

This blank page was inserted to presenie pagination.

CALCULAID: AN ON-LINE SYSTEM

FOR ALGEBRAIC C<MPUTATION AND ANALYSIS

by

MAYER ELIHU WAN'l'MAN

B.A., Harvard College, 1961

Submitted in Partial Fulfillment

of the Requirements for the Degree

of Master of Science in

Industrial Management

September 1965

Supervisor

Accepted by • • • . • • . . • • • • • • • • • . • . . • • • • • • •
Chairman, Departmental Committee on Graduate Students

''Work reported herein waa aupported (in part)
by Project MAC, an M.I.T. reaearch program
aponaored by the Advanced Research Projects
Agency, Department of Defenae, under Office of
Naval Research Contract Humber Nonr-4102(01).
Reproduction in whole or in part is permitted for
any purpose of the United StatH Government."

,.

CALCULAID: AN ON-LINE SYSTEM

FOR ALGEBRAIC COMPUTATION AND ANALYSIS

by

MAYER ELIHU WAN'l'HAN

Submitted to the Alfred P. Sloan School of Management on
September 15, 1965 in partial fulfillment of the requirements
for the degree of Master of Science in Industrial Management.

ABSTRACT

OPS is an on-line system developed by K. Greenberger et.
Project MAC. The present work provides a powerful and simple
perform numerical manipulations and calculations within OPS.
program package is called CALCULAID.

sl. st
way to
The

A method of executing algebraic assignment statements, of which
MAD and FORTRAN assignments are a subset, is provided. When this
assignment-1tatement ability is coupled with other features of the
OPS sy1tem, such as unconditional transfers, general conditionals,
and array and function declarations, most of the ability of a compiler
language is provided. Because the programs written in OPS are executed
interpretively, OPS-3 programs can be changed and re-run iamediately,
without being recompiled.

The other elements of CALCULAID are a program for creating multi­
ple linear regreuion models, rank-ordering and counting data, and
finding roots to polynomial equations in one unknown.

The applications of CALCULAID to the analysis of a round-robin
scheduling model and to a process-control problem are discussed, and
conclusions regarding the suitability of running computational programs
in an interpretive mode are drawn.

Thesis Supervisor: Martin Greenberger
Title: A1sociate Professor of Industrial Management

2

Professor William C. Greene
Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dear Professor Greene:

September 15, 1965

In accordance with the requirements for graduation, I herewith submit
a thesis entitled "CALCUIAID: An On-Line System for Algeb~aic Computation
and Analysis."

Thanks are due to Professor M. Greenberger, who was an advisor in
name and in deed, and to Professor D. Carroll, who served on my committee
and made many helpful suggestions. Conversations with other members of
Project MAC, especially those from the Sloan School, provided valuable
assistance in detecting logical flaws and clarifying obscurities.

The patience shown by Mrs. E. Schneider, who typed this thesis, was
remarkable. I will never know how she managed to smile when the inser­
tion of one word forced the retyping of entire pages.

