
Proving Correctness of a Distributed Shared Memory

Implementation

Miguel Castro�

castro@lcs.mit.edu

January 4, 1999y

1 Introduction

DiSOM [3, 4, 2] is a distributed shared memory system that o�ers users an atomic collection of
memory cells provided they satisfy certain well-formedness conditions. This report proves the
correctness of DiSOM.

The system partitions memory into a set of objects and implicitly associates a read-write lock
with each object. Users synchronize accesses to these objects explicitly executing synchronization
operations on the associated locks. DiSOM's distributed read-write lock implementation guarantees
progress and the usual read-write lock exclusion conditions.

DiSOM guarantees an atomic view of memory provided: (1) all write accesses to an object's cells
occur when the object's lock is acquired for writing; and (2) read accesses occur only when the lock
is acquired for reading or writing. This model is similar to entry consistency [1] but it is simpler
and provides an atomic memory instead of a sequentially consistent one.

2 Interface

DiSOM's memory consistency protocol is implemented by an asynchronous network system D with
reliable FIFO channels. We assume there are n users U1; :::; Un accessing the distributed shared
memory and that D has one process Di corresponding to each user Ui. We call the composition of
the user automata U . Informally, Ui communicates with Di using data access and synchronization

operations. Data access operations read and write shared memory cells, whereas synchronization
operations acquire and release the read-write lock associated with an object. This section de�nes
the actions used for communication between I/O automata Ui and Di formally.

It starts by introducing some preliminary de�nitions. Let C be the set of shared memory cells
and V be the set of their values. A shared object is de�ned to be a subset of shared memory cells.
Let O be the set of shared objects. We assume that the sets of cells corresponding to each object
in O are pairwise disjoint.
Di communicates with Ui using the following interface actions (in this de�nition v 2 V, c 2 C

and o 2 O):

�This work was supported by a Praxis XXI fellowship from JNICT.
yOriginally written in the Fall of 1995

1

Input:

(* data access input actions *)
request-read(c)i
request-write(c; v)i

(* synchronization input actions *)
request-acq-read(o)i
request-rel-read(o)i
request-acq-write(o)i
request-rel-write(o)i

Output:

(* data access output actions *)
reply-read(c; v)i
reply-write(c)i

(* synchronization output actions *)
reply-acq-read(o)i
reply-rel-read(o)i
reply-acq-write(o)i
reply-rel-write(o)i

We de�ne corresponding request and reply actions to be actions with the same type (e.g request-
acq-write and reply-acq-write) and the same cell or object (depending on whether they are data
access actions or synchronization actions). An operation is a pair of consecutive corresponding
request and reply actions in a trace.

3 Correctness Conditions

This section de�nes correctness conditions for system D � U . It starts by de�ning conditions on
the user automata. We de�ne a sequence � of actions from the interface above to be well-formed
for user Ui if it satis�es the following conditions:

1. (All operations are blocking) �ji starts with a request action and every request action is
immediately followed by a corresponding reply action (except possibly for the last request
action in the sequence).

2. (Synchronization operations are well formed) For any o 2 O, let be the subsequence ob-
tained from �ji by removing all the data access actions and all the synchronization actions
involving objects other than o. Then is a sequence starting with either a (request-acq-writei,
reply-acq-writei) or a (request-acq-readi, reply-acq-readi) operations; such that every occur-
rence of (request-acq-writei, reply-acq-writei) is immediately followed by a (request-rel-writei,
reply-rel-writei) operation; and every occurrence of (request-acq-readi, reply-acq-readi) is im-
mediately followed by a (request-rel-readi, reply-rel-readi) operation.

We say that U satis�es the well-formedness condition if each Ui preserves the trace property
de�ned by the set of sequences that are well-formed for Ui (according to the de�nition above).

2

Given a well-formed sequence of actions �, an object o 2 O and a user Ui, we say that Ui is:

� in its remainder region for o, R(o), in between any reply-rel-writei or reply-rel-readi actions
with argument o and the following request-acq-writei or request-acq-readi actions with argu-
ment o.

� in its write trying region for o, T (o)w, in between any request-acq-writei action with argument
o and the corresponding reply action.

� in its write critical region for o, C(o)w, in between any reply-acq-writei action with argument
o and the following request-rel-writei with argument o.

� in its write exit region for o, E(o)w, in between any request-rel-writei with argument o and
the corresponding reply action.

T (o)r; C(o)r and E(o)r can be de�ned in a similar way. With these region de�nitions we can
de�ne another well-formedness condition.

Synchronized data accesses: We say that a sequence � of actions from the interface satis�es
the synchronized data accesses condition for user Ui if the following holds. For any o 2 O, let be
the subsequence obtained from �ji by removing all the data access actions involving a cell d such
that d 62 o and all the synchronization actions involving objects other than o. Then must satisfy
the following conditions, for any applicable v 2 V and any c 2 o:

1. A request-write(c; v)i action occurs only if Ui is in region C(o)w.

2. A request-read(c)i action occurs only if Ui is either in region C(o)r or in region C(o)w.

Intuitively, the last well-formedness condition restricts the contexts in which users are allowed to
write or read from shared memory: (1) all write accesses to an object's cells must occur when the
object's lock is acquired for writing; and (2) read accesses can only occur when the lock is acquired
for reading or writing. We say that U satis�es the synchronized data accesses condition if each
Ui preserves the trace property de�ned by the set of sequences that satisfy the synchronized data
accesses condition for Ui (according to the de�nition above).

We can now de�ne correctness conditions for the entire system D � U .

Well-formedness: In any trace of D � U , the subsequence describing the interaction between Ui

and Di is well-formed for Ui.

Exclusion: For any object o and any reachable system state of D�U , if some Ui is in C(o)w then
no other user is in C(o)w or C(o)r.

The last condition is the usual exclusion condition for read-write locks. It says that: (1) if user
Ui has object o acquired for writing then no other user can have o acquired for writing or reading;
and (2) if user Ui has object o acquired for reading then no other user can have o acquired for
writing.

Progress: At any point in a fair execution of D � U and for any object o 2 O:

1. (Progress for the trying regions) If at least one user is in T (o)w (or T (o)r) and no user is in
C(o)w or C(o)r, then at some later point some user enters C(o)w or C(o)r.

3

2. (Progress for the exit regions) If at least one user is in E(o)w (or E(o)r) then at some later
point some user enters R(o).

We de�ne the underlying variable type T of the shared memory implemented by D as follows.
The set of values of T is V jCj, i.e. each state of a variable of type T is a tuple of values of V and
each component in the tuple corresponds to a cell in C. Given an element w 2 V jCj, we de�ne wjc
to be the component of w corresponding to cell c. The initial value of type T is (vo; :::; vo). The
set of invocations of T is I = frequest-read(c) : 8c 2 Cg

S
frequest-write(c; v) : 8c 2 C; v 2 Vg

and the set of responses is R = freply-read(c; v) : 8c 2 C; v 2 Vg
S
freply-write(c) : 8c 2 Cg.

