
A Client-Server Oriented Algorithm for Virtually Synchronous

Group Membership in WANs

Idit Keidar

Lab for Computer Science

Massachusetts Institute of Technology

idish@theory.lcs.mit.edu

http://theory.lcs.mit.edu/�idish

Jeremy Sussman

Department of Computer Science and Engineering

University of California, San Diego

jsussman@cs.ucsd.edu

http://www.cs.ucsd.edu/�jsussman

Keith Marzullo

Department of Computer Science and Engineering

University of California, San Diego

marzullo@cs.ucsd.edu

http://www.cs.ucsd.edu/�marzullo

Danny Dolev

Computer Science Institute

The Hebrew University of Jerusalem, Israel

dolev@cs.huji.ac.il

http://www.cs.huji.ac.il/�dolev

Massachusetts Institute of Technology

Technical Memorandum MIT-LCS-TM-593

University of California, San Diego

Technical Report CS99-623

June 1999

Abstract

We describe a novel scalable group membership algorithm designed for wide area networks
(WANs). Our membership service does not evolve from existing LAN-oriented membership
services; it was designed explicitly for WANs. Our algorithm provides agreement on membership
in a single message round in most cases, yielding a low message overhead. It avoids
ooding
the network and uses a scalable failure detection service designed for WANs. Furthermore, our
algorithm avoids notifying the application of obsolete membership views when the network is
unstable, and yet it converges when the network stabilizes.

In contrast to most group membership services, we separate membership maintenance from
reliable communication in multicast groups: membership is not maintained by every process,
but only by dedicated servers. The membership servers are not involved in the communication
among the members of the groups. This design makes our membership service scalable in
the number of groups supported, in the number of members in each group, and in the topology
spanned by each group. Our service is complemented by a virtually synchronous communication
service which provides clients with full virtual synchrony semantics.

1 Introduction

Group communication is a means of arranging processes into multicast groups. Group communi-
cation [1] has proven to be a useful abstraction in the development of highly available distributed
and communication-oriented applications. The most important aspects of this abstraction are the
dynamic maintenance of group membership and the interleaving of noti�cations of group member-
ship changes within the delivery order of multicast messages. There are many diverse semantics
for such interleaving.

Group membership is an example of a distributed coordination problem [44]. The task of a group
membership service is to maintain a list of the currently active and connected processes, which is
called the membership. When the membership changes, it is delivered to the application at an
appropriate point in the delivery sequence. The output of the membership service is called a view,
consisting of the list of the current members in the group and a unique identi�er. Reliable multicast
services that deliver messages to the current view members complement the membership service.

Group communication systems are especially useful for constructing fault-tolerant applications
that consistently maintain replicated state of some sort (e.g., [3, 6, 35, 29, 49, 13, 11, 36, 37]). Such
applications greatly bene�t from virtually synchronous communication semantics [17, 40, 30, 27, 52]
which synchronize membership noti�cations with regular messages and thus simulate a \benign"
world in which message delivery is reliable within the set of connected processes. A vital part of
any virtually synchronous communication service is the membership service, since agreement on
uniquely identi�ed views is necessary for synchronizing communication in such views.

The design of a scalable membership service for a wide area network (WAN) is a challenging
task. Issues that need to be addressed include:

� Message latency tends to be large and highly unpredictable in a WAN, as compared to the
relative consistency of message latency in a local-area network (LAN). This high latency
works against algorithms in which processes repeatedly exchange messages in order to reach
a decision.

� Failure detection in a WAN is usually less accurate than failure detection in a LAN. Inaccurate
failure detection may cause a membership algorithm to change views frequently. Frequent
view changes are costly as they can cause applications to engage in additional communication
for re-synchronizing their shared state.

� There is no e�cient support for the
ooding of messages in a WAN, as opposed to a LAN. A
group membership service supporting multiple groups in a wide area network must take care
not to
ood the network.

In this paper, we present a group membership algorithm which is designed for supporting
hundreds of clients in WANs. We designed our server with a \fresh" approach: in contrast to
previously suggested WAN-oriented group membership services, our server does not evolve from
LAN-oriented membership algorithms. Rather it is designed explicitly with WAN considerations
in mind.

Our membership algorithm addresses the challenges listed above. First, it minimizes message
exchange in the common case where the failure detection is relatively consistent. View changes occur
less frequently by using a failure detection mechanism better suited to WANs and by avoiding the
delivery of obsolete views, which are views that re
ect a membership that is already known to be out
of date. Finally, it avoids
ooding the network by propagating membership updates only to those
who need them, and by using a client-server design in which the membership is not maintained by

1

every process, but only by dedicated membership servers. These features are further explained in
Section 2.

Our membership algorithm is implemented as part of a novel group membership service [10] de-
signed for computer supported cooperative work (CSCW) [45] applications in WANs. Our algorithm
is complemented by a virtually synchronous communication service. Our membership algorithm
is partitionable [27, 52, 15], i.e., allows several disjoint views to exist concurrently.

The rest of this paper is organized as follows: In Section 2 we discuss the key features of our
membership algorithm. In Section 3 we describe the environment model. In Section 4 we specify
the guarantees of our membership service. In Section 5 we present the algorithm for maintaining
group membership, and in Section 6 we prove the algorithm's correctness. In Section 7 we brie
y
describe how clients may implement virtual synchrony in conjunction with our service. Section 8
contains a concluding discussion of our work and comparison with related work.

2 The main features of the membership algorithm

We now discuss the key features of the membership algorithm presented herein.

2.1 Avoiding delivery of obsolete views

During the period in which the membership service is attempting to come to agreement on a view,
further changes in the network connectivity can occur. Such concurrent changes are more likely
due to the inaccuracy of failure detection combined with the fact that in WANs membership may
be highly dynamic. Existing group membership algorithms [24, 26, 41, 50, 30] can have the current
invocation of the membership algorithm proceed to termination without re
ecting the new changes,
and then invoke the membership algorithm again to re
ect the new changes.

Unfortunately, membership changes cause extra overhead for applications to process. They
can cause severe execution penalties to primary-backup applications (e.g., replicated databases),
where a view change can initiate a lengthy recovery process in order to fail-over to a new primary.
Furthermore, view changes typically cause applications to send special messages in order to re-
synchronize their shared state (for examples, please see the applications in [4, 49, 29, 35, 6, 13, 11]).
Such additional communication is especially costly in WANs.

To avoid such excessive communication and execution penalties, our algorithm does not deliver
obsolete views to an application. The membership service waits for agreement among all of the
view members about what the view should be. It neither delivers a view without such agreement,
nor does it deliver an obsolete view when it has new information that the membership has changed.

Note that avoiding the delivery of obsolete views implies that our membership algorithm may be
non-terminating if the network does not stabilize, i.e., if the network situation constantly changes.
However, if the network does stabilize, then our algorithm does terminate and does not initiate new
membership changes unless new network events occur. We make this property formal in Section 4.
Note that unstable networks force a membership service to either constantly deliver new views or
else deliver none; we believe that in such situations it is better not to deliver any views. This
avoids network congestion due to extra view change noti�cations. Furthermore, messages sent in
an obsolete view cannot become stable (safe), i.e., they cannot be guaranteed to be delivered by
all of the members of a view. Many applications (e.g., [35, 29, 6, 36, 37]) wait for messages to
become stable before they act upon them. Thus, obsolete views increase network congestion by
withholding information from applications that might allow them to avoid sending messages that
will be discarded.

2

2.2 A single round algorithm

Since message latency in WANs may be large, we have designed our membership algorithm to
minimize the number of message rounds exchanged among the servers. In most cases, our algorithm
provides agreement on the new view in a single communication round among the servers: once a
change in network connectivity is detected, each server multicasts a message to the other servers
and these messages are used in an agreement algorithm. Thus, if the maximum message latency in
the network is �, the membership algorithm usually terminates within � time after all of the servers
detect the change in connectivity.

If temporary lack of symmetry or transitivity in the network causes surviving members to di�er
too much in their detections of failures and reconnections, then our algorithm may be required to
run a re-synchronization round among the servers. In this case, the algorithm terminates within at
most 3� time once network stabilization occurs and all of the servers correctly detect the network
connectivity.