Sincerely yours, tJ?/
~~~,,~ 

Mayer Elihu Wantman 

3 



Restricted Distribution 

This thesis has been given limited reproduction with 

the permission of the Alfred P. Sloan School of Management. 

However, this copy is issued with the understanding that 

none of the data resulting from this investigation will be 

used for advertising or publicity purposes, and that the 

thesis is solely for the confidential use of the organization 

or individual to whom it is addressed. 



TABLE OF CONTENTS 

ABSTRACT . . • . . . . . . • . . . . . • • • . . • . . . • • . 2 

LETTER OF TRANSMITTAL . . . . . • • • • • • • . • . . . • . . 3 

CHAPTER I. INTRODUCTION 

The OPS System • . . . 

7 

9 

CHAPTER 11. OPERATIONS WITHIN CALCULAID 11 

ASSIGNMENT STATEMENTS . . 11 
Simple Arithmetic Statements 14 
Arrays . . . . . 14 
Function Calls . . . • . . • 15 
Array Operations • . . . . • 16 
Literal Vectors . • • . . . • • . . . • . . 16 
Infix Operations . 17 
Logical Operations 22 
COMPUT . . • . 23 
SETBCD . . . . 23 

REGRESSION MODELS 24 
Data Storage . 24 
Model Specification • . . . . . . • . • • . 25 

ROOTS TO POLYNOMIAL EQUATIONS . . . • • . . . . 28 
RANKING AND COUNTING 30 

CHAPTER Ill. APPLICATIONS . . . . . 32 

Analysis of Round-Robin Scheduling in 
Time-Sharing . . . . . 32 

The Scheduling Algorithm . • 32 
The Analysis . • • • • • . • 33 
Model of a Cheese-Production Process 37 
The Process . • • . . . • • . . • • . • . • 37 



TABLE OF CONTENTS (Continued) 

APPENDIX 1. INTERNAL CHARACTERISTICS OF SET 

BRKUP •• 
MAKLST 

Polish Lists 
Modifications 

EVAL ••..•.•.•.•.••••••••• 

42 

42 
43 
44 
45 
47 

Standard Polish Lists . . • • • • • • • . . • 47 
Storing of Results • . 48 
Indexing and Iteration 48 
Special Operations • • 49 

Suggested Improvements to SET 50 

APPENDIX 2. SUITABILITY OF SET FOR EXTENSIVE CC!fi'UTATIONS 51 

REFERENCES • . . • • • 53 

ASSOCIATED REFERENCES 53 

6 



Chapter I 

INTRODUCTION 

This work was performed within the framework provided by Project 

MAC, an experiment in multiple-access computer systems. Project MAC 

provides the means whereby several persons may use the computer at 

what appears to them to be the same time, but which in reality is a 

single-server queue in which everyone lines up for service. A user 

places himself in the queue by issuing a command to run either one of 

the system programs (such aa logging in to the system or compiling a 

program) or one of his own programs, which may be anything he has 

previously written. 

Each user has apace reserved for him in a disk file which he can 

access directly from his console. It is from this collection of programs 

in his own directory that he may select a program to be edited, compiled, 

or run. 

The great advantage of a system such as Project MAC's is that each 

user has a fairly direct line to the computer, but when he is not using 

the machine someone else may do so. If none of the "on-line" users has 

any programs to be run, the system supervisor recognizes this fact and 

runs programs that have been submitted in the traditional way for 

batch processing. Thus there is no penalty to the user if he wishes to 

take some time to think about what to do next. 

7 



---·~-----·~-----~---..,-~-

8 

The Project MAC system, known as CTSS (Compatible Time Sharing 

System) [l], provides a wide spectrum of commands for program com­

pilation and file manipulation. Since the inception of the project 

in July, 1963 progress has been made in the area of ,!:!ultiple !ccess 

£omputers. With the introduction of a new file system in August, 

1965 users were given significantly better file-handling commands. 

The OPS system [2], operating within CTSS, gives the ability to 

structure commands and change programs as they are being run. 

The program "package" called CALCULAID provides a convenient way 

to specify and execute requests for mathematical computation and man­

ipulations. It runs entirely within the OPS-3 system. In addition 

to a general assignment-statement capability, such as the execution of 

the statement 

X • Y +A * (Z + 5) 

several more specific programs have been provided. These include a 

multiple linear or simple polynomial regression program, a solver of 

polynomial equations in one unknown, a count-by-interval program, and 

a program to rank-order a given sequence of numbers. 

These programs can be used singly, to perform individual tasks, or 

they can be combined together in "programs", where each step of the 

program is one of these macro operations. The system can be used either 

as a very large and fast "desk calculator" or as a powerful progra11111ing 

device which allows simultaneous creation and execution of programs. 

A brief introduction to the OPS-3 system will be given, followed 

by a detailed description of the elements of CALCULAID. 



9 

The OPS System 

The reader interested in a detailed description of the OPS system 

is referred to the OPS-3 manual [2]. There he will find extensive 

explanations of all system programs and fUDCtions. The brief intro­

duction to OPS given here serves as background to this thesis. 

OPS extends the Project MAC time-sharing system in the areas 

of command structuring and data handling. The OPS user finds it easy 

to integrate his own commands into the system and write programs 

consisting of these commands. Each step of the program consists of one 

operator. This program of operators (called a compound operator or 

KOP) can then be used in the same way as an individual operator giving 

the user great flexibility in tailoring the command structure to his 

individual needs. Steps that are performed repeatedly can be made 

into a KOP and called like a subroutine. 

A call to a KOP can be a small step, if the KOP has only a few 

simple operators, or a very large one, if the KOP contains calls to 

other KOP's which call further KOP's, etc. In OPS, this hierarchical 

command structure can be built up on-line, with frequent checking of 

intermediate results. 

OPS provides a convenient facility for data storage and retrieval. 

It uses coumon storage as a data area that can be dynamically allocated 

by the user from the console, while the program is running. One can 

define cells, vectors, matrices, 3-dimensional arrays and functions, 

in fixed, floating point, or alphabetic mode. Programs have been provided 

within the OPS system which allow symbolic reference to these data 



10 

during axecuUon. 'the uHr n .. d not bow exactly where the aylllbob are 

1tored, or if their location chana-1 from ~ ... c.utiGll to th• next, 

aa they are looked up 1n the 1ymbol tabl• illllldittaly pr:Lor to.execution. 

l>tlta can be 1aved Oft aad retdev.. froa tu diilk by udaa 1Uadard 

OPS proaraiu. Thia allotu you to prop•., to aoa poia in a calculation, 

1ave intermediate re1ult1, and tr1 to11tt:hia& n.w. lf th• act..,t i• 

uneucc•Hful and dHtroya t.ha data, tu i~.-..d£ate Hllllh oaa be 

eaaily attd quickly r•atorad. 

<: 



Chapter II 

OPERATIONS WITHIN CALCULAID 

ASSIGNMENT STATEMENTS 

one conclusion implicit within the Project MAC time-sharing 

system is that an individual command should initiate a significant 

amount of work, without putting an undue strain on the user. There 

has been considerable emphasis on writing programs that are powerful 

and easy to use. 

The same policy has been followed in the construction of SET, the 

aasignment-atatement executor. SET executes the atandard arithmetic 

operations+, -, *• and/. The special feature of SET ia that operationa 

can be apecified for entire arrays. SET does a considerKble amount of 

interpretation and processing to determine indicea and control loops, 

thereby relieving the programmer of hia reaponaibilitiea in this area. 

Relieved of the tedious job of index- and 1ubscript-tending, the 

user has more freedom to think about his own problem instead of concerning 

himself with the "housekeeping" chorea. The computer does drudgery with 

far leas fatigue than do hilmans. 

An aaaignment statement ia a line of the form 

SET A • X + Y + Z * SQR.T.{C+D) 

The input line ia analyzed, paraed into the proper groupinga, and 