The function f : I � V jCj ! R � V jCj that de�nes T 's behavior is de�ned as follows. Let w be
an arbitrary element of V jCj, then f(request-read(c); w) = (reply-read(c; wjc); w) and f(request-
write(c; u); w) = (reply-write(c); w0), where w0ja = wja; 8a 2 C � fcg and w0jc = u.

Atomicity: Let � be any well formed trace of D � U and be the subsequence obtained from �

by removing all actions except data access actions. Then for each operation � in , it is possible
to insert a serialization point �� between the request action of � and the reply action of � (if � is
missing a reply action it must be possible to pick an appropriate reply action and insert �� after
the occurrence of �'s request); such that the sequence 0, obtained from by moving the request
and reply actions of each operation � to �� in this order, is a trace of T .

We say that D is correct, if for every collection of users U that satis�es the well-formedness and

synchronized data accesses conditions, D�U satis�es the well-formedness, exclusion, progress and

atomicity conditions.

4 Algorithm

DiSOM's memory consistency protocol is implemented by an asynchronous send/receive system D.
This section describes the algorithm implementing each process Di in D. Let P = f1; :::; ng be
the set of processes in D. We assume there is one universal reliable FIFO channel Ci;j connecting
process Di to Dj , for each j 6= i in P. The �rst sub-section presents an informal description of the
algorithm and the second presents a formal de�nition of each automaton Di.

4.1 Informal Description

The distributed read-write lock algorithm associates two types of tokens with each lock, the write

token and the read token. For an acq-write operation on an object o to complete, the issuing process
must hold o's write token. An acq-read operation will only complete if the process holds a read
token. The algorithm ensures that: (1) if one process holds a write token for an object o then no
other processes hold tokens for o; and (2) if one process holds a read token for o then no process
holds a write token for o. This invariant ensures the exclusion condition.

Each lock has an associated owner. The owner is either the process holding the write token or
the last process to hold a write token. Ownership is dynamic, to keep track of the owner, each
process maintains a forwarding pointer, probOwner(o), which points to the process it believes is the
lock owner. The algorithm ensures that the owner can always be reached following the forwarding
pointer chain. The owner process remembers which processes have obtained read tokens using the
tokenSet(o) variable. The requests(o) queue is used to remember token transfer requests until
they can be serviced.

4

Processes cache tokens and can re-acquire locks with no communication as long as their token is
not invalidated. When a process executes request-acq-write or request-acq-read and does not hold
the needed token, a message is sent requesting the token. The message is sent along the forwarding
pointer chain. A token can only be obtained from the owner. Therefore, forwarding stops when the
message reaches the owner. As an optimization, if the request message reaches a process requesting
a write token for the same object, the request is queued at that process.

When a process receives a request for a write token that it holds, it waits until the lock is released
by its user and then it replies with a message transferring the write token, the tokenSet(o) and
the rest of the requests(o) queue to the requester. The owner then sets the forwarding pointer to
point to the requester. When the requester receives the reply it prepends the queue of requests to
its own. Then it sends messages to all the processes in the received tokenSet(o), invalidating their
read tokens, and waits for the replies.

When the owner receives a request for a read token and has a read token, the requesting process
is inserted in tokenSet(o) and a reply is sent to it. The reply includes the read token and the owner
identity. Thus all readers have their forwarding pointers set correctly. If the owner receives a read
token request and it holds a write token, it proceeds as above but �rst converts its write token into
a read token.

DiSOM ensures the atomicity condition using an update protocol that piggy-backs the values of
the cells in an object in the token transfer messages.

4.2 Formal de�nition

The messages used by the algorithm are elements of set M de�ned next.

M = (freqWrite; reqRead; reqInv; repInvg � P �O)
S

(frepWriteg � P �O � 2C�V � 2P �Q)
S

(frepReadg � P �O � 2C�V)

In this de�nition O; C and V are the sets de�ned in Section 2, and Q is the set of all FIFO
queues of elements of f(t; p) : t 2 freqRead; reqWrite; reqInvg; p 2 Pg. We also de�ne a function
home : O ! P, which maps each object o to a �xed home process home(o). The I/O automaton
for process Di has the following signature (in this de�nition v 2 V, c 2 C, o 2 O, m 2M):

Input:

request-read(c)i
request-write(c; v)i
request-acq-read(o)i
request-rel-read(o)i
request-acq-write(o)i
request-rel-write(o)i
receive(m)j;i

Output:

reply-read(c; v)i
reply-write(c)i
reply-acq-read(o)i
reply-rel-read(o)i
reply-acq-write(o)i
reply-rel-write(o)i

5

send(m)i;j

Internal:

reply-invalidate(o)i

Each process maintains a status variable which keeps track of its computation status. This
variable takes values in the set S de�ned next.

Let S = (frepReadg � C � V)
S

(frepWriteg � C)
S

(frepAcqRead; repRelRead; repAcqWrite; repRelWrite; repInvalidate;

reqAcqRead; reqAcqWriteg � O)
S
fidleg

Di has the following state components:
status 2 S, initially idle

For each o 2 O,
token(o) 2 fread; write; noneg, initially write in home(o) and none elsewhere
held(o) 2 fread; write; falseg, initially false

requests(o) 2 Q, initially empty

tokenSet(o) 2 2P , initially empty

probOwner(o) 2 P , initially home(o)
For each c 2 C,

value(c) 2 V , initially v0
For each j in P � fig

out(j) is a queue of elements of M, initially empty

Di has the following transitions:
request-read(c)i

E�ect:
status := (repRead; c; value(c))

reply-read(c; v)i
Precondition:

status = (repRead; c; v)
E�ect:

status := idle

request-write(c; v)i
E�ect:

value(c) := v

status := (repWrite; c)

reply-write(c)i
Precondition:

status = (repWrite; c)
E�ect:

status := idle

request-acq-read(o)i
E�ect:

held(o) := read

6

if (token(o) 6= none) then
token(o) := read

status := (repAcqRead; o)
else
append (reqRead; i; o) to out(probOwner(o))
status := (reqAcqRead; o)

receive(repRead; i; o; u)j;i
E�ect:

if (status = (reqAcqRead; o)) then
for each (c; v) 2 u do

value(c) := v

probOwner(o) := j

token(o) := read

status := (repAcqRead; o)

reply-acq-read(o)i
Precondition:

status = (repAcqRead; o)
E�ect:

status := idle

receive(reqRead; p; o)j;i
E�ect:

if (probOwner(o) = i ^ held(o) 6= write) then
tokenSet(o) := tokenSet(o) [fpg
token(o) := read

u := fg
for each c 2 o do

u := u [(c; value(c))
append (repRead; p; o; u) to out(p)

else if (probOwner(o) 6= i ^ held(o) 6= write) then
append (reqRead; p; o) to out(probOwner(o))

else
append (reqRead; p) to requests(o)

request-rel-read(o)i
E�ect:

held(o) := false

status := (repRelRead; o)
if (requests(o) is not empty) then
(t; p) := �rst element of requests(o)
remove �rst element of requests(o)
if (probOwner(o) = i) then
token(o) := none

