
/'I 

MAC-TR-'M 

USE OF CTSS IN A TEACHING ENVIRONMENT 

by 

Daniel Roos 

Department of Civil Engineering 

Massachusetts Institute of Technology 

November 1964 



This empty page was substih1ted for a 
blank page in the original document. 



ABSTRACT 

Computer time-sharing offers many interesting possibilities for use in 
teaching computer technology. It might be expected that with proper hardware 
and software, students using time-sharing as a teaching machine could acquire 
proficiency in the fundamentals of programming more easily than using batch­
processing. 

To test this hypothesis, the M.I. T. Department of Civil Engineering divided 
a freshman programming class, so that half the students used batch-processing 
methods, and half used the Project MAC time-sharing system to do the same 
work. 

This paper describes the experiment and its tentative results. 

Work reported herein was supported in part by Project MAC, an M.I.T. 
research project sponsored by the Advanced Research Projects Agency Depart­
ment of Defense, under Office of Naval Research Contract Nonr-4102(01). 
Reproduction of this report, in whole or in part, is permitted for any purpose of 
the United States Government. 

Massachusetts Institute of Technology 

Project MAC 

545 Technology Square 

Cambridge, Massachusetts 

02139 

iii 



TABLE OF CONTENTS 

SECTION' 

LIST OF TABLES 

I. Tl'\TRODUCTIOl\ 

1.1 Description of 1.Ei 

1.2 Course Aims 

l •) 
,0 Computl'l' Operations 

1.-l Course \1 Pe lings 

1,.) Student Enrollment 

l.i) Course 1.1).) 

II. TL\lE-Sl!:\RI>:c; EXPERii\IENT 

2 .1 ;\lode of Operation 

2 .2 Group Di\ is ion 

2 .:3 Ho1nework :\ssignments 

III. TI:\IE-SHARINC; OPERATION 

:3.1 Remote Console Operation 

3 'i Timc-Sharin;..; Instruction 

:l.:l Time Al I oc:llion 

IV. TI:\I E-SHAHI:\C EXPERE\IEKTAL :\NALYSIS 

-l .1 01 L'rall Rl'action 

+ .2 Timc-Slnring Orientation 

-± .3 Consoll' Reliability 

l. l System f\.eliahility 

V. STUDEKT CONSOLE PERFOHMANCE 

.) .1 General O!Jscrvations 

.1.2 Il\PUT Operation 

.) .:3 Clwcking· for Errors before Compiling 

:J.-± Compilatiun 

.J •. J Dcbug;..;ing 

::i.(; Consultation 

.) . 7 Student \Llturit:-· 

v 

1 

2 

2 

2 

2 

3 

7 

7 

R 

10 

11 

13 

13 

u 

1-l 

17 

17 



TABLE OF CONTENTS (continued) 

SECTION PAGE 

5.8 Allocation of Console Time 18 

5.8.1 Assigned Hours 18 

5.8.2 Signup Hours 18 

5.8.3 Open Hours 18 

5.9 Length of Sessions 19 

5.10 Students per Console 19 

5.11 Automatic Logouts 19 

5.12 Response Time 19 

5.13 Memory Requirements 20 

5.14 Term Projects 20 

5.15 Computer Time Requirements 20 

5.16 Time Restrictions 25 

5.17 Use of Time-Sharing in Lectures 26 

VI. CONCLUSIONS 27 

LIST OF TABLES 

Table Page 

1 Time Used Per Problem 21 

2 Characteristics of Time-Sharing Group 22 

3 Characteristics of 1620 Group 24 

4 Comparison of 1.15 Final Grades 28 

- - --------------------------------.--



This empty page was substih1ted for a 
blank page in the original document. 



1 

SECTION I 

INTRODUCTION 

~n experiment involving the Compatible Time-Sharing System (CTSS) was 
performed by the M.I. T. Department of Civil Engineering in conjunction with one 
spring term of Course 1.15, Computer Approaches to Engineering Problems. One 
half of the class performed all their work using an IBM 1620, while the other half 
used CTSS from a remote console. The purpose of the experiment was to evaluate 
the educational effectiveness and efficiency of using time-sharing, as compared to 
an IBM 1620 computer that is fully devoted to student use. 

This report contains a description of Course 1.15, the experiment performed, 
and an analysis of experimental results. All opinions expressed are those of the 
author and do not necessarily reflect those of either the Department of Civil En­
gineering or of Project MAC. 

1.1 DESCRIPTION OF 1.15 

Course 1.15, Computer Approaches to Engineering Problems, is an introduc­
torycourse offered by the Department of Civil Engineering. It is designed to prepare 
engineering students to use computers effectively in their educational programs. 

The following subject areas are stressed in 1.15 : 

1. The computer as an information-processing machine - hardware and 
software components - the composite machine; 

2. Communicating with the computer - different types of programming 
languages are discussed, and while primary emphasis is on FORTRAN, 
machine language, assembly languages, and problem-oriented languages 
are also covered; 

3. Use of computers in solving engineering problems - topics such as nu­
merical methods, simulation, analog computers, and large scale computer 
systems are covered. 

The specific topics presented vary from term to term, and are considerably 
influenced by the academic level of the students (freshmen, undergraduate, or 
graduate) and the interests of the instructor teaching the course. 

1.2 COURSE AIMS 

Although lecture material presented in 1.15 has varied, the intent of the course 
has always remained the same. It is intended that each student acquire proficiency 
in computer use by intensive first-hand computer experience. Each student pro­
grams from eight to 20 problems during the term. Students are encouraged to 
solve original problems that interest them or are applicable in other course work 



2 SECTION I 

or thesis work. No restrictions are made on the mµnber of computer runs a stu­
dent may make for each assigned problem. Inefficient and wasteful use of the 
computer is discouraged and has rarely been observed. 

Course 1.15 is an educational experience, rather than a collected fixed body 
of knowledge which a student is quite likely to forget. The lectures are supple­
mentary to the laboratory, rather than the conventional approach where laboratory 
sessions are supplementary to the lectures. 