executed. The aymbola on the right-hand side are looked up in the OPS 

aymbol table, the indicated operations are performed, and the result is 

stored in the location A (also looked up in the aymbol table). 

11 



12 

first row and second column of A. One very useful property of SET is 

that if any of the variables mentioned in an assignment statement are 

arrays, the statement is executed for all possible elements in the arrays. 

For instance, if B is a vector of 10 elements, the statement 

SET B • 0 

sets all 10 cells of B to zero. If A is a vector of 10 elements, the 

statement 

SET A • B 

places the first element of B in the first cell of A, the second element of B 

in the second cell, etc. 

If, however, A is only 5 cells long, the process stops after only 

5 transfers have been made. In general, the range of operation is limited 

by the smallest array mentioned. Single cells and explicit numbers.:are 

expanded as far as is necessary, as in 

SET B • 2 

which sets all the cells of B to the value 2. 

SET B "' DELTA 

fills B with whatever value DELTA has when the statement is executed. 

The same rules apply to 2- and 3-dimensional arrays. If A is a 

5 x 10 matrix and B is a 10 x 5 matrix, only the overlapping 5 x 5 part 

is affected by the statement 

SET A • B 



13 

As soon as the first row of B is exhausted SET begins to transfer the 

second row. After five rows have been thus transferred no more rows 

are available in A and the process is terminated. 

Rows and columns of matrices may be treated as vectors. A(l) 

means the first row of A, while A(O,l) means the first column of A. 

The reason for the 0 subscript is that SET recognizes a subscript of 0 

to mean a subscript over which an iteration is to be performed. An 

omitted subscript is also considered to be an iteration subscript. Thus 

A(I) and A(I,O) mean exactly the same in a SET statement. The 0th cell 

of an array is referenced by setting a variable, say X, to zero and 

then referencing A(X). 

The only limitation placed on subscripts is that a subscripted 

variable may not be used within a subscript. A(:s+<:/D) is allowable 

(if B, C, and Dare cells), but A(I(l)) is not. The limitation is 

necessary because of the way in which iterations are handled. Any 

other kind of computation, including calls to functions, may be included 

in a subscript. 

It is often convenient to have a vector of the positive integers, 

for use in computing weights or averages. An implicit vector of integers 

called INTEGR has been included within SET, and it may be used like 

any other vector in a SET statement. If A is a vector of 10 eleinents, 

the statement 

SET A • INTEGR 

will put the numbers 1,2,3,4, ••• ,10 into A. Modes (integer or floating 

point) are again handled properly by SET. 



14 

Simple Arithmetic Statements 

'lbe four arithmetic operators+, -, *•and/, meaning addition, 

subtraction, lllUltiplication, and division respectively, and .P., 

meaning raise to the power are allowed. For exniple, the statement 

SET A • (:&+<:) * (D·E.P.2)/5 

would be executed as follows: If B•l, C-4, D-3, and E-6 

A• (1+4) * (3-(6)
2
)/5 

- 5*(3-36)/5 
• 3-36 

- -33 

The number -33 would be placed in A. SET performs all necessary mode 

conversioo.s. If smae of the syaibols on the right happen to be atored 

as integers, they are converted to floating-point numbers before any 

calculationa are performed. If A is declared to be integer mode in the 

symbol table, the result will be converted to integer form before it is 

stored. 

The MAD {3) convention of bracketing all operators (with the 

exception of +, -, *, and /) with periods has been followed. Thus the 

pO!Wer operator, as already mentioned, is ".P.". Bracketing 111akes opera-

0%'.a easily recognizable, and allows simple extension of the operator 

vocabulary without using special characters. 

Arrays 

Subscripts are handled just as in FORTRAN and MAD. A(l) indicates 

the first element of vector A. A(l,2) indicates the element found in the 



15 

Function Clllll 

Calls can be 11111de to all function• except tho1e that retur11 a 

result throush the calling nquence. The re.eon a function eanoot 

change its arg1111ent1 11 that it i• called with pointer• to copie• of 

all itl arglllllfJnt1, not with pointer• to the ........ ti th .... lve1. 

Therefore when a function attempt• to cha11gt1 1omethiftl f.n it1 caUiq 

11quence, it changH the copy, not tha original cell with which it was 

called. 

Call• are made a& in MAD, with a period between tbe D8lllt of tha 

function and the parnthHH enclo.tng the a'tt-nta. ArgUlillhltl my be 

c0111Puted, and the number of ergumeftt• ia lillited to 10. tf you with to 

·u1e a function that has not yet been loaded, type 

LOADO ALPHA 

whue ALPHA ii the name of the file containing the de11l'ed 1ubroutine. Then 
.i 

I 

.~ype 

where BETA ii the entry point to the 1ubro\itine (it •Y be the .... •• ALPHA) 

and I is the nUlllber of argument• the function expect1, De!:ailed da1cription1 

of these loading and declaration statements are coataine4 in the OPS manual (2). 

Now SET has all the information it need1, and a 1tatet111ot of the fora 

SET A• BETA.(C,l>+G(3),X) 

will be properly executed. A call to a function may ~ contain another 

function call. For example, 

SET A• SQllT.(c+SIN.(B)) 

ii not allowed. 



r---

16 

Array Qperations 

SET will execute a statement for all elements contained in argu­

ment arrays. It can also perform matrix multiplication, take first 

differences of vectors, or "compress" one vector with another. Thia 

gives the user mathematical power beyond that offered by a compiler 

language. A single statement can do what woul~ take 5 statements in 

MAD, and the chances for error are reduced, especially since the 

prograumer can be unconcerned with the dimensionality of arrays. If 

he specifies the multiplication of one matrix by another, SET will 

check to see that the number of columns in the first agrees with the 

number of rows in the second. If they do not agree, an appropriate 

message is printed. 

Literal Vectors 

If a vector is to be used only once, say for a logical compression, 

it is bothersome to have to enter it in the symbol table and then do a 

"TYPE IN'' or a series of SET' s. Literal vectors allow a vector to be 

typed directly into a SET statement. To enter a set of values into 

VECO, type 

SET VECO • (2,4,A,c+D,VEC1(5)) 

Any computations within this "literal vector" are allowable, except that 

none of the elements can be of dimension greater than O. Thus 

SET VECO • (A+B*SIN.(5),B,C,LOG.(2),VEC1,H.VEC2) 

is legal, but 



17 

SET VECO (A,B,C,VECl+VEC2,D) 

is not. 

These console vectors may be used nearly anywhere in a SET state-

ment. The restrictions are noted below. 

Infix Operations 

Matrix multiplication is best explained by example. Assume 

A cell 

VECO: vector of 5 elements 

VECl: vector of 10 elements 

VEC2: vector of 10 elements 

VEC3: vector of 20 elements 

MATl: matrix 5 x 10 

MAT2: matrix 10 x 10 

MAT3: matrix 10 x 10 

MAT4: matrix 10 x 20 

The statement 

SET A = VEC1.M.VEC2 

computes the inner product of VECl and VEC2 and puts the result in 

location A. 

SET A = VEC1.M.VEC3 

is an error since VECl and VEC3 are not of the same dimension. Constants 

may be used in matrix multiplications. 

SET A= VECl.M.l 

would put the sum of all elements of VECl into A. One possible application 

for this statement is the computation of sum-of-squares. One would use a 

sequence of statements like 



18 

SET VEC2 • VECl*VECl 

SET A z VEC2.M.l/10 

: , ~. - ,. -~~- - "' '· 

The first statement squares the elements of VECl, and the second sums 

them and divides to obtain the average 1quared deviation. These two 

statements could not be written 

SET A= (VECl*VECl).M.1/10 

because SET does not have the temporary storage that is required. If 

the RMS were desired we could either add the statement 

SET A• SQRT.(A) 

or change the second statement to read 

SET A• SQRT.(VEC2.M.l/10) 

Matrices can be pre- or post-multiplied by vectors of the proper 

dimension. 

SET VECl = VEC2.M.MAT2 

performs the multiplication indicated by 

