.I.T., for example, the scheduling of users is a problem that is receiving much attention. Patel (14) has considered first-come-first-served allocation of processor resources to users, and a multiple-level dynamic priority scheduling algorithm which closely models the scheduling algorithm used in CTSS (2). Heller (10), on the other hand, has considered the more general problem of a multiple-processor time-shared system. The purpose of the scheduling algorithm is to allocate the processor resources as efficientiy and equitably as possible, minimizing processor idle time and user waiting time. Various schemes for scheduling have been tested at MAC but the one described by Patel has proved most satiafactory. Scherr (17) has made a far-reaching study of CTSS-like systems, with particular emphasis on their Markovian aspects. Before the user's waiting time can be minimized it is necessary to minimize the processor idle time. One of the most inefficient operations is the swapping of information between the core memory and the drum or disc files. Oftentimes the processor must stand ldle during a swap, awaiting the arrival in core of a block of data. One way to ease this diffioulty is to use
one or more processors and let several programs occupy core at once. Then during the time that the swapping for one program is taking place, the processors can be kept busy on other probrams. In this way overall processor idle time can be reduced. These ideas of multiprogramming and multiple processors are not new; it is only recently that computer hardware has become sufficiently sophisticated to handie the task effectively.

Additional alleviation of the swapping problem can be effected by making drum and disc file operation as effioient as possible. In single-program systems efficienoy of drum operation is not a problem since only one program (the program) can demand use of the drum at a time. Clearly, in a multiprogrammed system several programs can make simultaneous demands on the drum and disc facilities, making special organization a must to minimize the waiting time of a given program for its request to be serviced, and at the same time minimizing idle time of the entire system. It is clear that in a poorly organized drum system the inefficiency of the drum system can seriously impair the operation of the rest of the computing system because continued operation of ten depends on the reading of information into core: a program cannot begin to operate a segment until that segment has been placed in core. For instance, suppose we had at our disposal the means to reduce the average service time of a drum request by two or three miliiseconds. In the two or three milliseconds
saved much computation can be performed.
In this paper we consider model for a drum file
memory system, and in partioular a model for the programs
in suoh a system. The model will desoribe the manner in which a program (or more properly, a process) makes requests for file memory use. A computer simulation has been written for the partioular model described. In Chapter 4 a pertinent mathematioal model is given. In Chapter 5 the results obtained from this model are compared with the results obtained from the simulation. The interested reader is referred to Scherr (17) and to Appendix 4 for an outline of the oomplexity of even the most tractable of modela, the Markov Model.

CHAPTER 2. BACKGROUND.

It is the purpose of this section to discuss some of the concepts upon which this paper is based. One of the problems of existing time-shared systems is that the processor must stand idle while the present and next user's programs are being swapped in or out of core. One proposed solution to the oroblem is to run one user's program in core, meanwhile swapping the next user into a remaining part of core. Then the processor would be switched to the next user, and the swapping operation would begin anew. Of course each user would not be arbitrarily assigned half of core, but programs would be matched in some cpmplementary manner long ones with short ones. This mode of overlapped operation in a time-shared system is sometimes referred to as a ring (cf. Scherr (17)). Again, idle processor problems arise if one program should require all available core space. Then no simultaneons swapping could take place.

A generalization of the gbove solution to the problem has been considered at length by J.B. Dennis and E Van Horn $(3,6)$. It is known as segmentation. Under this scheme a user's program would be divided into a set of individually named parts, called segments. The user is assumed to have segmented his program in the way which seems most appropriate to him.

Segments may be classified roughly according to the manner in which they may be accessed:
(1) Read-only.
(2) Data.
(3) Pure procedure.

Some combinations of these classes are permitted.
A pure procedure segment is a set of instructions which directs a process* to operate on data but not on itself. Thus we oould ask the compiler to extract all the symbols, variables and so forth, from a program and group them into one segment; procedure serments would then be allowed to modify and use this data. of course certain programs, notably short ones, would be contained entirely in one segment. Read-Only data might be input data, format speoifications, and so forth, which are not altered by the processes in a user's oomputation. Operation of a program might be in the following manner. Some first segment would be brought into core, together with all necessary data segments, which may or may not include read-only data. Then segments may act singly or in groups (if several processors are available) on the data. New segments are brought in as needed (when a reference is made to a segment not already in core). The programuer may wish to deolare subroutine segments, which might contain some of

[^0]his often-used subroutines, and which for efficiency" sake should be kept handy in core at all times. of course certain subroutines, such as printing or exponentiation subroutines, might be kept in special common, or library segments, being avallable for the common use of all users. In this way each user would not need to be given his own copy of each and every library routine. Figure 2.1 suggests the operation of the system, showing a time sequence of groups of segments operating on data. The time sequence may not be in the order in which the segments were written, and the same segment may appear many times in the sequence. Several processors might be available to work for one user, so that several segments might be active at once. Note that we have indicated that the segments are in general of various lengths. Note too that read-only data may not need to be present in core (main memory) but may be referenced from, say, a drum memory (auziliary memory) as needed.

Clearly, by writing programs in segments, only a few segments of a given program need be in core at once, the rest being stored in auxiliary memory, perhaps on a high speed drum. A segment in core which is being used by one or more processes is called a working, or active segment. Segments kept on the drum are called dormant segments. Many users, or course, can have segments working simultaneously if there is more than one processor available. When a segment is working it can have one or more processes taking place in it, depending again on how many processors are available to work

Figure 2.1. Operation of one user in a segmented system.

```
on it. Hence when talking of the computations within a
user's set of segments, we shall speak of a user'g prooesses
rather than a user's program.
    Each segment w111 be named in some arbitmary manner.
When a process makes reference to a segment (by naming it
and giving the address of some word within it) whioh is
not in core, that process is temporarily suspended until
the required segment is brought into core. Since many users
may have simultaneous processes it will be necessary to have
some central control over allocation, smapping, and so forth.
The program whioh does this job is called the Supervisor
program. When a process references a segment other than the
One in which it is taking place, the Supervisor will tranafer
control to that segment if it is in core. Otherwise that
process must halt until the Supervisor has brought in the
needed segment. With many processes mumning there w111 be
a great demand for drum vsage. We think of a process osuging
a request to be made to the drums for information, rather than
the prooess itself making the request. We can see that
references to other segments are at arbitramy points in time,
and may be to arbitrary segments, whioh may have arbitmrary
length.
```

```
    If requests should be generated momentarily faster
than they can be serviced, then the waiting requests must
be places in a waiting line, or queve. Tre order in which
requests are serviced (i.e., the order in which they leave
the queue) is not necessarily the order in which they arrived
at the queue. We can see three distinct parts of the data
transmission function of the computing system: the users*
processes, which generate requests (either to read or to
write on the drum); a queue into which requests that have
to wait are placed, and which has a selection rule for next
out, called the queue discipline; and finally the drums.
    One final word must be said, concerning the trans-
mission of data to and from the drums. It seems both desireable
and convenient to have some standard unit of transmission
and allooation, whioh we call the page. It is always
possible to store pages consecutively on the drum (see Section
3.4). This requires that there exist some mechanism for
deleting unnecessary data from the drums. One possible
mechanism, using a percentage level of drum ocoupancy, is
discussed in Seotion 3.4. It is necessary for the Supervisor
to maintain some level of drum occupancy, and to have a
```

```
deletion polioy in order to keep the drum from overflowing.
    We w111 see under our study of queues in Section 3.3
and Chapter 4 that for each request there is a certain drum
positioning time, or access time, that must pass while the
requested starting page comes opposite the drum's read-write
heads. This sccess time is wasted time. We seek to
minimize 1t.
```

There are two general methods of handling oore allocation, and it is not clear which method is more desireable. One method is called page-turning, the other segment-turning. Under both methods, a set of pages will be grouped as a segment and given a name. Under segment-turning a whole segment 18 brought into core and kept there at least until the various processes are finished with it. Under page-turning, one page of a segment at a time is brought in, and a new page is brought in only when needed. Under page-turning unneeded pages are deleted singly, while segment-turning deletes the entire set of pages belonging to a segment if any one of them is deletable. Page-turning seeks to minimize wasted core space; segment-tuming seeks to minimize owerall processing time per user. Each method has its advantages and disadvantages. There is some evidence that neither is better (cf Scherr's Thesis, where it is shown that the scheduling and computational time quanta do not significantly affect system operation (17)). This paper assumes a segmentturning system.

```
    In conclusion: when a user's process refers to
another segment that is not present in core, it will oause
the Supervisor to generate a request to the drums. Ordinerily
a request will be a read request, but it might also be a write
request if the referenced.segment is one in core being declared
In the reference as "dormant"; or it may be a delete request
if the referenced segment is being declared "dead". The
queue will contain the waiting requests, while the drums will
service them. A proper deletion policy is needed. Finally
it is clear that the unit of information transmission ought
to be the page, but the core memory allocation question, namely
whether to allocate in pages or in segments, is open for
disaussion.
```


CEAPTER 2. THE DRUM SYSTEM.

3.1. Introduction.

The system model described here consists of three elements: the Users ${ }^{\prime}$ Processes, the Queue, and the Drums. The Users' Processes element models requests to the Drums to read, write, or delete. The Processes will make requests at certain intervals given by some inter-request-time probability distribution; they will request some quantity of data in units of pages, beginning at a specified location on the drum. Several drums may be present, so each request will specify which drum is involved. Delete requests will be sent directly to the drums, while read and write requests will be entered in the Queue. The Queue will contain a list of which processes are requesting how much data from (or to) what drum, andthe starting location of the drum. It will aot according to some queue discipline to decide which request is next to reach the drum, and will assign the request to a free channel to the requested drum. When a request is assigned to a channel it is deleted from the Queue. When a drum is notified by the Queue that 9 request is assigned to a channel it takes note of what program has been assigned to the ohannel, what the desired starting location and field are, and whether the request is a read or a write. A certain amount of time must elapse before the desired location has revolyed into position; this time is the access time. Once the desired

```
starting position has come opposite the drum heads the data
transfer begins, and ends after a certain amount of time,
the transfer time, has elapsed. The sum of the access time
and the transfer time is called the service time. The
channel idle time is the time during which the channel has
no request assigned to 1t. There may be some question whether
access time should be included in channel idle time. Since
access time directly affects a given request's wait before
the end of its service, we hove included it in the service
time. Figure 3.1 shows the system in block diagram form,
as we have just outlined it.
    We now plve a complete description of each element
starting with the most basic, and most probabilistic, the
Users' Processes.
```

```
2.2. The Users' Processes Model.
    In order for proper control of all computing facilities
to be maintained, the individual processes in core do not
make requests directly to the queue and drums. As discussed
in Chapter 2, a request originates from the Supervisor, the
program which controls allocation and proper operation of
the system facilities. The Supervisor can prevent interaction
between processes, providing protection against such
```


Figure 3.1. The Overall System Model.

```
happenings as some process erroneously requesting to write
on top of another's information. The Supervisor will contain
the queue.
    In order to nromote efficient operation, program seg-
mentation will be used (3,6). By breaking the program into
segments, efficient use can be made of core memory, since
those segments of a program in which no processes are presently
taking place should be stored on the drum and should not be
"cluttering up" core. When a process references a segment
not in core, the Supervisor will request that the next
segment or segments be brought into core. Clearly while the
next segment or segments are being read into core, any waiting
processes are suspended; hence our first assumption:
    Assumption 1. Once a process has caused a request for
    one or more segments to be read in, it is temporarily
    syspended until its new segments are brought in. In
    particular a process will be unable to cause further
    requests until at least the time when it is resumed.
    On the other hand, during the course of computation a
process may generate some output data in core and request
that this data segment be stored on the drum, for example
so that it can reuse the same core space for further data.
Such write requests do not imply that the process must come
to a halt, hence our second assumption:
    Assumption 2. Upon generating a write request a
    process may continue, and in particular it may cause
    further read or write requests while a write
    request is being serviced.
```


Abstract

From the above discussion, we may expect that a read request is more probable than a write request, and so our third assumption:

Assumption 2. The probability of a process causing a read request is not the same as that of it causing a write request, and in general the probability of a read is greater than that of a write.

In order to simplify space allocation on the drums, the surface of the drum will be divided into blocks, or pages, consisting of some fixed number of words. Thus the number of words per page is fixed, and

Assumption 4. The unit of information transmission and storage will be the page.