1.3 COMPUTER OPERATION 

Following a normal 1.15 routine, students debug their assigned programs 
using the IBM 1620 computer laboratory of the Department of Civil Engineering, 
and then submit the programs to be run on the IBM 7094 at the M.I. T. Compu­
tation Center. The 1620 computer laboratory is open daily (including weekends) 
for student use from 1: 00 to 10: 00 P .M. The 1620 operation is described in the 
Computer Laboratory User Manual, which is available from the Department of 
Civil Engineering. The laboratory operates on a completely open-shop basis, 
with a 15-minute time limit imposed from 1: 00 to 3: 00 P .M., and a three-minute 
time limit between 3 : 00 and 10: 00 P .M. This scheduling allows a student to make 
several runs during one computer session. As many as 300 student runs have been 
processed daily on the 1620 computer. 

After a student has debugged his program on the 1620, he submits the pro­
gram to be run on the 7094. These programs are taken to the M.I.T. Computation 
Center at 4:30 P.M., Monday through Friday, for overnight batch processing. 
Results are returned to the students the following day. This form of operation, 
using two computers, has been quite successful and is representative of many 
engineering organizations, where programs are developed and debugged on a 
small computer and then run on a large computer. 

1.4 COURSE MEETINGS 

The course is scheduled for two lectures~ two laboratory- recitations, and. 
two homework hours per week. Each lecture section consists of from 30 to 35 
students and each laboratory-recitation section of 15 to 18 students. New material 
is presented primarily during lectures, while laboratory-recitation hours are 
devoted to a review of lecture topics, discussions of programming problems and 
homework assignments, and familiarization with computer equipment (use of Key 
Punch, 407, etc.). Laboratory-recitation sections are quite informal and are 
geared to individual interests of the students. 

1.5 STUDENT ENROLLMENT 

During the Spring Term 1964, 138 students registered for Course 1.15. 
There were four lecture sections and eight laboratory-recitation sections. Two 
of these lecture sections were for freshmen, and the other two sections were for 



INTRODUCTION 

undergraduate and graduate students. One of the two freshmen sections was 
chosen for the time-sharing experiment. 

1.6 COURSE 1.155 

3 

During the same term, Course, 1.155, Computer Laboratory, was begun. This 
course is taken in conjunction with 1.15 by any student wanting to do additional 
laboratory work. The course was specified in the catalog as having no lectures, 
five hours of laboratory per week; and no homework. Approximately 35 of the 
students registered for 1.15 registered for 1.155. Ten of the students in the ex­
perimental sections of 1.15 also registered for 1.155. 



This empty page was substih1ted for a 
blank page in the original document. 



5 

SECTION II 

TIME-SHARING EXPERIMENT 

2.1 MODE OF OPERATION 

The freshman section of Course 1.15 was divided into two similar groups of 
16 students each. One group used the normal 1.15 mode of operation, where runs 
were debugged on the 1620 and then submitted to the 7094; the other group used 
CTSS, exclusively. 

Both groups attended the same lectures arid received the same programming 
assignments. Each group attended separate laboratory-recitation sections. No 
mention was made of specific computers during the lectures, whereas the labora­
tory-recitation sections were directed toward the particular machine the group 
was using. Occasionally, the framework was altered as a result of student 
questions or the topic covered. For example, the machine-language lectures 
were oriented towards the IBM 1620 machine. 

2.2 GROUP DIVISION 

To realistically evaluate the relative performance of the groups, it was 
necessary that the groups be similar. Therefore, division of the class was such 
that each group was required to: 

1. have the same cumulative grade average from the Fall Term 1963, 
2. have the same degree of previous computer experience, 
3. have the same number of people registered for both 1.15 and 1.155. 

Each group had 16 pupils: the 1620 control group had a class average of 3.64 
(from 2.1 to 4.8), while the CTSS experimental group had a class average of 3.51 
(from 1.2 to 4.8). Each group had five pupils who were also taking Course 1.155, 
and none of the 32 students had previous experience with computers. 

2.3 HOMEWORK ASSIGNMENTS 

Students in both sections were given identical homework assignments. Each 
student in 1.15 was expected to do a minimum of eight assigned problems. These 
problems were assigned at a rate of approximately one per week, beginning with 
the third week of the term. Students who were also registered in 1.155 were ex­
pected to do four additional problems and a term paper. 

In addition, an introductory problem was assigned in the second week of the 
term. This problem (solution of a quadratic equation} was programmed during 
class time. The students in the 1620 group had to both punch cards and submit 
the program. The purpose of the assignment was to acquaint students with 



6 SECTION II 

operation of the 1620 computer and related off-line equipment. The time-sharing 
group used this problem to familiarize themselves with operation of the remote 
console and use of the time-sharing commands. 

Since 1.15 was designed to prepare students for future work, primary emphasis 
was on the mechanics and application of FORTRAN. This is presently the principal 
computer language of the scientific and engineering communities. Therefore, the 
majority of assigned problems involved FORTRAN programming. 

Assigned problems were also relatively short. We have found from past ex­
perience that students gain more from doing several short programs than from 
doing one long program. 

The students in both groups were requested to keep detailed time statistics of 
all computer runs. 



7 

SECTION III 

TIME-SHARING OPERATION 

3.1 REMOTE CONSOLE OPERATION 

A remote teletypewriter console (teletype number 38) was installed in Room 
1-147 at the Department of Civil Engineering by Project MAC for the experiment. 
This teletype was reserved exclusively for use by students in the time-sharing 
group. These students were not permitted to use other consoles even if number 
38 was inoperative. This restriction was imposed to help estimate the reliability 
of remote consoles. 

3.2 TIME-SHARING INSTRUCTION 

The first three weeks of the term were spent introducing the FORTRAN 
language and the philosophy and mechanics of time-sharing. These topics were 
presented concurrently, so that students would be able to use CTSS by the 
fourth week. Time-sharing material was presented only during the laboratory­
recitation hours. Approximately three hours of lecture and discussion were 
needed to introduce the following topics: 

1. Philosophy of time-sharing, 
2. Basic time-sharing commands, 
3. Running procedures and restrictions using CTSS, 
4. Demonstration of CTSS. 

By the end of the third week of the term, the students were familiar enough 
with time-sharing and FORTRAN to begin their first problem. Several of the 
more ambitious students were able to digest the material by the second and third 
weeks. 

The following commands were presented, so that students could effectively 
use CTSS for FORTRAN programming: 

LOGIN 
LOAD 

LISTF 
START 

PRINTF 
SAVE 

INPUT 
RESUME 

EDIT 
DELETE 

MADTRN 
LOGOUT 

A special handout was prepared which gave a detailed description of the above 
commands. 