( VEC2 ) 

MAT2 



19 

SET VECl • MAT2.M.VEC2 

performs the multiplication 

The statement 

SET VECO • VEC2.M.MAT1 

is allowable, since VEC2 and MATl are compatible, but the operation 

will be carried out for only the first 5 elements of VBC2 and the first 

5 columns of MATl. At that time there is no more space in VBCO and the 

statement is terminated. 

The order of arguments in matrix-algebra is important. 

VECO .M.MATl 

is allowable, since we are performing 

( VECO ) 

MATl 



20 

MATl .M. VECO 

is not allowable, since it implies 

\ I ' 
' • v ') 
) (/ ~ 

/ 0, 

The 10 elements in each row of MATl are incompatible with the 5 

elements in VECO. 

Matrix multiplication by a constant is handled in a special way. 

If the left side of the SET statement is a vector, the constant is 

considered to be a vector also; if the left side is a single cell, the 

matrix is sunmed over all its elements and multiplied by the constant. 

For example 

SET VECl = MAT2.M.l 

performs 

MAT2 (1) 



21 

That is, VECl is set to the row sums of MAT2. 

SET VECl = l.M.MAT2 

places the column sums of MAT2 into VECl. The number 1 is expanded as 

far as is necessary to satisfy MAT2. 

The statement 

SET A = 2 .M.MATl 

multiplies each element of MATl by 2 and cumulates the total into A. 

This seems the most legitimate interpretation of an operation which is 

not defined in standard matrix algebra. 

NOTE: There is no possibility of confusing the period associated with 

an operator with a decimal point attached to a number. 

1.5.M.VECl 

will be interpreted correctly, as will 

VECl.M • . 5 

Since the matrix multiplication operator automatically transposes a 

vector if it is required, there is no particular need to transpose 

vectors explicitly •. T., which will transpose a matrix, has been in­

cluded within SET. 

SET MAT2 = .T.MAT3+5 

will transpose MAT3, add 5 to each element, and put the result in MAT2. 

If .T. is given a non-matrix operand, SET will deliver an appropriate 

message. 



22 

An implicitly transposed matrix may not be ueed as an operand 

to ".M." 

SET VECl • (.T.MATl).M.VECO 

is not allowed. To perform the calculation, define a new symbol, 

say MATS, of dimension 10 x S. Then type 

SET MATS • .T.MATl 

SET VECl s MATS:.M. VECO 

First-differences can be taken with the .D. operator. It has a 

single operand, which must be the name of an internally-stored vector 

(again, not a literal vector). It returns the aeries of first differ­

ences between elements. Suppose VECl • .5,3.4,2.9,13.l,12.9,15.7,9.3. 

The statement 

SET VEC2 • .D.VECl 

would place 2.9,-.S,10.2,-.2,2.8,-6.4 in VEC2. Note that the vector 

generated by .D. has one leas element than its operand. 

Logical Qperations 

SET can perform the logical compression specified by Iverson (4), 

which uses one array as a mask and another as the operand. The operator 

is called .c. and is used in expressions of the form 

VECl.C. VEC2 



23 

If an element of VECl is positive, the corresponding el-nt of VBC2 is 

included; if the element of VECl is zero or negative, that element in 

VEC2 is not included. For example, suppose VECl were 0,1,1,0,0,0,l,l,l 

and VEC2 were 1,2,3,4,5,6,7,8,9,10. 

SET VECO • VECl.C.VEC2 

sets VECO to 2,3,7,8,9. If VECO is less than 5 elements long, the 

statement terminates before all 5 selections are made. As with matrix 

multiplication, .c. will not accept computed arguments. 

Even if the compressing vector has only one non-zero element, SET 

expects to find a vector on the left-hand side of the • sign. At the 

time SET is checking the dimensionality of arg\Kll8nts it has no infor­

mation about the contents of the compressing vector. 

~ 

SET can be used as a desk calculator. C<IG'UT followed by any 

algebraic expression that can appear to the right of an • sign in a 

SET statement causes the result of the computation to be printed. 

CCMPUT 2*(Y-Z.P,2) 

will print the result of the computation. The number will not be stored 

in the computer. 

~ 

BCD information may be entered into single cells by SBTBCD. 

SETBCD A • CAT 

places the word CAT into the cell A. No operator except the • may 

appear in a SBTBCD statement. 



24 

REGRESSION MODELS 

The most popular kinds of models are linear models since they are 

most tractable analyticall:>) even though only an approximation to the 

real world. A typical modeling approach involves theorizing about the 

behavior of the system and deciding which variables are relevant, 

gathering experimental data concerning the behavior of the variable, 

and seeing how closely the data fit the model. 

At this point, the researcher can decide the system is no longer 

interesting; he can theorize a different kind of model; he can gather 

more data and try again; he can try various subtle manipulations with 

the model he has just created; or he can decide the model is good 

enough and go on to further work. 

The regression program in CALCULAID is intended to assist in the 

last steps of the initial experimentation and in the subtle manipulations 

in the evaluation stage. The program is easy to use, and allows the 

user to make a change in the model, run it, evaluate it, make another 

change, etc. He will continue the cycle of modification and evaluation 

until he is satisfied with the results. 

Data Storage 

FIT (the regression program) assumes that its data are stored in the 

following fashion: each variable, dependent or independent, must be stored 

in its own vector named to have mnemonic value to the user. The first 

element in each vector should represent an observation taken at the same 



25 

time as the first elements of all the other variables. Thus each vector 

is a time series of a different variable. It is crucial that the vectors 

all be of the same dimension, and that there be no unused locations 

at the ends of the vectors. FIT has no way of knowing how many points 

to include in the analysis except by examing the dimensionality of the 

vectors. 

Model Specification 

Suppose you were interested in a system which had 10 interdependent 

variables, and you had gathered data appropriate to this analysis. For 

ease in writing, assume the names of the variables (and the names of the 

vectors in which they are stored) are A,B,C, ••• ,J. Initially you might 

want to theorize that A is really the independent variable, and all the 

others are independent. However, Band Care the most important ones, 

as they seem to influence A most directly. Type in 

FIT A TO B C 

This will perform the following analysis: 

Assume A is related to B and C linearly. That is, A is governed by 

a relationship A=c
1

B+c 2c+c
3

• FIT analyzes the vectors A,B, and C, and 

chooses those values for ci which give the most consistently close 

approximation to A. The criterion for consistency is that the sum of the 

squared deviations of A (observed) from A (calculated) is a minimum. The 

results are typed out in equation form, along with the calculation of the 

error. After examining the results you may want to include more variabies 

in the model to reduce the error, or try a different combination of 

variables. 



26 

If some of the data points are suspect, you may want either to omit 

them from the analysis, or reduce their role in the model. This is 

accomplished by defining a vector, say W, which is of the same dimension 

as the variable vectors. Each element of W should be set to indicate 

the relative role each observation should play in determining the 

coefficients of the model. This weighting vector is called into play 

by including the word WEIGHT in the list of variables and following it 

by the name of the weighting vector, as in 

FIT A TO B C WEIGHT W 

or 

FIT A TO B WEIGHT W C 

The placement of the word WEIGHT is not important, as long as it occurs 

after the word TO. The two analyses, with the weights and without them, 

can then be compared. 

A vector into which residuals will be placed can be specified in 

the same way as the weighting vector. The key word is RESIDS, followed 

by the name of a vector of at least the dimension of the variable vectors. 