After agreement among the servers is reached, each server reports the view to its local clients.
Clients do not directly communicate with other servers. Since each client can be served by a server
that is proximate to it (preferably in the same LAN), the amount of communication that spans
multiple LANs is limited, and depends solely on the number of servers.

2.3 Using a network event noti�cation service designed for WANs

Group membership services respond to network events (e.g., process crashes, communication link
failures and recoveries) and to requests by a process to join or leave a certain multicast group. To
this end, group membership algorithms use a network event noti�cation (or failure detection) mech-
anism that informs them of network events. Typically, group communication systems implement
such a mechanism using time-outs [26, 21, 41]. Unfortunately, detecting faults by setting timeouts
on remote processes in a WAN is bound to be inaccurate since message latency in a WAN tends to
be large and highly unpredictable.

Our membership service does not explicitly attempt to detect failures using time-outs. Instead,
it uses a network event noti�cation service as a building block. In our implementation, we use
congress [9, 8] which is a distributed network event noti�cation service geared to WANs. For
example, congress servers use time-outs only on neighboring servers and local clients, rather
than on processes that are several hops away. congress servers propagate information about
network events and about a process joining or leaving a group voluntarily. In addition to time-outs,
congress uses other techniques to detect failures where appropriate (see e.g., [53]). Furthermore,
congress avoids
ooding the network. Although in our implementation we use congress, it is
worth noting that our algorithm may use any other similar service, e.g., the gossip-based failure
detector of [51].

2.4 Avoiding
ooding

A typical multicast group over a WAN may consist of a large number of members, which may be
geographically spread far apart. A group membership service may need to maintain a large number
of such groups. These conditions cause membership to be highly dynamic. An algorithm that
manages the membership information will be forced to propagate large amounts of membership data
across long distances. It is important not to
ood the network in such a setting, and to propagate
information only to those who need it. Both our membership algorithm and the underlying network
event noti�cation service we use (namely, congress) propagate information related to a certain

3

group's membership only among the servers which have clients in this group. The servers forward
views to their local clients who are members of this group.

2.5 A client-server design

Our membership algorithm is part of a novel architecture for group membership services designed
for CSCW [45] and groupware applications in WANs. This architecture employs a client-server
approach: dedicated membership servers maintain process-level group membership (i.e., which
clients are members of each group). The servers do not explicitly maintain the server-level group
membership. The membership servers are only concerned with membership maintenance, and not
with message transmission within groups. This architecture allows us to be scalable in the number
of groups and in the number of clients. It also allows an application to choose, on a per message
stream basis, whether to use congress or congress augmented with membership semantics.
Details on this architecture and its utility can be found in [10].

The membership service interface provides the hooks for clients to e�ciently implement vir-
tually synchronous communication semantics, but it does not impose such semantics. Thus, the
membership service does not delay delivery of views to clients until such semantics are achieved.
The membership server interface is presented in Section 4. In Section 7 we explain how the clients
can use this interface to provide virtual synchrony.

3 The environment model

Our membership algorithm is implemented in an asynchronous message-passing environment: pro-
cesses communicate solely by exchanging messages. There is no bound on message delivery time.
Processes fail by crashing, and may later recover. Communication links may fail and recover.

Our algorithm exploits two underlying services: It learns about the status of processes and
links via the network event noti�cation service, described in Section 3.1; and it exploits a reliable
fifo communication layer that operates in conjunction with the noti�cation service, so that if a
message is sent from one process to another then either this message eventually arrives or else the
noti�cation service reports the link to be faulty. This guarantee is made formal in Section 3.2.

3.1 The underlying network event noti�cation service

Our membership service exploits a distributed network event noti�cation service such as congress.
The noti�cation service accumulates and disseminates failure detection information, along with
information about processes requesting to join or leave multicast groups.

Clients use the noti�cation service in order to request to join or leave groups. The services are
provided to clients by an interface that consists of the following basic functions:

join(G) is a request to make the invoking client a member of group G.

leave(G) is a request to remove the invoking member from the membership of G.

Our membership servers extend the noti�cation service: each membership server has a local
noti�cation service component which reports the client status to the membership servers. The
noti�cation service reports network events to the membership server via noti�cation events (NEs),
with the following interface:

4

NE(Group G, Set joining, Set leaving) is a noti�cation that the processes in the set joining
are joining group G, and those in the set leaving are either leaving the group or are suspected
of having crashed or detached.

An NE can report of changes in more than one group by providing a list of triples of the form
<G, joining, leaving>.

Note that the noti�cation service does not distinguish between processes leaving the group due
to failures and processes leaving the group voluntarily. Both are reported via the same interface.

Our membership servers keep track of the membership according to the noti�cation service in
a variable called the NSView. The NSView of a group G is computed by aggregating all of the NEs
that correspond to G as follows: The NSView is initially empty, and every time an NE arrives, the
NSView becomes: NSView [NE.joining n NE.leaving. Note that the NSView is not a membership
view, since it has no unique identi�er which can be agreed upon. The NSView is simply the list of
group members that are currently not suspected.

Exploiting a noti�cation service in a membership algorithm is conceptually no di�erent than
exploiting an underlying failure detector module, as done in practically all group membership al-
gorithms, either explicitly [26, 15, 14, 39] or implicitly by using time-outs [21, 41]. We decouple
the noti�cation service from our membership algorithm in order to allow for e�cient WAN imple-
mentations of the noti�cation service.

As a failure detector in an asynchronous environment, the noti�cation service is bound to
be unreliable in some runs [20]: it may be inaccurate in that it may suspect correct processes.
However, we assume that the noti�cation service is always complete, i.e. it eventually suspects all
permanently faulty or disconnected processes, as implied by Property 3.2 below.

3.2 The guarantees of the underlying communication

The reliable fifo communication layer guarantees that messages from a single source are not
received out of order. Formally:

Property 3.1 (fifo Order) If process p �rst sends message m1 to process q and later sends m2

to q, and if q delivers both m1 and m2, then q delivers m1 before m2.

In addition, the underlying reliable fifo communication layer guarantees liveness in conjunction
with the noti�cation service as follows:

Property 3.2 (Reliable Links) If server S1 sends a message m to server S2 at time t1, then
there is a time t2 > t1 by which either S2 has received m, or the NSView of S1 does not contain

any client of S2.

Such a reliable communication service can be easily implemented by retransmitting lost messages
to live processes [48] as long as they are not suspected by the noti�cation service. Group membership
algorithms are often based on such services, e.g., in Transis [27, 26], Ensemble [34] and the algorithm
described in [14, 15].

4 The guarantees of the membership algorithm

We now describe the interface the membership algorithm provides to its clients, and the guarantees
it makes. The clients use the noti�cation service interface directly to issue join and leave requests.
The primary function of our membership algorithm is to provide clients with views which contain a

5

membership and a unique identi�er. Each membership server communicates with its clients using
reliable fifo links. The client-server interaction is summarized in Figure 1.

The server sends two types of events to its clients:

Client

st
ar

tC
ha

ng
e

 V
ie

w

Jo
in/

 L
ea

ve

Membership ServerNS NE

Figure 1: The membership service client-server interface.

startChange(G; startChangeNum) indicates to the client that the server is now engaging in a
membership change for group G. The startChange message is a hook that provides the
synchronization needed by the clients to implement virtual synchrony in parallel with the
membership's agreement on the view, as explained in Section 7.

view(G;V) noti�es the client that the new view of group G is V . The view V is a triple:
<id, members, startChangeNums>, where the id is an integer, members is a set of processes
and startChangeNums is a function from the servers of members to identi�ers that were sent
to the clients in startChangemessages. This function is used in the implementation of virtual
synchrony, as described in Section 7.

4.1 Membership guarantees

We say that two processes deliver the same view in a group G if they deliver identical triples. Views
are partially ordered according to their id. The membership algorithm guarantees that the ids of
views delivered to each client are monotonically increasing:

Property 4.1 (View Identi�er Local Monotonicity) If a process delivers a view V 1 and later

delivers a view V 2, then V 2:id > V 1:id.

As explained above, one of the tasks of a membership service is to reach agreement on views
that correctly re
ect the network connectivity. Unfortunately, such a desirable membership service
is impossible to implement in asynchronous environments [52, 19]. An unstable communication
layer can force every deterministic membership algorithm to either block or to constantly deliver
changing views.