We have no reason to assume that the number of pages in an arbitrary segment is fixed; in fact all we can say is that long segments (those with many pages) will be unlikely as will
extremely short segments (for example one or two pages). The number of segments in a block of n pages ia a random variable, and in particular the probability of finding exactly n pages in s segments may be given by a discrete Poisson Distribution:

$$
P(s, n)=\frac{(n / \bar{M})^{s}}{s!} e^{-n / \bar{N}} \quad \begin{align*}
& n=0,1,2, \ldots \tag{1}\\
& s=1,2,3, \ldots
\end{align*}
$$

where the mean number of pages per segment is $\overline{\mathrm{N}}$. Consider this problem: if a process should reference more than one segment not in core, so as in initiate the read-in of several segments, should the Supervisor ask for
the several segments in a single request, or should it make separate requests, one for each segment? We are assuming that it is always possible to store the pages of a given segment sequentially on the drum, that is that we can always read or write a segment without interrupting the transmission between start and finish. How this is done is considered in some detail in Section 3.4. For three reasons we argue that in the event of need of several segments contemporaneously there should be a separate request made, one for eqch segment. First, since consecutive segments may not be all written at once, but may have been written at widely spaced intervals, and independently or each other, it is unreasonable to assume that segments will always be stored consecutively; although this could be done by the method of Section 3.4. Second, there is no assurance that the requested segments w111 all be on the same drum, or that the request will even be for conseoutive segments. Finally some queue disciplines discriminate against long requests, servicing those requiring the shorted service times first (Section 3.3); asking for several segments in one request could well result in an inordinately long wait for service under such a queue discipline.
We now make our fifth and sixth assumptions.
Assumption 5. Each request will be for one segment, but at a request time a process may cause several requests. The probability that s segments will be requested will be exponential, that is

$$
\begin{equation*}
P(s)=e^{-s} \quad s=1,2, \ldots \tag{2}
\end{equation*}
$$

Furthermore at request time there is no reason for all the requests to be either all read or all write; they may be mixed, A read request, or course, will cause suspension of the process.

Assumption 6. The number of pages in the single segment of each request will have probability of being n pages

$$
\begin{equation*}
P(n)=\frac{n}{\bar{N}^{2}} e^{-n / \bar{N}} \quad n=0,1,2, \ldots \tag{3}
\end{equation*}
$$

Where $\overline{\mathrm{N}}$ is the mean.
When a segment is active, that is, when processes are referenoing $1 t$, the probability that the next requests occur at each successive time instant are independent so that we expect the arrival times or requests to be Poisson Distributed. A request is unlikely to be made immediately after resumption of a process from the last request, and it is unlikely to be made an extremely long time after the resumption of a process. The probability of exactly k requests in a time interval t is

$$
\begin{equation*}
P(k, t)=\frac{(a t)^{k}}{k!} e^{-a t} \quad t \geq 0 \tag{4}
\end{equation*}
$$

where a is the average number of arrivals per unit time. We have then

Assumption 2. The inter-request times are taken from the following distribution*

$$
\begin{equation*}
P(t)=a e^{-a t} \quad t \geq 0 \tag{5}
\end{equation*}
$$

[^1]Something must be said about the starting position of the drum a particular request will seek. We have no information to allow us to assume anything other than that all drum positions are equally likely to be requested.

Assumption 8. At a particular request time all drum positions are equally likely to be seleoted; that is, the density of angular positions requested will be

$$
\begin{equation*}
P(\theta)=\frac{1}{2 \pi} \quad 0 \leq \theta \leq 2 \pi \tag{6}
\end{equation*}
$$

Pinally something must be said about which drum is to be requested, in the event that there are several drums in the system. When a process is making requests for several segments there is no reason to assume that all the requested segments will be on the same drum. Hence we are willing to say that each of the D drums is equaliy likely to be requested:

Assumption 2. Each request is equally likely to be for any of the drums in the system.

Assumptions 3,5,7,8, and 9 are illustrated in Pigures 3.2 to 3.7.

Based on the discussion above, we are in a position to construct a model for the request activity of a given
prooess. This model 15 shown in Figure 8.

```
*A Note on Notation: A fork is a point at whioh one process
    splits into two processes, which follow their own paths. A
    foin is just the opposite, where two proossses become one; each
    time the join is entered the operations in the box of the
    flow chart are oarried out. An arrow doing this
    is a termination of a prooess. A note in brackets gives the
    condition permitting a procese to emerge from the corres-
    ponding box. A function written with an argument (.) denotes
    a probability function for a set of identioally diatributed
    random variableg.
```


F1gure 3.2. Reletive frequencies of read and write requests.

Figure 3.3. Relative probabilities of number of segments per request.

Figure 3.4. Relative probabilities of number of pages per segment.

Figure 3.5. Relative probability of interrequest times.

Figure 2.6. Relative probability of requested drum position.

Figure 3.2. Relative probability of requested drum.

Figure 3.8. The Processes Model.

Abstract

The reader may be asking what justification there is for assuming the particular probability distributions that have been chosen; in partioular why we have chosen Poisson distributions as opponed to other distributions. It will be noted that these choices are completely arbitrary, and oannot be properiy determined until some statistics are available about the system we are discussing. It is felt that the assumptions that have been made are reasonable.

3.3. The Queue.

The model of the queue is more straightforward and deterministic than the model of the processes. When a request is received from a process it is entered in a list within the Queue Element. Each entry in the list contains the following informations an identification number of the process requesting, the number of pages involved in the transmission, the desired starting location on the drum, the identification number of the desired drum, and whether the request is a read or a write. The number of pages is an important piece of information since It can be used to determine when the transmission is ended.
A possible structure for the Queue's list, which we will refer to simply as the queue, $1 s$ shown in Figure 3.9. In this list two pointers are used, one to indicate the lower limit of the number in the queue (the shaded region), the other to indicate the upper limit. Both pointers are periodically incremented and are modulo qapecity of queue. The lower pointer is moved down one position each time a new entry is made, and the upper pointer is moved down one position each time a request leaves the queue. If the next out is not the least recent entry, then all items above are moved down one position to fill the gap. The shaded area represents the number in the queue, frequently referred to as the length of the queue.
There is a Boolean signal received from each of the drums indicating whether or not that drum is busy (all ohannels to it in use). Whenever all channels to a drum are busy, any requests arriving for that drum must wait in line, and a walting line, or queue, is formed. If requests arrive too much faster than they can be serviced, the length of queue could become equal to its capacity and any further requests will be lost. Such a development is disastrous, since it would render a process useless. Hence the average arrival rate must not exceed the average service rate, where the rates are defined to be the reciprocals of the average interarrival and service times, respectively.

Figure 2.2. A structure for the queue stack.

When the Queue is aware that a drum is not busy, it looks down the list to determine which if any requests want the free drum. It then chooses one of them according to the queue discipline, assigns it to some free channel to that drum, the deletes the entry from the list.

The queue disoipline is simply the rule for selection of next out. We consider four queue disciplines applicable to our situation:
(1) Pirst come, first served.
(2) Shortest access time first.
(3) Shortest Job first.
(4) Mixed policy.
(1) First come first served.

This is the "fair" or "equitable" queue discipline, where requests are serviced in the order of their arrival, and is the case when the "next out" of Figure 3.9 is the "latest entry". It does not result in the most efficient operation. It is analogous to the normal situation encountered In a post office, when one wishing to buy a single stamp must wait behind a person with several packages. Certainly the waiting time is greatiy increased because of 111 fortune, whereas the person ahead would not be significantly delayed to give way. Since a process is equally likely to ask for any drum position, and since the present drum position is likely to be anything, with the first come first served queue discipline the average access time is half the drum revolution
time. Lat us represent the time a request is in the servioe gystem (the time from when a process makes a request until the time service is completed by F_{s}. Let the drum revolution time be F. Let the average transfer time be r_{t}. And let the average wait in the queue be W_{q}. Then for first come first served,

$$
\begin{equation*}
I_{8}=W_{q}+T_{t}+T / 2 \tag{1}
\end{equation*}
$$

(2) Shortest Access Time First.

Under this queue discipline the next out is selected according to following rule:

Choote the one for which the totational positioning delay until the desired starting address is minimum.

Now if more than one request for a given drum is in the queue, on the average the access time will be less than half the drum revolution time; this is so since with more in the queue the probability that there is a request for the present drum position 18 greater than for a queue of length one. It W111 be show later that the minimum access time is roughly inversely proportional fo the length of the queue. Hence for this queue discipline

$$
\begin{equation*}
T_{8} \approx W_{q}+T_{t}+T / \bar{n} \tag{2}
\end{equation*}
$$

Where $\bar{n} 1 s$ the average number in the queue, and wq is not the same numberically as for the first come first served queue with the same \bar{n}. Observe that the shortest access time queue is a dynamic priority queve, one for which the priorities of requests are changing randomly.
(3) Shortest Job First.

Under this queue disolpline the following rule is used to seleot the next outs

Seleot the request for whioh the servioe time is a minimum. The service time is the sum of the access time and the transfer time.

A little thought should convince the reader that under this queue discipline the access time is not minimized, but yet it will in general be less than $T / 2$ for queues of length two or more. Hence

$$
\begin{equation*}
T_{s}+W_{q}+T_{t}+T^{\prime} \tag{3}
\end{equation*}
$$

where $T / \bar{n}<T<T / 2$, and W_{q} is not the same numerically as for either a first oome first served or shortest access . queue having the same length $\overline{\mathrm{n}}$.

(4) M1xed Polioy Queues.

We will include no more disoussion on mixed policy queues since the problem 18 in general complex and unsolved. We will, however, mention the skip init once again in chapter 5 under the discussion of simulation results. Pinally, another mixed poliay queue is disoussed in Appendix 3. For further discusalons on the matter, the reader is referred to the 11terature $(1,9,13,15,16)$.
(5) A Comparison of Queue D1soipinnes.

In Appendix 1 we have related the mean number in the servioe system, which includes those being serviced and those in the line, to the mean and variance of the service time distribution. We will denote the number in the system by I. The random variable of the service $t i m e, t_{s}$, is the access time t_{a}, plus the transfer time, t_{t}. The service distribution can be found from a convolution of the access distribution with the transfer time distribution. We will show later that both of these can be found, hence the service distribution can be fourd. In particular, the mean service time, T, is

$$
\begin{equation*}
T_{s}=T_{a}+T_{t} \tag{4}
\end{equation*}
$$

And the variance of the service time, σ_{s}^{2}, is

$$
\begin{equation*}
\sigma_{s}^{2}=\sigma_{t}^{2}+\sigma_{a}^{2} \tag{5}
\end{equation*}
$$

since we are assuming independence of t_{a} and t_{t}. Let us denote the function relating L_{1}, I_{s}, and σ_{a}^{2} by

$$
\begin{equation*}
L=F\left(T_{s}, \sigma_{s}^{2}\right)=F\left(T_{a}+T_{t}, \sigma_{a}^{2}+\sigma_{t}^{2}\right) \tag{6}
\end{equation*}
$$

The function F from equation (6) is such that a decrease in either or both of T_{s} and σ_{s}^{2} will result in a reduction in L. The transfer time distribution will remain the same for all queue disoiplines since it is a function of the number of pages per segment, which is fixed before hand, and is assumed to be identical for all processes.

Let the total number of prooesses in all be N. Then

$$
\begin{equation*}
N=w+L \tag{7}
\end{equation*}
$$

where wis the number of working processes. The efficiency of a system can be measured crudely by the number of procestors working, and is

$$
\begin{equation*}
\text { efficiency }=\frac{X}{N}=\frac{N-L}{N}=1-\frac{L}{N} \tag{8}
\end{equation*}
$$

To maximize the effioienoy, L must be minimized. Thus the optimum queue disoipline is the one for which is minimized. Notice further that the number of processors that can be kept working is just the number of working processrs:

$$
\begin{equation*}
\text { number of busy processors }=W=N\left(1-\frac{I}{N}\right) \tag{9}
\end{equation*}
$$

For the simplest system, the single-processor system, w must neter be less than one if the processor is to be continuousiy busy.