As the term progressed and more advanced material was introduced, new 
time-sharing commands, pertinent to the material, were presented. Additional 
handouts were prepared describing these commands. In addition, the CTSS 
Programmers Guide was available at all times at the remote console. students 
were encouraged to experiment with any of the commands described in it, even 
those not presented in class. 



8 SECTION III 

3 ,3 TIME ALLOCATION 

Different forms of time allocation were used to determine which is most 
effective for student use. These included assigned time, open time, and sign-up 
time. The console was available for use only during the following hours: 

Monday-Friday, 9:30 A.M. to 4:30 P.M., and 8:30 P.M. to 10:00 P.M. 

Saturday - SUnday, 1: 00 P .M. to 4: 30 P .M., and 8: 30 P .M. to 10: 00 P .M. 

During the latter part of the term, it was necessary to relax these restrictions 
and permit runs after 10: 00 P .M. This occurred because many students lost their 
normal session as a result of computer down time. 

Each student was assigned two hours of console time per week, and any 
student also registered for 1.155 was assigned an additional two hours of con­
sole time. The assigned time was divided into sessions, varying from one-half 
hour to two hours. The length of sessions was purposely varied to determine 
the optimum length of a session. 

In addition to the assigned time, six-and-one-half hours each week were 
classified as "open hours". The console was available on a first-come-first­
served basis during these hours. If a student missed a part of his regular 
session because the computer was down, he was given first priority during 
open hours. 



SECTION IV 

TIME-SHARING EXPERIMENT ANALYSIS 

4.1 OVERALL REACTION 

At the beginning of the term, many students were skeptical about time­
sharing and were somewhat annoyed that they would be unable to use the 1620. 
By the end of the term, their views had changed and they were extremely en­
thusiastic about time-sharing. Part of this enthusiasm may be due to the 
glamour and status of the experiment. Many of the students brought friends and 
dates to the console room to show off time-sharing. The major cause of the 
enthusiasm was, however, satisfaction with the time-sharing system. The 
following comments made by the students convey their overall favorable 
reaction.* 

"My overall reaction to the use of time-sharing was quite favorable." 

"Besides the 'thrill' of being in the experimental section, I enjoyed 
very much the personal satisfaction I received from having this direct 
line to a computer - a 7094 at that." 

"On the whole, I found the use of the time-sharing system to be very 
interesting and well worth the many instances when I was sure the 
purpose of it was principally to ruin the user." 

4.2 TIME-SHARING ORIENTATION 

9 

The first month was the most difficult time during the experiment, from the 
standpoint of both the students and the instructors. During this period, many new 
foundations were built. Use of the console and the mechanics of time-sharing 
were added worries to students who were already puzzled over concepts such as 
the workings of a computer and the grammer of FORTRAN. One student said, 

"Besides trying to use a newly-learned language, which he is not very 
sure of, a student is faced with the problem of trying to utilize the 
intricacies of a system which often gives responses that he cannot 
understand. I for one remember losing the major part of a two-hour 
session simply because I couldn't decipher the 'PLEASE CORRECT 
IT OR TYPE IGNORE' command. Admittedly this problem could be 
solved simply by telling the student before he sat down at the con-· 
sole, but the point is that, if it is not this command it will be another, 
or perhaps an error diagnostic, that he will waste valuable time 
trying to interpret." 

* Throughout the remainder of this report, excerpts will be quoted from reports 
submitted by the students. 



10 SECTION IV 

Figures obtained from the students at the beginning of the term show that it 
took approximately 2. 7 man hours, 1.6 console hours, and 2.3 machine minutes 
per student for initial orientation. This time was spent typing in, compiling, and 
running the pre-programmed problem (quadratic equation). These figures should 
be used with caution, since each student had a different conception of what "being 
acquainted with the system" meant, and man hours spent ranged from one to six 
hours, while console hours ranged from one-half to four hours. 

Principal difficulties that students encountered during the first sessions 
were the following: 

1. Use of the INPUT and EDIT commands, particularly use of the tab key. 
Students would try to type in commands while in the INPUT mode. The 
"PLEASE CORRECT IT OR TYPE IGNORE" statement was also quite 
confusing to several students. 

2. Error messages were hard to decipher (PROTECTION MODE VIO­
LATION, etc.). 

3. MADTRN diagnostics were non-existent or unclear. 
4. Output, following a successful MADTRN compilation was confusing 

(such as the message THE FOLLOWING NAMES •••• ). Nowhere 
did the statement COMPILATION SUCCESSFUL appear. 

5. Minor teletype difficulties were encountered. 
6. Students were using commands they did not fully understand. 

The last point deserves some comment. It is unreasonable to expect a 
student with no previous computer experience to have grasped the concept of 
loading, compilation, binary files, etc., after the first few weeks of the term. 
He, therefore, is quite confused by the sequence of commands: FILE, MADTRN, 
LOAD, and START. (LOADGO was not in operation when the experiment began.) 
The beginning programming student should be able to type in one command in the 
INPUT mode, which will perform all of the above operations if the program is 
correct. Later on, as students learn the internal operations of the machine and 
write more sophisticated problems, in different languages, they will be ready 
for the individual commands. During the first few weeks, however, they were 
only writing simple FORTRAN programs. 

One interesting observation was made by the instructor. During the first 
few weeks, several students admitted they were quite confused; however, at the 
end of the term, these same students claimed they had no trouble mastering the 
system. 

To summarize, the instructor's observations are: by the second week of 
time-sharing students were using the system, but not quite comprehending what 
it was all about; and by about the fourth to sixth week most of the students used 
CTSS quite proficiently. 

4.3 CONSOLE RELIABILITY 

Overall performance of the teletype unit was quite good. Analysis of data 



TIME-SHARING EXPERIMENT ANALYSIS 11 

furnished by the students shows that the teletype operated properly approximately 
70 percent of the time. The two principal malfunctions while the system was opera­
tional were double letters and incorrect characters. Jammed keys and motor 
malfunctions were the principal reason for the teletype being inoperative. The 
principal complaint was that the typing rate was too slow. Several students ex­
pressed interest in IBM 1050 teletypewriter units, which appeared faster. One 
student was quite disappointed that he did not have access to a CALCOMP plotter, 
because the 1620 group were able to use the plotter that is connected on-line to 
the 1620. 

One annoying problem was the delay encountered in getting the teletype fixed. 
This varied from one to several days, with the result that considerable reschedul­
ing was necessary. Despite this, students seemed satisfied with the teletype as a 
minimum remote console. However, there is some doubt as to how effectively 
these beginning programmers could have utilized input/output devices which 
were part of a sophisticated remote console. 