Therefore, we formulate Property 4.2 (Agreement on Views) below to guarantee only that
agreement be reached in runs in which the network stabilizes and the failure detector module (or
noti�cation service) does not suspect correct and connected processes.

Property 4.2 (Agreement on Views) Let G be a group, CS a set of clients, and SS the set

of servers serving clients in CS. Assume that there is a time t0 such that from time t0 onwards,

the NSView of G at all of the servers in SS contains exactly the clients in CS. Then eventually,

all of the clients in CS receive the same view V from their servers, such that V:group = G and

V:members = CS, and do not receive new view or startChangemessages in group G henceforward.

6

Property 4.2 classi�es runs in which all of the connected members of G agree on the same
view forever. Since our algorithm runs in asynchronous systems, it is impossible to guarantee that
such agreement be reached in every run. However, such agreement is reached if the following two
conditions hold: 1. the set of members of G in a certain connected network component1 eventually
stabilizes; and 2. the noti�cation service behaves like an eventual perfect failure detector , i.e., it
eventually stops making mistakes (eventual perfect failure detectors are discussed in [20, 22, 23,
14, 15]). A similar guarantee is formally de�ned in terms of network stability and failure detector
properties in [14, 15, 52]. For the sake of simplicity, we have summarized both conditions into one
requirement, namely that the servers eventually have the same NSView, and that this NSView does
not change henceforward.

It is important to note that although Property 4.2 is guaranteed to hold only in certain runs,
the conditions on these runs are external to the algorithm implementation, and therefore cannot
be met by a trivial or useless algorithm.

Note also that we require stability to last forever. In practice, however, it only has to hold long
enough for the membership algorithm to execute and for the failure detector module to stabilize,
as explained in [28, 32]. This time period depends on external conditions: message latency, process
scheduling and processing time. In this paper, we argue that the membership algorithm typically
terminates one message round after such stabilization occurs, and in the worst case 3� time after
such stabilization occurs, where � is the maximum message latency in the run. However, we do not
formally analyze the actual length of time required for the algorithm to terminate. This can be done,
as in [29, 21], by explicitly linking the guarantees of the membership algorithm to pre-determined
bounds on process scheduling times and network delays.

4.2 Client Interface Guarantees

The startChange messages and startChangeNums are used by the clients for implementing virtual
synchrony. In order to be useful they have to satisfy the following two properties:

Property 4.3 (Monotonicity of startChange Identi�ers) The startChange identi�ers sent

to each client are monotonically increasing.

Property 4.4 (Integrity of startChange Identi�ers) Each view message V sent to a client

c by a membership server s is preceded by a startChange message SM such that no messages are

sent from s to c between SM and V , and V:startChangeNums[s]= SM:startChangeNum.

5 The membership algorithm

In this section we discuss the implementation of the group membership algorithm. For the sake
of simplicity, in this section we discuss the membership algorithm for a single group and omit the
group name.

The membership algorithm is invoked whenever it receives a NE. The typical message
ow of the
membership algorithm is as follows: Once a server receives a NE from the noti�cation service, the
server noti�es its clients that the membership is undergoing a change via startChange messages.
At the same time, the server multicasts a proposal message to all of the other servers so the

1A connected network component is a set of processes among which all of the links are operational and all of

the links to processes outside the component are not operational. The existence of such a component implies that

communication is transitive and symmetric.

7

servers can agree on the unique identi�er of the view to be installed in a manner consistent with
Property 4.1. Once the server has received a proposal message from each of the servers, the server
computes the new view identi�er and sends a view message to its clients. An example of this
message
ow, resulting from a client joining the group, is illustrated in Figure 2.

(1
) J

oin

Client B

Membership ServerNS (2) NE (B,{})
(5

)
vi

ew
 (

A
,B

)

(3
)

st
ar

tC
ha

ng
e

Client A

Membership Server NS(2) NE (B,{})

(5
)

vi
ew

 (
A

,B
)

(3
)

st
ar

tC
ha

ng
e

(4) proposal {A,B}

Figure 2: The membership service typical message
ow.

A one round algorithm such as this may reach agreement in a failure-free case, but cannot
successfully reach agreement under all conditions. Consider Example 5.1 below:

Example 5.1 Some client c tries to join the group, but fails soon after requesting the join. In

such a case, the noti�cation might send a NE that re
ects c joining the group to the server s that

is responsible for c. The noti�cation service may later send to s another NE that re
ects c leaving
the group. Because c failed so soon after attempting to join the group, the noti�cation service at

another server s0 might not send a NE at all. In such a case, s has begun the algorithm and sent a

startChange message to its clients, but s0 is not running the algorithm. Thus, s will block waiting

for a proposal from s0 which will never be sent, and the algorithm will never terminate.

Such cases, albeit rare, need to be addressed. Our algorithm is therefore composed of a fast

agreement algorithm that terminates in one round in the best case, a mechanism for detecting if the
fast agreement algorithm is blocked, and a slow agreement algorithm that terminates in all cases.

The rest of this section presents the membership algorithm in pseudo-code. We begin in Sec-
tion 5.1 by presenting the pseudo-code which is run in the typical case, i.e., the fast agreement
algorithm. In Section 5.2 we describe a mechanism for detecting when this algorithm blocks. In
Section 5.3 we describe the slow agreement algorithm. Finally, in Section 5.4 we put all of the
pieces together and describe how the combined algorithm works.

5.1 The Fast Agreement Algorithm

Variables and types

The following message types are sent in the algorithm: Servers send each other proposal messages,
and send clients startChange and viewmessages. The types and variables used by the membership
algorithm are shown in Figure 3. The variables that are not used in the fast agreement algorithm
are shown in gray.

The variable running is used to track which algorithm is currently being run: it has the value
none if no algorithm is being run, the value FA if the fast agreement algorithm is being run, and the
value SA if the slow agreement algorithm is being run. The variable NSView contains the aggregation

8

Type CSet SetOf(clients)

Type NE hSet joining, Set leavingi
Type algType {none, FA, SA}

Message types:

S!C view
�

= hint id, CSet members, startChangeNums[serversOf(members) 7! int]i

S!C startChange
�

= hint startChangeNumi

S!S proposal
�

= hsender, CSet members, int startChangeNum,

algType type, usedProps[servers 7! int], int propNum i

Variables and Data Structures:

serverId me // My server name

algType running = none // Initially not running any algorithm

CSet NSView = f g // aggregation of all NEs

function props [servers 7! proposal] = null // last proposal received from server

view curView = h0, f g, [* 7! 0]i // last view delivered

int startChangeNum = 0 // unique id for startChange messages

int propNum = 0 // proposal logical clock

function usedProps [servers 7! int] = 0 // proposal from server used for view

Assumed external functions:

serversOf[clients 7! servers] // returns the servers of the clients

local[CSet 7! local clients] // returns local clients out of a set of clients

Variables shown in gray are not part of the fast agreement algorithm.

Figure 3: Types and variables for the membership algorithm.

of the NEs received from the noti�cation service. The bu�er props is used to store the most recent
proposal message received from every server. The variable curView contains the most recent view
sent to the clients. The variable startChangeNum is used to ensure that every startChangemessage
sent to a client has a monotonically increasing number (as required in Section 4). The variable
propNum is a logical timestamp used to ensure that every proposal message sent by a server has
a unique monotonically increasing identi�er. The variable usedProps is used to detect if the fast
agreement algorithm has failed, as described in Section 5.2 below. These last two variables are not
used by the fast agreement algorithm.

We assume the existence of two external functions: serversOf that maps a set of clients to the
set of servers serving those clients, and local that maps a set of clients to the subset of those clients
being served by this server. These functions can be implemented by using a naming convention

that associates clients with their local servers. Alternatively, a client can be assigned to a server
the �rst time the client issues a join request to the noti�cation service, and this information can
be disseminated to maintain a registry of the clients.

The algorithm as we have described it herein does not allow a client to be served by more than
one server. This implies that when a server crashes, all its local clients are also considered to have
crashed. In order to avoid this undesirable situation, we have devised a simple mechanism that
allows fail-over of clients to alternative servers in case of crash. The discussion of this mechanism
is not in the scope of this paper; the interested reader is referred to [42] for details.