On the average the transfer time is the same for all queue disciplines (because it relates directiy to the number of pages in a segment). On the average the acoess time is explicitly minimized only by the shortest access time queue. Therefore the service time for the shortest access queue will, on the average, be a minimum, compared to other queues.

```
We see that the shortest access time queue minimizes the
service time, while the queue whioh bears the shortest job
first" does not minimize theraverage servioe time. The
apparent contradiotion is resolved when we reallze that the
shortest acoess queue chooses the shortest job Pirst on the
average, while the "shortest job first* queue seleots the
shortest Instantaneous job. Nevertheless equation (6) tells
us that the shortest access queue must have minimal L associated
with it, and is therefore the most effieient*. In fact,
any queue which does not minimize the acoess time must be
less efficient than a shortest access time queve, when
efficienoy is defined by equation (8). Chapter 4 1s devoted
to a detailed study of this queue.
```

Based on the above disoussion, we give the Model of the
Queue in Figure 3.10.

[^2]

Figure 2.10. The Queue Model.

3.4. The Drums.

Since the method of distributing pages on the drum is of considerable importance, we will discuss it first. Consider Pigure 3.11. The drum, we auppose, is divided into seotors as viewed from a cross-section, where the number of sectors is an integer. The number of words per page is just the number of words that can be written around the circumference of the drum divided by the number of sectors. The drum is divided into rings, and the width of one such ring is a field. A field is one word in width, and a word is typically 36 binary bits. Each field is subdivided into a number of tracks, each of which is associated with one read-write head. The same head is used for reading and for writing: a read amplifier or write amplifier is connected as needed. The operation a^{\prime} head is presently performing is called its status, and there is a delay associated with switching between read and write status. This selection delay is about the same time as for three or four words to pass beneath the head, so ordinarily the first few words on a page will be left blank to allow for this delay.

It was stated previously that it is possible to write a segment of N pages on the drum contigurusly. We indicate how this can be done. The question 1s: suppose some of the sectors in a field are used, how can a string of N pages be written consecutively, especially if a page would have

Figure 2.11. Organization of the drum.
to be written on a $u s e d$ sector? The answer is that we do not attempt to write the pages in the same field. We require only that during a write operation there be at least one free field per sector. Pirst of all, suppose that each sector was allowed to have all but C of its fields in use, where $C 18$ the number of channels to the drum, and where any channel can acoess any field. Suppose further that whenever fewer than C fields were free on a given seotor a deletion occurred immediately. Then the drum oould handie C simultaneous write requests because a free field can always be found. In reality a delate night not ocour when necessary, and also there 18 the possibility that a segment is longer than the number of sectors, which implies that more than one of its pages would be written on the same sector. It would be better to set a drum gocupanox level, which is the ratio of allowed fields per sector to the sctual number of existing fields per sector:
ocoupancy level $\leq \frac{P-C}{F}$
where F is the number of fields per sector, C is the number of channels to the drum. Then whenever the occupancy level is exceeded, some sort of emergency condition rould be set up, and ans unnecessary segments would be removed from the drum (they would be deleted, or thes might be moved to a lower level of storage, for example also file). In suoh a oase the oocupancy level would have to be less than the upper bound set by the equality sign in (1) to allow for statistical fluctuations. Simulation has shown that

```
ocoupancy levels in excess of 93% are possible with a proper
deletion palioy, for typical parameters. See Chapter 5.
    When a write request comes, the pages are written
on the drum on the first free field on each sector, and a pointer
Is left, to direot a read operation to the next field of a
conseoutive string of pages. These pointers are indicated by
arrows in Pigure 3.11. Thus it is possible to have a string
of consecutive pages written (and read) without interruption.
We require rapid inter-field mitoning, a feature available
on high; apeed drums. It is to be noted that if the drum is
be be oparated this way it will have to maintain its own
MPield Usage Table" similar in principle to the mTrack Usage
Table* used in CTSs with the disc(2). When a write requegt
arrives, this table is congulted to locate the nearest
Iree field on the given sector.
    As long as the Supervisor's deleteion polioy sees to
it there are always sufficient free fields on each seotor, the
drum operation 1s 右traightforward. The delete mechanism shown
In Figure 3.12 determines how many pagea are to be deleted from
the drum; it does this rhenever the desired oocupanoy level
1s exceeded. We may model the behavior of a deletionn by
ploking a random drum address and deleting one page from each
sector until N pages are deleted. A "deletion" may be to
remove the offending pages to a lower level of storage, or
it may be to obliterate the pages entirely.
```

Once a channol is assigned, the drum observes whether the request is a read or a write, and switches the heads associated with that field to that status, as soon as the starting sector is pposite the heads. Note that the set of heads associated with a given field may be in use by different requests from sector to sector. When the starting page is in position, the data transfer begins, allowing time for the awitchiag delay at the top of each page. Three or four words left blank on a page is tuffioient time for this. At the bottom of each page is an End of Page mark, with a pointer to to the field containing the next page, which initiates switohing to that field; of course the heads there are put into the proper status. Pinally, at the end of the last page of thesegment, an End of File mark will be enoountered, and the chamel is freed for the next request.

Figure 2.12. The delete mochanism.

This empty page was substituted for a blank page in the original document.

Figure 3.13. The Drums Model.

CHAPTER 4. THE SHORTEST ACCESS TIME QUEUE.
4.1. Introduction.

In Section 3.3 it was shown that the shortest access
time queue discipline is the most efficient; it is the purpose of Sections 4.2 and 4.3 to analyze this queue as best can be done. The shortest access time queue is a special form of the shortest job first queue. Solutions have been obtained for shortest job first queues with the input rates independent of the queue lensth. No solutions have been obtained for a shortest job queue in which the input rate is dependent on the queue length, that 18 , when there is only a finite number of requestors. In the next two sections we do not attempt to solve for the probability densities of queue length, waiting times, and service times; rather we talk only of the averages, which become time independent at equilibrium, when the input rate to the system is the same as the output rate from the system. In Section 4.2 we derive a probability density function for the minimum access time as a function of the mean number in the queue; then in Section 4.3 we combine these results with the results of Appendix 1 to obtain some approximate expressions for the number in the queue, and for the waiting time in the queue.

4.2. The Mininum Access Time Distribution.

The access time is defined as the time from the exit of a request from the queue until the requested starting sector has come opposite the read-write heads. It is simply a positioning time. We have shom in Section 3.3 .5 that a queue discipline which minimizes the access time is the most efficient; we wish to derive the access time distribution in this section, and in a later section we will determine the waiting times in queue using the Pollaczek-Khintchine Formula (Appendix 1). We define the sllowing quantities, given that n are in the queue:
$R_{i}=$ requested starting seotor of the drum for the $i^{t h}$ request in the queue.
$D(t)=$ The angular drum position at time t.
$A_{1}(t)=$ required acoess time at time t for the $1^{\text {th }}$ request given that the present drum position $18 \mathrm{D}(\mathrm{t})$.
$a=$ random variable of minimum access time, which takes on values a.
$T=$ drum revolution time.
The model of the shortest access time queue discipline show in figure 4.2 .1 best illustrates what is going on.

The comparators compare the reauested starting sector With the present drum position and give as an output the required access time. The Min(.) box selects the minimum of its inputs and sets its output to this value. To aimplify the derivation we will assume that the Min(.) box normalizes its output with respect to the drua revolution time T, so

Figure 4,2,1. Operation of shortest access queue.
that a is a fraction between 0 and 1 . We have

$$
\begin{equation*}
a=\frac{1}{\operatorname{T}} \operatorname{Min}\left[A_{1}(t), A_{2}(t), \ldots, A_{n}(t)\right] \tag{1}
\end{equation*}
$$

where $0 \leq a \leq 1$. We are interested in the probability density of a as a function of n, the number in the queue.

It was stated in Seotion 3.1 that the probability density
of the R_{1} is uniform, that $1 s$, all drum sectors are equally
likely to be requested. Further we are assuming random
segment lengths. If segment lengths and starting positions are random, the present drum position, which is the drum position just at the finish or the last request (so that the next request is about to be assigned), is random, and by symmetry and the independence of requests, we may assume that it is uniformiy distributed.*

[^3]But if $D(t)$ and B_{1} for each 1 are uniforin, then $A_{1}(t)$ must be uniform for each i; that is, the $1^{\text {th }}$ request's access time is equally likely to be any fraction of a drum revolution. Figure 4.2 .2 shows the density function for $A_{1}(t)$, which has been normalized with respect to the drum revolution time, T.

Figure 4,2.2. Access time for $1^{\text {th }}$ request.
Now, the probability that $a>a_{0}$ is just

$$
P\left[a>a_{0}\right]=P\left[A_{1}\left(t^{\prime}\right)>a_{0}, \ldots, A_{n}(t)>a_{0}\right] \quad t^{\prime}=\frac{t}{T}
$$

But the R_{i} are independent, so that the $A_{i}(t / T)$ are also independent, and

$$
P\left[a>a_{0}\right]=P\left[A_{1}\left(t^{\prime}\right)>a_{0}\right] \ldots P\left[A_{n}\left(t^{\prime}\right)>a_{0}\right] \quad t^{\prime}=\frac{t}{I}
$$

But $P\left[A_{1}\left(t^{\prime}\right)>a_{0}\right]$ is fust the shaded portion of Figure 4.2.2, and is simply ($1-a_{0}$). Then

$$
\begin{equation*}
\tilde{F}\left[a>a_{0}\right]=\left(1-a_{0}\right)^{n} \tag{2}
\end{equation*}
$$

equivalently $\mathrm{P}\left[a \leq a_{0}\right]=1-\left(1-a_{0}\right)^{n}$
and $\quad P_{a}\left(a_{0}\right)=\frac{d}{d a_{0}} P\left[a \leq a_{0}\right]$

$$
\begin{equation*}
P_{a}\left(a_{0}\right)=n\left(1-a_{0}\right)^{n-1} \tag{3}
\end{equation*}
$$

Equation (3) is the probability density of a, given that n are in the queue. Figure 4.2 .3 shows $p_{a}\left(a_{0}\right)$ for a few values of n.

Figure 4.2.3. Shortest Aocess Time Distribution.

By the definition of conditional probability:

$$
P_{a N}\left(a_{0}, n\right)=P_{a / N}\left(a_{0} / n\right) P_{N}(n)
$$

where N is the random variable of the number in the queue, which takes on values n. Then

$$
P_{a N}\left(a_{0}, n\right)=n\left(1-a_{0}\right)^{n-1} P_{N}(n)
$$

The mean access time, \bar{a}, is

$$
\bar{a}=\sum_{n=1}^{\infty} \int_{0}^{1} a_{0} n\left(1-a_{0}\right)^{n-1} p_{N}(n) d a_{0}
$$

Integration by parts over a leads to

$$
\begin{equation*}
\bar{a}=\sum_{n=1}^{\infty} \frac{1}{n+1} P_{N}(n) \tag{5}
\end{equation*}
$$

The second moment, $\overline{a^{2}}$, is

$$
\overline{a^{2}}=\sum_{n=1}^{\infty} \int_{0}^{1} a_{0}^{2} n\left(1-a_{0}\right)^{n-1} P_{N}(n) d a_{0}
$$

Integration by parts over a_{0} leads to

$$
\begin{equation*}
\overline{a^{2}}=\sum_{n=1}^{\infty} \frac{2}{n+1} \frac{1}{n+2} P_{N}(n) \tag{6}
\end{equation*}
$$

The variance of the access time distribution is then

$$
\begin{align*}
\sigma_{a}^{2}=\overline{a^{2}}-\bar{a}^{2}= & \sum_{n=1}^{\infty} \frac{2}{(n+1)(n+2)} P_{N}(n) \\
& -\left[\sum_{n=1}^{\infty} \frac{1}{n+1} P_{N}(n)\right]^{2} \tag{7}
\end{align*}
$$

Note that we have not specified $P_{N}(n)$, the distribution of the number in queue. Note too that it is not the same as the time distribution of n. It is the distribution of number in queue as seen by the departing requests--we need $P_{N}(n)$ taken over instants when the next request is extracted from the queue, which does not happen at uniform intervals. It is a reasonable assumption* that $P_{N}(n)$ is a normal distribution. This is only an approximation, since the normal distribution would allow for some probability of nagative n, whioh is physically meaningless; this must be used carefully when
*Based on the Central Limit Theorem.
n 18 small enough so that the portion of the normal curve
extending below n=0 is appreciable, espeoially when the variance of $P_{N}(n), \sigma_{n}^{2}, 1 s$ large, so that $\sigma_{n} \gg \bar{N}^{2}, P_{N}(n)$ as

$$
\begin{equation*}
P_{N}(n)=\frac{1}{\sqrt{2 \pi} \sigma_{n}} \exp \left[-\frac{1}{2}(n-\bar{n})^{2} / o_{n}^{2}\right] \tag{8}
\end{equation*}
$$

Putting (8) into (5),

$$
\begin{equation*}
\bar{a}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 \pi \sigma_{n}}} \frac{1}{(n+1)} \exp \left[-\frac{1}{2}(n-\bar{n})^{2} / \sigma_{n}^{2}\right] \tag{9}
\end{equation*}
$$

And putting (8) into (7),

$$
\begin{equation*}
\sigma_{a}^{2}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 \pi \sigma_{n}}} \frac{2}{(n+1)(n+2)} \exp \left[-\frac{1}{2}(n-\bar{n})^{2} / \sigma_{n}^{2}\right] \tag{10}
\end{equation*}
$$

Equations (9) and (1) cannot be reduced further, even if the sumations are taken to be integrations over the infinite interval. These equations do, however, yield readily to a computer, and families of curves for \bar{a} and σ_{a}^{2} have been assembled and are shom in Figure 4.2 .4 and 4.2.5. The ares are normalized so that, given the drum revolution time T. values of access time can be found.