4.4 SYSTEM RELIABILITY 

Unreliability of the system was a major problem. Student statistics reveal 
that the system was reliable only about 60 to 65 percent of the time. The two 
principal problems were system "down time" and "bugs" in CTSS. 

The most bothersome "bugs" concerned: 

1. MADTRN - Difficulties with the MADTRN command are discussed in the 
compilation section. 

2. Storage of disk files - Several students lost files or received other users' 
files during the course of the term. Since the history tape procedure was 
not yet in full operation, it was difficult to retrieve lost files. 

Computer down time caused major inconvenience for both students and in­
structor. Students would arrive for their time-sharing session only to find the 
machine down. Since there was rarely any estimate of when the machine would 
be up, a student would sit and wait for the hour or two he was scheduled. Generally, 
very little productive work could be accomplished while waiting. The net result 
was several wasted hours and much frustration. It must be remembered that the 
problems introduced by down time are quite different for a student than they are 
for a staff member. A student does not have a console in his office or close to 
his office, so that if the machine is down he cannot immediately return to other 
work. Unless consoles are installed in dormitories or fraternities, time-sharing 
does not offer students the same physical accessibility to the computer that it 
does to other users. 

Several students suggested that messages be added to the comment CTSS NOT 
IN OPERATION, informing users when the machine would be back in operation. 
Those students who called the computer room requesting information about com­
puter trouble always received very courteous service. 



12 SECTION IV 

Computer down time introduced a major rescheduling problem. Homework 
due dates could be extended or makeup sessions assigned during the "open hours." 
Twice, homework assignments were delayed one week, with the result that two 
problems which were originally to be assigned (using FAP) were eliminated. A 
homework assignment was postponed only if a majority of the class had lost 
their sessions. 

Reliability was fairly good until the middle of April. Two or three students 
lost time each week, but they were easily rescheduled. However, when a new 
time-sharing system was introduced, in April 1964, major problems resulted. 
There was one period when the system was down continuously for almost two 
weeks. Open hours were no longer sufficient to accommodate all the students 
needing makeup hours. To counteract the problem, time was assigned during 
the hours of 10: 00 P .M. to midnight. As the situation worsened, time was 
assigned to 2:00 A.M. and even in one case until 4:00 A.M. These hours were 
only given to students who wished them and did not have morning classes the 
following day. No students were asked to work at an unreasonable hour. Several 
of the students preferred time-sharing after midnight because of the improved 
service, but in general we feel it unreasonable to expect students to work after 
midnight. 

The experiment showed that sufficient open hours must be reserved in the 
event of machine down time. The instructor or an assistant must be willing to 
devote a considerable amount of time to rescheduling problems that continuously 
occur. Hopefully, all problems caused by the unreliability of the system will be 
eliminated as we gain more experience with time-sharing and design new sys­
tems. 





14 SECTION V 

5,3 CHECKING FOR ERRORS BEFORE COMPILING 

Because of the accessibility of the computer, many students were quite 
sloppy about inputting their programs, and then performed no error checking 
before attempting compilation. Since they could compile immediately, they let 
the computer detect all their errors. One student said, 

"The system tends to make one try to run a program before it has been 
properly checked. This sometimes lets errors get by which will cause 
faulty results at the expense of computer time." 

Almost no students used the PRINTF command before compilation to see if 
their program was entered correctly. 

Of course, one could argue that the increased computer time brought about 
by eliminating human error checking is justified, because user work time is 
reduced. We will not try to answer this question here, but merely state that 
some proper balance should be obtained between work done by the student and 
work done by the computer. We will have more to say about this latter when 
the subject of running-time restrictions is discussed. 

5.4 COMPILATION 

The students wrote their programs in FORTRAN, and compilation was 
obtained using the MADTRN command. Any number of compilations and ex­
ecutions were permitted for each problem. The average number of compilations 
and executions per problem was between eight and fifteen, though some students 
had over 30 compilations for a single problem. Program compilations were 
attempted at the rate of three to four per hour, and the program execution rate 
was also about three to four per hour. 

The principal reasons for the large number of compilations were: time­
sharing accessibility offered, an absence of restrictions on the number of runs, 
and problems arising from the use of the MADTRN command. This command 
had the following serious drawbacks: 

1. Diagnostic messages were difficult to interpret. It is essential that 
beginning programming students be provided with informative and 
correct diagnostics. 

2. Certain errors were not detected by the translation. This was partic­
ularly true for errors in FORMAT statements. Since students commit 
many format errors, the absence of diagnostics was quite unfortunate. 

3. Correct FORTRAN programs were incorrectly translated by MADTRN. 
The translation of COMPUTED GO TO statements was almost always 
incorrect. It is quite frustrating to write a correct program only to re­
ceive incorrect results because of a bug in the compiler. 

Hopefully, these difficulties should be eliminated as soon as a FORTRAN 
compiler is introduced into CTSS. Until then, MADTRN can be viewed at best 



STUDENT CONSOLE PERFORMANCE 15 

as an only somewhat satisfactory temporary system. 

FORTRAN has two principal drawbacks when used in a real-time system: 

1. Diagnostic messages are not received until the entire program has been 
typed in and compilation requested. 

2. Results are not obtained until the program has successfully compiled 
and execution has been requested. 

For student use it would be desirable to take advantage of time-sharing and 
introduce editing routines and incremental compilers so that students would obtain 
immediate response. An editing program could be used in conjunction with the 
INPUT command, so that after a line is typed, the program would check for 
grammatical and some logical errors and print them out so the student could 
correct them immediately. A. L. Samuel's INPUT command is a step in the 
right direction. The attributes of incremental compilers have already been 
widely discussed, and experiments with COGO and J. Weizenbaum's language 
demonstrate the significant value of this type of approach. As one student 
suggested, 

"The constant man-machine communication possible on the console 
makes the console into a virtual teaching machine with instant re­
ward and punishment." 

New compilers should be developed to be used in conjunction with time­
sharing which would increase this interaction. 

5.5 DEBUGGING 

The debugging operation consists of two phases; removing grammatical 
errors, and removing logical errors. Time-sharing was used quite effectively 
by students for the first type of operation. The grammatical errors were 
spotted quite readily and then immediately corrected. The students were unan­
imous in their enthusiasm for being immediately able to correct errors and re­
run programs. Some students became a bit spoiled by the interaction time­
sharing offered, and as a result, they had no real understanding of the usual 
turn-around-time problem. 