9

On receive NE n:

NSView = NSView [n.joining n n.leaving // Update NSView

if (local(NSView) 6= f g) then // We are only interested in groups that contain local clients

startChangeNum = max(curView.id, startChangeNum + 1)

send startChange(startChangeNum) to local(NSView)

running = FA

propNum = max(propNum, props[serversOf(NSView)].propNum) + 1

proposal p = hme, NSView, startChangeNum, FA, usedProps[serversOf(NSView)], propNum i
send p to serversOf(NSView) n {me}

deliver p immediately to myself // Invoke proposal handler

endif

On receive proposal inProp:

props[inProp.sender] = inProp // Overwrite to use latest proposal (we assume �fo links)

if (inProp.members = NSView) then // Proposal is only acted upon if it matches the NSView

if (TestIfSAProposalNeeded(inProp)) then SendSAProposal(inProp) endif

if (TestIfAgreeementReached()) then

curView = hmax(props[serversOf(NSView)].startChangeNum) + 1, NSView,

props[serversOf(NSView)].startChangeNumi
forall s 2 serversOf(NSView)

usedProps[s] = props[s].propNum

props[s] = null

end forall

running = none

send curView to local(NSView)

endif

endif

// In the fast agreement algorithm:

TestIfAgreeementReached()
�

= 8s 2 serversOf(NSView) : props[s].members = NSView

Code shown in gray is not part of the fast agreement algorithm.

Figure 4: Event handlers for the membership algorithm.

Event handlers

The membership algorithm is event-driven, and responds to events as they occur. We assume that
event handlers are atomic, i.e., they cannot be preempted once they are invoked. The algorithm
responds to two types of events: the reception of NEs from the noti�cation service, and the reception
of proposal messages that were sent by other servers. The event handlers of the membership
algorithm are presented in Figure 4. Code shown in gray is not part of the fast agreement algorithm.

The fast agreement algorithm follows precisely the message
ow described above in Figure 2.
Upon receiving a NE from the noti�cation service, every server sends a startChange message to its
clients and sends a proposal message to all of the servers in the group. The proposal message has
three �elds used by the fast agreement algorithm: sender is the server which sent the proposal

message; members indicates the NSView that this proposal message is proposing for the new view;
and startChangeNum is used to compute the identi�er of the new view, as explained below.

To ensure that Property 4.1 is not violated, the identi�er of the new view must be greater than
the identi�er of the last view for every client in the new view. Thus, the servers must be able to

10

calculate such an identi�er. Each startChange message sent to a client has a unique integer, the
startChangeNum, greater than or equal to the identi�er of the last view sent to that client. Then,
the startChangeNum is included in the proposal message. When a server has collected proposal

messages from all of the servers, it uses the startChangeNum values to calculate a new view number
greater than all of the previous view numbers. The startChangeNum values are also included in
the view message, in order to allow clients to correlate startChange events with the view.

Reaching agreement on a view is determined via the proposalmessages sent by all of the servers
of clients in the NSView. The props bu�er is used to collect these proposal messages. Whenever
a proposal message is received, it is placed in the props bu�er regardless of the membership it
proposes. Due to the fifo nature of the communication (Property 3.1), this proposal message
is guaranteed to have been sent after the proposal message that it replaces. By using the most
recent proposal message sent by the servers, the algorithm avoids sending obsolete views.

Once a server has received proposal messages proposing the same NSView from each server
that has clients in the NSView, the server sends a view to its clients. After a view is sent to the
local clients in C, for each server s of a client in C, props[s] is set to null in order to avoid using
the same proposal in future invocations of the membership algorithm. When props[s] is set to
null and view V is sent, we say that the proposal message that was in props[s] was used for V .

5.2 The detection mechanism

In order to satisfy Property 4.2, our membership algorithm must terminate when the network
and the NSView eventually stabilize. Unfortunately, as illustrated in Example 5.1 above, the fast
agreement algorithm may not terminate successfully in some cases, even if the network and NSView

eventually stabilize. We refer to the failure to terminate as blocking, since in such cases one or more
servers will run the agreement protocol forever.

Blocking stems from transient conditions in the network, such as a lack of symmetry or transi-
tivity in the communication system. Such conditions may cause the servers to receive di�erent sets
of network events. Once the network stabilizes, all of the servers will send their last proposal mes-
sage for the fast agreement protocol. These proposal messages will all have the same membership.
However, some servers may have sent previous proposal messages with the same membership.
Since the fast agreement algorithm is a one round algorithm, there is no means of determining
which proposal messages are the last ones sent. Thus, one server may use an obsolete proposal

message sent by another server along with its own latest proposal message, or vice versa.

In this section we present a mechanism for detecting such cases. Note that we are only interested
in detecting non-termination of the fast agreement algorithm in case the network and the NSView
eventually do stabilize. If an invocation of the membership algorithm is followed by another NE,
then the membership algorithm is re-started and we are no longer concerned with the termination
of the former invocation.

Thus, for the remainder of this section we assume the following: Let CS be a set of clients and
SS be the set of servers which serve the clients in CS. We assume there is a time t0 after which
the NSView of every server in SS is and remains CS. We show that under this assumption, our
detection mechanism will detect the need to invoke the slow agreement algorithm if and only if the
fast agreement algorithm will block.

By time t0, every server in SS has received its last NE from the noti�cation service, and this NE
makes the server's NSView = CS. Therefore, every server in SS will send a proposal message with
members = CS as its last proposal message. We use lasts to refer to the last proposal message
sent by a server s. For every server s 2 SS, lasts will be received by every server s0 2 SS, according

11

to Property 3.2.
If the props bu�er of every server in SS contains the same set of proposal messages before

sending a view to the clients, then the fast agreement algorithm terminates successfully { all of the
servers in SS agree on the view, and all of the clients receive the exact same view message. Thus,
the only way the fast agreement algorithm can fail is if there is some pair of servers s; s0 2 SS, such
that s does not use lasts and lasts0 together for a view.

However, server s must receive lasts0 , as explained above. Furthermore, since s0 has clients in
the NSView of s, s must use some proposal message from s0 for the same view as lasts unless it
receives no such proposal message. Thus, lasts0 is not used by s for the same view as lasts in only
two cases: 1. s uses some earlier proposal message from s0 for the same view as lasts; or 2. s

uses last
s
0 for a view with an earlier proposal message of its own. We now explain the detection

mechanism and prove that it detects both of these cases.
The detection mechanism is implemented in the function TestIfSAProposalNeeded, which is

invoked whenever a proposal message prop is received by some server s, as shown in gray in the
event handler of Figure 4. The detection mechanism is presented in Figure 5.

TestIfSAProposalNeeded(proposal inProp)

return (running = none _ inProp.usedProps[me] = propNum)

Figure 5: Detecting if the fast agreement algorithm is blocked.

The detection mechanism detects the two cases described above:

1. Case 1 is detected because last
s
0 arrives after s already sent a view using lasts. Therefore

when the proposal lasts0 arrives, the running variable at s is none, and s detects the block.

2. Case 2 is detected by s0 using the function usedProps included in the proposal lasts. (The
code for maintaining usedProps is shown in gray in Figure 4). lasts.usedProps[s'] contains
the propNum of the latest proposal from s0 which was used for a view by s. Thus, if s used
last

s
0 for a view before sending lasts, then lasts.usedProps[s'] is equal to last

s
0.propNum.

When lasts reaches s
0, the value of propNum at s0 is equal to lasts0 .propNum (since propNum

is increased only when a proposal is being sent). Thus, lasts.usedProps[s'] is equal to the
value of propNum at s0 and s0 detects the block.

In Lemma 6.4 we formally prove that whenever the fast agreement algorithm blocks, it is
detected by the detection mechanism at some server. Furthermore, in Lemma 6.5 we prove that
the detection mechanism only detects when the fast agreement does indeed block.

5.3 The slow agreement algorithm

We have seen that the fast agreement algorithm can block. This blocking is inevitable since a
one round algorithm in which all of the servers send messages simultaneously cannot synchronize
di�erent invocations of the algorithm. Such synchronization would require all of the servers to
use an agreed round (invocation) number. However, the algorithm cannot assume that such an
agreed round number exists a priori. In order to agree on a common round number, another level
of knowledge is required.