We wish to note the limiting forms of equations (9)
and (10). These oocur for $\bar{n} \geqslant 1$, and for $o_{n} \ll \bar{n}_{\text {. Figures }}$ 4.2 .4 and 4.2 .5 show that for $\bar{n} \geq 8$ we may ignore the effects of σ_{n}, for σ_{n} of interest (see Section 5.2), with only a small error. Now if σ_{n} is very small compared to \vec{n} then the normal curve approaches a unit impulse in the limit,
and the summations of equations (9) and (10) reduce to a single value, taken at $n=\bar{n}$. Thus for $\sigma_{n} \ll \bar{n}$:

$$
\begin{equation*}
\bar{a}=\frac{1}{n+1} \quad \text { at } n=\bar{n} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{a}=\frac{1}{n+1} \sqrt{n /(n+2)} \text { at } n=\bar{n} \tag{12}
\end{equation*}
$$

It is to be noted that (11) and (12) are evaluated at $n \neq \bar{n}$, and that the approximation is very good if the conditions are mot; this is evidenced in Figures 4.2 .4 and 4.2.5, where equations (11) and (12) have been drawn. One of the prime assumptions of this derivation is that the drum positions at successive request-granting times are independent. If the drum positions at successive request-granting times are not independent, then the access distribution is in error. This is the case if the average length of requests is small compared to a drum revolution. See the discussion on page 63.

In Appendix 2 one further result of interest is
obtained. The form of the probability density for the waiting time in queue is derived and is shown to be exponential. This is in excellent agreement with the simulation results discussed in Section 5.2.

NOBMALIZED

ACCESS

TIME

Figure 4.2.4. Acaess time normalized w.r.t. drum revolution time, as a function of average number in queue.


```
4.3. Examination of Shortest Access Time Queue.
    The solution to a queueing problem in which the posioy
is based on a continuous number of priorities, such as the
shortest job first and shortest access time queues, is not
easily obtainable. In particular no solution has yet been
obtained for a finite requesting population, under a shortest-
job-first type queue discipline, since the arrival rate of
requests tends to depend heavily on the size of the queue
and the service time. As the queue bocome full, the rate
of arrival of requests tends to slacken because there are fewer
members of the requesting population outside of the service
system. In this seotion we will derive a set of approximate
equations for the number in the queve as a function of input*
and service parameters, and indicate an iterative procedure ,
for solving them.
    We suppose that the queue is in statistioal equilibrium,
that 1s, the system has been in operation suffioiently long
that the time average of number in the system is constant.
We shall use the following notation:
    n= the mean number in the queue.
    W
    T = drum revolution time.
    T
```

```
T
Ta}=\mathrm{ mean access time.
    a = mean arrival rate.
    b = mean service rate.
    A = mean interval till the next request from one
    process, from the time it resumes.
    s m mean number of pages per segment.
    m = number of sectors around the drum.
    N = population size, i.e., the total number in
        the queve, olus the number in service, plus the
        number generating requests.
    r = traffic intensity ratio, i.e., the average
    number of busy channels.
In the previous section we saw that die to independence
``` of requests, random segment lengths, andrandom present drum position, that at each request-granting time, each request was equally likely to be next out. We have a series of Bernoulli trials, then, with a probability of \(\frac{1}{k}\) of a particular request being picked at a given trial, and probability
(1- \(\frac{1}{k}\)) of being overlooked, where \(k\) is the number in the queue at the time of the trial. On the average we can say that the probability of being chosen on any trial is approximately \(\frac{1}{n}\), where \(n\) is the average number in the queue. Therefore the probability of being ohosen on the \(k^{\text {th }}\) requesting-granting time after a request enters the queue is, on the average, given by a geometric distribution, which we denote by \(P(k)\).

Then
\[
\begin{equation*}
P(k)=\left(1-\frac{1}{n}\right)^{k-1}\left(\frac{1}{n}\right) \tag{1}
\end{equation*}
\]

We wish to determine the waiting time of a request in the queue. The z-transform of equation (1), which we denote by \(p_{k}^{t}(z)\), is
\[
p_{k}^{t}(z)=\sum_{k=1}^{\infty}\left(1-\frac{1}{n}\right)^{k-1}\left(\frac{1}{n}\right) z^{k}
\]
which can be reduced to the olosed form
\[
\begin{equation*}
p_{k}^{t}(z)=\frac{z}{n-(n-1) z} \tag{2}
\end{equation*}
\]

The mean number of trials before the given request is next out is
\[
\begin{equation*}
\left.\bar{k}=\frac{d}{d z} p_{k}^{t}(z)\right]_{z=1}=n \tag{3}
\end{equation*}
\]

And the variance 18
\[
\begin{align*}
& \sigma_{k}^{2}=\left[\frac{d^{2}}{d z^{2}} p_{k}^{t}(z)+\frac{d}{d z} p_{k}^{t}(z)-\left[\frac{d}{d z} p_{k}^{t}(z)\right]^{2}\right]_{z=1} \\
& \sigma_{k}^{2}=n(n-1) \tag{4}
\end{align*}
\]

The average wait is just the average number of service intervals that must pass while a request is in the queue. If a request arrives just before a servioe begins it must wait only (\(n=1\)) intervals; if it arrives just after a service begins, it must wait \(n\) intervals, as given by equation (3). On the average, then, it must wait (\(n-\frac{1}{2}\)) service intervals, The wait in the queue is therefore
\[
\begin{equation*}
W_{q}=\left(n-\frac{1}{2}\right) T_{s} \tag{5}
\end{equation*}
\]

We suppose that each interval is of duration \(T_{s}\). where \(T_{s}\)
is the mean service time, and
\[
T_{s}=T_{a}+T_{t}
\]
and where \(T_{a}\) is the mean access time. For \(n\) in the queue, we can use equation (11) of Section 4.2, so that
\[
\begin{equation*}
T_{s}=\frac{T}{n+1}+T_{t} \tag{6}
\end{equation*}
\]

It is reoalled that \(T_{a}=T /(n+1)\) is an approximation, becoming more accurate with increasing \(n\). The mean transfer time is the time to service the mean number of pages per segment, whioh is
\[
\begin{equation*}
T_{t}=T \frac{s}{m} \tag{7}
\end{equation*}
\]
where \(s=\) mean number of nages per segment,
\(m=\) number of sectors around the drum.
By putting (7) into (6) we obtain
\[
\begin{equation*}
T_{B}=T\left(\frac{1}{n+1}+\frac{8}{m}\right) \tag{8}
\end{equation*}
\]

We have noted that the shortest sccess time queue is a random output queue, so that we can use the result of Appendix 1, which says that
\(\frac{\text { Mean number in the service system }}{\text { mean service rate }}=\frac{\text { mean number in queue }}{\text { mean arrival rate }}\) (9)
where the mean service rate \(1 s \mathrm{~b}=1 /\) (mean service time), and the mean arrival rate is \(a=1 /\) (inean arrival time).*

\footnotetext{
We are assuiling as in Seotion 3.2 that arrivals are Poisson, and that segment lengths are Poisson distributed. That is, the probability of exactly \(k\) requests in a time \(t\) is
\[
P(k, t)=\frac{(a t)^{k}}{k!} e^{-a t}
\]
\(t \geq 0\)
(continued)
}

Equation (9) is exact oniy when the arrival and service rates are independent of the number in the queue, which is not the case in the finite population system we are discussing. We can use equation (9) because there must exist an equivalent infinite-population system whose equilibrium arrival rate is the same as the arrival rate to the shortest access system when it is in equilibrium. We proceed to substitute the appropriate quantities into (9) and then solve for \(n\), the mean number in the at equilibrium.

First note that \(r\), the traffic intensity ratio, is
where a is the arrival rate at equilibrium. The probability of finding exactly \(k\) segments in a block of \(n\) pages is
\[
P(k, n)=\frac{(n / 8)^{k}}{k!} e^{-n / 8} \quad n=1,2,3, \ldots
\]
where \(s\) is the mean number of pages per segment. The waiting time between poisson arrivals is
\[
\begin{aligned}
P(t) d t= & P(\text { no arrivals during time interval } t) \\
& X P(\text { one arrival in time interval } d t) \\
= & \left.\frac{(a t)^{k}}{k!} e^{-a t}\right]_{k=0}(a)(d t)
\end{aligned}
\]
so that \(\quad P(t)=a e^{-a t} \quad t \geq 0\).
also the time average number of busy channels:
\[
r=\frac{a}{b c}=\frac{\text { mean arrival rate }}{\text { mean service rate }}
\]
where \(c=\) number of channels,
b = mean service rate
\(a=\) mean arrival rate.
The mean number in the service system is just \((n+r)\). Now
if the interarrival time for one working process is \(A\), then
at equilibrium it must be, for all working processes,
\[
\begin{equation*}
\frac{A}{(N-n-x)}=\frac{1}{a} \tag{10}
\end{equation*}
\]

Because (\(N-n-r\)) are not in the service system, and are therefore making requests. We can now \(f 111\) in (9) to get:
\[
\begin{equation*}
\frac{(n+r)}{1 / T_{s}}=\frac{n}{\frac{(N-n-r)}{A}} \tag{11}
\end{equation*}
\]

We define a quantity a to be
\[
\begin{equation*}
R=\frac{T}{C A}=\frac{T}{C A}\left(\frac{1}{n+1}+\frac{s}{m}\right) \tag{12}
\end{equation*}
\]

Note that \(R 1 s\) an intensity ratio for one process, and
\[
\begin{equation*}
T_{s}=A A C \tag{13}
\end{equation*}
\]

Then the intensity ratio \(x\) is
\[
r=\frac{a}{b c}=\frac{T_{s}}{\frac{A}{(N-n-r)}}=R(N-n-r)
\]

Solving (14) for \(r\), we find
\[
\begin{equation*}
r=(N-n) \frac{B}{1+n} \tag{15}
\end{equation*}
\]

After putting (15) into (11) and performing the appropriate algebraic manipulation, we find
\[
\begin{equation*}
n=\frac{N}{1+\frac{(1+R)^{2}}{B_{c}(n+N R)}} \tag{16}
\end{equation*}
\]

The form of equation(16) hes been chosen beoause it is solvable by a process known as relaxation (or iteration), in which a guess at \(n\) is put into the right side of (16), keeping in mind that \(R=A(n)\). A new value of \(n\) is obtained. This new value of \(n\) is placed into the right side of (16) as before, fielding yet another value of \(n\). This process is continued until the new value of \(n\) is the same as the previous value. It was found that (16) converges rapidly, within five oycles.

Colleoting the results,
\[
\begin{align*}
n & =\frac{N}{1+\frac{(1+B)^{2}}{\operatorname{Ac}(n+N B)}} \\
W_{q} & =\left(n-\frac{1}{2}\right) B A C \tag{17b}\\
T_{B} & =R A C \tag{17c}
\end{align*}
\]

A simulation has been carried out to test equations (17). The value of \(n\) was found to be within \(1 \%\) of the simulated values; the value of \(W_{q}\) was within \(5 \%_{0}\). These answers were considered satisfactory in view of the approximate nature of the derivation.

Due to the nature of this problem we are unable to
say anything about the standard deviation of our results.
Simulation has shown that the standard deviation of the number in queue \(1 s\) less than 1.0 , while the standard deviation of the waiting time was in general somewhat larger than the mean. In particular, one simulation reported a maximum wait of about ten times the mean.