u := fg
for each c 2 o do

u := u [(c; value(c))
append (repWrite; p; o; u; tokenSet(o); requests(o)) to out(p)
tokenSet(o) := fg
probOwner(o) := p

else
token(o) := none

7

probOwner(o) := p

append (repInv; p; o) to out(p)

reply-rel-read(o)i
Precondition:

status = (repRelRead; o)
E�ect:

status := idle

request-acq-write(o)i
E�ect:

held(o) := write

if (probOwner(o) = i) then
status := (repInvalidate; o)
for each p 2 tokenSet(o) do

append (reqInv; i; o) to out(p)
else
append (reqWrite; i; o) to out(probOwner(o))
status := (reqAcqWrite; o)

receive(repWrite; i; o; u; t; r)j;i
E�ect:

if (status = (reqAcqWrite; o)) then
for each (c; v) 2 u do

value(c) := v

probOwner(o) := i

tokenSet(o) := t� fig
prepend r to requests(o)
status := (repInvalidate; o)
for each p 2 tokenSet(o) do

append (reqInv; i; o) to out(p)

reply-acq-write(o)i
Precondition:

status = (repAcqWrite; o)
E�ect:

status := idle

receive(reqWrite; p; o)j;i
E�ect:

if (probOwner(o) = i ^ held(o) = false) then
token(o) := none

u := fg
for each c 2 o do

u := u [f(c; value(c))g
append (repWrite; p; o; u; tokenSet(o); requests(o)) to out(p)
tokenSet(o) := fg
probOwner(o) := p

else if (probOwner(o) 6= i ^ held(o) 6= write) then
append (reqWrite; p; o) to out(probOwner(o))

else
append (reqWrite; p) to requests(o)

8

request-rel-write(o)i
E�ect:

held(o) := false

status := (repRelWrite; o)
u := fg
for each c 2 o do

u := u [(c; value(c))
while (requests(o) is not empty) do

(t; p) := �rst element of requests(o)
remove �rst element of requests(o)
if (t = reqWrite) then
token(o) := none

append (repWrite; p; o; u; tokenSet(o); requests(o)) to out(p)
tokenSet(o) := fg
probOwner(o) := p

break
else
token(o) := read

tokenSet(o) := tokenSet(o) [fpg
append (repRead; p; o; u) to out(p)

reply-rel-write(o)i
Precondition:

status = (repRelWrite; o)
E�ect:

status := idle

receive(reqInv; j; o)j;i
E�ect:

if (held(o) 6= read) then
token(o) := none

probOwner(o) := j

append (repInv; j; o) to out(j)
else
append (reqInv; j) to requests(o)

receive(repInv; i; o)j;i
E�ect:

if (status = (repInvalidate; o)) then
tokenSet(o) := tokenSet(o)� fjg

reply-invalidate(o)i
Precondition:

status = (repInvalidate; o)
tokenSet(o) = fg

E�ect:
token(o) := write

status := (repAcqWrite; o)

send(m)i;j
Precondition:

m is �rst element of out(j)
E�ect:

9

remove �rst element of out(j)

Di has the following tasks:
For each j 2 P ,

fsend(m)i;j : 8m 2 Mg
and another task for all the other locally controlled actions.

5 Proof of correctness

We start by proving the well-formedness condition holds for any system D�U such that U satis�es
well-formedness. Then we prove that exclusion and progress hold in the same conditions. The last
subsection shows that D provides an atomic memory to any set of users U that satisfy both the
well-formedness and the synchronized data accesses conditions.

5.1 Well-formedness

Theorem 1: If U satis�es the well-formedness condition then D� U satis�es the well-formedness
condition.

Proof: The status variable of each process i ensures that exactly one output reply action occurs
in response to a request input action and that the two actions correspond. This combined with the
fact that U satis�es well-formedness implies that D � U also satis�es well-formedness.

5.2 Exclusion

This section proves that the exclusion condition holds for any system D � U that satis�es well-
formedness. The proof is based on the following auxiliary lemmas.

Lemma 1: If D�U satis�es the well-formedness condition then, in any state of D�U , any o 2 O,
any i 2 P, any j 2 P � fig, and appropriate values of u; t and r, the following conditions are
satis�ed:

1. If probOwner(o)i = i then probOwner(o)j 6= j

2. If token(o)i = write then probOwner(o)i = i ^ tokenSet(o)i = fg

3. If statusi = (repInvalidate; o) then probOwner(o)i = i ^ held(o)i = write

4. If statusi = (reqAcqWrite; o) then held(o)i = write

5. If statusi = (repAcqWrite; o) then token(o)i = write ^ held(o)i = write

6. If (repWrite; j; o; u; t; r) is in Ci;j or in out(j)i then 8p 2 P : probOwner(o)p 6= p

7. If (reqInv; i; o) is in Ci;j or in out(j)i then statusi = (repInvalidate; o)

8. If probOwner(o)i = i then token(o)i 6= none _ statusi = (repInvalidate; o)

10

Proof: By induction on the length of an execution. Fix any object o.
Base case: The initializations ensure that 8i 2 P : probOwner(o)i = home(o), therefore (1) holds
initially. The initializations also ensure that 8i 2 P : tokenSet(o)i = fg, token(o)home(o) = write

and 8i 6= home(o) : token(o)i = none. Therefore (2) and (8) are also satis�ed in the base case. (3),
(4) and (5) are initially vacuously true because the status variables are initialized to idle. Since all
channels are and all out variables are initially empty (6) and (7) are vacuously true.
Inductive step: Assume the lemma holds for every state of any execution � of length at most l. We
will show it holds for any one step extension �1 of �.

The only way for (1) to be violated in �1 is if in the last state in � there is a process i such that
probOwner(o)i = i and some action of another process j is executed that sets probOwner(o)j = j.
The only actions that can do this are actions of the form receive(repWrite; j; o; u; t; r)p;j (for some
p di�erent from j). An action of this form can only occur if the appropriate message is at the head
of channel Cp;j in the last state in �. Therefore, from the inductive hypothesis of (6), in this state,
8p 2 P : probOwner(o)p 6= p. This is enough to conclude that actions of this form can not violate
(1).

To prove (2), (3), (4), (5), (6), (7) and (8), we consider two cases (a) the antecedent is false in
the last state of � and (b) the antecedent is true in this state.

In case (a) the only actions that can violate (2) are those that set token(o)i = write, i.e. actions
of the form reply-invalidate(o)i. Actions of this type are only enabled if statusi = (repInvalidate; o)
therefore we can use the inductive hypothesis of (3) to conclude that if an action of this type occurs
then probOwner(o)i = i ^ tokenSet(o)i = fg in the last state of �, which shows that (2) can not
be violated in this case.

In case (b), only actions that set probOwner(o)i 6= i or set tokenSet(o) 6= fg, and leave
token(o)i = write can violate (2). The inductive hypothesis for (2) implies that probOwner(o)i = i

in the last state of �. Therefore, only actions of the form receive(repWrite; i; o; u; t; r)j;i can violate
(2) in this case. However, if one of these actions is enabled we can apply the inductive hypothesis of
(6) and (2) to conclude that token(o)i 6= write in the last state of �, which violates our assumption
for case (b). Therefore, (2) is satis�ed in �1.