The methods employed and the success obtained in removing logical errors 
from programs varied considerably among the different students. A student per­
formed from 10 to 17 debugging runs per problem and the runs were made at the 
rate of about three to four per hour. The students in the 1620 group made only 
about three runs per problem. The greatest difference in the performance of the 
two groups was the number of runs per problem that each made. 

The principal debugging techniques employed by the time-sharing group 
were: 

1. Intermediate printouts; 



16 SECTION V 

2. Variation of input data and observation of effect on answers; 
3. Examination of MADTAB files, to see if variables were properly de­

fined and to obtain the machine locations of variables for use with the 
PM command; 

4. Examination of MAD file, to check out intermediate MAD programs; 
5. Use of the PM comm.and, for a post-mortem printout of the program's 

condition in core. 

Methods 1 and 2 were used almost exclusively by the poorer students, whereas 
all five methods were used by the better students. Debugging methods improved 
during the second half of the term when machine language, assembly programs, 
and internal machine structure was stressed. Many students missed the availabil­
ity at the console of a FAP listing of their FORTRAN programs. 

In general, the debugging techniques used by the students were considered 
mediocre. One student commented, 

"Assuming CTSS in operation, the major disadvantage is the difficulty 
in finding a logical error while sitting at the console." 

This statement is ironical, considering that one of the goals of time-sharing is 
to permit users to discover errors using man-machine interaction. The student, 
instead of viewing time-sharing as a debugging aid, looks upon it as a disadvan­
tage. The inability of many of the students to adequately use time-sharing for 
debugging raises many important questions. Can the relatively inexperienced 
programmer adequately use the somewhat sophisticated debugging techniques 
that time-sharing offers? Many of the students even had trouble with the PM 
command. They did not know how to interpret the output they received. It seems 
apparent that we need numerous simple and non-machine-oriented debugging 
aids for the novice programmer to use with time-sharing. 

The principal difficulties students encountered related to input/output. Format 
statements caused many problems. Therefore, it would be desirable to provide 
the beginning programmer with processors that have very simple input/out con­
ventions. Format-free input would be especially desirable. 

Because many students constantly got bogged down with a problem in the 
middle of a session, the usual procedure was to work on several problems in 
the same session. As soon as a student could go no further with one problem, 
he would begin the second one. This is a far superior plan of attack than to 
blindly type in commands in an attempt to discover errors. The latter approach, 
unfortunately, was employed by several students. 

The question of too much accessibility to the machine is again raised with 
respect to debugging. One student commented, 

"The main problem with debugging is that the machine is your servant 
for two hours a week - it is difficult to convince oneself that taking a 
hard look at the program may be more fruitful than giving command 
after comm.and, in hopes that the error will make itself obvious." 



STUDENT CONSOLE PERFORMANCE 17 

Although debugging performance was only fair during the term, by the end of 
the term all students were fairly proficient at debugging. Since all students in the 
other 1.15 sections did not have the same proficiency, it seems reasonable to 
conclude that time-sharing had helped the student gain greater insight into the 
computer. It is possible that the unproductive sessions experienced by many of 
the students during the early months were a necessary evil to reach the final 
objective. 

It was also obvious, from observing debugging performance at the console, 
that the value of time-sharing varies with the capabilities and experience of each 
student. 

5.6 CONSULTATION 

Two lab instructors were available throughout the day for consultation. Al­
though the instructors' offices were less than one minute from the console, 
students never consulted the instructors during their time-sharing sessions. If, 
however, the instructor was in the time-sharing room, he was flooded with 
questions, many of which could have been answered by the student with a moment's 
thought. Here is another example of the student's reluctance to surrender the 
console. 

It would appear from this discussion that it would perhaps be unwise to have 
an instructor on duty in the time-sharing room. On the other hand, there are 
many times, especially during the first time-sharing sessions, where the student 
really needs assistance. A brief comment by the instructor as to the meaning of 
an error message could save him hours of useless work. 

A compromise would seem to be the answer. Student or teaching assistants 
could serve as consultants in the console room, and supply limited information. 
The student would consult his regular instructor for major debugging problems. 

Many students asked questions of staff members, not in any way connected 
with 1.15, who were using other time-sharing consoles in the same room. These 
people were more than willing to help, but they were distracted from their own 
work. It should be decided whether educational consoles and research consoles 
should be located in the same room. 

5. 7 STUDENT MATURITY 

For the most part, students demonstrated extreme maturity when using the 
experiment. They followed all rules and regulations and did not try to fool around 
with CTSS. Two types of situations arose where students deviated from the usual 
procedure. A student used the system from 8: 00 P .M. Friday to 4: 00 A.M. Satur­
day, even though he was only scheduled for a two-hour session from 8:00 P.M. to 
10: 00 P .M. This same student and his roommate, who was also taking the course, 
constantly tried to use CTSS during unauthorized hours. It is rather difficult to 
be too critical of such overly optimistic and eager students. 



18 SECTION V 

Two other students used slightly off-color expressions when naming their 
disk files and for printouts during their runs. The students used these comments 
even though they were well aware that their output would be carefully examined. 

Both of these situations, although somewhat immature, should not over­
shadow the overall mature approach of the students. These students could be 
trusted with the time-sharing system. 

5.8 ALLOCATION OF CONSOLE TIME 

Console hours were allocated on the basis of assigned hours, sign.up hours, 
and open hours. The first two systems worked well, but the third did not. Opera­
tion under each system is described below. 

5.8.l Assigned Hours 

This was the principal means of allocating time. Students planned their 
work beforehand, so they would have sufficient material to keep them busy for 
their one- or two-hour session. The only undesirable effect noted was pressure 
on the students to use the console constantly during their as signed hours, even 
if they were not sure what to do. 

5.8.2 Sign.up Hours 

With the sign.up hours, a student could vary time-sharing sessions from 
week to week, to fit into his overall schedule. In most cases, however, students 
did not feel there was any real advantage of sign.up hours over assigned hours. 
During the term, most students assume a fairly stable schedule, so that devoting 
the same two hours a week to time-sharing is not a real hardship. This method 
of scheduling has the major disadvantage that a sign.up schedule must be main­
tained from week to week. 