As a final note we want to point out that one of the basic assumptions of this section and the previous section is that the drum position is random at each request-granting time. This means that the drum positions at successive requestgranting times are independent. But this need not be the case. Suppose for instance that the transfer time, \(T_{t}\), is a small fraction of the drum revolution time, \(T\) (for example, suppose the average transfer time, \(T_{t} \approx 0.1 T\). Clearly, if this is the case, the drum positions at successive requestgranting times are dependent, because we can say that the probability of the drum being only \(0.1 T\) away is much greater than being, say, \(0.5 T\) away. This is obviously contradictory to the assumption of independent drum positions at sucoessive request.granting times. Consequently we expect the aocess time to be below the predicted values, since the probability of finding a request wanting the present drum position is greater than if the drum position is random. If the aocess time were smaller than the prodicted values, then both \(W_{q}\) and \(n\) would be smaller than predicted. \(T_{s}\) would be smaller, and the system operationshould be more efficient. Simulation has shown that this is the case, that efficiency is increased
```

when segments are short. In particular, since (N-n-r)
processes are working, then the fraction of processes that
are working is
(N-n-r)}=\frac{N-n}{N}=\frac{N(1+R)}{N
If $n$ substantially decreases, by (18) the efficiency substantially increases. The greater the efficiency, the greater the number of processors that can be kept busy. It is to be noted that when $T_{t}$ is of the same order of magnitude as $T$, or larger, then the drum positions at sucoessive intervals become independent, and the analysis of this section is valid.

```

CHAPTER 5. THE SIMULATION RESULTS. CONCLUSIONS.
5.1. Introduction.

In order to observe the operation of the model of the entire drum system, which is discussed in Chapter 3, it was decided to simulate the system. Project MAC computation facilities were used; the simulation was written in SIM, a new simulation language conceived and implemented by A.L. Scherr at Project MAC (17). SIM is an augmented version of the MAD programing language, adding several new statements to those already existing in MAD. It has the powerful advantage that the logical flow of the simulation is the same as the logical flow of the actual system. Each element of the system (see Figure 3.1), namely the processes, the queue, and the drums, is specified in the simulation as an Element (which is translated into a MAD external function by a SIM prem compiler). The inter-elemental signals show in Pigure 3.1 are implemented in SIM by gystem variables, which allow a signal to be transmitted from one element to another. A main program oalled SIMSYS coordinates the activity of the elements.

Three simulations were run. One was a simulation of the entire drum system discussed in Chapter 3. Another was a simulation of the shortest access time queue disoussed in Chapter 4. Section 5.2 discusses the drum simulation, and Section 5.3 discusses the queue simulation. A third simulation was used to develop Appendix 2, and is disonssed there.

\subsection*{5.2. The Drum Simulation.}

The three elements of the simulation were the Users' Processes, the Queue, and the Drums. These elements and the signals that were passed among them are shown in Figure 3.1. The logical flow of each element is the same as shown in the flow graphs of Figures 3.8A, 3.8B, 3.10, and 3.12, where the models of the Processes, the Queue, and the Drums are depicted.

CTSS has available a random number generator, whioh is useful in the simulation of the Processes to generate the probability distributions discussed in Section 3.2. The random number generator returns a number between zero and one from a uniform distribution. This can be used to get numbers from other distributions in the following manner. First the cumulative distribution of the given distribution is found, which will have probabilities varying between zero and one. The rando number generator oan be used to select one of these values of probability. This value is substituted into the cumulative distribution which has been solved for the random variable. In the drum simulation numbers from exponential distributions were needed. Such exponentially distributed random variables can be obtained in the following manner. Suppose we want to select a random number from the exponential distribution of interarrival times, which has
been shown to be
\[
\begin{equation*}
P(t)=a e^{-a t} \quad t \geq 0 \tag{1}
\end{equation*}
\]

Denoting the oumulative distribution by \(Q(t)\), we have
\[
\begin{equation*}
Q(t)=\int_{0}^{t} a e^{-a t} d t=1-e^{-a t} \tag{2}
\end{equation*}
\]

Solving for \(t\),
\[
\begin{equation*}
t=-\frac{1}{a} \ln (1-Q(t)) \tag{3}
\end{equation*}
\]

But in \(Q(t)\) all probabilities in the interval \((0,1)\) ocour uniformly, so we can use the random number generator to select a probabilty \(Q(t)\); substitution into (3) yields the desired exponentially distributed random variable, \(t\). Equation (3) was used in the Process Model to select waiting times til the next request, and to select the number of pages in a segment.

The following data were taken during a typical
simalation, for each queue discipline:
(1) per cent process idle time;
(2) waiting time in the queue;
(3) number in the queue;
(4) service times;
(5) access times;
(6) channel idle times;
(7) number of fields used per sector on the drum. The following set of parameters was considered typical.
Fractional drum occupancy 90
Number of processes. 20.
Mean inter-request time 15.
mseo.
Mean number pages per segment 10.
Read-write ratio. 3.
Number of drums 3.
Number of channels each drun. 3.
Number of fields each drum. 256.
Number of sectors on drum. 64.
Number of words per page. 64.
Drum revolution time. 16.7 msec.
The following per cents of process idle time were found for
each queue discipline:
First come first served 558
Shortest job first. 44\%
Shortest Access time first 41\%
Other simulations using modified sets of parameters
(for example, two drums with two channels each; or longerservice times, that is, more pages per segment) showed thesame result--the shortest access time queue discipline resultsin minimum idle time. This point has been discussed underour comparison of queues in Section 3.3.5.Probability distributions of all data were taken.Three of them were of particular interest, and are reproduced
hare. These were the waiting time in queue, the number inqueue, and the number of fields used per sector per drum.
These are plotted in Figures 5.1, 5.2, and 5.3 for each
queue discipline. The means and the maximum points are
indicated. It is notable that the mean wait for First Come First Served was 17.1 mseo, while for Shortest Access Time Pirst and Shortest Job First it was significantly less, 6.8 msec for Shortest Job First and 6.3 msec for Shortest Access Time First. Again the Shortest Access Time Queue lead to the minimum wait. It is also of significance that the shape of the waiting time in queue distritution is exponential as predicted by Appendix 2. The number in the queue (Figure 5.2) was about 8 for Pirst Come Pirst Served, and half that for the other two queue disciplines. The number of fields per sector per drum (Figure 5.3), is not dependent on the queue, but is dependent only on the deletion policy, which 18 shown in Pigure 3.12. It is interesting to note that it is normally distributed, and that at deaired ocoupancy level of 90\% the maximum data point was 242 out of 256 fields used (95\%). The mean was 230 fields used (90\%). Tnis was for a sample of 24,500 points. We conclude that ocoupanoy levels in excess of \(90 \%\) aan be maintained without overfiow.

The remaining three distributions are not plotted here, but we will discuss each briefly. The service distribution was found to have approximately the same shape as the number of pages per segment distribution, but it was distorted due to the inclusion of the acoess time in the service time. The mean service time was found to be the sum of the mean access time and the mean transfer time, as expected. The access time distribution was uniform for First
```

Come First Served, with a mean of 16.7/2 msec = 8.34 msec, as
expected. For Shortest Access Time First this distribution
was found to follow closely the predictions of Seotion 4.2.
The ecoess distribution for Shortest Job First was somewhere
between the First Come First Served and Shortest Access Time
distributions, as expected.
Finally the channel idie time distribution showed
that there was an insignificant amount of channel idie time.
Let us mantion what the maximum waits in the queue
were. First Come First Served had the smallest maximum
wait, as expected, and Shortest Job First had the largest.
Some numbers are, for the typical parameters 1isted on page 68,
First Come First Served.......... 62. msec
Shortest Acoess Time............... 65. msec
Shortest Job Pirst................. 100. msec
Note that the Shortest Access Time does not cause waits
too much longer than the First Come First Served Queue.
Other simulations were run, in which the Shortest Job
First queue was observed to have a maximum wait of 4 sec,
for parameters not too different from the ones listed on
page 68.
A last point: queues in which the skip limit**
was used hove a "First Come First Served" component, and
are accordingly less efficient than a Shortest Access Time
queve. A skip limit of ten in a Shortest Access Time queue
caused its efficiency to be only slightly greater than
*Section 3.3.4.

```


Figure 5.2. Probability densities of number in queue for various queue disciplines.

Figure 5.4. Probability density of number of fields used per sector.

\section*{74}
a First Come First Served queue.

\subsection*{5.3. Shortest Access Tine Queue Simulation.}

This simulation was composed of two elements, one to make requests, and the queue. With Section 4.3, the arrival rate of requests at equilibrium is
\[
\begin{equation*}
a=\frac{(N-n)}{(1+R) A} \tag{4}
\end{equation*}
\]
where
\[
\begin{equation*}
R=\frac{T}{C A}\left(\frac{1}{n+1}+\frac{s}{m}\right) \tag{5}
\end{equation*}
\]
and \(\quad T=\) drum revolution time,
\(A=\) inter-request times per working process,
\(c=\) number of channels,
\(s=\) mean number of pages per segment,
m \(=\) number of sectors per drum,
\(\mathrm{n}=\) mean number in the queue.
The simulation was seeking to test equations (17) for
Seotion \(4.3 \%\) which are
\[
\begin{align*}
\mathrm{n} & =\frac{N}{1+\frac{(1+R)^{2}}{\operatorname{Rc}(n+N R)}} \tag{6}\\
W_{q} & =\left(n-\frac{1}{2}\right) R A c \tag{7}
\end{align*}
\]

Four single-channel \((c=1)\) simulations are considered here. The parameters were:
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\rightarrow 1\) & 2 & 3 & 4 \\
\hline T & 16.7 msec & 16.7 msec & 16.7 msec & 16.7 msec \\
\hline A & 15.0 msec & 5.0 msec & 0.5 msec & 1.0 msec \\
\hline \(s\) & 4.0 & 8.0 & 40.0 & 2.0 \\
\hline m & 64.0 & 64.0 & 64.0 & 32.0 \\
\hline N & 20.0 & 10.0 & 25.0 & 5.0 \\
\hline
\end{tabular}

The results, were, for simulation samples of about 3000 data points, as follows.
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|c|}{n} & \multicolumn{2}{|l|}{\(W_{q}\)} \\
\hline set number & predioted & simulated & predioted & stmulated \\
\hline 1 & 12.85 & 12.97 & 27.78 msec & 26.91 msec \\
\hline 2 & 7.96 & 7.99 & 29.48 & 29.01 \\
\hline 3 & 24.00 & 23.68 & \(260.98{ }^{\prime \prime}\) & 259.12 \\
\hline 4 & 3.98 & 4.00 & 15.30 & 16.54 \\
\hline
\end{tabular}

It is apparent that the agreement is good.
One last point: in Section 4.3 it was mentioned that
if the drum position is not random, that is, when short
segments were used, then the access times should decrease,
and in partioular the number in the queue and the waiting
times bhould decrease. The following simulation rerified this:
Parameters:
\(T=26.7 \mathrm{msec}\)
\(A=7.0 \mathrm{msec}\)
\(s=3.3\)
\(m=64.0\)

Results:
\begin{tabular}{cccc}
& Random & \multicolumn{2}{c}{ Function of time } \\
n & \(\mathrm{W}_{\mathrm{q}}\) & n & \(\mathrm{W}_{\mathrm{q}}\) \\
3.86 & 17.11 msec & 2.48 & 11.40 msec
\end{tabular}

There is a significant difference, and fortunately the
errors are in favor of much increased operational efficiency.
From Section 4.3 the efficiency is
\[
\frac{N-n}{N(1+R)}
\]

Efficienor:
Bandom
Punction of timo
~32\%
468
```

5.4. Conolusions.
In this paper we have shown that for a segmented multippogramined, multiprooessor computing system, the following is trues proper maintenance of auxiliary memory can greatly improve system efficiency. We have shown how this can be done. In particular:
(1) It is generally possible to store pages consecutively on the drum, and proper deletion polioy can be used to maintain oocupancy levels in excess of 90\%.
(2) The Shortest Access Time queue discipline is the most effioient queue for an auxiliary memory, where time is spent waiting for mechanioal parts to move into some proper position. If request sizes are large, that is if segments contain many pages, then it is not difficult to derive equations for the average number in queue, and for the average wait in the queue. If the segments are short, these equations break down, but provide an upper limit for the average number in queue and the average wait in queues The error is in favor of inoreased efficiancy.
(4) A reasonable probabilistic model for the processes in a segmented computing system has been given in this paper.