FIT A TO B RESIDS C 

will store in C how much each observation of the dependent variable differs 

from the value predicted by the model. It would be easy to change the 

weight attached to a given point and re-examine the residuals to deter­

mine how much the error has changed. 

When a FIT is performed the mean square error is printed. Aleo 

printed is an "unbiased" value of the error which takes account of the 



27 

fact that each additional variable removes one degree of freedom from 

the system. For example, if we had three data points and three variables, 

an equation of the form 

A=c1B+czC+c3 

could be found which would fit the three points exactly, no matter 

what the observed values were. The unbiased estimate then is obtained 

by multiplying the original estimate by N/(N-V-1), where N is the number 

of data points and V is the number of variables in the analysis. In the 

example above, N/(N-V-1) is undefined, since N-V-1=0. If we fit A to 

B alone, the original estimate of error would be multiplied by 3/(3-1-1)=3. 

Simple polynomial regression is a special case of linear regression, 

where the independent variables are all powers of a single variable. The 

specification of polynomial regression is 

FIT A TO B DEGREE N 

The word DEGREE is recognized by FIT and can appear anywhere on the line 

after the word TO. N may be specified symbolically or literally, and 

vectors of weights and residuals may be specified. 

FIT A TO B WEIGHT W RESIDS R DEGREE 2 

is quite acceptable. A will be fitted to a second-degree polynomial 

in B, using weights W. The residuals will be placed in R. 



r----

28 

ROOTS TO POLTIDllAL EQUATIONS 

The operator ROOT finds a root of a polynomial equation in one 

unknown. The method is the Newton-Raphson technique of computing the 

tangent at a particular point and using that as a local approximation 

to the curve. 

The solution is iterative, and it is possible to have a non-ter-

minating loop. To avoid this, the user is asked to specify some maximum 

number of iterations. He is also aske~ to specify the tolerance or 
\ 

precision of the solution. The precis:l:on is the difference between 

successive approximations. 

The parameters of ROOT are as follows: 

1. The power, P, of the highest-order term in the equation. This 

need not be an integer. It is asswaed that all succeeding 

powers differ from this one by 1. That is, the equation is of 

the form 

2. The name of the array in w~ich the coefficients are stored. 

The coefficients of the highest powers are first, with the 

constant term last. For example, if the equation were 

5x3 •5 + 3x
2

•5 + 7x
1

"
5 - 8 = 0 

the coefficient array would contain 5,3,7,-8. The coefficient 

array must be properly dimensioned in the symbol table. In 

this case, the vector must contain 4 cells. 

3. The starting value. This is the value used by ROOT in 

starting the analysis. It could be selected from a graph 



29 

of the curve, or from sa. other prior feeling aboui the 

nature of the roots. If there are s .. eral roots to the 

equation they can be determined by trying differeut 8tartiq 

values. 

4. The tolerance. The analysis is complete Whn the abaolute 

value of the differeace between successi- approx:lmltions is 

less than this number. 

5. The -xiDm number of iteratiO'U. If the tolerance criterioa 

is not satisfied before the 1111Xi11ua DUllber'of iterati0011 bas 

beeu peTformed, ROOT returns a "fence" as the value• 

Solution of the equation in the exaaple lllltd:iaaed above ls 

accomplished in the followiq way. The etatement 

SET COi.FF • (5,3,7,-8) 

will store the coefficients in COl!Fl, and exscuting 

ROOT 3. 5 COD'I' SV.il TOL MU'.l'f 

will find the root of the equation. The numbers stored in SVAL, l'OL, 

and MAXIT will be used as starting value, tolerance, and maxti... iter­

ations respectively. The last three variables .. ,. be entered directly, 

as in 

ROOT 3.5 COIFF 7.5 .00001 10000 

or they may be omitted entirely, in 1fhich case SVAL-0, TOL-.001, and 

HAXIT-1000 will be used. 

PRINT ROOT 3. 5 COEl'F 

will print the value on the console. 



30 

RANKING AND COUNTING 

Two operators have been provided to generate information about the 

relative magnitudes of experimental data. The first, called RANK, rank­

orders elements of one vector, A, into a second vector, B. The largest 

element in A is the first element of B, etc. The mapping (which element 

of A was the largest, which second largest, etc,) may be specified as 

the third parameter of RANK. The three parameters are 

1. the original vector 

2. the resultant vector (* if not desired) 

3. the vector of the mapping required to obtain the 

second vector from the first. 

For example, if A contained 8,9,3,7,4,6,2, execution of the line 

RANK ABC 

would place 9,8,7,6,4,3,2 into Band 2,1,4,6,5,3,7 into c. 

The second operator, called COUNT, places into vector B information 

as to how many elements of vector A fall into intervals specified by a 

third vector C. The intervals may be specified at the console directly. 

For example, suppose A contains 3,100,18,25,16,75,22 and 

SORT A B C 

is executed. If C contains 0,25,40,80,200 the first four elements of B 

are set to 4,1,1,1. 3,18,16 and 22 all fall in the interval 0-25, 25 

falls in the interval 25-40, 75 falls in the interval 40-80, and 100 

falls in the interval 80-200. 



31 

If C contains 0,200,25, B is set to 4,1,0,l,l,O,O,O. If the third 

element of C is less than the second, C is interpreted as specifying 

a range and a spacing. In this case, intervals between 0 and 200 with 

spacing of 25 have been specified. 

If any elements of A fall outside of the intervals specified by C, 

an appropriate message is typed on the console. 



- - -··--·-·--··- -·- --------~------------·-·--·----··---· 

Chapter III 

APPLICATIONS 

Analysis of Round-Robin Scheduling in Time-Sharing 

An analysis of round-robin scheduling of requests for the services 

of a multiple-access computer affords an example of the use of CALCULAID. 

The analysis [7] was successful and was carried out quickly and easily 

with CALCULAID. 

The Scheduling Algorithm 

The scheduling algorithm works as follows: a first-in, first-out 

queue of users is maintained. When a user desires the services of the 

computer he is placed at the end of the queue. The computer services 

users by removing the user at the head of the queue for either a basic 

time unit, called a quantum or to completion of his request which ever 

is shorter. When a user's request is finished, he is removed from the 

queue. If his request is not finished the balance is placed at the end 

of the queue, and he must wait until every other person in the queue has 

been run before he gets another turn. 

The sizes of requests are assumed to be distributed exponentially, 

as is the distribution of think times (the time between the completion 

of a user's request and his initiation of a new one). These assumptions 

are supported by Scherr [5]. 

32 



,J.(@ltti411( .. $111Uttt JQ.14Jt 114 .. I 4¥4% ltL .... JQSJ$$.&JQL@JIQCMJJ Ut4k.41LUJ.Q.14J!JI 

33 

The Analysis 

Pour KOP' s, or compound operators, are uaed in the calculation. 

The first, SITUP, aaka for information (input parameter•) and doe• 

preliminary calculations. It call11 PllOIS, which calculatea a vect~ 

P where P(I) is the steady-state probability of having l uaere in the 

queue for completion of pending requests. PZ ls the probability of the 

queue being empty. 

The calculation of the P(I) is done in the loop bqinning on line 

30 and terminating on line 60. PZ is calculated on line 80, and Z la 

Ht equal to the sum of PZ and Pi by the aHi,...nt 

Z•PZ+P.M.l 

Z is then und to normalize P and PZ so thee tbe probabilitiu sum to 

one. The -.oat likely nwaber of persona in th queue HD 'be detend.ned 

by ranking P (line 110). The first el-t of ., . S.a tlle index in P 

of the largest element of P. If PZ is laraer than P(Hlll(l)) then it 

ia moat likely thet the queue will be etipty. 

CYCLI calculates YZ, the ateady-atate wait of the uaer for hi• 

first quant-. and YL, the eteacly-tll'&ta wait fer ell succee4ing ..-u. 