In case (a) only actions that set statusi = (repInvalidate; o) can violate (3), i.e. actions of the
form request-acq-write(o)i and receive(repWrite; i; o; u; t; r)j;i. The �rst type of actions can not
violate (3), because they always set held(o)i = write and only set status = (repInvalidate; o)
if probOwner(o)i = i. The second type of actions, only modify the state of i if statusi =
(reqAcqWrite; o) and when they do so they set probOwner(o)i = i. Therefore, since these ac-
tions do not modify held(o)i, we can use the inductive hypothesis of (4) to conclude that they do
not violate (3) in this case.

In case (b) only actions that set probOwner(o)i 6= i or held(o)i 6= write and do not modify
statusi can violate (3), i.e. receive(reqWrite; p; o)j;i and receive(reqInv; j; o)j;i. In case (b), from
the inductive hypothesis for (4), held(o)i = write in the last state of �, therefore the �rst type of
actions does not modify probOwner(o)i. Since, these actions never modify held(o)i, we conclude
that they preserve the invariant in this case. For the last type of actions, the conditions of case
(b) and the inductive hypothesis for (3) imply that probOwner(o)i = i in the last state of �.
Therefore, we can use the inductive hypothesis of (1) to conclude that no other j 6= i can have
probOwner(o)j = j. Combining this with the inductive hypothesis of (3) and (7) we conclude that
actions of the form receive(reqInv; j; o)j;i can not violate (3) in case (b).

In what concerns (4), in case (a) only actions of the form request-acq-write(o)i set status =
(reqAcqWrite; o) but they also set held(o)i = write. Therefore, (4) can not be violated in this
case. In case (b) there is no action that sets held(o)i 6= write without modifying statusi. Therefore,

11

(4) can not also be violated in this case.
For (5), in case (a), the only actions that can violate the invariant are those that set statusi =

(repAcqWrite; o), i.e. reply-invalidate(o)i. This action is only enabled if statusi = (repInvalidate; o).
Therefore, the inductive hypothesis of (3) implies that held(o)i = write just before this action oc-
curs. Since this action does not modify held(o)i and always sets token(o)i = write, we conclude
that it preserves (5) in this case.

In case (b), only actions that do not modify status and set token(o)i 6= write or held(o)i 6=
write can violate (5), i.e. actions of the form receive(reqRead; p; o)j;i, receive(reqWrite; p; o)j;i,
receive(reqInv; j; o). Using the hypothesis of case (b) and the inductive hypothesis of (5), we
conclude that the �rst two types of actions can not violate the invariant because held(o)i = write

in the last state of �. The third type of action can not violate the invariant because the inductive
hypothesis of (5), (2) and (7) imply that i can not receive a reqInv message in this case.

Only actions of the forms request-rel-read(o)i, receive(reqWrite; p; o)j;i, and request-rel-write(o)i,
can violate (6) in case (a). Actions of the �rst two types only append a repWrite message to an out

variable if probOwner(o)i = i in the last state of � and when they do so they set probOwner(o)i 6= i.
Therefore, we can apply the inductive hypothesis of (1) to conclude that they preserve the invariant
in case (a). Well-formedness and the inductive hypothesis of (2) imply that the last type of actions
can only occur when probOwner(o)i = i in the last state of �. Therefore, we can use the same
argument to conclude that these actions also preserve the invariant in case (a).

In case (b), we note that for a given object o there can be at most one (repWrite; j; o; u; t; r)
message in a channel or out variable at any point in an execution. This is true because the actions
that send such messages only do so if probOwner(o)i = i, and the inductive hypothesis of (6)
implies that if there is such a message no process p has probOwner(o)p = p. Therefore, no process
can send a message of this type while there is one in transit. The only actions that can violate (6)
in this case are those of the type receive(repWrite; i; o; u; t; r)j;i. However, using the invariant just
proven we conclude that these actions preserve (6) in case (b) because they make the antecedent
false.

In case (a), the only actions that can violate (7) are actions that send reqInv messages, i.e.
actions of the form request-acq-write(o)i or receive(repWrite; i; o; u; t; r)j;i. Actions of both types
set statusi = (repInvalidate; o) thus they preserve the invariant in this case.

In case (b), all actions that set statusi 6= (repInvalidate; o) can potentially violate (7). However,
well-formedness prevents all request input actions from occurring. The inductive hypothesis of (7)
together with the conditions for case (b) ensure that statusi = (repInvalidate; o) in the last state
of �. Therefore, no reply output action is enabled. Therefore, the only actions that can potentially
violate (7) in this case are of the form reply-invalidate(o)i. But these actions are only enabled if
tokenSet(o)i = fg which in turn implies that there are no repInv messages in transit. Therefore,
(7) holds in both cases.

For (8), in case (a) only actions that set probOwner(o)i = i can violate the invariant, i.e.
receive(repWrite; i; o; u; t; r)j;i. However, these actions set statusi = (repInvalidate; o) and there-
fore do not violate (8).

In case (b), if statusi = (repInvalidate; o) well-formedness prevents the occurrence of any request
action and of all output reply actions except for reply-acq-write(o)i (which is not enabled in this
case). Therefore, the only actions that can set statusi 6= (repInvalidate; o) are actions of the form
reply-invalidate(o)i, but these actions also set token(o)i = write, thus they preserve (8). In case
(b), if statusi 6= (repInvalidate; o) in the last state of � then token(o)i 6= none in this state. In
this case, the only actions that can violate the (8) are those that set token(o)i = none, but all of
these actions set probOwner(o)i 6= i and doing so preserve (8).

12

Lemma 2: If D � U satis�es the well-formedness condition then, in any state of D � U , for any
o 2 O, any i; j; p 2 P such that i 6= j ^ i 6= p ^ j 6= p, and for appropriate values of u; v; t and r

the following conditions are satis�ed.

1. If statusi = (reqAcqRead; o) then held(o)i = read ^ token(o)i = none

2. If statusi = (repAcqRead; o) then held(o)i = read ^ token(o)i = read

3. If there is a (repRead; j; o; u) in Ci;j or out(j)i then (i) probOwner(o)i = i^ j 2 tokenSet(o)i
or (ii) probOwner(o)i = p ^ statusp = (repInvalidate; o) ^ j 2 tokenSet(o)p or (iii) there is
one (repWrite; p; o; v; t; r) message in out(p)i or Ci;p such that j 2 t and probOwner(o)i = p.

4. If token(o)j = read then (i) probOwner(o)j = j or (ii) probOwner(o)i = i^ j 2 tokenSet(o)i
or (iii) there is one (repWrite; p; o; v; t; r) message in out(p)i or Ci;p such that j 2 t.

5. If probOwner(o)i = i ^ token(o)j = read then j 2 tokenSet(o)i.

6. If there is a (repInv; j; o) message in Ci;j or out(j)i then token(o)i = none ^ statusj =
(repInvalidate; o) ^ there is no (repRead; i; o; u) in Cq;i or out(i)q for any q 2 P.