5.8.3 Open Hours 

With only one console available, the open-hours system was a failure. Many 
students would travel from 10 to 45 minutes to get a time-sharing session during 
an open hour, only to find that the console was already in use by some other 
student. If sufficient consoles were available, this situation would not have 
arisen. The open-hours system has the desirable advantage that a student can 
time-share when he needs to; he does not have to commit himself beforehand 
for a fixed amount of time, and he is not under pressure to produce something 
of value at the console during each fixed time period. 

The open-hours system does, however, produce an unbalanced load on the 
computer. During desirable hours, many students would be time-sharing; where­
as during other hours, the consoles would be vacant and the computer load 



STUDENT CONSOLE PERFORMANCE 19 

fairly light. This situation currently exists with respect to the key-punch 
machines in Building 26. With assigned time or signup hours for using CTSS, the 
computer load could be evenly spread throughout all hours. 

Although the open-hours system appears attractive, if there are sufficient 
consoles, the assigned-time system and the signup system are more realistic 
and economic. 

5.9 LENGTH OF SESSIONS 

The students were unanimous in the following views on the length of time­
sharing sessions: 

1. Little can be accomplished in sessions less than one-half hour; 
2. Sessions longer than two hours were generally unproductive after the 

second hour, unless some larger program, such as a term project, was 
involved; 

3. Two one-hour sessions per week were superior to one two-hour session 
per week; 

4. The optimum session length would be about one hour (45 minutes to 1-1/2 
hours). 

5.10 STUDENTS PER CONSOLE 

One console was more than adequate to fill the demands of 16 students in 
Course 1.15 and the 6 students in Course 1.155. The console could handle from 
25 to 30 students if the following conditions are assumed: 

1. Each student is allotted two hours of console time per week; 
2. Assigned console time is eight hours for Monday through Friday and 

six hours for Saturday and Sunday; 
3. One to two hours per day are available for makeup sessions. 

If sessions as late as midnight are scheduled, and minimal time is reserved 
for makeup sessions, then as many as 40 students could be accommodated on a 
single console. 

5.11 AUTOMATIC LOGOUTS 

During the semester there were a total 66 automatic logouts. Approximately 
ten of these occurred at 4:30 P.M. Most students found the &1:tomatic logouts 
annoying, but because of their low frequency of occurrence, they were tolerable. 

5.12 RESPONSE TIME 

Average response time was estimated by the students to be from 10 to 15 
seconds. This delay was considered quite reasonable. The majority of students 



20 SECTION V 

considered delays greater than 30 seconds unreasonable, and in some cases in­
tolerable. As the students became more familiar with the operations necessary to 
execute each command, their response-time requirements were adjusted. For 
example, they expected response time for the MADTRN command to be consider­
ably longer than for LISTF. 

Two qualifications should be associated with the figures given above. First, 
it is extremely difficult for untrained persons to estimate time, so that a ten­
second estimate by a student might, in reality, be only five seconds. Second, a 
student's response requirements are greatly influenced by the average and 
exceptional performance of the system. Once a student sees that MADTRN can 
execute in ten seconds, real-time, he expects it to always execute in ten seconds. 
Therefore, it seems reasonable that students will always be somewhat dissatis­
fied with response times, unless they are virtually instantaneous. 

5.13 MEMORY REQUIREMENTS 

Each student was allotted 50 tracks on the disk file. He was expected to de­
lete files when they were no longer needed, and use the space as efficiently as 
possible. The students agreed that fifty tracks were more than sufficient. The 
only exceptions were several students who did rather lengthy term projects. 
Most students felt that they could have performed quite satisfactorily with only 
20 to 30 tracks. 

5.14 TERM PROJECTS 

Time-sharing was used quite effectively by all students who did term projects 
for Course 1.155. These projects involved rather long, difficult programs that 
required considerable debugging and testing. Time-sharing was ideal for these 
operations. 

Term projects performed were: 

1. Simulation of the 1620 on the 7094 (done by two students), 
2. A program to play dominoes, 
3. Searching and sorting techniques, 
4. Solutions to simultaneous equations, 
5. Polynomial Curve Fitting. 

It was quite evident that the students enrolled in both 1.15 and 1.155 made 
far better use of time-sharing than those students enrolled only in 1.15. This 
seems to support the contention that as a programmer becomes more experienced, 
he makes better use of time-sharing. 

5.15 COMPUTER TIME REQUIREMENTS 

Average console and machine time used for problems is shown in Table 1. 

-------- -----



STUDENT CONSOLE PERFORMANCE 

Table 1 

Problem 

a) 1.15 Problems (listed 
in order assigned.) 

Quadratic Equation 

Triangle 

Elementary Operations 

Format 

Change 

Matrix Multiplication 

Information Retrieval 

COGO (No. 1)* 

COGO (No. 2)* 

COGO (No. 3)* 

Simulation 

Average 

b) 1.155 Problems 

Straight Line Fit 

Azimuth 

Soil 

Terminal Velocity 

Inverse Hyperbolic 

SIN 

Root 

Average 

Time Used Per Problem 

Time-Sharing Section 

Console Machine 
Time Time 

(hours) (min.) 

2.6 4.26 

2.4 3.8 

1.79 2.94 

4.75 10.4 

2. 3.6 

2.57 5.1 

4.25 8.85 

.25 .95 

.74 .16 

1.25 3. 

2.5 2.97 

2.62 4.81 

3. 4.6 

2.03 3.9 

2.1 4.1 

. 75 2.35 

1.05 2.7 

1.13 2.2 

1.68 3.31 

21 

Program-
ming Total Time 
Time Work Span 

(hours) (hrs.) (days) 

1. 3.3 6.3 

2.1 5.2 9.5 

1.49 3.28 6.85 

4.5 9.9 15. 

1.32 3.53 12. 

1.65 4.55 7.1 

1.8 6.9 11. 

.23 .7 1. 

.6 1.26 2.8 

3. 4.25 7. 

1.2 3.25 4.1 

1.82 4.66 9.18 

.75 3.75 10. 

1.25 3.25 6.8 

1.9 3.8 22. 

1.9 3. 7 . 

. 75 2 . 22.3 

.38 1.76 1.3 

1.155 2.93 11.57 

*Students were only required to choose one of three COGO problems. All 
three COGO problems counted as a single problem in the calculation of 
average values. 