The slow agreement algorithm is begun by a server when it detects that the fast agreement
protocol will not terminate. As with the fast agreement algorithm, in the slow agreement algorithm

12

servers send proposal messages to each other and collect these proposal messages to agree upon
a new view. However, in contrast to the fast agreement algorithm, the invocations of the slow
agreement algorithm are synchronized: the set of proposal messages used for a view must all carry
the same propNum. Since each server sends no more than one SA proposal with the same propNum,
if two servers use a proposal message p for a view V , then the same set of proposal messages are
used for V by both servers.

A server that detects blocking of the fast agreement algorithm initiates the slow agreement
algorithm by multicasting a proposal message to all of the other servers with the type �eld set to
SA. The propNum of this proposal is chosen to be greater than the maximal value of propNum of
any proposal message (of any type) this server has previously sent or received. This is the round
number associated with this invocation of the slow agreement algorithm.

Every server that receives a proposal of type SA while it is not running the slow agreement
algorithm joins the slow agreement algorithm by also sending a proposal message of type SA. A
server which joins the slow agreement algorithm sends a proposal with the value of propNum equal

to the maximal value of propNum in any proposal message it previously sent or received. Ideally,
this value will be equal to the propNum in the initiator's proposal2, and all of the servers will send
proposal messages with identical propNum values.

However, if the joining server sends a SA proposal with a greater propNum than the initiator,
the rest of the servers (including the initiator) will also have to send proposal messages with the
higher propNum so that the algorithm will be able to terminate. To this end, if a server that has
already started (or joined) a round of the slow agreement algorithm receives a proposal with a
higher propNum value than its local one, it joins the higher round by setting its local propNum to
the higher value and sending a new SA proposal with the value.

Note that we do not assume that there is a single initiator. The di�erence between starting a
round of the slow agreement algorithm as an initiator and joining a round is that servers joining a
round of the slow agreement algorithm do not increase the propNum to be larger than the highest
value they received. Thus, when all of the servers are running the slow agreement protocol, the
maximum propNum of all of the servers will not increase. This way, all of the servers eventually send
proposal messages with the same propNum. Once proposal messages with identical identi�ers are
collected from all of the servers, a view is sent to the clients and the slow agreement algorithm
terminates.

Slow agreement pseudo-code

In Figure 6, we complete the pseudo-code shown in Figure 4 by adding the functions which im-
plement the slow agreement algorithm. Recall that if the fast agreement algorithm is detected as
blocking, then the slow agreement algorithm is initiated by call of the function SendSAProposal at
the initiator (cf. Figure 4).

The function SendSAProposal is also used by the slow agreement protocol to join a round in
progress. This addition is re
ected in function TestIfSAProposalNeeded. The slow agreement
algorithm terminates once there is agreement not only on the NSView, but also on the propNum.
This change in the termination condition is re
ected in the function TestIfAgreeementReached.
In Figure 6 we show the complete pseudo-code for these functions as implemented in the combined
algorithm. Code which is not part of the slow agreement algorithm is shown in gray.

2If the initiator receives the last fast agreement algorithm proposal sent by each of the other servers before

invoking the slow agreement algorithm, then the propNum of its SA proposal is greater than the local values of

propNum at all of the other servers.

13

TestIfSAProposalNeeded(proposal inProp)

if (running 6= SA) then // detect if FA round blocked

return (running = none _ inProp.usedProps[me] = propNum _ inProp.type = SA)

else // detect if later SA round in progress

return (propNum < inProp.propNum)

endif

TestIfAgreeementReached()
if (running = FA) then // FA check: all FA proposals received

return (8s 2 serversOf(NSView) : props[s].members = NSView ^ props[s].type = FA)

else // SA check: all same round SA proposals received

return (8s 2 serversOf(NSView) : props[s].members = NSView ^ props[s].type = SA ^
props[s].propNum = propNum)

endif

SendSAProposal(proposal inProp)

// Notify the clients that a membership change is starting

startChangeNum = max(curView.id, startChangeNum + 1)

send startChange(startChangeNum) to local(NSView)

running = SA

if (inProp.type = FA) then // detected FA problem { initiate SA (new round)

propNum = max(propNum + 1, props[serversOf(NSView)].propNum)

else // received SA proposal { join SA (same round)

propNum = max(propNum, props[serversOf(NSView)].propNum)

endif

proposal outProp = hme, NSView, startChangeNum, SA, usedProps[serversOf(NSView)], propNumi
send outProp to serversOf(NSView) n {me}

deliver outProp immediately to myself // Invoke proposal handler

Code shown in gray is not part of the slow agreement algorithm.

Figure 6: Function de�nitions for the membership algorithm.

5.4 Putting the pieces together: the combined algorithm

The combined algorithm works as follows: The server initially is not running either algorithm.
When a NE is received from the noti�cation service, the server begins running the fast agreement
algorithm. It sends a proposalmessage of type FA to the other servers, and waits to receive similar
proposal messages from all of the servers.

When the server receives a proposal message which matches its NSView, if it is a proposal

message with type SA it joins the slow agreement algorithm. If it is a proposal message with type

FA, it runs the detection mechanism to check if the slow agreement algorithm needs to be started.
In either of these cases, if the slow agreement algorithm is begun, the server sends a proposal

message of type SA.

While the server is running either agreement algorithm, it waits to collect proposal messages
from the other servers, until it has the necessary set to send a view as per the current (fast or slow)
agreement algorithm. When a view is sent, the server returns to not running either algorithm.

If the server receives a new NE from the noti�cation service while running the slow agreement
algorithm, it begins the fast agreement algorithm anew, sending a proposal message of type FA.
It is this mechanism by which the algorithm avoids sending obsolete views to the clients.

The combined algorithm can be represented as a state machine with three states { a state in

14

None

FASA

NE

SA proposal \
 block detection

NE
pr

op
os

al

agreem
entag

re
em

en
t

pr
op

os
al

FA
 proposal \

N
E

Figure 7: The membership algorithm state diagram.

which the server is running the fast agreement algorithm, a state in which the server is running the
slow agreement algorithm, and a state in which the server is running neither algorithm. This state
machine is presented in Figure 7.

6 Correctness of the membership algorithm

We now prove that the algorithm ful�lls the properties speci�ed in Section 4. In Section 6.1 we
prove that it ful�lls the client interface properties: 4.3 and 4.4. In Section 6.2, we prove that it
ful�lls the membership properties: 4.1 and 4.2.

6.1 Client interface properties

Lemma 6.1 (Monotonicity of startChange Identi�ers) Property 4.3 holds, i.e., startChange iden-

ti�ers sent to each client are monotonically increasing.

Proof: Whenever a startChangemessage is sent to the clients, startChangeNum is �rst increased
and then sent in the message.

Lemma 6.2 (Integrity of startChange Identi�ers)

Property 4.4 holds, i.e., each view message V sent to a client c by a membership server s is

preceded by a startChange message SM such that no messages are sent from s to c between SM

and V , and V:startChangeNums[s]= SM:startChangeNum.

Proof: A server s sends its clients two types of messages: view and startChange. When-
ever a startChange message is sent, the server also sends a proposal which includes the lat-
est startChange.startChangeNum sent to its clients, and invokes the proposal handler which
stores this proposal in props[s]. Before sending a view message, the server checks that props
contains proposal messages from all of the servers of members of the view, including itself.
view.startChangeNums[s] is then selected to be props[s].startChangeNum, which contains the
latest startChange.startChangeNum sent to local members of the view.

Upon sending a view, the server removes this proposal messages from props. Therefore, each
view must be preceded by a sending of a proposal message which follows the previous view.
Moreover, every time a proposal is sent, startChange messages are sent to all of the clients who
are members of the proposed view.

15

6.2 Membership properties

Lemma 6.3 (Local Monotonicity) Property 4.1 holds, i.e., if a client receives a view V 1 and later

receives a view V 2, then V 2:id > V 1:id.

Proof: Whenever a view V is sent, V:id is chosen to be greater than the startChangeNum of the
last startChange sent to local clients. Whenever a startChange message is sent to local clients,
startChangeNum is chosen to be greater than curView.id. The proof follows from Lemma 6.2.

Let CS be a set of clients, and SS the set of servers serving clients in CS. For the rest of this
section we assume that there is a time t0 such that from time t0 onwards, the NSView at all of the
servers in SS contains exactly the clients in CS.