Proof: We start by noting that (4) and parts (1) and (6) of lemma 1 imply (5). We prove the rest
of the lemma by induction on the length of an execution. Fix any object o.

Base case: The initializations ensure that statusi is initially idle. Therefore, (1) and (2) are
vacuously true in the base case. The initializations also ensure that token(o)i 6= read for any i 2 P
and that the channels and out variables are empty. Therefore, (3), (4) and (6) are also true in the
base case.

Inductive step: Assume the lemma holds for every state of any execution � of length at most l.
We will show it holds for any one step extension �1 of �.

We consider two cases in the proofs, (a) the antecedent is false in the last state of � and (b) the
antecedent is true in this state.

For (1), in case (a) the only actions that can potentially violate the invariant are those that set
statusi = (reqAcqRead; o), i.e. request-acq-read(o)i. However, these actions always set held(o)i =
read and only set statusi = (reqAcqRead; o) if token(o)i = none. Therefore, they do not violate
(1).

In case (b), there are no actions that set held(o)i 6= read without modifying statusi. The
only actions that can set token(o)i 6= none without modifying statusi are actions of the form
receive(reqRead; p; o)j;i, but part (8) of lemma 1 together with the conditions for case (b) implies
that probOwner(o)i 6= i in the last state of � and thus these actions can not modify token(o)i and
the invariant holds.

In what concerns (2), in case (a), the only actions that can potentially violate the invariant are
those that set statusi = (repAcqRead; o), i.e. request-acq-read(o)i and receive(repRead; i; o; u)j;i.
The �rst type of action always sets held(o)i = read and when it sets statusi = (repAcqRead; o)
it also sets token(o)i = read. Therefore, (2) is preserved by this type of actions in this case.
The second type of actions only modi�es the state of i, if statusi = (reqAcqRead; o) in the last
state of � and always sets token(o)i = read in this case. Using the inductive hypothesis of (1)
we conclude that this type of actions also preserves (2) in case (a). In case (b), only actions that
do not modify statusi and set held(o)i 6= read or token(o)i 6= read can potentially violate (2),
i.e. receive(reqWrite; p; o)j;i and receive(reqInv; j; o)j;i. In case (b) the inductive hypothesis of (2)
implies that held(o)i = read, therefore actions of these types can not violate (2) in case (b).

13

For (3), in case (a), only actions that put a repRead message in out(j)i can violate the invariant,
i.e. actions of the forms receive(reqRead; j; o)q;i or request-rel-write(o)i. The �rst type of action
only sends a repRead message if probOwner(o)i = i, it does not modify probOwner(o)i and it
inserts j in tokenSet(o)i. Therefore, this type of action preserves the invariant. Well-formedness
and part (2) of lemma 1 imply that the second type of actions can only occur if probOwner(o)i = i.
Also note that these actions insert the indices of the processes to which repRead messages are sent
in tokenSet(o)i. We distinguish two cases (a.1) requests(o)i contains a reqWrite request or (a.2)
it does not. In case (a.1) let (reqWrite; p) be the �rst write request in requests(o)i, then (iii) will
hold after the action executes. In case (a.2), (i) will hold after the action executes. Therefore,
actions of this type also preserve (3) in case (a).

In case (b) for (3), we note that only one of (i) to (iii) can be true at any point in an execu-
tion. This is so because of lemma 1 parts (1), (3) and (6). We consider 3 cases (b.1) to (b.3)
corresponding to exactly one of (i) to (iii) being true in the last state of �. In case (b.1), only
actions that set probOwner(o)i 6= i or remove j from tokenSet(o)i can potentially violate (3),
i.e. receive(repRead; i; o; u)j;i, request-rel-read(o)i, receive(reqWrite; p; o)j;i, request-rel-write(o)i,
receive(reqInv; j; o)j;i and receive(repInv; i; o)j;i. Actions of the form receive(repRead; i; o; u)j;i
only have e�ects if statusi = (reqAcqRead; o). Since in this case probOwner(o)i = i in the last
state of �, part (8) of lemma 1 and (1) imply that these actions can not violate the invariant in this
case. Actions of the forms request-rel-read(o)i, receive(reqWrite; p; o)j;i or request-rel-write(o)i do
not violate (3) in this case, because when they modify probOwner(o)i they ensure that (iii) is
true just after they execute. Actions of the form receive(reqInv; j; o)j;i can not occur in case (b.1)
because of parts (1) and (7) of lemma 1. Finally, receive(repInv; i; o)j;i does not violate (3) in this
case because according to the inductive hypothesis of (6) it can not occur in this case. In case
(b.2), well-formedness and lemma 1 imply that only receive(repInv; i; o)j;i can violate (3) in this
case. However, part (4) of lemma 1 implies that probOwner(o)p = p in the last state of �, therefore
we can apply the inductive hypothesis of (6) to conclude that it can not occur in this case. In case
(b.3), only actions that consume the repWrite message can violate (3), but these actions ensure
that (ii) is true just after they execute. Therefore, we conclude that (3) holds in all cases.

For (4), in case (a), only actions that set token(o)j = read can violate the invariant, i.e. request-
acq-read(o)j , request-rel-write(o)j, and receive actions corresponding to the arrival of a reqRead or
repRead message to j. In case (a), actions of the form request-acq-read(o)j only set token(o)j =
read if in the last state of � token(o)j = write, which in turn implies (part (2) of lemma 1) that
probOwner(o)j = j. Therefore, these actions preserve (4) in case (a). Well-formedness and lemma
1 imply that request-rel-write(o)j actions can only occur if probOwner(o)j = j and when these
actions set token(o)j = read they do not modify probOwner(o)j. Therefore, these actions also
preserve (4) in this case. A similar reasoning can be used to show that the arrival of a reqRead

message at j preserves (4). The last type of actions also preserves (4) because of the inductive
hypothesis of (3).

To prove (4) in case (b), we consider 3 cases (b.1) to (b.3) corresponding to exactly one of (i)
to (iii) being true in the last state of � (using the same argument as we did for (3)). In case (b.1),
(4) can be violated by actions that set probOwner(o)j 6= j, i.e. request-rel-read(o)j , request-rel-
write(o)j , and the arrival of a reqWrite, reqInv, or repRead message at j. All the actions except
the last preserve the invariant because they set token(o)j = none when they modify probOwner(o)j .
The last type of actions only modi�es the state of j if statusj = (reqAcqRead; o), in the last state
of �, but the inductive hypothesis of (1) implies that this can not happen in this case. Therefore,
(4) holds in case (b.1). Arguments similar to those used in cases (b.1) and (b.3) for (3), show that
(4) also holds in cases (b.2) and (b.3).