Table 2 

Characteristics of Time - Sharing Group 

Student 1.55 February March April May Total Hours 
Participant Console Machine Console Machine Console Machine Console Machine Console Machine 

Carlson no .76 .01 9.91 .45 5.97 .26 2.99 .12 19.23 .84 
Christiansen no 1. 75 .06 10.70 ,59 10.55 .54 5.88 .29 28.88 1.48 
Friedman* yes .61 .02 21.04 2.33 1.12 .03 .00 .00 22.77 2.38 
Gottlieb* yes 7.48 .53 29.49 1.69 26.40 .95 81.78 3.71 145.15 6.88 
Jeffrey no .oo .00 4.17 .13 7.62 .39 6.80 .30 18.59 .82 
Jones no 1.39 .02 7.05 .19 10.87 .43 9.51 .46 28.82 1.1 
Kern no .62 .02 7 .37 .27 5.34 .23 6.90 .34 20.23 .86 
LaBreche no .00 .00 5.58 .17 9.46 .30 10.22 .49 25.26 .96 
Lem er no .98 .02 4.46 .11 6.15 .18 4.66 .21 16.25 .52 
Radzikowski yes 4.99 .15 16.82 .51 11.30 .35 20.78 .68 53.89 1.69 
Reinert no 1.75 .04 4.17 .12 3.84 .06 7 .88 .21 17.64 .43 
Simon no 1.35 .03 2.09 .07 2.73 .15 7 .27 .28 13.44 .53 
Steinmetz no 3.97 .12 13.89 .48 10.08 .53 20.58 1.53 48.52 2.66 
Stuntz yes 2.27 .06 10.16 .41 11.94 .47 24.45 1.28 48.82 2.22 
Weiner no .39 .01 19.48 .78 18.28 1.17 4.65 .19 42.80 2.15 
Willis yes 3.61 .19 27.69 1.11 13.26 .53 11.65 .50 56.21 2.33 

Total Hours 31.92 1.28 194.07 9.41 154.91 6.57 226.00 10.59 606.90 27.85 

Average 1.99 .08 12.1 .59 9.7 .41 14.1 .66 37.93 1.74 

* Since these students worked on the same term project they logged in using one number (Gottlieb) during most of April and all of May. 

N) 
N) 

rn 
M 
(") 
1-3 
H 

0 z 
< 





24 SECTION V 

Table 3 

Characteristics of 1620 Group 

Number Punch Initial Machine Wait Total 
of Time Program Time Time Work 

Problem Runs (min.) Time (min.) (min.) Time 
(hours) (hours) 

a) 1.15 Problems 

Triangle 1.5 64.1 1.78 5.9 28.8 3.72 

Elementary Op. 3.29 42.4 1.91 7 .67 72.6 4.9 

Format 3.78 68.7 2.55 9.67 66.3 6.22 

Change 4. 33.6 .86 8.85 37.8 2.13 

Matrix Mult. 4.6 62.1 2.54 11.9 40. 5.2 

Info. Retrieval 2.75 62. 2.8 8.6 32.5 5.72 

COGO 2.4 43. 1.6 4.8 15.3 3.27 

Simulation 3.4 50. 1.15 11.2 31.4 3.6 

Average 3.21 53.2 1.9 9.5 40.6 4.33 

b) 1.155 Problems 

St. Line Fit. 1.67 30. 1.18 2.5 3. 1.6 

Soil Classif. 2. 27 .5 .66 3.6 20. 1.25 

Simultaneous Eqs. 6. 67 .5 1.75 10.5 50. 3.62 

Series Sum. 4.5 48. 1.1 9. 32.5 2.9 

Median 3.67 40.3 1.74 6.1 56.1 3.5 

Machine Lang. 1.83 21.4 1.33 2.78 42.5 2.88 

Average 3.28 39.1 1.26 5.75 34. 2.63 



STUDENT CONSOLE PERFORAMNCE 25 

The figure of 1. 74 hours of 7094 time per student is too high. If each 1.155 
student is given double weight, since he was enrolled for two courses, then the 
figure becomes 1.33 hours per student. This is still considerably higher than the 
figure of 0,25 hours per student per term which is used by the M.I.T. Computation 
Center in allotting 7094 time to courses 6.41 and 6,251. However, the following 
factors should be considered: 

1. 1.15 students programmed twice as many problems as 6.41 and 6.251 
students; 

2. Much of the time used by the 1.15 students was unproductive memory 
swap time. 

If we assume that only 50 percent of the time used by the students was for 
productive work, then each student used 0.67 hours. This time does not compare 
too badly on a per problem basis with the times for 6.41 and 6,251, There is no 
question, however, that each student in 1.15 did use a considerable amount of 
computer time. 

5.16 TIME RESTRICTIONS 

The CTSS section of the class was unanimous in their opposition to any 
restrictions on the number of runs per problem or computer time per problem. 
The philosophy of 1.15 has always been to allow the students freedom to use the 
computer. The course has always used a small-scale computer (650, 1620), so 
that op_erations without restrictions with respect to computer time were feasible. 
It is questionable whether this same philosophy could be used with respect to a 
7094-oriented course. Several students used over 30 minutes of 7094 time in the 
solution of a single problem, This is ridiculously expensive. 

Another approach is represented by courses 6.41 and 6.251, where the student 
is assigned a limited number of problems, graded on each run and allowed a maxi­
mum number of runs (usually four) per problem. The students seemed quite opposed 
to this framework. They claim that a student turns himself into a computer and 
spends hours checking over his program for minute errors. One student who had 
already taken 6.41 commented, 

"I found myself (in 1.15) using considerably less time on programming, 
with time-sharing, than I spent in 6.41; where a person had to spend 
hours meticulously checking the program for errors, hoping to get a 
high mark by having it run on the first try." 

T,he whole concept of time-sharing is opposed to the type of operation imposed by 
restricted runs. 

The solution is probably some compromise between the 1,15 approach and the 
6.41 - 6.251 approach. To give the student complete freedom with no restrictions 
would have two undesirable effects: 

1. The student would use the system carelessly and waste valuable computer 
time; 



26 SECTION V 

2. The student would be educated unrealistically, since he would assume 
that he would always have unlimited free machine time, and would not 
realize the proper balance between computer and human time. 

On the other hand, the restrictions should be minimized so that the student 
can gain full benefit from time-sharing. One approach would be to put a com­
puter time restriction on each student for the entire term, and allow him to 
divide that time between problems (with guidance) in the best possible way. 
This would place a high degree of responsibility on the student. 