Lemma 6.4 (Fast Agreement Blocking Detection) If the fast agreement algorithm does not termi-

nate successfully, then the detection mechanism (described in Figure 5) detects the blocking after

time t0.

Proof: If every server sends a view to its clients based on the last proposal message sent by
the servers in SS, then the fast agreement algorithm terminates successfully. Therefore, the fast
agreement algorithm fails to terminate in only two cases:

1. There exists some pair of servers s; s0 2 SS such that for some view V , s uses some earlier
proposal message from s0 with lasts.

2. There exists some pair of servers s; s0 2 SS such that for some view V , s uses lasts0 with an
earlier proposal message of its own.

We now prove that both of these cases will result in detections, i.e., TestIfSAProposalNeeded
at one of the servers will return true.

In the �rst case, for view V , s uses lasts and a proposal message p
s
0 from s0 that precedes

lasts0 . After using lasts, s receives no further NEs from the noti�cation service. Thus, s does not
run the fast agreement algorithm again so running at s will remain none after it sends V . Due to
the fifo nature of the links described in Property 3.1, all proposal messages from s0 received by
s are received in the order they are sent. Thus, lasts0 will be received by s after ps0 . Since s uses
ps0 for view V , lasts0 is received by s after it sends V . Thus, when s receives lasts0 running will
be none, and this will result in detection at s.

In the second case, for view V , s uses lasts0 and a proposal message ps that s sent before
sending lasts. If s0 also uses lasts0 with some proposal message that s sent before sending lasts
for some view V 0, then s0 will detect the failure, as described in the �rst case above. So the case we
are examining is reduced to s using last

s
0 and ps for view V while s0 does not send a view using

last
s
0 and any earlier proposal message from s.
When s uses lasts0 and ps for view V , s sets usedProps[s'] to the propNum of lasts0. s always

uses its most recent proposalmessage for a view. Therefore, s cannot have sent lasts before it used
lasts0 . Thus, when s sends lasts, the value of usedProps[s'] is the propNum of lasts0. Furthermore,
s0 must receive lasts after it has already sent lasts0. Since, by assumption, s0 will not use lasts0

with any earlier proposal message from s, lasts0 must still be in the props bu�er of s0 when s0

receives lasts. Thus, the value usedProps[s'] in lasts will be equal to the propNum at s0 when
lasts is received by s0. This will result in detection at s0.

Lemma 6.5 (No False Blocking Detection) The detection mechanism described in Figure 5 detects

blocking after time t0 only if the fast agreement algorithm does not terminate successfully.

16

Proof: We now prove that a detection will not occur if the fast agreement algorithm terminates
successfully, i.e., TestIfSAProposalNeeded will not return true at any server after time t0.

If the fast agreement algorithm terminates successfully after time t0, then every server s will
send a view V using last

s
0 for every s0 in SS. Before s sends lasts, the NSView at s will not be

CS, so a last
s
0 received by s before it sends lasts will not result in detection. By the time s sends

V , s must have received lasts0 for every s0 2 SS, by assumption. Therefore, s will not receive any
further proposal messages from s0 that might lead to a detection. Since running is set to FA from
the time that s sends lasts until it sends V , a detection will only occur if there is some lasts0 which
has usedProps[s] set to the propNum of lasts.

The usedProps function of s0 is updated before s0 sends a view to its clients. At that time,
usedProps[s] is set to the proposal used by s0 for that view. By assumption, s0 uses lasts for
the same view that it uses lasts0 . Therefore, usedProps[s] at s0 is not set to the propNum of lasts
until after lasts0 is sent. Thus no detection will occur if the fast agreement algorithm terminates
correctly.

Lemma 6.6 (Slow Agreement Termination) After time t0, if a the slow agreement algorithm is

started by some server s then there is some server s0 2 SS such that the slow agreement algorithm

started by s0 terminates at all servers.

Proof: First, note that if the slow agreement protocol is invoked after time t0 by some server s
in SS, then eventually every server s0 in SS will enter the slow agreement protocol by sending a
proposal of type SA. Also, this will occur after s0 has received its �nal NE from the noti�cation
service.

Second, note that any proposal sent in the slow agreement protocol by a server s has a greater
propNum than any proposal of type SA received by s beforehand.

Third, note that propNum at server s is increased above the propNum of those proposalmessages
received by s only in response to a NE or upon reception of a proposal of type FA, and proposal

messages of type FA are sent only in response to a NE. Since after time t0 no NE is received by
a server, there is a time t1 > t0 after which no more proposal messages of type FA are sent or
received and thus propNum at s no longer increases above the propNum of other proposal messages.

Let n be the largest propNum which was sent in a proposal of type SA. By the argument above,
if some server sends a proposal of type SA after t0, then any server that sends a proposal of type
SA with propNum= n does so after time t0. Therefore, from Property 3.2, all of the servers in SS

receive this proposal, and all respond by sending proposal messages of type SA with propNum= n

(unless they have already done so). These proposal messages will also be received by all of the
servers in SS. Furthermore, in all of these proposal messages, NSView is CS. Since no proposal

messages of type FA and no proposal messages of type SA with a higher propNum will be sent, the
slow agreement algorithm will terminate once all of these proposal messages are received.

Theorem 6.7 (Agreement on Views) Let CS be a set of clients, and SS the set of servers

serving clients in CS. Assume that there is a time t0 such that from time t0 onwards, the NSView

at all of the servers in SS contains exactly the clients in CS. Then eventually, all of the clients

in CS receive the same view V from their servers, such that V:members = CS, and do not receive

new views or startChange messages henceforward.

Proof: When each server receives the last NE from the noti�cation service that sets its NSView to
CS, it runs the fast agreement algorithm. If this agreement terminates successfully, all of the clients

17

in CS will receive the same view. If it fails, then by Lemma 6.4, the slow agreement algorithm will
be run. The slow agreement algorithm always terminates, as proven in Lemma 6.6.

What remains to be proven is that the clients will not receive any further startChange or view
messages after that view is received. Due to the fifo nature of communication, the clients will not
receive a message from the server after the view unless the server sends another message.

The server only sends messages to the client if it begins or ends either of the agreement algo-
rithms. Since the fast agreement algorithm in which we are interested is running after the last NE
received by each server, the fast agreement algorithm will not be run again. If the slow agreement
algorithm is run, and it terminates, then every server will have run the same round of the slow
agreement algorithm and received all of the proposal messages, as described in Lemma 6.6. Thus,
unless a stimulus to run another round of the slow agreement algorithm is received by some server,
the slow agreement algorithm will not run again. But, the only stimulus to run this algorithm is
from a detection that the fast agreement algorithm is blocked. Lemma 6.5 shows that the detection
mechanism detects blocking after time t0 only if the fast agreement algorithm does not terminate
successfully. Thus, unless the fast agreement is run again, there will not be another run of the slow
agreement algorithm. But, we have already argued that the fast agreement algorithm will not be
run again.

7 Providing virtual synchrony

Our group membership system is designed to be used in conjunction with a multicast service as part
of a group communication system. Group communication systems generally provide some variant
of virtual synchrony semantics; many such variants have been suggested [17, 40, 30, 52, 18, 47, 29].
While detailed discussion of all of these variants is beyond the scope of this paper, we describe
here the most common properties of virtual synchrony and how clients can implement them in
conjunction with our membership service.

The key aspect of virtual synchrony semantics is the interleaving of send and delivery events
with views. In this model, send and delivery events of messages occur in views. We say that a
multicast event e in group G occurs at process p in view V if V was the latest view that p delivered
in group G before e, or a default initial view V0 if no view was delivered.

All of the variants of virtual synchrony ensure that a message m is delivered in the same view
V by all processes that deliver m, and that m is not delivered in a view that is ordered before the
view in which the message was sent. Some of these semantics (e.g., strong virtual synchrony [30])
strengthen this property to ensure that the view in which a message is delivered is the same view
in which it was sent. Another useful property provided by nearly all variants of virtual synchrony
is the agreement of the processes moving together from view V 1 to view V 2 on the set of messages
delivered in V 1.

Virtual synchrony properties are implemented by synchronizing participating processes while
view changes are taking place (for examples, please see [30, 33, 41]). During long periods of time
in which a view does not change, the messages sent can be delivered with minimal interference
from the virtual synchrony algorithm. During view changes, the algorithm agrees upon the set of
messages to be delivered before moving to the new view. In order to implement virtual synchrony,
a client c sends every other client a flush message which signi�es that c has stopped sending
messages in the current view.