14

For (6), in case (b), the only actions that can potentially violate the invariant are those that
append a (repInv; j; o) message to out(j)i, i.e. request-rel-read(o)i and receive((reqInv; j; o)j;i).
We note that they both set token(o)i = none when they send a (repInv; j; o) message. These
actions only send a repInv message in reply to a reqInv message. Part (7) of lemma 1 implies
that statusj = (repInvalidate; o) when the reqInv message is received and inspecting the code we
conclude that statusj retains its value until all the relevant repInv replies arrive. Well-formedness
implies that there can only be a (repRead; i; o; u) message in transit if statusi = (reqAcqRead; o)
and (1) implies that held(o)i = read in this case. Since, the actions that send (repInv; j; o) messages
are either not enabled for this statusi value or do not send the reply message if held(o)i = read,
we can conclude that the invariant is preserved in case (a). In case (b), we note that token(o)i
can only become di�erent from none if a repRead or repWrite message for object o is received
by i. However, the inductive hypothesis prevents this from happening for repRead messages and
lemma 1 prevents this from happening for repWrite messages. statusj can only become di�erent
from (repInvalidate; o) if all repInv replies are received. Finally, from lemma 1, if statusj =
(repInvalidate; o) then held(o)j = write ^ probOwner(o)j = j, therefore no (repRead; i; o; u) will
be sent while statusj = (repInvalidate; o).

Theorem 2: IfD�U satis�es the well-formedness condition then it satis�es the exclusion condition.

Proof: For any object o 2 O and any i 2 P. From well-formedness and the de�nition of C(o)w, Ui

enters C(o)w when a (request-acq-writei, reply-acq-writei) operation on o completes and exits this
region when a request-rel-writei action, �, on o occurs. From part (5) of lemma 1, held(o)i = write

and token(o)i = write just after Ui enters C(o)w. Well-formedness and lemma 1 imply that
held(o)i = write and token(o)i = write until �. Therefore, we conclude that (a) if Ui is in C(o)w
then held(o)i = write and token(o)i = write.

A similar argument can be used for C(o)r. Ui enters C(o)r when a (request-acq-readi, reply-
acq-readi) operation on o completes and exits this region when a request-rel-readi action, �, on o

occurs. From part (2) of lemma 2, held(o)i = read and token(o)i = read just after Ui enters C(o)r.
Well-formedness and the fact that held(o)i = read ensure that token(o)i and held(o)i retain these
values until � occurs. Therefore, (b) if Ui is in C(o)r then held(o)i = read and token(o)i = read.

Assertion (a) and part (2) of lemma 1 imply that (c) if Ui is in C(o)w then probOwner(o)i =
i ^ tokenSet(o)i = fg. Assertion (c), part (1) of lemma 1 and part (5) of lemma 2 imply that if
some Ui is in C(o)w then no other user is in C(o)w or C(o)r, as desired.

5.3 Progress

This section shows that if a system D � U satis�es well-formedness, then D � U also satis�es
progress. We start by proving some auxiliary lemmas.

Lemma 3: In any well-formed fair execution � of D � U , if at some point in � a message m is
appended to out(j)i then eventually a receive(m)i;j occurs.

Proof: Implied by fairness of �.

Lemma 4: In any well-formed fair execution � of D�U , if at some point in � no user is in C(o)w
or C(o)r and some process i appends a (reqInv; i; o) message to out(j)i then i eventually receives
a (repInv; i; o) message in Cj;i, or some user enters C(o)w or C(o)r.

15

Proof: Fix any object o 2 O and any well-formed fair execution � of D�U . Lemma 3 implies that
a receive(reqInv; i; o)i;j occurs at some later point in �. We consider two cases (a) held(o)j 6= read

at this point and (b) held(o)j = read. In the �rst case the receive action appends a (repInv; i; o)
message to out(i)j . Once more lemma 3 implies that eventually a receive(repInv; i; o)j;i occurs
and therefore the lemma holds in this case. In case (b), Uj is in T (o)r or C(o)r. If Uj is in C(o)r
the lemma holds. Therefore, consider the case where Uj is in T (o)r. In this case, if statusj 6=
(reqAcqRead; o) then fairness of � implies that Uj will eventually enter C(o)r. Otherwise, since
j is receiving an invalidation request, there must be a (repRead; j; o) message in transit. Lemma
3 implies that j will receive a (repRead; j; o) message that will set statusi = (repAcqRead; o).
Therefore, by fairness Uj will eventually enter C(o)r and the lemma also holds in this case.

Lemma 5: If D�U satis�es well-formedness then in any reachable system state and for any i 2 P,
the path de�ned by the following sequence of nodes

probOwner(o)i; probOwner(o)probOwner(o)i; :::

connects i to a node j such that exactly one of the following holds: (i) probOwner(o)j = j or (ii)
there is a (repWrite; j; o; u; t; r) message in out(j)k or Ck;j, and k is the node just before j in the
path.

Proof: By induction on the length of an execution. Fix any object o 2 O.
Base case: The initializations ensure that the lemma holds initially by setting probOwner(o)p =

home(o);8p 2 P.
Inductive step: Assume the lemma holds for every state of any execution � of length at most

l. We will show it holds for any one step extension �1 of �. The only actions that can violate
the invariant are those that modify probOwner(o)i for some i 2 P, i.e. receive(repRead; i; o; u)j;i,
request-rel-read(o)i, receive(repWrite; i; o; u; t; r)j;i, receive(reqWrite; p;o)j;i, request-rel-write(o)i
and receive(reqInv; j; o)j;i. The �rst type of actions sets probOwner(o)i = j. From lemma 1
and part (3) of lemma 2, either (a) probOwner(o)j = j , or (b) there is a repWrite message
in transit from j to another process p for object o and probOwner(o)j = p, or (c) there is a
process p such that probOwner(o)p = p and probOwner(o)j = p. Therefore, the inductive hy-
pothesis of the lemma implies that the �rst type of actions preserves the invariant. Actions of
type request-rel-read(o)i, preserve the invariant when they send a repWrite message to a process
p because of the inductive hypothesis and the fact that they set probOwner(o)i = p. (For the
same reason receive(reqWrite; p; o)j;i and request-rel-write(o)i also preserve the invariant). It re-
mains to show that actions of the form request-rel-read(o)i preserve the invariant when they do
not send a repWrite message. We note that in this case they send a repInv message to a pro-
cess p and set probOwner(o)i = p. Therefore, we can apply part (6) of lemma 2 and part (3)
of lemma 1 to conclude that they also preserve the invariant in this case. Actions of the form
receive(repWrite; i; o; u; t; r)j;i, preserve the invariant because of the inductive hypothesis and the
fact that they set probOwner(o)i = i. Finally, parts (3) and (7) of lemma 1 and the inductive
hypothesis imply that receive(reqInv; j; o)j;i also preserve the invariant.

Lemma 6: In any well-formed fair execution � of D � U for any o 2 O and any i; p 2 P, if i
receives a (reqRead; p; o) (or (reqWrite; p; o)) message at some point in � when probOwner(o)i = i

and no user is in C(o)w or C(o)r, then at some later point in � a receive(repRead; p; o; u)i;p (or a
receive(repWrite; p; o; u; t; r)i;p) occurs or some user enters C(o)w or C(o)r.