The waits are obtained by calculating the number of people in the queue 

and multiplying by the average requeat aiae. COSTS cCJllPutea the average 

coat accrued in the ayatem for each request. Rote the call to the 

exponentiation routine on line 10, After the QO&ta he.- been calculated, 

control returns to OPS. Another run •y be made by calling SITUP again. 



34 

KOP SETUP 

10 SET I • 0 , II • 0 

20 TEXT HOW MANY Q 
30 TYPE IN FLOAT NQ 

40 TEXT ENTER THE Q 
50 TYPE IN FLOAT Q 1 Q NQ 

60 TEXT HOW MANY GAMMA 

70 TYPE IN FLOAT NG 

80 TEXT ENTER THE GAMMA 

90 TYPE IN FLOAT GAMMA 1 GA*A NG 

120 SET I = I + 1 
130 IF I .G. NQ 

140 RETRNK 
150 CALLK PROBS 

160 CALLK CYCLE 

170 TEXT FOR A Q OF 

180 TYPE OUT FLOAT Q I 

230 SET II • II + 1 
240 IF II .G. NG 

250 GOTO 300 

260 CALLK COSTS 

280 GOTO 230 

300 TEXT SINGLE LEVEL COSTS ARE 

310 TYPE OUT FLOAT CE 1 CE NG 

320 SET II = 0 

330 GOTO 120 



35 

KOP PROBS 

20 SET J = 1 , P ( N ) • 1 

21 SET X • EXP • ( - SIGMA * Q ( I ) ) 

23 SET X = ( 1 - X ) / SIGMA 

25 SET SIGMAP = ( 1 - X ) / ( S + V ) 

30 SET P ( N - J ) = P ( N + 1 - J ) * SIGHAP / ( ALPH * J ) 

40 .SET J = J + 1 

50 IF J .L. N 

60 GOTO 30 

80 SET PZ = P ( 1 ) * SIGHAP / ( ALPH * N ) , Z • PZ + P .M. 1 

90 SET p = p I z ' PZ - PZ I z 
100 SET RT • N / ( SIGMAP * ( 1 - PZ ) ) - 1 / ALPH 

110 RANK P * MAP 

120 TEXT MOST LIKELY NUMBER IN QUEUE IS 

130 IF P MAP 1 .G. PZ 

140 GOTO 170 

150 SET LIKELY = 0 

160 GOTO 180 

170 SET INDEX• MAP(l), LIKELY• P(INDEX) 

180 TYPE OUT FIXED LIKELY 

190 RETRNK 



36 

KOP CYCLE 

10 SET z = 1 - p ( 1 ) I ( 1 - PZ ) 

20 SET YZ = ( S - Q ( I ) * X ) / SIGMA + V * ( S + V / 2 ) 

30 SET YZ = Z * YZ / ( S + V ) 

40 SET LB = N / ( 1 - PZ ) - SIGMAP / ALPH - 1 

50 SET Yl = YZ + LB - Z ) * ( S + V ) 

70 SET WP = YZ / ( 1 - ( S + V ) * SIGMAP * ( 1 - PZ ) ) 

80 RETRNK 

KOP COSTS 

10 SET Z = EXP ( ( SIGMA + GAMMA ( II ) ) * Q ( I ) ) 

20 SET CE ( II Yl + LB * ( S + V ) / ( Z - 1 ) + 
v I ( 1 - 1 I z ) 

30 RETRNK 



37 

Model of a Cheese-Production Process 

Food production is frequently not well understood, because there 

are often too many variables in a real-world process to allow an 

analytic solution. An approximation in the form of a model may still 

be useful, and CALCULAID can help in the formulation of the model. 

The Process 

Cheese-making is an art, say those who make cheese, because there 

are so many intangibles. The milk used may vary in age or in butter­

fat and solids content. There are variations in process temperature and 

the amount of yeast used may vary. Air temperature may affect the 

process. The dependent variable is the yield; that is, what percentage 

of the milk turns into cheese. 

The table below contains observations which might have been taken 

over a period of several months. We will synthesize from the data s 

model that will help to predict future yields. The model could then 

be used in a linear program to optimize yields. 

The variables are stored in vectors of 20 elements each. Age of 

the milk is in the vector AGE, butterfat content in FAT, solids content 

in SOLIDS, process temperature in TF.MP, amount of yeast in YEAST, air 

temperature in AIR, and percentage yield in YIELD. It should be mentioned 

that these data are purely hypothetical and almost certainly do not 

reflect reality. 



r~---------- -~-- - ---~---~----·-------.-----~-~~------ -- ----~~-~---·----------- -

38 

Age of Percent Percent Proce11 Auiount of Air Yield 
Milk Butterfat Solids Tem2erature Yeast Tem2erature 

10 4.3 2.3 75.0 8.7 72 15.42 

6 6.2 3.3 73.4 8.6 73 13.74 

4 7.1 2.5 74.0 7.8 85 11.98 

8 5,4 3.4 73.7 7.9 84 14.43 

3 5,5 3.1 76.3 8.5 90 9.11 

7 3.9 2.7 76.2 8.5 74 11.54 

14 4.4 2.7 74.3 8.3 77 19.49 

11 5.1 2.4 75.8 8.4 70 16.80 

6 4.7 2.8 75.6 7.8 65 11.10 

7 4.8 3.2 76.1 8.1 68 12.23 

2 5.9 3.0 74. 7 8.6 74 9.05 

13 4.2 2.4 73.9 8.4 15 18.47 

9 4.8 2.1 75.2 8.2 80 14.56 

8 5,3 2.4 75.8 7.7 83 13.58 

12 5,5 2.3 73.3 7.9 81 18.65 

13 3.8 2.8 76.9 8.0 88 16.93 

5 4.0 2.5 74.0 7.7 77 9.82 

9 4.9 3.6 73.8 8.4 77 14.90 

10 4.7 3.5 74.6 8.3 70 15.70 

7 5.7 2.6 74.7 8.5 72 13.79 



39 

In the illustration, user input will be represented as lower 

case, computer output as upper case, and author comment in parenthe-

sis. It shows both the versatility of OPS and the particular abilities 

of FIT. 

fit yield to age 

YIELD • 

.8744 

6.8947 

AGE + 

RMS DEVIATION • .89716 

CORRECTED DEVIATION "' .92047 

OK 

(To see if age is an important variable, try fitting yield 

to butterfat content.) 

fit yield to fat 

YIELD • 

-.9720 FAT + 
18.9341 

RMS DEVIATION • 2.91177 

CORRECTED DEVIATION • 2.8741 

OK 

(The RMS deviation is considerably higher, indicating that 

age is more important than fat content. To see if fat has 

much of an effect, fit yield to both age and butterfat.) 



40 

fit yield to age fat 

YIELD • 

1.0305 

1.2055 

-.4255 

AGE+ 

FAT+ 

RMS DEVIATION z .31955 

CORRECTED DEVIATION • .33684 

OK 

(The corrected RMS deviation was reduced from .920 to .337, 

a factor of nearly 3. These two variables have a consider­

able effect on yield. See if the solids conten~s has much 

effect.) 

fit yield to age fat solids 

YIELD • 

1.0339 AGE + 
1.2054 FAT + 

.1061 SOLIDS + 
- • 7475 

RMS DEVIATION = .31645 

CORRECTED DEVIATION • .34323 

OK 

(The corrected deviation has increased, indicating that 

yield is not a function of the solids content. Try 

another factor, say the amount of yeast present.) 



41 

fit yield to age fat yeast 

YIELD = 
1.0312 

1.2117 

.5541 

-5.0141 

AGE + 
FAT+ 

YEAST + 

RMS DEVIATION • .26652 

CORRECTED DEVIATION • .28909 

OK 

(The deviation has decreased somewhat, though not 

str'ikingly. Include air temperature instead of 

yeast.) 

fit yield to age fat air 

YIELD • 

1.0338 

1.2364 

-.0157 

.5979 

AGE + 
FAT + 

AIR + 

RMS DEVIATION • • 30300 

CORRECTED DEVIATION • .32865 

OK 

(Again the deviation has increased, indicating air 

temperature is not crucial.) 

This analysis indicates that the yield is related most strongly to 

the age of the milk, its butterfat content, and the amount of yeast 

used. The analysis could be carried further, trying transformations 

of variables, more variables, or weighting some observations more than 

others. 



APPENDIX 1 

Internal Characteri6tics of SET 

The group of subroutines known as SET executes a11ignment state-

ments in the following steps: 

I. Parsing of the input line into meaningful subparts 

II. Creation of a 1110dified "Polish list" (changing of the string 

from infix to suffix notation) 

III. Evaluation of the Polish list 

The names of the subroutines which perform theae functions are BRKUP, 

MAKI.ST, and EVAL. The routine which calls the subroutine• in the 

proper order is called SET. Let us consider the routines in order. 

BRKUP (short for BREAK UP) takes the input stat~nt and delivers 

a line which is broken up into meaningful strings. The break characters 

+, -, *• /, (, ), ., =,and , (c011Da) are recognized, In addition, strings 

of less than 5 characters which are bracketed by"·" are recognized as 

individual entities. A space is recognized as a break character but is 

not stored explicitly. 

The string 

X.,A+sQRT. ( c+D) 

would be broken up into 

X "'A+ SQRT ( C + D ) 

42 



43 

The string 

VARl~LOG.(B.P.3) 

would be broken into 

VARl = LOG . ( B .P. / 2 ) 

There is no possibility of confusing the . associated with an operator 

with the decimal point associated with a number. The string 

.P .. 3 

is broken up into 

.P •• 3 

and 

.P,5 

is recognized as 

.P. 5 

~ 

This subroutine accepts the broken-up string supplied by BRKUP and 

creates a modified Polish list. In the process it checks the symbol 

table for the dimensionality of the symbols appearing in the statement 

and assures that the statement is dimensionally correct. 



44 

Polish Lists 

A Polish list is a prefix or suffix specification of a computation, 

and since SET uses suffix notation, that is what we will consider here. 

The list is constructed by assigning to each poseible operator a 