Our membership service provides hooks that the clients can use to implement virtual synchrony
while the servers are agreeing upon the view. Upon receiving a startChange message from the
server, each client sends a flush message to the other clients. The flush message is tagged with

18

the startChangeNum of the startChange message, and also carries the information required in
order to agree on the set of the messages to be delivered in the view that is now ending. If strong
virtual synchrony semantics are desired, then the client sends no more messages after sending a
flush until the next view is delivered.

When a client receives a view message V from its server, the client has to make sure to deliver
the same set of messages as other clients before delivering V to its application. To this end, the
client collects flush messages from all of the clients that continue with it from the current view
to V . Clients use the information in the flush messages to determine the set of messages to be
delivered in the current view. Clients delay the delivery of V to the application until these messages
are delivered. The startChangeNums mapping in the view message serves to make sure that the
same set of flush messages are used for the same view at all of the clients: for each client c,
V:startChangeNums[serverOf(c)] is the identi�er of the flush message to be used from c.

8 Discussion and Related work

We have described a scalable, one-round membership algorithm for wide-area networks. We have
proven that this algorithm provides properties which are useful and attainable in an asynchronous
system which may su�er communication partitions, but eventually stabilizes. We now compare our
service with related work.

8.1 Separating membership maintenance from multicast services

Following the approach taken by congress [8, 9], Maestro [16] and Caelum [12], our design sepa-
rates the maintenance of membership from the actual group multicast: membership is not main-
tained by every client but only by dedicated membership servers which are not concerned with the
actual communication among clients in the groups.

Our membership algorithm extends congress and provides an interface for virtually syn-
chronous communication semantics. Unlike Maestro [16] and Caelum [12], our membership service
does not wait for responses from clients asserting that virtual synchrony was achieved before deliver-
ing views. Instead, we provide a novel interface which allows clients to implement virtual synchrony
in parallel with the membership's agreement on views, and yet does not slow the agreement on views
until responses from clients are received.

8.2 Scalable group communication services for WANs

Existing group communication systems that were designed for use in a WAN evolved from previous
work on group communication systems for use in a LAN [24, 38, 5, 41, 7]. These systems leverage
the idea that all WANs are interconnected LANs. These systems �rst run the original algorithm in
each LAN, and then run another algorithm among the LANs, merging the individual memberships
into one membership. This merged membership is then disseminated to all of the group members.
Thus, these algorithms overcome the problem of remote failure detection by having the failure
detection done at the LAN level. However, these algorithms are inherently multi-round, since an
additional round is added to the algorithm run on each LAN. For example, the Totem multiple
ring algorithm [2] takes two rounds per ring3 plus an extra round for multiple rings [41].

The idea of using a two-layer hierarchy to support scalable virtual synchrony was discussed
in [33]. The algorithm presented in this paper deals solely with the communication issue, and not

3A ring is the logical representation of a LAN in Totem.

19

the membership. Our work complements this work by implementing the membership needed by
such a system.

Ours is the only membership algorithm that we are aware of that never delivers views which it
knows to be obsolete. As explained in Section 2.1, this feature is very important in WANs.

8.3 Light-weight group membership services

\Light-weight" group membership algorithms [25, 5, 24, 7, 43, 31, 46, 16] employ a client-server
approach to both virtual synchrony and membership maintenance. In these algorithms, there are
two levels of membership, heavy-weight and light-weight. The servers are part of the heavy-weight
membership, and they use virtually synchronous communication among them. The clients are part
of the light-weight membership. Most light-weight group membership services, e.g., [25, 5, 24, 7,
43, 31], do not preserve the semantics of the underlying heavy-weight membership services.

In these systems, when there is a membership change, the servers �rst compute the heavy-
weight membership, and then map it to several light-weight process groups. As with the approach
taken by us, this approach is scalable in the number of clients, since the membership algorithm
involves reaching agreement among the servers only. However, computing the light-weight group
membership requires additional communication after the heavy-weight membership algorithm is
complete.

Unlike light-weight group membership algorithms, our algorithm only computes the process-level
group membership, hence additional message rounds for computing the light-weight membership
are not necessary. Furthermore, our service provides clients with full virtual synchrony semantics.

Light-weight group membership services have another important advantage: they scale well
in the number of groups maintained, since they maintain the membership for several groups at
the same time. Since in our design the same membership servers maintain the membership of all
of the groups, our servers can also handle membership changes concerning several groups at the
same time. Indeed, our implementation of the algorithm [42] also possess this feature: if there
are concurrent noti�cations concerning multiple groups, the membership server handles all of these
groups together, and bundles the messages corresponding to di�erent groups into a single message.

Thus, our algorithm provides the full semantics of heavy-weight group membership along with
the scalability and
exibility of a light-weight group membership, all for the cost of a single com-
munication round in the common case.

8.4 One round membership algorithms

The only other single round membership algorithm that we are aware of is the one-round algorithm
in [21]. This algorithm terminates within one round in case of a single process crash or join, but
in case of network events that a�ect multiple processes, the algorithm may take a linear number of
rounds, where in each round a token revolves around a virtual ring consisting of all of the processes
in the system. Thus, the latency until the membership is complete and stable is O(n2�) where � is
the maximum message delay at stable times. Thus, this membership algorithm is not suitable for
WANs, where � tends to be big and typical network events are partitions and merges.

Once the network stabilizes and all of the information about network events has been propagated
by the noti�cation service to all of the servers, our algorithm terminates within at most 3� time.
congress, the noti�cation service we use in our implementation, propagates network information
along a spanning tree. The depth of the tree depends solely on the network topology, and does not
depend on the number of clients (i.e., members) in each group.

20

Acknowledgments

We are thankful to Tal Anker, Gregory Chockler, Roger Khazan and Ohad Rodeh for many inter-
esting discussions and helpful suggestions.

References

[1] ACM. Commun. ACM 39(4), special issue on Group Communications Systems, April 1996.

[2] D. A. Agarwal. Totem: A Reliable Ordered Delivery Protocol for Interconnected Local-Area

Networks. PhD thesis, University of California, Santa Barbara, 1994.

[3] Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group communication as an infrastructure
for distributed system management. In 3rd International Workshop on Services in Distributed

and Networked Environment (SDNE), pages 84{91, June 1996.

[4] Y. Amir, G. V. Chokler, D. Dolev, and R. Vitenberg. E�cient state transfer in partition-
able environments. In 2nd European Research Seminar on Advances in Distributed Systems

(ERSADS'97), pages 183{192. BROADCAST (ESPRIT WG 22455), Operating Systems Lab-
oratory, Swiss Federal Institute of Technology, Lausanne, March 1997. Full version available as
Technical Report CS98-12, Institute of Computer Science, The Hebrew University, Jerusalem,
Israel.

[5] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system for high
availability. In 22nd IEEE Fault-Tolerant Computing Symposium (FTCS), July 1992.

[6] Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust and E�cient Replication
using Group Communication. Technical Report CS94-20, Institute of Computer Science, The
Hebrew University of Jerusalem, Jerusalem, Israel, 1994.

[7] Y. Amir and J. Stanton. The Spread Wide Area Group Communication System. TR CNDS-
98-4, The Center for Networking and Distributed Systems, The Johns Hopkins University,
1998.

[8] T. Anker, D. Breitgand, D. Dolev, and Z. Levy. Congress: CONnection-oriented
Group-address RESolution Service. Tech. Report CS96-23, Institute of Computer Science,
The Hebrew University of Jerusalem, Jerusalem, Israel, December 1996. Available from:
http://www.cs.huji.ac.il/�transis.

[9] T. Anker, D. Breitgand, D. Dolev, and Z. Levy. Congress: Connection-oriented group-
address resolution service. In Proceedings of SPIE on Broadband Networking Technologies,
November 2-3 1997.

[10] T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scalable group membership services for novel
applications. In M. Mavronicolas, M. Merritt, and N. Shavit, editors, Networks in Distributed

Computing (DIMACS workshop), volume 45 of DIMACS, pages 23{42. American Mathematical
Society, 1998.