16

Proof: We �rst consider the case of a (reqRead; p; o) message. If probOwner(o)i = i when a
receive(reqRead; p; o)j;i is executed (for some j 2 P), then either (a) held(o)i = write or (b)
held(o)i 6= write. In case (a) i appends a (repRead; p; o; u) to out(p)i and lemma 3 implies that
the lemma holds. In case (b) Ui is in T (o)w or C(o)w. In the latter case the lemma also holds.
In the former case, we can use fairness and lemma 4 to conclude that the lemma also holds. For
a (reqWrite; p; o) message, if probOwner(o)i = i when a receive(reqWrite; p; o)j;i is executed (for
some j 2 P), then either (c) held(o)i = false or (d) held(o)i 6= false. Using an argument similar
to the one in the previous paragraph it is easy to see that the lemma holds in case (c). In case
(d), Ui is in T (o)w, C(o)w, T (o)r or C(o)r and once more an argument similar to the one presented
before shows that the lemma also holds in this case.

Lemma 7: In any well-formed fair execution � of D�U , if i sends a (reqRead; i; o) (or (reqWrite; i;

o)) message, m, at some point in � when no user is in C(o)w or C(o)r, then at some later point
in � the message is received by a process j such that probOwner(o)j = j, or some user Up (p 6= i)
enters C(o)w or C(o)r.

Proof: By observing the code for receive(reqRead; i; o)q;p and receive(reqWrite; i; o)q;p, we con-
clude that forwarding of m stops if one of these actions is executed and held(o)p = write or
probOwner(o)p = p. Furthermore, lemma 3 and lemma 5 imply that m eventually reaches such a
process p. We consider 2 cases depending on the state of process p when forwarding of m stops, (a)
probOwner(o)p = p and (b) probOwner(o)p 6= p. If case (a) occurs the lemma holds, therefore con-
sider case (b). In this case, it must be that held(o)p = write, therefore p has sent a (reqWrite; p; o)
message to probOwner(o)p. We can use the same argument as before to conclude that forward-
ing of this message stops when the message reaches a process q such that held(o)q = write or
probOwner(o)q = q. We can continue this reasoning using the same arguments as above. We argue
that it is not possible for all requests to be blocked at a process with held(o) = write because of
lemma 5. Therefore, the lemma holds.

Theorem 3: IfD�U satis�es the well-formedness condition then it satis�es the progress condition.

Proof: Fix any object o 2 O and any fair execution � of D � U . We start by proving progress
for E(o)r. By de�nition a user Ui enters E(o)r when a request-rel-read(o)i occurs. This action
sets statusi = (repRelRead; o) enabling reply-rel-read(o)i. Since statusi retains this value until
reply-rel-read(o)i occurs, fairness of � implies that this action occurs, i.e. that Ui enters R(o) at
same later point in �. An identical argument holds for E(o)w. Therefore, the theorem holds for
the exit regions of any object o.

We now show progress for T (o)r. By de�nition a user Ui enters T (o)r when a request-acq-
read(o)i occurs. Observing the code for request-acq-read(o)i, we conclude that if token(o)i 6= none

this action sets statusi = (repAcqRead; o) enabling reply-acq-read(o)i. Once more fairness of �
implies that reply-acq-read(o)i eventually occurs. Therefore, progress holds in this case. In the
other case (token(o)i = none) a (reqRead; i; o) message is appended to out(probOwner(o)). At
this point we can apply lemmas 6 and 7 to conclude that progress also holds in this case.

To show progress for T (o)w, we note that by de�nition a user Ui enters T (o)w when a request-
acq-write(o)i occurs. If probOwner(o)i = i when this action occurs then this action sets statusi =
(repInvalidate; o) and appends (reqInv; i; o) messages to out(p)i (for every p 2 tokenSet(o)i). If
some user is in C(o)w or C(o)r at this point the lemma holds, therefore assume there is no such user.
Lemma 4 says that i eventually receives a reply to each reqInv message or some user enters C(o)w

17

or C(o)r. In the latter case the theorem holds. In the former case, receive(repInv; i; o)p;i will be exe-
cuted repeatedly and tokenSet(o)i will eventually become empty enabling reply-invalidate(o)i. Fair-
ness implies that this action eventually occurs and sets statusi = (repAcqWrite; o). Therefore, Ui

eventually enters C(o)w and the lemma also holds in this case. In the other case (probOwner(o)i 6= i

when the request-acq-write(o)i occurs), a (reqWrite; i; o) message is appended to out(probOwner(o)).
At this point we can apply lemmas 6 and 7 to conclude that the theorem holds.

5.4 Atomicity

In this section, we show that if U satis�es the well-formedness and synchronized data accesses
conditions, then D � U also satis�es the atomicity condition.

Lemma 8: If U satis�es the well-formedness and synchronized data accesses conditions then for
any execution � of D � U , any i 2 P and any o 2 O, when a reply-acq-write(o)i (or reply-acq-
read(o)i) action � occurs in � the following holds: 8c 2 O : if request-write(c; v)j is the last
request-write action with argument c that precedes � in � then value(c)i = v or, if there is no such
action, value(c)i = vo.

Proof: By induction on the number of reply-acq-write(o) actions that precede � in an execution
�.

Base case: Zero occurrences of reply-acq-write(o) actions before point � in �. The synchronized
data accesses condition together with the fact that the sets in O are pairwise disjoint imply that
no request-write(c; v)j can occur before � for any c 2 o; j 2 P and v 2 V. Therefore, we must
show that if a reply-acq-write(o)i (or reply-acq-read(o)i) action occurs at point � in � then, at this
point, 8 2 c : value(c)i = vo. This holds because the initializations ensure that 8c 2 C; p 2 P :
value(c)p = vo.

Inductive step: Assume the lemma holds up to point �o where the l-th reply-acq-write(o) occurs
in �. We will show it also holds at point �2 just after the the l+1-th reply-acq-write(o) (if it exists)
and just after any reply-acq-read(o) between �o and �2.

Assume the l-th reply-acq-write(o) occurs at port j leading Uj into C(o)w. The exclusion condi-
tion says that no reply-acq-write(o)i (or reply-acq-read(o)i) can occur at any port i until a request-
rel-write(o)j occurs. If this request-rel-write(o)j never occurs in � then the lemma holds. Therefore,
assume it occurs at point �1 in �.

We note that for any cell c 2 o, value(c)j can only change if an action of one of the following forms
occurs: request-write(c; v)j , receive(repWrite; j; o; u; t; r)p;j and receive(repRead; j; o; u)p;j . We
also note that well-formedness prevents statusj from being equal to (reqAcqRead; o) or (reqAcWrite;

o) while Uj is in C(o)w. Therefore, actions of the last two types can not modify the values of cells in
o between points �o and �1. The synchronized data accesses and exclusion condition together with
the fact that elements of O are pairwise disjoint, imply that no request-write(c; v)p, for p 6= j can
occur between �o and �1. These claims together with the inductive hypothesis imply that 8c 2 O
if request-write(c; v)j is the last request-write action with argument c that precedes �1 in � then
value(c)j = v or, if there is no such operation, value(c)j = vo.

The synchronized data accesses condition and the fact that elements of O are pairwise disjoint
prevents actions of the form request-write(c; v)p (8c 2 o; p 2 P) from occurring between �1 and �2.
Therefore, to show the lemma holds for the l+1-th reply-acq-write(o)i and all reply-acq-read(o)i
actions between �o and �2, we must show that when any of these actions occurs for any cell c 2 o

value(c)i is equal to value(c)j at point �1.