```
(5) Simulation is a partioulariy useful tool for analyzing problems of the complexity of computing systems, for it is rrequentiy helpful in providing a starting point for analysis.
(6) Mixed-Polioy queves may be used in drum (or disc) auxiliary memory systems when we beoome concerned that some requests might hive to wait inordinately long. A "skip inmit" queue was found to be more efficient than a window" queue (see Appendix 2).

\subsection*{5.5. Suggestions for future study.}
(1) The delation polioy of the Processes model. Although it is possible to prevent drum overflow, and to maintain \(90 \%\) ocoupancy, exactly what deletion policy is the best, if any? See chapter 2 and Section 3.4 for disoussion.
(2) The "page-turning" 7 Fs "Begment-turning" allocation problen of Chapter 2 should be considered in detail.
(3) The finite population, shortest job type of queue is yet to be completely analyzed.

APPENEICES

\section*{APPENDIX 1. THE POLLACZEX-KHINTCHINE FORMULA.}

In this appendiz we will derive an equation which Santy (16) refers to as the Pollaczek Khintchine Formala (Saety, pp 40-43). Sasty has derived it for the poisson input, single channel, equilibriun queue. We will extend the reasoning to include the c-channel server. Since we talk only of the number in the system, the queue discipline is irrelevant to our discussion, until we begin to talk of waiting times.

Suppose that arrivals oocur at random ecoording to a poisson process at a rate a per unit time, to a waiting line in statistical equilibrium, before a o-channel facility. They are served according to some arbitrary service-time distribution at a rate ber unit time per channel. We assume that if the service rate of one channel is \(b\) per unit time, then it is be per unit time for all c ohannels operating together. Suppose that a departing request leaves \(q\) in the system behind, including those in service, and that some time \(t\) will elapse before the next departure. Let the waiting line increase in length by \(k\) requests during this one service interval. If the next departing request leaves \(q^{\prime}\) behind in the system, we can relate \(q\) and \(q^{\circ}\) as follows:
\[
\begin{equation*}
q^{\prime}=\max (q-1,0)+k=q-1+d+k \tag{1}
\end{equation*}
\]
where
\[
d(q)=0 \text { if } q>0
\]
\[
d(q)=1 \text { if } q=0
\]

By intwoducing \(d(q)\) we eliminate the max expression.

We assume that equilibrium velues for the first and second moments \(E(q)\) and \(E\left(q^{2}\right)\) of the number in the system exist, where we are treating \(q\) as a random variable. We note that \(E(q)=E\left(q^{2}\right)\) and \(E\left(q^{2}\right)=E\left(q^{2}\right)\) since both \(q\) and \(q^{\prime}\) are assumed to have the same equilibrium distribution. We observe that since equilibrium, eath departing request must leave behind identioal time-independent queues, each having the same probability distribution. Now, from the definition, \(d^{2}=d\), and \(q(1-d)=q\). Thus, taking the expected value of (1) we have
\[
\begin{equation*}
E\left(q{ }^{\circ}\right)=E(q)=E(l)+E(d)+E(k) \tag{2}
\end{equation*}
\]
but since \(E(q)=E\left(q^{\circ}\right)\) we have
\[
\begin{equation*}
E(d)=1-E(k) \tag{3}
\end{equation*}
\]

During an inter-departure interval of length \(t\) we have
\[
\begin{align*}
E(k) & =\sum_{k=0}^{\infty} k \frac{(a t)^{k}}{k!} e^{-a t}=a t \tag{4}\\
E\left(k^{2}\right) & =\sum_{k=0}^{\infty} k^{2} \frac{(a t)^{k}}{k!} e^{-a t}=(a t)^{2}+a t \tag{5}
\end{align*}
\]

Let us denote the combined servioe distribution for all c channels operating in parallel by \(S(t)\). Taking the expectation of \(E(k)\) with respect to this service time distribution we see that
\[
\begin{align*}
E(k) & =\int_{0}^{\infty}(a t) S(t) d t \\
& =a \int_{0}^{\infty} t S(t) d t \tag{6}\\
E(k) & =\frac{a}{b c}=r
\end{align*}
\]
since the mean of \(S(t)\) is \(1 / 00\). But since se have not
specified \(S(t), E(k)=r\) is unaffected by the type of service
dietribution. Then
\[
\begin{equation*}
E(d)=1-r \tag{7}
\end{equation*}
\]

Now, if the probability of the queue increasing by \(k\) is
independent of the length of queue, \(q\), and of \(d\), which
depends only in \(q\), any expectation over products of \(r, q\), and \(d\) is just the product of the respective expected values.

Therefore
\[
E\left(k^{2}\right)=\int_{0}^{\infty}\left((a t)^{2}+a t\right) S(t) d t
\]
which is an average over all time. But
\[
\begin{aligned}
E\left(k^{2}\right) & =\int_{0}^{\infty}(a t)^{2} s(t) d t+\int_{0}^{\infty}(a t) s(t) d t \\
& =a^{2} \bar{t}_{s}^{2}+a \bar{t}_{s}
\end{aligned}
\]

But the variance of \(S(t), \sigma_{s}^{2}\), is
\[
\sigma_{s}^{2}=\overline{t_{s}^{2}}-\bar{t}_{s}^{2}
\]

Therefore
\[
E\left(k^{2}\right)=a^{2}\left(\sigma_{s}^{2}+\bar{t}_{s}^{2}\right)+a \bar{t}_{s}
\]

Finally,
\[
\begin{equation*}
E\left(k^{2}\right)=a^{2} \sigma_{s}^{2}+r^{2}+r \quad r=\frac{a}{b c} \tag{8}
\end{equation*}
\]

If we square both sides of equation (1):
\[
\begin{align*}
& q^{2}=(q-1)^{2}+2(q-1)(d+k)+(d+k)^{2} \\
& q^{2}=q^{2}-2 q(1-k)+(k-1)^{2}+d(2 k-1) \tag{9}
\end{align*}
\]

Equation (9) was obtained by using \(q d=0\), and \(d^{2}=d\). Because of equilibrium,
\[
\begin{aligned}
& E\left(q^{2}\right)-E\left(q^{2}\right)=0=2 E(q) E(k-1)+E\left((k-1)^{2}\right) \\
&+E(d) E(2 k-1)
\end{aligned}
\]

Recall that the validity of (10) depends on the independence of \(q\) and \(k\). Solving for \(E(q)\) and using equations (6), (7), and (8), we have the Pollaczek-Khintchine Formula:
\[
\begin{aligned}
E(q) & =\frac{E\left((k-1)^{2}\right)+E(d) E(2 k-1)}{2 E(1-k)} \\
& =\frac{a^{2} \sigma_{s}^{2}+r^{2}+r-2 r+1+(1-r) r-(1-r)}{2-2 r}
\end{aligned}
\]
\[
\begin{equation*}
E(q)=r+\frac{r^{2}+a^{2} \sigma_{s}^{2}}{2(1-r)} \quad r=\frac{a}{b c} \tag{11}
\end{equation*}
\]

Thus, once we know the variance of the service time distribution, the average number in the system, \(E(q)\) is determined. It is important to note that \(E(q)\) is an average taken over instants just following departures, and is not the time average. If \(E_{t}(q)\) is the time average, all we can say without further argument is that
\[
E(q)<E_{t}(q)<E(q)+1
\]

In general the average number in the service system equals the sum of the average number of busy channels (here it is \(r=\frac{a}{b c}\)) plus the average number in line. To obtain the average wait in the waiting line, which we will denote by \(E(w)\), we observe that \(a\left(E(w)+\frac{l}{b c}\right)\) is the
expected number of arrivals during the expected time of one request in the service system, if the queue discipline is first come first served, because \(\frac{l}{b c}\) is the mean service time. But this must be just the number in the system immediately after a customer departs, that \(1 \mathrm{~s}, \mathrm{E}(\mathrm{q})\), so
\[
a E(w)+\frac{a}{b c}=r+\frac{r^{2}+a^{2} \sigma_{s}^{2}}{2(1-r)}
\]
but \(\mathbf{r}=\frac{a}{b c}\), so
\[
\begin{equation*}
W_{q}=E(w)=\frac{r^{2}+a^{2} \sigma_{s}^{2}}{2 a(1-r)} \tag{12}
\end{equation*}
\]

We have pointed out that \(r\) is just the number of busy ohannels and that \(E(q)\) is the expected number in the system. Inspection of (11) will show that the number in line, \(I_{q}\), must be
\[
L_{q}=\frac{r^{2}+a^{2} \sigma_{s}^{2}}{2(1-r)}
\]

We have the interesting and important result
\[
\begin{equation*}
W_{q}=\frac{L_{q}}{a} \tag{13}
\end{equation*}
\]

Notice that this is exact only if the number in the system, \(E(a)\), is independent of the service time or the arrival rate, as pointed out after equation (10). We also note that if \(\left(W_{q}+\frac{l}{b c}\right)\) is the time of one customer in the service system, then \(b c\left(W_{q}+\frac{l}{b c}\right)\) is one more than the number in the system, \(E(q)\). This is so because if \(E(q)\) are in the system, then \(E(q)-1\) service intervals pass while one request is in the system. Therefore \(b c W_{q}=E(q)\) and we have the
second result
\[
\begin{equation*}
W_{q}=\frac{E(q)}{b c} \tag{14}
\end{equation*}
\]

In words:
\[
\begin{aligned}
W_{\mathrm{q}} & =\frac{\text { average number in the } 1 \text { ine }}{\text { average arrival rate }} \\
& =\frac{\text { average number in the system }}{\text { average servioe rate }}
\end{aligned}
\]

These are true for arbitrary service distributions.
It is interesting to note that if the service times are exponential, that 1s, the service follows a poisson law, then the interval between departures is given by
\[
s(t)=b c e^{-b c t} \quad t \geq 0
\]

It is a well-know fact that for this type of distribution the variance equals the mean squared, that is,
\[
\begin{aligned}
\sigma_{t}^{2} & =\int_{0}^{\infty} t^{2} b c e^{-b c t} d t-\left[\int_{0}^{\infty} t b c e^{-b c t} d t\right]^{2} \\
& =(1 / b c)^{2}
\end{aligned}
\]

Substitution of this into (11) yields
\[
\begin{equation*}
L_{q}+r=r+\frac{r^{2}}{1-r} \tag{15}
\end{equation*}
\]

From which it follows that
\[
\begin{equation*}
L_{q}=\frac{r^{2}}{1-r} \tag{16}
\end{equation*}
\]
and
\[
\begin{equation*}
E(q)=\frac{r}{1-r} \tag{17}
\end{equation*}
\]

Consider for a moment the geometric distribution
\[
\begin{equation*}
P(k)=r^{k}(1-r) \tag{18}
\end{equation*}
\]

It is known that this distribution describes the number
in a service system with exponential input and output
(Saaty, 17, pp 38ff). The expected number in the system is
\[
\begin{aligned}
L & =\sum_{k=0}^{\infty} \mathbf{k} r^{k}(1-r) \\
& =(1-r) r \frac{d}{d r} \sum_{k=1}^{\infty} r^{k} \\
& =\frac{r}{1-r}
\end{aligned}
\]
which is the same as (17). Then we can find the variance of (18) which is
\[
\begin{align*}
& \sum_{k=0}^{\infty} k^{2} r^{k}(1-r)-L^{2}=(1-r) r \frac{d}{d r} r \frac{d}{d r} \sum_{k=0}^{\infty} r^{k}-L^{2} \\
& \sigma_{L}^{2}=\frac{r}{(1-r)}+\frac{r^{2}}{(1-r)^{2}} \\
& \sigma_{L}^{2}=L(L+I) \tag{19}
\end{align*}
\]

We have the result that for the exponential input, exponential output system the number in the system is given by (17), the number in queue by (16), and the variance of the number in the system by (19). The results of this section will hold for queues in which the discipline is random as well as for first come first served. They hold for random disciplines because, on the average, the number of service intervals that must pass before service is the same as for first come first served. This \(1 s\) seen in Section 4.3. In fact the equation for the maan number in the queue, \(L_{q}\) is accurate if the following conditions are satisfied:
(1) all requests stay in the queue until served;
(2) the service time distribution for all channels is the same, with parameter b;
(3) channels serve one at a time;
(4) a ohannel serves the next request, if any are are waiting in the queue, as soon as it finishes with the last request.

A little thought will show that if the se four rules hold, the length of the queue is the same for all disciplines, although the mean wait, \(W_{q}\), will vary. (Morse, 13, p. 117).