precedence, which is an indication of its binding strength. For example, 

* (multiplication) has a higher precedence than +, and in the expression 

A+B*C the * will be performed before the +. 

The rules by which a Polish list is constructed from an infix­

notated expression are as follows: 

1. If the next element in the expression is a symbol, put it 

into the Polish list 

2. If the next element in the expression is an operator 

A. If the precedence of the operator is greater than or 

equal to the precedence of the last operator in the operator 

list, put the current operator into the operator list 

B. If the precedence of the operator is less than the 

precedence of the last operator, remove the last opera­

tor from the stack and put it into the Polish list. Check 

the precedence again, and continue to remove operators 

until either condition A is satisfied or there are no 

more operators left. 

3. When the end of the expression is reached, put all operators 

into the Polish list. 

Consider the expression 

A+B*C-D 



45 

The first element encountered is A, a symbol, so it is put into the 

Polish list. +, with precedence 1, is put into the operator list. B 

is placed into the Polish list, and the status is 

Polish list A B 

Operator list + 

The operator * hss precedence 2, which is greater than 1, so it is 

put into the operator list and C is put into the Polish list, giving 

Polish list A B C 

Operator list + * 

The - is reached, and we go to step 2 B. * is removed from the operator 

list and appended to the Polish list, and - is added to the end of the 

operator list. We have 

Polish list A B C * 
Operator list + -

D is added to the Polish list, and all operators are put into the Polish 

list (step 3). The final status is 

Polish list A B C * D - + 

and the operator list is empty. The evaluation of this list will be 

discussed in the next section. 

Modifications 

Some of the features of SET and of the OPS system require that more 

information be kept in the Polish list, information concerning sub­

scripts of arrays, literal vectors, and function calls. 



46 

Any symbol that is dimensioned in the Symbol Table receives special 

treatment. It is followed in the Polish li1t by the word SUB, which 

indicates that everything between it and the word SUB. , which must appear 

later, is part of a subscript. Each subscript is followed by the word 

FIXED, meaning the subscript is not to be iterated, or the word V'AR.Y, 

indicating it is to be iterated. SUB. is followed by a word which tell• 

how many iteration subscripts the symbol ha1. 

If A is a vector, A(l) appears in the Poliah list as 

A SUB 1 FIXED SUB. 1 

If A is a matrix, A(l) appears as 

A SUB 1 FWD 1 V'A&Y SUB. 1 

and the second aubscript of A is marked for iteration (omitted or zero 

1ubscripts are asaumed to be iteration 1ub1cript1). 

A(&+<:,5) appears as 

A SUB B C + FIXID S PIXEi> SUB. 1 

and this will be correctly evaluated by BVAL. 

Literal vectors are handled a little differently. The word CNSL. 

meana that everythina between itself and a matchina CSL •• conatitutas a 

literal vector. The CSL,, 11 followed by the nUlllber of elelfl9nts in the 

vector. The literal vector 

CNSL. l 3 7 Pl V'Al.Y CSL., l 



47 

The 1 VAl..Y pair 1a uaed by BVAL :Ln :I.ti iteratioit il:Mloias, Mid the 1 

foll0tw:Lna CSL •• indicat•• the literal vector baa 1iteration1ub1cript 

(•• do all literal vectors). The vector 

(B,o+3*1' ,A(S)) 

"ould appur u 

CMSL. B c 3 r * +A sua s rmo SUB. 1 CSL •• 1 

Function ar1ument1 are bracketed by l'Ull. at the beainniftl and a 

at the end, 

SQB.T.(A) 

IQR'l' PUM. A • 

in th• Po11th 111t. 

The lllOdifiad folf.1h lbt it thett d6U.v•ed to tile 4Wa1uattoll 

proara•. 

The propo IVAL avduatel th• GICMiHi.. PoU.tb U.tt prapered by 

MULST. A detcdpt:l.on of th• evaluaU.oa of a ac:..,._d Polilh Utt 

will b• followed by an •11Pla11ation of the ,.ou1:Lariti•• of l'IAL. 

11:w1rd roun ueu 
The hpHHlOO. 

A+B*C·D 



48 

is converted into the Polish list 

A B C * D - + 

EVAL simply examines each element of the list in turn. If the 

element is a symbol or a number BVAL stores its value in an evaluation 

list. If the element is an operator, EVAL executes the operator. 

In the present example, EVAL would encounter A, B, and C and their 

values would be stored in the evaluation list. When EVAL finds *• the 

last two elements in the list are re1110ved and multiplied together, and 

the product is put back on the list. It now contains A and B*C. D 

is put on the list, and when - is found D is subtracted from B*C. 

The evaluation list contains A and B*C-D. + is picked up and executed 

by EVAL, giving A+B*C-D. 

Storing of Results 

BVAL must recognize that the execution of • is not like the execu­

tion of other operators. The first symbol in the Polish list is 

looked up but instead of putting its value in the evaluation list, its 

address in the computer is inserted. Then when the • is executed the 

result is stored in that address. 

Indexing and Iteration 

An internal function within EVAL, called !NIT, uses the VARY words 

in the Polish list as indicators of iteration subscripts. It works like 

a speedometer, iterating on the last subscript until the symbol table says 

some array dimension is exceeded. It then increments the next higher 

subscript by 1 and resets the lowest level indices to 1. 



49 

Every subscript of a particular level is incremented at the same 

time, and if any variable size is exceeded, execution of that iteration 

is terminated. The stopping criterion for the entire statement is the 

inability to increment any level of subscript and still stay within the 

size limits of all variables. 

Special Operations 

Certain operations in SET, namely .M. and .T.1 must have more infor­

mation than any of the others, which need only two floating-point numbers 

for their proper execution. .T. must have available the name and the 

indices of the matrix it is transposing, This information is determined 

by examining the Polish list, and the symbol is re-evaluated with the 

indices reversed. The new value then replaces the old one in the 

evaluation list. 

Execution of .M. is more complicated than that of .T. .M. must 

make decisions concerning the legitimacy of arguments and the dimension 

of results, and must handle iterations. This task is complicated by the 

fact that some of the iterations are handled by INIT and some are handled 

by special coding within the .M. section of the program. .M. examines 

the Polish list to determine the names and present indices of its 

operands and then performs the necessary multiplying and summing. This 

may involve multiplying one vector by another, a vector by a row or 

column of a matrix, a constant by a vector, etc. 



50 

Suggested Improvements to SET 

SET uses no significant temporary storage and as a result all opera­

tions having to do with arrays are extremely slow. If A, B, and C 

are arrays and 

SET A = B + C 

is executed, the entire statement must be executed once for every element 

in Band C. The operations must be analyzed for every iteration. 

It would be more efficient to analyze the addition operation once, 

and perform the computations on the arrays at that time. CTSS routines 

can provide the temporary storage space required. 

The disadvantage of using temporary storage is that execution of 

the individual operators becomes more complicated; execution of an 

arithmetic operation would involve more than processing two numbera. 

The speed tradeoff between faster handling of arrays and slower 

execution of operations would have to be determined by writing and 

testing the new program. 

Using temporary storage will remove the present restriction that 

some operations (.D., .c., and .M.) will not accept computed arguments. 

These operations will no longer go to the Polish list to pick up 

arrays, but will work, like other operations, on items in the evalua­

tion list. The difference is that in using temporary storage, the items 

may be entire arrays instead of being restricted to single cells or 

numbers. 



APPENDIX 2 

Suitability of SET for Extensive Computation 