5.17 USE OF TIME-SHARING IN LECTURES 

Three lectures were given in which time-sharing was used in conjunction 
with closed-circuit television. These lectures were presented in the Civil En­
gineering Experimental Computer Classroom (Room 1-150). The topics and 
material presented are summarized below: 

1. Format statements - as various specifications were discussed, data 
was typed in by the instructor and the resulting internal representation 
was typed back by the computer; 

2. COGO - The COGO language was presented by typing in a demon­
stration problem on the remote console; 

3. Simulation - the use of simulation was demonstrated using time­
sharing. 

For Lectures 1 and 3, special notes were prepared for the students, which 
explained the problems and contained space for them to write down the results 
of each experiment. 

The use of time-sharing during the lectures was overwhelmingly successful. 
Student interest and participation was high. During the simulation and COGO 
lectures, students kept suggesting problems they wanted to try. Because of 
computer accessibility, it was possible to immediately try their problems on 
the computer. The lecture on format statements was particularly successful, 
since the use of format has always caused considerable difficulty. Time­
sharing gave the lecture new meaning, and allowed the students to see exactly 
what was being described. 

Time-sharing should have tremendous potential in the classroom, using 
television and a console. The teacher would be able to use the computer when­
ever necessary to demonstrate salient points. The Department of Civil Engineer­
ing is now actively engaged in using time-sharing in many of its courses. This 
work is being conducted using the Computation Center computer in conjunction 
with a Ford Foundation research grant. 



27 

SECTION VI 

CONCLUSIONS 

Many respected educators at the Institute have been concerned that the 
"glamour" of freshmen computer courses has an undesirable effect. The students 
spend all their time on computer work, while neglecting their important courses, 
such as 5.01, 8.01, and 18.01. This danger was increased for the time-sharing sec­
tion, where the student was presented with the additional glamour of a time­
sharing console. 

The experiment seems to indicate that such fears did not materialize. The 
student's grades are shown in Table 4. The cumulative average of the time­
sharing class was 3.50 during the first term and 3.68 during the second term. In 
the 1620 group, the average dropped from 3.65 to 3.48. 

Many students felt that time-sharing encouraged their work in the other 
courses. Several students even wrote programs for use in their physics labora­
tory sessions. And the time-sharing sessions provided a good balance to coun­
teract the usual home work of freshman basic core courses. 

The results of the experiment have not conclusively demonstrated that time­
sharing is superior to the 1620. In fact, it could be argued that time-sharing was 
inferior, because of the many runs students in the time-sharing section required 
and the large amount of machine time they used. The authors, however, feels the 
experiment did illustrate the great potential of time-sharing in an educational 
framework. 

The experiment was conducted under extremely adverse conditions: The 
time-sharing system used is centered around a computer that is not designed 
for time-sharing; the majority of machine time a person uses is for unproduc­
tive purposes; the software being used is a carryover from the batch-processing 
days; and, at the time, the system had many problems and was frequently in­
operative. Even with all these disadvantages, students were able to use the 
system quite effectively. One can imagine the results of the experiment if the 
students had proper hardware and software to work with. 

The use of time-sharing in the lectures was quite encouraging. This concept 
could be expanded, and time-sharing could be used for lectures in engineering 
and science courses. Demonstrations could be run on the console, with the re­
sults displayed via closed-circuit television. 

The following observations were made as a result of the time-sharing ex­
periment: 

1. The overall reaction of the students to time-sharing was very favorable. 
2. Each student in the time-sharing section used an average of 37 .9 con­

sole hours and 1.74 machine hours during the course of the term. 



28 

Table 4 

Comparison of 1.15 Final Grades 

a. Time-Sharing Section Grade Data 

Name 
Term Average Term Average 1.15 Grade 

Fall 1963 Spring 1964 

Carlson 4.8 4.5 A 
Christiansen 4.5 4.4 B 
Friedman 4.3 4.2 A 
Gottlieb 4.3 4.4 A 
Jeffrey 3.8 3.3 B 
Jones 3.3 4.4 B 
Kern 3.6 3.7 B 
LaBreche 2.9 3.7 A 
Lem er 3.0 3.5 B 
Radzikowski 3.0 2.7 A 
Reinert 2.2 2.1 D 
Simon 1.2 2.5 c 
Steinmetz 4.8 4.7 A 
Stuntz 3.2 3.1 B 
Weiner 3.7 3.7 A 
Willis 3.6 3.9 B 

Total 56.2 58.8 

Average 3.51 3.67 

b. 1620 Section Grade Data 

Name 
Term Rating Term R4ting 1.15 Grade 
Fall 1963 Spring 1964 

Ascherman 3.2 3.4 A 
Baker 2.7 2.0 c 
Desmond 3.9 4.4 A 
Ebert 4.6 4.4 A 
Flanagan 4.8 4.4 A 
Gips 3.8 3.9 A 
Hart 3.4 2.7 c 
Haus sling 4.2 4.5 A 
Meads 3.8 3.9 B 
Miller 2.1 0.9 F 
Nainis 4.1 3.6 c 
Robinson 3.5 3.7 D 
Schoenwald 4.0 3.8 B 
Sikes 3.3 2.7 B 
Taylor 3.9 4.2 A 
Wanek 3.0 3.2 B 

Total 58.3 55.7 

Average 3.64 3.48 

SECTION VI 

1.155 Grade 

A 
A 

A 

A 

A 

1.155 Grade 

A 

A 

B 
B 

D 



CONCLUSIONS 29 

One to three hours of console time, and about four minutes of machine 
time, were needed for the solution of each problem. 

3. In the 1620 group each problem required seven minutes of computer 
time. 

4. The 1620 group required far fewer runs per problem (four vs. nine) 
than did the time-sharing group. 

5. One remote teletype console was able to adequately handle the demands 
of 16 students. 

6. Assigning specific console hours for each student worked quite well. 
Time-sharing sessions about one hour long are optimum for students. 

7. Student users of time-sharing have different requirements than re­
search users. A student runs one-shot programs, spends considerable 
time inputting and has a high ratio of console to machine time. 

8. The effectiveness of time-sharing varied in direct proportion to a stu ... 
dent's ability. As a student gained computer and programming experi­
ence he used the system more effectively. 

It may have been a mistake to perform the experiment so soon after time­
sharing was introduced. The time-sharing system has improved so markedly, 
that if the experiment were to be repeated now the results would probably be 
quite different. The overall conclusion is that time-sharing should be used by 
students when adequate software and hardware is available, and when its use 
can be economically justified. 



This empty page was substih1ted for a 
blank page in the original document. 