APPENDIX 2. WAITING TIME IN A SHORTEST ACCESS QUEUE.
In this appendix the probability density function for
the waiting time in a shortest acess time queue is derived.
We define the following random variables:
\(A=r . v\). of access time, taking on values a.
\(N=r . T\). of number of requests to exit the queue before a given request exits, taking on values \(n\).
\(P=r . v\). of number of pages per segment, taking on values p.
\(R=r . \nabla\). of number of requests in the queue, taking on values \(r\).
\(T=r . V_{\text {. }}\) of transfer time, taking on values \(t\).
\(W=r . v\). of waiting time in queue, taking on values \(w\).
Since at each trial (request-granting time) all requests
are assumed to be equally likely to exit next (Section 4.2)
the distribution of \(N\) is geometric. As on page 58 ,
equation (1), the conditional distribution of \(N\) given that
B are in the queue is
\[
\begin{equation*}
P_{N / R}(n / r)=\left(1-\frac{1}{r}\right)^{n-1}\left(\frac{1}{r}\right) \tag{1}
\end{equation*}
\]
where \(R 1 s\) the random variable of the number of requests in the queue. Denoting the density function of \(R\) as \(P_{R}(r)\) :
\[
\begin{equation*}
P_{N R}(n, r)=P_{N / R}(n / r) P_{R}(r) \tag{2}
\end{equation*}
\]

We are interested in the wait in queue, so we have defined the random variable or wait to be \(W\). Then
\[
\begin{equation*}
P_{W N R}(w, n, r)=P_{W / N R}(w / n, r) P_{N / R}(n / r) P_{R}(r) \tag{3}
\end{equation*}
\]

For a single channel queue the wait in the queue is N access times plus \(N\) transfer times. As in Section 3.2 we assume the number of pages per segment to be a random variable, \(P\), where
\[
\begin{equation*}
P_{p}(p)=o^{2} p e^{-o p} \tag{4}
\end{equation*}
\]
and \(c\) is a constant proportional to the mean number of pages per segment. If \(T^{\prime}\) is the drum revolution time and \(S\) the number of sectors around the drum, then the transfer time for one pages is \(T / / S\). Denoting the random variable of transfer time by \(T\), we have for the density function of \(T\)
\[
\begin{equation*}
P_{T}(t)=k^{2} t e^{-k t} \tag{5a}
\end{equation*}
\]
with the constant \(k\) defined as
\[
\begin{equation*}
k=\frac{S}{\bar{N}_{s} T^{\prime}} \tag{5b}
\end{equation*}
\]
and \(\bar{N}_{s}\) is the average number of pages per segment. The wait in the queue is, from above
\[
W=N(A+T)=N A+N T=y+z
\]
with \(\mathrm{y}=\mathrm{NA}\) and \(\mathrm{z}=\mathrm{NT}\).
From Section 4.2, the oumulative distribution of the
access time is
\[
P\left[A \leq a_{0}\right]=1-\left(1-a_{0}\right)^{N}
\]

But \(y=\) NA. Then
\[
\begin{align*}
P[y \leq a] & =P\left[A \leq \frac{a}{N}\right]=1-\left(1-\frac{a}{N}\right)^{N} \\
& =1-\left[\left(1-\frac{a}{N}\right)^{-N / a}\right]^{-a} \tag{6}
\end{align*}
\]

Now let \(u=-a / N\). Then
\[
\begin{equation*}
P[y \leq a]=1-\left[(1+u)^{1 / u}\right]^{-a} \tag{7}
\end{equation*}
\]

For large \(N\), u approaches zero and we know
\[
\begin{equation*}
\lim _{u \rightarrow 0}[1+u]^{1 / u}=e \tag{8}
\end{equation*}
\]

Thus for large \(N{ }^{*}\)
\[
P[y \leq a] \approx 1-e^{-a}
\]
and the density function for the access time component
of the wait in queue is
\[
\begin{equation*}
P_{y}(a)=\frac{d}{d a} P[y \leq a] \approx e^{-a} \tag{9}
\end{equation*}
\]

Using an elementary probability transformation, the density function for \(z=N T\) is
\[
P_{z}(b)=\frac{1}{N} P_{T}\left(\frac{b}{N}\right)=\frac{k^{2}}{N^{2}} b e^{-(k b) / N}
\]

Defining \(K_{n}=k / N=S / T^{\prime} N \bar{N}_{s}\) we have
\[
\begin{equation*}
P_{z}(b)=K_{n}^{2} b e^{-K_{n} b} \tag{10}
\end{equation*}
\]

Since \(A\) and \(T\) are independent random variables, the conditional density function for \(W\), given \(N\) and \(R\) is
\[
P_{W / N R}(w)=\int_{-\infty}^{\infty} P_{y}(w-x) P_{z}(x) d x
\]
the convolution of \(f_{y}(a)\) and \(P_{z}(b)\). This evaluates to be
\[
\begin{equation*}
P_{W / N R}(w)=\frac{K_{n}^{2}}{\left(K_{n}-1\right)^{2}} e^{-w} \tag{12}
\end{equation*}
\]
\({ }^{*}\) This approximation is surprisingly \(\operatorname{good}\) for \(\mathrm{N}>10\).

Recalling equation (3),
\[
P_{W N R}(w, n, r)=P_{W / N R}(w / n, r) P_{N / R}(n / r) P_{R}(r)
\]

Putting (1) and (12) into (3),
\[
\begin{aligned}
& P_{W N R}(w, n, r)=\left[\frac{K_{n}^{2}}{\left(K_{n}-1\right)^{2}} e^{-w}\right]\left[\left(1-\frac{1}{r}\right)^{n-1}\left(\frac{1}{r}\right)\right]\left[P_{R}(r)\right] \\
& P_{W N R}(w, n, r)=\frac{(k / n)^{2}}{((k / n)-1)^{2}} e^{-w}\left(1-\frac{1}{r}\right)^{n-1}\left(\frac{1}{r}\right) P_{R}(r)
\end{aligned}
\]

If \(N\) is large, as it is assumed to be, then \(P_{R}(r)\) is aporoximately Normal by the Central Limit Theorem, and
\[
P_{W N R}(w, n, r) \approx \frac{(k / n)^{2}}{((k / n)-1)^{2}} e^{-w}\left(1-\frac{1}{r}\right)^{n-1}\left(\frac{1}{r}\right) \frac{1}{\sqrt{2 \pi \sigma_{r}}} e^{-(r-\bar{n})^{2} / 2 \sigma_{r}^{2}}
\]
(13)
which is the required joint density function of waiting time in the queue. The simulation has shown that for the mean queue length, \(\bar{R}\), greater than about 10 with \(\sigma_{r} \ll \bar{B}\) (which is the case when \(\bar{R}>10\)) this approximation is valid. Thus in the steady state situation, it is clear that the probability density for waiting time in the queue is approximately exponential, a fact verified by simulation (Section 5.2).

\section*{APPENDIX 3. DESCRIPTION OF A MIXED-POLICY QUEUE.}

The queue described in this section has been proposed as a shortest access time queue, but one for which we are concerned that a particular request may be continually overlooked due to the random nature of selection. Consider for example a queue which has many requests in it (at least thirty). Such a queue might occur if it were decided to request pages singly instead of in segments. In Section 4.3 it is shown that the waiting time of a request until it leaves a random output queue is given by a geometric distribution, with the expected wait equal to \(n\) service intervals, where \(n\) is the average number in the queue. Now if \(n\) is large, then it is conceivable that a request might have to wait for a very long time: the variance of the geometric distribution is \((n)(N-1) \approx n^{2}\) if \(n\) is large.

Consider the queue shown in Figure A3.1. A new request is always added to the bottom of the stack. A section of the stack, of length \(N\), is considered, the remaining requests in the queue being ignored for the while. We shall refer to the portion of the queue under consideration as being viewed through a window, of size \(N\). The top of the window is always at the top of the stack. The requests in the window are labelled \(R_{1}, R_{2}, \ldots, R_{N}\), and are considered according to the shortest access time first queue discipline. Whenever the request marked \(R_{1}\) is removed, the window is moved down until its top coincides with the next request \(R_{1}\). It

Figure A3.1. Structure of a Mixed-Policy Queue.
```

appears that }\mp@subsup{R}{1}{}\mathrm{ might have to wait until the N }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ service
time before it leaves, but no longer (by then it would be
the only reauest in the window); thus it seems that an upper
bound can be placed on the waiting time in the window,
namely (N - 1) service intervals. But this is not so.
Consider the request marked }\mp@subsup{\textrm{R}}{\textrm{N}}{}\mathrm{ . Suppose by some quirk of
fate that requests are serviced as follows, }\mp@subsup{\textrm{R}}{1}{},\mp@subsup{\textrm{H}}{2}{},···.

```

```

were serviced before }\mp@subsup{R}{N}{}\mathrm{ ; but then the window has become
positioned at }\mp@subsup{R}{N}{}\mathrm{ , and the next (N - 1) requests could be
serviced before R R
window is 2(N - 1). Since the arrival rate is given by
an average, the expected wait before reaching the window is
M; an upper bound to the wait is M + 2(N - 1) service intervals.
We are assuming M > N.
To find a lower bound on the waiting time, consider
the following argument. Suppose a request enters the queue
fust before the window makes a jump of N, then suppose the
window moves one position at the end of each service interval.
The request in question would then wait only (M - N) service
intervals to reach the window. Then suppose it were let
out immediately. The minimum wait is therefore M - (N-1)
=(M - N + l). We have set an upper limit on the waiting time:
Wmax}=(M+2(N-1))\mp@subsup{\overline{t}}{s}{
and the lower limit of waiting time is

$$
\begin{equation*}
W_{\min }=(M-(N-I)) \bar{t}_{s} \tag{2}
\end{equation*}
$$

Equations (1) and (2) assume that $M \geqslant N$.
On the average the window is not full. We can think of the problem as a flow problem, with requests flowing into the bottom of the wondow at the rate of one per service interval, and filtering out through the window at the same rate. Let us imagine one of the requests being tagged so that we can keep track of it. If we know on the average how far dom the window a request moves before it exits then We know the mean mait in the window. Simulation of the problem for several window sizes was carried out, and it was found that on the average the tagged request want half way down the window before exiting. Then we can write

$$
\begin{equation*}
W_{a v}=\left(M+\frac{N}{2}\right) \bar{t}_{g} \tag{3}
\end{equation*}
$$

Figure A3.2 shows the probability densities of a request being at various positions in the window. It is to be noticed that the tagged request spends considerably more time at the upper and lower ends of the vindow then at the center.

The standard deviation was found to be 0.8 of the mean, so the contention that the request is a $\frac{N}{2}$ on the average is not too certain. This implies that the probabilities of $W_{\text {max }}$ and $W_{\text {min }}$ are not small. Figure A3.3 shows the probability density of window fumps. The average window jump is about $\frac{N}{3}$. Figure A3.4 shows the following: the mean position reached

```
by the tagged request, and the mean window movement when it
moves, both as a function of window size.
 Recall that forefficient access time queueing the
mean in the queue had to be at least eight. Hence we would
require that the window length be N}\geq16\mathrm{ . But since M > N,
the overall queue would have to have an expeoted length M +N\geq32.
 It appears that the use of the minimum access time
queue without the window, but with the "skip limit" mentioned
In Section 3.3.5 is better for the following reason. The
skip limit could be set to an upper limit of 2(N - l) so that
the maximum wait for that queue would be the same as given
by equation (1), but with M = 0. Since the "skip limit*
queue with the same maximum is longer than the corresponding
"window" queue, the access time is shorter, and more efficient
queueing is had.
```



Figure A3.2. Probability density of position of tagged request.


Figure A3.3. Probability density of number entering window
when it moves.


Figure A3.4. A comparison of window movement and average
time spent in the window.