18

Claim 1: The proof of theorem 1 shows that if Uj is in C(o)w then token(o)j = write and held(o)j =
write. From lemma 1 this implies that if Uj is in C(o)w then probOwner(o)j = j. Observing the
code for request-rel-write(o)j, we conclude that probOwner(o)j = j at point �1. We argue that
probOwner(o)j retains its value up to the point �01 where j sends a repWrite message for object o
to another process. The only actions that can violate this are prevented from doing so by the fact
that probOwner(o)j = j (as shown by lemmas 1 and 2). Furthermore, when j sends a repWrite

message to another process p, it sets token(o)j = none and probOwner(o)j = p. From lemma 1
it must acquire a write token for o from another process, before a subsequent reply-acq-write(o)j
occurs. Lemma 1 implies that p has held(o)p = write at point �01 and will keep held(o)p = write

until after a reply-acq-write(o)p occurs. Therefore, after point �
0
1 no token transfer requests will be

serviced until after a reply-acq-write(o)p occurs.
Consider two cases (a) the l+1-th reply-acq-write(o) operation occurs at port j and (b) it does

not. Claim 1 implies that in case (a) �01 must occur after �2. We argue that value(c)j (8c 2 o) is
not modi�ed between �1 and �2 in this case. This is so because, as discussed above, no request-
write(c; v)j (8c 2 o) can occur, and the fact that probOwner(o)j = j and lemmas 1 and 2 imply
that the arrival of repRead and repWrite messages can not change the values of the cells in o.
Therefore, the lemma holds in this case for the l+1-th reply-acq-write(o) operation. We will also
show it holds for all the reply-acq-read(o)i operations between �o and �2. We consider two cases
(a.1) i = j and (a.2) i 6= j. The lemma holds in the �rst case as discussed earlier. In case (a.2), a
reply-acq-read(o)i can only occur (from lemma 2) if token(o)i = read and since token(o)i = none

at point �1 (from lemma 1 and the fact that token(o)j = write), i must receive a repRead message
from j. This message must be sent before �2 and after �1, therefore it will carry the state of the
cells of o at j at point �1. The receive action for this repRead message ensures that the lemma
holds by setting the value of each cell of o in i equal to the value received in the message.

In case (b), the l+1-th reply-acq-write(o)i can only occur if token(o)i = write (lemma 1) and
since token(o)i = none at point �1 (from lemma 1 and the fact that token(o)j = write), i must
receive a repWrite message from j. This message is sent at point �01. We can use an argument
identical to that in case (a) to conclude that value(c)j (8c 2 o) is not modi�ed between �1 and �01.
Therefore, the message will carry the state of the cells of o at j at point �1 and like in the read case
the receive action ensures that the lemma holds. To show it also holds for all the reply-acq-read(o)i
operations between �o and �2, we note that any repRead message enabling such an action must be
sent between �1 and �01. Therefore, we can use the same argument we used in cases (a.1) and (a.2)
to complete the proof of the lemma.

Theorem 3: If U satis�es the well-formedness and the synchronized data accesses conditions then
D � U satis�es the atomicity condition.

Proof: We pick as serialization point for each (request-read(c)i, reply-read(c; v)i) operation the
point where the reply-read(c; v)i action occurs in . Similarly, for each (request-write(c; v)i, reply-
write(c)i) operation, we pick as serialization point the point where the request-write(c; v)i action
occurs in . It is clear that the serialization point for each operation is between its request and
reply actions, as required. For incomplete operations we pick the point where the request action
occurs as the serialization point and for read operations we pick as response value(c)i at that point.

We must now show that the sequence 0, obtained from by moving the request and reply actions
of each operation op to �op in this order, is a trace of T . From the de�nition of T , it is enough to
show that each reply-read(c; v) in 0 returns the value v written by the last request-write(c; v) that
precedes the read in 0 (or v = vo if there is no such action).

19

We note that with the serialization points chosen the relative order between the reply-read(c; v)
actions and the request-write(c; v) actions is identical in 0 and �. Therefore, we can use lemma
8 to prove the theorem. Lemma 8, the well-formedness, synchronized data accesses and exclusion
conditions together with the fact that the sets in O are pairwise disjoint imply the theorem.

6 Complexity analysis

In this section we analyse the number of messages sent and the time elapsed between the occurrence
of a request-acq-write(o)i (or request-acq-read(o)i) and the corresponding reply-acq-write(o)i (or
reply-acq-read(o)i). We consider only the case of an isolated request, i.e. we assume that between
the point where the request occurs and the point where the reply occurs statusp = idle (for all
p 2 P � fig), and that no user is in C(o)w or C(o)r.

The maximum number of messages sent between the occurrence of a request-acq-read(o)i and
the corresponding reply under these conditions is n. This case occurs if the path de�ned by the
probOwner(o) variables starting at i has maximum length. In this case, it takes n � 1 messages
for the request to reach the process j such that probOwner(o)j = j plus the reply sent by j to i.
For a request-acq-write(o)i, the worst case message complexity occurs if the path de�ned by the
probOwner(o) variables that connects i to j (such that probOwner(o)j = j) has length 2 and there
are n� 2 processes di�erent from i and j that have token(o) variables equal to read. In this case,
it takes 3 messages for i to receive its reply, and 2(n � 2) messages to invalidate the n � 2 read
tokens. Note that processes that have token(o) = read have their probOwner(o) variables pointing
directly to the owner, therefore this is really the worst case.

For the time complexity analysis, we assume that l is an upper bound on time for each process
task and d is an upper bound on the time to deliver the oldest message in a channel. The maximum
time between the occurrence of a request-acq-read(o)i and the corresponding reply occurs in the
same scenario as the worst case message complexity for this type of request. Therefore, the total
elapsed time is n(d + l). For a request-acq-write(o)i, the worst case time complexity does not
occur for the same scenario as the worst case message complexity because invalidations proceed in
parallel. In the worst case scenario, the path de�ned by the probOwner(o) variables has maximal
length and the next to last process in the path has token(o) = read. The time complexity in this
case is (n+2)(d+ l). n(d+ l) time for a repWrite message to arrive at i and 2(d+ l) to invalidate
the read token.

References

[1] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway Distributed Shared Memory System.
In Proceedings of the 93 COMPCON Conference, pages 528{537, February 1993.

[2] Miguel Castro. Distributed Shared Object Memory. Master's thesis, Universidade T�ecnica de Lisboa,
Instituto Superior T�ecnico, Lisboa, 1995.

[3] Paulo Guedes and Miguel Castro. Distributed Shared Object Memory. In Proceedings of the Fourth Work-
shop on Workstation Operating Systems (WWOS-IV), Napa, CA., October 14-15 1993. IEEE Computer
Society Press.

[4] Nuno Neves, Miguel Castro, and Paulo Guedes. A Checkpoint Protocol for an Entry Consistent Shared
Memory System. In Thirteenth ACM Symposium on Principles of Distributed Computing (PODC),
August 1994.

20