SET is an interpretive program, and each time a statement is 

executed it must be completely analyzed. In addition, the analysis 

concerned with array operations is quite wasteful if arrays are not 

being referenced. For example, execution of 

SET A•O 

involves the execution of several hundred machine instructions. A 

compiled program would require two instructions. 

It is difficult to say exactly what the execution-time ratio 

between a compiled program and a program of SET's would be, but for a 

small sample of test programs the ratio was about 1: 100. A compiled 

MAD program that took one or two seconds would take two or three minutes 

with SET's. In the CTSS time-sharing environment this is not at all 

desirable, because three minutes of processor time would involve about 

half an hour of waiting at the console. A wait of that duration would 

be defeating to the CTSS aim of high-frequency user interaction, as 

well as being very wasteful of machine time. 

SET continues to be quite useful as a fast calculator, performing 

extended computations on-line, and as a debugging tool. However, after 

it is determined that a program (KOP) is running correctly, it is 

advisable to change it to a compiled program. This can be done in two 

ways. 

51 



52 

The most obvious technique is simply to manually translate the 

KOP into any standard language for which a compiler is available. One 

could write a program which would look like the KOP version, using the 

same symbol names, etc. All SET statements which referenced arrays 

would have to be written out explicitly as loops, with the accompanying 

high probability of error in indexing. It may even be hard to find out 

just what the dimensions of the symbols are, as SET looks them up at 

execution time. 

An easier conversion technique is MADKOP (6). This program 

transforms a KOP into a MAD program which can then be compiled and 

loaded just like any other operator. The advantages to MADKOP are 

several. First, the entire translation, compilation and loading takea 

but a few seconds of processor time, instead of perhaps an hour of 

human time. Second, MADKOP can examine the s}'lllbol table as it is 

writing the MAD program, and will program SET's iterations automatically. 

This relieves the user from having to worry at all about indexing. 

MADKOP provides a gain of about 25:1 in execution time over straight 

interpretation. The full gain of 100:1 is not realized because MADKOP 

does not write in general the most efficient possible programs. It is 

fast, however, and relieves the user of most of his indexing responsibilities. 

A KOP should be compiled early in the debugging stage. If a KOP is to 

be executed often enough that it will use 10 seconds of processor time, 

it is almost certain to be advantageous to compile it. The compilation 

and loading would take about 5 seconds, and total execution time would 

be less than half a second. 



53 

References 

1. The Collfatible Time-Sharing System, A Progranmer's Guide, Second 
Edition, The HIT Computation Center, P. A. Crisman, Editor, 
The MIT Press, Cambridge, Massachusetts, 1965. 

2. Greenberger, M., et. al. The OPS-3 System for On-Line Computation 
and Simulation. The HIT Press, Cambridge, Massachusetts, 1965. 

3. Arden, Galler, and Graham. Michigan Algorithm Decoder (MAD). 
University of Michigan Press, Ann Arbor, Michigan, 1963. 

4. Iverson, K. A Programming Language. John Wiley and Sons, Inc., 
New York, 1962. 

5. Scherr, A. L. An Analysis of Time-Shared Computer Systems. Project 
MAC, MAC-TR-18 (Thesis), June 1965. 

6. Morris, James. "Interpretive Systems in On-Line Programming". 
Unpublished Master's Thesis, Alfred P. Sloan School of 
Industrial Management, MIT, September 1965. 

7. Greenberger, K. The Priority Problem. A forthcoming Project MAC 
Technical Report. 

Associated References 

Hellerman, H., "Experimental Personalized Array Translator System", 
Comm. of the ACM 7 (July 1964). 

Hamblin, C. L., "Translation to and from Polish Notation",!!!! 
Computer Journal (October 1962), pp. 210-213. 

Samelson, K. and Bauer, F. L., "Sequential Formula Translation", 
Conm. of the ACM (February 1960), pp. 76-83. 



This empty page was substih1ted for a 
blank page in the original document. 



CS-TR Scanning Project 
Document Control Form 

Report# L:::.s.:IA.. -clo 

Date : '°" I/ I js_ 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
)&, Laboratory for Computer Science (LCS) 

Document Type: 

M Technical Report (TR) D Technical Memo (TM) 

D Other: ----------------
Document Information Number of pages: SJ (bO-imAGrs) 

- Not to include DOD forms, printer intstructions, etc ... original pages only. 

Originals are: 

D Single-sided or 

~ Double-sided 

Print type: 
D Typewrter D Offset Presa D Laser Print 

Intended to be printed as : 

D Single-sided or 

)&J: Double-sided 

~ Ink.Jet Printer D Unknown D Other:. ______ _ 

Check each if included with document: 

~ DODForm 

D Spine 

D Funding Agent Form 

D Printers Notes 

~ CoverPage 

D Photo negatives 

D Other: -----------------
Page Data: 

Blank Pages(byp11gel'tlllftber): _____________ _ 

PhotographsfT anal Material (bypllge numbef): ____________ _ 

Other <na111 cmaiptiol~ numbef): 

Description : Page Number: 

::I.iYiAG~ /ri~P ! [1- 5'11) ibl\/tf1
6:.0 Ti TU: PAG"~' 8'-~41rv#b; J"ll\; 81.J";orJJ 

t.. .. NJt'>P'i TA BL( CF <.or:J\ J 6- St1 1v,) 1:t' ~ 0 (1 /..faµ k 
(s-s- 60 ) S"<.1Qi..1c..e&!R.0LJ c.ov~'\6DoD:J JBGTJ- [']) 

Scanning Agent Signoff: 

Date Received: /l/_!l_/),£_ Date Scanned: _}_1__1 _ _11.i Date Returned:_/ 1..!.! .. _!.Jiz. 

Scanning Agent Signature: ___ i'-"""".w::e"""~L...l· -~ ..... N.&.....;J;.....~~~-- Rw 11184 DSILCS Document Conlrol Fonn csllfonn. YSd 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(S.c:urlt7 cla••llle11tJon ol title, body ol abatract #Id lndealn• .-.notation .inuat ba onterad wflan the ov.,..il report I• cla••lll•d) 

I. ORIGINATING ACTIVITY (CO#'fjOnfe 91thor) "'" REPORT SECURITY CLASSIFICATION 

Massachusetts Institute of Technology UNCLASSIFIED 
Project MAC ... GROUP 

3. REPORT TITLE 

CALCULAID: An On-line System for Algebraic Computation and Analysis 

.. DESCRIPTIVE NOTES (7)71• ol ,._,and lnclu.tH d.tH) 

Master's Thesis, Sloan School of Management 

a. AUTHOl!l(SI (Laet ,, ..... llret n-•· lnltl111) 

Wantman, Mayer Elihu 

.. REPORT CATE 7•. TOTAL NO. OF PAGES T' .. NO. o;o•EFS 
September 1965 54 •.. CONTRACT OR GRANT NO. ... ORIGINATOR'S REPORT NUMBER(Sl 

Office of Naval Research, Nonr-4102 (01) 
MAC-TR-20 (THESIS) .. PROJECT NO. 

Nr-048-189 ... OTHER REPORT NOlSI (Any oth., n1m1beu that 111_,. be 
c. •••l,.,ed thl• f'eport) 

d. ... AVAILABILITY/LIMITATION NOTICES 

Qualified requesters may obtain copies of this report from DDC. 

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

None Advanced Research Projects Agency 
3D-200 Pentagon 
Washington, D. c. 20301 

U. ABSTRACT 

OPS is an on-line system developed by M. Greenberger et. al. at Project MAC. 
The present work provides a powerful and simple way to perform numerical manipulations 
and calculations within OPS. The program package is called CALCULAID, and provides 
a method of executing algebraic assignment statements, of which MAD and FORTRAN 
assignments are a subset. When this assignment-statement ability is coupled with 
other features of the OPS system, most of the ability of a compiler language is 
provided. Because the programs written in OPS are executed interpretively, OPS-3 
programs can be changed and re-run immediately, without being recompiled. 

The applications of CALCULAID to the analysis of a round-robin scheduling 
model and to a process-control problem are discussed, and conclusions are drawn 
regarding the suitability of running computational programs in an interpretive 
mode . 

... KEY WORDS 

Computer On-line computer systems 
Machine-aided cognition Real-time computer systems 
Multiple-access computers Time-sharing Time-shared computer systems 

DD FORll 
1 JAN 84 1473 (M.l.T.) UNCLASSIFIED 

Security Classification 



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Resear,ch Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 