```
APPESIDIX 4. A CONTINUOUS-TIME MARKOV MODEL.
 W1th Howard (1l, pp. 92ff) we define a rate Matrix [A],
having elements a ig. The rate matrix is similar to the
familiar Markov transition probability matrix except that the
elements a if represent transition rates from the 1th to the
fth}\mathrm{ state. The rates are assumed to be taken from exponential
distributions. A transition matrix, then, is a discrete form
of a rate matrix. Since we consider an equilibrium system
the overall rate of change must be zero. Define a state
probability vector P, where P = [p , p
probability that the system has i requests in 1t. Because
of equillibrium,
[P][A] = 0
We make the following assumptions.
(1) All requests foin the queue and do not leave until service is complete.
(2) Each channel serves one request at a time, and does not begin the next request until the present request is finished.
(3) As soon as a channel becomes idle, the next request enters service, provided there are some in the queue.
(4) The queue discipline is first come first served, or else random. For any other queue discipline that satisfies (1) through (3) the expressions for state probabilities and average number in inne are the same, but the walting time in the queue is not the same. See closing remarks of Appendix 1 .
We use the following notation:
\[
\begin{aligned}
& M= \text { the size of the finite number number in the } \\
& \text { total population being considered--it is the } \\
& \text { sum of the number in the service system plus the } \\
& \text { number making reauests. }
\end{aligned}
\]
```

$a=$ mean request rate per requestor, where $1 / a=$ mean interarrival interval per mequestor.
$b=$ mean service rate per channel, where $1 / b=\bar{E}_{s}$, the mean service time.
$c=$ the number of parallel channels providing service.
$p_{n}=$ the probability of the service system having $n$ of the $M$ possible requestors in it.

If the system in in state $n$ (indicating that $n$ requests are in the service system, and that $(M-n$ ) are remaining outside in the requesting population) then the rate of exit to the state $(n+1) 18 \mathrm{nb}$ for $\mathrm{n} \leq$ and 1 s cb for $\mathrm{n}>0$. We have the rate matrix

At the $c^{\text {th }}$ row the matrix is

$$
\left[\begin{array}{lllll}
\ldots & (c-1) b & -(c-1) b-(M-c+1) a & (M-c+1) a & 0 \\
\ldots & 0 & c b & -o b-(M-c) a & (M-c) a \\
\ldots & 0 & 0 & o b & -c b-(M-c-1) a
\end{array}\right.
$$

Because of equation (1) we can write

```
\(-\mathrm{Map}_{0}+b p_{1}=0\)
\(\operatorname{Map}_{0}-b p_{1}-(M-1) a p_{1}+2 b p_{2}=0\)
```

and in general

$$
\begin{array}{ll}
(M-n+1) a p_{n-1}-n b p_{n}-(M-n) a p_{n}+(n+1) b p_{n+1}=0 & 1 \leq n \leq c \\
(M-n+1) a p_{n-1}-c b p_{n}-(M-n) a p_{n}+c b p_{n+1}=0 & c \leq n \leq M
\end{array}
$$

Adding the $n^{\text {th }}$ and the $(n-1)^{\text {th }}$ equations, which is equivalent to adding adjacent columns in [A], we have by recursion

$$
\begin{aligned}
& p_{1}=M r p_{0} \\
& p_{2}=\frac{M-1}{2} r p_{1}=\frac{M(M-1)}{2} r^{2} p_{0} \\
& \vdots \\
& p_{n}=\frac{M(M-1)(M-2) \ldots(M-n)}{n!} r^{n} p_{0}
\end{aligned}
$$

so that

$$
\begin{align*}
& p_{n}=\frac{M!}{n!(M-n)!} r^{n} p_{0} \quad 0 \leq n<c  \tag{2}\\
& p_{n}=\frac{M!}{c!(M-n)!} r^{n} \frac{1}{c^{n-c}} p_{0} \quad c<n \leq M
\end{align*}
$$

where $r=\frac{a}{b} . p_{0}$ is found from the requirement that

$$
\begin{equation*}
\sum_{n=0}^{M} p_{n}=1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
p_{0}=\frac{1}{\sum_{n=0}^{c-1} \frac{M!}{n!(M-n)!} r^{n}+\sum_{n=c}^{N} \frac{M!}{c!(M-n)!} r^{n} \frac{1}{c^{n-c}}} \tag{4}
\end{equation*}
$$

If $h$ is the average number of processes actually in operation, $k$ the number being serviced, and $L_{q}$ the number in inne, then

$$
\begin{equation*}
\mathbf{k}+\mathrm{h}+\mathrm{L}_{\mathrm{q}}=\mathrm{M} \tag{5}
\end{equation*}
$$

and because of equilibrium

$$
\begin{equation*}
\frac{h}{k}=\frac{a}{b}=r \tag{6}
\end{equation*}
$$

The number being serviced is

$$
\begin{equation*}
k=\sum_{n=0}^{c-1} n p_{n}+o \sum_{n=c}^{M} p_{n}=c-\sum_{n=0}^{c-1}(c-n) p_{n} \tag{7}
\end{equation*}
$$

The number in line is

$$
\begin{equation*}
L_{q}=\sum_{n=0}^{M}(n-0) p_{n} \tag{8}
\end{equation*}
$$

and as usual the waiting time in the line is

$$
\begin{equation*}
W_{q}=\frac{L_{q}}{a} \tag{9}
\end{equation*}
$$

The number in the system is

$$
\begin{equation*}
L=L_{q}+k=\sum_{n=0}^{M} n p_{n} \tag{10}
\end{equation*}
$$

The efficienoy is


The summations can be evaluated on a computer without too much difficulty if the factorials are expressed as logarithms, and use is made of the fact that

$$
n!=\exp \left[\sum_{i=1}^{n} \ln (1)\right]
$$

It is interesting that a closed form for (10) can be obtained when there is one channel, 1.e., when c=l. In this case equations (2) become

$$
\begin{equation*}
p_{n}=\frac{n!}{(M-n)!} r^{n} p_{0} \quad n=0,1, \ldots, M \tag{11}
\end{equation*}
$$

and (4) becomes

$$
\begin{equation*}
p_{0}=\frac{1}{\sum_{n=0}^{M} \frac{M!}{(M-n)!} r^{n}} \quad r=\frac{a}{b} \tag{12}
\end{equation*}
$$

Then $L$ is the number in the system, and $L-r=L_{q}$ is the number in the line.

$$
\begin{equation*}
L=p_{0} \sum_{n=0}^{M} \frac{n M!}{(M-n)!} r^{n} \tag{13}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\frac{M-L}{p_{0}}=\sum_{n=0}^{M} \frac{(M-n) M!}{(M-n)!} r^{n}=\sum_{n=0}^{M} \frac{M!}{(M-n-1)!} r^{n} \tag{14}
\end{equation*}
$$

expanding (14) we find

$$
\begin{equation*}
\frac{M-L}{P_{0}}=M+M(M-1) r+M(M-1)(M-2) r^{2}+\ldots \tag{15}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{1}{P_{0}}=1+M r+M(M-1) r^{2}+M(M-1)\left(M-2 \neq r^{3}+\ldots\right. \tag{16}
\end{equation*}
$$

Comparison of (15) and (16) reveals that

$$
\begin{equation*}
\frac{M-L}{p_{0}}=\left(\frac{1}{p_{0}}-1\right) \frac{1}{r} \tag{17}
\end{equation*}
$$

Solving for L ,

$$
\begin{equation*}
L=M-\frac{1-p_{0}}{r} \tag{18}
\end{equation*}
$$

All that is needed to find $L$ is an evaluation of $p_{0}$, not an evaluation of each $p_{n}$ as well. The number in the queue is

$$
\begin{equation*}
L_{q}=L-r=M-r-\frac{1-p_{o}}{r} \tag{19}
\end{equation*}
$$

So that the waiting time in queue is

$$
\begin{align*}
& W_{q}=\frac{L_{q}}{a}=\frac{M}{a}-\frac{r}{a}-\frac{1-p_{0}}{a r} \\
& W_{q}=\frac{1}{a}\left(M-\frac{1-p_{0}}{r}\right)-\bar{t}_{s} \tag{20}
\end{align*}
$$

where $\bar{t}_{s}=\frac{1}{b}$, the mean service time.
The interested reader is referred to A.L. Scherr's Doctoral Thesis, in which it is shown that Multiprocessor time-shared computing systems are in general, aocurately described by Markov Models.

## BIBLIOGRAPHY

1. Churchman, C.W., et al. Introduction to operations

Research (Chapter 14, "Queueing Models"). New York, John Wiley, 1957.
2. Corbato, F.J., et al. The Compatible Time-Sharing System: A Programmer's Gulde. Cambridge, M.I.T. Press, 1963. Also 2nd Edition, 1965.
3. Dennis, J.B. Program Structure in a Multi-Access Computer. Cambridge, M.I.T., Project MAC Memo MAC-TR-1
4. Dennis, J.B. An Example of Intersphere Communication And Asynchronous Parallel Processing. Cambridge, $\overline{\text { M.I. }} \overline{\text { T. P Pro iect }}$ M $\overline{A C}$ Memo MAC-M-189: September, 1964.
5. Dennis, J.B. Automatic Scheduling of Priority Processes. Cambridge, M.I.T. Project MAC Memo MAC-M-187: October, 1964.
6. Dennis, J.B. Segmentation and the Design of MultiProgrammed Computer Svstems. Cambridge, M.I.T. Project Mac memo: January, 1965.
7. Dennis, J.B., and Van Horn, E.c. Nesting and Recursion of Procedures in a semmented Memory. Cambridge, M.I.T. Project MAC memo.
8. Feller, W. Probability Theory and its Applications. New York: John Whley, 1950.
9. Flores, Ivan. Derivation of a Waiting-time Factor for a Multiple-bank Memory. Journal of the American Association for Computing Machinery, Vol. II, No. 3 (July, 1964), pp 265-282.
10. Heller, Nelson B. Stochastic Models of a Multiple Access Computer. M.I.T. March 1965.
11. Howard, R.A. Dynamic Programming and Markov Processes. Cambridese: M.I.T. Press, 1960.
12. Lee, $\mathrm{Y}_{3}$.W. $\frac{\text { Statistical }}{}$ Theory of $\frac{\text { Communication }}{}$. (chapters
13. Morse, P.M. Queues, Inventories, and Maintenance. New York: John Wiley, 1963.
14. Patel, Nitin R. A Mathematical Analysis of Computer The Sharing Systems. Cambridge: M.I.T. Operations Researoh Center Interim Technical Report No. 20, uly, 1964.
15. Riordan, J. Stochastio Service Systems. New York: John Wiley; 1962.
16. Saaty, T.1. Elements of Queueing Theory. New York: MoGraw-Hill Bool Company, 1961.
17. Scherr, A.L. An Analysis of Time-Shared Computer Systems. Cambridge: N.I.T., Course 6 Ph.D. Thesis, Juna, 1965. Published as Project MAC Technical Heport MAC-TR-18, August, 1965.
18. Witsenhausen, $H$. A Note on Asynohronous Parallel Processing. Cambridge: M.I.T. Project MAC Memo FAC-M-186, July, 1964.

[^4]
## CS-TR Scanning Project

## Document Control Form

Date: 12111195
Report\# Lcs-TR_2)
Each of the following should be identified by a checkmark:
Originating Department:
$\square$ Artificial Intellegence Laboratory (AI)
Q Laboratory for Computer Science (LCS)
Document Type:
$\triangle$ Technical Report (TR) $\square$ Technical Memo (TM)
Other: $\qquad$
Document Information
Number of pages: 108 ( 115 -imAGES) Not to include DOD forms, printer instructions, etc... original pages only.
Originals are:
Intended to be printed as :

$\square$ Single-sided or
D Double-sided

Print type:


Check each if included with document:

D DOD Form
Spine
X. Funding Agent Form
$\square$ Printers Notes

X Cover Page
$\square$ Photo negatives
$\square$ Other: $\qquad$
Page Data:
Blank Pages (pr poo number): $\qquad$
Photographs/Tonal Material pay mon muon: $\qquad$



Scanning Agent Signoff:
Date Received: 121195 Date Scanned: 118196 Date Returned: 111196

Scanning Agent Signature:



## Scanning Agent Identification Target

Scanning of this document was supported in part by the Corporation for National Research Initiatives, using funds from the Advanced Research Projects Agency of the United states Government under Grant: MDA972-92-J1029.

The scanning agent for this project was the Document Services department of the M.I.T Libraries. Technical support for this project was also provided by the M.I.T. Laboratory for Computer Sciences.



[^0]:    A process is carried out by a processor under the direction of instructions in procedure segments. (3.4.7).

[^1]:    *See page 60

[^2]:    This conciusion is verified by simulation. See Chapter 5.

[^3]:    *This is not true in the case of short segments because the drum will have rotated only a short distance. This matter $1 s$ discussed further in Section 4.2 , page 63.

[^4]:    An extensive bibliography for the entire field of queueing theory is to be found at the end of Saaty's book, reference (18) above.