[11] T. Anker, G. Chockler, I. Keidar, M. Rozman, and J. Wexler. Exploiting group communication
for highly available video-on-demand services. In Proceedings of the IEEE 13th International

21

Conference on Advanced Science and Technology (ICAST 97) and the 2nd International Con-

ference on Multimedia Information Systems (ICMIS 97), pages 265{270, April 1997.

[12] T. Anker, G. V. Chockler, D. Dolev, and I. Keidar. The Caelum toolkit for CSCW: The sky is
the limit. In The Third International Workshop on Next Generation Information Technologies

and Systems(NGITS 97), pages 69{76, June 1997.

[13] T. Anker, D. Dolev, and I. Keidar. Fault tolerant video-on-demand services. In 19th Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages 244{252, June 1999.

[14] �O. Babao�glu, R. Davoli, and A. Montresor. Failure Detectors, Group Membership and View-
Synchronous Communication in Partitionable Asynchronous Systems. TR UBLCS-95-18, De-
partment of Conmputer Science, University of Bologna, November 1995.

[15] �O. Babao�glu, R. Davoli, and A. Montresor. Partitionalbe Group Membership: Speci�cation
and Algorithms. TR UBLCS97-1, Department of Conmputer Science, University of Bologna,
January 1997.

[16] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware support for distributed mul-
timedia and collaborative computing. In Multimedia Computing and Networking (MMCN98),
1998.

[17] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In 11th ACM

SIGOPS Symposium on Operating Systems Principles (SOSP), pages 123{138. ACM, Nov
1987.

[18] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, 1994.

[19] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group
membership. In 15th ACM Symposium on Principles of Distributed Computing (PODC), pages
322{330, May 1996.

[20] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
J. ACM, 43(2):225{267, Mar. 1996.

[21] F. Cristian and F. Schmuck. Agreeing on Process Group Membership in Asynchronous Dis-
tributed Systems. Technical Report CSE95-428, Department of Computer Science and Engi-
neering, University of California, San Diego, 1995.

[22] D. Dolev, R. Friedman, I. Keidar, and D. Malki. Failure Detectors in Omission Failure En-
vironments. TR 96-13, Institute of Computer Science, The Hebrew University of Jerusalem,
Jerusalem, Israel, September 1996. Also Technical Report 96-1608, Department of Computer
Science, Cornell University.

[23] D. Dolev, R. Friedman, I. Keidar, and D. Malki. Failure detectors in omission failure environ-
ments. In 16th ACM Symposium on Principles of Distributed Computing (PODC), page 286,
August 1997. Brief announcement.

[24] D. Dolev and D. Malkhi. The Transis approach to high availability cluster communication.
Commun. ACM, 39(4), April 1996.

22

[25] D. Dolev and D. Malki. The design of the Transis system. In K. P. Birman, F. Mattern, and
A. Schipper, editors, Theory and Practice in Distributed Systems: International Workshop,
pages 83{98. Springer Verlag, 1995. LNCS 938.

[26] D. Dolev, D. Malki, and H. R. Strong. An Asynchronous Membership Protocol that Tolerates
Partitions. Technical Report CS94-6, Institute of Computer Science, The Hebrew University
of Jerusalem, Jerusalem, Israel, 1994.

[27] D. Dolev, D. Malki, and H. R. Strong. A Framework for Partitionable Membership Service.
TR 95-4, Institute of Computer Science, The Hebrew University of Jerusalem, March 1995.

[28] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
J. ACM, 35(2):288{323, April 1988.

[29] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable group commu-
nication service. In 16th ACM Symposium on Principles of Distributed Computing (PODC),
pages 53{62, August 1997.

[30] R. Friedman and R. van Renesse. Strong and Weak Virtual Synchrony in Horus. TR 95-1537,
dept. of Computer Science, Cornell University, August 1995.

[31] B. Glade, K. Birman, R. Cooper, and R. van Renesse. Lightweight process groups in the Isis
system. Distributed Systems Engineering, 1:29{36, 1993.

[32] R. Guerraoui and A. Schiper. Consensus: the big misunderstanding. In Proceedings of the

6th IEEE Computer Society Workshop on Future Trends in Distributed Computing Systems

(FTDCS-6), pages 183{188, Tunis, Tunisia, Oct. 1997. IEEE Computer Society Press.

[33] K. Guo, W. Vogels, and R. van Renesse. Structured virtual synchrony: Exploring the bounds
of virtual synchronous group communication. In 7th ACM SIGOPS European Workshop,
September 1996.

[34] M. Hayden. The Ensemble System. Phd thesis, Cornell University, Computer Science, 1998.

[35] I. Keidar and D. Dolev. E�cient message ordering in dynamic networks. In 15th ACM
Symposium on Principles of Distributed Computing (PODC), pages 68{76, May 1996.

[36] R. Khazan. Group communication as a base for a load-balancing, replicated data service.
Master's thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, June 1998.

[37] R. Khazan, A. Fekete, and N. Lynch. Multicast group communication as a base for a load-
balancing replicated data service. In 12th International Symposium on DIStributed Computing

(DISC), pages 258{272, Andros, Greece, September 1998.

[38] D. Malkhi, Y. Amir, D. Dolev, and S. Kramer. The Transis approach to high availability
cluster communication. TR 94-14, Institute of Computer Science, The Hebrew University of
Jerusalem, Jerusalem, Israel, 1994.

[39] C. Malloth and A. Schiper. View synchronous communication in large scale networks. In 2nd

Open Workshop of the ESPRIT project BROADCAST (Number 6360), July 1995 (also avail-
able as a Technical Report Nr. 94/84 at Ecole Polytechnique F�ed�erale de Lausanne (Switzer-
land), October 1994).

23

[40] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual synchrony.
In 14th International Conference on Distributed Computing Systems (ICDCS), pages 56{65,
June 1994. Full version: technical report ECE93-22, Department of Electrical and Computer
Engineering, University of California, Santa Barbara, CA.

[41] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system. Commun.

ACM, 39(4), April 1996.

[42] A. Nowersztern. MOSHE: Membership Object-oriented Service for Heterogeneous Environ-
ments. Lab project, High Availability lab, The Hebrew University of Jerusalem, Jerusalem,
Israel, January 1998. Available from: http://www.cs.huji.ac.il/�transis.

[43] D. Powell. Delta-4: A Generic Architecture for Dependable Distributed Computing. Springer
Verlag, 1991.

[44] A. Ricciardi. Dissecting distributed coordination. In 9th International Workshop on Distributed

Algorithms (WDAG), pages 101{118, September 1995.

[45] T. Rodden. A survey of CSCW systems. Interacting with Computers, 3(3):319{353, 1991.

[46] L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade, P. Verissimo, and K. Birman.
A dynamic light-weight group service. In 15th IEEE International Symposium on Reliable

Distributed Systems (SRDS), pages 23{25, Oct. 1996. also Cornell University Technical Report,
TR96-1611, August, 1996.

[47] A. Schiper and A. Ricciardi. Virtually synchronous communication based on a weak failure
suspector. Digest of Papers, FTCS-23, pages 534{543, June 93.

[48] I. Shnaiderman. Implementation of Reliable Datagram Service in the LAN environment. Lab
project, High Availability lab, The Hebrew University of Jerusalem, Jerusalem, Israel, January
1999. Available from: http://www.cs.huji.ac.il/�transis/publications.html.

[49] J. Sussman and K. Marzullo. The bancomat problem: An example of resource allocation
in a partitionable asynchronous system. In 12th International Symposium on DIStributed
Computing (DISC), September 1998. Full version: Tech Report 98-570 University of California,
San Diego Department of Computer Science and Engineering.

[50] R. van Renesse, T. M. Hickey, and K. P. Birman. Design and Performance of Horus: A
Lightweight Group Communications System. TR 94-1442, dept. of Computer Science, Cornell
University, August 1994.

[51] R. van Renesse, Y. Minsky, and M. Hayden. A Gossip-Style Failure Detection Service. TR
TR98-1687, Cornell University, Computer Science, May 1998.

[52] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev. Group Communication System Spec-
i�cations: A Comprehensive Study. Technical report, Institute of Computer Science, The
Hebrew University of Jerusalem, Jerusalem, Israel, 1999. In preparation.

[53] W. Vogels. World wide failures. In ACM SIGOPS 1996 European Workshop, September 1996.

24

